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Abstract 
 
 
 
‘Bayesian Methods for Statistical Analysis’ is a book on statistical 
methods for analysing a wide variety of data. The book consists of 12 
chapters, starting with basic concepts and covering numerous topics, 
including Bayesian estimation, decision theory, prediction, hypothesis 
testing, hierarchical models, Markov chain Monte Carlo methods, finite 
population inference, biased sampling and nonignorable nonresponse. 
The book contains many exercises, all with worked solutions, including 
complete computer code. It is suitable for self-study or a semester-long 
course, with three hours of lectures and one tutorial per week for 13 weeks. 
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Preface 
 
 
  
‘Bayesian Methods for Statistical Analysis’ is a book which can be used 
as the text for a semester-long course and is suitable for anyone who is 
familiar with statistics at the level of ‘Mathematical Statistics with 
Applications’ by Wackerly, Mendenhall and Scheaffer (2008). The book 
does not attempt to cover all aspects of Bayesian methods but to provide 
a ‘guided tour’ through the subject matter, one which naturally reflects the 
author's particular interests gained over years of research and teaching.  
  
For a more comprehensive account of Bayesian methods, the reader is 
referred to the very extensive literature on this subject, including ‘Theory 
of Probability’ by Jeffreys (1961), ‘Bayesian Inference in Statistical 
Analysis’ by Box and Tiao (1973), ‘Markov Chain Monte Carlo in 
Practice’ by Gilks et al. (1996), ‘Bayesian Statistics: An Introduction’ by 
Lee (1997), ‘Bayesian Methods: An Analysis for Statisticians and 
Interdisciplinary Researchers’ by Leonard and Hsu (1999), ‘Bayesian 
Data Analysis’ by Gelman et al. (2004), ‘Computational Bayesian 
Statistics’ by Bolstad (2009) and ‘Handbook of Markov Chain Monte 
Carlo’ by Brooks et al. (2011). See also Smith and Gelfand (1992) and 
O'Hagan and Forster (2004). 
  
The software packages which feature in this book are R and WinBUGS. 
  
R is a general software environment for statistical computing and graphics 
which compiles and runs on UNIX platforms, Windows and MacOS. This 
software is available for free at www.r-project.org/ Two useful guides to 
R are ‘Bayesian Computation With R’ by Albert (2009) and ‘Data 
Analysis and Graphics Using R: An Example-Based Approach’ by 
Maindonald and Braun (2010).  
  
BUGS stands for ‘Bayesian Inference Using Gibbs Sampling’ and is a 
specialised software environment for the Bayesian analysis of complex 
statistical models using Markov chain Monte Carlo methods. WinBUGS, 
a version of BUGS for Microsoft Windows, is available for free at 
www.mrc-bsu.cam.ac.uk/software/bugs/ Two useful guides to WinBUGS 
are ‘Bayesian Modeling Using WinBUGS’ by Ntzoufras (2009) and 
‘Bayesian Population Analysis Using WinBUGS’ by Kéry and Schaub 
(2012). 
 

http://www.mrc-bsu.cam.ac.uk/software/bugs/
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The present book includes a large number of exercises, interspersed 
throughout and each followed by a detailed solution, including complete 
computer code. A student should be able to reproduce all of the numerical 
and graphical results in the book by running the provided code. Although 
many of the exercises are straightforward, some are fairly involved, and a 
few will be of interest only to the particularly keen or advanced student. 
All of the code in this book is also available in the form of an electronic 
text document which can be obtained from the same website as the book. 
 
This book is in the form of an Adobe PDF file saved from Microsoft Word 
2013 documents, with the equations as MathType 6.9 objects. The figures 
in the book were created using Microsoft Paint, the Snipping Tool in 
Windows, WinBUGS and R. In the few instances where color is used, this 
is only for additional clarity. Thus, the book can be printed in black and 
white with no loss of essential information. 
  
The following chapter provides an overview of the book. Appendix A 
contains several additional exercises with worked solutions, Appendix B 
has selected distributions and notation, and Appendix C lists some 
abbreviations and acronyms. Following the appendices is a bibliography 
for the entire book. 
  
The last four of the 12 chapters in this book constitute a practical 
companion to ‘Monte Carlo Methods for Finite Population Inference’, a 
largely theoretical manuscript written by the author (Puza, 1995) during 
the last year of his employment at the Australian Bureau of Statistics in 
Canberra.  
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Overview 
 
 
 
Chapter 1: Bayesian Basics Part 1 (pages 1–60)   
 
Introduces Bayes’ rule, Bayes factors, Bayesian models, posterior 
distributions, and the proportionality formula. Also covered are the 
binomial-beta model, the Jeffreys’ famous tramcar problem, the 
distinction between finite population inference and superpopulation 
inference, conjugacy, point and interval estimation, inference on functions 
of parameters, credibility estimation, the normal-normal model, and the 
normal-gamma model. 
 
Chapter 2: Bayesian Basics Part 2 (pages 61–108)   
 
Covers the frequentist characteristics of Bayesian estimators including 
bias and coverage probabilities, mixture priors, uninformative priors 
including the Jeffreys prior, and Bayesian decision theory including the 
posterior expected loss and Bayes risk. 
 
Chapter 3: Bayesian Basics Part 3 (pages 109–152)   
 
Covers inference based on functions of the data including censoring and 
rounded data, predictive inference, posterior predictive p-values, 
multiple-parameter models, and the normal-normal-gamma model 
including an example of Bayesian finite population inference. 
 
Chapter 4: Computational Tools (pages 153–200)   
 
Covers the Newton-Raphson (NR) algorithm including its multivariate 
version, the expectation-maximisation (EM) algorithm, hybrid search 
algorithms, integration techniques including double integration, 
optimisation in R, and specification of prior distributions. 
 
Chapter 5: Monte Carlo Basics (pages 201–262)   
 
Covers Monte Carlo integration, importance sampling, the method of 
composition, Buffon’s needle problem, testing the coverage of Monte 
Carlo confidence intervals, random number generation including the 
inversion technique, rejection sampling, and applications to Bayesian 
inference including prediction in the normal-normal-gamma model, Rao-
Blackwell estimation, and estimation of posterior predictive p-values. 
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Chapter 6: MCMC Methods Part 1 (pages 263–320)   
 
Covers Markov chain Monte Carlo (MCMC) methods including the 
Metropolis-Hastings algorithm, the Gibbs sampler, specification of tuning 
parameters, the batch means method, computational issues, and 
applications to the normal-normal-gamma model. 
 
Chapter 7: MCMC Methods Part 2 (pages 321–364)   
 
Covers stochastic data augmentation, a comparison of classical and 
Bayesian methods for linear regression and logistic regression, 
respectively, and a Bayesian model for correlated Bernoulli data. 
 
Chapter 8: MCMC Inference via WinBUGS   
(pages 365–406)   
 
Provides a detailed tutorial in the WinBUGS computer package including 
running WinBUGS within R, and shows how WinBUGS can be used for 
linear regression, logistic regression and ARIMA time series analysis. 
 
Chapter 9: Bayesian Finite Population Theory   
(pages 407–466)   
 
Introduces notation and terminology for Bayesian finite population 
inference in the survey sampling context, and discusses ignorable and 
nonignorable sampling mechanisms. These concepts are illustrated by 
way of examples and exercises, some of which involve MCMC methods. 
 
Chapter 10: Normal Finite Population Models   
(pages 467–514)  
 
Contains a generalisation of the normal-normal-gamma model to the finite 
population context with covariates. Useful vector and matrix formulae are 
provided, special cases such as ratio estimation are treated in detail, and it 
is shown how MCMC methods can be used for both descriptive and 
analytic inferences. 
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Chapter 11: Transformations and Other Topics 
(pages 515–558) 

Shows how MCMC methods can be used for inference on complicated 
functions of superpopulation and finite population quantities, as well for 
inference based on transformed data. Frequentist characteristics of 
Bayesian estimators are discussed in the finite population context, with 
examples of how Monte Carlo methods can be used to estimate model 
bias, design bias, model coverage and design coverage. 

Chapter 12: Biased Sampling and Nonresponse 
(pages 559–608) 

Discusses and provides examples of ignorable and nonignorable response 
mechanisms, with an exercise involving follow-up data. The topic of self-
selection bias in volunteer surveys is studied from a frequentist 
perspective, then treated using Bayesian methods, and finally extended to 
the finite population context.  

Appendix A: Additional Exercises (pages 609–666) 

Provides practice at applying concepts in the last four chapters. 

Appendix B: Distributions and Notation 
(pages 667–672) 

Provides details of some distributions which feature in the book. 

Appendix C: Abbreviations and Acronyms 
(pages 673–676) 

Catalogues many of the simplified expressions used throughout. 

Computer Code in Bayesian Methods for Statistical 
Analysis 

Combines all of the R and WinBUGS code interspersed throughout the 
679-page book. This separate 126-page PDF file is available online at: 
http://eview.anu.edu.au/bayesian_methods/pdf/computer_code.pdf. 
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CHAPTER 1 
Bayesian Basics Part 1 

 
1.1 Introduction 
  
Bayesian methods is a term which may be used to refer to any 
mathematical tools that are useful and relevant in some way to Bayesian 
inference, an approach to statistics based on the work of Thomas Bayes 
(1701–1761). Bayes was an English mathematician and Presbyterian 
minister who is best known for having formulated a basic version of the 
well-known Bayes’ Theorem.  
 
Figure 1.1 (page 3) shows part of the Wikipedia article for Thomas 
Bayes. Bayes’ ideas were later developed and generalised by many 
others, most notably the French mathematician Pierre-Simon Laplace 
(1749–1827) and the British astronomer Harold Jeffreys (1891–1989). 
 
Bayesian inference is different to classical inference (or frequentist 
inference) mainly in that it treats model parameters as random variables 
rather than as constants. The Bayesian framework (or paradigm) allows 
for prior information to be formally taken into account. It can also be 
useful for formulating a complicated statistical model that presents a 
challenge to classical methods.  
 
One drawback of Bayesian inference is that it invariably requires a prior 
distribution to be specified, even in the absence of any prior information.  
However, suitable uninformative prior distributions (also known as 
noninformative, objective or reference priors) have been developed 
which address this issue, and in many cases a nice feature of Bayesian 
inference is that these priors lead to exactly the same point and interval 
estimates as does classical inference. The issue becomes even less 
important when there is at least a moderate amount of data available. As 
sample size increases, the Bayesian approach typically converges to the 
same inferential results, irrespective of the specified prior distribution.  
 
Another issue with Bayesian inference is that, although it may easily 
lead to suitable formulations of a challenging statistical problem, the 
types of calculation needed for inference can themselves be very 
complicated. Often, these calculations take on the form of multiple 
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integrals (or summations) which are intractable and difficult (or 
impossible) to solve, even with the aid of advanced numerical 
techniques.  
 
In such situations, the desired solutions can typically be approximated to 
any degree of precision using Monte Carlo (MC) methods. The idea is to 
make clever use of a large sample of values generated from a suitable 
probability distribution.  
 
How to generate this sample presents another problem, but one which 
can typically be solved easily via Markov chain Monte Carlo (MCMC) 
methods. Both MC and MCMC methods will feature in later chapters of 
the course. 
 
1.2 Bayes’ rule 
 
The starting point for Bayesian inference is Bayes’ rule. The simplest 
form of this is 

 ( ) ( | )( | )
( ) ( | ) ( ) ( | )

P A P B AP A B
P A P B A P A P B A




, 

where A and B are events such that ( ) 0P B > . This is easily proven by 
considering that:  

 ( )( | )
( )

P ABP A B
P B

    by the definition of conditional probability 

 ( ) ( ) ( | )P AB P A P B A    by the multiplicative law of probability 
 ( ) ( ) ( ) ( ) ( | ) ( ) ( | )P B P AB P AB P A P B A P A P B A     
     by the law of total probability. 
 
We see that the posterior probability ( | )P A B  is equal to the prior 
probability ( )P A  multiplied by a factor, where this factor is given by 

( | ) / ( ).P B A P B  
 
As regards terminology, we call ( )P A  the prior probability of A 
(meaning the probability of A before B is known to have occurred), and 
we call ( | )P A B  the posterior probability of A given B (meaning the 
probability of A after B is known to have occurred). We may also say 
that ( )P A  represents our a priori beliefs regarding A, and ( | )P A B  
represents our a posteriori beliefs regarding A. 
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Figure 1.1 Beginning of the Wikipedia article on Thomas 
Bayes  
Source: en.wikipedia.org/wiki/Thomas_Bayes, 29/10/2014 

 

 
    



Bayesian Methods for Statistical Analysis 

4 

More generally, we may consider any event B such that ( ) 0P B >  and  
k > 1 events 1,..., kA A  which form a partition of any superset of B (such 
as the entire sample space S). Then, for any i = 1,...,k, it is true that 

            ( )( | ) ,
( )

i
i

P A BP A B
P B

          

where 
1

( ) ( )
n

j
j

P B P A B


  and ( ) ( ) ( | )j j jP A B P A P B A .    

 
Exercise 1.1 Medical testing 
 
The incidence of a disease in the population is 1%. A medical test for the 
disease is 90% accurate in the sense that it produces a false reading 10% 
of the time, both: (a) when the test is applied to a person with the 
disease; and (b) when the test is applied to a person without the disease.  
 
A person is randomly selected from population and given the test. The 
test result is positive (i.e. it indicates that the person has the disease). 
 
What is the probability that the person actually has the disease? 
 
Solution to Exercise 1.1 
 
Let A be the event that the person has the disease, and let B be the event 
that they test positive for the disease. Then: 
   ( ) 0.01P A =       (the prior probability of the person having the disease) 
   ( | ) 0.9P B A =   (the true positive rate, also called   
        the sensitivity of the test) 
   ( | ) 0.9P B A =   (the true negative rate, also called   
        the specificity of the test). 
 
So: ( ) ( ) ( | ) 0.01 0.9 0.009P AB P A P B A= = × =   
 ( ) ( ) ( | ) 0.99 0.1 0.099.P AB P A P B A= = × =  
 
So the unconditional (or prior) probability of the person testing positive 
is  ( ) ( ) ( )P B P AB P AB= + 0.009 0.099 0.108= + = . 
 
So the required posterior probability of the person having the disease is 

 ( ) 0.009 1( | )
( ) 0.108 12

P ABP A B
P B

    = 0.08333. 
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Figure 1.2 is a Venn diagram which illustrates how B may be considered 
as the union of AB and AB . The required posterior probability of A 
given B is simply the probability of AB divided by the probability of B. 
 
 
Figure 1.2 Venn diagram for Exercise 1.1   
 

              
 
Discussion 
 
It may seem the posterior probability that the person has the disease 
(1/12) is rather low, considering the high accuracy of the test (namely 

( | ) ( | )P B A P B A=  = 0.9).  
 
This may be explained by considering 1,000 random persons in the 
population and applying the test to each one. About 10 persons will have 
the disease, and of these, 9 will test positive. Of the 990 who do not have 
the disease, 99 will test positive. So the total number of persons testing 
positive will be 9 + 99 = 108, and the proportion of these 108 who 
actually have the disease will be 9/108 = 1/12. This heuristic derivation 
of the answer shows it to be small on account of the large number of 
false positives (99) amongst the overall number of positives (108). 
 
On the other hand, it may be noted that the posterior probability of the 
person having the disease is actually very high relative to the prior 
probability of them having the disease ( ( ) 0.01).P A =  The positive test 
result has greatly increased the person’s chance of having the disease 
(increased it by more than 700%, since 0.01 + 7.333 × 0.01 = 0.08333). 
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It is instructive to generalise the answer (1/12) as a function of the 
prevalence (i.e. proportion) of the disease in the population, ( )p P A= , 
and the common accuracy rate of the test, ( | ) ( | )q P B A P B A= = .  
 
We find that 

 ( ) ( | )( | )
( ) ( | ) ( ) ( | ) (1 )(1 )

P A P B A pqP A B
P A P B A P A P B A pq p q

 
   

. 

 
Figure 1.3 shows the posterior probability of the person having the 
disease ( ( | ))P A B  as a function of p with q fixed at 0.9 and 0.95, 
respectively (subplot (a)), and as a function of q with p fixed at 0.01 and 
0.05, respectively (subplot (b)). In each case, the answer (1/12) is 
represented as a dot corresponding to p = 0.01 and q = 0.9.  
 
 
Figure 1.3 Posterior probability of disease as functions of p  
and q 
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R Code for Exercise 1.1 
 
PAgBfun=function(p=0.01,q=0.9){    p*q   /  (p*q+(1-p)*(1-q))    } 
PAgBfun()  # 0.08333333 
 
pvec=seq(0,1,0.01); Pveca=PAgBfun(p=pvec,q=0.9) 
 Pveca2=PAgBfun(p=pvec,q=0.95)  
qvec=seq(0,1,0.01); Pvecb=PAgBfun(p=0.01,q=qvec) 
 Pvecb2=PAgBfun(p=0.05,q=qvec) 
 
X11(w=8,h=7); par(mfrow=c(2,1)); 
 
plot(pvec,Pveca,type="l",xlab="p=P(A)",ylab="P(A|B)",lwd=2) 
points(0.01,1/12,pch=16,cex=1.5); text(0.05,0.8,"(a)",cex=1.5) 
lines(pvec,Pveca2,lty=2,lwd=2) 
legend(0.7,0.5,c("q  = 0.9","q = 0.95"),lty=c(1,2),lwd=c(2,2)) 
 
plot(qvec,Pvecb,type="l",xlab="q=P(B|A)=P(B'|A')",ylab="P(A|B)",lwd=2) 
points(0.9,1/12,pch=16,cex=1.5); text(0.05,0.8,"(b)",cex=1.5) 
lines(qvec,Pvecb2,lty=2,lwd=2) 
legend(0.2,0.8,c("p  = 0.01","p = 0.05"),lty=c(1,2),lwd=c(2,2)) 
 
# Technical note: The graph here was copied from R as ‘bitmap’ and then  
# pasted into a Word document, which was then saved as a PDF. If the graph 
# is copied from R as ‘metafile’, it appears correct in the Word document, 
# but becomes corrupted in the PDF, with axis legends slightly off-centre.  
# So, all graphs in this book created in R were copied into Word as ‘bitmap’. 
 
Exercise 1.2 Blood types  
  
In a particular population: 
 10% of persons have Type 1 blood,   
  and of these, 2% have a particular disease; 
 30% of persons have Type 2 blood,   
  and of these, 4% have the disease; 
 60% of persons have Type 3 blood,   
  and of these, 3% have the disease. 
  
A person is randomly selected from the population and found to have the 
disease.  
 
What is the probability that this person has Type 3 blood? 
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Solution to Exercise 1.2 
 
Let: A = ‘The person has Type 1 blood’ 
 B = ‘The person has Type 2 blood’ 
 C = ‘The person has Type 3 blood’  
 D = ‘The person has the disease’. 
 
Then: ( ) 0.1P A = ,  ( | ) 0.02P D A =  
 ( ) 0.3P B = ,  ( | ) 0.04P D B =  
 ( ) 0.6P C = ,  ( | ) 0.03P D C = . 
 
So: ( ) ( ) ( ) ( )P D P AD P BD P CD= + +  
  ( ) ( | ) ( ) ( | ) ( ) ( | )P A P D A P B P D B P C P D C= + +  
  0.1 0.02 0.3 0.04 0.6 0.03= × + × + ×  
  0.002 0.012 0.018 0.032= + + = . 
 

Hence: ( ) 0.018 9( | )
( ) 0.032 16

P CDP C D
P D

= = =  = 56.25%. 

 
Figure 1.4 is a Venn diagram showing how D may be considered as the 
union of AD, BD and CD. The required posterior probability of C given 
D is simply the probability of CD divided by the probability of D. 
 
 
Figure 1.4 Venn diagram for Exercise 1.2  
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1.3 Bayes factors 
 
One way to perform hypothesis testing in the Bayesian framework is via 
the theory of Bayes factors. Suppose that on the basis of an observed 
event D (standing for data) we wish to test a null hypothesis 
 0 0:H E   
versus an alternative hypothesis 
 1 1:H E  ,  
where 0E  and 1E  are two events (which are not necessarily mutually 
exclusive or even exhaustive of the event space).  
 
Then we calculate: 
   0 0( )P Eπ =  = the prior probability of the null hypothesis  
   1 1( )P Eπ =  = the prior probability of the alternative hypothesis 
   PRO = 0 1/π π  = the prior odds in favour of the null hypothesis 
   0 0( | )p P E D=  = the posterior probability of the null hypothesis 
   1 1( | )p P E D=  = the posterior probability of the alternative hypothesis 
   POO = 0 1/p p  = the posterior odds in favour of the null hypothesis. 
 
The Bayes factor is then defined as / .BF POO PRO=  This may be 
interpreted as the factor by which the data have multiplied the odds in 
favour of the null hypothesis relative to the alternative hypothesis. If  
BF > 1 then the data has increased the relative likelihood of the null, and 
if BF < 1 then the data has decreased that relative likelihood. The 
magnitude of BF tells us how much effect the data has had on the 
relative likelihood. 
 
Note 1: Another way to express the Bayes factor is as 

 0 1 0 1 0 0

0 1 0 1 1 1

/ ( | ) / ( | ) ( ) ( | ) / ( )
/ ( ) / ( ) ( ) ( | ) / ( )

p p P E D P E D P D P E D P EBF
P E P E P D P E D P Eπ π

= = =

      0

1

( | )
( | )

P D E
P D E

= .  

  
Thus, the Bayes factor may also be interpreted as the ratio of the 
likelihood of the data given the null hypothesis to the likelihood of the 
data given the alternative hypothesis.  
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Note 2: The idea of a Bayes factor extends to situations where the null 
and alternative hypotheses are statistical models rather than events. This 
idea may be taken up later.  
    
Exercise 1.3 Bayes factor in disease testing 
 
The incidence of a disease in the population is 1%. A medical test for the 
disease is 90% accurate in the sense that it produces a false reading 10% 
of the time, both: (a) when the test is applied to a person with the 
disease; and (b) when the test is applied to a person without the disease.  
 
A person is randomly selected from population and given the test. The 
test result is positive (i.e. it indicates that the person has the disease). 
 
Calculate the Bayes factor for testing that the person has the disease 
versus that they do not have the disease. 
  
Solution to Exercise 1.3 
  
Recall in Exercise 1.1, where A = ‘Person has disease’ and B = ‘Person 
tests positive’, the relevant probabilities are ( ) 0.01P A = , ( | ) 0.9P B A =  
and ( | ) 0.9P B A = , from which can be deduced that ( | ) 1 /12P A B = . 
  
We now wish to test 0 :H A   vs 1 :H A . So we calculate: 
   0 ( )P Aπ =  = 0.01, 1 ( )P Aπ =  = 0.99,  PRO = 0 1/π π  = 1/99,  
   0 ( | )p P A B= = 1/12, 1 ( | )p P A B= = 11/12, POO = 0 1/p p = 1/11. 
 
Hence the required Bayes factor is BF = POO/PRO = (1/11)/(1/99) = 9. 
 
This means the positive test result has multiplied the odds of the person 
having the disease relative to not having it by a factor of 9 or 900%. 
Another way to say this is that those odds have increased by 800%.  
 
Note: We could also work out the Bayes factor here as   

 ( | ) 0.9 9
( | ) 0.1

P B ABF
P B A

= = = ,  

namely as the ratio of the probability that the person tests positive given 
they have the disease to the probability that they test positive given they 
do not have the disease. 
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1.4 Bayesian models 
 
Bayes’ formula extends naturally to statistical models. A Bayesian 
model is a parametric model in the classical (or frequentist) sense, but 
with the addition of a prior probability distribution for the model 
parameter, which is treated as a random variable rather than an unknown 
constant. The basic components of a Bayesian model may be listed as:   
    • the data, denoted by y  
    • the parameter, denoted by    
    • the model distribution, given by a specification of 
 ( | )f y   or ( | )F y   or the distribution of ( | )y θ  
   •  the prior distribution, given by a specification of 
 ( )f   or ( )F   or the distribution of  θ . 
 
Here, F is a generic symbol which denotes cumulative distribution 
function (cdf), and f is a generic symbol which denotes probability 
density function (pdf) (when applied to a continuous random variable) or 
probability mass function (pmf) (when applied to a discrete random 
variable). For simplicity, we will avoid the term pmf and use the term 
pdf or density for all types of random variable, including the mixed type.  
 
Note 1: A mixed distribution is defined by a cdf which exhibits at least 
one discontinuity (or jump) and is strictly increasing over at least one 
interval of values.  
     
Note 2: The prior may be specified  by writing a statement of the form 
‘ ’~ ... , where the symbol ‘~’  means ‘is distributed as’, and where 
‘...’denotes the relevant distribution. Likewise, the model for the data 
may be specified by writing a statement of the form ( | ) .‘ ’~ ..y θ .  

      
Note 3: At this stage we will not usually distinguish between y as a 
random variable and y as a value of that random variable; but sometimes 
we may use Y for the former. Each of y and   may be a scalar, vector, 
matrix or array. Also, each component of y and   may have a discrete 
distribution, a continuous distribution, or a mixed distribution.  
  
In the first few examples below, we will focus on the simplest case 
where both y and   are scalar and discrete.  
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1.5 The posterior distribution 
 
Bayesian inference requires determination of the posterior probability 
distribution of  . This task is equivalent to finding the posterior pdf of 
 , which may be done using the equation 

 ( ) ( | )( | )
( )

f f yf y
f y

 
  . 

 
Here, ( )f y  is the unconditional (or prior) pdf of y, as given by  

    
( ) ( | ) if is continuous

( ) ( | ) ( )
( ) ( | ) if is discrete.

f f y d
f y f y dF

f f y


   
 

  

 


 

 

    

Note: Here, ( | ) ( )f y dF   is a Lebesgue-Stieltjes integral, which may 

need evaluating by breaking the integral into two parts in the case where 
θ  has a mixed distribution. In the continuous case, think of ( )dF   as 

( ) ( )dF d f d
d


  


 .  

    
Exercise 1.4 Loaded dice 
 
Consider six loaded dice with the following properties. Die A has 
probability 0.1 of coming up 6, each of Dice B and C has probability 0.2 
of coming up 6, and each of Dice D, E and F has probability 0.3 of 
coming up 6.  
 
A die is chosen randomly from the six dice and rolled twice. On both 
occasions, 6 comes up.  
 
What is the posterior probability distribution of θ , the probability of 6 
coming up on the chosen die. 
 
Solution to Exercise 1.4 
 
Let y be the number of times that 6 comes up on the two rolls of the 
chosen die, and let θ  be the probability of 6 coming up on a single roll 
of that die. Then the Bayesian model is: 
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 ( | ) ~ (2, )y Binθ θ  

 
1/ 6, 0.1

( ) 2 / 6, 0.2
3 / 6, 0.3.

f
θ

θ θ
θ

=
= =
 =

 

 
In this case y = 2 and so 

 2 2 2 2 22 2
( | ) (1 ) (1 )

2
y yf y

y
θ θ θ θ θ θ− −   

= − = − =   
   

. 

 

So  2 2 21 2 3( ) ( ) ( | ) (0.1) (0.2) (0.3)
6 6 6

f y f f y
θ

θ θ= = + +∑  = 0.06. 

 

So 

2

2

2

(1/ 6)0.1 / 0.06 0.02778, 0.1
( ) ( | )( | ) (2 / 6)0.2 / 0.06 0.22222, 0.2

( )
(3 / 6)0.3 / 0.06 0.75, 0.3.

f f yf y
f y

θ
θ θθ θ

θ

 = =
= = = =
 = =

 

    
Note: This result means that if the chosen die were to be tossed again a 
large number of times (say 10,000) then there is a 75% chance that 6 
would come up about 30% of the time, a 22.2% chance that 6 would 
come up about 20% of the time, and a 2.8% chance that 6 would come 
up about 10% of the time.  
    
1.6 The proportionality formula 
 
Observe that ( )f y  is a constant with respect to θ  in the Bayesian 
equation    
 ( | ) ( ) ( | ) / ( )f y f f y f y   ,  
which means that we may also write the equation as 

 ( ) ( | )( | ) f f yf y
k

 
  ,       

or as  
 ( | ) ( ) ( | )f y cf f y   , 
where  ( )k f y  and 1 /c k .   
 
We may also write   
 ( | ) ( ) ( | )f y f f y   , 
where ∝  is the proportionality sign. 
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Equivalently, we may write 

 ( | ) ( ) ( | )f y f f y


    
to emphasise that the proportionality is specifically with respect to θ . 
 
Another way to express the last equation is  
 ( | ) ( ) ( | )f y f L y    , 
where ( | )L y  is the likelihood function (defined as the model 
density ( | )f y   multiplied by any constant with respect to ,  and 
viewed as a function of   rather than of y). 
 
The last equation may also be stated in words as: 
 
      The posterior is proportional to the prior times the likelihood. 
 
These observations indicate a shortcut method for determining the 
required posterior distribution which obviates the need for calculating 

( )f y  (which may be difficult).  
 
This method is to multiply the prior density (or the kernel of that 
density) by the likelihood function and try to identify the resulting 
function of   as the density of a well-known or common distribution.  
 
Once the posterior distribution has been identified, ( )f y  may then be 
obtained easily as the associated normalising constant. 
 
Exercise 1.5 Loaded dice with solution via the proportionality 
formula 
  
As in Exercise 1.4, suppose that Die A has probability 0.1 of coming up 
6, each of Dice B and C has probability 0.2 of coming up 6, and each of 
Dice D, E and F has probability 0.3 of coming up 6.  
 
A die is chosen randomly from the six dice and rolled twice. On both 
occasions, 6 comes up.  
 
Using the proportionality formula, find the posterior probability 
distribution of θ , the probability of 6 coming up on the chosen die.  
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Solution to Exercise 1.5 
 
With y denoting the number of times 6 comes up, the Bayesian model 
may be written: 

 22
( | ) (1 ) , 0,1,2y yf y y

y
θ θ θ − 

= − = 
 

 

 ( ) 10 / 6, 0.1,0.2,0.3f θ θ θ= = .  
    
Note: 10 / 6θ  = 1/6, 2/6 and 3/6 for θ  = 0.1, 0.2 and 0.3, respectively.  
    
Hence  ( | ) ( ) ( | )f y f f yθ θ θ∝  

  2210 (1 )
6

y y

y
θ θ θ − 

= × − 
 

 

  2θ θ∝ ×       since y = 2. 
 

Thus  

3

3 3

3

0.1 1/1000, 0.1 1, 0.1
( | ) 0.2 8 /1000, 0.2 8, 0.2

0.3 27 /1000, 0.3 27, 0.3.
f y

θ θ
θ θ θ θ

θ θ

 = = =
  ∝ = = = ∝ =  
  = = = 

 

 

Now, 1 8 27 36+ + = , and so  

3

3

3

1 / 36 0.02778, 0.1
( | ) 2 / 36 0.22222, 0.2

3 / 36 0.75, 0.3,
f y

θ
θ θ

θ

 = =
= = =
 = =

       

which is the same result as obtained earlier in Exercise 1.4. 
  
Exercise 1.6 Buses 
 
You are visiting a town with buses whose licence plates show their 
numbers consecutively from 1 up to however many there are. In your 
mind the number of buses could be anything from one to five, with all 
possibilities equally likely.  
 
Whilst touring the town you first happen to see Bus 3.  
 
Assuming that at any point in time you are equally likely to see any of 
the buses in the town, how likely is it that the town has at least four 
buses? 
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Solution to Exercise 1.6 
 
Let  θ  be the number of buses in the town and let y be the number of the 
bus that you happen to first see. Then an appropriate Bayesian model is: 
 ( | ) 1/ , 1,...,f y yθ θ θ= =  
 ( ) 1/ 5, 1,...,5f θ θ= =     (prior). 
    
Note: We could also write this model as: 
  ( | ) ~ (1,..., )y DUθ θ  
  ~ (1,...,5)DUθ ,        
where DU denotes the discrete uniform distribution. (See Appendix B.9 
for details regarding this distribution. Appendix B also provides details 
regarding some other important distributions that feature in this book.) 
     
So the posterior density of θ  is       
 ( | ) ( ) ( | )f y f f yθ θ θ∝  
    1 1/θ∝ × ,  ,...,5yθ = . 
 
Noting that y = 3, we have that  

 
1/ 3, 3

( | ) 1/ 4, 4
1/ 5, 5.

f y
θ

θ θ
θ

=
∝ =
 =

 

 
Now, 1/ 3 1/ 4 1/ 5 (20 15 12) / 60 47 / 60+ + = + + = , and so 

 

1/ 3 20 , 3
47 / 60 47
1/ 4 15( | ) , 4

47 / 60 47
1/ 5 12 , 5.

47 / 60 47

f y

θ

θ θ

θ

 = =

= = =

 = =

 

 
So the posterior probability that the town has at least four buses is  

 
: 4

( 4 | ) ( | ) ( 4 | ) ( 5 | )P y f y f y f y
θ θ

θ θ θ θ
≥

≥ = = = + =∑  

         1 ( 3 | )f yθ= − =
20 271
47 47

= − =  = 0.5745.   
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Discussion 
 
This exercise is a variant of the famous ‘tramcar problem’ considered by 
Harold Jeffreys in his book Theory of Probability and previously 
suggested to him by M.H.A. Newman (see Jeffreys, 1961, page 238). 
Suppose that before entering the town you had absolutely no idea about 
the number of buses θ . Then, according to Jeffreys’ logic, a prior which 
may be considered as suitably uninformative (or noninformative) in this 
situation is given by ( ) 1/f θ θ∝ , 1, 2,3,...θ = . 
 
Now, this prior density is problematic because it is improper (since 

11/θ θ∞
=∑ = ∞ ). However, it leads to a proper posterior density given by 

 2

1( | )f y
c

θ
θ

= , 3, 4,5,...θ = ,    

where 
2

2 2 2 2 2

1 1 1 1 1...
3 4 5 6 1 2

c π  = + + + = − + 
 

 = 0.394934. 

 
So, under this alternative prior, the probability of there being at least 
four buses in the town (given that you have seen Bus 3) works out as 

  1( 4 | ) 1 ( 3 | ) 1
9

P y P y
c

θ θ≥ = − = = −  = 0.7187. 

 
The logic which Jeffreys used to come up with the prior ( ) 1/f θ θ∝  in 
relation to the tramcar problem will be discussed further in Chapter 2. 
 
R Code for Exercise 1.6 
 
options(digits=6); c=(1/6)*(pi^2)-5/4; c # 0.394934 
1- (1/3^2)/c # 0.718659 
 
Exercise 1.7 Balls in a box  
 
In each of nine indistinguishable boxes there are nine balls, the ith box 
having i red balls and 9 i−  white balls (i = 1,…,9).  
 
One box is selected randomly from the nine, and then three balls are 
chosen randomly from the selected box (without replacement and 
without looking at the remaining balls in the box).  
 
Exactly two of the three chosen balls are red. Find the probability that 
the selected box has at least four red balls remaining in it. 
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Solution to Exercise 1.7 
 
Let:  N = the number of balls in each box (9) 
  n = the number of balls chosen from the selected box (3) 
 θ  = the number of red balls initially in the selected box    
  (1,2,…,8 or 9) 
  y = the number of red balls amongst the n chosen balls (2). 
 
Then an appropriate Bayesian model is: 
  ( | ) ~ ( , , )y Hyp N nθ θ      (Hypergeometric with parameters   
          N, θ  and n, and having mean nθ /N) 
 ~ (1,..., )DU Nθ    (discrete uniform over the integers 1,2,…,N). 
 
For this model, the posterior density of θ  is 

 ( | ) ( ) ( | )f y f f yθ θ θ∝
1 N N

y n y nN
θ θ−    

= ×     −    
 

     !( )!
( )!( ( ))!

N
y N n y
θ θ

θ θ
−

∝
− − − −

,   ,..., ( )y N n yθ = − − . 

 
 
In our case,  

!(9 )!( | )
( 2)!(9 (3 2))!

f y θ θθ
θ θ

−
∝

− − − −
, 2,...,9 (3 2)θ = − − ,  

or more simply,   
( | ) ( 1)(9 )f yθ θ θ θ∝ − − ,     2,...,8θ = .  

 

Thus  

14, 2
36, 3
60, 4

( | ) ( )80, 5
90, 6
84, 7
56, 8

f y k

θ
θ
θ

θ θθ
θ
θ
θ

= 
 = 

= 
 ∝ ≡= 
 = 

= 
 = 

, 

where  
8

1

( )c k
θ

θ
=

≡ ∑  = 14 + 36 + … + 56 = 420. 
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So  

14 / 420 0.03333, 2
36 / 420 0.08571, 3
60 / 420 0.14286, 4

( )( | ) 80 / 420 0.19048, 5
90 / 420 0.21429, 6
84 / 420 0.20000, 7
56 / 420 0.13333, 8.

kf y
c

θ
θ
θ

θθ θ
θ
θ
θ

= =
 = =
 = =
= = = =
 = =

= =
 = =

 

 
The probability that the selected box has at least four red balls remaining 
is the posterior probability that θ  (the number of red balls initially in the 
box) is at least 6 (since two red balls have already been taken out of the 
box). So the required probability is     

 90 84 56 23( 6 | )
420 42

P yθ + +
≥ = =  = 0.5476. 

 
R Code for Exercise 1.7 
 
tv=2:8; kv=tv*(tv-1)*(9-tv); c=sum(kv); c # 420 
options(digits=4);  cbind(tv,kv,kv/c,cumsum(kv/c)) 
# [1,]  2   14   0.03333   0.03333 
# [2,]  3   36   0.08571   0.11905 
# [3,]  4   60   0.14286   0.26190 
# [4,]  5   80   0.19048   0.45238 
# [5,]  6   90   0.21429   0.66667 
# [6,]  7   84   0.20000   0.86667 
# [7,]  8   56   0.13333   1.00000 
 
23/42 # 0.5476 
1-0.45238 # 0.5476  (alternative calculation of the required probability) 
sum((kv/c)[tv>=6]) #  0.5476    
  # (yet another calculation of the required probability) 
 
1.7 Continuous parameters 
 
The examples above have all featured a target parameter which is 
discrete. The following example illustrates Bayesian inference involving 
a continuous parameter. This case presents no new problems, except that 
the prior and posterior densities of the parameter may no longer be 
interpreted directly as probabilities. 
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Exercise 1.8 The binomial-beta model (or beta-binomial model) 
 
Consider the following Bayesian model:  
 ( | ) ~ ( , )y Binomial n    
 ~ ( , )Beta       (prior). 
 
Find the posterior distribution of  . 
 
Solution to Exercise 1.8 
 
The posterior density is 
          ( | ) ( ) ( | )f y f f y    

  
1 1(1 ) (1 )

( , )
y n yn

yB

  
 

 

 


        
 

  1 1(1 ) (1 )y n y            (ignoring constants which  
         do not depend on  ) 
           ( ) 1 ( ) 1(1 ) , 0 1y n y           .     
 
This is the kernel of the beta density with parameters y  and 

n y  . It follows that the posterior distribution of   is given by 
 ( | ) ~ ( , )y Beta y n y     , 
and the posterior density of   is (exactly) 

 
( ) 1 ( ) 1(1 )( | ) , 0 1

( , )

y n y

f y
B y n y

  
 

 

    
  

  
. 

 
For example, suppose that   =   = 1, that is, ~ (1,1)Beta .  

Then the prior density is 
1 1 1 1(1 )( ) 1, 0 1

(1,1)
f

B
θ θθ θ

− −−
= = < < .  

Thus the prior may also be expressed by writing ~ (0,1)U .  
 
Also, suppose that 2.n =  Then there are three possible values of y, 
namely 0, 1 and 2, and these lead to the following three posteriors, 
respectively: 
 ( | ) ~ (1 0,1 2 0) (1,3)y Beta Beta      
 ( | ) ~ (1 1,1 2 1) (2,2)y Beta Beta      
 ( | ) ~ (1 2,1 2 2) (3,1)y Beta Beta     . 
 
These three posteriors and the prior are illustrated in Figure 1.5.  
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Note: The prior here may be considered uninformative because it is 
‘flat’ over the entire range of possible values for   , namely 0 to 1. This 
prior was originally used by Thomas Bayes and is often called the Bayes 
prior. However, other uninformative priors have been proposed for the 
binomial parameter  . These will be discussed later, in Chapter 2.  
    
 
Figure 1.5 The prior and three posteriors in Exercise 1.8 

 
 
 
R Code for Exercise 1.8  
 
X11(w=8,h=5); par(mfrow=c(1,1)); 
 
plot(c(0,1),c(0,3),type="n",xlab="theta",ylab="density") 
 
lines(c(0,1),c(1,1),lty=1,lwd=3);  tv=seq(0,1,0.01) 
lines(tv,3*(1-tv)^2,lty=2,lwd=3) 
lines(tv,3*2*tv*(1-tv),lty=3,lwd=3) 
lines(tv,3*tv^2,lty=4,lwd=3) 
 
legend(0.3,3,c("prior","posterior if y=0","posterior if y=1","posterior if y=2"), 
     lty=c(1,2,3,4),lwd=rep(2,4)) 
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1.8 Finite and infinite population inference 
 
In the last example (Exercise 1.8), with the model:  
 ( | ) ~ ( , )y Binomial n   
 ~ ( , )Beta   , 
the quantity of interest θ  is the probability of success on a single 
Bernoulli trial.  
 
This quantity may be thought of as the average of a hypothetically 
infinite number of Bernoulli trials. For that reason we may refer to 
derivation of the posterior distribution,  
 ( | ) ~ ( , )y Beta y n y     , 
 as infinite population inference. 
 
In contrast, for the ‘buses’ example further above (Exercise 1.6), which 
involves the model: 
 ( | ) 1/ , 1,...,f y yθ θ θ= =  
 ( ) 1/ 5, 1,...,5f θ θ= = ,    
the quantity of interest θ  represents the number of buses in a population 
of buses, which of course is finite.  
 
Therefore derivation of the posterior,    

 
20 / 47, 3

( | ) 15 / 47, 4
12 / 47, 5,

f y
θ

θ θ
θ

=
= =
 =

   

 may be termed finite population inference. 
 
Another example of finite population inference is the ‘balls in a box’ 
example (Exercise 1.7), where the model is: 
 ( | ) ~ ( , , )y Hyp N nθ θ       
 ~ (1,..., )DU Nθ ,        
and where the quantity of interest θ  is the number of red balls initially 
in the selected box (1,2,…,8 or 9).   
 
And another example of infinite population inference is the ‘loaded dice’ 
example (Exercises 1.4 and 1.5), where the model is: 

 22
( | ) (1 ) , 0,1,2y yf y y

y
θ θ θ − 

= − = 
 

 

 ( ) 10 / 6, 0.1,0.2,0.3,f θ θ θ= =  
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and where the quantity of interest θ  is the probability of 6 coming up on 
a single roll of the chosen die (i.e. the average number of 6s that come 
up on a hypothetically infinite number of rolls of that particular die). 
 
Generally, finite population inference may also be thought of in terms of 
prediction (e.g. in the ‘buses’ example, we are predicting the total 
number of buses in the town). For that reason, finite population 
inference may also be referred to as predictive inference. Yet another 
term for finite population inference is descriptive inference. In contrast, 
infinite population inference may also be called analytic inference. More 
will be said on finite population/predictive/descriptive inference in later 
chapters of the course. 
 
1.9 Continuous data 
 
So far, all the Bayesian models considered have featured data which is 
modelled using a discrete distribution. (Some of these models have a 
discrete parameter and some have a continuous parameter.) The 
following is an example with data that follows a continuous probability 
distribution. (This example also has a continuous parameter.) 
 
Exercise 1.9 The exponential-exponential model 
 
Suppose θ  has the standard exponential distribution, and the conditional 
distribution of y given θ  is exponential with mean 1/ θ . Find the 
posterior density of θ  given y . 
 
Solution to Exercise 1.9 
 
The Bayesian model here is: ( | ) , 0yf y e y       
    ( ) , 0f e    . 
 
So 2 1 ( 1)( | ) ( ) ( | ) y yf y f f y e e e              , y > 0. 
 
This is the kernel of a gamma distribution with parameters 2 and y + 1, 
as per the definitions in Appendix B.2. Thus we may write 
 ( | ) ~ (2, 1)y Gamma y  , 
from which it follows that the posterior density of θ  is 

 
2 2 1 ( 1)( 1)( | ) , 0

(2)

yy ef y


 
  

 


. 
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Exercise 1.10 The uniform-uniform model 
 
Consider the Bayesian model given by:   

( | ) ~ (0, )y Uθ θ   
 ~ (0,1)Uθ .  
 
Find the posterior density of θ  given y. 
 
Solution to Exercise 1.10 
 
Noting that 0 < y < θ  < 1, we see that the posterior density is 

 1
( ) ( | ) 1 (1 / )( | )

( )
1 (1 / )

y

f f yf y
f y

d

θ θ θθ
θ θ

×
= =

×∫
 

      1/ 1 , 1
log1 log log

y
y y

θ θ
θ
−

= = < <
−

. 

    
Note: This is a ‘non-standard’ density and strictly decreasing. To give a 
physical example, a stick of length 1 metre is cut at a point randomly 
located along its length. The part to the right of the cut is discarded and 
then another cut is made randomly along the stick which remains. Then 
the part to the right of that second cut is likewise discarded. The length 
of the stick remaining after the first cut is a random variable with density 
as given above, with y being the length of the finally remaining stick.  
    
1.10 Conjugacy 
 
When the prior and posterior distributions are members of the same class 
of distributions, we say that they form a conjugate pair, or that the prior 
is conjugate. For example, consider the binomial-beta model: 
 ( | ) ~ ( , )y Binomial n    
 ~ ( , )Beta      (prior) 
     ⇒  ( | ) ~ ( , )y Beta y n y      (posterior). 
Since both prior and posterior are beta, the prior is conjugate. 
 
Likewise, consider the exponential-exponential model: 
 ( | ) , 0yf y e y        
 ( ) , 0f e         (i.e. ~ (1,1))Gammaθ    (prior) 
     ⇒  ( | ) ~ (2, 1)y Gamma y     (posterior). 
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Since both prior and posterior are gamma, the prior is conjugate. 
 
On the other hand, consider the model in the buses example: 
 ( | ) ~ (1,..., )y DUθ θ  
 ~ (1,...,5)DUθ     (prior) 

     ⇒  
20 / 47, 3

( | 3) 15 / 47, 4
12 / 47, 5

f y
θ

θ θ
θ

=
= = =
 =

   (posterior). 

The prior is discrete uniform but the posterior is not. So in this case the 
prior is not conjugate. 
 
Specifying a Bayesian model using a conjugate prior is generally 
desirable because it can simplify the calculations required.  
 
1.11 Bayesian point estimation 
 
Once the posterior distribution or density ( | )f y  has been obtained, 
Bayesian point estimates of the model parameter   can be calculated. 
The three most commonly used point estimates are as follows. 
 
   • The posterior mean of   is      

 
( | ) if is continuous

( | ) ( | )
( | ) if is discrete.

f y d
E y dF y

f y


   
  

  

 


 

    

 
   • The posterior mode of   is   
 ( | )Mode y   =  any value m∈ℜ  which satisfies   
  ( | ) max ( | )f m x f x

θ
θ θ= =  

                                or lim ( | ) sup ( | )
m

f x f x
θ

θ θ
→

= ,  

                             or the set of all such values. 
 
   • The posterior median of   is  
 ( | )Median y  =  any value m of   such that 
                                       ( | ) 1/ 2P m y         
                                      and ( | ) 1/ 2P m y  , 
                                   or the set of all such values. 
    

Note 1: In some cases, the posterior mean does not exist or it is equal to 
infinity or minus infinity.  
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Note 2: Typically, the posterior mode and posterior median are unique. 
The above definitions are given for completeness.  
      

Note 3: The integral ( | )dF y   is a Lebesgue-Stieltje’s integral. This 

may need to be evaluated as the sum of two separate parts in the case 
where θ  has a mixed distribution. In the continuous case, it is useful to 

think of ( | )dF y  as ( | ) ( | )dF y d f y d
d


  


 .  

    
Note 4: The above three Bayesian point estimates may be interpreted in 
an intuitive manner. For example, ’s  posterior mode is the value of   
which is ‘made most likely by the data’. They may also be understood in 
the context of Bayesian decision theory (discussed later).  
     
1.12 Bayesian interval estimation 
 
There are many ways to construct a Bayesian interval estimate, but the 
two most common ways are defined as follows. The 1   (or 
100(1 )%α− ) highest posterior density region (HPDR) for   is the 
smallest set S such that: 
 ( | ) 1P S y     
     and 1 2( | ) ( | )f y f y    if 1 S   and 2 S  . 
  
Figure 1.6 illustrates the idea of the HPDR. In the very common 
situation where   is scalar, continuous and has a posterior density which 
is unimodal with no local modes (i.e. has the form of a single ‘mound’), 
the 1–  HPDR takes on the form of a single interval defined by two 
points at which the posterior density has the same value. When the 
HPDR is a single interval, it is the shortest possible single interval over 
which the area under the posterior density is 1– . 
 
The 1–  central posterior density region (CPDR) for a scalar parameter 
  may be defined as the shortest single interval [a,b] such that: 
 ( | ) / 2P a y       

and ( | ) / 2P b y   . 
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Figure 1.6 An 80% HPDR 
  

 
 
Figure 1.7 illustrates the idea of the CPDR. One drawback of the CPDR 
is that it is only defined for a scalar parameter. Another drawback is that 
some values inside the CPDR may be less likely a posteriori than some 
values outside it (which is not the case with the HPDR). For example, in 
Figure 1.7, a value just below the upper bound of the 80% CPDR has a 
smaller posterior density than a value just below the lower bound of that 
CPDR. However, CPDRs are typically easier to calculate than HPDRs.  
 
In the common case of a continuous parameter with a posterior density 
in the form of a single ‘mound’ which is furthermore symmetric, the 
CPDR and HPDR are identical.  
    
Note 1: The 1–   CPDR for   may alternatively be defined as the 
shortest single open interval (a,b) such that: 
 ( | ) / 2P a y         
     and  ( | ) / 2P b y   .  
   
Other variations are possible (of the form [a,b) and (a,b]); but when the 
parameter of interest   is continuous these definitions are all equivalent. 
Yet another definition of the 1–  CPDR is any of the CPDRs as defined 
above but with all a posteriori impossible values of   excluded.  
    
Note 2: As regards terminology, whenever the HPDR is a single 
interval, it may also be called the highest posterior density interval 
(HPDI). Likewise, the CPDR, which is always a single interval, may 
also be called the central posterior density interval (CPDI).  
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Figure 1.7 An 80% CPDR 
         

 
 
Exercise 1.11 A bent coin 
 
We have a bent coin, for which ,  the probability of heads coming up, is 
unknown. Our prior beliefs regarding   may be described by a standard 
uniform distribution. Thus no value of   is deemed more or less likely 
than any other.  
 
We toss the coin n = 5 times (independently), and heads come up every 
time.  
 
Find the posterior mean, mode and median of .  Also find the 80% 
HPDR and CPDR for  . 
 
Solution to Exercise 1.11 
 
Recall the binomial-beta model:    
 ( | ) ~ ( , )y Binomial n       
 ~ ( , )Beta   , 
for which ( | ) ~ ( , )y Beta y n y     . 

 
We now apply this result with 5n y= =  and 1    (corresponding 
to ~ (0,1)),U  and find that:  
 ( | ) ~ (1 5,5 5 1) (6,1)y Beta Beta      

 
6 1 1 1

5(1 )( | ) 6
(6,1)

f y
B

 
 

 
  ,   0 <   < 1 

 5 6

0

( | ) 6F y t dt


   ,   0 <   < 1. 
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Therefore: 6 6( | )
6 1 7

E y  


 = 0.8571 

       6 1( | ) 1
(6 1) (1 1)

Mode y


 
  

 

 ( | )Median y  = solution in   of ( | ) 1/ 2F y  ,  i.e. 6 0.5   
   = 1/ 6(0.5)  = 0.8909. 
 
Also, the 80% HPDR is 1/ 6(0.2 ,1)   (0.7647,1) (since ( | )f y  is strictly 
increasing), and the 80% CPDR is 1/ 6 1/ 6(0.1 ,0.9 )   (0.6813,0.9826). The 
three point estimate and two interval estimates just derived are shown in 
Figure 1.8. 
 
Figure 1.8 Inference in Exercise 1.11 

 
 
R Code for Exercise 1.11 
 
options(digits=4); postmean=6/7; postmode=1; postmedian=0.5^(1/6) 
c(postmean,postmode,postmedian) # 0.8571 1.0000 0.8909 
hpdr=c(0.2^(1/6),1); cpdr=c(0.1,0.9)^(1/6) 
c(hpdr,cpdr) # 0.7647 1.0000 0.6813 0.9826 
 
X11(w=8,h=5); par(mfrow=c(1,1)); tv=seq(0,1,0.01); fv=dbeta(tv,6,1) 
plot(tv,fv,type="l",lwd=3,xlab="theta",ylab="posterior density") 
points(c(postmean,postmode,postmedian),c(0,0,0),pch=c(1,2,4)) 
points(hpdr,rep(0.2,2),pch=16); lines(hpdr,rep(0.2,2),lty=3,lwd=2) 
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points(cpdr,rep(0.4,2),pch=16); lines(cpdr,rep(0.4,2),lty=2,lwd=2) 
abline(v=c(postmean,postmode,postmedian),lty=3) 
abline(v=c(0,hpdr,cpdr),lty=3); abline(h=c(0,6),lty=3) 
legend(0.2,5.8,c("posterior mean","posterior mode", 
 "posterior median"),pch=c(1,2,4)) 
legend(0.2,2.8,c("80% CPDR","80% HPDR"),lty=c(2,3),lwd=c(2,2)) 
 
Exercise 1.12 HPDR and CPDR for a discrete parameter  
 
Consider the posterior distribution from Exercise 1.7 (Balls in a box): 

 

14 / 420 0.03333, 2
36 / 420 0.08571, 3
60 / 420 0.14286, 4

( | ) 80 / 420 0.19048, 5
90 / 420 0.21429, 6
84 / 420 0.20000, 7
56 / 420 0.13333, 8.

f y

θ
θ
θ

θ θ
θ
θ
θ

= =
 = =
 = =
= = =
 = =

= =
 = =

 

 
Find the 90% HPDR and 90% CPDR for θ . Also find the 50% HPDR 
and 50% CPDR for θ . For each region, calculate the associated exact 
coverage probability. 
 
Solution to Exercise 1.12 
 
The 90% HPDR is the set {3,4,5,6,7,8};  
this has exact coverage 1 − 14/420 = 0.9667. 
 
The 90% CPDR is the closed interval [3, 8];  
this likewise has exact coverage 0.9667. 
 
The 50% HPDR is {5,6,7};  
this has exact coverage (80 + 90 + 84)/420 = 0.6047. 
 
The 50% CPDR is [4, 7];  
this has exact coverage (60 + 80 + 90 + 84)/420 = 0.7476. 
    
Note: The lower bound of the 50% CPDR cannot be equal to 5.  
This is because ( 5 | ) (14 36 60) / 420P yθ < = + +  = 0.2619, which is not 
less than or equal to / 2 0.25α = , as required by the definition of CPDR.  
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Exercise 1.13 Illustration of the definition of HPDR  
 
Suppose that the posterior probabilities of a parameter θ  given data y 
are exactly 10%, 40% and 50% for values 1, 2 and 3, respectively. Find 
S, the 40% HPDR for θ . 
 
Solution to Exercise 1.13 
 
The smallest set S such that ( | ) 0.4P S y    is {2} or {3}. With the 
additional requirement that 1 2( | ) ( | )f y f y   if 1 S   and 2 S  , we 
see that S = {3} (only). That is, the 40% HPDR is the singleton set {3}. 
 
1.13 Inference on functions of the model  
parameter   
 
So far we have examined Bayesian models with a single parameter θ  
and described how to perform posterior inference on that parameter. 
Sometimes there may also be interest in some function of the model 
parameter, denoted by (say)  
 ( )gψ θ= . 
 
Then the posterior density of ψ  can be derived using distribution theory, 
for example by applying the transformation rule, 

 ( | ) ( | ) df y f y
d
θψ θ
ψ

= , 

in cases where ( )gψ θ=  is strictly increasing or strictly decreasing.  
 
Point and interval estimates of ψ  can then be calculated in the usual 
way, using ( | )f yψ . For example, the posterior mean of ψ  equals  
 ( | ) ( | )E y f y dψ ψ ψ ψ= ∫ . 
 
Sometimes it is more practical to calculate  point and interval estimates 
another way, without first deriving ( | )f yψ . 
 
For example, another expression for the posterior mean is  
 ( | ) ( ( ) | ) ( ) ( | )E y E g y g f y dψ θ θ θ θ= = ∫ . 
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Also, the posterior median of ψ , call this M, can typically be obtained 
by simply calculating 
 ( )M g m= ,    
where m is the posterior median of θ .  
    
Note: To see why this works, we write 
     ( | ) ( ( ) | )P M y P g M yψ θ< = <  
                         ( ( ) ( ) | )P g g m yθ= < ( | )P m yθ= < 1/ 2= .   

    
Exercise 1.14  Estimation of an exponential mean 

 
Suppose that θ  has the standard exponential distribution, and y given θ  
is exponential with mean 1/θ . Find the posterior density and posterior 
mean of the model mean, ( | ) 1/E yψ θ θ= = ,  given the data y. 
  
Solution to Exercise 1.14   
 
Recall that the Bayesian model 

( | ) , 0yf y e y      
 ( ) , 0f e     
implies the posterior ( | ) ~ (2, 1)y Gamma y  . 
  
So, by definition, ( | ) ~ (2, 1)y InverseGamma y  , 

with density 
2 (2 1) ( 1)/ 2

3 ( 1)/

( 1) ( 1)( | ) , 0,
(2)

y

y

y e yf y
e






 



   



 
  


 

and mean 1( | ) 1
2 1
yE y y


  


.  

    
Note: This mean could also be obtained as follows: 

          1( | )E y E y


      0

1 ( | )f y d 




   

                        
2 2 1 ( 1)

0

1 ( 1)
(2)

yy e d





   
 

   

                  
2 1 1 1 ( 1)

1
0

(1)( 1) 1 ( 1)
(2)( 1) (1)

yy y e d
y






     
 

      

  1y     (using the fact that the last integral equals 1).  
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Exercise 1.15 Inference on a function of the binomial 
parameter 
 
Recall the binomial-beta model given by:  
 ( | ) ~ ( , )y Binomial n    
 ~ ( , )Beta   , 
for which ( | ) ~ ( , )y Beta y n y     .  
 
Find the posterior mean, density function and distribution function of 

2ψ θ=   in the case where n = 5, y = 5, and  1   . 
    
Note: In the context where we toss a bent coin five times and get heads 
every time (and the prior on the probability of heads is standard 
uniform), the quantity ψ  may be interpreted as the probability of the 
next two tosses both coming up heads, or equivalently, as the proportion 
of times heads will come up twice if the coin is repeatedly tossed in 
groups of two tosses a hypothetically infinite number of times.  
    
Solution to Exercise 1.15 
 
Here, ( | ) ~ (1 5,1 5 5) ~ (6,1)y Beta Beta      
with pdf 5( | ) 6 , 0 1f yθ θ θ= < < .  
 
Now 1/2θ ψ=  and so, by the transformation method, the posterior 
density function of ψ  is 

  
1

5/2 221( | ) ( | ) 6 3 , 0 1
2

df y f y
d
θψ θ ψ ψ ψ ψ
ψ

−
= = − = < < . 

It follows that the posterior mean of ψ  is   

 ( )
1

2

0

ˆ ( | ) 3 0.75E y dψ ψ ψ ψ ψ= = =∫ , 

and the posterior distribution function of ψ  is   

 2 3

0 0

( | ) ( | ) 3 , 0 1F y f t y dt t dt
ψ ψ

ψ ψ ψ ψ= = = = < <∫ ∫ . 
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Note 1:  The posterior mean of 2ψ θ=  can also be obtained by writing   

 ( )
1

2 2 5

0

ˆ ( | ) 6 0.75E y dψ θ θ θ θ= = =∫  

or   2 2ˆ ( | ) ( | ) { ( | )}E y V y E yψ θ θ θ= = +  

            
2

2

6 1 6
(6 1) (6 1 1) 6 1

×  = +  + + + + 
 = 0.75 

or  ( | ) ~ (3,1)y Betaψ   ⇒    ˆ ( | )E yψ ψ=  = 3/(3 + 1) = 0.75.  

    

Note 2: The distribution function of 2ψ θ=  can also be obtained by 
writing     
 2 1/2( | ) ( | ) ( | ) ( | )F v y P v y P v y P v yψ ψ θ θ= = ≤ = ≤ = ≤  

         1/2( | )F v yθ= = 1/2

6 3

v
v

θ
θ

=
 = =  

, 0 < v < 1.   

       
Note 3: In the above, ( | )f t yψ =  denotes the pdf of ψ  given y, but 
evaluated at t.  This pdf could also be written as ( | )f t yψ  or as    

( | )
t

f y
ψ

ψ
=

 
  . Likewise, ( | )F v yψ =  ≡  ( | )F v yψ ≡ ( | )

v
F y

ψ
ψ

=
 
  .  

 
1.14 Credibility estimates 
 
In actuarial studies, a credibility estimate is one which can be expressed 
as a weighted average of the form 
  (1 )C k A kB= − + , 
where:   

 A  is the subjective estimate (or the collateral data estimate) 
  B  is the objective estimate (or the direct data estimate) 
  k   is the credibility factor, a number that is between 0 and 1  
  (inclusive) and represents the weight  assigned to the  
  objective estimate.  
 
A high value of k implies ,C B≅  representing a situation where the 
objective estimate is assigned ‘high credibility’. A primary aim of 
credibility theory is to determine an appropriate value or formula for k, 
as is done, for example, in the theory of the Bühlmann model 
(Bühlmann, 1967). Many Bayesian models lead to a point estimate 
which can be expressed as an intuitively appealing credibility estimate. 
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Exercise 1.16 Credibility estimation in the binomial-beta 
model 
 
Consider the binomial-beta model: ( | ) ~ ( , )y Binomial n   
      ~ ( , )Beta   . 
 
Express the posterior mean of   as a credibility estimate and discuss. 
 
Solution to Exercise 1.16 
 
Earlier we showed that  
 ( | ) ~ ( , )y Beta y n y     ,  
and hence that the posterior mean of   is  

 ( )ˆ ( | )
( ) ( )

y yE y
y n y n
 

 
   

 
  

     
. 

 
Observe that the prior mean of θ is / ( )E     , and the maximum 
likelihood estimate (MLE) of θ  is y/n. This suggests that we write 

 ˆ y
n n




   
 

   
 

    n y
n n n

   
      

                    
 

    n y
n n n

  
     

                 
. 

 
Thus  ˆ (1 )k A kBθ = − +     

where:    A α
α β

=
+

,    yB
n

= ,    nk
n 


 

. 

 
We see that the posterior mean θ̂  is a credibility estimate in the form of 
a weighted average of the prior mean / ( )A Eθ α α β= = +  and the MLE 

/B y n= , where the weight assigned to the MLE is the credibility factor 
given by  / ( )k n n     . Observe that as n increases, the credibility 
factor k approaches 1. This makes sense: if there is a lot of data then the 
prior should not have much influence on the estimation.  
 
Figure 1.9 illustrates this idea by showing relevant densities, likelihoods 
and estimates for the following two cases, respectively: 
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 (a)  n = 5,   y = 4,   α  = 2, β  = 6 
 (b)  n = 20, y = 16, α  = 2, β  = 6. 
 
In both cases, the prior mean is the same (A = 2/(2 + 6) = 0.25), as is the 
MLE (B = 4/5 = 16/20 = 0.8). However, due to n being larger in case (b) 
(i.e. there being more direct data), case (b) leads to a larger credibility 
factor (0.714 compared to 0.385) and hence a posterior mean closer to 
the MLE (0.643 compared to 0.462). 
 
Note: Each likelihood function in Figure 1.9 has been normalised so that 
the area underneath it is exactly 1. This means that in each case (a) and 
(b), the likelihood function ( )L   as shown is identical to the posterior 
density which would be implied by the standard uniform prior, i.e. under 

(0,1) (1,1)( ) ( )U Betaf f  . Thus, (1 ,1 )( ) ( )Beta y n yL f    .  

 
Figure 1.9 Illustration for Exercise 1.16 
Legend: solid line = prior, dashed line = likelihood, dotted line = posterior,   
circle = prior mean, triangle = MLE, cross = posterior mean 
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R Code for Exercise 1.16 
 
X11(w=8,h=7); par(mfrow=c(2,1)) 
 
alp=2; bet=6; n = 5; y = 4; pvec=seq(0,1,0.01) 
plot(c(0,1),c(0,3),type="n",xlab="theta",ylab="density/likelihood") 
lines(pvec,dbeta(pvec,alp,bet),lty=1,lwd=2) 
lines(pvec,dbeta(pvec,1+y,n-y+1),lty=2,lwd=2) 
lines(pvec,dbeta(pvec,alp+y,n-y+bet),lty=3,lwd=2) 
 
points(c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)),c(0,0,0),pch=c(1,2,3), 
 cex=rep(1.5,3),lwd=2);  text(0,2.5,"(a)",cex=1.5) 
c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)) # 0.2500000 0.8000000 0.4615385 
n/(alp+bet+n) # 0.3846154 
 
alp=2; bet=6; n = 20; y = 16; pvec=seq(0,1,0.01) 
plot(c(0,1),c(0,5),type="n",xlab="theta",ylab="density/likelihood") 
lines(pvec,dbeta(pvec,alp,bet),lty=1,lwd=2) 
lines(pvec,dbeta(pvec,1+y,n-y+1),lty=2,lwd=2) 
lines(pvec,dbeta(pvec,alp+y,n-y+bet),lty=3,lwd=2) 
 
points(c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)),c(0,0,0),pch=c(1,2,3), 
 cex=rep(1.5,3),lwd=2);  text(0,4.5,"(b)",cex=1.5) 
c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)) # 0.2500000 0.8000000 0.6428571 
n/(alp+bet+n) # 0.7142857 
 
Exercise 1.17 Further credibility estimation in the binomial- 
beta model 
 
Consider the binomial-beta model:  

( | ) ~ ( , )Y Binomial n       
  ~ ( , )Beta   . 
 
If possible, express the posterior mode of   as a credibility estimate. 
 
Solution to Exercise 1.17 
 
Since ( | ) ~ ( , )y Beta y n y     , the posterior mode of θ  is 

 ( 1) 1( | )
( 1) ( 1) 2

y yMode y
y n y n

 


   
   

 
        

. 
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Now, the prior mode of θ  is  ( 1) 1( )
( 1) ( 1) 2

Mode  


   
 

 
    

. 

 

So we write  1( | )
2 2

yMode y
n n




   


 
     

  

        1 2 1
2 1 2 2

n y
n n n

   
      

                           
. 

 
We see that the posterior mode is a credibility estimate of the form 
   ˆ( | ) 1 ( )Mode y c Mode c     , 

where: 1( )
2

Mode 


 



 

   is the prior mode 

  ˆ y
n

      is the maximum likelihood estimate  

    (mode of the likelihood function) 

 
2

nc
n  


  

   is the credibility factor  

    (assigned to the direct data estimate, ˆ).  
 
Exercise 1.18 The normal-normal model  
 
Consider the following Bayesian model:      
 2

1( , , | ) ~ ( , )ny y iid N    
 2

0 0~ ( , )N   , 
where 2 , 0  and 2

0  are known or specified constants.  
 
Find the posterior distribution of   given data in the form of the vector  

1( ,..., )ny y y .  
 
Solution to Exercise 1.18  
 
The posterior density of   is  
 ( | ) ( ) ( | )f y f f y      

   
2 2

0

10

1 1exp exp
2 2

n
i

i

y   
 

                                  
  
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      2 2 2 2
0 02 2

10

1 1 1exp 2 2
2

n

i
i

y ny n    
  

                      
 , (1.1) 

where 1( ... ) /ny y y n    is the sample mean. 
 
We see that the posterior density of   is proportional to the exponent of 
a quadratic in  . That is,  

  2
*2

*

1( | ) exp
2

f y  


       
,    (1.2) 

which then implies that   
2( | ) ~ ( , )y N    ,  

for some constants *  and 2
* . 

 
It remains to find the normal mean and variance parameters, *  and 2

* . 
(These must be functions of the known quantities  n, y ,  , 0  and  0 .) 
 
One way to obtain these parameters which completely define ’s   
posterior distribution is to complete the square in the exponent of (1.2). 
To this end we write 

 1( | ) exp
2

f y q
     

, 

where  

             2 2
02 2

0

1 12 2q ny n   
 

        

   (ignoring constants with respect to  ) 

 2 0
2 2 2 2
0 0

1 2n ny c
 

   

                  
     

   (where c is a constant with respect to  ) 

 2 2a b c       where   2 2
0

1 na
 

     and   0
2 2
0

nyb 
 

   

 2 2 ba c
a

 
     

    
2

2 2 b ba c
a a

 
                         

     

    (where c  is a constant with respect to  ) 

 
21

1/
b c

a a

      

. 
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Thus,    
21( | ) exp

2(1/ )
bf y

a a
 

              
.    (1.3) 

 
So, equating (1.2) and (1.3), we obtain: 

 
2 2

2 0
* 2 2

0
2 2
0

1 1
1 na n

 


 
 

  


  

  

0
2 2 2 2
0 0 0

* 2 2
0

2 2
0

1

ny
n yb

na n


    


 

 




  


.    (1.4) 

    
Note 1: A little algebra (left as an additional exercise) shows that the 
posterior mean can also be written as  
   * 0(1 )k ky    ,       
and the posterior variance can be written as     

 
2

2
* k

n
σσ = ,  

where  

 2

2
0

nk
n σ

σ

=
+

.  

  
We see that ’s  posterior mean is a credibility estimate in the form of a 
weighted average of the prior mean 0  and the sample mean y  (which 
is also the maximum likelihood estimate), with the weight assigned to y  
being the credibility factor, k . More will be said on this further down.  
    

Note 2: Another way to derive *  and 2
*  is to write (1.2) as 

  2 2
* *2

*

1( | ) exp 2
2

f y   


        
   (1.5) 

and then equate coefficients of powers of   in (1.1) and (1.5). This logic 

leads to 2 2 2
* 0

1 1 n
  

   and 0*
2 2 2
* 0

ny
  

   and ultimately the same 

formulae for *  and 2
*  as given by (1.4).  
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Note 3: Since both prior and posterior are normal, the prior is  
conjugate.  
       
Note 4: The posterior mean, mode and median of   are the same and 
equal to * . The 1 α−  CPDR and 1 α−  HPDR for   are the same and 
equal to * /2 *( )zαµ σ± .  

      
Note 5: The posterior distribution of   depends on the data 
vector 1( , , )ny y y   only by way of the sample mean, i.e. 

1( ) /ny y y n   . Therefore, the main result, 2( | ) ~ ( , )y N    , 
also implies that 2( | ) ~ ( , )y N    .  
  
That is, if we know only the sample mean y , the posterior distribution 
of   is the same as if we know y, i.e. all n sample values. Knowing the 
individual iy  values makes no difference to the inference.  

     
Note 6: The formula for the credibility factor in Note 1, namely 

   2 2

2 2
0 0

1
/1

nk
nn σ σ

σ σ

= =
+ +

, 

makes sense in the following ways: 
   
(i) If the prior standard deviation 0  is small then 0k  , so that 

0    and  0   . Therefore 2
0 0( | ) ~ ( , )y N  



. 
  
That is, if the prior information is very ‘precise’ or ‘definite’, the data 
has little influence on the posterior. So the posterior is approximately 
equal to the prior; i.e. ( | ) ( )f y f  , or equivalently, ( | ) ~y 



. In 
this case the posterior mean, mode and median of   are approximately 
equal to 0.  Also, the 1 α−  CPDR and 1 α−  HPDR for   are 
approximately equal to 0 /2 0( )zαµ σ± .  
 
(ii) If 0  is large then 1k  , so that y  , 2 2 / n   , and so 

2( | ) ~ ( , / )y N y n 


.  
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That is, a large 0  corresponds to a highly disperse prior, reflecting little 
prior information and so little influence of the prior distribution (as 
specified by 0  and 0 ) on the inference. In this case the posterior 
mean, mode and median of   are approximately equal to y . Also, the 
1 α−  CPDR and 1 α−  HPDR for   are approximately equal to 

/2( / )y z nα σ± . Thus, inference is almost the same as implied by the 
classical approach. 
 
(iii) If the sample size n is large then 1,k   so that y   and 

2 2 / n   . Therefore 2( | ) ~ ( , / )y N y n 


.  
 
So, in this case, just as when 0  is large, the prior distribution has very 
little influence on the posterior, and the ensuing inference is almost the 
same as that implied by the classical approach.  
       
Note 7: In the case of a priori ignorance (meaning no prior information 
at all) it is customary to take 0  ,  which implies that  
 ~ (0, )N  . 
  
This prior on µ appears to be problematic, because it is improper. 
However, it meaningfully leads to a proper posterior, namely  
 2( | ) ~ ( , / )y N y n  ,  
which then leads to the same point and interval estimates implied by the 
classical approach, namely the MLE y  and 1 α−  CI /2( / )y z nα σ± . 
 
The improper prior ~ (0, )N   may be described as ‘flat’ or ‘uniform 
over the whole real line’ and can also be written as  
  ~ ( , )Uµ −∞ ∞        
      or  ( ) 1,f µ µ∝ ∈ℜ . 
 
In some cases (more complicated models not considered here), using an 
improper prior may lead to an improper posterior, which then becomes 
problematic. For more information on this topic, see Hobert and Casella 
(1996).  
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Summary: For the normal-normal model, defined by: 
  2

1( , , | ) ~ ( , )ny y iid N    
  2

0 0~ ( , )N   , 
the posterior distribution of the normal mean µ  is given by  
 2( | ) ~ ( , )y N    , 
where:  * 0(1 )k ky     

  
2

2
* k

n


         

  2 2
0/

nk
n σ σ

=
+

   (the normal-normal model credibility factor). 

 
The posterior mean, mode and median of   are all equal to *µ ,  
and the 1 α−  CPDR and HPDR for   are both * /2 *( )zαµ σ± . 
 
In the case of a priori ignorance it is appropriate to set 0σ = ∞ .  
 
This defines an improper prior  
 ( ) 1,f µ µ∝ ∈ℜ  
and the proper posterior  
 2( | ) ~ ( , / )y N y n  .  
   
 
Exercise 1.19 Practice with the normal-normal model  
 
In the context of the normal-normal model, given by: 
          2

1( , , | ) ~ ( , )ny y iid N     
          2

0 0~ ( , )N   , 
suppose that  y = (8.4, 10.1, 9.4) , σ  = 1, 0µ  = 5 and 0σ  = 1/2.  
 
Calculate the posterior mean, mode and median of µ .  
 
Also calculate the 95% CPDR and 95% HPDR for µ .  
 
Create a graph which shows these estimates as well as the prior density, 
prior mean, likelihood, MLE and posterior density.  
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Solution to Exercise 1.19 
 
Here:     n = 3,   
             y  = (8.4 + 10.1 + 9.4)/3 = 9.3 

             2

2

1 3
1 / 3 71

(1/ 2)

k = =
+

 = 0.4285714 

 *
3 31 5 9.3
7 7


      

  = 6.8428571  

             
2

2
*

3 1 1
7 3 7

σ = × =  = 0.1428571. 

 
So the posterior mean/mode/median is  
  *  = 6.84286,  
and the 95% CPDR/HPDR is  
  * 0.025 *( )zµ σ±  = (6.84286 1.96 0.14286)±   
   = (6.102, 7.584). 
 
Figure 1.10 shows the various densities and estimates here, as well as the 
normalised likelihood. Note that the likelihood function as shown is also 
the posterior density if the prior is taken to be uniform over the whole 
real line, i.e. ~ ( , )Uµ −∞ ∞ . 
 
Discussion 
 
If we change 0σ  from 0.5 to 2 we get k = 0.923 and results as illustrated 
in Figure 1.11. 
  
If we change 0σ  from 0.5 to 0.25 we get k = 0.158 and results as 
illustrated in Figure 1.12 (page 46). 
 
If we keep 0σ  as 0.5 but change σ  from 1 to 2 we get k = 0.158 and 
results as illustrated in Figure 1.13 (page 46).  
 
Note that the posteriors in Figures 1.12 and 1.13 have the same mean but 
different variances. 
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Figure 1.10 Results if 0 0.5σ = , 1σ = , 2 2
0/ ( / ) 0.429k n n σ σ= + =  

 
 
 
Figure 1.11 Results if 0 2σ = , 1σ = , 2 2

0/ ( / ) 0.9223k n n σ σ= + =  
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Figure 1.12 Results if 0 0.25σ = , 1σ = , 2 2
0/ ( / ) 0.158k n n σ σ= + =  

 
 
 
Figure 1.13 Results if 0 0.5σ = , 2σ = , 2 2

0/ ( / ) 0.158k n n σ σ= + =   
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R Code for Exercise 1.19 
 
X11(w=8,h=5); par(mfrow=c(1,1)); mu0=5;  sig0=0.5; sig=1  
 
y = c(8.4, 10.1, 9.4); n = length(y); k=1/(1+(sig^2/n)/sig0^2); k # 0.4285714 
ybar=mean(y); ybar # 9.3 
mus = (1-k)*mu0 + k*ybar; sigs2=k*sig^2/n 
c(mus,sigs2) # 6.8428571 0.1428571 
muv=seq(0,15,0.01) 
prior = dnorm(muv,mu0,sig0); post=dnorm(muv,mus,sqrt(sigs2)) 
like = dnorm(muv,ybar,sig/sqrt(n)) 
cpdr=mus+c(-1,1)*qnorm(0.975)*sqrt(sigs2) 
cpdr # 6.102060 7.583654 
 
plot(c(0,11),c(-0.1,1.3),type="n",xlab="",ylab="density/likelihood") 
lines(muv,prior,lty=1,lwd=2); lines(muv,like,lty=2,lwd=2) 
lines(muv,post,lty=3,lwd=2) 
points(c(mu0,ybar,mus),c(0,0,0),pch=c(1,2,4),cex=rep(1.5,3),lwd=2) 
points(cpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2)) 
legend(0,1.3, 
      c("Prior density","Likelihood function (normalised)","Posterior density"), 
 lty=c(1,2,3),lwd=c(2,2,2)) 
legend(0,0.7,c("Prior mean","Sample mean (MLE)","Posterior mean", 
     "95% CPDR bounds"), pch=c(1,2,4,16),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
text(10.8,-0.075,"m", vfont=c("serif symbol","italic"), cex=1.5) 
 
# Repeat above with sig0=2 to obtain Figure 1.11 
# Repeat above with sig0=0.25 to obtain Figure 1.12 
# Repeat above with sig0=0.5 and sig=2 to obtain Figure 1.13 
 
Exercise 1.20 The normal-gamma model  
 
Consider the following Bayesian model: 
 1( , , | ) ~ ( ,1/ )ny y iid N    
 ~ ( , )G   . 
 
Find the posterior distribution of   given 1( ,..., )ny y y .  
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Note 1: In the normal-normal model, the normal mean   is unknown 
and the normal variance 2  is known. Now we consider the same 
Bayesian model but with those roles reversed, i.e. with   known and 2  
unknown. For an example of where this kind of situation might arise, see 
Byrne and Dracoulis (1985).  
       
Note 2: For reasons of mathematical convenience and conjugacy, we 
parameterise the normal distribution here via the precision parameter  
 21/      
rather than using 2  directly as before in the normal-normal model.  
       
Note 3: An equivalent formulation of the normal-gamma model being 
considered here is: 
 2 2

1( , , | ) ~ ( , )ny y iid N    
 2 ~ ( , )IG   ,   
where this may be called the normal-inverse-gamma model.  
    
Solution to Exercise 1.20 
 
The posterior density of   is  
 ( | ) ( ) ( | )f y f f y      

    
2

1

1

1 1exp
21/ 1/

n
i

i

ye


  


 
 



               
  

                   1 /2 2

1

exp ( )
2

n
n

i
i

e y  
   



          
      

    1a be        for some a and b. 
 
We see that    
 ( | ) ~ ( , )y G a b , 

where:  
2
na    

 2

2
nb s   

  2 2

1

1 ( )
n

i
i

s y
n 



  . 
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Note 1: The posterior mean of  , namely  

  2

/ 2( | )
/ 2

a nE y
b ns







 


, 

converges to 2

1ˆ
s

  (the MLE of  ) as n →∞ .  

   
If  0α β= =  then ˆ( | )E y    exactly for all n.  

      
Note 2: Unlike the posterior mean of µ  in the normal-normal model, the 
posterior mean of   cannot be expressed as a credibility estimate of the 
form  
 0

ˆ(1 )c c   , 

where:  0 E 
 


    (the prior mean of  )  

  2

1ˆ
s

  (the MLE of  ). 

       
Note 3: We may write the posterior as 

  
222( | ) ~ ,

2 2
nsny G 


      

. 

 
It can then be shown via the method of transformations that 

 22 1( | ) ~ , ~ (2 )
2 2

nu y G n
 

     
, 

where 2(2 )u ns   . 
  
So the 1 A−  CPDR for u is  2 2

1 /2 /2(2 ), (2 )A An n      . 

So the 1 A−  CPDR for 22
u

nsµ
λ

β
=

+
 is 

2 2
1 /2 /2

2 2

(2 ) (2 ),
2 2
A An n

ns ns 

   
 


        

. 

So the 1 A−  CPDR for 2 1σ
λ

=  is 
2 2

2 2
/2 1 /2

2 2
,

(2 ) (2 )A A

ns ns
n n

  

   

         
. 

 
If 0α β= = , this is exactly the same as the classical 1 A−  CI for 2σ .  
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Note 4: The classical 1 A−  CI for 2σ  may be derived as follows. First 
consider all parameters fixed as constants. Then  

 1 ,..., ~ (0,1)nyy iid Nµµ
σ σ

−− . 

 
So    

22
21 ,..., ~ (1)nyy iidµµ χ

σ σ
−−   

   
   

. 

 
So   

2 2
2

2
1

~ ( )
n

i

i

nsy nµµ χ
σ σ=

−  = 
 

∑ . 

 
So  

2
2 2
1 /2 /221 ( ) ( )A A

ns
A P n nµχ χ

σ−

 
− = < <  

 
     

         
2 2

2
2 2

/2 1 /2( ) ( )A A

ns ns
P

n n
µ µσ

χ χ −

 
= < <  

 
.  

    
Note 5: Notes 1 to 3 indicate that in the case of a priori ignorance, a 
reasonable specification is  
             0   ,  
or equivalently,  
 ( ) 1/ , 0f     . 
  
This improper prior may be thought of as the limiting case as 0  of 
the proper prior  
 ~ Gam( , )   , 
where  0 .  
  
Observe that  

/ 1E      
for all ε , and  

2/V       
as 0 . 
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Summary: For the normal-gamma model, defined by: 
  1( , , | ) ~ ( ,1/ )ny y iid N    
  ~ ( , )G   , 
the posterior distribution of λ  is given by  
 ( | ) ~ ( , )y G a b , 

where:    
2
na   ,     2

2
nb s   ,      2 2

1

1 ( )
n

i
i

s y
n 



  . 

 
The posterior mean of λ  is a/b. The posterior median is 1

( , ) (1/ 2)G a bF . 
The posterior mode of λ  is ( 1) /a b−  if a > 1; otherwise that mode is 0. 
 
The 1 A−  CPDR for λ  is   1 1

( , ) ( , )( / 2), (1 / 2)G a b G a bF A F A    

and may also be written as  
2 2
1 /2 /2

2 2

(2 ) (2 ),
2 2
A An n

ns ns 

   
 


        

. 

 

The 1 A−  CPDR for 2 1 /σ λ=  is 
2 2

2 2
/2 1 /2

2 2
,

(2 ) (2 )A A

ns ns
n n

  

   

         
. 

 
In the case of a priori ignorance it is appropriate to set 0α β= = .  
This defines an improper prior with density 
 ( ) 1/ , 0f λ λ λ∝ > , 
and a proper posterior distribution given by   
 2 2( | ) ~ ( )ns y n  .  
 
 
Exercise 1.21 Practice with the normal-gamma model  
 
In the context of the normal-gamma model, given by: 
         1( , , | ) ~ ( ,1 / )ny y iid N     
          ~ ( , )Gamma   , 
suppose that y = (8.4, 10.1, 9.4) ,   = 8, α  = 3 and β  = 2.  
 
(a) Calculate the posterior mean, mode and median of the model 
precision  . Also calculate the 95% CPDR for . Create a graph which 
shows these estimates as well as the prior density, prior mean, 
likelihood, MLE and posterior density. 
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(b) Calculate the posterior mean, mode and median of the model 
variance 2 1 /  . Also calculate the 95% CPDR for 2.  Create a 
graph which shows these estimates as well as the prior density, prior 
mean, likelihood, MLE and posterior density. 
 
(c) Calculate the posterior mean, mode and median of the model 
standard deviation .  Also calculate the 95% CPDR for .  Create a 
graph which shows these estimates as well as the prior density, prior 
mean, likelihood, MLE and posterior density. 
 
(d) Examine each of the point estimates in (a), (b) and (c) and determine 
which ones, if any, can be easily expressed in the form of a credibility 
estimate. 
 
Solution to Exercise 1.21 
 
(a) The required posterior distribution is ( | ) ~ ( , )y Gamma a b , where:   

    
2
na    = 4.5, 2

2
nb s   = 5.265, 2 2

1

1 ( )
n

i
i

s y
n 



   = 2.177. 

 
So:   
        • the posterior mean of λ  is ( | ) /E y a b   = 0.8547 
        • the posterior mode is ( | ) ( 1) /Mode y a b    = 0.6648 
        • the posterior median is the 0.5 quantile of the G(a,b) distribution 
               and works out as ( | )Median y = 0.7923 
                      (as obtained using the qgamma() function in R; see below) 
        • the 95% CPDR for   is (0.2564, 1.8065) (where the bounds are  
                     the 0.025 and 0.975 quantiles of the G(a,b)  distribution). 
 
Also:   
           • the prior mean is /E    = 1.5 
           • the prior mode is ( ) ( 1) /Mode      = 1 
           • the prior median is ( )Median   = 1.3370 
           • the MLE of λ  is 2ˆ 1 / s  = 0.4594   
                       (note that this estimate is biased). 
 
Figure 1.14 shows the various densities and estimates here, as well as the 
normalised likelihood function.  
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Note: The normalised likelihood function (with area below equal to 1) is 
the same as the posterior density of λ  if the prior is taken to be uniform 
over the positive real line, i.e. ~ (0, )Uλ ∞ . This prior is specified by 
taking   = 1 and   = 0, because then 1 1 0( ) 1f e λλ λ − −∝ ∝ .  

    
 
Figure 1.14 Results for Exercise 1.21(a) 

 
 
 
(b) As regards the model variance 2 1 /   we note that 2 ~ ( , )IG    
with density       

              2
2( ) ( ) df f

d


 


    where ( ) 12λ σ
−

=  

                          
2 12 1 1 ( )

2 2[( ) ] ( ) )
( )

e    




  
 


 

                          
22 1 / 2( ) , 0

( )
e


  

 


   


.   (1.6) 

 
Then, by well-known properties of the inverse gamma distribution and 
maximum likelihood theory: 
 • the prior mean of 2  is 2 / ( 1)E     = 1 
            • the prior mode is 2( ) / ( 1)Mode      = 0.5 
            • the prior median is 2( ) 1 / ( )Median Median   = 0.7479 
            • the MLE of 2  is 2 2ˆˆ 1 / s    = 2.1767  
                 (note that this estimate is unbiased). 
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By analogy with the prior (1.6), we find that 2( | ) ~ ( , )y IG a b  with  
density   

               
22 2 1 / 2( | ) ( ) , 0

( )

a
a bbf y e

a
     


, 

and hence that: 
 • the posterior mean of 2  is 2( | ) / ( 1)E y b a    =  1.5043 
 • the posterior mode is 2( | ) / ( 1)Mode y b a    = 0.9573 
      • the posterior median is  

2( | ) 1 / ( | )Median y Median yσ λ=  = 1.2622 
     (since 21 / 2 ( | ) (1 / | ) (1 / | )P m y P m y P m yσ λ λ= < = < = < ) 
         • the 95% CPDR for 2  is (0.5535, 3.8994)      (where the lower  
    and upper bounds are the inverses of the 0.975 and 0.025  
       quantiles of the G(a,b) distribution, respectively). 
 
Figure 1.15 shows the various densities and estimates here, as well as the 
normalised likelihood function.  
 
Note: The normalised likelihood function is the same as the posterior 
density of 2σ  if the prior on 2σ  is taken to be uniform over the positive 
real line, i.e. 2 2( ) 1, 0f σ σ∝ > . This prior is specified by ~ ( 1,0)G  , 
i.e. by 1α = −  and 0β =  as is evident from (1.6) above.  

    
  
Figure 1.15 Results for Exercise 1.21(b) 
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(c) As regards the model standard deviation 1 /  , observe that the 
prior density of this quantity is  

      ( ) ( ) df f
d


 


     where 2λ σ −=  

                
22 1

3( ) 2
( )

e   




  
 


22 1 /2 , 0

( )
e


  

 


   


.     (1.7) 

 
We find that:    
        • the prior mean of σ  is  

      
1

1/2 1/2

0 ( )
eE E d

α α βλβ λσ λ λ λ
α

∞ − −
− −= =

Γ∫  

   

1 1 1
2 2

1/2
0

( 1 / 2)
( ) ( 1 / 2)

e d
α αα βλ

α

β α β λ λ
β α α

− − −∞ −

−

Γ −
=

Γ Γ −∫   

  1/2 ( 1 / 2)
( )

αβ
α

Γ −
=

Γ
= 0.9400 

      • the prior mode of σ  is 2( )
2 1

Mode 






 = 0.7559 

              (obtained by setting the derivative of the logarithm of (1.7)  
               to zero, where that derivative is derived as follows:  
                          2( ) log ( ) (2 1) logl f         + constant 

                       3 22 1 2( ) 2 0
2 1

set
l  
  

 
     


) 

        • the prior median of σ  is 2( ) ( )Median Median   = 0.8648 

        • the MLE of   is 2ˆ s   = 1.4754   (which is biased). 
 

By analogy with the above,   
22 1 /2( | ) , 0

( )

a
a bbf y e

a
     


. 

       
So we find that: 

            • the posterior mean of σ  is 1/2 ( 1 / 2)( | )
( )

aE y b
a

σ Γ −
=

Γ
 = 1.1836 

 • the posterior mode is 2( | )
2 1

bMode y
a

 


 = 1.0262 
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 • the posterior median is  
2( | ) ( | )Median y Median yσ σ=  = 1.1235 

                  (since 21/ 2 ( | ) ( | ))P m y P m yσ σ= < = <  
 • the 95% CPDR for   is (0.7440,1.9747)  (where these bounds  
               are the square roots of the bounds of the 95% CPDR for 2 ). 
       
Figure 1.16 shows the various densities and estimates here, as well as the 
normalised likelihood function.  
    
Note: The normalised likelihood function is the same as the posterior 
density of σ  if the prior on σ  is taken to be uniform over the positive 
real line, i.e. ( ) 1, 0f σ σ∝ > . This prior is specified by ~ ( 1 / 2,0)G  , 
i.e. by 1 / 2α = −  and 0β = , as is evident from (1.7) above.  

 
Figure 1.16 Results for Exercise 1.21(c) 

 
 
(d) Considering the various point estimates of λ , 2σ  and σ  derived 
above, we find that two of them can easily be expressed as credibility 
estimates, as follows. First, observe that  

 
2 2

2 / 2 2
( | )

1 ( / 2) 1 2 2
ns nsbE y

a n n
  


 

 
  

    
 

        2 2
2 2 2 2
n s

n n


 
       

, 

where  

 
22

2 2n





 
1

2 2n


 



 

22 2
1 2 2

E
n

 


 


  
  

. 
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We see that the posterior mean of 2  is a credibility estimate of the form 
     2 2 2( | ) (1 )E y c E cs    , 
where:   

2

1
E 






 is the prior mean of 2  

 2 2

1

1 ( )
n

i
i

s y
n 



    is the MLE of 2  

 
2 2
nc

n 


 
  is the credibility factor (assigned to the MLE). 

 
Likewise,  

2 2
2 / 2 2

( | )
1 ( / 2) 1 2 2

ns nsbMode y
a n n

  


 
 

  
    

 

            2 2
2 2 2 2
n s

n n


 
       

,  

where 

 
22

2 2n





 
1

2 2n


 



  1







 

         22 2 ( )
2 2

Mode
n







 
 

 

         21 ( )
2 2
n Mode

n



      

. 

 
We see that the posterior mode of 2  is a credibility estimate of the form 
     2 2 2( | ) (1 ) ( )Mode y d Mode ds    , 
where:   

2( )
1

Mode 






 is the prior mode of 2  

 2 2

1

1 ( )
n

i
i

s y
n 



    is the MLE of 2  

                          (i.e. mode of the likelihood function) 

 
2 2
nd

n 


 
  is the credibility factor (assigned to the MLE). 
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R Code for Exercise 1.21 
 
# (a) Inference on lambda ----------------------------------------------- 
 
y = c(8.4, 10.1, 9.4); n = length(y); mu=8;  alp=3; bet=2; options(digits=4) 
a=alp+n/2; sigmu2=mean((y-mu)^2); b=bet+(n/2)*sigmu2 
 
c(a,sigmu2,b) # 4.500 2.177 5.265 
 
lampriormean=alp/bet; lamlikemode=1/sigmu2; lampriormode=(alp-1)/bet 
lampriormedian= qgamma(0.5,alp,bet) 
lampostmean=a/b; lampostmode=(a-1)/b; lampostmedian=qgamma(0.5,a,b) 
lamcpdr=qgamma(c(0.025,0.975),a,b) 
 
c(lampriormean,lamlikemode,lampriormode,lampriormedian, 
 lampostmode,lampostmedian, lampostmean,lamcpdr)  
   # 1.5000 0.4594 1.0000 1.3370 0.6648 0.7923 0.8547 0.2564 1.8065 
 
lamv=seq(0,5,0.01); prior=dgamma(lamv,alp,bet) 
post=dgamma(lamv,a,b);  like=dgamma(lamv,a-alp+1,b-bet+0) 
 
X11(w=8,h=4); par(mfrow=c(1,1)) 
 
plot(c(0,5),c(0,1.9),type="n",  
 main="Inference on the model precision parameter", 
 xlab="lambda",ylab="density/likelihood") 
lines(lamv,prior,lty=1,lwd=2); lines(lamv,like,lty=2,lwd=2); 
lines(lamv,post,lty=3,lwd=2) 
points(c(lampriormean,lampriormode, lampriormedian,  
 lamlikemode,lampostmode,lampostmedian,lampostmean), 
   rep(0,7),pch=c(1,1,1,2,4,4,4),cex=rep(1.5,7),lwd=2) 
points(lamcpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2)) 
 
legend(0,1.9, 
      c("Prior density","Likelihood function (normalised)","Posterior density"), 
 lty=c(1,2,3),lwd=c(2,2,2)) 
legend(3,1.9,c("Prior mode, median\n & mean (left to right)",  
 "MLE"), pch=c(1,2),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
legend(3,1,c("Posterior mode, median\n & mean (left to right)",  
 "95% CPDR bounds"), pch=c(4,16),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
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# (b)  Inference on sigma2 = 1/lambda ------------------------------------------------- 
 
sig2priormean=bet/(alp-1); sig2likemode=sigmu2; sig2priormode=bet/(alp+1) 
sig2postmean=b/(a-1); sig2postmode=b/(a+1);  
sig2postmedian=1/lampostmedian 
sig2cpdr=1/qgamma(c(0.975,0.025),a,b); sig2priormedian= 1/lampriormedian 
 
c(sig2priormean, sig2likemode, sig2priormode, sig2priormedian, 
 sig2postmode, sig2postmedian, sig2postmean, sig2cpdr)  
   # 1.0000 2.1767 0.5000 0.7479 0.9573 1.2622 1.5043 0.5535 3.8994 
 
sig2v=seq(0.01,10,0.01); prior=dgamma(1/sig2v,alp,bet)/sig2v^2 
post=dgamma(1/sig2v,a,b)/sig2v^2;  
like=dgamma(1/sig2v,a-alp-1,b-bet+0)/sig2v^2 
 
plot(c(0,10),c(0,1.2),type="n",  
 main="Inference on the model variance parameter", 
 xlab="sigma^2 = 1/lambda",ylab="density/likelihood") 
lines(sig2v,prior,lty=1,lwd=2); lines(sig2v,like,lty=2,lwd=2) 
lines(sig2v,post,lty=3,lwd=2) 
 
points(c(sig2priormean, sig2priormode, sig2priormedian, sig2likemode, 
 sig2postmode, sig2postmedian,sig2postmean), 
 rep(0,7),pch=c(1,1,1,2,4,4,4),cex=rep(1.5,7),lwd=2) 
points(sig2cpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2)) 
 
legend(1.8,1.2, 
      c("Prior density","Likelihood function (normalised)","Posterior density"), 
 lty=c(1,2,3),lwd=c(2,2,2)) 
legend(7,1.2,c("Prior mode, median\n & mean (left to right)",  
 "MLE"), pch=c(1,2),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
legend(6,0.65,c("Posterior mode, median\n & mean (left to right)",  
 "95% CPDR bounds"), pch=c(4,16),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
 
# abline(h=max(like),lty=3)  # Checking likelihood and MLE are consistent 
# fun=function(t){  dgamma(1/t,a-alp-1,b-bet+0)/t^2  } 
# integrate(f=fun,lower=0,upper=Inf)$value    
                  # 1  Checking likelihood is normalised 
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# (c)  Inference on sigma = 1/sqrt(lambda) --------------------------------------------- 
 
sigpriormean=sqrt(bet)*gamma(alp-1/2)/gamma(alp);  
siglikemode=sqrt(sigmu2); sigpriormode=sqrt(2*bet/(2*alp+1)) 
sigpostmean= sqrt(b)*gamma(a-1/2)/gamma(a) 
sigpostmode= sqrt(2*b/(2*a+1)); sigpostmedian=sqrt(sig2postmedian) 
sigcpdr=sqrt(sig2cpdr); sigpriormedian= sqrt(sig2priormedian) 
 
c(sigpriormean, siglikemode, sigpriormode, sigpriormedian, 
 sigpostmode, sigpostmedian, sigpostmean, sigcpdr)  
   # 0.9400 1.4754 0.7559 0.8648 1.0262 1.1235 1.1836 0.7440 1.9747 
 
sigv=seq(0.01,3,0.01); prior=dgamma(1/sigv^2,alp,bet)*2/sigv^3 
post=dgamma(1/sigv^2,a,b)*2/sigv^3;  
like=dgamma(1/sigv^2,a-alp-1/2,b-bet+0)*2/sigv^3 
 
plot(c(0,2.5),c(0,4.1),type="n", 
 main="Inference on the model standard deviation parameter", 
 xlab="sigma = 1/sqrt(lambda)",ylab="density/likelihood") 
lines(sigv,prior,lty=1,lwd=2) 
lines(sigv,like,lty=2,lwd=2) 
lines(sigv,post,lty=3,lwd=2) 
points(c(sigpriormean, sigpriormode, sigpriormedian, siglikemode,  
 sigpostmode, sigpostmedian,sigpostmean), 
 rep(0,7),pch=c(1,1,1,2,4,4,4),cex=rep(1.5,7),lwd=2) 
points(sigcpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2)) 
 
legend(0,4.1, 
      c("Prior density","Likelihood function (normalised)","Posterior density"), 
 lty=c(1,2,3),lwd=c(2,2,2)) 
legend(1.7,4.1,c("Prior mode, median\n & mean (left to right)",  
 "MLE"), pch=c(1,2),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
legend(1.7,2.3,c("Posterior mode, median\n & mean (left to right)",  
 "95% CPDR bounds"), pch=c(4,16),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
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CHAPTER 2 
Bayesian Basics Part 2 

 
2.1 Frequentist characteristics of Bayesian 
estimators 
 
Consider a Bayesian model defined by a likelihood ( | )f y   and a prior 

( )f  , leading to the posterior  
( ) ( | )( | )

( )
f f yf y

f y
 

  . 

 
Suppose that we choose to perform inference on   by constructing a 
point estimate ̂  (such as the posterior mean, mode or median) and a  
(1 )α− -level interval estimate ( , )I L U=  (such as the CPDR or HPDR).  
 
Then ̂ , I, L and U are functions of the data y and may be written ˆ( )y , 
I(y), L(y) and U(y). Once these functions are defined, the estimates 
which they define stand on their own, so to speak, and may be studied 
from many different perspectives.  
 
Naturally, the characteristics of these estimates may be seen in the 
context of the Bayesian framework in which they were constructed. 
More will be said on this below when we come to discuss Bayesian 
decision theory.  
 
However, another important use of Bayesian estimates is as a proxy for 
classical estimates. We have already mentioned this in relation to the 
normal-normal model: 
 2

1( , , | ) ~ ( , )ny y iid N    
 2

0 0~ ( , )N   , 
where the use of a particular prior, namely the one specified by 0σ = ∞ , 
led to the point estimate ˆ ˆ( )y y    and the interval estimate 
 /2( ) ( ( ), ( )) ( / )I y L y U y y z nα σ= = ± .       
 
As we noted earlier, these estimates are exactly the same as the usual 
estimates used in the context of the corresponding classical model, 
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 2
1, , ~ ( , )ny y iid N   , 

where   is an unknown constant and 2  is given. 
 
Therefore, the frequentist operating characteristics of the Bayesian 
estimates are immediately known. In particular, we refer to the fact that 
the frequentist bias of ̂  is zero, and the frequentist coverage probability 
of I is exactly 1 α− . These statements mean that the expected value of 
y  given   is   for all possible values of  , and that the probability of 
  being inside I given   is 1 α−  for all possible values of µ . 
 
More generally, in the context of a Bayesian model as above, we may 
define the frequentist bias of a Bayesian point estimate  
 ˆ ˆ( )y   
as  

ˆ{ ( ) | }B E yθ θ θ θ= − . 
 
Also, we may define the frequentist relative bias of ̂  as 

  
ˆ( ) ByR E θ

θ
θ θ θ

θ θ

 −
= =  

 
    ( 0θ ≠ ). 

 
Furthermore, we may define the frequentist coverage probability (FCP) 
of a Bayesian interval estimate  
  I(y) = (L(y), U(y))   
as  

{ ( ) | }C P I yθ θ θ= ∈ . 
 
Thus, for the normal-normal model with 0σ = ∞ , we may write: 
 ˆ{ ( ) | } ( | ) 0B E y E yµ µ µ µ µ µ µ µ µ= − = − = − = ∀ ∈ℜ  

 0 0Rµ µ
= =    ( 0µ ≠ ) 

{ ( ) | }C P I yµ µ µ= ∈  

      /2 /2 1P y z y z
n nα α
σ σµ µ α µ

 
= − < < + = − ∀ ∈ℜ 

 
. 

 
The above analysis is straightforward enough. However, in the case of 
an informative prior (one with 0σ < ∞ ), or in the context of other 
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Bayesian models, the frequentist bias of a Bayesian point estimate ( Bθ ) 
and the frequentist coverage probability of a Bayesian interval estimate 
(Cθ ) may not be so obvious. Working out these functions may be useful 
for adding insight to the estimation process as well as for deciding 
whether or not to use a set of Bayesian estimates as frequentist proxies. 
 
Exercise 2.1 Frequentist characteristics of estimators in the 
normal-normal model 
 
Consider the normal-normal model: 
 2

1( , , | ) ~ ( , )ny y iid N    
 2

0 0~ ( , )N   . 
 
Work out general formulae for the frequentist and relative bias of the 
posterior mean of  , and for the frequentist coverage probability of the 
1 α−  HPDR for  .  
 
Produce graphs showing a number of examples of each of these three 
functions. 
 
Solution to Exercise 2.1 
 
Recall that  
 2( | ) ~ ( , )y N    , 
where:  

* 0(1 )k ky      is ’s  posterior mean  

 
2

2
* k

n
σσ =  is ’s  posterior variance 

 2 2
0/

nk
n σ σ

=
+

 is a credibility factor. 

 
Also, recall that ’s  HPDR (and CPDR) is  

* /2 *( )z  . 
Using these results, we find that the frequentist bias of the posterior 
mean of   is  
 * 0( | ) (1 ) ( | )B E k kE yµ µ µ µ µ µ µ= − = − + −     
         0(1 )k kµ µ µ= − + −  
         0(1 )( )k µ µ= − − . 
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Also, the frequentist relative bias of that mean is 

 0(1 )( )R kR µ
µ

µ µ
µ µ

− −
= =  

     0(1 ) 1k µ
µ

 
= − − 

 
    ( 0µ ≠ ). 

 
Further, the frequentist coverage probability of the 1 α−  HPDR for   is 

{ }* /2 *( )C P zµ αµ µ σ µ= ∈ ±  

       ( )* /2 * * /2 *P z zα αµ σ µ µ σ µ= − < < +  

       ( )* /2 * * /2 *,P z zα αµ σ µ µ µ σ µ= − < < +  

 ( )0 /2 * 0 /2 *(1 ) ,  (1 )P k ky z k ky zα αµ σ µ µ µ σ µ= − + − < < − + +  

 0 /2 * 0 /2 *(1 ) (1 ),  k z k zP y y
k k

α αµ µ σ µ µ σ µ− − + − − − = < < 
 

 

 ( )( ),  ( )P y b a yµ µ µ= < < , 
where:   

 0 /2 *(1 )( ) k zb
k

αµ µ σµ − − +
=   

 0 /2 *(1 )( ) k za
k

αµ µ σµ − − −
= . 

 
Thus, we find that 

( ) ( ) ( )C P a y bµ µ µ µ= < <     

       ( ) ( )
/ / /

a y bP
n n n

µ µ µ µ µ µ
σ σ σ

 − − −
= < < 

 
 

       ( ) ( )
/ /

a bP Z
n n

µ µ µ µ
σ σ

− − = < < 
 

  

     where Z ~ N(0,1), since ~ (0,1)
/

y N
n
µ µ

σ
 −
 
 

 

       ( ) ( )
/ /

b a
n n

µ µ µ µ
σ σ

− −   = Φ −Φ   
   

. 

 
Note: Here, Φ  denotes the standard normal cdf.  
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Figures 2.1, 2.2 and 2.3 (pages 66 and 67) show Bµ , Rµ  and Cµ  for 
selected values of 0σ , with 10n = , 0 1µ = , 1σ =  and 0.05α =  in each 
case. The strength of the prior belief is represented by 0σ , with large 
values of this parameter indicating relative ignorance. 
 
In Figure 2.1, we see that, for any given value of µ , the frequentist bias 
Bµ  of the posterior mean * ( | )E yµ µ=  converges to zero as the prior 
belief tends to total ignorance, that is, in the limit as 0σ →∞ . 
 
Also, Bµ → 0µ µ−  as the prior belief tends to complete certainty, that 
is, in the limit as 0 0σ → .  
 
Note: One of the thin dotted guidelines in Figure 2.1 shows the function 

0Bµ µ µ= −  in this latter extreme case of ‘absolute’ prior belief that 

0µ µ= . In all of the examples, 0 1µ = .  

  
In Figure 2.2, we see that, for any given value of µ , the frequentist 
relative bias Rµ  of the posterior mean * ( | )E yµ µ=  converges to zero 
as 0σ →∞ . Also, Rµ → 0( / ) 1µ µ −  as 0 0σ → .  
 
Note: The curved thin dotted guidelines in Figure 2.2 shows the function 

0( / ) 1Rµ µ µ= −  in this latter extreme case of ‘absolute’ prior belief that 

0µ µ= .  

 
In Figure 2.3, we see that, for any given value of µ , the frequentist 
coverage probability Cµ  of the 1 α−  (i.e. 0.95 or 95%) HPDR, namely 

* /2 *( )z  , converges to 1 α−  as 0σ →∞ . 
 
Also, Cµ →  0 as 0 0σ → , except at exactly 0µ µ=  where 1Cµ → ; 
thus, 0( )C Iµ µ µ→ =  as 0 0σ →  (where I denotes the standard 
indicator function).  
 
Note: In Figure 2.3, the thin dotted horizontal guidelines show the 
values 0, 0.95 and 1. 
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Figure 2.1  Frequentist bias in Exercise 2.1 

 
 
 
Figure 2.2  Frequentist relative bias in Exercise 2.1 
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Figure 2.3  Frequentist coverage probability in Exercise 2.1 

 
 
 
R Code for Exercise 2.1 
 
biasfun = function(mu,n,sig,mu0,sig0){  
       k = n/(n+(sig/sig0)^2) 
      (1-k)*mu0-mu*(1-k)        } 
 
coverfun = function(mu,n,sig,mu0,sig0,alp=0.05){      
    k = n/(n + (sig/sig0)^2) 
    sigstar =  sig*sqrt(k/n); z=qnorm(1-alp/2)       
    a= (   mu-(1-k)*mu0-z*sigstar  ) / k     
    b= (   mu-(1-k)*mu0+z*sigstar  ) /  k      
    u= pnorm((b-mu)/(sig/sqrt(n)))  
    l=  pnorm((a-mu)/(sig/sqrt(n))) 
     u-l        } 
  
X11(w=8,h=5.5); par(mfrow=c(1,1)) 
muvec=seq(-5,5,0.01); mu0=1; sig=1; n=10;  sig0v=c(0.1,0.2,0.5,1) 
 
plot(c(-2,2),c(-1,3),type="n",xlab="mu",ylab="",main=" ") 
abline(1,-1,lty=3); abline(v=0,lty=3); abline(h=0,lty=3) 
lines(muvec,biasfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sig0v[1]),  
     lty=1,lwd=3) 
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lines(muvec,biasfun(mu=muvec,n=n,sig=sig, mu0=mu0,sig0=sig0v[2]),  
     lty=2,lwd=3) 
lines(muvec,biasfun(mu=muvec,n=n,sig=sig, mu0=mu0,sig0=sig0v[3]),  
     lty=3,lwd=3) 
lines(muvec,biasfun(mu=muvec,n=n,sig=sig, mu0=mu0,sig0=sig0v[4]),  
     lty=4,lwd=3) 
legend(1,2.8,c("sig0=0.1","sig0=0.2","sig0=0.5","sig0=1.0"),   
     lty=1:4,lwd=rep(3,4)) 
 
plot(c(-2,2),c(-2,4),type="n",xlab="mu",ylab="",main=" ") 
abline(v=0,lty=3); abline(h=0,lty=3); lines(muvec, mu0/muvec-1,lty=3) 
lines(muvec, biasfun(mu=muvec,n=n,sig=sig,mu0=mu0, sig0=sig0v[1])/muvec,  
     lty=1,lwd=3) 
lines(muvec, biasfun(mu=muvec,n=n,sig=sig,mu0=mu0, sig0=sig0v[2])/muvec,  
     lty=2,lwd=3) 
lines(muvec, biasfun(mu=muvec,n=n,sig=sig,mu0=mu0, sig0=sig0v[3])/muvec,  
     lty=3,lwd=3) 
lines(muvec, biasfun(mu=muvec,n=n,sig=sig,mu0=mu0, sig0=sig0v[4])/muvec,  
     lty=4,lwd=3) 
legend(-2,4,c("sig0=0.1","sig0=0.2","sig0=0.5","sig0=1.0"),   
     lty=1:4,lwd=rep(3,4)) 
 
plot(c(-1,3),c(0,1),type="n",xlab="mu",ylab="",main=" ") 
abline(h=c(0,0.95,1),lty=3) 
lines(muvec, coverfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sig0v[1]),  
     lty=1,lwd=3) 
lines(muvec, coverfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sig0v[2]),  
     lty=2,lwd=3) 
lines(muvec, coverfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sig0v[3]),  
     lty=3,lwd=3) 
lines(muvec, coverfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sig0v[4]),  
     lty=4,lwd=3) 
legend(-0.55,0.6,c("sig0=0.1","sig0=0.2","sig0=0.5","sig0=1.0"),   
       lty=1:4,lwd=rep(3,4))  
    
 
Exercise 2.2 Frequentist characteristics of estimators in the 
normal-gamma model 
 
Consider the normal-gamma model given by: 
               1( , , | ) ~ ( ,1 / )ny y iid N     
                ~ ( , )Gamma   . 
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(a) Work out general formulae for the frequentist bias and relative bias 
of the posterior mean of 2 1 /  , and for the frequentist coverage 
probability of the 1 α−  CPDR for 2 .  
 
Produce graphs showing examples of each of these three functions.    
 
(b) Attempt to find a single prior under this model (that is, a single 
suitable pair of values  , β ) which results in both:  

(i)  a Bayesian posterior mean of 2  that is unbiased (in the  
                  frequentist sense) for all possible values of 2 ; and  

(ii)  a CPDR for 2  that has frequentist coverage probabilities  
                   exactly equal to the desired coverage for all possible values 

       of 2 . 
 
Solution to Exercise 2.2 
 
(a) Recall that the posterior mean of 2  is     

  2 2ˆ ( | )
1

bE y
a

  


,   

where:     
2
na    ,     2

2
nb s  ,      2 2

1

1 ( )
n

i
i

s y
n 



  .  

 

Thus, 
2 2

2 ( / 2) 2
ˆ

( / 2) 1 2 2
n s ns
n n

  


 

 
 

   
. 

 
So the frequentist bias of 2̂  is  

     2
2 2 2ˆ( | )B E


     

2 2
22 ( | )

2 2
nE s

n
 





 

 

2
22

2 2
n
n

 





 
 

. 

 

Note: This follows because, conditional on 2 , it is true that 

      
22

2
2

1

~ ( )
n

i

i

ns y n 


 

         (with mean n).   

 
Therefore the frequentist relative bias of 2̂  is     

 2

2

2

2

(2 / )  1
2 2

B nR
n




 
 


  

 
.    
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Note: We see that for any fixed 2 , α  and β   it is true that  
  2B


, 2 0R


  as n →∞ . 

 
Thus the posterior mean of 2  is asymptotically unbiased, in the 
frequentist sense. 
  
Next, recall that the  1 A−  CPDR for 2 1/σ λ=  is   

                
2 22 2

( ) ,
ns ns

I I y
v u

          
,  

where:    2
2 1

/2 (2 )
(2 ) (1 / 2)A n

v n F A
 

  


     

               2
2 1
1 /2 (2 )

(2 ) ( / 2)A n
u n F A

 
  

 
   . 

 
So the frequentist coverage probability of I  is 
       { }2

2 2( )C P I y
σ

σ σ= ∈  

  
2 2

2 22 2ns ns
P

v u
µ µβ β

σ σ
 + +

= < <  
 

 

       { }2 2( )P I yσ σ= ∈  

  
2 2

2
2 2 2 2

2 2,
ns ns

P v uµ µβ β σ
σ σ σ σ

 
= < − − <  

 
 

  2 22 2( ) ( )

2 2
n n

F v F u
χ χ

β β
σ σ

   = − − −   
   

. 

 
Figures 2.4, 2.5 and 2.6 (pages 72 and 73) show 2B

σ
, 2R

σ
 and 2C

σ
 for 

selected values of α  and β , with n = 10 and A = 0.05 in each case. 
 
(b) Observe that under the prior given by 1α =  and 0β =   
(that is, 1 1 0( ) 1f e λλ λ − −∝ ∝ ), it is true that: 
 • the posterior mean of 2  equals the MLE, namely 2s , and so is  
   unbiased  

• the 1 A−  CPDR for 2σ  is 
2 2

2 2
/2 1 /2

,
( 2) ( 2)A A

ns ns
n n
 

  

       
, 

   which has coverage probability less than 1 A−  for all 2 . 
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Also, under the prior given by 0α β= =  (i.e. 0 1 0( ) 1 /f e λλ λ λ− −∝ ∝ ), 
it is true that: 
 • the posterior mean of 2  equals 2 / (1 2 / )s n   and so is biased  

 • the 1 A−  CPDR for 2σ  is the same as the classical CI, namely  

              
2 2

2 2
/2 1 /2

,
( ) ( )A A

ns ns
n n

 

  

     
, and so has coverage exactly 1 A−  for all  

         2 . 
 
We see that there is no single gamma prior for 21 /λ σ=  which results 
in both: 

(i)  a Bayesian posterior mean of 2  that is unbiased (in the  
                  frequentist sense) for all possible values of 2 ; and  

(ii)  a CPDR for 2  that has frequentist coverage probabilities  
                   exactly equal to the desired coverage for all possible values 

       of 2 . 
 

Note: It is easy to modify or ‘correct’ the posterior mean under 
0α β= =  so that it becomes unbiased. Explictly, if 0α β= = , then 

 
2

2 2ˆ( | )
2

nE
n


  


.  

  
So an unbiased estimate of 2  is  

 
2

2 2 20 ( / 2)2 2ˆ
0 ( / 2) 1

n sn n s
n n n


 

 
   

 
   (i.e. the MLE).  
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Figure 2.4 Frequentist bias in Exercise 2.2 

 
 
 
Figure 2.5 Frequentist relative bias in Exercise 2.2 
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Figure 2.6 Frequentist coverage probability in Exercise 2.2 

 
 
 
R Code for Exercise 2.2 
 
biasfun = function(sig2,n=10,alp=0,bet=0){  (2*bet+n*sig2)/(2*alp+n-2)-sig2 } 
 
coverfun = function(sig2,n=10,alp=0,bet=0,A=0.05){      
     u = qchisq(A/2,2*alp+n); v = qchisq(1-A/2,2*alp+n) 
      pchisq(v-2*bet/sig2, n) - pchisq(u-2*bet/sig2, n)    } 
 
X11(w=8,h=5.5); par(mfrow=c(1,1)) 
sig2vec=seq(0.01,5,0.01); n=10;  alpv=c(0.1,1,5); betv=c(0.1,1,5) 
 
plot(c(0,5),c(-2,1),type="n",xlab="sigma^2",ylab="",main=" ") 
abline(h=0,lty=3) 
 
lines(sig2vec,biasfun(sig2=sig2vec,alp=0,bet=0), lty=1,lwd=3) 
lines(sig2vec,biasfun(sig2=sig2vec,alp=0,bet=1), lty=2,lwd=3) 
lines(sig2vec,biasfun(sig2=sig2vec,alp=1,bet=0), lty=3,lwd=3) 
lines(sig2vec,biasfun(sig2=sig2vec,alp=1,bet=1), lty=4,lwd=3) 
legend(0,-0.5,c("alp=0, bet=0","alp=0, bet=1","alp=1, bet=0","alp=1, bet=1"), 
                lty=1:4,lwd=rep(3,4)) 
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plot(c(0,3),c(-1,6),type="n",xlab="sigma^2",ylab="",main=" ") 
abline(h=0,lty=3); abline(v=0,lty=3) 
 
lines(sig2vec,biasfun(sig2=sig2vec,alp=0,bet=0)/ sig2vec, lty=1,lwd=3) 
lines(sig2vec,biasfun(sig2=sig2vec,alp=0,bet=1)/ sig2vec, lty=2,lwd=3) 
lines(sig2vec,biasfun(sig2=sig2vec,alp=1,bet=0)/ sig2vec, lty=3,lwd=3) 
lines(sig2vec,biasfun(sig2=sig2vec,alp=1,bet=1)/ sig2vec, lty=4,lwd=3) 
legend(1.5,6,c("alp=0, bet=0","alp=0, bet=1","alp=1, bet=0","alp=1, bet=1"), 
                lty=1:4,lwd=rep(3,4)) 
 
plot(c(0,2),c(0,1),type="n",xlab="sigma^2",ylab="",main=" ") 
abline(h=c(0,0.95,1),lty=3) 
 
lines(sig2vec, coverfun(sig2=sig2vec,n=10,alp=0,bet=0,A=0.05), lty=1,lwd=3) 
lines(sig2vec, coverfun(sig2=sig2vec,n=10,alp=0,bet=1,A=0.05), lty=2,lwd=3) 
lines(sig2vec, coverfun(sig2=sig2vec,n=10,alp=1,bet=0,A=0.05), lty=3,lwd=3) 
lines(sig2vec, coverfun(sig2=sig2vec,n=10,alp=1,bet=1,A=0.05), lty=4,lwd=3) 
legend(1,0.6,c("alp=0, bet=0","alp=0, bet=1","alp=1, bet=0","alp=1, bet=1"), 
                lty=1:4,lwd=rep(3,4)) 
 
 
2.2 Mixture prior distributions  
  
So far we have considered Bayesian models with priors that are limited 
in the types of prior information that they can represent. For example, 
the normal-normal model does not allow a prior for the normal mean 
which has two or more modes. If a non-normal class of prior is used to 
represent one’s complicated prior beliefs regarding the normal mean, 
then that prior will not be conjugate, and this will lead to difficulties 
down the track when making inferences based on the nonstandard 
posterior distribution. 
 
Fortunately, this problem can be addressed in any Bayesian model for 
which a conjugate class of prior exists by specifying the prior as a 
mixture of members of that class. 
 
Generally, a random variable X with a mixture distribution has a density 
of the form 

 
1

( ) ( )
M

m m
m

f x c f x
=

=∑ , 

where each ( )mf x  is a proper density and the mc  values are positive and 
sum to 1. 



Chapter 2: Bayesian Basics Part 2 

75 

If our prior beliefs regarding a parameter θ  do not follow any single 
well-known distribution, those beliefs can in that case be conveniently 
approximated to any degree of precision by a suitable mixture prior 
distribution with a density having the form 

 
1

( ) ( )
M

m m
m

f c fθ θ
=

=∑ . 

 
It can be shown (see Exercise 2.3 below) that if each component prior 

( )mf θ  is conjugate then ( )f θ  is also conjugate. This means that θ ’s 
posterior distribution is also a mixture with density of the form 

 
1

( | ) ( | )
M

m m
m

f y c f yθ θ
=

′=∑ ,      (2.1) 

where ( | )mf yθ  is the posterior implied by the mth prior ( )mf θ  and is 
from the same family of distributions as that prior.    
 
Exercise 2.3 Binomial-beta model with a mixture prior 
 
(a) Consider the following Bayesian model:  
 ( | ) ~ ( , )y Bin n   
 

1 1 2 2( , ) ( , )( ) ( ) (1 ) ( )Beta a b Beta a bf kf k f     ,     
where n, k and the ia , ib  are specified constants.  
 
Note: Here, ( , ) ( )Beta a bf t  denotes the density at t of the beta distribution 
with parameters a and b (and mean / ( ))a a b+ .  

 
Find the posterior distribution of   and shows that ’s  prior is 
conjugate. Then create a figure showing the prior, likelihood and 
posterior for the situation defined by: 
 n = 5, k = 3/4, 1a  = 8, 1b  = 25, 2a  = 20, 2b = 20 and y = 4.  
 
Also calculate the prior mean of  , the posterior mean of   and the 
MLE of  . Then mark these three points in the figure. 
 
(b) Show that any mixture of conjugate priors is also conjugate and 
derive a general formula which could be used to calculate the mixture 
weights mc′  in (2.1) above. 
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Solution to Exercise 2.3 
 
(a) The posterior density is   
 
   ( | ) ( ) ( | )f y f f y    
 

1 1 2 21 1 1 1

1 1 2 2

(1 ) (1 )(1 ) (1 )
( , ) ( , )

a b a b
y n yk k

B a b B a b
   

 
   


             

 
1 1( ) 1 ( ) 1

1 1

1 1 1 1

( , ) (1 )
( , ) ( , )

a y b n yB a y b n yk
B a b B a y b n y

                        
 

    

2 2( ) 1 ( ) 1
2 2

2 2 2 2

( , ) (1 )(1 ) .
( , ) ( , )

a y b n yB a y b n yk
B a b B a y b n y

                            
 

Thus     
1 1 2 2( | ) ( | ) ( | )f y c f y c f y    , 

where:  
1 1

1
1 1

( , )
( , )

B a y b n yc k
B a b

  
   

 

 2 2
2

2 2

( , )(1 )
( , )

B a y b n yc k
B a b
  

   
 

 
( ) 1 ( ) 1

( , )
(1 )( | ) ( ) , 0 1

( , )

i i

i i

a y b n y

i Beta a y b n y
i i

f y f
B a y b n y
 

  
    

  


   

  
  

  (the posterior density corresponding to ~ ( , )i iBeta a b   
 as prior). 
 

Now,  
( | ) 1f y d  ,  

and so 
 

1 1 2 2( , ) ( , )( | ) ( ) (1 ) ( )Beta a y b n y Beta a y b n yf y c f c f          , 
where   

1

1 2

cc
c c




.  
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Note: This ensures that ( | ) 1 (1 ) 1 1f y d c c       .   

   
We see that the prior ( )f   and posterior ( | )f y  are in the same family, 
namely the family of mixtures of two beta distributions. Therefore the 
mixture prior is conjugate. 
 
For the situation where  

n = 5, k = 3/4, 1a  = 8, 1b  = 25, 2a  = 20, 2b = 20 and y = 4,  
we find that:   
 
 • the prior mean is  

1 2

1 1 2 2

(1 )a aE k k
a b a b

θ
   

= + −   + +   
 = 0.3068 

 
 • the maximum likelihood estimate is   

y/n = 0.8 
 
 • the posterior mean is  

            1 2

1 1 2 2

( | ) (1 )a y a yE y c c
a b n a b n

θ
   + +

= + −   + + + +   
 = 0.4772. 

 
Figure 2.7 shows the prior density ( )f  , the likelihood function ( )L  , 
and the posterior density ( | )f y , as well as the prior mean, the MLE 
and the posterior mean.  
 
Note: The likelihood function in Figure 2.7 has been normalised so that 
the area underneath it is exactly 1. This means that this likelihood 
function is identical to the posterior density under the standard uniform 
prior, i.e. under (0,1) (1,1)( ) ( )U Betaf f  . Thus, (1 ,1 )( ) ( )Beta y n yL f    .  

 
Figure 2.7 also shows the two component prior densities and the two 
component posterior densities. It may be observed that, whereas the 
lower component prior has the highest weight, 0.8, the opposite is the 
case regarding the component posteriors. For these, the weight 
associated with the lower posterior is only 0.2583. This is because the 
inference is being ‘pulled up’ in the direction of the likelihood (with the 
posterior mean being between the prior mean and the MLE, 0.8). 
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Figure 2.7 Densities and likelihood in Exercise 2.3 

 
 
 
(b) Suppose that θ  has a mixture prior of the general form  

  
1

( ) ( )
M

m m
m

f c fθ θ
=

=∑ , 

where each ( )mf θ  is conjugate for the data model. 
 
Then the posterior density is 

 
1

( | ) ( ) ( | ) ( ) ( | )
M

m m
m

f y f f y c f f yθ θ θ θ θ
=

 ∝ =  
 
∑  

            { } ( )
1 1

( ) ( | )( ) ( | ) ( )
( )

M M
m

m m m m
m m m

f f yc f f y c f y
f y
θ θθ θ

= =

   = =   
   

∑ ∑ , 

where ( ) ( ) ( | )m mf y f f y dθ θ θ= ∫  is the unconditional density of the data 
under the mth prior, ( )mf θ . Thus  

 
1

( | ) ( | )
M

m m
m

f y k f yθ θ
=

∝∑ ,  

where  

 ( )m m mk c f y=  and ( ) ( | )( | )
( )

m
m

m

f f yf y
f y
θ θθ =   

is the posterior density of θ  under the mth prior, ( )mf θ .  
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It follows that 

 
1

( | ) ( | )
M

m m
m

f y c f yθ θ
=

′=∑ ,  

where 1/ ( ... )m m Mc k k k′ = + + .  
 
Thus θ ’s posterior is a mixture of distributions from the same families 
to which the components of θ ’s mixture prior belong, respectively. This 
shows that θ ’s mixture prior is conjugate. Note that the component prior 
distributions can be from different classes, so long as each is conjugate 
in relation to its own class. 
 
R Code for Exercise 2.3 
 
n=5; k=3/4; a1=8; b1=25; a2=20; b2=20; y=4; thetav=seq(0,1,0.01)  
prior1=dbeta(thetav,a1,b1); prior2=dbeta(thetav,a2,b2) 
post1=dbeta(thetav,a1+y,b1+n-y); post2=dbeta(thetav,a2+y,b2+n-y) 
prior = k*prior1 + (1-k)*prior2 
 
c1=k*beta(a1+y,b1+n-y)/beta(a1,b1); c2=(1-k)*beta(a2+y,b2+n-y)/beta(a2,b2) 
c=c1/(c1+c2); post=c*post1 + (1-c)*post2; options(digits=4); c # 0.2583 
like=dbeta(thetav,1+y,1+n-y) # likelihood = post. under U(0,1)=beta(1,1) prior 
 
X11(w=8,h=5.5) 
plot(c(0,1),c(0,8),type="n",xlab="theta",ylab="density/likelihood") 
lines(thetav,prior,lty=1,lwd=4) 
lines(thetav,like,lty=2,lwd=4) 
lines(thetav,post,lty=3,lwd=4) 
legend(0,8,c("Prior","Likelihood","Posterior"),lty=c(1,2,3),lwd=c(4,4,4)) 
lines(thetav,prior1,lty=1,lwd=2) 
lines(thetav,prior2,lty=1,lwd=2) 
lines(thetav,post1,lty=3,lwd=2) 
lines(thetav,post2,lty=3,lwd=2) 
legend(0.3,8,c("Component priors","Component posteriors"), 
 lty=c(1,3),lwd=c(2,2)) 
 
mle=y/n; priormean=k*a1/(a1+b1)+(1-k)*a2/(a2+b2) 
postmean=c*(a1+y)/(a1+b1+n) + (1-c)*(a2+y)/(a2+b2+n) 
points(c(priormean,mle,postmean),c(0,0,0),pch=c(1,2,4),cex=c(1.5,1.5,1.5), 
 lwd=c(2,2,2)) 
c(priormean,mle,postmean) # 0.3068 0.8000 0.4772 
legend(0.7,8,c("   Prior mean","   MLE","   Posterior mean"), 
 pch=c(1,2,4),pt.cex=c(1.5,1.5,1.5),pt.lwd=c(2,2,2)) 
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2.3 Dealing with a priori ignorance 
  
The Bayesian approach requires a prior distribution to be specified even 
when there is complete (or total) a priori ignorance (meaning no prior 
information at all). This feature presents a general and philosophical 
problem with the Bayesian paradigm, one for which several theoretical 
solutions have been advanced but which does not yet have a universally 
accepted solution. We have already discussed finding an uninformative 
prior in relation to particular Bayesian models, as follows.  
 
For the normal-normal model defined by 2

1( , , | ) ~ ( , )ny y iid N    
and 2

0 0~ ( , )N   , an uninformative prior is given by 0σ = ∞ , that is, 
( ) 1,f    . 

 
For the normal-gamma model defined by 1( , , | ) ~ ( ,1/ )ny y iid N    
and ~ ( , )Gamma   , an uninformative prior is given by 0α β= = , 
that is, ( ) 1/ , 0f     . 
 
For the binomial-beta model defined by ( | ) ~ ( , )y Binomial n   and 

~ ( , )Beta    (having the  posterior  ( | ) ~ ( , )),y Beta y n y       
an uninformative prior is the Bayes prior given by 1α β= = , that is, 

( ) 1, 0 1f θ θ= < < . This is the prior that was originally advocated by 
Thomas Bayes. 
 
Unlike for the normal-normal and normal-gamma models, more than one 
uninformative prior specification has been proposed as reasonable in the 
context of the binomial-beta model.  
 
One of these is the improper Haldane prior, defined by 0   , or 

 1( ) , 0 1
(1 )

f θ θ
θ θ

∝ < <
−

.  

 
Under the prior ~ ( , )Beta    generally, the posterior mean of   is  

  ( )ˆ ( | )
( ) ( )

y yE y
y n y n
 

 
   

 
  

     
. 

 
This reduces to the MLE y/n under the Haldane prior but not under the 
Bayes prior. In contrast, the Bayes prior leads to a posterior mode which 
is equal to the MLE. 
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The Haldane prior may be considered as being most appropriate for 
allowing the data to ‘speak for itself’ in cases of a priori ignorance.  
 
However, the Haldane prior leads to an improper and degenerate 
posterior if the data y happens to be either 0 or n. Specifically: 

y = 0 ⇒  ( | ) ~ (0, )y Beta n , or equivalently, ( 0 | ) 1P y   
y = n ⇒  ( | ) ~ ( ,0)y Beta n , or equivalently, ( 1| ) 1P y  . 

 
So in each case, point estimation is possible but not interval estimation. 
 
No such problems occur using the Bayes prior. This is because that prior 
is proper and so cannot lead to an improper posterior, whatever the data 
may be. Interestingly, there is a third choice which provides a kind of 
compromise between the Bayes and Haldane priors, as described below.  
 
2.4 The Jeffreys prior 
 
The statistician Harold Jeffreys devised a rule for finding a suitable 
uninformative prior in a wide variety of situations. His idea was to 
construct a prior which is invariant under reparameterisation. For the 
case of a univariate model parameter θ , the Jeffreys prior is given by 
the following equation (also known as Jeffreys’ rule): 
 ( ) ( )f Iθ θ∝ , 
where ( )I θ  is the Fisher information defined by 

 
2

( ) log ( | )I E f yθ θ θ
θ

 ∂  =   ∂   
. 

 
Note 1: If log ( | )f y θ is twice differentiable with respect to ,θ  and 
certain regularity conditions hold, then 

         
2

2( ) log ( | )I E f yθ θ θ
θ

 ∂ = −  ∂  
.       

  
Note 2: Jeffreys’ rule also extends to the multi-parameter case (not 
considered here).  
 
The significance of Jeffreys’ rule may be described as follows. Consider 
a prior given by ( ) ( )f Iθ θ∝  and the transformed parameter ( )gφ θ= , 
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where g is a strictly increasing or decreasing function. (For simplicity, 
we only consider this case.) Then the prior density for φ  is 

     ( ) ( )f f θφ θ
φ
∂

∝
∂

   by the transformation rule 

         
2

( )I θθ
φ

 ∂
∝  ∂ 

 
22

log ( | )E f y θθ θ
θ φ

  ∂ ∂  =     ∂ ∂     
 

        E
θ
∂

=
∂

log ( | )f y θθ ∂
2

θ
φ

   
  ∂   

 

        
2

log ( | )E f y φ φ
φ

  ∂ =   ∂   
 

        ( )I φ= . 
 
Thus, Jeffreys’ rule is ‘invariant under reparameterisation’, in the sense 
that if a prior is constructed according to  

( ) ( )f Iθ θ∝ ,  
then, for another parameter ( )gφ θ= , it is also true that  

( ) ( )f Iφ φ∝ . 
 
Exercise 2.4 Jeffreys prior for the normal-normal model 
 
Find the Jeffreys prior for   if 2

1( , , | ) ~ ( , )ny y iid N   , where   is 
known. 
 
Solution to Exercise 2.4 
 

Here:  2 2
2 2

11

1 1( | ) exp ( ) exp ( )
2 2

n n

i i
ii

f y y y
µ

µ µ µ
σ σ ==

  ∝ − − = − −   
   

∑∏  

 2
2

1

1log ( | ) ( )
2

n

i
i

f y y cµ µ
σ =

= − − +∑   (where c is a constant) 

 1
2 2

1

1log ( | ) 2( ) ( 1) ( )
2

n

i
i

nf y y yµ µ µ
µ σ σ=

∂
= − − − = −

∂ ∑  

 
2 2

2
4log ( | ) ( )nf y yµ µ

µ σ
 ∂

= − ∂ 
. 
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Therefore the Fisher information is  
2 2

2
4( ) log ( | ) ( )nI E f y E yµ µ µ µ µ

µ σ

    ∂   = = −    ∂       
 

     
2 2 2

4 4 2( | )n n nV y
n
σµ

σ σ σ
= = = . 

 

It follows that the Jeffreys prior is 2( ) ( ) 1,nf I
µ

µ µ µ
σ

∝ = ∝ ∈ℜ .     

 
Note 1: This is the same prior as used earlier in the uninformative  
case.  
 
Note 2: The Fisher information here can also be derived as follows: 

  
2

2 2log ( | ) nf y µ
µ σ
∂

= −
∂

 

        
2

2 2 2( ) log ( | ) n nI E f y Eµ θ θ
θ σ σ

 ∂   ⇒ = − = − − =   ∂    
.  

 
Exercise 2.5 Jeffreys prior for the normal-gamma model 
 
Find the Jeffreys prior for   if 1( , , | ) ~ ( ,1/ )ny y iid N   , where   
is known. 
 
Solution to Exercise 2.5 
 

Here: 1/2 2 /2 2

11

( | ) exp ( ) exp ( )
2 2

n n
n

i i
ii

f y y y
λ λ λλ λ µ λ µ

==

  ∝ − − = − −   
   

∑∏  

          2

1
log ( | ) log ( )

2 2

n

i
i

nf y y cλλ λ µ
=

= − − +∑  (where c is a constant) 

          2

1

log ( | ) 1 ( )
2 2

n

i
i

f y n yλ µ
λ λ =

∂
= − −

∂ ∑ ,    
2

2 2

log ( | )
2

f y nλ
λ λ

∂
= −

∂
. 

 
So the Fisher information is 

          
2

2 2 2

log ( | )( )
2 2

f y n nI E Eλλ λ λ
λ λ λ

 ∂   = − = − − =   ∂    
. 
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So the Jeffreys prior is 2

1( ) ( ) ,
2

nf I
λ

λ λ λ
λ λ

∝ = ∝ ∈ℜ . 

 
Note 1: This is the same prior as used earlier in the uninformative  
case.  

 
Note 2: Another way to obtain the the Fisher information is to first write 

         2

1

log ( | ) 1 1( ) ( )
2 2 2

n

i
i

f y n y n qλ λ µ
λ λ λ λ=

∂  = − − = − ∂  
∑ , 

where: 
2

1 1/

n
i

i

yq µ
λ=

− =  
 

∑ , 2( | ) ~ ( )q nλ χ , ( | )E q nλ = , ( | ) 2V q nλ = . 

  

We may then write  
2

2 2
2

log ( | ) 1 ( 2 )
4

f y n nq qλ
λ λ

∂  = − + ∂ 
, 

and so the Fisher information is  
2log ( | )( ) f yI E λλ λ

λ

 ∂  =   ∂   
 

 { }2 2
2

1 2 ( | ) ( | )
4

n nE q E qλ λ
λ

= − + { }2 2
2

1 2 2
4

n nn n n
λ

 = − + +  22
n
λ

= . 

 
Exercise 2.6 Jeffreys prior for the binomial-beta model 
 
Find the Jeffreys prior for   if ( | ) ~ ( , )y Binomial n  , where n is 
known. 
 
Solution to Exercise 2.6 
 

Here:  ( | ) (1 )y n yn
f y

y
θ θ θ − 

= − 
 

 

 log ( | ) log log ( ) log(1 )
n

f y y n y
y

θ θ θ
 

= + + − − 
 

 

 1 1log ( | ) 0 ( )(1 )f y y n yθ θ θ
θ

− −∂
= + − − −

∂
 

 
2

2 2
2 log ( | ) ( )(1 )f y y n yθ θ θ

θ
− −∂

= − − − −
∂

. 
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So the Fisher information is  
2

2( ) log ( | )I E f yθ θ θ
θ

 ∂ = −  ∂  
 

        { }2 2( )(1 )E y n yθ θ θ− −= − − − − −  

                    2 2( ) ( )(1 )n n nθ θ θ θ− −= + − −  

        1 1 (1 )
1 (1 ) (1 )

nn n θ θ
θ θ θ θ θ θ

− + = + = = − − − 
. 

 
It follows that the Jeffreys prior is given by 

 1( ) ( ) , 0 1
(1 ) (1 )

nf I
θ

θ θ θ
θ θ θ θ

∝ = ∝ < <
− −

.   

 
Note: We may also write the Jeffreys prior density as  

  
1 11 1
2 2( ) (1 ) , 0 1f θ θ θ θ
− −

∝ − < < .  
  
Thus the Jeffreys prior can be specified by writing  

~ ( , )Beta     
with 1/ 2α β= = .   
 
We see that the Jeffreys prior may be thought of as ‘half-way’ between: 

• the Bayes prior, defined by 1α β= = ; and 
• the Haldane prior, defined by 0α β= = .  

    
Exercise 2.7 Jeffreys prior for the tramcar problem 
 
Recall the discussion of the tramcar problem following Exercise 1.6, in 
relation to the model ( | ) ~ (1,..., )y DUθ θ . Find the Jeffreys prior for θ . 
 
Solution to Exercise 2.7 
 
Here, 

1( | ) 1/f y θ θ θ −= =   
    ⇒    log ( | ) logf y θ θ= −  

    ⇒  1log ( | )f y θ
θ θ
∂

= −
∂
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    ⇒   
2

2

1log ( | )f y θ
θ θ
∂  = ∂ 

   

    ⇒   
2

2

1( ) log ( | )I E f yθ θ θ
θ θ

 ∂  = =  ∂   
. 

 
It follows that the Jeffreys prior for θ  is given by 

( ) ( ) 1/f Iθ θ θ∝ ∝ , 1, 2,3,...θ =  
 

2.5 Bayesian decision theory 
 
The posterior mean, mode and median, as well as other Bayesian point 
estimates, can all be derived and interpreted using the principles and 
theory of decision theory. Suppose we wish to choose an estimate of   
which minimises costs in some sense. To this end, let ˆ( , )L    denote 
generally a loss function (LF) associated with an estimate ̂ .  
 

Note: The estimator ̂  is a function of the data y and so could also be 
written ˆ( )y . For example, in the context where ( | ) ~ ( , )y Bin n  , the 
sample proportion or MLE is the function given by ˆ ˆ( ) /y y n   .  

 
The loss function L represents the cost incurred when the true value   is 
estimated by ̂  and usually satisfies the property ( , ) 0L    . 
 
The three most commonly used loss functions are defined as follows: 

ˆ ˆ( , ) | |L       the absolute error loss function (AELF) 
 2ˆ ˆ( , ) ( )L       the quadratic error loss function (QELF) 

ˆ0 ifˆ ˆ( , ) ( )
ˆ1 if

L I
 

   
 

         
 the indicator error loss  

 function (IELF), also known as the zero-one loss function 
 (ZOLF) or the all-or-nothing error loss function (ANLF). 

 
Figures 2.8 and 2.9 illustrate these three basic loss functions. 
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Figure 2.8 The three most important loss functions 
   

 
 
Figure 2.9 Alternative representation of the absolute error 
loss function  
(The other two loss functions can be represented similarly) 
 

    
 
 
Given a Bayesian model, loss function and estimator, we would like to 
quantify what the loss is likely to be. However, this loss depends on   
and y, which complicates things. An idea of the expected loss may be 
provided by the risk function, defined as the conditional expectation 

 ˆ ˆ( ) ( ( , ) | ) ( ( ), ) ( | )R E L L y f y dy         .  

    
The risk function ( )R   provides us with an idea of the expected loss 
given any particular value of  . Figure 2.10 illustrates the idea. 
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Figure 2.10 The idea of a risk function 
 

 
 
To obtain the overall expected loss we need to average the risk function 
over all possible values of  . This overall expected loss is called the 
Bayes risk and may be defined as 
 ˆ ˆ( , ) { ( , ) | } ( ) ( ) ( )r EL EE L ER R f d             . 

 
Exercise 2.8 Examples of the risk function and Bayes risk  
 
Consider the normal-normal model: 2

1( , , | ) ~ ( , )ny y iid N     
     2

0 0~ ( , )N   .   
 
For each of the following estimators, derive a formulae for the risk 
function under the quadratic error loss function: 

 (a) 1
1ˆ ( ... )ny y y
n

        (the sample mean) 

 (b) ˆ y       (the absolute value of the sample mean). 
 
In each case, use the derived risk function to determine the Bayes risk. 
 
Solution to Exercise 2.8 
 
For both parts of this exercise, the loss function is given by  
 2ˆ ˆ( , ) ( )L      . 
 
(a) If ˆ y  then the risk function is  

   ˆ( ) { ( , ) | }R E L    2{( ) | }E y    ( | )V y   
               2 / n   (a constant). 
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So the Bayes risk is simply 
  2 2( ) ( / ) /r ER E n n         (i.e. the same constant). 
 
(b) If ˆ y  then the risk function is 

     2( ) ( ) |R E y      2 22E y y        

   2 2( | ) 2E y E y       

  
2

2 22 m
n


  
        

,   where  m E y  . 

 
Now,   

          
0

0

( ) ( | ) ( ) ( | )m y f y dy y f y dy 




        

0 0 0

0

( | ) ( | ) ( | ) ( | )yf y dy yf y dy yf y dy yf y dy   


  

        

 
0

2 ( | ) ( | )yf y dy yf y dy 


 

    

 2I  ,        where 
0

( | )I yf y dy


  . 

 
Here,   

           
/

( )
c

I cz z dz


 




    after  putting 
/

yz
n
µ

σ
−

=  with c
n
σ

=  

   
/ /

( ) ( )
c c

z dz c z z dz
 

  
 

 

    

  cJ
c



      

,      where   
/

( )
c

J z z dz







  .    

 

Note:  Here, 
21

21( )
2

z
z e




  and  ( ) ( )

z

z t dt


    are the standard 

normal pdf and cdf, respectively.   
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Now,  
2/ 1

21
2

c
z

J z e dz









   

     

2

22 1
2

c
we dw








        after substituting 21
2

w z=  

    

2

221
2

cw

w

e








 
 
   
  

 
2

221
2

ce e







        
 

c



    

. 

 

Hence   I cJ
c



      

 c
c c
 

 
               

, 

and so  2 2m I c
c c
 

   
                      

. 

 
Therefore   

2 2
2 2( ) 2 2 2R m

n n
 

        2  2 c
c c
 

 
                          

. 

 
Thereby we obtain:    

     
2

2( ) 4 4 ,
/ /

R
n n n n
   

    
 

                  
. 

 
The Bayes risk is then given by 

 ( ) ( ) ( ) ( )r ER R f d g d     




    , 

where      

   
2

2 0

0 0

1( ) 4 4
/ /

g
n n n n
     

    
  

                                    
. 

 
We see that the Bayes risk r is an intractable integral equal to the area 
under the integrand, ( ) ( ) ( )g R f   . However, this area can be 
evaluated numerically (using techniques discussed later). Figures 2.11 
and 2.12 show examples of the risk function ( )R   and the integrand 
function ( )g  . For the case 0 0 1n σ µ σ= = = = , we find that r = 1.16. 
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Figure 2.11 Some risk functions in Exercise 2.8 

 
 
 
Figure 2.12 Some integrand functions used to calculate the  
Bayes risk 
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R Code for Exercise 2.8 
 
Rfun=function(mu,sig,n){    sig^2/n+4*mu*(   mu*pnorm(-mu/(sig/sqrt(n)))  - 
           (sig/sqrt(n))*dnorm(mu/(sig/sqrt(n)))    )     } 
muvec=seq(-10,10,0.01); options(digits=4) 
 
X11(w=8,h=5.5); par(mfrow=c(1,1));  
 
plot(c(-0.5,4),c(0,3),type="n",xlab="mu",ylab="R(mu)",main=" ") 
 
n=1; sig=1; lines(muvec,Rfun(muvec,sig=sig,n=n),lty=1,lwd=3);  
            abline(v=0,lty=3); abline(h=c(0,sig^2/n),lty=3) 
n=5; sig=2; lines(muvec,Rfun(muvec,sig=sig,n=n),lty=2,lwd=3);  
 abline(h= sig^2/n,lty=3) 
n=5; sig=3; lines(muvec,Rfun(muvec,sig=sig,n=n),lty=3,lwd=3);  
             abline(h= sig^2/n,lty=3) 
legend(0.2,3.05,c("sig=1, n=1","sig=2, n=5","sig=3, n=5"), 

lty=c(1,2,3),lwd=c(2,2,2)) 
 
Ifun = function(mu,sig,n,mu0,sig0){ 
 Rfun(mu=mu,sig=sig,n=n)*dnorm(mu,mu0,sig0)     } 
 
plot(c(-5,10),c(0,1.5),type="n", xlab="mu",ylab="g(mu) = R(mu)*f(mu)", 
 main=" ")  
n=1; sig=1; mu0=0; sig0=1 
lines(muvec, Ifun(mu=muvec,sig=sig,n=n,mu0=mu0, sig0=sig0),lty=1,lwd=3) 
 # Check range over which to integrate the integrand 
integrate(f=Ifun,lower=-7,upper=7, sig=sig,n=n,mu0=mu0, sig0=sig0)$value   
 # 3 
 
n=1; sig=1; mu0=1; sig0=1 
lines(muvec, Ifun(mu=muvec,sig=sig,n=n,mu0=mu0, sig0=sig0),lty=2,lwd=3) 
 # Check range over which to integrate the integrand 
integrate(f=Ifun,lower=-7,upper=7, sig=sig,n=n,mu0=mu0, sig0=sig0)$value   
 # 1.16  
 
n=1; sig=1; mu0=5; sig0=1 
lines(muvec, Ifun(mu=muvec,sig=sig,n=n,mu0=mu0, sig0=sig0),lty=3,lwd=3) 
 # Check range over which to integrate the integrand 
integrate(f=Ifun,lower=0,upper=10, sig=sig,n=n,mu0=mu0, sig0=sig0)$value   
 # 0.9994 
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n=1; sig=1; mu0=0; sig0=0.5 
lines(muvec, Ifun(mu=muvec,sig=sig,n=n,mu0=mu0, sig0=sig0),lty=4,lwd=3) 
 # Check range over which to integrate the integrand 
integrate(f=Ifun,lower=-5,upper=5, sig=sig,n=n,mu0=mu0, sig0=sig0)$value   
 # 1.5 
 
legend(1,1.5,c("mu0=0, sig0=1.0 => r=3.000", "mu0=1, sig0=1.0 => r=1.160", 
 "mu0=5, sig0=1.0 => r=0.999","mu0=0, sig0=0.5 => r=1.500"),  
 lty=c(1,2,3,4),lwd=c(3,3,3,3)); text(5,0.6,"In each case, n=1 and sig=1") 
 
 
2.6 The posterior expected loss  
 
We have defined the risk function as the expectation of the loss function 
given the parameter, namely 

 ˆ ˆ( ) ( ( , ) | ) ( ( ), ) ( | )R E L L y f y dy         .  

   
Conversely, we now define the posterior expected loss (PEL) as the 
expectation of the loss function given the data, and we denote this 
function by 

 ˆ ˆ( ) { ( , ) | } ( ( ), ) ( | )PEL y E L y L y f y d        . 

 
Then, just as the risk function can be used to compute the Bayes risk 
according to 
 ˆ ˆ( , ) { ( , ) | } ( ) ( ) ( )r EL EE L ER R f d             , 

so also can the PEL be used, but with the formula 
           ˆ ˆ( , ) { ( , ) | } { ( )} ( ) ( )r EL EE L y E PEL y PEL y f y dy        . 

 
Note: Both of these formulae for the Bayes risk use the law of iterated 
expectation, but with different conditionings.  
 
Exercise 2.9   Examples of the PEL and Bayes risk  
 
Consider the normal-normal model:  

2
1( , , | ) ~ ( , )ny y iid N         

 2
0 0~ ( , )N   .  
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For each of the following estimators, derive a formula for the posterior 
expected loss under the quadratic error loss function: 

 (a) 1
1ˆ ( ... )ny y y
n

        (the sample mean) 

 (b) ˆ y     (the absolute value of the sample mean). 
 
In each case, use the derived PEL to obtain the Bayes risk.  
 
Note: This exercise is an extension of Exercise 2.8.   
 
 
Solution to Exercise 2.9 
 
(a) If ˆ y  then the PEL function is     
   ˆ( ) { ( , ) | }PEL y E L y    
     2{( ) | }E y y   
     2 22 ( | ) ( | )y yE y E y    , 
where:  

*( | )E y   
 2 2( | ) ( | ) { ( | )}E y V y E y       

     2 2
* *    

 * 0(1 )k ky    ,     
2

2
* k

n
σσ = ,     2 2

0/
nk

n σ σ
=

+
. 

 
Thus, more explicitly,   
    22 2

0 * 0( ) 2 (1 ) (1 )PEL y y y k ky k ky           
 
     2 2 2 2 2 2 2

0 * 0 02(1 ) 2 (1 ) 2(1 )y k y ky k k ky k y              
 
  2 2 2 2 2 2

0 * 0(1 ) (1 ) 2 (1 )y k y k k          
 
  2 2 2

* 0(1 ) ( )k y     . 
 

Note: This is  a quadratic in y  with a minimum of 2
*  at 0y  .   
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The Bayes risk is then 
  { ( )}r E PEL y  

    2 2 2
* 0(1 ) {( ) }k E y     ,     

where  
2

0{( ) }E y Vy    
          ( | ) ( | )EV y VE y    

            
2

E V
n



      

  

               
2

2
0n


  . 

 

Thus   
2

2 2 2
* 0(1 )r k

n


 
        

     

 
2 2

2 2
0(1 )k k

n n
 


        

       (where 2 2
0/

nk
n σ σ

=
+

) 

 
2

n


    (after a little algebra). 

 
Note: This is in agreement with Exercise 2.8, where the result was 
obtained much more easily by taking the mean of the risk function, as 
follows: 

2 2( ) ( / ) /r ER E n n     .   

 
(b) If ˆ y  then the posterior expected loss function is 

     2( ) ( ) |PEL y E y y   

      2 22 ( | ) ( | )y y E y E y       

      2 2 2
* * *2y y          

         22 2
0 * 02 (1 ) (1 )y y k ky k ky          .   

 
Some examples of this PEL function are shown in Figure 2.13. In all 
these examples, 1n σ= = . 
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Figure 2.13 Some posterior expected loss functions 

 
 
 
In terms of the PEL function, the Bayes risk can be expressed as 

  { ( )} ( ) ( )r E PEL y PEL y f y dy




   ,     

where   

 2 2
0 0, /

( ) ( )
N n

f y f y
  

 ,    

since     
2

2
0 0~ ,y N

n
σµ σ

 
+ 

 
. 

 
As an example, we consider the case 0 0 1n σ µ σ= = = = . Figure 2.14 
shows the integrand function ( ) ( )PEL y f y . The area under this function 
works out as 1.16, in agreement with an alternative working for the 
Bayes risk in Exercise 2.8 (taking an expectation of the risk function). 
 



Chapter 2: Bayesian Basics Part 2 

97 

Figure 2.14 An integrand function with area underneath equal  
to 1.16 

 
 
 
R Code for Exercise 2.9 
 
PELfun=function(ybar,sig,n,sig0,mu0){    
 k=n/(n+sig^2/sig0^2) 
 mustar=(1-k)*mu0+k*ybar 
 sigstar2=k*sig^2/n 
 ybar^2-2*abs(ybar)*mustar+sigstar2 + mustar^2      

} 
 
ybarvec=seq(-10,10,0.01); options(digits=4) 
X11(w=8,h=5.5); par(mfrow=c(1,1));  
 
plot(c(-4,5),c(0,3),type="n",xlab="ybar",ylab="PEL(ybar)", main=" ")  
abline(v=0,lty=3); abline(h=0,lty=3) 
  
n=1; sig=1; mu0=0; sig0=1 
lines(ybarvec,PELfun(ybarvec,sig=sig,n=n,sig0=sig0,mu0=mu0),lty=1,lwd=3);  
 
n=1; sig=1; mu0=1; sig0=1 
lines(ybarvec,PELfun(ybarvec,sig=sig,n=n,sig0=sig0,mu0=mu0),lty=2,lwd=3);  
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n=1; sig=1; mu0=-0.5; sig0=1 
lines(ybarvec,PELfun(ybarvec,sig=sig,n=n,sig0=sig0,mu0=mu0),lty=3,lwd=3);  
 
n=1; sig=1; mu0=0; sig0=2 
lines(ybarvec,PELfun(ybarvec,sig=sig,n=n,sig0=sig0,mu0=mu0),lty=4,lwd=3);  
 
legend(-4,1.5,c("mu0=0, sig0=1","mu0=1, sig0=1","mu0=-0.5, sig0=1", 
 "mu0=0, sig0=2"), lty=c(1,2,3,4), lwd=c(3,3,3,3)) 
 
# Calculate r when n=1, sig=1, mu0=1, sig0=1 (should get 1.16 as before) 
 
Jfun = function(ybar,sig,n,sig0,mu0){ 
  PELfun(ybar=ybar,sig=sig,n=n,sig0=sig0,mu0=mu0)* 
 dnorm(ybar,mu0,sqrt(sig0^2+sig^2/n))   
 } 
 
n=1; sig=1; mu0=1; sig0=1 
 
plot(ybarvec, PELfun(ybar=ybarvec,sig=sig,n=n,sig0=sig0,mu0=mu0)* 
 dnorm(ybarvec,mu0,sqrt(sig0^2+sig^2/n)), 
 type="l", xlab="ybar",ylab="PEL(ybar)*f(ybar)", lwd=3) 
 
integrate(f=Jfun,lower=-10,upper=10, sig=sig,n=n,mu0=mu0, sig0=sig0)$value   
 # 1.16    Correct (same as in last exercise) 
 
2.7 The Bayes estimate 
 
The Bayes estimate (or estimator) is defined to be the choice of the 
function ˆ ˆ( )y   for which the Bayes risk ˆ( , )r EL    is minimised. 
This estimator has the smallest overall expected loss over all estimators 
under the specified loss function ˆ( , )L   . 
 
In many cases, the procedure for finding a Bayes estimate can be 
considerably simplified by considering which estimate minimises the 
posterior expected loss function, ˆ( ) { ( , ) | }PEL y E L y  . 
 
If we can find an estimate ˆ ˆ( )y   which minimises ( )PEL y  for all 
possible values of the data y, then that estimate must also minimise the 
Bayes risk.  
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This is because the Bayes risk may be written as a weighted average of 
the PEL, namely      
         ˆ ˆ( , ) { ( , ) | } { ( )} ( ) ( )r EL EE L y E PEL y PEL y f y dy        . 

 
Exercise 2.10 Bayes estimate under the QELF  
 
Find the Bayes estimate under the quadratic error loss function. 
 
Solution to Exercise 2.10 
 
Observe that  2ˆ( ) {( ) | }PEL y E yθ θ= − 2 2ˆ ˆ{ 2 | }E yθ θθ θ= − +  
     2 2ˆ ˆ2 ( | ) ( | )E y E yθ θ θ θ= − +    

     
2 2 2ˆ ( | ) { ( | )} ( | )E y E y E yθ θ θ θ = − − +  . 

 

Note: We have completed the square in θ̂ .  
 
We see that the PEL is a quadratic function of θ̂  which is clearly 
minimised at the posterior mean, ˆ ( | )E yθ θ= . So the Bayes estimate 
under the QELF is that posterior mean. 
 
Note 1: This result can also be obtained using Leibniz’s rule for 
differentiating an integral, which is generally 

           ( , )( , ) ( , ) ( , )
b b

a a

d G u x db daG u x du du G b x G a x
dx x dx dx


  

    

and which reduces to  ( , ) 0 0
b

a

G u x du
x


 

   if a and b are constants.  

  

Thus we may write  2ˆ( ) ( ) ( | )ˆ ˆPEL y f y dθ θ θ θ
θ θ
∂ ∂

= −
∂ ∂ ∫  

                    { }2ˆ( ) ( | ) 0 0ˆ f y dθ θ θ θ
θ
∂

= − + −
∂∫  

          1ˆ2( ) ( | )f y dθ θ θ θ= −∫   { }ˆ2 ( | )f y dθ θ θ θ= − ∫ . 

 
Setting this to zero yields  ˆ ( | ) ( | )f y d E yθ θ θ θ θ= =∫ .  
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Note 2: To check that this minimises the PEL (rather than maximises it) 
we may further calculate 

 { } { }
2

2
ˆ( ) 2 ( | ) 2 1 0 0ˆ ˆPEL y f y dθ θ θ θ

θ θ
∂ ∂

= − = − >
∂ ∂ ∫ .  

   
Thus the slope of the PEL ( ˆ( ) /PEL y θ∂ ∂ ) is increasing with θ̂ , 
implying that ( )PEL y  is indeed minimised at ˆ ˆ( ) ( | )y E yθ θ θ= = .  

 
Exercise 2.11 Bayes estimate under the AELF 
 
Find the Bayesian estimate under the absolute error loss function. 
  
Solution to Exercise 2.11 
 
Suppose that the parameter θ  is continuous, and let t denote ˆ ˆ( )yθ θ= .  
 

Then ( ) | | ( | )PEL y t f y d  




   

 ( ) ( | ) ( ) ( | )
t

t

t f y d t f y d     




     . 

 
So, by Leibniz’s rule for differentiation of an integral (in Exercise 2.10),  

( ) ( )( ) ( | ) {( ) ( | )} ( )
t t dt dPEL y f y d t t f t y

t t dt dt


  


                


      ( ) ( )( | ) ( ) {( ) ( | )}
t

t d dtf y d t t f t y
t dt dt


  

              
  

     ( | ) 0 0 ( 1) ( | ) 0 0
t

t

f y d f y d   




                           
   

     ( | ) ( | )P t y P t y     . 
 
Setting this to zero implies ( | ) ( | )P t y P t y     which yields t as 
the posterior median. So the Bayes estimate under the AELF is the 
posterior median. This argument can easily be adapted to the case where 
θ  is discrete. The idea is to approximate θ ’s discrete prior distribution 
with a continuous distribution and then apply the result already proved. 



Chapter 2: Bayesian Basics Part 2 

101 

Exercise 2.12 Bayes estimate under the IELF  
 
Find the Bayes estimate under the indicator error loss function. 
 
Solution to Exercise 2.12 
 
Let t denote ˆ ˆ( )yθ θ=  and first suppose that the parameter θ  is discrete. 
The indicator error loss function is ( , ) ( )L t I t   1 ( )I t    . 
Therefore 
  ( ) { ( , ) | } {1 ( ) | } 1 { ( ) | }PEL y E L t y E I t y E I t y          
        1 ( | )P t y    
        1 ( | )f t y   . 
 
Thus ( )PEL y  is minimised at the value of t which maximises the 
posterior density ( | )f y . So, when θ  is discrete, the Bayes estimate 
under the IELF is the posterior mode, ( | )Mode yθ . 
 
Now suppose that θ  is continuous. In that case, consider the 
approximating loss function   

( , ) 1 ( )L t I t t          , 
where 0 , and observe that  
  

0
lim ( , ) 1 ( ) ( , )L t I t L t

  


    . 

 
The posterior expected loss under the loss function ( , )L t   is 
 ( ) { ( , ) | } 1 { ( ) | }PEL y E L t y E I t t y             
        1 ( | )P t t y        . 
 
The value of t which minimises the ( )PEL y  is the value which 
maximises the area ( | )P t t y      . But in the limit as   0, 
that value is the posterior mode. So, when θ  is continuous, the Bayes 
estimate under the IELF is (as before) the posterior mode, ( | )Mode yθ .    
 
Note: To clarify the above argument, observe that if   is small then 
  ( )PEL t 1 2 ( | )f t y  .  
    
This function of t is minimised at approximately t = Mode( | )y  and at 
exactly t = Mode( | )y  in the limit as 0. Figure 2.15 illustrates. 
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Figure 2.15 Illustration for the continuous case in Exercise 2.12 
 

 
 
Exercise 2.13 Bayesian decision theory in the Poisson-gamma  
model 
 
Consider a random sample 1,..., ny y  from the Poisson distribution with 
parameter   whose prior density is gamma with parameters   and  . 
 
(a) Find the risk function, Bayes risk and posterior expected loss implied 
by the estimator ˆ 2y  under the quadratic error loss function. 
 
(b) Assuming quadratic error loss, find an estimator of   with a smaller 
Bayes risk than the one in (a). 
 
Solution to Exercise 2.13 
 
(a) The risk function is       
                 ˆ( ) { ( , ) | }R E L     

     22E y     

    2 24 4E y y        

        2 24 4E y E y         

         2 24 4V y E y E y          
 

     2 24 4
n


  
      

  

      2 4 / , 0n        (an increasing quadratic). 
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So the Bayes risk is  
          ˆ( , )r ER     
 2( 4 / )E n     
 2{ ( ) } 4( ) /V E E n      

 
2

2

4
n

  
  

     
. 

 
To find the posterior expected loss, we first derive  ’s posterior density: 
 ( | ) ( ) ( | )f y f f y    

    
1

1( ) !

iyn

i i

e e
y

     


  



 
   

    1 ( )ny ne


       . 
 
We see that   

( | ) ~ Gam( , )f y ny n    . 
 
It follows that  
           ˆ( ) { ( , ) | }PEL y E L y   

    22E y y   

   2 24 4E y y y     

  2 24 4 ( | ) ( | )y yE y E y     

  
2

2
24 4

( )
ny ny nyy y
n n n

  
  

                              
. 

 
Note: The Bayes risk could also be computed using an argument which 
begins as follows: 
  { ( )}r E PEL y  

     
2

2
24 4

( )
ny ny nyE y y
n n n

  
  

                             
,  

where, for example,    
 1( | ) ( | ) /Ey EE y EE y E        .  
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(b) The Bayes estimate under the QELF is the posterior mean,  

 ( | ) nyE y
n










. 

 
This estimator has the smallest Bayes risk amongst all possible 
estimators, including the one in (a), which is different. So ( | )E y  must 
have a smaller Bayes risk than the estimator in (a).  
 
Discussion 
 
The last statement could be verified by calculating r according to 

 
2

nYE
n






       
. 

 
The result should be an expression for r which is smaller than  

 
2

2

4
n

  
  

    
, 

for all n = 1,2,3,..., and all , 0  . 
 
We leave the required working as an additional exercise. 
 
Exercise 2.14 A non-standard loss function 
 
Consider the Bayesian model given by: 
 ( | ) ~ ( ,1)y N    
 ~ (0,1)N . 
 
Then suppose that the loss function is    

 
0 if 0 2

( , )
1 otherwise.

t
L t

 


   
 

 
(a) Find the risk function and Bayes risk for the estimator ˆ y .  
 
Sketch the risk function.      
 
(b) Find the Bayes estimate and sketch it as a function of the data y.  
 
Explicitly calculate the Bayes estimate at 1y  , 0 and 1, respectively.  
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Solution to Exercise 2.14 
 
(a) For convenience we will sometimes denote ˆ y  by t. Then, the 
loss function may be written as  

1 ( 2 ), 0
( , )

1, 0.
I t

L t
  




     
 

 
Now, for 0  the risk function is simply  

( ) { ( , ) | } 1R E L y    . 
  

For 0 , the risk function is 
     ( ) 1 ( 2 | )R P y        1 (0 | )P y         
   1 (0 )P Z        where Z ~ N(0,1) 
   1 ( ( ) 1/ 2)     1.5 ( )  . 
 

In summary, 
1, 0

( )
1.5 ( ), 0

R



 

        
, as shown in Figure 2.16.  

 
 
Figure 2.16 Risk function in Exercise 2.14 
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The associated Bayes risk is  

 
0

0 0

3( ) ( ) ( ) ( ) ( )
2

r ER d d d          
 



        

       1 3 1
2 2 2

I    , 

where 
1

1/ 2

I wdw   = 3/8, after putting ( )w   with ( )dw
d

 

 . 

 
So, for the estimator ˆ y , the Bayes risk is   

1 3 1 3 7
2 2 2 8 8

r      . 

 
(b) Here, by the theory of the normal-normal model we have that 
  2

* *( | ) ~ ( , )y N   , 
where:   

* 0(1 )k ky    ,  2 2
* /k n  , 2 2

01/(1 /( ))k n    
  n = 1,      0 0  ,    0 1  ,    y y .  
 
Thus k = 1/2, * / 2y   and 2

* 1/ 2  , and so  
( | ) ~ ( / 2,1/ 2)y N y . 

 
The posterior expected loss is  
 ( ) { ( , ) | }PEL y E L t y , 
where t is a function of y (i.e. ( )t t y ). 
 
Now  
 ( , ) 1 (0 2 )L t I t       ,  
and so   
 ( ) {1 (0 2 ) | }PEL y E I t y         
    1 (0 2 | )P t y      . 
 
We see that if ( ) 0t t y   then 
 ( ) 1PEL y  . 
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Also, if 0t   then  
 ( ) 1 { (0 2 ) | }PEL t E I t y      . 
  1 (0 2 | )P t y       
  1 ( / 2 | )P t t y     
  1 ( )t  , 
where   

( ) ( | ) ( / 2 | )t F t y F t y        
is to be maximised. 
 
Now,  ( ) ( | ) ( / 2 | ) 1/ 2t f t y f t y         

    
2 21 1( / 2) (( / 2) / 2)

2(1/ 2) 2(1/ 2)1 1 1
2(1/ 2) 2 (1/ 2) 2

t y t y
e e

 

   

   . 

 
Setting ( )t  to zero we obtain   

2 2( / 2) (( / 2) / 2)2 t y t ye e     

 
2 2 2

2log 2 2 2
2 2 2 2 2 2
y y t t y yt t

                                                                             
  

 23 1 log 2 0
4 2

t ty        

2 34 log 2
2 4 4

2(3/ 4)

y y

t
  

  . 

 
Hence we find that the Bayes estimate of   is  given by 

  21ˆ ˆ( ) 12log 2
3

y y y     ,   

as shown in Figure 2.17.  
 
We see that the Bayes estimate is a strictly increasing function of y and 
converges to zero as y tends to negative infinity. The required values of 
the Bayes estimate are: 

  1ˆ( 1) 1 1 12log 2
3

       = 0.6842 

  1ˆ(0) 0 0 12log 2
3

     = 0.9614 

  1ˆ(1) 1 1 12log 2
3

     = 1.3508. 
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Figure 2.17 Bayes estimate in Exercise 2.14    

 
 
 
R Code for Exercise 2.14 
 
X11(w=8,h=5.5) 
 
muvec <- seq(0,5,0.01) ; Rvec <- 1.5-pnorm(muvec);   
plot(c(-2,5),c(0,1.1),type= "n",xlab="mu",ylab="R(mu)",cex=1.5) 
lines(muvec,Rvec,lwd=2) ; lines(c(-2,0),c(1,1),lwd=2) 
 
yvec <- seq(-30,10,0.01); muhatvec <- (1/3)*(yvec+sqrt(yvec^2 + 12*log(2))) 
plot(yvec,muhatvec,type="l",xlab="y",ylab="Bayes estimate",cex=1.5,lwd=2) 
abline(h=0,lty=2) 
 
(1/3)*(c(-1,0,1)+sqrt(c(-1,0,1)^2 + 12*log(2)))  
# 0.6841672 0.9613513 1.3508339       
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CHAPTER 3 
Bayesian Basics Part 3 

 
3.1 Inference given functions of the data   
 
Sometimes we observe a function of the data rather than the data itself. 
In such cases the function typically degrades the information available 
in some way. An example is censoring, where we observe a value only if 
that value is less than some cut-off point (right censoring) or greater than 
some cut-off value (left censoring). It is also possible to have censoring 
on the left and right simultaneously. Another example is rounding, 
where we only observe values to the nearest multiple of 0.1, 1 or 5, etc. 
 
Exercise 3.1 Right censoring of exponential observations 
 
Each light bulb of a certain type has a life which is conditionally 
exponential with mean 1/m c= , where c has a prior distribution which 
is standard exponential. We observe n = 5 light bulbs of this type for 6 
units of time, and the lifetimes are: 
 2.6, 3.2, *, 1.2, *, 
where * indicates a right-censored value which is greater than 6. (Only 
values less than or equal to 6 could be observed.) 
 
Find the posterior distribution and mean of the average light bulb 
lifetime, m. 
 
Solution to Exercise 3.1 
 
The data here is    
 1 2 3 4 5{ 2.6, 3.2, 6, 1.2, 6}D y y y y y= = = > = > , 
and  the probability of censoring is    

 6

6

( 6 | ) icy c
i iP y c ce dy e

∞
− −> = =∫ . 

 
Therefore the  posterior density of c is  
           ( | ) ( ) ( | )f c D f c f D c∝  
  1 2 3 4 5( ) ( | ) ( | ) ( 6 | ) ( | ) ( 6 | )f c f y c f y c P y c f y c P y c∝ > >  
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  ( ) ( ) ( )( ) ( )1 2 46 6cy cy cyc c ce ce ce e ce e− − −− − −∝     

  3
1 2 4exp{ (1 6 6)}c c y y y= − + + + + +  

  4 1 exp{ (1 2.6 3.2 6 1.2 6)}c c−= − + + + + +     
  4 1 exp( 20 )c c−= − . 
 
Hence:   ( | ) ~ (4,20)c D G  
     ( | ) ~ (4,20)m D IG      
    4 (4 1) 20/( | ) 20 / (4), 0mf m D m e m      
    ( | ) 20 / (4 1)E m D    = 6.667. 
 
It will be observed that this estimate of m is appropriately higher than 
the estimate obtained by simply averaging the observed values, namely  
 (1/3)(2.6 + 3.2 + 1.2) = 2.333. 
 
The estimate 6.667 is also higher than the estimate obtained by simply 
replacing the censored values with 6, namely  
 (1/3)(2.6 + 3.2 + 6 + 1.2 + 6) = 3.8. 
 
Exercise 3.2 A uniform-uniform model with rounded data 
 
Suppose that:  
 ( | ) ~ (0, )y Uθ θ  
 ~ (0,2)Uθ , 
where the data is  
 ( )x g y=  = the value of y rounded to the nearest integer. 
 
Find the posterior density and mean of θ  if we observe x = 1. 
 
Solution to Exercise 3.2  
 
Observe that:  

x = 0   if  0 < y < 1/2 
 x = 1   if  1/2 < y < 3/2 
 x = 2   if  3/2 < y < 2. 
 
Therefore, considering y and θ  on a number line from 0 to 2 in each 
case, we have that: 
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1 if 1/ 2

1( 0 | ) 0 1/ 22 if 1/ 2
P x P y

θ
θ θ

θ
θ

<
  = = < < =   >  

 

 

0 if 0 1/ 2
1 3 1/ 2 1 3( 1| ) if 
2 2 2 2

1 3if 2
2

P x P y

θ
θθ θ θ

θ

θ
θ


 < <
  −= = < < = < < 

  
 < <

 

 
0 if  0 3 / 2

3( 2 | ) 2 3 / 2 32 if  2.
2

P x P y
θ

θ θ θ θ
θ

< <
  = = < < = −  < <  

 

 
Since we observe x = 1, the posterior density of θ  is 

 ( | 1) ( ) ( | )f x f f xθ θ θ= ∝  

1/ 2 1 31 ,
2 2

1 31 , 2.
2

θ θ
θ

θ
θ

− × < <∝ 
 × < <


 

 
Now, the area under this function is 

 
3/2 2

1/2 3/2

1 / 2 1B d dθ θ θ
θ θ
−

= +∫ ∫   

     
3/2

2

3/2
1/2

1 log log
2

θ θ θ
 

 = − +     
 

     3 1 3 1 1 1 3log log log 2 log
2 2 2 2 2 2 2
   = − − + + −      

  

      = 0.7383759. 
 
So the required posterior density is    

 

1/ 2 1 3,
2 2( | 1)

1 3, 2,
2

Bf x

B

θ θ
θθ

θ
θ

− < <= = 
 < <


 

 
and the associated posterior mean of θ  is 
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3/2 2

1
1/2 3/2

1/ 2 1( | 1)E E x d d
B B

θθ θ θ θ θ
θ θ

−   = = = +   
   ∫ ∫   

      1 1.354
B

= =    (after some working). 

 
Discussion 
 
In contrast to ( | )f xθ , the posterior density of θ  given the original data 
y is 

( ) ( | )( | )
( )

f f yf y
f y

θ θθ = 2
(1/ 2)(1/ )

(1/ 2)(1/ )
y

d

θ

θ θ
=
∫

1 , 2
(log 2 log )

y
y

θ
θ

= < <
−

, 

and the corresponding posterior mean is  

 
2 1ˆ ( | )

(log 2 log )y

E y d
y

θ θ θ θ
θ
 

= =  − 
∫

2
log 2 log

y
y

−
=

−
. 

  
Figure 3.1 shows ( | 1)f xθ =  and examples of ( | )f yθ  which are 
consistent with x = 1. 
 
 
Figure 3.1 Posteriors given x = 1 and given y = 0.6, 1, 1.1, 1.4 
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It is now of interest to also calculate ( | )f xθ  for the other two possible 
values of x, namely 0 and 2. We find that: 

 

1 1, 0
2( | 0)

1 1, 2
2 2

Af x

A

θ
θ

θ
θ

 < <= = 
 < <


     

   where 1 1 1 1log 2 log
2 2 2 2

A = + −  = 1.1931 

 1 3 3( | 2) 1 , 2
2 2

f x
C

θ θ
θ

 = = − < < 
 

     

   where 3 3 3 32 log 2 log
2 2 2 2

C = − − + =  0.068477. 

 
Figure 3.2 shows these two posteriors, and further examples of ( | )f yθ . 
 
Figure 3.2 Posteriors given x = 0, 1, 2, and given y = 0.1, …, 1.9 

 
 
For completeness and checking we now also calculate the other two 
posterior means:  

 0
7( | 0)

8
E E x

A
θ= = =  = 0.7334 

 2
1( | 2)

8
E E x

C
θ= = =  = 1.8254, 
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as well as the unconditional probabilities of the data: 

    0
1 1 1( 0) ( )
2 2 2

P P x P y EP y P y f dθ θ θ θ    = = = < = < = <          ∫   

      
1/2 2

0 1/2

1 1/ 2 11
2 2

d dθ θ
θ

= × + ×∫ ∫
1 11 log 2 log
4 2
 = + − 
 

 = 0.5966 

    1 ( 1)P P x= =  = 0.3692 
    2 ( 2)P P x= =  = 0.0342. 
 
As a check on our calculations, we note that  
 0 1 2P P P+ +  = 1  (which is correct). 
 
We may also calculate the prior mean of θ  (which is obviously 1) as 
 ( | )E EE xθ θ=   
      ( | 0) ( 0) ( | 1) ( 1) ( | 2) ( 2)E x P x E x P x E x P xθ θ θ= = = + = = + = =  
       0 0 1 1 2 2E P E P E P= + +  
        = 0.7334 × 0.5966 + 1.354 × 0.3692 + 1.825 × 0.03424 
        = 1.000   (correct).    
 
R Code for Exercise 3.2 
 
X11(w=8,h=5.5); par(mfrow=c(1,1)); options(digits=7) 
B=1.5-0.5*log(3/2)-0.5+0.5*log(0.5)+log(2)-log(1.5); c(B,1/B)  
 # 0.7383759 1.3543237 
postfunB= function(theta,B=0.7383759){  res=0;  
 if((theta>=1/2)&&(theta<3/2)) res=1-1/(2*theta) 
 if((theta>=3/2)&&(theta<=2))  res=1/theta 
 res/B   } 
 
thetavec = seq(0,2,0.001); postvecB=thetavec;  
for(i in 1:length(thetavec)) postvecB[i]=postfunB(theta=thetavec[i]) 
plot(c(0,2),c(0,2),type="n",xlab="theta",ylab="density", main=" ") 
lines(thetavec, postvecB,lwd=3) 
y=0.6; k=1/(log(2)-log(y)) 
 lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], lty=2,lwd=3) 
y=1; k=1/(log(2)-log(y)) 
 lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], lty=3,lwd=3) 
y=1.1; k=1/(log(2)-log(y)) 
 lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], lty=4,lwd=3) 
y=1.4; k=1/(log(2)-log(y)) 
 lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], lty=5,lwd=3) 
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legend(0,2,c("f(theta|x=1)","f(theta|y=0.6)","f(theta|y=1)","f(theta|y=1.1)", 
        "f(theta|y=1.4)"), lty=c(1,2,3,4,5), lwd=c(3,3,3,3,3)) 
 
C=2-1.5*log(2)-1.5+1.5*log(1.5) 
A=0.5+0.5*log(2)-0.5*log(0.5) 
options(digits=7); c(A,B,C) # 1.19314718 0.73837593 0.06847689 
E0=7/(8*A); E1=1/B; E2=1/(8*C); c(E0,E1,E2)  

# 0.7333546 1.3543237 1.8254333 
 
P0=1/4+(1/4)*(log(2)-log(1/2)) 
P1=0.5*(1.5-0.5*log(1.5)-0.5+0.5*log(0.5)) +0.5*(log(2)-log(1.5)) 
P2=0.5*(2-1.5*log(2)-1.5+1.5*log(1.5)) 
 
P0+P1+P2 #  1   Correct 
c(P0,P1,P2) # 0.59657359 0.36918796 0.03423845 
E0*P0 + E1*P1 + E2*P2 #  1  Correct 
 
postfunA= function(theta,A=1.19314718){  res=0;  
 if((theta>=0)&&(theta<1/2)) res=1 
 if((theta>=1/2)&&(theta<=2))  res=1/(2*theta) 
 res/A   } 
postfunC= function(theta,C=0.06847689){  res=0;  
 if((theta>=3/2)&&(theta<2)) res=1-3/(2*theta) 
 res/C   } 
 
postvecA=thetavec; postvecC=thetavec; 
for(i in 1:length(thetavec)){ postvecA[i]=postfunA(theta=thetavec[i]) 
    postvecC[i]=postfunC(theta=thetavec[i])  } 
plot(c(0,2),c(0,3.7),type="n",xlab="theta",ylab="density", main=" ") 
lines(thetavec, postvecA,lty=2,lwd=3) 
lines(thetavec, postvecB,lty=1,lwd=3) 
lines(thetavec, postvecC,lty=3,lwd=3) 
for(y in seq(0.1,1.9,0.1)){ k=1/(log(2)-log(y)) 
 lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], lty=1,lwd=1)  } 
 
legend(0.7,3.6,c("f(theta|x=0)","f(theta|x=1)","f(theta|x=2)","f(theta|y)"), 
        lty=c(2,1,3,1), lwd=c(3,3,3,1))     
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3.2 Bayesian predictive inference 
 
In addition to estimating model parameters (and functions of those 
parameters) there is often interest in predicting some future data (or 
some other quantity which is not just a function of the model 
parameters).  
 
Consider a Bayesian model specified by ( | )f y θ  and ( ),f θ with 
posterior as derived in ways already discussed and given by ( | )f yθ . 
 
Now consider any other quantity x whose distribution is defined by a 
density of the form ( | , )f x y θ .  
 
The posterior predictive distribution of x is given by the posterior 
predictive density ( | )f x y . This can typically be derived using the 
following equation: 
 ( | ) ( , | )f x y f x y dθ θ= ∫  

    ( | , ) ( | )f x y f y dθ θ θ= ∫ . 
 
Note: For the case where θ  is discrete, a summation needs to be 
performed rather than an integral.  
 
The posterior predictive density ( | )f x y  forms a basis for making 
probability statements about the quantity x given the observed data y. 
 
Point and interval estimation for future values x can be performed in 
very much the same way as that for model parameters, except with a 
slightly different terminology.  
 
Now, instead of referring to ˆ ( | )x E x y=  as the posterior mean of x, we 
may instead use the term predictive mean.  
 
Also, the ‘P’ in HPDR, and CPDR may be read as predictive rather than 
as posterior. For example, the CPDR for x is now the central predictive 
density region for x.  
 
As an example of point prediction, the predictive mean of x is 
 ˆ ( | ) ( | )x E x y xf x y dx= = ∫ . 
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Often it is easier to obtain the predictive mean of x using the equation 
       ˆ ( | ) { ( | , ) | }x E x y E E x y yθ= =  
         ( | , ) ( | )E x y f y dθ θ θ= ∫ . 
 
Note: The basic law of iterated expectation (LIE) implies that 

( ) ( | )E x EE x θ= . This equation must also be true after conditioning 
throughout on y. We thereby obtain ( | ) { ( | , ) | }E x y E E x y yθ= .   

 
Likewise, the predictive variance of x can be calculated via the equation 
       ( | ) { ( | , ) | } { ( | , ) | }V x y E V x y y V E x y yθ θ= + . 
 
Note: This follows from the basic law of iterated variance (LIV), 

( | ) ( | )Vx EV x VE xθ θ= + , after conditioning throughout on y.  

  
An important special case of Bayesian predictive inference is where the 
quantity of interest x is an independent future replicate of y.  
 
This means that ( | , )x y θ  has exactly the same distribution as ( | )y θ , 
which in turn may be expressed mathematically as   
 ( | , ) ~ ( | )x y yθ θ     
or equivalently as    

( | , ) ( | ) ( | )
y x

f x y f y x f yθ θ θ
=

 = = =   . 

 
Note:  The last equation indicates that the pdf of ( | , )x y θ  is the same as 
the pdf of ( | )y θ  but with y changed to x in the density formula.  

 
In the case where x is an independent future replicate of y, we may write 

( | , )f x y θ  as ( | )f x θ , and this then implies that  
 ( | ) ( | ) ( | )f x y f x f y dθ θ θ= ∫ . 
 
Exercise 3.3 Prediction in the exponential-exponential model 
 
Suppose that θ  has the standard exponential distribution, and the 
conditional distribution of y given θ  is exponential with mean 1/θ .  
 
Find the posterior predictive density of x, a future independent replicate 
of y .  
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Then, for y = 2.0, find the predictive mean, mode and median of x, and 
also the 80% central predictive density region and 80% highest 
predictive density region for x. 
 
Solution to Exercise 3.3 
 
Recall that the Bayesian model given by:  

( | ) , 0yf y e y         
 ( ) , 0f e     
implies the posterior ( | ) ~ (2, 1)y Gamma y  . 
 
Now let x be a future independent replicate of the data y, so that      

( | , ) ( | ) ( | ) , 0xf x y f x f y x e x         . 
 

Then the posterior predictive density of x is 
 ( | ) ( | , ) ( | )f x y f x y f y d     

   
2 2 1 ( 1)

0

( 1)
(2)

y
x y ee d


 

 
   


          

  
2 3 3 1 ( 1)

3
0

(3)( 1) ( 1)
(2)( 1) (3)

x yy x y e d
x y




       


     

  
2

3

2( 1) , 0
( 1)

y x
x y


 

 
. 

 

Check:  
2

3
0

2( 1)( | )
( 1)

yf x y dx dx
x y

 


    

             
1

2 3

0 1

2( 1)
y

y

y u du
 



 

         (where u = x + y + 1) 

       
2

2

1

2( 1)
2 u y

uy


 

 
      

 2
2 2

1 1( 1)
( 1)

y
y

 
      

 1   (correct).  

 
Next, suppose that  y = 2. Then  

3( | ) 18( 3) , 0f x y x x   . 
 
This is a strictly decreasing function, and so the predictive mode is zero. 
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The predictive mean can be calculated according to the equation   

 3

0

( | ) 18( 3)E x y x x dx


  . 

 
An easier way to find the predictive mean is to note that  
 ( | ) ~ (2,3)y Gamma   
and then write 

 
2 2 1 3

1 1

0

3( | ) { ( | , ) | } ( | )
(2)

eE x y E E x y y E y d


   
  

 
           

    
2 1 1 1 3

1
0

3 (1) 3
3 (2) (1)

e d



  


   3 . 

 
An even easier way to do the calculation is to recall a previous exercise 
where it was shown that the posterior mean of 1/ψ θ=  is given by  
 ( | ) 1E y yψ = + . 
 
Thus, ( | ) { ( | , ) | } ( | ) 1E x y E E x y y E y y      = 3 when y = 2. 
       
One way to find the predictive median of x is to solve ( | ) 1 / 2F x y =  for 
x, where ( | )F x y  is the predictive cdf of x, or equivalently, to calculate 

(1/ 2)Q , where 1( ) ( | )Q p F p y−=  is the predictive quantile function of 
x.  
 
Now, the predictive cdf of x is 

 
3

3 3

0 3

( | ) 18( 3) 18
x x

F x y t dt u dt


           where u = 3 + t 

    
32

2 2 2
3

1 1 918 9 1
2 (3 ) 3 (3 )

x

u

u
x x





                   
. 

 
Setting this to p and solving for x yields the predictive quantile function, 

 1 1( ) ( | ) 3 1
1

Q p F p y
p

−  
= = − 

− 
.  

 

So the predictive median is  1 13 1
2 1 1 / 2

Q    = −   −   
 =  1.2426. 



Bayesian Methods for Statistical Analysis  

120 

The predictive quantile function can now also be used to calculate the 
80% CPDR for x, 
 ( )(0.1), (0.9)Q Q  = (0.1623, 6.4868),  
and the 80% HPDR for x, 
 ( )0, (0.8)Q  = (0, 3.7082). 
 
Another way to calculate the predictive median of x is as the solution in 
q of 
  1/ 2 ( | )P x q y= <  
after noting that the right hand side of this equation also equals 
 { ( | , ) | } (1 | )qE P x q y y E e yθθ −< = −  
            1 ( )m q= − − ,   
where ( )m t  is the posterior moment generating function (mgf) of θ . 
 
But  ( | ) ~ (2, 1)y Gamma y  , and so 2( ) (1 / ( 1))m t t y −= − + . 
 
So we need to solve  21/ 2 (1 ( ) / ( 1))q y −= − − +   for q. The result is 

( 1)( 2 1)q y= + −  = 1.2426 when y = 2   (same as before). 
 
R Code for Exercise 3.3 
 
Qfun=function(p){ 3*(-1+1/sqrt(1-p)) }; Qfun(0.5)  # 1.242641 
c(Qfun(0.1),Qfun(0.9))  # 0.1622777 6.4868330 
c(0,Qfun(0.8)) # 0.000000 3.708204 
 
Exercise 3.4 Predicting a bus number (Extension of Exercise 1.6) 
 
You are visiting a small town with buses whose license plates show their 
numbers consecutively from 1 up to however many there are. In your 
mind the number of buses could be anything from 1 to 5, with all 
possibilities equally likely. Whilst touring the town you first happen to 
see Bus 3.  
 
Assuming that at any point in time you are equally likely to see any of 
the buses in the town, how likely is it that the next bus number you see 
will be at least 4?  
 
Also, what is the expected value of the bus number that you will next 
see? 



Chapter 3: Bayesian Basics Part 3 

121 

Solution to Exercise 3.4 
 
As in Exercise 1.6, let θ  be the number of buses in the town and let y be 
the number of the bus you happen to first see. Recall that a suitable 
Bayesian model is: 
 ( | ) 1/ , 1,...,f y yθ θ θ= =  
 ( ) 1/ 5, 1,...,5f θ θ= =     (prior), 
and that the posterior density of θ  works out as   

 
20 / 47, 3

( | ) 15 / 47, 4
12 / 47, 5.

f y
θ

θ θ
θ

=
= =
 =

 

 
Now let x be the number on the next bus that you happen to see in the 
town. Then  

 1( | , ) , 1,...,f x y xθ θ
θ

= =     (same distribution as that of ( | ))y θ . 
 
This may also be written  
 ( | , ) ( ) / , 1, 2,3,...f x y I x xθ θ θ= ≤ = , 
and so the posterior predictive density of x is  

  ( | ) ( , | ) ( | , ) ( | )f x y f x y f x y f y
θ θ

θ θ θ= =∑ ∑
5 ( ) ( | )

y

I x f y
θ

θ θ
θ=

≤
=∑ . 

 
In our case, the observed value of y is 3 and so: 

 1 20 1 15 1 12( 1| )
3 47 4 47 5 47

f x y= = × + × + ×  = 0.27270 

 1 20 1 15 1 12( 2 | )
3 47 4 47 5 47

f x y= = × + × + ×  = 0.27270 

 1 20 1 15 1 12( 3 | )
3 47 4 47 5 47

f x y= = × + × + ×  = 0.27270 

 1 15 1 12( 4 | )
4 47 5 47

f x y= = × + ×  = 0.13085 

 1 12( 5 | )
5 47

f x y= = ×  = 0.05106. 

 

Check:  
5

1
( | ) 0.27270 3 0.13085 0.05106 1

x
f x y

=

= × + + =∑  (correct).  
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In summary, for y = 3, we have that 
0.27270, 1,2,3

( | ) 0.13085, 4
0.05106, 5.

x
f x y x

x

=
= =
 =

 

 
So the probability that the next bus you see will have a number on it 
which is at least 4 equals  

    
: 4

( 4 | ) ( | ) ( 4 | ) ( 5 | )
x x

P x y f x y f x y f x y
≥

≥ = = = + =∑   

      = 0.13085 + 0.05106 = 18.2%. 
 
Also, the expected value of the bus number you will next see is 

( | ) 1(0.27270) 2(0.27270) 3(0.27270)E x y = + +        
          4(0.13085) 5(0.05106)+ +  = 2.4149. 

 

Alternatively,  1( | ) { ( | , ) | }
2

E x y E E x y y E yθθ  + 
= =  

 

1 ( | )
2

E yθ=  

  1 3(20 / 47) 4(15 / 47) 5(12 / 47) 1 180 / 47 227
2 2 94

+ + + + = = = 
 

 = 2.4149. 

 
R Code for Problem 3.4 
 
fv=rep(NA,5);   fv[1] = (1/3)*(20/47)+(1/4)*(15/47)+(1/5)*(12/47) 
fv[2] = fv[1]; fv[3] = fv[1];    fv[4] = (1/4)*(15/47)+(1/5)*(12/47) 
fv[5] = (1/5)*(12/47); options(digits=5) 
fv  # 0.272695 0.272695 0.272695 0.130851 0.051064 
sum(fv)  # 1   (OK) 
sum(fv[4:5]) # 0.18191 
sum((1:5)*fv) # 2.4149 
227/94 #  2.4149 
 
Exercise 3.5 Prediction in the binomial-beta model 
 
(a) For the Bayesian model given by ( | ) ~ ( , )Y Bin n   and the prior 

~ ( , )Beta   , find the posterior predictive density of a future data 
value x, whose distribution is defined by ( | , ) ~ ( , )x y Bin m  . 
 
(b) A bent coin is tossed 20 times and 6 heads come up. Assuming a flat 
prior on the probability of heads on a single toss, what is the probability 
that exactly one head will come up on the next two tosses of the same 
coin? Answer this using results in (a). 
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(c) A bent coin is tossed 20 times and 6 heads come up. Assume a 
Beta(20.3,20.3) prior on the probability of heads. 
 
Find the expected number of times you will have to toss the same coin 
again repeatedly until the next head comes up. 
 
(d) A bent coin is tossed 20 times and 6 heads come up. Assume a 
Beta(20.3,20.3) prior on the probability of heads.  
 
Now consider tossing the coin repeatedly until the next head, writing 
down the number of tosses, and then doing all of this again repeatedly, 
again and again.  
 
The result will be a sequence of natural numbers (for example  
3, 1, 1, 4, 2, 2, 1, 5, 1, ....), where each number represents a number of 
tails in a row within the sequence, plus one.  
 
Next define ψ  to be the average of a very long sequence like this (e.g. 
one of length 1,000,000). Find the posterior predictive density and mean 
of ψ  (approximately). 
 
Note: In parts (c) and (d) the parameters of the beta distribution (both 
20.3) represent a prior belief that the probability of heads is about 1/2, is 
equally likely to be on either side of 1/2, and is 80% likely to be between 
0.4 and 0.6. See the R Code below for details.  
  
Solution to Exercise 3.5 
 
(a) First note that x is not a future independent replicate of the observed 
data y, except in the special case where m = n.  
 
Next recall that ( | ) ~ ( , )y Beta a b , where: 

a y  , b n y   . 
 
Thus the posterior predictive density of x is 
 ( | ) ( , | )f x y f x y d    

  ( | , ) ( | )f x y f y d            

  
1 1 1

0

(1 )(1 )
( , )

a b
x m xm

d
x B a b

 
  

 


          
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1 1 1

0

( , ) (1 )
( , ) ( , )

x a m x bm B x a m x b d
x B a b B x a m x b

 


                   

 ( , ) , 0, ,
( , )

m B x y m x n y x m
x B y n y

 
 

               
 . 

 
Note: The distribution of ( | )x y  here may be called the beta-binomial.  

 
(b) Here, we consider the situation in (a) with n = 20, y = 6, m = 2,  
  = 1,   = 1 and x = 0, 1 or 2. So, specifically, 

 
2 ( 1 6,2 1 20 6)( | )

(1 6,1 20 6)
B x xf x y

x B
              

 

   
2 (7 ) (17 ) / (24)

(7) (15) / (22)
x x

x
            

 

   2! (6 )!(16 )!/ 23!
!(2 )! 6!14!/ 21!

x x
x x

 



    

  
0.4743, 0
0.4150, 1
0.1107, 2.

x
x
x

   

 

 
Check: 0.4743 + 0.4150 + 0.1107 = 1 (correct).   
 
So the (posterior predictive) probability that heads will come up on 
exactly one of the next two tosses is ( 1| 6)f x y   = 41.5%. 
 
Note: An alternative way to do the working here is to see that if y = 6 
then  

( | ) ~ (1 6,1 20 6) ~ (7,15)y Beta Beta    , 
so that:  

 7 7( | )
7 15 22

E y  


  

             2

7 15( | )
(7 15) (7 15 1)

V y



  

 =  0.009432. 

  
Also, ( | , ) ~ (2, )x y Binθ θ   (if y = 6). 
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It follows that 
( 1 | ) { ( 1 | , ) | }P x y E P x y y    

                                {2 (1 ) | }E y    
          22{ ( | ) ( | )}E y E y    
                                22{ ( | ) [ ( | ) ( ( | )) ]}E y V y E y      

          
27 72 0.009432

22 22

                   
 = 0.415.   

 
(c)  Let z be the number of tosses until the next head. Then  
 ( | , ) ~ ( )z y Geometricθ θ   
with pdf  

1( | , ) (1 )zf z y θ θ θ−= − , z = 1,2,3,....  
 
So the posterior predictive density of z can be obtained via the equation    

 ( | ) ( , | ) ( | , ) ( | )f z y f z y d f z y f y dθ θ θ θ θ= =∫ ∫ . 

 
It will be noted that ( | )z y  has a density with a similar  form to that of  
( | )x y  in (a), but with an infinite range (z = 1,2,3,...). If we were to write 
down ( | )f z y , we could then evaluate the expected number of tosses 
until the next head according to the equation 

 
1

( | ) ( | )
z

E z y zf z y
∞

=

=∑ . 

 
More easily, the posterior predictive mean of z can be obtained as 

     ( | ) { ( | , ) | }E z y E E z y yθ=
1E y
θ
 

=  
 

1 1 1

0

1 (1 )
( , )

a b

d
B a b

θ θ θ
θ

− −−
= ×∫   

       
1 ( 1) 1 1

0

( 1, ) (1 )
( , ) ( 1, )

a bB a b d
B a b B a b

θ θ θ
− − −− −

=
−∫  

       ( 1) ( ) / ( 1 ) 1
( ) ( ) / ( )

a b a b
a b a b

Γ − Γ Γ − +
= ×

Γ Γ Γ +
1

1
a b

a
+ −

=
−

 

       ( ) ( ) 1
( ) 1

y n y
y

α β
α

+ + + − −
=

+ −
1

1
n

y
α β
α
+ + −

=
+ −

. 

 
For n = 20, y = 6 and α  = β  = 20.3, we find that ( | )E z y  = 2.356. 
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(d) Here, ψ  represents the average of a very large number of 
independent realisations of the random variable z in (c). Therefore 
(approximately), ( | , ) 1/E z yψ θ θ= = . 
 
It follows that the posterior predictive density of ψ  is 

 ( | ) ( | ) df y f y
d
θψ θ
ψ

= , 

where 1θ ψ −=  and 2/d dθ ψ ψ −= − . Thus       
1 1

2

(1/ ) (1 1/ ) 1( | )
( , )

a b

f y
B a b

ψ ψψ
ψ

− −− −
=  

 
1( 1) , 1

( , )

b

a bB a b
ψ ψ

ψ

−

+

−
= > . 

  
So the posterior predictive mean of ψ  is 

 
1

1

( 1)( | )
( , )

b

a bE y d
B a b

ψψ ψ ψ
ψ

∞ −

+

−
= ∫  

    
1

( 1)
1

( 1, ) ( 1)
( , ) ( 1, )

b

a b

B a b d
B a b B a b

ψ ψ
ψ

∞ −

− +

− −
=

−∫ . 

 
The last integral is 1, by analogy of its integrand with ( | ).f yψ  Thus we 
obtain the same expression as for ( | )E z y  and (1/ | )E yθ  in (c), namely 

 1( | )
1

nE y
y

α βψ
α
+ + −

=
+ −

. 

 
R Code for Exercise 3.5 
 
options(digits=4); pbeta(0.4,20.3,20.3) # 0.1004 
pbeta(0.6,20.3,20.3)  - pbeta(0.4,20.3,20.3)  # 0.7993 
 
x=0:2 
(   2*factorial(6+x)*factorial(16-x)/factorial(23)    )/ 
 (   factorial(x)*factorial(2-x) * factorial(6)*factorial(14)/factorial(21)   ) 
   # 0.4743 0.4150 0.1107 
 
7*15/(22^2*23)  # 0.009432 
2 * (7/22 - (  0.009432267  +  (7/22)^2  )   )   # 0.415 
(20.3+20.3+20-1)/(20.3+6-1) # 2.356 
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Exercise 3.6 Prediction in the normal-normal model (with 
variance known) 
 
Consider the Bayesian model given by: 
 2

1( , , | ) ~ ( , )ny y iid N     
 2

0 0~ ( , )N   , 
 and suppose we have data in the form of the vector 1( ,..., )ny y y . 
 
Also suppose there is interest in m future values:   
 2

1( ,..., | , ) ~  ( , )mx x y iid N   . 
 
Find the posterior predictive distribution of  
 1( ... ) /mx x x m   , 
both generally and in the case of a priori ignorance regarding  . 
 
Solution to Exercise 3.6 
 
By Exercise 1.18 the posterior distribution of   is given by   
         2( | ) ~ ( , )y N    , 

where:  * 0(1 )k ky    , 
2

2
* k

n
σσ = ,   

12

2
0

/1 nk σ
σ

−
 

= + 
 

. 

 
Now, 2( | , ) ~ ( , / )x y N m   , and therefore 

( | ) ( | , ) ( | )f x y f x y f y d     

 
22

*
2 2

*

( )( )exp exp
2 / 2
x d

m
 


 





                       
 . 

 
This is the integral of the exponent of a quadratic in both x  and µ  and 
so must equal the exponent of a quadratic in x . It follows that  
 2( | ) ~ ( , )x y N   , 
where η  and 2δ  are to be determined. This final step is easily achieved 
as follows: 
 ( | )E x yη =  
    { ( | , ) | }E E x y yµ=  
    { | }E yµ= *µ=  
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 2 ( | )V x yδ =  
      { ( | , ) | } { ( | , ) | }E V x y y V E x y yµ µ= +  

      
2

{ | }E y V y
m
σ µ
  = + 
  

2
2
*m

σ σ= + . 

 
Thus generally we have that   

  
2 2 2

2
* * 0( | ) ~ , ~ (1 ) ,x y N N k ky k

m n m
  

  
                 

. 

 
A special case is where there is no prior information regarding the 
normal mean  . In this case, assuming it is appropriate to set 0σ = ∞  
(so that ( ) 1,f µ µ∝ ∈ℜ ), we have that k = 1 and hence 

 
2 2

( | ) ~ ,x y N y
n m
      

. 

 
Exercise 3.7 Prediction in the normal-gamma model (with a  
known mean) 
 
Consider the Bayesian model given by : 
 1( , , | ) ~ ( ,1 / )ny y iid N     
 ~ ( , )G   , 
and suppose we have data in the form of the vector 1( ,..., )ny y y . 
 
Also, suppose we are interested in m future values:  
 1( ,..., | , ) ~ ( ,1 / )mx x y iid N   . 
 
Find the posterior predictive distribution of  
 1( ... ) /mx x x m   , 
both generally and in the case of a priori ignorance regarding  . 
 
Solution to Exercise 3.7 
 
By Exercise 1.20 the posterior distribution of   is given by   
 ( | ) ~ ( , )y Gamma a b , 

where:  
2
na   ,  2

2 y
nb s    ,    2 2

1

1 ( )
n

y i
i

s y
n 



  . 

Now, ( | , ) ~ ( ,1/ ( ))x y N m   , and therefore 
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 ( | ) ( | , ) ( | )f x y f x y f y d     

    2 1

0

exp ( ) exp
2

am x b d
    


          

  

  
1 1

22

0

exp ( )
2

a mb x d   
      

              
  

  
1
22( )

2

amb x 

      
   
  

  

 1 2 12 22 ( )
2

1 .
2

a
m a x

b
a


                      

 

 

Now let 
 

22 ( )
2 /

m a x xQ
b b a m

  
  , so that /b ax Q

m
  . 

 
Then by the transformation rule,  

     
( ) ( )1 12 1 2 12 22 2/( | ) ( | ) 1 1

2 2

a a
dx Q b a Qf Q y f x y
dQ a am

− + − +
   

= ∝ + ∝ +   
   

.  

 
This implies that ( | ) ~ (2 )Q y t a , or equivalently, 

 
2

~ ( 2 )
2 /

1 2 /
y

x y t n
s n

m
n









                 

. 

 
A special case of this general result is when there is no prior information 
regarding the precision parameterλ . In that case, and assuming it is then 
appropriate to set 0α β= =  (so that ( ) 1/ , 0f λ λ λ∝ > ), we have that  

 ~ ( )
/y

x y t n
s m

      
. 



Bayesian Methods for Statistical Analysis  

130 

3.3 Posterior predictive p-values 
 
Earlier, in Section 1.3, we discussed Bayes factors as a form of 
hypothesis testing within the Bayesian framework. An entirely different 
way to perform hypothesis testing in that framework is via the theory of 
posterior predictive p-values (Meng, 1994). As in the theory of Bayes 
factors, this involves first specifying a null hypothesis  
 0 0:H E    
and an alternative hypothesis  
 1 1:H E , 
where 0E  and 1E  are two events.   
 
Note: As in Section 1.3, 0E  and 1E  may or may not be disjoint. Also, 

0E  and 1E  may instead represent two different models for the same data.   

  
In the context of a single Bayesian model with data y and parameter ,θ  
the theory of posterior predictive p-values involves the following steps: 

(i) Define a suitable discrepancy measure (or test statistic), denoted 
 ( , ),T y θ   
following careful consideration of both 0H  and 1H  (see below). 

 (ii) Define x as an independent future replicate of the data y. 
 (iii) Calculate the posterior predictive p-value (ppp-value), defined as 

            { ( , ) ( , ) | }p P T x T y yθ θ= ≥ .   
 
Note 1: The ppp-value is calculated under the implicit assumption that 

0H  is true. Thus we could also write 0{ ( , ) ( , ) | , }p P T x T y y Hθ θ= ≥ . 

 
Note 2: The discrepancy measure may or may not depend on the model 
parameter, θ . Thus in some cases, ( , )T y θ  may also be written as ( )T y . 

 
The underlying idea behind the choice of discrepancy measure T is that 
if the observed data y is highly inconsistent with 0H  in favour of 1H  
then p should likely be small. This is the same idea as behind classical 
hypothesis testing. In fact, the classical theory may be viewed as a 
special case of the theory of ppp-values. The advantage of the ppp-value 
framework is that it is far more versatile and can be used in situations 
where it is not obvious how the classical theory should be applied.  
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An example of how ppp-value theory can perform well relative to the 
classical theory is where the null hypothesis is composite, meaning that 
it consists of the specification of multiple values rather than a single 
value (e.g. 0 : | |H θ ε<  as compared to 0 : 0H θ = ). The next exercise 
illustrates this feature. 
 
Exercise 3.8 Posterior predictive p-values for testing a 
composite null hypothesis 
 
Consider the Bayesian model given by:  

( | ) ~ ( )y Poissonλ λ  
 ( ) , 0f e λλ λ−= > , 
and suppose that we observe y = 3.  
 
(a) Find a suitable ppp-value for testing  

0H :λ  = 1   versus   1H :λ  > 2. 
 
(b) Find a suitable ppp-value for testing  

0H : {1,2}λ ∈    versus   1H :λ  > 2. 
 

Solution to Exercise 3.8 
 
(a) Here, ( | , ) ~ ( )x y Poiλ λ , and we may define the test statistic as  
 ( , )T y yλ = . 
 
Then, the posterior predictive p-value is 
 ( | , 1)p P x y y λ= ≥ =   
     (1)1 ( 1)PoiF y= − − ,    
where y = 3 and where ( ) ( )Poi qF r  is the cumulative distribution function 
of a Poisson random variable with mean q, evaluated at r. 
 
Thus a suitable ppp-value is     

 
1 0 1 1 1 21 1 11

0! 1! 2!
e e ep
− − − 

= − + + 
 

 = 0.08030. 

 
Note: This is just the probability that a Poisson(1) random variable will 
take on a value greater than 2, and so is the same as the classical  
p-value which would be used in this situation.  
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(b) Here we first observe that  
     0 0 0( | , ) ( | ) ( | , )f y H f H f y Hλ λ λ∝  

   1 2 !

ye e
e e y

λ λλ− −

− −= ×
+

 2 ye λλ−∝ ,  λ  = 1, 2    (with  y = 3).   

 

Thus:  
2 1 3

0 2 1 3 2 2 3

1( 1 | , )
1 2
eP y H

e e
λ

− ×

− × − ×= =
+

 = 0.48015   

  0( 2 | , )P y Hλ =  = 1 0.48015 −  = 0.51985. 
 
So a suitable ppp-value is     
 0( | , )p P x y y H= ≥ 0 0{ ( | , , ) | , }E P x y y H y Hλ= ≥  
            ( ) 0{1 ( 1) | , }PoiE F y y Hλ= − −     
  (1) (2)0.48015  (1 (2)) 0.51985  (1 (2))Poi PoiF F= × − + × −  

  
1 0 1 1 1 21 1 10.48015  1

0! 1! 2!
e e e− − −  

= − + +  
  

 

                     
2 0 2 1 2 22 2 20.51985  1
0! 1! 2!

e e e− − −   + − + +  
   

  

  =  0.20664. 
 
R Code for Exercise 3.8 
 
options(digits=5); 1-ppois(2,1) # 0.080301 
p1=exp(-2)/(exp(-2)+8*exp(-4)); c(p1,1-p1) # 0.48015 0.51985 
p1*(1-ppois(2,1))+(1-p1)*(1-ppois(2,2))  # 0.20664 
 
Exercise 3.9 Posterior predictive p-values for testing a normal  
mean 
 
Consider a random sample 1,..., ny y  from a normal distribution with 
variance 2σ , where the prior on the precision parameter 21 /λ σ=  is 
given by ~ (0,0)Gammaλ , or equivalently by ( ) 1/ , 0f λ λ λ∝ > .  
 
We wish to test the null hypothesis  
 0H :  that the normal mean equals µ   
against the alternative hypothesis  
 1H : that the normal mean is greater than µ   
(where µ  is a specified constant of interest).  
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Derive a formula for the ppp-value under each of the following three 
choices of the test statistic: 

    (a)  ( , )T y yλ = ,      (b)  ( , )
/

yT y
n
µλ

σ
−

= ,     (c)  ( , )
/y

yT y
s n

µλ −
= , 

where:   
1

1 n

i
i

y y
n =

= ∑    (the sample mean) 

   2 2

1

1 ( )
1

n

y i
i

s y y
n 

 
      (the sample variance). 

 
For each of these choices of test statistic, report the ppp-value for the 
case where µ  = 2 and y = (2.1, 4.0, 3.7, 5.5, 3.0,   4.6, 8.3, 2.2, 4.1, 6.2). 
 
Solution to Exercise 3.9 
 
(a) Let 1( ... ) /nx x x n    be the mean of an independent replicate of 
the sample values, defined by 2

1( ,..., | , ) ~  ( , )nx x y iid N   .  
 

Then, by Exercise 3.7, ~ ( )
/y

x y t n
s n

      
, where  2 2

1

1 ( )
n

y i
i

s y
n 



  . 

 
From this, if the test statistic is ( , )T y yλ = , then the ppp-value is 

      ( | )
/ /y y

x yp P x y y P y
s n s nµ µ

µ µ − − = > = >
 
 

 ( )1
/t n

y

yF
s nµ

µ −
= −   

 
. 

 

Here: µ  = 2,  n = 10,  
1

1 n

i
i

y y
n =

= ∑ = 4.370,  2 2

1

1 ( )
n

y i
i

s y
n 



  = 2.978. 

Therefore  
/y

y
s nµ

µ−  = 2.51658, and so ( )(10)1 2.51658tp F= −  = 0.01528. 

 

(b) If ( , )
/

yT y
n
µλ

σ
−

=  then the ppp-value is   

 ( | )
/ /

x yp P y P x y y
n n
µ µ

σ σ
 − −

= > = > 
 

. 

 
We see that the answer here is exactly the same as in (a). 
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(c) If ( , )
/y

yT y
s n

µλ −
=   then the ppp-value is 

/ /x y

x yp P y
s n s n

µ µ − − = >
 
 

    where  2 2

1

1 ( )
1

n

x i
i

s x x
n 

 
   

       ,
/ /x y

x yE P y y
s n s n

µ µ λ
  − −  = >     

  

by the law of iterated expectation 

       ( 1)1
/t n

y

yE F y
s n

µ
−

  − = −       
      since , ~ ( 1)

/x

x y t n
s n

µ λ
 −

−  
 

 

        ( 1)1
/t n

y

yF
s n

µ
−

 −
= −   

 
. 

 
We see that the ppp-value derived is exactly the same as the classical  
p-value which would be used in this setting. Numerically, we have that:   

 2 2

1

1 ( )
1

n

y i
i

s y y
n 

 
   = 1.901,     

/y

y
s n

µ−  = 3.942645. 

 
Consequently, the ppp-value is ( )(9)1 3.942645tp F= − = 0.001696. 
 
Note: A fourth test statistic which makes sense in the present context is  

 ( , )
/y

yT y
s nµ

µλ −
=    where  2 2

1

1 ( )
n

y i
i

s y
n 



   (as before). 

 
This implies a ppp-value given by  

        
/ /x y

x yp P y
s n s nµ µ

µ µ − − = >
 
 

   where 2 2

1

1 ( )
n

x i
i

s x
n 



  . 

 
This ppp-value is more difficult to calculate, and it cannot be expressed 
in terms of well-known quantities, e.g. the cdf of a t distribution, as in 
(a), (b) and (c). (Here, x  and xs µ  are not independent, given y and µ .) 

 
For more details, regarding this exercise specifically and ppp-values 
generally, see Meng (1994) and Gelman et al. (2004).  
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R Code for Exercise 3.9 
 
options(digits=4); mu=2; y = c(2.1, 4.0, 3.7, 5.5, 3.0,     4.6, 8.3, 2.2, 4.1, 6.2);  
n=length(y); ybar=mean(y); s=sd(y); smu=sqrt(mean((y-mu)^2)) 
c(ybar,s,smu) # 4.370 1.901 2.978 
arga=(ybar-mu)/(smu/sqrt(n)); pppa=1-pt(arga,n); c(arga,pppa)  

# 2.51658 0.01528 
argc=(ybar-mu)/(s/sqrt(n)); pppc=1-pt(argc,n-1); c(argc,pppc)  

# 3.942645 0.001696 
 
3.4 Bayesian models with multiple parameters 
 
So far we have examined Bayesian models involving some data y and a 
parameter θ , where θ  is a strictly scalar quantity. We now consider the 
case of Bayesian models with multiple parameters, starting with a focus 
on just two, say  1θ  and 2θ . In that case, the Bayesian model may be 
defined by specifying ( | )f y θ  and ( )f θ  in the same way as previously, 
but with an understanding that θ  is a vector of the form 1 2( , )θ θ θ= .  
 
The first task now is to find the joint posterior density of 1θ  and 2θ , 
according to 
 ( | ) ( ) ( | )f y f f yθ θ θ∝ ,       
or equivalently 
 1 2 1 2 1 2( , | ) ( , ) ( | , )f y f f yθ θ θ θ θ θ∝ ,   
where 

1 2( ) ( , )f fθ θ θ=   
is the joint prior density of the two parameters. 
 
Often, this joint prior density is specified as an unconditional prior 
multiplied by a conditional prior, for example as  

1 2 1 2 1( , ) ( ) ( | )f f fθ θ θ θ θ= . 
 
Once a Bayesian model with two parameters has been defined, one task 
is to find the marginal posterior densities of 1θ  and 2θ , respectively, via 
the equations: 
 1 1 2 2( | ) ( , | )f y f y dθ θ θ θ= ∫  

 2 1 2 1( | ) ( , | )f y f y dθ θ θ θ= ∫ . 
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From these two marginal posteriors, one may obtain point and interval 
estimates of 1θ  and 2θ  in the usual way (treating each parameter 
separately). For example, the marginal posterior mean of 1θ  is 

 1 1 1 1 1
ˆ ( | ) ( | )E y f y dθ θ θ θ θ= = ∫ .  

 
Another way to do this calculation is via the law of iterated expectation, 
according to  
    1 1 1 2

ˆ ( | ) { ( | , ) | }E y E E y yθ θ θ θ= =
 

   1 2 2 2( | , ) ( | )E y f y dθ θ θ θ= ∫ . 

 
Note: The equation 1 1 2( | ) { ( | , ) | }E y E E y yθ θ θ=  follows from the 
simpler identity 1 1 2( | )E EEθ θ θ=  after conditioning throughout on y.  

 
Here, 1 2( | , )E yθ θ  is called the conditional posterior mean of 1θ  and can 
be calculated as 
 1 2 1 1 2 1( | , ) ( | , )E y f y dθ θ θ θ θ θ= ∫ . 

 
Also, 1 2( | , )f yθ θ  is called the conditional posterior density of 1θ  and 
may be obtained according to 
 1 2 1 2( | , ) ( , | )f y f yθ θ θ θ∝ .     (3.1) 
 
Note: Equation (3.1) follows after first considering the equation 

1 2 1 2( | ) ( , )f fθ θ θ θ∝  and then conditioning throughout on y.  

 
The main idea of Equation (3.1) is to examine the joint posterior density 

1 2( , | )f yθ θ   
(or any kernel thereof), think of all terms in this as constant except for 

1θ , and then try to recognise a well-known density function of 1θ .  
 
This density function will define the conditional posterior distribution of 

1θ , from which estimates such as the conditional posterior mean of 1θ   
(i.e. 1 2( | , ))E yθ θ  will hopefully be apparent. 
 
One may also be interested in some function,  

1 2( , )gψ θ θ= , 



Chapter 3: Bayesian Basics Part 3 

137 

of the two parameters (possibly of only one).Then advanced distribution 
theory may be required to obtain the posterior pdf of ψ , i.e. ( | )f yψ .  
 
This posterior density may then be used to calculate point and interval 
estimates of  ψ . For example, the posterior mean of ψ  is  

 ˆ ( | ) ( | )E y f y dψ ψ ψ ψ ψ= = ∫ . 

 
Alternatively, this mean may be obtained using the equation  
 1 2 1 2 1 2 1 2ˆ ( ( , ) | ) ( , ) ( , | )E g y g f y d dψ θ θ θ θ θ θ θ θ= = ∫ ∫ . 

 
Further, one may be interested in predicting some other quantity x, 
whose model distribution is specified in the form ( | , )f x y θ .  
 
To obtain the posterior predictive density of x will generally require a 
double integral (or summation) of the form 
 1 2 1 2 1 2( | ) ( | , , ) ( , | )f x y f x y f y d dθ θ θ θ θ θ= ∫ ∫ . 
 
Further integrations will then be required to produce point and interval 
estimates, such as the predictive mean of x, 
 ˆ ( | ) ( | )x E x y xf x y dx= = ∫ . 

 
Exercise 3.10 A bent coin which is tossed an unknown number 
of times 
 
Suppose that five heads have come up on an unknown number of tosses 
of a bent coin.  
 
Before the experiment, we believed the coin was going to be tossed a 
number of times equal to 1, 2, 3, ..., or 9, with all possibilities equally 
likely. As regards the probability of heads coming up on a single toss, 
we deemed no value more or less likely than any other value. We also 
considered the probability of heads as unrelated to the number of tosses. 
 
Find the marginal posterior distribution and mean of the number of 
tosses and of the probability of heads, respectively. Also find the number 
of heads we could expect to come up if the coin were to be tossed again 
the same number of times. 
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Solution to Exercise 3.10 
 
For this problem it is appropriate to consider the following three-level 
hierarchical Bayesian model: 
 ( | , ) ~ ( , )y n Binomial n    
 ( | ) ~ (0,1)n U  
 ~ (1,..., )n DU k ,   k = 9        (i.e. ( ) 1/ 9f n  ,  n = 1,...,9). 
 
Under this model, the joint posterior density of the two parameters n and 
θ  is 
 ( , | ) ( , ) ( | , )f n y f n f y n    
       ( ) ( | ) ( | , )f n f n f y n   

       1 1 (1 )y n yn
yk
  

        
 

       (1 ) , 0 1, , 1,...,9y n yn
n y y

y
  

          
. 

 
So the marginal posterior density of n is 

( | ) ( , | )f n y f n y d    

 
1

0

(1 )y n yn
d

y
  

        ,   , 1,...,9n y y= +    (since 0,...,y n= ) 

 
1 1 1 1 1

0

(1 )( 1, 1)
( 1, 1)

y n yn
B y n y d

y B y n y
 


                  ,   5,6,7,8,9n =  

 ( 1) ( 1) 1
( 1 1)

n y n y
y y n y

               
    (since the integral equals 1) 

 ! !( )!
!( )! ( 1)!

n y n y
y n y n




 
   

 1
1n




  

 

1/ 6, 5
1/ 7, 6
1/ 8, 7
1/ 9, 8

1/10, 9.

n
n
n
n
n

     
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After normalising (i.e. dividing each of these five numbers by their sum, 
0.6456), we find that, to four decimals, n’s posterior pdf is   

 

0.2581, 5
0.2213, 6

( | ) 0.1936, 7
0.1721, 8
0.1549, 9.

n
n

f n y n
n
n

     

 

 
Thus, for example, there is a 17.2% chance a posteriori the coin was 
tossed 8 times. 
 
It follows that n’s posterior mean is    

      
9

6

ˆ ( | ) ( | )
n

n E n y nf n y


   

  0.2581 5 0.2213 6 ... 0.1549 9        
   = 6.744. 
 
Next, the marginal posterior density of   is 

 ( | ) ( , | )
n

f y f n y   

  
9

(1 )y n y

n y

n
y
  



        

  
1 1 1 19

5

(1 )( 1, 1)
( 1, 1)

y n y

n

n
B y n y

y B y n y
     



              

  
9

( 1, 1)
1 ( )

1 Beta y n y
n y

f
n

  



 . 

 
Recall that ( | ) 1/ ( 1)f n y n  . It follows that ’s  marginal posterior 
density must be exactly 

 
9

( 1, 1)
5

( | ) ( | ) ( )Beta y n y
n

f y f n y f   


   

 
5 5 5 5 9 5(1 ) (1 )0.2581 ... 0.1549

5!(5 5)!/ (5 1)! 5!(9 5)!/ (9 1)!
     

  
   

. 

 
We see that ’s  posterior is a mixture of five beta distributions.  
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Note: This result can also be obtained, more directly, as follows. By 
considering the ‘ordinary’ binomial-beta model (from earlier), we see 
that in the present context the conditional posterior distribution of θ  
(given n) is given by  
 ( | , ) ~ ( 1, 1)y n Beta y n y    .   
 
It immediately follows that      

( | ) ( , | )
n

f y f n y  ( | ) ( | , )
n

f n y f y n  

                                                   
9

( 1, 1)
5

( | ) ( )Beta y n y
n

f n y f   


 . 

 
We may now perform inference on  . The posterior mean of   is 

ˆ ( | ) { ( | , ) | }E y E E y n y   
1
2

yE y
n

      
   

  
9

5

1( 1) ( | )
2n

y f n y
n

       

   1 1 1 1 16 0.2581 0.2213 0.1936 0.1721 0.1549
7 8 9 10 11

                                                     
 

   = 0.7040. 
 
Figures 3.3 and 3.4 (page 141) show the marginal posterior densities of n 
and  , respectively, with the posterior means n̂  = 6.744 and ̂  = 0.7040 
marked by vertical lines. 
 
Finally, we consider x, the number of heads on the next n tosses.  
 
The distribution of x is defined by ( | , , ) ~ ( , )x y n Bin nθ θ .  
 
So the posterior predictive mean of x is 
 ( | ) { ( | , , ) | } ( | )E x y E E x y n y E n y       
  { ( | , ) | } { ( | , ) | }E E n y n y E nE y n y    

  
9

5

1 ( 1) ( | )
2 2n

y nE n y y f n y
n n

                  

5 6 7 8 96 0.2581 0.2213 0.1936 0.1721 0.1549
7 8 9 10 11

                                                     
 

 = 4.592. 
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Figure 3.3 Posterior density of n  

 
 
 
Figure 3.4 Posterior density of θ    

 
 
 
R Code for Exercise 3.10 
 
y <- 5; k <- 9; options(digits=4) 
nvec <- y:k;    avec <- 1/(nvec+1);  sumavec <- sum(avec); sumavec   # 0.6456 
fny <- avec/sumavec;     rbind(nvec,avec,fny) 
   # nvec 5.0000 6.0000 7.0000 8.0000 9.0000 
   # avec 0.1667 0.1429 0.1250 0.1111 0.1000 
   #  fny 0.2581 0.2213 0.1936 0.1721 0.1549 
nhat <- sum(nvec*fny); nhat    # 6.744 
thhat <- sum(  fny * (y+1)/(nvec+2) ); thhat   # 0.704 
xhat <- sum(  fny * nvec * (y+1)/(nvec+2) ); xhat   # 4.592 
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thvec <- seq(0,0.99,0.01);  fthyvec <- thvec 
for(i in 1:length(thvec))  fthyvec[i] <- sum( fny * dbeta(thvec[i],y+1,nvec-y+1) ) 
 
X11(w=8,h=4); par(mfrow=c(1,1)) 
 
plot(nvec,fny,type="n",xlab="n",ylab="f(n|y)",ylim=c(0,0.4)) 
points(nvec,fny,pch=16,cex=1);   abline(v=nhat) 
 
plot(thvec,fthyvec,type="n",xlab="theta",ylab="f(theta|y) ",ylim=c(0,2.5)) 
lines(thvec,fthyvec,lwd=3);    abline(v=thhat) 
 
Exercise 3.11 The uninformative normal-normal-gamma model 
 
Consider the following Bayesian model: 
 1( , , | , ) ~ ( ,1/ )ny y iid N     
 ( | ) ~ (0, )N    
 ~ (0,0)Gamma , 
with observed data 1( ,..., )ny y y= . 
 
(a) Find the marginal posterior distribution of  . 
 
(b) Find the marginal posterior distribution of λ . 
 
(c) Find the posterior mean of the signal to noise ratio, defined as 
 /γ µ σ µ λ= = .   
 
(d) Find the posterior predictive distribution of  
 1( ... ) /mx x x m= + + , 
where the ix  values have a distribution given by 

1( ,..., | , , ) ~ ( ,1/ )mx x y N    . 
 
Note: Both   and λ  are assigned uninformative priors. The joint prior 
distribution of these two parameters could also be specified by: 
 ( | ) 1,f           
 ( ) 1/ , 0,f       
or by the single statement    
 ( , ) 1/ , , 0f        .   
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Solution to Exercise 3.11 
 
(a) The joint posterior density of the two parameters   and λ  is 
        ( , | ) ( , ) ( | , )f y f f y       ( ) ( | ) ( | , )f f f y           

         
2,

1

1

( )11 exp
2(1/ )1/

n
i

i

y  







         
  

        
1 22

1

exp ( )
2

n n

i
i

y
 





        . 

 
So the marginal posterior density of   is 

( | ) ( , | )f y f y d         

    
1 22

10

1exp ( )
2

n n

i
i

y d


   






              


 

   

2
2
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( / 2)
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2

n
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i
i

n

y 





       


2
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1 1 ( )
( / 2) 2

n
n

i
i

y
n







          
  

1 22

1

1exp ( )
2

n n

i
i

y d   




                


 

   

2
2

1

( / 2)

1 ( )
2

n
n

i
i

n

y 





       


   
2

2

1

( ) .

n
n

i
i

y







        
          

 
Note: The last integral is that of a gamma density and so is equal to 1.  
  
Now observe that    

     
 

2

1

( )
n

i
i

y 


  2

1

( ) ( )
n

i
i

y y y 


              

 2 2

1 1 1

( ) 2( ) ( ) ( ) 1
n n n

i i
i i i

y y y y y y 
  

                 

 2 2

1

1( 1) ( ) 2( )( ) ( )
1

n

i
i

n y y y ny ny n y
n

 


              
  

 2 2( 1) ( )n s n y    ,  where 2s  is the sample variance. 
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This result implies that 

 2 2 2( | ) ( 1) ( )
n

f y n s n y 


     

         

1{( 1) 1}2 2

2

( )1
( 1)

n
n y

n s

 
          

 

1{( 1) 1}2 2

/1 .
( 1)

n
y

s n
n


                    

   

 

We now define 
/

yr
s n


 , so that sy r
n

   and d s
dr n

 . 

 
By the transformation rule, we then have that 

        ( | ) ( | ) df r y f y
dr



 

         

1{( 1) 1}2 2
1

( 1)

n
r r s

n n

                

1{( 1) 1}2 2
1 .

( 1)

n
r r

n

            
 

By definition of the t distribution, we see that ( | ) ~ ( 1)r y t n . 
 

It follows that the marginal posterior distribution of   is given by 

~ ( 1)
/

y y t n
s n
       

.        (3.2) 

 
Note 1: In result (3.2), the data vector y appears only by way of the 
sample mean y  and sample standard deviation s. So it is also true that  

 , ~ ( 1)
/

y y s t n
s n
       

.  

  
Here, s may not be left out of the conditioning. So it is not true that 

~ ( 1)
/

y y t n
s n
       

.  

 
Note 2: Result (3.2) implies that the marginal posterior mean, mode and 
median of µ  are all equal to y , and the 1 α−  CPDR/HPDR for µ  is   
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 /2( ( 1) / )y t n s n  . 
 
This inference is identical to that obtained via the classical approach and 
thereby justifies the use of the joint prior 
  ( , ) 1/ , , 0f         
in cases of a priori ignorance regarding both   and λ .  

 
Note 3: The exact marginal posterior density of   is         

 ( | ) ( | ) drf y f r y
d




 ,        

where 
/

yr
s n


  and ( | ) ~ ( 1)r y t n .  

 

Thus    ({( 1) 1} / 2)( | )
(( 1) ) (( 1) / 2)

nf y
n n




  


   
  

     

1 (( 1) 1)2 211 ,
1 /

n
y n

n ss n




                 
. 

 
This density can be calculated in R at any point   by first calculating 
the corresponding value of r and then returning  
 dt(r,n-1)*sqrt(n)/s      
(see below for examples).  
 
(b) The marginal posterior density of λ  is 
             ( | ) ( , | )f y f y d           

    1 2 22 exp ( 1) ( )
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n s n y d
 

  

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n n s
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 
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Note: The last integral is that of a normal density and so equals 1.  
 
It follows that       

 21 1( | ) ~ , ,
2 2

n ny Gamma s
                    

    (3.3) 

and hence also that 
 2 2(( 1) | ) ~ ( 1)n s y nλ χ− − .     (3.4) 
 
Note 1: Result (3.4) can be proved as follows. Let  

2( 1)u n s λ= − ,  

so that 2( 1)
u

n s
λ =

−
 and 2

1
( 1)

d
du n s




.  

  
Then, by the transformation rule, 

 ( | ) ( | ) df u y f y
du


    

                         
2

2

1 1 1
2

2( 1)
2 2

1
( 1) ( 1)

n
u n su

n su e
n s n s

             
       

 

                         
1 1

2 2 .
n uu

u e
         

    

Thus 21 1( | ) ~ , ~ ( 1)
2 2

nu y Gamma n
     

, which confirms (3.4).  

 

Note 2: Results (3.3) and (3.4) imply that λ  has posterior mean 21/ s . 
This  makes sense because 21/λ σ= , and 2s  is an unbiased estimator of 

2σ . We see that the inverse of the posterior mean of λ  provides us with 
the classical estimator of 2σ . 

 
Also, result (3.4) implies that the 1 α−  CPDR for λ  is  

2 2
1 /2 /2

2 2

( 1) ( 1),
( 1) ( 1)

n n
n s n s
α αχ χ− − −

 − − 
. 

 
It follows that the 1 α− CPDR for 2 1/σ λ=  is     
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2 2

2 2
/2 1 /2

( 1) ( 1), .
( 1) ( 1)

n s n s
n nα αχ χ −

 − −
 − −    

 

 
It will be observed that this is exactly the same as the usual classical  
1 α−  CI for 2σ  when the normal mean µ  is unknown.  

 
(c) The posterior mean of /γ µ σ µ λ= =  could be calculated using the 
equation  
 ˆ ( | )f y dγ γ γ γ= ∫ ,  
where ( | )f yγ  is the posterior density of γ .  
 
However, obtaining this density may be difficult. We could use Jacobian 
theory to find the joint posterior density of µ  and γ , and then integrate 
that joint density with respect to µ . The result would be ( | )f yγ . 
  
Another approach is to calculate the mean as   
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More simply, we may use the law of iterated expectation to write 
 ˆ ( | ) { ( | , ) | }E y E E y yγ µ λ µ λ λ= =  { ( | , ) | }E E y yλ µ λ=  
    { | }E y yλ=  1/2( | )yE yλ=  

 1/2
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1 1
2 2

1 1
2 2

n

y
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− Γ + 
 =

 −  −   Γ        

    by (3.3) 

n
y c
s

= ,        
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where   

1/2

1 1
2 2

1 1
2 2

n

n

c
n n

− Γ + 
 =

− −   Γ   
   

. 

 
Note 1: By a well-known property of the gamma function, 1nc →  as  
n →∞ . So for large n the posterior mean of /γ µ σ=  is approximately 
the same as γ ’s MLE, /y s .  

 
Note 2: Suppose that we wish to find the posterior median or mode of γ  
or the 95% CPDR or HPDR for that quantity. Then we first need to 
determine ( | )f yγ . This and subsequent calculations may be difficult. 
This points to the need for another strategy. As will be seen later, most 
of these issues can be easily sidestepped using Monte Carlo methods.  
  
(d) Recall from previous exercises that: 

 1/ 1/( | , ) ~ , ~ , n mx y N y N y
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 
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. 

 
Hence ( | ) ( | , ) ( | )f x y f x y f y d     

 

   
2

1/2

0

( )exp
2( )

nm x y
n m



             
  

1 1
22 1exp

2

n n s d  
     

                
 

 

  
21

22

0

( ) 1exp
2( ) 2

n nm x y n s d
n m

  
     

                  
  

 

  
2 2

2( ) 1
2( ) 2

n

nm x y n s
n m

               
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2 2

2

( )1
( 1)( )

n

nm x y
n n m s

          
 

 

  

2 2

( / ) ( ) /
1 .

1

n

x y
s n n m m

n

             
  
 
 
 
  

 

 
It follows that   

~ ( 1)
( / ) ( ) /

x y y t n
s n n m m

        
.    (3.5) 

 

Note 1: Equation (3.5) can be used to derive the predictive distribution 
of the average of all n + m values considered (both past and future).  

 
That average may be written 

 
1 1

1 n m

i i
i j

a y x
n m = =

 
= + +  

∑ ∑ ny mx
n m
+

=
+

. 

 
Consequently,  

( )n m a nyx
m

+ −
= .  

  
It follows that in (3.5),     

 

( )

( / ) ( ) / ( / ) ( ) /

n m a ny y
x y m

s n n m m s n n m m

       


 
 

                  ( )( ) /
( / ) ( ) /

a y n m m
s n n m m

 



 

    
( / ) / ( )

a y
s n m n m





, 

and therefore  

  ~ ( 1)
( / ) / ( )

a y y t n
s n m n m

        
.    (3.6) 
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This may look familiar to some readers, the reason being as follows. 
 
Denote the total number of values, n + m, as N, and write the average of 
all these observations, a, as Y . Then (3.6) is equivalent to the result 

 ~ ( 1)
1

Y y y t n
s n

Nn

             

.     (3.7) 

 
So the posterior predictive mean of Y  is the observed sample mean y , 
and the 95% central (and highest) predictive density region for Y  is  

 /2 ( 1) 1s ny t n
Nn

       
.     (3.8) 

 
It will be noted that this inference is exactly the same as implied by the 
standard approach in the classical survey sampling framework (e.g. see 
Cochran, 1977).  
 
Recall that in this framework, 1 /n N  is the finite population 
correction (fpc) factor. As N increases, the fpc factor tends to 1 and (3.8) 
reduces to  

 /2 ( 1) sy t n
n

      
, 

which is the ‘standard’ CI for a normal mean when the normal variance 
is unknown. 
 
We have here touched on the topic of Bayesian finite population 
inference. More will be said on this topic later in the book.  
 

Note 2: The exact posterior predictive density of the finite population 
mean Y  may be obtained according to         

 ( | ) ( | ) dqf Y y f q y
dY

 ,     

where:  
( / ) 1 /

Y yq
s n n N





 

             ( | ) ~ ( 1)q y t n .  
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We thereby obtain the density    ( | )f Y y ({( 1) 1} / 2)
(( 1) ) (( 1) / 2)

n
n n
  


   

 

           

1 (( 1) 1)2 211 ,
1 ( / ) 1 / 1 /

n

Y y ns Y
n s n n N s n N

                    
. 

 
This density can be calculated in R at any point Y  by first calculating 
the corresponding value of q (as defined above) and then returning  
    dt(q,n-1)*sqrt(n)/(s*sqrt(1-n/N))    
(see below for an example). 
  

Note 3: The posterior predictive density of Y  converges to the marginal 
posterior density of   as N tends to infinity with n fixed. That is,  
 ( | ) ( | )f Y c y f c yµ= → =  as N →∞ . 

 
This is on account of the fpc factor 1 /n N−  converging to unity. Thus 
  may be interpreted as the average of a hypothetically infinite number 
of values from the underlying superpopulation, ( ,1 / )N µ λ .  
  
Figure 3.5 shows the predictive density ( | )f Y y  for various values of N, 
as well as the posterior density ( | )f yµ , corresponding to the limiting 
case N = ∞ . In each case, the values of n, y  and s are (arbitrarily) taken 
as 5, 10 and 2, respectively. Note that N m= ∞⇔ = ∞  since m N n= − .  
 

Note 4: Consider the following Bayesian model: 
  1( , , | , ) ~ ( ,1/ )ny y iid N     
  2

0 0( | ) ~ ( , )N     
   ~ ( , ),Gamma    
where 0σ  is not necessarily ∞  and α  and β  are not necessarily 0.  
 
This may be called the (general) normal-normal-gamma model, as 
distinct from the uninformative normal-normal-gamma model, here in 
Exercise 3.11. In the general model, the inferences typically required are 
much more difficult to perform. Later in the book, it will be shown how 
to proceed in this—and similarly difficult—situations using Monte Carlo 
methods, including Markov chain Monte Carlo (MCMC) methods. 
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Figure 3.5 Predictive density of the finite population mean 
(See Note 3 on page 151)  

 
 
 
R Code for Exercise 3.11 
 
X11(w=8,h=6); par(mfrow=c(1,1)) 
ybar=10; s=2; cv=seq(0,20,0.005) 
plot(c(4,16),c(0,1),type="n",xlab="Ybar",ylab="f( Ybar | y )", main=" ") 
n=5; rv=(cv-ybar)*sqrt(n)/s; lines(cv, dt(rv,n-1)*sqrt(n)/s,lty=1,lwd=2)  
Nvec=c(6,7,10,40)   
for(i in 1:length(Nvec)){ N=Nvec[i];   qv=rv/sqrt(1-n/N) 
 lines(cv, dt(qv,n-1)*sqrt(n)/(s*sqrt(1-n/N)),lty=i+1,lwd=2)    } 
legend(4,1, 
   c("N=6 (m=1)","N=7 (m=2)","N=10 (m=5)","N=40 (m=35)","N=infinity (=m)"),  
 lty=c(2:5,1),lwd=2) 
text(6,0.6, 
   "The solid line is also the\nposterior density of mu,\nnamely f( mu | y ).") 
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CHAPTER 4 
Computational Tools 

 
4.1 Solving equations 
 
In most of the Bayesian models so far examined, the calculations required 
could be done analytically. For example, the model given by: 
 ( | ) ~ (5, )Y Binomial    
 ~ (0,1)U , 
together with data y = 5, implies the posterior ( | ) ~ (6,1)y Beta . So   
has posterior pdf 5( | ) 6f y   and posterior cdf 6( | )F y  . Then, 
setting ( | ) 1/ 2F y   yields the posterior median, 1/61/ 2  = 0.8909.  
 
But what if the equation ( | ) 1/ 2F y   were not so easy to solve? In that 
case we could employ a number of strategies. One of these is trial and 
error, and another is via special functions in software packages, for 
example using the qbeta() function in R. This yields the correct answer. 
Yet another method is the Newton-Raphson algorithm, our next topic. 
 

R Code for Section 4.1 

 
qbeta(0.5,6,1)    # 0.8908987 
  

4.2 The Newton-Raphson algorithm 

 
The Newton-Raphson (NR) algorithm is a useful technique for solving 
equations of the form ( ) 0g x  .  

 
This algorithm involves choosing a suitable starting value 0x  and 
iteratively applying the equation 
 1

1 ( ) ( )j j j jx x g x g x
           

until convergence had been achieved to a desired degree of precision.  
 
How does the NR algorithm work?  Figure 4.1 illustrates the idea. 
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Figure 4.1 The Newton-Raphson algorithm 

 
Here, a is the desired solution of the equation g(x) = 0, c is a guess at that 
solution, and b is a better estimate of a. Observe that the slope of the 
tangent at point Q is equal to both ( )g c  and ( ) /( )g c c b . Equating these 
two expressions we get  ( ) / ( )b c g c g c  . 
 
Note: Sometimes the NR algorithm takes a long time to converge, and 
sometimes it converges to the wrong or even impossible value or gets 
‘stuck’ and fails to converge at all. This is a general problem with the 
NR algorithm, namely its instability and the need to start it off with an 
initial guess that is sufficiently close to the desired solution. 

 
Exercise 4.1 Calculating a posterior median via the Newton- 
Raphson algorithm 
 
Suppose that the posterior cdf of a parameter is 6( | )F y  .  
 
Find the posterior median by solving the equation ( | ) 1/ 2F y    
via the Newton-Raphson algorithm.  
 
Note: The algorithm should converge to the analytical solution, namely 

1/61/ 2  = 0.8909. 
 
Solution to Exercise 4.1 
 
We wish to solve ( ) 0g   , where ( ) ( | ) 1/ 2g F y   . 
 
Here, ( ) ( | ) 0g f y    , where 5( | ) 6f y  .  
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So the algorithm is given by 

   1

( )
( )

j
j j

j

g
g


 

  


( | ) 1/ 2
( | )

j
j

j

F y
f y






 

6

5

1/ 2
6

j
j

j







  .

 
 
Starting at the posterior mode, 0  = 1 (chosen arbitrarily), we get the 
sequence shown in Table 4.1. 
 
Table 4.1 NR algorithm starting from 1 
 

j 0 1 2 3 4 
j  1.0000 0.9167 0.8926 0.8909 0.8909 

 
 
So the posterior median is 0.8909. The same result is obtained if we start 
with 0  = 0.8, as shown in table 4.2 
 
Table 4.2 NR algorithm starting from 0.8 
 

j 0 1 2 3 4 
j  0.8000 0.9210 0.8933 0.8909 0.8909 

 
 
Note 1: The median must satisfy  

            
6

5

1/ 2
6


 




  .  

 
This equation is indeed satisfied at the solution   = 0.8909 (working 
to four decimals). This illustrates how to check whether or not the NR 
algorithm has converged properly. 

  
Note 2: In this simple example, one could get the answer by solving the 
equation ( ) / ( )g g      analytically. In general, that won’t be 
possible, and iterating the algorithm will be required.  Of course, if it is 
possible to solve that equation analytically, there is no need to iterate. 
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R Code for Exercise 4.1 
 
NR <- function(th,J=5){      
# This function performs the Newton-Raphson algorithm for J iterations 
# after starting at the value th. It outputs a vector of th values of length J+1. 
thvec <- th; for(j in 1:J){   
 num <- th^6-1/2      # theta’s posterior cdf minus 1/2 (numerator) 
 den <- 6*th^5  # theta’s posterior pdf (denominator) 
 th <- th - num/den 
 thvec <- c(thvec,th)  } 
thvec     } 
 
options(digits=4) 
NR(th=1,J=6) # 1.0000 0.9167 0.8926 0.8909 0.8909 0.8909 0.8909 
NR(th=0.8,J=6) # 0.8000 0.9210 0.8933 0.8909 0.8909 0.8909 0.8909 
0.8909-(0.8909^6-0.5)/(6*0.8909^5) # 0.8909 (Check) 
 

Exercise 4.2 Further practice with the NR algorithm 
 
Use the Newton-Raphson algorithm to solve the equation  2 tt e= .  
 
Note: In this case there is no analytical solution. 

 
Solution to Exercise 4.2 
 
We wish to solve ( ) 0g t = , where 2( ) tg t t e= − . Now, ( ) 2 tg t t e′ = − .  

So we iterate according to  
2

1 2

j

j

t
j

j j t
j

t e
t t

t e+

 −
= −   − 

.
 

Let us arbitrarily choose 0 0t = . Then we get: 

    
2 0

1 0

00
2(0)

et
e

−
= −

−
  = −1.000000,    

2 1

2 1

( 1)( 1)
2( 1)

et
e

−

−

− −
= − −

− −
  = −0.733044 

 
2 0.733044

3 0.733044

( 0.733044)( 0.733044)
2( 0.733044)

et
e

−

−

− −
= − −

− −
  = −0.703808 

 
2 0.703808

4 0.703808

( 0.703808)( 0.703808)
2( 0.703808)

et
e

−

−

− −
= − −

− −
  = −0.703467 

 
2 0.703467

5 0.703467

( 0.703467)( 0.703467)
2( 0.703467)

et
e

−

−

− −
= − −

− −
  = −0.703467,    etc. 
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Thus the output of the NR algorithm starting from 0 is: 
 0.000000, -1.000000, -0.733044, -0.703808, -0.703467, -0.703467, 

    -0.703467, -0.703467, ..... 
 
Also, we find that the output of the NR algorithm starting from 1 is: 

  1.000000, -1.392211, -0.835088, -0.709834, -0.703483, -0.703467, 
     -0.703467, -0.703467, ..... 
 
From these results we feel confident that the required solution to 6 
decimals is −0.703467. As a check, we calculate  
 2 0.703467( 0.703467) ( 0.703467)g e−− = − −  = 0.000000803508 ≈  0. 
 
Figure 4.2 illustrates the function g and the output of the NR algorithm 
starting from −5, which is: 

 -5.000000, -2.502357, -1.287421, -0.802834, -0.707162, -0.703473,  
     -0.703467, -0.703467, ..... 
 
Figure 4.2 Solution via the NR algorithm starting at −5 

 
R Code for Exercise 4.2 
 
options(digits=6); t=0; tv=t; for(j in 1:7){ t=t-(t^2-exp(t))/(2*t-exp(t)) 
tv=c(tv,t) }; tv  
#  0.000000 -1.000000 -0.733044 -0.703808 -0.703467 -0.703467 -0.703467  
# -0.703467 
# Check: 
   t^2-exp(t)   # 0  
    (-0.703467)^2-exp(-0.703467)   #  -8.03508e-07 
 



Bayesian Methods for Statistical Analysis  

158 

t=1; tv=t; for(j in 1:7){ t=t-(t^2-exp(t))/(2*t-exp(t)); tv=c(tv,t) }; tv 
# 1.000000 -1.392211 -0.835088 -0.709834 -0.703483 -0.703467 -0.703467  
# -0.703467 
 
t=-5; tv=t; for(j in 1:7){ t=t-(t^2-exp(t))/(2*t-exp(t)); tv=c(tv,t) }; tv 
# -5.000000 -2.502357 -1.287421 -0.802834 -0.707162 -0.703473 -0.703467  
# -0.703467 
 
tvec=seq(-6,2,0.01); gvec= tvec^2-exp(tvec) 
X11(w=8,h=4.5); par(mfrow=c(1,1)) 
plot(tvec,gvec,type="l",lwd=2,xlab="t",ylab="g(t)", main="") 
abline(h=0,v=t); points(tv, tv^2-exp(tv),pch=16) 
text( tv[1:4],   tv[1:4]^2-exp(tv[1:4]) + 3,   0:3) 
 
Exercise 4.3 Another example of the NR algorithm 
 
Consider the Bayesian model: 
 ( | ) ~ (3, )x p Bin p   
 ~ (0,1)p U , 
and suppose the observed value of x is 2. Find the posterior median of p. 
 
Solution to Exercise 4.3   
 
The posterior distribution of p is given by  
 ( | ) ~ (1 2,1 1)p x Beta + + ,  
with density   

 
3 1 2 1(1 )( | )

(3) (2) / (5)
p pf p x

− −−
=
Γ Γ Γ

212 (1 )p p= − , 0 < p < 1. 

 
So, the posterior cdf is   

          2

0

( | ) 12 (1 )
p

F p x r r dr= −∫
3 4

12
3 4
p p 

= − 
 

3 44 3p p= − ,  0 < p < 1. 

    

To find the posterior median of p we need to solve ( | ) 1/ 2F p x = , or 
equivalently ( ) 0g p = , where 3 4( ) ( | ) 1/ 2 4 3 1/ 2g p F p x p p= − = − − .
    
Now, 2 3( ) 12 12g p p p′ = − . So the NR algorithm is defined by iterating 

      1

( )
( )

j
j j

j

g p
p p

g p+ = −
′

3 4

2 3

4 3 1/ 2
12 12

j j
j

j j

p p
p

p p
 − −

= −  − 
.
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What’s a good starting value here? Let’s try the MLE, 0 2 / 3p = .  
 
Using this value, we get: 
     0.666667, 0.614583, 0.614272, 0.614272, 0.614272, 0.614272, 
     0.614272, 0.61427, .....  
 
Starting at other values (0.5, 0.9 and 0.1), we get the following (three) 
sequences (respectively): 
     0.500000, 0.625000, 0.614306, 0.614272, 0.614272, 0.614272, 
     0.614272, 0.614272, ..... 
 
     0.900000, 0.439403, 0.649191, 0.614501, 0.614272, 0.614272, 
     0.614272, 0.614272, ..... 
 
     0.10000, 4.69537, 3.62690, 2.83403, 2.25146, 1.83195, 1.54254, 
     1.36156, ..... 
 
The last sequence does not seem to have converged. Let’s run this for a 
bit longer. The result is: 
     0.10000, 4.69537, 3.62690, 2.83403, 2.25146, 1.83195, 1.54254, 
     1.36156, 1.27282, 1.24913, 1.24749, 1.24748, 1.24748, 1.24748,  
     1.24748, 1.24748, 1.24748, 1.24748, 1.24748, 1.24748, ..... 
 
Thus if we start at 0.1, the algorithm converges to an impossible value of 
p, namely 1.24748. 
 
It appears that the required posterior median is 0.61427. As a check we 
may calculate  
    3 4( 0.61427 | ) 4(0.61427) 3(0.61427)F p x= = −  = 0.499999 ≈0.5. 
 
Figures 4.3 and 4.4 show the posterior median 0.61427, as well as the 
other solution of ( ) 0g p =  (i.e. root of g), namely 1.24748. This is not 
actually a solution of  ( | )F p x  = 0.5, because the values of ( | )F p x  for 
p < 0 and p > 1 are 0 and 1, respectively.  
 

Thus, the definition of g above is ‘deceptive’, and a better definition is: 

( ) ( | ) 1/ 2g p F p x= −

  

3 4

0 1/ 2 1/ 2, 0
4 3 1/ 2, 0 1
1 1/ 2 1/ 2, 1.

p
p p p

p

− = − <
= − − ≤ ≤
 − = >
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Figure 4.3 Posterior cdf and median of p  

 
 
Figure 4.4 Posterior median of p and the other root of g 

 
 
R Code for Exercise 4.3 
 
options(digits=6); p=2/3; pv=p; for(j in 1:7){  
 p = p - (4*p^3-3*p^4-1/2)/(12*p^2-12*p^3);  pv=c(pv,p) }; pv 
# 0.666667 0.614583 0.614272 0.614272 0.614272 0.614272 0.614272 
# 0.614272 
 
p=0.5; pv=p; for(j in 1:7){ p = p - (4*p^3-3*p^4-1/2)/(12*p^2-12*p^3);   
pv=c(pv,p) }; pv # 0.500000 0.625000 0.614306 0.614272 0.614272 0.614272  
# 0.614272 0.614272 
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p=0.9; pv=p; for(j in 1:7){ p = p - (4*p^3-3*p^4-1/2)/(12*p^2-12*p^3);   
pv=c(pv,p) }; pv  # 0.900000 0.439403 0.649191 0.614501 0.614272 0.614272  
# 0.614272 0.614272 
 
p=0.1; pv=p; for(j in 1:7){ p = p - (4*p^3-3*p^4-1/2)/(12*p^2-12*p^3);   
pv=c(pv,p) }; pv  
# 0.10000 4.69537 3.62690 2.83403 2.25146 1.83195 1.54254 1.36156 
 
p=0.1; pv=p; for(j in 1:20){ p = p - (4*p^3-3*p^4-1/2)/(12*p^2-12*p^3);   
pv=c(pv,p) }; pv 
# 0.10000 4.69537 3.62690 2.83403 2.25146 1.83195 1.54254 1.36156  
# 1.27282 1.24913 1.24749 1.24748 1.24748 1.24748 1.24748 1.24748  
# 1.24748 1.24748 1.24748 1.24748 1.24748 
 
4*(0.614272)^3-3*(0.614272)^4   # 0.499999 
pvec=seq(-0.5,1.4,0.005); Fvec = 4*pvec^3-3*pvec^4 
Fvec[pvec<=0] = 0; Fvec[pvec>=1] = 1 
 
X11(w=8,h=4.5); par(mfrow=c(1,1)) 
 
plot(pvec,Fvec,type="l",lwd=3,xlab="p",ylab="F(p|x)", main=" ") 
abline(h=0.5,v=0.614272,lty=3); points(0.614272,0.5,pch=16, cex=1.2) 
abline(h=c(0,1),lty=3); abline(v=c(0,1),lty=3) 
gvecwrong=4*pvec^3-3*pvec^4-0.5 
 
plot(pvec, gvecwrong,type="n",lwd=2,xlab="p",ylab="g(p) = F(p|x) - 1/2", 

main=" ") 
lines(pvec,Fvec-0.5,lwd=3) 
lines(pvec[pvec<0], gvecwrong[pvec<0],lty=2,lwd=3) 
lines(pvec[pvec>1], gvecwrong[pvec>1],lty=2,lwd=3) 
abline(v=c(0.614272, 1.24748),lty=3); abline(h=0,lty=3) 
points(c(0.614272, 1.24748),c(0,0),pch=16,cex=1.2) 
abline(h=c(-0.5,0,0.5),lty=3); abline(v=c(0,1),lty=3) 
 

4.3 The multivariate Newton-Raphson 
algorithm 
 
The Newton-Raphson algorithm can also be used to solve several 
equations simultaneously, say  
 1( ,..., ) 0k Kg x x = , k = 1,...,K. 
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Let:   
1

K

x
x

x

 
 =  
 
 

 , 
1( )

( )
( )K

g x
g x

g x

 
 =  
 
 

 , 
0

0
0

 
 =  
 
 

   (a column vector of length K). 

 
Then the system of K equations may be expressed as  
 ( ) 0g x = ,  
and the NR algorithm involves iterating according to 
 ( 1) ( ) ( ) 1 ( )( ) ( )j j j jx x g x g x   , 

where: 

( )
1

( )

( )

j

j

j
K

x
x

x


         

    is the value of x at the jth iteration 

 

( 1)
1

( 1)

( 1)

j

j

j
K

x
x

x








         

, 

( )

( )
1 1

( )

( )

( ) ( )
( )

( ) ( ) j

j

j

j
K K x x

g x g x
g x

g x g x


                             

 
 

 
 ( )

( )( ) ( ) j
j

x x
g x g x


       

 

 
1 1 1 1

1

( ) / ( ) / ( ) /
( )

( ) / ( ) / ( ) /

T
K

T
K K K K

g x x g x x g x x
g x

g x x g x x g x x



   



                                 

.    

  
Exercise 4.4 Finding a HPDR via the multivariate NR algorithm 
 
Consider the Bayesian model:   ( | ) ~ ( )x Poissonλ λ  
        ( ) 1, 0f λ λ∝ > , 
and suppose that we observe x = 1. Find the 80% HPDR for λ . 
 
 
Solution to Exercise 4.4 
 
First,  ( | ) ( ) ( | ) 1 / !xf x f f x e x eλ λλ λ λ λ λ− −∝ = × = ,  since x = 1. 
 
Thus ( | ) ~ (2,1)x Gammaλ , with ( | ) , 0f x e λλ λ λ−= > . 
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The 80% HPDR for λ  is (a,b), where a and b satisfy the two equations: 
 ( | ) ( | ) 0.8F b x F a x− =      (4.1) 
 ( | ) ( | )f b x f a x= .      (4.2) 
  
Note:  Here, ( | )f b x  is the posterior pdf of λ  evaluated at b, ( | )F b x  
is the posterior cdf of λ  evaluated at b, etc.  Equations (4.1) and (4.2) 
reflect the requirement that ( , )a bλ∈  with posterior probability 0.8, 
and that the posterior density of λ  must be the same at both a and b, 
considering that ’sλ  posterior pdf is bell-shaped and unimodal. 

 
Thus we wish to solve the equation  
 ( ) 0g t = , 
where: 

 
0

0
0
 

=  
 

,  
a

t
b
 

=  
 

,  1

2

( ) ( | ) ( | ) 0.8
( )

( ) ( | ) ( | )
g t F b x F a x

g t
g t f b x f a x

− −   
= =   −  

. 

 
The Newton-Raphson algorithm for solving this equation is    
  ( 1) ( ) ( ) 1 ( )( ) ( )j j j jt t g t g t+ −′= − , 
where:    

( ) jj

j

a
t

b
 

=  
 

    

 1 1

2 2

( ) / ( ) /
( )

( ) / ( ) / ( 1) (1 )

a b

a b

g t a g t b ae be
g t

g t a g t b e a e b

− −

− −

∂ ∂ ∂ ∂  − ′ = =   ∂ ∂ ∂ ∂ − −   
. 

 
Starting at   

0(0)

0

0.5
3.0

a
t

b
   

= =   
  

 

(based on a visual inspection of  the posterior density ( | )f x e λλ λ −= ), we 
obtain results as shown in Table 4.3. 
 
Table 4.3 Multivariate NR algorithm  
 

j 0 1 2 3 4 5 
ja  0.5 0.0776524 0.163185 0.167317 0.16730 0.16730 

jb  3.0 2.7406883 3.025571 3.079274 3.08029 3.08029 
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It seems that the 80% CPDR for λ  is (0.16730, 3.08029). This interval is 
illustrated in Figure 4.5 and appears to be correct. 
 
As another check on our calculations, we find that:  
          ( 3.08029 | ) ( 0.16730 | ) 0.14153 0.14153 0f x f xλ λ= − = = − =  
          ( 3.08029 | ) ( 0.16730 | ) 0.81253 0.01253 0.8.F x F xλ λ= − = = − =  
 
Figure 4.5 An 80% HPDR 

 
    
R Code for Exercise 4.4 

 
gfun = function(a,b){  
     g1=pgamma(b,2,1)-pgamma(a,2,1)-0.8; g2=dgamma(b,2,1)-dgamma(a,2,1);  
     c(g1,g2) } 
 
gpfun = function(a,b){   m11=-dgamma(a,2,1); m12=dgamma(b,2,1) 
     m21=exp(-a)*(a-1); m22=exp(-b)*(1-b) 
     matrix(c(m11,m12,m21,m22),nrow=2,byrow=T)   } 
 
gvec=c(0.5,3); gmat=gvec; for(j in 1:7){ 
    a=gvec[1]; b=gvec[2] 
 gvec = gvec - solve(gpfun(a,b)) %*% gfun(a,b) 
 gmat = cbind(gmat,gvec)   } 
 
options(digits=6); gmat 
# [1,]  0.5 0.0776524 0.163185 0.167317 0.16730 0.16730 0.16730 0.16730 
# [2,]  3.0 2.7406883 3.025571 3.079274 3.08029 3.08029 3.08029 3.08029 
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lamv=seq(0,5,0.01); fv=dgamma(lamv,2,1) 
X11(w=8,h=4.5); par(mfrow=c(1,1)) 
plot(lamv,fv,type="l",lwd=3,xlab="lambda",ylab="f(lambda|x)", main=" ") 
abline(h=c(dgamma(a,2,1)),v=c(a,b),lty=1) 
 
# Checks: 
c(a,b,dgamma(c(a,b),2,1))  # 0.167300 3.080291 0.141527 0.141527 
c(pgamma(a,2,1), pgamma(b,2,1), pgamma(b,2,1) - pgamma(a,2,1)) 
#   0.0125275 0.8125275 0.8000000 
 
4.4 The Expectation-Maximisation (EM)  
algorithm 
 
We have shown how the Newton-Raphson algorithm for solving  g(x) = 0 
numerically can be useful for finding the posterior median and the HPDR. 
That algorithm can also be used for finding the posterior mode, when this 
is the solution of   

            ( | ) 0f yθ
θ

∂
=

∂
,             

or equivalently               

            log ( | ) 0f yθ
θ

∂
=

∂
. 

 
In some situations, finding the posterior mode either analytically or via 
the NR algorithm may be problematic because the posterior density 

( | )f yθ  has a very complicated form. In that case, one may consider 
applying the Expectation-Maximisation (EM) algorithm.  
 
This algorithm first requires the specification (i.e. definition by the user) 
of some suitable latent data, which we will denote by z, and then the 
application of the following two steps iteratively until convergence.  
 
Note: The choice of the latent data z will depend on the particular 
application. 

 
Step 1. The Expectation Step (E-Step) 
 
Determine the Q-function, defined as  
            ( ) {log ( | , ) | , }j z jQ E f y z yθ θ θ=                    

                       log ( | , ) ( | , )jf y z f z y dzθ θ= ∫ ,                        (4.3)           
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or, in words, as 
        the expectation of the log-augmented posterior density with respect  
        to the distribution of the latent data given the observed data and  
        current parameter estimates. 
 

Step 2. The Maximisation Step (M-Step) 
 
Find the value of θ  which maximises the Q-function, for example using 
the Newton-Raphson algorithm.  
 
This value becomes the current parameter estimate in the next iteration.  
 

Note 1: For mathematical convenience, the Q-function may also be 
defined as at (4.3) but plus and/or multiplied by any constants which do 
not depend on the parameter θ . This extended definition allows us to 
ignore terms which have no impact on the final results. If (4.3) is 
multiplied by a negative constant, the resulting Q-function should be 
minimised at Step 2 rather than maximised. 

  

Note 2:  If there is a choice between using the NR algorithm or the EM 
algorithm, one should consider the fact that the EM algorithm is slower 
to converge but far more stable. In fact, under certain regularity 
conditions, the EM algorithm is guaranteed to move closer to the 
required solution at each iteration. By contrast, the NR algorithm may 
not converge at all if started at a value far away from the required 
solution. Thus, one plausible strategy is to use the EM algorithm to 
obtain an approximate solution which is sufficiently close to the correct 
answer, and then to obtain a very high precision using just a few 
iterations of the NR algorithm. 

 
Exercise 4.5 Illustration of the EM algorithm 
 
Consider the Bayesian model given by:      
        1( ,..., | ) ~ (1, )ny y iid Gammaλ λ  
        ( ) 1, 0f λ λ∝ > . 
  
Suppose that the data, denoted D, consists of the observed data vector, 
denoted by 
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         1( ,..., )o ky y y= ,  
and the partially observed (or missing) data vector, denoted by  
        1( ,..., )m k ny y y+= .  
 
We don’t know the values in my  exactly, only that each of those values 
is greater than some specified constant c.  
 
Suppose that c = 10, n = 5, k = 3 and oy  = (3.1, 8.2, 6.9).  
 
(a) Find the posterior mode of λ  by maximising the posterior density 
directly. 
 
(b) Find the posterior mode of λ  using the EM algorithm. 
 

Solution to Exercise 4.5 
 
(a) First,   ( | ) ( ) ( | )f D f f Dλ λ λ∝

 

                               1 1

1 ( | ) ( | )
k n

i i
i i k

f y P y cλ λ
= = +

  
∝ × >  

  
∏ ∏ , 

where:     ( | ) iy
if y e λλ λ −=      

                 ( | ) iy c
i i

c

P y c e dy eλ λλ λ
∞

− −> = =∫ .   

              

Then  
1 1

( | ) i

k n
y c

i i k

f D e eλ λλ λ − −

= = +

  
∝   
  
∏ ∏  

                        
exp{ [ ( ) ]}k

oTy n k cλ λ= − + − ,  
where 1 ...oT ky y y= + +   = 18.2     (the total of the observed values). 
 
So   0( ) log ( | ) log [ ( ) ]Tl f D k y n k cλ λ λ λ≡ = − + −       

                               ( ) [ ( ) ]oT
kl y n k cλ
λ

′⇒ = − + − . 

  
Setting ( )l λ′  to zero yields the posterior mode,  

                
( )oT

k
y n k c+ −

 = 0.078534. 
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(b) The latent data here may be defined as 1( ,..., )m k nz y y y+= = . 
 
Then, the augmented posterior density is    

        
1

( | , ) i

n
y

o m
i

f y y e λλ λ −

=

∝∏ exp{ [ ]}n
oT mTy yλ λ= − + , 

where 1 ...mT k ny y y+= + +    (the total of the missing values). 
 
So the log-augmented density is 
        1log ( | , ) log [ ]o m oT mTf y y n y y cλ λ λ= − + +   
(where 1c  is a constant with respect to λ ). 
 

Now, ( | , )
iy

i i c

ef y y c
e

λ

λ

λλ
−

−> = ( ) ,iy c
ie y cλλ − −= >

 
(an exponential pdf shifted to the right by c). 
 

Therefore,    1( | , )i iE y y c cλ
λ

> = + . 

It follows that the Q-function is given by 

            

1( ) log ( )j oT
j

Q n y n k cλ λ λ
λ

  
= − + − +      

   

(note the distinction here between λ  and jλ ). 
 
That concludes the E-Step.  
 
As regards the M-Step, we now calculate the derivative 

         

1( ) ( )j oT
j

nQ y n k cλ
λ λ

  
′ = − + − +      

.  

Setting this derivative to zero yields a formula for the next value, 

         ( )1 ( ) 1/j
oT j

n
y n k c

λ
λ+ =

+ − +
.      (4.4) 

 
Implementing the above EM algorithm starting at 0 1λ =  we get the 
following sequence: 
       1.000000, 0.124378, 0.092115, 0.083456, 0.080431, 0.079282, 
       0.078832, 0.078653, 0.078581, 0.078553, 0.078542, 0.078537, 
       0.078535, 0.078535, 0.078534, 0.078534, ….. 
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We see that the EM algorithm has converged correctly to the answer 
obtained in (a), namely 0.078534. 
 

Note: Writing (4.4) with 1j jλ λ λ+= =  (i.e. the limiting value) gives  

               ( )( ) 1/oT

n
y n k c

λ
λ

=
+ − +

, 

and this can be solved easily for the same formula as derived in (a), 
namely  

              
( )oT

k
y n k c

λ =
+ −

. 

   
Thus, in this exercise it was not necessary to actually perform any 
iterations of the EM algorithm. 

 
R Code for Exercise 4.5 
 
# (a) 
n=5; k=3; c=10;  yo=c(3.1, 8.2, 6.9); yoT=sum(yo); yoT # 18.2 
k/(yoT+(n-k)*c) # 0.078534 
 
# (b) 
lam = 1; lamv = lam; options(digits=5) 
for(j in 1:20){  lam=n/(yoT+(n-k)*(c+1/lam)); lamv=c(lamv,lam)  } 
lamv 
# 1.000000 0.124378 0.092115 0.083456 0.080431 0.079282 0.078832  
# 0.078653 0.078581 0.078553 0.078542 0.078537 0.078535 0.078535  
# 0.078534 0.078534 0.078534 0.078534 0.078534 0.078534 0.078534 
   
 
Exercise 4.6 EM algorithm for right-censored Gaussian data 
 
Consider the Bayesian model given by:      
        2

1( ,..., | ) ~ ( , )ny y iid Nλ µ σ       
        ( ) 1,f µ µ∝ ∈ℜ . 
 
Suppose that the data, denoted D, consists of the observed data vector  
               1( ,..., )o ky y y=   
and the partially observed (or ‘missing’) data vector  
                1( ,..., )m k ny y y+= . 
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We don’t know the values in my  exactly, but only that each of these 
values is greater than some specified constant c.  
 
Suppose that c = 10, n = 5, k = 3 and oy  = (3.1, 8.2, 6.9).  
 
(a) Find the log-posterior density of µ  and describe how it could be used 
to find the posterior mode of µ . (Do not actually find that mode in this 
way.) 
 
(b) Find the posterior mode of µ  using the EM algorithm. Then check 
your answer by showing the mode in plots of the likelihood and log-
likelihood functions. 
 
Solution to Exercise 4.6 
 

(a) Observe that 
1 1

( | ) 1 ( | ) ( | )
k n

i i
i i k

f D f y P y cµ µ µ
= = +

  
∝ × >  

  
∏ ∏ . 

 

Here,   
2

2
1 ( ) 22

2
11 1

1( | ) exp ( )
2

i
k k ky

i i
ii i

f y e y
µ

σµ µ
σ

− −

== =

 ∝ = − − 
 

∑∏ ∏  

                                          2 2
2

1exp ( 1) ( )
2 o ok s k yµ
σ

  = − − + −   
, 

where:   
1

1 k

o i
i

y y
k =

= ∑    (the observed sample mean) 

             2 2

1

1 ( )
1

k

o i o
i

s y y
k =

= −
− ∑    (the observed sample variance). 

 

Also,   
21 ( )

21( | )
2

iy

i i
c

P y c e dy
µ

µ
σ π

∞
− −

> = ∫
 

                               

cP Z µ
σ
− = > 

 
 1 c µ

σ
− = −Φ 

 
, 

where Z ~ N(0,1) and ( ) ( )z P Z zΦ = ≤  (the standard normal cdf). 
      

Therefore  2
2( | ) exp ( ) 1

2

n k

o
k cf D y µµ µ
σ σ

−
 −    ∝ − − −Φ        

. 
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So the log-posterior is    

         2
12log ( | ) ( ) ( ) log 1

2 o
k cf D y n k cµµ µ
σ σ

 −  = − − + − −Φ +    
 

 (where 1c  is a term which does not depend on µ ). 
 
To find the posterior mode of µ  we could solve the equation  
             ( )l µ′  = 0, 

where   log ( | )( ) f Dl µµ
µ

∂′ =
∂

 

                     2

( ) 1( )
1

o
k n k cy

c
µµ φ

σ σ σµ
σ

−  −  −   = − − + −      −       −Φ    

. 

 
This solution could be obtained via the NR algorithm defined by 

            1

( )
( )

j
j j

j

l
l
µ

µ µ
µ+

′
= −

′′
 ,        

where   2

( )( ) ...l kl µµ
µ σ
′∂′′ = = − +
∂

 

 
As a further exercise, one could complete the formula for ( )l µ′′  above 
and actually implement the NR algorithm.  
 
Note: The posterior mode here is also the maximum likelihood estimate, 
since the prior is proportional to a constant. 

 
(b) With 1( ,..., )m k ny y y+=  as the latent data, the augmented posterior is 

 
1 1

( | , ) 1 ( | ) ( | )
k n

o m i i
i i k

f y y f y f yµ µ µ
= = +

  
∝ ×  

  
∏ ∏

 

                              2 2
2 2

1 1

1 1exp ( ) exp ( )
2 2

k n

i i
i i k

y yµ µ
σ σ= = +

   ∝ − − − −   
   

∑ ∑ . 

 
So the log-augmented posterior is 

     2 2
12 2

1 1

1 1log ( | , ) ( ) ( )
2 2

k k

o m i i
i i

f y y y y cµ µ µ
σ σ= =

= − − − − +∑ ∑
 



Bayesian Methods for Statistical Analysis  

172 

 2 2 2 2
12 2

1 1

1 1( 2 ) ( 2 )
2 2

k n

i i i i
i i k

y y y y cµ µ µ µ
σ σ= = +

= − − + − − + +∑ ∑
 

 ( ) ( ){ }2 2
2 32 ( ) 2 ( )o mc k ny n k n k y cµ µ µ µ= − + − − − + ,    

where: 
1

1 k

o i
i

y y
k =

= ∑   (the sample mean of the observed values) 

           
1

1 n

m i
i k

y y
n k = +

=
− ∑     (the sample mean of the missing values). 

 
Thus the Q-function may be taken as 
             2 2( ) 2 ( ) 2 ( )j o jQ k ky n k n k eµ µ µ µ µ= − + − − −  
                       2 2{ ( ) }o jn ky n k eµ= − + − , 
where  ( | , )j m je E y D µ= ( | , )i jE y D µ=      ( i > k ). 
 

We see that  ( | )
jje E X X c

µ µ=
 = >
  , 

where  2~ ( , )X N µ σ     (with µ  taken as a constant). 
 
Now observe that         

 ( )( | )
( ) ( )c

f x IE X X c x dx
P X c P X c

∞

> = =
> >∫ , 

where  ( ) 1 ( ) 1 1c cP X c P X c P Z µ µ
σ σ
− −   > = − < = − < = −Φ   

   
, 

and where 

 
2

2
1 ( )

21
2

x

c

I x e dx
µ

σ

σ π

∞ − −
= ∫  

     
2 2

2 2
1 1( ) ( )

2 21 1( )
2 2

x x

c c

x e dx e dx
µ µ

σ σµ µ
σ π σ π

∞ ∞− − − −
= − +∫ ∫  

    2

2

1

( ) /2

1 ( )
2

t

c

e dt P X cσ

µ

µ
σ π

∞ −

−

= + >∫     

    where 21 ( )
2

t x µ= −  and ( )dt x dxµ= −  

 2

2

1

2
( ) /2

1 ( )
2

t

c

e dt P X cσ

µ

σ µ
σπ

∞ −

−

= + >∫  
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2

2
1 ( ) /2

( )
2

c

P X c
µ

σσ µ
π

− −

= + >   

21
21 ( )

2

c

P X c
µ

σ
σ µ

π

− −  
 

 
 = + >  
 

 

    ( )c P X cµσφ µ
σ
− = + > 

 
    where ( )zφ  is the standard normal pdf. 

 

Thus    1( | ) ( )
( )

cE X X c P X c
P X c

µσφ µ
σ

 −  > = + >  >   
 

           1c cµ µµ σ φ
σ σ
−  −    = + −Φ    

    
, 

and consequently    1j j
j j

c c
e

µ µ
µ σ φ

σ σ
−  −    

= + −Φ    
    

. 

 
That completes the E-Step, which may be summarised by writing 
             2( ) 2 { ( ) }j o jQ n ky n k eµ µ µ= − + − , 
where je  is as given above. 
 
The M-Step then involves calculating 
 ( ) 2 2{ ( ) }j o jQ n ky n k eµ µ′ = − + −  
and setting this to zero so as to yield the next parameter estimate, 

           1

( )o j
j

ky n k e
n

µ +

+ −
=  

     1 ( ) 1j j
o j

c c
ky n k

n
µ µ

µ σ φ
σ σ

  − −    
= + − + −Φ              

. 

 
Implementing the above EM algorithm starting at 5 (arbitrarily), we 
obtain the sequence: 

5.000000, 8.137838, 8.371786, 8.395701, 8.398209, 8.398473, 
8.398501, 8.398504, 8.398504, 8.398504, 8.398504, ..... 

 
We conclude that the posterior mode of µ  is 8.3985.  
 
Figure 4.6 shows the posterior density (top subplot) and the log-posterior 
density (bottom subplot). Each of these density functions is drawn scaled, 
meaning correct only up to a constant of proportionality. In each subplot, 
the posterior mode is indicated by way of a vertical dashed line. 
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Figure 4.6 Posterior and log-posterior densities (scaled) 

 
 
R Code for Exercise 4.6 
 
# (b) 
options(digits=6); yo = c(3.1, 8.2, 6.9); n=5; k = 3; c= 10; sig=3;  
yoT=sum(yo); c(yoT, yoT/3)  # 18.20000  6.06667 
mu=5; muv=mu;   for(j in 1:10){ 
   ej = mu + sig * dnorm((c-mu)/sig)  /  ( 1-pnorm((c-mu)/sig) ) 
   mu =  ( yoT + (n-k)*ej   ) / n     
   muv=c(muv,mu)     } 
muv # 5.00000 8.13784 8.37179 8.39570 8.39821 8.39847  
 # 8.39850 8.39850 8.39850 8.39850 8.39850 
modeval=muv[length(muv)]; modeval # 8.3985 
 
muvec=seq(0,20,0.001); lvec=muvec 
for(i in 1:length(muvec)){ muval=muvec[i] 
   lvec[i]=(-1/(2*sig^2))*sum((yo-muval)^2) +  
    (n-k)*log(1-pnorm((c-muval)/sig))   } 
iopt=(1:length(muvec))[lvec==max(lvec)]; muopt=muvec[iopt]; muopt # 8.399 
 
X11(w=8,h=6); par(mfrow=c(2,1));  
plot(muvec,exp(lvec),type="l",lwd=2); abline(v=modeval,lty=2,lwd=2) 
plot(muvec,lvec,type="l",lwd=2); abline(v=modeval,lty=2,lwd=2) 
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4.5 Variants of the NR and EM algorithms 
 
The Newton-Raphson and Expectation-Maximisation algorithms can be 
modified and combined in various ways to produce a number of useful 
variants or ‘hybrids’. For example, the NR algorithm can be used at each 
M-Step of the EM algorithm to maximise the Q-function.  
 
If the EM algorithm is applied to find the mode of a parameter vector, say 

1 2( , )θ θ θ= , then the multivariate NR algorithm for doing this may be 
problematic and one may consider using the ECM algorithm (where C 
stands for Conditional).  
 
The idea is, at each M-Step, to maximise the Q-function with respect to 

1θ , with 2θ  fixed at its current value; and then to maximise the Q-function 
with respect to 2θ , with 1θ  fixed at its current value.  
 
If each of these conditional maximisations is achieved via the NR 
algorithm, the procedure can be modified to become the ECM1 algorithm. 
This involves applying only one step of each  NR algorithm (rather than 
finding the exact conditional maximum). In many cases the ECM1 
algorithm will be more efficient at finding the posterior mode than the 
ECM algorithm. 
 
Sometimes, when the simultaneous solution of several equations via the 
multivariate NR algorithm is problematic, a more feasible  solution is to 
apply a suitable CNR algorithm (where again C stands for Conditional).  
 
For example, suppose we wish to solve two equations simultaneously, say: 
 1( , ) 0g a b =   
 2 ( , ) 0g a b = , 
for a and b. Then it may be convenient to define the function 
 2 2

1 2( , ) ( , ) ( , )g a b g a b g a b= + , 
which clearly has a minimum value of zero at the required solutions for a 
and b.  
 
This suggests that we iterate two steps as follows: 
 Step 1.  Minimise ( , )g a b  with respect to a, with b held fixed. 
 Step 2.  Minimise ( , )g a b  with respect to b, with a held fixed.  
 



Bayesian Methods for Statistical Analysis  

176 

The first of these two steps involves solving 

 ( , ) 0g a b
a

∂
=

∂
,     

where    1 2
1 2

( , ) ( , )( , ) 2 ( , ) 2 ( , )g a b g a bg a b g a b g a b
a a a

∂ ∂∂
= +

∂ ∂ ∂
. 

 
Assuming the current values of a and b are ja  and jb , this can be achieved 
via the NR algorithm by setting 0 ja a′ =  and iterating until convergence 
as follows (k = 0, 1, 2, ...): 

 1 2

2

( , ) ,

( , ) ,

k j

k k

k j

g a b a a b b
aa a

g a b a a b b
a

+

∂ ′= = ∂ ′ ′= −
 ∂ ′= = ∂ 

,    

and  finally setting  
 1ja a+ ∞′= .             (4.5) 
 
The second of the two steps involves solving 

 ( , ) 0g a b
b

∂
=

∂
,     

where    1 2
1 2

( , ) ( , )( , ) 2 ( , ) 2 ( , )g a b g a bg a b g a b g a b
b b b

∂ ∂∂
= +

∂ ∂ ∂
. 

 
This can be achieved via the NR algorithm by setting 0 jb b′ =  and iterating 
until convergence  as follows (k = 0, 1, 2, ...): 

 
1

1 2

12

( , ) ,

( , ) ,

j k

k k

j k

g a b a a b b
bb b

g a b a a b b
b

+

+

+

∂ 
= = ∂ ′ = −

 ∂
= = ∂ 

,    

and  finally setting  
 1jb b+ ∞′= .       (4.6) 
 
A variant of the CNR algorithm is the CNR1 algorithm. This involves 
performing only one step of each NR algorithm in the CNR algorithm.  
 
In the above example, the CNR1 algorithm implies we set 1 1ja a+ ′=   at 
(4.5) and 1 1jb b+ ′=  at (4.6) (rather than 1ja a+ ∞′=  and 1jb b+ ∞′= ).  
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This modification will also result in eventual convergence to the solution 
of 1( , ) 0g a b =  and 2 ( , ) 0g a b = .  
 
One application of the CNR and CNR1 algorithms is to finding the HPDR 
for a parameter.  
 
For example, in Exercise 4.4 we considered the model given by  
 ( | ) ~ ( )x Poissonλ λ   
 ( ) 1, 0f λ λ∝ > , 
with observed data x = 1.  
 
The 80% HPDR for λ  was shown to be (a,b), where a and b are the 
simultaneous solutions of the two equations:  
 1( , ) ( | ) ( | ) 0.8g a b F b x F a x= − −       
 2 ( , ) ( | ) ( | )g a b f b x f a x= − . 
 
Applying the CNR or CNR1 algorithm as described above should also 
lead to the same interval as obtained earlier via the multivariate NR 
algorithm, namely (0.16730, 3.08029). 
 
For further details regarding the EM algorithm, the Newton-Raphson 
algorithm, and extensions thereof, see Lachlan and Krishnan (2008). 
 
Exercise 4.7 Application of the EM and ECM algorithms to a 
normal mixture model 
 
Consider the following Bayesian model: 
 2( | , , ) ~ ( , ), 1,...,i iy R N R i nµ δ µ δ σ⊥ + =  
 1( ,..., | , ) ~ ( ), 1,...,nR R iid Bernoulli i nµ δ π =  
 ( , ) 1, , 0f µ δ µ δ∝ ∈ℜ > . 
 
This model says that each value iy  has a common variance 2σ  and one 
of two means, these being:  µ    if  iR  = 0   
    µ δ+    if  iR  = 1. 
 
Each of the ‘latent’ indicator variables iR  has known probability π  of 
being equal to 1, and probability 1 π−  of being equal to 0.  
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Note: In more advanced models, the quantity π  could be treated as 
unknown and assigned a prior distribution, along with the other two 
model parameters, µ  and δ . The model here provides a ‘stepping 
stone’ to  understanding and implementing such more complex models. 

 
(a) Consider the situation where n = 100, π  = 1/3, µ  = 20 , δ  = 10 and 
σ  = 3. Generate a data vector 1( ,..., )ny y y=  using these specifications 
and create a histogram of the simulated values. 
 
(b) Design an EM algorithm for finding the posterior mode of ( , )θ µ δ= . 
Then implement the algorithm so as to find that mode. 
 
(c) Modify the EM algorithm in part (b) so that it is an ECM algorithm. 
Then run the ECM algorithm so as to check your answer to part (b). 
 
(d) Create a plot which shows the routes taken by the algorithms in parts 
(b) and (c). 
 
Solution to Exercise 4.7 
 
(a) Figure 4.7 shows a histogram of the sampled values which clearly 
shows the two component normal densities and the mixture density. The 
sample mean of the data is 23.16. Also, 29 of the 100 iR  values are equal 
to 1, and 71 of them are equal to 0. 
 
Figure 4.7 Histogram of simulated data 

 



Chapter 4: Computational Tools 

179 

(b) We will here take the vector 1( ,..., )nR R R=  as the latent data. The 
conditional posterior of µ  and δ  given this latent data is 

( , | , ) ( , , , )f y R f y Rµ δ µ δ∝  
            ( , ) ( | , ) ( | , , )f f R f y Rµ δ µ δ µ δ=  
  [ ]( )21

2
1 1

11 (1 ) exp
2

i i

n n
R R

i i
i i

y Rπ π µ δ
σ

−

= =

 ∝ × − × − − + 
 

∏ ∏
 

  [ ]( )2

2
1

11 1 exp
2

n

i i
i

y Rµ δ
σ =

 ∝ × × − − + 
 

∑ . 

 
So the log-augmented posterior density is 

         [ ]( )2

2
1

1log ( , | , )
2

n

i i
i

f y R y Rµ δ µ δ
σ =

= − − +∑
 

   [ ] [ ]( )22
2

1

1 2
2

n

i i i i
i

y y R Rµ δ µ δ
σ =

= − − + + +∑
 

   [ ] [ ]22
2

1 1 1

1 2
2

n n n

i i i i
i i i

y y R Rµ δ µ δ
σ = = =

 = − − + + + 
 
∑ ∑ ∑

 

 2 2 2
1 2

1 1 1
2 2 2

n n n

i i i i
i i i

c c ny y R n R Rµ δ µ µδ δ
= = =

 = − − − + + + 
 

∑ ∑ ∑ ,   

where 1c  and 2c  are positive constants which do not depend on µ  or δ  
in any way. We see that 

  2 2
1 2

1
log ( , | , ) 2 2 2

n

i i T T
i

f y R c c ny y R n R Rµ δ µ δ µ µδ δ
=

 = − − − + + + 
 

∑ ,   

where 
1

n

T i
i

R R
=

=∑ .                   

 

Note: Each iR  equals 0 or 1, and therefore 2
i iR R= . 

 
So the Q-function is  
  ( , ) {log ( , | , ) | , , }j R j jQ E f y R yµ δ µ δ µ δ=    

         2 2
1 2

1
2 2 2

n

i ij Tj Tj
i

c c ny y e n e eµ δ µ µδ δ
=

 = − − − + + + 
 

∑ ,
 

where:  ( | , , )ij i j je E R y µ δ=  
  

1
( | , , )

n

Tj T j j ij
i

e E R y eµ δ
=

= =∑ . 
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We now need to obtain formulae for the ije  values. Observe that 
 ( | , , ) ( , , , )f R y f y Rµ δ µ δ∝  

  [ ]( )21
2

1 1

11 (1 ) exp
2

i i

n n
R R

i i
i i

y Rπ π µ δ
σ

−

= =

 ∝ × − × − − + 
 

∏ ∏ . 

 

It follows that    
( | , , ) ~ ( )i iR y Bernoulli eµ δ ⊥ , i = 1,...,n,  

where          

 
[ ]( )

[ ]( ) ( )

2

2

2 2
2 2

1exp
2

1 1exp (1 )exp
2 2

i

i

i i

y
e

y y

π µ δ
σ

π µ δ π µ
σ σ

 − − + 
 =

   − − + + − − −   
   

.  

 
Therefore    

     
( )

( ) ( )

2

2

2 2

2 2

1exp
2

1 1exp (1 )exp
2 2

i j j

ij

i j j i j

y
e

y y

π µ δ
σ

π µ δ π µ
σ σ

  − − +   =
    − − + + − − −       

. 

  
Thereby the E-Step of the EM algorithm has been defined. 
 

Next, the M-Step requires us to maximise the Q-function. We begin by 
writing: 

 { }1

( , )
0 2 0 2 2 0j

Tj

Q
c ny n e

µ δ
µ δ

µ
∂

= − − − + + +
∂

   

 1
1

( , )
0 0 2 0 2 2

n
j

i ij Tj Tj
i

Q
c y e e e

µ δ
µ δ

δ =

∂  
= − − − + + + ∂  

∑ .   

 
Setting both of these derivatives to zero and solving for µ  and δ
simultaneously, we obtain the next two values in the algorithm: 

 1
1

1

11

n

i ij
i

j

Tj

y y e
n

e
n

µ =
+

−
=

−

∑
,     1

1 1

n

i ij
i

j j
Tj

y e

e
δ µ=

+ += −
∑

. 

 
The EM algorithm is now completely defined.  
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Starting the algorithm from 0 0( , )µ δ  = (10,1), we obtain the sequence 
shown in Table 4.4. We see that the algorithm has converged to what we 
believe to be the posterior mode, ˆˆ( , )µ δ  =  (20.08, 9.72).  
 
Running the algorithm from different starting points we obtain the same 
final results. Unlike the NR algorithm, we find that the EM algorithm 
always converges, regardless of the point from which it is started. 
 
Table 4.4 Results of an EM algorithm 
 

j jµ  jδ   
0 10.000 1.000  
1 21.169 3.032  
2 20.321 7.07  
3 19.843 9.139  
4 19.926 9.518  
5 20.005 9.626  
6 20.046 9.674  
7 20.066 9.697  
8 20.075 9.708  
9 20.08 9.713  

10 20.082 9.715  
11 20.083 9.717  
12 20.084 9.717  
13 20.084 9.717  
14 20.084 9.718  
15 20.084 9.718  
16 20.084 9.718  
17 20.084 9.718  
18 20.084 9.718  
19 20.084 9.718  
20 20.084 9.718  

 
 
(c) The ECM requires us to once again examine the Q-function,  

 2 2
1 2

1

( , ) 2 2 2
n

j i ij Tj Tj
i

Q c c ny y e n e eµ δ µ δ µ µδ δ
=

 
= − − − + + + 

 
∑ ,   

but now to maximise this function with respect to µ  and δ  individually 
(rather than simultaneously as for the EM algorithm in (c)). 
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Thus, setting { }1

( , )
0 2 0 2 2 0j

Tj

Q
c ny n e

µ δ
µ δ

µ
∂

= − − − + + +
∂

   

to zero we get    1
1

j j Tjy e
n

µ δ+ = −    (after substituting in jδ δ= ). 

 

Then, setting 1
1

( , )
0 0 2 0 2 2

n
j

i ij Tj Tj
i

Q
c y e e e

µ δ
µ δ

δ =

∂  
= − − − + + + ∂  

∑    

to zero we get    1
1 1

n

i ij
i

j j
Tj

y e

e
δ µ=

+ += −
∑

     (same equation as in (c)). 

 
We see that the ECM algorithm here is fairly similar to the EM algorithm.  
 
Starting the algorithm at 0 0( , )µ δ   = (10, 1) we obtain the sequence shown 
in Table 4.5 (page 184). We see that the ECM algorithm has converged to 
the same values as the EM algorithm, but along a slightly different route. 
 
(d) Figure 4.8 (page 185) shows a contour plot of the log-posterior density 
log ( , | , )f y Rµ δ  and the routes of the EM and ECM algorithms in parts  
(b) and (c), each from the starting point 0 0( , )µ δ  = (10, 1) to the mode, 

ˆˆ( , )µ δ  =  (20.08, 9.72). Also shown are two other pairs of routes, one pair 
starting from (5, 30), and the other from (35, 20). 
 
Note 1: In this exercise there is little difference between the EM and 
ECM algorithms, both as regards complexity and performance. In more 
complex models we may expect the EM algorithm to converge faster 
but have an M-Step which is more difficult to complete than the set of 
separate Conditional Maximisation-Steps (CM-Steps) of the ECM 
algorithm. 

 
Note 2: The log-posterior density in Figure 4.8 has a formula which can 
be derived as follows. First, the joint posterior of all unknowns in the 
model is 
     ( , , | ) ( , , , )f R y f y Rµ δ µ δ∝  

 [ ]( )21
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n n
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y Rπ π µ δ
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= =
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 

∏ ∏  
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So the joint posterior density of just µ  and δ  is  

       ( , | ) ( , , | )
R

f y f R yµ δ µ δ=∑  
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So the log-posterior density of µ  and δ  is  

       ( , ) log ( , | )l f yµ δ µ δ≡  

                   [ ]( )2

2
1

1log exp
2

n

i
i

c yπ µ δ
σ=

  = + − − +   
∑  

                                                     ( )2
2

1(1 )exp
2 iyπ µ
σ

 + − − −  
, 

where c is an additive constant and can arbitrarily be set to zero. 
 
Note 3: As an additional exercise (and a check on our calculations 
above), we could apply the Newton-Raphson algorithm so as to find the 
mode of ( , )l µ δ . But this would require us to first determine formulae 
for the following rather complicated partial derivatives: 
  

 
2 2 2

2 2

( , ) ( , ) ( , ) ( , ) ( , ), , , ,l l l l lµ δ µ δ µ δ µ δ µ δ
µ δ µ δ δ µ

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

, 

 
and could prove to be unstable. That is, the algorithm might fail to 
converge if started from  a point not very near the required solution.  
 
Another option is to apply the CNR algorithm (the conditional Newton-
Raphson algorithm). This would obviate the need for one of the 

derivatives above, 
2 ( , )l µ δ
δ µ

∂
∂ ∂

, and might be more stable, albeit at the cost 

of not converging so quickly as the plain NR algorithm. 
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As yet another possibility, we could apply the CNR1 algorithm. This is 
the same as the CNR algorithm, except that at each conditional step we 
perform just one iteration of the univariate NR algorithm before moving 
on to the other of the two conditional steps. 
 
Finally, we could use the R function optim() to maximise ( , )l µ δ . 
Although this function will be formally introduced later, we can report 
that it does indeed find the posterior mode, ˆˆ( , )µ δ  =  (20.08, 9.72). For  
details, see the bottom of the R code below. 

 
Table 4.5 Results of an ECM algorithm 
 

j jµ  jδ   
0 10.000 1.000  
1 22.505 1.696  
2 22.566 3.882  
3 21.905 6.811  
4 21.139 8.729  
5 20.611 9.501  
6 20.322 9.732  
7 20.181 9.774  
8 20.118 9.764  
9 20.093 9.746  

10 20.085 9.732  
11 20.083 9.725  
12 20.083 9.720  
13 20.083 9.719  
14 20.084 9.718  
15 20.084 9.718  
16 20.084 9.718  
17 20.084 9.718  
18 20.084 9.718  
19 20.084 9.718  
20 20.084 9.718  
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Figure 4.8 Routes of the EM and ECM algorithms 

 
 
R Code for Exercise 4.7 
 
# (a) 
X11(w=8,h=4.5); par(mfrow=c(1,1)); options(digits=4) 
ntrue=100; pitrue=1/3; mutrue=20; deltrue=10; sigtrue=3 
 
set.seed(512); Rvec=rbinom(ntrue,1,pitrue); sum(Rvec) # 29 
yvec=rnorm(ntrue,mutrue+deltrue*Rvec,sigtrue) 
ybar=mean(yvec); ybar # 23.16 
 
hist(yvec,prob=T,breaks=seq(0,50,0.5),xlim=c(10,40),ylim=c(0,0.2), 
 xlab="y", main=" ") 
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yv=seq(0,50,0.01); lines(yv,dnorm(yv,mutrue,sigtrue),lty=2,lwd=2) 
lines(yv,dnorm(yv,mutrue+deltrue, sigtrue),lty=2,lwd=2) 
lines(yv,   (1-pitrue)*dnorm(yv,mutrue,sigtrue)+ 
     pitrue*dnorm(yv,mutrue+deltrue,sigtrue),     lty=1,lwd=2) 
legend(10,0.2,c("Components","Mixture"),lty=c(2,1),lwd=c(2,2)) 
 
# (b) 
evalsfun= function(y=yvec, pii=pitrue, mu=mutrue,del=deltrue,sig=sigtrue){ 
# This function outputs (e1,e2,...,en) 
 term1vals=pii*dnorm(y,mu+del,sig) 
 term0vals=(1-pii)*dnorm(y,mu,sig) 
 term1vals/(term1vals+term0vals) } 
 
EMfun=function(J=20, mu=10, del=1, y=yvec, pii=pitrue, sig=sigtrue){ 
  muv=mu; delv=del;  ybar=mean(y); n=length(y) 
 for(j in 1:J){ 
  evals=evalsfun(y=y, pii=pii, mu=mu, del=del, sig=sig) 
  sumyevals = sum(y*evals); sumevals=sum(evals) 
  mu=(ybar-sumyevals/n) / (1-sumevals/n) 
  del=sumyevals/sumevals - mu 
  muv=c(muv,mu); delv=c(delv,del) 
  } 
 list(muv=muv,delv=delv) 
 } 
EMres=EMfun(J=20, mu=10, del=1,y=yvec,pii=pitrue,sig=sigtrue) 
outmat = cbind(0:20,EMres$muv, EMres$delv)  
print.matrix <- function(m){ write.table(format(m, justify="right"), 
               row.names=F, col.names=F, quote=F)   } 
print.matrix(outmat) 
#   0.000 10.000  1.000 
#   1.000 21.169  3.032 
#   2.000 20.321  7.070 
#   3.000 19.843  9.139 
#   4.000 19.926  9.518 
#   5.000 20.005  9.626 
# ………………………………. 
# 16.000 20.084  9.718 
# 17.000 20.084  9.718 
# 18.000 20.084  9.718 
# 19.000 20.084  9.718 
# 20.000 20.084  9.718 
 
muhat=EMres$muv[21]; delhat=EMres$delv[21];  
c(muhat,delhat) # 20.084  9.718 
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# (c) 
CEMfun=function(J=20, mu=10, del=1, y=yvec, pii=pitrue, sig=sigtrue){ 
  muv=mu; delv=del;  ybar=mean(y); n=length(y) 
 for(j in 1:J){ 
  evals=evalsfun(y=y, pii=pii, mu=mu, del=del, sig=sig) 
  sumyevals = sum(y*evals); sumevals=sum(evals) 
  mu=ybar-del*sumevals/n 
  del=sumyevals/sumevals - mu 
  muv=c(muv,mu); delv=c(delv,del) 
  } 
 list(muv=muv,delv=delv) 
 } 
CEMres=CEMfun(J=20, mu=10, del=1,y=yvec,pii=pitrue,sig=sigtrue) 
outmat2 = cbind(0:20, CEMres$muv, CEMres$delv)  
print.matrix(outmat2) 
 
#   0.000 10.000  1.000 
#   1.000 22.505  1.696 
#   2.000 22.566  3.882 
#   3.000 21.905  6.811 
#   4.000 21.139  8.729 
#   5.000 20.611  9.501 
# ……………………………… 
# 16.000 20.084  9.718 
# 17.000 20.084  9.718 
# 18.000 20.084  9.718 
# 19.000 20.084  9.718 
# 20.000 20.084  9.718 
 
# (d) 
X11(w=8,h=9); par(mfrow=c(1,1)) 
logpostfun=function(mu=10,del=10,y=yvec,pii=pitrue,sig=sigtrue){ 
 sum(log(pii*dnorm(y,mu+del,sig)+(1-pii)*dnorm(y,mu,sig)))  } 
mugrid=seq(0,35,0.5); delgrid=seq(0,30,0.5) 
logpostmat=as.matrix(mugrid %*% t(delgrid)) 
dim(logpostmat)  # 41 21 OK 
 
for(i in 1:length(mugrid)) for(j in 1:length(delgrid)) logpostmat[i,j] =  
 logpostfun(mu=mugrid[i],del=delgrid[j],y=yvec,pii=pitrue,sig=sigtrue) 
 
contour(x=mugrid, y=delgrid, z=logpostmat, nlevels=20,  
 xlab="mu", ylab="delta"); points(muhat,delhat, pch=16,cex=1.2) 
 
points(10,1,pch=16,cex=1.2) 
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EMres=EMfun(J=20, mu=10, del=1,y=yvec,pii=pitrue,sig=sigtrue) 
CEMres=CEMfun(J=20, mu=10, del=1,y=yvec,pii=pitrue,sig=sigtrue) 
lines(EMres$muv, EMres$delv,lty=1,lwd=3) 
lines(CEMres$muv, CEMres$delv,lty=2,lwd=3) 
 
points(5,30,pch=16,cex=1.2) 
EMres=EMfun(J=50, mu=5, del=30,y=yvec,pii=pitrue,sig=sigtrue) 
CEMres=CEMfun(J=50, mu=5, del=30, y=yvec,pii=pitrue,sig=sigtrue) 
lines(EMres$muv, EMres$delv,lty=1,lwd=3) 
lines(CEMres$muv, CEMres$delv,lty=2,lwd=3) 
 
points(35,20,pch=16,cex=1.2) 
EMres=EMfun(J=50, mu=35, del=20,y=yvec,pii=pitrue,sig=sigtrue) 
CEMres=CEMfun(J=50, mu=35, del=20, y=yvec,pii=pitrue,sig=sigtrue) 
lines(EMres$muv, EMres$delv,lty=1,lwd=3) 
lines(CEMres$muv, CEMres$delv,lty=2,lwd=3) 
legend(21,30,c("EM","ECM"),lty=c(1,2),lwd=c(3,3)) 

# Note 2.  Maximisation of the logposterior density of mu and delta using optim()  
logpostfun2=function(theta=c(10,1),y=yvec,pii=pitrue,sig=sigtrue){ 
 -sum(log(pii*dnorm(y,theta[1]+theta[2],sig)+ 
               (1-pii)*dnorm(y,theta[1],sig)))   
               } 
res=optim(par=c(10,1),fn= logpostfun2)$par; res  # 20.08  9.72 
res=optim(par=c(5,30),fn= logpostfun2)$par; res  # 20.085  9.716 
res=optim(par=c(35,20),fn= logpostfun2)$par; res  # 20.084  9.716 
res=optim(par=res,fn= logpostfun2)$par; res  # 20.084  9.718    
   # Here we fine-tune the answer by starting at the previous solution. 
 

4.6 Integration techniques 
 
Bayesian inference typically involves a great deal of integration (and/or 
summation). For example, consider the posterior density   
 5( | ) 6 ,0 1f y      
(which featured in previous exercise involving the binomial-beta model) 
and suppose that we wish to find the posterior mean estimate of 2λ θ= . 
This estimate is  

  
1

2 2 5

0

ˆ ( | ) 6 0.75E y d        . 

 
But what if this integral did not have a simple analytical solution?  
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In that case, we could consider a number of other strategies. First, we 
might re-express the posterior mean as 
 ˆ ( | )f y d     , 

where, using the method of transformation, 

            51/ 2 1/ 2 21( | ) ( | ) 6 3
2

df y f y
d


    


   ,   0 1  , 

so that   

 
1

2

0

ˆ 3 d       = 0.75. 

 
If this strategy does not help, we may then consider using a numerical 
integration technique.  
 
For example, we could apply the integrate() function in R to get ̂  = 0.75, 
as follows: 
 gfun = function(t){ 6*t^7 }  # Define the function to be integrated 
 integrate(f=gfun,lower=0,upper=1)$value # 0.75        
 
In some cases the function requiring integration is very complicated or 
does not have a closed form expression. In that case, direct application of 
the integrate() function may not work or be practicable, and then it may 
be useful to apply the trapezoidal rule or Simpson’s rule to evaluate the 
integral.  
 
When working in R, the following is often a convenient strategy: 

(i)   evaluate 2 5( ) 6g      at each   on the grid  
       0, 0.1, 0.2, ..., 0.9, 1 (say); then 
(ii)  create a spline through these points, using the fit() and predict()  
       functions; and then 
(iii) find the area under this spline using the integrate() function. 

 
Applying this method (see the R code below for details) yields 0.7558 as 
an estimate of ̂ . Repeating, but with the evaluations on the grid  0.01, 
0.02, ...,1 yields 0.7500. Repeating again, but with evaluations on the grid 
0.001, 0.002, ..., 1 yields 0.7500. It appears that a limit has been reached 
and that using a finer grid would not result in any improvements to the 
results of this numerical procedure.  
 
We may conclude that ˆ 0.7500  (to 4 decimals). 
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R Code for Section 4.6 
 
gfun = function(t){ 6*t^7 }  # Define the function to be integrated 
integrate(f=gfun,lower=0,upper=1)$value # 0.75        
 
INTEG <- function(xvec, yvec, a = min(xvec), b = max(xvec)){ 
 # Integrates numerically under a spline through the 
 # points given by the vectors xvec and yvec, from a to b. 
 fit <- smooth.spline(xvec, yvec) 
 spline.f <- function(x){predict(fit, x)$y } 
 integrate(spline.f, a, b)$value   } 
 
gfun=function(t){ 6*t^7 } 
tvec <- seq(0,1,0.1);    gvec <- gfun(tvec) 
 INTEG(tvec,gvec,0,1) # 0.755803 
tvec <- seq(0,1,0.01);    gvec <- gfun(tvec) 
 INTEG(tvec,gvec,0,1)   # 0.75 
tvec <- seq(0,1,0.001);   gvec <- gfun(tvec) 
 INTEG(tvec,gvec,0,1)   # 0.75 
 
Exercise 4.8 Numerical integration 
 
Suppose that  2~ ( , )X N µ σ  and ( | )Y X X c= >  where µ  = 8, σ  = 3 
and c = 10.  Find EY using numerical techniques and compare your answer 
with the exact value,  

1c cµ µµ σ φ
σ σ
−  −    + −Φ    

    
,      

which was derived analytically in Exercise 4.6. 
 
Solution to Exercise 4.8 
 
The required integral is   

( )
c

EY g x dx
∞

= ∫ , 

where: ( )( )
( 0)
xf xg x

P X
=

>
, 1( ) xf x µφ

σ σ
− =  

 
, 

( 0) 1 cP X µ
σ
− > = −Φ 

 
. 

 
Applying the integrate() function directly to ( )g x  we get EY = 11.7955. 
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Applying the INTEG() function (defined in Section 4.6) with coordinates 
given by (10,10.1,10.2,...,30)  and ( (10), (10.1), (10.2),..., (30))g g g g , we 
also get EY = 11.7955. The exact value of EY is in fact    

 1c cµ µµ σ φ
σ σ
−  −    + −Φ    

    
  =  11.7955. 

 
Note: If we use the integrate() function with bounds from 10 to 20 rather 
than 10 to 30, we get 11.7929, which is slightly in error. Exactly the 
same happens with the INTEG() function. Thus, when using either of 
these functions, care must be taken to choose a large enough range. 
Ideally, we will sketch the integrand function and make sure the range 
of integration is sufficiently broad to cover all important regions (where 
the integrand is significantly positive). In practice, it is useful to 
gradually increase the range of integration until the answer stops 
changing. Likewise, it is useful to gradually increase the grid density 
chosen for the INTEG() function until the answer stops changing. 

 
R Code for Exercise 4.8 

 
# First declare the function INTEG() as defined in the previous exercise 
 
mu=8; sig=3; c = 10; options(digits=6) 
PXpos = (1-pnorm((c-mu)/sig)) 
gfun=function(x){ x * dnorm(x,mu,sig) / PXpos } 
integrate(gfun,c,20)$value # 11.7929 
integrate(gfun,c,30)$value # 11.7955 
xvec <- seq(c,20,0.1);    gvec <- gfun(xvec);   INTEG(xvec,gvec,c,20)   # 11.7929 
xvec <- seq(c,30,0.1);    gvec <- gfun(xvec);   INTEG(xvec,gvec,c,30)   # 11.7955 
true=mu + sig*dnorm((c-mu)/sig)/(1-pnorm((c-mu)/sig)); true # 11.7955 
 
Exercise 4.9 Double integration 
 
Use the integrate() and INTEG() functions in at least two different ways 
so as to calculate the double integral  

 
31

0 0

x
t

x t

I t dt dx
= =

 
=   

 
∫ ∫ . 

 
Illustrate your calculations with suitable graphs of the relevant functions 
involved. 
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Solution to Exercise 4.9 
 
Using the integrate() function alone (and not the INTEG() function), the 
integral can be worked out as follows: 
 

integrate(function(x) {  
  sapply(x, function(x) { 
  integrate(function(t) { 
  sapply(t, function(t) t^t ) 
  }, 0, x^3)$value  })  }, 0, 1) 
 

# 0.192723 with absolute error < 7.8e-10 
 
 
Another approach is as follows. Observe that  

1

0

( )
x

I g x dx
=

= ∫ , 

where  
3

0

( ) ( )
x

t

g x h t dt
=

= ∫       

and     
( ) th t t= . 

 
We will now use the integrate() function to obtain ( )g x  for each value of 
x in the grid 0, 0.01, 0.02, ..., 1. We will then apply the INTEG() function 
to the resulting coordinates. 
 
Figure 4.9 below displays the two functions ( )h t  and ( )g x . The value  

(0.8)g  = 0.381116 is the area under ( )h t  between 0 and 0.8. The total area 
under ( )h t  (from 0 to 1) is 0.78343.  
 
The total area under ( )g x  (from 0 to 1) is estimated as 0.192723. Using 
the grid 0, 0.001, 0.002, ..., 1 also leads to 0.192723, whereas using the 
grid 0, 0.1, 0.2, ..., 1 leads to 0.193054. 
 
We conclude that the exact value of the required integral I to 4 decimals 
is 0.1927, which is in agreement with the first approach above which 
doesn’t make use of the INTEG() function. 
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One could also adapt the second approach above so as to calculate the 
double integral using the INTEG() function only (without using the 
integrate() function directly). This might be useful if the inner integral 

 
3

0

( ) ( )
x

t

g x h t dt
=

= ∫      where ( ) th t t=  

could not be evaluated easily using integrate() directly, for example if  
( )h t  were a very complicated function which could not be expressed in 

closed form.  
 
Note: The integrate() function is called within the INTEG() function and 
so is used at least indirectly in all of the approaches considered here. 

 
Figure 4.9 Two functions 

 
 
R Code for Exercise 4.9 
 
integrate(function(x) {  
 sapply(x, function(x) { 
 integrate(function(t) { 
 sapply(t, function(t) t^t ) 
 }, 0, x^3)$value  })  }, 0, 1) 
# 0.192723 with absolute error < 7.8e-10 
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# Declare the function INTEG() as defined in the previous exercise 
options(digits=6); X11(w=8,h=6); par(mfrow=c(2,1)) 
 
hfun= function(t){  t^t  } 
tvec=seq(0,1,0.01); hvec=hfun(tvec) 
plot(tvec,hvec,type="l",xlab="t",ylab="h(t)",lwd=2); abline(v=0.8,lty=2) 
 
integrate(f=hfun,lower=0,upper=0.8^3)$value  
              # 0.381116   This is  g(0.8) = area under h(t) to left of 0.8 
integrate(f=hfun,lower=0,upper=1)$value  
 # 0.78343    This is the total areas under h(t) (from 0 to 1) 
 
xvec = seq(0,1,0.01); gvec = rep(NA,length(xvec)) 
for(i in 1:length(xvec)){   xval = xvec[i] 
 gvec[i] = integrate(f=hfun,lower=0,upper=xval^3)$value  } 
INTEG(xvec,gvec)  # 0.192723 
plot(xvec,gvec,type="l",xlab="x",ylab="g(x)",lwd=2) 
points(0.8, 0.381116 , pch=16, cex=1)   
 
# Apply INTEG() using different grids  
 
xvec = seq(0,1,0.001); gvec = rep(NA,length(xvec)) 
for(i in 1:length(xvec)){   xval = xvec[i] 
 gvec[i] = integrate(f=hfun,lower=0,upper=xval^3)$value  } 
INTEG(xvec,gvec)  # 0.192723 
 
xvec = seq(0,1,0.1); gvec = rep(NA,length(xvec)) 
for(i in 1:length(xvec)){   xval = xvec[i] 
 gvec[i] = integrate(f=hfun,lower=0,upper=xval^3)$value  } 
INTEG(xvec,gvec)  # 0.193053         
 
4.7 The optim() function  
 
The function optim() in R is a very useful and versatile tool for 
maximising or minimising functions, both of one and of several variables.  
 
This R function can also be adapted for solving single or simultaneous 
equations and provides an alternative to other techniques such as trial and 
error, the Newton-Raphson algorithm and the EM algorithm.  
 
The second of the next two exercises shows how the optim() function can 
be used to specify a prior distribution. 
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Exercise 4.10 Simple examples of the optim() function 
 

Use the optim() function to ‘find’ the mode of each of the following: 

     (a) 2 5( ) , 0xg x x e x−= >        (mode =  2/5) 

     (b) 
2( 1)| |( ) ,

1 | |

x xx eg x x
x

− −

= ∈ℜ
+

    (the mode has no closed form) 

     (c) 
2 23 {( 1) ( 3) }( , ) , , 0y x xg x y y e x y− − + −= ∈ℜ >    

                                                    (mode = (x, y) = ((1 + 3)/2, 3/2)). 

Solution to Exercise 4.10 

 
In each of these cases, the optim() function (which minimises a function 
by default) may be applied to the negative of the specified function (so as 
to maximise that function).  
 
(a) The function correctly returns 2 / 5.x =  (NB: The warning message 
may be ignored.) 
 
(b) The function returns a value of 1.5047. (We presume that this is 
correct; see below for a verification.) 
 
(c) The mode is correctly computed as ( , ) (2,1.5).x y =  (Note that this 
solution is obvious by analogy with maximum likelihood estimation of 
the normal mean and variance.) 
 
Figure 4.10 illustrates these three solutions, with each mode being marked 
by a dot and vertical line. Subplot (c) shows several examples of the 
function ( , )g x y  in part (c) considered as a function of only x, with each 
line defined by a fixed value of  y on the grid 0, 0.5, 1, ...,4.5, 5. 
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Figure 4.10 Maximisation of function g in parts (a), (b) and (c) 

 

R Code for Exercise 4.10 

help(optim); options(digits=5);  X11(w=8,h=8); par(mfrow=c(3,1)) 
 
# (a) 
fun=function(x){ -x^2 * exp(-5*x) } 
res0=optim(par=0.5,fn=fun)$par; res0 # 0.4 
 # Warning message: 
 # In optim(par = 0.5, fn = fun) : 
 #   one-diml optimization by Nelder-Mead is unreliable: 
 # use "Brent" or optimize() directly 
plot(seq(0,5,0.01), -fun(seq(0,5,0.01)),type="l",lwd=3,xlab="x",ylab="g(x)");  
abline(v=res0); points(res0,  -fun(res0), pch=16, cex=2); text(4,0.02,"(a)",cex=2) 
 
# (b) 
fun=function(x){ -exp(-(x-1)^2) * abs(x)^x/(1+abs(x)) } 
res0=optim(par=1,fn=fun)$par; res0 # 1.5047 
plot(seq(-2,5,0.01), -fun(seq(-2,5,0.01)),type="l",lwd=3, xlab="x",ylab="g(x)");  
abline(v=res0); points(res0,  -fun(res0), pch=16, cex=2); text(4,0.45,"(b)",cex=2) 
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# (c) 
fun=function(v){ -v[2]^3 * exp(   -v[2]  *  ( (v[1]-1)^2 + (v[1]-3)^2 )   )    } 
res0=optim(par=c(2,2),fn=fun, lower = c(-Inf,0), upper = c(Inf,Inf),  
 method = "L-BFGS-B")$par; res0 # 2.0 1.5 
 
fun2=function(x,y){ y^3 * exp(  -y  *  ( (x-1)^2 + (x-3)^2 )   )    } 
 
plot(c(0.5,3.5),c(0,0.2), type="n",xlab="x",ylab="f(x,y)") 
for(y in seq(0,5,0.5))  
 lines(seq(0,5,0.01),   fun2(x=seq(0,5,0.01),y=y), lty=1)  
abline(v=res0[1]); points(res0[1],fun2(res0[1],res0[2]), pch=16, cex=2);  
lines(seq(0,5,0.01),fun2(x= seq(0,5,0.01), y=res0[2]),lty=1,lwd=3);  
text(3,0.17,"(c)",cex=2) 
 
Exercise 4.11 Specification of parameters in a prior 
distribution using the optim() function 
 
Consider the normal-gamma model given by: 
 1( , , | ) ~ ( ,1/ )ny y iid N     
 ~ ( , )Gλ η τ . 
 
Use the optim() function in R to find the values of   and   which 
correspond to a prior belief that the population standard deviation 

1/σ λ=  lies between 0.5 and 1 with 95% probability, and that σ  is 
equally likely to be below 0.5 as it is to be above 1.  
 
Solution to Exercise 4.11 
 
We wish to find the values of   and   which satisfy the two equations: 
 ( ) / 2P aσ α< =  and ( ) 1 / 2P bσ α< = − , 
where a = 0.5, b = 1 and α = 0.05.  
 
These two equations are together equivalent to each of the following five 
pairs of equations: 
 2 2( ) / 2P aσ α< =    and  2 2( ) 1 / 2P bσ α< = −  
 2(1/ ) / 2P aλ α< =    and  2(1/ ) 1 / 2P bλ α< = −  
 2(1/ ) / 2P a λ α< =    and  2(1/ ) 1 / 2P b λ α< = −  
 2( 1/ ) 1 / 2P aλ α< = −  and  2( 1/ ) / 2P bλ α< =  
 2

( , ) (1/ ) (1 / 2) 0GF aη τ α− − =  and  2
( , ) (1/ ) / 2 0GF bη τ α− = . 
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We now focus on the last of these pairs of two equations. Two obvious 
ways to solve these equations are by trial and error and via the multivariate 
Newton-Raphson algorithm, as illustrated earlier. But the solution can be 
obtained more easily by using the optim() function to minimise 

 
2 22 2

( , ) ( , )( , ) (1 / ) (1 / 2) (1 / ) ( / 2)G Gg F a F bη τ η τη τ α α   = − − + −    . 
 
Note: Clearly, this function has a value of zero at the required values of 
  and  . 

 
With the default settings and starting at   = 0.2 and   = 6, optim() 
produced some warning messages (which we ignored) and provided the 
solution,   = 8.4764 and   = 3.7679.  
 
Now, this solution is not exactly correct, because the probabilities of a 
Gamma(8.4764, 3.7679) random variable lying below 21/ b  = 1 and 
below 21/ a  = 4, respectively, are 0.025048 and 0.975104 (i.e. not exactly 
0.025 and 0.975 as desired). 
 
However, applying the optim() function again but starting at the previous 
solution, namely   = 8.4764 and   = 3.7679, yielded a ‘refined’ 
solution,   = 8.4748  and   = 3.7654. 
 
This solution may be considered correct, because the probabilities of a 
Gamma(8.4748, 3.7654) random variable being less than 21/ 1b =  and 
less than 21/ 4a = , respectively, are exactly 0.025 and 0.975. 
 
Discussion 
 
It is instructive to derive and plot the corresponding density of the 
precision parameter λ , and then to do this also for the variance parameter  

2 1σ λ−=  and the standard deviation parameter 1/2σ λ−= , respectively. 
 
The three densities are plotted in Figure 4.11 (in the stated order from top 
to bottom). The vertical lines show the 0.025 and 0.975 quantiles of each 
distribution. The formulae for the three densities are as follows: 

     
1

( , )( ) ( ) , 0
( )G

ef f
η η τλ

η τ
τ λλ λ λ

η

− −

= = >
Γ
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     2 2 2 2 2
( , ) ( , )2( ) ( ) ( ) ( ) ( )

( )IG G
df f f f

dη τ η τ
λσ σ λ λ σ σ
σ

− −= = = = − ,  

where 2 1( )λ σ −=  

    
22 1 (1/ )

2 2 2(1/ ) ( ) , 0
( )

eη η τ στ σ σ σ
η

− −
−= >

Γ
 

     2 3
( , )( ) ( ) ( ) 2G

df f f
d η τ
λσ λ λ σ σ
σ

− −= = = −        where 2( )λ σ −=   

                 
22 1 (1/ )

3(1/ ) 2 , 0
( )

eη η τ στ σ σ σ
η

− −
−= >

Γ
. 

 
As a check on the last of these three densities, the integrate() function was 
used to show that the area under that density is exactly 1, and that the areas 
underneath it to the left of 0.5 and to the right of 1 are both exactly 0.025. 
 

Figure 4.11 Three prior densities  
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R Code for Exercise 4.11 
 
options(digits=5); a=0.5; b=1; alp=0.05;  
fun=function(v,alp=0.05,a=0.5,b=1){ 
       (pgamma(1/a^2,v[1],v[2])-(1-alp/2))^2 +  
       (pgamma(1/b^2,v[1],v[2])-(alp/2))^2    } 
 
res0=optim(par=c(0.2,6),fn=fun)$par 
res0 # 8.4764 3.7679 
pgamma(c(1/b^2,1/a^2),res0[1],res0[2]) # 0.025048 0.975104 Close 
 
res=optim(par=res0,fn=fun)$par; res # 8.4748 3.7654 
pgamma(c(1/b^2,1/a^2),res[1],res[2]) # 0.025 0.975   Correct 
 
res2=optim(par=c(6,3),fn=fun)$par; res2 # 8.4753 3.7655 
pgamma(c(1/b^2,1/a^2),res2[1],res2[2]) # 0.024992 0.974996   Close 
 
res3=optim(par=res2,fn=fun)$par; res3 # 8.4748 3.7654 
pgamma(c(1/b^2,1/a^2),res3[1],res3[2]) # 0.025 0.975    Correct 
 
par(mfrow=c(3,1));  tv=seq(0,10,0.01) 
 
plot(tv, dgamma(tv,res[1],res[2]),type="l",lwd=2, xlim=c(0,6), 
 xlab="lambda",ylab="density"); abline(v=c(1/a^2,1/b^2)); 
abline(h=0,lty=3) 
 
plot(tv,dgamma(1/tv,res[1],res[2])/tv^2, type="l", lwd=2, xlim=c(0,1.5), 
 xlab="sigma^2",ylab="density");  
abline(v=c(a^2,b^2)); abline(h=0,lty=3) 
 
plot(tv,dgamma(1/tv^2,res[1],res[2])*2/tv^3, type="l", lwd=2,  
xlim=c(0.35,1.4), xlab="sigma",ylab="density");   
abline(v=c(a,b)); abline(h=0,lty=3) 
 
# Check areas under the last curve 
func=function(t){ dgamma(1/t^2,res[1],res[2])*2/t^3  } 
integrate(func,lower=0,upper=Inf)$value # 1 Correct 
integrate(func,lower=0,upper=0.5)$value # 0.025  Correct 
integrate(func,lower=1,upper=Inf)$value # 0.025 Correct           
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CHAPTER 5 
Monte Carlo Basics 

 
5.1 Introduction 
 
The term Monte Carlo (MC) methods refers to a broad collection of tools 
that are useful for approximating quantities based on artificially generated 
random samples. These include the Monte Carlo integration (for 
estimating an integral using such a sample), the inversion technique (for 
generating the required sample), and Markov chain Monte Carlo methods 
(an advanced topic in Chapter 6). In principle, the approximation can be 
made as good as required simply by making the Monte Carlo sample size 
sufficiently large. As will be seen (further down), Monte Carlo methods 
are a very useful tool in Bayesian inference. 
 
To illustrate the basic idea of Monte Carlo methods, consider Buffon’s 
needle problem, where a needle of length 10 cm (say) is dropped randomly 
onto a floor with parallel lines being distance 10 cm apart. What is p, the 
probability of the needle crossing a line? The exact value of p can be 
worked out analytically as 2 /π  = 0.63662 (this is done in one of the 
exercises below). But this takes mathematical effort. If this analytical 
solution were not possible (or just too much work), we could instead 
estimate p via Monte Carlo. The simplest way to do this would be to toss 
the needle onto the floor 1,000 times (randomly and independently). If the 
needle crosses a line 641 times (say), then the Monte Carlo estimate of p 
is just 641/1,000 = 0.641. 
 
As a variation on this physical experiment (which could be rather 
laborious), we could toss the needle 1,000 times virtually, meaning that 
we simulate each drop (or rather the parameters of each drop) on a 
computer and each time determine whether the virtual needle has crossed 
a virtual line.  
 
This method will be faster and more accurate; but it will also require at 
least some mathematical work to identify exactly what the parameters of 
each drop are and what configuration of those parameters correspond to 
the needle crossing a line (again, this is done in one of the exercises 
below). 
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In this chapter, we will first discuss Monte Carlo methods and their 
usefulness under the assumption that we have available or can generate 
the required random samples. As we will see in the exercises and their 
solutions, such samples can often be obtained very easily using inbuilt R 
functions, e.g. runif() and rnorm(). 
 
After this we will describe special methods for generating a random 
samples, starting with the simplest, such as the inversion technique and 
rejection sampling. We reserve the more complicated techniques which 
involve Markov chain theory to the next and later chapters. 
 
Also, as part of the structure of the present chapter, we will first discuss 
Monte Carlo methods and random number generation in a fully general 
setting. Only after we have finished our treatment of these two topics (to 
a certain level at least) will we discuss their application to Bayesian 
inference. Hopefully this format will minimise any confusion. 
 
5.2 The method of Monte Carlo integration for  
estimating means 
 
One of  the most important applications of Monte Carlo methods is the 
estimation of means. Suppose we are interested in µ , the mean of some 
distribution defined by a density ( )f x  (or by a cumulative distribution 
function ( )),F x  but we are unable to calculate µ  exactly (or easily), for 
example by applying the formula 

 ( )Ex xf x dxµ = = ∫        

(or    ( )
x

Ex xf xµ = = ∑      or    ( )Ex xdF xµ = = ∫ ). 

 
Also suppose, however, that we are able to generate (or obtain) a random 
sample from the distribution in question. Denote this sample as  

1,..., ~ ( )Jx x iid f x      
(or      1,..., ~ ( )Jx x iid F x ). 
 
Then we may use this sample to estimate µ  by   

 
1

1 J

j
j

x x
J =

= ∑ . 
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Also, a 1 α−  confidence interval (CI) for µ  given by  
 /2( / )CI x z s Jα= ± , 
where   

2 2

1

1 ( )
1

J

j
j

s x x
J =

= −
− ∑   

is the sample variance of the random values. 
 
In this context we refer to: 
 

1,..., Jx x     as the Monte Carlo sample values   
  or the Monte Carlo sample 

 x       as the Monte Carlo sample mean  
or the Monte Carlo estimate 

 CI      as the Monte Carlo 1 α−  confidence interval  
for µ  

  J      as the Monte Carlo sample size 
 2s       as the Monte Carlo sample variance 
 s       as the Monte Carlo sample standard deviation 
 /s J      as the Monte Carlo standard error (SE). 
 
Three important facts here are that: 
 
          •  x  is unbiased for µ  (i.e. Ex µ= ) 

      •   the CI has coverage approximately 1 α− , by the central limit  
 theorem 
      •  the width of the CI converges to zero as the MC sample size  

J tends to infinity. 
 
Exercise 5.1 Monte Carlo estimation of a known gamma mean 
 
(a) Use the R function rgamma() to generate a random sample of size  
J = 100 from the Gamma(3,2) distribution, whose mean is  µ  = 3/2 = 1.5. 
Then use the method of Monte Carlo to produce a point estimate µ  and a 
95% CI for µ . 
 
(b) Repeat (a) but with MC sample sizes of 1,000 and 10,000, and discuss 
the results. 
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Note: In this exercise we are focusing on the integral 

     

3 3 1 2

0

2( )
(3)

xx exf x dx x dxµ
∞ − − 

= =  Γ 
∫ ∫ , 

showing how it could be estimated via MC if it were not possible to 
evaluate analytically. Exactly the same approach could be applied if the 
integral were impossible to evaluate. 

 
Solution to Exercise 5.1 
 
(a) Applying the above procedure (see the R code below) we estimate µ  
by x  = 1.5170. The Monte Carlo  95% confidence interval for µ  is  
 0.025( / )CI x z s J= ±  = (1.3539, 1.6800). 
 
We note that x  is ‘close’ to the true value, µ  = 1.5, and the CI contains 
that true value. 
 
(b) Repeating (a) with J = 1,000 we obtain the point estimate 1.5199 and 
the interval estimate (1.4658, 1.5740).  
 
Repeating (a) with J = 10,000 we obtain the point estimate 1.4942 and the 
interval estimate (1.4773, 1.5110).  
 
As in (a) we note in each case that x  is ‘close’ to µ , and the CI contains 
µ . We also note that as J increases the MC point estimate tends to get 
closer to µ , and the 95% CI tends to get narrower. (The widths of the 
three CIs are 0.3261, 0.1081 and 0.0337.) 
 

R Code for Exercise 5.1 
 
options(digits=4); J = 100; set.seed(221); xv=rgamma(J,3,2) 
xbar=mean(xv); s=sd(xv); ci=xbar + c(-1,1)*qnorm(0.975)*s/sqrt(J) 
c(xbar,s,s^2,ci,ci[2]-ci[1]) # 1.5170 0.8320 0.6921 1.3539 1.6800 0.3261 
 
J = 1000; set.seed(231); xv=rgamma(J,3,2) 
xbar=mean(xv); s=sd(xv); ci=xbar + c(-1,1)*qnorm(0.975)*s/sqrt(J) 
c(xbar,s,s^2,ci,ci[2]-ci[1]) # 1.5199 0.8722 0.7607 1.4658 1.5740 0.1081 
J = 10000; set.seed(211); xv=rgamma(J,3,2) 
xbar=mean(xv); s=sd(xv); ci=xbar + c(-1,1)*qnorm(0.975)*s/sqrt(J) 
c(xbar,s,s^2,ci,ci[2]-ci[1]) # 1.4942 0.8597 0.7391 1.4773 1.5110 0.0337 
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5.3 Other uses of the MC sample 
 
Once a Monte Carlo sample 1,..., ~ ( )Jx x iid f x   has been obtained, it can 
be used for much more than just estimating the mean of the distribution, 

Exµ = . For example, suppose we are interested in the (lower) p-quantile 
of the distribution, namely 
 1( )p Xq F p−=   =  {value of x such that ( )F x p= }. 
 
The MC estimate of pq  is simply ˆpq , the empirical p-quantile of 1,..., .Jx x  
For instance, the median 1/2q  can be estimated by the middle number 
amongst 1,..., Jx x  after sorting in increasing order. This assumes that J is 
odd. If J is even, we estimate 1/2q  by the average of the two middle 
numbers. Thus we may write the MC estimate of 1/2q  as 

 
(( 1)/2)

1/2 ( /2) (( 1)/2)

,  odd
ˆ

,  even,
2

J

J J

x J
q x x

J

+

+


= +


 

where ( )kx  is the kth smallest value amongst 1,..., Jx x    (k = 1,...,J). 
 
Also, we estimate the 1 α−  central density region (CDR) for x, namely 

/2 1 /2( , )q qα α− , by /2 1 /2ˆ ˆ( , )q qα α− . 
 
Further, suppose we are interested in the expected value of some function 
of x, say ( )y g x= . That is, we wish to estimate the quantity/integral  

 ( ) ( ) ( ) ( )Ey yf y dy Eg x g x f x dxψ = = = =∫ ∫ . 

  
Then we simply calculate ( )j jy g x=  for each 1,...,j J= . The result will 
be a random sample 1,..., ~ ( )Jy y iid f y  to which the method of Monte 
Carlo can then be applied in the usual way. Thus, an estimate of  ψ  is  

 
1

1 J

j
j

y y
J =

= ∑     (the sample mean of the y-values),  

and a 1 α−  CI for ψ  is   

/2
ys

y z
Jα

 
± 

 
,  
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where 2 2

1

1 ( )
1

J

y j
j

s y y
J =

= −
− ∑   (the sample variance of the y-values).

 
 

 
This idea applies to even very complicated functions ( )y g x=  for which 
the exact or even approximate value of Eyψ =  would otherwise be very 
difficult to obtain, either analytically or numerically using a deterministic 
technique such as numerical integration (or quadrature). 
 
Also, the density ( )f x  can be estimated by smoothing a probability 
histogram of 1,..., Jx x . Likewise, the  density ( )f y  can be estimated by 
smoothing a probability histogram of 1,..., Jy y . (This could be extremely 
useful if y is a very complicated function of x.) 
   
Note 1: As we will see later, it is often the case that we are able to sample 
from a distribution without knowing—or being able to derive—the 
exact form of its density function. 

 
Note 2: Smoothing a histogram requires some arbitrary decisions to be 
made about the degree of smoothing and other smoothing parameters. 
So the MC estimate of a density is not uniquely defined. 

 
Exercise 5.2 Monte Carlo estimation of complicated quantities  
 
Suppose that ~ (3,2)x G . Use MC methods and a sample of size J = 1,000 
to estimate: 
 Exµ = , the 80% CDR for x, and ( )f x   

 Eyψ = , the 80% CDR for y, and ( )f y , where 
2

1 1 /

xx ey
x x

−

=
+ +

. 

 
Present your results graphically, and wherever possible show the true 
values of the quantities being estimated. Then repeat everything but using 
a Monte Carlo sample size of J = 10,000. 
 
Solution to Exercise 5.2 
 
The required graphs are shown in Figures 5.1 to 5.4. See the R code below 
for more details. 
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Figure 5.1 Histogram of x-value (J = 1,000) 

 
 
 
Figure 5.2 Histogram of y-value (J = 1,000) 
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Figure 5.3 Histogram of x-value (J = 10,000) 

 
 
Figure 5.4 Histogram of y-value (J = 10,000) 

 
 
R Code for Exercise 5.2 
 
X11(w=8,h=4.5);   par(mfrow=c(1,1)); options(digits=4);  
J = 1000; set.seed(221); xv=rgamma(J,3,2) 
xbar=mean(xv); xci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J) 
xcdr=quantile(xv,c(0.1,0.9)); xden=density(xv) 
yv=xv^2 * exp(-xv) / ( 1 + xv + 1/xv ) 
ybar=mean(yv); yci=ybar + c(-1,1)*qnorm(0.975)*sd(yv)/sqrt(J) 
ycdr=quantile(yv,c(0.1,0.9)); yden=density(yv) 
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hist(xv,prob=T,breaks=seq(0,7,0.25),xlim=c(0,7),ylim=c(0,0.6),xlab="x", 
    main=""); lines(xden,lty=2,lwd=2) 
xvec=seq(0,10,0.01); lines(xvec,dgamma(xvec,3,2),lty=1,lwd=2) 
abline(v= c(xbar, xci, xcdr), lty=2, lwd=2) 
abline(v=c(3/2,qgamma(c(0.1,0.9),3,2)), lty=1,lwd=2) 
legend(4,0.6,c("MC estimates","True values"),lty=c(2,1),lwd=c(2,2)) 
 
hist(yv,prob=T,breaks=seq(0,0.2,0.005),xlim=c(0,0.2),ylim=c(0,30),xlab="y", 
    main=""); lines(yden,lty=2,lwd=2) 
abline(v= c(ybar, yci, ycdr), lty=2, lwd=2) 
legend(4,0.6,c("MC estimates","True values"),lty=c(2,1),lwd=c(2,2)) 
 
# Repeat with J = 10000 ------------------------------ 
 
J = 10000; set.seed(221); xv=rgamma(J,3,2) 
xbar=mean(xv); xci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J) 
xcdr=quantile(xv,c(0.1,0.9)); xden=density(xv) 
yv=xv^2 * exp(-xv) / ( 1 + xv + 1/xv ) 
ybar=mean(yv); yci=ybar + c(-1,1)*qnorm(0.975)*sd(yv)/sqrt(J) 
ycdr=quantile(yv,c(0.1,0.9)); yden=density(yv) 
 
hist(xv,prob=T,breaks=seq(0,9,0.25),xlim=c(0,7),ylim=c(0,0.6),xlab="x", 
    main=""); lines(xden,lty=2,lwd=2) 
xvec=seq(0,10,0.01); lines(xvec,dgamma(xvec,3,2),lty=1,lwd=2) 
abline(v= c(xbar, xci, xcdr), lty=2, lwd=2) 
abline(v=c(3/2,qgamma(c(0.1,0.9),3,2)), lty=1,lwd=2) 
legend(4,0.6,c("MC estimates","True values"),lty=c(2,1),lwd=c(2,2)) 
 
hist(yv,prob=T,breaks=seq(0,0.2,0.005),xlim=c(0,0.2),ylim=c(0,30),xlab="y", 
    main="") 
lines(yden,lty=2,lwd=2); abline(v= c(ybar, yci, ycdr), lty=2, lwd=2) 
legend(4,0.6,c("MC estimates","True values"),lty=c(2,1),lwd=c(2,2)) 
 
5.4 Importance sampling 
 
When applying the method of MC to estimate an integral of the form 

 ( ) ( ) ( )Eg x g x f x dxψ = = ∫ ,    

suppose it is impossible (or difficult) to sample from ( )f x , but it is easy 
to sample from a distribution/density ( )h x  which is ‘similar’ to ( )f x .  
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Then we may write 

 ( )( ) ( ) ( ) ( )
( )

f xg x h x dx w x h x dx
h x

ψ
 

= = 
 
∫ ∫ , 

where  
( )( ) ( )
( )

f xw x g x
h x

= . 

 
This suggests that we sample 1,..., ~ ( )Jx x iid h x  and use MC to estimate 
ψ  by 

 
1

1ˆ
J

j
j

w w
J

ψ
=

= = ∑ , 

where  
( )

( ) ( )
( )

j
j j j

j

f x
w w x g x

h x
= = . 

 
This techniques is called importance sampling, and there are several 
issues to consider. As already indicated, the method works best if ( )h x  is 
chosen to be very similar to ( )f x .  
 
Another issue is that ( )f x  may be known only up to a multiplicative 
constant, i.e. where ( ) ( ) /f x k x c= , where the kernel ( )k x  is known 
exactly but it is too difficult or impossible to evaluate the normalising 
constant ( )c k x dx= ∫ . In that case, we may write  

 
( ) ( )( )( )

( )

g x k x dxk xg x dx
c k x dx

ψ = = ∫∫ ∫
 

          

( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( )

k xg x h x dx w x h x dxh x
k x u x h x dxh x dx
h x

 
 
 = =
 
 
 

∫ ∫
∫∫

, 

where: 
( )( ) ( )
( )

k xw x g x
h x

=    

( )( )
( )

k xu x
h x

= . 
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This suggests that we sample 1,..., ~ ( )Jx x iid h x  (as before) and apply 
MC estimation to the means of ( )w x  and ( )u x , respectively (each with 
respect to the distribution defined by density ( )h x ) so as to obtain the 
estimate 

 1 1

1

1

1
...ˆ

1 ...

J

j
j J
J

J
j

j

w
J w ww

u u uu
J

ψ =

=

+ +
= = =

+ +

∑

∑
, 

where ( )j jw w x=  and ( )j ju u x= . 
 
Exercise 5.3 Example of Monte Carlo with importance sampling 
  
We wish to find Exµ =  where x has density  

 
1( ) , 0

1
xf x e x

x
−∝ >

+
. 

 
Use Monte Carlo methods and importance sampling to estimate µ . 
 
Solution to Exercise 5.3 
 

Here, 1( )
1

xk x e
x

−=
+

, and it is convenient to use  ( ) , 0xh x e x−= >   

(the standard exponential density, or Gamma(1,1) density). Then,  

   
0

( )
( )

( )

xk x dx
Ex xf x dx

k x dx
µ

∞

= = = ∫∫ ∫
 

              

( ) ( ) ( )( ) 1
1( ) ( )( ) 1( )

k x xx h x dx h x dxh x x
k x h x dxh x dx xh x

 
 
  += =
 
  + 

∫ ∫

∫∫
. 

 

So a MC estimate of µ  is  1

1

1
1

ˆ
1 1

1

J
j

j j
J

j j

x
J x

J x

µ =

=

+
=

+

∑

∑
,  

where 1,..., ~ (1,1)Jx x iid G .  
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Implementing this with J = 100,000, we get 0.40345ˆ
0.59655

µ =  = 0.67631. 

 
Note 1: For interest we use numerical techniques to get the exact answer,   
  µ  = 0.67687.  
Thus the relative error is –0.084%. Figure 5.5 illustrates. 

 
Note 2: The exact value of the normalising constant is  
  ( )c k x dx= ∫   is 0.596347. 

From the above we see that our MC estimate of c  is 0.59655 (similar). 
 
Figure 5.5 Illustration of importance sampling 

 
 
 
R Code for Exercise 5.3 
 
options(digits=10); 
kfun=function(x){ exp(-x)/(x+1) } 
c=integrate(f=kfun,lower=0,upper=Inf)$value; c # 0.5963473624 
ffun=function(x){ (1/ 0.5963473624)*exp(-x)/(x+1) } 
integrate(f=ffun,lower=0,upper=Inf)$value;  # 0.9999999999 
xffun= function(x){ x*(1/0.5963474)*exp(-x)/(x+1) } 
mu= integrate(f=xffun,lower=0,upper=Inf)$value;  mu # 0.6768749849 
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J=100000; set.seed(413); xv=rgamma(J,1,1) 
num=mean(xv/(xv+1)); den=mean(1/(xv+1)) 
est=num/den; c(num, den, est) # 0.4034510685 0.5965489315 0.6763084254 
err=100* (est-mu)/mu; err # -0.08370222467 
 
plot(c(0,3),c(0,2),type="n",xlab="x",ylab="density"); xvec=seq(0,5,0.01);  
lines(xvec,dgamma(xvec,1,1),lty=1,lwd=3) 
lines(xvec,xvec*dgamma(xvec,1,1),lty=1,lwd=1) 
lines(xvec,ffun(xvec),lty=2,lwd=3); lines(xvec,xvec*ffun(xvec),lty=2,lwd=1) 
points(c(1,mu,est),c(0,0,0),pch=c(16,4,1),lwd=c(2,2,2),cex=c(1.2,1.2,1.2)) 
legend(1.7,2,c(  "f(x) = (1/c)*exp(-x)/(x+1)", "h(x) = exp(-x)" ),   
   lty=c(2,1), lwd=c(3,3)) 
legend(1.7,1.3,c(  "x*f(x)", "x*h(x)" ),  lty=c(2,1), lwd=c(1,1)) 
legend(0.5,2,c("E(x) = area under x*f(x)", "E(x) = area under x*h(x)", 
    "MC estimate of E(x)"), pch=c(4,16,1),pt.lwd=c(2,2,2),pt.cex=c(1.2,1.2,1.2)) 
 
5.5 MC estimation involving two or more 
random variables 
 
All the examples so far have involved only a single random variable x. 
However, the method of Monte Carlo generalises easily to two or more 
random variables. In fact, the procedure for MC estimation of the mean of 
a function, as described above, is already valid in the case where x is a 
vector. We will now focus on the bivariable case, but the same principles 
apply when three or more random variables are being considered 
simultaneously.  
 
Suppose that we have a random sample from the bivariate distribution of 
two random variables x and y, denoted 1 1( , ),..., ( , ) ~ ( , )J Jx y x y iid f x y , 
and we are interested in some function of x and y, say ( , )r g x y= . Then 
we simply calculate ( , )j j jr g x y=  and perform MC inference on the 
resulting sample 1,..., ~ ( )Jr r iid f r . 
 
Note 1: This procedure applies whether or not the random variables x 
and y are independent. If they are independent then we simply sample 

~ ( )jx f x  and ~ ( )jy f y . 

 
Note 2: If x and y are dependent, it may not be obvious how to generate 
( , ) ~ ( , )j jx y f x y . 
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Then, one approach is to apply the method of composition, as detailed 
below. If that fails, other methods are available, in particular ones which 
involve Markov chain theory. Much more will be said on these methods 
later in the course. 
 
5.6 The method of composition 
 
Suppose we wish to sample a vector ( , ) ~ ( , )j jx y f x y . Often this can be 
done in two different ways via the method of composition, as follows. 
 
One way is to first sample ~ ( )jx f x  and then sample ~ ( | )j jy f y x . The 
result will be the desired ( , ) ~ ( , )j jx y f x y . This follows by the identity 
(or ‘composition’) 
 ( , ) ( ) ( | )f x y f x f y x= . 
 
Note: Having obtained ( , ) ~ ( , )j jx y f x y  in this manner, suppose we 
‘discard’ jx . Then this will leave behind a single number, ~ ( )jy f y . 
This could be useful if all we really want is a sample from ( )f y  but 
sampling from this distribution/density directly is difficult. 

 
Alternatively, first sample ~ ( )jy f y  and then sample ~ ( | ).j jx f x y  
The result will again be ( , ) ~ ( , )j jx y f x y . This follows by the identity 
 ( , ) ( ) ( | )f x y f y f x y= . 
 
Note: Having obtained ( , ) ~ ( , )j jx y f x y  in this second manner, 
suppose that we ‘discard’ jy . This will leave behind a single number, 

~ ( )jx f x . This could be useful if all we really desire is a sample from 
( )f x  but sampling from this distribution/density directly is difficult. 

 
This idea of composition generalises easily to higher dimensions. For 
example, one of several different ways to sample a triplet 

( , , ) ~ ( , , )j j jx y z f x y z   
is first sample ~ ( )jy f y , then sample ~ ( | )j jx f x y  and finally sample 

~ ( | , )j j jz f z x y . This works because of the identity 
 ( , , ) ( ) ( | ) ( | , )f x y z f y f x y f z x y= . 
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Exercise 5.4 
 
Suppose that we are interested in the distribution of a random variable 

defined by ( )r y x y= + ,  where x and y have a joint distribution 

defined by the pdf ( , ) ( ) ( | )f x y f x f y x= , and where ~ (3,2)x G  and 
( | ) ~ ( , )y x N x x  . 
 
Use the R functions rgamma() and rnorm() to generate a sample of size  
J = 1,000 from the joint distribution of  x and y. Then use the method of 
MC to estimate Erψ = , and report a 95% CI forψ . Also estimate the 
80% CDR for r and ( )f r . Present your results both graphically and 
numerically. 
 
Solution to Exercise 5.4  
 
Numerically, we estimate ψ  by 0.4256, and our 95% CI for  ψ  is 
(0.4026,  0.4486). We also estimate the 80% CDR for r by (–0.1025,  
0.8339). The required graph is shown in Figure 5.6. 
 

Figure 5.6 Histogram of r-values (J = 1,000) 
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R Code for Exercise 5.4 
 
X11(w=8,h=4.5);   par(mfrow=c(1,1)); options(digits=4);  
 
J = 1000; set.seed(221); xv=rgamma(J,3,2); yv = rnorm(xv,sqrt(xv)) 
rv = yv/(xv+sqrt(abs(yv))) 
rbar=mean(rv); rci=rbar + c(-1,1)*qnorm(0.975)*sd(rv)/sqrt(J) 
rcdr=quantile(rv,c(0.1,0.9)); rden=density(rv) 
 
c(rbar,rci,rcdr) # 0.4256  0.4026  0.4486 -0.1025  0.8339 
 
hist(rv,prob=T, breaks=seq(-1,1.8,0.1),xlim=c(-1,1.6),ylim=c(0,1.3),xlab="r", 
    main=""); lines(rden,lty=1,lwd=2); abline(v= c(rbar, rci, rcdr), lty=2, lwd=2) 
 
5.7 Monte Carlo estimation of a binomial  
parameter 
 
Suppose we are interested in a binomial proportion (i.e. probability)  p but 
have difficulty calculating this quantity exactly. Then we may interpret p 
as the mean µ  of a Bernoulli distribution and directly apply the method 
of Monte Carlo in the usual way. In this special case, there are certain 
simplifications which result in slightly different-looking final formulae. 
 
Explicitly, suppose we are able to generate 
 1,..., ~ ( )Jx x iid Bernoulli p .      
 
Then the MC estimate of p is   

 
1

1 J

j
j

x x
J =

= ∑       (the sample proportion of 1s in the sample), 

and the MC sample variance is 

      2 2 2

1

1
1

J

j
j

s x Jx
J =

 
= − −  

∑      

     ( )21
1

Jx Jx
J

= −
−

    since  2
j jx x=   (because each jx  is 0 or 1) 

      (1 )
1

J x x
J

= −
−

.     

 

So the MC SE is  1 (1 )(1 )
1 1

s J x xx x
J JJ J

−
= − =

− −
. 
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It follows that a MC 1 α−  CI for p is    

/2 /2
(1 )

1
s x xx z x z

JJα α

 − ± = ±    −   
. 

 
The MC estimate x  is often written as p̂ , and 1J −  is often replaced by  
J (for simplicity). These changes lead to the standard form of the MC 
1 α−  confidence interval for p,  

 /2
ˆ ˆ(1 )ˆ p pp z

Jα

 −
±  

 
. 

 
Note 1: The above theory is really nothing other than the usual classical 
theory for estimating a binomial proportion. Thus, there are many other 
CIs that could be substituted, (e.g. the Wilson CI whose coverage is 
closer to 1 α− ,  and the Clopper-Pearson CI whose coverage is always 
guaranteed to be at least 1 α−  but which is typically wider). 

 
Note 2: The above MC inference depends on the jx  values only by way 
of the sample mean x  or, equivalently, by way of the sample total 

1 ...T Jx x x Jx= + + = .  A consequence of this is that exactly the same 
Monte Carlo inference can be performed if we observe only a single 
value of the total Tx , whose distribution is given by ~ ( , )Tx Bin J p . 

 
Note 3: A common application of the theory here is where the binomial 
parameter is the probability of some event involving random variables, 
for example ( 1)p P x= >  and ( )p P x y= < .  

 
For the first example here, we generate 1 ~ ( )x f x , let 1 1( 1)r I x= > , and 
then repeat independently many times so as to generate a random sample 

1,..., ~ ( )Jr r iid Bern p . That sample can then be used for MC inference 
on ( 1)p P x= > .  
 
The procedure for the second example is similar, except that it involves 
sampling 1 1( , ) ~ ( , )x y f x y  and determining 1 1 1( )r I x y= < , etc. 
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Note 4: One use of MC CIs for a binomial proportion is to assess the 
coverage of MC CIs.  

 
Often, the true coverage probability of a MC CI is not exactly the 
nominal level, say 95%. This may be due to the MC sample size J being 
insufficiently large or for some other reason.  
 
If we are concerned about this, we may wish to estimate the true 
coverage of the MC CI by repeating the entire MC inference procedure 
itself a large number of times, say M. Each time we record an indicator 
r for the MC CI containing the quantity of interest.  
 
The result will be a sample 1,..., ~ ( )Mr r iid Bern p , where p is the true 
coverage probability, which can then be estimated via MC methods in 
the usual way. 

 
Exercise 5.5 Estimating a probability via Monte Carlo  
 

Use MC to estimate 0.3
1

xxp P e
x

 
= > + 

, where  ~ (3,2)x Gamma . 

 
Solution to Exercise 5.5 
 
With J = 20,000, we sample 1,..., ~ (3,2)Jx x iid G  and let  

 0.3
1

jxj
j

j

x
r I e

x
 

= >  + 
. 

 

Thereby we obtain an estimate of  p  equal to 
1

1ˆ
J

j
j

p r
J =

= ∑  = 0.2117 

and a 95% CI for p equal to 
ˆ ˆ(1 )ˆ 1.96
200000
p pp

 −
± 

 
 = (0.2060, 0.2173). 

 

Note 1:  We may also view p as ( 0.3)p P y= > , where 
1

x xy e
x

−=
+

 

(for example).  In that case, we  sample 1,..., ~ (3,2)Jx x iid G , calculate  
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1
jx j

j
j

x
y e

x
−=

+
, and then let  ( )0.3j jr I y= > . This leads to exactly 

the same results regarding p. As a by-product of this second approach, 
we obtain an estimate of the density function of the random variable 

1
x xy e

x
−=

+
, namely ( )f y , which would be very difficult to obtain 

analytically. Figure 5.7 illustrates. 
 
Note 2: The density() function in R used to smooth the histogram does 
not adequately capture the upper region of the density ( )f y , nor the 
fact that ( ) 0f y =  when y < 0. 

 
Figure 5.7 Histogram of 20,000 values of y 

 
 
R Code for Exercise 5.5 
 
X11(w=8,h=4.5); par(mfrow=c(1,1)); options(digits=4) 
 
J=20000; set.seed(162); xv=rgamma(J,3,2); ct=0 
yv= sqrt(xv)*exp(-xv) / sqrt(xv+1) 
for(j in 1:J)  if(yv[j] > 0.3) ct=ct+1     
phat=ct/J; ci=phat+c(-1,1)*qnorm(0.975)*sqrt(phat*(1-phat)/J) 
c(phat,ci) # 0.2117 0.2060 0.2173 
hist(yv,prob=T,breaks=seq(0,0.5,0.005),xlim=c(0,0.4),xlab="y",main=" ") 
abline(v=0.3,lwd=3); lines(density(yv),lwd=3) 
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Exercise 5.6 Buffon’s needle problem 
 
A needle of length 10 cm is dropped randomly onto a floor with lines on 
it that are parallel and 10 cm apart. 
 
(a) Analytically derive p, the probability that the needle crosses a line. 
 
(b) Now forget that you know p. Estimate p using Monte Carlo methods 
on a computer and a sample size of 1,000. Also provide a 95% confidence 
interval for p. Then repeat with a sample size of 10,000 and discuss.  
 
Solution to Exercise 5.6 
 
(a) Let: X  = perpendicular distance from centre of needle to nearest line  
         in units of 5 cm 

 Y  = acute angle between lines and needle in radians 
 C  = ‘The needle crosses a line’. 

 
Then: ~ (0,1)X U   with density  ( ) 1, 0 1f x x= < <  

 ~ 0,
2

Y U π 
 
 

  with density 2( ) , 0
2

f y y π
π

= < <  

 X Y    (i.e. X and Y are independent, so that 

          2( , ) ( ) ( ) 1 , 0 1, 0
2

f x y f x f y x y π
π

= = × < < < < ) 

 { sin } {( , ) : sin }C X Y x y x y= < = < . 
 
Figure 5.8 illustrates this setup.  
 
It follows that  

( ) ( sin )p P C P X Y         

    
sin/2

sin 0 0

2( , )
y

x y y x

f x y dxdy dx dy



  

       
  

/ 2

0

2 sin
y

y dy





     

                / 2

0

2 cos y 


    

2 cos ( cos 0)
2




              
  

 2 0 ( 1)


     2


  = 0.63662. 

 
Figure 5.9 illustrates the integration here.  
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Figure 5.8 Illustration of Buffon’s needle problem 

   
 
 
 
Figure 5.9 Illustration of the solution to Buffon’s needle 
problem 
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Note 1: Another way to express the above working is to first note that 
  

( | ) ( | ) ( sin | ) ( sin ) sinP C y P C Y y P X y y P X y y≡ = = < = < = , 
 
since ( | ) ~ ~ (0,1)X y X U  with cdf ( | ) ( ) , 0 1F x y F x x x= = < < . 
  
It follows that 

         p = ( )
/2

0

2 2( ) ( | ) sin sinP C EP C Y E Y y dy
π

π π
= = = =∫ ,  

as before. 
 
Note 2: It can be shown that if the length of the needle is r times the 
distance between lines, then the probability that the needle will cross a 
line is given by the formula 

 2 1

2 / , 1

2 11 1 sin , 1.

r r
p

r r r
r

π

π
−

≤
=    − − − + >     

     

 
(b) For this part, we will make use of the analysis in (a) whereby   
 {( , ) : sin }C x y x y= < ,   
and where:  

~ (0,1)x U ,   ~ 0,
2

y U π 
 
 

,   X Y . 

 
Note: We suppose that these facts are understood but that the integration 
required to then proceed on from these facts to the final answer (as in 
(a)) is too difficult. 

 
We now sample 1,..., ~ (0,1)Jx x iid U  and 1,..., ~ (0, / 2)Jy y iid U π  (all 
independently of one another). Next, we obtain the indicators defined by 

 
1    if sin

( sin )
0     otherwise.   

j j
j j j

x y
r I x y

<
= < = 

  
 
The result is the MC sample 1,..., ~ ( )Jr r iid Bern p  (i.e. a sample of  
size J to be used for inference on p). (Equivalently, we may obtain  

1 ... ~ ( , )T Jr r r Bin J p≡ + + , which will lead to the same final results.) 
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The MC estimate of p is  
1

1ˆ
J

T
j

j

rp r r
J J=

= = =∑ , 

and a 95% CI for p is  /2
ˆ ˆ(1 )ˆ p pCI p z

Jα

 −
= ± 
 

. 

 
Carrying out this experiment in R with J = 1,000 we get  
 p̂  = 0.618 and CI = (0.588, 0.648). 
 
Then repeating, but with J = 10,000 instead, we obtain  
 p̂  = 0.633 and CI = (0.624, 0.643). 
 
We see that increasing the MC sample size (from 1,000 to 10,000) has 
reduced the width of the MC CI from 0.060 to 0.019. Both intervals 
contain the true value, namely 2 /π  = 0.6366. 
 
R Code for Exercise 5.6 
 
# (a) 
X11(w=8,h=4.5); par(mfrow=c(1,1)) 
plot(seq(0,pi/2,0.01),sin(seq(0,pi/2,0.01)), type="l",lwd=3,xlab="y", ylab="x") 
abline(v=c(0,pi/2),lty=3); abline(h=c(0,1),lty=3) 
text(0.2,0.4,"x = sin(y)"); text(1,0.4,"C"); text(0.35,0.8,"Complement of C") 
text(1.52,0.06,"pi/2") 
 
# (b) 
J=1000; set.seed(213); xv=runif(J,0,1); yv=runif(J,0,pi/2); rv=rep(0,J) 
options(digits=4); for(j in 1:J) if(xv[j]<sin(yv[j])) rv[j]=1 
 
phat=mean(rv); z=qnorm(0.975); pci=phat+c(-1,1)*z*sqrt(phat*(1-phat)/J) 
c(phat,pci,pci[2]-pci[1]) # 0.61800 0.58789 0.64811 0.06023 
 
J=10000; set.seed(215); xv=runif(J,0,1); yv=runif(J,0,pi/2); rv=rep(0,J) 
for(j in 1:J) if(xv[j]<sin(yv[j])) rv[j]=1 
 
phat=mean(rv); z=qnorm(0.975); pci=phat+c(-1,1)*z*sqrt(phat*(1-phat)/J) 
c(phat,pci,pci[2]-pci[1]) # 0.63320 0.62375 0.64265 0.01889 
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Exercise 5.7 MC CIs for the coverage probabilities of MC CIs  
for a gamma mean 
 
(a) Using the R function rgamma(), generate a random sample of size  
J = 100 from the gamma distribution with parameters 3 and 2 and mean 
µ  = 3/2. Then use the method of Monte Carlo to estimate µ . In your 
estimation, include a 95% CI for µ  and the width of this CI. Also report 
whether the CI contains the true value of µ . 
 
(b) Repeat (a) but with J = 200, 500, 1,000, 10,000 and 100,000, 
respectively. Report the widths of the resulting CIs and, for each CI, state 
whether it contains µ . Discuss any patterns that you see. 
 
(c) Repeat (a) M = 100 times and report the proportion of the resulting M 
95% MC CIs which contain the true value of the mean. (In each case use 
J = 100.) Hence calculate a 95% CI for p, the true coverage probability of 
the 95% MC CI for µ  based on a MC sample of size J = 100 from the 
Gamma(3,2) distribution. 
 
(d) Repeat (c), but with M = 200, 500, 1,000 and 10,000, respectively. 
Discuss any patterns that you see. 
 
Solution to Exercise 5.7 
 
(a) Applying the procedure (see the R code below) we estimate µ  by  
x  = 1.517. The Monte Carlo  95% confidence interval for µ  is  
 0.025( / )CI x z s J= ±  = (1.354, 1.680). 
 
We observe that this interval has width 0.326 and contains µ . 
 
(b) Repeating (a) as required, we obtain:  
     x  = 1.471 and CI = (1.348, 1.593) with width 0.245   for  J = 200 
     x  = 1.430 and CI = (1.358, 1.502) with width 0.144    for   J = 500 
     x  = 1.475 and CI = (1.419, 1.530) with width 0.111    for  J = 1,000 
     x  = 1.490 and CI = (1.473, 1.508) with width 0.0344  for  J = 10,000 
     x  = 1.502 and CI = (1.497, 1.507) with width 0.0107   for  J = 100,000. 
 
We see that x  appears to be converging towards µ  = 1.5. The width of 
the CI appears to be decreasing as J increases. Each of these five CIs 
contains µ , just like the CI in (a). 
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(c) Repeating (a) M = 100 times leads to M = 100 MC CIs of which 93 
contain µ  = 1.5. Thus  p̂  = 93%, which as expected is ‘close’ to the 95% 
nominal coverage of the CI. 
 

A 95% CI for p is 0.93(1 0.93)0.93 1.96
100

 −
± 

 
 = (0.880  0.980). 

This is consistent with the MC 95% CI for µ  having coverage 95%. 
 
(d) Repeating (a) M = 200 times leads to p̂  = 94.5% of the 200 CIs 
containing 1.5, with a 95% CI for p,  

0.945(1 0.945)0.945 1.96
200

 −
± 

 
 = (0.913, 0.977). 

 
Repeating (a) M = 500 times leads to p̂  = 94.2% of the 500 CIs 
containing 1.5 with a 95% CI for p,  

0.942(1 0.942)0.942 1.96
500

 −
± 

 
 = (0.922, 0.962). 

 
Repeating (a) M = 1,000 times leads to p̂  = 93.5% of the 1,000 CIs 
containing 1.5, with a 95% CI for p,  

0.935(1 0.935)0.935 1.96
1,000

 −
±  

 
 = (0.935, 0.963). 

 
Repeating (a) M = 10,000 times leads to p̂  = 94.4% of the 10,000 CIs 
containing 1.5, with a 95% CI for p,  

  0.94(1 0.94)0.944 1.96
10,000

 −
±  

 
 = (0.940, 0.949). 

 
The widths of all five CIs for p are:  0.100, 0.063, 0.041, 0.027 and 0.009. 
We see that the CI for p becomes narrower as M increases. Also, the 
proportion of CIs containing 1.5 converges towards 95% as M increases. 
The convergence does not seem to be uniform. This is because of Monte 
Carlo error. If we repeated the experiment again, we might find a slightly 
different pattern. 
   
Each of the CIs for p is consistent with p = 0.95, except the one with  
M = 10,000, which is the most reliable. In that case the CI for p is  
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(0.940, 0.949), which is entirely below 0.95. This suggests that the true 
coverage probability of the 95% MC CI for µ  is slightly less than 95%. 
 
The observed proportions appear to be converging to this limit rather than 
to 95% exactly. This is explainable by the fact that the MC sample size 
J = 100 is far from infinity. If we repeated (d) with a larger value of J in 
each case, say J = 1,000, we would see the proportion of the M CIs 
converge towards a limiting value which is even closer to 95%. But then 
an even larger value of M would be necessary to establish that there is in 
fact any difference between the limiting value and 95%. 
 
R Code for Exercise 5.7 
 
# (a) 
options(digits=5); J = 100; set.seed(221); xv=rgamma(J,3,2) 
xbar=mean(xv); ci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J) 
c(xbar,ci) # 1.5170 1.3539 1.6800 
 
# (b) 
Jvec=c(100,200,500,1000,10000,100000); K = length(Jvec) 
xbarvec=rep(NA,K); LBvec= rep(NA,K); UBvec= rep(NA,K); 
set.seed(221); 
for(k in 1:K){ J=Jvec[k]; xv=rgamma(J,3,2); xbar=mean(xv) 
  ci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J) 
  xbarvec[k]=xbar; LBvec[k]=ci[1]; UBvec[k]=ci[2] 
  } 
Wvec=UBvec-LBvec 
print(rbind(Jvec, xbarvec, LBvec,UBvec, Wvec),digits=4) 
 
# Jvec    100.0000 200.0000 500.0000 1000.000 1.000e+04 1.000e+05 
# xbarvec   1.5170   1.4705   1.4299    1.475 1.490e+00 1.502e+00 
# LBvec     1.3539   1.3480   1.3577    1.419 1.473e+00 1.497e+00 
# UBvec     1.6800   1.5930   1.5020    1.530 1.508e+00 1.507e+00 
# Wvec      0.3261   0.2451   0.1443    0.111 3.441e-02 1.073e-02 
 
# (c) 
J=100; M=100; ct=0; set.seed(442); for(m in 1:M){ 
 xv=rgamma(J,3,2) 
 xbar=mean(xv); ci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J) 
 if((ci[1]<=1.5)&&(1.5<=ci[2])) ct = ct + 1 } 
p=ct/M; ci=p+c(-1,1)*qnorm(0.975)*sqrt(p*(1-p)/J) 
c(ct,p,ci) # 93.00000  0.93000  0.87999  0.98001 
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# (d) 
J=100; Mvec=c(200,500,1000,10000); set.seed(651) 
   for(M in Mvec){ ct=0 
 for(m in 1:M){ 
  xv=rgamma(J,3,2); xbar=mean(xv) 
  ci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J) 
  if((ci[1]<=1.5)&&(1.5<=ci[2])) ct = ct + 1  
  } 
 p=ct/M; ci=p+c(-1,1)*qnorm(0.975)*sqrt(p*(1-p)/M) 
 print(c(M,p,ci,ci[2]-ci[1]),digits=3)   } 
 
# [1] 200.0000   0.9450   0.9134   0.9766   0.0632 
# [1] 500.000    0.942    0.922    0.962    0.041 
# [1] 1.00e+03   9.49e-01 9.35e-01 9.63e-01 2.73e-02 
# [1] 1.00e+04   9.44e-01 9.40e-01 9.49e-01 9.00e-03 
 
5.8 Random number generation  
 
So far we have assumed the availability of the sample required for Monte 
Carlo estimation, such as 1,..., ~ ( )Jx x iid f x . The issue was skipped over 
by making use of ready made functions in R such as runif(), rbeta() and 
rgamma(). However, many applications involve dealing with complicated 
distributions from which sampling is not straightforward.  
 
So we will next discuss some basic techniques that can be used to generate 
the required Monte Carlo sample from a given distribution. More 
advanced techniques will be treated later. We will first treat the discrete 
case, which is the simplest, and then the continuous case. It will be 
assumed throughout that we can at least sample easily from the standard 
uniform distribution, i.e. that we can readily generate ~ (0,1)u U .  
 
Note: This sampling is easily achieved using the runif() function in R. 
Alternatively, it can be done physically by using a hat with 10 cards in 
it, where these have the numbers 0,1,2,....,9 written on them. Three cards 
(say) are drawn out of the hat, randomly and with replacement. The three 
numbers thereby selected are written down in a row, and a decimal point 
is placed in front of them. The resulting number (e.g. 0.472, 0.000 or 
0.970) is an approximate draw from the standard uniform distribution. 
Repeating the entire procedure several times results in a random sample 
from that distribution. Increasing ‘three’ above (to ‘five’, say) improves 
the approximation (e.g. yielding 0.47207, 0.00029 or 0.97010). 
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5.9 Sampling from an arbitrary discrete  
distribution 
 
Suppose we wish to sample a value ~ ( )x f x  where ( )f x  is a discrete 
pdf defined over the possible values 1,..., Kx x x= . First define  
 ( )k kf f x=   
and   

1 ...k kF f f= + +   (k = 1,…,K), 
noting that 1KF = .  
 
Then  sample ~ (0,1)u U , and finally return: 
  1x x=    if 10 u F≤ ≤  
  2x x=    if 1 2F u F< ≤  
            ………………………………..... 
  Kx x=    if 1 ( 1)K KF u F− < ≤ = . 
  
One way to implement the above is to set k = 1, to repeatedly increment k 
by 1 until 1k kF u F− < ≤ , and then, using the final value of k thereby 
obtained, to return kx x= .  
 
Note 1: We see that this procedure will work also in the case where K is 
infinite. In that case a practical alternative is to redefine K as a value k 
for which kF  is very close to 1 (e.g. 0.9999) and then approximate ( )f x  
by zero for all Kx x> . 

 
Note 2: In R, an alternative to using ~ (0,1)u U  is to apply the function 
sample() with appropriate specifications of 1,..., Kx x  and 1,..., Kf f  (as 
illustrated in an exercise below). 

 
Exercise 5.8 Example of sampling from a simple discrete  
distribution 
 
Show that the above method works when applied to generating a value x 
from the Bin(2,1/2) distribution, i.e. that it returns x = 0, 1 and 2 with 
probabilities 1/4, 1/2 and 1/4, respectively. 
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Solution to Exercise 5.8 
 
In this case, K = 3 and:   1x  = 0,    1( ) ( 0)F x P x= ≤  = 0.25  
       2x  = 1,    2( ) ( 1)F x P x= ≤  = 0.75  
       3x  = 2,     3( ) ( 2)F x P x= ≤  = 1.00. 
  
Let u ~ U(0,1). Then the method returns: 
     x = 1x  = 0       if   0  < u  < 1( )F x  i.e. if   0.00  < u  < 0.25 
     x = 2x  = 1       if  1( )F x  < u  < 2( )F x  i.e. if  0.25 < u < 0.75 
     x = 3x  = 2       if  2( )F x   < u  < 3( )F x  i.e. if  0.75 < u < 1.00. 
 
Thus, x has: 0.25 – 0.00 = 0.25 probability of being set to 0 
  0.75 – 0.25 = 0.50 probability of being set to 1 
  1.00 – 0.75 = 0.25 probability of being set to 2 (all correct). 
 
Exercise 5.9  Sampling from a complicated discrete distribution 
 
Consider the discrete distribution defined by the pdf  

              
3

( ) , 1,3,5,...
1

xx ef x x
x

−

∝ =
+

 

 
Find the mean of the distribution by performing appropriate summations. 
Then generate a random sample from this distribution and use it to 
confirm the mean.  
 
Solution to Exercise 5.9   
 

Using R we calculate 
3

( ) , 1,3,5,...,41
1

xx ek x x
x

−

= =
+

  (here k stands for 

kernel), noting that the last two values of ( )k x  are tiny (9.455201e-14 and  
1.454999e-14).  
 
We then calculate the sum of the kernel values,  
            (1) (3) ... (41)c k k k= + + +  = 1.051009, 
and thereby normalise the kernel to obtain  

            ( )( ) , 1,3,5,...,41k xf x x
c

= = . 
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The pdf may also be written as ( ) ( ) /f x k x c= , 1,..., Kx x x= , where: 
2 1kx k= − ; 1,...,k K= ; K = 21.The exact mean of the distribution is then 

evaluated numerically as  

             
1

( )  3.6527
K

k k
k

x f xµ
=

= =∑ .  

 
Note: Changing 41 to 101 here changes the approximation to 3.6527, 
i.e. makes no difference to 4 decimals. This suggests that taking the 
upper bound as 41 is good enough. 

 
To sample J = 100,000 values from the distribution we may write 
        sample(x=xvec,size=J,replace=TRUE,prob=fvec) 
where xvec is a vector with values 1,3,…,41 and fvec is a vector with the 
values (1), (3),..., (41)f f f  (see the R Code below). 
 
Note: We could also change fvec to kvec here, where kvec is a vector 
with the values (1), (3),..., (41)k k k ; both possibilities will work since 
sample() will automatically normalise the values in its parameter ‘prob’. 

 
The Monte Carlo estimate of µ  works out as 3.6494 with 95% CI  
(3.6374, 3.6615). We note that this CI contains the true value, 3.6527. 
 
R Code for Exercise 5.9 
 
kfun = function(x){ x^3*exp(-x)/(1 + sqrt(x)) };  options(digits=5) 
xvec=seq(1,41,2); kvec=kfun(xvec); c =sum(kvec); c # 1.051 
fvec=kvec/c; sum(fvec) # 1 
print(rbind(xvec,fvec)[,1:9],digits=3) 
# xvec 1.000 3.000 5.000 7.0000 9.0000 11.0000 13.00000 1.50e+01 1.70e+01 
# fvec 0.175 0.468 0.248 0.0816 0.0214  0.0049  0.00103 2.02e-04 3.78e-05 
sum(xvec*kvec)/sum(kvec)  # 3.6527 
# Check that 41 is large enough: 
xvec=seq(1,101,2); kvec=kfun(xvec); sum(xvec*kvec)/sum(kvec)  
      # 3.6527  (same) 
# Sample from the distribution 
xvec=seq(1,41,2); kvec=kfun(xvec); J=100000; set.seed(332);  
samp = sample(x=xvec,size=J,replace=TRUE,prob=fvec) 
est =mean(samp); std=sd(samp); ci=est+c(-1,1)*qnorm(0.975)*std/sqrt(J) 
c(est,ci) # 3.6494 3.6374 3.6615 
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5.10 The inversion technique 
 
Suppose we wish to sample x, a value of a continuous random variable  X  
with cdf  ( )XF x . One way to do this is using the inversion technique, 
defined as follows, with the underlying theorem and proof shown below. 
 

First derive the quantile function of X, denoted 1( )XF p  (0 < p < 1).  
(This can be done by setting ( )XF x  to p and solving for x.)  
   
Next, generate a random number u from the standard uniform distribution. 
(It will be assumed that this can be done easily, e.g. using runif() in R.)  
   
Then return 1( )Xx F u  as a value sampled from the distribution of X. 
 
Theorem 5.1: Suppose that X is a continuous random variable with cdf 

( )XF x  and quantile function 1( )XF p . Let U ~ U(0,1), independently of 
X, and define 1( )XR F U . Then R has the same distribution as X. 
 

Proof of Theorem 5.1: Observe that U has cdf ( ) , 0 1UF u u u= < < . 
This implies that R has cdf  
  1( ) ( ) ( ( ( )) ( )) ( ( )) ( )R X X X X XF r P R r P F F U F r P U F r F r       .  
Thus, R has the same cdf as X and therefore the same distribution. 
 
Note: A complication with the inversion technique may arise if there is 
difficulty deriving the quantile function 1( )XF p . In that case, since the 
task is fundamentally to solve ( )XF x u  for x, it may be useful to 
employ the Newton-Raphson algorithm to the problem of solving the 
equation ( ) 0g x = , where ( ) ( )Xg x F x u  . 

 
Exercise 5.10 Practice at the inversion technique 
 
(a) Using u = 0.371 as a value from the standard uniform distribution, 
obtain a value from the standard exponential distribution. Then generate 
a large random sample 1,..., ~ (0,1)Ju u iid U  (of size J = 1,000 say) and 
use this to create a random sample of the same size from the standard 
exponential distribution. Check your results by calculating an estimate of 
the mean of that distribution and also a 95% CI for that mean. Compare 
your results with the true value of that mean, namely 1.  
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(b) Using u = 0.371 as a value from the standard uniform distribution, 
obtain a value from the gamma distribution with mean and variance both 
equal to 2. Then generate a large random sample 1,..., ~ (0,1)Ku u iid U  (of 
size J = 1,000, say) and use this to create a random sample of the same 
size from the said gamma distribution. Check your results by calculating 
an estimate of the mean of that distribution and also a 95% CI for that 
mean. Compare your results with the true value, namely 2. 
 
Solution to Problem 5.10 
 
(a) Let ~ (1,1)X G  with density function ( ) xf x e−= , x > 0, and cdf 

0

( ) 1
x

t xF x e dt e− −= = −∫ , x > 0. The quantile function here is the solution 

of 1 xe−−  = p, namely 1( ) log(1 )F p p− = − − .  
 
So a value from the standard exponential distribution is easily computed 
as 1( ) log(1 0.371)x F u−= = − −  = 0.463624. 
 
Taking J = 1,000, we now generate 1,..., ~ (0,1)Ju u iid U  in R using the 
runif() function, and then calculate log(1 )j jx u= − −  for each j = 1,…,J.  
 
This results in the required sample  1,..., ~ (1,1)Jx x iid G . Using this 
sample, the MC estimate of EXµ =  is 0.9967, and a 95% CI for µ  is 
(0.9322, 1.0613). We see that the CI contains the true value being 
estimated (i.e. 1). 
 
(b) Here, ~ (2,1)X G  with mean 2/1, variance 22 /1 2= , pdf ( ) xf x xe−=   
and cdf  

0
0 0

( ) ( ) 1( )
x x

xt t tF x te dt t e e dt− − − = = − − −  ∫ ∫    

          
0

0 1 1 ( 1)
xx t x x xxe e xe e x e− − − − − = − + + − = − − + = − +  

. 

 
We see that the quantile function of X, 1( )F p− , does not have a closed 
form expression, since it is the root of the function   
 ( ) ( ) 1 ( 1) xg x F x p x e p−= − = − + −   
(i.e. the solution of ( ) 0)g x = .  
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However, for any p we can obtain that root using the Newton-Raphson 
algorithm by iterating 

 1

( )
( )

j
j j

j

g x
x x

g x+ = −
′

     where ( ) ( ) 0 ( ) xg x F x f x xe−′ ′= − = =  

        
1 ( 1) j

j

x
j

j x
j

x e p
x

x e

−

−

 − + −
= −   

 
.        

 
With p = u = 0.371  and starting arbitrarily at 0 1x = , we get the sequence: 
 1.0000, 1.2902, 1.2939, 1.2939, 1.2939, 1.2939, 1.2939….. 
 
So we return 1.2939 as a value from the G(2,1) distribution. 
 
As a check, we use the pgamma() function in R to confirm that    

(1.2939) 0.371XF =  as follows:   
pgamma(1.2939,2,1)  # 0.37101 

 
Taking K = 1,000, we now generate 1,..., ~ (0,1)Ku u iid U  in R using the 
runif() function, and then for k = 1,…,K we solve  
 1 ( 1) kx

k kx e u−− + =  for kx  
using the NR algorithm each time. This procedure results in the sample, 
 1,..., ~ (2,1)Kx x iid G . 
 
Using this sample, an estimate of EXµ =  is 1.9631, and a 95% CI for µ  
is (1.8815, 2.0446). We see that the CI contains the true value, 2. 
 
R Code for Problem 5.10 
 
options(digits=5) 
 
# (a) 
-log(1-0.371) #  0.463624 
J=1000; set.seed(221); uv=runif(J,0,1)  
xv=-log(1-uv)    #  Generate a random sample of size 1000 from the G(1,1) dsn 
est=mean(xv); std=sd(xv); ci=est+c(-1,1)*qnorm(0.975)*std/sqrt(J) 
c(est,ci) # 0.99673 0.93216 1.06130 
 
  



Bayesian Methods for Statistical Analysis  

234 

# (b) 
u=0.371; x=1; xv=x; for(j in 1:7) { x=x-(1-(x+1)*exp(-x)-u)/(x*exp(-x));  xv=c(xv,x)  } 
xv # 1.0000 1.2902 1.2939 1.2939 1.2939 1.2939 1.2939 1.2939 
pgamma(x,2,1)  # 0.371     Just checking that  F(1.293860) = 0.371 
pgamma(1.2939,2,1)  # 0.37101 
 
K=1000; xvec=rep(NA,K); set.seed(332); for(k in 1:K){ 
   u=runif(1); x=1; for(j in 1:10)  x=x-(1-(x+1)*exp(-x)-u)/(x*exp(-x)) 
   xvec[k]=x      }   # Generate a random sample of size 1000 from the G(2,1) dsn 
est=mean(xvec); std=sd(xvec) 
ci=est+c(-1,1)*qnorm(0.975)*std/sqrt(K) 
c(est,ci) # 1.9631 1.8815 2.0446 
 
5.11 Random number generation via 
compositions 
 
Sometimes the most convenient way to sample from a distribution is to 
express it as a function (or composition) of two or more random variables 
which are easy to sample from. For example, to obtain two independent 
values from the standard normal distribution we may use the well-known 
Box-Muller algorithm, as follows.  
 
Sample 1 2, ~ (0,1)u u iid U  and let:  

1 1 22 log cos(2 )z u uπ= −       

 2 1 22 log sin(2 )z u uπ= − . 
 
It can be shown that 1 2, ~ (0,1)z z iid N . If we only need one value from 
the standard normal distribution then we may arbitrarily discard 2z  and 
return only 1z . 
 
Exercise 5.11 Sampling from the double exponential  
distribution 
 
Suppose we wish to sample a value ~ ( )x f x , where  
 | |( ) (1/ 2) ,xf x e x−= ∈ℜ . 
 
Describe how to obtain x as a composition of two other values than can 
be easily sampled. 
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Solution to Exercise 5.11 
 
Let R and Y be independent random variables such that ~ (0.5)R Bern  
and ~ (1,1)Y G . Then (2 1)U R Y= −  has the same distribution as X.  
 
This is because R is equally likely to be 0 as it is to be 1, and so 2 1R −  is 
equally likely to be –1 as it is to be +1. So there is a 50% chance that U 
will be exponential ( (1,1)G ) and a 50% chance that U will be negative 
exponential. So, obviously U has exactly the same distribution as X. For 
a formal proof, see the Note below. 
 
We see that a method for obtaining a value ~ ( )x f x  is to independently 
sample ~ (0.5)r Bern  and ~ (1,1)y G , and then calculate (2 1)x r y= − . 
 
Note: The cdf of (2 1)U R Y= −  is  
 ( ) ( )F u P U u= ≤   
                     ((2 1) )P R Y u= − ≤  
                     ((2 1) | )EP R Y u R= − ≤  
                     ( 0) ((2 1) | 0)P R P R Y u R= = − ≤ =  
                                         ( 1) ((2 1) | 1)P R P R Y u R+ = − ≤ =  

          1 1( | 0) ( | 1)
2 2

P Y u R P Y u R= − ≤ = + + ≤ =  

          1 1( ) ( )
2 2

P Y u P Y u= ≥ − + ≤  

                     
( )(1 / 2) (1 / 2)(0), 0

(1 / 2)(1) (1 / 2)(1 ), 0

u

u

e u
e u

− −

−

 + <
= 

+ − ≥
 

          (1/ 2) , 0
1 (1/ 2) , 0.

u

u

e u
e u−

 <
= 

− ≥
 

  

So U has pdf (1 / 2) , 0
( ) ( )

0 (1 / 2) ( 1), 0

u

u

e u
f u F u

e u−

 <
′= =  

− − ≥ 
. 

 

That is, | |1( ) ,
2

uf u e u−= −∞ < < ∞ , which is the same the pdf of X. 
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Exercise 5.12 Sampling from a triangular distribution 
  

Suppose we want to sample ~ ( )x f x  where 
, 0 1

( ) .
2 ,1 2
x x

f x
x x

< < 
=  − < < 

  

 
Describe how two random variables can be combined to obtain x. 
 
Solution to Exercise 5.12 
 
Sample the two random variables ~ (0.5)r Bern  and ~ (2,1)y Beta . Then 
calculate (1 )(2 )x ry r y= + − − . This way, there is a 50% chance that x 
will equal y, whose pdf is ( ) 2 , 0 1f y y y= < < , and a 50% chance that x 
will equal 2z y= − , whose pdf is ( ) 2(2 ),1 2f z z z= − < < . 
 
A second solution is as follows. Sample 1 2, ~ (0,1)u u iid U  and calculate 

1 2x u u= + . It can easily be shown that a value of x formed in this way has 
the triangular pdf in question.  
 
5.12 Rejection sampling  
 
Some distributions are difficult to sample from using any of the already 
mentioned methods. For example, when applying the inversion technique, 
solving the equation F(x) = u may be problematic even with the aid of the 
Newton-Raphson algorithm (e.g. due to instability unless starting at very 
close to the solution).  
 
In such cases, one  convenient and easy way to obtain a value from the 
distribution of interest may be via rejection sampling (also known as the 
rejection method or the acceptance-rejection method). This method works 
as follows.  
 
Suppose we want to generate a random number from a target distribution 
with density ( )f x . This target distribution may be continuous or discrete. 
 
We must first decide on a suitable envelope distribution with envelope 
density ( )h x . (These are also called the majorising distribution and 
majorising density.) Ideally, the chosen density ( )h x  is similar in shape 
to ( )f x  and relatively easy to sample from.  
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We next define the following quantities: 

 ( )max
( )x

f xc
h x

     
     

 ( )( )
( )

f xp x
ch x

 . 

 
The idea here is that ( )f x  lies entirely beneath ( )ch x  except that it 
touches ( )ch x  at maybe only one point. Then ( )p x , which is called the 
acceptance probability, appropriately lies between 0 and 1 (inclusive). 
Figure 5.10  illustrates this setup. The rejection algorithm is as follows: 
 
 1.  Sample a proposed value (or candidate)    ~ ( )x h x . 

 2.  Calculate the acceptance probability  
( )( )
( )

f xp p x
ch x


 


. 

 3.  Generate a standard uniform value   ~ (0,1)u U . 
 4.  Decide whether to accept or reject the candidate, as follows: 
  If u < p then accept x , meaning return x x  and STOP. 
  If u > p then reject x , meaning go to Step 1 and REPEAT. 
 
Steps 1 to 4 are repeated as many times as necessary until an acceptance 
occurs, resulting in x x . The finally accepted value x is an observation 
from ( )f x . Repeating the entire procedure above another 1J −  times 
independently will result in a random sample of size J from ( )f x .  
 
Figure 5.10 illustrates, with:  
 

 ( )f x  = density of the Beta(4,8) distribution 
  ( )h x  = density of the Beta(2,2) distribution 

  ( )max
( )x

f xc
h x

     
 = 2.45   

 x  = 0.4    (example of a candidate)       

 
( ) 2.365( ) 0.671
( ) 3.524

f xp p x
ch x


   


. 

 

In this case, if we sample u = 0.419 (for example), then we accept x  and 
return x = 0.4. If, however, we sample u = 0.705 (say), then we reject x  
and propose another x , etc. 
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Figure 5.10 Illustration of the rejection sampling algorithm 

 
Note 1: The rejection sampling algorithm as defined here also works 
with ( )f x  and ( )h x  in the equations replaced by any kernels of the 
target and envelope distributions, respectively. 

 
Note 2: The overall acceptance rate is the unconditional probability of 
acceptance and equals the area under ( )f x  divided by the area under 

( )ch x , which is obviously 1/c (= 0.409 in our example).  
  
The wastage may be defined as the overall probability of rejection, 
namely 1 1 / c− , and this is simply the area between ( )f x  and ( )ch x   
(= 0.591 in our example). 

 
Note 3: If we consider the experiment of proposing values repeatedly 
until the next acceptance, then the number of candidates follows a 
geometric distribution with parameter 1/c, and so the expected number 
of candidates (until acceptance) is 1/(1/c) = c. 

 
Note 4: There are two basic principles which must be considered in 
rejection sampling: 
  
(i) The envelope density ( )h x  should be similar to the target density 

( )f x  since this will minimise wastage, i.e. minimise the average 
number of proposals per acceptance, c, and hence optimise the computer 
time required.  
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(ii) The envelope distribution should be easy to sample from. 
 
Note 5: The idea of rejection sampling can be used to give an intuitively 
appealing account of how Bayes’ theorem works. In this regard, see 
Smith and Gelfand (1992). 

 
Note 6: How rejection sampling works can most easily be explained by 
considering the case where ( )f x  defines a simple discrete distribution. 
This is the subject of the next exercise. 

 
R Code for Section 5.12 
 
X11(w=8,h=4.5); par(mfrow=c(1,1)) 
 
plot(c(0,1), c(0,6),type="n",xlab="x",ylab="") 
xv=seq(0.001,0.999,0.01); hxv=dbeta(xv,2,2); lines(xv,hxv,lty=2,lwd=3) 
 
kfun=function(x){  dbeta(x,4,8)  }  
      # We could specify any positive function here   (*) 
k0=integrate(f=kfun,lower=0,upper=1)$value   
     # This calculates the normalising constant 
fxv=kfun(xv)/k0;    #  This ensures f(x) as defined at (*) is a proper density  
 
lines(xv,fxv,lty=1,lwd=3) 
c=max(fxv/hxv); c #  2.4472 
lines(xv,c*hxv,lty=3,lwd=3) 
legend(0,6,c("f(x)","h(x)","c*h(x)"),lty=c(1,2,3),lwd=c(3,3,3)) 
text(0.07,3,"c = 2.45") 
 
xval=0.4; lines(c(xval,xval),c(0, c*dbeta(xval,2,2)),lty=1,lwd=1) 
points(rep(xval,3),  c(0,kfun(xval)/k0 ,c*dbeta(xval,2,2)) ,  
     pch=rep(16,3), cex=rep(1.2,3)) 
text(0.43,0.05,"P"); text(0.43,2.5,"Q"); text(0.43,3.3,"R");  
c(0,kfun(xval)/k0 ,c*dbeta(xval,2,2))    
     # 0.0000 2.3649 3.5239 2.3649/3.5239 # 0.6711 
text(0.6,5.2,"Probability of accepting 0.4 is p(0.4) = f(0.4)/{c*h(0.4)} \n 
= {distance P to Q} divided by {distance P to R}\n= 2.365/3.524 = 0.671") 
c(0,kfun(xval)/k0 ,c*dbeta(xval,2,2)) # 0.0000 2.3649 3.5239 
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Exercise 5.13 Illustration of rejection sampling 
 
Consider the Bin(2,1/2) distribution with pdf  

1/ 4, 0,2
( ) ,

1/ 2, 1
x

f x
x
= 

=  = 
 

and suppose we want to sample from this using rejection method envelope  
( ) 1/ 3, 0,1,2g x x= = , i.e. the density of the discrete uniform distribution 

over the integers 0, 1 and 2. Show that the rejection sampling algorithm 
returns 0, 1 and 2 with the correct probabilities. 
 
Solution to Exercise 5.13 
 

Here:  ( ) 1 / 2 3max
( ) 1 / 3 2x

f xc
g x

      
,  

1/ 2, 0, 2( )( )
1, 1( )

xf xp x
xcg x

        
. 

 
Now, suppose that we propose a very large number of proposed values 
from ( )g x . Then:  
       • about 1/3 of these will be 0, of which about 1/2 will be accepted 
       • about 1/3 of these will be 1, of which (fully) all will be accepted 
       • about 1/3 of these will be 2, of which about 1/2 will be accepted. 
 
We see that about 2/3 of all the proposed values will be accepted, and of 
these about 25% will be 0, 50% will be 1, and 25% will be 2. About 1/3 
of the candidates will be rejected, about half of these being 0 and half 
being 2. The overall acceptance rate is 1/c = 1/(3/2) = 2/3, and the wastage 
is 1 1 / c−  = 1/3. On average, c = 1.5 candidates will have to be proposed 
until an acceptance. Thus, generation of 1,000 Bin(2,1/2) values (say) will 
require about 1,500 candidates. 
 
5.13 Methods based on the rejection algorithm 
 
The rejection method may be used in conjunction with many other 
methods. For example, the Box-Muller algorithm (mentioned earlier) is a 
basis for the Marsaglia polar method for sampling from a normal 
distribution. This method involves generating  
 1 2, ~ (0,1)u u iid U   
repeatedly until  
 2 2

1 2(2 1) (2 1) 1s u u≡ − + − <   
and then returning (2 1) 2(log ) /i iz u s s= − − , i = 1,2.  
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The result will (eventually) be the required sample 
1 2, ~ (0,1)z z iid N .  

 
This algorithm includes a condition for rejecting the sample values 1 2,u u  
and involves iterating until these values are accepted (as a pair). The 
procedure may be less efficient than the Box-Muller algorithm (which 
does not involve rejection sampling and never requires more than two 
standard uniform variates) but avoids the computation of sines and cosines. 
    
5.14 Monte Carlo methods in Bayesian  
inference 
 
Most of the ideas above in this chapter are directly applicable to Bayesian 
inference. Suppose we have derived a posterior distribution or density 

( | )f xθ  but it is complicated and difficult to work with directly. Then we 
can try to generate a random sample from that posterior with a view to 
estimating all the required inferential quantities (e.g. point and interval 
estimates) via the method of Monte Carlo. 
 
First, denote the Monte Carlo sample as  1,..., ~ ( | )J iid f xθ θ θ . Then, the 
MC estimate of the posterior mean of θ , namely 
 ˆ ( | ) ( | )E x f x dθ θ θ θ θ= = ∫ , 

is    

1

1 J

j
jJ

θ θ
=

= ∑  (the MC sample mean), 

and a 1 α−  CI for θ̂  is     

 /2
sz
J
θ

αθ ± 
 

,   

where   
2 2

1

1 ( )
1

J

j
j

s
Jθ θ θ

=

= −
− ∑ . 

 
Also, a MC estimate of the 1 α−  CPDR for θ  is /2 1 /2ˆ ˆ( , )q qα α− , where  ˆpq  
is the empirical p-quantile of 1,..., Jθ θ , and the MC estimate of the 
posterior median is 1/2q̂ , etc.  
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Further, when the posterior density ( | )f xθ  does not have a closed form 
expression (as is often the case), it can be estimated by smoothing a 
probability histogram of 1,..., Jθ θ . 
 
Once an estimate of the posterior density has been obtained, the mode of 
that estimate defines the MC estimate of the posterior mode. 
 
Suppose we are interested in some posterior probability  
 ( | )p P A yθ= ∈   
(where A is a subset of the parameter space).  
 
Then, the MC estimate of p is  

 
1

1ˆ ( )
J

j
j

p I A
J

θ
=

= ∈∑ , 

i.e. the proportion of the jθ  values which lie in A, and a 1 α−  CI for p is  

 ( )/2ˆ ˆ ˆ(1 ) /p z p p Jα± − . 

 
Suppose we are interested in a function of the parameter, ( )gψ θ= . Then 
regardless of how complicated g is, we can perform MC inference on ψ  
easily. Simply calculate ( )j jgψ θ=  for each j = 1,...,J. This results in a 
random sample from the posterior distribution of ψ , namely the values 

1,..., ~ ( | )J iid f xψ ψ ψ .  
 
One may then apply any of the ideas above, just as before. For example, 
the posterior mean of ψ , namely 

ˆ ( | ) ( | ) ( ) ( | )E x f x d g f x dψ ψ ψ ψ ψ θ θ θ= = =∫ ∫ , 
can be estimated by its MC estimate,  

 
1

1 J

j
jJ

ψ ψ
=

= ∑ , 

and a 1 α−  CI for ψ̂  is   

 /2

s
z

J
ψ

αψ
 

± 
 

,  

where  
2 2

1

1 ( )
1

J

j
j

s
Jψ ψ ψ

=

= −
− ∑ .
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Exercise 5.14 MC inference under the normal-normal-gamma  
model 
 
Recall the Bayesian model:  1( , , | , ) ~ ( ,1/ )ny y iid N     
    ( , ) 1 / , , 0f µ λ λ µ λ∝ ∈ℜ > . 
 
Suppose we observe the data vector 1( ,..., )ny y y=  = (2.1, 3.2, 5.2, 1.7). 
 
(a) Generate J = 1,000 values from the posterior distribution of µ . Use 
this sample to perform MC inference on µ . Illustrate your inferences with 
a suitable graph. 
 
(b) Generate J = 1,000 values from the posterior distribution of λ . Use 
this sample to perform MC inference on λ . Illustrate your inferences with 
a suitable graph. 
 
(c) Use MC methods to estimate the signal to noise ratio (SNR), defined 
as /γ µ σ µ λ= = . Illustrate your inferences with a suitable graph. 
 
Solution to Exercise 5.14 
 
(a) Recall that the marginal posterior distribution of µ  is given by  

  ~ ( 1)
/

y y t n
s n
µ −

− 
 

. 

 
So we generate 1 ,..., ~ ( 1)Jw w iid t n −  and then calculate  

 j j
sy w
n

µ = + , 1,..,j J= .  

 
We then use the sample 1,..., ~ ( | )J iid f yµ µ µ  for MC inference on µ . 
Thereby, we estimate ’sµ  posterior mean ˆ ( | )E yµ µ=  by µ  = 3.077 
with (3.001, 3.153) as the 95% MC CI for µ̂ . The MC estimate of ’sµ  
95% CPDR is (0.685, 5.507). 
 
We now compare the above estimates with the true values: 
 ˆ yµ =  = 3.050    

 95% CPDR for µ  = 0.025( 1) sy t n
n

 ± − 
 

 = (0.556, 5.544). 
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We observe that the true posterior mean is contained in the 95% MC CI 
for that mean. Figure 5.11 provides a comparison of the above Monte 
Carlo and ‘exact’ inferences.  
 
Note 1: The formula for the exact posterior density is 

 ( 1)
1( | ) ( | )

/ /t n
dw yf y f w y f
d s n s n

µµ
µ −

− = = × 
 

 

   

( 1) 1
2 2( 1) 1

2 /1 ,
1 1( 1)

2

n

yn
ns n

n n sn

µ

µ
π

− + − 
  − − +   Γ   

    = + × ∈ℜ − − Γ −        

. 

 

Note 2: The MC sample 1,..., ~ ( | )J iid f yµ µ µ  could also be obtained 
using the following results: 

 21 1( | ) ~ ,
2 2

n ny Gamma s
                    

     

 1( | , ) ~ ,y N y
n

 


    
. 

  
Thus, using the method of composition and the identity 
 ( , | ) ( | ) ( | , )f y f y f y     , 
we first sample  

 2
1

1 1,..., ~ ,
2 2J

n nGamma s 
                    

, 

and then sample  

 1~ ,j
j

N y
n




     
 for each 1,...,j J= . 

 
The result of this procedure is  
            1 1( , ),..., ( , ) ~  ( , | )J J iid f y      ,  
and thereby  
            1,..., ~ ( | )J iid f yµ µ µ ,  
as before, after discarding all of the j  values. 
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Figure 5.11 Monte Carlo inference on the normal mean  

 
 
(b) One way to obtain a MC sample from the marginal posterior 
distribution of   is as indicated in Note 2 of part (a). Alternatively, we 
can make use of the result 

 2( | , ) ~ ,
2 2
n ny Gamma s 

    
, where 2 2

1

1 ( )
n

i
i

s y
n 



  . 

 
So, again by the method of composition, but this time using the identity 
 ( , | ) ( | ) ( | , )f y f y f y     , 
we make use of the sample already generated in (a) and sample  

 2~ ,
2 2 jj
n nGamma s

    
  

for each 1,...,j J= . The result is 1 1( , ),..., ( , ) ~  ( , | )J J iid f y      , and 
thereby 1,..., ~ ( | )J iid f yλ λ λ  (after discarding all of the j  values). 
 
Implementing this procedure (i.e. making use of the simulated values in 
(a)) we obtain the required sample, 1,..., ~ ( | )J iid f yλ λ λ , and use it for 
MC inference. Thereby we estimate ’sλ  posterior mean ˆ ( | )E yλ λ=  by 
λ  = 0.3998 with (0.3804, 0.4192) as the 95% MC CI for λ̂ . The MC 
estimate of ’sλ  95% CPDR is (0.0347, 1.2828).  
 
We now compare the above estimates with the true values: 
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2

1ˆ
s

λ =  = 0.4071  

95% CPDR  = 
2 2

1 1
1 1 1 1, ,

2 2 2 2

(0.025), (0.975)n n n nG s G s
F F− −

− − − −   
   
   

 
  
 

 

        = (0.0293, 1.2684). 
 
We see that the true posterior mean is contained in the 95% MC CI for 
that mean. Figure 5.12 illustrates these Monte Carlo and ‘exact’ inferences.  
 
Figure 5.12 Monte Carlo inference on the precision parameter 

 

 
(c) Using the values sampled in (a) and (b), we now calculate j j j    

for each 1,..,j J= , and hence obtain a MC sample 1,..., ~  ( | )J iid f y   , 
which can then be used to perform MC inference on γ . (NB: The symbols 
‘γ ’ and ‘  ’ are typographically equivalent.) Implementing this strategy, 
we estimate ’sγ  posterior mean by 1.800, with (1.745 1.854) as a 95% CI 
for that mean, and we estimate ’sγ  95% CPDR as (0.228, 3.543). 
 
Figure 5.13 illustrates these Monte Carlo estimates. Also shown are:  
 • the exact posterior mean of  , which is ˆ ( | )E yγ γ=  = 1.793 
 • the exact 95% CPDR for  , which is (0.0733, 3.5952) 
 • the exact posterior density of   
 • the MLE of  , which is  /y sγ =  =  3.05/1.567 = 1.946. 
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See the Note and R Code below for details of these calculations. 
 
 Figure 5.13 Monte Carlo inference on the signal to noise ratio 

 

 

Note: The conditional posterior distribution of     given λ  is 

 2( | , ) ~ (( ) , ( ) 1 / ( )) ~ ( ,1 / )y N y n N y n      . 
  
This follows from the uninformative normal-normal model, i.e. from the 
fact that  

( | , ) ~ ( ,1 / ( ))y N y n   .  
 

So the posterior density of   may be obtained numerically according to  

 
0

( | ) { ( | , ) | } ( | , ) ( | )f y E f y y f y f y d      


   , 

where:  

 
2( )

2
( ,1/ )

( | , ) ( ) ,
2

n y

N y n

nf y f e
 


   



 
    

 

2

2

1
1 12 12 2 2

1 1,
2 2

1
2( | ) ( ) , 0

1
2

n
n n s

n nG s

n s e
f y f

n




  


 

 

      

     
  

     

. 
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Also (as shown in a previous exercise), the posterior mean of   is 
exactly  
 ˆ ( | ) { ( | , ) | }E y E E y yγ µ λ µ λ λ= =   

     1/2

1 1
2 2

1 1
2 2

n
y
s n n

− Γ + 
 = ×

− −   Γ   
   

  = 1.793   

(after some algebra).  
 
The exact 95% CPDR for   may be obtained by using the optim() 
function to minimise  

   2 2
( , ) ( | ) ( | ) 0.95 ( | ) ( | )g L U F U y F L y f U y f L y                 

             

2

0

( | , ) ( | ) 0.95
U

L

f y f y d d    
               

     

         
2

0 0

( | , ) ( | ) ( | , ) ( | )f U y f y d f L y f y d      
       
  , 

with the result being (L, U) = (0.0733, 3.5952). 
  
R Code for Exercise 5.14 
 
# (a) 
y=c(2.1, 3.2, 5.2, 1.7); n=length(y); ybar=mean(y); s=sd(y); s # 1.567 
J=1000; set.seed(144); options(digits=4) 
wv=rt(J,n-1); muv=ybar+s*wv/sqrt(n) 
mubar=mean(muv); muci=mubar + c(-1,1)*qnorm(0.975)*sd(muv)/sqrt(J) 
mucpdr=quantile(muv,c(0.025,0.975)) 
c(mubar,muci,mucpdr) # 3.0770 3.0012 3.1528 0.6848 5.5069 
muhat=ybar; mucpdrtrue= ybar+(s/sqrt(n))*qt(c(0.025,0.975),n-1)   
c(muhat,mucpdrtrue) # 3.050 0.556 5.544 
 
X11(w=8,h=5); par(mfrow=c(1,1)) 
 
hist(muv,prob=T,xlab="mu",xlim=c(-2,7.5), ylim=c(0,0.5),main="", 
 breaks=seq(-20,20,0.25)) 
muvec=seq(-20,20,0.01);  
postvec=dt(   (muvec-ybar)/(s/sqrt(n)) , n-1 ) / (s/sqrt(n)) 
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lines(muvec,postvec, lty=1,lwd=3) 
lines(density(muv),lty=2,lwd=3) 
abline(v=c(mubar,muci,mucpdr),lty=2,lwd=3) 
abline(v=c(ybar, mucpdrtrue)  ,   lty=1,lwd=3) 
legend(-2,0.5,c("Monte Carlo estimates","Exact posterior estimates"), 
 lty=c(2,1),lwd=c(3,3),bg="white") 
 
# (b) 
lamv=rep(NA,J); set.seed(332) 
for(j in 1:J) lamv[j] = rgamma(1,n/2,(n/2)*mean((y-muv[j])^2)) 
 
lambar=mean(lamv); lamci=lambar + c(-1,1)*qnorm(0.975)*sd(lamv)/sqrt(J) 
lamcpdr=quantile(lamv,c(0.025,0.975)) 
c(lambar, lamci, lamcpdr) # 0.39980 0.38040 0.41920 0.03465 1.28283 
lamhat=1/s^2; lamcpdrtrue= qgamma(c(0.025,0.975),(n-1)/2,((n-1)/2)*s^2) 
c(lamhat, lamcpdrtrue) # 0.40706 0.02928 1.26844 
 
hist(lamv,prob=T,xlab="lam",xlim=c(0,2.5), ylim=c(0,2),main="", 
 breaks=seq(0,3,0.05)) 
lamvec=seq(0,3,0.01) ; lampostvec= dgamma(lamvec,(n-1)/2,((n-1)/2)*s^2) 
lines(lamvec, lampostvec, lty=1,lwd=3) 
lines(density(lamv),lty=2,lwd=3) 
abline(v=c(lambar, lamci, lamcpdr),lty=2,lwd=3) 
abline(v=c(1/s^2,  lamcpdrtrue),   lty=1,lwd=3) 
legend(1.5,2,c("Monte Carlo estimates","Exact posterior estimates"), 
 lty=c(2,1),lwd=c(3,3),bg="white") 
 
# (c) 
gamv=muv*sqrt(lamv) 
 
gambar=mean(gamv); gamci=gambar + c(-1,1)*qnorm(0.975)*sd(gamv)/sqrt(J) 
gamcpdr=quantile(gamv,c(0.025,0.975)) 
c(gambar, gamci, gamcpdr) # 1.7997 1.7453 1.8540 0.2284 3.5433 
mle=ybar/s; mle # 1.946 
 
gamhat=(ybar/s)*gamma(0.5+(n-1)/2)/(sqrt((n-1)/2)*gamma((n-1)/2)) 
print(c(ybar,s,gamhat),digits=8) # 3.0500000 1.5673757 1.7928178 
intfun=function(lam,gam, ybar=3.05,s=1.5673757,n=4){ 
  dnorm(gam,ybar*sqrt(lam),1/sqrt(n))*dgamma(lam,(n-1)/2,s^2*(n-1)/2)   } 
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integrate(function(gam) {  
 sapply(gam, function(gam) { 
 integrate(function(lam) { 
 sapply(lam, function(lam) intfun(lam,gam) ) 
 }, 0, Inf)$value  })  }, -Inf, Inf) 
   # 1 with absolute error < 4.7e-07    OK (Just checking) 
 
integrate(function(gam) {  
 sapply(gam, function(gam) { 
 integrate(function(lam) { 
 sapply(lam, function(lam) gam*intfun(lam,gam) ) 
 }, 0, Inf)$value  })  }, -Inf, Inf) 
   # 1.793 with absolute error < 4.7e-06   OK (Agrees with exact calculation) 
 
gamvec=seq(-5,10,0.01); fgamvec=gamvec 
 
for(i in 1:length(gamvec)){ 
 fgamvec[i]=integrate( f=intfun, lower=0, upper=Inf,    
  gam=gamvec[i])$value   } 
 plot(gamvec,fgamvec) # OK 
 
L=-0.1; U=4.2  # Testing.... 
integrate(function(gam) {  
 sapply(gam, function(gam) { 
 integrate(function(lam) { 
 sapply(lam, function(lam) intfun(lam,gam) ) 
 }, 0, Inf)$value  })  }, L,U)   
   # 0.9823 with absolute error < 4.3e-08  OK 
 
integrate( f=intfun, lower=0, upper=Inf,  gam=U)$value - 
  integrate( f=intfun, lower=0, upper=Inf,  gam=L)$value   # -0.02074   OK 
 
gfun=function(v){   L=v[1]; U=v[2] 
( integrate(function(gam) {  
 sapply(gam, function(gam) { 
 integrate(function(lam) { 
 sapply(lam, function(lam) intfun(lam,gam) ) 
 }, 0, Inf)$value  })  }, L,U)$value  - 0.95  )^2 + 
(  integrate( f=intfun, lower=0, upper=Inf,  gam=U)$value - 
       integrate( f=intfun, lower=0, upper=Inf,  gam=L)$value   )^2   } 
 
gfun(v=c(-0.1,4.2))  # 0.001473  OK 
gfun(v=c(1,3)) #   0.08562 OK 
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res0=optim(par=c(0,4),fn=gfun)$par 
res0 # 0.07334 3.59516 
res1=optim(par=res0,fn=gfun)$par 
res1 # 0.07332 3.59518 
res2=optim(par=res1,fn=gfun)$par 
res2 # 0.07332 3.59518   OK   
 
L=res2[1]; U=res2[2]  # Now check... 
 
integrate(function(gam) {  
 sapply(gam, function(gam) { 
 integrate(function(lam) { 
 sapply(lam, function(lam) intfun(lam,gam) ) 
 }, 0, Inf)$value  })  }, L,U)   
   # 0.95 with absolute error < 3.2e-07  
integrate( f=intfun, lower=0, upper=Inf,  gam=L)$value  # 0.06598  
integrate( f=intfun, lower=0, upper=Inf,  gam=U)$value # 0.06598  All OK 
 
hist(gamv,prob=T,xlab="gam",xlim=c(-1,6), ylim=c(0,0.6),main="", 
 breaks=seq(-2,7,0.1)) 
lines(density(gamv),lty=2,lwd=3) 
abline(v=c(gambar, gamci, gamcpdr),lty=2,lwd=3) 
points(mle,0,pch=4,lwd=3,cex=2) 
lines(gamvec,fgamvec,lty=1,lwd=3) 
abline(v=c(gamhat,L,U),lty=1,lwd=3) 
legend(3,0.6,c("Monte Carlo estimates","Exact posterior estimates"), 
 lty=c(2,1),lwd=c(3,3),bg="white") 
text(5,0.4,"The cross shows the MLE") 
      
5.15 MC predictive inference via the method 
of composition 
 
Suppose that in the context of a Bayesian model defined by ( | )f y θ  and 

( )f θ , we wish to predict a value x whose distribution is specified by 
( | , )f x y θ . Recall that the posterior predictive density is  

 ( | ) ( | , ) ( | )f x y f x y f y dθ θ θ= ∫ . 

 
If this density is complicated, we may choose to perform MC predictive 
inference on x using a sample 1,..., ~  ( | )Jx x iid f x y . The question then 
arises as to how such a sample may be obtained. 
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One answer is to sample from ( | )f x y  directly.  But that may be difficult 
since ( | )f x y  is complicated. Another answer is to apply the method of 
composition through the equation 
 ( , | ) ( | , ) ( | )f x y f x y f yθ θ θ= . 
 
This means that we should first sample ~ ( | )f yθ θ′  and then sample

~ ( | , )x f x y θ′ ′ , the result being ( , ) ~ ( , | )x f x yθ θ′ ′ . If we then discard 
θ ′ , the result is the required ~ ( | )x f x y′ . Implementing this process a 
total of J times results in the required sample, 1,..., ~  ( | )Jx x iid f x y . 
 
Exercise 5.15 Monte Carlo prediction in the binomial-beta  
model 
 
The probability of heads coming up on a bent coin follows a standard 
uniform distribution a priori. We toss the coin 50 times and get 28 heads. 
Estimate using Monte Carlo the probability that heads will come up on at 
least six of the next 10 tosses of the same bent coin. 
 
Solution to Exercise 5.15 
 
Recall that the binomial-beta model:  
 ( | ) ~ ( , )y Bin n   
 ~ ( , )Beta   , 
for which the posterior distribution is given by   
 ( | ) ~ ( , )y Beta y n y     . 
 
Earlier we showed that if the future data x has distribution defined by   
 ( | , ) ~ ( , )x y Bin mθ θ , 
then posterior predictive distribution is given by 

 
( , )( | ) , 0, ,

( , )
m B y x n y m xf x y x m
x B y n y

 
 

               
 . 

 
Rather than trying to sample from this distribution directly, we may do 
the following: 
 Sample ~ ( , )Beta y n y       
 Sample ~ ( , )x Bin m θ′ ′ . 
 
Discarding ,  we obtain the required sample value, ~ ( | )x f x y . 
In the situation here: 1   , n = 50, y = 32, m = 10.  
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Implementing the above sampling strategy J = 10,000 times with these 
specifications, we obtain a large MC sample, 1,..., ~ ( | )Jx x f x y . 
 
It is found that 7,084 of the sample values are at least 6. So we estimate 

( 6 | )p P X y= ≥  by p̂  = 0.7084. A 95% CI for p is then 
 ˆ ˆ ˆ( 1.96 (1 ) /p p p J± − ) = (0.6995, 0.7173). 
 
For interest, we also work out the probability exactly as  
 10

6 ( | )xp f x y   = 0.7030     (correct to 4 decimals)  
and note that this value lies in the 95% CI obtained using MC methods. 
 
R Code for Exercise 5.15 
 
options(digits=5) 
n=50; y=32;    alp=1;bet=1;     a=alp+y; b=bet+n-y;     m=10;   J=10000 
set.seed(443); tv=rbeta(J,a,b); xv=rbinom(J,m,tv) 
phat=length(xv[xv>=6])/J;  
ci=phat+c(-1,1)*qnorm(0.975)*sqrt(phat*(1-phat)/J) 
c(phat,ci) # 0.70840 0.69949 0.71731 
 
xvec=0:m; fxgiveny= 
   choose(m,xvec)*beta(y+xvec+alp,n-y+m-xvec+bet)/beta(y+alp,n-y+bet) 
sum(fxgiveny)  # 1   Just checking 
sum(fxgiveny[xvec>=6]) # 0.70296 
 
5.16 Rao-Blackwell methods for estimation 
and prediction 
 
Consider a Bayesian model with two parameters given by a specification 
of ( | , )f y θ ψ  and ( , )f θ ψ  , and suppose that we obtain a sample from 
the joint posterior distribution of the two parameters, say  
 1 1( , ),..., ( , ) ~ ( , | )J J iid f yθ ψ θ ψ θ ψ . 
 
As we have seen, an unbiased Monte Carlo estimate of ’sθ  posterior 
mean, ˆ ( | )E yθ θ= , is 1(1 / ) J

j jJθ θ== ∑ , with an associated MC 1 α−  

CI for θ̂  given by /2( / )z s Jα θθ ± , where sθ  is the sample standard 
deviation of 1,..., Jθ θ .  
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Now observe that  
 ˆ { ( | , ) | } ( | , ) ( | )E E y y E y f y dθ θ ψ θ ψ ψ ψ= = ∫ . 
 
This implies that another unbiased Monte Carlo estimate of θ̂  is  

 
1

1 J

j
j

e e
J =

= ∑ ,   

where  
( | , )j je E yθ ψ= ,  

and another 1 α−  CI for θ̂  is  
 /2( / )ee z s Jα± , 
where es  is the sample standard deviation of 1,..., Je e . 
 
If possible, this second method of Monte Carlo inference is preferable to 
the first because it typically leads to a shorter CI. We call this second 
method Rao-Blackwell (RB) estimation. The first (original) method may 
be called direct Monte Carlo estimation or histogram estimation. 
 
The same idea extends to estimation of the entire marginal posterior 
density of θ , because this can be written  
 ( | ) ( | , ) ( | ) { ( | , ) | }f y f y f y d E f y yψθ θ ψ ψ ψ θ ψ= =∫ . 

 
Thus, the Rao-Blackwell estimate of ( | )f yθ  is  

 
1

1( | ) ( | , )
J

j
j

f y f y
J

θ θ ψ
=

= ∑ , 

as distinct from the ordinary histogram estimate obtained by smoothing a 
probability histogram of 1,..., Jθ θ . 
 
The idea further extends to predictive inference, where we are interested 
in a future quantity x defined by a specification of ( | , , )f x y θ ψ .  
 
The direct MC estimate of the predictive mean, namely 
 ˆ ( | )x E x y= , 
is   

1(1 / ) J
j jx J x== ∑ , 

where   
1,..., ~ ( | )Jx x iid f x y   

(e.g. as obtained via the method of composition).  



Chapter 5: Monte Carlo Basics 

255 

A superior estimate is the Rao-Blackwell estimate given by    

 
1

1 J

j
j

E E
J =

= ∑ , 

where there is now a choice from the following:  
  ( | , , )j j jE E x y θ ψ=   
       or  ( | , )j jE E x y ψ=   
       or  ( | , )j jE E x y θ= .  
 
This estimator ( E ) is based on the identities 
 ˆ { ( | , , ) | } { ( | , ) | } { ( | , ) | }x E E x y y E E x y y E E x y yθ ψ ψ θ= = = . 
 
Note: The first of the three choices for jE  is typically the easiest to 
calculate but also leads to the least improvement over the ordinary 
‘histogram’ predictor, 1(1 / ) J

j jx J x== ∑ . 

 
Likewise, the Rao-Blackwell estimate of the entire posterior predictive 
density ( | )f x y  is   

1

1( | ) ( )
J

j
j

f x y f x
J =

= ∑ , 

where there is a choice from the following: 
 ( ) ( | , , )j j jf x f x y θ ψ=     

       or  ( ) ( | , )j jf x f x y ψ=   
       or ( ) ( | , )j jf x f x y θ= . 
 
Exercise 5.16 Practice at Rao-Blackwell estimation in the  
normal-normal-gamma model 
 
Recall the Bayesian model:  
 1( , , | , ) ~ ( ,1/ )ny y iid N     
 ( , ) 1 / , , 0f µ λ λ µ λ∝ ∈ℜ > . 
 
Suppose that we observe the vector 1( ,..., )ny y y=  = (2.1, 3.2, 5.2, 1.7).  
 
Generate J = 100 values from the joint posterior distribution of µ  and λ  
and use these values as follows. Calculate the direct Monte Carlo estimate 
and the Rao-Blackwell estimate of λ ’s marginal posterior mean.  
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In each case, report the associated 95% CI for that mean. Compare your 
results with the true value of that mean. Produce a probability histogram 
of the simulated λ -values. Overlay a smooth of this histogram and the 
Rao-Blackwell estimate of λ ’s marginal posterior density. Also overlay 
the exact density. 
 
Solution to Exercise 5.16 
 
Recall from Equation (3.3) in Exercise 3.11 that:     

 21 1( | ) ~ ,
2 2

n ny Gamma s
                    

  

1( | , ) ~ ,y N y
n

 


    
. 

 
So we first sample  

21 1~ ,
2 2

n nGamma s
                    

, 

and then we sample  
1~ ,N y

n



     

. 

 
The result is  

( , ) ~ ( , | )f y     .  
 
Repeating many times, we get   

1 1( , ),..., ( , ) ~  ( , | )J J iid f y      . 
 
The histogram estimate of ˆ ( | )E y   works out as   = 0.4142, with 95% 
CI (0.4076, 0.4209). 
 
Next let  ( | , )j je E y  .  
 
Then the Rao-Blackwell estimate of ̂  is e  = 0.4073, with associated 95% 
CI (0.4047, 0.4100).  
 
It will be observed that this second CI is narrower than the first (having 
width 0.0053 compared with 0.0133).  It will also be observed that both 
CIs contain the true value, 2ˆ 1 / s  =  0.4071. 
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Figure 5.14 shows: 
 
     • a probability histogram of 1,..., J   
 
     • a smooth of that probability histogram 
 
     • the true marginal posterior density, namely  
  2( 1)/2, ( 1)/2

( | ) ( )
Gamma n s n

f y f 
 

  

 
     • the Rao-Blackwell estimate of ( | )f y  as given by  

  2/2, /2

1( | ) ( )
jGamma n s n

f y f
J

        where   2 2

1

1 ( )
n

j i j
i

s y
n




  . 

 
Note: The Rao-Blackwell estimate here is based on the result  

    2

1

1( | , ) ~ , ( )
2 2

n

i
i

n ny Gamma y
n

  


         
 .

 
 

It will be observed that the Rao-Blackwell estimate of λ ’s posterior 
density is fairly close. The histogram estimate is much less accurate and 
incorrectly suggests that   has some probability of being negative. 

 
 
Figure 5.14 Illustration of Rao-Blackwell estimation 
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R Code for Exercise 5.16 
 
options(digits=4) 
 
# (a) 
y=c(2.1, 3.2, 5.2, 1.7); n=length(y); ybar=mean(y); s=sd(y); s2=s^2 
J=100; set.seed(254); lamv=rgamma(J,(n-1)/2,s2*(n-1)/2);  
muv=rnorm(J,ybar,1/sqrt(n*lamv)); est0=1/s^2 
est1=mean(lamv); std1=sd(lamv); ci1=est1 + c(-1,1)*qnorm(0.975)*std1/sqrt(J) 
ev=rep(NA,J); for(j in 1:J){ muval=muv[j]; ev[j]=1/mean((y-muval)^2) } 
est2=mean(ev); std2=sd(ev); ci2=est2 + c(-1,1)*qnorm(0.975)*std2/sqrt(J) 
rbind(  c(est0,NA,NA,NA),   c(est1,ci1,ci1[2]-ci1[1]),   c(est2,ci2,ci2[2]-ci2[1]) ) 
#  [1,] 0.4071     NA     NA      NA 
#  [2,] 0.4396 0.3767 0.5026 0.12589 
#  [3,] 0.4150 0.3892 0.4408 0.05166 
 
# (b) 
X11(w=8,h=5); par(mfrow=c(1,1)) 
hist(lamv,xlab="lambda",ylab="density",prob=T,xlim=c(0,2.5),  
              ylim=c(0,2.5),main="",breaks=seq(0,4,0.05)) 
lines(density(lamv),lty=1,lwd=3) 
lamvec=seq(0,3,0.01); RBvec=lamvec;  smu2v=1/ev 
for(k in 1:length(lamvec)){  lamval=lamvec[k] 
 RBvec[k]=mean(dgamma(lamval,n/2,(n/2)*smu2v))   } 
lines(lamvec,RBvec,lty=1,lwd=1) 
lines(seq(0,3,0.005),dgamma(seq(0,3,0.005),(n-1)/2,s2*(n-1)/2), lty=3,lwd=3) 
legend(1.2,2,c("Histogram estimate of posterior","Rao-Blackwell estimate", 
 "True marginal posterior"), lty=c(1,1,3),lwd=c(3,1,3)) 
 
5.17 MC estimation of posterior predictive  
p-values 
 
Recall the theory of posterior predictive p-values whereby, in the context 
of a Bayesian model specified by ( | )f y θ  and ( )f θ , we test 0H  versus 

1H  by choosing a suitable test statistic ( , )T y θ .  
 
The posterior predictive p-value is then  
 ( ( , ) ( , ) | )p P T x T y yθ θ= ≥   
(or something similar, e.g. with ≥  replaced by ≤ ), calculated under the 
implicit assumption that 0H  is true. 
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If the calculation of p is problematic, a suitable Monte Carlo strategy is as 
follows: 
 

1. Generate a random sample from the posterior,  
 1,..., ~ ( | )J iid f yθ θ θ . 
 

 2. Generate ~ ( | )j jx f y θ⊥ , j = 1,…,J       
   (so that 1,..., ~ ( | )).Jx x iid f x y  

 
 3. For each j = 1,…,J calculate ( , )j j jT T x θ=  and ( )j jI I T T= ≥ , 

    where ( , )T T y θ= . 
 

 4. Estimate p by 
1

1ˆ
J

j
j

p I
J =

= ∑  with associated 1 α−  CI  

  /2
ˆ ˆ(1 )ˆ p pp z

Jα

 −
± 

 
. 

 
Exercise 5.17 Testing for independence in a sequence of  
Bernoulli trials 
 
A bent coin has some chance of coming up heads whenever it is tossed. 
Our uncertainty about that chance may be represented by the standard 
uniform distribution.  
 
The bent coin is tossed 10 times. Heads come up on the first seven tosses 
and tails come up on the last three tosses.  
 
Using Bayesian methods, test that the 10 tosses were independent. 
 
Solution to Exercise 5.17 
 
The observed number of runs (of heads or tails in a row) is 2, which seems 
rather small.  
 
Let iy  be the indicator for heads on the ith toss, (i = 1,…,n)  (n = 10), and 
let θ  be the unknown probability of heads coming up on any single toss.  
 
Also let ix  be the indicator for heads coming up on the ith of the next n 
tosses of the same coin, tossed independently each time.   
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Further, let 1( ,..., )ny y y=  and 1( ,..., )nx x x= , and choose the test statistic 
as  

( , ) ( )T y R yθ = ,  
defined as the number of runs in the vector y.  
 
Then an appropriate posterior predictive p-value is  
 ( ( ) ( ) | )p P R x R y y= ≤ , 
where (1,1,1,1,1,1,1,0,0,0)y =  and ( )R y = 2. 
 
Under the Bayesian model:   
 1( ,..., | ) ~ ( )ny y iid Bernθ θ  
 ~ (0,1)Uθ , 
the posterior is given by   
 ( | ) ~ ( 1, 1)T Ty Beta y n yθ + − + , 
where 1 ...T ny y y= + +  = 7.  
 
With  J = 10,000, we now generate  

1,..., ~ (8,4)J iid Betaθ θ .  
 
After that, we do the following for each 1,...,j J= : 
 
 1. Sample 1 ,..., ~ ( )j j

n jx x iid Bern θ  and form the vector  
  1( ,..., )j j j

nx x x= . 
 
 2. Calculate ( )j

jR R x=    (i.e. calculate the  number of runs in  
  1( ,..., )j j

nx x ). 
 
 3. Obtain ( )j jI I R R= ≤ , where R = ( )R y  = 2. 
 
Thereby we estimate p by  

1

1ˆ
J

j
j

p I
J =

= ∑  = 0.0995,   

with 95% CI  
ˆ ˆ(1 )ˆ 1.96 p pp

J
 −

± 
 

 = (0.0936, 0.1054). 

 



Chapter 5: Monte Carlo Basics 

261 

So the posterior predictive p-value is about 10 percent, which may be 
considered as statistically non-significant. That is, there is insufficient 
evidence (at the 5% level of significance, say) to conclude that the 10 
tosses of the coin were somehow dependent. 
 
Note 1: Using a suitable formula from runs theory, the exact value of p 
could be obtained as 

1

(8,4)
0

( ( ) 2 | ) ( )Betap P R x f dθ θ θ= ≤∫  

    

1

(8,4)
00

( ( ) 2 | , ) ( | ) ( )
T

n

T T Beta
x

P R x x f x f dθ θ θ θ
=

  = ≤ 
  
∑∫ ,

 
where: 
 
     • ( ( ) 2 | )P R x θ≤  is the exact probability that 2 or fewer runs will  
 result on 10 Bernoulli trials if each has probability of success θ  
 
     • ( ( ) 2 | , )TP R x xθ≤  is the probability of 2 or fewer runs will result  
 when Tx  1s and Tn x−  0s are placed in a row 
 

     • ( | ) (1 )T Tx n x
T

T

n
f x

x
θ θ θ − 

= − 
 

 is the binomial density with 

         parameters n and θ , evaluated at Tx . 

 
Note 2: It is of interest to  recalculate p using data which seems even 
more ‘extreme’, for example,  

(1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,0, 0,0,0,0,0)y = .  
 

For this data, ( )R y = 2 again but with n = 20 and y = 14. In this case,  
 ( | ) ~ ( 1, 1) ~ (15,7)T Ty Beta y n y Betaθ + − + ,  
and we obtain the estimate p̂  = 0.0088 with 95% CI  (0.0070 0.0106).  
 
Thus there is, as was to be expected, much stronger statistical evidence 
to reject the null hypothesis of independence. 
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R Code for Exercise 5.17 
 
R=function(v){m=length(v); sum(abs(v[-1]-v[-m]))+1}  

# Calculates the runs in vector v 
R(c(1,1,1,0,1)) # 3      testing … 
R(c(1,1)) # 1 
R(c(1,0,1,0,1)) # 5 
R(c(0,0,1,1,1)) # 2    
R(c(1,0,0,1,1,0,0,1,1,1,1,0)) # 6        …. all OK 
 
n=10; J=10000; Iv=rep(0,J); set.seed(214); tv=rbeta(J,8,4) 
for(j in 1:J){ xj=rbinom(n,1,tv[j]); if(R(xj)<=2) Iv[j]=1 } 
p=mean(Iv); ci=p+c(-1,1)*qnorm(0.975)*sqrt(p*(1-p)/J) 
c(p,ci) # 0.09950 0.09363 0.10537 
 
n=20; J=10000; Iv=rep(0,J); set.seed(214); tv=rbeta(J,15,7) 
for(j in 1:J){ xj=rbinom(n,1,tv[j]); if(R(xj)<=2) Iv[j]=1 } 
p=mean(Iv); ci=p+c(-1,1)*qnorm(0.975)*sqrt(p*(1-p)/J) 
c(p,ci) # 0.008800 0.006969 0.010631 
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CHAPTER 6 
MCMC Methods Part 1 

 
6.1 Introduction 
 
Monte Carlo methods were introduced in the last chapter. These included 
basic techniques for generating a random sample and methods for using 
such a sample to estimate quantities such as difficult integrals. This 
chapter will focus on advanced techniques for generating a random 
sample, in particular the class of techniques known as Markov chain 
Monte Carlo (MCMC) methods. Applying an  MCMC method involves 
designing a suitable Markov chain, generating a large sample from that 
chain for a burn-in period until stochastic convergence, and making 
appropriate use of the values following that burn-in period.  
 
Like other iterative techniques such as the Newton-Raphson and 
Expectation-Maximisation algorithms, MCMC methods require an 
arbitrary starting point (or vector) and then involve iterating repeatedly 
until convergence. But MCMC methods are distinguished from these 
other methods by the fact that the update at each iteration is not 
deterministic but stochastic, with the probability distributions involved 
dependent on results from the previous iteration.  
 
Typically, MCMC methods are used to sample from multivariate 
probability distributions rather than univariate ones. This is because a 
univariate distribution can usually be sampled from using simpler 
methods. Nevertheless, we will begin our discussion of MCMC methods 
with a description of the Metropolis algorithm for sampling from 
univariate distributions, because that algorithm constitutes a basic 
building block for the more advanced methods. 
     
6.2 The Metropolis algorithm 
 
Suppose that we wish to sample from a univariate distribution with pdf 

( )f x  for which rejection sampling and the other techniques described 
previously are problematic (say). Then another way to proceed is via the 
Metropolis algorithm. This is an example of Markov chain Monte Carlo 
(MCMC) methods. The Metropolis algorithm may be described as  
follows. 
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As with the Newton-Raphson algorithm, we begin by specifying an initial 
value of x, call it 0x . We then also need to specify a suitable driver 
distribution which is easy to sample from, defined by a pdf, 

( | )g t x . 
 
For now, we will assume the driver to be symmetric, in the sense that  
 ( | ) ( | )g t x g x t ,  
or more precisely, 
 ( | ) ( | )g t a b g t b a        ,a b∀ ∈ℜ . 
 
Note: The driver distribution may also be non-symmetric, but this case 
will be discussed later. 

 
We then do the following iteratively for each  j = 1,2,3,...,K (where K is 
‘large’): 
 
     (a) Generate a candidate value of x by sampling 1~ ( | )j jx g t x  . We 

call jx  the proposed value and 1( | )jg t x   the proposal density. 
 

     (b) Calculate the acceptance probability as 
1

( )
( )

j

j

f x
p

f x 


 . 

 

Note: If p > 1 then we take p = 1. Also, if  jx  is outside the range of 

possible values for the random variable x, then ( )jf x  = 0 and so p = 0. 

      
     (c) Accept the proposed value jx  with probability p. 
 To determine if jx  is accepted, generate ~ (0,1)u U   
 (independently). If u < p then accept jx , and otherwise reject jx . 
 
     (d) If jx  has been accepted then let j jx x , and otherwise let  
 1j jx x   (i.e. repeat the last value 1jx   in the case of a rejection). 
 
This procedure results in the realisation of a Markov chain, 

0 1 2, , ,..., Kx x x x . The last value of this chain, Kx , may be taken as an 
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observation from ( )f x , at least approximately. The approximation will 
be extremely good if K is sufficiently large.  
 
If we want a random sample of size J from ( )f x , then the whole 
procedure can be repeated another 1J −  times, each time using either the 
same starting value 0x  or a different one.  
 
If K is sufficiently large, stochastic convergence will be achieved within 
K iterations, regardless of the point(s) from which the algorithm is started. 
Relabelling the last value, Kx , in the jth chain as jx  ( 1,...,j J= ) leads 
the required sample, namely 1,..., ~ ( )Jx x iid f x .  
 
Generating a chain of length K a large number times J may be considered 
wasteful of computer resources. So typically only one long chain is 
generated, of length ,K B J= +  where B is sufficiently large for 
stochastic convergence to be achieved from the single starting value, 0x , 
and J is again the required sample size. Discarding the results of the first 
B iterations (called the burn-in, including also 0x ) and relabelling the last 
J values of the chain appropriately, the result will be the sample  

1,..., ~ ( )Jx x f x .  
 
A problem with this second method of generating the sample values is that 
they will be autocorrelated to some extent i.e. not a truly random (iid) 
sample from the distribution ( )f x . We will later discuss this issue and 
how to deal with the problems that may arise from it. For the moment, we 
stress that 1,..., Jx x  will be approximately a random sample from ( )f x . 
Moreover, if J is sufficiently large, then these values will be effectively 
independent. This means that a probability histogram of these values will 
in fact converge to ( )f x  as J tends to infinity. 
 
Exercise 6.1 A simple application of the Metropolis algorithm 
 
Illustrate the Metropolis algorithm by generating a sample of size 400 
from the distribution defined by the density  
 5( ) 6f x x , 0 < x < 1. 
 
Note: This is just the Beta(6,1) density and could be sampled from easily 
in many other ways. 
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Solution to Exercise 6.1 
 
Let us specify the driver distribution as the uniform distribution from 
x c  to x c , where c is a tuning parameter whose value is to be 
determined (as discussed further below). Thus the driver density is 

 1( | ) ,
2

g t x x c t x c
c

     , 

or equivalently 
1( | ) (| | )
2

g t x I t x c
c

   . 

 
Note: This driver is symmetric, since  
                ( | ) ( | )g t a x b g t b x a       ,a b∀ ∈ℜ . 

 
The jth iteration of the algorithm involves first sampling a candidate value 
(or proposed value) from the driver distribution centred at the last value, 
namely 
 1 1~ ( , )j j jx U x c x c 

   , 
and then accepting this candidate value with probability 

 
1

( ) 6
( )

j

j

f x x
p

f x x 


 



5

6
jx

5

5
11

j

jj

x
xx 

      
,     (6.1) 

where p is taken to be:   
 0 in the case where 0jx   or 1jx   

  1 in the case where 1 1j jx x   . 
 
Note: The cancellation of 6s in (6.1) illustrates an attractive feature of 
the Metropolis algorithm generally: only the kernel of the sampling 
density is needed. Here, the kernel of the sampling density 5( ) 6f x x  
is  5( )k x x= . This fact can be very useful in more complicated situations 
where only the kernel of the sampling density is known. 

 
Starting from 0x = 0.1 and with c = 0.15 (arbitrarily), we obtain a Markov 
chain of length K = 500, with values as illustrated in Figure 6.1.  
 
Some of the values of this chain are as follows: 



Chapter 6: MCMC Methods Part 1 

267 

0 10

301 310

491 500

,..., ,..........,
,..., ,..........,
,...,

x x
x x
x x =

  

 
0.1000, 0.1000, 0.1000, 0.1000, 0.1000, 0.1861, 0.2650, 0.2650,  
0.4065, 0.4388, 0.4388, ………., 
 
0.9261, 0.9987, 0.9987, 0.9987, 0.9987, 0.9725, 0.8889, 0.8889, 
0.9672,  0.9315,  .........., 
 

      0.8058, 0.6811, 0.6073, 0.4587, 0.4353, 0.3462, 0.3462, 0.4177, 
0.4177,  0.4656. 

 
Note: There were four rejections until the first acceptance, at iteration 
5, where 5 5x x′=  = 0.1861, as underlined above. 

     
Figure 6.2 shows a probability histogram of the last J = 400 values, 
together with the exact density of x. It would appear that stochastic 
equilibrium has been achieved by about iteration 50. So we may, very 
conservatively, discard the first B = 100 iterations as the burn-in.  
 
The acceptance rate (AR) for this Markov chain is found to be 64%, 
meaning that 320 of the 500 candidate values jx  were accepted and 36% 
(or 180) were rejected.  
 
Figure 6.1 Trace of sample values with tuning constant c = 0.15 
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Figure 6.2 Probability histogram with tuning constant c = 0.15 

 
 
 
Changing the tuning parameter 
 
What happens if we make the tuning parameter c = 0.15 larger? Figures 
6.3 and 6.4 are a repeat of Figures 6.1 and 6.2, respectively, but using 
simulated values from a run of the Metropolis algorithm with c = 0.65.  
 
In this case the acceptance rate is only 20.8% and the histogram is a poorer 
estimate of the true density (to which it would however converge as 

)J  . We say that the algorithm is now displaying poor mixing 
compared to results in the first run of 500 where c = 0.15. 
 
What happens if we make c = 0.15 smaller? Figures 6.5 and 6.6 are a 
repeat of Figures 6.1 and 6.2, respectively, but using simulated values 
from a run of the Metropolis algorithm with c = 0.05.  
 
In this case the acceptance rate is higher at 83%, there is greater 
autocorrelation, and the histogram is again a poorer estimate of the true 
density (to which it would however still converge as )J  . We again 
say that the algorithm is mixing poorly. 
 
It is important to stress that even if the algorithm is mixing poorly 
(whether this be due to the tuning constant being too large or too small), 
it will eventually (with a sufficiently large value of J) yield a sample that 
is useful for inference to the desired degree of precision. Tweaking the 
tuning constant is merely a device for optimising computational efficiency. 
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Figure 6.3 Trace of sample values with tuning constant c = 0.65 

 
 
 
 
Figure 6.4 Probability histogram with tuning constant c = 0.65 
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Figure 6.5 Trace of sample values with tuning constant c = 0.05 

 
 
 
Figure 6.6 Probability histogram with tuning constant c = 0.05 

 
 
R Code for Exercise 6.1 
 
MET <- function(K,x,c){ 
# This function performs the Metropolis algorithm for a simple model. 
# Inputs: K = total number of iterations 
#  x = initial value of x 
#  c = tuning parameter. 
# Outputs: $vec = vector of (K+1) values of x 
#  $ar = acceptance rate 
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vec <- x; ct <- 0 
for(j in 1:K){ 
 prop <- runif(1,x-c,x+c) 
 p <- 0 
 if((prop>0) && (prop<1))    p <- (prop/x)^5 
 u <- runif(1) 
 if(u < p){ 
  x <- prop 
  ct <- ct + 1 
  } 
 vec <- c(vec,x) 
 } 
ar <- ct/K 
list(vec=vec,ar=ar) 
} 
 
K <- 500;  X11(w=8,h=4.5); par(mfrow=c(1,1)) 
 
set.seed(316); res <- MET(K=K,x=0.1,c=0.15) 
plot(0:K,res$vec,type="l",xlab="iteration",ylab="x", main="") 
 
hist(res$vec[-(1:101)],prob=T,xlim=c(0.4,1),ylim=c(0,6), 

xlab="x",ylab="density",main="") 
lines(seq(0.4,1,0.01),6*seq(0.4,1,0.01)^5);    res$ar   # 0.64 
 
print(res$vec[1+c(0,1:10,301:310,491:500)], digits=4) 
# [1] 0.1000 0.1000 0.1000 0.1000 0.1000 0.1861 0.2650 0.2650 0.4065 0.4388 
# [11] 0.4388 0.9261 0.9987 0.9987 0.9987 0.9987 0.9725 0.8889 0.8889 0.9672 
# [21] 0.9315 0.8058 0.6811 0.6073 0.4587 0.4353 0.3462 0.3462 0.4177 0.4177 
# [31] 0.4656 
 
set.seed(322); res <- MET(K=K,x=0.1,c=0.65) 
plot(0:K,res$vec,type="l",xlab="iteration",ylab="x", main=" ") 
 
hist(res$vec[-(1:101)],prob=T,xlim=c(0.4,1),ylim=c(0,6),xlab="x",  
 ylab="density", main=" ") 
lines(seq(0.4,1,0.01),6*seq(0.4,1,0.01)^5);    res$ar   # 0.208 
 
set.seed(302); res <- MET(K=K,x=0.1,c=0.05) 
plot(0:K,res$vec,type="l",xlab="iteration",ylab="x",main=" ") 
 
hist(res$vec[-(1:101)],prob=T,xlim=c(0.4,1),ylim=c(0,6),xlab="x",  
 ylab="density", main=" ") 
lines(seq(0.4,1,0.01),6*seq(0.4,1,0.01)^5);    res$ar   # 0.83 
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Exercise 6.2 Sampling from a normal distribution via the 
Metropolis algorithm 
 
Use the Metropolis algorithm and a uniform driver to sample 10,000 
values from the standard normal distribution.  
 
Check your result by comparing the sample mean and sample standard 
deviation of your sample to the true theoretical values, 0 and 1.  
 
Calculate a Monte Carlo 95% confidence interval for the normal mean, 0.  
 
Solution to Exercise 6.2 
 

Since 
21

2( )
x

f x e
−

∝ , the acceptance probability at iteration j is given by 

 
1

1
( ) 2

( )
j

j

f x x
p

f x x





 



 21
2

1
2

jx
e





 

   
2

1

2 2

1
1
2

exp
2j

j j

x

x x

e 





          

.     

 
Using the same uniform driver as in Exercise 6.1, 0x = 5 and c = 2.5 
(where this tuning constant was chosen after some experimentation), we 
obtain a Markov chain of length K = 10,500, as shown in Figure 6.7.  
 
Figure 6.8 shows a histogram of the last J = 10,000 values, together with 
the standard normal density overlaid.  
 
We have very conservatively discarded the first B = 500 iterations as the 
burn-in. The acceptance rate for this Markov chain is 56.1%.  
 
The average of the J sampled values is 0.0355 (close to 0) and their sample 
standard deviation is 1.0047 (close to 1). These values lead to a 95% CI 
for the normal mean equal to (0.0158, 0.0552). We note that this CI does 
not contain the true value, 0, as one might expect. The underlying issue 
behind this fact will be discussed generally in the next section. 
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Figure 6.7 Trace of sample values 

 
 
Figure 6.8 Probability histogram 

 
 
R Code for Exercise 6.2 
 
MET <- function(K,x,c){ 
# This function performs the Metropolis algorithm to sample from the  
# standard normal dsn. 
# Inputs: K = total number of iterations 
#  x = initial value of x 
#  c = tuning parameter. 
# Outputs: $vec = vector of (K+1) values of x 
#  $ar = acceptance rate. 
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vec = x; ct = 0 
for(j in 1:K){ prop = runif(1,x-c,x+c) 
  p = exp(-0.5*(prop^2-x^2));  u = runif(1) 
  if(u <= p){  x = prop;  ct = ct + 1 } 
  vec <- c(vec,x)    } 
ar = ct/K;   list(vec=vec,ar=ar)    } 
 
B=500; J = 10000; K = B + J 
set.seed(117); res <- MET(K=K,x=5,c=2.5);    res$ar   # 0.548381 
X11(w=8,h=4.5); par(mfrow=c(1,1)) 
 
plot(0:K,res$vec,type="l",xlab="iteration",ylab="x",main=" ") 
 
hist(res$vec[-(1:(B+1))],prob=T,xlim=c(-4,4),ylim=c(0,0.5),xlab="x", 

ylab="density",nclass=50, main=" ") 
lines(seq(-4,4,0.01),dnorm(seq(-4,4,0.01)),lwd=2)  
est=mean(res$vec[-(1:(B+1))]); std=sd(res$vec[-(1:(B+1))]) 
ci=est+c(-1,1)*qnorm(0.975)*std/sqrt(10000) 
c(est,std,ci) # 0.03550254 1.00470749 0.01581064 0.05519445 
 
6.3 The batch means method 
 
As stated earlier, the output from the Metropolis algorithm leads to a 
sample, 1,..., Jx x , from the target density, ( )f x , which exhibits some 
degree of positive autocorrelation.  
 
This does not present a major problem when one is interested in 
calculating only point estimates. For example, if we wish to estimate the 
distribution mean ( )EX xf x dx= ∫ , each sample value jx  has expected 
value EX, and this is true regardless of how severely the simulated values 
are correlated (assuming that all the simulated values are collected after 
stochastic convergence). Therefore, the expected value of the Monte 
Carlo mean is also exactly EX (or very nearly so). 
 
However, when one uses a severely and positively autocorrelated Monte 
Carlo sample to calculate the standard 1 α−  confidence interval for a 
quantity such as EX, the true coverage probability of that interval may be 
far less than the intended nominal value of 1 α− . 
 
One way of dealing with this problem is to generate J independent chains 
and take the last value in each chain. Note that this was our original 
formulation of the Metropolis algorithm (i.e. for sampling a single value). 
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Another option is to generate a single long chain, of length K = B + 10J 
(say) and thin it out by recording only every 10th value in the chain after 
burn-in. Even so, there will still be some autocorrelation remaining in the 
J resulting values. The autocorrelation could be reduced further by 
changing 10 to 100, say; but this would be at the cost of a 10-fold increase 
in computer time needed. 
 
A more efficient solution to the autocorrelation problem is the batch 
means method. We will now describe how this works for when we wish 
to construct a 1 α−  CI for ( )EX xf x dx= ∫  based on an autocorrelated 
sample 1,..., ~ ( )Jx x iid f x



.  
 
The batch means CI will be different from the ordinary CI, namely 
( 1.96 / )xx s J , where x  and xs  are the sample mean and sample 
standard deviation of 1,..., Jx x . The batch means CI is obtained as follows. 
 
First, break up the J sample values into m batches of size n each, so that: 
 
 Batch 1 contains values 1,…,n   (the first n values) 
 
 Batch 2 contains values n + 1,…,2n   (the next n values) 
 
 …………………………………………………………..... 
 
 Batch m contains values  ( 1) 1,...,m n J− +    (the last n values). 
 
Next:   Let ky  be the mean of the n jx -values in the kth batch (k = 1,...,m). 
 
 Let 2

ys  be the sample variance of  1,..., my y . 
 

Note: Thus 2 2

1

1 ( )
1

m

y k
k

s y y
m 

 
  , where 

1

1 m

k
k

y y x
m 

   is the 

mean of the batch means and identical to the mean of all J jx -values. 

     
Finally, compute the 1 α−  batch means CI for  EX   as  ( 1.96 / )yx s m . 
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Discussion 
 
The rationale for the batch means method is as follows. If the batch size n 
is sufficiently large then, by the central limit theorem,   
 2

1,..., ~ ( , / )my y iid N n 


,           
where ( )jE x   and  2 ( )jVar x  . 
 
Consequently,    

2 2/~ , ~ ,ny N N
m J

 
 
              


,  

since J mn= . 
 
Therefore a 1 α−  CI for    is   

/2( / )y z r J ,   
where r is an estimate of  .  
 
Now, an unbiased estimator of  2 / n  is 2

ys .  
 
So an unbiased estimator of 2  is 2

yns . 
 
It follows that a 1 α−  CI for   is   

 2
/2 /2( / ) ( / )y yx z ns J x z s m    . 

 
Exercise 6.3 Testing the batch means method 
 
We wish to perform Monte Carlo estimation of the expected value of X 
whose pdf is given by 2( ) , 0 2f x x x   .      
 
Note: Here,  X ~ 2Beta(3,1)  and so EX = 2 3 / (3 1) 1.5× + = . 

     
(a) Use the Metropolis algorithm to generate a sample of size J = 1,000 
from X’s distribution after a burn-in of 100.  
 
Then use this sample to estimate EX, together with a 95% confidence 
interval for EX.  For this CI use the formula ( 1.96 / )x s J , where 2s  
is the sample variance of the J  sampled  X-values. Also draw a histogram 
of the J  X-values overlaid with the exact pdf of X. 
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(b) Use the output from the Metropolis algorithm in (a) to construct 
another 95% CI for EX, one using the batch means method, as follows: 
 

Divide the J = 1,000 iterations into m = 20 consecutive batches,  
  each having n = 50 values of X. 
 
 Let ky  be the average of the n X-values in the kth batch  

(k = 1,...,m). 
 

 Let 2
ys  be the sample variance of  the m batch means  

  1,..., my y . 
 
 Let the confidence interval for EX be ( 1.96 / )yx s m . 
 
(c) Conduct a Monte Carlo experiment to assess the quality of the two CIs 
for EX in (a) and (b).  
 
Do this by implementing the following three-step procedure a total of  
R = 100 times:  
 
 (i) Run the Metropolis algorithm in (a) so as to generate 
        J = 1,000 observations from ( )f x . 
 
 (ii) Calculate the CI in (a) and count 1 if 1.5 is in it. 
 
 (iii) Calculate the CI in (b) and count 1 if 1.5 is in it. 
 
Now divide the total count from (ii) by R to get an unbiased point estimate 
of the probability that the ordinary CI for EX in (a) contains EX.  
 
Similarly, divide the two total count from (iii) by R to get an unbiased 
point estimate of the probability that the batch means CI for EX in (b) 
contains EX. 
 
Also produce 95% CIs for the two probabilities just mentioned. 
 
(d) Repeat the experiment in (c) but with the following in place of (i): 
 

Generate J = 1,000 observations from X’s distribution using the  
rbeta() function. 
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Solution to Exercise 6.3 
 
(a) Let us specify a uniform driver centred at the last value and with half-
width h. We now iterate as follows after choosing a suitable starting value 
of x: 
 Sample ~ ( , )x U x h x h   . 
 
 If  x  is outside the interval (0,2) then automatically reject x . 
 
 Otherwise accept x  with probability min(1, p), where   
  2 2/p x x . 
 
Starting from x = 1 with h = 0.7, we get an acceptance rate of 55% and 
simulated values as depicted in Figures 6.9 and 6.10. 
 
Taking the last 1,000 values of x as a random sample from ( )f x  we 
estimate EX as 1.539, with ordinary 95% CI (1.467, 1.611). We note that 
this CI does not contain the true value, 1.5. 
 
 
Figure 6.9 Trace of sample values 
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Figure 6.10 Histogram of sample values 

 
 

(b) Applying the batch means method with m = 20 and n = 50, we estimate  
EX as 1.539 again, but with 95% CI (1.467, 1.611). Note that this CI is 
wider than the CI in (a) and does contain the true value, 1.5. 
 
(c) After conducting the experiment we estimate 1p , the true probability 
content of the ordinary 95% CI in (a), as 52.0%, with 95% CI 42.2% to 
61.8%.  
 
We also estimate 2p , the true probability content of the batch means 95% 
CI in (b) (with m = 20 and n = 50),  as  90.0%, with 95% CI 84.1% to 
95.9%. 
 
We see that in this example the batch means method has performed far 
better than the ordinary method for constructing 95% CIs for EX from the 
output of a Metropolis algorithm. 
 
(d) Generating each value of X as twice a random number from the 
Beta(3,1) distribution, we estimate 1p  by 92.0%, with 95% CI 86.7% to 
97.3%. We also estimate 2p  by  90.0%, with 95% CI 84.1% to 95.9%. 
 
We see that the two CIs have performed about equally well when 
calculated using a truly random sample from X’s distribution. In such 
situations, the batch means CI is in fact slightly inferior and the ordinary 
CI should be used.  
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R Code for Exercise 6.3 
 
# (a)  
MET <- function(Jp,x,h){ 
# This function implements a simple Metropolis algorithm. 
# Inputs: Jp = total number of iterations 
#  x = starting value of x 
#  h = halfwidth of uniform driver. 
# Outputs: $xv  = vector of x-values of length (Jp + 1) 
#  $ar = acceptance rate. 
xv <- x; ct <- 0 
for(j in 1:Jp){ xprop <- runif(1,x-h,x+h) 
  if( (xprop>0) && (xprop<2) ){ 
   p <- xprop^2 / x^2;  u <- runif(1) 
   if(u < p){ x <- xprop; ct <- ct + 1 }  } 
  xv <- c(xv,x)   } 
list(xv=xv,ar=ct/Jp)   } 
 
Jp <- 1100; set.seed(151); res <- MET(Jp=Jp,x=1,h=0.7); res$ar   # 0.5454545 
 
X11(w=8, h=4.5); par(mfrow=c(1,1));  
 
plot(0:Jp,res$x,type="l",xlab="j",ylab="x_j") 
xv <- res$xv[-c(1:101)]; J= length(xv)  
 
hist(xv,xlab="x",prob=T,ylim=c(0,2),nclass=20,ylab="density", main="") 
xvec <- seq(0,2,0.1); fvec <- (3/8)*xvec^2; lines(xvec,fvec) 
 
EXhat <- mean(xv); sdhat <- sqrt(var(xv)); sdhat   # 0.3755086 
EXci <- EXhat + c(-1,1)*qnorm(0.975)*sdhat/sqrt(J) 
c(EXhat,EXci)   # 1.538984 1.515710 1.562258 
 
# (b)    
m <- 20; n <- 50; yv <- rep(NA,m) 
for(k in 1:m){  xvsub <- xv[  ((k-1)*n+1):(k*n)   ] 
   yv[k] <- mean(xvsub)   } 
sdhat2 <- sqrt(n*var(yv));  sdhat2   # 1.15783 
EXci <- EXhat + c(-1,1)*qnorm(0.975)*sdhat2/sqrt(J) 
c(EXhat,EXci)   # 1.538984 1.467222 1.610746 
 
# (c)   
R<- 100; m <- 20; n <- 50; J <- 1000; burn <- 100; EX <- 1.5; ct1 <- 0; ct2 <- 0;  
yv <- rep(NA,m); set.seed(214) 
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for(r in 1:R){ 
  xv  <- MET(Jp=burn+J,x=1,h=0.7)$xv[-c(1:101)] 
  #  xv  <- rbeta(J,3,1)*2      # for use in (d) (see below) 
 for(k in 1:m){  xvsub <- xv[  ((k-1)*n+1):(k*n)   ] 
    yv[k] <- mean(xvsub)  } 
 EXhat <- mean(xv);  sdhat1 <- sqrt(var(xv));  sdhat2 <- sqrt(n*var(yv)) 
 ci1 <- EXhat + c(-1,1)*qnorm(0.975)*sdhat1/sqrt(J) 
 ci2 <- EXhat + c(-1,1)*qnorm(0.975)*sdhat2/sqrt(J) 
 if( (EX >= ci1[1]) && (EX <= ci1[2]))  ct1 <- ct1 + 1 
 if( (EX >= ci2[1]) && (EX <= ci2[2]))  ct2 <- ct2 + 1   } 
date()  # took 2 secs 
 
p1 <- ct1/R; p2 <- ct2/R 
p1ci <- p1 + c(-1,1)*qnorm(0.975)*sqrt(p1*(1-p1)/R) 
p2ci <- p2 + c(-1,1)*qnorm(0.975)*sqrt(p2*(1-p2)/R) 
c(p1,p1ci)   # 0.5200000 0.4220802 0.6179198 
c(p2,p2ci)  # 0.9000000 0.8412011 0.9587989 
 
# (d) 
# Repeat code in (c) but with the line  
# "xv  <- MET(Jp=burn+J,x=1,h=0.7)$xv[-c(1:101)]" 
# replaced by the line "xv  <- rbeta(J,3,1)*2".  
 
# The results should be: 
#  c(p1,p1ci)   # 0.9200000 0.8668275 0.9731725 
#  c(p2,p2ci)  # 0.9000000 0.8412011 0.9587989 
 
Exercise 6.4 Bayesian inference via the Metropolis algorithm 
 
The prior on a normal mean µ  is uniform from zero to infinity. Values 
are sampled repeatedly from the ( ,1)N µ  distribution until n = 4 positive 
values have been observed, resulting in the data: 0.1, 0.2, 1.9, 0.8. 
 
Find the posterior mean of µ  in the following ways: 
 
     (a) exactly, using numerical integration in R 
 
     (b) approximately, using a Monte Carlo method that does not involve  
 Markov chains 
 
     (c) approximately, using the Metropolis algorithm with a normal driver. 
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Solution to Exercise 6.4 
 
(a) The posterior density of µ  is 

21( )
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( | ) ( ) ( | ) 1
1 ( )
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ef y f f y
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− −

=

∝ ∝ ×
−Φ −∏ , 

since 0( 0 | ) 1 1 ( )
1

P y P z µµ µ− > = − < = −Φ − 
 

. 

 

Thus  ( ) 2

1

1( | ) 1 ( ) exp ( )
2

n
n

i
i

f y yµ µ µ−

=

 ∝ −Φ − − − 
 

∑   

 ( ) 2 211 ( ) exp ( 1) ( )
2

n n s n yµ µ−   = −Φ − − − + −   
 

  ( ) 211 ( ) exp ( )
2

n n yµ µ−  ∝ −Φ − − − 
 

 

  ( )k µ≡ ,   0µ >   (this is the kernel of the posterior density). 
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Using integrate() in R we obtain 0I  =  4.328041, 1I =  2.328058 and hence 
µ̂  = 0.5379. 
 

(b) Observe that   
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Note: ( )h µ  is the density of the ( ,1 / )N y n  distribution restricted to 
the positive real line. 

     

Thus 1

0

ˆ E
E

µ = , where:  ( ){ }1 ( ) nq
qE E µ µ −= −Φ − ,   q = 0,1 

   ~ ( ) ~ ( ,1 / ) ( 0)h N y n Iµ µ µ > .    
 
Note: At this point we ‘forget’ about the posterior distribution of µ . 

     
We see that a non-Markov chain Monte Carlo estimate  of µ̂  is 

 1

0

E
E

µ =






,   

where:  ( )
1

1 1 ( )
J nq

q j j
j

E
J

µ µ
−

=

= −Φ −∑   

 1,..., ~  ( )J iid hµ µ µ . 
   
Note: To obtain the required sample here, we repeatedly sample 

~ ( ,1 / )N y nµ  until J positive values have been achieved. 

     
Implementing this strategy in R using the rnorm() function with a Monte 
Carlo sample size of J = 100,000, we obtain 0E  = 3.7059926,  

1E  =  1.9900593 and hence µ  = 0.5370. 
 
(c) Using the Metropolis algorithm and a normal driver distribution with 
standard deviation 0.5, we obtain a Markov chain of size 10,000 following 
a burn-in of size 100. The acceptance rate is found to be 59%.  
 
Then taking every 10th value results in a very nearly uncorrelated sample 
of size 1,000 from the posterior distribution of µ . Using these 1,000 
values, leads to the estimate µ̂  by 0.5297, with associated 95% CI equal 
to (0.5047, 0.5547).  
 
We note that the true exact value calculated in (a), 0.5379, is contained in 
this CI. 
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R Code for Exercise 6.4 
 
# (a) 
y=c(0.1, 0.2, 1.9, 0.8); n = length(y); ybar=mean(y); c(n,ybar) # 4.00 0.75 
kfun=function(mu){       exp(-0.5*n*(mu-ybar)^2)   /  (1-pnorm(-mu))^n     } 
topfun=function(mu){ mu * kfun(mu) } 
par(mfrow=c(2,1)); muvec=seq(0,5,0.1) 
plot(muvec,kfun(muvec),type="l"); abline(h=0,lty=3)      # OK 
plot(muvec,topfun(muvec),type="l"); abline(h=0,lty=3) # OK 
top=integrate(f=topfun,lower=0,upper=5)$value 
bot=integrate(f=kfun,lower=0,upper=5)$value 
c(bot,top,top/bot) # 4.328041 2.328058 0.537901 
 
# (b) 
J=110000; set.seed(551); samp=rnorm(J,ybar,1/sqrt(n)) 
samppos=samp[samp>0]; length(samppos) # 102763 
samppos=samppos[1:100000] 
numer=mean(samppos*(1-pnorm(-samppos))^(-n) ) 
denom=mean( (1-pnorm(-samppos))^(-n) ) 
c(numer,denom,numer/denom) # 1.9900593 3.7059926 0.5369842 
 
# (c) 
MET <- function(K,mu,del,y){ 
# This function implements a simple Metropolis algorithm. 
# Inputs: K = total number of iterations 
#  mu = starting value of mu 
#  del = standard deviation of normal driver 
#  y = data vector 
# Outputs: $muv  = vector of mu-values of length (K + 1) 
#  $ar = acceptance rate 
muv = mu; ct = 0; n=length(y); ybar=mean(y) 
kfun=function(mu,ybar,n){       exp(-0.5*n*(mu-ybar)^2)   /  (1-pnorm(-mu))^n     } 
for(j in 1:K){ muprop = rnorm(1,mu,del) 
  if( muprop>0 ){           
 p=kfun(mu=muprop,ybar=ybar,n=n)/kfun(mu=mu,ybar=ybar,n=n) 
   u=runif(1); if(u < p){ mu = muprop; ct = ct + 1 }       } 
  muv = c(muv,mu)   } 
list(muv=muv,ar=ct/K)   } 
 
K=10100; set.seed(352); res= MET(K=K,mu=1,del=0.5,y=y) 
res$ar # 0.590297 
mean(res$muv)  # 0.5303868  = preliminary estimate 
 
plot(0:K,res$muv,type="l") 
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vec1=res$muv[-(1:101)] 
print(acf(vec1)$acf[1:10],digits=2) # Evidence of strong autocorrelation   
 # 1.00 0.78 0.61 0.48 0.39 0.30 0.24 0.19 0.14 0.11 
 
v=vec1[seq(10,10000,10)]  # Take every 10th value only 
print(acf(v)$acf[1:10],digits=2) #  No apparent residual autocorrelation   
# 1.0000  0.0534  0.0014  0.0331 -0.0089 -0.0041 0.0034  0.0087  0.0102  0.0133 
 
J=length(v); J # 1000 
est=mean(v); std=sd(v); ci=est+c(-1,1)*qnorm(0.975)*std/sqrt(J) 
c(est,std,ci) #  0.5296887 0.4039238 0.5046537 0.5547237 
 
6.4 Computational issues 
 
Numerical issues may arise when attempting to calculate the acceptance 
probability  
 1( ) / ( )j jp f x f x    

due to ( )jf x  or 1( )jf x   being too large or too small for R to handle.  
 
One relevant fact here is that in R on most computers (at present), 5e-324 
(meaning 3245 10−× ) is the smallest representable non-zero number. This 
problem can often be resolved by calculating p as  
 exp( )p q=   
after first computing   
 1log ( ) log ( )j jq f x f x 

  , 
but even this formulation may not be sufficient in every situation.  
 
It may sometimes also be necessary to replace the calculation of a function, 
say ( )h r , by 
  (max( ,5e 324))h r −   
if that function requires a non-zero argument r which is likely to be  
reported by R as 0 (because the exact value of r is likely to be between 0 
and 5e 324− ). 
 
Further, and by the same token, if  
 0 < (max( ,5e 324))h r −  < 5e 324−   
then R will report a value of 0. In that case, if a non-zero value of  
h is absolutely required (for some subsequent calculation) then the  
code for ( )h r  should be replaced by code which returns 

max( (max( ,5e 324)),5e 324)h r − − . 
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6.5 Non-symmetric drivers and the general  
Metropolis algorithm 
 
In some cases, applying the Metropolis algorithm as described above may 
lead to poor mixing, even after experimentation to decide on the most 
suitable value of the tuning constant.  
 
For example, if the random variable of interest is strictly positive with a 
pdf ( )f x  which is positively skewed and highly concentrated just above 
0 (for example, if ( )f x →∞  as 0),x ↓  proposing a value symmetrically 
distributed around the last value may lead to many candidate values which 
are negative and therefore automatically rejected.  
 
In such cases, the support of X may not be properly represented, and it 
may be preferable to choose a different type of driver distribution, one 
which adapts ‘cleverly’ to the current state of the Markov chain.  
 
This can be achieved using the general Metropolis algorithm which 
allows for non-symmetric driver distributions. As before, let ( | )g t x  
denote a driver density, where t denotes the proposed value and x is the 
last value in the chain. Then at iteration j, after generating a proposed 
value from the driver distribution,  
 1~ ( | )j jx g t x x 

  , 
the acceptance probability is  

 1

1 1

( ) ( | )
( ) ( | )

j j j

j j j

f x g x x
p

f x g x x


 

 
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
.      

 
Note 1: Previously, when ( | )g t x  was assumed to be symmetric,  
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Note 2: To calculate p, the best strategy is to let  
 exp( )p q=   
after first computing 
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Exercise 6.5 A Metropolis algorithm with a non-symmetric  
driver 
 
Generate a random sample of size 10,000 from the distribution defined by 
the pdf  

       

1/2

( 1)

1 , 0 1
4( )
1 , 1
2

x

x x
f x

e x

−

− −

 < <= 
 >


  

using the Metropolis algorithm and a non-symmetric driver with density 
of the form 

             
1

( , )( | ) ( ) , 0,
( )

x x x

G x
t eg t x f t t

x

  

 




 

  


   

or equivalently, a driver defined by 
             ( | ) ~ ( , )t x G x  . 
 
Check your results by plotting a probability histogram of the sample 
values and overlaying the target density, ( )f x . Also discuss why this 
driver is suitable in this situation. 
 
Solution to Exercise 6.5 
 
At each iteration j the proposed value is generated by sampling     
        1~ ( , )j jx G x  

 . 
 
The rationale for this choice of driver is that the proposed value is 
certainly positive, it has: 
         mean        1 1/j jx x    

         variance   2
1 1/ /j jx x    .  

 
Thus the candidate jx  is guaranteed to be in the appropriate range ( +ℜ ), 
and it is centred at the last value ( 1jx  ).  
 
Also, its variance around that last value is proportional to it (by a factor 
of 1 /  ). This ensures that values near zero are appropriately ‘explored’ 
by the Markov chain.  
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With this driver, the acceptance probability at iteration j is   
        exp( )p q= , 
where: 
        1 1 1log ( ) log ( ) log ( | ) log ( | )j j j j j jq f x f x g x x g x x        . 
        log ( ) (0 1){ 0.5log log 4} ( 1){1 log 2}f x I x x I x x          
          log ( | ) log ( 1) log log ( )g t x x x t x x          .  
 
Even with this use of the logarithmic function, computational issues arose 
in R on account of limitations with the functions rgamma() and lgamma(). 
These limitations are acknowledged in  the help files for these functions 
in R.  
 
To give an example: 
   set.seed(321)  
       v = rgamma(10000,0.001,0.001)   
              # Large sample from the G(0.001,0.001) distribution. 
   mean(v) # 0.5827886       
             # This is clearly wrong since the mean is 0.001/0.001 = 1. 
   length(v[v==0]) # 4777    
                          # Almost HALF of the values are EXACTLY zero. 
 
The R code was appropriately modified so that whenever very small but 
non-zero values were reported as zero by R (and problems ensued or 
potentially ensued because of this) those values were changed in the code 
to 5e-324 (the smallest representable non-zero number in R). 
 
With the above specification and fixes, the Metropolis algorithm was run 
for 10,000 iterations following a burn-in of size 100 and starting at 1. The 
value of δ  used was 1.3 and this resulted in an acceptance rate of 53% as 
well as good mixing. Figure 6.11 shows the resulting trace of all 10,101 
values of x, and Figure 6.12 shows the required probability histogram of 
the last 10,000 values, together with the exact density ( )f x  overlaid.  
 
Note: Applying a gamma driver here (in an attempt to improve the 
‘vanilla’ version of the Metropolis algorithm) created problems, due to 
numerical issues in R associated with the gamma distribution. With 
some modifications, we were in the end able to make things work. 
Another choice of nonsymmetric driver distribution is the lognormal, 
and we leave it as an additional exercise to examine this option in detail. 
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Figure 6.11 Trace of simulated values  

 
 
Figure 6.12 Histogram and true density 

 
 
R Code for Exercise 6.5 
 
set.seed(321);       v = rgamma(10000,0.001,0.001)   
              # Large sample from the G(0.001,0.001) distribution. 
mean(v) # 0.5827886   This is clearly wrong since the mean is 0.001/0.001 = 1. 
length(v[v==0]) # 4777   Almost HALF of the values are EXACTLY zero. 
logffun=function(x){ res=-0.5*log(x)-log(4); if(x>1) res=1-x-log(2); res } 
loggfun=function(t,x,del){  
        x*del*log(del)+(x*del-1)*log(t)-t*del-lgamma(max( x*del, 5e-324 )) } 
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MET <- function(K,x,del){   # This function implements a simple Metropolis alg. 
# Inputs: K = total number of iterations, x = starting value of x,  
# del = tuning constant in driver  
# Outputs: $xv  = vector of x-values of length (K + 1),  $ar = acceptance rate 
xv = x;    ct = 0 
for(j in 1:K){   xp = max(   rgamma(1,x*del,del),   5e-324   )   
  logp = logffun(x=xp) - logffun(x=x) +  
   loggfun(t=x,x=xp,del=del) - loggfun(t=xp,x=x,del=del) 
     p = exp(logp);  u = runif(1);    if(u < p){ x = xp; ct = ct + 1 } 
  xv = c(xv,x)   } 
list(xv=xv,ar=ct/K)   } 
 
X11(w=8,h=4.5); par(mfrow=c(1,1)); K = 10100;  
set.seed(319); res = MET(K=K,x=1,del=1.3); res$ar   # 0.5324752 
plot(0:K,res$xv,type="l",xlab="j",ylab="x_j") 
xv <- res$xv[-c(1:101)]  
 
hist(xv,xlab="x",prob=T,ylim=c(0,2.5),xlim=c(0,5), ylab="density", main="", 

breaks=seq(0,20,0.05)   ) 
xvec=seq(0,10,0.001); fvec=xvec;  
for(i in 1:length(xvec)) fvec[i]=exp(logffun(xvec[i])) 
lines(xvec,fvec,lwd=2) 
 
summary(res$xv) 
#   Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
#  0.004243 0.309400 1.034000 1.218000 1.738000 9.356000  (OK, as Min > 0) 
 
6.6 The Metropolis-Hastings algorithm 
 
We have introduced Markov chain Monte Carlo methods with a detailed 
discussion of the Metropolis algorithm. As already noted, this algorithm 
is limited and rarely used on its own because it can only be used to sample 
from univariate distributions. Typically, other methods will be better 
suited to the task of sampling from a univariate distribution. 
 
We now turn to the Metropolis-Hastings (MH) algorithm, a generalisation 
of the Metropolis algorithm that can be used to sample from a very wide 
range of multivariate distributions. This algorithm is very useful and has 
been applied in many difficult statistical modelling settings. 
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First let us again review the Metropolis algorithm for sampling from a 
univariate density, ( )f x . This involves choosing an arbitrary starting 
value of x, a suitable driver density ( | )g t x  and then repeatedly proposing 
a value ~ ( | )x g t x′ , each time accepting this value with probability  

 ( ) ( | )
( ) ( | )

f x g x xp
f x g x x

′ ′
= ×

′
    

(or ( )
( )

f xp
f x

′
=  in the case of a symmetric driver).  

 
Each proposal and then either acceptance or rejection constitutes one 
iteration of the algorithm and may be referred to as a Metropolis step.  
 
Performing K iterations, each consisting of a single Metropolis step, 
results in a Markov chain of values which may be denoted (0) (1) ( ), ,..., Kx x x .  
 
Assuming that stochastic equilibrium has been attained within B iterations 
(B standing for burn-in) the last J K B= −  values may be renumbered so 
as to yield the required sample, (1) ( ),..., ~ ( )Jx x iid f x


. 

 
The Metropolis-Hastings (MH) algorithm is a generalisation of this 
procedure to the case where x is a vector of length M (say) .  
 
The bivariate MH algorithm 
 
For simplicity we will first focus on the bivariate case (M = 2). Thus, 
suppose we wish to generate a random sample from the distribution of a 
random vector 1 2( , )X X X  with pdf ( )f x , where 1 2( , )x x x  denotes 
a value of X.  
 
First, choose an initial value of 1 2( , )x x x .   
 
Then choose two suitable driver distributions or densities: 
 1 1 2( | , )g t x x   
 2 1 2( | , )g t x x . 
 
Next perform the following two Metropolis steps: 
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     1.  Propose a candidate value of 1x  by sampling    

1 1 1 2~ ( | , )x g t x x , 
 and accept this value with probability   

1 2 1 1 1 2
1

1 2 1 1 1 2

( | ) ( | , )
( | ) ( | , )

f x x g x x xp
f x x g x x x

 
 


. 

(In the case of an acceptance, let 1x  = 1x ,  
 and otherwise leave 1x  unchanged.) 

 
     2.  Propose a candidate value of 2x  by sampling   

2 2 1 2~ ( | , )x g t x x , 
 and accept this value with probability   

2 1 2 2 1 2
2

2 1 2 2 1 2

( | ) ( | , )
( | ) ( | , )

f x x g x x xp
f x x g x x x

 
 


. 

 (In the case of an acceptance, let 2x  =  2x ,  
 and otherwise leave 2x  unchanged.) 

 
This completes the first iteration of the MH algorithm.  
 
The initial value of 1 2( , )x x x  may be denoted  

(0) (0) (0)
1 2( , )x x x ,  

and the  current value of the Markov chain may be denoted  
 (1) (1) (1)

1 2( , )x x x .  
 
Performing another iteration of the MH algorithm as above (starting from 

(1)x x ) leads to the next value,  
(2) (2) (2)

1 2( , )x x x ,  
and so on.  
 
Continuing in this fashion results in a Markov chain of vectors,  
 (0) (1) ( ), ,..., Kx x x . 
 
Assuming that stochastic equilibrium has been attained within B iterations, 
the last J K B= −  vectors may be renumbered consecutively to yield the 
required sample,  

(1) ( ),..., ~ ( )Jx x iid f x


,  
where ( ) ( ) ( )

1 2( , )j j jx x x . 
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Note 1: This multivariate sample can then be used to perform marginal 
inferences. For example, by discarding all the  ( )

2
jx  values, we obtain a 

sample from the marginal posterior distribution of 1x , namely  
(1) ( )
1 1 1..., ~ ( )Jx x iid f x



. 
  
This technique would be useful if obtaining a sample from 1( )f x  
directly were for any reason problematic. For example, the marginal 
density  
 1 1 2 2( ) ( , )f x f x x dx= ∫   
might be difficult to derive explicitly or sample from. 

     
Note 2: Observe that  

 1 2 21 2

1 2

( , ) / ( )( | )
( | )

f x x f xf x x
f x x




1 2 2( , ) / ( )f x x f x
, etc.  

  
Thus the two acceptance probabilities could also be written as:  

 1 2 1 1 1 2
1

1 2 1 1 1 2

( , ) ( | , )
( , ) ( | , )

f x x g x x xp
f x x g x x x

 



  

 2 1 2 2 1 2
2

2 1 2 2 1 2

( , ) ( | , )
( , ) ( | , )

f x x g x x xp
f x x g x x x

 
 


. 

     
The trivariate MH algorithm 
 
The Metropolis-Hastings algorithm for sampling from the trivariate 
distribution (M = 3) of a vector random variable 1 2 3( , , )X X X X  
involves choosing an initial value of the vector  

1 2 3( , , )x x x x , 
specifying three driver densities: 
  1 1 2 3( | , , )g t x x x  
 2 1 2 3( | , , )g t x x x   
 3 1 2 3( | , , )g t x x x , 
and repeatedly iterating three Metropolis steps as follows: 
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     1.  Propose a candidate value of 1x  by sampling    

1 1 1 2 3~ ( | , , )x g t x x x , 
 and accept this value with probability   

  1 2 3 1 1 1 2 3
1

1 2 3 1 1 1 2 3

( | , ) ( | , , )
( | , ) ( | , , )

f x x x g x x x xp
f x x x g x x x x

 
 


 

 
     2.  Propose a candidate value of 2x  by sampling    
  2 2 1 2 3~ ( | , , )x g t x x x , 
 and accept this value with probability   

  2 1 3 2 2 1 2 3
2

2 1 3 2 2 1 2 3

( | , ) ( | , , )
( | , ) ( | , , )

f x x x g x x x xp
f x x x g x x x x

 
 


. 

 
     3.  Propose a candidate value of 3x  by sampling    

3 3 1 2 3~ ( | , , )x g t x x x , 
 and accept this value with probability   

  3 1 2 3 3 1 2 3
3

3 1 2 3 3 1 2 3

( | , ) ( | , , )
( | , ) ( | , , )

f x x x g x x x xp
f x x x g x x x x

 
 


.
 

 
As before, continuing in this fashion until stochastic equilibrium has been 
achieved, and then for another J iterations, leads to the random sample 

(1) ( ),..., ~ ( )Jx x iid f x


, where now ( ) ( ) ( ) ( )
1 2 3( , , )j j j jx x x x .  

 

Note: As before, the ( )
1

jx  values on their own then constitute a sample 
from the marginal distribution of 1x , whose density is now  
 1 1 2 3 2 3( ) ( , , )f x f x x x dx dx= ∫∫ ,  
and the three acceptance probabilities can also be expressed as  

 1 2 3 1 1 1 2 3
1

1 2 3 1 1 1 2 3

( , , ) ( | , , )
( , , ) ( | , , )

f x x x g x x x xp
f x x x g x x x x

 



,  etc. 

     
The general MH algorithm 
 
These ideas extend naturally and in an obvious fashion to higher values 
of M. Thus, for sampling from an M-variate distribution with density 

1( ,..., )Mf x x , the MH algorithm involves choosing a starting value  
 1( ,..., )Mx x x ,  
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specifying M drivers,  
 1( | ,..., )m Mg t x x    ( 1,...,m M= ), 
and repeatedly iterating M steps as follows: 
 
     1.  Propose a candidate value of 1x  by sampling    

1 1 1~ ( | ,..., )Mx g t x x , 
 and accept this value with probability   

  1 2 1 1 1
1

1 2 1 1 1

( | ,..., ) ( | ,..., )
( | ,..., ) ( | ,..., )

M M

M M

f x x x g x x xp
f x x x g x x x

 
 


 

 
     2.  Propose a candidate value of 2x  by sampling    
  2 2 1~ ( | ,..., )Mx g t x x , 
 and accept this value with probability 

  2 1 3 2 2 1 2 3
2

2 1 3 2 2 1 2 3

( | , ,..., ) ( | , , ,..., )
( | , ,..., ) ( | , , ,..., )

M M

M M

f x x x x g x x x x xp
f x x x x g x x x x x

 
 


 

 
    ……..……………………………………………………………. 
 
     M.  Propose a candidate value of Mx  by sampling    
  1~ ( | ,..., )M M Mx g t x x , 
    and accept this value with probability    

  1 1 1 1

1 1 1 1

( | ,..., ) ( | ,..., , )
( | ,..., ) ( | ,..., , )

M M M M M M
M

M M M M M M

f x x x g x x x xp
f x x x g x x x x

 

 

 
 


. 

 
As before, continuing in this fashion until stochastic equilibrium and then 
for J more iterations leads to the sample (1) ( ),..., ~ ( )Jx x iid f x


, where 

now ( ) ( ) ( )
1( ,..., )j j j

Mx x x .  
 

Note: Again, the ( )
1

jx  values on their own then constitute a sample from 
the marginal distribution of 1x , whose density is now  
 1 1 2( ) ( ,..., ) ...M Mf x f x x dx dx= ∫ ∫ ),  
and the M acceptance probabilities can also be expressed as  

 1 1 1 1 2
1

1 1 1 1 2

( ,..., ) ( | , ,..., )
( ,..., ) ( | , ,..., )

M M

M M

f x x g x x x xp
f x x g x x x x

 



, etc. 
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Exercise 6.6 MH algorithm applied to a bent coin which is  
tossed an unknown number of times 
 
Suppose that five heads have come up on an unknown number of tosses 
of a bent coin.  
 
Before the experiment, we believed the coin was going to be tossed a 
number of times equal to 1, 2, 3, ..., or 9, with all possibilities equally 
likely. As regards the probability of heads coming up on a single toss, we 
deemed no value more or less likely than any other value. We also 
considered the probability of heads as unrelated to the number of tosses. 
 
Find the marginal posterior distribution and mean of the number of tosses 
and of the probability of heads, respectively. Also find the number of 
heads we can expect to come up if the coin is tossed again the same 
number of times. 
 
Do all this via Monte Carlo by designing and implementing a suitable MH 
algorithm.  
 
Note: This problem was solved analytically in Exercise 3.10. 

 
Solution to Exercise 6.6 
 
As in Exercise 3.10, the relevant Bayesian model is: 
 ( | , ) ~ ( , )y n Binomial n   
 ( | ) ~ (0,1)n U  
 ( ) 1/f n k ,  n = 1,...,k,   k = 9, 
and the joint posterior density of the two parameters n and θ  is 
       ( , | ) ( ) ( | ) ( | , )f n y f n f n f y n    

  ! (1 )
( )!

y n yn
n y

  



 

  ( , )h n  ,    0 1, , 1,...,n y y k    . 
  
Let us now specify the driver for n as discrete uniform over the integers 
from n r  to n r , where r is a tuning parameter.  
 
Also let the driver for   be uniform from c  to c , where c is 
another tuning parameter.  
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Note: These drivers may also be expressed by writing the distributions 
explicitly as: 
 ~ ( , 1,..., )n DU n r n r n r      
 ~ ( , )U c c     , 
or by writing the driver densities explicitly as:  

 1
1( | , ) , , 1,...,

2 1
g t n t n r n r n r

r
      


 

 2
1( | , ) ,
2

g t n c t c
c

       . 

     
Noting that both drivers are symmetric, a suitable MH algorithm may be 
defined by the following two steps at each iteration: 
 
     1. Propose a value  

~ ( ,..., )n DU n r n r   ,  
and accept this value with probability 

1
( , | ) ( , ) ! (1 ) / ( )!
( , | ) ( , ) ! (1 ) / ( )!

y n y

y n y

f n y h n n n yp
f n y h n n n y

   
   





    
  

 
 

       !(1 ) / ( )!.
!(1 ) / ( )!

n

n

n n y
n n y




  


 
 

 
     2. Propose a value 

~ ( , )U c c     ,  
and accept this value with probability 

2
( , | ) ( , ) ! (1 ) / ( )!
( , | ) ( , ) ! (1 ) / ( )!

y n y

y n y

f n y h n n n yp
f n y h n n n y

   
   





    
  

 
 

        (1 ) .
(1 )

y n y

y n y

 
 





 



 

 
Note: The proposed value n  should automatically be rejected if it is 
outside the set  {5,...,9} (because then ( , | )f n y  = 0), and otherwise 
automatically accepted if 1p  > 1. If n  = n then 1p  = 1, again leading to 
automatic acceptance.  
  
Likewise, the proposed value   should be automatically rejected if it  
is outside the interval (0,1), and otherwise automatically accepted if 

2 1p  . 
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Setting c = 0.3 and r = 1 (after some experimentation) and starting from  
n = 7 and   = 0.5, the MH algorithm converged very quickly, with 
acceptance rates of 73% for n and 58% for   over a total of 10,100 
iterations.  
 
The first 100 iterations were thrown away as the burn-in, and then every 
20th value (only) was recorded so as to thereby yield an approximately 
random sample of size J = 500 from the joint posterior distribution of n 
and  , namely 1 1( , ),..., ( , ) ~ ( , | )J Jn n iid f n yθ θ θ . 
 
Figures 6.13 and 6.14 (pages 299 and 300) show the traces for all 10,101 
values of n and  , respectively, and Figures 6.15 and 6.16  (pages 300 
and 301) show the traces for the final 500 values of n and   , respectively.  
 
Figure 6.17 (page 301) shows the corresponding sample ACFs 
(autocorrelation functions), labelled nv0 and thv0 for the last 10,000 
values of n and  , respectively, and labelled nv and thv for the final 500 
values of n and  . The thinning process has dramatically reduced the high 
serial correlation. 
 
The final bivariate sample of size J = 500 was used for Monte Carlo 
inference in the usual way, with the following results.  
 
The MC estimate of  ˆ ( | )n E n y  (= 6.744) was n  = 6.708, with 95% CI 
(6.587, 6.829).  
 
The Monte Carlo estimate of  ˆ ( | )E y   (= 0.7040) was  = 0.7097, 
with 95% CI (0.6943, 0.7252). Also, the 95% CPDR estimate for   was  
(0.3547, 0.9886). 
 
Figure 6.18 (page 302) is a probability histogram of the almost random 
sample 1,..., ~ ( | )Jn n iid f n y , and Figure 6.19 (page 302) is a probability 
histogram of the almost random sample 1,..., ~ ( | )J iid f yθ θ θ .  
 
Each histogram is overlaid with a nonparametric density estimate based 
on the histogram, as well as with the true marginal posterior density.  
 
Each histogram also includes vertical lines showing the true distribution 
mean, the MC estimate of that mean, and the 95% CI for that mean.  
 
Figure 6.19 also displays the 95% CPDR estimate for θ . 
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Note 1: The histogram of n-values in Figure 6.18 (page 302) is itself an 
estimate of ( | )f n y . The short vertical lines in the histogram indicate 
the MC 95% CIs for ( | )f n y .  
 
For example, the height of the bar above 6 is the proportion of sample 
values 1,..., Jn n  equal to 6, which is 117/500 = 0.234, and the short 
vertical bar above 6 is the MC 95% CI for ( 6 | )P n y= , which is 

(0.234 1.96 0.234(1 0.234) / 500)± −  = (0.1969, 0.2711). 

     
Note 2: The histogram of θ -values in Figure 6.19 (page 302) in fact 
shows two posterior density estimates. The first and simplest estimate 
tapers towards zero as θ  approaches 1. The second estimate was 
obtained using a special mathematical device that was applied so as to 
‘force’ the density estimate to be relatively high near 1. For values of θ  
less than about 0.8, the two density estimates are virtually identical. 
Details of said mathematical device can be found in the R code below. 

    
 
Figure 6.13 Trace of 10,101 n-values  
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Figure 6.14 Trace of 10,101 θ -values  

 
 
 
Figure 6.15 Trace of 500 n-values  
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Figure 6.16 Trace of 500 θ -values  

 
 
 
Figure 6.17 Sample autocorrelation functions 
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Figure 6.18 Probability histogram of 500 n-values 

 
 

 

Figure 6.19 Probability histogram of 500 θ -values  
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R Code for Exercise 6.6 
 
# NB: Some of this R Code was copied from a previous exercise  
 
y <- 5; k <- 9; options(digits=4) 
nvec <- y:k;    avec <- 1/(nvec+1);  sumavec <- sum(avec); sumavec   # 0.6456 
fny <- avec/sumavec;     rbind(nvec,avec,fny) 
# nvec 5.0000 6.0000 7.0000 8.0000 9.0000 
# avec 0.1667 0.1429 0.1250 0.1111 0.1000 
#  fny 0.2581 0.2213 0.1936 0.1721 0.1549 
 
nhat <- sum(nvec*fny); nhat    # 6.744 
thhat <- sum(  fny * (y+1)/(nvec+2) ); thhat   # 0.704 
xhat <- sum(  fny * nvec * (y+1)/(nvec+2) ); xhat   # 4.592 
thvec <- seq(0,0.99,0.01);  fthyvec <- thvec 
for(i in 1:length(thvec))  fthyvec[i] <- sum(   fny * dbeta(thvec[i],y+1,nvec-y+1)  ) 
 
X11(w=8,h=6); par(mfrow=c(2,1)) 
plot(nvec,fny,type="n",xlab="n",ylab="f(n|y)",ylim=c(0,0.4)) 
points(nvec,fny,pch=16,cex=1);   abline(v=nhat) 
plot(thvec,fthyvec,type="n",xlab="theta",ylab="f(theta|y) ",ylim=c(0,2.5)) 
lines(thvec,fthyvec,lwd=3);    abline(v=thhat) 
 
# Code for Metropolis-Hastings algorithm -------------------------------------------- 
MH = function(Jp,n,th,c,r,y,k){ 
# This function performs the Metropolis-Hastings algorithm for a simple model. 
# Inputs: Jp = total number of iterations 
#  n, th = intial values of n and theta 
#  r, c = tuning parameters for n and theta 
#  y, k = number of successes, maximum value of n 
# Outputs: $nvec = vector of (Jp+1) values of n 
#  $thvec = vector of (Jp+1) values of theta 
#  $nar, $thar = acceptance rates for n and theta. 
nvec = n; thvec = th; nct = 0; thct = 0 
logfun = function(n,th,y){  # Calculates the log of the joint posterior kernel 
 lgamma(n+1) + y*log(th) + (n-y)*log(1-th) - lgamma(n-y+1)     } 
for(j in 1:Jp){ 
 nprop = sample((n-r):(n+r),1) 
 if(nprop >= y)  if(nprop <= k){  
  if(nprop == n)   nct = nct + 1  
  if(nprop != n){ 
       logp1 = logfun(n=nprop,th=th,y=y) - logfun(n=n,th=th,y=y) 
       p1 = exp(logp1);    u <- runif(1) 
       if(u < p1){ n = nprop; nct = nct + 1}        
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       } 
  } 
 thprop = runif(1,th-c,th+c) 
 if(thprop > 0) if(thprop < 1){ 
  logp2 = logfun(n=n,th=thprop,y=y) - logfun(n=n,th=th,y=y) 
  p2 = exp(logp2);    u = runif(1) 
  if(u < p2){ th = thprop; thct = thct + 1}        
  } 
 nvec = c(nvec,n); thvec = c(thvec,th) 
 } 
nar = nct/Jp; thar = thct/Jp;   list(nvec=nvec,thvec=thvec,nar=nar,thar=thar)    }  
# END 
 
X11(w=8,h=5); par(mfrow=c(1,1)) 
Jp = 10100; set.seed(135);   res = MH(Jp=Jp,n=7,th=0.5,c=0.3,r=1,y=5,k=9) 
c(res$nar,res$thar)   # 0.7344 0.5847 
 
plot(0:Jp,res$nvec,type="l", xlab="j",ylab="n_j") 
plot(0:Jp,res$thvec,type="l", xlab="j",ylab="theta_j") 
 
burn = 100; nv0 = res$nvec[-(1:(burn+1))]; thv0 = res$thvec[-(1:(burn+1))] 
nv=nv0[seq(20,10000,20)]; thv=thv0[seq(20,10000,20)]; J=500 
 
plot(1:J,nv,type="l", xlab="j",ylab="n_j") 
plot(1:J,thv,type="l", xlab="j",ylab="theta_j") 
 
par(mfrow=c(2,2));acf(nv0); acf(thv0); acf(nv); acf(thv) 
 
nbar = mean(nv); nci = nbar + c(-1,1)*qnorm(0.975)*sd(nv)/sqrt(J) 
c(nbar,nci)  # 6.708 6.587 6.829 
thbar = mean(thv); thci = thbar + c(-1,1)*qnorm(0.975)*sd(thv)/sqrt(J) 
thcpdr = quantile(thv,c(0.025,0.975)) 
c(thbar,thci,thcpdr)   # 0.7097 0.6943 0.7252 0.3547 0.9886 
 
nvals=5:9; fvals=summary(as.factor(nv)); pvals=fvals/J 
Lvals=pvals-qnorm(0.975)*sqrt(pvals*(1-pvals)/J) 
Uvals=pvals+qnorm(0.975)*sqrt(pvals*(1-pvals)/J) 
 
rbind(nvals,fvals,pvals,Lvals,Uvals) 
# nvals   5.0000   6.0000  7.0000  8.0000  9.0000 
# fvals 128.0000 117.0000 98.0000 87.0000 70.0000 
# pvals   0.2560   0.2340  0.1960  0.1740  0.1400 
# Lvals   0.2177   0.1969  0.1612  0.1408  0.1096 
# Uvals   0.2943   0.2711  0.2308  0.2072  0.1704 
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par(mfrow=c(1,1)) 
hist(nv,prob=T,xlim=c(4,10),ylim=c(0,0.5),xlab="n",breaks=seq(4.5,9.5,1), 
 main="", ylab="density") 
points(nvec,fny,pch=16);   abline(v=nhat) 
for(i in 1:length(nvals)) lines(rep(nvals[i],2),c(Lvals[i],Uvals[i]),lwd=2) 
abline(v=nbar,lty=4); abline(v=nci,lty=2) 
legend(8,0.5,c("True mean","Estimate of mean","95% CI for mean"),lty=c(1,4,2)) 
legend(4,0.5,c("True posterior"),pch=16,cex=1) 
legend(4,0.4,c("95% CI for f(n|y)"),lty=1,lwd=2) 
 
hist(thv,prob=T,xlim=c(0,1),ylim=c(0,3.2),xlab="theta",  

main="", ylab="density") 
lines(thvec,fthyvec,lwd=2);    abline(v=thhat) 
thdensity <- density(  c(thv,1+abs(1-thv)),    from=0, to=1,width=0.2) 
lines(density(thv,from=0,to=1,width=0.2),lty=2,lwd=2) 

# Note: This is the simplest way to estimate the density  
lines(thdensity$x,thdensity$y*2,lty=3,lwd=2) 
   # Note: This density estimate is forced to be higher at theta=1 
abline(v=thbar,lty=4); abline(v=thci,lty=2); abline(v=thcpdr,lty=3) 
legend(0,3.2,c("True mean","Estimate of mean","95% CI for mean", 
  "95% CPDR estimate"),lty=c(1,4,2,3)) 
legend(0,1.6,c("True posterior","Estimate 1","Estimate 2"),lty=c(1,2,3),lwd=2) 
    
6.7 Independence drivers and block sampling  
 
The Metropolis-Hastings algorithm is very flexible and allows for a lot of 
choice in the way it is designed. In any particular application, many 
different MH algorithms will work, but some may perform better than 
others, meaning they will result in better mixing and faster convergence 
towards stochastic equilibrium. This will have a lot to do with how the 
random variables involved are set up and parameterised, what driver 
distributions are specified, and which tuning parameters are then chosen 
for completely defining those driver distributions. 
 
For example, the driver distribution for a component mx  of the vector 

1( ,..., )Mx x x  may be chosen so that it depends only on the last value of 
itself. In that case, 1 2( | , ,..., )m Mg t x x x  can also be written ( | )m mg t x .  
 
In fact, this is the norm in practice, and it was the case for both drivers in 
the last exercise.  
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It is also permissible to choose the mth driver so that it doesn’t depend on 
any of the current values of the Markov chain, including itself. In that case, 
the driver 1 2( | , ,..., )m Mg t x x x  may be written ( )mg t  and be referred to as 
an independence driver.  
 
Also, one may ‘bundle’ any of the M random variables into blocks and 
thereby reduce the number of actual Metropolis steps per iteration. For 
example, instead of doing a Metropolis step for each of 3x  and 4x  at each 
iteration, one may do a single Metropolis step as follows: 
 
 Create a candidate value of 3 4( , )x x  by sampling   
  3 4 34 3 4( , ) ~ ( , | , )x x g t u x x   (say), 
 and then accept this candidate 3 4( , )x x   with probability   

1 2 3 4 5
34

1 2 3 4 5

( , , , , ,..., )
( , , , , ,..., )

M

M

f x x x x x xp
f x x x x x x

 
  

34 3 4 1 2 3 4 5

34 3 4 1 2 3 4 5

( , | , , , , ,..., )
( , | , , , , ,..., )

M

M

g x x x x x x x x
g x x x x x x x x

 


 
. 

 
This idea can be used to improve mixing and speed up the rate of 
convergence but may require more work sampling from the bivariate 
driver and determining the optimal tuning constant. Note that to sample 

3 4( , )x x  , it may be possible to do this in two steps via the method of 
composition according to  

34 3 4 3 3 4 4|3 3 4( , | , ) ( | , ) ( | , , )g t u x x g t x x g u x x t . 
 

6.8 Gibbs steps and the Gibbs sampler 
 
One important possibility is to give the driver for mx  exactly the same 
distribution as the conditional distribution of mx  given all the other values.  
 
In that case, the proposal density is 
 1 1 1 1( | ,..., ) ( | ,..., , ,..., )m M m m m Mg t x x f x t x x x x   . 
 
With this choice, the acceptance probability equals 

         1 1 1

1 1 1

( | ,..., , ,..., )
( | ,..., , ,..., )

m m m M
m

m m m M

f x x x x x
p

f x x x x x
 

 


 1 1 1

1 1 1

( | ,..., , ,..., )
( | ,..., , ,..., )

m m m M

m m m M

f x x x x x
f x x x x x

 

 




 

               = 1   (that is, 100%). 
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This means that the candidate value mx  is definitely accepted at every 
iteration. In that case we call the mth step of the Metropolis-Hastings 
algorithm a Gibbs step.  
 
If all the Metropolis steps are Gibbs steps then the algorithm may also be 
called a Gibbs sampler.  
 
Note: In the case M  = 1, the Gibbs sampler equates to sampling directly 
from the distribution of interest, with no stochastic dependence between 
values of the resulting chain. 

     
Thus a Gibbs sampler for sampling from a multivariate distribution  
 1( ) ( ,..., )Mf x f x x   
may be defined as iteratively sampling from the full conditional densities: 
 1 2 3( | , ,..., )Mf x x x x  
 2 1 3( | , ,..., )Mf x x x x  
 .............................. 
 1 2 1( | , ,..., )M Mf x x x x − , 
where each of these is proportional to 1( ,..., )Mf x x , for example, where 

 1 2 3
1 2 3

2 3

( , , ,..., )( | , ,..., )
( , ,..., )

M
M

M

f x x x xf x x x x
f x x x

=  

       
1

1 2 3( , , ,..., )
x

Mf x x x x∝ . 
 
Note: We could also write the mth conditional density as  
 ( | )m mf x x ,   
where  
 1 1 1( ,..., , ,..., )m m m Mx x x x x       
denotes the vector x with the mth component removed.  
 
In any case, the mth distribution can be obtained by examining the joint 
density of all the variables seeing that joint density as a density function 
of only mx . 

     
An advantage of the Gibbs sampler is that it produces ‘good mixing’, on 
account of no ‘wastage’ due to rejections. A disadvantage is that sampling 
from all the required exact conditional distributions may not be easy or 
even possible.  
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The Metropolis-Hastings algorithm is a very versatile tool that will work 
in almost every situation with the least amount of mathematical effort. 
The Gibbs sampler performs better but is practically feasible only in some 
special cases.  
 
A general recommendation in any given situation is to begin by specifying 
a ‘pure’ Metropolis-Hastings algorithm, and then to examine each of its 
M Metropolis steps with a view to converting it into a Gibbs step if that is 
not too much effort. If the resulting Metropolis-Hastings algorithm 
consists of at least one Gibbs step and at least one Metropolis step, it may 
also be referred to as a Metropolis-Hastings within Gibbs sampler.  
 
Example 
 
As an example of converting a Metropolis step into a Gibbs step, recall 
the joint posterior density in Exercise 6.5: 

   ( , | )f n y ! (1 )
( )!

y n yn
n y

  



,  0 1, , 1,...,n y y k    . 

 
This density was used as a basis for the following Metropolis step for   
at each iteration:      
 
     2. Propose a value  ~ ( , )U c c     , and accept this value with 

 probability 2
(1 )
(1 )

y n y

y n yp  
 





 



.
 

 
Instead of this Metropolis step at each iteration, it would be better and also 
easier to apply a Gibbs step which involves sampling the next value of   
directly from the ( 1, 1)Beta y n y    distribution.  
 
Equivalently, one could write that Gibbs step as: 
 
     2. Draw ~ ( 1, 1)Beta y n y    . 
 
Now consider the Metropolis step for n in Exercise 6.5: 
 
     1. Propose a value ~ ( ,..., )n DU n r b r   , and accept this value  

with probability 1
( , | ) !(1 ) / ( )!
( , | ) !(1 ) / ( )!

n

n

f n y n n yp
f n y n n y

 
 

   
 

 
. 
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Unfortunately, the kernel of ( , | )f n y  when seen as a function of n alone  
(i.e. !(1 ) / ( )!nn n y  )  does not suggest a well-known distribution. 
However, with a little effort, it is still possible to convert the Metropolis 
step for n into a Gibbs step, as follows: 
 
     1.  Calculate ( ) !(1 ) / ( )!nq n n n y      for each n = 5,...,9.   
 Calculate  (5) ... (9)Tq q q   . 

Hence obtain ( | , ) ( ) / Tf n y q n q  . 
 Draw ~ ( | , )n f n y   (now easy). 
 
Exercise 6.7 Sampling from a normal-normal-gamma model via  
MCMC 
 
Consider the general normal-normal-gamma model given by: 
 1( ,..., | , ) ~ ( , )ny y iid Nµ λ µ λ  
 2

0 0( | ) ~ ( , )Nµ λ µ σ  
 ~ ( , )Gλ α β . 
 

Suppose that 0µ  = 10,  0σ  = 2,  α  = 3, β  = 6 and n = 40. 
 

(a) Generate 1( ,..., )ny y y=  from the model using these constants. 
 
(b) Design a suitable Metropolis-Hastings algorithm in this setting. Then 
apply it y in (a) so as to generate a random sample of size J = 5,000 from 
the bivariate posterior distribution of µ  and λ . Illustrate the sample with 
appropriate trace plots and probability histograms.  
 
(c) Repeat (b) but with a Gibbs sampler in place of the MH algorithm.  
 
Solution to Exercise 6.7 
 
(a) Using the specified values, we generated the parameters  
  λ  = 0.1292 and µ  = 11.95  
from their independent prior distributions.  
 
We then generated n = 40 values from the 2( , )N µ σ  distribution with 

1/σ λ=  = 2.782. The sample mean and standard deviation of these 
values were 12.28 and 2.592. A histogram of the sample values is shown 
in Figure 6.20. Overlaid is the 2( , )N µ σ  density. 
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Figure 6.20 Probability histogram of 40 y-values 

 
 
(b) The joint posterior density of    and   is 
 ( , | ) ( ) ( | ) ( | , )f y f f f y          

      
2 202

0

1 1( ) ( )21 2 2

1

i
n y

i

e e e
    

    



    

     
1 2 22

02
10

1exp ( ) ( )
2 2

n n

i
i

y
 

    


 



            
  

     ( , )k   .
  

A suitable MH algorithm is then defined by the following two steps: 
 

 1.  Draw a value ~ ( , )U c c       

  and accept it with probability 1
( , )
( , )

kp
k
 
 


 . 

 2.  Draw a value ~ ( , )U r r       

  and accept it with probability 2
( , )
( , )

kp
k
 
 


 . 

 
Note: The best way to calculate the acceptance probabilities is as:  
 1 1exp( )p q=  and 2 2exp( )p q= , 
after first deriving 1 ( , ) ( , )q l lµ λ µ λ′= −  and 2 ( , ) ( , )q l lµ λ µ λ′= − ,           
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where  ( , ) log ( , )l k     

      2 2
02

10

11 log ( ) ( )
2 2 2

n

i
i

n y
     

 

            . 

     
The MH algorithm was started at µ  = 0 and   = 1 with tuning constants 
c = 0.1 and r = 0.01, and run for a total of 6,000 iterations. The resulting 
traces are shown in Figures 6.21 and 6.22.  
 
The acceptance rates for µ  and   were 92% and 92%. These rates were 
judged to be unduly high because they led to very strong serial correlation 
in the simulated values (i.e. poor mixing).  
 
So the algorithm was run again from the same starting values but with  
c = 0.9 and r = 0.08 (both larger). This resulted in Figures 6.23 and 6.24 
(pages 312 and 313), with much better mixing, faster convergence, and 
the better acceptance rates of 59% and 58%.  
 
The last 5,000 pairs of values from this second run of the algorithm were 
then collected and used to produce the two histograms in Figures 6.25 and 
6.26 (pages 313 and 314). Each histogram is overlaid by a density estimate 
of the corresponding posterior and shows a dot indicating the true value 
of the parameter (which was initially sampled from its prior). 
 
Figure 6.21 Trace for µ   
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Figure 6.22 Trace for    

 
 

 

Figure 6.23 Improved trace for µ   
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Figure 6.24 Improved trace for    

 
 
 
 
Figure 6.25 Histogram for µ   
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Figure 6.26 Histogram for    

 
 
 
(c) Examining the kernel of the joint posterior in (b) and studying previous 
exercises (involving the normal-normal model and the normal-gamma 
model) we easily identify the two conditional distributions which define 
the Gibbs sampler. These are defined as follows: 
     1.   Sample 2

* *~ ( | , ) ~ ( , )f y N     , where:  * 0(1 )k ky    ,       

 
2

2
*

kk
n n





  , 2 2 2
0 0/ (1/ ( ))

n nk
n n  

 
 

, 2 1/σ λ≡ . 

     2.     Sample  2 21~ ( | , ) ~ , ( 1) ( )
2 2
nf y G n s n y     

         
. 

 
This Gibbs sampler was started at µ  = 0 and   = 1 and run for a total of 
6,000 iterations. The resulting traces are shown in Figures 6.27 and 6.28. 
 
The last 5,000 pairs of values were then collected and used to produce the 
histograms in Figures 6.29 and 6.30 (page 316). Each histogram is 
overlaid by a density estimate of the corresponding posterior and shows a 
dot indicating the true value of the parameter.  
 
We see that the Gibbs sampler has produced very similar output to that in 
(b) as obtained using the Metropolis-Hastings algorithm, but with less 
effort (e.g. no need to worry about tuning constants) and with arguably 
better results.  



Chapter 6: MCMC Methods Part 1 

315 

By this we mean that the output from the Gibbs sampler exhibits far less 
serial correlation. This is evidenced clearly in Figure 6.31 (page 317), 
which shows the sample autocorrelation functions of the simulated values 
of µ  and   in (b) (top two subplots) and in (c) (bottom two subplots). 
 

Figure 6.27 Trace for µ  from Gibbs sampler 

 
 
 
Figure 6.28 Trace for   from Gibbs sampler 
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Figure 6.29 Histogram for µ  from Gibbs sampler 

 
 
 
Figure 6.30 Histogram for   from Gibbs sampler 
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Figure 6.31 Sample autocorrelations 

 
 

R Code for Exercise 6.7 
 
# (a) 
mu0=10; sig0=2; alp=3; bet=6; n=40; options(digits=4) 
set.seed(226); lam=rgamma(1,alp,bet); mu=rnorm(1,mu0,sig0);  
sig=1/sqrt(lam); y=rnorm(n,mu,sig) 
c(lam, sig, sig^2, mu, mean(y), sd(y))  
 # 0.1292  2.7822  7.7405 11.9511 12.2768  2.5919 
 
X11(w=8,h=5); par(mfrow=c(1,1)) 
 
hist(y,prob=T,xlim=c(5,20),ylim=c(0,0.25),breaks=seq(7,17,0.5), main=" ") 
yv=seq(0,20,0.01); lines(yv, dnorm(yv,mu,sig),lwd=3) 
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# (b) 
MH <- function(Jp,  mu, lam,   y,   c, r,  alp=0, bet=0,   mu0=0, sig0=10000  ){ 
# This function implements a Metropolis-Hastings algorithm for the general 
#  normal-normal-gamma model. 
# Inputs: Jp = total number of iterations 
#  mu, lam = starting values of mu and lambda 
#  y = vector of n observations 
#  c, r = tuning parameters for mu and lambda 
#  alp, bet = parameters of lambda’s gamma prior (mean = alp/bet) 
#  mu0, sig0 = mean and standard deviation of mu's normal prior 
# Outputs: $muv, $lamv = (Jp+1)-vectors of values of mu and lambda 
#  $muar, $lamar = acceptance rates for mu  and lambda. 
muv <- mu; lamv <- lam; ybar <- mean(y); n <- length(y); muct <- 0; lamct <- 0 
logpost <- function(n,y,mu,lam,alp,bet,mu0,sig0){    
     (alp + n/2-1)*log(lam) - bet*lam -  

0.5*lam*sum((y-mu)^2) -0.5*(mu-mu0)^2/sig0^2 } 
for(j in 1:Jp){ 
 mup <- runif(1,mu-c,mu+c)     # propose a value of mu   
 q1 <-   
   logpost(n=n,y=y,mu=mup,   lam=lam,alp=alp,bet=bet,mu0=mu0,sig0=sig0)-  
   logpost(n=n,y=y,mu=mu     ,lam=lam,alp=alp,bet=bet, mu0=mu0,sig0=sig0)  
 p1 <- exp(q1)       # acceptance probability 
 u <- runif(1);  if(u < p1){  mu <- mup;   muct <- muct + 1   } 
 lamp <- runif(1,lam-r,lam+r)     # propose a value of lambda  
 if(lamp > 0){  # automatically reject if lamp < 0 
     q2 <-  
   logpost(n=n,y=y,mu=mu,lam=lamp,alp=alp,bet=bet, mu0=mu0,sig0=sig0)-  
   logpost(n=n,y=y,mu=mu,lam=lam     ,alp=alp,bet=bet, mu0=mu0,sig0=sig0)  
         p2 <- exp(q2)     # acceptance probability 
         u <- runif(1);  if(u < p2){  lam <- lamp;   lamct <- lamct + 1   } 
        } 
 muv <- c(muv,mu);  lamv <- c(lamv,lam) 
 } 
list(muv=muv,lamv=lamv,muar=muct/Jp,lamar=lamct/Jp) 
} 
 
Jp <- 6000; set.seed(331) 
res <- MH(Jp=Jp,  mu=0,lam=1,  y=y,  c=0.1,r=0.01,  alp=3,bet=6,    
 mu0=10,sig0=2) 
c(res$muar,res$lamar)  # 0.9193 0.9165 
 
plot(0:Jp,res$muv,type="l",xlab="j",ylab="mu_j"); text(3000,6,"c=0.1, r=0.01") 
plot(0:Jp,res$lamv,type="l",xlab="j",ylab="lambda_j");  
text(3000, 0.6,"c=0.1, r=0.01") 
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res <- MH(Jp=Jp,  mu=0,lam=1,  y=y,  c=0.9,r=0.08,  alp=3,bet=6,    
 mu0=10,sig0=2) 
c(res$muar,res$lamar)  # 0.5890 0.5757 
 
plot(0:Jp,res$muv,type="l",xlab="j",ylab="mu_j"); text(3000,6,"c=0.9, r=0.08") 
 
plot(0:Jp,res$lamv,type="l",xlab="j",ylab="lambda_j");  
text(3000,0.6,"c=0.9, r=0.08") 
 
burn <- 1000;   muv <- res$muv[-(1:(burn+1))];  lamv <- res$lamv[-(1:(burn+1))] 
hist(muv,prob=T,xlab="mu",nclass=20,main="", 
 ylab="density/relative frequency"); lines(density(muv),lwd=2);   
points(mu,0,pch=16,cex=1.5) 
 
hist(lamv,prob=T,xlab="lambda",nclass=20,main="", 
 ylab="density/relative frequency"); lines(density(lamv),lwd=2) 
points(lam,0,pch=16,cex=1.5) 
 
# acf(muv)$acf[1:5] # 1.0000 0.6452 0.4175 0.2744 0.1770  
# acf(lamv)$acf[1:5] # 1.0000 0.6641 0.4535 0.3300 0.2419 
muvb= muv;  lamvb=lamv   # For use later 
 
# (c) 
GS = function(Jp,  mu, lam,   y,   alp=0, bet=0,   mu0=0, sig0=10000  ){ 
# This function implements a Gibbs Sampler for the general  normal-normal-
gamma model. 
# Inputs: Jp = total number of iterations 
#  mu, lam = starting values of mu and lambda 
#  y = vector of n observations 
#  alp, bet = parameters of lambda’s gamma prior (mean = alp/bet) 
#  mu0, sig0 = mean and standard deviation of mu's normal prior 
# Outputs: $muv, $lamv = (Jp+1)-vectors of values of mu and lambda 
muv = mu; lamv = lam; n = length(y); ybar = mean(y); s2 = var(y); sig02 = sig0^2 
for(j in 1:Jp){ 
 sig2=1/lam; k=n/(n+sig2/sig02); sig2star=k*sig2/n;  

mustar=(1-k)*mu0+k*ybar 
 mu = rnorm(1,mustar,sqrt(sig2star)) 
 lam=rgamma(   1,   alp+0.5*n,     bet+0.5*((n-1)*s2+n*(mu-ybar)^2)    ) 
 muv = c(muv,mu);  lamv = c(lamv,lam) } 
list(muv=muv,lamv=lamv)   
} 
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Jp = 6000; set.seed(331) 
res = GS(Jp=Jp,  mu=0,lam=1,  y=y,  alp=3,bet=6,   mu0=10,sig0=2) 
 
plot(0:Jp,res$muv,type="l",xlab="j",ylab="mu_j");  
 
plot(0:Jp,res$lamv,type="l",xlab="j",ylab="lambda_j");  
 
burn <- 1000; muv <- res$muv[-(1:(burn+1))]; lamv <- res$lamv[-(1:(burn+1))] 
 
hist(muv,prob=T,xlab="mu",nclass=20,main="",ylim=c(0,1.1), 
 ylab="density/relative frequency"); lines(density(muv),lwd=2);   
points(mu,0,pch=16,cex=1.5) 
 
hist(lamv,prob=T,xlab="lambda",nclass=20,main="", 
 ylab="density/relative frequency"); lines(density(lamv),lwd=2) 
points(lam,0,pch=16,cex=1.5) 
 
muvc=muv; lamvc=lamv 
 
X11(w=8,h=7); par(mfrow=c(2,2)) 
 
acf(muvb)$acf[1:5] # 1.0000 0.6452 0.4175 0.2744 0.1770 
acf(lamvb)$acf[1:5] # 1.0000 0.6641 0.4535 0.3300 0.2419 
 
acf(muvc)$acf[1:5] # 1.0000000 -0.0004031  0.0079520 -0.0073517  0.0135979 
acf(lamvc)$acf[1:5] # 1.000000  0.002873 -0.011504 -0.006671 -0.001769 
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CHAPTER 7 
MCMC Methods Part 2 

 
7.1 Introduction 
 
In the last chapter we introduced a set of very powerful tools for 
generating samples required for Bayesian Monte Carlo inference, namely 
Markov chain Monte Carlo (MCMC) methods. The topics we covered 
included the Metropolis algorithm, the Metropolis Hastings algorithm and 
the Gibbs sampler.  
 
We now present one more topic, stochastic data augmentation, and 
provide some further exercises in MCMC. These exercises will illustrate 
how many statistical problem can be cast in the Bayesian framework and 
how easily inference can then proceed relative to the classical framework.  
 
The examples below include simple linear regression, logistic regression 
(an example of generalised linear modelling and survival analysis), 
autocorrelated Bernoulli data, and inference on the unknown bounds of a 
uniform distribution. 
 
7.2 Data augmentation 
 
Data augmentation (DA) is a method for using unobserved data or latent 
variables so as to simplify and facilitate an iterative optimisation or  
sampling algorithm. There are two basic types of DA: deterministic DA 
and stochastic DA. An example of the former is the EM algorithm as 
described earlier. Stochastic DA is illustrated in the following example. 
 
Example of stochastic data augmentation 
 
Suppose we wish to sample from a univariate distribution defined by a 
density ( )f x  but that this is difficult to do directly. But then, also suppose 
that we can factor this density as  
 ( ) ( ) ( )f x g x h x∝ ,  
where:   

( ) ( | )g x q u x du= ∫   
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 ( | )q u x        is the kernel of conditional density for a latent  
   random variable u given x which is easy to sample  
   from 
 ( | ) ( )q u x h x    defines the kernel of a conditional density for x  
   given u  which is easy to sample from; call this  
   kernel ( | )k x u . 
 
In such a situation we may define the joint distribution of u and x by the 
density  
  ( , ) ( | ) ( )f u x q u x h x∝ . 
 
Then, since both of the conditional distributions (of u given x, and of x 
given u) are easy to sample from, we may define a suitable Gibbs sampler 
by the following two steps: 
  (i) Sample ~ ( | )u q u x′   
 (ii) Sample ~ ( | )x k x u′ ′ . 
 
Running this Gibbs sampler will eventually result in a random sample  
 1 1( , ),..., ( , ) ~ ( , )J Ju x u x iid f u x . 
Discarding the simulated latent variables  1,..., Ju u   then yields the desired 
sample,  
 1,..., ~ ( )Jx x iid f x . 
 
This idea can be extended in a straightforward fashion to sampling from 
a multivariate distribution, i.e. where x is a vector. In such cases, it may 
be necessary to define several latent variables in the fashion described 
above.    
 
Exercise 7.1 Sampling with the aid of stochastic data  
augmentation 
 
We wish to find the mean of a random variable with density  

 ( ) , 0
1

xef x x
x

−

∝ >
+

. 

 
(a) Calculate the exact value of EX using numerical integration techniques. 
 
(b) Estimate EX using a Monte Carlo sample obtained via rejection 
sampling. 
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(c) Estimate EX using a Monte Carlo sample obtained via the Metropolis 
algorithm. 
 
(d) Estimate EX using a Monte Carlo sample obtained via a Gibbs sampler 
designed using the principles of data augmentation. 
 
Note 1: We have already seen the above density ( )f x  in the context 
of a previous exercise. 

 
Note 2: The intent of this exercise is threefold: 
 
   (i)   to illustrate stochastic data augmentation 
   (ii)  to provide additional practice at several Monte Carlo techniques 
   (iii) to introduce an idea that will be useful later when attempting finite  
          population inference under biased sampling without  
          replacement. 

 
Solution to Exercise 7.1 
 

(a) Let the kernel be ( )
1

xek x
x

−

=
+

.  

 
Then, using the integrate() function in R, we obtain 

 
0

( )k x dx
∞

∫  = 0.59635 and 
0

( )xk x dx
∞

∫  =  0.40365.  

 
So EX = 0.40365/0.59635 = 0.6769. 
 
(b) A suitable envelope is the standard exponential density  
 ( ) , 0xh x e x−= > , 
for which the acceptance probability is  

 ( )( )
( )

k xp x
ch x

= , 

where  
( ) / ( 1)max max 1
( )

x

x
k x e xc
h x e

−

−

+
= = = .  
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Thus 1( )
1

p x
x

=
+

. 

 
Applying this algorithm we obtained a random sample of size J = 1,000 
using a total of 1,651 draws from the envelope. (Thus the acceptance rate 
was 1,000/1651 =  61%.) Using this Monte Carlo sample, we estimated 
EX as 0.6875 with 95% CI (0.6402, 0.7349).  
 
Figure 7.1 shows a trace plot of the simulated values and (just for interest) 
the associated sample ACF of these values (showing the complete absence 
of autocorrelation), respectively. 
 
 
Figure 7.1 Trace plot and sample ACF 
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(c) Using a normal driver distribution centred at the last value and with 
standard deviation 0.6 we ran a Metropolis algorithm for 40,500 iterations, 
starting at x = 1. We kept every 40th sampled value after first discarding 
the first 500 iterations as the burn-in. Using the resulting Monte Carlo 
sample of size 1,000, we estimated EX as 0.7049 with 95% CI (0.6561, 
0.7537). The overall acceptance rate of the algorithm was 58%. Figure 7.2 
shows a trace plot of all 40,500 simulated values, the sample ACF of those 
values (showing a very strong autocorrelation), a trace plot of the 1,000 
values used for inference, and the sample ACF of those values (showing 
very little autocorrelation). 

 

Figure 7.2 Trace plots and sample ACFs 
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(d) Observe that ( 1)

0

1
1

x we dw
x

∞
− +=

+ ∫ .      

 

Therefore ( 1)

0

1( )
1

x x w xf x e e e dw
x

∞
− − + −= ∝

+ ∫ . 

 
Hence we may define an artificial latent variable w such that the joint 
density of w and x is 
  ( 1)( , ) , 0, 0x w xf w x e e w x− + −∝ > > . 
 
We see that:  

( 1)( | ) ( , ) , 0
w

x wf w x f w x e w− +∝ ∝ >   

 ( 1)( | ) ( , ) , 0
x

w xf x w f w x e x− +∝ ∝ > . 
 
So, a Gibbs sampler for sampling from ( , )f w x  is defined by the two 
densities: 
 ( 1)( | ) ( 1) , 0x wf w x x e w− += + >            
 ( 1)( | ) ( 1) , 0w xf x w w e x− += + > , 
or equivalently by the two steps: 
 Sample ~ (1, 1)w Gamma x +         
 Sample ~ (1, 1)x Gamma w + . 
 
Starting at x = 1, we ran this Gibbs sampler for 5,100 iterations. We then 
kept every 5th sampled value after first discarding the first 100 iterations 
as the burn-in. Using the resulting Monte Carlo sample of size 1,000 we 
estimated EX as 0.7172 with 95% CI (0.6671, 0.7673).  
 
Figure 7.3 shows a trace plot of all 5,100 simulated values, their sample 
ACF (showing a slight autocorrelation), a trace plot of the 1,000 values 
used for inference, and the sample ACF of these 1,000 values (showing 
very little autocorrelation).  
 
Note that similar plots could also be produced for the simulated latent 
variable, w. Also note how data augmentation and a Gibbs sampler have 
resulted in a usable Monte Carlo sample more easily and effectively than 
the Metropolis algorithm.  
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Figure 7.3 Trace plots and sample ACFs 

 
 
R Code for Exercise 7.1 
 
# (a) 
options(digits=5); kfun=function(x){ exp(-x)/(x+1) } 
c=integrate(f=kfun,lower=0,upper=Inf)$value; c # 0.59635 
xkfun =function(x){ x*exp(-x)/(x+1) } 
top=integrate(f=xkfun,lower=0,upper=Inf)$value; top # 0.40365 
EX=top/c; EX # 0.67688 
 
# (b) 
J=1000; xv=rep(NA,J); ct=0; set.seed(331) 
for(j in 1:J){ acc=F; while(acc==F){ ct=ct+1 
 x=rgamma(1,1,1); p=1/(x+1); u=runif(1); if(u<p){ acc=T; xv[j]=x }   }   } 
xbar=mean(xv); ci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J) 
c(ct,xbar,ci) # 1651.00000    0.68754    0.64016    0.73492 
par(mfrow=c(2,1)); plot(1:J,xv,type="l") 
acf(xv)$acf[1:5] # 1.0000000 -0.0205516 -0.0100987 -0.0040018  0.0732520 
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# (c) 
MET <- function(K,x,c){ 
# This function applies the Metropolis algorithm to sampling from  
# f(x)~exp(-x)/(x+1),x>0. 
# Inputs: K = total number of iterations 
#  x = intial value of x,         c = standard deviation of normal driver 
# Ouputs: $xv = vector of (K+1) values of x,         $ar = acceptance rate 
xv = x; ct = 0 
for(j in 1:K){  

xp = rnorm(1,x,c) 
 if(xp>0) { 
  q =  (-xp-log(xp+1)) - (-x-log(x+1)); p = exp(q);   u = runif(1) 
  if(u < p){  x = xp; ct = ct + 1 }    
  }    
 xv <- c(xv,x)       } 
ar = ct/K;   list(xv=xv,ar=ar)    } 
 
K=40500; set.seed(298); res <- MET(K=K,x=1,c=0.6);    res$ar   # 0.53896 
par(mfrow=c(2,2)); plot(0:K, res$xv,type="l") 
acf(res$xv)$acf[1:5] # 1.00000 0.91458 0.83710 0.76808 0.70716 
xv=res$xv[-(1:501)][seq(40,40000,40)];  plot(1:J,xv,type="l") 
acf(xv)$acf[1:5] # 1.0000000  0.0727149 -0.0088327  0.0265807  0.0592275 
xbar=mean(xv); ci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J) 
c(xbar,ci) # 0.70491 0.65614 0.75368 
 
# (d) 
GIBBS <- function(K,x){ 
# This generates a sample using the Gibbs sampler and data augmentation. 
# Inputs:   K = total number of iterations,    x = initial value of x 
# Ouputs: $xv = vector of (K+1) values of x, $wv = vector of (K+1) values of w 
xv = x; wv=NA; for(j in 1:K){  

w=rgamma(1,1,x+1); x=rgamma(1,1,w+1); xv=c(xv,x); wv=c(wv,w) } 
list(xv=xv,wv=wv)    } 
 
K=5100;  set.seed(319); res <- GIBBS(K=K,x=1) 
par(mfrow=c(2,2)); plot(0:K, res$xv,type="l") 
acf(res$xv)$acf[1:5] # 1.0000000  0.0692628  0.0407747  0.0053119 -0.0133717 
xv=res$xv[-(1:101)][seq(5,5000,5)];  plot(1:J,xv,type="l") 
acf(xv)$acf[1:5]  
    # 1.0000e+00 -2.4435e-02  4.5681e-02 -3.1778e-02  2.7116e-05 
xbar=mean(xv); ci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J) 
c(xbar,ci) # 0.71720 0.66711 0.76729         
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Exercise 7.2 Comparison of classical and Bayesian simple linear  
regression (and practice at various statistical techniques) 
 
Consider the following simple linear regression model:      
 2~ ( , )i iY N   , i = 1,...,n, 
where  

i ia bx       
(linear predictor for a value with covariate ix ). 
 
(a) Generate a data vector 1( ,..., )ny y y  from the model, using: 

  n = 10, a = 5, b = 2, 2 ,  
and with covariates 

ix  = i   
for all i = 1,...,n. 
 
(b) Conduct a classical analysis of the data in (a). Report the MLEs and 
95% CIs for a and b. Also create a single graph which shows: 
 
 • the data values 
 
 • the true regression line ( | )E Y x a bx   
 
 • the fitted regression line ˆˆ ˆ( | )E Y x a bx   
 
 • two lines showing the 95% CI for the regression line 
 
 • two lines showing the 95% prediction interval at each value of x. 
 
(c) Perform a Bayesian analogue of the inference in (b) using the 
Metropolis-Hastings algorithm and a Monte Carlo sample of size   
J = 2,000.  
 
Use a suitable joint uninformative and improper prior for the three 
parameters in the model. 
 
(d) Create a single graph showing all the information in the two graphs in 
(b) and (c). 
 
Note: The Bayesian analysis in (c) could also be performed via the 
Gibbs sampler. 
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Solution to Exercise 7.2 
 
(a) The simulated data are shown in Table 7.1. Note that ix i . 
 
Table 7.1 Simulated data 
 
 

i 1 2 3 4 5 
iy  5.879 8.54 14.12 13.14 15.26 
      
i 6 7 8 9 10 

iy  20.43 19.92 18.47 21.63 24.11 
 

 (b) The MLE of b is  1

2

1

( )( )
ˆ

( )

n

i i
i

n

i
i

x x y y
b

x x





 







 = 1.836, 

and the MLE of a is then  ˆâ y bx   = 6.051. 
 
An unbiased estimate of 2 ( 1/ 4)    is     

  2 2

1

1 ˆˆ( { })
2

n

i i
i

s y a bx
n 

  
   = 3.816. 

 

Let: 

1 1
1 2

1

X

n

            

 

 

11 12 1

21 22

( )
m m

M X X
m m


      

. 

 
A 95% CI for a is then  

 0.025 11ˆ (8)a t s m  =  (1.340, 2.332), 

 
and a 95% CI for b is  

 0.025 22
ˆ (8)b t s m  =  (2.973, 9.128). 
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Also, a 95% CI for ( | )E Y x a bx   is   

 0.025

1ˆˆ( ) (8) 1a bx t s x M
x

           
, 

and a 95% prediction interval for a new observation Y with covariate x is 

  0.025

1ˆˆ( ) (8) 1 1a bx t s x M
x

            
. 

 
The required graph is shown in Figure 7.4. 
 
 
Figure 7.4 Classical inference 

 
 
(c) A suitable Bayesian model is given by: 
 ( | , , ) ~ ( ,1/ )i iY a b N a bx   , i = 1,...,n  

 ( , , ) 1 / , , , 0f a b a b        (where 21/λ σ= ). 
 
Let us now solve this Bayesian model so as to estimate the posterior means 
and 95% CPDRs for a and b. The joint posterior density of the three model 
parameters is 

2

1

1( , , | ) exp ( )
2

n

i i
i

f a b y y
  

 

          
   

(where i ia bx    as already defined). 
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Hence the joint log-posterior density (up to an additive constant) is  

     2

1

( , , ) 1 log ( )
2 2

n

i i
i

nl a b y
  



        . 

 
Applying the MH algorithm for 2,500 iterations, we obtain traces for the 
three parameters as shown in Figure 7.5. The horizontal lines show the 
true values of the three parameters. The fourth subplot (bottom right) is a 
histogram of the last 2,000 values of b simulated. 
 
 
Figure 7.5 Results of a MH algorithm 

 
 
 
Using output from the last 2,000 iterations only, we estimate the posterior 
mean and 95% CPDR for a (= 5) as 6.3445 and (3.578, 8.808), and the 
same for b (= 2) are about 1.7881 and (1.392, 2.234).  
 
Figure 7.6 shows the Bayesian analogue of Figure 7.5 in part (b).  
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Figure 7.6 Bayesian inference 

 
 
 
(d) The required graph is shown in Figure 7.7.  
 
 
Figure 7.7 Comparison of inferences 
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R Code for Exercise 7.2 
 
# (a) ************************************************** 
options(digits=4) 
n <- 10; a <- 5; b <- 2; lam <- 0.25; sig <- 1/sqrt(lam);   c(sig,sig^2)  # 2 4 
xdat <- 1:n;     set.seed(123); ydat <- rnorm(n,a+b*xdat,sig) 
rbind(xdat,ydat) 
# xdat 1.000 2.00  3.00  4.00  5.00  6.00  7.00  8.00  9.00 10.00 
# ydat 5.879 8.54 14.12 13.14 15.26 20.43 19.92 18.47 21.63 24.11 
 
# (b)  ********************************************************** 
fit <- lm(ydat ~ xdat);   summary(fit) 
#             Estimate Std. Error t value Pr(>|t|)     
# (Intercept)    6.051      1.335    4.53   0.0019 **  
# xdat           1.836      0.215    8.54  2.7e-05 *** 
 

ahat <- coef(fit)[[1]]; bhat <- coef(fit)[[2]] 
sse <- sum((ydat-(ahat+bhat*xdat))^2) 
sig2hat <- sse/(n-2); lamhat <- 1/sig2hat 
c(sse,sig2hat,lamhat)  # 30.532  3.816  0.262 
 
df <- length(ydat)-length(fit$coef) 
aCI <- ahat + c(-1,1)*qt(0.975,df)*sqrt(sig2hat*summary(fit)$cov.unscaled[1,1]) 
aCI # 2.973 9.128  
bCI <- bhat + c(-1,1)*qt(0.975,df)*sqrt(sig2hat*summary(fit)$cov.unscaled[2,2]) 
bCI # 1.340 2.332 
 
xxv <- seq(0,n,0.1); nn <- length(xxv) 
Xmat <- cbind(1,xxv) 
muhat <- Xmat %*% fit$coef 
muhatvar <- sig2hat * diag(Xmat %*% summary(fit)$cov.unscaled %*% t(Xmat)) 
df <- length(ydat)-length(fit$coef) 
muhatlb <- muhat - qt(0.975,df) * sqrt(muhatvar) 
muhatub <- muhat + qt(0.975,df) * sqrt(muhatvar) 
 
predlb <- muhat - qt(0.975,df) * sqrt(sig2hat+muhatvar) 
predub <- muhat + qt(0.975,df) * sqrt(sig2hat+muhatvar) 
 
X11(w=8,h=5); par(mfrow=c(1,1))  # Figure 
plot(xdat, ydat, pch=16, xlim=c(0,11),ylim=c(0,35),xlab="x",ylab="y"  ) 
abline(c(a,b),lwd=2);  
lines(c(0,n),c(fit$coef[1], fit$coef[1]+ fit$coef[2]*n),lty=4, lwd=2) 
lines(xxv,muhatlb,lty=3,lwd=2) 
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lines(xxv,muhatub,lty=3,lwd=2) 
lines(xxv, predlb,lty=2,lwd=2) 
lines(xxv, predub,lty=2,lwd=2) 
legend(6,12,c("True mean of Y given x","Least squares fit","95% CI for mean", 
  "95% prediction interval"),lty=c(1,4,3,2),lwd=rep(2,4)) 
 
# (c) ********************************************************** 
MH.SLR <-   function(Jp,   x, y,    a, b, lam,     asd, bsd, lamsd){ 
# This function implements a Metropolis Hastings algorithm for a 
# simple linear regression model with uninformative priors. 
# Inputs: Jp = total number of iterations 
#  x = vector of covariates 
#  y = vector of observations 
#  a,b,lam = starting values of a,b,lambda 
#  asd,bsd,lamsd =  st. dev.s of drivers for a,b,lambda. 
# Outputs: $av,$bv,$lamv = (Jp+1)-vectors of values of a,b,lambda 
#  $aar,$bar,$lamar = acceptance rates for a,b,lambda. 
av <- a; bv <- b; lamv <- lam; ybar <- mean(y); n <- length(y) 
act <- 0; bct <- 0; lamct <- 0 
logpost <- function(n, x, y, a, b, lam){ #   logposterior 
     (n/2 - 1) * log(lam)  - 0.5 * lam * sum((y - a - b * x)^2)    } 
for(j in 1:Jp) { 
 ap <- rnorm(1, a, asd)  # propose a value of a 
 k <-  logpost(n=n, x=x, y=y, a=ap,  b=b, lam=lam) - 
  logpost(n=n, x=x, y=y, a=a,  b=b, lam=lam) 
 p <- exp(k)   # acceptance probability 
 u <- runif(1);   if(u < p) {   a <- ap;   act <- act + 1   } 
 bp <- rnorm(1, b, bsd)  # propose a value of b 
 k <-  logpost(n=n, x=x, y=y, a=a, b=bp, lam=lam) - 
  logpost(n=n, x=x, y=y, a=a, b=b,  lam=lam) 
 p <- exp(k)  # acceptance probability 
 u <- runif(1);  if(u < p) {  b <- bp;  bct <- bct + 1  } 
 lamp <- rnorm(1, lam, lamsd)  # propose a value of lambda  
 if(lamp > 0) { # automatically reject if lamp < 0 
      k <-  logpost(n=n, x=x, y=y, a=a, b=b, lam=lamp) - 
   logpost(n=n, x=x, y=y, a=a, b=b, lam=lam) 
      p <- exp(k) # acceptance probability 
      u <- runif(1);   if(u < p) {  lam <- lamp;   lamct <- lamct + 1  } 
      } 
 av <- c(av, a);   bv <- c(bv, b);   lamv <- c(lamv, lam) 
 } 
list(av = av, bv = bv, lamv = lamv, aar = act/Jp, bar = bct/Jp, lamar = lamct/Jp)    
} 
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Jp <- 2500; set.seed(441) 
mh <- MH.SLR(Jp=Jp,   x=xdat,y=ydat, a=0,b=0,lam=1,  
  asd=1.2,bsd=0.2,lamsd=0.2) 
c(mh$aar,mh$bar,mh$lamar) #   0.5228 0.5008 0.5132 
 
X11(w=8,h=6); par(mfrow=c(2,2))  # Figure 
plot(0:Jp,mh$av,xlab="j",ylab="a_j",type="l"); abline(h=a) 
plot(0:Jp,mh$bv,xlab="j",ylab="b_j", type="l"); abline(h=b) 
plot(0:Jp,mh$lamv,xlab="j",ylab="lambda_j", type="l"); abline(h=lam) 
hist(mh$bv[-(1:501)],main="",xlab="b") 
 
burn <- 500; J <- Jp - burn;  J # 2000 
av <- mh$av[-c(1:(burn+1))];  abar <-mean(av) 
bv <- mh$bv[-c(1:(burn+1))]; bbar <- mean(bv) 
lamv <- mh$lamv[-c(1:(burn+1))]; lambar <- mean(lamv) 
 
sig2bar <- mean(1/lamv) 
c(abar,bbar,lambar,sig2bar)   # 6.3445 1.7881 0.2758 4.7505 
 
quantile(av,c(0.025,0.975))   # 3.578 8.808 
quantile(bv,c(0.025,0.975))  # 1.392 2.234 
 
cpdrLBs <- xxv; cpdrUBs <- xxv;   predLBs <- xxv; predUBs <- xxv; set.seed(171) 
for(i in 1:nn){ 
 mus <- av + bv*xxv[i] 
 cpdrLBs[i] <- quantile(mus,0.025) 
 cpdrUBs[i] <- quantile(mus,0.975) 
 sim <- rnorm(J,mus,1/sqrt(lamv)) 
 predLBs[i] <- quantile(sim,0.025) 
 predUBs[i] <- quantile(sim,0.975)  
 } 
 
X11(w=8,h=5); par(mfrow=c(1,1))  # Figure 
plot(xdat,ydat,pch=16,xlim=c(0,11),ylim=c(0,35),xlab="x",ylab="y"  ) 
abline(c(a,b),lwd=2); lines(c(0,n),c(abar, abar + bbar *n),lty=4, lwd=2);    
lines(xxv,cpdrLBs,lty=3,lwd=2) 
lines(xxv,cpdrUBs,lty=3, lwd=2) 
lines(xxv,predLBs,lty=2, lwd=2) 
lines(xxv,predUBs,lty=2, lwd=2) 
legend(6,12,c("True mean of Y given x","Posterior mean of mean", 
  "95% CPDR for mean","95% prediction interval"),lty=c(1,4,3,2),lwd=rep(2,4)) 
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# (d)  ********************************************************** 
 
X11(w=8,h=5); par(mfrow=c(1,1))  # Figure 
plot(xdat,ydat,pch=16, xlim=c(0,11),ylim=c(0,35),xlab="x",ylab="y"  ) 
abline(c(a,b),lwd=2)  # True regression line 
# Classical lines 
lines(c(0,n),c(fit$coef[1], fit$coef[1]+ fit$coef[2]*n),lty=2, lwd=2) 
lines(xxv,muhatlb,lty=2, lwd=2);     lines(xxv,muhatub,lty=2, lwd=2) 
lines(xxv, predlb,lty=2, lwd=2);       lines(xxv, predub,lty=2, lwd=2) 
# Bayesian lines 
lines(c(0,n),c(abar,abar+n*bbar),lty=4, lwd=1) 
lines(xxv,cpdrLBs,lty=4, lwd=1);     lines(xxv,cpdrUBs,lty=4, lwd=1) 
lines(xxv,predLBs,lty=4, lwd=1);      lines(xxv,predUBs,lty=4, lwd=1) 
 
legend(6,12,c("True mean of Y given x", 
 "Classical inference","Bayesian inference"),lty=c(1,2,4), lwd=c(2,2,1)) 
 
 
Exercise 7.3 Comparison of classical and Bayesian logistic  
regression (an example of GLMs) (and practice at various  
statistical techniques) 
 
Table 7.2 shows data on the number of rats who died in each of n = 10 
experiments within one month of being administered a particular dose of 
radiation. For example in Experiment 3, a total of 40 rats were exposed to 
radiation for 3.6 hours, and 23 of them died within one month. Thus an 
estimate of the probability of a rat dying within one month if it is exposed 
to 3.6 hours of radiation is 23/40 = 57.5%. 
 
Table 7.2 Rat mortality data  
 

i  in  ix  iy  iy / in    ˆ ip  
1 10 0.1 1 1/10 = 0.1 
2 30 1.4 0 0/30 = 0 
3 40 3.6 23 23/40 = 0.575 
4 20 3.8 12 12/20 = 0.6 
5 15 5.2 8 8/15 = 0.5333 
6 46 6.1 32 32/46 = 0.696 
7 12 8.7 10 10/12 = 0.833 
8 37 9.1 35 35/37 = 0.946 
9 23 9.1 19 19/23 = 0.826 
10 8 13.6 8 8/8 = 1 
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Consider the following logistic regression model for these data: 
 ~ ( , )i i iY Bin n p ,     i = 1,...,n, 
where:  

1
1 exp( )i

i

p
z


 

    (probability of a ‘success’ for experiment i) 

  i iz a bx       (linear predictor). 
 
(a) Find the ML estimates of a and b using the glm() function in R. For 
each parameter also calculate a suitable 95% CI. 
 
(b) Find the ML estimates and associated 95% CIs in R using your own 
code for the Newton-Raphson algorithm and without using the glm() 
function.  
 
(c) Find the ML estimates using a modification of the Newton-Raphson 
algorithm which does not require the inversion of matrices. 
  
(d) Suppose that a and b are assigned independent flat priors over the 
whole real line. Thus consider the Bayesian model: 
 ( | , ) ~ ( , )i i iY a b Bin n p ,     i = 1,...,n 

  
1

1 exp( )i
i

p
z


 

   (probability of death for experiment i) 

  i iz a bx            (linear predictor) 
 ( , ) 1f a b  ,   ,a b . 
 
Use the MH algorithm to get a sample of J = 10,000 observations from 

( , | )f a b y , where 1( ,..., )ny y y .  
 
Hence estimate the posterior means of a and b, together with 95% MC CIs 
for these estimates, and also estimate the 95% CPDRs.  
 
Show graphs of the traces and histograms. Overlay the MC estimates and 
MLEs over the traces, together with 95% CPDRs and CIs, respectively. 
Also, overlay kernel density estimates over the histograms. 
 
(e) Use the sample in (d) to estimate p(x), the probability of a rat dying if 
it is exposed to x hours of radiation, for each x = 0,1,2,...,15.  
 
Graph these results with a line in a figure which also shows the 10 ˆ ip  
values.  
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Also include:  
   • the MC 95% CI for each estimate of p(x)   (i.e. for each E{p(x) | y}) 
   • the MC 95% CPDR for each p(x) 
   • the MLE of each p(x) using standard GLM procedures,  

together with associated large-sample 95% CIs. 
    
(f) Suppose that 20 more rats are about to be exposed to exactly five hours 
of radiation. Use the sample in (d) to estimate how many of these 20 rats 
will die, together with a 95% CI for your estimate. Also construct an 
approximate 95% prediction region for the number of rats that will die 
and report the estimated actual probability content of this region. 
 
(g) Use the sample in (d) to estimate LD50, the lethal dose of radiation at 
which 50% of rats die, together with a 95% CPDR. Also compute an 
estimate and 95% CI for LD50 using standard GLM techniques. 
 
(h) Consider the Bayesian model and data in (d). Modify the model 
suitably so as to constrain the probability of death at a dose of zero to be 
exactly zero. Estimate the parameters in the new model and draw a graph 
similar to the one in (e) which shows the posterior probability of death for 
each dose x from zero to 15, together with the associated 95% CPDRs. 
 
 
Solution to Exercise 7.3 
 
(a) Using the glm() function in R, we find that the MLE and 95% CI for 
a are –2.156 and (–2.9998, –1.3113). Also, the MLE and 95% CI for b are 
0.5028 and  (0.3456, 0.6601). 
 
(b) Since the priors on a and b are flat, finding the maximum likelihood 
estimate of (a,b) is the same as finding the posterior mode of (a,b). Now, 
the posterior density of a and b is  

 
1

( , | ) (1 )i i i

n
y n y
i i

i

f a b y p p 



  . 

 
So the log-posterior is    

 
1

( , ) log ( , | )
n

i
i

l a b f a b y q


  , 

where  log ( ) log(1 )i i i i i iq y p n y p      
     log(1 exp( ))i i i iy z n z     (after some algebra). 
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Let: 1
i

i i i i
dqd y n p
da

   ,  2 ( )i
i i i i i

dqd y n p x
db

    
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a

v
b
     

,     1

2

( )
d

D D v
d
      

,       11 12

12 22

( )
d d

M M v
d d
      

. 

 
Then the NR algorithm is defined by    

1
1 1 1( ) ( )t t t tv v M v D v

    ,   t = 1,2,3,.... 
 
Starting from the origin, the iterates of a and b are as shown in Table 7.3. 
 
Table 7.3 Results of a Newton-Raphson algorithm 
 

t 0 1 2 3 4 5 

ta  0 –1.474 –2.013 –2.148 –2.156 –2.156 

tb  0 0.3369 0.4670 0.5008 0.5028 0.5028 
 
Thus the MLEs of a and b are â  = –2.156 and b̂  = 0.5028. This agrees 
perfectly with the results in (a). 
 

A 95% CI for a is  0.025ˆ (8) aa t s  and  a 95% CI for b is  0.025
ˆ (8) bb t s , 

where:  
0.025 (8)t  = 2.306 

 2
as  is the top left element of V      
2
bs  is the bottom right element of V  

 1( )V X WX     (a 2 by 2 matrix) 

1 , 

1

2

1
1

1 n

x
x

X

x

            



,   1( ,..., )nW diag w w , 2( ) ( )
i

i
i i

w
V g


 



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i in  ,
1ˆ

ˆ1 exp( )i i
i

p
z

  
 

 (MLE of the probability at ix x ) 

 ˆˆˆi iz a bx        (MLE of linear predictor at ix x ) 

 ( ) (1 )V     ,   ( ) log
1

g 




      
    (logit link function) 

 2 2

1( )
(1 )

g 
 

 


. 

 
We find that ˆ ˆ(1 )i i i iw n p p  . Numerically, we find that 95% CIs for a 
and b are (–3.000, –1.311 ) and (0.3456, 0.6601), respectively. These 
results agree with those in (a). 
   
(c) At each iteration t = 1,2,3,4,..., we: 
 
       1.  Fix b and perform a NR step towards maximising wrt a: 
  1 1 11( ) / ( )t t t ta a d a d a    
 
       2.  Fix a and perform a NR step towards maximising wrt b: 
  1 2 22( ) / ( )t t t tb b d b d b   . 
 
Starting from the origin (a, b) = (0,0) we obtain the results in Table 7.4. 
 
 
Table 7.4 Results of a search algorithm 
 

t 0 1 2 3 4 
ta  0 0.4564 –0.45034 –0.06132 –0.7294 

tb  0 0.1401 0.09223 0.20571 0.1690 
      
t  20 21 99 100 
ta   –1.8585 –1.8619 –2.1555 –2.1555 

tb   0.4424 0.4532 0.5028 0.5028 
 
 
We see that this modified and simpler algorithm converges more slowly 
than plain NR. Also, it is less stable, as it fails to converge if started from 
(a, b) = (0.3, 0.3), unlike plain NR. Both algorithms fail to converge if 
started from (0.5, 0.5). (See the R code below for details.) 
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(d) We apply the Metropolis Hastings algorithm with a burn-in of 500 and 
starting from the origin to get a sample of size of J = 10,000 from 

( , | )f a b y . The acceptance rates were 37% for a and 55% for b. The 
Markov chain was not thinned for subsequent inference, meaning that the 
CIs obtained below are perhaps narrower than they should be. 

The MC estimate of E(a | y) is –2.207 (similar to the MLE, –2.156), with 
95% CI  (–2.214, –2.199) and 95% CPDR (–2.963, –1.521).   
 
The MC estimate of E(b | y) is 0.5145 (similar to the MLE, 0.5028), with 
95% CI (0.5132, 0.5158) and 95% CPDR (0.3895, 0.6605).  
 
Traces and histograms of the sampled values of a and b are shown in 
Figure 7.8. 
 
Figure 7.8 Results of MH algorithm 
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(e) The required results are shown in Figure 7.9.  
 
Note: Figure 7.9 shows that the probability of a rat dying when given no 
radiation is about 10%. We should interpret this result and the graph 
near x = 0 with caution. Ideally, we would conduct another experiment 
with only small values of x and a second logistic regression, perhaps 
using the log of x as the explanatory variable. On the other hand, maybe 
the 10% figure is reasonable because rats could die within one month 
for reasons other than radiation. Alternatively, we could modify our 
model so as to force p(0) = 0 (see (h) below). 

 
 
Figure 7.9 Mortality rate estimates 

 
 
(f) Let d be the number of rats which will die if exposed to radiation for 
five hours. Then     

(d | y, a, b) ~ Bin(20, p(a,b)),  
where  

p(a,b) = 1/(1 + exp(−a − 5b)).       
   

We can now apply the method of composition whereby 
 ( , , | ) ( | , , ) ( , | )f d a b y f d y a b f a b y .  
 
Thus for each sampled (a,b) we calculate p(a,b) and sample from the 
binomial distribution of d above. The frequencies of the resulting 10,000 
values of d are shown in Table 7.5 
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Table 7.5 Simulated frequencies of rats dying 
 

d 3 4 5 6 7 8 
frequency 1 3 20 75 217 472 

       
d 9 10 11 12 13 14 

frequency 845 1188 1562 1733* 1546 1123 
       
d 15 16 17 18 19  

frequency 709 332 131 37 6  
 
 
Using the 10,000 values of d, our estimate of d is 11.81 (the average of 
the 10,000 values), with (11.76, 11.85) as the 95% MC CI for d’s posterior 
mean. We feel about 95.1% confident that the number of rats which die 
will be between 8 and 16, inclusive (since 95.1% of the simulated d values 
are in this range). Also, it is most likely that 12 of the 20 rats will die, 
because the MC estimate of Mode(d | y) is 12 (since d = 12 above has the 
highest frequency, namely 1,733, as marked by an asterisk). 
 
(g) First observe that the LD50 is the value of x such that ( ) 0.5p x  .  
 
Solving 1/(1 exp( ))a bx    = 0.5, we get x = 50 /LD a b . 
 
Using the sample of 10,000 in part (f), we estimate the posterior mean of 
LD50 is 4.279, with 95% MC CI (4.273, 4.286). The MC 95% CPDR for 
LD50 is (3.584, 4.916). Thus we can be 95% confident that the dose 
required to kill half of a large number of rats is between 3.6 and 4.9.  
 
Using standard GLM procedures and the delta method we estimate LD50 
as 4.287 (the MLE) with 95% CI (3.532, 5.042). Thus we can be 95% 
confident that the dose required to kill half of a large number of rats is 
between 3.5 and 5.0. We see that Bayesian and classical methods have 
resulted in inferences which are very similar. 
 
(h) An alternative to the logistic model in (d), one with zero probability 
of death at zero dosage of radiation, is as follows: 
 ( | , ) ~ ( , )i i iY a b Bin n p ,     i = 1,...,n     

1 exp( )i ip z   ,  2
i i iz ax bx     

 ( , ) 1f a b  ,   , 0a b . 
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Running a suitable modification of the MH algorithm in (d), we estimate 
a and b as 0.11 and 0.017, with respective 95% CPDRs (0.04, 0.20) and  
(0.004, 0.030). The required graph is shown in Figure 7.10. 
 

Figure 7.10 Modified mortality rate estimates 

 
 
R Code for Exercise 7.3 
 
# (a) ******************************************************** 
nvec <- c(10,30,40,20,15,46,12,37,23,8) 
xvec <- c(0.1,1.4,3.6,3.8,5.2,6.1,8.7,9.1,9.1,13.6) 
yvec <- c(1,0,23,12,8,32,10,35,19,8) 
pvec <- yvec/nvec 
options(digits=4) 
cbind(xvec,nvec,yvec,pvec) 
#       xvec nvec yvec   pvec  
#  [1,]  0.1   10    1 0.1000 
#  [2,]  1.4   30    0 0.0000 
#  [3,]  3.6   40   23 0.5750 
#  [4,]  3.8   20   12 0.6000 
#  [5,]  5.2   15    8 0.5333 
#  [6,]  6.1   46   32 0.6957 
#  [7,]  8.7   12   10 0.8333 
#  [8,]  9.1   37   35 0.9459 
#  [9,]  9.1   23   19 0.8261 
# [10,] 13.6    8    8 1.0000 
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fit <- glm(pvec~xvec,family=binomial(link=logit),weights=nvec) 
fit$coef        #   -2.1555      0.5028 
summary(fit)$cov.unscaled 
#             (Intercept)      xvec 
# (Intercept)     0.13404 -0.022442 
# xvec           -0.02244  0.004651 
 
alpse <- sqrt(summary(fit)$cov.unscaled[1,1])   
fitalpci <- fit$coef[1] + c(-1,1)*qt(0.975,8)*alpse 
c(alpse,fitalpci)   # 0.3661 -2.9998 -1.3113 
 
betse <- sqrt(summary(fit)$cov.unscaled[2,2])   
fitbetci <- fit$coef[2] + c(-1,1)* qt(0.975,8)*betse 
c(betse,fitbetci)   # 0.0682 0.3456 0.6601 
 
# (b) ***************************************************** 
 
NR.LOGISTIC <- function(m,alp,bet,xv,nv,yv){ 
# Performs logistic regression via the Newton-Raphson algorithm. 
# Inputs: m = number of iterations 
#  alp, bet = starting values of alpha and beta 
#  xv, nv, yv = vectors of covariates, sample sizes and  
#   numbers of successes, respectively. 
# Outputs: $alpv = vector of (m+1) alpha values 
#  $betv = vector of (m+1) beta values 
  
alpv <- alp; betv <- bet; ve <- c(alp,bet) 
for(t in 1:m){ 
 pv <- 1/(1+exp(-alp-bet*xv)) 
 d1 <-  sum(yv - nv*pv); d2 <-  sum((yv - nv*pv)*xv) 
 d11 <-  -sum(nv*pv*(1-pv));  d12 <-  -sum(nv*pv*(1-pv)*xv) 
 d22 <-  -sum(nv*pv*(1-pv)*xv^2) 
 D <- c(d1,d2) 
 M <- matrix(c(d11,d12,d12,d22),nrow=2) 
 ve <- ve - solve(M) %*% D 
 alp <- ve[1]; bet <- ve[2] 
 alpv <- c(alpv,alp); betv <- c(betv,bet) 
 } 
list(alpv=alpv,betv=betv) 
} 
 
  



Chapter 7: MCMC Methods Part 2 

347 

options(digits=4) 
nrres <- NR.LOGISTIC(m=20,alp=0,bet=0,xv=xvec,nv=nvec,yv=yvec) 
nrres 
#    $alpv: [1]  0.000 -1.474 -2.013 -2.148 -2.156 -2.156 .... 
#    $betv:        [1] 0.0000 0.3369 0.4670 0.5008 0.5028 0.5028 .... 
 
NR.LOGISTIC(m=20,alp=0.3,bet=0.3,xv=xvec,nv=nvec,yv=yvec) 
#    $alpv: [1]  0.000 -1.474 -2.013 -2.148 -2.156 -2.156 .... 
#    $betv:        [1] 0.0000 0.3369 0.4670 0.5008 0.5028 0.5028 .... 
 
NR.LOGISTIC(m=20,alp=0.5,bet=0.5,xv=xvec,nv=nvec,yv=yvec) 
# Error in solve.default(M) :  
#   system is computationally singular: reciprocal condition  
# number = 9.01649e-18 
 
alpmle <- nrres$alp[21]; betmle <- nrres$bet[21] 
X <- cbind(1,xvec) 
zmle <- alpmle + betmle*xvec   # linear predictor 
pmle <- 1/(1 + exp(-zmle)) 
wtvec <- nvec*pmle*(1-pmle) 
W <- diag(wtvec) 
varmat <- solve(t(X) %*% W %*% X) 
varmat  
#          0.13404  -0.022442 
#  -0.02244   0.004651 
 
qt(0.975,8)        # 2.306 
alpmle + c(-1,1)*qt(0.975,8)*sqrt(varmat[1,1]) # -3.000 -1.311 
betmle + c(-1,1)*qt(0.975,8)*sqrt(varmat[2,2]) #  0.3456 0.6601 
 
# (c) **************************************************** 
 
NRMOD.LOGISTIC <- function(m,alp,bet,xv,nv,yv){ 
# Performs logistic regression via a modification of the Newton-Raphson  
# algorithm. 
# Inputs: m = number of iterations 
#  alp, bet = starting values of alpha and beta 
#  xv, nv, yv = vectors of covariates, sample sizes and  
#   numbers of successes, respectively. 
# Outputs: $alpv = vector of (m+1) alpha values 
#  $betv = vector of (m+1) beta values 
alpv <- alp; betv <- bet; ve <- c(alp,bet) 
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for(t in 1:m){ 
 pv <- 1/(1+exp(-alp-bet*xv)) 
 d1 <-  sum(yv - nv*pv) 
 d2 <-  sum((yv - nv*pv)*xv) 
 d11 <-  -sum(nv*pv*(1-pv)) 
 d22 <-  -sum(nv*pv*(1-pv)*xv^2) 
 alp <- alp - d1/d11 
 bet <- bet - d2/d22 
 alpv <- c(alpv,alp); betv <- c(betv,bet) 
 } 
list(alpv=alpv,betv=betv) 
} 
 
resnr <- NRMOD.LOGISTIC(m=100,alp=0,bet=0,xv=xvec,nv=nvec,yv=yvec) 
inc=c(1,2,3,4,5,21,22,100,101); rbind(inc-1,resnr$alpv[inc], resnr$betv[inc]) 
# [1,]    0 1.0000  2.00000  3.00000  4.0000 20.0000 21.0000 99.0000 100.0000 
# [2,]    0 0.4564 -0.45034 -0.06132 -0.7294 -1.8585 -1.8619 -2.1555  -2.1555 
# [3,]    0 0.1401  0.09223  0.20571  0.1690  0.4424  0.4532  0.5028   0.5028 
 
resnr <- NRMOD.LOGISTIC(m=100,alp=0.3,bet=0.3,xv=xvec,nv=nvec,yv=yvec) 
rbind(inc-1,resnr$alpv[inc], resnr$betv[inc]) 
# [1,]  0.0  1.00000 2.0000   3.00 4.000e+00   20   21   99  100 
# [2,]  0.3 -1.72625 2.1776 -31.10 4.023e+15  NaN  NaN  NaN  NaN 
# [3,]  0.3 -0.01407 0.6942 -21.36 2.861e+18  NaN  NaN  NaN  NaN 
 
resnr <- NRMOD.LOGISTIC(m=100,alp=0.5,bet=0.5,xv=xvec,nv=nvec,yv=yvec) 
rbind(inc-1,resnr$alpv[inc], resnr$betv[inc]) 
# [1,]  0.0  1.000    2.0    3    4   20   21   99  100 
# [2,]  0.5 -4.532  828.1 -Inf  NaN  NaN  NaN  NaN  NaN 
# [3,]  0.5 -1.090 3101.9 -Inf  NaN  NaN  NaN  NaN  NaN 
 
# (d) **************************************************** 
 
xvdata <- c(0.1,1.4,3.6,3.8,5.2,6.1,8.7,9.1,9.1,13.6) 
yvdata <- c(1,0,23,12,8,32,10,35,19,8)           
nvdata <- c(10,30,40,20,15,46,12,37,23,8)  
pvdata <- yvdata/nvdata 
 
MHLR <- function(burn,J,a0,b0,xv,yv,nv,sa,sb){ 
# Performs the Metropolis-Hastings algorithm for a logistic regression model. 
# Inputs:  burn = number of iterations for burn-in 
#  J = required number of Monte Carlo simulations 
#  a0 = starting value of alpha 
#  b0 = starting value of beta 
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#   xv = vector of xi values (length n) 
#  yv = vector of yi observations 
#  nv = vector of ni values 
#  sa, sb = standard deviations of the two normal driver fns. 
# Outputs: $av = vector of (burn+J+1) values of alpha (incl. starting value) 
#  $bv = vector of (burn+J+1) values of beta (incl. starting value) 
#  $ara = acceptance rate for alpha (over last J iterations) 
#  $arb = acceptance rate for beta. 
 
logfun <- function(a,b,xv,yv,nv){  
 phatv <- 1/(1+exp(-a-b*xv)) 
 sum( yv*log(phatv) + (nv-yv)*log(1-phatv) ) 
 } 
 
n <- length(yv);   a <- a0;  b <- b0 
its <- burn + J         # total number of iterations 
av <- c(a, rep(NA,its));     
bv <- c(b, rep(NA,its))   # vectors of simulated a & b values 
arav <- c(NA, rep(0,its));   arbv <- c(NA, rep(0,its))  
  # acceptance rate vectors for a and b 
 
for(j in 1:its){ 
 a2 <- rnorm(1,a,sa) 
 logpr <- logfun(a=a2,b=b,xv=xv,yv=yv,nv=nv)- 
     logfun(a=a,b=b, xv=xv,yv=yv,nv=nv)  
 pr <- exp(logpr); u <- runif(1) 
 if(u<pr){  a <- a2; arav[j+1] <- 1 } 
 
 b2 <- rnorm(1,b,sb) 
 logpr <- logfun(a=a,b=b2, xv=xv,yv=yv,nv=nv)- 
     logfun(a=a,b=b, xv=xv,yv=yv,nv=nv)  
 pr <- exp(logpr); u <- runif(1) 
 if(u<pr){ b <- b2; arbv[j+1] <- 1 } 
 
 av[j+1] <- a; bv[j+1] <- b 
 } 
 
ara <- sum(arav[(burn+2):(its+1)])/J 
arb <- sum(arbv[(burn+2):(its+1)])/J   # acceptance rates for a & b 
 
list(av=av,bv=bv,ara=ara,arb=arb) 
} 
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burn <- 500; K <- 10000; its <- burn + K; set.seed(221); date() # 
res <- MHLR(burn=burn,J=K,a0=0,b0=0,xv=xvdata, 
     yv=yvdata,nv=nvdata,sa=0.5,sb=0.05); date() # 10000 Took 1 second 
c(res$ara,res$arb)               # 0.3650 0.5544 
par(mfrow=c(2,1)); plot(res$av,type="l"); plot(res$bv,type="l")   # OK 
 
options(digits=4); J = K; thin=1      
     # thin=1 means no thinning (for experimentation) 
av <- res$av[-(1:(burn+1))][seq(thin,K,thin)]; length(av) # 10000 
acf(av)$acf[1:5] # 1.0000 0.9283 0.8756 0.8324 0.7945     

# (very high autocorrelation)  
ahat <- mean(av); aci <- ahat + c(-1,1) * qnorm(1-0.05/2)*sqrt(var(av)/J) 
acpdr <- quantile(av,c(0.025,0.975)) 
c(ahat,aci,acpdr) #     -2.207 -2.214 -2.199 -2.963 -1.521 
 
bv <- res$bv[-(1:(burn+1))][seq(thin,K,thin)]; length(bv) # 10000 
acf(bv)$acf[1:5] # 1.0000 0.9363 0.8892 0.8481 0.8109 
bhat <- mean(bv); bci <- bhat + c(-1,1) * qnorm(1-0.05/2)*sqrt(var(bv)/J) 
bcpdr <- quantile(bv,c(0.025,0.975)) 
c(bhat,bci,bcpdr)   # 0.5145 0.5132 0.5158 0.3895 0.6605  
 
dena <- density(av); denb <- density(bv) 
fit <- glm(pvdata~xvdata,family=binomial(link=logit),weights=nvdata) 
fit$coef #                    -2.1555      0.5028 
 
ase <- sqrt(summary(fit)$cov.unscaled[1,1])   
fitaci <- fit$coef[1] + c(-1,1)*qt(0.975,8)*ase 
c(ase,fitaci)   # 0.3661 -2.9998 -1.3113 
 
bse <- sqrt(summary(fit)$cov.unscaled[2,2])   
fitbci <- fit$coef[2] + c(-1,1)* qt(0.975,8)*bse 
c(bse,fitbci)   # 0.0682 0.3456 0.6601 
 
X11(w=8,h=8); par(mfrow=c(2,2)) 
plot(0:its,res$av,type="l",xlab="j",ylab="a_j") 
 abline(h=c(ahat,aci,acpdr)) 
 abline(h=c(fit$coef[1],fitaci),lty=4) 
   legend(400,0,c("MC est, 95% CI & CPDR", 
    "MLE & classical 95% CI"),lty=c(1,4)) 
plot(0:its,res$bv,type="l", xlab="j",ylab="b_j") 
 abline(h=c(bhat,bci,bcpdr)) 
 abline(h=c(fit$coef[2],fitbci),lty=4) 
   legend(400,0.2,c("MC est, 95% CI & CPDR", 
   "MLE & classical 95% CI"),lty=c(1,4)) 
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hist(av,prob=T, xlim=c(-4,0),ylim=c(0,1.5),nclass=20,xlab="a") 
lines(dena$x,dena$y,lwd=2) 
hist(bv,prob=T, xlim=c(0.2,0.8),ylim=c(0,7),nclass=20,xlab="b") 
lines(denb$x,denb$y,lwd=2) 
 
# (e) *************************************************** 
 
xxv <- seq(0,15,1); len <- length(xxv) 
ppv <- xxv; ppci1 <- xxv; ppci2 <- xxv; ppcpdr1 <- xxv; ppcpdr2 <- xxv 
 
for(i in 1:len){ 
 xx <- xxv[i] 
 ppsim <- 1/(1+exp(-av-bv*xx)) 
 pp <- mean(ppsim) 
 ppci <- pp + c(-1,1)*qnorm(0.975)*sqrt(var(ppsim)/J)  
 ppcpdr <- quantile(ppsim,c(0.025,0.975)) 
 ppv[i] <- pp          # MC estimate of E(p|xx) and so indirectly of p at x=xx 
 ppci1[i] <- ppci[1]; ppci2[i] <- ppci[2] 
 ppcpdr1[i] <- ppcpdr[1]; ppcpdr2[i] <- ppcpdr[2] 
 } 
 
Xmat <- cbind(1,xxv) 
etahat <- Xmat %*% fit$coef           # NB: fit was created in (a) 
pihat <- 1/(1+exp(-etahat)) 
etahatvar<- diag ( Xmat %*% summary(fit)$cov.unscaled %*% t(Xmat) ) 
df <- length(yvdata)-length(fit$coef)        # 10-2=8 
etahatub <- etahat +  qt(0.975,df) * sqrt(etahatvar) 
etahatlb <- etahat -  qt(0.975,df) * sqrt(etahatvar) 
pihatub <- 1/(1+exp(-etahatub)) 
pihatlb <- 1/(1+exp(-etahatlb)) 
 
X11(w=8,h=5); par(mfrow=c(1,1)) 
plot(c(0,15),c(0,1),type="n",xlab="x",ylab="probability p(x)") 
points(xvdata,pvdata,pch=16);     lines(xxv,ppv) 
lines(xxv,ppci1,lwd=2); lines(xxv,ppci2,lwd=2) 
lines(xxv,ppcpdr1,lty=2,lwd=2); lines(xxv,ppcpdr2,lty=2,lwd=2) 
points(xxv,pihat);        lines(xxv,pihatlb,lty=4);         lines(xxv,pihatub,lty=4) 
legend(8,0.65, c("MC est & 95% CI","95% CPDR","Classical GLM 95% CI"), 
 lty=c(1,2,4)) 
legend(8,0.35,c("Sample proportions","Standard GLM estimates"),pch=c(16,1)) 
# pphatv <- 1/(1+exp(-ahat-bhat*xxv)) 
# lines(xxv,pphatv,lty=3)     # This alternative estimate is practically  
             # indistinguishable from ppv and so is not plotted 
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# (f)  ***************************************************** 
 
p5v <- 1/(1+exp(-av-bv*5)); set.seed(331); dv <- rbinom(J,20,p5v) 
hist(dv,prob=T,breaks=seq(-0.5,20.5,1)) 
summary(as.factor(dv)) 
#3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19  
#1    3   20   75  217  472  845 1188 1562 1733 1546 1123  709  332  131   37    6 
 
dhat <- mean(dv); dci <- dhat + c(-1,1)*qnorm(0.975)*sqrt(var(dv)/J) 
dcpdr <- quantile(dv,c(0.025,0.975)) 
c(dhat,dci,dcpdr)     #  11.81 11.76 11.85  7.00 16.00 
 
dv2 <- dv[dv>=7]; dv3 <- dv2[dv2<=16]; length(dv3)/J    # 0.9727 
dv2 <- dv[dv>=8]; dv3 <- dv2[dv2<=16]; length(dv3)/J    # 0.951 OK (>= 95%) 
dv2 <- dv[dv>=7]; dv3 <- dv2[dv2<=15]; length(dv3)/J    # 0.9395  (too small) 
 
dhat2 <- mean(p5v)      #  alternative method 
qbinom(c(0.025,0.975),20,dhat2)    # 7 16 
 
# (g) **************************************************** 
 
Lv <- -av/bv; Lhat <- mean(Lv); Lci <- Lhat + c(-1,1)*qnorm(0.975)*sqrt(var(Lv)/J) 
Lcpdr <- quantile(Lv,c(0.025,0.975)) 
c(Lhat,Lci,Lcpdr)   #   4.279 4.273 4.286 3.584 4.916 
cf <- coef(fit); Lmle <-   -cf[1]/cf[2]; deriv <-   c(  -1/cf[2]  ,   cf[1]/cf[2]^2   ) 
Lvar <- t(deriv) %*% summary(fit)$cov.unscaled %*% deriv 
Lci2 <- Lmle + c(-1,1)*qt(0.975,8) * sqrt(Lvar) 
c(Lmle,Lci2)  #   4.287       3.532       5.042 
 
# (h) **************************************************** 
 
xvdata <- c(0.1,1.4,3.6,3.8,5.2,6.1,8.7,9.1,9.1,13.6) 
yvdata <- c(1,0,23,12,8,32,10,35,19,8)           
nvdata <- c(10,30,40,20,15,46,12,37,23,8)  
pvdata <- yvdata/nvdata 
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MHLRZC <- function(burn,J,a0,b0,xv,yv,nv,sa,sb){ 
 
# Performs the Metropolis-Hastings algorithm for a logistic regression model 
# modified to have a zero constraint. 
 
# Inputs:  burn = number of iterations for burn-in 
#  J = required number of Monte Carlo simulations 
#  a0 = starting value of alpha 
#  b0 = starting value of beta 
#   xv = vector of xi values (length n) 
#  yv = vector of yi observations 
#  nv = vector of ni values 
#  sa, sb = standard deviations of the two normal driver fns. 
 
# Outputs: $av = vector of (burn+J+1) values of alpha (incl. starting value) 
#  $bv = vector of (burn+J+1) values of beta (incl. starting value) 
#  $ara = acceptance rate for alpha (over last J iterations) 
#  $arb = acceptance rate for beta. 
 
logfun <- function(a,b,xv,yv,nv){  
 phatv <-  1 - exp(  -a*xv  -   b*xv^2   )             # The main change is here 
 sum( yv*log(phatv) + (nv-yv)*log(1-phatv) )   } 
n <- length(yv);   a <- a0;  b <- b0 
its <- burn + J         # total number of iterations 
av <- c(a, rep(NA,its));    bv <- c(b, rep(NA,its))   # vectors of simulated a & b 
values 
arav <- c(NA, rep(0,its));   arbv <- c(NA, rep(0,its))  
  # acceptance rate vectors for a and b 
for(j in 1:its){ 
 a2 <- rnorm(1,a,sa) 
 if(a2 > 0){ 
      logpr <- logfun(a=a2,b=b,xv=xv,yv=yv,nv=nv)- 
         logfun(a=a,b=b, xv=xv,yv=yv,nv=nv)  
      pr <- exp(logpr); u <- runif(1) 
      if(u<pr){  a <- a2; arav[j+1] <- 1 }      
      } 
 b2 <- rnorm(1,b,sb) 
 if(b2 > 0){ 
      logpr <- logfun(a=a,b=b2, xv=xv,yv=yv,nv=nv)- 
          logfun(a=a,b=b, xv=xv,yv=yv,nv=nv)  
      pr <- exp(logpr); u <- runif(1) 
      if(u<pr){ b <- b2; arbv[j+1] <- 1 }      
      } 
 av[j+1] <- a; bv[j+1] <- b  } 
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ara <- sum(arav[(burn+2):(its+1)])/J 
arb <- sum(arbv[(burn+2):(its+1)])/J   # acceptance rates for a & b 
list(av=av,bv=bv,ara=ara,arb=arb) 
} 
burn <- 500; J <- 10000; its <- burn + J; set.seed(111) 
res <- MHLRZC(burn=burn,J=J,a0=0.1,b0=0.01, 
 xv=xvdata,yv=yvdata,nv=nvdata,sa=0.03,sb=0.005) 
 c(res$ara,res$arb)               # 0.5686 0.5637   OK 
par(mfrow=c(2,1)); plot(res$av,type="l"); plot(res$bv,type="l")   # OK 
options(digits=4) 
av <- res$av[-(1:(burn+1))]; ahat <- mean(av) 
aci <- ahat + c(-1,1) * qnorm(1-0.05/2)*sqrt(var(av)/J) 
acpdr <- quantile(av,c(0.025,0.975)) 
c(ahat,aci,acpdr) #     0.10921 0.10842 0.11000 0.03622 0.19256 
 
bv <- res$bv[-(1:(burn+1))]; bhat <- mean(bv) 
bci <- bhat + c(-1,1) * qnorm(1-0.05/2)*sqrt(var(bv)/J) 
bcpdr <- quantile(bv,c(0.025,0.975)) 
c(bhat,bci,bcpdr)   # 0.016683 0.016552 0.016814 0.003641 0.029898  
 
xxv <- seq(0,15,1); len <- length(xxv) 
ppv <- xxv; ppci1 <- xxv; ppci2 <- xxv; ppcpdr1 <- xxv; ppcpdr2 <- xxv 
 
for(i in 1:len){ 
 xx <- xxv[i] 
 ppsim <- 1-exp(-av*xx-bv*xx^2) 
 pp <- mean(ppsim) 
 ppci <- pp + c(-1,1)*qnorm(0.975)*sqrt(var(ppsim)/J)  
 ppcpdr <- quantile(ppsim,c(0.025,0.975)) 
 ppv[i] <- pp          # MC estimate of E(p|xx) and so indirectly of p at x=xx 
 ppci1[i] <- ppci[1]; ppci2[i] <- ppci[2] 
 ppcpdr1[i] <- ppcpdr[1]; ppcpdr2[i] <- ppcpdr[2] 
 } 
 
X11(w=8,h=5); par(mfrow=c(1,1)) 
 
plot(c(0,15),c(0,1),type="n",xlab="x",ylab="probability p(x)") 
points(xvdata,pvdata,pch=16);     lines(xxv,ppv) 
lines(xxv,ppci1,lwd=2); lines(xxv,ppci2,lwd=2) 
lines(xxv,ppcpdr1,lty=2,lwd=2); lines(xxv,ppcpdr2,lty=2,lwd=2) 
 
legend(8,0.6,  c("MC est & 95% CI","95% CPDR"),lty=c(1,2)) 
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Exercise 7.4 Autocorrelated Bernoulli data (and practice at  
various statistical techniques) 
 
Consider the following Bayesian model for a sequence of identically 
distributed but possibly dependent and serially autocorrelated Bernoulli 
random variables iy : 
 1 2 3( | , , , , ,...) ~ ( )i i i i iy a b y y y Bernoulli p   ,  0, 1, 2,...i     

  
1

1
1 exp{ ( )}i

i

p
a by 


    

 ( , ) 1, ,f a b a b  . 
Suppose that the data is 1( ,..., )ny y y = (1,1,1,1,1,   1,1,0,0,0). 
 
Use the Metropolis-Hastings algorithm to generate a random sample of  
J = 10,000 values from the joint posterior distribution of a and b. Use this 
sample to estimate the posterior means and 95% CPDRs for a and b. Also 
estimate ( 0 | )P b y< . 
 
Solution to Exercise 7.4 
 
The first thing we need to do is work out the probability that 1 1Y   
conditional on a and b but not conditional on 0y  (since 0y  is not known). 
With an implicit conditioning on a and b, observe by the law of total 
probability that 
  1 0 1 0 0 1 0( 1) ( 0) ( 1| 0) ( 1) ( 1| 1)P Y P Y P Y Y P Y P Y Y          
      1 1 0 1 1 0{1 ( 1)} ( 1| 0) ( 1) ( 1| 1)P Y P Y Y P Y P Y Y         . 
 
Solving for 1( 1)P Y  , we get   

 1 1
1 exp( )( 1| , )

2 exp( ) exp( )
a bq P Y a b

a b a
 

  
   

. 

 

Hence, with  1
1

1( 1 | , , )
1 exp( )i i i

i

p P Y a b y
a by



  
  

  

(as already defined), the joint posterior pdf of a and b is  
 ( , | ) ( , ) ( | , )f a b y f a b f y a b  

     
,

1 1
2

1 ( | , ) ( | , , )
na b

i i
i

f y a b f y a b y 


   1 1 11
1 1

2

(1 ) (1 )i i

n
y yy y
i i

i

q q p p 



   . 
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So the log of the posterior density is given by   
  ( , ) log ( , | )l a b f a b y  

    1 1 1 1log (1 ) log(1 )c y q y q      

                   
2

log (1 ) log(1 )
n

i i i i
i

y p y p


    .
 

 
Using normal drivers for both a and b, we implement a Metropolis-
Hastings algorithm and thereby, following a burn-in of size B = 1,000, 
obtain an approximately random MC sample of size J = 10,000, which we 
will denote by 
 ( , ) ~ ( , | )j ja b iid f a b y , 1,...,j J . 
   
From this MC sample we estimate a by –2.337 with 95% CPDR  
(–6.3980, 0.8313), and b by 5.411 with 95% CPDR (0.9098, 11.8691). 
We also estimate ( 0 | )P b y<  by 0.081. 
 
The traces of a and b over all 11,000 iterations, and histograms of the last 
10,000 values of a and b, respectively, are shown in Figure 7.11, together 
with posterior density estimates.  
 
Note:  In an earlier exercise we considered a posterior predictive p-
value for the null hypothesis that the sequence in the present exercise 
consists of values that are iid.  
  
That p-value was estimated as 0.0995 with 95% CI (0.0936, 0.1054). 
The estimate 0.081 of ( 0 | )P b y<  in the present exercise may be 
interpreted in a similar way to the p-value 0.0995.  

 
In this case the appropriate p-value is one-sided.  
 
If we wish to do a two-sided test, in the present context, b = 0 versus 

0b ≠ , then the p-value may be calculated as twice the minimum of  
( 0 | )P b y<  and ( 0 | )P b y> .  

 
Clearly, if the posterior distribution of b is well above or well below 
zero, then the resulting two-sided p-value will appropriately be very 
close to zero. 
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Figure 7.11 Traces and histograms for a and b 
 

 
  
 
R Code for Exercise 7.4 
 
yv <- c(1,1,1,1,1,   1,1,0,0,0);  n <- length(yv); ybar <- mean(yv); ydot <- sum(yv) 
 
MHBD <- function(K,a,b,yv,sa,sb){ 
# Performs a Metropolis-Hastings algorithm for a binary dependence model. 
# Inputs:  K = total number of iterations 
#  a,b = starting values of a and b 
#  yv = vector of 0-or-1 values (y1,...,yn) 
#  sa, sb = standard deviations of the two normal driver fns. 
# Outputs: $av = vector of (K+1) values of a (incl. starting value) 
#  $bv = vector of (K+1) values of b (incl. starting value) 
#  $ara, $arb = acceptance rates for a and b. 
n <- length(yv);  av <- a; bv <- b; cta <- 0; ctb <- 0 
logfun <- function(a,b,yv,n){  
 p1 = (1 + exp(a+b)) / (2 + exp(a+b) + exp(-a))      # p1 
 p2ton <- 1/(1 + exp(-a-b*yv[-n]))      # p2,...,pn 
 pv <- c(p1,p2ton)     # p1,...,pn 
 sum( yv*log(pv) + (1-yv)*log(1-pv) ) } 
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for(j in 1:K){ 
 a2 <- rnorm(1,a,sa) # proposed value of a 
 logpr <- logfun(a=a2,b=b,yv=yv,n=n)-logfun(a=a,b=b,yv=yv,n=n)  
 pr <- exp(logpr); u <- runif(1) 
 if(u<pr){  a <- a2; cta <- cta + 1 } 
 if(sb > 0){ 
    b2 <- rnorm(1,b,sb) # proposed value of b 
    logpr <- logfun(a=a,b=b2,yv=yv,n=n)-logfun(a=a,b=b,yv=yv,n=n)  
    pr <- exp(logpr); u <- runif(1) 
    if(u<pr){ b <- b2; ctb <- ctb + 1 } 
    } 
 av <- c(av,a); bv <- c(bv,b) 
 } 
list(av=av,bv=bv,ara=cta/K,arb=ctb/K)     
} 
 
options(digits=4); set.seed(143); date() #  
res <- MHBD(K=11000,a=0,b=0,yv=yv,sa=1.5,sb=2.2); date() #  Took 2 secs 
c(res$ara,res$arb)  # 0.5575 0.5753 (acceptance rates for a and b) OK 
 
X11(w=8,h=6); par(mfrow=c(2,1));  plot(res$av); plot(res$bv)  # OK 
 
av <- res$av[1002:11001]; bv <- res$bv[1002:11001]; J=1000 
 
abar <- mean(av); bbar <- mean(bv);  
acpdr <- quantile(av,c(0.025,0.975));  
bcpdr <- quantile(bv,c(0.025,0.975)) 
 
rbind(c(abar,acpdr),c(bbar,bcpdr)) 
# [1,] -2.337 -6.3980  0.8313 
# [2,]  5.411  0.9098 11.8691 
 
pr <- length(bv[bv<0])/J; pr # 0.081 
 
X11(w=8,h=6); par(mfrow=c(2,2));   
 
plot(av,type="l",xlab="j",ylab="a_j",cex=1.2) 
plot(bv,type="l",xlab="j",ylab="b_j",cex=1.2)  
 
hist(av,prob=T,xlab="a",ylab="relative frequency",cex=1.2);  
 abline(v=c(abar,acpdr), lty=1,lwd=3); lines(density(av),lwd=2) 
hist(bv,prob=T,xlab="b",ylab="relative frequency",cex=1.2);  
 abline(v=c(bbar,bcpdr), lty=1,lwd=3); lines(density(bv),lwd=2) 
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Exercise 7.5 Inference on the bounds of a uniform distribution 
 
Consider the following Bayesian model: 

 
1( ,..., | , ) ~  ( , )

( | ) ~ (0, )
~ (0,1).

ny y a b iid U a b
a b U b

b U
 

 
Generate a random sample of size n = 20 from the model with  a = 0.6 and 
b = 0.8. Then apply MCMC methods to generate a random sample from 
the joint posterior of a and b. Then use this sample to perform Monte Carlo 
inference on ( | , ) ( ) / 2im E y a b a b= = + . 
 
Solution to Exercise 7.5 
 
Rounding to four decimals, the generated sample values are as shown in 
Table 7.6. 
 
Table 7.6 Sample values 
 

i 1 2 3 4 5 

iy  0.7846 0.7572 0.6381 0.7626 0.6105 
      

i 6 7 8 9 10 
iy  0.6990 0.7728 0.7113 0.7314 0.7435 
      

i 11 12 13 14 15 

iy  0.6324 0.7072 0.7493 0.7979 0.6182 
      

i 16 17 18 19 20 
iy  0.7652 0.7883 0.7194 0.6211 0.6054 

 
 
Note: The range of this data is from 0.6054 to 0.7979. This tells us 
immediately that 0 0.6054a≤ ≤  and 0.7979 1b≤ ≤ . 
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Now, the joint posterior density of a and b is 
    ( , | ) ( , , ) ( ) ( | ) ( | , )f a b y f a b y f b f a b f y a b   

   
1

( )(0 1) (0 )
1

n
i

i

I a y bI b I a b
b b a

    
  

  

  1 ,     0 1,    min max
( ) i in a b a y y b

b b a
      


. 

 
So the two conditional posterior distributions are defined by: 

         1( | , ) ,     0 min( )
( ) inf a y b a y
b a

  


 

        1( | , ) ,    max( ) 1
( ) inf b y a y b

b b a
  


. 

 
Neither of these conditionals defines a well-known distribution. So we 
will apply a ‘pure’ Metropolis-Hastings algorithm (rather than a Gibbs 
sampler).  
 
With a′  and b′  denoting the proposed values of a and b, the acceptance 
probabilities at the two steps are: 

 

2

2

( | , ) 1/ ( )
( | , ) 1/ ( )

n

a
f a y b b a b ap
f a y b b a b a

             

 

2

2

( | , ) 1/ ( ( ) )
( | , ) 1/ ( ( ) )

n

b
f b y a b b a b b ap
f b y a b b a b b a

            
. 

 
The following drivers were chosen:  
 2~ ( , )a N a r′   
 2~ ( , )b N b t′ . 
 
Starting at a = 0.1 and b = 0.9, and using the tuning constants  r = 0.008 
and t = 0.01, the algorithm was run for 2,500 iterations. The resulting trace 
plots are shown in Figure 7.12. 
 
We see that stochastic convergence was achieved within 500 iterations.  
The acceptance rates over the last 2,000 iterations were 62% and 58% for 
a and b, respectively.  
 
  



Chapter 7: MCMC Methods Part 2 

361 

Figure 7.12 Traces for a and b 

 
 
The algorithm was then run for a further 50,000 iterations, starting at the 
last values in the previous run (a = 0.5979 and b = 0.8123). The acceptance 
rates were now 61% and 54%, and this second run took 14 seconds of 
computer time. 
 
Then every 50th value was recorded so as to yield a final random sample 
of size J = 1,000 from the joint posterior distribution of a and b, i.e.  
 1 1( , ),..., ( , ) ~ ( , | )J Ja b a b iid f a b y .  
 
As a check, the sample ACF of each sample of size 1,000 was calculated. 
Figure 7.13 shows the ACF estimates for a and b, and these provide no 
evidence for residual autocorrelation in either series. 
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Figure 7.13 Sample ACFs for a and b 

 
 
A random sample from the posterior distribution of the mean 
 ( | , ) ( ) / 2im E y a b a b= = +   
was then formed by calculating  

( ) / 2j j jm a b= + .  
 
We thereby obtained the random sample  
 1,..., ~ ( | )Jm m iid f m y .  
 
This Monte Carlo sample was used to estimate ˆ ( | )m E m y=  by 0.7013, 
with 95% CI (0.7008, 0.7019). The estimated 95% CPDR for m was 
(0.6837, 0.7173).  
 
Figure 7.14 is a histogram of the 1,000 values of m, overlaid by a density 
estimate of ( | )f m y , with the vertical lines showing the point and interval 
estimates reported above. 
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Figure 7.14 Inference on m = (a + b)/2 

 
R Code for Problem 7.5 
 
options(digits=4) 
 
MH = function(B,J=1000,y,a,b,r,t){ 
# This function performs a Metropolis-Hastings algorithm for a model involving 
3 uniforms. 
# Inputs: B = burn-in length 
#  J = desired Monte Carlo size 
#  y = (y1,...,yn) = data (yi ~ iid U(a,b)) 
#  a = starting value of a (a ~ U(0,b)) 
#  b = starting value of b (b ~ U(0,1)) 
#  r,t = tuning constants for a & b, respectively 
# Outputs: $av = (1+B+J) vector of a-values 
#  $bv = (1+b+J) vector of b-values 
#  $ar = acceptance rate for a (over last J iterations) 
#  $br = acceptance rate for b (over last J iterations) 
av = a; bv = b; an=0; bn=0; miny=min(y); maxy=max(y); n=length(y); 
for(j in 1:(B+J)){ 
 ap = rnorm(1,a,r) 
 if((0<ap)&&(ap<miny)){ 
  p = ((b-a)/(b-ap))^n; u = runif(1) 
  if(u<p){ a=ap; if(j>B) an=an+1 }   } 
 bp = rnorm(1,b,t) 
 if((maxy<bp)&&(bp<1)){ 
  q = (b/bp)*((b-a)/(bp-a))^n; v = runif(1) 
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  if(v<q){ b=bp; if(j>B) bn=bn+1 }   } 
 av=c(av,a); bv=c(bv,b) 
 } 
ar = an/J; br=bn/J; list(av=av,bv=bv,ar=ar,br=br)       } 
 
set.seed(337); ydata = runif(20,0.6,0.8); round(ydata,4) 
# [1] 0.7846 0.7572 0.6381 0.7626 0.6105 0.6990 0.7728 0.7113 0.7314 
# [10] 0.7435 0.6324 0.7072 0.7493 0.7979 0.6182 0.7652 0.7883 0.7194 
# [19] 0.6211 0.6054 
summary(ydata) 
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
#    0.605   0.637   0.725   0.711   0.763   0.798 
 
B = 500; J = 2000; set.seed(232) 
mh = MH(B=B,J=J,y=ydata, a=0.1,b=0.9,r=0.008,t=0.01) 
c(mh$ar,mh$br) # 0.616 0.576 
X11(w=8,h=7); par(mfrow=c(2,1)) 
plot(0:(B+J),mh$av,type="l",main="",xlab="j",ylab="aj")  
 abline(v=B,lty=3) 
plot(0:(B+J),mh$bv,type="l", main="",xlab="j",ylab="bj")  
 abline(v=B,lty=3) 
alast= mh$av[length(mh$av)]; blast= mh$bv[length(mh$bv)] 
c(alast,blast) # 0.5979 0.8123 
 
B=0; J = 50000; set.seed(230); date() 
mh = MH(B=B,J=J,y=ydata, a=alast,b=blast,r=0.008,t=0.01) 
date() # Takes about 14 seconds 
c(mh$ar,mh$br) # 0.6141 0.5434 
av=mh$av[-1][seq(05,50000,50)]; J = length(av); J #  1000 
bv=mh$bv[-1][seq(50,50000,50)]; 
acf(av)$acf[1:5] # 1  0.04828  0.01193 -0.02745  0.03983    OK 
acf(bv)$acf[1:5] # 1 0.038617 0.007026 0.030259 0.011678   OK 
mv=0.5*(av+bv)  
# acf(mv)$acf[1:5] # 1  -0.001121 -0.020770  0.001872 -0.008731 OK 
 
X11(w=8,h=5); par(mfrow=c(1,1)) 
hist(mv,prob=T,xlab="m",main="", 
 xlim=c(0.65,0.75), ylim=c(0,80)) 
lines(density(mv),lwd=2) 
est=mean(mv); ci=est+c(-1,1)*qnorm(0.975)*sd(mv)/sqrt(J) 
cpdr=quantile(mv,c(0.025,0.975)) 
print(c(est,ci,cpdr),digits=4)  # 0.7013 0.7008 0.7019 0.6837 0.7173  
abline(v= c(est,ci,cpdr),lwd=2) 
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CHAPTER 8 
Inference via WinBUGS 

 
8.1 Introduction to BUGS  
 
We have illustrated the usefulness of MCMC methods by applying them 
to a variety of statistical contexts. In each case, specialised R code was 
used to implement the chosen method. Writing such code is typically time 
consuming and requires a great deal of attention to details such as 
choosing suitable tuning constants in the Metropolis-Hastings algorithm.  
 
A software package which can greatly assist with the application of 
MCMC methods is WinBUGS. This stands for:  
     Bayesian Inference Using Gibbs Sampling for Microsoft Windows.  
 
The BUGS Project was started in 1989 by a team of statisticians in the 
UK (at the Medical Research Council Biostatistics Unit, Cambridge, and 
Imperial College School of Medicine, London) and developed until the 
latest version WinBUGS 1.4.3 was released in 2007.  
 
WinBUGS 1.4.3 is a stable version of BUGS which is suitable for routine 
use, even today.  
 
Since 2007, development of BUGS has focused on OpenBUGS, an open 
source version of the package. In what follows we will only refer to 
WinBUGS 1.4.3. This is freely available from the official website: 

http://www.mrc-bsu.cam.ac.uk/software/bugs/ 

Figure 8.1 shows this website (as it appeared on 18 February 2015). 
     
Figure 8.2 shows the Wikipedia article on WinBUGS (on the same day): 

http://en.wikipedia.org/wiki/WinBUGS 

The preferred reference for citing WinBUGS in scientific papers is:  

Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000).   
WinBUGS – A Bayesian modelling framework: Concepts,  
structure, and extensibility. Statistics and Computing, 10:  
325–337.  

 

http://www.mrc-bsu.cam.ac.uk/software/bugs/
http://en.wikipedia.org/wiki/WinBUGS
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Figure 8.1 Official website for WinBUGS 

 

 

 

Figure 8.2 Wikipedia article on WinBUGS 
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8.2 A first tutorial in BUGS 
 
Consider the following Bayesian model:  
 2

1,..., | , ~ ( , )ny y iid Normalµ τ µ σ     ( 21/τ σ= ) 

 2
0 0| ~ ( , )Normalµ τ µ σ  

 ~ ( , )Gammaτ α β      ( /Eτ α β= ) 
where 0µ  = 0, 2

0σ  = 10,000 and α  = β  = 0.001.  
 
Suppose the data is 1( ,..., )ny y y=  = (2.4, 1.2, 5.3, 1.1, 3.9, 2.0), and we 
wish to find the posterior mean and 95% posterior interval for each of µ  

and γ µ τ=  (the signal to noise ratio). 
 
To perform this in WinBUGS 1.4.3, open a new window (select ‘File’ and 
then ‘New’ in the BUGS toolbar), and type the following BUGS code: 
 
 
model 
{ 
for(i in 1:n){  
 y[i] ~ dnorm(mu, tau)  
 } 
mu ~ dnorm(0,0.0001) 
tau ~ dgamma(0.001, 0.001) 
gam <- mu*sqrt(tau) 
} 
 
list( n=6, y=c(2.4,1.2,5.3,1.1,3.9,2.0) ) 
 
list(tau=1)  
 
 
Alternatively, copy this text from a Word document into a Notepad file, 
and then copy the text from the Notepad file into the WinBUGS window.  
 
Note: Do not copy text from Word to WinBUGS directly or you may 
get an error message. 

 
The WinBUGS window should then look as depicted in Figure 8.3. 
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Figure 8.3 WinBUGS window with code 
 

 

 

Next, select ‘Model’ (in the WinBUGS toolbar) and then ‘Specification’.  
 
Then highlight the word ‘model’ (in the BUGS code above) and click on 
‘check model’ in the ‘Specification Tool’.  
 
Then highlight the first word ‘list’, click on ‘load data’ and click on 
‘compile’.  
 
Then highlight the second word ‘list’, click on ‘load inits’ and click on 
‘gen inits’.  
 
Next, select ‘Inference’ and then ‘Samples’. Then, in the ‘Sample Monitor 
Tool’ which appears, type ‘mu’ in the ‘node’ box, click ‘set’, type ‘gam’ 
in the ‘node’ box and click ‘set’ again.  
 
Then click ‘Model’ and ‘Update’.  
 
In the ‘Update Tool’ which appears, change ‘1000’ to ‘1500’ and click 
‘update’. This will implement 1,500 iterations of an MCMC algorithm. 
 
Next type ‘*’ (an asterisk) in the ‘node’ box, change ‘1’ to ‘501’ in the 
‘beg’ box (meaning beginning) and click ‘stats’ (statistics).  
 
This should produce something similar to what is shown in Figure 8.4 and 
Table 8.1. 
 



 Chapter 8: Inference via WinBUGS 

369 

Figure 8.4 Tools and node statistics in WinBUGS 
 

 
 
 
Table 8.1 Node statistics in WinBUGS (as in Figure 8.4) 
 
node  mean    sd  MC error 2.5%   median 97.5% start    sample 

gam 1.538 0.6389   0.02113 0.3775   1.521 2.908 501 1000 

mu 2.636 0.8181   0.02587 0.9428   2.645 4.313 501 1000 

 

From these results, we see that the posterior mean and 95% posterior 
interval for µ  are about 2.64  and (0.94, 4.31), and the same quantities 
for γ  are about 1.54 and (0.38, 2.91). 
 
To obtain more precise inference we could repeat the above procedure 
with a larger Monte Carlo sample size (e.g. 10,000 rather than 1,000).  
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Note: If 0σ = ∞  and 0α β= = , the posterior mean and 95% CPDR for 
µ  are exactly  
           y  = 2.65  
(i.e. the sample mean) and  
          0.025( ( 1) / )y t n n± −  = (0.92, 4.38)  
(where s is the sample standard deviation).  
  
The posterior mean and CPDR for γ  do not have such simple formulae. 

 
To see line plots of the simulated values, click on ‘history’ (in the ‘Sample 
Monitor Tool’), and to view smoothed histograms of them, click ‘density’. 
Figure 8.5 illustrates. 
 
 
Figure 8.5 Line plots and smoothed histograms in WinBUGS 
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To transfer the simulated values from WinBUGS into R (for further 
analysis) click on ‘coda’. Two boxes will appear, one called ‘CODA index’ 
with the following: 

 

gam 1 1000 

mu 1001 2000 

 

The other box, called ‘CODA for chain 1’, should have two columns and 
2,000 rows and look as follows: 

 

501 1.298 

502 1.307 

503 1.478 

....................... 

1498 0.8303 

1499 1.993 

1500 2.326 

501 1.812 

502 1.999 

503 2.8 

...................... 

1498 1.628 

1499 2.161 

1500 2.748 

 

Next, copy the contents of ‘CODA for chain 1’ into a Notepad file called 
‘out.txt’ (say). Save that file somewhere, e.g. onto the desktop.  
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Then begin a session in R and proceed as follows: 

 

out <- read.table(file=file.choose())   # Navigate to and choose ‘out.txt’ 

dim(out) # 2000    2     

gamv <- out[1:1000,2]; muv <- out[1001:2000,2] 

par(mfrow=c(2,1)); hist(muv, breaks=20); hist(gamv, breaks=20)    

 

This should result in the graphs shown in Figure 8.6. 

 

Figure 8.6 Histograms in R using output from WinBUGS 
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One can then use the MCMC output in many other ways, e.g. to simulate 
from a posterior predictive distribution via the method of composition.  
 
As an alternative, it is possible to run WinBUGS directly from R after 
installing the appropriate packages. (This will be done in a future exercise). 
But this method is really only for production runs and is not recommended 
during the experimentation stage of an analysis.  
 
For more information on BUGS, click on ‘Help’ and ‘User manual’ in the 
toolbar. Also see ‘Examples Vol I’ and ‘Examples Vol II’ for several 
dozen worked examples in BUGS. The examples are very user-friendly. 
They contain data, code and everything one needs to reproduce the results 
shown. Figure 8.7 shows various excerpts from these files. 
 
 
Figure 8.7 Exerpts from the WinBUGS 1.4.3 User Manual  
(several pages) 
 

 

 



Bayesian Methods for Statistical Analysis  

374 
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Note: The last graphic shown is called a Doodle. WinBUGS has a 
facility whereby the user can create such a diagram and have the code 
generated automatically. 
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Predictions: 

 

 

Trace plots and density estimates: 

 

 

 

(End of Figure 8.7)  
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Exercise 8.1 Simple linear regression via WinBUGS 

 
Use WinBUGS to perform a simple linear regression on the data in Table 
8.2 (which is the same as Table 7.1 in Exercise 7.2). 

Table 8.2 Regression data 

 

( )ix i  1 2 3 4 5 

iy  5.879 8.54 14.12 13.14 15.26 
      
i 6 7 8 9 10 

iy  20.43 19.92 18.47 21.63 24.11 
 
Solution to Exercise 8.1  

Using the following WinBUGS code, we obtain the results in Table 8.3: 

 
model{ 
for(i in 1:n){ 
   mu[i] <- a + b*x[i] 
   y[i] ~ dnorm(mu[i],lam) 
   } 
a ~ dnorm(0.0,0.001) 
b ~ dnorm(0.0,0.001) 
lam ~ dgamma(0.001,0.001) 
} 
 
# data 
list(n = 10, x = c(1,2,3,4,5,6,7,8,9,10), y=c(5.879,8.54,14.12, 
13.14,15.26,20.43,19.92,18.47,21.63,24.11)) 
 
# inits 
list(a=0,b=0,lam=1) 
 

Table 8.3 Results of regression performed using WinBUGS 

node  mean  sd  MC error   2.5%   median 97.5% start     sample 
a 6.039 1.532 0.01646     2.955       6.051 9.107 1001 10000 
b 1.836 0.247 0.00266     1.342     1.834 2.334 1001 10000 
lam 0.2625 0.1313 0.001602    0.07259   0.2404    0.5788 1001 10000 
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Using the results in Table 8.3, we estimate a by 6.039 with 95% CPDR 
(2.955, 9.107), and we estimate b by 1.836 with 95% CPDR (1.342, 2.334).   

It may be noted that these results are very similar to those obtained via 
classical techniques in an earlier exercise: 6.051 and (2.973, 9.128)  for a, 
and 1.836 and (1.340, 2.332) for b.  

Figure 8.8 shows trace plots and density estimates produced as part of the 
WinBUGS output. 

 

 

Figure 8.8 Graphical output from WinBUGS regression  
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Exercise 8.2 Logistic regression via WinBUGS 
 
Consider the data in Table 8.4, which is the same as in Table 7.2 of 
Exercise 7.3 (where, for example, in Experiment 3 a total of 40 rats were 
exposed to radiation for 3.6 hours, and 23 of them died within one month). 
 
 
Table 8.4 Rat mortality data  
 

i  in  ix  iy  iy / in    ˆ ip  
1 10 0.1 1 1/10 = 0.1 
2 30 1.4 0 0/30 = 0 
3 40 3.6 23 23/40 = 0.575 
4 20 3.8 12 12/20 = 0.6 
5 15 5.2 8 8/15 = 0.5333 
6 46 6.1 32 32/46 = 0.696 
7 12 8.7 10 10/12 = 0.833 
8 37 9.1 35 35/37 = 0.946 
9 23 9.1 19 19/23 = 0.826 
10 8 13.6 8 8/8 = 1 

 
 
 
Use WinBUGS to estimate the parameters in the following logistic 
regression model for these data: 
 ~ ( , )i i iY Bin n p ,     i = 1,...,n, 
where:  

1
1 exp( )i

i

p
z


 

    (probability of a ‘success’ for experiment i) 

  i iz a bx       (linear predictor). 
 
In your results, also include inference on LD50, the dose at which 50% of 
rats will die (= −a/b), and on d, defined as the number of rats that will die 
out of 20 that are exposed to five hours of radiation. 
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Solution to Exercise 8.2 
 
Applying the following WinBUGS code, we obtain the results in Table 
8.5: 
 

model 
{ 
for(i in 1:N){ 
   z[i] <- a + b*x[i] 
   logit(p[i])<- z[i] 
   y[i] ~ dbin(p[i],n[i]) 
   } 
a ~ dnorm(0.0,0.001) 
b ~ dnorm(0.0,0.001) 
logit(p5) <- a+5*b 
d ~ dbin(p5,20) 
LD50 <- -a/b 
} 
 
# data 
list(N=10,n=c(10,30,40,20,15,46,12,37,23,8),  
x=c(0.1,1.4,3.6,3.8,5.2,6.1,8.7,9.1,9.1,13.6), 
y=c(1,0,23,12,8,32,10,35,19,8)) 
 
# inits 
list(a=0,b=0) 
  

Table 8.5 Results of logistic regression performed using   
WinBUGS 

 

nodemean  sd  MC error 2.5% median 97.5% start  sample 
 
LD50 4.273 0.3373 0.00464 3.587 4.285 4.899 1001  10000 
a      -2.177 0.3726 0.01041 -2.922 -2.168 -1.478 1001  10000 
b     0.5082 0.06962 0.001964 0.3794 0.5059 0.6501 1001  10000 
d       11.79 2.344 0.02447 7.0 12.0 16.0 1001  10000 
p5   0.5895 0.03946 3.174E4  0.5125 0.5896 0.6664 1001  10000 
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Thus, we estimate a by –2.177 with 95% CPDR (–2.922, –1.478), etc.  
 
These results are very similar to those obtained via classical techniques in 
Exercise 7.3, namely –2.156 and (–3.000, –1.311) for a, etc.  
 
Figure 8.9 shows some traces and density estimates produced as part of 
the WinBUGS output. Here, ‘p5’ represents the probability of a rat dying 
within one month if exposed to five hours of radiation. We chose to 
monitor this node so as to estimate its posterior density 
 
 
Figure 8.9 Graphical output from WinBUGS logistic regression  
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Exercise 8.3 Inference on a uniform distribution via WinBUGS 
 
Consider the following Bayesian model: 

 
1( ,..., | , ) ~  ( , )

( | ) ~ (0, )
~ (0,1).

ny y a b iid U a b
a b U b

b U  
 
Suppose that n = 20 data values from this model with a = 0.6 and  
b = 0.8 are as shown in Table 8.6 (which is the same as Table 7.6 in 
Exercise 7.5). 
 
 
Table 8.6 Sample values from a uniform distribution 
 

i 1 2 3 4 5 
iy  0.7846 0.7572 0.6381 0.7626 0.6105 
      

i 6 7 8 9 10 

iy  0.6990 0.7728 0.7113 0.7314 0.7435 
      

i 11 12 13 14 15 
iy  0.6324 0.7072 0.7493 0.7979 0.6182 
      

i 16 17 18 19 20 

iy  0.7652 0.7883 0.7194 0.6211 0.6054 
 
 
 
Use WinBUGS to generate a random sample from the joint posterior 
distribution of the parameters a and b. Then use this sample to estimate 
the mean of the uniform distribution, namely  

( | , ) ( ) / 2im E y a b a b= = + . 
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Solution to Exercise 8.3 
 
Applying the following WinBUGS code we obtain the results in Table 8.7: 
 
 
model 
{ 
for(i in 1:n){  y[i] ~ dunif(a,b) } 
b ~ dunif(0,1) 
a ~ dunif(0,b) 
m <- (a+b)/2 
} 
 
list( n=20, y=c( 0.7846, 0.7572, 0.6381, 0.7626, 0.6105,  
  0.6990, 0.7728, 0.7113, 0.7314, 0.7435, 
  0.6324, 0.7072, 0.7493, 0.7979, 0.6182, 
  0.7652, 0.7883, 0.7194, 0.6211, 0.6054) ) 
 
list(a=0.1, b=0.9) 
 
 

Table 8.7 Results of WinBUGS analysis for a uniform   
distribution 

 
node  mean  sd     MC error 2.5% median 97.5% start       sample 
a 0.594 0.01184     1.996E-4 0.5623 0.5977 0.6051 1001 10000 
b 0.8091 0.01187     2.004E-4 0.7982 0.8054 0.841 1001 10000 
m 0.7016 0.008201   1.388E-4 0.6844 0.7015 0.7187 1001 10000 
 
 
Using the results in Table 8.7, we estimate m by 0.7016, with 95% CI 
(0.7013, 0.7019) for m’s posterior mean.  
 
We also estimate the 95% CPDR for m as (0.6844, 0.7187). 
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Note 1: The CI here was obtained in R using the following code: 
   
 0.7016 +c(-1,1)*qnorm(0.975)*0.0001388  
   
Another CI is (0.7014, 0.7018), obtained using the code: 
  
 0.7016 +c(-1,1)*qnorm(0.975)*0.008201/sqrt(10000)  
 
But this second CI is ‘inferior’ to (0.7013, 0.7019)  because it ignores 
the autocorrelation in the simulated values. The fact that the second CI 
is shorter corresponds to the fact that its true coverage probability is less 
than the nominal and desired 95%. 

 
Note 2: These inferences (above Note 1) are similar to those obtained in 
the solution to Exercise 7.5 using custom-written R code: 0.7013 with 
95% CI (0.7008, 0.7019) and 95% CPDR estimate (0.6837, 0.7173). 

 
Note 3: The CI in Note 2 is wider than the CI (0.7013, 0.7019) because 
it is based on a smaller Monte Carlo sample size (of 1,000 rather than 
10,000). If we use only iterations 1,001 to 2,000 from the WinBUGS 
output, we get 
 
     m 0.7016 0.008287    3.573E-4    0.6833   0.7016   0.7194    1001    1000 
 
in place of the corresponding row of Table 8.7. Then, the 95% CI for 
m’s posterior mean becomes (0.7009, 0.7023), obtained via 
 
 0.7016 +c(-1,1)*qnorm(0.975)*0.0003573  
 
This CI has a width of 0.0014, which is greater than 0.0006, the width 
of (0.7013, 0.7019), and closer to 0.0011, the width of the CI in Note 2. 

 
Figure 8.10 shows some traces and density estimates produced as part of 
the WinBUGS output. 
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Figure 8.10 Graphs from WinBUGS analysis for a uniform  
distribution 
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8.3 Tutorial on calling BUGS in R      

 

The following is a short tutorial on how WinBUGS can be called within 
an R session. Some of the details may need to be changed depending on 
the configuration of files and directories in the computer being used. 

First, assume that R (v3.01) is installed in C:/R-3.0.1 

Also assume that WinBUGS (v4.1.3) is installed in C:/WinBUGS14 

Open R and type     

install.packages("R2WinBUGS")  

Note: You must have a connection to the internet for this to work. This 
command is required only once for each installed version of R. 

 

Next, select a CRAN mirror when prompted. ‘Melbourne’ should work.   

You should then see something like the following:  

package ‘coda’ successfully unpacked and MD5 sums checked 

package ‘R2WinBUGS’ successfully unpacked and MD5 sums checked, etc. 

 

Then type    

library("R2WinBUGS")   

Note: This loads the necessary functions and must be done at the 
beginning of each R session in which WinBUGS is to be called. 

 

You should now see something like:   

Loading required package: coda 

Loading required package: lattice 

Loading required package: boot, etc. 
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Next, create a file called  C:/R-3.0.1/BugsCode1.txt  
which contains the following code for a simple Bayesian model: 

model 

{ 

for(i in 1:n){ y[i] ~ dnorm(mu, tau) } 

mu ~ dnorm(0,0.0001) 

tau ~ dgamma(0.001, 0.001) 

gam <- mu*sqrt(tau) 

}  

 

Next create a working directory, say  C:/R-3.0.1/BugsOut/  
and proceed in R as follows: 

y <- c(2.4,1.2,5.3,1.1,3.9,2.0)   

n <- length(y) 

data <- list("n","y") 

inits <- function(){   list(mu=0, tau=1.0)  } 

parameters <- c("mu", "gam") 

sim  <- bugs(data, inits, parameters,  

 model.file= "C:/R-3.0.1/BugsCode1.txt", 

 n.chains = 1, n.iter = 1500, n.burnin=500, DIC = FALSE, 

     bugs.directory = "C:/WinBUGS14/", 

    working.directory = "C:/R-3.0.1/BugsOut/") 

 

This sets things up, starts WinBUGS, runs the BUGS code, closes 
WinBUGS, and creates a number of files in the working directory, similar 
to the ones shown in Figure 8.11. 
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Figure 8.11 Files created by running WinBUGS in R 

 

 

These files contain information which can then be accessed within R, for 
example as follows: 

 

print(sim,digits=4) 

# Inference for Bugs model at "C:/R-3.0.1/BugsCode1.txt", fit using WinBUGS, 

#  1 chains, each with 1500 iterations (first 500 discarded) 

#  n.sims = 1000 iterations saved 

#       mean     sd   2.5%    25%   50%    75%  97.5% 

# mu  2.6358 0.8185 0.9424 2.1760 2.645 3.1175 4.2984 

# gam 1.5380 0.6392 0.3774 1.0935 1.521 1.9360 2.9061 

par(mfrow=c(2,1)) 

hist(sim$sims.list$mu, breaks=20) 

hist(sim$sims.list$gam, breaks=20) 

 

After typing  these commands, you should see two histograms similar to 
the ones shown in Figure 8.12. For more information on the bugs() 
function, simply type    

help(bugs) 
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Figure 8.12 Histograms obtained in R after calling WinBUGS 

 

 

Note: If your WinBUGS code has an error, the procedure will crash, 
with little to tell you what went wrong. In that case, first iron out any 
‘bugs’ directly in WinBUGS, and only then run your WinBUGS code 
in R, as above. 
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Exercise 8.4 ARIMA modeling and forecasting with WinBUGS 
in R 
 
Consider the well-known Total International Airline Passengers (TIAP) 
time series, as shown in Table 8.8. This series describes quarterly totals 
of international passengers for the period January 1949 to December 1960. 
(Here, Qtr1 refers to the period January–March, etc.) 
 

Table 8.8 The TIAP time series 

Year Qtr1 Qtr2 Qtr3 Qtr4 
1949 362 385 432 341 
1950 382 409 498 387 
1951 473 513 582 474 
1952 544 582 681 557 
1953 628 707 773 592 
1954 627 725 854 661 
1955 742 854 1023 789 
1956 878 1005 1173 883 
1957 972 1125 1336 988 
1958 1020 1146 1400 1006 
1959 1108 1288 1570 1174 
1960 1227 1468 1736 1283 

 

 
Using classical methods, fit a suitable ARIMA model to this time series.  
 
Then forecast the time series forward for one up to twelve quarters.  
 
Then repeat your analysis and forecasts using WinBUGS called from R.  
 
Also create a single graph which compares both sets of forecasts. 
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Solution to Exercise 8.4 

 

Figure 8.13 shows plots of the original times series tx , its logarithm 
(showing stabilised variability),  the difference of the logarithm  (showing 
a removal of the trend), and ty , the fourth seasonal difference of the first 
difference of the logarithm  (showing that seasonality has been removed). 
The last two (bottom) plots are the sample ACF and sample PACF for ty . 
 

Figure 8.13 Plots for the TIAP time series 

 



 Chapter 8: Inference via WinBUGS 

395 

The last two plots in Figure 8.13 suggest SAR(1) or SMA(1) processes. 
Both fits pass standard diagnostic checks, the second being marginally 
better. Figure 8.14 shows some diagnostic plots for the SMA(1) fit (see 
the R Code below for further details).  

 

Figure 8.14 Diagnostics for the SMA(1) fit to the TIAP   
time series 
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The chosen SMA(1) model for the TIAP time series tx  may be expressed 
by writing   

4 logt ty x= ∇ ∇ ,  

where  

1 4t t ty w w −= +Θ ,  2~ (0, )tw iid N σ . 

 

The parameter estimates for this model are:  

1Θ̂  =  –0.4927 (SE = 0.1201)  

2σ̂  = 0.0013. 

 

Figure 8.15 shows the time series tx  plus predictions 12 quarters ahead 
based on the above fitted model. The dashed lines show the 95% 
prediction interval at each of the 12 future times points. (See the R code 
below for details regarding all calculations.) 
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Figure 8.15 Classical forecasts of the TIAP time series 

 

 
We now fit the same model to the time series but using MCMC via 
WinBUGS called from R. Some graphical output from the WinBUGS run 
is shown in Figure 8.16. (See the code below for details.)  
 
Figure 8.17 shows the Bayesian analogue of the classical forecasts 
displayed in Figure 8.15.  
 
To compare the classical and Bayesian analyses, we combine the two sets 
of forecasts into a single plot, as shown in Figure 8.18 (page 399). Figure 
8.19 (page 399) is a detail in Figure 8.18. 
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Figure 8.16 Output from an analysis of the TIAP series using 
WinBUGS 

 
 
 

Figure 8.17 Bayesian forecasts of the TIAP time series 
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Figure 8.18 Comparison of forecasts for the TIAP time series  

 

 

Figure 8.19 Detail in Figure 8.18 
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We see from Figures 8.18 and 8.19 that the two approaches to inference 
have yielded very similar results, at least as regards prediction. 
 
The Bayesian approach has produced 95% prediction intervals which are 
slightly wider than those obtained via the classical approach.  
 
It may be argued that such wider intervals are more appropriate, since the 
classical approach makes forecasts without taking into account any 
uncertainty in the parameter estimates.  
 
By contrast, the Bayesian approach to forecasting does take into account 
that uncertainty.  
 
To conclude, we report that the fitted model for the TIAP time series tx  
is given by 

 4 logt ty x= ∇ ∇ ,  

with 

1 4
ˆˆ ˆt t ty w w −= + Θ ,  2ˆ ˆ~ (0, )tw iid N σ , 

where, via classical analysis:   

1Θ̂  =  –0.4927 (SE = 0.1201)  

2σ̂  = 0.0013,    

and where, via Bayesian analysis: 

  1Θ̂ =  –0.4661 (SE = 0.1266)  

2σ̂  = 0.0015. 
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R and WinBUGS Code for Exercise 8.4 

 

# Classical analysis in R 
# ========================================================== 
 
x <-  
c(362, 385, 432, 341, 382, 409, 498, 387, 473, 513, 582, 474,  
544, 582, 681, 557, 628, 707, 773, 592, 627, 725, 854, 661, 742,  
854, 1023, 789, 878, 1005, 1173, 883, 972, 1125, 1336, 988, 1020,  
1146, 1400, 1006, 1108, 1288, 1570, 1174, 1227, 1468, 1736, 1283 ) 
n <- length(x); n # 48 
 
X11(w=8,h=9); par(mfrow=c(3,2)) 
plot(x,type="l");  abline(v=seq(0,48,4),h=seq(0,2000,100), lty=3) 
plot(log(x),type="l"); abline(v=seq(0,48,4), lty=3) 
plot(diff(log(x)),type="l"); abline(v=seq(0,48,4), lty=3) 
plot(diff(diff(log(x),lag=4)),type="l"); abline(v=seq(0,48,4), lty=3) 
y <- diff(diff(log(x),lag=4)) 
acf(y, lag=24) 
pacf(y,lag=24) 
 
fit1 <- arima( log(x),order=c(0,1,0), seasonal=list(order=c(1,1,0), period=4) ) 
 
tsdiag(fit1); fit1 
#          sar1 
#       -0.4990 
# s.e.   0.1417 
# sigma^2 estimated as 0.001310:  log lik. = 81.12,  aic = -158.24 
 
fit2 <- arima( log(x),order=c(0,1,0), seasonal=list(order=c(0,1,1), period=4) ) 
tsdiag(fit2); fit2 
#          sma1 
#      -0.4927 
# s.e.   0.1201 
# sigma^2 estimated as 0.001306:  log lik. = 81.2,  aic = -158.4 
 
# There’s not much to distinguish the two fits.  
# The second one is marginally better. 
# Let’s now display the diagnostics for that fit (again). 
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fit <- fit2;  tsdiag(fit) 
 
# We see that the residuals from the fit are well-behaved,  
# and their sample ACF is consistent with that of white noise. 
# Let’s also look at some other diagnostics. These turn out to be OK too. 
 
X11(w=8,h=5); par(mfrow=c(2,2)) 
acf(fit$resid, lag=24) 
pacf(fit$resid, lag=24) 
qqnorm(fit$resid) 
hist(fit$resid, nclass=12) 
 
# Check whether to include a mean term 
mean(y) # 0.0008141388 
fit3 <- arima( y, order=c(0,0,0), seasonal=list(order=c(0,0,1), period=4), 
 include.mean=T ); fit3 
#        sma1  intercept 
#       -0.4937    -0.0003   <--------- not significant 
# s.e.   0.1204     0.0031    
# So there’s no need for an intercept term in the model. 
 
# Let’s now make some predictions. 
logxpredict <- predict(fit, n.ahead=12) 
xF <- exp(logxpredict$pred) 
xL <- exp(logxpredict$pred - qnorm(0.975)* logxpredict$se) 
xU <- exp(logxpredict$pred + qnorm(0.975)* logxpredict$se) 
 
cbind(xF, xL, xU) 
#          xF       xL       xU 
# 49 1365.822 1272.412 1466.090 
# 50 1602.240 1449.497 1771.079 
# 51 1916.210 1694.939 2166.367 
# 52 1418.253 1230.895 1634.130 
# 53 1509.806 1264.357 1802.904 
# 54 1771.148 1439.872 2178.641 
# 55 2118.215 1677.977 2673.956 
# 56 1567.764 1213.320 2025.751 
# 57 1668.969 1244.652 2237.940 
# 58 1957.861 1412.873 2713.066 
# 59 2341.516 1640.034 3343.038 
# 60 1733.037 1180.875 2543.381 
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X11(h=5); par(mfrow=c(1,1)); plot(c(0,60),c(0,3800), type="n") 
lines(x, lwd=2);  points(x, lwd=2);   
points((n+1):(n+12), xF, pch=16, cex=1.5);  
lines(n:(n+12), c(x[n],xF), lty=1,lwd=2) 
# points((n+1):(n+12), xL, pch=16);  
lines((n+1):(n+12), xL, lty=2, lwd=2) 
# points((n+1):(n+12), xU, pch=16);  
lines((n+1):(n+12), xU, lty=2, lwd=2) 
abline(v=seq(0,100,4),h=seq(0,4000,100), lty=3)  # OK.... 
 
# Bayesian reanalysis in R and WinBUGS 
# ========================================================== 
 
# Assume that R (v3.0.1) is installed in C:/R-3.0.1 
# and WinBUGS (v4.1.3) is installed in C:/WinBUGS14 
 
install.packages("R2WinBUGS") # Not necessary if done previously 
 
library("R2WinBUGS")  # Necessary every time R is started 
 
# Make the following directory exists:  C:/R-3.0.1/BugsOut/ 
# Create a file called   C:/R-3.0.1/BugsCode2.txt   with the following: 
 
# ---------------------------------------------------------------------- 
model  
{ 
for(t in 1:n) { z[t] <- log(x[t])  } 
for(t in 1:5){ y[t] <- 0; w[t] ~ dnorm(0,tau) } 
for(t in 6:n){ y[t] <- z[t] - z[t-1] - z[t-4] + z[t-5] } 
for(t in 6:N){   # N=n+12=60 
 m[t] <- Phi1*w[t-4]  
 y[t] ~ dnorm(m[t],tau) 
 w[t] <- y[t] - m[t]  
 } 
tau ~ dgamma(0.001,0.001) 
Phi1dum ~ dbeta(1,1);   Phi1 <- 2*Phi1dum-1 
for(k in 1:12) {    
 z[n+k] <- z[n+k-1] + z[n+k-4] - z[n+k-5] + y[n+k]   
 x[n+k] <- exp(z[n+k]) 
 } 
sig2 <- 1/tau 
}    
# ---------------------------------------------------------------------- 
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# NB: We can’t specify  Phi1 ~ dunif(-1,1). This causes an error. 
# Update in March 2014: Phi1 ~ dunif(-1,1) works in WinBUGS 1.4.3. 
 
x <- c(362, 385, 432, 341, 382, 409, 498, 387, 473, 513, 582, 474,  
544, 582, 681, 557, 628, 707, 773, 592, 627, 725, 854, 661, 742,  
854, 1023, 789, 878, 1005, 1173, 883, 972, 1125, 1336, 988, 1020,  
1146, 1400, 1006, 1108, 1288, 1570, 1174, 1227, 1468, 1736, 1283, 
NA,NA,NA,NA,   NA,NA,NA,NA,   NA,NA,NA,NA) 
  
n <- 48;  N <- 60; data <- list("n","N","x") 
inits <- function(){   list(tau=1, Phi1dum=0.5)  } 
parameters <- c("sig2", "Phi1", "x") 
 
sim  <- bugs(data, inits, parameters, n.thin=1, 
 model.file=  "C:/R-3.0.1/BugsCode2.txt", 
 n.chains = 1, n.iter = 6000, n.burnin=1000, DIC = FALSE, 
 bugs.directory = "C:/WinBUGS14/", 
 working.directory =   "C:/R-3.0.1/BugsOut/") 
 
# This starts WinBUGS, runs the BUGS code for 6000 iterations, closes  
# WinBUGS, and creates a number of files in the working directory. These 
# files contain information which can also be accessed within R, as follows. 
 
print(sim,digits=4) 
 
# Inference for Bugs model at "C:/R-3.0.1/BugsCode2.txt", fit using WinBUGS, 
#  1 chains, each with 6000 iterations (first 1000 discarded) 
#  n.sims = 5000 iterations saved 
 
#            mean       sd      2.5%       25%       50%       75%     97.5% 
# sig2     0.0015   0.0003    0.0009    0.0012    0.0014    0.0016    0.0022 
# Phi1    -0.4661   0.1266   -0.6910   -0.5548   -0.4740   -0.3865   -0.1944 
# x[49] 1367.1820  52.6189 1265.0000 1332.0000 1365.0000 1402.0000  
# 1472.0000 
# x[50] 1605.9746  86.2790 1443.0000 1547.0000 1603.0000 1662.0000  
# 1781.0000 
# x[51] 1918.2346 124.7788 1681.9750 1835.0000 1914.0000 2000.0000  
# 2172.0250 
# x[52] 1422.9222 107.4501 1220.9750 1350.0000 1420.0000 1491.0000  
# 1641.0000 
# x[53] 1517.8472 146.0119 1247.9750 1418.7499 1514.0000 1610.0000  
# 1822.0000 
# x[54] 1783.4306 201.9834 1415.0000 1645.0000 1777.0000 1908.2500  
# 2217.0000 
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# x[55] 2133.7016 273.1291 1646.9750 1946.7500 2119.0000 2306.0000  
# 2724.0000 
# x[56] 1584.1955 223.5842 1187.9750 1431.0000 1576.0000 1720.2499  
# 2066.0000 
# x[57] 1693.4548 276.4929 1211.9750 1499.7499 1674.0000 1857.0000  
# 2309.0750 
# x[58] 1992.9153 364.3849 1370.9750 1742.7499 1968.0000 2204.0000  
# 2837.0999 
# x[59] 2388.4000 476.7169 1589.8999 2058.7500 2345.0000 2668.0000  
# 3453.0250 
# x[60] 1775.0647 381.9082 1137.0000 1511.0000 1735.0000 1992.0000  
# 2628.1249 
 
help(bugs)   # To get info on how to do the following... 
 
Phi1v <- sim$sims.list$Phi1; sig2v <- sim$sims.list$sig2 
xm <- sim$sims.list$x 
 
par(mfrow=c(2,2)) 
hist(Phi1v, breaks=20); hist(sig2v, breaks=20) 
hist(xm[,1], breaks=20); hist(xm[,2], breaks=20) 
 
# Let’s now make the forecasts of the series using the BUGS output. 
xF2 <- xF; xL2 <- xL; xU2 <- xU; for(t in 1:12){ 
 xF2[t] <- mean(xm[,t]) 
 xL2[t] <- quantile(xm[,t], 0.025) 
 xU2[t] <- quantile(xm[,t], 0.975)   }  # Calc. estimates 
 
par(mfrow=c(1,1)); plot(c(0,60),c(0,3800), type="n") 
lines(x, lwd=2);  points(x, lwd=2) 
points((n+1):(n+12), xF2, pch=16, cex=1.5);  
lines(n:(n+12), c(x[n],xF2), lty=1,lwd=2) 
lines((n+1):(n+12), xL2, lty=2, lwd=2) 
lines((n+1):(n+12), xU2, lty=2, lwd=2) 
abline(v=seq(0,100,4),h=seq(0,4000,100), lty=3)  #   OK..... 
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# Next we graph both sets of forecasts together in a single plot,  
# and then produce a close-up in that single plot, as follows: 
 
X11(h=5); par(mfrow=c(1,1));  
 
plot(c(0,60),c(0,3800), type="n", xlab="t", ylab="xt") 
lines(x, lwd=2);  points(x, lwd=2) 
points((n+1):(n+12), xF, pch=16, cex=1.5, col="red");  
lines(n:(n+12), c(x[n],xF), lty=1,lwd=2, col="red") 
lines((n+1):(n+12), xL, lty=1, lwd=2, col="red") 
lines((n+1):(n+12), xU, lty=1, lwd=2, col="red") 
abline(v=seq(0,100,4),h=seq(0,4000,100), lty=3) 
points((n+1):(n+12), xF2, pch=16, cex=1.5, col="blue" );  
lines(n:(n+12), c(x[n],xF2), lty=2,lwd=2, col="blue ") 
lines((n+1):(n+12), xL2, lty=2, lwd=2, col="blue ") 
lines((n+1):(n+12), xU2, lty=2, lwd=2, col="blue ") 
legend(0,3000,c("Classical","Bayesian"), lty=c(1,2), 
 lwd=c(2,2), col=c("red", "blue"),   bg="white" ) 
 
par(mfrow=c(1,1)) 
plot(c(40,60),c(1000,3500), type="n", xlab="t", ylab="xt") 
lines(x, lwd=2);  points(x, lwd=2) 
points((n+1):(n+12), xF, pch=16, cex=1.5, col="red");  
lines(n:(n+12), c(x[n],xF), lty=1,lwd=2, col="red") 
lines((n+1):(n+12), xL, lty=1, lwd=2, col="red") 
lines((n+1):(n+12), xU, lty=1, lwd=2, col="red") 
abline(v=seq(0,100,4),h=seq(0,4000,100), lty=3) 
points((n+1):(n+12), xF2, pch=16, cex=1.5, col="blue" );  
lines(n:(n+12), c(x[n],xF2), lty=2,lwd=2, col="blue ") 
lines((n+1):(n+12), xL2, lty=2, lwd=2, col="blue ") 
lines((n+1):(n+12), xU2, lty=2, lwd=2, col="blue ") 
legend(40,3000,c("Classical","Bayesian"), lty=c(1,2), 
 lwd=c(2,2), col=c("red", "blue"),   bg="white" ) 
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CHAPTER 9 
Bayesian Finite Population Theory  

 
9.1 Introduction  
 
In this chapter we will focus on the topic of Bayesian methods for finite 
population inference in the sample survey context. We have previously 
touched on this topic when considering posterior predictive inference of 
‘future’ values in the context of the normal-normal-gamma model. The 
topic will now be treated more generally and systematically.  
 
There are many and various ways in which Bayesian finite population 
inference can be categorised, for example:  
 
    •  situations with and without prior information being available 
    •  sampling with and without replacement 
    •  Monte Carlo based methods versus deterministic (or ‘exact’) methods 
    •  situations with and without auxiliary information being available 
    •  scenarios where a superpopulation variance is known and where it is  
 unknown 
    •  sampling with equal probabilities versus unequal probabilities 
    •  sampling mechanisms that are ignorable versus nonignorable  
 (i.e. biased)  
    •  cases where the order of sampling is known versus where that order  
 is unknown 
    •  cases with full response versus where some sampled units fail to  
 respond. 
 
Each of these categories can in turn be broken down further. For example, 
Monte Carlo based techniques may or may not require Markov chain 
Monte Carlo methods for generating the sample required for inference. 
We see there is potentially a vast subject ground to cover. 
 
We will begin with a description of some basic general concepts, notation 
and terminology in relation to finite population modelling in the Bayesian 
framework, with a focus on simple random sampling without replacement 
(SRSWOR). We then illustrate these ideas by way of a series of exercises 
which also feature some other concepts such as simple random sampling 
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with replacement (SRSWR), nonignorable sampling schemes, and 
covariate data. Some of these ideas will be taken up again in later chapters.  
 
We defer discussion of Bayesian finite population models involving 
normal (i.e. Gaussian) data to the next chapter (Chapter 10), where such 
models are the focus and treated in detail. In Chapter 11 we will discuss 
data transformations, inference on non-standard quantities of interest, and 
frequentist properties of Bayesian estimators in a finite population 
context, including the notions of model bias and design bias. Chapter 12 
will focus on the issues of biased sampling and nonignorable nonresponse. 
 
The exposition in Chapters 9 to 12 is largely theoretical but does include 
mention of several real world applications, including on-site sampling of 
recreation parks, oil discovery, and correcting for self-selection bias in 
volunteer surveys. Further discussion of the role that Bayesian methods 
and prior information play in survey sampling and finite population 
inference can be found in Rao (2011). This paper also lists many other 
papers and books on this and related topics, for example Ericson (1969) 
and Särndal, Swensson and Wretman (1992).  
 
9.2 Finite population notation and terminology  
 
Consider a  finite population of N units labelled 1,...,i N= , and let iy  be 
the value of the ith unit for some observable variable of interest.  
 
Define 1( ,..., )Ny y y=  as the population vector. 
 
Suppose that n units are selected from the finite population without 
replacement. 
 
We refer to n as the sample size and to m N n= −  as the nonsample size. 
 
Let 1( ,..., )ns s s=  be the vector of the ordered labels of the sampled units. 
 
Also let 1( ,..., )mr r r=  be the vector of the ordered labels of the 
nonsampled units, i.e. those remaining.  
 
Define 

1
( ,..., )

ns s sy y y=  to be the sample vector, and likewise define 

1
( ,..., )

mr r ry y y=  to be the nonsample vector. 
 



Chapter 9: Bayesian Finite Population Theory 

 

409 

Note 1: With the above definitions, it is always true that 
                1 ... ns s< <   
and  
                1 ... mr r< < ,  
irrespective of the order in which the population units may actually be 
sampled. Also,  
                1 1{ ,..., , ,..., } {1,..., }n ms s r r N= . 

 
Note 2: For mathematical convenience, the population, sample and 
nonsample vectors may later sometimes be defined as the column 
vectors 

        
1

1( ,..., )N

N

y
y y y

y

 
 ′= =  
 
 


, 

1
( ,..., )

ns s sy y y ′=  and 
1

( ,..., )
mr r ry y y ′= , 

respectively.   
  
Also, the population vector may sometimes be written using upper case 
letters, as 1( ,..., )NY Y Y=  or 1( ,..., )NY Y Y ′= . For the remainder of this 
chapter, these alternative notations will not be used. 

 
Example: Suppose that we select n = 3 units from a finite population of 
size N = 7 and obtain units 4, 5 and 2 (in that order, or any other order).  
  
Then the nonsample size is m N n= −  = 4 and: 
 1 7( ,..., )y y y=   
 1 2 3( , , ) (2, 4,5)s s s s= = ,   2 4 5( , , )sy y y y=  
 1 2 3 4( , , , ) (1,3,6,7)r r r r r= = ,  1 3 6 7( , , , )ry y y y y= .  

 
9.3 Bayesian finite population models 
 
Consider a finite population vector y which may be thought of as having 
been generated from some probability distribution which depends on a 
parameter θ  (possibly a vector).  
 
Also suppose that a sample of size n is drawn from the finite population 
without replacement according to some probability distribution for s.  
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This scenario may be expressed in terms of a Bayesian finite population 
model with the following form: 
 ( | , )f s y θ     (the probability of obtaining sample s for given  
    values of y and θ ) 
 ( | )f y θ     (the model density of the finite population vector  
    given θ ) 
 ( )f θ      (the prior density of the parameter). 
 
Suppose that we have data of the form ( , )sD s y=  and are interested in a 
quantity ( , )Q g y θ= , for some function g. Then the task is to determine 
the distribution of Q given D.  
 
This distribution will be based on the joint distribution of the two 
unobserved quantities θ  and ry , given the two observed quantities, 
namely: 
  s  (which tells us which units are sampled); and  
 sy   (the vector of the values of the sampled units). 
 
Thus, inference on the quantity of interest ( , )Q g y θ=  is based on the 
density ( | )f Q D , which in turn is based on the density   
  ( , | , ) ( , , , )r s s rf y s y f y y sθ θ∝    
   ( ) ( , | ) ( | , , )s r s rf f y y f s y yθ θ θ= .  (9.1) 
 
Note 1: The values of s and r here are fixed at their observed values 
defined by the data. Thus, given ( , )sD s y= , we may always express 

( , )Q g y θ=  as (( , ), )s rh y y θ  for some function h (which will in many 
cases be the same function as g), and there should be no ambiguity in 
the meaning of quantities such as ( , | )s rf y y θ  in (9.1). 

 
Note 2: We have specified the sampling mechanism in terms of the 
quantity s which tells us which units are sampled but not the order in 
which they are sampled. In some cases it may be appropriate to replace 

( | , )f s y θ  in the model by ( | , )f L y θ , where   

1( ,..., )nL L L=    
is the vector of the labels of the selected units in the order that they are 
sampled. L provides more information than s, which is a function of L. 
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Note 3: We have assumed that sampling is without replacement. If 
sampling is with replacement, it may be appropriate to replace ( | , )f s y θ  
or ( | , )f L y θ  in the model by ( | , )f I y θ , where   

1( ,..., )NI I I= ,  
and where iI  is the number of times that population unit i is sampled.  
  
In this case it may be necessary to modify the notation to account for the 
number of distinct units sampled, previously the fixed constant n, due to 
the possibility of multiple selections under sampling with replacement. 

 
Example 1: Suppose that we sample units 4, 5 and 2, in that order. Then  

1 2 3( , , ) (4,5, 2)L L L L= =  and s = (2,4,5). Note that s is a function of L. 

 
Example 2: Suppose we sample units 3, 5 and 3, in that order. Then  

1 2 3( , , ) (3,5,3)L L L L= =  and (0,0,2,0,1)I =  . In this case, we write 

1 1 2( ,...,s ) ( , ) (3,5)ds s s s= = =  as the ordered vector of distinct labels for 
the units sampled. Here, d is the number of distinct units sampled (a 
random variable with realised value 2), in contrast to n, the total number 
of selections (a fixed constant equal to 3). Note that d is a function of s, 
which is a function of I, which in turn is a function of L.   

 
9.4 Two types of sampling mechanism 
 
There are basically two types of sampling mechanism in the context of the 
above model, data and quantity of interest. These two types correspond to 
two distinct cases, as follows: 
 
      (i) where ( | )f Q D  remains exactly the same if the sampling density 
 ( | , , )s rf s y y θ  is omitted from the calculation at equation (9.1); 
 in this case we say that the sampling mechanism is ignorable (or  
 unbiased) 
 
     (ii)  where ( | )f Q D  changes in some way if the sampling density 
 ( | , , )s rf s y y θ  is omitted from the calculation at equation (9.1); 
 we then say the sampling mechanism is nonignorable (or biased). 
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Perhaps the simplest example of an ignorable sampling mechanism is 
simple random sampling without replacement (SRSWOR), for which 

 
1

( | , )
N

f s y
n

θ
−

 
=  
 

, ( )s S s∈ , 

where   
( ) {(1,..., ), (1, 2,..., 1, 1),...., ( 1,..., )}S s n n n N n N= − + − + . 

 
is the sample space for s (the set of all possible combinations of n integers 
taken from N).  
 
In this case, ( | , )f s y θ  does not depend on y or θ  at all and so may also 
be written simply as ( )f s . This then guarantees that    

1

( | , , ) ( )s r

N
f s y y f s

n
θ

−
 

= =  
 

  

at the single observed value of s, whatever that value may be. 
 
Therefore, the joint density of the two unknowns is 
 ( , | , ) ( , , , )r s s rf y s y f y y sθ θ∝   

           ( ) ( , | ) ( | , , )s r s rf f y y f s y yθ θ θ=    
             ( ) ( , | ) 1s rf f y yθ θ∝ × , 
which is the same as (9.1) but with ( | , , )s rf s y y θ  omitted.  
 
This result tells us that ( | )f Q D  will be the same when the sampling 
mechanism density ( | , , )s rf s y y θ  is ‘ignored’ in the model, so to speak. 
 
9.5 Two types of inference 
 
There are basically two types of inference in the context of the above 
model, data and quantity of interest: 
 
     (a)   where Q does not depend on y, in which case inference is on  
 ( )Q g θ=  (a function of only θ ) and may be called analytic  
 inference or infinite population inference or superpopulation  
 inference 
 
     (b)   where Q does not depend on θ , in which case inference is on  
 ( )Q g y=  (a function of only y)  and may be called descriptive  
 inference or finite population inference or predictive inference. 
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9.6 Analytic inference 
 
In the case of analytic inference, this is based solely on the posterior 
density of the model parameter θ , namely 
 ( | ) ( | , )sf D f s yθ θ=    

  ( , , )sf s yθ∝  

  ( , , , )r s rf s y y dyθ= ∫    

  ( ) ( , | ) ( | , , )s r s r rf f y y f s y y dyθ θ θ= ∫ .    

  
Now suppose further that the sampling mechanism is ignorable. In that 
case, 

 ( | ) ( ) ( , | ) 1s r rf D f f y y dyθ θ θ∝ ×∫           

since   ( | , , )s rf s y y θ  may be ignored 

      ( ) ( | ) ( | , )s r s rf f y f y y dyθ θ θ= ∫     

since ( , | ) ( | ) ( | , )s r s r sf y y f y f y yθ θ θ=  
      ( ) ( | )sf f yθ θ=                  

since ( | , )r s rf y y dyθ∫  = 1 for all θ . 

 
Thus the posterior density of θ  is obtained in exactly the same way as in 
previous chapters. 
 
Note: As stressed earlier, it is to be understood that s in ( | )sf y θ  here 
is fixed at its observed value. With this understanding, we will 
sometimes abbreviate ( | ) ( | , )sf D f s yθ θ=  as ( | )sf yθ . 

 

Example: If s = (2,4,5) , then sy  means specifically 2 4 5( , , )y y y . Thus, 
in this context, sy  does not refer to the vector 

1 2 3
( , , )s s sy y y  with the 

subscripts 1 2 3, ,s s s  as random variables. 
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9.7 Descriptive inference 
 
In the case of descriptive inference, this is based solely on the predictive 
density of the nonsample vector ry , namely 
       ( | ) ( | , )r r sf y D f y s y=  ( , , )s rf s y y∝   

         ( , , , )r sf s y y dθ θ= ∫ ( ) ( , | ) ( | , , )s r s rf f y y f s y y dθ θ θ θ= ∫ . 

 
Now suppose further that the sampling mechanism is ignorable. In that 
special case, 

 ( | ) ( ) ( , | ) 1r s rf y D f f y y dθ θ θ∝ ×∫           

since ( | , , )s rf s y y θ  may be ignored 

      ( | , ) ( ) ( | )r s sf y y f f y dθ θ θ θ= ∫       

      ( | , ) ( | )r s sf y y f y dθ θ θ∝ ∫        

since  ( | ) ( ) ( | )s sf y f f yθ θ θ∝ . 
 

So the predictive density of ry  is obtained in exactly the same way as in 
previous chapters. 
 

Note: As before, it is to be understood that s and r in ( | , )r sf y y θ  and  
( | )sf yθ  are fixed at their observed values. With this understanding, 

we will sometimes write  
 ( | ) ( | , )r r sf y D f y s y=            as        ( | )r sf y y .  
 
More generally, we will sometimes write   

( , | ) ( , | , )r r sf y D f y s yθ θ=    as        ( , | )r sf y yθ ,  
and        
             ( | ) ( | , )sf Q D f Q s y=            as        ( | )sf Q y . 

 

Example: If s = (2,4,5) and N = 7 then sy  means 2 4 5( , , )y y y  and ry  
means 1 3 6 7( , , , )y y y y . 
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Exercise 9.1 A Bernoulli finite population model with ignorable  
sampling 
  
A finite population of size N = 4 consists of values that are independently 
and identically distributed (iid) Bernoulli with parameter θ , where θ  is a 
priori equally likely to be 1/4 or 1/2 (with no other possibilities). 
 
We sample n = 2 units from the finite population according to SRSWOR. 
 
Units 2 and 4 are sampled, and both have the value 1.  
 
(a) Find the posterior distribution of θ . 
 
(b) Find the predictive distribution of the finite population total, namely

1 ...T Ny y y= + + . 
 
Solution to Exercise 9.1 
 
(a) The Bayesian model here may be written: 

    
1 14 1( | , ) ,

2 6
N

f s y
n

θ
− −

   
= = =   
   

 

(1, 2), (1,3), (1, 4), (2,3), (2, 4), (3, 4)s =  

    1

1

( | ) (1 )i i

N
y y

i

f y θ θ θ −

=

= −∏      

(the model density of the finite population values)  
    ( ) 1/ 2, 1/ 4,1/ 2f θ θ= =      (the prior density of the parameter). 
 
The observed sample data is    
 

1 21 2 2 4( , ) (( , ), ( , )) ((2,4),( , )) ((2,4),(1,1))s s sD s y s s y y y y= = = = , 

and the nonsample vector is 
1 2

2
1 3( , ) ( , ) {0,1}r r ry y y y y= = ∈ . 

 
The sampling mechanism is ignorable, and so  

         ( | )f Dθ  ( ) ( | )sf f yθ θ∝  11 (1 )i iy y

i s

θ θ −

∈

∝ × −∏   

  2θ=  since n = 2 and 1iy =  for all i s∈   

  
2

2

(1/ 4) 1/16, 1/ 4
(1/ 2) 4 /16, 1/ 2.

θ
θ

 = =
= 

= =
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It follows that 
1/ 5, 1/ 4

( | )
4 / 5, 1/ 2.

f D
θ

θ
θ
=

=  =
 

 

(b) Next, observe that 

2

2

(1 ) , (0,0)
(1 ) , (0,1)

( | , )
(1 ), (1,0)

, (1,1).

r

r
r

r

r

y
y

f y D
y

y

θ
θ θ

θ
θ θ
θ

 − =
 − == 

− =
 =

  

 
This implies that 

( | ) ( | , ) ( | )r rf y D f y D f D
θ

θ θ=∑   

    

2 2

2 2

1 1 2 4 251 1 , (0,0)
4 5 4 5 80

1 1 1 2 2 4 191 1 , (0,1)
4 4 5 4 4 5 80

1 1 1 2 2 4 191 1 , (1,0)
4 4 5 4 4 5 80

1 1 2 4 17 , (1,1).
4 5 4 5 80

r

r

r

r

y

y

y

y

    − + − = =    
   

   − + − = =   
   = 

    − + − = =       

    + = =         

 
The nonsample total is 1 3rTy y y= + , with three possible possible values: 

0 + 0 = 0 
0 + 1 = 1 + 0 = 1 
1 + 1 = 2.  

 

Therefore  
25 / 80, 0

( | ) 38 / 80, 1
17 / 80, 2.

rT

rT rT

rT

y
f y D y

y

=
= =
 =  

 
The finite population total is T sT rTy y y= + , where 2 4 1 1sTy y y= + = +   

2=  is the sample total. It follows that the required predictive density of 
the finite population total is  

 
25 / 80, 2 0 2

( | ) 38 / 80, 2 1 3
17 / 80, 2 2 4.

T

T T

T

y
f y D y

y

= + =
= = + =
 = + =  
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Exercise 9.2 A Bernoulli finite population model with 
nonignorable sampling 
 
A finite population of size N = 4 consists of values that are conditionally 
iid Bernoulli with parameter θ , where θ  is a priori equally likely to be 
1/4 or 1/2 (with no other possibilities). 
 
We sample n = 2 units from the finite population without replacement in 
such a way that the probability of selecting a sample is proportional to 
the sum of the values in that sample.  
 
Units 2 and 4 are sampled, and both have the value 1.  
 
(a) Find the posterior distribution of θ . 
 
(b) Find the predictive distribution of the finite population total, namely 

1 ...T Ny y y= + +  
 
(c) Find the conditional posterior distribution of θ  given the nonsample 
vector, and then employ this distribution to check your answer to (a) using 
results in (b). 
 
(d) Find the following probabilities of selection into the sample: 
 (i)    ( | , )P i s y θ∈      (ii)   ( | )P i s y∈   
 (iii)  ( | )P i s θ∈    (iv)  ( )P i s∈ . 
 
Solution to Exercise 9.2 
 
(a) The Bayesian model here may be written: 
 ( | , ) , (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)sTf s y y sθ ∝ =  

 1

1

( | ) (1 )i i

N
y y

i
f y θ θ θ −

=

= −∏      

(the model density of the finite population values)  
  ( ) 1/ 2, 1/ 4,1/ 2f θ θ= =      (the prior density of the parameter). 
 
 
The observed sample data is    
 

1 21 2 2 4( , ) (( , ), ( , )) ((2, 4), ( , )) ((2, 4), (1,1)),s s sD s y s s y y y y= = = =   
and the nonsample vector is   
 

1 2

2
1 3( , ) ( , ) {0,1}r r ry y y y y= = ∈ .  
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In this case the sampling mechanism is nonignorable and the first thing 
we should do is determine the exact form of the sampling density of 

1 2( , )s s s= . Now,  

1 2
( | , ) ( )sT s sf s y cy c y yθ = = +   

for some constant c such that      

          1 ( | , )
s

f s y θ=∑  

{ }1 2 1 3 1 4 2 3 2 4 3 4( ) ( ) ( ) ( ) ( ) ( )c y y y y y y y y y y y y= + + + + + + + + + + +

 { }1 2 3 43( ) 3 Tc y y y y cy= + + + = . 
 

We see that 1 / (3 )Tc y= , and so  

  1 2
1 2( | , ) , ( , ) (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)

3
s s

T

y y
f s y s s s

y
θ

+
= = = . 

 
Note 1: This formula shows explicitly how the sampling mechanism 
depends on the values in the finite population vector y. It also shows 
that, conditional on y, the sampling mechanism does not depend on the 
superpopulation parameter θ . 

  

Note 2: This formula is only true when the finite population total Ty  is 
positive, i.e. when at least one of 1,..., Ny y  is nonzero. In the case where 
all population values are zero, we have that 

1 2
0sT s sy y y= + =  for all 

possible samples 1 2( , )s s s= , and consequently ( | , ) 0f s y θ ∝ , which 
must be understood to mean that that no sample actually gets drawn. The 
fact that a sample has been observed implies ( | , ) 0f s y θ >  for at least 
one value of s, which implies that at least one population value is 
positive, which in turn implies that Ty  > 0. This would be true even if 
all the sample values were zero; but as it happens, at least one of them 
is positive (in fact both are), which in itself implies that 0Ty > . 

 
We may now work out the joint density of all quantities in the model: 
   ( , , , ) ( ) ( | ) ( | ) ( | , , )s r s r s rf y y s f f y f y f s y yθ θ θ θ θ=  

   1 21 11 (1 ) (1 )
2 3

i i i i s sy y y y

i s i r T

y y
y

θ θ θ θ− −

∈ ∈

+   = × − × − ×   
   
∏ ∏   
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  1 3 1 322

1 3

1 1 1(1 )
2 3( 1 1)

y y y y

y y
θ θ θ+ − − +

= × × − ×
+ + +

 

  
1 3 1 32 2

1 3

(1 )
2

y y y y

y y
θ θ+ + − −−

∝
+ +

. 

 
So the posterior density of θ  is 
 ( | ) ( | , )sf D f s yθ θ=   

   ( , , )sf s yθ∝   

   ( , , , )
r

s r
y

f s y yθ=∑  

   
1 3

1 3

1 1
2 2

0 0 1 3

1(1 )
1 2

y y

y y y y
θθ θ
θ

+

= =

 ∝ −  − + + 
∑∑  

   
0 0 0 1

2 2 1 1(1 )
1 2 0 0 1 2 0 1
θ θθ θ
θ θ

+ +   ∝ − +   − + + − + +   
 

            
1 0 1 11 1

1 2 1 0 1 2 1 1
θ θ
θ θ

+ +    + +    − + + − + +    
 

   
2

2 2 1 1 1 1(1 )
2 1 3 1 3 1 4

θ θ θθ θ
θ θ θ

       = − + + +      − − −       
 

    { }2 2 3 41 6 (1 ) 8 (1 ) 3
12

θ θ θ θ θ= − + − +  

    

2 2 3 4

2 2 3 4

1 1 1 1 1 1 16 1 8 1 3 ,
12 4 4 4 4 4 4

1 2 2 2 2 2 26 1 8 1 3 ,
12 4 4 4 4 4 4

θ

θ

           − + − + =           
            = 

           − + − + =                      

 

    
[ ]

[ ]

1 16(9) 8(3) 3(1) ,
12(256) 4

1 26(16) 8(16) 3(16) ,
12(256) 4

θ

θ

 + + == 
 + + =


 

    

16(9) 8(3) 3(1) 81,
4

26(16) 8(16) 3(16) 272, .
4

θ

θ

 + + = =∝ 
 + + = =

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Now 81 + 272 = 353, and so   

 
81/ 353 0.22946, 1/ 4

( | )
272 / 353 0.77054, 1/ 2.

f D
θ

θ
θ

= =
=  = =

 

 
(b) The predictive density of the nonsample vector  
 

1 2 1 3( , ) ( , )r r ry y y y y= =   
is 
       ( | ) ( | , ) ( , , )r r s r sf y D f y s y f y s y= ∝  

( , , , )s rf s y y
θ

θ=∑  

1 3 1 32 2

1/4,2/41 3

1 (1 )
2

y y y y

y y θ

θ θ+ + − −

=

∝ −
+ + ∑  

 
1 3 1 3 1 3 1 32 2 2 2

1 3

1 1 1 2 21 1
2 4 4 4 4

y y y y y y y y

y y

+ + − − + + − −         = − + −        + +          
 

 { }1 32

1 3

1 3 16
(2 )256

y y

y y
− −= +

+ +
  

1 32

1 3

16 3
2

y y

y y

− −+
∝

+ +
 

 

2 0 0

1 3

2 0 1

1 3

2 1 0

1 3

2 1 1

1 3

16 3 25 150 , ( , ) (0,0)
2 0 0 2 12
16 3 19 76 , ( , ) (0,1)
2 0 1 3 12

16 3 19 76 , ( , ) (1,0)
2 1 0 3 12

16 3 17 51, ( , ) (1,1)
2 1 1 4 12

y y

y y

y y

y y

− −

− −

− −

− −

 +
= = = + +

+ = = = + +∝ 
+ = = = + +

 + = = =
 + +

 

 

1 3

1 3

1 3

1 3

75, ( , ) (0,0)
38, ( , ) (0,1)
38, ( , ) (1,0)
24, ( , ) (1,1).

y y
y y
y y
y y

=
 =∝  =
 =

 

 
Now, 150 + 76 + 76 + 51 =  353, and so  

 

150 / 353 0.42493, (0,0)
76 / 353 0.21530, (0,1)

( | )
76 / 353 0.21530, (1,0)
51/ 353 0.14448, (1,1).

r

r
r

r

r

y
y

f y D
y
y

= =
 = ==  = =
 = =
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So the predictive density of the nonsample total,  
1 2 1 3rT r ry y y y y= + = + , 

is  
150 / 353 0.42493, 0

( | ) 152 / 353 0.43059, 1
51/ 353 0.14448, 2.

rT

rT rT

rT

y
f y D y

y

= =
= = =
 = =

 

 
So the predictive density of the finite population total, 
 (1 1)T sT rT rTy y y y= + = + + , 

 is 
150 / 353 0.42493, 2

( | ) 152 / 353 0.43059, 3
51/ 353 0.14448, 4.

T

T T

T

y
f y D y

y

= =
= = =
 = =

 

 
(c) The conditional posterior density of θ  given ry  is 
  ( | , , ) ( , , , )s r s rf y y s f y y sθ θ∝  

1 3 1 32 2(1 )y y y y
θ
θ θ+ + − −∝ − . 

 
We now need to consider all the possible values of ry , one by one.  
 
For (0,0)ry = :  

     

2 2

2 0 0 2 0 0
2 2

1 1 9 11 ,
4 4 256 4

( | , , ) (1 )
2 2 16 21 ,
4 4 256 4

s rf y y s
θ

θ θ θ

θ

+ + − −

   − = =   
   ∝ − = 
    − = =      

 

 
9 / 25, 1/ 4

( | , , )
16 / 25, 1/ 2.s rf y y s

θ
θ

θ
=

⇒ =  =
 

    
For (0,1)ry = :  

     

3 1

2 0 1 2 0 1
3 1

1 1 3 11 ,
4 4 256 4

( | , , ) (1 )
2 2 16 21 ,
4 4 256 4

s rf y y s
θ

θ θ θ

θ

+ + − −

   − = =   
   ∝ − = 
    − = =      

 

 
3 /19, 1/ 4

( | , , )
16 /19, 1/ 2.s rf y y s

θ
θ

θ
=

⇒ =  =
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For (1,0)ry = :  

     

3 1

2 1 0 2 1 0
3 1

1 1 3 11 ,
4 4 256 4

( | , , ) (1 )
2 2 16 21 ,
4 4 256 4

s rf y y s
θ

θ θ θ

θ

+ + − −

   − = =   
   ∝ − = 
    − = =      

 

 
3 /19, 1/ 4

( | , , )
16 /19, 1/ 2.s rf y y s

θ
θ

θ
=

⇒ =  =
 

 
For (1,1)ry = :  

4

2 1 1 2 1 1
4

1 1 1,
4 256 4

( | , , ) (1 )
2 16 2,
4 256 4

s rf y y s
θ

θ θ θ

θ

+ + − −

  = = 
 ∝ − = 
  = =  

 

 
1/17, 1/ 4

( | , , )
16 /17, 1/ 2.s rf y y s

θ
θ

θ
=

⇒ =  =
 

 
Now, 

  ( | , ) ( , | , ) ( | , , ) ( | , )
r r

s r s s r r s
y y

f y s f y y s f y y s f y y sθ θ θ= =∑ ∑ .
 

 
So, using results in (b), we have that: 
 

 1( 1 / 4 | , ) , , ( | , )
4

r

s s r r s
y

f y s f y y s f y y sθ θ = = = 
 

∑  

  9 150 3 76 3 76 1 51
25 353 19 353 19 353 17 353

= × + × + × + ×  = 0.22946   

 

 1( 1 / 2 | , ) , , ( | , )
2

r

s s r r s
y

f y s f y y s f y y sθ θ = = = 
 

∑  

  16 150 16 76 16 76 16 51
25 353 19 353 19 353 17 353

= × + × + × + ×  = 0.77054.   

 
These results are all in agreement with those obtained in (a) using a 
different approach. 
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(d) (i) The probability of selecting unit i into the sample given y and θ  is 
the same for all i , in particular i  = 1, and so may be written 

{ }1 2 1 3 1 4
:1

1(1 | , ) ( | , ) ( ) ( ) ( )
3s s T

P s y f s y y y y y y y
y

θ θ
∈

∈ = = + + + + +∑

               1 12 1 2
3 3 3

T

T T

y y y
y y
+

= = + ,   

assuming that 0Ty > ; otherwise, (1 | , )P s y θ∈  = 0. 
 

Thus, for each i = 1,…,4  we have that 
21 , 0

3 3( | , )
0, 0.

i
T

T

T

y y
yP i s y

y
θ

 + >∈ = 
 =

 

 
As a check, we may ask whether the sum of these inclusion probabilities 
equals n = 2. 
 
The answer is yes, assuming that y is such that 0Ty > ; in that case, 

       
4

1 2 3 4

1 1

2(1 2 4( | , )
3 3 3

N
i

i i T

y y y yyP i s y
y

θ
= =

+ + + 
∈ = + = + 

 
∑ ∑

)
3 Ty

2 n= = . 

 
(ii) Since ( | , )P i s y θ∈  does not depend on θ , we also have  

 
21 , 0

3 3( | )
0, 0.

i
T

T

T

y y
yP i s y

y

 + >∈ = 
 =

 

 
(iii) The probability of selecting unit i into the sample given θ  is the same 
for all i, in particular i  = 1, and so may be written 

( | ) (1 | )P i s P sθ θ∈ = ∈  (1 | , ) ( | )
y

P s y f yθ θ= ∈∑  

 
4

11

: 0 1

1 20 ( (0,0,0,0) | ) (1 )
3 3

i i

T

y y

y y iT

yP y
y

θ θ θ −

> =

 
= × = + + − 

 
∑ ∏  

 41

: 0

1 2 (1 )
3 3

T T

T

y y

y y T

y
y

θ θ −

>

 
= + − 

 
∑     

0.34180, 1/ 4
0.46875, 1/ 2.

θ
θ
=

=  =
 

 
These numbers were obtained by writing and implementing a suitable 
function in R (see the R code below). 
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(iv) The unconditional probability that any particular population unit i will 
be selected into the sample is 

 ( ) ( | ) ( )P i s P i s f
θ

θ θ∈ = ∈∑  

   1 10.34180 0.46875
2 2

= × + ×    = 0.40527. 

 
To check this result, we note that the sum of inclusion probabilities  
should in this case be identical to the expected sample size.  
 

The first of these quantities is  
4

1

( ) 4 0.40527
i

P i s
=

∈ = ×∑  = 1.6211. 

 
The second of these quantities can be obtained by first noting that  

  
4

4
4

(3 / 4) 81/ 256, 3 / 4
( 0 | ) (1 )

(2 / 4) 16 / 256, 2 / 4.TP y
θ

θ θ
θ

 = =
= = − = 

= =
 

This implies that 

 81 1 16 1 97( 0) ( 0 | ) ( )
256 2 256 2 512T TP y P y f

θ

θ θ= = = = × + × =∑   

      = 0.18945. 
 
The sample vector has size 2 if 0Ty > , and size 0 if 0Ty = . So its 
expected size is 0 0.18945 2 (1 0.18945)× + × −  = 1.6211, which is the 

same as 
4

1

( )
i

P i s
=

∈∑  above. 

 
R Code for Exercise 9.2 
 
# (a) & (b) 
 
options(digits=5) 
 
kern=function(th,yr){ th^(2+sum(yr))*(1-th)^(2-sum(yr))/(2+sum(yr)) } 
 
kernth0.25 = kern(th=0.25,yr=c(0,0))+ kern(th=0.25,yr=c(0,1))+ 
   kern(th=0.25,yr=c(1,0))+ kern(th=0.25,yr=c(1,1)) 
kernth0.5 = kern(th=0.5,yr=c(0,0))+ kern(th=0.5,yr=c(0,1))+ 
   kern(th=0.5,yr=c(1,0))+ kern(th=0.5,yr=c(1,1)) 
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postth=c(kernth0.25, kernth0.5)/( kernth0.25 + kernth0.5)  
postth # 0.22946 0.77054 
 
kernyr00 = kern(th=0.25,yr=c(0,0))+ kern(th=0.5,yr=c(0,0)) 
kernyr01 = kern(th=0.25,yr=c(0,1))+ kern(th=0.5,yr=c(0,1)) 
kernyr10 = kern(th=0.25,yr=c(1,0))+ kern(th=0.5,yr=c(1,0)) 
kernyr11 = kern(th=0.25,yr=c(1,1))+ kern(th=0.5,yr=c(1,1)) 
 
postyr =c(kernyr00,kernyr01,kernyr10,kernyr11)/ 

(kernyr00+kernyr01+kernyr10+kernyr11) 
postyr #  0.42493 0.21530 0.21530 0.14448 
 
# (c)  
 
sum(c(9/25,3/19,3/19,1/17)*postyr) # 0.22946  Correct 
sum(c(16/25,16/19,16/19,16/17)*postyr) # 0.77054  Correct 
 
# (d) 
 
probfun=function(y,th){ yT=sum(y); res=0 
 if(yT>0)  res = ((1/3) + (2/3)*y[1]/yT) * th^yT * (1-th)^(4-yT) 
 res } 
 
mat1=matrix(c(0,0,0,  0,0,1,  0,1,0,   1,0,0,  0,1,1,  1,0,1,  1,1,0,  1,1,1), 
 byrow=T, nrow=8,ncol=3) 
 
mat2=rbind(mat1,mat1); ymat=cbind(c(rep(0,8),rep(1,8)),  mat2) 
 
ymat   
#   [1,]    0    0    0    0   
#   [2,]    0    0    0    1 
# ............................... 
#  [15,]    1    1    1    0 
#  [16,]    1    1    1    1 
 
prob0.25=0; for(i in 1:16) prob0.25 = prob0.25 + probfun(y=ymat[i,],th=0.25) 
prob0.5=0; for(i in 1:16) prob0.5 = prob0.5 + probfun(y=ymat[i,],th=0.5) 
 
c(prob0.25,prob0.5) # 0.34180 0.46875 
(prob0.25+prob0.5)/2  # 0.40527 
4*(prob0.25+prob0.5)/2  # 1.6211 
c(97/512, 2*(1-97/512) ) # 0.18945 1.62109 
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Exercise 9.3 A finite population Bayesian model with SRSWOR 
 
We sample n = 2 units from a finite population of N = 4 via SRSWOR. 
 
If 0θ =  then the finite population vector y is equally likely to be each of 
the following: 
 (0,0,0,0), (0,0,0,1), (0,0,1,1), (0,1,1,1). 
 
If 1θ =  then the finite population vector y is equally likely to be each of 
the following: 
 (1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0). 
 
A priori, the parameter θ  is equally likely to be 0 or 1 (e.g. according to 
the toss of a coin). 
 
Suppose we sample units 2 and 3, with values 1 and 1, respectively. 
 
(a) Find the posterior distribution of θ . 
 
(b) Find the predictive distribution of the finite population mean, namely   

1( ... ) /Ny y y N= + + . 
    
Solution to Exercise 9.3 
 
The easiest way to do this exercise is to first identify eight equally likely 
possibilities to start with. These possibilities are: 
 
 1.   θ  = 0, y = (0,0,0,0) with y  = 0         

 2.   θ  = 0, y = (0,0,0,1) with y  = 1/4            
 3.   θ  = 0, y = (0,0,1,1) with y  = 1/2                 

        4.   θ  = 0, y = (0,1,1,1) with y  = 3/4        
 
         5.   θ  = 1, y = (1,1,1,1) with y  = 1 

     6.   θ  = 1, y = (1,1,1,0) with  = 3/4 
   7.   θ  = 1, y = (1,1,0,0) with y  = 1/2 

       8.   θ  = 1, y = (1,0,0,0) with y  = 1/4. 
 
After observing 2 3( , ) (1,1),sy y y= =  there are only three possibilities 
remaining (4, 5 and 6 in the list, each highlighted by an arrow). 
 

y
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(a) Two possibilities out of the 3 correspond to 1θ =  (namely 5 and 6) 

and one to 0θ =  (namely 4); consequently, 
1 / 3, 0

( | )
2 / 3, 1

f D
θ

θ
θ
= 

=  = 
, or 

equivalently, ( | ) ~ (2 / 3)D Bernθ . 
 
(b) Two possibilities out of the 3 correspond to 3 / 4y =  (namely 4 and 

6) and one to y  = 1 (namely 5); therefore 
2 / 3, 3 / 4

( | )
1 / 3, 1

y
f y D

y
= 

=  = 
. 

 
Alternative solution 
 
The above results can also be obtained by working through in the style of 
the solutions to previous exercises, as follows. Before the data is observed, 
the Bayesian model may be written: 

            
1 14 1( | , )

2 6
N

f s y
n

θ
− −

   
= = =   
   

, 

                                          (1, 2), (1,3), (1, 4), (2,3), (2, 4), (3, 4)s =   
1( | ) ,
4

f y θ =    ( , , , ), ( , , ,1 ),y θ θ θ θ θ θ θ θ= −  

       ( , ,1 ,1 ), ( ,1 ,1 ,1 )θ θ θ θ θ θ θ θ− − − − −  
( ) 1 / 2, 0,1f θ θ= =      (the prior density of the parameter). 

 
The observed data is ( , ) ((2,3),(1,1))sD s y= = . At this particular value of 
the data: 

 1( | , ) , (2,3)
6

f s y sθ = =      (the value of s actually observed) 

1( | )
4

f y θ = ,   (0,1,1,1)y =  and 0θ = ,  

   {(1,1,1,1), (1,1,1,0)}y∈  and 1θ =    (where we need 
                         only consider values of y  consistent with the data) 
 ( ) 1 / 2, 0,1f θ θ= =         (since both values of θ  are still possible,  
          i.e. consistent with the observed data). 
 
With the quantities (2,3)s = , 2 3( , ) (1,1)sy y y= =  and 1 4( , )ry y y=  all 
fixed at these values, the joint density of all quantities in the model may 
be written  
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 ( , , ) ( , , , ) ( ) ( , | ) ( | , , )s r s r s rf s y f s y y f f y y f s y yθ θ θ θ θ= =   
( {0,1}) ( (0,1,1,1), 0) ( {(1,1,1,1),(1,1,1,0)}, 1) 1

2 4 6
I I y I yθ θ θ∈ = = + ∈ =

= × ×

,

( (0,1), 0) ( {(1,1),(1,0)}, 1)
ry

r rI y I y
θ

θ θ∝ = = + ∈ = . 
 
(a) It follows that     

( | ) ( , , ) ( , , )
r

s
y

f D f s y f s yθ θ θ∝ =∑   

            
( (0,1)) 1, 0

( {(1,1), (1,0)}) 2, 1.

r

r

I y

I y

θ

θ

 = = =
∝ 

∈ = =


∑
∑

  

 

After normalising, we see that  
1 / 3, 0

( | )
2 / 3, 1

f D
θ

θ
θ
= 

=  = 
. 

 
(b) Also,  

( | ) ( , , ) ( , , , )r r s s rf y D f y s y f s y y
θ

θ∝ = ∑  

 

[ ]

[ ]

[ ]

1

0
1

0
1

0

( (0,1), 0) ( {(1,1),(1,0)}, 1) 1, (0,1)

( (0,1), 0) ( {(1,1),(1,0)}, 1) 1, (1,1)

( (0,1), 0) ( {(1,1),(1,0)}, 1) 1, (1,0)

r r r

r r r

r r r

I y I y y

I y I y y

I y I y y

θ

θ

θ

θ θ

θ θ

θ θ

=

=

=


= = + ∈ = = =


∝ = = + ∈ = = =



= = + ∈ = = =


∑

∑

∑

 

 
which implies that ( | ) 1 / 3, (0,1),(1,1),(1,0)r rf y D y= = . 
 
Consequently, ( | ) 1 / 3, (0,1,1,1),(1,1,1,1),(1,1,1,0)f y D y= = . 
 
Now, the values of y listed here as possible given the observed data have 
means 3/4, 1 and 3/4, respectively. 
 
It follows that the predictive density of the population mean is   

             
2 / 3, 3 / 4

( | )
1 / 3, 1

y
f y D

y
= 

=  = 
 (as was obtained previously). 
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Exercise 9.4 Length-biased with-replacement sampling from a 
Poisson finite population  
 
A finite population of size 9 consists of values that are conditionally iid 
Poisson with a mean whose prior distribution is gamma with both 
parameters zero (considered uninformative). 
 
We sample 3 times from the finite population according to a with-
replacement sampling scheme, where on each draw the probability of 
selecting a unit is proportional to its value.  
  
Unit 2 is selected once and its value is 1.  
Unit 4 is selected twice and its value is 3. 
 
Find the posterior distribution of the Poisson mean and the predictive 
distribution of the nonsample total.  
 
Also find these distributions under the (false) assumption that the 
sampling is SRSWR. 
 
Then create two plots which suitably compare the four distributions 
indicated above. 
 
Note: The concepts here involve a biased sampling mechanism and are 
relevant to on-site sampling, where for example we wish to estimate the 
total number of times that visitors (or potential visitors) to a recreational 
park actually visit there in some specified time period.  

  
If we go to the site at random times to survey visitors, we are more likely 
to interview people who come very often relative to those who come 
only rarely. This means that we may end up over-estimating the 
popularity of the park—unless we make a suitable correction 
(downwards) to account for the (upwardly) biased sampling mechanism. 
If a potential visitor to the site doesn’t come at all, then there is zero 
chance of sampling them.  
 
If we wish to consider only the population of persons who actually visit 
the site in a given period (i.e. to exclude the potential visitors who do 
not visit), we may need to consider a truncated model involving the 
Poisson random variable conditional on it being non-zero. For further 
details and a discussion of the modelling issues here, see Shaw (1988). 
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Solution to Exercise 9.4  
 
Generally, we are considering a sample of size n obtained with 
replacement from a finite population with values, 1,..., Ny y  which are 
conditionally Poisson with some mean λ , where the prior distribution on 
λ  is gamma with parameters η  and τ  (and mean η /τ ). 
 
Let iI  be the number of times population unit i is sampled and define 

1( ,..., )NI I I= . Then let 
1

( 0)
N

i
i

d I I
=

= >∑  be the distinct sample size (the 

number of distinct population units sampled), and let m N d= −  be the 
nonsample size (the number of units not sampled).  
 
In this scenario, we define the sample vector as 

1
( ,..., )

ds s sy y y= , where 

1( ,..., )ds s s=  is the vector of the labels of the d distinct units that are 
sampled, and we define the nonsample vector as 

1
( ,..., )

mr r ry y y= , where 

1( ,..., )mr r r=  is the vector of the labels of the m units that are not sampled.  
 
Note: Here, s is a function of I, and so the data in this situation could 
also be written as ( , )sD I y= . 

 
Since we are interested in the nonsample values only by way of their total 

rTy , a suitable Bayesian finite population model in this context is: 

 
11

!( | , )
!

iIN
i

N
ii i T

ynf I y
I y

λ
==

 
=  ∏  

∏ , 

{ }1 1( ,..., ) : {0,1,..., } , ...N i NI a a a n i a a n∈ ∈ ∀ + + =  

 ( )( , | )
! !

i rTy ym

s rT
i s i rT

e e mf y y
y y

λ λλ λλ
− −

∈

 
= × 
 
∏      

 ~ ( , )Gλ η τ . 
 
In our specific situation, N = 9, n = 3, and the data is  
 ( , ) ((0,1,0, 2,0,0,0,0,0), (1,3))sD I y= = ,  
meaning that unit 2 is selected once and its values is 1, and unit 4 is 
selected twice and its value is 3. Thus d = 2 and m = 7. Also, η  = 0 and 
τ  = 0 .  
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On the basis of these specifications, we wish to make inferences aboutλ  
and the nonsample total, 

 1 3 5 6 7 8 9rTy y y y y y y y= + + + + + + . 
 

Note: The probability of sampling unit 2 once and unit 4 twice (as is 
assumed to have occurred) equals  
 

1 2 9
2 4 4 4 2 4 4 4 2 2 4

9
11

3! 3!
1!2! !

iI

i

iT T T T T T T T T T T i i T

y y y y y y y y y y y y
y y y y y y y y y y y I y==

     
+ + = =     ∏     

∏
 
and so is consistent with  
 

       
11

!( | , )
iIN

i
N

ii i T

ynf I y
I y

θ
==

 
=  ∏  

∏   

 
as specified in the general model. 

 
For this exercise we will first derive the predictive distribution of rTy  and 
then use this to obtain the posterior distribution of λ  only afterwards. The 
predictive density of rTy  is 

 ( | ) ( , , , )rT rT sf y D f y y I dλ λ∝ ∫  

  ( ) ( | ) ( | ) ( | , , )s rT s rTf f y f y f I y y dλ λ λ λ λ= ∫  

       1

0

( ) 1
!

rT
i

ym
y

n
i s rT T

e me e d
y y

λ
η τλ λ λλ λ λ

∞ −
− − −

∈

 ∝ × × × 
 
∏∫      

     (note that 
1

1 1iI nN

i T Ty y=

   
=   

   
∏ ) 

  1 ( )

0

1
!

rT
sT rT

y
y y d m

n
rT T

m e d
y y

η λ τλ λ
∞

+ + − − + += ∫       

  1 ( ) 1
! ( )

rT

sT rT

y
sT rT

y yn
rT T

m y y
y y d m η

η
τ + +

Γ + +
= × ×

+ +
. 
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Thus     
( )( | ) , 0,1,2,...rT

rT rT
k yf y D y

c
= = , 

where   
( )( )

!( )

rTy
sT rT

rT n
rT sT rT

N d y yk y
N y y y

η
τ

− Γ + + =  + + 
   

and   

0

( )
rT

rT
y

c k y
∞

=

= ∑ . 

 
Note:  Here, d + m = N, and so  

 ( ) ( ) ( )
rT

sT rT sT rT rT
y

y y y y yd m N Nη ητ τ τ+ + + ++ + = + ∝ + . 

 
We may approximate ( | )rTf y D  by calculating ( )rTk y  only for 

0,1,2,...,rTy M=  for some large integer M (in practice we used 100) for 
which ( )rTk y  is sufficiently close to zero. 
 
Using the predictive density of rTy , we can now obtain the posterior 
density of λ  as 

 
0

( | ) ( | , ) ( | )
rT

rT rT
y

f D f D y f y Dλ λ
=

∞

= ∑ ,  

where  
( | , ) ~ ( , )rT sT rTD y G y y Nλ η τ+ + + . 

 

Note: This result is obvious but can also be obtained as follows: 
  
    ( | , ) ( | , , ) ( , , , ) ( ) ( , | )rT s rT s rT s rTf D y f s y y f s y y f f y yλ λ λ λ λ= ∝ ∝  

   1 ( )
! !

i rTy ym

i s i rT

e e me
y y

λ λ
η τλ λ λλ

− −
− −

∈

 
∝ × 

 
∏  

   1 sT rTy yd me e eη τλ λ λλ λ λ− − − −∝ × ×   
   1 ( )sT rTy y Neη λ τλ + + − − +=    (since d + m = N). 
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We see that ( | )f Dλ  is an infinite mixture of gamma densities where the 
weight assigned to each one is the corresponding (marginal) predictive 
density of rTy . 
 

Note: An alternative way to derive ( | )f Dλ  is using the equation 

 ( | ) ( , , , )
rT

rT s
y

f D f y y Iλ λ∝∑ .  

 
The case of SRSWR 
 
In the case of SRSWR, the sampling density  

 
11

!( | , )
iIN

i
N

ii i T

ynf I y
I y

λ
==

 
=  ∏  

∏   

changes to  

 
11 1

! 1 !( | , )
iIN

N n N
ii i i i

n nf I y
I N N I

λ
== =

 = = ∏ ∏ 
∏ ,  

which we note does not depend on λ  or rTy  and so can be ‘ignored’.  
 
The result is then almost the same as before, the only difference being that 
the term   

1 ( )iIN n n
i T T sT rTy y y y=∏ = = +    

in       
( )( )

!( )

rTy
sT rT

rT n
rT sT rT

N d y yk y
N y y y

η
τ

− Γ + + =  + + 
  

is replaced by 1.   
 
Thus under SRSWR we find that     

 ( )( | ) , 0,1,2,...rT
rT rT

K yf y D y
C

= = , 

where    
( )( )

! 1

rTy
sT rT

rT
rT

N d y yK y
N y

η
τ

− Γ + + =  + × 
     

and     

0

( )
rT

rT
y

C K y
∞

=

= ∑ . 
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As regards the posterior distribution of λ  under SRSWR, this need no 
longer be expressed as an infinite mixture of gamma distributions but 
simply as  
 ( | ) ~ ( , )sTD G y dλ η τ+ + . 
 
Figure 9.1 shows the posterior density ( | )f Dλ  under the length-biased 
and SRSWR assumptions, respectively.  
 
We see that the inference under the assumption of length-bias is the lower 
of the two. This is because it appropriately corrects for large finite 
population values being more likely to be selected. If we ‘ignore’ the fact 
that large values are more likely to be selected. then we will erroneously 
over-estimate the superpopulation mean, λ . 
 
Figure 9.2 shows the predictive density ( | )rTf y D , again under the two 
assumptions.  
 
As in Figure 9.1, we see that ignoring the length-biased sampling 
mechanism tends to bias the inference upwards. 
 
As a check on our calculations, which omitted all terms corresponding to 
values of rTy  greater than M = 100  (see above), we calculate the 
predictive mean of rTy  under the SRSWR assumption using the formula    

 
0

1( | ) ( )
M

rT rT rT
rT

E y D y K y
C =

≈ ∑     

and obtain the value of 14. 
 
This may be compared with the theoretical value, which is exactly 

            ( | ) { ( | , ) | } ( | )rT rTE y D E E y D D E m Dλ λ= =   

                             0 (3 1)7 14
0 2

sTym
d

η
τ
+ + +

= × = × =
+ +

. 
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Figure 9.1 Posterior densities of the Poisson mean 

 
 
 
Figure 9.2 Predictive densities of the nonsample total 
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R Code for Exercise 9.4 
 
options(digits=5); X11(w=8,h=5); par(mfrow=c(1,1)) 
 
N=9; n = 3; ys=c(1,3); ysT = sum(ys); d = 2; m = 7; eta=0; tau=0; yrTv=0:100 
kv = ((N-d)/(tau+N))^yrTv *gamma(eta+ysT+yrTv)/ 

( factorial(yrTv) * (ysT+yrTv)^n ) 
c = sum(kv); fv = kv/c 
 
plot(yrTv,fv,pch=16, xlab="nonsample total", 

ylab="predictive density",xlim=c(0,60), main=" ") 
kvigno = ((N-d)/(tau+N))^yrTv *gamma(eta+ysT+yrTv)/( gamma(yrTv+1) * 1) 
cigno = sum(kvigno); fvigno = kvigno/cigno 
points(yrTv,fvigno,pch=1) 
legend(20,0.1,c("Length-bias assumed (Inference is correct)", 
 "SRSWR assumed (Inference is too high)"),pch=c(16,1)) 
c(sum(yrTv*fv), sum(yrTv*fvigno) )  # 5.6302    14.0000 
m*(eta+ysT)/(tau+d) # 14 
 
lamv=seq(0,10,0.01); lamfv=lamv 
for(i in 1:length(lamv)) lamfv[i]=sum(fv*dgamma(lamv[i],eta+ysT+yrTv,tau+N)) 
plot(lamv,lamfv,type="l", lty=1, lwd=3,  

xlab="lambda",ylab="posterior density", main=" ") 
lamfvigno=lamv 
for(i in 1:length(lamv))  
 lamfvigno[i]=sum(fvigno*dgamma(lamv[i],eta+ysT+yrTv,tau+N)) 
# lines(lamv,lamfvigno,lty=2,lwd=1) # Can do as a check on calculations 
lines(lamv,dgamma(lamv,eta+ysT,tau+d),lty=2,lwd=3)  
legend(4,0.5,c("Length-bias assumed (Inference is correct)", 
 "SRSWR assumed (Inference is too high)"),lty=c(1,2),lwd=c(3,3)) 
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Exercise 9.5 An exponential finite population model with a 
biased Poisson sampling scheme  
 
A sample is drawn from a finite population of size N = 7 in such a way 
that unit i has probability of inclusion iπ , independently of all the other 
units.  
 
The values in the finite population are independent and identically 
distributed exponentials with mean 1 /µ λ= , where the prior distribution 
for λ  is given by  

( ) 1 / , 0f λ λ λ∝ > .  
 
Units 3 and 5 are selected, and their values are 1.6 and 0.4, respectively. 
 
Find and sketch the posterior density of the superpopulation mean µ  and 
the predictive density of the finite population mean y  under each of the 
following specifications: 
 
     (a) All the iπ  values are equal to 0.3  (i = 1,...,N). 
 
     (b) All the iπ  values are equal to 0.3 except that: 
  5π  = 0.3 if 5y  < 1  
  5π  = 0.9 if 5y  > 1 
        (thus unit 5 is 3 times as likely to be sampled if its value exceeds 1). 
 
     (c) All the iπ  values are equal to 0.3 except that:  
  4π  = 0.3 if 4y  < 1  
  4π  = 0.9 if 4y  > 1 
        (thus unit 4 is 3 times as likely to be sampled if its value exceeds 1). 
 

Note: Here, the sample size n is not fixed and is a random variable. 
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Solution to Exercise 9.5 
 
(a) The relevant Bayesian model is:  

 1

1 1

( | , ) ( | , ) (1 )i i

N N
I I

i i i
i i

f I y f I yλ λ π π −

= =

= = −∏ ∏ ,   
1

N

i
i

n I
=

= ∑  

 
1

( | ) , 0i

N
y

i
i

f y e y iλλ λ −

=

= > ∀∏  

  ( ) 1 / , 0f λ λ λ∝ > . 
 
Here,   

1 ... Nπ π= =  = 0.3, 
and the data is  
 ( , ) ((0,0,1,0,1,0,0),(1.6,0.4))sD I y= = ,   
with n = 2 (the achieved sample size).  
 
The sampling mechanism is ignorable and so  

 11( | ) ( ) ( | ) i sTy yn
s

i s
f D f f y e eλ λλ λ λ λ λ

λ
− −−

∈

∝ ∝ =∏  

   ( | ) ~ ( , )sTD G n yλ⇒         
   ( | ) ~ ( , )sTD IG n yµ⇒ . 
 
Next,   

( | ) ~ ( , )rTy G mλ λ , 
where 7 2 5m N n= − = − = . 
 

It follows that 
 ( | ) ( | , ) ( | )rT rTf y D f y D f D dλ λ λ= ∫  

      1 1

0

sTrT yym m n
rTy e e dλλλ λ λ

∞
−−− −∝ ×∫  

     ( )1 1

0

rT sTy ym n m
rTy e dλλ λ

∞
− +− + −= ∫  

     
1 ( )

( )

m
rT

n m
rT sT

y n m
y y

−

+

Γ +
=

+
 

     
1

, 0
( )

m
rT

rTN
rT sT

y y
y y

−

∝ >
+

. 
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Hence  
1

( | ) ,

N n

s

sN

ny y
nNf y D y y

y N

− −
 − 
 ∝ >       

(using the fact that rT sy Ny ny= − ). 
 
(b) In this case, inferences will be exactly the same as in (a). This is 
because, even though the sampling mechanism is potentially nonignorable 
due to ( | , )f I y λ  depending on a population value 5y , that value happens 
to be known (since unit 5 is in the sample, i.e. 5 s∈ ).  
 
To clarify, we write    

5
5 5 5 5

5

0.3, 1
( ) 0.3 0.6 ( 1)

0.9, 1
y

y I y
y

π π
< 

= = = + > > 
. 

 

Then, noting that  5 1I =  and 5y  = 0.4, we have that 
 5 51

5 5 5 5( | , ) (1 )I If I y λ π π π−= − =  = 50.3 0.6 ( 1)I y+ >  = 0.3. 
 
Thus  

1

1

( | , ) (1 )i i

N
I I
i i

i
f I y λ π π −

=

= −∏     

doesn’t depend on λ  or ry  and is completely known. 
 
Therefore,   

( | ) ( , , ) ( , , , )s s r rf D f I y f I y y dyλ λ λ∝ = ∫          

      ( ) ( , | ) ( | , , )s r s r rf f y y f I y y dyλ λ λ= ∫   

     ( ) ( | ) ( | ) ( ) ( | ) 1s r r sf f y f y dy f f yλ λ λ λ λ∝ ∝ ×∫   as before in (a). 

 
(c) In this case, the sampling mechanism is nonignorable and inferences 
will be different to those in (a), because ( | , )f I y λ  depends on a 
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population value 4y  which is unknown (since unit 4 is not in the sample, 
i.e. 4 r∈ ); that is, ( | , )f I y λ  is unknown. To clarify, we write    

4
4 4 4 4

4

0.3, 1
( ) 0.3 0.6 ( 1)

0.9, 1
y

y I y
y

π π
< 

= = = + > > 
. 

 
Then, noting that  4 0I =  and 4y  is unknown, we have that 
 4 41

4 4 4 4( | , ) (1 ) 1I If I y λ π π π−= − = −  40.7 0.6 ( 1)I y= − >    
(a function of 4y ). 
 

So 
1

( | , ) ( | , )
N

i
i

f I y f I yλ λ
=

=∏   is unknown. 

 
With this in mind, we now write    

 ( | ) ( , , ) ( , , , )s s r rf D f I y f I y y dyλ λ λ∝ = ∫    

    ( ) ( , | ) ( | , , )s r s r rf f y y f I y y dyλ λ λ= ∫     

    ( ) ( | )sf f y Wλ λ∝ , 
where          

4 4( ) ( | ) ( | )r rW W f y f I y dyλ λ= = ∫    

      4 4 4 4
0

4

( | ) ( | ) ( | )i i
i r
i

f y dy f y f I y dyλ λ
∞

∈
≠

 
 

=  
 
 

∏∫ ∫  

      4
4 4

0
4

1 [0.7 0.6 ( 1)]y

i r
i

e I y dyλλ
∞

−

∈
≠

 
 = − > 
 
 

∏ ∫     

since ( | ) iy
if y e iλλ λ −= ∀  

     4 4
4 4

0 1

0.7 0.6y ye dy e dyλ λλ λ
∞ ∞

− −= −∫ ∫  

     0.7 1 0.6e λ−= × − . 
 
Thus  

( 1)1 1 1( | ) (7 6 ) 7 6sT sT sTy y yn n nf D e e e eλ λ λλλ λ λ λ− − − +− − − −∝ − = − . 
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Thus   

 
( 1)1 17 6 ( 1)( | )

( ) ( 1) ( )

sT sTy yn n n n
sT sT

n n
sT sT

y e y ef D c
y n y n

λ λλ λλ
− − +− −    +

= −    Γ + Γ    
, 

where     

( ) ( )7 61 ( | ) 1 1
( 1)n n

sT sT

f D d c
y y

λ λ
 

= = − + 
∫   

  
1

7 6
( 1)n n

sT sT

c
y y

−
 

⇒ = − + 
. 

 

Note 1: The posterior ( | )f Dλ  is a weighted average of two gamma 
densities where one of the weights is negative. 

 
Note 2: The posterior density of 1/µ λ=  is given by 
         2( | ) ( 1/ | ) /f D f Dµ λ µ µ= = . 

 
We now turn our attention to the predictive distribution of the nonsample 
total. Observe that  
 ( | ) ( | , ) ( | )r rf y D f y D f D dλ λ λ= ∫ , 

where         

      4
4

4

( | , ) ( , , , ) 7 6 ( 1) iyy
r r s

i r
i

f y D f y y I I y e e λλλ λ λ λ −−

∈
≠

  ∝ ∝ − > ×    
∏ .     

 
This suggests that we decompose the nonsample total according to   
 0 4rTy y y= +         
(where 0y  is the total of all values in ry  except for 4y ) and think about 
how we can use the following facts: 
 0 4( | , )y y D λ⊥         ( 4y  is independent of all other nonsample  
    units, given D and λ ) 
 0( | , ) ~ ( 1, )y D G mλ λ−  (a simple distribution) 
 4

4 4 4( | , ) [7 6 ( 1)] , 0yf y D I y e yλλ λ −∝ − > >      
(a complicated distribution). 
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One strategy is to use these facts to obtain the cdf 4( | , ),F y D λ  hence 
( | , ),rTF y D λ  hence ( | , ) ( | , ),rT rTf y D F y Dλ λ′=  hence ( | , ),f y D λ  

and hence ultimately the required ( | ) ( | , ) ( | )f y D f y D f D dλ λ λ= ∫ . 
 

First,    

4

4 4

4
0

4

4
0 1

7 , 0 1
( | , )

7 6 , 1

y
t

y y
t t

e dt y
F y D

e dt e dt y

λ

λ λ

λ
λ

λ λ

−

− −


< <

∝ 
 − >

∫

∫ ∫
 

                               
4

4 4

4
1

4

7(1 ), 0 1
7(1 ) 6( ), 1.

y

y y

e y
e e e y

λ

λ λλ

−

− −−

 − < <
= 

− − − >
 

 

Thus  
4

4

4
4

4

(7 7 ), 0 1
( | , )

(7 6 ), 1,

y

y

k e y
F y D

k e e y

λ

λ λλ
−

− −

 − < <
= 

− − >
 

 
where ( ) 1 / (7 6 )k k e λλ −= = − , since 41 ( | , ) (7 6 )F y D k e λλ −= = ∞ = − . 
 
Check:  Since 4( | , )y D λ  is continuous we would expect that 
  4 4( 1 | , ) ( 1 | , ) 0F y D F y Dλ λ+ −= − = = . 
  
The left hand side here is   
 1 1(7 6 ) (7 7 ) (7 7 ) (7 7 ) 0k e e k e k e k eλ λ λ λ λ− − − − −− − − − = − − − =   
(which is correct). 

 
Next, writing rTa y≡  for notational convenience, we have that  

      0 4( | , ) ( | , )F a D P y y a Dλ λ= + ≤  
    0 4 0{ ( | , , ) | , }E P y y a D y Dλ λ= + ≤  

   4 0 0 0 0
0

( | , , ) ( | , )
a

P y a y D y f y D dyλ λ= ≤ −∫    

(a convolution) 

   4 0 ( 1, ) 0 0
0

( | , ) ( )
a

G mF y a y D f y dyλλ −= = −∫   

   0( )
( 1, ) 0 0

0

7 7 ( ) , 0 1
a

a y
G mk e f y dy aλ

λ
− −

− = − < < ∫ . 
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For the case a > 1 we find that    

 0

1
( )

( 1, ) 0 0
0

( | , ) 7 6 ( )
a

a y
G mF a D k e e f y dyλ λ

λλ
−

− − −
− = − − ∫  

0( )
( 1, ) 0 0

1

7 7 ( )
a

a y
G m

a

k e f y dyλ
λ

− −
−

−

 + − ∫ . 

 
Note: If a > 1 and  00 1y a≤ ≤ −  then 01 a y a≤ − ≤ . 
           If a > 1 and  01a y a− ≤ ≤  then 00 1a y≤ − ≤ . 

 

Check: Since ( | , )a D λ  is continuous we would expect that 
  ( 1 | , ) ( 1 | , ) 0F a D F a Dλ λ+ −= − = = . 
  
The LHS here is     

 0

1 1
(1 )

( 1, ) 0 0
0

7 6 ( )  y
G mk e e f y dyλ λ

λ

−
− − −

−


 − −  


∫   

 0

1
(1 )

( 1, ) 0 0
1 1

7 7 ( )y
G mk e f y dyλ

λ
− −

−
−

 + − ∫




 

 0

1
(1 )

( 1, ) 0 0
0

7 7 ( )y
G mk e f y dyλ

λ
− −

− − − ∫  = 0  (which is correct). 

 
We now consider Leibniz’s rule for differentiating an integral: 

  
( ) ( )

( ) ( )
( , ) ( , )

b y b y

a y a y

d f x y dx f x y dx
dy y

∂
=

∂∫ ∫  

'( ) ( ( ), ) '( ) ( ( ), )b y f b y y a y f a y y+ −  
(where the symbols here are not directly related to those in this exercise).   
 
Applying this rule for the case 0 < a < 1, we obtain    

      ( | , )( | , ) dF a Df a D
da

λλ = 0( )
( 1, ) 0 0

0

0 7 ( ) ( )
a

a y
G mk e f y dyλ

λλ− −
− = − − ∫  

   ( )
( 1, )7 7 ( )a a

G m
da k e f a
da

λ
λ

− −
− + −         (this is zero) 

   ( 0)
( 1, )

0 7 7 (0)a
G m

d k e f
da

λ
λ

− −
− − −         (this is zero) 
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   07 yak e eλλλ −=
01 2

0

0

a ym my e λλ −− −

∫ 0( 1)
dy

m
 
  Γ − 

1
2

0 0
0

7
( 2)!

am
a mk e y dy

m
λ λλ

−
− −=

− ∫  

   

1
17

( 1)!

m
a mk e a

m
λ λλ

−
− −=

−
    

1

7
( 1)!

m m aa ek
m

λλ − − 
=  − 

   ( , )7 ( )G mkf aλ= . 

 
Likewise, for the case a > 1, we obtain 

( | , )( | , ) dF a Df a D
da

λλ = 0

1
( )

( 1, ) 0 0
0

0 ( ) 0 ( )
a

a y
G mk e f y dyλ

λλ
−

− −
− = − − − ∫

            ( ( 1))
( 1, )

( 1) 7 6 ( 1)a a
G m

d a k e e f a
da

λ λ
λ

− − − −
−

−  + − − −    

            ( 0)
( 1, )

0 7 6 (0)a
G m

d k e e f
da

λ λ
λ

− − −
− − − −   (this is zero) 

    0( )
( 1, ) 0 0

1

0 7 ( ) ( )
a

a y
G m

a

k e f y dyλ
λλ− −

−
−

 + − − ∫  

             ( )
( 1, )7 7 ( )a a

G m
da k e f a
da

λ
λ

− −
− + −   (this is zero) 

             ( ( 1))
( 1, )

( 1) 7 7 ( 1)a a
G m

d a k e f a
da

λ
λ

− − −
−

−  − − −   

0yak e eλλλ −=
01 1 2

0

0

a ym my e λλ− −− −

∫ 0( 1)
dy

m
 
  Γ − 

( 1, )7 6 ( 1)G mk e e f aλ λ
λ

− −
− + − − −   

  07 yak e eλλλ −+
01 2

0

1

a ym m

a

y e λλ −− −

−
∫ 0( 1)

dy
m

 
  Γ − 

( 1, )7 1 ( 1)G mk e f aλ
λ

−
− − − −   

 

 
1

1( 1)
( 1)!

m
a mk e a

m
λ λλ

−
− −= −

−
 ( 1, )7 (1 ) ( 1)G mk e f aλ

λ
−

−+ − −  

   
1

1 17 ( 1)
( 1)!

m
a m mk e a a

m
λ λλ

−
− − − + − − −

  ( 1, )7 (1 ) ( 1)G mk e f aλ
λ

−
−− − −  

 
1 ( 1)( 1)

( 1)!

m m aa eke
m

λ
λ λ − − −

−  −
=  − 

1

7
( 1)!

m m aa ek
m

λλ − − 
+  − 

 

                                               
1 ( 1)( 1)7

( 1)!

m m aa eke
m

λ
λ λ − − −

−  −
−  − 

 

{ }( , ) ( , )7 ( ) 6 ( 1)G m G mk f a e f aλ
λ λ

−= − − . 
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In summary so far, 

 ( , )

( , ) ( , )

7 ( ), 0 1
( | , )

7 ( ) 6 ( 1), 1.
G m

G m G m

f a a
f a D k

f a e f a a
λ

λ
λ λ

λ −

< <
= × − − >

 

 
Check: Here, 

( | , )f a D daλ =∫   

     ( , )7 (1)G mk F λ× ( , )7 1 (1)G mF λ+ −{ }( , )6 1 (1 1)G me Fλ
λ

−   − − −          

       [ ]{ }1 7 6 1 0
7 6

e
e

λ
λ

−
−= × − −

−
 = 1     

(which is correct). 
 
Next, using the relationship ( ) /s rTy ny y N= + , we obtain: 
 

1( | , ) ( , )f y D f yλ λ=   
                ( , )( )7 ( )G m sNk f Ny nyλλ≡ −     

for 1s sny nyy
N N

+
< <  

 
 2( | , ) ( , )f y D f yλ λ=  

    { }( , ) ( , )( ) 7 ( ) 6 ( 1)G m s G m sNk f Ny ny e f Ny nyλ
λ λλ −≡ − − − −  

for 1snyy
N
+

> , 

 
where:  

sny
N

 = 0.2857 

1sny
N
+  = 0.4286 

1( )
7 6

k
e λλ −=

−
 (as before). 
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Thus we finally obtain the required posterior predictive density: 

      1 1
0

1( | ) ( ) ( , ) ( | ) , s sny nyf y D g y f y f D d y
N N

λ λ λ
∞ +

= ≡ < <∫  

      2 2
0

1( | ) ( ) ( , ) ( | ) , snyf y D g y f y f D d y
N

λ λ λ
∞ +

= ≡ >∫ , 

where    
1

7 6( | )
( 1)n n

sT sT

f D
y y

λ
−

 
= − + 

 

            ( , ) ( , 1)
7 6( ) ( )

( 1)sT sTG n y G n yn n
sT sT

f f
y y

λ λ+

 
× − + 

 

(as obtained earlier). 
 
Figure 9.3 shows the two densities ( | )f Dµ  and ( | )f y D  under each of 
the scenarios in (a) and (c).  
 
We see that inferences under the length-biased sampling scheme in (c) are 
lower than those under SRSWR in (a). This is because, generally 
speaking, length bias makes larger units more likely to be selected, and 
not adjusting for that bias naturally leads to inferences that are too high.  
 
These patterns are consistent with the following point estimates as 
obtained numerically (see the R code below for details of the calculation): 

( | )E Dµ  = 1.38 in (c) < ( | )E Dµ  = 2.00 in (a)  
 ( | )E y D  = 1.19 in (c) <  ( | )E y D  = 1.71 in (a). 
  
Note 1: In (a),  

( | ) ~ ( , )sTD IG n yµ , 
and therefore   
 ( | ) / ( 1) 2 / (2 1) 2sTE D y nµ = − = − =   (exactly). 

 
Note 2: The posterior predictive mean of y  in (c) was obtained  
numerically as follows: 

 

1

1 2
1

ˆ ( | ) ( ) ( )

s

s s

ny
N

ny ny
N N

y E y D yg y dy yg y dy

+
∞

+

= = +∫ ∫  

            =  0.01140 + 1.17546  = 1.1869. 
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Figure 9.3 Posterior and predictive densities  

 
 
 
R Code for Exercise 9.5 
 
# (a) 
X11(w=8,h=4); par(mfrow=c(1,1)) 
N=7; ys=c(1.6,0.4); ysT=sum(ys); ysbar=mean(ys); n=length(ys); m=N-n 
c(ysT,ysbar,n,m) # 2 1 2 5 
fmufun=function(mu,n,ysT) dgamma(1/mu,n,ysT)/mu^2 
integrate(fmufun,0, Inf,n=n,ysT=ysT)$value  # 1 check 
muv=seq(0.0001,20.0001,0.005); fmuv= fmufun(muv,n=n,ysT=ysT) 
plot(muv,fmuv,type="l",xlim=c(0,20)) # check 
integrate(function(mu,n,ysT) mu*fmufun(mu,n,ysT), 
     0,Inf,n=n,ysT=ysT)$value # 2  check  (posterior mean of mu) 
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kybarfun=function(ybar,n,N,ysbar) (ybar-(n/N)*ysbar)^(N-n-1) /  ybar^N 
const = integrate(kybarfun, (n/N)*ysbar , Inf,n=n,N=N,ysbar=ysbar)$value 
const #  0.4083333 
ybarv=seq(  (n/N)*ysbar,   (n/N)*ysbar+30,   0.005) 
fybarv= kybarfun(ybarv,n=n,N=N,ysbar=ysbar)/const 
plot(ybarv,fybarv, type="l",xlim=c(0,20))  # check 
(1/const)*integrate(function(ybar,n,N,ysbar) ybar*kybarfun(ybar,n,N,ysbar), 
     (n/N)*ysbar,Inf,n=n,N=N,ysbar=ysbar)$value  
 #  1.714286 (predictive mean of ybar) 
 
# (c) 
c = 1  /  (  7/ysT^n   -   6/(ysT+1)^n   ); c # 0.9230769 
flamfunc=function(lam,n,ysT,c)  c* 
   (  (7/ysT^n)*dgamma(lam,n,ysT)  - (6/(ysT+1)^n)*dgamma(lam,n,ysT+1)  ) 
integrate(flamfunc,0,Inf,n=n,ysT=ysT,c=c)$value # 1   check 
lamv=seq(0,20,0.01) 
plot(lamv,flamfunc(lamv,n=n,ysT=ysT,c=c),type="l")  # OK 
fmufunc=function(mu,n,ysT,c)  c*(1/mu^2)* 
   (  (7/ysT^n)*dgamma(1/mu,n,ysT)  - (6/(ysT+1)^n)*dgamma(1/mu,n,ysT+1)  ) 
 
integrate(fmufunc,0,Inf,n=n,ysT=ysT,c=c)$value # 1   check 
integrate(function(mu,n,ysT,c) mu*fmufunc(mu,n,ysT,c), 
     0,Inf,n=n,ysT=ysT,c=c)$value  # 1.384615     (posterior mean of mu) 
fmuvc=fmufunc(mu=muv,n=n,ysT=ysT,c); plot(muv,fmuvc)  # OK 
 
ybarmin=ysT/N; ybarmin # 0.2857143   Minimum possible value of ybar 
ybarcut=(ysT+1)/N; ybarcut # 0.4285714    Cut-point for ybar 
 
f1fun=function(ybar,lam,n,N,m,ysT) (N / (7-6*exp(-lam))) * 
                  7*dgamma(N*ybar-ysT,m,lam)  
f2fun=function(ybar,lam,n,N,m,ysT)   (N / (7-6*exp(-lam))) * 
   (7*dgamma(N*ybar-ysT,m,lam)-6*exp(-lam)*dgamma(N*ybar-ysT-1,m,lam) ) 
 
# Check for particular values of lambda 
lam=0.764 # (example in the range ybarmin to ybarcut) 
p1 = integrate(f1fun, ybarmin,ybarcut, lam=lam,n=n,N=N,m=m,ysT=ysT)$value 
p2 = integrate(f2fun, ybarcut, Inf,        lam=lam,n=n,N=N,m=m,ysT=ysT)$value 
c(p1,p2,p1+p2) # 0.001921853 0.998078147 1.000000000  OK 
 
lam=3.214   # (example in the range ybarcut to infinity) 
p1 = integrate(f1fun, ybarmin,ybarcut, lam=lam,n=n,N=N,m=m,ysT=ysT)$value 
p2 = integrate(f2fun, ybarcut, Inf,        lam=lam,n=n,N=N,m=m,ysT=ysT)$value 
c(p1,p2,p1+p2) # 0.2298026 0.7701974 1.0000000    OK 
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g1fun=function(ybar,n,N,m,ysT,c)  
    integrate(function(lam,ybar,n,N,m,ysT,c)         
                     f1fun(ybar,lam,n,N,m,ysT)*flamfunc(lam,n,ysT,c), 
                     0,Inf, ybar=ybar, n=n,N=N,m=m,ysT=ysT,c=c)$value  
g2fun=function(ybar,n,N,m,ysT,c) 
    integrate(function(lam,ybar,n,N,m,ysT,c)         
                     f2fun(ybar,lam,n,N,m,ysT)*flamfunc(lam,n,ysT,c), 
                     0,Inf, ybar=ybar, n=n,N=N,m=m,ysT=ysT,c=c)$value  
 
# Check: 
g1fun(ybar=0.4,n,N,m,ysT,c)  # 0.4119163    OK 
g2fun(ybar=0.6,n,N,m,ysT,c)  # 1.274185     OK 
 
ybarv1=seq(ybarmin,ybarcut,length.out=400); fybarv1=ybarv1 
for(j in 1:length(ybarv1)) fybarv1[j] =  
       g1fun(ybar=ybarv1[j],n=n,N=N,m=m,ysT=ysT,c=c) 
 
ybarv2=c( seq(ybarcut,1,length.out=200), seq(1,2,length.out=200),    
                 seq(2,3,length.out=200), seq(3,5,length.out=200), 
                 seq(5,10,length.out=200), seq(10,50,length.out=200) , 
                 seq(50,1000,length.out=200), seq(1000,10000,length.out=200)    ) 
fybarv2=ybarv2 
for(j in 1:length(ybarv2)) fybarv2[j] =  
       g2fun(ybar=ybarv2[j],n=n,N=N,m=m,ysT=ysT,c=c) 
 
plot(c(0,5),c(0,1.5),type="n") 
lines(ybarv1, fybarv1,lty=1,lwd=2) 
lines(ybarv2, fybarv2,lty=1,lwd=2)   # OK 
 
# Check 
INTEG <- function(xvec, yvec, a = min(xvec), b = max(xvec)){ 
# Integrates numerically under a spline through the points given by  
# the vectors xvec and yvec, from a to b. 
fit <- smooth.spline(xvec, yvec); spline.f <- function(x){predict(fit, x)$y } 
integrate(spline.f, a, b)$value   } 
INTEG(seq(0,1,0.01),seq(0,1,0.01)^2,0,1)  # 0.3333333    check 
 
prob1=INTEG(ybarv1,fybarv1,ybarmin,ybarcut) 
prob2=INTEG(ybarv2,fybarv2,ybarcut,10000) 
c(prob1,prob2,prob1+prob2)  # 0.02880659 0.97119399 1.00000058   OK 
INTEG(c(ybarv1,ybarv2),c(fybarv1,fybarv2),ybarmin,10000) # 1.000004  OK 
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X11(w=8,h=6); par(mfrow=c(2,1)) 
plot(ybarv1, ybarv1* fybarv1, xlim=c(0,1))  # OK 
plot(ybarv2, ybarv2* fybarv2, xlim=c(0,20))  # OK 
 
term1 =  INTEG(ybarv1, ybarv1*fybarv1,ybarmin,ybarcut)    
term2 = INTEG(ybarv2, ybarv2*fybarv2,ybarcut,10000)    
ybarhatc =  term1 + term2; c(term1, term2, ybarhatc)  
    # 0.01139601 1.17546200 1.18685801   (predictive mean of ybar) 
 
X11(w=8,h=8); par(mfrow=c(1,1))  # Produce final plots 
plot(c(0,5),c(0,1.3),type="n",xlab="mu & ybar", 
     ylab="posterior & predictive density") 
lines(muv,fmuv,lty=4,lwd=3,col="green") # mu under SRS 
lines(muv,fmuvc,lty=2,lwd=3, col="red") # mu under length-biased sampling 
lines(ybarv,fybarv, lty=3,lwd=3, col="blue") # ybar under SRS 
lines(ybarv1, fybarv1,lty=1,lwd=3); lines(ybarv2, fybarv2,lty=1,lwd=3) 
abline(v=(n/N)*ysbar,lty=3); (n/N)*ysbar # 0.2857143 
legend(2,1.3,c("f(mu|D) under SRSWR in (a)", 
 "f(mu|D) under length-biased sampling in (c)", 
 "f(ybar|D) under SRSWR in (a)", 
 "f(ybar|D) under length-biased sampling in (c)"), 
 lty=c(4,2,3,1),lwd=rep(3,4),col=c("green","red","blue","black")) 
text(3.5,0.75,"The dotted vertical line shows the minimum possible") 
text(3.5,0.68," value of ybar which is (n*ysbar+0)/N = 0.286") 
 
Exercise 9.6 A Gibbs sampler for solving a length-biased with- 
replacement model 
 
Consider the Bayesian model in part (c) of Exercise 9.5, namely: 

 1

1 1

( | , ) ( | , ) (1 )i i

N N
I I

i i i
i i

f I y f I yλ λ π π −

= =

= = −∏ ∏ ,     
1

N

i
i

n I
=

= ∑  

 
1

( | ) i

N
y

i
f y e λλ λ −

=

=∏ ,   ( ) 1 / , 0f λ λ λ∝ > , 

where:  N = 7,   iπ  = 0.3 1,2,3,5,6,...,i N∀ =   
 4π  = 0.3 if 4y  < 1 and 4π  = 0.9 if 4y  > 1 
 ( , ) ((0,0,1,0,1,0,0),(1.6,0.4))sD I y= = ,   n = 2,  m N n= −   = 5. 
 
Design and implement a suitable Gibbs sampler so as to obtain a random 
sample from the joint distribution of 1 /µ λ=  and y . Illustrate your 
results with suitable plots and estimates. 
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Solution to Exercise 9.6 
 
Motivated by and using results in the previous exercise (Exercise 9.5), 
define 0 4rTy y y= −  and then note that at the observed value of the data, 
the Bayesian model implies that: 
 0 4 4( | , , , ) 7 6 ( 1)sf I y y y I yλ ∝ − >  
 4 0( | , , ) ~ (1, )sf y y y Gλ λ  
 0( | , ) ~ ( 1, )sf y y G mλ λ−  

 
1

( | ) i

n
y

s
i

f y e λλ λ −

=

∝∏  

 ( ) 1 / , 0f λ λ λ∝ > . 
 
So   

( )01 2
0 4 0

1

1( , , , , ) i

n
y ym m

s
i

f I y y y e y eλ λλ λ λ
λ

− −− −

=

 
∝ × × 

 
∏  

[ ]4
47 6 ( 1)ye I yλλ −× × − > . 

 
We see that a suitable Gibbs sampler is defined by the following three 
conditionals: 
 
 1. 0 4( )1 1 1 1

0 4( | , , , ) sT Ty y y yn m N
sf I y y y e eλ λλ λ λ+ + −− + + − + −∝ =  

  0 4 0 4( | , , , ) ~ ( , ) ~ ( , )s T sTI y y y G N y G N y y yλ⇒ + +  
 
 2.  02

0 4 0( | , , , ) ym
sf y I y y y e λλ −−∝  

0 4( | , , , ) ~ ( 1, )sy I y y G mλ λ⇒ −  
 

 3. [ ] 4
4 0 4 4( | , , , ) 7 6 ( 1) , 0y

sf y I y y I y e yλλ λ −∝ − > > . 
 
The first of these three conditionals are straightforward and easy to sample 
from. The third conditional can be sampled from via the inversion 
technique as follows.  
 
First, for notational convenience, write the relevant random variable as x  
with density  
 [ ]( ) 7 6 ( 1) , 0xf x I x e xλλ −∝ − > > . 
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Then the cdf of x is 

    0
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which equals 1 7 0 6e λ−= − −  in the limit as x →∞ ; so 1 / (7 6 )r e λ−= − . 
 

Now observe that  7 7( 1)
7 6

eF x
e

λ

λ

−

−

−
= =

−
. 

 
This is a constant in the formula for the quantile function of X, obtained 
as follows.  
 

First, if 7 7
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e

λ
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−
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In summary, the quantile function of x is given by 
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.  (9.2) 
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So a procedure for sampling from the third conditional in the Gibbs 
sampler, namely 
 [ ] 4

4 0 4( | , , , ) 7 6 ( 1) y
sf y I y y I y e λλ λ −∝ − > , 

is to draw ~ (0,1)u U  and then return 4 ( )y Q u=  as per equation (9.2). 
 
Implementing the above Gibbs sampler for 20,000 iterations following a 
burn-in of 1,000 and then thinning out by a factor of 10 we obtained a 
random sample of size J = 2,000 from the joint posterior/predictive 
distribution of 0 4( , , | , )sf y y I yλ . 
 
Figure 9.4 displays trace plots for the three unknowns, 0 4, ,y yλ , sample 
ACFs for these over the last 20,000 iterations, and the three sample ACFs 
again over the final samples of size J. Figure 9.5 is a histogram of the J 
simulated values of 1/µ λ=  and Figure 9.6 is a histogram of the J 
simulated values of 0 4( ) /sTy y y y N= + + . In each histogram are shown 
a density estimate as well as three vertical lines for the Monte Carlo point 
estimate and 95% CI for the mean. 
 
The posterior density of ,µ  i.e. ( | ),f Dµ  was estimated via Rao-
Blackwell as 

( )( , )
1

1ˆ ( | ) ( )j

J

IG N Ny
j

f D f
J

µ µ
=

= ∑ ,   

where  
( ) ( ) ( )

0 4( ) /j j j
sTy y y y N= + + , 

using the fact that  
         0 4 0 4( | , , , ) ~ ( , ) ~ ( , ) ~ ( , )s sT TI y y y IG N y y y IG N y IG N Nyµ + + . 
 
The posterior mean of ,µ  i.e. ( | ),E Dµ was also estimated via Rao-
Blackwell as 

 
( ) ( ) ( )
0 4

1 1

1 1ˆ
1 1

j j jJ J
sT

j j

y y y Ny
J N J N

µ
= =

+ +
= =

− −∑ ∑  = 1.41, 

using the fact that  
0 4 0 4( | , , , ) ( ) / ( 1)s sTE I y y y y y y Nµ = + + − ,  

with 95% CI for the posterior mean equal to 
2( )

1

1 1ˆ ˆ1.96
1 1

jJ

j

Ny
J J N

µ µ
=

   ± −  − −  
∑  = (1.34, 1.47). 
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Note: This is consistent with the exact value, namely ( | )E Dµ  = 1.38, 
as obtained in Exercise 9.5. 

 
The predictive density of y  was estimated by smoothing a probability 
histogram of the simulated values ( )jy , and the predictive mean of y , i.e. 

( | )E y D , was estimated by  

 ( )

1

1ˆ
J

j

j
y y

J =

= ∑  = 1.21, 

with 95% CI  

( )2( )

1

1 1ˆ ˆ1.96
1

J
j

j
y y y

J J =

 
± −  − 

∑  = (1.15, 1.26). 

 
Note 1: This is consistent with the exact value, ( | )E y D  = 1.19, as 
obtained in Exercise 9.5. 

 
Note 2: We may be able to improve on the above ‘histogram’ estimation 
of ( | )E y D  using Rao-Blackwell methods. For example, observe that 

 4 4
1 1( | , , ) sT

mE y D y y y
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The associated Rao-Blackwell estimate of ( | )E y D  is   

1

1 J

j
j

e e
J =

= ∑  =  1.21, 

with 95% CI     

             2

1

1 11.96 ( )
1

J

j
j

e e e
J J =

 
± −  − 

∑   = (1.16, 1.26). 

  
Note 3: In this case, applying Rao-Blackwell methods has only slightly 
narrowed the CI for ( | )E y D . 
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Figure 9.4 Trace plots and sample ACFs 
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Figure 9.5 Inference on the superpopulation mean 

 
 
 
Figure 9.6 Inference on the finite population mean 
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R Code for Exercise 9.6 
 
Qfun = function(p=0.5,lam=1){ 
 c1 = (7-7*exp(-lam))/(7-6*exp(-lam)) 
 if(p <= c1)  c2 =  1- (p/7) * (7-6*exp(-lam))    
 if(p > c1) c2 =  7 - 6*exp(-lam) - p*(7-6*exp(-lam))   
 -(1/lam)*log(c2)     } 
 
# Check: 
pvec=seq(0,1,0.001); Qvec=pvec 
for(i in 1:length(pvec)) Qvec[i] = Qfun(p=pvec[i],lam=1.3) 
plot(pvec,Qvec);  plot(Qvec,pvec)   # OK 
 
GS = function(J=1000,N=7,n=2,m=5, ysT=2, lam=1,y0=1,y4=1){ 
lamv=lam; y0v=y0; y4v=y4;  for(j in 1:J){  
  lam=rgamma(1,N,ysT+y0+y4) 
  y0=rgamma(1,m-1,lam) 
  u=runif(1); y4=Qfun(p=u,lam=lam) 
  lamv=c(lamv,lam); y0v=c(y0v,y0); y4v=c(y4v,y4)   } 
list(lamv=lamv, y0v=y0v, y4v=y4v)   } 
 
X11(w=8,h=9); par(mfrow=c(3,3));  set.seed(321); date() 
res= GS(J=21000,N=7,n=2,m=5, ysT=2, lam=1,y0=1,y4=1); date()  # took 3 secs 
plot(res$lamv,type="l"); plot(res$y0v,type="l"); plot(res$y4v,type="l")   # OK 
 
lamv=res$lamv[-(1:1001)]; y0v=res$y0v[-(1:1001)]; y4v=res$y4v[-(1:1001)];  
acf(lamv); acf(y0v); acf(y4v) # high serial correlation, so need to thin out 
inc= seq(10,20000,10); lamvec=lamv[inc]; y0vec=y0v[inc]; y4vec=y4v[inc]; 
acf(lamvec); acf(y0vec); acf(y4vec)  # OK 
J = length(lamvec); J # 2000 
 
N=7;n=2;m=5; ysT=2; muvec=1/lamvec; ybarvec=(1/N)*(ysT+y0vec+y4vec) 
ybarhat=mean(ybarvec);  
ybarci=ybarhat+c(-1,1)*qnorm(0.975)*sd(ybarvec)/sqrt(J) 
c(ybarhat, ybarci, ybarci[2]-ybarci[1]) # 1.204519 1.151619 1.257419 0.105800 
 
evec=(1/N)*( ysT+ y4vec + (m-1)/lamvec ) 
ebar=mean(evec); eci= ebar+c(-1,1)*qnorm(0.975)*sd(evec)/sqrt(J) 
c(ebar,eci,eci[2]-eci[1]) # 1.2091236 1.1581903 1.2600569 0.1018666 
 
muhat=(N/(N-1))*ybarhat 
muci=muhat + c(-1,1)*qnorm(0.975)*sd(  (N/(N-1))*ybarvec ) / sqrt(J) 
c(muhat, muci) # 1.405272 1.343556 1.466989 
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mugrid=seq(0.001,10.001,0.01) 
fmuhat=mugrid; for(i in 1:length(mugrid))   
 fmuhat[i] = mean( dgamma(1/mugrid[i], N, N*ybarvec )/mugrid[i]^2 ) 
 
X11(w=8,h=5) 
 
hist(muvec,prob=T, xlim=c(0,5),ylim=c(0,1),breaks=seq(0,80,0.1), 

xlab="mu", main="") 
lines(mugrid,fmuhat,lwd=2); abline(v= c(muhat, muci), lwd=2) 
 
hist(ybarvec,prob=T, xlim=c(0,5),ylim=c(0,1.2),breaks=seq(0,80,0.1), 
 xlab="ybar", main=" ") 
lines(density(ybarvec),lwd=2); abline(v= c(ybarhat, ybarci), lwd=2) 
 
 
Exercise 9.7 Gibbs sampler for a length-biased without-
replacement sampling model 
 
Earlier we defined 1( ,..., )nL L L=  as the vector of the labels of the selected 
units in the order in which they are sampled.  
 
Now consider the following Bayesian finite population model: 
 

 1
1

1

( | , ) i

j

n
L

i
i T Lj

y
f L y

y y
λ −

=
=

=
−

∏
∑

, 1( ,..., )nL L L= { 1( ,..., ) :na a∈  

  }{1,..., } {1,..., }& , {1,..., }i i ja N i n a a i j n∈ ∀ ∈ ≠ ∀ ∈  
 

 
1

( | ) , 0i

N
y

i
i

f y e y iλλ λ −

=

= > ∀∏  

 
  ( ) 1 / , 0f λ λ λ∝ > . 
 
Design and implement a suitable Gibbs sampler so as to obtain a random 
sample from the joint distribution of 1 /µ λ=  and y  in the case where  
 N = 7,  n =3,  m N n= −  = 4    
and when the observed data is 
 ( , ) ((4,3,6),(1.6,0.4,0.7))sD L y= = . 
 
Illustrate your results with suitable plots and estimates. 
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Solution to Exercise 9.7 
 
The sampling mechanism here is defined by the model density of L, which 
may also be written as 

31 2

1 1 2 1 2 1

1( ,..., | , ) ...
...

n

n

L LL L
n

T T L T L L T L L L

y yy y
f L L y

y y y y y y y y y y
λ

−

= × × × ×
− − − − − − −

  for (1,..., ), (1,3,2,..., ),..., ( , 1,..., 1)L n n N N N n= − − + . 
 
This pdf implies that units are selected from the finite population, one by 
one and without replacement, in such a way that the probability of 
selecting a unit on any given draw is its value divided by the sum of the 
values of all units which have not yet been sampled at that point in time. 
We call this procedure length-biased sampling without replacement.  
 
Note: This is an example of a sampling mechanism that is nonignorable 
but known. If ( | , )f L y λ  depended on λ , or on some other unknown 
quantity, then we would say that the sampling mechanism is 
nonignorable and unknown. 

 
In the present case it is convenient to relabel the population units—after 
sampling—in such a way that (1,2,..., )L n=  and so also (1,..., )s n=  and 

( 1,..., )r n N= + . Assuming that this is done, we may write the density of 
the sampling mechanism in various other and simpler ways, for example: 

1 2 3

1 1 2 1 2 1

( | , ) ...
...

n

T T T T n

y y y yf L y
y y y y y y y y y y

λ
−

= × × × ×
− − − − − − −

       1 2 3

1 2 3

...
... ... ... ...

n

N N N n N

y y y y
y y y y y y y y

= × × × ×
+ + + + + + + +

 

      
1 ...

n
i

i i N

y
y y=

=
+ +∏

1

n
i

N
i jj i

y
y=

=

=∏
∑

, etc.    

 
Note: We have not previously relabelled population units in this manner 
because doing so would have provided only marginal notational 
convenience and may have obscured the nature of the sampling 
mechanisms we were trying to illustrate. In the next chapter, we will 
again make use of a convenient relabelling scheme similar to the one 
applied here. 

 
With the above relabelling in place, and noting that  
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 ( | ) ~ ( , )rTy G mλ λ , 
the joint posterior density of λ  and rTy  (given the data, ( , )sD L y= )  may 
now be written as 
   ( , | ) ( , , , ) ( ) ( | ) ( | ) ( | , )rT rT s s rT s rTf y D f y y L f f y f y f L y yλ λ λ λ λ∝ =  

  ( )1

1 1

1 1
...

i rT

n n
y ym m

rT
i i i n rT

e y e
y y y

λ λλ λ
λ

− −−

= =

 ∝ × × ×  + + + 
∏ ∏ . 

 
This joint density suggests a Metropolis-Hastings algorithm with a Gibbs 
step defined by the conditional posterior distribution 
 ( | , ) ~ ( , )rT sT rTD y G N y yλ +  
and a Metropolis step defined by a rather complicated conditional 
predictive density defined by 

 1

1

1( | , )
( ... )

rT

n
ym

rT rT
i i n rT

f y D y e
y y y

λλ −−

=

∝
+ + +∏ . 

  
At this point it is useful to recall a data augmentation technique based on 
the identity 

 
0

1 xwxe dw
∞

−= ∫ ,      

or equivalently    

   
0

1 xwe dw
x

∞
−= ∫ , 

which can be applied here so as to yield the identity 

 ( ... )

1 1 0

1
...

i n rT i

n n
y y y w

i
i ii n rT

e dw
y y y

∞
− + + +

= =

=
+ + +∏ ∏∫ . 

 
This suggests that we introduce an artificial or latent random variable 

1( ,..., )nw w w=  into our model which is defined in such a way that the 
joint posterior density of λ , rTy  and w  is given by 

    ( ) ( ... )1

1 1

1( , , | ) i i n rT irT

n n
y y y y wym m

rT rT
i i

f y w D e y e eλ λλ λ λ
λ

− − + + +−−

= =

 ∝ × × × 
 
∏ ∏ . 

 
Note: If we integrate this joint density with respect to w then we recover  

( , | )rTf y Dλ  as above. 
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The above expression for ( , , | )rTf y w Dλ  now suggests a ‘pure’ Gibbs 
sampler defined by the following n + 2 conditional distributions: 
 
 ( | , , ) ~ ( , )rT sT rTD y w G N y yλ +  
 ( | , , ) ~ ( , )rT Ty D w G m wλ λ +    where   1 ...T nw w w= + +  
 ( | , , ) ~ (1, ... )i rT i n rTw D y G y y yλ ⊥ + + + ,   1,...,i n= . 
 
This Gibbs sampler can be used to generate a random sample  
 ( ) ( )( , , ) ~ ( , , | )j j

j rT rTy w iid f y w Dλ λ , j = 1,…,J, 
where  

( ) ( ) ( )
1( ,..., )j j j

nw w w= .  
 
This sample can then be used for Monte Carlo inference on the quantities 
of interest, namely 1/µ λ=  and ( ) /sT rTy y y N= + . 
 
Applying the above Gibbs sampler (with a suitable burn-in and thinning) 
we obtained a random sample of size J = 2,000 from the joint posterior 
distribution of λ , rTy  and 1( ,..., )nw w w= .  
 
The posterior density of µ  was estimated via Rao-Blackwell as 

 ( )( , )
1

1ˆ ( | ) ( )j

J

IG N Ny
j

f D f
J

µ µ
=

= ∑ ,    

where  
( ) ( )( ) /j j

sT rTy y y N= + , 
using the fact that  
 ( | , , , ) ~ ( , ) ~ ( , ) ~ ( , )s rT sT rT TI y y w IG N y y IG N y IG N Nyµ + .  
 
The posterior mean of µ  was also estimated via Rao-Blackwell as 

 
( ) ( )

1 1

1 1ˆ
1 1

j jJ J
sT rT

j j

y y Ny
J N J N

µ
= =

+
= =

− −∑ ∑  = 0.619, 

using the fact that  
 ( | , , , ) ( ) / ( 1)s rT sT rTE I y y w y y Nµ = + − , 
with 95% CI 

 
2( )

1

1 1ˆ ˆ1.96
1 1

jJ

j

Ny
J J N

µ µ
=

   ± −  − −  
∑  = (0.614, 0.624). 
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The predictive density of rTy  was likewise estimated via Rao-Blackwell 
as 

( )( , )
1

1ˆ ( | ) ( )j
j T

J

rT rTG m w
j

f y D f y
J λ +

=

= ∑ , 

where  
( ) ( ) ( )

1 ...j j j
T nw w w= + + . 

 
The predictive mean of rTy  was also estimated via Rao-Blackwell as 

( )
1

1ˆ
J

rT j
j j T

my
J wλ=

=
+∑  = 1.013, 

using the fact that  
 ( | , , , ) / ( )rT s TE y I y w m wλ λ= + , 
with 95% CI 

2

( )
1

1 1ˆ ˆ1.96
1

J

rT rTj
j j T

my y
J J wλ=

   ± −   − +   
∑  = (0.993, 1.033). 

 
These Rao-Blackwell estimates for rTy  were then transformed into 
estimates for y  via the equation  

( ) /sT rTy y y N= + .  
 
In this way, we estimated y ’s posterior mean by 0.530, with 95% CI 
(0.614, 0.624). 
   
Figure 9.7 shows trace plots for λ , rTy  and 1w , sample ACFs for these 
quantities over the last 10,000 iterations, and these three sample ACFs 
again but calculated using only the final smaller samples of size J  = 2,000.  
 
Figures 9.8 and 9.9 (page 464) show two histograms, of the J simulated 
values of 1/ ,µ λ=  and of the J simulated values of ( ) /sT rTy y y N= + . 
In each histogram are shown a density estimate and three vertical lines 
representing the Monte Carlo point estimate and 95% CI for the posterior 
mean. 
 
Note 1: The type of sampling mechanism which features in this exercise 
has applications in the analysis of oil discovery data. For further details, 
see West (1996). 
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Note 2: In this chapter, we have presented several examples of how 
Bayesian methods can be used to perform inference on an exponential 
finite population under biased sampling. For another such example, see 
Puza and O’Neill (2005). 

 
 
Figure 9.7 Trace plots and sample ACFs for samples obtained 
via MCMC 
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Figure 9.8 Inference on the superpopulation mean via MCMC 

  
 
 
Figure 9.9 Inference on the finite population mean via MCMC 
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R Code for Exercise 9.7 
 
GS = function(J=1000,N=7,n=3,m=4, ys=c(1.6,0.4,0.7),  
 lam=1,yrT=1,w=rep(1,3)){ 
ysT=sum(ys); lamv=lam; yrTv=yrT; wmat=w;  for(j in 1:J){  
  lam=rgamma(1,N,ysT+yrT);   
  yrT=rgamma(1,m,lam+sum(w)) 
  for(i in 1:n) w[i] = rgamma(1,1,sum(ys[i:n])) 
  lamv=c(lamv,lam); yrTv=c(yrTv,yrT); wmat=rbind(wmat,w)    

} 
list(lamv=lamv, yrTv=yrTv, wmat=wmat)    
} 
 
set.seed(321); date() 
res=GS(J=11000,N=7,n=3,m=4, ys=c(1.6,0.4,0.7), lam=1,yrT=1,w=rep(1,3)) 
date()  # took 4 secs 
 
X11(w=8,h=9); par(mfrow=c(3,3));   
 
plot(res$lamv,type="l"); plot(res$yrTv,type="l"); plot(res$wmat[,1],type="l")    
 
lamv=res$lamv[-(1:1001)]; yrTv=res$yrTv[-(1:1001)];  
wmat=res$wmat[-(1:1001),]  
acf(lamv); acf(yrTv); acf(wmat[,1]) #  
inc= seq(5,10000,5); lamvec=lamv[inc]; yrTvec=yrTv[inc]; wmatrix=wmat[inc,]; 
acf(lamvec); acf(yrTvec); acf(wmatrix[,1])  # OK 
J = length(lamvec); J # 2000 
 
N=7;n=3;m=4; ys=c(1.6,0.4,0.7); ysT=sum(ys);  
muvec=1/lamvec; ybarvec=(1/N)*(ysT+yrTvec) 
wTvec=apply(wmatrix,1,sum) 
yrThat=mean(m/(lamvec+wTvec)) 
yrTci=yrThat+c(-1,1)*qnorm(0.975)*sd(m/(lamvec+wTvec))/sqrt(J) 
c(yrThat,yrTci) # 1.0131279 0.9930648 1.0331911 
ybarhat=(1/N)*(ysT+yrThat) 
ybarci=(1/N)*(ysT+yrTci) 
c(ybarhat,ybarci) # 0.5304468 0.5275807 0.5333130 
 
muhat=(N/(N-1))*ybarhat 
muci=muhat + c(-1,1)*qnorm(0.975)*sd(  (N/(N-1))*ybarvec ) / sqrt(J) 
c(muhat, muci) # 0.6188547 0.6136692 0.6240401 
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mugrid=seq(0.001,10.001,0.01) 
fmuhat=mugrid; for(i in 1:length(mugrid))   
 fmuhat[i] = mean( dgamma(1/mugrid[i], N, N*ybarvec )/mugrid[i]^2 ) 
 
ybargrid=seq(0,10,0.01) 
fybarhat= ybargrid; for(i in 1:length(ybargrid))   
     fybarhat[i] = mean(  dgamma(N*ybargrid[i]-ysT, m, lamvec+wTvec )*N  ) 
 
X11(w=8,h=5); par(mfrow=c(1,1)) 
 
hist(muvec,prob=T, xlim=c(0,3),ylim=c(0,2.5),breaks=seq(0,80,0.1), 
 xlab="mu", main="") 
lines(mugrid,fmuhat,lwd=2); abline(v= c(muhat, muci), lwd=2) 
 
hist(ybarvec,prob=T, xlim=c(0.3,1.2),ylim=c(0,7),breaks=seq(0,80,0.025), 
 xlab="ybar", main="") 
lines(ybargrid, fybarhat,lwd=2); abline(v= c(ybarhat, ybarci), lwd=2) 
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CHAPTER 10 
Normal Finite Population Models 

 
10.1 The basic normal-normal finite  
population model 
  
Consider a finite population of N values 1,..., Ny y  from the normal 
distribution with unknown mean µ  and known variance 2σ . Assume 
we have prior information about µ  which may be expressed in terms of 
a normal distribution with mean 0µ  and variance 2

0σ .  
 
Suppose that we are interested in the finite population mean, namely 

1( ... ) /Ny y y N= + + , and wish to perform inference on y  based on the 
observed values in a sample of size n taken from this finite population 
via simple random sampling without replacement (SRSWOR).  
 
For convenience, we will in what follows label (or rather relabel) the  
n sample units as 1,...,n  and the m N n= −  nonsample units as  

1,...,n N+ . This convention simplifies notation and allows us to write 
the finite population vector, originally defined by 1( , ,..., )Ny y y= , as 
 1 1(( ,..., ), ( ,..., )) ( , )n n N s ry y y y y y y+= = .  

 
Example: Suppose that we sample units 2, 3 and 5 from a finite 
population of size 7. Then we change the labels of units 2, 3 and 5 to 1, 
2 and 3, respectively, and we change the labels of units 1, 4, 6 and 7 to 
4, 5, 6 and 7, respectively.  
 
Thereby, instead of writing 2 3 5( , , )sy y y y=  and 1 4 6 7( , , , )ry y y y y= ,  
we may write 1 2 3( , , )sy y y y=  and 4 5 6 7( , , , )ry y y y y= , respectively. 

 
We will also implicitly condition on 1( ,..., )ns s s=  at its fixed value and 
suppress s from much of the notation. Thus we will sometimes write  

( | , )sf y s y  as ( | )sf y y , with an understanding that s refers to the 
particular units which were actually sampled.  
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Our inferential problem may be thought of as prediction of ry  given the 

data, sy  (and s), since ( ) /sT ry y my N= + . Considering the various 
distributions that are involved, a suitable Bayesian model is: 
 2( | , ) ~ ( , / )r sy y N mµ µ σ     
   (the model distribution of the nonsample mean) 
 2

1( ,..., | ) ~ ( , )ny y Nµ µ σ      
   (the model distribution of the sample values) 
 2

0 0~ ( , )Nµ µ σ    (the prior distribution). 
 
This model will be called the basic normal-normal finite population 
model. By results for the normal-normal model reported earlier, we see 
that the posterior distribution of the superpopulation mean is given by    
 2

* *( | ) ~ ( , )sy Nµ µ σ , 
 
where: * 0(1 ) sk kyµ µ= − +   (the posterior mean as a credibility estimate) 

 
2

2
* k

n
σσ =     (the posterior variance),   2 2

0/
nk

n σ σ
=

+
  

  (the credibility factor and weight given to the MLE, sy ). 
 
It will be recalled that in this context the predictive density of the 
nonsample mean is 

 ( | ) ( | , ) ( | )r s r s sf y y f y y f y dµ µ µ= ∫ . 

 
But this is the integral of the exponent of a quadratic equation in µ  and 

ry , and so equals the exponent of a quadratic equation in ry . It follows 
that   
 2( | ) ~ ( , )r sy y N a b , 

where: *( | ) { ( | , ) | } { | }r s r s s sa E y y E E y y y E yµ µ µ= = = =  

 2 ( | ) { ( | , ) | } { ( | , ) | }r s r s s r s sb V y y V E y y y E V y y yµ µ= = +  

   
2

{ | }s sV y E y
m
σµ
 

= +  
 

  
2

2
* m

σσ= + .        

 
It follows that 2( | ) ~ ( , )sy y N c d , where:  
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 ( | )sc E y y=  s r
s

ny myE y
N

 + 
=  

 
 ( | )s r sny mE y y

N
+

=  

               sny ma
N
+

=   *sny m
N

µ+
=  

 2 ( | )sd V y y=  s r
s

ny myV y
N

 + 
=  

 

2

( | )r s
m V y y
N

 =  
 

 

                  
2

2
2

m b
N

=
2 2

2
*2

m
N m

σσ
 

= + 
 

. 

 
Then, the 1 α−  central predictive density region (CPDR) for y  is given 
by /2( )c z dα± . 
  

Summary: For the basic normal-normal finite population model:  
2

( | , ) ~ ,r sy y N
N n
σµ µ

 
 − 

 

 2
1( ,..., | ) ~ ( , )ny y iid Nµ µ σ , 2

0 0~ ( , )Nµ µ σ ,  
the posterior distribution of the superpopulation mean µ  is given by    
 2

* *( | ) ~ ( , )sy Nµ µ σ , 

where:  * 0(1 ) sk kyµ µ= − + ,  
2

2
* k

n
σσ = ,  2 2

0/
nk

n σ σ
=

+
. 

 

The predictive distribution of the nonsample mean ry  is given by  

 2( | ) ~ ( , )r sy y N a b , 

where:  *a µ= , 
2

2 2
*b

m
σσ= + , m N n= − . 

 

The 1 α−  CPDR for ry  is /2( )a z bα± . 
 
The predictive distribution of the finite population mean y  is given by 
  2( | ) ~ ( , )sy y N c d ,  

where: *sny mc
N

µ+
= , 

2 2
2 2

*2

md
N m

σσ
 

= + 
 

 (with *µ  and 2
*σ  as above).   

 

The 1 α−  CPDR for y  is /2( )c z dα± . 
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Exercise 10.1 Practice with the basic normal-normal finite 
population model 
 
Consider the Bayesian model given by: 
 2( | , ) ~ ( , / )r sy y N mµ µ σ  

 2
1( ,..., | ) ~ ( , )ny y iid Nµ µ σ  

 2
0 0~ ( , )Nµ µ σ . 

 
(a) Express the predictive mean of the finite population mean y  as a 
credibility estimate with a suitable credibility factor. Then also express 
the predictive variance and distribution in terms of that credibility factor. 
Use your results to answer parts (b) through (e) below. 
 
(b) What is the predictive distribution in the case of very weak prior 
information? 
 
(c) What is the predictive distribution in the case of very strong prior 
information? 
 
(d) What is the predictive distribution in the case of a very large sample 
size? 
 
(e) What is the predictive distribution in the case of a census? 
 
(f) Suppose we believe with a priori probability 95% that µ  lies 
between 7.0 and 13.0. We sample the values 5.7, 9.6 and 8.3 from a 
finite population of seven units. Find the predictive mean and 95% 
highest predictive density region for the average of all seven values in 
the finite population if the superpopulation standard deviation is 2.0.  
 
Create a graph showing: 
 (i) the likelihood function for the superpopulation mean 
 (ii) the prior density of the superpopulation mean 
 (iii) the posterior density of the superpopulation mean 
 (iv) the prior density of the nonsample mean 
 (v) the predictive density of the nonsample mean 
 (vi) the prior density of the finite population mean 
 (vii) the predictive density of the finite population mean. 
 
In your graph indicate the predictive mean and 95% highest predictive 
density region for the average of all seven values in the finite population. 
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Solution to Exercise 10.1 
 
(a) It is easy to show that the predictive mean of y , namely  

 * 0( )[(1 ) ]( | ) s s s
s

ny m ny N n k kyc E y y
N N

µ µ+ + − − +
= = = , 

may also be written as the credibility estimate   
 0(1 ) sc q qyµ= − + ,      
where    

  ( )n N n kq
N

+ −
=     

is the credibility factor, meaning the weight assigned to sy  (the direct 

data estimate of y ), and where 1 q−  is the weight assigned to 0µ  (the 
prior estimate of y ).  
 
It can then also be shown that the predictive variance of y , namely  

 
2 2

2 2
*2( | )s

md V y y
N m

σσ
 

= = + 
 

, 

may be expressed as     

  
2 2 2

2

( )N n k
N n N n

σ σ −
+ − 

 
2

1 nq
n N
σ  = − 

 
. 

 
Thus we may also write the predictive distribution of the finite 
population mean as 

 
2

0( | ) ~ (1 ) , 1s s
ny y N q qy q

n N
σµ

  − + −  
  

, 

where:    
( )n N n kq

N
+ −

=  

   2 2
0/

nk
n σ σ

=
+

. 

 
Note: If the original credibility factor k equals 1 then the second 
credibility factor q also equals 1. This then implies that we estimate y  
by  
 0(1 1) 1 s sc y yµ= − + = .  
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This makes sense because if the sample data values are given ‘full 
credibility’ then their straight average should intuitively be used to 
estimate the finite population mean. 
  
On the other hand, if k = 0 then q = n/N (the sampling fraction). This 
then implies that we estimate y  by  
 0 0(1 / ) ( / ) (( ) ) /s sc n N n N y N n ny Nµ µ= − + = − + .  
 
This also makes sense because if the sample data are given ‘zero 
credibility’ then each of the N n−  nonsampled values should 
intuitively be estimated by the prior mean of the superpopulation mean 
µ . 

 
(b) In the case of very weak prior information we have (in the limit)  that 

0σ = ∞ , hence  k = 1, and hence q = 1. Consequently  

 
2 2

0( | ) ~ (1 1) 1 ,1 1 ~ , 1s s s
n ny y N y N y

n N n N
σ σµ

      − + − −      
      

. 

 
This implies a posterior mean and 1 α−  CPDR for y  of sy  and 

/2 1s
ny z
Nnα

σ 
± − 

 
. 

 
Note: This is the same inference one would make via classical 
techniques after substituting the sample standard deviation  

 2

1

1 ( )
1

n

i s
i

s y y
n =

= −
− ∑   

for σ , assuming that n is ‘large’. 
 
(c) In the case of very strong prior information we have (in the limit)  
that 0 0σ = , hence  k = 0, and hence q = n/N. Consequently, 

  
2

0( | ) ~ 1 , 1s s
n n n ny y N y
N N N n N

σµ
    − + −    
    

 

  
2

0( )~ , 1sN n ny nN
N N N
µ σ − +  −  

  
. 
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(d) In the case of a very large sample size we have (in the limit) that 
n = ∞ , hence  k = 1, and hence 1q = . Consequently (just as in (b) for 
the case of very weak prior information), 

 
2

0( | ) ~ (1 1) 1 ,1 1s s
ny y N y

n N
σµ

  − + −  
  

 

2

~ , 1s
nN y

n N
σ  −  

  
. 

 
(e) In the case of a census we have n = N, hence  

( ) 1N N N kq
N

+ −
= = ,  

and therefore  

 
2

0( | ) ~ (1 1) 1 ,1 1s s
Ny y N y

N N
σµ

  − + −  
  

 

( )~ ,0sN y , 

meaning that sy y=  with posterior probability 1 (obviously).  
 
Note: Some of the equations developed previously implicitly assume 
that n < N. 
 
(f) The given specifications imply that:    
 n = 3,    N = 7,   m N n= −  = 4,   σ  = 2     

1= (5.7+9.6+8.3)
3sy  = 7.8667 

 

 0µ  = 10, 0
3

1.96
σ =  = 1.53064 

2
0 0~ ( , )Nµ µ σ  

 

 2 2
0/

nk
n σ σ

=
+

 = 0.63731 

    * 0(1 ) sk kyµ µ= − +  = 8.6404,  
2

* k
n
σσ =  = 0.9218141  

 2
* *( | ) ~ ( , )sy Nµ µ σ  
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    *a µ=  = 8.6404,   2 2
* /b mσ σ= +  =  1.3601  

 2( | ) ~ ( , )r sy y N a b  
 

 ( )n N n kq
N

+ −
=  = 0.79275 

 *
0(1 )s

s
ny mc q qy

N
µ µ+

= = − +  = 8.3088   

 
2

2
2

md b
N

=  = 0.77717    

 2( | ) ~ ( , )sy y N c d . 
 
So the predictive mean of y , the average of all 7 values in the finite 
population, is c = 8.3088, and the 95% highest predictive density region 
for that average is ( 1.96 )c d±  = (6.7856, 9.8320). Figure 10.1 shows: 
 
(i) the likelihood function for the superpopulation mean, ( )L µ , equal to  
the posterior density of µ  under a flat prior; thus 2( , / )

( ) ( )
sN y n

L f
σ

µ µ=  

 
(ii) the prior density of the superpopulation mean,  
 2

0 0( , )
( ) ( )

N
f f

µ σ
µ µ=  

 
(iii) the posterior density of the superpopulation mean, 

 2
* *( , )

( | ) ( )s N
f y f

µ σ
µ µ=  

 
(iv) the prior density of the nonsample mean,  
 2 2

0 0( , / )
( ) ( )r rN m

f y f y
µ σ σ+

=  

 
(v) the predictive density of the nonsample mean,  
 2( , )

( | ) ( )r s rN a b
f y y f y=  

 
(vi) the prior density of the finite population mean,  
 2 2

0 0( , / )
( ) ( )

N N
f y f y

µ σ σ+
=  

 
(vii) the predictive density of the finite population mean,  
 2( , )

( | ) ( )s N c d
f y y f y= . 
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Figure 10.1 Various densities in Exercise 10.1 

 
 
In Figure 10.1, we may observe how the prior densities of µ , ry  and y  

are all centred around the prior mean 0 10µ = . The line for µ  is most 
highly concentrated about 10 because it represents the prior density of 
the mean of a hypothetically infinite number of population values. The 
line for ry is the least focused about 10 because it represents the prior 
density of the mean of only 4 such values (compared with the line for y  
which is the prior pdf for the mean of 7 such values). 
 
Each of the posterior/predictive densities for µ , ry  and y  is located 
somewhere between the corresponding prior density and the likelihood 
function. The posterior/predictive densities for µ  and ry  are centred at 

the same values, namely the posterior mean, *µ  = 8.6404, whereas the 
predictive density for y  is centred closer to the likelihood mode,  

sy  = 7.8667. This is because the second credibility factor is larger than 
the first (q = 0.79275 > k  = 0.63731). 
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R Code for Exercise 10.1 
 
ys=c(5.7,9.6,8.3); ysbar=mean(ys); ysbar # 7.866667 
sig=2; n=3; N=7; m=N-n; mu0=10; sig0=3/qnorm(0.975);  
k=n/(n+sig^2/sig0^2); q=(n+m*k)/N 
c(m,mu0,sig0,k,q) # 4.0000000 10.0000000  1.5306404  0.6373060  0.7927463 
mustar=(1-k)*mu0+k*ysbar; sigstar2=k*sig^2/n 
c(mustar,sqrt(sigstar2)) # 8.6404139 0.9218141 
a=mustar; b2=sigstar2+sig^2/m;  c=(n*ysbar+m*a)/N; d2=(m/N)^2*b2 
c(a,sqrt(b2),c,sqrt(d2)) # 8.6404139 1.3600519 8.3088080 0.7771725 
HPDR=c+c(-1,1)*qnorm(0.975)*sqrt(d2); HPDR # 6.785578 9.832038 
 
X11(w=8,h=7); par(mfrow=c(1,1)) 
plot(c(4,15),c(0,0.6),type="n",xlab="mu, yrbar, ybar", 
 ylab="density, likelihood", main="") 
v=seq(0,20,0.01) 
lines(v,dnorm(v,ysbar,sig/sqrt(n)),lty=1,lwd=3,col="black")  
 # likelihood function (i) 
 
lines(v,dnorm(v,mu0,sig0),lty=2, lwd=2,col="red") # prior (ii) 
lines(v,dnorm(v,mustar,sqrt(sigstar2)),lty=2,lwd=3, col="red") # posterior (iii) 
 
lines(v,dnorm(v,mu0,sig0^2+sig^2/m),lty=3,lwd=2, col="blue")   
 # prior pdf of yrbar (iv) 
lines(v,dnorm(v,a,sqrt(b2)),lty=3,lwd=3, col="blue")   
 # predictive pdf of yrbar (v) 
 
lines(v,dnorm(v,mu0,sig0^2+sig^2/N),lty=4,lwd=2, col="green")   
 # prior pdf of ybar (vi) 
lines(v,dnorm(v,c,sqrt(d2)),lty=4,lwd=3, col="green")   
 # predictive pdf of ybar (vii) 
abline(v=c(c,HPDR),lty=1,lwd=1) 
legend(3.8,0.6,c("(i) Likelihood","(ii) Prior","(iii) Posterior"), 
 lty=c(1,2,2), lwd=c(3,2,3), col=c("black","red","red")) 
legend(10,0.6,c("(iv) Prior pdf of yrbar","(v) Predictive pdf for yrbar", 
  "(vi) Prior pdf of ybar","(vii) Predictive pdf for ybar"), 
    lty=c(3,3,4,4), lwd=c(2,3,2,3), col=c("blue","blue","green","green")) 
text(12.5,0.38, "The thin vertical lines show the predictive") 
text(12.5,0.345,"mean and 95% HPDR bounds for ybar") 
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10.2 The general normal-normal finite  
population model 
 
The basic normal-normal finite population model examined in the 
previous section assumes that: 
     • all N values in the finite population are conditionally normal and iid 
     • we are interested only in the nonsample mean ry  and functions of  

       ry  (such as the finite population mean y ). 
 
We will now examine a generalisation of this basic model which allows 
for: 
     • non-independence of values  
     • covariate information  
     • inference on the entire nonsample vector and linear combinations  
        thereof.  
 
We will continue to assume that the values in the population are all 
(conditionally) normally distributed, and that the (conditional) variance 
of each value in the finite population is known. We will now also 
assume that all the covariance terms between these values are known. 
(These assumptions will be relaxed at a later stage.)  
 
First, define the (finite) population vector in column form as 

    

1

1

1

ns

r n
N

N

y

yyy
y

y y y

y

+

  
  
           = = =         

   
      







. 

Next, suppose that auxiliary information is available in the form of an N 
by p matrix  

 
1 11 1

1

1

( ,..., )
p

p

N N Np

x x x
X X X

x x x

′   
  = = =   

   ′   



   



, 

where  
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1i

i

ip

x
x

x

 
 =  
 
 

   

is the covariate vector for the ith population unit ( 1,...,i N= ) and  

 
1 j

j

Nj

x
X

x

 
 =  
 
 

   

is the population vector for the jth explanatory variable ( 1,..., )j p= . 
 
Also suppose that the finite population vector y has a known variance-
covariance structure in the form of an N by N positive definite matrix  

 
11 1

1

N

N NN

σ σ

σ σ

 
 Σ =  
 
 



  



, 

where: ( , )ij i j jiC y yσ σ= =   

 2
ii i iVyσ σ= ≡ ,  

with the covariance and variance operations here (C and V) implicitly 
conditional on all model parameters. 
 
In the above context, the Bayesian model we will focus on is: 
 ( | ) ~ ( , )Ny N Xβ β Σ  
 ~ ( , )pNβ δ Ω . 
 
This model will be called the general normal-normal finite population 
model. Here,  

 
1

p

β
β

β

 
 =  
 
 

   

is the vector of regression coefficients, whose prior distribution is 
multivariate normal with (specified) mean   

 
1

p

δ
δ

δ

 
 =  
 
 

   
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and (specified) variance-covariance matrix  

  
11 1

1

p

p pp

ω ω

ω ω

 
 Ω =  
 
 



  



, 

where:  ( , )ij i j jiCω β β ω= =   

  2
ii i iVω β ω= ≡ ,    

with the covariance and variance operations here (C and V) implicitly 
unconditional, thereby reflecting prior belief regarding the iβ  values. 
 
We will assume interest lies generally in the nonsample vector ry  and 
functions of that vector, and specifically in the finite population mean y  
(a simple function of ry  and of the known quantities sy , n and N). Thus 
the regression coefficient vector β  will be treated as a nuisance 
parameter and inference will be based on the predictive distribution of 

ry  given sy .  
 
Note: The basic normal finite population model as considered 
previously is a special case of the just-defined general normal finite 
population model with: 
  p = 1,       1( )β β µ= = ,     1 0( )δ δ µ= = ,      2

11 0( )ω σΩ = =  

 
1

1 (1,...,1)
1

NX
 
 ′= = =  
 
 

   (a column vector of N ones)  

 

2

2
2

2

0 0
0 0

0 0 0

NI

σ
σ

σ

σ

 
 
 Σ = =
 
 
 



  

   

   (where NI  is the N  by N identity matrix). 
   
Thus, the previous normal finite population model could also be 
written as: 
  2( | ) ~ ( 1 , )N N Ny N Iµ µ σ       
   2

1 0 0~ ( , )Nµ µ σ . 
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10.3 Derivation of the predictive distribution  
of the nonsample vector 
 
Observe that the unconditional (or prior) distribution of the entire finite 
population vector y is given by the density 

 ( ) ( , )f y f y dβ β= ∫   ( | ) ( )f y f dβ β β= ∫ .  

 

Now, the integrand of this multiple integral is a quadratic in the iy  and 

jβ  values. This implies that the value of the integral has the form of a 

quadratic in the iy  values alone. This then implies that the prior (or 
unconditional) distribution of y is also multivariate normal. It then 
remains to find the mean and covariance vector of that prior distribution, 
as follows: 
 ( | ) ( )Ey EE y E X Xβ β δ= = =  
 ( | ) ( | ) ( )Vy EV y VE y E V X X Xβ β β ′= + = Σ + = Σ + Ω . 
 

Thus,  ~ ( , )Ny N X X Xδ ′Σ + Ω .  
 
This result may also be written as      

 ~ , ss s s sr s rs s
N

rs r s rr r rr r

X X X Xy X
N

X X X Xy X
δ
δ

′ ′Σ + Ω Σ + Ω     
      ′ ′Σ + Ω Σ + Ω      

, 

where we partition X and Σ  according to   

 s

r

X
X

X
 

=  
 

  and   ss sr

rs rr

Σ Σ 
Σ =  Σ Σ 

. 

 

 Thus, 
1

s

n

X
X

X

′ 
 =  
 ′ 

  is a submatrix consisting of the first n rows of X, etc. 

 
It follows by standard multivariate normal theory (see below) that 
        * *( | ) ~ ( , )r s my y N E V , 
where:  
       1

* ( )( ) ( )r rs r s ss s s s sE X X X X X y Xδ δ−′ ′= + Σ + Ω Σ + Ω −            (10.1) 

        1
* ( ) ( )( ) ( )rr r r rs r s ss s s sr s rV X X X X X X X X−′ ′ ′ ′= Σ + Ω − Σ + Ω Σ + Ω Σ + Ω . 

            (10.2) 
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Note: We have here used the following result (e.g. see equation 
(81.2.11) in Rao, 1973): 

 
1 2

1 1 11 12

2 2 21 22

~ ,n n

X
N

X
µ
µ+

Σ Σ      
      Σ Σ      

    

       
2

1 1
2 1 2 21 11 1 1 22 21 11 12( | ) ~ ( ( ), )nX X N Xµ µ− −⇒ + Σ Σ − Σ − Σ Σ Σ . 

 
10.4 Alternative formulae for the predictive  
distribution of the nonsample vector 
 

Another way to obtain the distribution of ( | )r sy y  (already derived 
above) is as follows. First, the posterior density of β  is  
 ( | ) ( ) ( | )s sf y f f yβ β β∝  

      1 11 1exp ( ) ( ) exp ( ) ( )
2 2 s s ss s sy X y Xβ δ β δ β β− −   ′ ′∝ − − Ω − − − Σ −   

   
 

      1
1exp
2

Q = − 
 

, 

where   

1 1
1 ( ) ( ) ( ) ( )s s ss s sQ y X y Xβ δ β δ β β− −′ ′= − Ω − + − Σ − . 

      

We see that ( | )sf yβ  is proportional to the exponent of a quadratic 
form in β . This implies that     
 ˆ( | ) ~ ( , )s py N Dβ β    

for some β̂  and D to be determined. 
 
Now observe that  

 2
1( | ) exp
2sf y Qβ  ∝ − 

 
,    

where    
 1

2
ˆ ˆ( ) ( )Q Dβ β β β−′= − −  

      1 1 1ˆ ˆD D Dβ β β β β β− − −′ ′ ′= − −  + constant      (10.3)  
(where the constant does not depend on β ). 
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But  1 1 1 1
1 s ss sQ y Xβ β β δ δ β β− − − −′ ′ ′ ′= Ω − Ω − Ω − Σ  

   1 1
s ss s s ss sX y X Xβ β β− −′ ′ ′ ′− Σ + Σ  + constant 

1 1 1 1 1 1( ) ( ) ( )s ss s s ss s s ss sX X X y y Xβ β β δ δ β− − − − − −′ ′ ′ ′ ′ ′= Ω + Σ − Ω + Σ − Ω + Σ
      + constant.       (10.4) 

 
Equating (10.3) and (10.4) we see that:  
 1 1 1

s ss sD X X− − −′= Ω + Σ   

 1 1 1ˆ
s ss sD X yβ δ− − −′= Ω + Σ . 

 
It follows that:    
 1 1 1( )s ss sD X X− − −′= Ω + Σ     

 1 1ˆ ( )s ss sD X yβ δ− −′= Ω + Σ . 
 
We can now use the result  
 ˆ( | ) ~ ( , )s py N Dβ β   

to find the predictive mean and variance of ry .  
 
First, observe that  
 ( | ) ~ ( , )Ny N Xβ β Σ   
may also be written 

 ~ , ss srs s
N

rs rrr r

y X
N

y X
β

β
β

  Σ Σ     
         Σ Σ       

, 

which implies that    
 1 1( | , ) ~ ( ( ), )r s m r rs ss s s rr rs ss sry y N X y Xβ β β− −+ Σ Σ − Σ − Σ Σ Σ . 
 
It follows that: 
 ( | ) { ( | , ) | }r s r s sE y y E E y y yβ=  

      1{ ( ) | }r rs ss s s sE X y X yβ β−= + Σ Σ −  

      1ˆ ˆ( )r rs ss s sX y Xβ β−= + Σ Σ −       (10.5) 

 ( | ) { ( | , ) | } { ( | , ) | }r s r s s r s sV y y E V y y y V E y y yβ β= +  

             1 1ˆ ˆ{ | } { ( ) | }rr rs ss sr s r rs ss s s sE y V X y X yβ β− −= Σ − Σ Σ Σ + + Σ Σ −  

        1 1 ˆ{( ) | }rr rs ss sr r rs ss s sV X X yβ− −= Σ − Σ Σ Σ + − Σ Σ      
   1 1 1( ) ( )rr rs ss sr r rs ss s r rs ss sX X D X X− − − ′= Σ − Σ Σ Σ + − Σ Σ − Σ Σ .      (10.6) 
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Note: The expression for *E  at (10.1) must be the same as that for 
( | )r sE y y  at (10.5), and likewise the expression for *V  at (10.2) must 

be the same as that for  ( | )r sV y y  at (10.6). This equivalence can also 
be shown with some algebra by making use of the formula 
 1 1 1 1 1 1( ) { ( ) }ss s s ss s s s ss s s ssX X I X X X X− − − − − −′ ′Σ + Ω = Σ − Ω + Σ Σ , 
which in turn follows from the general matrix identity  
 1 1 1 1 1 1 1( ) ( )A UW V A A U W VA U VA− − − − − − −− = + − . 
 

Here, sI  is the n by n identity matrix and could also be written nI . 

 
10.5 Prediction of the finite population mean  
and other linear combinations 
 
We may now write down a general expression for the predictive 
distribution of the finite population mean. That mean may be expressed 
as the linear combination  

 1 ( 1 )sT r
sT r r

y myy y y
N N
+ ′= = + . 

 

Note: Here, 1r′  denotes the row vector with m N n= −  ones. This 

vector could also be written 1m′  or 1N n−′  or (1,...,1) . 

 
Therefore the predictive distribution of y  given sy  is normal with mean

*
*

1sT ry Ee
N
′+

=  and variance *
* 2

1 1r rVv
N
′

= .  
 

So the 1 α−  CPDR for y  is * /2 *( )e z vα± . 
 
More generally, the predictive distribution of the linear combination 
 0 1 1 1 1( ... ) ( ... )n n n n N Nc c y c y c y c yψ + += + + + + + +  

is normal with mean # 0 *s s re c c y c E′ ′= + +   and variance  *
# 2

r rc V cv
N
′

= , 

where 1( ,..., )s nc c c ′=  and 1( ,..., )r n Nc y c+ ′= .  
 

So the 1 α−  CPDR for  ψ  is # /2 #( )e z vα± . 
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Summary: For the general normal-normal finite population model: 
 ( | ) ~ ( , )Ny N Xβ β Σ  
 ~ ( , )pNβ δ Ω , 
the posterior distribution of the regression vector β  is given by 
 ˆ( | ) ~ ( , )s py N Dβ β , 

where:   1 1ˆ ( )s ss sD X yβ δ− −′= Ω + Σ ,     1 1 1( )s ss sD X X− − −′= Ω + Σ . 
  

The predictive distribution of the nonsample vector ry  is given by  

 * *( | ) ~ ( , )r s my y N E V              ( m N n= − ), 
where: 1

* ( )( ) ( )r rs r s ss s s s sE X X X X X y Xδ δ−′ ′= + Σ + Ω Σ + Ω −   

      1ˆ ˆ( )r rs ss s sX y Xβ β−= + Σ Σ −         
1

* ( ) ( )( ) ( )rr r r rs r s ss s s sr s rV X X X X X X X X−′ ′ ′ ′= Σ + Ω − Σ + Ω Σ + Ω Σ + Ω   
     1 1 1( ) ( )rr rs ss sr r rs ss s r rs ss sX X D X X− − − ′= Σ − Σ Σ Σ + − Σ Σ − Σ Σ . 
 
The predictive distribution of the finite population mean y  is given by  

   ( )* *( | ) ~ ,sy y N e v ,   where  *
*

1sT ry Ee
N
′+

=  and *
* 2

1 1r rVv
N
′

= , 

with 1 α−  CPDR for y  given by * /2 *( )e z vα± .     
 
The predictive distribution of any linear combination of the form 

0 s s r rc c y c yψ ′ ′= + +  is given by 
   ( )# #( | ) ~ ,sy N e vψ ,  

where  # 0 *s s re c c y c E′ ′= + +   and    *
# 2

r rc V cv
N
′

= ,  

with 1 α−  CPDR for  ψ  given by # /2 #( )e z vα± . 
 
 
10.6 Special cases including ratio estimation 
 
In the context of the above general normal-normal finite population 
model, suppose that 1p =  (i.e. there is a single covariate) and the 
population values are conditionally independent, the ith one having 
mean ix β  and variance 2 2

ix γσ , where γ ∈ℜ  and 2 0σ >  are known.  
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Also, suppose that the prior distribution on the single regression 
coefficient β  is normal with mean δ  and variance 2ω . Then:   
 ( | ) ~ ( , )Ny N Xβ β Σ  
 ~ ( , )pNβ δ Ω , 

where:   p = 1,  

1

2

N

x
x

X

x

 
 
 =
 
 
 



,  

2
1

2
22

2

0 0
0 0

0 0 N

x
x

x

γ

γ

γ

σ

 
 
 Σ =
 
 
 



   



,   2ωΩ = . 

 
The model may also be written in non-matrix form as:  
 2 2( | ) ~ ( , ), 1,...,i i iy N x x i Nγβ β σ′⊥ =  

 2~ ( , )Nβ δ ω . 
 
Under this model it can be shown that the predictive distribution of the 
finite population mean is given by  
 2( | ) ~ ( , )sy y N A B , 
where:  

 
2 2 1 2

1
2 2 2 2

1

1
n
i i i

s r n
i i

n n y xA y x
N N x

γ

γ

δσ ω
σ ω

−
=

−
=

 + ∑ = + −    + ∑   
 

 
2 2 2 2

2 2
2 2 2 2 2

1 1

N
r

i n
i n i i

m xB x
N x

γ
γ

σ ω
σ ω −

= + =

 
= + + ∑ 

∑  

 
1

1 N

r i
i n

x x
m = +

= ∑  (average of the covariate values in the nonsample). 

 
Now suppose it is believed that the variances of the population values 
are exactly proportional to the covariate values, i.e. 2( | )i iV y xβ σ= .  
 
Then 1 / 2γ = , and we find that: 

 
2 2

2 2

/1
/

s
s r

s

n n y nA y x
N N x n

ω δσ
ω σ

 + = + −    +   
 

 
2 2

2
2 21 1

/
r

r
s

n n n xB x
n N N N x n
σ ω

ω σ
    = − + −     +    

 

 
1

1 n

s i
i

x x
n =

= ∑  (the average of the covariate values in the sample). 
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If there is a priori ignorance regarding β  we may further set ,ω = ∞  and 
in that case: 

 1 1s r
s r s

s s

y xn n n nA y x y
N N x N N x

    = + − = + −    
    

 

         ( )s r s
s

s s

nx N n x yy x
Nx x

 + −
= = 

 
 

 
2 2

2 1 1 1r r
r

s s

n n n x n xB x x
n N N N x n N x
σ σ      = − + − = −      

      
 

           
1

1 N

i
i

x x
N =

= ∑  (average of covariate values in the finite population). 

 
As regards this last special case, we see that the predictive mean A is 
identical to the common design-based ratio estimator.  
 
Also, the predictive variance 2B , although not identical to any design-
based formula, is the same as a model-based analogue (e.g. see Brewer, 
1963, and Royall, 1970). The formula for 2B  suggests a purposive 
sampling scheme whereby units with the largest covariate values should 
be selected.  
 

Note 1: If units with relatively large y-values are selected, then sx  will 

likely be larger than rx , so  that then r

s

x
x

 will likely be small, and 

thereby 
2

2 ( | ) 1 r
s

s

n xB V y y x
n N x
σ  = = − 

 
 will also likely be small. 

  
Note 2: The same formulae as derived in the last special case will also 
apply approximately when the sample size n is very large. This makes 
sense because the effect of a very large sample size is the same as that 
of a very diffuse prior. Note that in the case of a census, n = N and we 
find that the above formulae correctly yield sA y=  and 2 0B = . 

 
In a way similar to the above, it is possible to obtain analogues of other 
common design-based and model-based results, such as regression and 
stratified estimators, together with their associated variances (see 
Ericson, 1969 and 1988). 
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Exercise 10.2 Derivation of the Bayesian ratio estimator 
 
Consider the Bayesian model given by:  
 2( | ) ~ ( , ), 1,...,i i iy N x x i Nβ β σ⊥ =  
 ( ) 1,f β β∝ ∈ℜ . 
 
Derive the predictive distribution of the finite population mean given 
data of the form D = ( , )ss y . 
 
Solution to Exercise 10.2 
 
The Bayesian model is:    
 ( | ) ~ ( , )Ny N Xβ β Σ  
 ~ ( , )pNβ δ Ω , 
where:   

  p = 1,   0δ = ,   Ω = ∞ ,  
1

N

x
X x

x

 
 = =  
 
 

    

   
1

2 2
1( ,..., )N

N

x
diag x x

x
σ σ

 
 Σ = =  
 
 


.    

 
Note: Here, 2σ − Σ  is a matrix with zeros everywhere except for 

1,..., Nx x  along the main diagonal. 

 
Using general results derived previously we first have that   
 ˆ( | ) ~ ( , )sy N Dβ β , 
where:  
 1 1 1( )s ss sD X X− − −′= Ω + Σ  

     

11
1 1

1
1 2

1

1( )n

n n

x x
x x

x x
σ

−
−

−

−

   
   = ∞ +   
      

    

     
1 2

2 1

1

n

i i i
i sT

x x x
x
σσ

−
−

=

 = = 
 
∑  
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 1 1ˆ ( )s ss sD X yβ δ− −′= Ω + Σ  

     

1
1 1

1 2
1

10 ( )n

n n

x y
D x x

x y
σ

−

−

   
   = +   
      

    

     
2

1
2

1

1 n
sT s

i i i
isT sT s

y yx x y
x x x
σ

σ
−

=

= = =∑ . 

 
Next,  
 * *( | ) ~ ( , )r s my y N E V ,  
where: 
 m N n= −  

 
1 1

1
*

ˆ ˆ ˆ( ) 0
n n

s
r rs ss s s

s
N N

x x
yE X y X
x

x x
β β β

+ +
−

   
   = + Σ Σ − = + =   
   
   

 
 

 1 1 1
* ( ) ( )rr rs ss sr r rs ss s r rs ss sV X X D X X− − − ′= Σ − Σ Σ Σ + − Σ Σ − Σ Σ  

          ( )( )
1 1 2

2
10 1 0 0

n n

r n N
sT

N N

x x
x x

x
x x

σσ
+ +

+

    
    = − + − −    

        

    

         
1 1 1 1

2

1 1

1n n n n N

sT
N N n N n

x x x x x

x
x x x x x

σ
+ + + +

+ +

    
    = +    
    
    



   



. 

 
Thus finally we have that    
 ( )* *( | ) ~ ,sy y N e v , 
where:    

  *
*

1sT ry Ee
N
′+

=  ( )
11 1 1

n
s

sT
s

N

x
yy

N x
x

+  
  = +  
  

  

   

     1 sT
sT rT

sT

yy x
N x
 

= + 
 

   sT sT rT sT sT

sT sT s

y x x y yx x
N x x N x

 +
= = = 

 
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 *
* 2

1 1r rVv
N
′

= 2
2

1 (1 1)
N

σ= 
 

        
1 1 1 1

1 1

1
1

1

n n n n N

sT
N N n N n

x x x x x

x
x x x x x

+ + + +

+ +

      
      × +      
      
      



    



 

 ( )2
1 12

1 1

1
1 1

1

N N

n N i n i N
i n i nsT

x x x x x x
N x

σ + +
= + = +

 
    = +       

 

∑ ∑    

 ( )2
1 12

1 1

1 1... ...
N N

n N n i N i
i n i nsT

x x x x x x
N x

σ + +
= + = +

  = + + + + +  
  

∑ ∑  

 2 2
2

1 1
rT rT

sT

x x
N x

σ
 

= + 
 

 2
2

rT sT rT

sT

x x x
N x

σ
 +

=  
 

 

 2 1 ( ) r sT rT

s

N n x x x
N nx N

σ − +
= × × ×

2

1 r

s

n x x
n N x
σ  = − 

 
. 

 
Exercise 10.3 Practice with the general normal-normal finite  
population model 
 
Consider a superpopulation model in which all values are independent 
and normally distributed with mean µ , and where each value iy  has a 
variance which is either: 
 2

0σ   if the corresponding covariate value ix  is 0, or  

 2
1σ   if ix  = 1   (the only other possibility). 

 
Suppose that 2

0σ , 2
1σ  and all N covariate values ix  are given. Also 

suppose there is a priori ignorance regarding µ .  
 
Find a simple expression for the predictive distribution of the finite 
population mean y . Then calculate the predictive mean and 95% 
predictive interval for y  if: 
    0σ  = 0.08, 1σ = 1.2, (2.1, 4.9, 2.3,2.0,0.2)sy ′=  
 (0,1,0,0,1, 1,1,1,0,0, 1,1,1,1,0, 0,1)x ′= . 
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Note: We have here defined a type of stratification; the finite 
population is assumed to consist of two strata with different variances 
but the same underlying mean in both strata. 
 
Solution to Exercise 10.3 
 
Let 0n  denote the number of covariate values ix  in the sample (of size n) 
which are 0, and  let  1n  be the number which are 1. Likewise, let 0m  
denote the number of covariate values ix  in the nonsample (of size 
m N n= − ) which are 0, and let 1m  be the number which are 1. 
 
(Thus, 1 1

n
i in x== ∑ , 0 1n n n= − , 1 1

N
i n im x= += ∑  and 0 1m m m= − .)  

 
Then, without loss of generality, re-order the finite population values in 
such a way that (0,...,0,1,...,1)sx ′=  and (0,...,0,1,...,1)rx ′= .  
 
(Thus, in each of the sample and nonsample vectors, place the values 
with covariate 0 first, and place the values with covariate 1 last.) 
 
With this setup, the Bayesian model is:     
 ( | ) ~ ( , )Ny N Xβ β Σ  
 ~ ( , )pNβ δ Ω , 
where:   
   p = 1, β µ≡ ,  0δ = , Ω = ∞      
  1NX =  (since the covariates do not affect the means)  
   

0 1 0 1

2 2 2 2
0 1 0 1( 1 , 1 , 1 , 1 )n n m mdiag σ σ σ σ′ ′ ′ ′Σ =     

  (a matrix with zeros everywhere except for 
  2 2 2 2 2 2 2 2

0 0 1 1 0 0 1 1,..., , ,..., , ,..., , ,...,σ σ σ σ σ σ σ σ       
   along the main diagonal). 
  
Then  
 ˆ( | ) ~ ( , )s py N Dβ β ,  
where: 
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 1 1 1 1 1 1( ) ( 1 1 )s ss s s ss sD X X− − − − − −′ ′= Ω + Σ = ∞ + Σ  

  ( )

12
0

2
0

2
1

2
1

1
1 1

1

σ

σ
σ

σ

−
−

−

−

−

  
  
       =       

   
      



 



  ( )
1

2 2 2 2
0 0 1 1

1

1
σ σ σ σ

−

− − − −

  
  =   

  
  

    

  2 2
0 0 1 1

1
n nσ σ− −=

+
 

 
 
 1 1ˆ ( )s ss sD X yβ δ− −′= Ω + Σ   1 1( 0 1 )s ss sD y− −′= ∞ + Σ  

   ( )

2
0

12
0

2
1

2
1

1 1

n

y
D

y

σ

σ
σ

σ

−

−

−

−

  
  
       =       

   
      



 



 

 2 2
0 0 1 1( )s T s TD y yσ σ− −= + . 

 
Note: Here,  

 
0

0
1

n

s T i
i

y y
=

= ∑   

denotes the total of the sample values with covariate 0ix = , and  

 
0

1
1

n

s T i
i n

y y
= +

= ∑    

denotes the total of the sample values with covariate 1ix = . 
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Next, * *( | ) ~ ( , )r s my y N E V , where m N n= −  and: 

 1
*

ˆ ˆ ˆ ˆ( ) 1 0 1r rs ss s s r rE X y Xβ β β β−= + Σ Σ − = + =  

 1 1 1
* ( ) ( )rr rs ss sr r rs ss s r rs ss sV X X D X X− − − ′= Σ − Σ Σ Σ + − Σ Σ − Σ Σ  

  

2
0

2
0

2
1

2
1

0 (1 0) (1 0)r rD

σ

σ
σ

σ

 
 
 
 

′= − + − − 
 
 
  
 





 

  

2
0

2
0

2
1

2
1

1 1

1 1
D

σ

σ
σ

σ

 
 
      = −      

  
  
 





  





. 

 

Thus ( )* *( | ) ~ ,sy y N e v , where:  

 ( ){ } { }*
*

1 1 1ˆ ˆ1 1 1sT r
sT r sT

y Ee y y m
N N N

β β
′+

= = + = +  

 ( )*
* 2 2

1 1 1 1 1r rVv
N N
′

= = 
 

   

2
0

2
0

2
1

2
1

1 1 1

1 1 1
D

σ

σ
σ

σ

  
  
            × −            

     
      





   





 

 ( ) ( )2 2 2 2
0 0 1 12

1
1

1
D m m

N
σ σ σ σ

 
  = −   
 
 

     

 2 2 2
0 0 1 12

1 ( )m m Dm
N

σ σ= + − . 
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In summary, we have that ( )* *( | ) ~ ,sy y N e v , where: 

 *

ˆ
sTy me

N
β+

= , 
    

m N n= − ,    2 2
0 0 1 1

ˆ ( )s T s TD y yβ σ σ− −= +  

 2 2
0 0 1 1

1D
n nσ σ− −=

+
, 

2 2 2
0 0 1 1

* 2

m m m Dv
N

σ σ+ −
= . 

 
Numerically, we are given: 
 0σ  = 0.08,  1σ  = 1.2,   (2.1, 4.9, 2.3,2.0,0.2)sy ′=   (thus  n = 5) 
 (0,1,0,0,1, 1,1,1,0,0, 1,1,1,1,0, 0,1)x ′=  
   (thus m = 12 and N = n + m = 17) 
 (0,1,0,0,1)sx ′= ,  (1,1,1,0,0, 1,1,1,1,0, 0,1)rx ′= . 
 
We now re-order the sample and nonsample values appropriately and so 
redefine: 
  (2.1, 2.0, 2.3, 4.9,0.2)sy ′=  

  (0,0,0,1,1)sx ′=  

  (0,0,0,0,1, 1,1,1,1,1, 1,1)rx ′= . 
 

Note: We have merely swapped units 2 and 4 in both sy  and sx , 
respectively, so that all units with covariate 0 appear first and all units 
with covariate 1 appear last. We have also written the nonsample 
covariate vector rx  with all four zero values listed at the beginning. 

 
We see that:     
 0n  = 3, 1n  = 2,    0m  = 4, 1m  = 8 

 0 2.1 2.0 2.3s Ty = + +  = 6.4,     1 4.9 0.1 5.1s Ty = + = ,         

 6.4 5.1sTy = +  = 11.5 

 0sy  = 6.4 /3 = 2.1333,     1sy  = 5.1/2 = 2.55,       

 sy  = 11.5/5 = 2.3. 
 
Thereby we obtain ( )* *( | ) ~ ,sy y N e v , where: 

 2 2 2 2
0 0 1 1

1 1
3 / 0.08 2 /1.2

D
n nσ σ− −= =

+ +
 = 0.0021270 
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 2 2 2 2
0 0 1 1

ˆ ( ) 0.0021270(6.4 / 0.08 5.1 /1.2 )s T s TD y yβ σ σ− −= + = +   
          = 2.1345 

 *

ˆ 11.5 12 2.1345
17

sTy me
N

β+ + ×
= =  = 2.1832 

 

 
2 2 2 2 2 2

0 0 1 1
* 2 2

4 0.08 8 1.2 12 0.0021250
17

m m m Dv
N

σ σ+ − × + × − ×
= =   

      = 0.038890. 
 
Thus the predictive mean of the finite population mean y  is β̂  = 2.13,  
and the 95% predictive interval for y  is  * *( 1.96 )e v±  = (1.80, 2.57). 
 
R Code for Exercise 10.3 
 
options(digits=4) 
sig0=0.08; sig1=1.2; ys = c(2.1,2.0,2.3,4.9,0.2); n=length(ys) 
xs=c(0,0,0,1,1); xr = c(0,0,0,0,1,   1,1,1,1,1,   1,1); m=length(xr); N = n+m 
n1=sum(xs);  n0=n-n1;    m1=sum(xr); m0=m-m1 
c(n,n0,n1,    m,m0,m1,   N) # 5  3  2     12  4  8     17 
ysT=sum(ys); ys1T=sum(ys*xs); ys0T=ysT-ys1T 
ysbar=ysT/n; ys1bar=ys1T/n1;   ys0bar=ys0T/n0 
c(ys0T,ys1T,ysT,   ys0bar,ys1bar,ysbar)  
 # 6.400  5.100 11.500  2.133  2.550  2.300 
 
D = 1/(   n0/ sig0^2 + n1/ sig1^2   ); betahat = D*(ys0T/ sig0^2 + ys1T/ sig1^2 ) 
estar=(1/N)*(  ysT+m*betahat  );     
vstar=(1/N^2)*(m0* sig0^2+m1* sig1^2-D*m^2) 
c(D,betahat,estar,vstar) # 0.002127 2.134564 2.183222 0.038890 
hpdr=estar+c(-1,1)*qnorm(0.975)*sqrt(vstar);   c(hpdr) # 1.797 2.570 
 
10.7 The normal-normal-gamma finite  
population model 
 
For the models so far considered in this chapter, the superpopulation 
variance 2σ  parameter or variance-covariance matrix parameter Σ  has 
been assumed to be known.  
 
If this parameter were unknown, as might typically be the case in 
practice, then an estimate could be computed from the data via some 
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method (which need not necessarily be Bayesian) and substituted into 
the equations derived.  
 
This strategy, which may be considered an example of empirical Bayes 
techniques, may sometimes work well, especially if based on a 
sufficiently large sample size. 
 
For example, recall that in the case of no covariates, with the 
superpopulation variance 2σ known, the 1 α−  CPDR for y   is  

 /2 1s
ny z
Nnα

σ 
± − 

 
. 

 
Now suppose that n is large and we estimate 2σ  by the sample variance, 

 2 2

1

1 ( )
1

n

i s
i

s y y
n =

= −
− ∑ . 

 
Then the result is the same as the classical design-based CI one would 
use in the same situation of a large sample size. 
 
However, this strategy will not work well generally. For example, if n is 
small then it will lead to an interval which has a frequentist coverage 
well below the intended level of 1 α− . In such cases, the problem could 
be addressed to some extent by applying an adjustment which reflects 
uncertainty regarding the unknown variance parameter. However, the 
nature of this type of adjustment would be ad hoc and lead to possibly 
other problems with the inference. 
 
Perhaps the best way to deal with uncertainty regarding the variance 
parameter is to incorporate it into the finite population model as yet 
another random variable with its own  prior distribution, i.e. to add 
another level to the hierarchical structure of that model. This is the 
approach we will now take. Note that parts of the exposition below will 
be a review of material already covered in previous chapters. 
 
With the above in mind, and with quantities as defined previously, we 
define the normal-normal-gamma finite population model as follows: 

 ( | , ) ~ ( , / )Ny N Xβ λ β λΣ  
 ( | ) ~ ( , )pNβ λ δ Ω  
 ~ ( , )Gλ η τ . 
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A problem with this model is that is involves an additional nuisance 
parameter to deal with relative to the normal-normal finite population 
model, namely λ . This means that the predictive pdf of the nonsample 
vector cannot be obtained so easily.  
 
That density is now  

 ( | ) ( , , | ) ( , , )r s r sf y y f y y d d f y d dβ λ β λ β λ β λ= ∝∫ ∫ ∫ ∫ , 

                 (10.7) 
where  ( , , ) ( ) ( | ) ( | , )f y f f f yβ λ λ β λ β λ=   

       1 11exp ( ) ( )
2

eη τλλ β δ β δ− − − ′∝ × − − Ω − 
 

 

     /2 11exp ( ) ( )
2

N y X y Xλ λ β β− ′× − − Σ − 
 

 

is the joint density of all random variables involved in the model, 
namely the N finite population values, 1,..., Ny y , and the 1p +  model 
parameters, namely λ , 1,..., pβ β . 
 
In an attempt to perform the second double integral at (10.7) (which is 
actually a ( 1)p + -fold integral), we may first integrate with respect to λ  
and obtain 

 
1

1 /2

exp{ (1 / 2)( ) ( )}( | )
[ (1 / 2)( ) ( )]r s Nf y y d

y X y X η

β δ β δ β
τ β β

∞ −

− +
−∞

′− − Ω −
∝

′+ − Σ −∫   

(after recognising a gamma density in λ ), or first integrate with respect 
to β  and obtain 

 
/2 1

1
1 1

0

1( | ) exp
det( ) 2

N

r sf y y y y
X X

ηλ λ τ
λ

∞ + −
−

− −

  ′∝ × − + Σ  ′Ω + Σ  ∫
 

 

1 1 1 1 1 1 1( ) ( ) ( )X y X X X y dδ λ λ δ λ λ− − − − − − − ′ ′ ′ ′+ Ω + Σ Ω + Σ Ω + Σ 


 

(after recognising a multivariate normal density in β ). 
 
Either way, the remaining integral is in general impossible to perform 
analytically, and the posterior predictive distributions of the nonsample 
vector and linear combinations of that vector (such as the finite 
population mean and total) are not normally distributed. However, there 
is an important special case which simplifies matters considerably. 
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10.8 Special cases of the normal-normal- 
gamma finite population model 
 
Theorem 10.1: Suppose there is priori ignorance regarding β  and it is 
appropriate to set 0δ =  and Ω = ∞ , so that  
 ( | ) ( ) 1,f fβ λ β β∝ ∝ ∈ℜ . 
    
Then the predictive distribution of the finite population mean is given by 

 ~ (2 )s
y a y t n p

b
η − 
+ − 

 
, 

where: 
1ˆ ˆ1 [ ( )]sT r r rs ss s sy X y Xa

N
β β−′+ + Σ Σ −

=   

 
1 1

2
2

ˆ ˆ1 [ ]1 [2 ( ) ( )]
(2 )

r rr rs ss sr r s s ss s sADA y X y Xb
n p N
τ β β

η

− −′ ′ ′Σ −Σ Σ Σ + + − Σ −
=

+ −
 1ˆ

s ss sDX yβ −′= Σ ,      1 1( )s ss sD X X− −′= Σ ,    1
r rs ss sA X X−= −Σ Σ .  

 

Note: Here, β̂  is the MLE of β , and also the posterior mean of β  
under the simpler normal-normal finite population model with 
improper prior ( ) 1,f β β∝ ∈ℜ  (and 2σ  known). 

 
Theorem 10.1 can be proved by first noting that:  
 
     (a) ( | )syλ  is gamma (with parameters that can be obtained by  

 integrating ( , | )sf yβ λ  with respect to β ), and 
 
     (b) ( | , )sy y λ  is normal (with parameters that can be obtained by 
 examining the normal-normal finite population model above). 
  
Using these two distributions, one can solve for the predictive density of 
the finite population mean via the identity 

 ( | ) ( , | ) ( | , ) ( | )s s s sf y y f y y d f y y f y dλ λ λ λ λ= =∫ ∫ . 

 

A special case of Theorem 10.1 which assumes a priori ignorance of λ  
by way of setting 0η τ= =  can be found in Royall and Pfeffermann 
(1982). 
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If we further assume conditional independence (which may expressed by 
writing NIΣ = ) and no auxiliary information ( 1p =  and 1NX = ), the 
result in Theorem 10.1 reduces to  

 ~ ( 1)
( / ) 1 /

s
s

s

y y y t n
s n n N

 −
−  − 

, 

where  2 2

1

1 ( )
1

n

s i s
i

s y y
n =

= −
− ∑   (the sample variance) . 

 
This result was already proved in a previous chapter without the 
involvement of vectors and matrices. Again note that the result leads to 
point estimates and interval estimates which are identical to those which 
one might construct using a design-based approach (see Cochran, 1977, 
Section 2.8).  
 
Exercise 10.4 Proof of Theorem 1 
 
Prove Theorem 10.1 above. 
 
Solution to Exercise 10.4 
 
Using the procedure outlined above, we first derive the unconditional 
pdf of λ  as follows: 

  1 2
1( | ) ( , | ) 1 exp

2

n

s sf y f y d e Q dη τλ λλ β λ β λ λ β− −  = ∝ × × − 
 ∫ ∫ , 

where  
  1

1 ( ) ( )s s ss s sQ y X y Xβ β−′= − Σ −  
       1 1 1 1

s ss s s ss s s ss s s ss sy y y X X y X Xβ β β β− − − −′ ′ ′ ′ ′ ′= Σ − Σ − Σ + Σ . 
 
Now equate 1Q  with 

 2 ( ) ( )Q T M T Rβ β′ ′= − − +       (where R stands for ‘remainder’) 
       M MT T M T MT Rβ β β β′ ′ ′ ′= − − + + . 
 
We see that  
 1

s ss sM X X−′= Σ  and 1
s ss sMT X y−′= Σ , 

so that   
 1 1 1 1( ) ( )s ss s s ss sT M MT X X X y− − − −′ ′= = Σ Σ . 
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Note: Here,  T is the same as β̂  in Theorem 10.1. 

 
Also, 1 1( ) ( )s ss s s s ss s sR y y T MT y X T y X T− −′ ′ ′= Σ − = − Σ − . 
 
Note: This is easily proved by noting that the RHS here is 
 1 1 1 1

s ss s s ss s s ss s s ss sy y y X T T X y T X X T− − − −′ ′ ′ ′ ′ ′Σ − Σ − Σ + Σ  
where    
 1 1 1( )s ss s s ss s s ss sy X T y X T T X y− − −′ ′ ′ ′ ′Σ = Σ = Σ     
(since 1

s ss sy X T−′Σ  is a scalar quantity), and where  

     1 1
s ss s s ss sT X X T T MT T X X− −′ ′ ′ ′ ′Σ = = Σ 1 1( )s ss sX X− −′Σ 1 1

s ss s ssX y T X y− −′ ′ ′Σ = Σ , 
so that the RHS equals  
 1 1

s ss s s ss sy y T MT T MT T MT y y T MT− −′ ′ ′ ′ ′ ′Σ − − + = Σ − . 

 
Thus 

     [ ]1 2( | ) 1 exp ( ) ( )
2

n

sf y e T M T R dη τλ λλ λ λ β β β− −  ′ ′∝ × × − − − + 
 ∫  

          
1

2 exp
2

n R I
η

λ λ τ
+ −   = − + ×    

, 

where     

 
111exp ( ) ( )

2
MI T T dβ β β
λ

−−  ′ ′= − − −     
∫  

    

1
1 2

2(2 ) det
p Mπ

λ

−
−  

=   
  

   

   (using standard multivariate normal theory) 

    2
p

λ∝     (since 1
s ss sM X X−′= Σ is a p by p matrix). 

 
It follows that     

 
1 1

2 2 2( | ) exp exp
2 2

n p A

s
R Bf y

η
λ λ λ τ λ λ

+ + − −    ∝ − + = −        
, 

where: 
 2A n pη= + − ,   2B Rτ= + ,    1( ) ( )s s ss s sR y X T y X T−′= − Σ − . 
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We thereby arrive at the required distribution,           
  ( | ) ~ ( / 2, / 2)sy G A Bλ , 
which may also be expressed by writing      
 2( | ) ~ ( / 2,1 / 2) ( )sB y G A Aλ χ= . 
 
Having derived the posterior dsn ofλ , we now observe that   
 0 0( | , ) ~ ( , )sy y N e vλ , 
where:   

 0 0
1 ( 1 )sT re y E
N

′= + ,          1
0 ( )r rs ss s sE X T y X T−= + Σ Σ −   

 0 0
0 2

1 1r rV wv
N λ λ
′

= ≡ ,          0
0 2

1 1r rVw
N
′

= ,          

 1
0V G AM A− ′= +  

 1
rr rs ss srG −= Σ −Σ Σ Σ ,             1

r rs ss sA X X−= −Σ Σ . 
 
Note: We have here simply applied the theory of the normal-normal 
finite population model with Ω = ∞  and with quantities such as srΣ  

and ssΣ  replaced by /sr λΣ  and /ss λΣ , etc. 

 
Therefore    

 ( | ) ( | , ) ( | )s s sf y y f y y f y dλ λ λ= ∫  

     
1 122 2

0
0

exp ( ) exp
2 2

A By e d
w
λλ λ λ λ

−   ∝ − − × −   
  

∫  

     
1 21

02

0

( )exp
2 2

A B y e d
w

λ λ λ
+
−   − = − +  

   
∫  

 

1
2 2

0

0

( )
2 2

A

y eB
w

+ − 
  −

∝ + 
 

 

1
2 2

0

0

( )1

A

y e
Bw

+ − 
  −

∝ + 
 

 

 

1
2 2

0

0

( )
/

1

A

y e
Bw A

A

+ − 
   −

  
  ∝ +

 
 
  

 

1
2 2

0

0 /
1

A

y e
Bw A

A

+ − 
   −     ∝ + 

 
 
  

. 
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It follows that 0

0

~ ( )s
y e y t A

h
 −
  
 

,  where 2 0
0

Bwh
A

= . 

 
Here: 2A n pη= + −     (which is the same as the degrees of freedom in  
        the t distribution in Theorem 10.1) 
 

 
1

0 0
1 [ ( )]1 ( 1 ) sT r r rs ss s s

sT r
y X T y X Te y E

N N

−′+ + Σ Σ −′= + =        

        (which is the same as a in Theorem 10.1). 
 

 2 0
0 0 2

1 12
2

r rVB Rh w
A n p N

τ
η

′+
= = ×

+ −
 

 

       
1

1
2

[2 ( ) ( )]1 ( )1
(2 )
s s ss s s

r r
y X T y X T G AM A

n p N
τ

η

−
−′+ − Σ − ′ ′= +

+ −
 

 

          
1

2

[2 ( ) ( )]
(2 )
s s ss s sy X T y X T

n p N
τ

η

−′+ − Σ −
=

+ −
 

1 1 1 1 11 ( )( ) ( ) 1r rr rs ss sr r rs ss s s ss s r rs ss s rX X X X X X− − − − − ′ ′ ′× Σ −Σ Σ Σ + −Σ Σ Σ −Σ Σ 
 

 

              (which is the same as 2b  in Theorem 10.1). 
 
That completes the proof of Theorem 10.1. 
 
10.9 The case of an informative prior on the  
regression parameter 
 
If there is some prior information available regarding the regression 
parameter β  then Ω < ∞  and Theorem 10.1 above cannot be applied. 
So the problem of inference on the finite population mean y  becomes 
much more difficult.  
 
However, that difficulty can be easily ‘sidestepped’ via Monte Carlo 
methods based on a random sample from the predictive distribution of 
y , namely  

 (1) ( ),..., ~ ( | )J
sy y iid f y y . 
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With such a sample we can, for example, estimate ’sy  predictive mean, 
namely ˆ ( | )sy E y y= , by the average of (1) ( ),..., ,Jy y  and estimate ’sy

95% CPDR by the empirical 0.025 and 0.975 quantiles of (1) ( ),..., Jy y . 
 
This then raises the question of how the Monte Carlo sample can be 
obtained. In this context, we may employ the method of composition via 
the equation 
 ( , , | ) ( | , , ) ( , | )s s sf y y f y y f yβ λ β λ β λ= . 
 
Thus, we first generate a sample from the joint posterior distribution the 
two parameters, 
 (1) (1) ( ) ( )( , ),..., ( , ) ~ ( , | )J J

siid f yβ λ β λ β λ .  
 
and then for each 1,...,j J=  we sample  

 
( )

( ) ( ) ( )
2 ( )

1 1 1 1~ ( | , , ) ~ ,
j

j j j sT r r r r rr r
s j

y Xy f y y N
N N

ββ λ
λ

′ ′ + Σ
 
 

.     

 
This in turn raises the question of how to obtain the sample from 

( , | )sf yβ λ . In this case an ideal solution is to apply a Gibbs sampler 
defined by the following conditional distributions: 
 
     1. ( | , ) ~ ( , )s py N Dβ λ β ,    

          where:  1 1( )s ss sD X yβ δ λ− −′= Ω + Σ   

   1 1 1( )s ss sD X Xλ− − −′= Ω + Σ  
 

     2.  11( | , ) ~ , ( ) ( )
2 2s s s ss s s
ny G y X y Xλ β η τ β β− ′+ + − Σ − 

 
.    

 
Note: The first of these distributions derives directly from the normal-
normal finite population model with srΣ  and ssΣ  replaced by /sr λΣ  

and /ss λΣ , etc.  
   
The second conditional is obtained by noting that 
 ( | , ) ( , | )s sf y f yλ β λ β∝  
         ( , , )sf yλ β∝  
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        ( ) ( | ) ( | , )sf f f yλ β λ λ β=  

        1 11exp ( ) ( )
2

eη τλλ β δ β δ− − − ′∝ × − − Ω − 
 

 

                    2 1exp ( ) ( )
2

n

s s ss s sy X y Xλλ β β− ′× − − Σ − 
 

 

       
1 12 1exp ( ) ( )

2

n

s s ss s sy X y X
λ η
λ λ τ β β

+ − −  ′∝ − + − Σ −    
. 

 
Exercise 10.5 Practice with the normal-normal-gamma finite  
population model 
 
In the context of the normal-normal-gamma finite population model, 
suppose we obtain a sample of size  n = 5, with values given by  
 1( ,..., )s ny y y ′=  = (5.6, 2.3, 8.4, 5.1, 4.3)' 
via SRSWOR from a finite population of size N = 15. 
 
Find the predictive mean and 95% central predictive density region for 
the finite population mean y  in each of the following scenarios. 
 
(a) There are no covariates, the population values are conditionally iid 
and there is no prior information available regarding the model 
parameters. 
 
(b) The population values are conditionally independent, the ith 
population value has mean ix β  and variance /ix λ  (i = 1,...,N), the 
population covariate vector is 
     1( ,..., )Nx x x ′= = (9.3, 4.6, 15.0, 11.2, 7.8,    2.4, 6.6, 3.0, 2.1, 7.3,  
            5.5, 8.0, 2.4, 4.2, 5.5)', 
and there is no prior information regarding the model parameters. 
 
(c) There are no covariates, the population values are conditionally iid, 
the prior on the normal mean is normal with mean 10 and variance 2.25, 
and (independently) the prior on the normal precision parameter (inverse 
of the normal variance) is gamma with mean 2 and variance 1/2 (or 
equivalently, gamma with parameters 8 and 4). 
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Solution to Exercise 10.5 
 
(a) In this case, Theorem 10.1 reduces to  

 ~ ( 1)
( / ) 1 /

s
s

s

y y y t n
s n n N

 −
−  − 

,  

where: 1
1 ( ... )s ny y y
n

= + +  = 5.140  

 2 2

1

1 ( )
1

n

s i
i

s y y
n =

= −
− ∑  = 4.9030. 

 
So the required predictive mean and 95% predictive interval of y  are  

 sy  = 5.140   and  /2 ( 1) 1s
s

s ny t n
n Nα

 
± − −  

 
 = (2.8951, 7.3849). 

 
(b) In this case (a variation of Bayesian ratio estimation as discussed 
earlier) we apply Theorem 10.1 with:   

 p = 1,  0η τ= = , X x= ,  
1

( )

N

x
diag x

x

 
 Σ = =  
 
 

 . 

 
Instead of deriving a ‘simple’ general algebraic expression for the 
predictive distribution of the finite population mean in this case, we can 
obtain the specific required result more quickly by directly applying the 
formulae in Theorem 10.1 using R.  An advantage of this approach is 
that it leads us to write a general algorithm in R which can be 
straightaway used in other situations requiring Theorem 10.1. Also, the 
algorithm can be used to check our answer to part (a).   
 
Thereby we obtain the result that     

 ~ ( )s
y a y t c

b
 − 
 
 

, 

where a = 3.3945, b = 0.1159 and c = 2 n pη + −  = 4. 
 
So the required predictive mean and 95% predictive interval of y  are  

sy  = 3.3945 and ( )/2 ( )a t c bα±  = (3.0725, 3.7164). 
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Note: This inference is lower than that in (a) because the mean of the 
covariate values in the nonsample is 4.7, which is much lower than 
their mean in the sample, 9.58. The regression  coefficient β  in our 
model is estimated as 0.5365, reflecting the positive linear relationship 
between the x and y values in the sample. 
     
(c) In this case, a good option is to first employ the Gibbs sampler to 
generate a random sample from the joint posterior distribution of β  and 
λ , with: 
  p = 1, δ  = 10, 9Ω = , 8,η =  4τ = , 1NX = , (1 )NdiagΣ = . 
 
The two conditional distributions are:  
 
     1. ( | , ) ~ ( , )s py N Dβ λ β ,    
         where:  
    1 1( )s ss sD X yβ δ λ− −′= Ω + Σ   

     1 1 1( )s ss sD X Xλ− − −′= Ω + Σ  
 

     2.  11( | , ) ~ , ( ) ( )
2 2s s s ss s s
ny G y X y Xλ β η τ β β− ′+ + − Σ − 

 
.    

 
But, by analogy with the simpler normal-normal model and normal-
gamma model, these conditionals must be equivalent to: 
 

1. 2( | , ) ~ ( , )sy N λ λβ λ β σ , 
     where:   

  0(1 ) sk k yλ λ λβ β= − +   

  2 k
n
λ

λσ λ
= , 2

01 / ( )
nk

nλ λσ
=

+
   

  0β  = 10,   0σ  = 3 
 

     2.  2( | , ) ~ ,
2 2s
n ny G sβλ β η τ + + 

 
,   

           where   

  2 2

1

1 ( )
n

i
i

s y
n 



  . 
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Either way, implementing this Gibbs sampler for 10,100 iterations with a 
burn-in of 100 we obtain the trace plots and histograms for β  and λ  in 
Figure 10.2. (The two subplots on the left are for β , and the two on the 
right are for λ . The histograms do not include the first 100 iterations.)  
 
Thinning the last 10,000 values of each parameter by a factor of 10 we 
obtain an approximately random sample of size J = 1,000 from the joint 
posterior distribution of the two parameters, namely 
 ( , ) ~ ( , | )j j siid f yβ λ β λ , j = 1,…,J.  
 
The sample ACFs over the entire sample of 10,000 and over the thinned 
sample of 1,000 are shown for each of β  and λ  in Figure 10.3. (E.g. the 
top-left subplot is for β  over the entire sample of 10,000.) The thinning 
process has virtually eliminated all signs of autocorrelation. 
 
 
Figure 10.2 Trace plots and histograms 
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Figure 10.3 Sample ACFs  
(Top two: J = 10,000; Bottom two: J = 1,000) 

 
 
 
Using our sample from the joint posterior of the two parameters we now 
generate a sample from the predictive distribution of the nonsample 
mean by drawing 

 ( ) 1~ ( | , , ) ~ ,
( )

j
r r s j j j

j

y f y y N
N n

β λ β
λ

 
  − 

 for each  j = 1,…,J. 

 
Note: The result is  
 (1) ( ),..., ~ ( | )J

r r r sy y iid f y y , 
by virtue of the method of composition and the equation  
 ( , , | ) ( | , , ) ( , | )r s r s sf y y f y y f yβ λ β λ β λ= . 

 
We next form a random sample from the predictive distribution of the 
finite population mean by calculating    

 ( )( ) ( )1 ( )j j
s ry ny N n y

N
= + −  for each  j = 1,…,J. 

 

Note: The result is (1) ( ),..., ~ ( | )J
sy y iid f y y . 
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We now estimate y  (and s’y  predictive mean, ˆ ( | ))sy E y y=  by   

 ( )

1

1 J
j

j
y y

J =

= ∑  = 5.555, 

with 95% CI for ŷ  equal to    

 ( ) 2

1

11.96 ( )
( 1)

J
j

j
y y y

J J =

 
± −  − 

∑  = (5.526, 5.584). 

 
We also estimate the 95% CPDR for y  by (4.685, 6.633), where the 
bounds of this interval are the empirical 0.025 and 0.975 quantiles of  

(1) ( ),..., Jy y . 
 
Another approach to performing Monte Carlo inference on y  is via 
Rao-Blackwell methods. This approach does not require the sample 

(1) ( ),..., J
r ry y  and should provide more accurate Monte Carlo estimates.  

 
The idea is based on the identities: 

 ( | ) ( , , | )s sf y y f y y d dβ λ β λ= ∫  

     ( | , , ) ( , | )s sf y y f y d dβ λ β λ β λ= ∫  

 { },
ˆ ( | ) ( | , , )s s sy E y y E E y y yβ λ β λ= =  

 { },( | ) ( | , , )s s sf y y E f y y yβ λ β λ= . 
 
Now note once again that: 

 ( )1 ( )s ry ny N n y
N

= + −        

 1( | , , ) ~ ,
( )r sy y N
N n

β λ β
λ

 
 − 

. 

 
So we now define: 
 ( , ) ( | , , )se E y yβ λ β λ=   

  ( )1 ( ) ( | , , )s r sny N n E y y
N

β λ= + −  

  ( )1 ( )sny N n
N

β= + −  
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 ( , ) ( | , , )sv V y yβ λ β λ=  

  
2

2

( ) ( | , , )r s
N n V y y

N
β λ−

=  

  
2

2

( ) 1
( )

N n
N N n λ
−

= ×
− 2

N n
N λ
−

=  

 ( )1( , ) ( )j j j s je e ny N n
N

β λ β= = + −      

 2( , )j j j
j

N nv v
N

β λ
λ
−

= = . 

 
Note: Since ( , )e β λ  does not depend on λ , we may also write ( , )e β λ
as ( )e β . Likewise, since ( , )v β λ  does not depend on β , we may also 
write ( , )v β λ  as ( )v λ . 

 
Then the Rao-Blackwell estimate of y  (and  ˆ ( | ))sy E y y=  is 

 
1

1 J

j
j

e e
J =

= ∑  = 5.557, 

with 95% CI for ŷ  working out as 

 2

1

11.96 ( )
( 1)

J

j
j

e e e
J J =

 
± −  − 

∑  =  (5.534, 5.581). 

 
Note: The width of this Rao-Blackwell CI is 5.581 – 5.534 = 0.046, 
which (as could be expected) is less than that of the earlier CI, namely 
5.584 – 5.526 = 0.058. 
 
We can now also obtain the Rao-Blackwell estimate of the CPDR for y .  
 
First, the Rao-Blackwell estimate of the predictive density of y  (that is, 
of ( | ))sf y y  is 

 
1

1( | ) ( | , , )
J

s s j j
j

f y y f y y
J

µ θ
=

= ∑  

    2

1

1 1 1exp ( )
22

J

j
j jj

y e
J vv π=

  = − − 
  

∑ . 
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Note: The simplest and most ‘basic’ estimate of ( | )sf y y  is the 

‘histogram’ estimate, ˆ ( | )sf y y , obtained by smoothing a histogram of 
the sampled values (1) ( ),..., ~ ( | )J

sy y iid f y y . 

 
The Rao-Blackwell estimate of the 95% CPDR of y  is (L,U), where L 
and U satisfy:  

 2

1

1 1 1exp ( ) 0.025
22

L J

j
j jj

y e dy
J vv π=−∞

  − − = 
  

∑∫  

 2

1

1 1 1exp ( ) 0.975
22

U J

j
j jj

y e dy
J vv π=−∞

  − − = 
  

∑∫ . 

 
To obtain L we rewrite the first of these two equations as 

 
1

1 ( ) 0.025
J

j
j

P X L
J =

< =∑ , 

where ~ ( , )j j jX N e v , or equivalently as  

 
1

1 0.025
J

j

j j

L e
J v=

 −
 Φ =
 
 

∑     (where Φ  is the standard normal cdf). 

 
We can now solve this equation in a number of ways, for example by 
minimising the function  

 

2

1

1( ) 0.025
J

j

j j

L e
g L

J v=

  −  = Φ −     
∑     

   (whose minimum is 0 at the required L), 
e.g. using the optim() function in R.  
 
Likewise we can obtain U by using optim() to minimise 

 

2

1

1( ) 0.975
J

j

j j

L e
h U

J v=

  −  = Φ −     
∑  

   (whose minimum is 0 at the required U). 
 
Note: We could also obtain L and U using trial and error or the 
Newton-Raphson algorithm. 
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Implementing the above procedure we arrive at the required Rao-
Blackwell estimate of the central predictive region for the finite 
population mean: (L,U) = (4.707, 6.542).  
 
Note: This is similar to the previous ‘histogram’ estimate of the 
CPDR, (4.685, 6.633). 
  
Figure 10.4 shows a histogram of the J = 1,000 simulated values 

(1) ( ),..., ~ ( | )J
sy y iid f y y , together with the histogram estimate y  and 

the Rao-Blackwell estimate e  of ˆ ( | )sy E y y= . Also shown are the two 
corresponding 95% CIs for ŷ . The histogram is overlaid with the 
histogram estimate ˆ ( | )sf y y  and the Rao-Blackwell estimate ( | )sf y y  
of ( | )sf y y . It will be observed that the Rao-Blackwell estimate 
provides the smoother result. 
 

Figure 10.4 Inferences on the finite population mean 
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R Code for Exercise 10.5 
 
# (a)  
 
options(digits=4); N = 15; ys = c(5.6,2.3,8.4,5.1,4.3); n = length(ys) 
est=mean(ys);  ss2=var(ys);   varybar=(ss2/n)*(1-n/N);    tval= qt(0.975,n-1) 
cpdr=est+c(-1,1)*tval*sqrt(varybar) 
 
c(est,ss2,sqrt(ss2), varybar, sqrt(varybar),  tval,   cpdr)  
   # 5.1400 4.9030 2.2143 0.6537 0.8085 2.7764 2.8951 7.3849 
 
# (b) 
 
NNGFPM= function(eta=0, tau=0, alp=0.05, 
  ys= c(5.6,2.3,8.4,5.1,4.3), X=rep(1,15) ,  N=15, sigma=diag(rep(1,N))   )   
{ 
 
# This function performs inference under the normal-normal-gamma  
# finite population model. 
 
# Inputs: eta, tau,     alp,  ys,   X,  N,  sigma 
 
# Outputs: A list with $a, $b and $c indicating    (ybar-a)/b given ys ~  t(c) 
 
p=ncol(cbind(NA,X))-1;    n = length(ys);   c=2*eta+n-p 
 
ysT=sum(ys); Xs=cbind(NA,X)[1:n,][,-1]; Xr=cbind(NA,X)[(n+1):N,][,-1]  
sigmass=sigma[1:n,1:n];   sigmarr=sigma[(n+1):N,(n+1):N] 
sigmasr=sigma[1:n,(n+1):N];   sigmars=t(sigmasr) 
D=solve(t(Xs)%*%solve(sigmass)%*%Xs) 
beta=D%*%t(Xs)%*%solve(sigmass)%*%ys 
A=Xr-sigmars%*%solve(sigmass)%*%Xs;       oner=rep(1,N-n) 
 
a=(1/N)*(     ysT     +     t(oner)%*%     
   (     Xr%*%beta   +   sigmars%*%solve(sigmass)%*%(ys-Xs%*%beta)      )     ) 
 
b2=(1/(c*N^2)) * ( 2*tau + t(ys-Xs%*%beta)%*%solve(sigmass)%*%  
 (ys-Xs%*%beta)  ) *  t(oner)%*% 
 ( sigmarr-sigmars%*%solve(sigmass)%*%sigmasr + 
 A%*%D%*%t(A))   %*%  oner 
 
b=sqrt(b2); cpdr=a+c(-1,1)*qt(1-alp/2,c)*b 
list(a=a,b=b,c=c,beta=beta, cpdr=cpdr)    
} 
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# Test function by using it to check (a): 
res= NNGFPM();  c(res$a,res$b,res$c,res$beta, res$cpdr)  
    # 5.1400 0.8085 4.0000 5.1400 2.8951 7.3849     Same as in (a) OK 
 
# Apply function with covariate info: 
xvec=c(9.3, 4.6, 15.0,11.2, 7.8,    2.4, 6.6, 3.0, 2.1, 7.3,      5.5, 8.0, 2.4, 4.2, 
5.5) 
res= NNGFPM(X=xvec, sigma=diag(xvec))  
c(res$a,res$b,res$c,res$beta,res$cpdr)  
 # 3.3945 0.1159 4.0000 0.5365 3.0725 3.7164 
 
c(mean(xvec), mean(xvec[1:5]), mean(xvec[6:15]) ) # 6.327 9.580 4.700 
 
# (c) 
 
ys= c(5.6,2.3,8.4,5.1,4.3); ysbar=mean(ys); n = 5; N = 15; options(digits=4) 
 
GIBBS = function(J=1000,ys= c(5.6,2.3,8.4,5.1,4.3),  
 bet=1, lam=1,   bet0=10,  sig0=1.5,   eta=8, tau=4) 
{ 
betv=bet; lamv=lam;  sig02=sig0^2;   n=length(ys); ysbar=mean(ys);      
for(j in 1:J){ 
 klam=n/(n+1/(lam*sig02));     sig2lam=klam/(n*lam) 
 betlam=(1-klam)*bet0+klam*ysbar;     
 bet=rnorm(1,betlam,sqrt(sig2lam)) 
 s2bet=mean((ys-bet)^2); lam=rgamma(1,eta+n/2,tau+n*s2bet/2) 
 betv=c(betv,bet); lamv=c(lamv,lam)     } 
list(betv=betv,lamv=lamv)    
} 
 
set.seed(641);  res=GIBBS(J=10100); X11(w=8,h=5.5); par(mfrow=c(2,2)) 
plot(res$betv,type="l"); plot(res$lamv,type="l") 
hist(res$betv[-c(1:101)],prob=T,nclass=30);  
hist(res$lamv[-c(1:101)],prob=T,nclass=30) # Fig. 10.2 
 
betvec=res$betv[-c(1:101)][seq(10,10000,10)]; J = length(betvec); J # 1000 
lamvec=res$lamv[-c(1:101)][seq(10,10000,10)] 
acf(res$betv); acf(res$lamv);    acf(betvec); acf(lamvec) # Fig. 10.3 
 
betbar=mean(betvec); betci=betbar+c(-1,1)*qnorm(0.975)*sd(betvec)/sqrt(J) 
c(betbar,betci) # 5.766 5.731 5.801 
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set.seed(121);   yrbarvec=rnorm(J, betvec, 1/sqrt((N-n)*(lamvec))  ) 
yrbarbar=mean(yrbarvec);  
yrbarci= yrbarbar+c(-1,1)*qnorm(0.975)*sd(yrbarvec)/sqrt(J) 
yrbarcpdr=quantile(yrbarvec, c(0.025,0.975)) 
c(yrbarbar,yrbarci,yrbarcpdr) # 5.762 5.718 5.806 4.458 7.380 
 
ybarvec=(1/N)*(   n*ysbar + (N-n)*yrbarvec   ) 
ybarbar=mean(ybarvec);  
ybarci= ybarbar+c(-1,1)*qnorm(0.975)*sd(ybarvec)/sqrt(J) 
ybarcpdr=quantile(ybarvec, c(0.025,0.975)) 
c(ybarbar,ybarci,ybarcpdr) # 5.555 5.526 5.584 4.685 6.633 
ybarci[2]-ybarci[1] # 0.05849 
 
evec=(1/N)*(n*ysbar + (N-n)*betvec );    vvec=(N-n)/(N^2*lamvec) 
ebar=mean(evec);   eci=ebar+c(-1,1)*qnorm(0.975)*sd(evec)/sqrt(J) 
 
Lfun=function(L){    (  0.025-mean(pnorm(   (L-evec)/sqrt(vvec)    )    )    )^2   } 
     L = optim(par=3,fn=Lfun)$par;  L # 4.707  (ignore warning message) 
     mean(    pnorm(   (L-evec)/sqrt(vvec)      ))   # 0.025 OK 
 
Ufun=function(U){    (  0.975-mean(pnorm(   (U-evec)/sqrt(vvec)    )    )    )^2   } 
     U = optim(par=7,fn=Ufun)$par;  U # 6.542   (ignore warning message) 
     mean(    pnorm(   (U-evec)/sqrt(vvec)      ))   # 0.975    OK 
 
ecpdr=c(L,U);   c(ebar,eci,ecpdr)  # 5.557 5.534 5.581 4.707 6.542 
eci[2]-eci[1] # 0.04642 
 
X11(w=8,h=7); par(mfrow=c(1,1)) 
hist(ybarvec,prob=T,nclass=20,xlim=c(3.5,8), 
 xlab="ybar",ylab="density/relative frequency",main="") 
lines(density(ybarvec),lty=2,lwd=3,col="blue") 
abline(v=c(ybarbar,ybarci,ybarcpdr),lty=2,lwd=3,col="blue") 
 
ybarv=seq(3,8,0.01); fv=rep(NA,length(ybarv)) 
for(i in 1:length(ybarv))    fv[i] = mean(dnorm(ybarv[i], evec, sqrt(vvec))) 
lines(ybarv,fv,lty=1,lwd=2,col="red") 
abline(v=c(ebar,eci,ecpdr),lty=1,lwd=2,col="red") 
 
legend(3.4,0.9,c("Histogram","Rao-Blackwell"), 
 lty=c(2,1), lwd=c(3,2),col=c("blue","red"), bg="white") 
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CHAPTER 11 
Transformations and Other Topics 

 
11.1 Inference on complicated quantities  
 
So far, in the context of Bayesian finite population models specified by: 
         ( | , )f yξ θ  where ξ  is s or  I or L (as discussed earlier) 

     ( | )f y θ  where

1 1 1( , ) (( ,..., ), ( ,..., )) ( ,..., )s r n n N Ny y y y y y y y y+= = =     
          ( )f θ  where 1( ,..., )qθ θ θ= , 
we have been focusing primarily on two finite population quantities, the 
finite population total 1 ...T Ny y y= + +  and the finite population mean 

1( ... ) / /N Ty y y N y N= + + = .  
 
These are special cases of the class of linear combinations of the N 
population values 
 0 1 ... N Ny c cy c y= + + + , 
for which inference is often straightforward, such as in the context of the 
general normal-normal-gamma finite population model.  
 
We will now consider other inferential targets.  
 
Generally, suppose we are interested in the quantity ( , )g yψ θ= , where 
g is a potentially very complicated function of all q model parameters 
and all N finite population values. In such cases, we may adopt the 
following four-step strategy. 
 
Step 1. Obtain a sample from the posterior distribution of 1( ,..., ),qθ θ θ=

that is (1) ( ),..., ~ ( | )J iid f Dθ θ θ , where ( ) ( ) ( )
1( ,..., )j j j

qθ θ θ=  and where D 
is the data, typically defined as ( , )ss y  or ( , )I s  or ( , )sL y  as discussed 
previously, and whichever the case may be.  
 
Make use of special techniques if suitable, e.g. the method of 
composition and MCMC methods like the Gibbs sampler.  
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Step 2. Use the sample in Step 1 to generate a random sample from the 
predictive distribution of the nonsample vector 1( ,..., )r n Ny y y+= , that is 

(1) ( ),..., ~ ( | )J
r r ry y iid f y D , where ( ) ( ) ( )

1( ,..., )j j j
r n Ny y y+= . 

 
Make use of special techniques if required. 
 
Often, the sample can be obtained easily via the method of composition 
and the identity 
 ( , | ) ( | , ) ( | )r rf y D f y D f Dθ θ θ= , 
namely by sampling     
 ( ) ( )~ ( | , )j j

r ry f y D θ   
for each 1,...,j J= . 
 
In many cases, each sampled nonsample vector ( )j

ry  here can obtained 
by sampling 
 ( ) ( )~ ( | , )j j

i iy f y D θ⊥ ,   1,...,i n N= + , 
and then forming the vector according to 
 ( ) ( ) ( )

1( ,..., )j j j
r n Ny y y+= . 

 
Step 3. Form the completed population vector 
  ( ) ( ) ( ) ( )

1 1( , ) ( ,..., , ,..., )j j j j
s r n n Ny y y y y y y+= =  

and then calculate   
 ( ) ( ) ( )( , )j j jg yψ θ=   
for each 1,...,j J= . 
 
The result will be a sample from the posterior/predictive distribution of 
ψ , namely  
 (1) ( ),..., ~ ( | )J iid f Dψ ψ ψ . 
 
Step 4. Use the sample obtained in Step 3 to perform Monte Carlo 
inference on  ψ  in the usual way. Thus, estimate the posterior/predictive 
mean of ψ , namely 

 ˆ ( | ) ( | )E D f D dψ ψ ψ ψ ψ= = ∫      

(which may be impossible to obtain analytically), by the Monte Carlo 

sample mean ( )

1

1 J
j

jJ
ψ ψ

=

= ∑  (which is unbiased, in that ˆ( | )E Dψ ψ= ). 
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Also calculate the 1 α−  CI for ψ̂  given by  

 /2

s
z

J
ψ

αψ 
± 

 
,  where 2 ( ) 2

1

1 ( )
1

J
j

j
s

Jψ ψ ψ
=

= −
− ∑ . 

 
Also, estimate the 1 α−  central posterior/predictive density region 
(CPDR generally) for ψ  by /2 1 /2( , )Q Qα α− , where pQ  is the empirical p-

quantile of the sample (1) ( ),..., Jψ ψ . 
 
Also, estimate the entire posterior/predictive density of ψ , namely 

( | )f Dψ , by ˆ ( | )f Dψ , a smooth of a histogram of (1) ( ),..., Jψ ψ  
(obtained by adjusting the smooth parameters). 
 
Use Rao-Blackwell methods to improve precision, if possible and 
practicable. For example, suppose that q = 2, 1 2( , )θ θ θ= , 2( , )g yψ θ= , 
and 1( | , )f Dψ θ  has a simple form. Then, instead of using a ‘histogram 
estimate’ ˆ ( | )f Dψ  to estimate ( | )f Dψ , use the Rao-Blackwell estimate  

 ( )

1

1( | ) ( | , )
J

j

j
f D f D

J
ψ ψ θ

=

= ∑ . 

 
Exercise 11.1 Estimation of nonstandard target quantities 
 
(a) Suppose that 2.1, 5.2, 3.0, 7.7 and 9.3 constitute a random sample 
from a normal finite population of size 20 whose mean and variance are 
unknown. We are interested in the finite population median. Estimate 
this quantity using a suitable Bayesian model. 
 
(b) Repeat (a) but for the quantity:  
 average percentage increase between subsequent ordered  
 population values greater than 4. 
 
(c) Repeat (a) but for the quantity:  
 sum of finite population values in the upper quartile of the  
 normal superpopulation. 
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Solution to Exercise 11.1 
 
The Bayesian model here is:  

    
1

( | , , )
N

f s y
n

µ λ
−

 
=  
 

,     

        (1,..., ), (1,..., 1, 1),..., ( 1,..., )s n n n N n N= − + − +  (SRSWOR) 
 1( ,..., | , ) ~ ( ,1 / )Ny y iid Nµ λ µ λ  
 ( , ) 1/ , , 0f µ λ λ µ λ∝ ∈ℜ > , 
where N = 20, n = 5, and where the data is  
 ( , ) ((1,..., ), (2.1,  5.2,  3.0,  7.7, 9.3))sD s y n= = . 
 
Note 1: This data is presented according to a convenient reordering of 
population labels, after sampling, so that the sampled values are listed 
at the beginning of the finite population vector (as discussed earlier). 
        
Note 2: The superpopulation parameter in the model may be thought 
of as the vector 
 1 2( , ) ( , )θ θ θ µ λ= = , 
in which case the model could also be written: 
 ( | , ) ~ ( , )s y SRSWOR N nθ    
 1 2( | ) ~ ( 1 , / )N N Ny N Iθ θ θ  
 2 1 2( ) 1/ , , 0f θ θ θ θ∝ ∈ℜ > . 

 
For the purposes of this exercise, let ( )iy  denote the ith finite population 
order statistic, meaning the ith value amongst 1,..., Ny y  after these are 
ordered from smallest to largest. We are interested in three finite 
population quantities, as follows: 

    (a) ( /2) ( /2) 1
1 1 1( , ) ( )

2
N Ny y

g y g yψ θ ++
= = =   

    (b) 

( ) ( 1)
( 1)

2 ( 1)
2 2 2

( 1)
2

( 4)
( , ) ( ) 100

( 4)

N
i i

i
i i

N

i
i

y y
I y

y
g y g y

I y
ψ θ

−
−

= −

−
=

 −
>  

 = = =
>

∑

∑
 

    (c) 1
3 3

1

1( , ) (0.75)
N

i i
i

g y y I yψ θ µ
λ

−

=

 = = > + Φ 
 

∑ . 



Chapter 11: Transformations and Other Topics 

519 

Note 1: The median 1ψ  is the average of the middle two values, since  
N = 20 is even. 
 

Note 2: In general, 2ψ  is defined only if at least two of the finite 
population values are greater than 4. For our data, there is no problem 
with the definition because the observed sample already contains three 
such values. If there were a problem, then 2ψ  = 2( )g y  could be 
defined as zero (say) in the case where the number of population 
values is only 0 or 1, i.e. if 1 ( 4) 2N

i iI y=∑ > < . 

 

Note 3: As regards 3ψ , if c is the upper quartile of the normal 
superpopulation then  

 0.75 ( | ) i
i

y cP y c P µ µθ θ
σ σ
− − = < = < 

 
 

  1(0.75)c µ
σ

−−
⇒ = Φ  

  1 11(0.75) (0.75)c µ σ µ
λ

− −⇒ = + Φ = + Φ . 

 
In each case, the inferential target has a posterior/predictive distribution 
which cannot be obtained analytically. One way to proceed is as follows: 
 

Step 1. Generate 2
1

1 1,..., ~ ( | ) ~ ,
2 2J s

n niid f D G sλ λ λ − − 
 
 

,  

where 2 2

1

1 ( )
n

s i
i

s y y
n =

= −∑ . 

(This step derives from results for the normal-normal-gamma model.) 
  

Step 2.  Generate 1~ ( | , ) ~ ,j j s
j

f D N y
n

µ µ λ
λ

 
  
 

 for each 1,...,j J= . 

(This step derives from results for the normal-normal model).  
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Step 3.  For each 1,...,j J= : 

     • Generate ( ) ( )
1 1

1,..., ~ ( | , , ) ~ ,j j
n n i j j j

j

y y iid f y D Nµ λ µ
λ+ +

 
  
 

 

     • Form ( ) ( ) ( )
1( ,..., )j j j

r n Ny y y+=  and   
       ( ) ( ) ( ) ( )

1 1( , ) ( ,..., , ,..., )j j j j
s r n n Ny y y y y y y+= =   

     • Calculate ( ) ( ) ( )( , )j j jg yψ θ= , where ( ) ( , )j
j jθ µ λ= . 

 
Step 4. Use the values  (1) ( ),..., ~ ( | )J iid f Dψ ψ ψ  for Monte Carlo   
inference on ψ  in the usual way. 
 
Note 1: Steps 1 and 2 result in the sample  
    1 1( , ),..., ( , ) ~ ( , | )J J iid f Dµ λ µ λ µ λ . 

  
Note 2: In the above, Steps 1 and 2 could be replaced as follows: 
      
Step 1’. Generate 1,..., ~ ( | )J f Dµ µ µ  for each  1,...,j J= . Do this by  
first sampling 1,..., ~ ( 1)Jw w iid t n −  and then forming   

/j s j sy w s nµ = +  for each 1,...,j J=   
(using results from the normal-normal-gamma model).  
 

Step 2’. Generate 2~ ( | , ) ~ ,
2 2 jj j
n nf D G sµλ λ µ  ⊥  

 
, where   

 2 2

1

1 ( )
j

n

i j
i

s y
nµ µ

=

= −∑   

(using results from the normal-gamma model).  
 
These modified steps will also result in the sample  
 1 1( , ),..., ( , ) ~ ( , | )J J iid f Dµ λ µ λ µ λ . 

 
Applying the above four-step procedure (using the original Steps 1 and 
2) with Monte Carlo sample size J = 1,000, we obtain Table 11.1 which 
shows numerical estimates for the three quantities of interest: 

1 2,ψ ψ ψ=  and 3ψ , respectively. Figure 11.1 shows histograms which 
illustrate these inferences.  
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Table 11.1 and Figure 11.1 also contain analogous results for a fourth 
quantity of interest which may be defined as   
 4 4 3 3( , ) ( | 0)g yψ θ ψ ψ= = ≠  

1 1

1 1

1 1(0.75) (0.75) 0 .
N N

i i i
i i

y I y I yµ µ
λ λ

− −

= =

        = > + Φ > + Φ >       
        

∑ ∑
 
The relevant posterior/predictive density may also be written  
 4 3 3( | ) ( | , 0)f D f Dψ ψ ψ= ≠ . 
 
Inferences on 4ψ  were obtained using the 960 values of 3ψ  which were 
non-zero. It was meaningful to perform this additional inference because 
there were 40 simulations amongst the 1,000 for which the upper 
quartile of the normal distribution lay above the largest finite population 
value, resulting in the sum 3ψ  being equal to 0 exactly.  
 

Note 1: From the above, we see that 3ψ  is neither a discrete nor a 
continuous random variable but one with a mixed distribution.  
      
The discrete part of this mixed distribution is the probability that 

3 0ψ =  exactly, and this we estimated via MC as 40/1,000 = 0.04. 

 

Note 2: We also see that neither 3ψ  nor  4ψ  is necessarily positive.  
 

This is because it might be the case that the upper quartile of the 
normal distribution is negative and many of the finite population 
values happen  (by a very small chance) to lie between that negative 
quartile and zero. 
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Table 11.1 Point and interval estimates for four quantities  
 
Quantity of interest:  

1ψ        2ψ    3ψ             4 3 3( | 0)ψ ψ ψ= ≠  
 
Posterior mean estimate:   
5.842       9.975    58.31             60.74 
 
95% CI for posterior mean:  
(5.790, 5.893)      (9.775, 10.175)  (56.48  60.15)  (58.99,  62.49) 
 
Posterior mode estimate:   
5.528       8.150    62.29      62.45   
 
Posterior median estimate:   
5.769       9.377    59.48       60.59  
 
95% CPDR estimate:   
(4.308, 7.528)      (5.522, 17.770) (0.00 114.87)   (11.72, 114.96) 
 
 
 
Figure 11.1 Four histograms and sets of inferences  
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R Code for Exercise 11.1 
 
options(digits=4) 
 
# Define 3 psi functions ----------------- 
PSI1FUN = function(y){  quantile(y,0.5) } 
PSI2FUN = function(y){ ynew=sort(y[y>4]); nnew=length(ynew);  
   if(nnew<2)    res=NA 
   if(nnew>=2)   res = 100*mean(   (ynew[-1]-ynew[-nnew])  /  ynew[-nnew]  )   
   res   } 
PSI3FUN = function(y,mu,lam){  q = qnorm(0.75); sum(y[y>(mu+q/sqrt(lam))]) 
} 
 
# Test 3 psi functions ------------------------- 
PSI1FUN(y=c(1,2,7)) # 2 OK 
PSI1FUN(y=c(1,2,7,8)) # 4.5 OK 
PSI2FUN(y=c(5,12,6)) # 60      Correct: 100* (1/2) * ( (6-5)/5 + (12-6)/6 )  = 60 
PSI2FUN(y=c(5,3,6)) # 20      Correct: 100* (6-5)/5 = 20 
PSI2FUN(y=c(5,2,3)) # NA      Correct 
PSI2FUN(y=c(4,4,-3)) # NA      Correct 
set.seed(311); PSI3FUN(y=rnorm(100,10,1),mu=10,lam=1) # 267 ~ 25*10,  OK 
 
  



Bayesian Methods for Statistical Analysis 

524 

# Perform inference on 3 psi functions ---------------------------------------- 
ys= c(2.1, 5.2, 3.0, 7.7, 9.3); ysbar=mean(ys); n=length(ys); ss2=var(ys); N = 20 
options(digits=4); J=1000; set.seed(232) 
lamvec=rgamma(  J, (n-1)/2,  ((n-1)/2) *ss2 )    
muvec = rnorm(J,ysbar,1/sqrt(n*lamvec)) 
yrmat=matrix(NA, nrow=J, ncol=N-n) 
for(j in 1:J)   yrmat[j,] = rnorm(N-n,muvec,1/sqrt(lamvec))    
psi1vec=rep(NA,J); psi2vec=rep(NA,J); psi3vec=rep(NA,J)  
for(j in 1:J){   yrj = yrmat[j,] 
 psi1vec[j] = PSI1FUN(y=c(ys, yrj)) 
 psi2vec[j] = PSI2FUN(y= c(ys, yrj)) 
 psi3vec[j] = PSI3FUN(y= c(ys, yrj), mu=muvec[j], lam=lamvec[j])   } 
 
cbind( summary(psi1vec), summary(psi2vec),  
 summary(psi3vec), summary(psi3vec[psi3vec!=0])   ) 
# Min.    3.14  4.44   0.0   9.3 
# 1st Qu. 5.28  7.65  37.9  40.3 
# Median  5.77  9.38  59.5  60.6 
# Mean    5.84  9.97  58.3  60.7 
# 3rd Qu. 6.41 11.50  79.6  80.7 
# Max.    9.09 28.10 156.0 156.0 
 
X11(w=9,h=6.5); par(mfrow=c(2,1)) 
psivec=psi1vec; J = length(psivec) 
psibar=mean(psivec); psici=psibar+c(-1,1)*qnorm(0.975)*sd(psivec)/sqrt(J) 
fpsi=density(psivec);  psimode=fpsi$x[fpsi$y==max(fpsi$y)] 
psimedian=quantile(psivec,0.5);  psicpdr=quantile(psivec,c(0.025,0.975)) 
c(psibar,psici,psimode,psimedian,psicpdr) 
# 5.842 5.790 5.893 5.528 5.769 4.308 7.528 
hist(psivec, prob=T, xlab="psi1",xlim=c(0,10),ylim=c(0,0.6), 
 breaks=seq(0,10,0.25), main="Monte Carlo inference on psi1")   
lines(fpsi,lwd=3) 
abline(v= c(psibar, psici, psicpdr, psimedian, psimode) , 
 lty=c(1,1,1,1,1,2,2), lwd=rep(2,7)) 
legend(0,0.6, 
c("Posterior mean, 95% CI \n & 95% CPDR","Posterior mode & median"), 
 lty=c(1,2), lwd=c(2,2), bg="white") 
 
psivec=psi2vec; J = length(psivec) 
psibar=mean(psivec); psici=psibar+c(-1,1)*qnorm(0.975)*sd(psivec)/sqrt(J) 
fpsi=density(psivec);  psimode=fpsi$x[fpsi$y==max(fpsi$y)] 
psimedian=quantile(psivec,0.5);  psicpdr=quantile(psivec,c(0.025,0.975)) 
c(psibar,psici,psimode,psimedian,psicpdr) 
# 9.975  9.775 10.175  8.150  9.377  5.522 17.770 
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hist(psivec, prob=T, xlab="psi2",xlim=c(2,30),ylim=c(0,0.17), 
 breaks=seq(0,30,0.5),main="Monte Carlo inference on psi2") 
lines(fpsi,lwd=3) 
abline(v= c(psibar, psici, psicpdr, psimedian, psimode) , 
 lty=c(1,1,1,1,1,2,2), lwd=rep(2,7)) 
legend(15,0.15, 
 c("Posterior mean, 95% CI & 95% CPDR","Posterior mode & median"), 
 lty=c(1,2), lwd=c(2,2), bg="white")  # End of first 2 graphs 
 
psivec=psi3vec  # Start of next 2 graphs 
psibar=mean(psivec); psici=psibar+c(-1,1)*qnorm(0.975)*sd(psivec)/sqrt(J) 
fpsi=density(psivec);  psimode=fpsi$x[fpsi$y==max(fpsi$y)] 
psimedian=quantile(psivec,0.5);  psicpdr=quantile(psivec,c(0.025,0.975)) 
c(psibar,psici,psimode,psimedian,psicpdr) 
# 58.31  56.48  60.15  62.29  59.48   0.00 114.87 
 
hist(psivec, prob=T, xlab="psi3",xlim=c(0,160),ylim=c(0,0.022), 
 breaks=seq(0,200,5), main="Monte Carlo inference on psi3") 
lines(fpsi,lwd=3) 
abline(v= c(psibar, psici, psicpdr, psimedian, psimode) , 
 lty=c(1,1,1,1,1,2,2), lwd=rep(2,7)) 
legend(100,0.022, 
 c("Posterior mean, 95% CI \n& 95% CPDR"),lty=1,lwd=2,bg="white") 
legend(-5,0.022,c("Posterior mode \n& median"), lty=2, lwd=2, bg="white") 
 
length(psi3vec[psi3vec!=0]) # 960 
length(psi3vec[psi3vec==0]) # 40      40/1000 = 4% 
psivec=psi3vec[psi3vec!=0];  J=length(psivec); J # 960  Condition on psi > 0 
psibar=mean(psivec); psici=psibar+c(-1,1)*qnorm(0.975)*sd(psivec)/sqrt(J) 
fpsi=density(psivec);  psimode=fpsi$x[fpsi$y==max(fpsi$y)] 
psimedian=quantile(psivec,0.5);  psicpdr=quantile(psivec,c(0.025,0.975)) 
c(psibar,psici,psimode,psimedian,psicpdr) 
# 60.74  58.99  62.49  62.45  60.59  11.72 114.96 
 
hist(psivec, prob=T, xlab="psi3, psi4",xlim=c(0,160),ylim=c(0,0.022), 
 breaks=seq(0,200,5), 
 main="Monte Carlo inference on psi4 = (psi3 given psi3 != 0)") 
lines(fpsi,lwd=3) 
abline(v= c(psibar, psici, psicpdr, psimedian, psimode), 
 lty=c(1,1,1,1,1,2,2), lwd=rep(2,7)) 
legend(100,0.022, 
 c("Posterior mean, 95% CI \n& 95% CPDR"),lty=1,lwd=2,bg="white") 
legend(-5,0.022,c("Posterior mode \n& median"), lty=2, lwd=2, bg="white")      
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11.2 Data transformations 
 
In statistical analysis, a common practice is to first transform the data 
before applying a model. For example, if the data values are strictly 
positive and highly right skewed, it may be worthwhile taking natural 
logarithms before applying a normal model.  
 
In the classical setting, e.g. in the design-based survey sampling, this 
idea may work well for purposes of analytical inference (i.e. estimation 
of model parameters) but can be problematic for prediction. This is 
because the quantity requiring prediction (e.g. the nonsample total) does 
not typically have a simple distribution on the untransformed scale. 
Although prediction can be performed easily on the transformed scale 
there is no way to translate results back onto the original scale. By 
contrast, this issue does not create any special problems within the 
Bayesian framework.  
 
Suppose that we are interested in some finite population quantity which 
is denoted ( )g yψ = , e.g. 1 /Ny y N′= .  
 
Also suppose that there is no convenient superpopulation model for the 
finite population values iy , 1,...,i N= , but there does exist such a 
model for some function of those values, say ( )i iz h y=  for a function h.  
 
In that case we may consider a Bayesian model specified in terms of: 
 ( | , )f zξ θ  where ξ  is s or  I or   L (as discussed earlier) 
 ( | )f z θ  where 1 1 1( , ) (( ,..., ), ( ,..., )) ( ,..., )s r n n N Nz z z z z z z z z+= = =     
 ( )f θ  where 1( ,..., )qθ θ θ= . 
 
We now use Monte Carlo methods (perhaps MCMC methods if needed) 
to generate a random sample from the predictive distribution of the 
nonsample vector for the z variable (i.e. rz ), given the data D (for 
example ( , )ss y , ( , )I s  or ( , ))sL y . Let us call this sample  
 (1) ( ),..., ~ ( | )J

r r rz z iid f z D .  
 
We next calculatate ( ) 1 ( )( )j j

i iy h z−=  for each 1,...,i n N= +  and each 
1,...,j J= . Thus, we untransform the simulated individual data values 

back to the original scale. 
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Next, we form the vectors  
 ( ) ( ) ( )

1( ,..., )j j j
r n Ny y y+=  

and  
 ( ) ( )( , )j j

s ry y y=   
for each 1,...,j J= .  
 
This results in the samples  
 (1) ( ),..., ~ ( | )J

r r ry y iid f y D   
and 
 (1) ( ),..., ~ ( | )Jy y iid f y D . 
 
Finally, we calculate   
 ( ) ( )( )j jg yψ =   
for each 1,...,j J= .  
 
This results in  
 (1) ( ),..., ~ ( | )J iid f Dψ ψ ψ ,  
namely a sample from the predictive distribution of the finite population 
quantity of interest, on the original scale required for that quantity. This 
sample can then be used for Monte Carlo inference on ψ  in the usual 
way. 
 
Note: We may think of this topic as an example and special application 
of the last topic, that is, Bayesian inference on complicated functions 
of the finite population vector. 
 
Exercise 11.2 Finite population inference using data 
transformation 
 
Consider the following random sample of size 50 from a finite 
population of size 200: 
 
28.374, 69.857, 22.721, 57.593, 126.965,  17.816, 16.078, 0.803, 3.164, 3.544,  
2.123, 2.353, 184.539, 59.856, 63.701,  585.684, 29.094, 79.245, 18.105, 1.623,  
5.513, 1.629, 63.654, 22.060, 187.463,  5.051, 34.299, 27.475, 0.746, 34.016,  
8.547, 1.081, 3.151, 55.569, 2.593,   522.377, 1.660, 130.435, 1.246, 169.462,  
3.444, 6.376, 18.735, 51.312, 33.920,  350.346, 475.795, 4.972, 24.451, 86.987. 
 
Use Bayesian methods with a suitable transformation to estimate the 
finite population mean. 
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Solution to Exercise 11.2 
 
We create a histogram of the sample values and see that the underlying 
distribution is highly right skewed. However, a histogram of the natural 
logarithm of the sample values is consistent with a normal 
superpopulation model. The histograms are shown in Figure 11.2. 
 
Therefore we posit the following Bayesian model involving an 
uninformative prior and the logarithms of the finite population values, 

( ) logi i iz h y y= = , 1,...,i N=  (N = 200): 
 ( | , , ) ~s z SRSWORµ λ  
 1( ,..., | , ) ~ ( ,1 / )Nz z iid Nµ λ µ λ      
 ( , ) 1/ , , 0f µ λ λ µ λ∝ ∈ℜ > . 
 
Figure 11.2 Histograms of the sample data 

 
 
The data is ( , ) ((1,...,50),(28.374,  69.857,...,86.987))sD s z= =  (after a 
convenient ordering), and the quantity of interest is   

 1

1 1 1

1 1 1( ) ( ) exp( )
N N N

i i i
i i i

y y g z h z z
N N N

−

= = =

= = = =∑ ∑ ∑ . 

 
So we generate  

1 1( , ),..., ( , ) ~ ( , | )J J iid f Dµ λ µ λ µ λ   
(using methods detailed previously).  
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Then for each 1,...,j J=  we sample  
( ) ( )

1,..., ~ ( ,1/ )j j
n N j jz z iid N µ λ+   

and calculate  

      { } { }( )( ) ( ) ( )
1 1

1 ... exp( ) ... exp( )j j j
n n Ny y y z z

N += + + + + +
 

  

( )

1

1 exp( )
N

j
sT i

i n
y z

N = +

 = + 
 

∑ . 

 
The result is  
 (1) ( ),..., ~ ( | )Jy y iid f y D , 
which can then be used for Monte Carlo inference. 
 
Applying the above procedure with a Monte Carlo sample size of   
J = 1,000 we estimate y ’s posterior mean, ˆ ( | )y E y D= , and so also y  
itself, by    

 ( )

1

1 J
j

j
y y

J =

= ∑  =  110.83, 

with 95% CI for ŷ  

 ( ) 2

1

1 11.96 ( )
1

J
j

j
y y y

J J =

 
± −  − 

∑  = (104.64, 117.02). 

 
We also estimate the bounds of the 95% CPDR for y  by 49.26 and 
302.05, where these are the empirical 0.025 and 0.975 quantiles of 

(1) ( ),..., Jy y .  
 
Figure 11.3 shows a histogram of the simulated values of y , together 
with the above five numbers, as well as a ‘histogram estimate’ of the 
predictive density ( | )f y D . In this histogram the dot shows the true 
value of the finite population mean, y  = 114.2, which was known prior 
to the generation of the sample data.  
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Figure 11.3 Inference on the finite population mean 

 
 

Discussion 
 

Figure 11.4 shows histograms of the values 1,..., Nz z  which were in fact 
drawn from the normal distribution with mean 3 and standard deviation 
2 (left plot), and the values of 1 1exp( ),..., exp( )N Ny z y z= =  (right plot), 
together with the true underlying superpopulation densities of the 
variables iz  and iy . 
 
 
Figure 11.4 Histogram of all N values of z and y 
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For comparison we repeat the above inference on the original scale of 
the data and ‘exactly’ (since there is then no need for Monte Carlo 
methods).  
 
In that case—where we replace z by y in the Bayesian model—we find 
that the predictive mean of y  is ˆ ( | ) sy E y D y= =  = 74.15  (the average 
of the raw data values), and the 95% CPDR for y  is exactly (41.36, 
106.94). We see that this inference does much worse at estimating y , 
whose true value is 114.2. 
 
Note: This second set of inference is the same as design-based 
inference since it is based on the result  

 ~ ( 1)
1

s

s

y y D t n
s n

Nn

 
 −  −
 

− 
 

, where 2 2

1

1 ( )
1

n

s i s
i

s y y
n =

= −
− ∑ . 

 
Figure 11.5 shows the original data values (untransformed) and both sets 
of inferences above. It highlights the value of performing an appropriate 
prior transformation for purposes of estimating the finite population 
mean. 
 
 
Figure 11.5 Comparison of two sets of inference 
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For interest, we repeat the above simulations and comparison with a 
N(2,1) model for the iz s (rather than a N(3,4) model). Figure 11.6 shows 
the analogue of the last figure above.  
 
We see, of course, that the benefits of applying the log transformation to 
the data diminishes as the skewness of the sample data decreases.  
 
 
Figure 11.6 Comparison of two sets of inference with less 
skewed data 

 
Note 1: Using the formula for sample skewness given by    

  
3

1
2 3/2

1

(1 / ) ( )
{(1 / ) ( ) }

n
i i s

n
i i s

n y yg
n y y

=

=

∑ −
=

∑ −
, 

we obtained a value of g = 2.662 for the first set of data and a value of  
g = 1.549 for the second set of data. 
 
Note 2: For another example of finite population inference via 
Bayesian and MCMC methods which involves the logarithmic 
transformation, see Puza (2002). This other example also features the 
use of covariate information. 
 

Note 3: It can be shown (mathematically) that ˆ ( | )y E y D= = ∞  
(exactly). This seems somewhat counterintuitive in light of the fact 
that our Monte Carlo estimate y  = 110.83 is very close to the actual 
finite population mean, y  = 114.2. 
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R Code for Exercise 11.2 
 
# Data generation used to set up exercise -------------------------------------------- 
 
options(digits=4); X11(w=8,h=6); par(mfrow=c(2,2)) 
N=200; n=50; set.seed(432); Z=rnorm(N,3,2); S=sample(1:N,n) 
ZS=Z[S];  Y=exp(Z);   YS=exp(ZS); YBAR=mean(Y); YBAR # 114.2 
hist(Z,prob=T); hist(Y,prob=T); hist(ZS,prob=T); hist(YS,prob=T)  
 # preliminary plots 
 
X11(w=8,h=4); par(mfrow=c(1,2)) 
hist(Z,prob=T,xlim=c(-4,10), ylim=c(0,0.25),breaks=seq(-3,12,0.5)) 
    lines(seq(-5,12,0.01),dnorm(seq(-5,12,0.01),3,2),lwd=3) 
hist(Y,prob=T,xlim=c(0,600),ylim=c(0,0.08), breaks=seq(0,5000,10));  
 yg=seq(0.1,700,0.5);   lines(yg ,dnorm(  log(yg),3,2)/yg, lwd=3) 
 
format(list(YS=YS),digits=3)  # "28.374, 69.857, 22.721, …,  24.451, 86.987"  
 
# Look at given data and the log of that data  (load data etc.)  ------------------ 
N = 200; n = 50; m = N-n;  options(digits=4) 
ys = c( 28.374, 69.857, 22.721, 57.593, 126.965,   
 17.816, 16.078, 0.803, 3.164, 3.544,  
 2.123, 2.353, 184.539, 59.856, 63.701,   
 585.684, 29.094, 79.245, 18.105, 1.623,  
 5.513, 1.629, 63.654, 22.060, 187.463,   
 5.051, 34.299, 27.475, 0.746, 34.016,  
 8.547, 1.081, 3.151, 55.569, 2.593,    
 522.377, 1.660, 130.435, 1.246, 169.462,  
 3.444, 6.376, 18.735, 51.312, 33.920,   
 350.346, 475.795, 4.972, 24.451, 86.987) 
 
summary(ys) 
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
#    0.7     3.5    23.6    74.2    63.7   586.0 
 
skewness=mean(   (ys-mean(ys))^3  ) /  (  mean((ys-mean(ys))^2)  )^(3/2) 
skewness # 2.662 
 
zs=log(ys); par(mfrow=c(1,2)) 
hist(ys,prob=T); hist(zs,prob=T) # preliminary plots 
hist(ys,prob=T,xlim=c(0,600),ylim=c(0,0.045),  
 breaks=seq(0,700,10), main="Sample values");  
hist(zs,prob=T,xlim=c(-2,8), ylim=c(0,0.35),  
 breaks=seq(-3,10,0.5),  main="Log of sample values"); 
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# Finite population inference using original scale and design-based approach 
# (same as the 'exact' Bayesian approach without Monte Carlo)   ----------------- 
ysbar=mean(ys); sy=sd(ys); ybarhat=ysbar 
ybarci=ybarhat+c(-1,1)*qt(0.975,n-1)* (sy/sqrt(n)) * sqrt(1-n/N) 
inf.original=c(ybarhat,ybarci);  
c(inf.original, YBAR) # 74.15    41.36 106.94    114.24 
 
# Finite population inference via Bayesian approach using log transformation  
# (and a 'crude' approach which makes no use of Rao-Blackwell ideas etc.) ---- 
 
zsbar=mean(zs); sz=sd(zs); J=1000;    set.seed(142); 
lamvec=rgamma(J,(n-1)/2,(sz^2)*(n-1)/2) 
muvec=rnorm(J,zsbar,1/sqrt(n*lamvec));    yrbarvec=rep(NA,J) 
 
for(j in 1:J){ zr=rnorm(m,  muvec[j], 1/sqrt(lamvec[j]) ) 
  yr=exp(zr); yrbarvec[j] = mean(yr)       } 
ybarvec=(1/N)*(n*ysbar+m*yrbarvec);      ybarhat=mean(ybarvec) 
ybarci=ybarhat+c(-1,1)*qnorm(0.975)*sd(ybarvec)/sqrt(J)  
ybarcpdr=quantile(ybarvec,c(0.025,0.975)) 
inf.transform = c(ybarhat,ybarci,ybarcpdr) 
c(inf.transform,YBAR) # 110.83 104.64 117.02  49.26 302.05 114.24 
 
summary(ybarvec)  
 #   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 #    37.0    70.6    89.4   111.0   122.0  2080.0 
 
par(mfrow=c(1,1)); hist(ybarvec,prob=T) # preliminary plot 
hist(ybarvec,prob=T,xlim=c(0,600),ylim=c(0,0.015),  
 breaks=seq(0,3000,10), main=" ");  
abline(v=inf.transform,lty=1,lwd=2); points(YBAR,0,pch=16) 
legend(310,0.015,c("Inference using log transformation"),lty=c(1),lwd=c(2)) 
text(450,0.01, 
     "The dot shows 114.2, the true value \nof the finite population mean") 
lines(density(ybarvec),lwd=2)       
 
par(mfrow=c(1,1)); hist(ys,prob=T) # preliminary plot 
hist(ys,prob=T,xlim=c(0,600),ylim=c(0,0.045), breaks=seq(0,700,10), main=" ");  
abline(v=inf.original,lty=2,lwd=2); abline(v=inf.transform,lty=1,lwd=2) 
points(YBAR,0,pch=16) 
legend(310,0.04,c("Inference using original scale",  
 "Inference using log transformation"), lty=c(2,1),lwd=c(2,2)) 
text(450,0.02, 
   "The dot shows 114.2, the true value \nof the finite population mean") 
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# Repeat with 'less extreme' lognormal data ----------------------------------------- 
 
N=200; n=50; set.seed(432); Z=rnorm(N,2,1); S=sample(1:N,n)  # <- difference 
ZS=Z[S];  Y=exp(Z);   YS=exp(ZS); YBAR=mean(Y) 
X11(w=8,h=6); par(mfrow=c(2,2)); 
hist(Z,prob=T); hist(Y,prob=T); hist(ZS,prob=T); hist(YS,prob=T)  
 # preliminary plots 
ys = YS;   zs=log(ys);  
skewness=mean(   (ys-mean(ys))^3  ) /  (  mean((ys-mean(ys))^2)  )^(3/2) 
skewness # 1.549 
ysbar=mean(ys); sy=sd(ys); ybarhat=ysbar 
ybarci=ybarhat+c(-1,1)*qt(0.975,n-1)* (sy/sqrt(n)) * sqrt(1-n/N) 
inf.original =c(ybarhat,ybarci);  
c(inf.original, YBAR) # 10.541  8.177 12.906 11.698 
 
zsbar=mean(zs); sz=sd(zs); J=1000;    set.seed(142); 
lamvec=rgamma(J,(n-1)/2,(sz^2)*(n-1)/2) 
muvec=rnorm(J,zsbar,1/sqrt(n*lamvec));    yrbarvec=rep(NA,J) 
 
for(j in 1:J){ zr=rnorm(m,  muvec[j], 1/sqrt(lamvec[j]) ) 
  yr=exp(zr); yrbarvec[j] = mean(yr)       } 
 
ybarvec=(1/N)*(n*ysbar+m*yrbarvec);      ybarhat=mean(ybarvec) 
ybarci=ybarhat+c(-1,1)*qnorm(0.975)*sd(ybarvec)/sqrt(J)  
ybarcpdr=quantile(ybarvec,c(0.025,0.975)) 
inf.transform = c(ybarhat,ybarci,ybarcpdr) 
c(inf.transform,YBAR) # 11.006 10.904 11.108  8.478 15.016 11.698 
 
X11(w=8,h=4); par(mfrow=c(1,1)) 
hist(ys,prob=T) # preliminary plot 
hist(ys,prob=T,xlim=c(0,40),ylim=c(0,0.2), breaks=seq(0,40,1), main=" ");  
abline(v=inf.original,lty=2,lwd=2); abline(v=inf.transform,lty=1,lwd=2) 
points(YBAR,0,pch=16) 
legend(20,0.2, 
   c("Inference using original scale", "Inference using log transformation"), 
 lty=c(2,1),lwd=c(2,2)) 
text(30,0.1, 
   "The dot shows 11.7, the true value \nof the finite population mean") 
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11.3 Frequentist properties of Bayesian finite  
population estimators 
 
We have previously studied the frequentist characteristics of Bayesian 
estimators. That was in the context of analytic inference (i.e. inference 
on model parameters) and based on a random sample from a 
hypothetically infinite population (e.g. a normal distribution). We will 
now generalise those ideas in the broader framework of a Bayesian finite 
population model.  
 
As before, we are primarily interested in the frequentist characteristics of 
Bayesian estimators which are based on uninformative priors and used 
as proxies for classical or design based estimators. Nevertheless we will 
consider both types of prior (informative and uninformative). 
 
Consider a Bayesian finite population model specified in terms of: 
        ( | , )f yξ θ  where ξ  is s or  I or   L (as discussed earlier) 
        ( | )f y θ  where 1 1 1( , ) (( ,..., ), ( ,..., )) ( ,..., )s r n n N Ny y y y y y y y y+= = =     
        ( )f θ  where 1( ,..., )qθ θ θ= . 
 
Also suppose that the data is   
 D = ( , )ss y  or ( , )I s  or ( , )sL y   
(as the case may be), and the quantity of interest is  
 ( , )g yψ θ=   
(generally) or  ( )gψ θ=  (as considered previously for ‘pure’ analytic 
inference) or ( )g yψ =  (the case of ‘pure’ finite population inference). 
 
Now suppose that in the context of this general model, data and quantity 
of interest, we derive a point estimate for ψ  (such as the posterior mean, 
mode or median) of the form  
 ˆ ˆ ( )Dψ ψ=   
and a 1 α−  interval estimate for ψ  (such as the CPDR or HPDR) of the 
form  
 ( , ) ( ) ( ( ), ( ))I L U I D L D U D= = = . 
 
Note: If the sampling mechanism is defined in terms of 1( ,..., )NI I I= , 
the vector of inclusion counters, there is a conflict of notation and one 
of these quantities needs a different symbol. 
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In the above context, there may be interest in the frequentist bias of ψ̂  
and the frequentist coverage probabilities of the interval I, especially if 
these estimators are intended as proxies for classical ones.  
 
However, because there is now an extra level in the Bayesian model 
hierarchy relative to previously, in the form of the density defining the 
sampling mechanism, namely  
 ( | , )f yξ θ ,  
there are two ways (at least) of defining the required frequentist 
characteristics:  
 
 • model-based, meaning conditional on θ  and ξ  
 
 • design-based, meaning conditional on θ  and y. 
 
For definiteness, suppose that the data is ( , )sD s y= . Then we define:  
 
 • the model bias of ψ̂  as     
  , ˆ{( ( , ) ( , ) | , }s y sB E s y y sθ ψ ψ θ θ= −      
 
 • the relative model bias of ψ̂  as    

  ,
ˆ ( , ) ( , ) ,

( , )
s

s y
s y yR E s

yθ
ψ ψ θ θ

ψ θ
 −

=  
 

   

 
  • the model coverage probability of I as  
  , { ( , ) ( , ) | , }s y sC P y I s y sθ ψ θ θ= ∈ . 
 
Also, we define: 
 
 • the design bias of ψ̂  as   
  , ˆ{( ( , ) ( , ) | , }y s sB E s y y yθ ψ ψ θ θ= −     
 
  • the relative design bias of ψ̂  as    

  ,
ˆ ( , ) ( , ) ,

( , )
s

y s
s y yR E y

yθ
ψ ψ θ θ

ψ θ
 −

=  
 

  

   
 • the design coverage probability of I as  
  , { ( , ) ( , ) | , }y s sC P y I s y yθ ψ θ θ= ∈ . 
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Note 1: Each of the three model-based characteristics is an expectation 
with respect to the distribution of y given θ  and s. Each of the three 
design-based characteristics is an expectation with respect to the 
distribution of s given θ  and y. 
  

Note 2: Analogous definitions apply if ( , )sD I y=  or ( , )sD L y= , etc., 
noting that s is a function of I and L, there is a one-to-one 
correspondence between I and s under sampling without replacement, 
etc. For instance, if ( , )sD I y= , we define the model bias of ψ̂  as  
 , ˆ{( ( , ) ( , ) | , }I y sB E I y y Iθ ψ ψ θ θ= − , 

and when ( , )sD L y= , we define the model bias of ψ̂  as  
 , ˆ{( ( , ) ( , ) | , }L y sB E L y y Lθ ψ ψ θ θ= − , etc. 

  
Note 3:  If a model-based characteristic such as the model bias ,sBθ  is 
be the same for all possible samples s, then s may be dropped from the 
subscript; e.g. we may instead write Bθ . Likewise, if a design-based 
characteristic such as the design bias ,yBθ  is the same for all possible 
values of the model parameter θ , then θ  may be dropped; e.g. we 
may write yB . 

 
Note 4: If a model-based or design based characteristic cannot be 
evaluated analytically then it may be possible to estimate via a Monte 
Carlo simulation. This idea features in the next exercise below. 
 

Note 5: The model bias of ψ̂  above is a generalisation of the 
frequentist bias of an estimator as defined earlier and based on a 
random sample from an infinite population (e.g. a normal distribution). 
The following argument illustrates. Suppose that ψ θ= , ˆ syψ =  (the 
sample mean) and the sampling mechanism is SRSWOR. Then, by the 
above definitions, the model bias of ψ̂  is  
      , ˆ{( ( , ) ( , ) | , }s y sB E s y y sθ ψ ψ θ θ= −      (generally) 
  ( | , )y sE y sθ θ= −  ( | , )y sE y sθ θ= − , 
where  
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                 ( | , ) ( | , )y s sE y s y f y s dyθ θ= ∫ . 

Now, in this case,   

        
1

( | , ) ( )
N

f s y f s
n

θ
−

 
= =  

 
 for all (1,..., ),..., ( 1,..., )s n N n N= − + ,   

so that     

 ( | , ) ( , , ) ( | , ) ( | ) ( ) 1 ( | ) 1
y y

f y s f y s f s y f y f f yθ θ θ θ θ θ∝ = ∝ × × , 
and therefore    
 ( | , ) ( | ) ( , | ) ( | , ) ( | )r s r s sf y s f y f y y f y y f yθ θ θ θ θ= = = , 
with s fixed at its observed value.  
 
From these observations we see that 
      ( | , ) ( | , ) ( | )y s s r s s r sE y s y f y y f y dy dyθ θ θ= ∫ ∫  

         ( | , ) ( | )r s r s s sf y y dy y f y dyθ θ= ×∫ ∫  

         1 ( | )sE y θ= × . 
 
Therefore  , ( | )s sB E yθ θ θ= −  ( | )sE y θ θ= − . 
 
We have shown that the model bias here is the same as the bias of sy   
in the earlier non-finite population context (where s did not feature in 
the notation).  
 
This is an example of where s could be dropped from the subscript in 

,sBθ , i.e. where this could also be written Bθ .  
 
If the sampling mechanism in this illustration were nonignorable, with

( | , )f s y θ  depending on y in some way, then the simplifications above 
might not be possible and the bias might need to be evaluated, with 
more difficulty, according to the formula 

 , ( | , )s sB y f y s dyθ θ θ= − + ∫  ( , , )
( , )s

f y sy dy
f s

θθ
θ

= − + ∫  

where: ( , ) ( , , )f s f y s dyθ θ= ∫      

 ( , , ) ( | , ) ( | ) ( )f y s f s y f y fθ θ θ θ= , etc. 
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Note 6: The design bias of ψ̂  above is a generalisation of the bias of 
an estimator in the classical survey sampling context where a sample is 
drawn from a finite population of values which are thought of as 
constants. The following argument illustrates. Suppose that yψ =  (the 
finite population mean), ˆ syψ =  (the sample mean) and the sampling 
mechanism is SRSWOR. Then, by the above definitions, the design 
bias of ψ̂  is  
     , ˆ{( ( , ) ( , ) | , }y s sB E s y y yθ ψ ψ θ θ= −    (generally) 
  { | , }s sE y y yθ= −  ( | , )s sE y y yθ= − . 
   

Now,  ( | , ) ( | , )s s s
s

E y y y f s yθ θ= ∑ 1

1 ( ... )
ns s

s
y y

kn
= + +∑       

    where 1( | , )f s y
k

θ =    and 
N

k
n

 
=  
 

 

         { }1 1
1 ( ... ) ...( ... )n N n Ny y y y
kn − += + + + + + .  

   

Here, expression { }  contains a total of kn terms, with each of  

1,..., Ny y  is represented equally often and therefore kn/N times.  
 

We see that  { } 1( ... )N
kn y y kny
N

= + + = .  

Thus  1( | , )s sE y y
kn

θ = kn y y= , 

and so  , ( | , ) 0y s sB E y y y y yθ θ= − = − = . 
   
We have here simply followed through with our general definitions 
and notation to show that under SRSWOR the sample mean is 
unbiased for the population mean.  
 
If the sampling mechanism were nonignorable, with ( | , )f s y θ  
depending on y in some way, then the bias of the sample mean might 
need to be evaluated, with more difficulty, according to the formula 

 , ( | , )y s
s

B y y f s yθ θ= − +∑ ( , , )
( , )s

s

f s yy y
f y

θ
θ

= − +∑ , 

where ( , ) ( , , )
s

f y f s yθ θ= ∑ , ( , , ) ( | , ) ( | ) ( )f s y f s y f y fθ θ θ θ= , etc. 
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Exercise 11.3 Frequentist properties of Bayesian estimators in 
a normal finite population model 
 
Consider a sample of size n = 20 taken from a finite population of size  
N = 100 according to SRSWOR, where the population values are normal 
with mean µ  = 10 and variance 2 1 /σ λ=  = 4 , with prior given by  
            ( , ) 1/ , , 0f µ λ λ µ λ∝ ∈ℜ >  (uninformative).  
 
(a) Using these specifications, generate a finite population vector 

1( ,..., )Ny y y= , take the sample vector as 1( ,..., )s ny y y= , and then use 
Monte Carlo (MC) methods with a sample size of  J = 1,000 to estimate 
the superpopulation signal to noise ratio defined by /γ µ σ= .  
 
Report a point estimate of γ  in the form of a MC estimate of the 
posterior mean ˆ ( | )E Dγ γ=  where ( , )sD s y=  is the data, and an 
interval estimate in the form of a MC estimate of the 95% CPDR for γ . 
(Do not bother to calculate a 95% CI for γ̂ .)  
 
What is the difference between your point estimate and  γ ? Does γ  lie 
inside the interval? Calculate γ , the MLE of γ  and report the difference 
between γ  and γ .  
 
Illustrate your inferences by drawing a suitable histogram of the 
simulated values of γ , marked over with the various estimates. 
 
(b) Perform the procedure in (a) K = 100 times independently, with K 
different finite populations but the sample always consisting of the first 
n values in that finite population.  
 
Based on your results, estimate the model bias and relative model bias of 
your point estimator, and the model coverage of your interval estimator.  
Also estimate the model bias and relative model bias of the MLE γ .  
 
Illustrate your results by drawing a suitable histogram of the K simulated 
MC estimates, marked over with the various relevant quantities. 
 
(c) Repeat (b) but with K = 5,000 and discuss. 
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(d) Generate a finite population, vector 1( ,..., )Ny y y= , and then take a 
sample from the finite population via SRSWOR. Then use MC methods 
with sample size J = 1,000 to estimate the finite population ratio of 
largest value to median, which is given by the formula 

 (100)

(50) (51)( ) / 2
y

y y
ψ =

+
, 

where ( )iy  is the ith order statistic for the N population values 1,..., Ny y .  
 
Report a point estimate of ψ  in the form of a MC estimate of the 
posterior mean ˆ ( | )E Dψ ψ=  and an interval estimate in the form of a 
MC estimate of the 95% CPDR for ψ . (Do not bother to calculate a 
95% CI for ψ̂ .)  
 
What is the difference between your point estimate and ψ ? Does ψ  lie 
inside the interval?  
 
Illustrate your inferences by drawing a suitable histogram of the 
simulated values of ψ , marked over with the various estimates. 
 
(e) Perform the procedure in (d) K = 100 times independently, with K 
different samples taken from the same finite population.  
 
Based on your results, estimate the design bias and relative design bias 
of your point estimator, and the design coverage of your interval 
estimator.  
 
Illustrate your results by drawing a suitable histogram of the K simulated 
MC estimates, marked over with the various relevant quantities. 
 
(f) Repeat (e) using two other point estimators, respectively. 
 
Solution to Exercise 11.3 
 
(a) A finite population of size N = 100 from the N( µ  = 10, 2σ  = 4) 
distribution was generated. The sample mean and standard deviation of 
the 100 finite population values were y  = 9.932  and ys  = 1.907. Figure 
11.7 shows a histogram of these values.  
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Figure 11.7 Histogram of N = 100 finite population values 

 
 
Then the first n = 20 values were taken as a sample from the finite 
population. Figure 11.8 shows a histogram of these sample values. The 
sample mean and standard deviation of the sample values were  

sy  = 10.516  and ss  = 1.749 . So the MLE of /γ µ σ=  was calculated 
as / /s sy sγ µ σ= =    = 6.011. 
 
 
Figure 11.8 Histogram of n = 20 sample values 

 
 
Then a Monte Carlo sample of size J = 1,000 was taken from the joint 
posterior distribution of µ  and 21 /λ σ= , i.e. from ( , | )f Dµ λ  where 

( , ).sD s y=  Hence a MC sample of size J was obtained from the 
posterior distribution of γ , namely 1,..., ~ ( | )J iid f Dγ γ γ . 
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Note: As explained in previous exercises, this was done by:  

             •   first sampling 2
1

1 1,..., ~ ,
2 2J s

n niid G sλ λ − − 
 
 

  

             •   then sampling 1,..., ~ ( 1)Jw w iid t n −    
             •   next forming /j s jy w s nµ = +   

             •   finally calculating j j jγ µ λ= . 

 
The MC sample from ’sγ  posterior was used to calculate the point 
estimate 

 
1

1 J

j
jJ

γ γ
=

= ∑  =  5.925       

(the MC estimate of ’sγ  posterior mean) and the interval estimate  
I = (4.115, 7.963) 

(formed by the empirical 0.025 and 0.975 quantiles of 1,..., Jγ γ ). 
 
Figure 11.9 shows a histogram of the simulated values 1,..., Jγ γ  overlaid 
by an estimate of ’sγ  posterior density ( | )f Dγ . Also shown in the 
figure are the Bayesian estimates (3 vertical lines), the MLE γ̂  = 6.011, 
and the true value of γ , namely  /γ µ σ=  = 10/2 = 5. We see that the 
true value of γ  lies in the Bayesian interval estimate, and the difference 
between the Bayesian estimate and the true value is 5.925 − 5 = 0.925. 
Likewise, the MLE is in ‘error’ by 6.011 − 5 = 1.011. 
 
 
Figure 11.9 Inference on γ  based on a MC sample (J = 1,000) 
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(b) The procedure in (a) was repeated so as to yield a total of K = 100 
Bayesian estimates 1,..., Kγ γ , as well as K Bayesian interval estimates 

1,..., KI I  and K MLEs 1,..., Kγ γ  .  
 
From these results we estimated the model mean of the Bayesian 
estimate γ  by 

 
1

1 K

k
kK

γ γ
=

= ∑  = 5.2226,      

with 95% CI (for that mean) of  

2

1

11.96 ( )
( 1)

K

k
kK K

γ γ γ
=

 
± −  − 

∑  = (4.9986, 5.4466). 

 
Hence we estimated the model bias of γ  by γ γ−  = 0.2226  with 95% 
CI (−0.0014, 0.4466).  
 
Likewise, we estimated the model mean of the MLE γ  by 

 
1

1 K

k
kK

γ γ
=

= ∑   = 5.298,     

with 95% CI (for that mean) of  

2

1

11.96 ( )
( 1)

K

k
kK K

γ γ γ
=

 
± −  − 

∑    = (5.070, 5.526). 

 
Hence we estimate the model bias of γ  by γ γ−  = 0.298 with 95% CI 
(0.0705,  0.5255). 
 
Thus we also estimate the relative model biases of γ  and γ   by 
 ( ) /γ γ γ−  = 0.0445   with 95% CI  (–0.0003, 0.0893)   
 ( ) /γ γ γ−  = 0.0596  with 95% CI   (0.0141, 0.1051). 
 
Note: These could also be reported as the percentages (%): 
      ( ) /γ γ γ−  = 4.5   with 95% CI  (−0.03, 8.9)   
      ( ) /γ γ γ−  = 6.0   with 95% CI  (1.4, 10.5). 

 
Also, exactly 91 of the 100 Bayesian interval estimates 1,..., KI I  actually 
contained the true value γ  = 5.  
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So we estimate the model coverage of the 95% CPDR estimate of γ  
(based on a MC sampled size of specifically J  = 1,000) as 0.91, with 
95% CI (for that coverage)  

 (0.91 1.96 0.91(1 0.91) /100)± −  = (0.854, 0.966).    
 
Figure 11.10 shows a histogram of the K  simulated values of 1,..., Kγ γ  
and related quantities.  
 
We see that the Bayesian inference appears to have slightly 
outperformed the MLE as regards model bias.  
 
Note that this applies in a very particular situation, namely one with  
N = 100, n = 20, µ  = 10, σ  = 2, and a MC estimation scheme as 
described above with specifically J = 1,000.  
 
Note: If we were to use a different common sample from each finite 
population (e.g. 2 14 15 87( , , ,..., )),sy y y y y=  or a different sample each 
time, the results would be the same, subject to Monte Carlo variation. 
This might not be the case in a situation where the sampling 
mechanism is nonignorable or where there are covariate values. But as 
a matter of form when calculating model-based properties, we must 
condition on the sample being taken, i.e. on s. 
 
  
Figure 11.10 Distribution of K = 100 estimates 

 
  



Chapter 11: Transformations and Other Topics 

547 

(c) Repeating (a) and (b) with K = 5,000, we obtained the following 
results: 
   Estimate of model bias of γ  is 0.1616 with 95% CI (0.1359, 0.1872) 
   Estimate of model bias of γ  is 0.2301 with 95% CI (0.2041, 0.2561) 
   Estimate of relative model bias of γ  is 3.2 with 95% CI (2.7, 3.7)  (%) 
   Estimate of relative model bias of γ  is 4.6 with 95% CI (4.1, 5.1)  (%). 
 
Exactly 4,755 of the 5,000 Bayesian interval estimates 1,..., KI I  actually 
contained the true value γ  = 5.  
 
So we estimate the model coverage of the 95% CPDR estimate of γ  
(based on a MC sample of size J  = 1,000) as 4,755/5,000 = 0.951, with 
95% CI (for that coverage),  
 (0.951 1.96 0.951(1 0.951) / 5,000)± −  = (0.945, 0.957). 
 
From these results it appears that both the Bayesian and ML estimators 
are indeed positively biased by several percent, with the Bayesian 
estimator slightly outperforming the MLE.  
 
It also appears that the model coverage of the Bayesian interval estimate 
is very close to the nominal 95%.  
 
Figure 11.11 shows a histogram of the 5,000 simulated Bayesian 
estimates and related information. A detail in this figure is shown as 
Figure 11.12. 
 
Figure 11.11 Distribution of K = 5,000 estimates 
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Figure 11.12 Detail in Figure 11.11 

 
 
 
(d) A finite population of size N = 100 from the N( µ  = 10, 2σ  = 4) 
distribution was generated. The sample mean and standard deviation of 
the 100 finite population values were y  = 9.675  and ys  = 2.159.  
 
A histogram of the values is shown in Figure 11.13. The true value of 
the ratio requiring inference was in this case calculated as 

 (100)

(50) (51)

15.622
( ) / 2 10.171

y
y y

ψ = =
+

 = 1.536. 

 
 
Figure 11.13 Histogram of N = 100 finite population values 
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Then a sample of size n = 20 values was taken from the finite 
population. The sample mean and standard deviation of the sampled 
values were sy  = 9.438  and ss  = 2.448. A histogram of the sample 
values is shown in Figure 11.14. 
 
 
Figure 11.14 Histogram of n = 20 sample values 

 
 
Then a MC sample of size J = 1,000 was taken from the joint posterior 
distribution of µ  and 21 /λ σ= , i.e. from ( , | )f Dµ λ  with ( , )sD s y= . 
Hence a MC sample of size J was obtained from the predictive 
distribution of ψ , namely 1,..., ~ ( | )J iid f Dψ ψ ψ . 
 
Note: As explained in previous exercises, this was done by doing the 
following for each 1,...,j J= :  
              •  first sample ( )( ) ~ ,1/ ,j

i j jy iid N i rµ λ ∈  

              •  then form 
1

( ) ( ) ( )( ,..., )
N n

j j j
r r ry y y

−
=  

              •  finally calculate jψ  from  ( )( , )j
s ry y . 

  
The MC sample from ’sψ  predictive distribution was used to calculate 
the point estimate 

 
1

1 J

j
jJ

ψ ψ
=

= ∑  =  1.715     

(the MC estimate of ’sψ  predictive mean) and the interval I = (1.456, 
2.078) formed by the empirical 0.025 and 0.975 quantiles of 1,..., Jψ ψ .  
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Figure 11.15 shows a probability histogram of the simulated values 
1,..., Jψ ψ  overlaid by an estimate of ’sψ  predictive density ( | )f Dψ . 

Also shown are the Bayesian estimates (represented by three vertical 
lines), and the true value of ψ , which is 1.536 (represented by the dot). 
 
We note that the true value of ψ   lies in the Bayesian interval estimate, 
and the difference between the Bayesian estimate and the true value is 
1.715 − 1.536 = 0.179. 
 
 
Figure 11.15 Inference on ψ  based on a MC sample (J = 1,000) 

 
 
(e) The procedure in (d) was repeated so as to yield a total of  K = 100 
Bayesian estimates 1,..., Kψ ψ  and K corresponding Bayesian interval 
estimates 1,..., KI I . From these results we estimate the design mean of 
the Bayesian predictive mean estimate  ψ  by 

 
1

1 K

k
kK

ψ ψ
=

= ∑  = 1.6168,  

with 95% CI (for that mean)  

2

1

11.96 ( )
( 1)

K

k
kK K

ψ ψ ψ
=

 
± −  − 

∑  = (1.5962, 1.6374). 

 
Hence we estimate the design bias of ψ  by ψ ψ−  = 0.0808, with 95% 
CI (0.0602, 0.1014). Thus we also estimate the relative design bias of ψ   
by ( ) /ψ ψ ψ−  = 5.3, with 95% CI (3.9, 6.6)  (%).  
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Also, 91 of the 100 Bayesian interval estimates 1,..., KI I  contained the 
true value, ψ  = 1.536. So we estimate the design coverage of the 95% 
CPDR estimate of ψ  (based on a MC sample with size J  = 1,000) as 
0.91, with 95% CI (0.91 1.96 0.91(1 0.91) /100)± −  = (0.8539, 0.9661).  
 
Figure 11.16 shows a probability histogram of the K simulated values 

1,..., Kψ ψ  and related quantities.  
 
 
Figure 11.16 Distribution of K = 100 estimates of ψ   

 
 
(f) Figure 11.17 is an analogue of Figure 11.16 but obtained by replacing 
the Monte Carlo sample mean estimate 1( ... ) /J Jψ ψ ψ= + +  by the 
empirical median of 1,..., Jψ ψ .  
 
Likewise, Figure 11.18 is an analogue of Figure 11.16 but obtained by 
replacing the posterior mean estimate by the empirical mode of 

1,..., Jψ ψ . 
 
Note: The empirical mode was obtained using the R function density(). 
 
We see that the design bias of the empirical mode appears to be smaller 
than that of the empirical median, which in turn is smaller than that of 
the posterior mean. The biases of the Monte Carlo predictive mean, 
median and mode estimates (based on a Monte Carlo sample size of  
J = 1,000) are estimated as +5.3%, +3.8% and +1.4%.  
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Note: From Figure 11.15 in (d) we may have already guessed that the 
posterior mode is better than the posterior mean as an estimate of ψ  
(whose true value is 1.536, as shown by the dot in Figures 11.15–18). 

 
 

Figure 11.17 Distribution of K = 100 estimates of ψ   

 
 
 
Figure 11.18 Distribution of K = 100 estimates of ψ   
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R Code for Exercise 11.3 
 
# (a) 
 
X11(w=8,h=4); par(mfrow=c(1,1)); options(digits=4) 
 
N=100; n=20; mu=10; sig=2; lam=1/sig^2; gam=mu/sig 
set.seed(332); y=rnorm(N,mu,sig); # hist(y,prob=T) 
hist(y,prob=T,xlab="value", xlim=c(0,20), ylim=c(0,0.4), breaks=seq(0,20,0.5), 
 main=" ") 
lines(seq(0,20,0.1),dnorm(seq(0,20,0.1),mu,sig),lwd=3) 
  
ys=y[1:n] 
hist(ys,prob=T,xlab="value", xlim=c(0,20), ylim=c(0,0.4), breaks=seq(0,20,0.5), 
 main=" ") 
lines(seq(0,20,0.1),dnorm(seq(0,20,0.1),mu,sig),lwd=3) 
 
ysbar=mean(ys); sys=sd(ys); gammle=ysbar/sys 
ybar=mean(y); sy=sd(y); ygam=ybar/sy; c(ybar,sy,ygam) # 9.932 1.907 5.207 
c(lam,ysbar,sys, gam, gammle) # 0.250 10.516  1.749  5.000  6.011 
 
J=1000;  set.seed(171);  
lamv=rgamma(J,(n-1)/2,sys^2*(n-1)/2); muv=rnorm(J,ysbar,1/sqrt((n*lamv))) 
gamv=muv*sqrt(lamv) 
gambar=mean(gamv);  gamint=quantile(gamv,c(0.025,0.975)) 
c(gambar, gamint) # 5.925 4.115 7.963 
 
hist(gamv,prob=T,xlab="gamma", xlim=c(2,10), ylim=c(0,0.5),  
 breaks=seq(0,12,0.25), main=" ") 
abline(v=c(gambar, gamint),lwd=3); lines(density(gamv),lwd=3) 
points(c(gam,gammle),c(0,0),pch=c(16,1)) 
legend(7,0.5,c("True value of gamma","MLE of gamma"), 

pch=c(16,1),bg="white") 
 
# (b) Follows on from (a) 
 
K = 100; J=1000; gambarvec=rep(NA,K); gammlevec=rep(NA,K);  
gamlie=rep(0,K);  
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set.seed(143);  for(k in 1:K){  
 y=rnorm(N,mu,sig); s=1:n; ys=y[s];  ysbar=mean(ys); sys=sd(ys) 
 lamv=rgamma(J,(n-1)/2,sys^2*(n-1)/2);  
 muv=rnorm(J,ysbar,1/sqrt((n*lamv))) 
 gamv=muv*sqrt(lamv);  gambar=mean(gamv);    
 gammlevec[k]=ysbar/sys 
 gamint=quantile(gamv,c(0.025,0.975));   gambarvec[k]=gambar  
 if((gamint[1]<=gam)&&(gam<=gamint[2])) gamlie[k]=1    } 
 
Eest=mean(gambarvec);  
Eci=Eest+c(-1,1)*qnorm(0.975)*sd(gambarvec)/sqrt(K) 
Cest=mean(gamlie); Cci=Cest+c(-1,1)*qnorm(0.975)*sqrt(Cest*(1-Cest)/K) 
c(Eest,Eci,Cest,Cci) # 5.2226 4.9986 5.4466 0.9100 0.8539 0.9661 
Emleest=mean(gammlevec) 
Emleci=Emleest+c(-1,1)*qnorm(0.975)*sd(gammlevec)/sqrt(K) 
c(Emleest,Emleci) # 5.298 5.070 5.526 
 
Biasest=Eest-gam; Biasci=Eci-gam 
Biasmleest=Emleest-gam; Biasmleci=Emleci-gam 
c(Biasest,Biasci, Biasmleest,Biasmleci)  
 # 0.222583 -0.001418  0.446583  0.298019  0.070493  0.525544 
c(Biasest,Biasci, Biasmleest,Biasmleci)/gam  
      # 0.0445165 -0.0002836  0.0893166  0.0596037  0.0140986  0.1051088 
 
# hist(gambarvec,prob=T) 
hist(gambarvec,prob=T,xlab="gammabar, gammahat", xlim=c(2,12),  
 ylim=c(0,0.6), breaks=seq(0,12,0.5), main= "") 
abline(v=c(Eest,Eci), lty=1, lwd=3); abline(v=c(Emleest,Emleci), lty=2, lwd=3)   
lines(density(gambarvec),lty=1,lwd=3); lines(density(gammlevec),lty=2,lwd=3) 
points(gam,0,pch=16) 
legend(6.5,0.6,c("Bayesian estimates \n(MC with J=1000)", "ML estimates"), 
 lty=c(1,2), lwd=c(3,3)) 
 
# (c)   
 
K = 5000; J=1000; gambarvec=rep(NA,K);  
gammlevec=rep(NA,K); gamlie=rep(0,K);  
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set.seed(213);  for(k in 1:K){  # Takes a few seconds 
 y=rnorm(N,mu,sig); s=1:n; ys=y[s];  ysbar=mean(ys); sys=sd(ys) 
 lamv=rgamma(J,(n-1)/2,sys^2*(n-1)/2);  
 muv=rnorm(J,ysbar,1/sqrt((n*lamv))) 
 gamv=muv*sqrt(lamv);   

gambar=mean(gamv);   gammlevec[k]=ysbar/sys 
 gamint=quantile(gamv,c(0.025,0.975));   gambarvec[k]=gambar  
 if((gamint[1]<=gam)&&(gam<=gamint[2])) gamlie[k]=1    } 
 
Eest=mean(gambarvec);  
Eci=Eest+c(-1,1)*qnorm(0.975)*sd(gambarvec)/sqrt(K) 
Cest=mean(gamlie); Cci=Cest+c(-1,1)*qnorm(0.975)*sqrt(Cest*(1-Cest)/K) 
c(Eest,Eci,Cest,Cci) # 5.162 5.136 5.187 0.951 0.945 0.957 
Emleest=mean(gammlevec) 
Emleci=Emleest+c(-1,1)*qnorm(0.975)*sd(gammlevec)/sqrt(K) 
c(Emleest,Emleci) # 5.230 5.204 5.256 
 
Biasest=Eest-gam; Biasci=Eci-gam 
Biasmleest=Emleest-gam; Biasmleci=Emleci-gam 
c(Biasest,Biasci, Biasmleest,Biasmleci)  
 # 0.1616 0.1359 0.1872 0.2301 0.2041 0.2561 
c(Biasest,Biasci, Biasmleest,Biasmleci)/gam  
 # 0.03231 0.02718 0.03745 0.04602 0.04081 0.05122 
 
#    hist(gambarvec,prob=T) 
hist(gambarvec,prob=T,xlab="gammabar, gammahat", xlim=c(2,12),  
 ylim=c(0,0.6), breaks=seq(2,12,0.25), main= "") 
abline(v=c(Eest,Eci), lty=1, lwd=3); abline(v=c(Emleest,Emleci), lty=2, lwd=3)   
lines(density(gambarvec),lty=1,lwd=3); lines(density(gammlevec),lty=2,lwd=3) 
points(gam,0,pch=16) 
legend(6,0.6,c("Bayesian estimates \n(MC with J=1000)", "ML estimates"), 
 lty=c(1,2), lwd=c(3,3)) 
 
hist(gambarvec,prob=T,xlab="gammabar, gammahat", xlim=c(4.5,6),  
 ylim=c(0,0.6), breaks=seq(2,12,0.25), main= "") 
abline(v=c(Eest,Eci), lty=1, lwd=3); abline(v=c(Emleest,Emleci), lty=2, lwd=3)   
lines(density(gambarvec),lty=1,lwd=3); lines(density(gammlevec),lty=2,lwd=3) 
points(gam,0,pch=16) 
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# (d) 
 
psifun=function(y){ max(y)/median(y) }  # Function for the quantity of interest 
N=100; n=20; mu=10; sig=2; set.seed(119); y=rnorm(N,mu,sig)    
ybar=mean(y); sy=sd(y); psi=psifun(y=y) 
c(ybar,sy,min(y),max(y), median(y), psi)  

# 9.675  2.159  3.678 15.622 10.171  1.536 
 
hist(y,prob=T,xlab="value", xlim=c(0,20), ylim=c(0,0.4), breaks=seq(0,20,0.5), 
 main="") 
lines(seq(0,20,0.1),dnorm(seq(0,20,0.1),mu,sig),lwd=3) 
 
set.seed(421); ys=sample(y,n) 
ys=y[s];  ysbar=mean(ys); sy=sd(ys); sy2=var(ys) 
c(ysbar,sy, sy2) # 9.438 2.448 5.994 
 
hist(ys,prob=T,xlab="value", xlim=c(0,20), ylim=c(0,0.4), breaks=seq(0,20,0.5), 
 main="") 
lines(seq(0,20,0.1),dnorm(seq(0,20,0.1),mu,sig),lwd=3) 
 
set.seed(323); J=1000;   
lamv=rgamma(J,(n-1)/2,sy2*(n-1)/2); muv=rnorm(J,ysbar,1/sqrt((n*lamv))) 
psiv=rep(NA,J);  
for(j in 1:J){ yrsim=rnorm(N-n,muv,1/sqrt(lamv));   ysim=c(ys,yrsim);  
  psiv[j]=psifun(y=ysim)            } 
 
psibar=mean(psiv);  psiint=quantile(psiv,c(0.025,0.975)) 
c(psibar,psiint)  # 1.715 1.456 2.078 
summary(psiv) 
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
#    1.37    1.60    1.69    1.72    1.81    2.34 
 
#         hist(psiv,prob=T) 
hist(psiv,prob=T,xlab="psi", xlim=c(1.3,2.4), ylim=c(0,4),breaks=seq(1,2.5,0.05), 
 main="") 
abline(v=c(psibar,psiint),lwd=3); den=density(psiv) 
lines(den,lwd=3); points(psi,0,pch=16) 
 
psimedian=median(psiv) 
psimode=den$x[den$y==max(den$y)] 
c(psibar,psimedian,psimode) # 1.715 1.688 1.659 
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# (e)  Follows on from (d) 
 
K = 100; J=1000; psibarvec=rep(NA,K); LBvec= psibarvec; UBvec=LBvec;   
alp=0.05 
set.seed(411);  
 
date() #    
for(k in 1:K){  
 ys=sample(y,n);  ysbar=mean(ys); sy2=var(ys) 
 lamv=rgamma(J,(n-1)/2,sy2*(n-1)/2);  
 muv=rnorm(J,ysbar,1/sqrt((n*lamv))) 
 psiv=rep(NA,J); for(j in 1:J){  
  yrsim=rnorm(N-n,muv,1/sqrt(lamv)) 
  ysim=c(ys,yrsim) 
  psiv[j]=psifun(y=ysim)         
  } 
 psibarvec[k] = mean(psiv);    
 LBvec[k]=quantile(psiv,alp/2);  UBvec[k]=quantile(psiv,1-alp/2)   
 };    
date() #    Simulation with K=100 & J=1000  takes 12 seconds 
 
ct=0; for(k in 1:K) if((LBvec[k]<=psi)&&(psi<=UBvec[k])) ct=ct+1 
 
# hist(psibarvec,prob=T) 
hist(psibarvec,prob=T,xlab="psibar", xlim=c(1.2,2), ylim=c(0,6.5),  
 breaks=seq(1.2,2,0.025), main= "") 
points(psi,0,pch=16) 
 
# Characteristics of posterior mean estimate -------------- 
Eest=mean(psibarvec); Eci=Eest+c(-1,1)*qnorm(0.975)*sd(psibarvec)/sqrt(K) 
Cest=ct/K; Cci=Cest+c(-1,1)*qnorm(0.975)*sqrt(Cest*(1-Cest)/K) 
c(Eest,Eci,Cest,Cci) # 1.6168 1.5962 1.6374 0.9100 0.8539 0.9661 
Biasest=Eest-psi; Biasci=Eci-psi; c(Biasest,Biasci)  #  0.08084 0.06024 0.10144 
c(Biasest,Biasci)/psi  # 0.05263 0.03922 0.06604 
abline(v=c(Eest,Eci), lty=1, lwd=3);   lines(density(psibarvec),lty=1,lwd=3) 
 
# (f)  Follows on from (e)  
 
K = 100; J=1000; LBvec= rep(NA,K); UBvec=LBvec;  alp=0.05 
psimodevec= LBvec; psimedianvec= LBvec; set.seed(411);  
 
date() #    
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for(k in 1:K){  
 ys=sample(y,n);  ysbar=mean(ys); sy2=var(ys) 
 lamv=rgamma(J,(n-1)/2,sy2*(n-1)/2);  
 muv=rnorm(J,ysbar,1/sqrt((n*lamv))) 
 psiv=rep(NA,J); for(j in 1:J){  
  yrsim=rnorm(N-n,muv,1/sqrt(lamv)) 
  ysim=c(ys,yrsim) 
  psiv[j]=psifun(y=ysim)         
  } 
 psimedianvec[k] = median(psiv) 
 den=density(psiv);  psimodevec[k]=den$x[den$y==max(den$y)] 
 LBvec[k]=quantile(psiv,alp/2);  UBvec[k]=quantile(psiv,1-alp/2)   
 }    
date() #    Simulation with K=100 & J=1000  takes 12 seconds 
ct=0; for(k in 1:K) if((LBvec[k]<=psi)&&(psi<=UBvec[k])) ct=ct+1 
 
# hist(psimedianvec,prob=T)  
hist(psimedianvec,prob=T,xlab="psimedian", xlim=c(1.2,2),  
 ylim=c(0,6),breaks=seq(1.2,2,0.025), main= "") 
points(psi,0,pch=16) 
 
# Characteristics of posterior median estimate ----------------- 
Eest=mean(psimedianvec);  
Eci=Eest+c(-1,1)*qnorm(0.975)*sd(psibarvec)/sqrt(K) 
Cest=ct/K; Cci=Cest+c(-1,1)*qnorm(0.975)*sqrt(Cest*(1-Cest)/K) 
c(Eest,Eci,Cest,Cci) # 1.5947 1.5741 1.6153 0.9100 0.8539 0.9661 
Biasest=Eest-psi; Biasci=Eci-psi; c(Biasest,Biasci)  # 0.05873 0.03813 0.07934 
c(Biasest,Biasci)/psi  # 0.03824 0.02483 0.05165 
abline(v=c(Eest,Eci), lty=1, lwd=3);   lines(density(psimedianvec),lty=1,lwd=3) 
 
# hist(psimodevec,prob=T)  
hist(psimodevec,prob=T,xlab="psimode", xlim=c(1.2,2),  
 ylim=c(0,6),breaks=seq(1.2,2,0.025), main= "") 
points(psi,0,pch=16) 
 
# Characteristics of posterior mode estimate -------------------- 
Eest=mean(psimodevec); Eci=Eest+c(-1,1)*qnorm(0.975)*sd(psibarvec)/sqrt(K) 
Cest=ct/K; Cci=Cest+c(-1,1)*qnorm(0.975)*sqrt(Cest*(1-Cest)/K) 
c(Eest,Eci,Cest,Cci) # 1.5579 1.5373 1.5785 0.9100 0.8539 0.9661 
Biasest=Eest-psi; Biasci=Eci-psi; c(Biasest,Biasci)   

# 0.021933 0.001332 0.042534 
c(Biasest,Biasci)/psi  # 0.0142795 0.0008672 0.0276917 
abline(v=c(Eest,Eci), lty=1, lwd=3);   lines(density(psimodevec),lty=1,lwd=3) 
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CHAPTER 12 
Biased Sampling and Nonresponse 

 
12.1 Review of sampling mechanisms 
  
We have already discussed the topic of ignorable and nonignorable 
sampling in the context of Bayesian finite population models. To be 
definite, let us now focus on the model defined by: 
 ( | , )f s y θ     (the probability of obtaining sample s for given  
    values of y and θ ) 
 ( | )f y θ    (the model density of the finite population vector) 
 ( )f θ      (the prior density of the parameter), 
where the data is ( , )sD s y=  and the quantity of interest is some 
functional ( , )g yψ θ= , e.g. a function of two components of θ  or a 
function of y only, etc. 
 
We say that the sampling mechanism is ignorable if   
 ( | , ) ( | )s sf s y f yψ ψ=   
for all values of ψ , where s is fixed at its observed value, or 
equivalently, if the posterior distribution of ψ  is exactly the same when 
it is calculated solely on the basis of the ‘reduced model’ as given by: 
 ( | )f y θ          (same as before)  
 ( )f θ              (same as before),  
that is, with ( | , )f s y θ  effectively being ‘ignored’. Otherwise, we say 
that the sampling mechanism is nonignorable (or biased). 
 
Equivalently, the sampling mechanism is ignorable if 
 ( | , ) ( | )s sf s y f yψ ψ=   
for all ψ , and the sampling mechanism is nonignorable if  
 ( | , ) ( | )s sf s y f yψ ψ≠   
for at least one value of ψ . 
 
Recall that in some situations, whether the sampling mechanism is 
ignorable may depend on which particular units happen to be sampled.  
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For example if ( | , )f s y θ  is a function of only N, n and 3y  (say), then 
(typically) the sampling mechanism is ignorable if and only if unit 3 is 
sampled (and thereby observed). 
 
Also, recall that analogous definitions apply if the sampling mechanism 
is alternatively specified in terms of  
 ( | , )f I y θ      
or in terms of 

( | , )f L y θ , 
rather than in terms of 

( | , )f s y θ . 
 

Here, as previously, 1( ,..., )NI I I=  denotes the vector of inclusion 
counters, i.e. the numbers  of times units 1,…,N are sampled (possibly 
more than once in the case of sampling with replacement), and 

1( ,..., )nL L L=  is the vector of the labels of the units sampled in the 
temporal order in which they are sampled. 
 
12.2 Nonresponse mechanisms 
 
An issue related to nonignorable sampling is nonignorable nonresponse. 
Once a  sample has been taken, some of the units may then fail to 
respond. This may be for whatever reason, but the underlying issue is 
that the values of the nonresponding units will then be unobserved, with 
possibly serious consequences to the resulting inference.  
 
This issue can be addressed by introducing another variable and level 
into the modelling equation. Let iR  denote the ith response indicator, 
meaning the indicator variable for the ith population unit responding.  
 
Thus iR  = 1 if unit i responds, and iR  = 0 otherwise ( 1,...,i N= ). 
 
Now let 1( ,..., )NR R R=  (or the transpose of this) be called the 
population response vector, and likewise, define:  

1
( ,..., )

ns s sR R R=  as the sample response vector  
 

1
( ,..., )

N nr r rR R R
−

=  as the nonsample response vector. 
 
  



Chapter 12: Biased Sampling and Nonresponse 

561 

With these definitions we may now augment our ‘base model’ above 
with a new level in the hierarchy, typically in between y and s, as 
follows: 
 
 ( | , , )f s R y θ    (the probability of obtaining sample s for given  
    values of R, y and θ )  
 ( | , )f R y θ    (the probability of units responding as indicated  
    by R, given y and θ ) 
 ( | )f y θ     (same as before) 
 ( )f θ      (same as before).             (12.1) 
 

Note 1: This general formulation, with ( | , , )f s R y θ  a function of R, 
means that which units are sampled could potentially depend on which 
units would respond if sampled. However, typically it will be 
reasonable to assume that the sampling and response mechanisms are 
independent in the model, meaning that ( | , , ) ( | , )f s R y f s yθ θ= . 

 
Note 2: The statistical literature contains many different and 
sometimes inconsistent treatments of nonignorable nonresponse. For a 
review of the term ‘missing at random’, which relates to but does not 
feature in the exposition here, see Seaman et al. (2013). 
 
In the context of this model, let  
 

1
... 1

no s s n sn R R R′= + + =   
be the number of values in the sample that respond (have a value that is 
observed), and let  
 u on n n= −   
be the number of units in the sample that do not respond (have a value 
that is unobserved). 
  
Then define  
 1( ,..., )

ono o o=   
as the observed vector (the vector of the labels of the units sampled and 
observed), and define  
 1( ,..., )

unu u u=   
as the unobserved vector (the vector of the labels of the units sampled 
and unobserved). 
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Note: In each of these vectors, the values (labels) are assumed to be in 
increasing order. 
 
Then define the observed sample vector as   

1
( ,..., )

noo o oy y y=   

and the unobserved sample vector as    
1

( ,..., )
nuu u uy y y= . 

 
With these definitions, the data has the general form     

( , , )s oD s R y=   
and also the quantity of interest has the general form      

( , , )g y Rψ θ= .  
 
Note 1: The function g defining ψ  takes into account the possibility 
there may be interest in whether some of the nonsampled units would 
have responded had they been sampled. 
 
Note 2: As mentioned previously, it is often convenient to re-label the 
N finite population values in such a way that     
      ( , ) ( , , )s r o u ry y y y y y= =  
   1 1 1(( ,..., ), ( ,..., ), ( ,..., ))

o on n n n Ny y y y y y+ +=  
   1( ,..., )Ny y= . 

 
In the context of the general four-level Bayesian finite population model 
given by (12.1) above (which involves s, R, y and θ ), we may make the 
following definitions: 
 
         • The sampling mechanism is ignorable if    
  ( | , , ) ( | , )s o s of s R y f R yψ ψ=  ψ∀  

with s fixed at its observed value (note that o is a function of s  
and sR ); otherwise the sampling mechanism is nonignorable. 

  
         • The response mechanism is ignorable if     
  ( | , , ) ( | , )s o of s R y f s yψ ψ=  ψ∀  
 with o fixed at its observed value; otherwise the response  
 mechanism is nonignorable. 
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These two basic definitions then lead to four general cases, defined as 
follows: 
 
         • The sampling mechanism and response mechanism are both  
 ignorable if  
  ( | , , ) ( | )s o of s R y f yψ ψ= ψ∀        

with o fixed at its observed values. 
 
         • The sampling mechanism is ignorable and the response  
 mechanism is nonignorable if 
  ( | , , ) ( | , )s o s of s R y f R yψ ψ= ψ∀     

with s fixed at its observed value, and   
( | , ) ( | )s o of R y f yψ ψ≠    

for at least one value of ψ . 
 
         • The response mechanism is ignorable and the sampling  
 mechanism is nonignorable if 
  ( | , , ) ( | , )s o of s R y f s yψ ψ= ψ∀     

with o fixed at its observed value and  
( | , ) ( | )o of s y f yψ ψ≠   

for at least one value of ψ .  
 
         • The sampling mechanism and response mechanism are both  
 nonignorable if 

( | , , ) ( | , )s o s of s R y f R yψ ψ≠   
for at least one value of ψ  and  

( | , , ) ( | , )s o of s R y f s yψ ψ≠   
for at least one value of ψ . 
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Exercise 12.1 A model with sampling and response 
mechanisms that are both ignorable 
 
Consider a Bayesian finite population model defined by:  
 
 ( | , , )f s R y θ  
 ( | , )f R y θ  
 ( | )f y θ  
 ( )f θ ,    
 
where the data is  
 

( , , )s oD s R y=  
 

and the quantity of interest is  
 

 
1

( , , ) 1
N

N i T
i

g y R y y yψ θ
=

′= = = =∑     (finite population total). 

 
Suppose that in this context:  
 
         • the sample of n units is taken from the N in the population via  
 SRSWOR 
 
         • each unit in the population has the same probability of response, 
 π  
 
         • the population values in the model are iid, each with a  
 distribution which depends only on a single parameter µ  
 
         • the model parameter vector is  
 

( , )θ µ π=   
 

with µ π⊥  (thus the two model parameters are independent, a  
priori). 

 
Show that the sampling mechanism and response mechanism are both 
ignorable, and that this is true for all possible values of the data. 
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Solution to Exercise 12.1 
 
Observe that for all s, R, y and θ :  

1

( | , , ) ( )
N

f s R y f s
n

θ
−

 
= =  

 
 

 1

1

( | , ) ( ) (1 )i i

N
R R

i
f R y f Rθ π π −

=

= = −∏     

  T oT uT rTy y y y= + + , 
where:   

1oT o o i
i o

y y y
∈

′= = ∑  is the total of the observed sample values 

 1uT u u i
i u

y y y
∈

′= = ∑  is the total of the unobserved sample values 

 1rT r r i
i r

y y y
∈

′= = ∑  is the total of the nonsample values. 

 

Note: Here, 1o′  denotes a column  vector of on  ones, etc. 

 
Consequently, the relevant predictive density of the quantity of interest, 
namely 
 ( | ) ( | , , )T s of D f y s R yψ = , 
is derived from the joint predictive density of all unobserved and 
nonsampled values, namely 
 ( , | , , )u r s of y y s R y . 
 
We will now proceed to show that   
 ( , | , , ) ( , | )u r s o u r of y y s R y f y y y=  
with o fixed at its observed value, and that this is true for all possible 
values of uy , ry , s, sR  and oy . 
 
If this can be shown then also 
  ( | , , ) ( | )T s o T of y s R y f y y= , 
for all possible values of Ty , s, sR  and oy .  
 
It will thereby be established that the sampling mechanism and response 
mechanism are both ignorable, and that this is true for all possible values 
of the data ( , , )s oD s R y= . 
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Observe that for any uy , ry , s, sR  and oy , it is true that 
 
 ( , | , , ) ( , , , , )u r s o u r s of y y s R y f y y s R y∝  
 
  

  ( , , , , , , , )
r

u r s o r
R

f y y s R y R d dµ π µ π= ∑∫ ∫  

 
  

  ( ) ( ) ( | ) ( , | , )
r

o u r o
R

f f f y f y y yµ π µ µ=∑∫ ∫  

( | ) ( | ) ( )s rf R f R f s d dπ π µ π×  
 

  

{ }( ) ( , | , ) ( ) ( | )u r o of s f y y y f f y dµ µ µ µ= × ∫  

( ) ( | ) ( | )
r

s r
R

f f R f R dπ π π π
 

× 
 

∑∫  

    where  [ ] ( , ) 1 ( )s sf R d f Rπ π= × =∫  
 
  

  
, ( ) ( | )1 ( , | , ) 1

( )
u ry y

o
u r o

o

f f yf y y y d
f y

µ µµ µ
 

∝ × × 
 

∫       

 
  

  ( , | , ) ( | )u r o of y y y f y dµ µ µ= ∫      

 
  

  ( , , | )u r of y y y dµ µ= ∫      

 
  

  ( , | )u r of y y y= .     
 
That is,  
 

( , | , , ) ( , | )u r s o u r of y y s R y f y y y= ,  
 

as required.  
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Exercise 12.2 An ignorable sampling mechanism with a 
nonignorable response mechanism 
 
A finite population consists of N = 500 values that are modelled as 
normally distributed with unknown mean µ  and unknown variance 

2 1 /σ λ= . A sample of size n = 100 is taken from this population via 
SRSWOR. We find that only on  = 34 values are observed, with values: 
        12.57, 13.35, 11.47, 14.81, 13.25,  14.09, 11.55, 11.32, 13.2, 11.28,  
        9.7, 12.18, 11.49, 10.52, 9.93,  11.84, 12.2, 10.57, 11.9, 14.75,  
        10.34, 14.37, 12.13, 8.56, 11.91,  11.79, 11.45, 14.98, 10.57, 12.28,  
        9.91, 10.94, 13.28, 11.43. 
 
(a) Assuming that the response mechanism is ignorable, estimate the 
finite population mean. 
 
(b) A follow-up sample of size fn  = 15 is taken from the un  = 66 non-
responding units via SRSWOR, and these fn  units are observed (by 
‘force’), yielding the values: 
         5.4, 9.41, 7.03, 8.88, 11.47,  7, 9.44, 8.58, 9.27, 8.18,  
         8.62, 8.73, 7.33, 9.81, 9.88. 
 
Thus there remain o f u fn n n n n− − = − = 51 nonresponding sample units 
with unknown values.  
 
Assuming that the response mechanism is ignorable, use all of the 
available data to re-estimate the finite population mean. 
 
(c) Repeat (b) but using a suitable Bayesian model which takes into 
account the response mechanism and appropriately incorporates it into 
the inferential procedure. 
 
Solution to Exercise 12.2 
 
(a) We estimate y  by the average of the on  = 34 observed values, which 
is oy  = 11.94. The sample standard deviation of these on  values is equal 
to os  = 1.552. So a 95% CPDR for y  is 

 0.025( 1) 1o o
o o

o

s ny t n
Nn

 
± − −  

 
 = (11.42, 12.46). 
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(b) We estimate y  by the average of all of o fn n n= + 34 15 49= + =  
observed values, which is equal to ofy = 10.92. The sample standard 
deviation of these ofn  values is ofs = 2.168. So a 95% CPDR for y  is 

 0.025( 1) 1of of
of of

of

s n
y t n

Nn

 
 ± − −
 
 

 = (10.33, 11.51). 

 
(c) Figure 12.1 is a histograms of the on  = 34 initially observed values 
and the fn  = 15 follow-up values, respectively. We see that the ‘forced’ 
follow-up values which initially failed to respond seem to be smaller on 
average than the values of the units which responded. This suggests a 
biased or nonignorable nonresponse mechanism whereby units with 
large values are more likely to respond than units with small values. 
 
 
Figure 12.1 Initially observed and and follow-up sample values  

 
 
 
One way (amongst several) to model such a response mechanism is via 
the formulation  
 ( | , , ) ~ ( )i iR y Bernoulli pµ λ ⊥ ,  1,...,i N= , 
where         

log
1

i
i

i

p a by
p

 
= + − 

   

is the logit of the probability of unit i responding. 
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Noting that the sampling mechanism is ignorable, and that the response 
mechanism would be ignorable if all n sample values were known, we 
posit a suitable Bayesian model as follows: 

 ( )1( | , , , , ) ~ ( | , )rT s s rT s sT rTy y R y y y y y y
N

µ λ = +  

 ( | , , , ) ~ ( | , ) ~ ( ) ,rT s s rT
N ny R y y N N nµ λ µ λ µ
λ
− − 

 
 

 1( | , , ) ( | ) (1 )i iR R
s s s s i i

i s
f R y f R y p pµ λ −

∈

= = −∏     

where ( )
1

1 ii a byp
e− +=

+
 

 
2( )

2( | , )
2

iy

s
i s

f y e
λ µλµ λ

π
− −

∈

=∏  

 ( , ) 1/ , , 0f µ λ λ µ λ∝ ∈ℜ > . 
 

Note: There is no need to include the nonsample response vector rR  in 
the model. 
 
Let m s o f u f= − − = −  be the vector of labels for the units which are 
sampled but still ‘missing’ after the follow-up sample has been 
observed.  
 
Then the joint posterior/predictive density of all the relevant unknowns 
in the model may be written 
 ( , , , | , , ) ( , , , , , , )rT m s o f rT m s o ff y y R y y f y y R y yµ λ µ λ∝  

       ( , ) ( | , ) ( | , ) ( | ,o f mf f y f y f yµ λ µ λ µ λ µ λ = ×  
 

 

( | ) ( | ) ( | ) ( | , )o s f s m s rTf R y f R y f R y f y µ λ × × 
 

 

       
2 2 2( ) ( ) ( )

2 2 21
2 2 2

i i iy y y

i o i f i m
e e e

λ λ λµ µ µλ λ λ
λ π π π

− − − − − −

∈ ∈ ∈

∝ ×∏ ∏ ∏   

     1 1 1 0 1 0 0 1 0(1 ) (1 ) (1 )i i i i i i
i o i f i m

p p p p p p− − −

∈ ∈ ∈

× − − −∏ ∏ ∏  

  
2( ( ) )

2( )

2
iy N n

N ne
N n

λ µλ
π

− − −
−×

−
. 
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This joint density defines a suitable Metropolis-Hastings algorithm with 
Gibbs steps that could be run to obtain a Monte Carlo sample from the 
predictive distribution of the finite population mean y .  
 
One way to proceed is to implement this algorithm using WinBUGS and 
the code shown below (underneath the R Code below). Some of the 
results are as shown in Table 12.1. These inferences are based on 

10,000J =  iterations of a WinBUGS run, following an initial burn-in of 
size 1,000. 
 
 
Table 12.1 Results of WinBUGS analysis 
 
node  mean  sd  MC error   2.5% median 97.5%  
a -17.86 4.582 0.4184   -26.96   -17.79  -10.31  
b 1.676 0.4535 0.04136   0.9301   1.672  2.586  
lam 0.1921 0.04236 0.001112   0.118   0.189  0.2828  
mu 9.688 0.3508 0.01358   8.976   9.693  10.35  
ps[1] 0.9348 0.07378 0.006256   0.7572   0.959  0.997  
ps[2] 0.9721 0.0535 0.004619   0.8664   0.9886  0.9996 
…………………………………………………………………………………. 
ps[99] 0.1417 0.2097 0.003545   1.224E-5  0.04017   0.7787  
ps[100] 0.1423 0.2101 0.003883   1.12E-5   0.03954   0.7731  
ybar 9.687 0.3353 0.01329   9.013   9.696   10.32  
yrT 3874.0 147.9 5.408   3573.0   3878.0   4156.0  
   
 
From Table 12.1, we estimate the posterior mean of y  by 9.69 and we 
estimate the 95% CPDR for y  as (9.01, 10.32). It will be noted that this 
inference is significantly lower than the inferences in (a) and (b) where 
the response mechanism was taken as ignorable. Some of the graphical 
output from the WinBUGS run are shown in Figure 12.2 
 
 
Figure 12.2 Graphical output from WinBUGS 
 

 



Chapter 12: Biased Sampling and Nonresponse 

571 

 
 
 
Discussion 
 
It is instructive to now reveal that the data values in this exercise were in 
fact generated as follows.  
 
First, a finite population of size N = 500 was generated from the normal 
distribution with mean µ  = 10 and standard deviation σ  = 2. The mean 
of the finite population values was calculated as y  = 10.10. 
 
Note: We see that the CPDR in (c), (9.013, 10.32), contains this true 
value of y , whereas the CPDRs in (a) and (b), (11.42, 12.46) and 
(10.33, 11.51), do not. This suggests the analysis in (c) was on the 
right track. 
  
Then a random sample of size n = 100 was taken from the finite 
population according to SRSWOR. The sample mean was calculated as 

sy  = 9.91.  
 
Note: Thus, if there had been no nonresponse then the finite population 
mean (with true value 10.10) would have been estimated by 9.91. 
  
Figure 12.3 shows histograms of the population and sample values, each 
overlaid by the superpopulation density. The dots in the two subplots 
show y  = 10.10 and sy  = 9.91, respectively. 
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Figure 12.3 Histograms of the population and sample values 

 
 
 
Then the probabilities of response were calculated as  

 ( )
1

1 ii a byp
e− +=

+
  

with a = −15 and b = 1.4 (set in advance). 
 
Using these probabilities, it was next determined which units would 
respond, by sampling 
   ~ ( )i iR Bernoulli p     
for each i = 1,…,N. 
 
Thereby it was established which sample units would respond and which 
would not. Figure 12.4 shows histograms of these two groups (of size  

on  = 34 and un  = 66), each overlaid by the superpopulation density. The 
dots in the left and right subplots show oy  and uy , respectively, and 
each histogram is overlaid by the superpopulation density. 
 
We see how the respondent values are systematically larger than the 
nonrespondent values. This reflects the fact that units with larger values 
were more likely to respond. 
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Figure 12.4 Observed and unobserved (non-responding) 
sample values 

 
 
Figure 12.5 shows all N probabilities of response 1,..., Np p  plotted 
against the population values 1,..., Ny y . The crosses indicate population 
units which would not respond if sampled, and these naturally tend to be 
the units with the smallest values. 
 
Figure 12.5 Probabilities of response in the population 

 
 
Likewise, Figure 12.6 shows the n probabilities of response in the 
sample plotted against the sample values. The crosses indicate sample 
units which did not respond in actuality, and these tend to be the units 
with the smallest values. The solid dots indicate the 15 units which were 
selected for ‘forced’ follow-up according to SRSWOR (from the 66 non-
responding sample units). Without these 15 ‘representative’ follow-up 
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values it would have been impossible to appropriately address the 
nonignorable nonresponse problem and correct the biased inference in 
(a) and (b) downward. 
 
Figure 12.6 Probabilities of response in the sample 

 
 
R Code for Exercise 12.2 
 
# Preliminary: Data generation and description =========== 
 
X11(w=8,h=4);  par(mfrow=c(1,1));       options(digits=4);      
N=500; n=100; mu=10; sig=2; a=-15;   b=1.4;  
set.seed(421); y=rnorm(N,mu,sig)   # N finite population values 
p=1/(1+exp(-(a+b*y)))  # N probabilities of response (logistic) 
plot(y,p) # OK 
 
set.seed(123); R=rbinom(N,1,p) # N response indicators 
set.seed(421); s=sort(sample(1:N,n))    # n sample labels 
 
r = (1:N)[-s]    # N-n nonsample labels 
ys=y[s]    # n sample values 
yr=y[r]   # N-n nonsample values 
Rs = R[s]  # n sample response indicators 
Rr = R[r]  # N-n nonsample response indicators 
 
no = sum(Rs); nu = n-no; c(no,nu)  

#   34 66     numbers of observed and unobserved units 
o = s[Rs==1]   # labels of observed sample values 
u = s[Rs==0]   # labels of unobserved sample values 
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rbind(s[1:10],Rs[1:10]) 
# [1,]    6    7   14   17   22   37   39   48   66    69 
# [2,]    0    0    1    0    1    0    0    0    1     1 
o[1:5]  # 14 22 66 69 78        Correct 
u[1:5]  # 6  7 17 37 39       Correct 
 
yo = y[o]; yu = y[u] 
ybar=mean(y); ysbar=mean(ys); yrbar=mean(yr);  
yobar=mean(yo); yubar=mean(yu) 
c(ybar,ysbar,yrbar,yobar,yubar) #   10.095  9.907 10.143 11.938  8.860 
 
# Plot population and sample values ------------------------------- 
par(mfrow=c(1,2)) 
hist(y,prob=T,xlab="value", main="Population", 
 xlim=c(3,17),ylim=c(0,0.25), breaks=seq(0,20,1)) 
lines(seq(0,20,0.1),dnorm(seq(0,20,0.1),mu,sig),lwd=3) 
points(ybar,0,pch=16)    
hist(ys,prob=T,xlab="value", main="Sample", 
 xlim=c(3,17),ylim=c(0,0.25), breaks=seq(0,20,1)) 
lines(seq(0,20,0.1),dnorm(seq(0,20,0.1),mu,sig),lwd=3) 
points(ysbar,0,pch=16) 
 
# Plot observed and unobserved sample values ------------------------------- 
par(mfrow=c(1,2)) 
hist(yo,prob=T,xlab="value", main="Observed", 
 xlim=c(3,17),ylim=c(0,0.35), breaks=seq(0,20,1)) 
lines(seq(0,20,0.1),dnorm(seq(0,20,0.1),mu,sig),lwd=3) 
points(yobar,0,pch=16) 
hist(yu,prob=T,xlab="value", main="Unobserved", 
 xlim=c(3,17),ylim=c(0,0.35), breaks=seq(0,20,1)) 
lines(seq(0,20,0.1),dnorm(seq(0,20,0.1),mu,sig),lwd=3) 
points(yubar,0,pch=16) 
 
# Plot probabilities of response in population -------------- 
par(mfrow=c(1,1)) 
plot(y,p,xlab="y",ylab="p",main="") 
points(y[R==0], p[R==0],pch=4,cex=1.5) 
text(8,0.8,"The crosses represent nonrespondents") 
 
# Plot probabilities of response in sample and follow-up subsample -------------- 
par(mfrow=c(1,1)); plot(ys,p[s],xlab="y",ylab="p",main="") 
points(ys[Rs==0], p[s][Rs==0],pch=4,cex=1.5) 
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nf=15; set.seed(112); followup = sort(sample(1:nu, nf))    # Follow up sample 
f=u[followup]  # pop. labels of follow-up units 
yf=y[f]  # The follow-up sample vector 
yfbar=mean(yf); yfbar  # 8.601     mean of follow-up values 
points(yf, p[f], pch=16)  # OK 
text(8,0.8,"The crosses represent nonrespondents") 
text(8,0.7,"The dots represent follow-up units") 
 
# Print data -------------------------------------------------- 
s   # [1]   6   7  14  17  22  37  39  48  66  69  73  77  78 103 105 106 117……… 
o  # [1]  14  22  66  69  78 141 152 156 172 228 230 232 …… 
f  # [1]   17  73  77 128 145 163 187 196 253 271 318 357 436 438 481 
 
paste(as.character(round(yo,2)), collapse=", ") 
# 12.57, 13.35, 11.47, 14.81, 13.25, 14.09, 11.55, 11.32,13.2,11.28,9.7,12.18,  
# 11.49, 10.52,  9.93, 11.84, 12.2, 10.57, 11.9, 14.75, 10.34, 14.37, 12.13, 8.56,  
# 11.91, 11.79, 11.45, 14.98,  10.57, 12.28, 9.91, 10.94, 13.28, 11.43 
paste(as.character(round(yf,2)), collapse=", ") 
# 5.4, 9.41, 7.03, 8.88, 11.47, 7, 9.44, 8.58,9.27,8.18,8.62,8.73,7.33,9.81, 9.88 
 
# (a) =================================== 
yo = c(12.57, 13.35, 11.47, 14.81, 13.25, 14.09, 11.55, 11.32, 13.2, 11.28, 9.7,  
12.18, 11.49, 10.52,  9.93, 11.84, 12.2, 10.57, 11.9, 14.75, 10.34, 14.37, 12.13,  
8.56, 11.91, 11.79, 11.45, 14.98,  10.57, 12.28, 9.91, 10.94, 13.28, 11.43) 
no=length(yo); N=500;  ybarhata = mean(yo); so=sd(yo)  
ybarcpdra=ybarhata+c(-1,1)*qt(0.975,no-1)*(so/sqrt(no))*sqrt(1-no/N) 
c(no,so,ybarhata, ybarcpdra) # 34.000  1.552 11.939 11.416 12.461 
 
# (b) =================================== 
yf = c(5.4,9.41,7.03,8.88,11.47,7,9.44,8.58,9.27,8.18,8.62,8.73,7.33, 9.81,9.88) 
yof=c(yo,yf); nof=no+nf;  ybarhatb = mean(yof);sof=sd(yof) 
ybarcpdrb=ybarhatb+c(-1,1)*qt(0.975,nof-1)*(sof/sqrt(nof))*sqrt(1-nof/N) 
c(nof,sof,ybarhatb, ybarcpdrb) # 49.000  2.168 10.917 10.326 11.509 
 
# (c) ============================================ 
# Plot observed and follow-up sample values separately 
par(mfrow=c(1,2)) 
hist(yo,prob=T,xlab="value", main="Initially observed", 
 xlim=c(3,17),ylim=c(0,0.35), breaks=seq(0,20,1));  
points(mean(yo),0,pch=16); 
hist(yf,prob=T,xlab="value", main="Follow-up", 
 xlim=c(3,17),ylim=c(0,0.35), breaks=seq(0,20,1));  
points(mean(yf),0,pch=16) 
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WinBUGS code for Exercise 12.2 
 
model 
{ 
for(i in 1:n){ 
   zs[i] <- a + b*ys[i] 
   logit(ps[i])<- zs[i] 
   rs[i] ~ dbern(ps[i]) 
   ys[i] ~ dnorm(mu,lam) 
   } 
a ~ dnorm(0.0,0.001) 
b ~ dnorm(0.0,0.001) 
mu ~ dnorm(0.0,0.001) 
lam ~ dgamma(0.001,0.001) 
ysT <- sum(ys[]) 
meanyrT <- nr*mu 
precyrT <- lam/nr 
yrT ~ dnorm(meanyrT,precyrT) 
ybar <- (ysT+yrT)/(n+nr) 
} 
 
# data 
list(  n=100, nr=400, 
 rs=c( 1,1,1,1,1,1,1,1,1,1,  1,1,1,1,1,1,1,1,1,1, 
  1,1,1,1,1,1,1,1,1,1,  1,1,1,1,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,   
  0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,   
  0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0), 
 
ys=c(  
12.57, 13.35, 11.47, 14.81, 13.25,  14.09, 11.55, 11.32, 13.2, 11.28,  
9.7, 12.18, 11.49, 10.52, 9.93,   11.84, 12.2, 10.57, 11.9, 14.75,  
10.34, 14.37, 12.13, 8.56, 11.91,  11.79, 11.45, 14.98, 10.57, 12.28,  
9.91, 10.94, 13.28, 11.43, 5.4,   9.41, 7.03, 8.88, 11.47, 7,  
9.44, 8.58, 9.27, 8.18, 8.62,   8.73, 7.33, 9.81, 9.88, NA,  
NA, NA, NA, NA, NA,   NA, NA, NA, NA, NA,  
NA, NA, NA, NA, NA,   NA, NA, NA, NA, NA,  
NA, NA, NA, NA, NA,   NA, NA, NA, NA, NA,  
NA, NA, NA, NA, NA,   NA, NA, NA, NA, NA,  
NA, NA, NA, NA, NA,   NA, NA, NA, NA, NA)    ) 
 
# inits 
list(a=0,b=0,mu=0,lam=1) 
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12.3 Selection bias in volunteer surveys 
 
Volunteer surveys are common nowadays, with the main mediums being 
the telephone and Internet. However, they can be misleading on account 
of selection bias, and this has been known for a long time. For example, 
in 1983 a major television network in the US conducted a phone-in (or 
dial-in) poll. Viewers were invited to phone the network and answer the 
following question: 
   Should the United Nations continue to be based in the United States? 
 
Of the 185,000 phones calls subsequently registered, 33% were from 
persons answering yes, and 67% from persons answering no. The 
question then arose as to how reliable these figures are when applied to 
the American population as a whole. Many factors could affect said 
reliability, for example whether some people phoned in more than once. 
 
A key concern is that maybe yes-respondents were more, or less, likely 
to phone in than no-respondents. For example, if yes-respondents were 
less likely to phone in, then the sample almost certainly contained an 
unrepresentatively low proportion of yes-responses. Consequently, the 
figure 33% is biased and too low when taken as an estimate of the 
percentage of all Americans in favour of the UN being based in the US. 
 
Concerned about the accuracy of its phone-in polls generally, the TV 
network conducted an independent survey of the entire American 
population using proper probability sampling techniques. A SRSWOR 
of 1,000 persons yielded 72% yes-responses to the same question and 
28% no-responses. 
 
From these results, we may suspect that yes-respondents were indeed 
less likely to phone in than no-respondents. This prompts us to now 
study the issue in more depth, starting with the following model. This 
model and parts of the subsequent exposition can also be found in Puza 
and O’Neill (2006). 
  
12.4 A classical model for self-selection bias 
 
Suppose that there are a large number N units in the population (e.g. 
persons in the US) and each unit has the same probability p of having a 
particular characteristic in question (e.g. being in favour of the UN being 
based in the US).  
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Then define: 
      iy  as the indicator for pop. unit i having the characteristic (0 or 1) 
      iπ  as the probability that unit i will be sampled (e.g. phone in to  
  answer the question) 
      iI  as the indicator that population unit i is sampled. 
 
In this context the data is ( , )sTD n y= , where: 
     1 ... Nn I I= + +  is the observed sample size 
     

1
...

nsT s sy y y= + +  is the number of yes-respondents in the sample. 
 
Now, a ‘naïve’ or ‘base’ model here is  

~ ( , )sTy Bin n p ,  
and this leads to the straight sample proportion  

/s sTy y n=   
as an estimate of p. 
 
We now wish to generalise this model to account for the possibility that 

sy  may be biased. To this end, suppose each iπ  can be one of two 
values: 
  1φ    if that unit has the characteristic in question, i.e. if iy  = 1 
  0φ    if that unit does not have the characteristic, i.e. if iy  = 0. 
 

Note: We may then write iπ  = 
iyφ . 

  
Next, suppose that a unit with the characteristic in question is λ  times as 
likely to respond as a unit without the characteristic. Thus   

1 0φ λφ= .  
 
Also, write  0φ  simply as φ . Then, 

 
  if  0
  if  1

ii y
i

i

y
y

φ
π φλ

λφ
= 

= = = 
. 
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With the above definitions, we now consider the probability of a 
respondent having the characteristic (as distinct from the probability of a 
nonrespondent having the characteristic):  

 ( 1) ( 1| 1)( 1| 1)
( 1)

i i i
i i

i

P y P I yP y I
P I

= = =
= = =

=
     

(note that we are applying Bayes’ rule here) 
 

 ( 1) ( 1| 1)
( 0) ( 1| 0) ( 1) ( 1| 1)

i i i

i i i i i i

P y P I y
P y P I y P y P I y

= = =
=

= = = + = = =
 

 1

0 1(1 )
p

p p
φ
φ φ

=
− + (1 )

p
p p
φλ
φ φλ

=
− + 1

p
p p
λ

λ
=

− +
. 

 
Note: Observe how one of the parameters, namely φ , cancels out here. 

 

We may now write ~ ( , )sTy Bin n ω , where 
1

p
p p
λω

λ
=

− +
. 

 
Next,  the MLE and method of moments estimator of ω  is /s sTy y n= . 
 

Also, solving 
1

p
p p
λω

λ
=

− +
 for p yields p ω

λ λω ω
=

− +
. 

 

It follows that the MLE and MOME of  p  is ˆ s

s s

yp
y yλ λ

=
− +

. 

 

Also, /2
(1 )( , ) s s

s
y yL U y z

nα

 −
= ±  
 

 is a 1 α−  CI for ω . 

 

Therefore, a 1 α−  CI for p is ,L U
L L U Uλ λ λ λ

 
 − + − + 

. 

 
It is of interest to now discuss the biases of the two estimators mentioned 
above. First, the bias of  sy  is   

 (1 )(1 )( ) 1
1 1 (1 )s

pB y p p p
p p p
λ λω

λ λ
  − −

= − = − = − + − − 
. 
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This is not zero but reduces to zero when 1λ = , i.e. when 1 0π π= . 
 

Also, the bias of p̂  is  ˆ( ) s

s s

yB p E p
y yλ λ

 
= − − + 

. 

 
Just like ( )sB y , ˆ( )B p  is nonzero but reduces to zero when 1λ = . But 
unlike ( )sB y , ˆ( )B p  converges to zero as the sample size n tends to 
infinity, this being true for all λ . 
 

That is, ˆ s

s s

yp
y yλ λ

=
− +

 is asymptotically unbiased for p as n →∞ . 

 
Note: This is obvious by construction. But just to check, we note that    

1s
pEy
p p
λ

λ
=

− +
 and sVy < ∞ . Therefore   

          1ˆ( ) 0

1 1

p
p pB p p

p p
p p p p

λ
λ

λ λλ λ
λ λ

  
  − +  → − =
    

− +    − + − +    

 as n →∞ . 

 
Example 12.1 Application to the US TV network scenario  
(a classical analysis) 
 

Observe that 
1

p
p p
λω

λ
=

− +
 implies 

(1 )
(1 )

p
p
ωλ

ω
−

=
−

. 

 
Then recall that the phone-in poll conducted by the TV network yielded 
an estimate of 0.33, and that the parallel scientifically designed (and 
‘proper’) survey yielded an estimate of 0.72. 
 
Thus we may estimate 1 0/λ π π=  by 

 
ˆ ˆ(1 ) 0.33(1 0.72)ˆ

ˆˆ (1 ) 0.72(1 0.33)
p

p
ωλ

ω
− −

= =
− −

 = 0.19.       

 
This estimate being less than unity is consistent with our earlier intuition 
that the phone-in poll estimate might be too low due to yes-respondents 
being less likely to phone in than no-respondents.  
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Example 12.2 Inference on p in a flag poll (a classical analysis) 
 
On 28 January 2000 an Internet poll was conducted by the Nine TV 
Network in Australia with the question: 
 Should the Australian flag be replaced by a new one? 
 
To this poll there were 4,941 yes-responses and 4,512 no-responses, thus 
a proportion of  
 4,941/(4,941 + 4,512) = 4,941/9,453 = 0.523 yeses.  
 
A similar question was asked in the Australian Constitutional 
Referendum Study, 1999 (Gow et al., 2000), and this proper survey 
yielded 829 yes-responses and 1,394 no-responses, thus a proportion of  
 829/(829 + 1,394) = 829/2,223 = 0.373 yeses. 
 
Hence, for the 28 January Internet poll we may estimate 1 0/λ π π=  by 

  
ˆ ˆ(1 ) 0.523(1 0.373)ˆ

ˆˆ (1 ) 0.373(1 0.523)
p

p
ωλ

ω
− −

= =
− −

 = 1.84. 

      
This suggests that persons who wanted the flag replaced were almost 
twice as likely to register their opinion via the Internet poll as persons 
who were happy with the old flag.  
 
Example 12.3 Inference on p in a currency poll  
(a classical analysis) 
 
On 4 June 2000 an Internet poll was conducted by the Nine TV Network 
with the question: 
  Should the Queen’s image be removed from our currency? 
 
To this there were 2,544 yes-responses and 1,755 no-responses, thus a 
proportion of 
 2,544/(2,544 + 1,755) = 2,544/4,299 =  0.592 yeses. 
 
Now recall Example 12.2. Clearly there is some similarity between the 
two polls. Both were conducted on the Internet by the same organisation 
within the same half-year, and the two questions asked both relate to 
changing something about Australia’s heritage. This similarity suggests 
that 1.84 may be a plausible value of 1 0/λ π π=  to be used in the 4 June 
poll here. 
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If so, we may estimate the true proportion of Australians in favour of 
removing the Queen’s image from our currency as 

 0.592ˆ
1.84 1.84 0.592 0.592

s

s s

yp
y yλ λ

= =
− + − × +

 = 0.441. 

 

Then, a 95% CI for 
1

p
p p
λω

λ
=

− +
 (the probability of a yes-response for 

a respondent) is  

    /2
(1 )( , ) s s

s
y yL U y z

nα

 −
= ±  
 

 = 0.592(1 0.592)0.592 1.96
4,299

 −
±  

 
  

       = (0.577, 0.607).   
 
Therefore, a 1 α−  CI for p is    

,L U
L L U Uλ λ λ λ

 
 − + − + 

    

    0.577 0.607,
1.84 1.84 0.577 0.577 1.84 1.84 0.607 0.607
 =  − × + − × + 

  

     = (0.426, 0.456). 
 
12.5 Uncertainty regarding the sampling  
mechanism 
 
In Example 12.3 above, the value of λ  was taken to be exactly 1.84. 
However, there is in fact uncertainty about λ  which ought to be taken 
into account and perhaps lead to a wider CI for p than the one reported.  
 
With this in mind we now postulate the following Bayesian model: 
 

 ( | , ) ~ ( , )sTy p Bin nλ ω    where     
1

p
p p
λω

λ
=

− +
  (as before) 

 
 ( | ) ~ ( , )p Betaλ α β  
 
 ~ ( , )Gammaλ η τ .                (12.2) 
 
Note: This model implicitly conditions on the sample size n. 
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Example 12.4 Bayesian re-analysis of poll data Example 12.2 
 
Recall the 28 January 2000 Internet poll yielding 4,941 yeses out of 
9,453 responses and the related properly conducted probability survey 
yielding 829 yeses and 1,394 nos. 
 
This suggests we apply the Bayesian model (12.2) in WinBUGS to 
estimate λ , with: 
 
 η  = τ  = 0.000001    (implying an uninformative prior on λ ) 
 
 α  = 829 + 1 = 830, β  = 1,394 + 1 = 1,395    

(the posterior of p implied by the proper survey in a  
binomial-beta model and then fed here as the prior for p) 
 

 n = 9,453, sTy  = 4,941    
(the observed data in the self-selected sample). 

 
Using suitable WinBUGS code (see below) and a sample size of 10,000 
after a burn-in of 1,000, we obtained results shown in Table 12.2. Figure 
12.7 shows some of the graphical output from WinBUGS. 
 
 
Table 12.2 Results of WinBUGS analysis 
 
node  mean  sd   MC error 2.5% median 97.5%  
lam 1.843 0.08879 0.00271 1.677 1.841 2.026  
p 0.373 0.01022 3.15E-4  0.3529 0.373 0.393  
  
 
We see that λ  has been estimated as 1.84 again, but now with some  
measure of uncertainty: the 95% posterior interval estimate for λ  is 
(1.68, 2.03).  
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Figure 12.7 Graphical output from WinBUGS 
 

 
 

 
 
Equating the sample mean and sample variance of the 10,000 simulated 
values with the theoretical mean and variance of the ( , )Gamma η τ , 
namely /η τ  and 2/η τ , respectively, we may approximate the posterior 
distribution of λ  as ( , )Gamma η τ  with η  = 431 and τ  = 234.  
 
Figure 12.8 shows a histogram of the simulated values overlaid by the 
gamma density defined by these parameters. We see that the gamma 
posterior approximation fits quite well. 
 
Figure 12.8 Histogram of simulated values and fitted gamma 
density 
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WinBUGS Code for Example 12.4  
 
model;    
{ 
   ysT~ dbin(omega,n) 
   omega <- (p*lam)/(1-p+lam*p) 
   lam ~ dgamma(eta,tau) 
   p ~ dbeta(alpha,beta) 
} 
 
# data 
list(ysT=4941,n=9453,eta=0.000001, 
tau=0.000001,alpha=830,beta=1395) 
 
# inits 
list(p=0.5,lam=1) 
 
R Code for Example 12.4  
 
# Need to run BUGS code above first, using coda to create output in data.txt 
 
options(digits=3);   0.33*0.28/(0.72*0.67) # 0.192 
0.523*(1-0.373)/(0.373*(1-0.523))  # 1.84 
0.592/(1.84-1.84*0.592+0.592) # 0.441 
CIomega = 0.592+c(-1,1)*1.96*sqrt(0.592*(1-0.592)/4299)  
CIp = (CIomega/(1.84-1.84*CIomega+CIomega)) 
c(CIomega, CIp)  # 0.577 0.607 0.426 0.456 
 
out=read.table(file=file.choose())  # choose data.txt from BUGS run 
lamvec = out[1:10000,2]; options(digits=5) 
lambar=mean(lamvec); lamvar=var(lamvec) 
taufit=lambar/lamvar;  etafit=lambar*taufit 
c(lambar, lamvar, etafit, taufit)    

# 1.8432e+00 7.8849e-03 4.3087e+02 2.3376e+02 
summary(lamvec) 
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
#    1.55    1.78    1.84    1.84    1.90    2.20 
X11(w=8,h=4); par(mfrow=c(1,1)) 
lamv <- seq(1.4,2.4,0.001) 
fv <- dgamma(lamv,431,234) 
hist(lamvec,prob=T,xlim=c(1.4,2.4),ylim=c(0,5),xlab="lambda",cex=1.5, 
 breaks=seq(1,3,0.025), main="") 
lines(lamv,fv,lwd=3) 
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Example 12.5 Bayesian re-analysis of poll data in Example 12.3 
using results in Example 12.4 
 
Recall the 4 June 2000 poll yielding 2,544 yeses out of 4,299 responses, 
leading to 0.441 as an estimate of p, with 95% CI (0.426, 0.456), based 
on λ  being exactly equal to 1.84. This suggests we apply our Bayesian 
model in WinBUGS to estimate p with: 
  
 η  = 431,  τ  = 234      

(using the posterior for λ  in Example 4 as the prior) 
 

 α  = β  = 1         (implying an uninformative prior for p) 
 
 n = 4,299,  sTy  = 2,544       

(the observed data in the self-selected sample). 
 
Using suitable WinBUGS code (see below), we obtained the results 
shown in Table 12.3. Some of the graphical output is shown in Figure 
12.9. 
 
 
Table 12.3 Results of WinBUGS analysis 
 
node  mean     sd   MC error 2.5% median    97.5% 
lam 1.841     0.08801 0.001991 1.67 1.84    2.014  
p 0.4409     0.01408 3.18E-4  0.414 0.4406    0.4698   
 
 
We see that p has been estimated as 0.441 again, with 95% interval 
estimate (0.414, 0.470). It will be noted that this interval is wider than 
the one in Example 12.3; this may be attributed to the fact that in 
Example 12.3 uncertainty regarding λ  was not properly taken into 
account. For more information on the topic in this section, see Puza and 
O’Neill (2006). 
 
Note: The posterior for λ  is virtually the same as the prior for λ . This 
was to be expected, since—unlike in Example 12.4—the data here 
does not contain any structure which could tell us anything about the 
relationship between the sampling propensities 0π  and 1π . 
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Figure 12.9 Graphical output from WinBUGS 
 

 
 
 
WinBUGS Code for Example 12.5 
 
model;    
{ 
   ysT~ dbin(omega,n) 
   omega <- (p*lam)/(1-p+lam*p) 
   lam ~ dgamma(eta,tau) 
   p ~ dbeta(alpha,beta) 
} 
 
# data 
list(ysT=2544,n=4299,eta=431, 
tau=234,alpha=1,beta=1) 
 
# inits 
list(p=0.5,lam=1)    
 
 
12.6 Finite population inference under  
selection bias in volunteer surveys 
 
In the last section on selection bias in volunteer surveys, the finite 
population size N was introduced at the beginning, but then seemed to 
disappear from the notation. The Bayesian model subsequently 
developed did not feature N at all.  
 
This is a clue to the fact that the Bayesian model in that section is only 
useful for infinite population inference, in particular on the 
superpopulation parameter p, and cannot be used for inference on finite 
population quantities, in particular the finite population mean  
 1( ... ) /Ny y y N= + + .  
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This is not an issue when N is very large (as it was assumed there), since 
in that case inference on y  is, by the law of large numbers, virtually 
identical to inference on the superpopulation mean p.  
 
The following exercise develops a ‘true’ Bayesian finite population 
model in the same setting, one which could be useful in scenarios where 
N is not so large as to be effectively infinity. 
 
Exercise 12.3 A Bayesian finite population self-selection model 
 
Consider a finite population of N units, where each unit has common 
probability p of having some characteristic, independently of all the 
other units, and where our prior beliefs regarding p can be represented 
by way of a beta distribution with parameters α  and β . 
 
A sample is selected from the finite population in such a way that every 
unit without the characteristic has probability φ  of being sampled, and 
every unit with the characteristic has probability λφ  of being selected. 
Every unit that is sampled has its value fully observed. 
 
The prior on  φ  is beta with parameters δ  and γ  but evenly spread over 
the interval (0, c), where c < 1 is a specified constant representing an 
absolute upper bound for what the value of φ  could possibly be. 
(Examples of a potentially suitable values of c are 0.1, 0.2 and 0.5.) 
 
Also, the prior on λ  is beta with parameters η  and τ  but evenly spread 
over the interval (0, 1/c), so as to permit a suitably wide range of 
possible values for the ratio of sampling propensities 1π λφ=  to 0π φ= . 
(For example, if c = 0.2 then that ratio could be anything from 0 to 5.) 
 
(a) Write down a Bayesian model which comprehensively represents the 
above situation. Assume that all of the model parameters are 
independent a priori. Clearly identify the data.  
 
(b) Suppose we are interested in both the superpopulation mean (i.e. the 
common probability of a unit having the characteristic, p) and the finite 
population mean (i.e. proportion of the N finite population units which 
have the characteristic, y ). Write down a formula for the joint posterior 
(and predictive) density of all quantities which are relevant to and could 
used be as a basis for the desired inference. 
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(c) Use the density in (a) to construct a suitable Metropolis-Hastings 
algorithm. Then run the algorithm in R so as to redo the analyses in 
Examples 12.4 and 12.5. Perform each new analysis thrice, assuming the 
finite population size N is 200,000, 400,000 and 40,000, respectively. 
 
(d) Modify the MH algorithm in (c) so that its output features only the 
three model parameters and none of the nonsample values. (NB: The 
idea here is to design a superior MH algorithm, one with better ‘mixing’ 
than the one in (c).) 
 
(e) Describe a procedure whereby the output from the algorithm in (d) 
could be used to obtain a sample from the predictive distribution of the 
nonsample mean. Then run that algorithm and implement the procedure 
so as to produce results intended to be equivalent to those in the 
reanalysis of Example 5 in (c) with N = 200,000. 
   
Solution to Exercise 12.3 
 
 (a) With 1( ,..., )Ny y y=  and 1( ,..., )NI I I= , the Bayesian model may be 
written as follows:  
 

( | , , , ) ~ ( )iy
iI y p Bernoulliλ φ φλ⊥ ,   1,...,i N=      

 
 1( ,..., | , , ) ~ ( )Ny y p iid Bernoulli pλ φ  
 
 ( | , ) ~ ( , )p Betaλ φ α β ,  ( | ) ~ (1 / ) ( , )c Betaλ φ η τ×  
 
 ~ ( , )c Betaφ δ γ×        ( 0 1c< < ). 
 
Note: The sampling mechanism here is nonignorable and unknown, 
since ( | , , , )f I y p λ φ  depends on the unknown quantities φ  and λ . If 
λ  were equal to 1 then the sampling  mechanism would again be 
unknown but in that case ignorable, since pφ ⊥  a priori. 

 
The data here may be written as ( , )sTD n y= , where: 

     
1

N

i
i

n I
=

= ∑      is the sample size    

     sT i
i s

y y
∈

= ∑  is the number of sampled units with the characteristic. 
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Since the data is a function of ( , )sI y , the relevant joint posterior/ 
predictive density is 
 
      ( , , , | , ) ( , , , , , , )r s r sf p y I y f p y I yφ λ φ λ λ∝  
 
   ( , , , , , , )r s r sf p y I I yφ λ=     
   

( ) ( ) ( ) ( | ) ( | )s rf f f p f y p f y pφ λ= ×   
( | , , ) ( | , , )s s r rf I y f I yφ λ φ λ×            (12.3) 

 
1 1 1 1 1 1( / ) (1 / ) ( ) (1 ) (1 )
( , ) ( , ) ( , )

c c c c c p p
cB B B

δ γ η τ α βφ φ λ λ
δ γ η τ α β

− − − − − −− − −
= × ×              

( ) ( )11 1(1 ) (1 ) 1i i
i i i i i i

I Iy y y y y y

i s i r i s

p p p p φλ φλ
−− −

∈ ∈ ∈

    
× − − × −    
    
∏ ∏ ∏

 ( ) ( )11i i
i i

I Iy y

i r

φλ φλ
−

∈

 
× − 
 
∏               (12.4) 

 
1 1 1 1 1 1(1 / ) (1 ) (1 )c c p pδ γ η τ α βφ φ λ λ− − − − − −∝ − × − × −  

    (1 ) (1 )sT sT rT rTy n y y N n yp p p p− − −× − −    

    ( ) ( ) ( ) ( )1 1 1 0 1 0
1 1i i i iy y y y

i s i r

φλ φλ φλ φλ
− −

∈ ∈

  
× − −  
  
∏ ∏         (12.5) 

 
 1 1 1 1 1 1(1 / ) (1 ) (1 )c c p pδ γ η τ α βφ φ λ λ τ− − − − − −= − × − × −  
     (1 ) (1 ) (1 )sT rT sT rT sT rT rTy y N y y y y N n ynp p φ λ φλ φ+ − − − −× − × − − .    (12.6) 
 
Note 1: In all of the above e.g. (12.3), s and r are fixed at their 
observed values. 
 
Note 2: In the step from (12.4) to (12.5), be aware that 1iI i s= ∀ ∈  
and 0iI i r= ∀ ∈ . 
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Note 3: In the step form (12.3) to (12.4), ( )f φ  is derived as follows.  
 

If ~ ( , )w Beta
c
φ δ γ≡   then 

1 1(1 )( )
( , )

w wf w
B

δ γ

δ γ

− −−
= .  

 
Therefore  

1 1( / ) (1 / )( ) ( )
( , )

dw c cf f w
d cB

δ γφ φφ
φ δ γ

− −−
= = . 

 
A similar logic can be used to derive the density   

1 1( ) (1 )( )
( , )

c c cf
B

η τλ λλ
η τ

− −−
= . 

 
(b) Examining the density in (a), in particular (12.6), we see that: 
      [ ] [ ]( | , , , ) (1 ) (1 )(1 )rT rTy N n y

rTf y D p p pφ λ φλ φ − −∝ − − −  
 

( | , , , ) ~ ( , )rTy D p Bin N n qφ λ⇒ − ,      

where  (1 )
(1 ) (1 )(1 )

pq
p p

φλ
φλ φ

−
=

− + − −
            (12.7) 

 
 1 1( | , , , ) (1 )sT rT sT rTy y N n y y

rTf p D y p pα βφ λ τ+ + − + − − − −= −  
 

( | , , , ) ~ ( , )rT sT rT sT rTp D y Beta y y N y yφ λ α β⇒ + + + − − . 
                 (12.8) 

 
Also:  

1 1( | , , , ) (1 / ) (1 ) (1 )rT rTy N n yn
rTf D y p cδ γφ λ φ φ φλ φ − −+ − −∝ − − −

                  (12.9) 
 
 1 1( | , , , ) (1 ) (1 )sT rTy y

rTf D y p cη τλ φ λ λ φλ+ − −∝ − − .         (12.10) 
 
The above implies a suitable MH algorithm with two Gibbs steps as 
defined at (12.7) and (12.8) and two Metropolis steps as defined by 
(12.9) and (12.10). 
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(c) The MH algorithm in (b) was applied with the following 
specifications so as to redo the analysis in Example 12.4:  
 
     N = 200,000,   n = 9453,  sTy  = 4941,   c = 0.2 
 α  = 830,   β  = 1395,   η  = τ  = 1,   δ  = γ  = 1. 
 
A run with burn-in 2,000 followed by J = 10,000 iterations for inference 
was performed. Numerical results from this run are shown in Table 12.4. 
 
 
Table 12.4 Monte Carlo inferences using N = 200,000  
 
phi, φ       lam, λ        p  ybar, y  
0.03597     1.84686  0.37259  0.37259     mean of simulated values 
0.08789     0.08789  0.01017  0.01022     sample standard deviation 
0.03449     1.68272  0.35266  0.35250     LB of 95% CPDR estimate 
0.03749     2.02311  0.39190  0.39202     UB of 95% CPDR estimate 
 
 
Our point and interval estimates for λ  are 1.85 and (1.68, 2.02), which 
are very similar to 1.84 and (1.68, 2.03) in Example 12.4. 
 

Note: The primary object here is estimation of λ , not of p or y . But it 
will be noted that the estimates of these other two quantities (p or y ) 
are very alike, which is as one might expect. 
 
Repeating the above but with finite population sizes 400,000 and 40,000, 
respectively, we obtain the corresponding results shown in Tables 12.5. 
 
 
Table 12.5 Inferences using different N (same details as in 
Table 12.4) 
 

     N = 400,000         N = 40,000 
phi, φ    lam, λ      p    ybar, y   phi, φ    lam, λ      p    ybar, y  
0.01803 1.83548 0.37394 0.373948 0.18123 1.81588 0.375693 0.375834 
0.08546 0.08546 0.00981 0.009832 0.07579 0.07579 0.009203 0.009399 
0.01731 1.68407 0.35413 0.354113 0.17492 1.66922 0.357356 0.357050 
0.01878 2.00923 0.39122 0.391193 0.18813 1.97208 0.393969 0.394500 
 
 

Note: The three sets of inferences in Tables 12.4 and 12.5 have yielded 
different estimates of φ  but very similar results for the other three 
quantities, in particular the object of this study, λ . 
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Figure 12.10 shows graphical output from the first of the three 
Metropolis-Hastings algorithms (i.e. the one with N = 200,000). 
 
 
Figure 12.10 Graphical output from run with N = 200,000 
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Next, a beta distribution was fitted to the 10,000 simulated values of λ  
above (taken from the run with 200,000)N =  so as to define the 
approximate posterior given by 
 ( | ) ~ (1 / ) ( , )D c Betaλ η τ′ ′× , 
where η′  = 278.1 and τ ′  = 474.8 (with c = 0.2 as before). 
 
This posterior for λ  was then fed in as the prior for λ  so as to redo the 
analysis in Example 12.5.  
 
Accordingly, the MH algorithm in (b) was next applied once again but 
with the following specifications: 
 
  N = 200,000,    n = 4299,   sTy  = 2544,   c = 0.2 
 α  = 1,   β  = 1,   η  = 278.1,   τ  = 474.8,   δ  = γ  = 1. 
 
The relevant numerical estimates are as shown in Table 12.6. 
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Table 12.6: Inferences using N = 200,000 and a fitted beta prior 
 
phi, φ       lam, λ       p    ybar, y  
0.01570     1.84272      0.44049     0.45248     mean of simulated values 
0.08792     0.08792      0.01408     0.01403     sample standard deviation 
0.01495     1.67553      0.41344      0.42555    LB of 95% CPDR estimate 
0.01656     2.01139      0.46602      0.47799    UB of 95% CPDR estimate   
 
 
Thus point and interval estimates for p are 0.440 and (0.413, 0.466), 
which we note are similar to 0.441 and (0.414, 0.470) in Example 12.5. 
 
Also point and 95% interval estimates for y  are 0.452 and (0.426, 
0.478). 
 
Note 1: The inference on y  here was not possible using the theory in 
the section just above the present exercise, i.e. using the infinite 
population models developed in that section. 
 
Note 2: The posterior for λ  is very similar to its prior, which is as one 
might expect, since the data now has no structure which could tell us 
anything further about that parameter. 
 
Repeating the above but with finite population sizes 400,000 and 40,000, 
respectively, we obtain the corresponding results shown in Tables 12.7. 
 
 
Table 12.7 Inferences using different N (same details as in 
Table 12.6) 
 

    N = 400,000         N = 40,000 
phi, φ    lam, λ      p    ybar, y   phi, φ    lam, λ      p    ybar, y   
0.007863 1.83516 0.44193 0.44792  0.07888 1.82895 0.44228 0.50220 
0.087755 0.08776 0.01375 0.01372 0.08162 0.08162 0.01359 0.01337 
0.007482 1.66809 0.41563 0.42160 0.07538 1.66402 0.41490 0.47517 
0.008299 2.00048 0.46819 0.47409 0.08278 1.99275 0.47007 0.52985 
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Discussion 
 
Something to be noted above is that estimation of y  appears to increase 
slightly as N decreases, whereas estimation of p remains about the same. 
 
Estimation of φ  also increases as N decreases. This could present a 
‘problem’ if N is ‘too small’. Figures 12.11, 12.12 and 12.13 (pages 598 
and 599) show histograms of the simulated values when N = 200,000, 
20,000 and 15,000, respectively.  
 
We see no problem in the first two of these three cases. But for  
N = 15,000, the estimation of φ  appears to be artificially restricted by 
our arbitrary choice of c as 0.2. (Observe that the simulated values are 
strongly ‘bunched up’ at just below 0.2.)  
 
Repeating the MCMC run with 15,000N =  but with c also changed to 
0.5 appears to solve this problem. Results are shown in Figure 12.14 
(page 599). We note that estimation of λ  has changed from about 2 to 
less than 1. This suggests that we might get very similar results with c 
even larger, e.g. c = 1. 
 
But when we do this, we get very different results (not shown). Why?  
 
Because when we changed c from 0.2 to 0.5, we forgot to reconfigure 
the prior for λ , which also involves c.  
 
Note: The prior for φ  also involves c but does not need reconfiguring 
(because that prior is uniform for all values of c, since 1δ γ= = ). 

 
Thus, Figure 12.14 (the case of N = 15,000 and c = 0.5) in fact illustrates 
output which is ‘flawed’ (in this sense) and so should be disregarded. 
 
Although these technical issues could satisfactorily be resolved with 
some effort, we will leave that task as an avenue of investigation for 
further research and move on to answering part (d). 
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Figure 12.11 Histograms using N = 200,000 and c = 0.2 
 

 
 
 
Figure 12.12 Histograms using N = 20,000 and c = 0.2 
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Figure 12.13 Histograms using N = 15,000 and c = 0.2 
 

 
 
 
Figure 12.14 Histograms using N = 15,000 and c = 0.5 
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(d) Recall the joint density (12.6). This density may also be written as:  
( , , , | , ) ( , , ) (1 )sT rT sT rTy y N y y

r sf p y I y f p p pφ λ φ λ + − −∝ −  
(1 ) (1 )sT rT rTy y N n ynφ λ φλ φ − −× − − , 

where   1 1 1 1 1 1( , , ) (1 / ) (1 ) (1 )f p c c p pδ γ η τ α βφ λ φ φ λ λ− − − − − −∝ − × − × − . 
 
Now observe that     

  ( , , , | , ) ( , , ) (1 )sT sT sTy n y yn
r sf p y I y f p p pφ λ φ λ φ λ ξ− 

∝ × − × 
 

, 

where:  [ ] [ ](1 ) (1 )(1 )rT rTy N n yp pξ φλ φ − −= − − −     

                [ ] 1(1 ) (1 )(1 ) (1 )i i
N n y y

i r
p p z zφλ φ − −

∈

= − + − − × −∏  

            (1 )
(1 ) (1 )(1 )

pz
p p

φλ
φλ φ

−
=

− + − −
.     

 
Further observe that 

  
1

1 1

0

(1 ) (1 ) 1i i i i

r i

y y y y

y i r i r y
z z z z− −

∈ ∈ =

− = − =∑∏ ∏∑    

(since the first product is the joint pdf of N n−  iid Bernoulli(z) 
variables). 
 
It follows that     

  ( , , | , ) ( , , , | , )
r

s r s
y

f p I y f p y I yφ λ φ λ= ∑  

   ( , , ) (1 )sT sT sTy n y ynf p p pφ λ φ λ− 
∝ × − 

 
 

           [ ](1 ) (1 )(1 ) N np pφλ φ −× − + − − . 
 

The above defines a MH algorithm with three steps based on the 
following conditionals: 
 
        [ ]1 1( | , , ) (1 / ) (1 ) (1 )(1 ) N nnf D p c p pδ γφ λ φ φ φλ φ −+ − −∝ − − + − −  
 
        [ ]1 1( | , , ) (1 ) (1 ) (1 )(1 )sT

N nyf D p c p pη τλ φ λ λ φλ φ −+ − −∝ − − + − −  
 
        [ ]1 1( | , , ) (1 ) (1 ) (1 )(1 )sT sT

N ny n yf p D p p p pα βφ λ φλ φ −+ − + − −∝ − − + − − . 
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(e) From the working in (d) we see that 
      ( | , , , , ) ~ ( , )rT sy I y p Bin N n zφ λ − , 
where     

(1 )
(1 ) (1 )(1 )

pz
p p

φλ
φλ φ

−
=

− + − −
.                 (12.11)

 
 
So, to get a sample from the predictive distribution of y  we do as 
follows: 
 
       1.  Obtain ( , , ) ~ ( , , | , )j j j sp iid f p I yφ λ φ λ ,  j = 1,…,J   

using the MH algorithm in (d) 
 

       2.  Sample ( ) ~ ( , )j
rT jy Bin N n z− , where  

 
(1 )

(1 ) (1 )(1 )
j j j

j
j j j j j

p
z

p p
φ λ

φ λ φ
−

=
− + − −

, j = 1,…,J  (from (12.11)) 

 

       3. Calculate ( ) ( )1 ( )j j
sT rTy y y

N
= + , j = 1,…,J . 

   
We now perform the MH algorithm in (d) and the above procedure with: 
 N = 200,000,    n = 4299,   sTy  = 2544,    c = 0.2 
 α  = 1,   β  = 1,   η  = 278.1,   τ  = 474.8,   δ  = γ  = 1. 
 
We thereby obtain the inferences shown in Table 12.8. 
 
Table 12.8 Results obtained in part (e) 
 
 phi, φ         lam, λ           p     ybar, y  
0.01567       1.8491  0.43973  0.43973   mean of simulated values 
0.08660       0.0866  0.01387  0.01382   sample standard deviation 
0.01491       1.6844  0.41331  0.41346   LB of 95% CPDR estimate 
0.01650       2.0278  0.46689  0.46673   UB of 95% CPDR estimate 
 
 
We see that inferences are very similar to those in the reanalysis of 
Example 12.5 in (c) with N = 200,000 (where y  was estimated as 
0.45248). But the results here should in fact be considered more accurate 
because they are based on a MH algorithm with fewer components.  
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Note 1: The inferences on y  could be further improved via Rao-
Blackwell arguments which obviate the need to sample values of rTy  
at all. In particular, the Rao-Blackwell estimate of  the predictive mean 
of the finite population mean, ˆ ( | )y E y D= , is   

1

1 J

j
j

z z
J =

= ∑  = 0.4364,  

with 95% CI for ŷ    

   2

1

11.96 ( )
( 1)

J

j
j

z z z
J J =

 
± −  − 

∑  = (0.4361, 0.4367). 

 
Actually, this is not quite right, since z  is the Rao-Blackwell estimate 
of ˆ ( | )r ry E y D= , and the 95% CI is for ˆ

ry . To see this, refer to 
(12.3).  
 
Thus, since  

1 ( ( ) )sT ry y N n y
N

= + − ,  

the RB estimate of ŷ  is actually  
1 ( ( ) )sTy N n z
N

+ −   = 0.440,  

with a 95% confidence interval for ŷ  equal to  

   1 1( ( )0.4361, ( ( )0.4367sT sTy N n y N n
N N

 + − + − 
 

 = (0.439, 0.440). 

 
Note 2: The Monte Carlo 95% confidence intervals reported here are 
unduly narrow (i.e. will have less than 95% actual coverage). This is 
because we did not address the problem of the very strong serial 
correlation amongst the values outputted from the Metropolis-Hastings 
algorithm, for example by way of  thinning or the batch means method. 
  
But this remark only applies to confidence intervals for mean estimates 
and not to posterior or predictive interval estimates, such as (0.413, 
0.467) for y  in Table 12.8. 
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R Code for Exercise 12.3 
 
MH = function(J=100,   n=9453, ysT=4941,   alp=830, bet=1395,     
 p=0.5,    phi0=0.1,   lam0=1,       phisd=0.1, lamsd=0.1,  
 eta=1, tau=1,     del=1, gam=1,    c=0.2,   N=200000 ){ 
phi=phi0; lam=lam0;  phiv=phi; lamv=lam; phict=0; lamct=0; pv=NA; yrTv=NA 
for(j in 1:J){ 
 q=p*(1-phi*lam)/(  p*(1-phi*lam) + (1-p)*(1-phi)  ) 
 yrT=rbinom(1,N-n,q); yT=ysT+yrT;  p=rbeta(1,alp+yT,bet+N-yT) 
 phinew=rnorm(1,phi,phisd) 
 if((phinew>0)&&(phinew<c)){ 
  logprobnum=(del-1)*log(phinew)+(gam-1)*log(1- phinew/c)+ 
      n*log(phinew) +yrT*log(1- phinew*lam)+(N-n-yrT)*log(1-phinew) 
  logprobden=(del-1)*log(phi)+(gam-1)*log(1-phi/c)+ 
   n*log(phi) +yrT*log(1-phi*lam)+(N-n-yrT)*log(1-phi) 
  logprob= logprobnum- logprobden; prob=exp(logprob) 
  u=runif(1); if(u<=prob){ phict=phict+1; phi=phinew }      } 
 lamnew=rnorm(1,lam,lamsd) 
 if((lamnew>0)&&(lamnew<(1/c))){ 
    logprobnum=  (eta-1)*log(lamnew)+(tau-1)*log(1- lamnew*c)+ 
   ysT*log(lamnew)+yrT*log(1-phi*lamnew) 
  logprobden=  (eta-1)*log(lam)+(tau-1)*log(1-lam*c)+ 
   ysT*log(lam)+yrT*log(1-phi*lam) 
  logprob= logprobnum- logprobden; prob=exp(logprob) 
  u=runif(1); if(u<=prob){ lamct=lamct+1; lam=lamnew }      } 
 phiv=c(phiv,phi); lamv=c(lamv,lam); pv=c(pv,p); yrTv=c(yrTv,yrT)  } 
phiar=phict/J; lamar=lamct/J 
list(pv=pv, yrTv=yrTv, phiv=phiv, lamv=lamv, phiar=phiar, lamar=lamar)   }  
        # end fn 
X11(w=8,h=6);     par(mfrow=c(2,2));     options(digits=5); N=200000 
 
# A ---------------------------------- 
 
set.seed(531); res=MH(J=2000,   n=9453, ysT=4941,   alp=830, bet=1395,     
 p=0.5,    phi0=0.1,   lam0=1,       phisd=0.0007, lamsd=0.04,  
 eta=1, tau=1,     del=1, gam=1,    c=0.2,   N=N ) 
c(res$phiar,res$lamar)  # 0.513 0.536    OK 
plot(res$pv); plot(res$yrTv); plot(res$phiv); plot(res$lamv)   # Has burnt in OK 
p0=res$pv[2001]; lam0=res$lamv[2001]; phi0=res$phiv[2001]  
    # record last values 
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set.seed(131); K=10000; date() # 
res=MH(J=K,   n=9453, ysT=4941,   alp=830, bet=1395,     
 p=p0,    phi0=phi0,   lam0=lam0,   phisd=0.0006, lamsd=0.04, 
 eta=1, tau=1,     del=1, gam=1,    c=0.2,   N=N  ); date()  #  
c(res$phiar,res$lamar)  # 0.5548 0.5707     OK 
plot(res$pv); plot(res$yrTv); plot(res$phiv); plot(res$lamv)   # OK 
    
# Example of optional thinning to reduce serial correlation: 
# acf(res$pv[-1]); acf (res$yrTv[-1]); acf (res$phiv[-1]); acf (res$lamv[-1])   
# skip=10; inc=1+seq(skip,K,skip); J=length(inc); J # 1000 
# pv= res$pv[inc]; yrTv= res$yrTv[inc]; phiv=res$phiv[inc]; lamv=res$lamv[inc] 
# acf(pv); acf(yrTv); acf(phiv); acf(lamv)  # better 
 
skip=1; inc=1+seq(skip,K,skip); J=length(inc); J # 10000  (Just use whole 
sample) 
pv= res$pv[inc]; yrTv= res$yrTv[inc]; phiv=res$phiv[inc]; lamv=res$lamv[inc] 
hist(pv,prob=T); hist(yrTv,prob=T); hist(phiv,prob=T); hist(lamv,prob=T);  # OK 
 
# Calculate estimates (Note we could improve these via Rao-Blackwell): 
phat=mean(pv); pcpdr=quantile(pv,c(0.025,0.975)); pse=sd(pv) 
lamhat=mean(lamv); lamcpdr=quantile(lamv,c(0.025,0.975)); lamse=sd(lamv) 
phihat=mean(phiv); phicpdr=quantile(phiv,c(0.025,0.975)); phise=sd(lamv) 
n= 9453; ysT=4941;  ybarv=(1/N)*(ysT+yrTv);   
ybarhat=mean(ybarv);  ybarcpdr=quantile(ybarv,c(0.025,0.975));  
ybarse=sd(ybarv) 
print(cbind(c(phihat, phise ,phicpdr), c(lamhat, lamse ,lamcpdr), 
 c(phat, pse,pcpdr), c(ybarhat,ybarse, ybarcpdr)), digits=4) 
 
# B ---------------------------------- 
 
# phi  lam  p  ybar 
#             0.03597  1.84686  0.37259  0.37259  mean 
#             0.08789  0.08789  0.01017  0.01022     se 
# 2.5%   0.03449  1.68272  0.35266  0.35250     LB 
# 97.5% 0.03749  2.02311  0.39190  0.39202     UB 
 
# Repeat above exactly from A to B but after setting  N=400000. Results: 
#        0.01803  1.83548  0.37394  0.373948 
#        0.08546  0.08546  0.00981  0.009832 
# 2.5%  0.01731  1.68407  0.35413  0.354113 
# 97.5% 0.01878  2.00923  0.39122  0.391193 
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# Repeat above exactly from A to B but after setting N=40000. Results: 
#        0.18123  1.81588  0.375693  0.375834 
#        0.07579  0.07579  0.009203  0.009399 
# 2.5%  0.17492  1.66922  0.357356  0.357050 
# 97.5% 0.18813  1.97208  0.393969  0.394500 
   
# Now calculate new prior from posterior of lambda (based on 1st run above): 
c(lamhat,lamse) # 1.846864 0.087889 
fun=function(etatau, c=0.2, est=lamhat, se=lamse){ 
 (est-(1/c)*etatau[1]/sum(etatau))^2+ 
      (  se^2 - (1/c^2)*prod(etatau)/( sum(etatau)^2*(1 + sum(etatau)) )   )^2    } 
etataunew0 = optim(par=c(2,5), fn=fun)$par 
etataunew = optim(par= etataunew0, fn=fun)$par 
 
etanew=etataunew[1]; taunew=etataunew[2]  
c(etanew, taunew) # 278.10 474.79 
(1/0.2)*etanew/(etanew+taunew) # 1.8469 
sqrt((1/0.2^2)*etanew*taunew/((etanew+taunew)^2*(etanew+taunew+1))) 
      # 0.087889 OK 
 
# Now run MCMC with new prior and data:  ------------------------------ 
par(mfrow=c(2,2));    N=200000 
 
# C ----------------------------------------------------------- 
 
set.seed(531); res=MH(J=2000,   n=4299, ysT=2544,   alp=1, bet=1,     
 p=0.5,    phi0=0.1,   lam0=1,       phisd=0.0007, lamsd=0.04,  
 eta=etanew, tau=taunew,     del=1, gam=1,    c=0.2,   N=N ) 
c(res$phiar,res$lamar)  # 0.4295 0.5485   OK 
plot(res$pv); plot(res$yrTv); plot(res$phiv); plot(res$lamv)   # Has burnt in OK 
p0=res$pv[2001]; lam0=res$lamv[2001]; phi0=res$phiv[2001]  
     # record last values 
 
set.seed(131); K=10000; date() # 
res=MH(J=K,   n=4299, ysT=2544,   alp=1, bet=1,     
 p=p0,    phi0=phi0,   lam0=lam0,   phisd=0.0004, lamsd=0.05, 
 eta= etanew, tau= taunew,     del=1, gam=1,    c=0.2,   N=N  ); date()  #  
c(res$phiar,res$lamar)  # 0.5473 0.5908   OK 
plot(res$pv); plot(res$yrTv); plot(res$phiv); plot(res$lamv)   # OK 
 
skip=1; inc=1+seq(skip,K,skip); J=length(inc); J # 10000  (Just use whole 
sample) 
pv= res$pv[inc]; yrTv= res$yrTv[inc]; phiv=res$phiv[inc]; lamv=res$lamv[inc] 
hist(pv,prob=T); hist(yrTv,prob=T); hist(phiv,prob=T); hist(lamv,prob=T);  # OK 
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# Calculate estimates (Note we could improve these via Rao-Blackwell): 
 
phat=mean(pv); pcpdr=quantile(pv,c(0.025,0.975)); pse=sd(pv) 
lamhat=mean(lamv); lamcpdr=quantile(lamv,c(0.025,0.975)); lamse=sd(lamv) 
phihat=mean(phiv); phicpdr=quantile(phiv,c(0.025,0.975)); phise=sd(lamv) 
n= 9453; ysT=4941;  ybarv=(1/N)*(ysT+yrTv);   
ybarhat=mean(ybarv);  ybarcpdr=quantile(ybarv,c(0.025,0.975));  
ybarse=sd(ybarv) 
print(cbind(c(phihat, phise ,phicpdr), c(lamhat, lamse ,lamcpdr), 
 c(phat, pse,pcpdr), c(ybarhat,ybarse, ybarcpdr)), digits=4) 
 
# D ------------------------------------------------- 
 
# phi  lam  p  ybar 
#        0.01570  1.84272  0.44049  0.45248 mean 
#        0.08792  0.08792  0.01408  0.01403 se 
# 2.5%   0.01495  1.67553  0.41344  0.42555 LB 
# 97.5% 0.01656  2.01139  0.46602  0.47799 UB 
  
# Repeat above exactly from C to D but with N=400000. Results: 
#        0.007863  1.83516  0.44193  0.44792 
#        0.087755  0.08776  0.01375  0.01372 
# 2.5%  0.007482  1.66809  0.41563  0.42160 
# 97.5% 0.008299  2.00048  0.46819  0.47409 
 
# Repeat above exactly from C to D but with N=40000. Results: 
#        0.07888  1.82895  0.44228  0.50220 
#        0.08162  0.08162  0.01359  0.01337 
# 2.5%  0.07538  1.66402  0.41490  0.47517 
# 97.5% 0.08278  1.99275  0.47007  0.52985 
 
# Repeat above exactly from C to D but with N=20000 and 15000 to produce  
# extra graphs. We omit the code for the case N = 15000, c=0.5  and the case  
# N = 15000, c = 1 
 
# (e) 
MH2 = function(J=100,   n=9453, ysT=4941,   alp=830, bet=1395,     
 p0=0.5, phi0=0.1, lam0=1,      psd=0.1, phisd=0.1, lamsd=0.1,  
 eta=1, tau=1,     del=1, gam=1,    c=0.2,   N=200000 ){ 
p=p0; phi=phi0; lam=lam0;    pv=p; phiv=phi; lamv=lam;  pct=0; phict=0;  
lamct=0;   
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for(j in 1:J){ 
 pnew=rnorm(1,p,psd) 
 if((pnew >0)&&(pnew <1)){ 
  logprobnum=(alp-1+ysT)*log(pnew)+(bet-1+n-ysT)*log(1-pnew) + 
   (N-n)*log((1-pnew)*(1-phi)+pnew*(1-phi*lam)) 
  logprobden=(alp-1+ysT)*log(p)+(bet-1+n-ysT)*log(1-p) + 
   (N-n)*log((1-p)*(1-phi)+p*(1-phi*lam)) 
  logprob= logprobnum- logprobden; prob=exp(logprob) 
  u=runif(1); if(u<=prob){ pct=pct+1; p=pnew }      } 
 phinew=rnorm(1,phi,phisd) 
 if((phinew>0)&&(phinew<c)){ 
    logprobnum=(del-1+n)*log(phinew)+(gam-1)*log(1- phinew/c)+ 
   (N-n)*log((1-p)*(1-phinew)+p*(1-phinew*lam)) 
  logprobden=(del-1+n)*log(phi)+(gam-1)*log(1-phi/c)+ 
   (N-n)*log((1-p)*(1-phi)+p*(1-phi*lam)) 
  logprob= logprobnum- logprobden; prob=exp(logprob) 
  u=runif(1); if(u<=prob){ phict=phict+1; phi=phinew }      } 
 lamnew=rnorm(1,lam,lamsd) 
 if((lamnew>0)&&(lamnew<(1/c))){ 
    logprobnum=  (eta-1+ysT)*log(lamnew)+(tau-1)*log(1- lamnew*c)+ 
   (N-n)*log((1-p)*(1-phi)+p*(1-phi*lamnew)) 
  logprobden=  (eta-1+ysT)*log(lam)+(tau-1)*log(1- lam*c)+ 
   (N-n)*log((1-p)*(1-phi)+p*(1-phi*lam)) 
  logprob= logprobnum- logprobden; prob=exp(logprob) 
  u=runif(1); if(u<=prob){ lamct=lamct+1; lam=lamnew }      } 
 pv=c(pv,p); phiv=c(phiv,phi); lamv=c(lamv,lam)  } 
par=pct/J; phiar=phict/J; lamar=lamct/J 
list(pv=pv, phiv=phiv, lamv=lamv, par=par, phiar=phiar, lamar=lamar)   }  

# end fn 
 
X11(w=8,h=6);      par(mfrow=c(2,2))  
N=200000; n = 4299; ysT=2544;   K=2000 
set.seed(531); res=MH2(J=K,   n=4299, ysT=2544,   alp=1, bet=1,     
 p0=0.5,   phi0=0.1,   lam0=1,      psd=0.008,  phisd=0.0007, lamsd=0.04,  
 eta= etanew, tau= taunew,     del=1, gam=1,    c=0.2,   N=N ) 
c(res$par, res$phiar,res$lamar)  # 0.6580 0.4135 0.6045  OK 
plot(res$pv); plot(res$phiv); plot(res$lamv)   # Has burnt in OK 
p0=res$pv[2001]; lam0=res$lamv[2001]; phi0=res$phiv[2001]  

# record last values 
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set.seed(131); K=10000; par(mfrow=c(2,2)); date() # 
res=MH2(J=K,   n=4299, ysT=2544,   alp=1, bet=1,     
 p0=p0,   phi0=phi0,   lam0=lam0, psd=0.008,   phisd=0.0006,  
 lamsd=0.04, 
 eta= etanew, tau= taunew,     del=1, gam=1,    c=0.2,   N=N  ); date()  #  
c(res$par, res$phiar,res$lamar)  # 0.6825 0.4315 0.6643    OK 
plot(res$pv); plot(res$phiv); plot(res$lamv)   # OK 
 
skip=1; inc=1+seq(skip,K,skip); J=length(inc); J  

# 10000  (Just use whole sample) 
pv= res$pv[inc]; phiv=res$phiv[inc]; lamv=res$lamv[inc] 
par(mfrow=c(2,2)); hist(pv,prob=T); hist(phiv,prob=T); hist(lamv,prob=T);   

# OK 
 
# Calculate estimates  
phat=mean(pv); pcpdr=quantile(pv,c(0.025,0.975)); pse=sd(pv) 
lamhat=mean(lamv); lamcpdr=quantile(lamv,c(0.025,0.975)); lamse=sd(lamv) 
phihat=mean(phiv); phicpdr=quantile(phiv,c(0.025,0.975)); phise=sd(lamv) 
 
# Generate sample from predictive dsn of finite population mean 
zv=pv*(1-phiv*lamv)/( pv*(1-phiv*lamv) + (1-pv)*(1-phiv)  ) 
set.seed(331); yrTv = rbinom(J, N-n, zv);   ybarv=(1/N)*(ysT+yrTv) 
ybarhat=mean(ybarv);  ybarcpdr=quantile(ybarv,c(0.025,0.975));  
ybarse=sd(ybarv) 
 
# Print out inferences 
print(cbind(c(phihat, phise ,phicpdr), c(lamhat, lamse ,lamcpdr), 
 c(phat, pse,pcpdr), c(ybarhat,ybarse, ybarcpdr)), digits=4) 
#        0.01567  1.8491   0.43973  0.43973 
#        0.08660  0.0866   0.01387  0.01382 
# 2.5%  0.01491  1.6844   0.41331 0.41346 
# 97.5% 0.01650  2.0278   0.46689  0.46673 
  
RBest=mean(zv); RBci=RBest+c(-1,1)*qnorm(0.975)*sd(zv)/sqrt(J) 
c(RBest,RBci)  #   0.43639 0.43612 0.43667                  
(1/N)*(ysT+(N-n)*RBest)  # 0.43973 
(1/N)*(ysT+(N-n)*RBci)  # 0.43946 0.44000 
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APPENDIX A 
Additional Exercises 

 
Exercise A.1 Practice with the Metropolis algorithm 
 
(a) Sample a value m from the standard exponential distribution. Then 
randomly sample n = 100 values from the normal distribution with mean 
m and variance 2v m= .  
 
Then design and implement a Metropolis algorithm so as to obtain a 
random sample of size J = 1,000 from the posterior of m.  
 
Use this sample to perform Monte Carlo inference on m. Be sure to 
provide a 95% CI for the posterior mean of m, an estimate of the 95% 
central posterior density region for m, and an estimate of the entire 
marginal posterior density of m. 
 
Then predict c, the average of a future independent sample of size k = 10 
from the normal distribution with the same mean m and variance v. 
 
Be sure to provide a 95% CI for the predictive mean of c, an estimate of 
the 95% central predictive density region for c, and an estimate of the 
entire posterior predictive density of c. 
 
Illustrate your results with suitable figures (for example, trace plots and 
histograms). 
 
(b) Consider the following values in a sample obtained via SRSWOR 
from a finite population of size N = 50:  
  

3.4, 6.3, 1.0, 2.9, 1.8,     2.0, 0.5, 7.9, 4.8, 6.5. 
 
Suppose we model the finite population values as normal with (unknown) 
mean m and variance 2v m= , with a standard exponential prior on m.  
 
Using MCMC methods, estimate the finite population mean and provide 
a suitable 95% interval estimate.    
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Solution to Exercise A.1 
 
(a) The sampled value of m was 0.7071. A histogram of the 100 sampled 
normal values is shown in Figure A.1(a) (page 612). This histogram is 
overlaid by the (known) normal distribution with mean m and variance 

2v m=  = 0.5.   
 
The posterior density of m is  
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So the log-posterior is     
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A suitable Metropolis algorithm is one which at each iteration proposes a 
value 
 ~ ( , )m U m mδ δ′ − + , 
where δ  is a tuning constant, and accepts this value with probability 
   qp e= ,  
where  

( ) ( )q l m l m′= − . 
 

Implementing this algorithm we obtained the 10,100 values of m, whose 
trace is shown in Figure A.1(b) (page 612). Stochastic convergence 
appears to have been attained immediately, and so the burn-in was 
conservatively taken to be 100. 
 
The last 10,000 of these 10,100 values are highly autocorrelated, as 
evidenced by the sample ACF in Figure A.1(c) (page 612). However, 
thinning out by a factor of 10 removes almost all of the autocorrelation, 
as seen in the sample ACF in Figure A.1(d) (page 612), and yields the 
required random sample  
 1,..., ~ ( | )Jm m iid f m y , 
where J = 1,000. 
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A histogram of these 1,000 values of m is shown in Figure A.1(e).  
 
The dashed line in this subplot is a histogram estimate of ( | )f m y , and 
the solid line is the true posterior density. The vertical lines show the 
posterior mean estimate, m  = 0.7377, the 95% CI for the posterior mean, 
(0.7350, 0.7404), and the 95% CPDR estimate for m, (0.6620, 0.8298).  
 
The dots show the true posterior mean, ˆ ( | )m E m y= = 0.7393, and the 
true 95% CPDR for m. The cross shows the true value of m, 0.7071. 
 
The Monte Carlo sample was used to generate a random sample from the 
predictive distribution of  

1 10( ... ) / 10n nc y y+ += + +  
by sampling   

2~ ( , / 10)j j jc N m m , j = 1,…,J. 
A histogram of these c-values is shown in Figure A.1(f).  
 
The dashed line in this subplot is a histogram estimate of ( | )f c y , and 
the solid line is the Rao-Blackwell estimate 

 2
2

1

1 1 1( | ) exp ( )
22

J

j
j jj

f c y c m
J mm π=

  = − − 
  
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The vertical lines show the predictive mean estimate, c  = 0.741, the 95% 
CI for the predictive mean, (0.7270, 0.7549), and the 95% CPDR estimate 
for c, (0.3063, 1.1893).  
 
The dot shows the Rao-Blackwell estimate of ˆ ( | )c E c y= , which is the 
same as m  = 0.7377.  
 
The Rao-Blackwell 95% CI for ĉ  is the same as the 95% CI (0.7350, 
0.7404) reported earlier. 
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Figure A.1 Graphical results for part (a)  
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(b) Here we repeat the procedure in part (a), but:  
 

• with n = 10 (rather than 100) 
 
• using the 10 given sample values, whose mean is 3.71 

    (instead of the 100 generated values, as previously)  
 

• with 11 50
1 ( ... )
40

c y y= + +    (instead of 101 110
1 ( ... )).

10
c y y= + +  

 
Figure A.2 is an analogue of Figure A.1, except that subplot (a) does not 
have a normal density overlaid, and there is an extra subplot (g) that shows 
inference on the finite population mean, which may be denoted here by  

1 (10 3.71 40 )
50

a c= × + . 

 
 

Figure A.2 Graphical results for part (b)  
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Some of the estimates and quantities shown in the last subplot (g) are as 
follows. The histogram estimate of a’s predictive mean is a  = 3.061 with 
95% CI (3.028, 3.094). The Rao-Blackwell estimate of a’s predictive 
mean is (10 3.71 40 ) / 50m× +  = 3.055, with 95% CI (3.031, 3.078). The 
exact predictive mean of a is the same as the posterior mean of m and 
equal to 3.068. The 95% CPDR estimate for a is 2.190 4.256. 
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R Code for Exercise A.1 
 
# (a) 
options(digits=4) 
INTEG <- function(xvec, yvec, a = min(xvec), b = max(xvec)){ 
# Integrates numerically under a spline through the points given by  
# the vectors xvec and yvec, from a to b. 
fit <- smooth.spline(xvec, yvec) 
spline.f <- function(x){predict(fit, x)$y } 
integrate(spline.f, a, b)$value   } 
INTEG(seq(0,1,0.01), seq(0,1,0.01)^2, 0,1)   # 0.3333 correct 
 
X11(w=8,h=6);     par(mfrow=c(2,2));  
set.seed(221); m=rgamma(1,1,1); v=m^2; n=100; y=rnorm(n,m,m); c(m,v)  

# 0.7071 0.5000 
hist(y,prob=T,xlim=c(-2,4),ylim=c(0,0.8), breaks=seq(-2,4,0.25), 
 main="(a) Histogram of 100 y-values") 
yvec=seq(-2,4,0.01); lines(yvec,dnorm(yvec,m,m),lwd=3) 
abline(v=c(m,m+c(-1,1)*qnorm(0.975)*m), lwd=3) 
 
LOGPOST=function(m=2,n=10,y=c(2,1)){  
 -m-n*log(m)-(1/(2*m^2))*sum((y-m)^2)    } 
LOGPOST()  # -9.056    OK 
 
METALG = function(J=1000,y,m0=1,mdel=0.4){ 
m=m0; mv=m; mct=0;  n=length(y); for(j in 1:J){ 
 mcand=runif(1,m-mdel,m+mdel) 
 if(mcand>0){ logprob=LOGPOST(m= mcand,n=n,y=y)- 
      LOGPOST(m=m,n=n,y=y) 
   prob=exp(logprob) 
   u=runif(1); if(u<=prob){ mct=mct+1; m= mcand }   
   } 
 mv=c(mv,m)     
 } 
list(mv=mv,mar=mct/J)     } 
 
set.seed(312); res=METALG(J=10100,y=y,m0=1,mdel=0.11); res$mar # 0.5528 
plot(res$mv,type="l",main="(b) Trace of 10100 m-values");  
 
acf(res$mv, main="(c) Sample ACF of 10000 m-values") 
acf(res$mv, plot=F)[1:5]  # 0.628 0.404 0.259 0.157 0.100 
mv=res$mv[-(1:101)][seq(10,10000,10)];  
acf(mv, main="(d) Sample ACF of 1000 m-values") 
acf(mv,plot=F)[1:5] # -0.014 -0.001  0.006  0.018  0.014 
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J=length(mv); J # 1000 
 
mbar=mean(mv); mci=mbar+c(-1,1)*qnorm(0.975)*sd(mv)/sqrt(J) 
mcpdr=quantile(mv,c(0.025,0.975));  
mvec=seq(0.5,1,0.01); kvec=mvec;  
 for(i in 1:length(mvec)) kvec[i] =  exp(LOGPOST(m=mvec[i],n=n,y=y)) 
k0=INTEG(mvec,kvec); postvec=kvec/k0;   k0 # 6.269e-11 
mhat=INTEG(mvec,mvec*postvec);  
c(mbar,sd(mv),mhat,mci,mcpdr)  
 # 0.73769 0.04305 0.73935 0.73502 0.74036 0.66197 0.82984 
 
fun=function(q,p=0.025){ (INTEG(mvec,postvec,0,q)-p)^2 }  
LB0 = optim(par=0.5,fn=fun)$par;  LB = optim(par= LB0,fn=fun)$par 
fun=function(q,p=0.975){ (INTEG(mvec,postvec,0,q)-p)^2 }  
UB0 = optim(par=0.8,fn=fun)$par;  UB = optim(par= UB0,fn=fun)$par 
c(LB,UB) # 0.6609 0.8305 
INTEG(mvec,postvec,0,LB) # 0.025 
INTEG(mvec,postvec,UB,1) # 0.025 OK      (Ignore all the warnings) 
 
par(mfrow=c(2,1)) 
hist(mv,prob=T,xlim=c(0.6,0.9),ylim=c(0,10), breaks=seq(0.5,1,0.01), 
 xlab="x",main="(e) Histogram of 1000 m-values") 
lines(mvec,postvec,lty=1,lwd=3) 
lines(density(mv),lty=2,lwd=3) 
abline(v=c(mbar,mci,mcpdr),lwd=2) 
points(c(mhat,LB,UB),c(0,0,0),pch=16) 
points(m,0,pch=4,lwd=3) 
 
# Prediction of c ----------------------- 
set.seed(332); cv=rnorm(J,mv,mv/sqrt(10)) 
cbar=mean(cv); cci=cbar+c(-1,1)*qnorm(0.975)*sd(cv)/sqrt(J) 
ccpdr=quantile(cv,c(0.025,0.975)) 
c(cbar,sd(cv),cci,ccpdr)  # 0.7410 0.2253 0.7270 0.7549 0.3063 1.1893 
 
hist(cv,prob=T,xlim=c(0,1.6),ylim=c(0,2.5), breaks=seq(0,1.6,0.05), 
 xlab="c",main="(f) Histogram of 1000 c-values") 
cvec=seq(0,1.5,0.01); fcvec=seq(0,1.5,0.01);  for(i in 1:length(cvec)) 
 fcvec[i]=mean(dnorm(cvec[i],mv,mv/sqrt(10))) 
lines(cvec,fcvec,lty=1,lwd=3) 
lines(density(cv),lty=2,lwd=3) 
abline(v=c(cbar,cci,ccpdr),lwd=2) 
points(mhat,0,pch=16) 
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# (b) 
X11(w=8,h=6);     par(mfrow=c(2,2));  
y = c(3.4, 6.3, 1.0, 2.9, 1.8,   2.0, 0.5, 7.9, 4.8, 6.5); n = 10; ybar=mean(y);  
ybar # 3.71 
hist(y,prob=T,xlim=c(0,10),ylim=c(0,0.6), breaks=seq(0,10,0.5), 
 main="(a) Histogram of 10 y-values") 
 
set.seed(312); res=METALG(J=10100,y=y,m0=1,mdel=1); res$mar # 0.5954 
plot(res$mv,type="l",main="(b) Trace of 10100 m-values");  
acf(res$mv, main="(c) Sample ACF of 10000 m-values") 
acf(res$mv,plot=F)[1:5]  # 0.710 0.513 0.374 0.270 0.195 
acf(mv, main="(d) Sample ACF of 1000 m-values") 
mv=res$mv[-(1:101)][seq(10,10000,10)];  
acf(mv,plot=F)[1:5]  # 0.056  0.001 -0.006 -0.027  0.035 
J=length(mv); J # 1000 
 
mbar=mean(mv); mci=mbar+c(-1,1)*qnorm(0.975)*sd(mv)/sqrt(J) 
mcpdr=quantile(mv,c(0.025,0.975));  
mvec=seq(1.8,5,0.01); kvec=mvec;  
 for(i in 1:length(mvec)) kvec[i] =  exp(LOGPOST(m=mvec[i],n=n,y=y)) 
k0=INTEG(mvec,kvec); postvec=kvec/k0;   k0 # 3.317e-08 
mhat=INTEG(mvec,mvec*postvec);  
c(mbar,sd(mv),mhat,mci,mcpdr)  

#  2.8907 0.4823 2.9071 2.8608 2.9206 2.1456 3.9827 
 
fun=function(q,p=0.025){ (INTEG(mvec,postvec,1.8,q)-p)^2 }  
LB0 = optim(par=2.1,fn=fun)$par;  LB = optim(par= LB0,fn=fun)$par 
fun=function(q,p=0.975){ (INTEG(mvec,postvec,1.8,q)-p)^2 }  
UB0 = optim(par=4.1,fn=fun)$par;  UB = optim(par= UB0,fn=fun)$par 
c(LB,UB) # 2.143 4.033 
INTEG(mvec,postvec,1.8,LB) # 0.025 
INTEG(mvec,postvec,UB,5) # 0.025 OK      (Ignore all the warnings) 
 
par(mfrow=c(2,1)) 
hist(mv,prob=T,xlim=c(1,5),ylim=c(0,1), breaks=seq(1,5,0.2), 
 xlab="x",main="(e) Histogram of 1000 m-values") 
lines(mvec,postvec,lty=1,lwd=3) 
lines(density(mv),lty=2,lwd=3) 
abline(v=c(mbar,mci,mcpdr),lwd=2) 
points(c(mhat,LB,UB),c(0,0,0),pch=16) 
points(m,0,pch=4,lwd=3) 
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# Prediction of c = (1/40)(y11+...+y50)     (new definition)  ----------------------- 
set.seed(332); cv=rnorm(J,mv,mv/sqrt(40)) 
cbar=mean(cv); cci=cbar+c(-1,1)*qnorm(0.975)*sd(cv)/sqrt(J) 
ccpdr=quantile(cv,c(0.025,0.975)) 
c(cbar,sd(cv),cci,ccpdr)  # 2.8985 0.6594 2.8577 2.9394 1.8105 4.3925 
 
hist(cv,prob=T,xlim=c(1,6), ylim=c(0,0.7), breaks=seq(1,6,0.25), 
 xlab="c",main="(f) Histogram of 1000 c-values") 
cvec=seq(1,6,0.01); fcvec=seq(1,6,0.01);  for(i in 1:length(cvec)) 
 fcvec[i]=mean(dnorm(cvec[i],mv,mv/sqrt(40))) 
lines(cvec,fcvec,lty=1,lwd=3) 
lines(density(cv),lty=2,lwd=3) 
abline(v=c(cbar,cci,ccpdr),lwd=2) 
points(mhat,0,pch=16) 
 
# Now perform inference on the finite population mean,  
#  a=(1/50)*(10*ybar +40*c) 
av=(1/50)*(10*ybar+40*cv) 
abar=mean(av); aci=abar+c(-1,1)*qnorm(0.975)*sd(av)/sqrt(J) 
acpdr=quantile(av,c(0.025,0.975)) 
c(abar,sd(av),aci,acpdr)  # 3.0608 0.5276 3.0281 3.0935 2.1904 4.2560 
 (1/50)*(10*ybar+40*mbar)  # 3.055   RB estimate of predictive mean of a 
(1/50)*(10*ybar+40*mci)   # 3.031 3.078  RB CI for predictive mean of a 
 (1/50)*(10*ybar+40*mhat)   # 3.068   Exact predictive mean of a 
 
X11(w=8,h=4); par(mfrow=c(1,1)) 
hist(av,prob=T,xlim=c(1.5,5.5), ylim=c(0,1), breaks=seq(1,6,0.2), xlab="c",  
 main="(g) Histogram of 1000 a-values (finite population mean)") 
avec=seq(1,6,0.01); favec=seq(1,6,0.01);  for(i in 1:length(avec)) 
 favec[i]=  
      mean(  dnorm(  avec[i],  (1/50)*(  10*ybar+40*mv),   mv*sqrt(40)/50   )  ) 
lines(avec,favec,lty=1,lwd=3); lines(density(av),lty=2,lwd=3) 
abline(v=c(abar,aci,acpdr),lwd=2) 
points(  (1/50)*(10*ybar+40*mbar)  ,0.1,pch=1,cex=1, lwd=2) 
points(  (1/50)*(10*ybar+40*mci)  ,c(0.06,0.14), pch=1,cex=1, lwd=2) 
points(  (1/50)*(10*ybar+40*mhat)  ,0,pch=4,lwd=2,cex=2) 
points(ybar,0,cex=1,lwd=2,pch=16) 
legend(3.9,1, c("Histogram density estimate","Rao-Blackwell estimate"),  
 lty=c(2,1), lwd=c(3,3), bg="white") 
legend(3.83,0.67,c("Sample mean","Rao-Blackwell estimate & 95% CI", 
 "Exact predictive mean"),  
 pch=c(16,1,4), pt.cex=c(1,1,2), pt.lwd= c(2,2,2),    bg="white") 
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Exercise A.2 Practice with the MH algorithm 
 
(a) Sample a value a from the standard exponential distribution and a 
value b from the uniform distribution between 0 and 10 (independently). 
 
Then randomly sample n = 100 values from the gamma distribution with 
mean /m a b=  and variance 2/v a b= .  
 
Then design and implement a Metropolis-Hastings algorithm so as  
to generate a random sample of size 1,000J =  from the joint posterior 
distribution of a and b.   
 
Use this sample to perform Monte Carlo inference on m.  
 
Be sure to provide a 95% CI for the posterior mean of m, an estimate of 
the 95% central posterior density region for m, and an estimate of the 
entire marginal posterior density of m. 
 
Then predict c, the average of a future independent sample of size k = 10 
from the gamma distribution with the same mean m and variance v.  
 
Be sure to provide a 95% CI for the predictive mean of c, an estimate of 
the 95% central predictive density region for c, and an estimate of the 
entire posterior predictive density of c. 
 
Illustrate your results with suitable figures (e.g. trace plots and 
histograms). 
 
(b) Consider the following values in a sample obtained via SRSWOR 
from a finite population of size N = 30:  

0.4, 3.3, 1.0, 2.9, 1.8, 4.1. 
 
Suppose we model the finite population values as gamma with mean 

/m a b=  and variance 2/v a b= , with a standard exponential prior on m 
and a uniform prior on b between 0 and 10.  
 
Using MCMC methods, estimate/predict the finite population mean 
absolute deviation about the superpopulation mean, equivalently referred 
to as the MAD for short, and defined by 

 
1

1 N

i
i

y m
N

ψ
=

= −∑ . 
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Solution to Exercise A.2 
 
The sampled values of a and b were 1.463 and 5.528. So the value of m 
was a/b = 0.2647. The 100 sampled gamma values are shown in Figure 
A.3(a) (page 621).  
 
Next, the posterior density of the two parameters a and b is 
 

( , | ) ( , ) ( | , )f a b y f a b f y a b∝  

     
1

1 ( )

ibya an
a i

i

b y ee
a

−−
−

=

∝
Γ∏

1
1( )

( )

Tbya na n a
i i

n

e b y e
a

−− −
=∏

=
Γ

. 

 
So the log-posterior is     
 
 ( , ) log ( , | )l a b f a b y=  

           
1

log ( 1) log log ( )
n

i T
i

a na b a y by n a
=

= − + + − − − Γ∑ . 

 
A suitable Metropolis algorithm is one which at each iteration: 
 
       1. Proposes a value  

~ ( , )a aa U a aδ δ′ − + ,  
where aδ  is a tuning constant, and accepts this value with  
probability qp e= , where ( , ) ( , )q l a b l a b′= −  

 
       2. Proposes a value  

~ ( , )b bb U b bδ δ′ − + ,  
where bδ  is a tuning constant, and accepts this value with  
probability qp e= , where ( , ) ( , )q l a b l a b′= − . 
 

Implementing this algorithm we obtained the required J = 1,000 values 
 1 1( , ),..., ( , ) ~ ( , | )J Ja b a b iid f a b y  
and hence  

1,..., ~ ( | )Jm m iid f m y   
by calculating /j j jm a b=  for each j = 1,…,J. 
 
A histogram of these simulated m-values is shown in Figure A.3(b) (page 
622).  



Appendix A: Additional Exercises 

621 

The dashed line is a histogram estimate of ( | )f m y . The vertical lines 
show the posterior mean estimate, m  = 0.3017, the 95% CI for the 
posterior mean, (0.3001, 0.3033), and the 95% CPDR estimate for m, 
(0.2566, 0.3570). The cross shows the true value of m, 0.7071. 
 
The Monte Carlo sample was then used to generate a random sample from 
the predictive distribution of  

1 10( ... ) / 10n nc y y+ += + + .  
 
This was done by sampling    

( ) ( )
1 10,..., ~ ( , )j j

n n j jy y iid G a b+ +   
and forming  

( ) ( )
1 10( ,..., ) / 10j j

j n nc y y+ += ,  j = 1,…,J. 
 
A histogram of the c-values is shown in Figure A.3(c). The dashed line is 
a histogram estimate of ( | )f c y . The vertical lines are the predictive 
mean estimate, c  = 0.2981, the 95% CI for the predictive mean, (0.2929, 
0.3033), and the 95% CPDR estimate for c, (0.1584, 0.4878).  
 
 
Figure A.3 Graphical results for part (a)  
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(b) Here we repeat the procedure in (a) but using n = 6 (rather than 100), 
and the 6 given sample values whose mean is 2.25 (instead of the 100 
generated values as before), so as to generate a Monte Carlo sample of 
size J = 1,000 from the posterior distribution of a and b.  
 
We then use each pair of values, ja  and jb , to generate 24 values which 
are iid from the gamma distribution with parameters ja  and jb .  
 
Then for each j we calculate the associated value of the MAD, namely     

1

1 N
j

j i
i j

a
y

N b
ψ

=

= −∑ . 

 
We then use the resulting J values of the MAD, i.e. 1,..., Jψ ψ , for Monte 
Carlo inference in the usual way.  
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Figure A.4 shows a histogram of these J values and related information.  
 
Numerically, we estimate ψ ’s posterior/predictive mean by 1.307 with 
95% CI (1.27, 1.34), and we estimate ψ ’s CPDR by (0.75, 2.73). 
 
 
Figure A.4 Histogram of 1,000 MAD values 

 
 
R Code for Exercise A.2 
 
# (a) 
options(digits=4); n = 100;  X11(w=8,h=4);     par(mfrow=c(1,1));  
set.seed(192); a=rgamma(1,1,1); b=runif(1,0,10); y=rgamma(n,a,b);  
m=a/b; v=a/b^2; c(a,b,m,v) # 1.46321 5.52763 0.26471 0.04789 
 
hist(y,prob=T,xlim=c(0,1.5),ylim=c(0,3), breaks=seq(0,1.5,0.05), 
 main="(a) Histogram of 100 y-values") 
yvec=seq(0,1.5,0.01); lines(yvec,dgamma(yvec,a,b),lwd=3) 
abline(v=m,lwd=3) 
 
sumlogy=sum(log(y)); sumy=sum(y)  # sufficient statistics 
LOGPOST=function(a=1,b=1,n=3,sumlogy=2,sumy=2){  
 -a+n*a*log(b)+(a-1)*sumlogy-b*sumy-n*lgamma(a)  } 
LOGPOST()  # -3     OK 
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MHALG = function(J=1000,y,a0=1,b0=1,adel=1,bdel=1){ 
a=a0; b=b0;   av=a; bv=b;    act=0; bct=0;   n=length(y);    
sumlogy=sum(log(y)); sumy=sum(y)  # sufficient statistics 
for(j in 1:J){ 
 acand=runif(1,a-adel,a+adel) 
 if(acand>0){  
  logprob=  

LOGPOST (a=acand,b=b,n=n,sumlogy=sumlogy,sumy=sumy)-  
 LOGPOST (a=a,b=b,n=n,sumlogy=sumlogy,sumy=sumy)  
  prob=exp(logprob) 
  u=runif(1); if(u<=prob){ act=act+1; a= acand }   } 
 bcand=runif(1,b-bdel,b+bdel) 
 if((bcand>0)&&(bcand<10)){  
  logprob=  

LOGPOST (a=a,b=bcand,n=n,sumlogy=sumlogy,sumy=sumy)-  
  LOGPOST (a=a,b=b,n=n,sumlogy=sumlogy,sumy=sumy)  
  prob=exp(logprob) 
  u=runif(1); if(u<=prob){ bct=bct+1; b= bcand }    
  } 
 av=c(av,a); bv=c(bv,b) 
 } 
list(av=av,bv=bv,aar=act/J,bar=bct/J)        
} 
 
set.seed(312); res=MHALG(J=10100,y=y,a0=1,b0=1,adel=0.3,bdel=1) 
X11(w=8,h=6); par(mfrow=c(2,1));  
plot(res$av); plot(res$bv); c(res$aar,res$bar) # 0.5055 0.5611 
 
av=res$av[-(1:101)][seq(10,10000,10)]; J=length(av); J # 1000 
bv=res$bv[-(1:101)][seq(10,10000,10)]; mv=av/bv 
mbar=mean(mv); mci=mbar+c(-1,1)*qnorm(0.975)*sd(mv)/sqrt(J) 
mcpdr=quantile(mv,c(0.025,0.975));  
c(mbar,mci,mcpdr) #  0.3017 0.3001 0.3033 0.2566 0.3570 
 
X11(w=8,h=4); par(mfrow=c(1,1));  
hist(mv,prob=T,xlim=c(0.2,0.4),ylim=c(0,20), breaks=seq(0.2,0.4,0.005), 
 xlab="m",main="(b) Histogram of 1000 m-values") 
lines(density(mv),lty=1,lwd=3) 
abline(v=c(mbar,mci,mcpdr),lwd=2) 
points(m,0,pch=4,lwd=3) 
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# Prediction of c ----------------------- 
set.seed(332); cv=rep(NA,J); for(j in 1:J) cv[j]=mean(rgamma(10,av[j],bv[j])) 
cbar=mean(cv); cci=cbar+c(-1,1)*qnorm(0.975)*sd(cv)/sqrt(J) 
ccpdr=quantile(cv,c(0.025,0.975)) 
c(cbar,sd(cv),cci,ccpdr)  # 0.29812 0.08356 0.29294 0.30329 0.15843 0.48783 
hist(cv,prob=T,xlim=c(0.05,0.7),ylim=c(0,7), breaks=seq(0,1.6,0.02), 
 xlab="c",main="(c) Histogram of 1000 c-values") 
lines(density(cv),lty=1,lwd=3); abline(v=c(cbar,cci,ccpdr),lwd=2) 
 
# (b)   
y=c(  0.4, 3.3, 1.0, 2.9, 1.8, 4.1);  X11(w=8,h=6); par(mfrow=c(2,1));  
n=length(y); sumlogy=sum(log(y)); sumy=sum(y)  # sufficient statistics 
set.seed(312); res=MHALG(J=10100,y=y,a0=1,b0=1,adel=1.3,bdel=0.7) 
plot(res$av); plot(res$bv); c(res$aar,res$bar) # 0.5129 0.5094 
 
av=res$av[-(1:101)][seq(10,10000,10)]; J=length(av); J # 1000 
bv=res$bv[-(1:101)][seq(10,10000,10)]; mv=av/bv 
mbar=mean(mv); mci=mbar+c(-1,1)*qnorm(0.975)*sd(mv)/sqrt(J) 
mcpdr=quantile(mv,c(0.025,0.975));  
c(mbar,mci,mcpdr) #  2.256 2.208 2.305 1.148 4.188 
 
X11(w=8,h=4); par(mfrow=c(1,1));  
hist(mv,prob=T,xlim=c(0,7),ylim=c(0,0.8), breaks=seq(0,10,0.5), 
 xlab="x",main="Histogram of 1000 simulated m-values") 
lines(density(mv),lty=2,lwd=3);  abline(v=c(mbar,mci,mcpdr),lwd=2) 
 
# Prediction of psi ----------------------- 
set.seed(332); psiv=rep(NA,J);  
for(j in 1:J){ yrem=rgamma(24,av[j],bv[j]) 
 yall = c(y,yrem); psiv[j]=mean((abs(yall-mv[j]) ))   } 
psibar=mean(psiv); psici =psibar+c(-1,1)*qnorm(0.975)*sd(psiv)/sqrt(J) 
psicpdr=quantile(psiv,c(0.025,0.975)) 
c(psibar,sd(psiv),psici,psicpdr)  # 1.3068 0.5411 1.2732 1.3403 0.7497 2.7349 
 
hist(psiv,prob=T,xlim=c(0,4),ylim=c(0,1.5), breaks=seq(0,7,0.1), 
 xlab="psi",main="") 
lines(density(psiv),lty=1,lwd=3); abline(v=c(psibar,psici,psicpdr),lwd=2) 
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Exercise A.3 Practice with a Bayesian finite population  
regression model 
 
(a) Generate a population of covariates 
  1,..., ~ (10,20)Nx x iid U ,  
where N = 100.  
 
Then generate a population of values  
 2~ ( , )i iy N a bx σ+ , 1,...,i N= ,    
where a = 3, b = 0.5, 2σ = .  
 
Then select a random sample of size n = 20 from the N units in the finite 
population, without replacement.  
 
Plot the y values against the x values, over the population and over the 
sample, respectively. Draw the true regression line y a bx= +  and the 
two least squares regression lines estimated using the population data and 
sample data, respectively. 
 
(b) Consider the following Bayesian model: 
 ( | , , ) ~ ( ,1 / )i iy a b N a bxλ λ⊥ + ,   1,...,i N=  
 ( , , ) 1 / ; , ; 0f a b a bλ λ λ∝ ∈ℜ > . 
  
Generate a random sample of size J = 1,000 from the joint posterior 
distribution of a, b and λ , given the sample data generated in (a). 
 
Then use this sample and R to estimate each of the following quantities: 
  16m a b= +       (average of a hypothetically infinite number of  
        values with covariate 16) 

  1 ... Ny yy
N

+ +
=   (the finite population mean) 

 (100)

(50) (51)

2 y
y y

ψ =
+

  (ratio of maximum to median of the 100 finite  

        population values). 
 
Assume that all N covariate values in the population are known. 
 
(c) Repeat the inferences in (b) but using WinBUGS and a sample size of 
J = 10,000. 
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Solution to Exercise A.3 
 
(a) The required plot and regression lines are shown in the Figure A.5. 
 
 
Figure A.5 Graphical results for part (a) 

 
 
(b) Denote the sample values by 1,..., {1,..., }ns s N∈ , where 1 ... ns s< < ,  
and define 1( ,..., )ns s s= .  
 
Then define the population vector as 1( ,..., )Ny y y ′=  and the sample 
vector as 

1
( ,..., )

ns s sy y y ′= .  
 
Also define 1( ,..., ) {1,..., }N nr r r N s−= = −  in such a way that 1 ... N nr r −< < , 
and define the nonsample vector as 

1
( ,..., )

N nr r ry y y
−
′= .  

 
Likewise, define the population covariate vector as 1( ,..., )Nx x x ′= , the 
sample covariate vector as 

1
( ,..., )

ns s sx x x ′= , and the nonsample covariate 
vector as 

1
( ,..., )

N nr r rx x x
−
′= . 
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Also consider all of 1,..., Nx x  as known constants, and define ( , )sD s y=  
as the data. Also let:    

a
b

β  
=  
 

,  (1 , )s n sX x= ,  (1 , )r N n rX x−= ,  ss nIΣ = ,  rr N nI −Σ = . 

 
Then, from the theory of the normal-normal-gamma finite population 
model, we have that: 
 ( | , , ) ~ ( , / )r N n r rry D N Xβ λ β λ− Σ   
 2( | , ) ~ ( , / )D N T Dβ λ λ ,  

where 1 1( )s ss sD X X− −′= Σ  and 1 1 1( )s ss s s ss sT X X X y− − −′ ′= Σ Σ  
 ( | ) ~ ( / 2, / 2)D G A Bλ ,  

where 2A n= −   and 1( ) ( )s s ss s sB y X T y X T−′= − Σ − .    
 
Thus, to do the required inference, first carry out the following steps: 
       1.  Relabel the population units so that 1( ,..., )s ny y y ′= ,  
 1( ,..., )s nx x x ′= , 1( ,..., )r n Ny y y+ ′= , 1( ,..., )r n Nx x x+ ′= , etc.,  

so that ( , )s ry y y′ ′ ′= , etc. 
       2.  Calculate A, B, D and T as per the above 
       3.  Generate 1,..., ~ ( / 2, / 2)J iid G A Bλ λ     (easy) 

       4.  Generate ( )
2~ ( , / )j

jN T Dβ λ⊥ , for j = 1,…,J    (easy) 

       5.  Generate  (1) ( ) ( ),..., ~ ( , / )J j
r r N n r rr jy y N X β λ− Σ , for j = 1,…,J     

(e.g. for each j, generate ( ) ~ ( ,1 / )j
i j j i jy N a b x λ⊥ + ,  

1,...,i n N= + ,  and form ( ) ( ) ( )
1( ,..., )j j j

r n Ny y y+ ′=  

       6.  Form ( ) ( )( , )j j
s ry y y ′′ ′=  for each j = 1,…,J. 

 
Now calculate  

16j j jm a b= +   
and perform Monte Carlo inference on m, using the fact that  

1,..., ~ ( | )Jm m iid f m D .  
(For example, estimate m by 1

1
J
j jm J m−
== ∑ .) 

 
Likewise, calculate ( ) ( )1 /j j

Ny y N′=  and perform Monte Carlo inference 
on y  in the usual way, using the fact that (1) ( ),..., ~ ( | )Jy y iid f y D . 
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Finally, calculate  
( )
(100)

( ) ( )
(50) (51)

2 j

j j j

y
y y

ψ =
+

  

and perform Monte Carlo inference on ψ , using the fact that  

1,..., ~ ( | )J iid f Dψ ψ ψ . 
 
Optionally, we may improve on some of the above ‘basic’ inferences by 
considering Rao-Blackwell techniques, e.g. estimate m by its exact 
posterior mean,  ˆ ( | ) (1,16)m E m D T= = . 
 
Figure A.6 shows histograms of the simulated values of  m (subplot (a)), 
y  (subplot (b)) and ψ  (subplot (c)), with each subplot overlaid by 

various points, interval and density estimates.  
 
Subplot (d) (page 631) illustrates ‘exact’ inference on y   based on the 
theory of the normal-normal-gamma finite population model, and subplot 
(e) (page 631) is a detail in subplot (d). Each plot features a cross showing 
the true value of the quantity being estimated. 
 
 
Figure A.6 Graphical results for part (b) 
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Table A.1 shows some of the true values and corresponding numerical 
estimates featuring in Figure A.6. 
 
(c) Using the WinBUGS code below we obtained results as shown in 
Figure A.7. It will be noted that these are consistent with those in Table 
A.1 
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Table A.1 Numerical results for part (b) 
 
Quantity    True          Posterior      MC         95% CI for              MC estimate     
                 value            mean     estimate      post. mean              of 95% CPDR 
  m     11.000       10.895   10.906     (10.875, 10.937)      (9.893, 11.863) 
  y      10.473       10.174   10.185      (10.158, 10.211)     (9.353, 11.049) 
  ψ      1.435            NA   1.659        (1.650, 1.668)         (1.444, 2.014) 

 
 
Figure A.7 Output from WinBUGS run  
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R Code for Exercise A.3 
 
# (a) 
X11(w=8,h=5.5);      par(mfrow=c(1,1)); options(digits=4) 
N=100; n=20; a=3; b=0.5; sig=2; set.seed(312); x=runif(N,10,20); 
y=rnorm(N,a+b*x,sig); s=sort(sample(1:N,n)); xs=x[s]; ys=y[s];  
r=(1:N)[-s];    xr=x[r];    yr=y[r];   yT=sum(y);  ysT=sum(ys); yrT=sum(yr) 
ybar=mean(y); ysbar=mean(ys); yrbar=mean(yr);  
xT=sum(x);  xsT=sum(xs); xrT=sum(xr) 
xbar=mean(x); xsbar=mean(xs); xrbar=mean(xr);  
 
m=a+16*b; psi=max(y)/median(y) 
c(m, ybar,max(y),median(y),psi)  # 11.000 10.473     15.234 10.616   1.435 
 
plot(x,y,xlim=c(0,20),ylim=c(0,17));  
points(xs,ys,pch=16); abline(v=0,lty=3); abline(h=0,lty=3); abline(v=16,lty=3);  
abline(h=a+16*b,lty=3);  
abline(a,b,lwd=3);  
abline(lm(y~x),lty=2,lwd=3); abline(lm(ys~xs),lty=3,lwd=3);  
abline(lm(yr~xr),lty=4,lwd=3) 
legend(0,17,bg="white", c("True regression line","Estimate from population", 
 "Estimate from sample","Estimate from nonsample"),  
 lty=1:4,lwd=rep(3,4) ) 
text(16,2,"The solid dots show the sample values") 
 
# (b) Follows on from (a)…. 
# Packages, Load package, MASS        (for use further down) 
 
eta=0; tau=0;  sigma=diag(rep(1,N)); sigmass=diag(rep(1,n));  
sigmarr=diag(rep(1,N-n)); 
p=2;  c=2*eta+n-p;  Xs=cbind(1,xs);    Xr=cbind(1,xr); X=rbind(Xs,Xr)  
D=solve(t(Xs)%*%solve(sigmass)%*%Xs) 
T=D%*%t(Xs)%*%solve(sigmass)%*%ys; t(T) #  -0.6637  0.7224 
A=2*eta+n-p;  B= 2*tau +  t(ys-Xs%*%T) %*% solve(sigmass) %*%  (ys-Xs%*%T)   
 
J=1000; set.seed(5);   lamvec=rgamma(J,A/2,B/2);    
betamat=matrix(NA,nrow=2,ncol=J) 
for(j in 1:J) betamat[,j] = mvrnorm( n=1, mu=T, Sigma=D/lamvec[j] ) 
 
avec=betamat[1,]; bvec=betamat[2,] 
ahat=mean(avec); bhat=mean(bvec); c(ahat,bhat) # -0.5742  0.7175 
yrmat=matrix(NA,nrow=N-n,ncol=J) 
set.seed(334); for(j in 1:J)  

yrmat[,j]= rnorm(N-n,avec[j]+bvec[j]*xr,1/sqrt(lamvec[j])) 
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# Use simulated values of beta and yr to do inference 
mvec=avec+16*bvec; ybarvec=rep(NA,J); psivec=rep(NA,J) 
for(j in 1:J){ ysim = c(ys, yrmat[,j]) 
  ybarvec[j]=mean(ysim) 
  psivec[j] = max(ysim)/median(ysim)    } 
mhat=mean(mvec); mci= mhat +c(-1,1)*qnorm(0.975)*sd(mvec)/sqrt(J) 
 mcpdr=quantile(mvec,c(0.025,0.975)) 
ybarhat=mean(ybarvec);  
ybarci = ybarhat +c(-1,1)*qnorm(0.975)*sd(ybarvec)/sqrt(J) 
  ybarcpdr=quantile(ybarvec,c(0.025,0.975)) 
psihat=mean(psivec); psici = psihat +c(-1,1)*qnorm(0.975)*sd(psivec)/sqrt(J) 
  psicpdr=quantile(psivec,c(0.025,0.975)) 
 
hist(mvec,prob=T,xlim=c(8,14),ylim=c(0,1), breaks=seq(7,14,0.25), 
 xlab="m",main="(a) Histogram of 1000 m-values")  # Ignore warnings 
lines(density(mvec),lty=2,lwd=3) # Histogram estimate  
abline(v=c(mhat,mci,mcpdr),lty=2,lwd=3) # Histogram estimates 
mhat2=c(1,16)%*%T; points(mhat2,0, pch=16,cex=1.5) # Exact posterior mean 
mvarterm2=c(1,16)%*%D%*%c(1,16); msdterm2=sqrt(mvarterm2) 
mv=seq(6,16,0.05); fmv2=mv 
for(k in 1:length(mv))  
       fmv2[k]=mean(dnorm(mv[k],mhat2,msdterm2/sqrt(lamvec))) 
lines(mv,fmv2,lwd=3);  # Exact posterior density of m 
points(median(y),0, pch=4,cex=2,lwd=3  )  # True value of m 
legend(8,1,c("Histogram estimate","Exact density"), lty=c(2,1),lwd=c(3,3),  
 bg="white") 
legend(8,0.6,c("Rao-Blackwell","True"),pch=c(16,4), 
   pt.cex=c(1.5,2), pt.lwd=c(1,3), bg="white") 
 
hist(ybarvec,prob=T,xlim=c(8,12),ylim=c(0,1), breaks=seq(3,18,0.25), 
 xlab="ybar",main="(b) Histogram of 1000 ybar-values") 
lines(density(ybarvec),lty=2,lwd=3)  # Histogram estimate 
abline(v=c(ybarhat, ybarci, ybarcpdr),lty=2,lwd=3) # Histogram estimates 
ybarv=seq(8,13,0.02); fybarhatv=ybarv;  
meanvalvec = (1/N)*(  ysT+(N-n)*(avec+bvec*xrbar)  ) 
varvalvec = (N-n)/(lamvec*N^2) 
for(k in 1:length(ybarv)){ 
 fybarhatv[k]= mean(   dnorm(ybarv[k], meanvalvec, sqrt(varvalvec) ) )   } 
lines(ybarv, fybarhatv,lty=1,lwd=3)   # Rao-Blackwell 
points(mean(meanvalvec),0,pch=16,cex=1.5) # Rao-Blackwell 
points(ybar, 0, pch=4,cex=2,lwd=3  )   # True value of ybar 
 
legend(8,1,c("Histogram estimate","Rao-Blackwell"),  
 lty=c(2,1),lwd=c(3,3), bg="white") 
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legend(8,0.6,c("Rao-Blackwell","True value"),pch=c(16,4), 
   pt.cex=c(1.5,2), pt.lwd=c(1,3), bg="white") 
 
hist(psivec,prob=T,xlim=c(1.25,2.5),ylim=c(0, 3), breaks=seq(0,10,0.05), 
 xlab="psi",main="(c) Histogram of 1000 psi-values") 
den=density(psivec); lines(den, lty=2,lwd=3) 
abline(v=c(psihat, psici, psicpdr),lty=2,lwd=3) 
 
# psimode=den$x[(1:length(den$x))[den$y==max(den$y)]]  # optional extras.... 
# psimedian=median(psivec); abline(v=c(psimode,psimedian),lty=1,lwd=3) 
 
points(psi, 0, pch=4,cex=2,lwd=3  )   # True value of psi 
legend(2.05,3,c("Histogram estimate"), lty=c(2),lwd=c(3), bg="white") 
legend(2.05,2,c("True value"),pch=c(4), pt.cex=c(2), pt.lwd=c(3), bg="white") 
 
# Perform exact inference on ybar using a function from a previous exercise: 
NNGFPM= function(eta=0, tau=0, alp=0.05, 
   ys= c(5.6,2.3,8.4,5.1,4.3), X=rep(1,15) ,  N=15, sigma=diag(rep(1,N))   )    { 
# This function performs inference under the normal-normal-gamma  
# finite population model. 
# Inputs: eta, tau,     alp,  ys,   X,  N,  sigma 
# Outputs: A list with $a, $b and $c indicating    (ybar-a)/b given ys ~  t(c) 
p=ncol(cbind(NA,X))-1;    n = length(ys);   c=2*eta+n-p 
ysT=sum(ys); Xs=cbind(NA,X)[1:n,][,-1];  Xr=cbind(NA,X)[(n+1):N,][,-1] 
sigmass=sigma[1:n,1:n];         sigmarr=sigma[(n+1):N,(n+1):N] 
sigmasr=sigma[1:n,(n+1):N];     sigmars=t(sigmasr) 
D=solve(t(Xs)%*%solve(sigmass)%*%Xs) 
beta=D%*%t(Xs)%*%solve(sigmass)%*%ys 
A=Xr-sigmars%*%solve(sigmass)%*%Xs;       oner=rep(1,N-n) 
a=(1/N)*(     ysT     +     t(oner)%*%     
   (     Xr%*%beta   +   sigmars%*%solve(sigmass)%*%(ys-Xs%*%beta)      )     ) 
b2=(1/(c*N^2)) * ( 2*tau + t(ys-Xs%*%beta)%*%solve(sigmass)%*%  
    (ys-Xs%*%beta)  ) *  t(oner)%*% 
    (sigmarr-sigmars%*%solve(sigmass)%*%sigmasr +A%*%D%*%t(A))   %*%   
     oner 
b=sqrt(b2); cpdr=a+c(-1,1)*qt(1-alp/2,c)*b 
list(a=a,b=b,c=c,beta=beta, cpdr=cpdr) } 
 
res= NNGFPM(   eta=0, tau=0, alp=0.05, ys=ys,X=X,N=N, sigma=sigma   ) 
c(res$a,res$b,res$c, res$cpdr)  # 10.1744  0.4035 18.0000  9.3267 11.0221 
 
# Plot for inference on ybar again 
hist(ybarvec,prob=T,xlim=c(8,12),ylim=c(0,1), breaks=seq(3,18,0.2), 
 xlab="ybar",main="(d) Histogram of 1000 ybar-values") 
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abline(v=c(ybarhat, ybarci, ybarcpdr),lty=2,lwd=3) # Histogram point estimates 
points(mean(meanvalvec),0,pch=16,cex=1.5)  

# Rao-Blackwell estimate of predictive mean 
abline(v=c(res$a,res$cpdr), lty=1, lwd=3) # # Exact point estimates 
points(ybar, 0, pch=4,cex=2,lwd=3  )   # True value of ybar 
lines(density(ybarvec),lty=2,lwd=3)  # Histogram estimate of predictive pdf 
lines(ybarv, fybarhatv,lty=3,lwd=3)   # Rao-Blackwell estimate of pdf 
lines(ybarv, dt((ybarv-res$a)/res$b,c)/res$b,lty=1,lwd=3) # Exact predictive pdf 
legend(8,1,c("Histogram","Rao-Blackwell","Exact pdf"), 

lty=c(2,3,1),lwd=c(3,3,3)) 
legend(8,0.5,c("Rao-Blackwell","True value"), 

pch=c(16,4),pt.cex=c(1.5,2), pt.lwd=c(1,3)) 
text(11.65,0.8, 
"The solid vertical lines\nshow the exact \npredictive mean\nand 95% CPDR") 
 
# Detail in last figure  
hist(ybarvec,prob=T,xlim=c(10,11.5),ylim=c(0,1), breaks=seq(3,18,0.2), 
 xlab="ybar",main="(e) Detail in subplot (d)") 
abline(v=c(ybarhat, ybarci, ybarcpdr),lty=2,lwd=3) # Histogram point estimates 
points(mean(meanvalvec),0,pch=16,cex=1.5)  

# Rao-Blackwell estimate of predictive mean 
abline(v=c(res$a,res$cpdr), lty=1, lwd=3) # # Exact point estimates 
points(ybar, 0, pch=4,cex=2,lwd=3  )   # True value of ybar 
lines(density(ybarvec),lty=2,lwd=3)  # Histogram estimate of predictive pdf 
lines(ybarv, fybarhatv,lty=3,lwd=3)   # Rao-Blackwell estimate of pdf 
lines(ybarv, dt((ybarv-res$a)/res$b,c)/res$b,lty=1,lwd=3) # Exact predictive pdf 
legend(11.1,1,c("Histogram","Rao-Blackwell", 

"Exact pdf"),lty=c(2,3,1),lwd=c(3,3,3)) 
legend(11.1,0.6,c("Rao-Blackwell","True value"), 

pch=c(16,4),pt.cex=c(1.5,2), pt.lwd=c(1,3)) 
 
# Exact values of the quantities of interest and summary estimates  ------------ 
c(m,mhat2,mhat,mci,mcpdr)  

# 11.000 10.895 10.906 10.875 10.937  9.893 11.863 
c(ybar,res$a,ybarhat,ybarci,ybarcpdr)  

# 10.473 10.174 10.185 10.158 10.211  9.353 11.049 
c(psi,psihat,psici,psicpdr) # 1.435 1.659 1.650 1.668 1.444 2.014 
 
#  Preparation of data for input to WinBUGS  ---------------------------------------- 
paste(as.character(round(ys,2)), collapse=",") 
# 14.98,10.99,9.58,6.56,13.83,……, 10.66,10.41" 
paste(as.character(round(c(xs,xr),2)), collapse=",") 
# 19.34,18.2,14.27,10.91,13.45,…..,12.57,10.36,19.49                    
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WinBUGS Code for Exercise A.3 
 
model 
{ 
for(i in 1:100){ 
   mu[i] <- a + b*x[i] 
   y[i] ~ dnorm(mu[i],lam) 
   } 
a ~ dnorm(0.0,0.0001) 
b ~ dnorm(0.0,0.0001) 
lam ~ dgamma(0.0001,0.0001) 
m <- a+16*b 
ybar <- mean(y[]) 
max <- ranked(y[],100) 
medL <- ranked(y[],50) 
medU <- ranked(y[],51) 
med <- (medL + medU)/2 
psi <- max/med 
} 
 
# data 
list(y=c( 

14.98,10.99,9.58,6.56,13.83, 11.38,9.13,13.25,7.03,11.14, 
2.74,11.97,12.15,9.39,11.71, 10.25,7.98,8.54,10.66,10.41, 

NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA,  NA,NA,NA,NA,NA), 
 
x=c(19.34,18.2,14.27,10.91,13.45,13.3,11.31,16.62,13.07,17.45,10.55, 
17.66,17.34,17.46,16.14,17.19,10.96,14.19,16.08,14.83,17.92,16.61, 
14.52,16.7,12.28,14.61,14.51,11.5,15.17,16.72,11.27,15.21,16.34, 
10.36,12.62,19.27,19.7,12.26,10.07,18.74,11.86,12.35,16.79,13.18, 
14.05,17.52,18.17,18.7,18.1,10.17,10.26,12.95,12.64,12.35,18.39, 
12.08,17.48,13.47,14.47,16.76,17.64,14.32,19.07,17.29,15.87,14.2, 
18.49,14.69,13.57,14.74,12.41,19.99,18.39,16.43,15.6,15.74,18.33, 
16.98,16.72,19.3,13.92,11.4,11.55,13.83,12.36,13.3,15.3,19.26,18.15, 
17.75,10.72,13.78,13.2,14.98,13.53,10.19,16.46,12.57,10.36,19.49)) 
 
# inits 
list(a=0,b=0,lam=1)     
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Exercise A.4 Case study in Bayesian finite population models 
with biased sampling   
 
A finite population of size N = 4 consists of values 1 4,...,y y  that are iid 
Bernoulli with parameter θ .  
 
A priori, θ  is equally likely to be 1/4 or 3/4 (with no other possibilities). 
 
We are interested in two quantities: 
 
 

the superpopulation mean  ( | )iE yθ θ=  
 

the finite population mean  1 ... Ny yy
N

+ +
= . 

 
We sample n = 2 units from the finite population without replacement in 
such a way that  
 
every sample is equally likely to be selected, apart from one exception, as 
follows:  
 
if the value of unit 1 is 1 then each sample with unit 1 is twice as likely to 
be selected as each sample without unit 1. 
 
We observe the values of the two sampled units (each being 0 or 1) as well 
as the labels identifying them (each being 1, 2, 3 or 4). 
 
(a) Write down a suitable Bayesian model for the above scenario in terms 
of the densities of the parameter θ , the finite population vector,

1( ,..., )Ny y y= , and the sample, 1( ,..., )ns s s= .  
 
Your formulae may involve only these variables, as well as n, N, and the 
vector of inclusion counters, 1( ,..., )NI I I= , where iI  = 1 if the ith unit is 
in the sample, and iI  = 0 otherwise. (Note that there is a one-to-one 
correspondence between s and I in this exercise.) 
 
(b) Identify a condition which determines whether the sampling 
mechanism is ignorable or nonignorable. Then write down an expression 
for the density of s in each of these two cases. 
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(c) Derive the posterior density and mean of θ  generally.  
 
(d) Find the model bias of the posterior mean of θ  if: 
 
 (i)  θ  = 1/4 and (1,3)s =  
 
 (ii) θ  = 1/4 and (2,3)s = . 
 
(e) Find the design bias of the posterior mean of θ  if: 
 
 (i)  θ  = 1/4 and (0,0,1,1)y =  
 
 (ii) θ  = 1/4 and (1,0,1,1)y = . 
 
(f) Derive the predictive mean of y  generally. 
 
(g) Find the model bias of the predictive mean of y  if: 
 
 (i)  θ  = 1/4 and (1,3)s =  
 
 (ii) θ  = 1/4 and (2,3)s = . 
 
(h) Find the design bias of the predictive mean of y  if: 
 
 (i)  θ  = 1/4 and (0,0,1,1)y =  
 
 (ii) θ  = 1/4 and (1,0,1,1)y = . 
 
(i) Design and run a Gibbs sampler to check the posterior mean of θ   
in (c) and the predictive mean of y  in (f). 
 
(j) Use Monte Carlo methods to check the two design biases in (h).  
 
(k) Find the mean of the predictive mean of the finite population mean. 
Then apply Monte Carlo methods to check your answer.         
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Solution to Exercise A.4 
 
(a) Part of the Bayesian model is:    

1

1

( | ) (1 )i i

N
y y

i
f y θ θ θ −

=

= −∏  

  ( ) 1 / 2, 1 / 4,3 / 4f θ θ= = .   
 
As regards the sampling mechanism, if 1 0y =  then  

      
1

( | , ) ( ) , (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)
N

f s y f s s
n

θ
−

 
= = = 

 
. 

 
Also, if 1 1y =  then   

     1

,
( | , ) ( | )

2 ,
c i s

f s y f s y
c i s

θ
∉ 

= =  ∈ 
 

   
, (1, 2), (1,3), (1, 4)

2 , (2,3), (2, 4), (3, 4)
c s
c s

= 
=  = 

. 

 
To find the value of c, we may equate  

11 ( | ) 3 (2 ) 3 9
s

f s y c c c= = × + × =∑ . 

 
We thereby obtain  c = 1/9.  
 
Note 1: Alternatively, we may observe that  

1( | )f s y  = (1 )ic I+ ,  
where  

( )iI I i s= ∈ .  
  
Hence      

             11 ( | ) (1 ) 1 ( )i
s s s s

f s y c I c I i s = = + = + ∈ 
 

∑ ∑ ∑ ∑  

              
:

1 1
s s i s

c
∈

 
= + 

 
∑ ∑

1
1

N N
c

n n
 −    

= +    −    

4 3
2 1

c
    

= +    
    

 

                                                                                 (6 3) 9c c= + =  
      1/ 9c⇒ = . 
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Note 2: There are a total of 
1
1

N
n
− 

 − 
 samples s which contain any given 

particular unit i. So if 1 1y =  then  

             1

1/ 9, (1,2), (1,3), (1, 4)
( | , ) ( | )

2 / 9, (2,3), (2, 4), (3, 4)
s

f s y f s y
s

θ
= 

= =  = 
. 

 
Putting together the two cases above ( 1y  = 0 and 1), we see that the 
sampling mechanism is given generally by 
 1( | , ) ( | )f s y f s yθ =  

    1 1

1

1
1
1

I y
N N

y
n n

+
=

−   
+   −   

 

    1 1

1

1
6 3

I y
y

+
=

+
,  (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)s = , 

where of course 1 ( {(1,2), (1,3), (1, 4)})I I s= ∈ . 
  
As a check, it is useful to list all of the values produced by this formula. 
These values are as shown in Table A.2. Observe that the sum of 1( | )f s y  
over all values of s is equal to 1, both when 1 0y =  and when 1 1y = . 
 
From Table A.2 we may also confirm that, as specified in the problem: 
 
every sample is equally likely to be selected, apart from one exception, as 
follows: if the value of unit 1 is 1 then each sample with unit 1 is twice as 
likely to be selected as each sample without unit 1. 
 
 
Table A.2 All possible values of s and their probabilities 
 
     Sample, s:  (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 
     1 (1 )I I s= ∈ :  1  1  1  0  0  0 
     1( | 0)f s y = : 1/6 1/6 1/6 1/6 1/6 1/6  
     1( | 1)f s y = : 2/9 2/9 2/9 1/9 1/9 1/9  
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(b) If unit 1 is selected (1 s∈ , 1iI = ) then 1y  = 0 or 1 is known and so 
the sampling mechanism is ignorable. In that case, 

   1 11 1

1 11

1 / 6, 0 3 /18, 01 3( | , )
2 / 9, 1 4 /18, 16 3 18

y yy yf s y
y yy

θ
= =   + +

= = = =   = =+    
,    

      (1,2),(1,3),(1,4)s = . 
 
Conversely, if unit 1 is not selected (1 s∉ , 0iI = ) then 1y  = 0 or 1 is 
unknown and so the sampling mechanism is nonignorable.  
 
In that case: 

 1 1 1

1 11

1 / 6, 0 3 /18, 01 3( | , )
1 / 9, 1 2 /18, 16 3 18

y y yf s y
y yy

θ
= =    −

= = = =   = =+    
,  

      (2,3),(2,4),(3,4)s = . 
 
(c) The posterior distribution of θ  given data ( , )sD s y=  can now be 
derived by considering the two cases in the note above.  
 
First, if unit 1 happens to be sampled then the value of the sampling 
density ( | , )f s y θ  is known, and so the sampling mechanism is ignorable.  
 
Explicitly, we find in that case, 
 
 ( | ) ( | , ) ( , , ) ( , , , )

r

s s s r
y

f D f s y f s y f s y yθ θ θ θ= ∝ =∑   

( ) ( , | ) ( | , , )
r

s r s r
y

f f y y f s y yθ θ θ= ∑  

1( ) ( | ) ( | ) ( | )
r

s r
y

f f y f y f s yθ θ θ= ∑   

  1( ) ( | ) ( | ) ( | )
r

s r
y

f f y f s y f yθ θ θ= ∑      

since ( | , )f s y θ  = 1( | )f s y , where s is fixed at its  
observed value, 1 2( , )s s s=  = (1,2), (1,3) or (1,4) 

  ( ) ( | ) 1 1sf f y
θ

θ θ∝ × ×         
since 1( | )f s y  does not depend on θ .  
 

Note: This is the point at which ( | , )f s y θ  can be ‘ignored’.   
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Thus we have that 

 ( | )f Dθ 11 (1 )i iy y

i s
θ θ −

∈

∝ × −∏      

  2(1 )sT sTy yθ θ −= −     

  

2

2

1 3 , 1 / 4
4 4

3 1 , 3 / 4
4 4

sT sT sT

sT sT sT

y y y

y y y

θ

θ

−

−

     =    
    =  
    =        

 

        
23 , 1 / 4
3 , 3 / 4

sT

sT

y

y

θ
θ

− =
∝  

= 
 

  
23 , 1 / 4

3 , 3 / 4sT sTy y

θ
θ+

 =
∝  

= 
 

  
9, 1 / 4

9 , 3 / 4sTy

θ
θ
= 

=  = 
. 

 
That is (if 1 s∈ ),  

 

9 /10, 1/ 4
, 0

1/10, 3 / 49 , 1/ 4 1/ 2, 1/ 49 9( | ) , 1
1/ 2, 3 / 49 , 3 / 4

9 9 1/10, 1/ 4
, 2.

9 /10, 3 / 4

sT

sT

sT

sT

y

sTy

y

sT

y

f D y

y

θ
θ

θ θ
θ

θ
θ

θ
θ

 = 
=  =  =   = +  = = =    =   =

  +  =  = = 

 

 
So then also (if 1 s∈ ) the posterior mean of θ  is 

 

1 9 3 1 3 , 0
4 10 4 10 10

1 1 3 1 1ˆ ( | ) , 1
4 2 4 2 2

1 1 3 9 7 , 2.
4 10 4 10 10

sT

sT

sT

y

E D y

y

θ θ

    + = =       
    = = + = =    

   
    + = =    

   

  

 

Note: This could also be written  as 3 2ˆ
10

sTyθ +
=     (if 1 s∈ ). 
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Next, suppose that unit 1 is not sampled. Then the value of unit 1 is 
unknown and so the sampling mechanism is nonignorable.  
 
In that case, we see from (b) that 

 1
1 1

3( | , ) ( | ) 3 , (2,3),(2,4),(3,4)
18

yf s y f s y y sθ −
= = ∝ − = , 

where 1y  is an unknown value in the nonsample vector 1( , )r ky y y=  
where k = 2, 3 or 4.  
 
Working through as before, 
 ( | ) ( | , )sf D f s yθ θ=   

  ( , , )sf s yθ∝  
      ( , , , )

r

s r
y

f s y yθ=∑  

    ( ) ( , | ) ( | , , )
r

s r s r
y

f f y y f s y yθ θ θ= ∑    

    1( ) ( | ) ( | ) ( | )
r

s r
y

f f y f y f s yθ θ θ= ∑  

    1( ) ( | ) ( | ) ( | )
r

s r
y

f f y f s y f yθ θ θ= ∑      

    ( ) ( | ) ( )sf f y qθ θ θ= , 
where     
    ( ) (3 ) ( | )

r

r
y

q f yθ θ θ∝ −∑   

(3 | )
ryE θ θ= −   

= 3 θ− . 
 
Note: We could also have written 

     1 1

1

1 1
11

1
0 0

( ) (3 ) (1 ) (1 )k k

k

y yy y

y y
q yθ θ θ θ θ −−

= =

  ∝ − − −   ∑ ∑  

  1 1

1

1 1
1 1

1
0 0

(1 ) (3 ) (1 )k k

k

y y y y

y y
yθ θ θ θ− −

= =

 
= − − − 
 
∑ ∑  

  { }0 1 0 1 1 11 (3 0) (1 ) (3 1) (1 )θ θ θ θ− −= × − − + − −   

  3(1 ) 2θ θ= − +  
                        3 θ= − . 
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Having shown (in the case 1 s∉ ) that  
 ( | ) ( ) ( | )(3 )sf D f f yθ θ θ θ∝ − , 
it now follows that 

 

2

2

1 3 13 , 1 / 4
4 4 4

( | )
3 1 33 , 3 / 4
4 4 4

sT sT sT

sT sT sT

y y y

y y y
f D

θ
θ

θ

−

−

      − =      
      ∝  
      − =            

 

  
23 11, 1 / 4
3 9, 3 / 4

sT

sT

y

y

θ
θ

− × =
∝  

× = 
   

  
23 11, 1 / 4

3 9, 3 / 4sT sTy y

θ
θ+

 × =
∝  

× = 
 

  
11, 1 / 4

9 , 3 / 4sTy

θ
θ
= 

=  = 
. 

 
Thus (if 1 s∉ ), we have that 

     

11/12, 1/ 4
, 0

1/12, 3 / 411 , 1/ 4 11/ 20, 1/ 411 9( | ) , 1
9 / 20, 3 / 49 , 3 / 4

11 9 11/ 92, 1/ 4
, 2.

81/ 92, 3 / 4

sT

sT

sT

sT

y

sTy

y

sT

y

f D y

y

θ
θ

θ θ
θ

θ
θ

θ
θ

 = 
=  =  =   = +  = = =    =   =

  +  =  = = 

 

 
So then also (if 1 s∉ ) the posterior mean of θ  is 

ˆ ( | )E Dθ θ=   

    

1 11 3 1 14 7 805 0.2917, 0
4 12 4 12 48 24 2760
1 11 3 9 38 19 1311 0.4750, 1
4 20 4 20 80 40 2760

1 11 3 81 254 127 1905 0.6902, 2.
4 92 4 92 368 184 2760

sT

sT

sT

y

y

y

    + = = = = =       
    = + = = = = =    

   
    + = = = = =    

   
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Note: This mean may also be written as  
2805 462 44ˆ

2760
sT sTy yθ + +

=   (if 1 s∉ ). 

  
This alternative formula was obtained by solving the equation 

2

805, 0
1311, 1
1905, 2

x
a bx cx x

x

= 
 + + = = 
 = 

  

for a, b and c. 
 
Putting the two cases together we find that the posterior mean of θ  is 
given generally by: 
 

ˆ ˆ ˆ( | ) ( ) ( , )sE D D s yθ θ θ θ= = =  
 

       

if 1  and 03 /10 0.3000
if 1  and 11/ 2 0.5000
if 1  and 27 /10 0.7000
if 1  and 07 / 24 0.2917
if 1  and 119 / 40 0.4750
if 1  and 2,127 /184 0.6902

sT

sT

sT

sT

sT

sT

s y
s y
s y
s y
s y
s y

∈ ==
 ∈ ==
 ∈ ==

= 
∉ ==

 ∉ ==
 ∉ ==

 

 
or equivalently, by 
 

 
2

1 1
3 2 805 462 44ˆ (1 )

10 2760
sT sT sTy y yI Iθ

 + + + = + −   
   

. 

 
Note: Here:   

1 s∈   ⇔   1 1I =      ⇔   (1,2),(1,3) or (1,4)s =   
 1 s∉  ⇔   1 0I =      ⇔   (2,3),(2,4) or (3,4)s = . 

 
Also:  

0sTy =  iff both sampled values are 0 
 1sTy =  iff one sampled value is 0 and the other is 1 
 2sTy =  iff both sampled values are 1. 
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 (d)(i) If  θ  = 1/4 and (1,3)s =  then 1 s∈  and 1 1I = , and so 

  
23 2 805 462 44 3 2ˆ 1 (1 1)

10 2760 10
sT sT sT sTy y y yθ

 + + + + = + − =   
   

. 

 
So the model mean of  θ̂  is   

{ }1ˆ( | , ) 3 2 ( | , )
10 sTE s E y sθ θ θ= + . 

 
Now,      

( , | )( | , )
( | )

f y sf y s
f s

θθ
θ

= , 

where:  
4

11

1

3( , | ) ( | , ) ( | ) (1 )
18

i iy y

i

yf y s f s y f yθ θ θ θ θ −

=

+
= = −∏  

     (using the result in (b) that 13( | , )
18

yf s y θ +
=  if  1 s∈ ) 

  
{ }( | ) ( , | ) ( | , ) ( | ) ( | , ) |y

y y
f s f y s f s y f y E f s yθ θ θ θ θ θ= = =∑ ∑

    13
18y

yE θ+ =  
 

3
18
θ+

= . 

 
Therefore   

4
11

1

3 (1 )
18( | , )

3
18

i iy y

i

y

f y s
θ θ

θ
θ

−

=

 +
− 

 =
+ 

 
 

∏
 

     1 1

4
111

2

3 (1 ) (1 )
3

i iy yy y

i

y θ θ θ θ
θ

−−

=

+ = − − + 
∏ . 

 
We see that   

( | , ) ~ ( )i iy s Bernoulliθ π⊥ , 1,2,3,4i = ,   
where:  

2 3 4π π π θ= = =     

1 1 1
1

3 1 4(1 )
3 3

θπ θ θ
θ θ

−+
= − =

+ +
. 
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Check:  0 1 0
1

3 0 3(1 ) 4(1 ) 1 1
3 3 3

θ θθ θ π
θ θ θ

−+ −
− = = − = −

+ + +
. 

 
It follows that   

1 3( | , ) ( | , ) ( | , )sTE y s E y s E y sθ θ θ= +   

      1 3

1 17
4 (7 ) 29 /16 294 4

13 3 13 / 4 523
4

θ θ θπ π θ
θ θ

 + +  = + = + = = = =
+ +  + 

 

. 

 
Hence  

1 29 107ˆ( | , ) 3 2
10 52 260

E sθ θ   = + =  
  

 = 0.4115. 

 
So, if θ  = 1/4 and (1,3)s = , then the model bias of θ̂  is  

 ˆ( | , )E sθ θ θ−  = 107 107 1 21
260 260 4 130

θ− = − =  = 0.1615. 

 

Note: We can also report the relative model bias of θ̂  as  

  
ˆ

,E sθ θ θ
θ

 −
  
 

 = 21 /130 42
1 / 4 65

=  = +64.6%. 

 
 (d)(ii) If  θ  = 1/4 and (2,3)s =  then 1 r∈  and 1 0I = , and so 

  
23 2 805 462 44ˆ 0 (1 0)

10 2760
sT sT sTy y yθ

 + + + = + −  
   

 

    
2805 462 44

2760
sT sTy y+ +

= . 

 
So the model mean of  θ̂  is  

 
2805 462 ( | , ) 44 ( | , )ˆ( | , )

2760
sT sTE y s E y sE s θ θθ θ + +

= . 
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In this case,    
( , | )( | , )
( | )

f y sf y s
f s

θθ
θ

= ,  

as before, but with    

 
4

11

1

3( , | ) ( | , ) ( | ) (1 )
18

i iy y

i

yf y s f s y f yθ θ θ θ θ −

=

−
= = −∏  

  (using the result in (b) that 13( | , )
18

yf s y θ −
=  if 1 s∉ ). 

 
Thus,   

( | ) ( , | ) ( | , ) ( | )
y y

f s f y s f s y f yθ θ θ θ= =∑ ∑  

   { }( | , ) |yE f s y θ θ= 13
18y

yE θ− =  
 

 

3
18
θ−

= . 

 
So   

4
11

1

3 (1 )
18( | , )

3
18

i iy y

i

y

f y s
θ θ

θ
θ

−

=

 −
− 

 =
− 

 
 

∏
 

       1 1

4
111

2

3 (1 ) (1 )
3

i iy yy y

i

y θ θ θ θ
θ

−−

=

− = − − − 
∏ . 

 
We see that   

( | , ) ~ ( )i iy s Bernoulliθ π⊥ , 1,2,3,4i = ,   
where: 
 2 3 4π π π θ= = =     

1 1 1
1

3 1 2(1 )
3 3

θπ θ θ
θ θ

−−
= − =

− −
. 

 

Check: 0 1 0
1

3 0 3(1 ) 2(1 ) 1 1
3 3 3

θ θθ θ π
θ θ θ

−− −
− = = − = −

− − −
. 
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It follows that   
2 3( | , ) ( | , ) ( | , )sTE y s E y s E y sθ θ θ= +  

      2 3
1 1 1
4 4 2

π π θ θ′ ′= + = + = + = . 

 
Equivalently,  

( | , ) ~ (2, )sTy s Binθ θ , 
and so  

( | , ) 2sTE y sθ θ= . 
 
By the same token,  

2 2( | , ) ( | , ) { ( | , )}sT sT sTE y s V y s E y sθ θ θ= +  

        2 1 1 52 (1 ) (2 ) 2 (1 ) 2 1
4 4 8

θ θ θ θ θ  = − + = + = × + = 
 

. 

 
Hence  

1 5805 462 44
21272 8ˆ( | , )

2760 5520
E sθ θ

   + +   
   = =  = 0.3853. 

 
So, if  θ  = 1/4 and (2,3)s = , then the model bias of θ̂  is  

 ˆ( | , )E sθ θ θ−  = 2127 1 747ˆ( | , )
5520 4 5520

E sθ θ θ− = − =  = 0.1353. 

 

Note: As regards the model bias of θ̂ , there are a total of 4 cases, 
corresponding to whether 1 s∈  or 1 s∉ , and to whether 1 / 4θ =  or 

3 / 4θ = . We have covered two of these four cases. 
 
(e)(i) If θ  = 1/4 and (0,0,1,1)y =  then 1 0y = . So in that particular case 
the sampling mechanism is definitely SRSWOR and ignorable. Without 
further thought, the posterior density of θ  can be obtained as follows: 
 ( | ) ( | , ) ( | )s sf D f s y f yθ θ θ= =   

( ) ( | )sf f yθ θ∝  

11 (1 )i iy y

i s

θ θ −

∈

∝ × −∏ . 
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Recalling (c), note that      
9 /10, 1/ 4

, 0
1/10, 3 / 4

1/ 2, 1/ 4
( | ) , 1

1/ 2, 3 / 4

1/10, 1/ 4
, 2,

9 /10, 3 / 4

sT

sT

sT

y

f D y

y

θ
θ

θ
θ

θ

θ
θ

 = 
=  = 

 = = =  = 
 =  = = 

 

and     
3 /10, 0

3 2ˆ ( | ) 1 / 2, 1
10

7 /10, 2

sT
sT

sT

sT

y
yE D y

y
θ θ

= 
+ = = = = 

 = 

. 

 
The design mean of θ̂  is therefore    

3 2 ( | , )ˆ( | , )
10

sTE y yE y θθ θ +
= , 

where  
( | , ) ( | , )sT sE y y nE y yθ θ=  ( | , )s

s
n y f s yθ= ∑ ny= , 

since (making use of basic results in the classical theory) 
1

( | , ) ( )
N

f s y f s
n

θ
−

 
= =  

 

0 0 1 12
4

+ + +
= ×  = 1.       

 
Therefore the design mean of θ̂  is  

3 2 1 1ˆ( | , )
10 2

E yθ θ + ×
= = . 

 
So the design bias of θ̂  is  

 1 1 1ˆ( | , )
2 2 4

E yθ θ θ θ− = − = −  = 0.25. 

 

Note: In the above, ˆ( | , )E yθ θ  does not depend on θ . So, for the case  

θ  = 3/4 and (0,0,1,1)y = , the design bias of θ̂  is 1 3
2 4
−  = −0.25. 

 



Bayesian Methods for Statistical Analysis 

652 

(e)(ii) If 1/ 4θ =  and (1,0,1,1)y =  then 1y  = 1, and so the sampling 
mechanism is potentially nonignorable (depending on which sample s 
happens to be drawn).  
 
Recall from (c) that the posterior mean of θ  is a function of the data given 
generally by 

 

if 1  and 03 /10 0.3000
if 1  and 11/ 2 0.5000
if 1  and 27 /10 0.7000ˆ ˆ( , )
if 1  and 07 / 24 0.2917
if 1  and 119 / 40 0.4750
if 1  and 2.127 /184 0.6902

sT

sT

sT
s

sT

sT

sT

s y
s y
s y

s y
s y
s y
s y

θ θ

∈ ==
 ∈ ==
 ∈ ==

= = 
∉ ==

 ∉ ==
 ∉ ==

 

 
Also recall from (b) that       

1

1

3 , (1,2),(1,3),(1,4)
18( | , )

3 , (2,3),(2,4),(3,4)
18

y s
f s y

y s
θ

+ =  =  − =
  

. 

 
The design bias of θ̂  can now be worked out according to   

 ˆ ˆ( | , ) ( , ) ( | , )s
s

E y s y f s yθ θ θ θ= ∑ . 

 
Now, suppose that we draw the sample (1,2)s = .  
 
Then 1 2( , )sy y y=  = (1,0).   
 
Thus 1 s∈  and 1sTy = , and so by the above,     

              1 3 1 1ˆ( , ) ( | , )
2 18 9ss y f s yθ θ +

= × = . 

 
Likewise:   
       If (1,3)s =  then 1 3( , )sy y y=  = (1,1) and so  

                          7 3 1 7ˆ( , ) ( | , )
10 18 45ss y f s yθ θ +

= × = . 
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        If (1,4)s =  then 1 4( , )sy y y=  = (1,1) and so  

                          7 3 1 7ˆ( , ) ( | , )
10 18 45ss y f s yθ θ +

= × = . 

 
        If (2,3)s =  then 2 3( , )sy y y=  = (0,1) and so  

                          19 3 1 19ˆ( , ) ( | , )
40 18 360ss y f s yθ θ −

= × = . 

 
        If (2,4)s =  then 2 4( , )sy y y=  = (0,1) and so  

                           19 3 1 19ˆ( , ) ( | , )
40 18 360ss y f s yθ θ −

= × = . 

 
        If (3,4)s =  then 3 4( , )sy y y=  = (1,1) and so  

                          127 3 1 127ˆ( , ) ( | , )
184 18 1656ss y f s yθ θ −

= × = . 

It follows that     

   ˆ ˆ( | , ) ( , ) ( | , )s
s

E y s y f s yθ θ θ θ= ∑  

                    = (1/9) + (7/45) + (7/45) + (19/360) + (19/360) + (127/1656)  
                    =  0.6045. 
 
Thus, if θ  = 1/4 and (1,0,1,1)y = , then the design bias of θ̂  is 

               1ˆ( | , ) 0.6045
4

E yθ θ θ− = −  = 0.3545. 

 

Note 1: Also, if θ  = 3/4 and (1,0,1,1)y = , then the design bias of θ̂  is  

               30.6045
4

−  = −0.1455. 

 

Note 2: As regards the design bias of ˆ,θ  there are a total of 
2 4 2 16× × =  cases to be considered, corresponding to:  
 1y      being either 0  or  1   (2 possibilities) 
      1Ty y−    being  0 or 1 or 2 or 3  (4 possibilities) 
 θ             being either 1/4 or 3/4 (2 possibilities). 
  
We have covered four of these 16 cases. 
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(f) Recall from (c) that   
( | , ) ~ ( )i iy s Bernoulliθ π⊥ , 1,2,3,4i = ,   

where:    
2 3 4π π π θ= = =       

1

4 , 1
3
2 , 1

3

s

s

θ
θπ
θ
θ

 ∈  +=  
 ∉
 − 

. 

 
Therefore    

, 1
( | , , ) ( | , )

, 1rT s rT

s
E y s y E y s

s
θ θ

θ θ
θ φ
+ ∈ 

= =  + ∉ 
, 

where  
2

3
θφ
θ

=
−

. 

 
So  

( | , ) { ( | , , ) | , }rT s rT s sE y s y E E y s y s yθ=  

        
(2 | ), 1

( | ) ( | ), 1
E D s

E D E D s
θ

θ φ
∈ 

=  + ∉ 
 

        
ˆ2 , 1

ˆ ˆ, 1

s

s

θ

θ φ

 ∈ =  
+ ∉  

, 

where  
2ˆ ( | )

3
E D E Dθ

θφ φ
θ

 
= =  − 

 

        
1/4,3/4

2 ( | )
3

f D
θ

θ θ
θ=

 =  − 
∑ . 

 
The finite population mean is  

1 ( )
4 sT rTy y y= + ,  

and so the predictive mean of y  may be expressed as 

 1ˆ ( | , ) ( ( | , ))
4s sT rT sy E y s y y E y s y= = + . 
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Using suitable R functions, we find that φ̂  and ŷ  are as follows: 
 
 If 1 s∈  and sTy  = 0  then φ̂  = 0.2303030 and ŷ  = 0.1500000 
 If 1 s∈  and sTy  = 1  then φ̂  = 0.4242424 and ŷ  = 0.5000000 
 If 1 s∈  and sTy  = 2  then φ̂  = 0.6181818 and ŷ  = 0.8500000 
 
 If 1 s∉  and sTy  = 0   then φ̂  = 0.2222222 and ŷ  = 0.1284722 
 If 1 s∉  and sTy  = 1   then φ̂  = 0.4000000 and ŷ  = 0.4687500 
 If 1 s∉  and sTy  = 2   then φ̂  = 0.6086957 and ŷ  = 0.8247283. 
 
Note: Working through the above equation using exact fractions, it can 
be shown that  

 

3 / 20, 1 , 0
1/ 2, 1 , 1
17 / 20, 1 , 2ˆ ˆ ( , )
37/288, 1 , 0
15 / 32, 1 , 1
607 / 736, 1 , 2.

sT

sT

sT
s

sT

sT

sT

s y
s y
s y

y y s y
s y
s y
s y

∈ =
 ∈ =
 ∈ == =  ∉ =
 ∉ =


∉ =

 

 
The following are details of the working for 37/288, 15/32 and 607/736. 
 
Observe that 

  2 (5 )( | , , )
3 3rT sE y s y θ θ θθ θ

θ θ
−

= + =
− −

. 

 
Therefore    

(5 )ˆ { ( | , , ) | , } ,
3rT rT s s sy E E y s y s y E s yθ θθ

θ
− 

= =  − 
. 

  
So, if 0sTy =  then   

1 1 3 35 5
(5 ) 11 14 4 4 4ˆ 1 33 12 123 3

4 4

rTy E Dθ θ
θ

   − −   −     = = + −  − −
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1
4=

19
4

11

 
 
 

4

11
3
4

12
+

17
4

9
4

 
 
  1

12
 1 1719

48 3
 = + 
 

 

  1 57 17 74 37
48 3 48 3 72

+ = = =  × 
. 

 
Also, if 1sTy =  then  

 

1 1 3 35 5
(5 ) 11 94 4 4 4ˆ 1 33 20 203 3

4 4

rTy E Dθ θ
θ

   − −   −     = = + −  − −
 

  

1
4=

19
4

11

 
 
 

4

11
3
4

20
+

17
4

9
4

 
 
  9

20
 { }1 19 51

80
= +

7
8

= . 

 
And if 2sTy =  then   

 

1 1 3 35 5
(5 ) 11 814 4 4 4ˆ 1 33 92 923 3

4 4

rTy E Dθ θ
θ

   − −   −     = = + −  − −
 

  

1
4=

19
4

11

 
 
 

4

11
3
4

92
+

17
4

9
4

 
 
  81

92
  

{ }1 19 27 17
368

= + ×
478 239
368 184

= = . 

 
Thus (for 1 s∉ ) we have that     

37 / 72, 0
ˆ 7 / 8, 1

239 /184, 2.

sT

rT sT

sT

y
y y

y

=
= =
 =
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Hence 
0 37/72 37/72, 0

ˆ ˆ ˆ 1 7 / 8 15 / 8, 1
2 239 /184 607 /184, 2.

sT

T sT rT rT sT

sT

y
y y y y y

y

+ = =
= + = = + = =
 + = =

     

 
Thus, finally (for 1 s∉ ), we obtain    

37 / 288, 0
ˆˆ 15 / 32, 1
4

607 / 736, 2.

sT
T

sT

sT

y
yy y

y

=
= = =
 =

 

 
A similar logic can be used to obtain the fractions 3/20, 1/2 and 17/20. 

 
 (g)(i) Suppose that θ  = 1/4 and (1,3)s = . Then 1 s∈  and so  
 1 4( ,..., | , ) ~ ( )iy y s Bernoulliθ π⊥ , 
where: 

1

14
4 44

13 133
4

θπ
θ

 
 
 = = =

+  +  
 

  

1 , 1
4i iπ θ= = > . 

 
In this case,  

1 3sTy y y= + ,  
and so:  

9 3 27( 0 | , )
13 4 52sTP y sθ= = × =      

 4 1 4( 2 | , )
13 4 52sTP y sθ= = × =  

 27 4 21( 1 | , ) 1
52 52 52sTP y sθ= = − − = . 
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So the model mean of ŷ  is      
 ˆ ˆ( | , ) { ( | , , ) | , }sTE y s E E y s y sθ θ θ=  
       ˆ{ ( , ) | , }sTE y s y sθ=  

     
2

0

ˆ ( , ) ( | , )
sT

sT sT
y

y s y f y sθ
=

= ∑  

        =  0.15(27/52) + 0.5(21/52) +  0.85(4/52)  
      =  0.3451923. 

 
Also, the model mean of y  is 

 1 4
1 1 4 1 1 1( | , ) ( ... )
4 4 13 4 4 4

E y sθ π π  = + + = + + + 
 

  

         = 55/208 = 0.2644231. 
 
So the model bias of ŷ  is    

ˆ( | , )E y y sθ−  = 0.3451923 − 0.2644231 = 0.08077. 
 
(g)(ii) Suppose that θ  = 1/4 and (2,3)s = . Then 1 s∉  and so  
 1 4( ,..., | , ) ~ ( )iy y s Bernoulliθ π⊥ , 
where: 

 1

12
2 24

13 113
4

θπ
θ

 
 
 = = =

−  −  
 

  

1 , 1
4i iπ θ= = > . 

 
In this case,  

2 3sTy y y= + ,  
and so:  

3 3 9( 0 | , )
4 4 16sTP y sθ= = × =  

 1 1 1( 2 | , )
4 4 16sTP y sθ= = × =  

 9 1 6( 1| , ) 1
16 16 16sTP y sθ= = − − = . 
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So (using results in (g)(i)) the model mean of ŷ  is      
   0.1284722(9/16) + 0.46875(6/16) + 0.8247283(1/16) = 0.2995924. 
 
Also, the model mean of y  is 

 1 4
1 1 2 1 1 1( | , ) ( ... )
4 4 11 4 4 4

E y sθ π π  = + + = + + + 
 

  

         = 41/176 = 0.2329545. 
 
So the model bias of ŷ  is     

ˆ( | , )E y y sθ−  = 0.2995924 - 0.2329545 = 0.06664. 
  
(h)(i) Suppose that θ  = 1/4 and (0,0,1,1)y = . Then 1y  = 0 and so the 
sampling mechansim is definitely SRSWOR and ignorable.  
 
Explicitly, we have that 
 ( | , ) ( ) 1 / 6f s y f sθ = = . 
 
So the design mean of ŷ  is 
 ˆ ˆ( | , ) { ( | , , ) | , }E y y E E y y s yθ θ θ=  

 1ˆ ˆ( , ) ( | , ) ( , )
6s s

s s
y s y f s y y s yθ= =∑ ∑  

  
{

}

1 ˆ ˆ ˆ((1,2),(0,0)) ((1,3),(0,1)) ((1,4),(0,1))
6

ˆ ˆ ˆ((2,3),(0,1)) ((2,4),(0,1)) ((3,4),(1,1))

y y y

y y y

= + +

+ + +
 

  = (1/6)(0.15 + 0.5 + 0.5 + 0.46875+ 0.46875 + 0.8247283)  
  = 0.4853714. 
 
Also, the design mean of y  is  

( | , )E y yθ  = (0 + 0 + 1 + 1)/4 = 0.5. 
 

So the design bias of ŷ  is  
ˆ( | , )E y y yθ−  = 0.4853714 − 0.5 = −0.01463. 

 
Note: The derivation of this result did not involve θ . So for the case  
θ  = 3/4 and (0,0,1,1)y = , the design bias of ŷ  is also −0.01463. 
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(h)(ii) Suppose that θ  = 1/4 and (1,0,1,1)y = . Then  1y  = 1 and  so the 
sampling mechansim is possibly nonignorable, with 

 

1

1

3 3 1 2 , (1,2),(1,3),(1,4)
18 18 9( | , )

3 3 1 1 , (2,3),(2,4),(3,4)
18 18 9

y s
f s y

y s
θ

+ + = = =  =  − − = = =
  

. 

 
So the design mean of ŷ  is 

 ˆ ˆ ˆ( | , ) { ( | , , ) | , } ( , ) ( | , )s
s

E y y E E y y s y y s y f s yθ θ θ θ= = ∑  

 

2 2 2ˆ ˆ ˆ((1,2),(1,0)) ((1,3),(1,1)) ((1,4),(1,1))
9 9 9

1 1 1ˆ ˆ ˆ((2,3),(0,1)) ((2,4),(0,1)) ((3,4),(1,1))
9 9 9

y y y

y y y

= + +

+ + +
 

 = (2/9)(0.5 + 0.85 + 0.85) + (1/9)(0.46875+ 0.46875 + 0.8247283)  
 = 0.684692. 
 
Also, the design mean of y  is ( | , )E y yθ  = (1 + 0 + 1 + 1)/4 = 0.75. 
 
So the design bias of ŷ  is ˆ( | , )E y y yθ−  = 0.684692 − 0.75 = −0.06531. 
 
Note: The derivation of this result did not involve θ . So for the case  
θ  = 3/4 and (1,0,1,1)y = , the design bias of ŷ  is also −0.06531. 

  
(i) A suitable Gibbs sampler is based on the joint density 

     
4

1 1 1

1 1

1( , , ) ( ) ( | ) ( | , ) 1 (1 )
6 3

i iy y

i

I yf s y f f y f s y
y

θ θ θ θ θ θ −

=

+
= ∝ × − ×

+∏ . 

 
We can identify three conditional distributions here. First observe that 

 
4

1 1

1

( | , ) (1 ) (1 ) , 1 / 4,3 / 4i i T Ty y y y

i
f s yθ θ θ θ θ θ− −

=

∝ − = − =∏    

   
1

1

(3 / 4) (1 1/ 4) , 1/ 4
(1/ 4) (1 3 / 4) , 3 / 4.

T T

T T

y y

y y

θ
θ

−

−

 − =
= 

− =
           (A.1) 

 
Next, recall from (d)(ii) that  

( | , ) ~ ( )i iy s Bernoulliθ π⊥ , 1,2,3,4i = ,   
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where: 2 3 4π π π θ= = =     

1 1 1
1

3 1 2(1 )
3 3

θπ θ θ
θ θ

−−
= − =

− −
. 

 
Now, the second component of 1 2( , )r r r=  must be 2, 3 or 4. 
 
Therefore  

2 1
( | , , , ) ~ ( )r s ry s y y Bernoulliθ θ .             (A.2) 

 
However, there are two possibilities for 

1r
y . If the data is such that 1 1s =  

then  
 

1 2
( | , , , ) ~ ( )r s ry s y y Bernoulliθ θ .             (A.3) 

 
On the other hand, if the data is such that 1 1s >  then 1 1r = , and this 
implies that 

 
1 2

2( | , , , ) ~
3r s ry s y y Bernoulli θθ

θ
 
 − 

 .             (A.4) 

 
Equations (A.1), (A.2), (A.3) and (A.4) imply three conditional 
distributions which define a suitable Gibbs sampler (for θ , 

1r
y  and 

2r
y ).  

 
Note: At (15.4), the ratio of probabilities of 

1r
y = 0  to 

1r
y = 1 is 

 

21
3(1 ) 3 13

2 2 2
3

θ
θ θθ

θ θ θ
θ

 −  − −−    = = ×    
 − 

, 

which is exactly 3/2 times the ratio of the probabilities of 
1r

y  = 0 to  

1r
y  = 1 at (A.3). (This observation provided some assistance when 

formulating the required R code, as detailed below.) 

 
Implementing the above Gibbs sampler, we obtained a random sample  
 (1) (10000)

1 10000( , ),..., ( , ) ~ ( , | )y y iid f y Dθ θ θ      
for each of the six possible data configurations in (c) and (f).  
 
The respective sample means for θ were: 
   0.3007,   0.4924,   0.6997,   0.2952,   0.4764,   0.6925.   
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It will be observed that these numbers are very close to the corresponding 
values obtained in (c), namely  

 

if 1  and 03 /10 0.3000
if 1  and 11/ 2 0.5000
if 1  and 27 /10 0.7000ˆ
if 1  and 07 / 24 0.2917
if 1  and 119 / 40 0.4750
if 1  and 2.127 /184 0.6902

sT

sT

sT

sT

sT

sT

s y
s y
s y
s y
s y
s y

θ

∈ ==
 ∈ ==
 ∈ ==

= 
∉ ==

 ∉ ==
 ∉ ==

 

 
The respective sample means for y  were: 
           0.1518,  0.4929,   0.8485,  0.1308,  0.4719,  0.8269.   
 
It will be noted that these are very close to the corresponding values 
obtained in (f), namely:  
           0.15,   0.5,  0.85,  0.1284722,  0.4687500,  0.8247283. 
 
(j) To check the design bias in (h)(i) we note that for y = (0,0,1,1) the 
sampling mechanism is ignorable.  
 
So proceed as follows. Simply select one of the 6 possible samples 
randomly. Then calculate the corresponding value of ŷ . Repeat another 

1J −  times, independently. Then take the mean of the simulated ŷ  
values and subtract y  = 2/4. 
 
Implementing this procedure with J = 10,000 yielded a point estimate of 
−0.01562 with  95% CI (−0.01945, −0.01179). This is consistent with the 
result −0.01463 in (h)(i). 
 
To check the design bias in (h)(ii) we note that for y = (1,0,1,1) the 
sampling mechanism is nonignorable with each sample containing unit 1 
twice as likely as each unit not containing unit 1.  
 
So, select a sample s  from (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), in such a 
way that each of the first three of these has probability 2/9 and each of the 
last three has probability 1/9. Then calculate the corresponding value of 
ŷ . Repeat another 1J −  times, independently. Then take the mean of the 

simulated ŷ  values and subtract y  = 3/4. 
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Implementing this procedure with J = 10,000 yielded a point estimate of 
−0.06592 with  95% CI (−0.06944, −0.06239). This is consistent with the 
result −0.06531 in (h)(ii). 
 
(k) The mean of the predictive mean of the finite population mean is the 
same as the unconditional mean of the finite population mean, which is 
the same as the prior mean of the superpopulation mean, which in our case 
equals 1/2. Mathematically, 

ˆ ( | , )sEy EE y s y=     by the definition of ŷ  
      Ey=            by the law of conditional expectation 
      ( | )EE y θ=           by the law of conditional expectation 

      Eθ=            since 
4 4

1 1

1 1( | ) ( | )
4 4i

i i
E y E yθ θ θ θ

= =

= = =∑ ∑  

      ( )f
θ

θ θ= ∑ 1 1 3 1
4 2 4 2

= × + ×  1
2

= . 

 
To verify this obvious result via Monte Carlo is a good final check on 
previous calculations.  
 
To this end, simulate θ , then simulate y, then simulate s, hence obtain the 
data ( , )ss y ,  then calculate the associated ŷ  . Then repeat all of the above 
independently another 1J −  times. 
 
Implementing this procedure with J = 10,000 yielded a point estimate of 
0.4992 with  95% CI (0.4938, 0.5047). This is consistent with the answer 
of 1/2 above. 
 
 
R Code for Exercise A.4 
 
# (g) 
postfun = function(s=c(1,2), ys=c(0,1)){    ysT=sum(ys) 
 if(any(s==1)==T){  if(ysT==0) probs=c(0.9,0.1) 
    if(ysT==1) probs=c(0.5,0.5) 
    if(ysT==2) probs=c(0.1,0.9)   } 
 if(any(s==1)==F){  if(ysT==0) probs=c(11/12,1/12) 
    if(ysT==1) probs=c(11/20,9/20) 
    if(ysT==2) probs=c(11/92,81/92)   } 
 probs    } 
 
postfun() # 0.5 0.5    Just testing 
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postfun(s=c(2,4),ys=c(1,1)) # 0.1195652 0.8804348 
 
thetahatfun=function(s=c(1,2), ys=c(0,1)){   probs=  postfun(s=s,ys=ys);    
 thetavals=c(1,3)/4;    sum( thetavals * probs )  }    
thetahatfun() # 0.5     Just testing 
thetahatfun(s=c(2,4),ys=c(1,1)) # 0.6902174 
phihatfun=function(s=c(1,2), ys=c(0,1)){ probs=postfun(s=s,ys=ys);   
 thetavals=c(1,3)/4; phivals=2*thetavals/(3-thetavals) 
 sum( phivals * probs )    }    
 
phihatfun() # 0.4242424    Just testing  
phihatfun(s=c(2,4),ys=c(1,1)) # 0.6086957 
 
yrThatfun=function(s=c(1,2), ys=c(0,1)){   thetahat=thetahatfun(s=s,ys=ys) 
 if(any(s==1)==T){  res=2*thetahat } 
 if(any(s==1)==F){   

phihat=phihatfun(s=s,ys=ys); res = thetahat + phihat  } 
 res    } 
 
yrThatfun() # 1    Just testing 
yrThatfun (s=c(2,4),ys=c(1,1))  # 1.298913 
 
ybarhatfun=function(s=c(1,2), ys=c(0,1)){   EyrT= yrThatfun (s=s,ys=ys) 
   (sum(ys)+EyrT)/4   } 
 
ybarhatfun() # 0.5     Just testing 
ybarhatfun(s=c(2,4),ys=c(1,1))  # 0.8247283 
 
smat=matrix(c(1,2, 1,2,  1,2,  1,2,  2,3,  2,3,  2,3,  2,3), byrow=T,nrow=8, ncol=2) 
ysmat= matrix(c(0,0, 0,1, 1,0, 1,1,    0,0,   0,1,  1,0,  1,1),  

byrow=T,nrow=8, ncol=2) 
thetahatvec=rep(NA,8); phihatvec=rep(NA,8); ybarhatvec=rep(NA,8);  
 
for(k in 1:8){   thetahatvec[k]= thetahatfun(s=smat[k,],ys=ysmat[k,]) 
  phihatvec[k]= phihatfun(s=smat[k,],ys=ysmat[k,]) 
  ybarhatvec[k]= ybarhatfun(s=smat[k,],ys=ysmat[k,])   } 
 
cbind(smat,NA,ysmat,NA,thetahatvec, NA, phihatvec, NA, ybarhatvec) 
#                    thetahatvec    phihatvec     ybarhatvec 
# [1,] 1 2 NA 0 0 NA   0.3000000 NA 0.2303030 NA 0.1500000 
# [2,] 1 2 NA 0 1 NA   0.5000000 NA 0.4242424 NA 0.5000000 
# [3,] 1 2 NA 1 0 NA   0.5000000 NA 0.4242424 NA 0.5000000  repeat OK 
# [4,] 1 2 NA 1 1 NA   0.7000000 NA 0.6181818 NA 0.8500000 
# [5,] 2 3 NA 0 0 NA   0.2916667 NA 0.2222222 NA 0.1284722 
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# [6,] 2 3 NA 0 1 NA   0.4750000 NA 0.4000000 NA 0.4687500 
# [7,] 2 3 NA 1 0 NA   0.4750000 NA 0.4000000 NA 0.4687500  repeat OK 
# [8,] 2 3 NA 1 1 NA   0.6902174 NA 0.6086957 NA 0.8247283 
 
0.15*(27/52) + 0.5*(21/52) +  0.85*(4/52) #  0.3451923 
0.1284722*(9/16) +  0.46875*(6/16) + 0.8247283*(1/16)  # 0.2995924 
 
# (h) 
(1/6)*(0.15 + 0.5 + 0.5 + 0.46875+ 0.46875 + 0.8247283)  # 0.4853714 
(2/9)*(0.5 + 0.85 + 0.85) + (1/9)*(0.46875+ 0.46875 + 0.8247283) # 0.684692 
 
# (i) Check posterior means and predcitive means via Gibbs sampler 
options(digits=4) 
GS=function(J=1000,   s=c(1,2),ys=c(1,0),    theta=1/4 ){ 
thetav=rep(NA,J); yrTv=rep(NA,J); yTv=rep(NA,J) 
yrmat=matrix(NA,nrow=J,ncol=2); ysT=sum(ys) 
 
for(j in 1:J){      
      probsyi = c(1-theta, theta) 
     yr2=sample(x=c(0,1),size=1,prob=probsyi)    
     if(s[1]==1) yr1=sample(x=c(0,1),size=1,prob=probsyi)   else 
                       yr1=sample(x=c(0,1),size=1,prob=c(3,2)*probsyi)    
     yr=c(yr1,yr2); yrT=sum(yr); yT=ysT+yrT 
     probstheta=c(  (1/4)^yT *(3/4)^(4-yT),  (3/4)^yT *(1/4)^(4-yT) ) 
     theta = sample(   x=c(1/4,3/4),   size=1, prob= probstheta)  
     thetav[j]=theta;  yrTv[j]=yrT;   yTv[j]=yT;  yrmat[j,]=yr       
    } 
list(thetav=thetav, yrTv=yrTv, yTv=yTv, ybarv=yTv/4, yrmat=yrmat)    } 
 
set.seed(111); J = 10000;  thetahatvec=rep(NA,6); ybarhatvec=rep(NA,6) 
res=GS(J=J,s=c(1,2),ys=c(0,0)) 
     thetahatvec[1] = mean(res$thetav); ybarhatvec[1] = mean(res$ybarv);  
res= GS(J=J,s=c(1,2),ys=c(0,1))   
     thetahatvec[2] = mean(res$thetav); ybarhatvec[2] = mean(res$ybarv);  
res= GS(J=J,s=c(1,2),ys=c(1,1))   
     thetahatvec[3] = mean(res$thetav); ybarhatvec[3] = mean(res$ybarv);  
res=GS(J=J,s=c(2,3),ys=c(0,0))   
     thetahatvec[4] = mean(res$thetav); ybarhatvec[4] = mean(res$ybarv);  
res= GS(J=J,s=c(2,3),ys=c(0,1))   
     thetahatvec[5] = mean(res$thetav); ybarhatvec[5] = mean(res$ybarv);  
res= GS(J=J,s=c(2,3),ys=c(1,1))   
     thetahatvec[6] = mean(res$thetav); ybarhatvec[6] = mean(res$ybarv);  
thetahatvec # 0.3007 0.4924 0.6997 0.2952 0.4764 0.6925   
                      # All very close to results in (c) 
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ybarhatvec  # 0.1518 0.4929 0.8485 0.1308 0.4719 0.8269    
                      # All very close to results in (f) 
   
# (j) Check design bias of predictive mean of ybar if theta=1/4 and y=(0,0,1,1) 
smatrix=matrix(c(1,2, 1,3,  1,4,  2,3,  2,4,  3,4), byrow=T,nrow=6, ncol=2) 
y=c(0,0,1,1); J = 10000; ybarhatsimv=rep(NA,J); set.seed(413) 
 
for(j in 1:J){      indexsim=sample(1:6,1,prob=c(1,1,1,1,1,1)) 
                         ssim=smatrix[indexsim,];  yssim= y[ssim] 
                         ybarhatsimv[j] = ybarhatfun(s=ssim,ys=yssim)         } 
 
est=mean(ybarhatsimv)-0.5;  
ci=est+c(-1,1)*qnorm(0.975)*sd(ybarhatsimv-0.5)/sqrt(J) 
c(est,ci) # -0.01562 -0.01945 -0.01179     Consistent with -0.01463 in (h)(i) 
 
# Check design bias of predictive mean of ybar if theta=1/4 and y=(1,0,1,1) 
y=c(1,0,1,1); J = 10000; ybarhatsimv=rep(NA,J); set.seed(442) 
 
for(j in 1:J){      indexsim=sample(1:6,1,prob=c(2,2,2,1,1,1)) 
                         ssim=smatrix[indexsim,];  yssim= y[ssim] 
                         ybarhatsimv[j] = ybarhatfun(s=ssim,ys=yssim)         } 
 
est=mean(ybarhatsimv)-0.75;  
ci=est+c(-1,1)*qnorm(0.975)*sd(ybarhatsimv-0.5)/sqrt(J) 
c(est,ci) #   -0.06592 -0.06944 -0.06239  Consistent with -0.06531 in (h)(ii) 
 
# (k)  Check mean of predictive mean of finite population mean 
smatrix=matrix(c(1,2, 1,3,  1,4,  2,3,  2,4,  3,4), byrow=T,nrow=6, ncol=2) 
J = 10000; ybarhatsimv=rep(NA,J); set.seed(102);  
 
for(j in 1:J){ 
     thetasim=sample(c(1/4,3/4),1);    ysim=rbinom(4,1,thetasim) 
     if(ysim[1]==0) indexsim = sample(1:6,1,prob=c(1,1,1,1,1,1)) 
     if(ysim[1]==1) indexsim = sample(1:6,1,prob=c(2,2,2,1,1,1)) 
    ssim=smatrix[indexsim,];  yssim= ysim[ssim];     
     ybarhatsimv[j]= ybarhatfun(s=ssim,ys=yssim)   } 
 
est = mean(ybarhatsimv);  
ci = est+c(-1,1)*qnorm(0.975)*sd(ybarhatsimv)/sqrt(J)  
c(est,ci)  # 0.4992 0.4938 0.5047    Consistent with 0.5          
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APPENDIX B 
Distributions and Notation 

 
 
Below are several probability distributions which feature in this book. The 
purpose of this appendix is to provide a brief guide to the style of notation 
and terminology used throughout. It is not intended to be a comprehensive 
listing. Some of the notation introduced here is repeated in Appendix C. 
 
B.1 The normal distribution 
 
A random variable (rv) X has the normal distribution with parameters µ  
and 2σ  if its probability density function (pdf), or density, has the form  

 2
2

1 1( ) exp ( ) , .
22

f x x  
 

          
  

   
We then write 2~ ( , )X N µ σ . To be more explicit, we will sometimes 
write ( )f x  as ( )Xf x  or 2( , )

( )
N

f x
 

. To avoid subscripting notation and so 

aid legibility, 2( , )
( )

N
f x

 
 may sometimes be written as 2( , ( , ))f x N   . 

Likewise for other functions and expressions which contain subscripts. 
 
If 2~ ( , )X N µ σ  then ( ) ( )EX Mode X Median X µ= = =  and 2.VX σ=  
 
The cumulative distribution function (cdf) of X is    

      
2 2

2
( , ) ( , )

( ) ( ) ( ) ( , ( , )) ( )
x

N N
F x P X x F x F x N f t dt

   
 



      .  

 
The (lower) p-quantile of X is the value of x such that ( ) .F x p   
 
Thus the p-quantile of X is the inverse cdf of X. This may also be written  
 2

1 1 1 2
( , )

( ) ( ) ( ) ( , ( , ))X N
F p F p F p FInv p N

 
      . 

       
If Z ~ N(0,1), we say that Z has the standard normal distribution. The pdf, 
cdf, (lower) p-quantile and upper p-quantile of Z may be denoted by ( )zφ , 

( )z , 1( )p , and 1(1 )pz p  , respectively.  
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This notation means that if 2~ ( , )X N µ σ , then we may write: 

    
1( ) xf x 


 
     

,   ( ) xF x 


     
,   1

1( )X pF p z 
  . 

    
Note: We sometimes use upper and lower case letters interchangeably. 
Thus 2~ ( , )X N µ σ  may also be written 2~ ( , )x N µ σ . The pdf of a rv 
X when evaluated at c may also be denoted by ( )f x c= . 

 
B.2 The gamma distribution 
 
A random variable X has the gamma distribution with parameters a and b 
if its pdf has the form 

 
1

( )
( )

a a bx

X
b x ef x

a

 




, x > 0. 

 
We then write X ~ Gamma(a,b) or X ~ Gam(a,b) or X ~ G(a,b). We may 
also write ( )Xf x  as ( )f x  or ( , ) ( )G a bf x  or ( , ( , ))f x G a b .  
 
The cdf of X may be written ( , )( ) ( ) ( , ( , ))X G a bF x F x F x G a b  , and X’s 

p-quantile  is 1 1 1
( , )( ) ( ) ( , ( , )) ( , ( , ))X G a bF p F p F p G a b FInv p G a b     .  

 
If X ~ G(a,b) then:   
      ( ) ( 1) /Mode X a b   if a > 1 
      ( ) 0Mode X   if 1a ≤  
      /EX a b= ,   2/VX a b=      

      kEX ( )
( )k

a k
b a
 




  (the kth raw moment of X). 

 
The last result may be proved by writing 

  
1 1

0 0

( )
( ) ( ) ( )

a a bx a a k a k bx
k k

a k

b x e b a k b x eEX x dx dx
a b a a k

      



 
 

    
 

and noting that the last integral is equal to unity. 
 
The definition of the gamma distribution involves the gamma function,   

1

0

( ) k tk t e dt


    .  
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Some properties of the gamma function are as follows:  
 ( )k   as k →∞  or 0k →  
 ( ) ( 1) ( 1)k k k      for 1k >  
 ( ) ( 1)!k k    if {1,2,3,...}k∈  (with 0! 1= ) 
 (1/ 2)   .   
 
Note: There is an alternative definition of the gamma distribution, 
whereby X ~ G(a,b)  means 1 /( ) / ( )a a x bf x b x e a    , 0x > , so that 
EX ab= . This alternative definition is not used in this book. 

 
B.3 The exponential distribution   
 
If ~ (1, )X G b  then X has the exponential distribution with parameter b, 
and we write ~ ( )X Exponential b  or ~ ( )X Expo b .  
 
Note: We do not write ~ ( )X Exp b  because this could more easily be 
confused with exp( ) bX b e= =  (where exp is the exponential function). 

  
The pdf of X, namely ( ) bxf x be , 0x > , may also be written as 

( ) ( )Expo bf x  or ( , ( ))f x Expo b .  
 
If ~ (1)X Expo , we say that  X has the standard exponential distribution.  
     
B.4 The chi-squared distribution 
 
If ~ ( / 2,1/ 2)X G m  then X has the chi-squared distribution with 
parameter m (called the degrees of freedom, abbreviated dof).  
 
We then write 2~ ( )X mχ  or ~ ( )X Chisq m , and denote the pdf of X by 

2 ( )
( )

m
f x
χ

 or ( , ( ))f x Chisq m .   

 
The upper p-quantile of the 2 ( )mχ  distribution may be written  
 2

2 1
( )

( ) (1 ) (1 , ( ))p m
m F p FInv p Chisq m

χ
χ −= − = − . 
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A useful result is that if Y rX= , where ~ ( / 2, / 2)X Gamma m r , then
2~ ( / 2,1/ 2) ~ ( )Y G m mχ . This result can be proved easily using the 

transformation rule, as follows: 

 
1 12 1

2 2 21( ) ( ) .
m

r y my y y
rdx yf y f x e y e

dy r r

−
− × − − = ∝ ∝ 

 
 

 

Note: The symbol 
y
∝  here denotes ‘proportionality with respect to y’.  

The statement 
t

g h∝  means g c h= ×  , where c is a constant that does 

not depend on t. E.g. if 2 35g t r= , we may write: 2
t

g t∝ , 3
r

g r∝ , 
,

2 3
t r

g t r∝ , g ∝t , g ∝ 4
r

r , etc. By default, 5( )g t t∝  means 5( )
t

g t t∝ , 

and 5( | )g t u t∝  means 5( | )
t

g t u t∝  (not 
,

5( | )
t u

g t u t∝ ).  

  
B.5 The inverse gamma distribution 
 

If  X ~ G(a,b), then 1/Y X=  has the inverse gamma distribution with 
parameters a and b. In that case, we write Y ~ InverseGamma(a,b) or  
Y ~ IGam(a,b) or Y ~ IG(a,b).   
 
By the transformation rule, the pdf of Y is  

    
1 (1/ ) ( 1) /

2

(1/ ) 1( ) ( ) , 0
( ) ( )

a a b y a a b ydx b y e b y ef y f x y
dy a y a

    

    
 

, 

which may also be written  ( , ) ( )IG a bf y  or ( , ( , ))f y IG a b .  
 
Some other properties of Y are as follows:  
 / ( 1)EY b a   if a > 1,  EY   if 1a ≤  
  2 2/{( 1) ( 2)}VY b a a    if a > 2, ( ) / ( 1).Mode Y b a       
 
B.6 The t distribution 
 
A random variable X has the t distribution with parameter m if 

 

1 ( 1)2 2(( 1) / 2)( ) 1 , .
( / 2)

m
m xf x x

mm m

             
 

In that case, we write ~ ( )X t m  and denote the density of X by ( ) ( )t mf x  
or ( , ( ))f x t m . The cdf of X is denoted ( ) ( )t mF x  or  ( , ( ))F x t m , and the 
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upper p-quantile may be written 1
( )( ) (1 ) (1 , ( ))p t mt m F p FInv p t m−= − = − . 

We call m the degrees of freedom parameter.  
 
An equivalent definition of the t distribution is as follows. If ~ (0,1)Z N , 

2~ ( )Y mχ  and Z Y⊥ , then / / ~ ( )X Z Y m t m= . 
 
Note: The symbol ⊥  here denotes independence. Thus, the statement  
A B⊥  means that A and B are independent random variables. Likewise, 
( | )A B C⊥  means that A and B are independent conditional on C. 

 
B.7 The F distribution 
 

Suppose that 2~ ( )U aχ , 2~ ( )W bχ  and U W⊥ . Then /
/

U aX
W b

=   has 

the F distribution with parameters a and b. We then write ~ ( , )X F a b . 
The pdf and cdf of X (both omitted here) may be denoted ( , ) ( )F a bf x  and 

( , ) ( )F a bF x , respectively. We call a the numerator degrees of freedom and 
b the denominator degrees of freedom. The upper p-quantile of X may be 
denoted as ( , )pF a b  or 1

( , ) (1 )F a bF p   or (1 , ( , ))Finv p F a b . 
 
B.8 The (continuous) uniform distribution 
 
A random variable X has the (continuous) uniform distribution with 
parameters a and b if its pdf is ( ) 1/ ( ),f x b a    .a x b   
 
We then write ~ ( , )X U a b  and ( )f x  = ( , ) ( )U a bf x  = ( , ( , ))f x U a b .  
The cdf of X is ( , ) ( )U a bF x  = ( , ( , )) ( ) / ( )F x U a b x a b a   , .a x b   

The mean and variance of X are ( ) / 2a b+  and 2( ) /12b a− . 
 
B.9 The discrete uniform distribution 
 
A random variable X has the discrete uniform distribution with parameters 

1,..., Ka a  if its density is 1( ) 1/ , ,..., Kf x K x a a= = .  
 
We then write 1~ ( ,..., )KX DU a a . The density ( )f x  may also be written 
as 

1( ,..., ) ( )
KDU a af x  or 1( , ( ,..., ))Kf x DU a a .  
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Equivalently, we may describe X as having the discrete uniform 
distribution with parameter 1( ,..., )Ka a a=  (a vector). In that case, we may 
write ~ ( )X DU a  and denote ( )f x  by ( ) ( )DU af x  or ( , ( ))f x DU a . 
 
Note: Because X  here is discrete, ( )f x  may more aptly be called the 
probability mass function (pmf) of X. But for simplicity, we usually use 
the term probability density function (pdf) or density in reference to any 
type of random variable (continuous, discrete or mixed). 

 
B.10 The binomial distribution 
 
A rv X has the binomial distribution with parameters n and p if its density 
has the form  

 ( ) (1 ) , 0,1,...,x n xn
f x p p x n

x
− 

= − = 
 

.  

 
We then write ~ ( , )X Bin n p . The density ( )f x  may also be denoted by 

( , ) ( )Bin n pf x  or ( , ( , ))f x Bin n p . The mean and variance of X are np  and 
(1 )np p− . We call n the number of trials and p the probability of success 

(equivalently, the binomial parameter or the binomial proportion). 
 
B.11 The Bernoulli distribution 
 
If ~ (1, )X Bin p  then we say that X has the Benoulli distribution with 
parameter p. We then write ~ ( )X Bernoulli p  or ~ ( )X Bern p . 
 
B.12 The geometric distribution 
 
A random variable is said to have the geometric distribution with 
parameter p if its pdf has the form   
             1( ) (1 ) , 1, 2,3,...xf x p p x−= − =   
 
We then write ~ ( )X Geo p .  The pdf of X may be denoted by ( ) ( )Geo pf x  

or ( , ( ))f x Geo p . The mean and variance of X are 1/ p  and  2(1 ) /p p− . 
The cdf of X is given by 
 ( ) ( ) ( , ( )) ( ) 1 (1 ) , 1, 2,3,...x

Geo pF x F x Geo p P X x p x= = ≤ = − − =  
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APPENDIX C 
Abbreviations and Acronyms 

 
 
 
Below are some of the abbreviations and acronyms used in this book. The 
list may not be comprehensive. Some of the expressions listed have more 
than one meaning, depending on the context. 
 
 
ACF  autocorrelation function 
AELF  absolute error loss function 
AR  autoregressive (process); acceptance rate 
ARMA autoregressive moving average (process) 
 
B  beta function; bias 
Bern  Bernoulli distribution 
Beta   beta distribution 
BF  Bayes factor 
Bin, Binom binomial distribution 
BUGS  Bayesian inference Using Gibbs Sampling (software  
  environment for performing MCMC) 
  
C, Cov  covariance operator 
cdf  cumulative distribution function (same as df) 
CDR  central density region 
Chisq  chi-squared distribution (equivalent to 2χ ) 
CI  confidence interval 
CNR  conditional Newton-Raphson (algorithm) 
CPDI  central posterior (or predictive) density interval 
CPDR  central posterior (or predictive) density region 
cts  continuous 
 
D  data 
DA  data augmentation (algorithm) 
df  distribution function (same as cdf) 
dof  degrees of freedom 
dsn  distribution 
DU  discrete uniform distribution 
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E  expectation operator 
e  Euler’s number (2.71828) 
ECM  Expectation-Conditional-Maximisation (algorithm) 
ELF  error loss function 
EM  Expectation-Maximisation (algorithm) 
E-Step  Expectation Step (in EM algorithm) 
exp  exponential function (e raised to a power) 
Expo  exponential distribution 
 
F  F distribution; (cumulative) distribution function 
f  pdf or pmf (same as p); finite population correction factor 
FCP  frequentist coverage probability 
FInv  inverse distribution function (equivalent to 1F −  ) 
fpc  finite population correction (factor) 
 
G, Gam gamma distribution (not to be confused with the gamma  
 function, which is denoted by the Greek letter Γ ) 
Geo geometric distribution 
GLM generalised linear model 
GS Gibbs sampler/sampling 
 
HPDI  highest posterior (or predictive) density interval 
HPDR  highest posterior (or predictive) density region 
Hyp  hypergeometric distribution 
 
I  standard indicator function; vector of sample inclusion  
  indicators (or counters); Fisher information 
id  identically distributed (not necessarily independent) 
IELF  indicator error loss function 
IG, IGam inverse gamma distribution 
iid  independent and identically distributed (as) 
ind, indep independent (not necessarily identically distributed) 
 
J  Monte Carlo sample size 
 
L  loss function; lower bound; ordered sample (vector of the  
  labels of selected units in the order that they are sampled) 
LIC  law of iterated covariance: 
   ( , ) ( , | ) { ( | ), ( | )}C X Y EC X Y Z C E X Z E Y Z= +  
LIE  law of iterated expectation: ( | )EX EE X Z=  
LIV  law of iterated variance: ( | ) ( | )VX EV X Z VE X Z= +  
ln, log  natural logarithm (to base e) 
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m  nonsample size ( m N n= −  ) 
MA  moving average (process); Metropolis algorithm 
MAD  mean absolute deviation; finite population mean  
  absolute deviation about the superpopulation mean 
max  maximum/maximise 
MC  Monte Carlo (method); Markov chain 
MCMC Markov chain Monte Carlo (method) 
MH  Metropolis-Hastings (algorithm) 
min  minimum/minimise 
ML  maximum likelihood (method) 
MLE  maximum likelihood estimate/estimator/estimation 
MOME method of moments estimate/estimator/estimation 
M-Step Maximisation Step (in EM algorithm) 
 
N  normal (or Gaussian) distribution; finite population size 
n  sample size 
NG  normal-gamma (Bayesian model) 
NN  normal-normal (Bayesian model) 
NNG  normal-normal-gamma (Bayesian model) 
NR  Newton-Raphson (algorithm) 
 
P, Pr, Prob probability function 
p  binomial proportion; pdf or pmf (same as f) 
PACF  partial autocorrelation function 
PDF portable document format (file) 
pdf probability density function (used for all types of rvs: 

continuous, discrete and mixed); used instead of pmf  
PEL  posterior expected loss (function) 
pmf  probability mass function (rarely used; see pdf)   
Poi  Poisson distribution 
POO  posterior odds 
pop  population 
post  posterior 
ppp-value posterior predictive p-value 
pr, prob probability 
pred  predictive/prediction/predictor 
PRO  prior odds 
pt  point 
 
Q quantity of interest; quantile function; Q-function (in the 

EM algorithm) 
QELF  quadratic error loss function 
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R  R (software environment for statistical computing) 
R  relative bias; risk function (not to be confused with ℜ ,  
  which denotes the whole real line) 
r  Bayes risk; nonsample (vector of the labels of the units 
  that are not sampled) 
RB  Rao-Blackwell (estimate/estimator/estimation or method) 
rv  random variable  
 
s  sample standard deviation; sample (vector of the labels of  
  the units that are sampled) 
SD, sd  standard deviation 
SE, se  standard error (estimate of standard deviation) 
SMA  seasonal moving average (process) 
SRS  simple random sampling (with or without replacement) 
SRSWOR simple random sampling without replacement 
SRSWR simple random sampling with replacement 
st  such that 
 
T  random variable with the t distribution 
t  t distribution; upper quantile of the t distribution 
TIAP  Total International Airline Passengers (time series) 
 
U  (continuous) uniform distribution; random variable with  
  the standard uniform distribution; upper bound 
 
V, Var  variance operator 
 
WinBUGS BUGS for Microsoft Windows (see BUGS) 
wrt  with respect to  
 
X  finite population covariate vector (of N values) 
x  sample covariate vector (of n values) 
 
Y  random variable or vector of random variables;  

finite population vector (of N values) 
y  realised value of a random variable or vector of  
  random variables; sample vector (of n values);  
  sometimes used interchangeably with Y   
 
Z  standard normal random variable 
z  upper quantile of the standard normal distribution 
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