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Abstract

‘Bayesian Methods for Statistical Analysis’ is a book on statistical
methods for analysing a wide variety of data. The book consists of 12
chapters, starting with basic concepts and covering numerous topics,
including Bayesian estimation, decision theory, prediction, hypothesis
testing, hierarchical models, Markov chain Monte Carlo methods, finite
population inference, biased sampling and nonignorable nonresponse.
The book contains many exercises, all with worked solutions, including
complete computer code. It is suitable for self-study or a semester-long
course, with three hours of lectures and one tutorial per week for 13 weeks.
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Preface

‘Bayesian Methods for Statistical Analysis’ is a book which can be used
as the text for a semester-long course and is suitable for anyone who is
familiar with statistics at the level of ‘Mathematical Statistics with
Applications’ by Wackerly, Mendenhall and Scheaffer (2008). The book
does not attempt to cover all aspects of Bayesian methods but to provide
a ‘guided tour’ through the subject matter, one which naturally reflects the
author's particular interests gained over years of research and teaching.

For a more comprehensive account of Bayesian methods, the reader is
referred to the very extensive literature on this subject, including ‘Theory
of Probability’ by Jeffreys (1961), ‘Bayesian Inference in Statistical
Analysis’ by Box and Tiao (1973), ‘Markov Chain Monte Carlo in
Practice’ by Gilks et al. (1996), ‘Bayesian Statistics: An Introduction’ by
Lee (1997), ‘Bayesian Methods: An Analysis for Statisticians and
Interdisciplinary Researchers’ by Leonard and Hsu (1999), ‘Bayesian
Data Analysis’ by Gelman et al. (2004), ‘Computational Bayesian
Statistics’ by Bolstad (2009) and ‘Handbook of Markov Chain Monte
Carlo’ by Brooks et al. (2011). See also Smith and Gelfand (1992) and
O'Hagan and Forster (2004).

The software packages which feature in this book are R and WinBUGS.

R is a general software environment for statistical computing and graphics
which compiles and runs on UNIX platforms, Windows and MacOS. This
software is available for free at www.r-project.org/ Two useful guides to
R are ‘Bayesian Computation With R’ by Albert (2009) and ‘Data
Analysis and Graphics Using R: An Example-Based Approach’ by
Maindonald and Braun (2010).

BUGS stands for ‘Bayesian Inference Using Gibbs Sampling” and is a
specialised software environment for the Bayesian analysis of complex
statistical models using Markov chain Monte Carlo methods. WinBUGS,
a version of BUGS for Microsoft Windows, is available for free at
www.mrc-bsu.cam.ac.uk/software/bugs/ Two useful guides to WinBUGS
are ‘Bayesian Modeling Using WinBUGS’ by Ntzoufras (2009) and
‘Bayesian Population Analysis Using WinBUGS’ by Kéry and Schaub
(2012).

Xiii
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The present book includes a large number of exercises, interspersed
throughout and each followed by a detailed solution, including complete
computer code. A student should be able to reproduce all of the numerical
and graphical results in the book by running the provided code. Although
many of the exercises are straightforward, some are fairly involved, and a
few will be of interest only to the particularly keen or advanced student.
All of the code in this book is also available in the form of an electronic
text document which can be obtained from the same website as the book.

This book is in the form of an Adobe PDF file saved from Microsoft Word
2013 documents, with the equations as MathType 6.9 objects. The figures
in the book were created using Microsoft Paint, the Snipping Tool in
Windows, WinBUGS and R. In the few instances where color is used, this
is only for additional clarity. Thus, the book can be printed in black and
white with no loss of essential information.

The following chapter provides an overview of the book. Appendix A
contains several additional exercises with worked solutions, Appendix B
has selected distributions and notation, and Appendix C lists some
abbreviations and acronyms. Following the appendices is a bibliography
for the entire book.

The last four of the 12 chapters in this book constitute a practical
companion to ‘Monte Carlo Methods for Finite Population Inference’, a
largely theoretical manuscript written by the author (Puza, 1995) during
the last year of his employment at the Australian Bureau of Statistics in
Canberra.

Xiv



Overview

Chapter |: Bayesian Basics Part | (pages 1-60)

Introduces Bayes’ rule, Bayes factors, Bayesian models, posterior
distributions, and the proportionality formula. Also covered are the
binomial-beta model, the Jeffreys’ famous tramcar problem, the
distinction between finite population inference and superpopulation
inference, conjugacy, point and interval estimation, inference on functions
of parameters, credibility estimation, the normal-normal model, and the
normal-gamma model.

Chapter 2: Bayesian Basics Part 2 (pages 61-108)

Covers the frequentist characteristics of Bayesian estimators including
bias and coverage probabilities, mixture priors, uninformative priors
including the Jeffreys prior, and Bayesian decision theory including the
posterior expected loss and Bayes risk.

Chapter 3: Bayesian Basics Part 3 (pages 109-152)

Covers inference based on functions of the data including censoring and
rounded data, predictive inference, posterior predictive p-values,
multiple-parameter models, and the normal-normal-gamma model
including an example of Bayesian finite population inference.

Chapter 4: Computational Tools (pages 153-200)

Covers the Newton-Raphson (NR) algorithm including its multivariate
version, the expectation-maximisation (EM) algorithm, hybrid search
algorithms, integration techniques including double integration,
optimisation in R, and specification of prior distributions.

Chapter 5: Monte Carlo Basics (pages 201-262)

Covers Monte Carlo integration, importance sampling, the method of
composition, Buffon’s needle problem, testing the coverage of Monte
Carlo confidence intervals, random number generation including the
inversion technique, rejection sampling, and applications to Bayesian
inference including prediction in the normal-normal-gamma model, Rao-
Blackwell estimation, and estimation of posterior predictive p-values.

XV
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Chapter 6: MCMC Methods Part | (pages 263-320)

Covers Markov chain Monte Carlo (MCMC) methods including the
Metropolis-Hastings algorithm, the Gibbs sampler, specification of tuning
parameters, the batch means method, computational issues, and
applications to the normal-normal-gamma model.

Chapter 7: MCMC Methods Part 2 (pages 321-364)

Covers stochastic data augmentation, a comparison of classical and
Bayesian methods for linear regression and logistic regression,
respectively, and a Bayesian model for correlated Bernoulli data.

Chapter 8: MCMC Inference via WinBUGS
(pages 365-406)

Provides a detailed tutorial in the WinBUGS computer package including
running WinBUGS within R, and shows how WinBUGS can be used for
linear regression, logistic regression and ARIMA time series analysis.

Chapter 9: Bayesian Finite Population Theory
(pages 407-466)

Introduces notation and terminology for Bayesian finite population
inference in the survey sampling context, and discusses ignorable and
nonignorable sampling mechanisms. These concepts are illustrated by
way of examples and exercises, some of which involve MCMC methods.

Chapter 10: Normal Finite Population Models
(pages 467-514)

Contains a generalisation of the normal-normal-gamma model to the finite
population context with covariates. Useful vector and matrix formulae are
provided, special cases such as ratio estimation are treated in detail, and it
is shown how MCMC methods can be used for both descriptive and
analytic inferences.
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Overview

Chapter | 1: Transformations and Other Topics
(pages 515-558)

Shows how MCMC methods can be used for inference on complicated
functions of superpopulation and finite population quantities, as well for
inference based on transformed data. Frequentist characteristics of
Bayesian estimators are discussed in the finite population context, with
examples of how Monte Carlo methods can be used to estimate model
bias, design bias, model coverage and design coverage.

Chapter 12: Biased Sampling and Nonresponse
(pages 559-608)

Discusses and provides examples of ignorable and nonignorable response
mechanisms, with an exercise involving follow-up data. The topic of self-
selection bias in volunteer surveys is studied from a frequentist
perspective, then treated using Bayesian methods, and finally extended to
the finite population context.

Appendix A: Additional Exercises (pages 609-666)

Provides practice at applying concepts in the last four chapters.

Appendix B: Distributions and Notation
(pages 667-672)

Provides details of some distributions which feature in the book.

Appendix C: Abbreviations and Acronyms
(pages 673-676)

Catalogues many of the simplified expressions used throughout.

Computer Code in Bayesian Methods for Statistical
Analysis

Combines all of the R and WinBUGS code interspersed throughout the
679-page book. This separate 126-page PDF file is available online at:
http://eview.anu.edu.au/bayesian_methods/pdf/computer_code.pdf.

xvii






Bayesian Basics Part |

.1 Introduction

Bayesian methods is a term which may be used to refer to any
mathematical tools that are useful and relevant in some way to Bayesian
inference, an approach to statistics based on the work of Thomas Bayes
(1701-1761). Bayes was an English mathematician and Presbyterian
minister who is best known for having formulated a basic version of the
well-known Bayes’ Theorem.

Figure 1.1 (page 3) shows part of the Wikipedia article for Thomas
Bayes. Bayes’ ideas were later developed and generalised by many
others, most notably the French mathematician Pierre-Simon Laplace
(1749-1827) and the British astronomer Harold Jeffreys (1891-1989).

Bayesian inference is different to classical inference (or frequentist
inference) mainly in that it treats model parameters as random variables
rather than as constants. The Bayesian framework (or paradigm) allows
for prior information to be formally taken into account. It can also be
useful for formulating a complicated statistical model that presents a
challenge to classical methods.

One drawback of Bayesian inference is that it invariably requires a prior
distribution to be specified, even in the absence of any prior information.
However, suitable uninformative prior distributions (also known as
noninformative, objective or reference priors) have been developed
which address this issue, and in many cases a nice feature of Bayesian
inference is that these priors lead to exactly the same point and interval
estimates as does classical inference. The issue becomes even less
important when there is at least a moderate amount of data available. As
sample size increases, the Bayesian approach typically converges to the
same inferential results, irrespective of the specified prior distribution.

Another issue with Bayesian inference is that, although it may easily
lead to suitable formulations of a challenging statistical problem, the
types of calculation needed for inference can themselves be very
complicated. Often, these calculations take on the form of multiple
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integrals (or summations) which are intractable and difficult (or
impossible) to solve, even with the aid of advanced numerical
techniques.

In such situations, the desired solutions can typically be approximated to
any degree of precision using Monte Carlo (MC) methods. The idea is to
make clever use of a large sample of values generated from a suitable
probability distribution.

How to generate this sample presents another problem, but one which
can typically be solved easily via Markov chain Monte Carlo (MCMC)
methods. Both MC and MCMC methods will feature in later chapters of
the course.

1.2 Bayes’ rule

The starting point for Bayesian inference is Bayes’ rule. The simplest

form of this is

P(A|B) = P(A)P(B]A) _
P(A)P(B|A)+P(A)P(B|A)

where A and B are events such that P(B) >0. This is easily proven by

considering that:

P(A|B) = P(AB) by the definition of conditional probability
P(B)

P(AB)=P(A)P(B|A) by the multiplicative law of probability
P(B) = P(AB)+ P(AB) = P(A)P(B| A) +P(A)P(B| A)
by the law of total probability.

We see that the posterior probability P(A|B) is equal to the prior
probability P(A) multiplied by a factor, where this factor is given by
P(B|A)/P(B).

As regards terminology, we call P(A) the prior probability of A

(meaning the probability of A before B is known to have occurred), and
we call P(A|B) the posterior probability of A given B (meaning the

probability of A after B is known to have occurred). We may also say
that P(A) represents our a priori beliefs regarding A, and P(A|B)

represents our a posteriori beliefs regarding A.
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Figure 1.1 Beginning of the Wikipedia article on Thomas
Bayes
Source: en.wikipedia.org/wiki/Thomas_Bayes, 29/10/2014
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More generally, we may consider any event B such that P(B) >0 and
k>1events A,..., A which form a partition of any superset of B (such
as the entire sample space S). Then, forany i = 1,...,k, it is true that

P(A|B) = PFE?BE)‘),

where P(B):Zn:P(AjB) and P(A,B)=P(A)P(B|A)).

=L
Exercise |.l1 Medical testing

The incidence of a disease in the population is 1%. A medical test for the
disease is 90% accurate in the sense that it produces a false reading 10%
of the time, both: (a) when the test is applied to a person with the
disease; and (b) when the test is applied to a person without the disease.

A person is randomly selected from population and given the test. The
test result is positive (i.e. it indicates that the person has the disease).

What is the probability that the person actually has the disease?

Solution to Exercise 1.1

Let A be the event that the person has the disease, and let B be the event
that they test positive for the disease. Then:
P(A)=0.01 (the prior probability of the person having the disease)

P(B|A)=0.9 (the true positive rate, also called
the sensitivity of the test)

P(B|A)=0.9 (the true negative rate, also called
the specificity of the test).

So:  P(AB)=P(A)P(B|A)=0.01x0.9 =0.009
P(AB)=P(A)P(B|A)=0.99x0.1=0.099.

So the unconditional (or prior) probability of the person testing positive
is P(B) = P(AB) + P(AB) =0.009 +0.099 = 0.108..

So the required posterior probability of the person having the disease is

P(A|B) = P(AB) 0009 _ 1 _ 1g333
- P(B) 0108 12 '
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Figure 1.2 is a Venn diagram which illustrates how B may be considered

as the union of AB and AB . The required posterior probability of A
given B is simply the probability of AB divided by the probability of B.

Figure 1.2 Venn diagram for Exercise |.I

A A

I

AB AB

Discussion

It may seem the posterior probability that the person has the disease
(1/12) is rather low, considering the high accuracy of the test (namely

P(B|A) =P(B|A) =0.9).

This may be explained by considering 1,000 random persons in the
population and applying the test to each one. About 10 persons will have
the disease, and of these, 9 will test positive. Of the 990 who do not have
the disease, 99 will test positive. So the total number of persons testing
positive will be 9 + 99 = 108, and the proportion of these 108 who
actually have the disease will be 9/108 = 1/12. This heuristic derivation
of the answer shows it to be small on account of the large number of
false positives (99) amongst the overall number of positives (108).

On the other hand, it may be noted that the posterior probability of the
person having the disease is actually very high relative to the prior
probability of them having the disease (P(A)=0.01). The positive test
result has greatly increased the person’s chance of having the disease
(increased it by more than 700%, since 0.01 + 7.333 x 0.01 = 0.08333).



Bayesian Methods for Statistical Analysis

It is instructive to generalise the answer (1/12) as a function of the
prevalence (i.e. proportion) of the disease in the population, p=P(A),

and the common accuracy rate of the test, = P(B|A)=P(B| A).

We find that

P(Al B) P(A)P(BlA) pPg

“ P(AP(B|A) +P(AP(BIA)  pq+(@-p)i—q)

Figure 1.3 shows the posterior probability of the person having the
disease (P(A|B)) as a function of p with g fixed at 0.9 and 0.95,
respectively (subplot (a)), and as a function of g with p fixed at 0.01 and
0.05, respectively (subplot (b)). In each case, the answer (1/12) is
represented as a dot corresponding to p = 0.01 and q = 0.9.

Figure 1.3 Posterior probability of disease as functions of p
and q

o | . e--=m—zz==s
(=]
@ -
L < |
o [=] — q =09
N -- =095
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< T T T T T T
00 0.2 04 06 08 1.0
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5 - o hiow
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00 02 04 06 08 1.0
g=P(BIA)=P(B'A")
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R Code for Exercise 1.1

PAgBfun=function(p=0.01,0=0.9){ p*q / (p*q+(1-p)*(1-q)) }
PAgBfun() # 0.08333333

pvec=seq(0,1,0.01); Pveca=PAgBfun(p=pvec,q=0.9)
Pveca2=PAgBfun(p=pvec,q=0.95)

gvec=seq(0,1,0.01); Pvecb=PAgBfun(p=0.01,q=qvec)
Pvecb2=PAgBfun(p=0.05,q=qvec)

X11(w=8,h=7); par(mfrow=c(2,1));

plot(pvec,Pveca,type="I",xlab="p=P(A)",ylab="P(A|B)",lwd=2)
points(0.01,1/12,pch=16,cex=1.5); text(0.05,0.8,"(a)",cex=1.5)
lines(pvec,Pveca2,lty=2,lwd=2)

legend(0.7,0.5,c("q =0.9","q =0.95"),Ilty=c(1,2),lwd=c(2,2))

plot(gvec,Pvecb,type="1",xlab="q=P(B|A)=P(B'| A')",ylab="P(A|B)",Iwd=2)
points(0.9,1/12,pch=16,cex=1.5); text(0.05,0.8,"(b)",cex=1.5)
lines(gqvec,Pvecb2,Ity=2,lwd=2)

legend(0.2,0.8,c("p =0.01","p =0.05"),Ity=c(1,2),lwd=c(2,2))

# Technical note: The graph here was copied from R as ‘bitmap’ and then

# pasted into a Word document, which was then saved as a PDF. If the graph
#is copied from R as ‘metafile’, it appears correct in the Word document,

# but becomes corrupted in the PDF, with axis legends slightly off-centre.

# So, all graphs in this book created in R were copied into Word as ‘bitmap’.

Exercise 1.2 Blood types

In a particular population:
10% of persons have Type 1 blood,
and of these, 2% have a particular disease;
30% of persons have Type 2 blood,
and of these, 4% have the disease;
60% of persons have Type 3 blood,
and of these, 3% have the disease.

A person is randomly selected from the population and found to have the
disease.

What is the probability that this person has Type 3 blood?
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Solution to Exercise 1.2

Let: A ="“The person has Type 1 blood’
B = “The person has Type 2 blood’
C = “The person has Type 3 blood’
D = “The person has the disease’.

Then: P(A)=0.1, P(D|A)=0.02
P(B)=0.3, P(D|B)=0.04
P(C)=0.6, P(D|C)=0.03.

So: P(D)=P(AD)+ P(BD)+P(CD)
=P(A)P(D|A)+P(B)P(D|B)+P(C)P(D|C)
=0.1x0.02+0.3x0.04+0.6x0.03
=0.002+0.012+0.018 =0.032.

P(CD) _0.018 _ 9 _ ooy
P(D) 0.032 16

Hence: P(C|D)=

Figure 1.4 is a Venn diagram showing how D may be considered as the
union of AD, BD and CD. The required posterior probability of C given
D is simply the probability of CD divided by the probability of D.

Figure 1.4 Venn diagram for Exercise 1.2

A B|S

AD BD CD
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1.3 Bayes factors

One way to perform hypothesis testing in the Bayesian framework is via
the theory of Bayes factors. Suppose that on the basis of an observed
event D (standing for data) we wish to test a null hypothesis

H,: E,
versus an alternative hypothesis

H :E,
where E; and E, are two events (which are not necessarily mutually
exclusive or even exhaustive of the event space).

Then we calculate:
7, = P(E,) =the prior probability of the null hypothesis
7, = P(E,;) = the prior probability of the alternative hypothesis
PRO = 7,/ z, = the prior odds in favour of the null hypothesis
P, = P(E, | D) =the posterior probability of the null hypothesis
p, = P(E, | D) = the posterior probability of the alternative hypothesis
POO = p, / p, = the posterior odds in favour of the null hypothesis.

The Bayes factor is then defined as BF = POO/PRO. This may be
interpreted as the factor by which the data have multiplied the odds in
favour of the null hypothesis relative to the alternative hypothesis. If
BF > 1 then the data has increased the relative likelihood of the null, and
if BF < 1 then the data has decreased that relative likelihood. The
magnitude of BF tells us how much effect the data has had on the
relative likelihood.

Note 1: Another way to express the Bayes factor is as
ap _ Po/ P _ P(E,|D)/P(E |D) _ P(D)P(E, |D)/P(E,)
7o | 7, P(E,)/P(E) P(D)P(E,|D)/P(E)
_P(DJE,)
P(DIE)

Thus, the Bayes factor may also be interpreted as the ratio of the
likelihood of the data given the null hypothesis to the likelihood of the
data given the alternative hypothesis.
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Note 2: The idea of a Bayes factor extends to situations where the null
and alternative hypotheses are statistical models rather than events. This
idea may be taken up later.

Exercise 1.3 Bayes factor in disease testing

The incidence of a disease in the population is 1%. A medical test for the
disease is 90% accurate in the sense that it produces a false reading 10%
of the time, both: (a) when the test is applied to a person with the
disease; and (b) when the test is applied to a person without the disease.

A person is randomly selected from population and given the test. The
test result is positive (i.e. it indicates that the person has the disease).

Calculate the Bayes factor for testing that the person has the disease
versus that they do not have the disease.

Solution to Exercise 1.3

Recall in Exercise 1.1, where A = “‘Person has disease’ and B = “Person
tests positive’, the relevant probabilities are P(A) =0.01, P(B|A)=0.9

and P(B|A)=0.9, from which can be deduced that P(A|B)=1/12.

We now wish to test H,: A vs H, : A. So we calculate:
7, =P(A) =0.01, 7, =P(A) =0.99, PRO = 7,/ x, = 1/99,
p, = P(A|B)=1/12, p, = P(A|B)=11/12, POO = p,/ p,= 1/11.

Hence the required Bayes factor is BF = POO/PRO = (1/11)/(1/99) = 9.

This means the positive test result has multiplied the odds of the person
having the disease relative to not having it by a factor of 9 or 900%.
Another way to say this is that those odds have increased by 800%.

Note: We could also work out the Bayes factor here as
F_PEIAY 00
P(B|A) 0.1
namely as the ratio of the probability that the person tests positive given
they have the disease to the probability that they test positive given they
do not have the disease.

)
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1.4 Bayesian models

Bayes’ formula extends naturally to statistical models. A Bayesian
model is a parametric model in the classical (or frequentist) sense, but
with the addition of a prior probability distribution for the model
parameter, which is treated as a random variable rather than an unknown
constant. The basic components of a Bayesian model may be listed as:
* the data, denoted by y
* the parameter, denoted by 6
» the model distribution, given by a specification of
f(y|0) or F(y|0) orthe distribution of (y|&)
« the prior distribution, given by a specification of
f(9) or F(#) or the distribution of 6.

Here, F is a generic symbol which denotes cumulative distribution
function (cdf), and f is a generic symbol which denotes probability
density function (pdf) (when applied to a continuous random variable) or
probability mass function (pmf) (when applied to a discrete random
variable). For simplicity, we will avoid the term pmf and use the term
pdf or density for all types of random variable, including the mixed type.

Note 1: A mixed distribution is defined by a cdf which exhibits at least
one discontinuity (or jump) and is strictly increasing over at least one
interval of values.

Note 2: The prior may be specified by writing a statement of the form
‘0 ~...”, where the symbol ‘~’ means ‘is distributed as’, and where
‘...”denotes the relevant distribution. Likewise, the model for the data
may be specified by writing a statement of the form “(y|8) ~...".

Note 3: At this stage we will not usually distinguish between y as a
random variable and y as a value of that random variable; but sometimes
we may use Y for the former. Each of y and & may be a scalar, vector,
matrix or array. Also, each component of y and # may have a discrete
distribution, a continuous distribution, or a mixed distribution.

In the first few examples below, we will focus on the simplest case
where both y and ¢ are scalar and discrete.
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1.5 The posterior distribution

Bayesian inference requires determination of the posterior probability
distribution of 6. This task is equivalent to finding the posterior pdf of
6 , which may be done using the equation

f(O)f(yl0)
fOly)=—7"—-
f(y)
Here, f(y) isthe unconditional (or prior) pdf of y, as given by
f f(0)f(y|0)d0 if 0iscontinuous

f(y):ff(ylﬁ)dF(H)z > H(O)f(y|0) if gisdiscrete.

Note: Here, ff(y|6)dF(0) is a Lebesgue-Stieltjes integral, which may

need evaluating by breaking the integral into two parts in the case where
6 has a mixed distribution. In the continuous case, think of dF(#) as

IO 4o — 1 (9)do.
do

Exercise 1.4 Loaded dice

Consider six loaded dice with the following properties. Die A has
probability 0.1 of coming up 6, each of Dice B and C has probability 0.2
of coming up 6, and each of Dice D, E and F has probability 0.3 of
coming up 6.

A die is chosen randomly from the six dice and rolled twice. On both
occasions, 6 comes up.

What is the posterior probability distribution of &, the probability of 6
coming up on the chosen die.

Solution to Exercise 1.4

Let y be the number of times that 6 comes up on the two rolls of the
chosen die, and let & be the probability of 6 coming up on a single roll
of that die. Then the Bayesian model is:
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(y[8) ~ Bin(2,0)
1/6, 6=0.1
f(0)=12/6, =02
3/6, 0=03.

In this case y = 2 and so

2 - 2 _
f(y|9):( }6”(1—49)2 y:( j02(1—49)2 =02,
y 2

So f(y)=zf(H)f(y|9):%(0.1)2+§(0.2)2+%(O.3)2 = 0.06.

o (1/6)0.12 /0.06 = 0.02778, 6=0.1
So f(0]y)= w —J(2/6)0.22/0.06=0.22222, 0=0.2
y (3/6)0.32/0.06=0.75, 6=0.3.

Note: This result means that if the chosen die were to be tossed again a
large number of times (say 10,000) then there is a 75% chance that 6
would come up about 30% of the time, a 22.2% chance that 6 would
come up about 20% of the time, and a 2.8% chance that 6 would come
up about 10% of the time.

1.6 The proportionality formula

Observe that f(y) is a constant with respect to ¢ in the Bayesian
equation
fOly)=f1©O)f(yl0)/ f(y),
which means that we may also write the equation as
f@)f(ylo
FO]y) = ()k(yl )
or as

fO]y)=cf(0)f(yl0),
where k= f(y) and c=1/k.

We may also write
fOly)oc £(0)f(yl0),
where oc is the proportionality sign.
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Equivalently, we may write

0
f(O]y)ocf(0)T(y[0)
to emphasise that the proportionality is specifically with respect to 4.

Another way to express the last equation is

fO1y)oc F(O)xL(O]Y),
where L(0|y) is the likelihood function (defined as the model
density f(y|#) multiplied by any constant with respect to 6, and
viewed as a function of ¢ rather than of y).

The last equation may also be stated in words as:
The posterior is proportional to the prior times the likelihood.

These observations indicate a shortcut method for determining the
required posterior distribution which obviates the need for calculating
f(y) (which may be difficult).

This method is to multiply the prior density (or the kernel of that
density) by the likelihood function and try to identify the resulting
function of 6 as the density of a well-known or common distribution.

Once the posterior distribution has been identified, f(y) may then be
obtained easily as the associated normalising constant.

Exercise 1.5 Loaded dice with solution via the proportionality
formula

As in Exercise 1.4, suppose that Die A has probability 0.1 of coming up
6, each of Dice B and C has probability 0.2 of coming up 6, and each of
Dice D, E and F has probability 0.3 of coming up 6.

A die is chosen randomly from the six dice and rolled twice. On both
occasions, 6 comes up.

Using the proportionality formula, find the posterior probability
distribution of &, the probability of 6 coming up on the chosen die.
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Solution to Exercise 1.5

With y denoting the number of times 6 comes up, the Bayesian model
may be written:

2
f(ylo) Z(yJQV(l—H)”, y=012
f(9)=10016,0=0.1,0.2,0.3.

Note: 106 /6 =1/6, 2/6 and 3/6 for & = 0.1, 0.2 and 0.3, respectively.

Hence f(@|y)o f(0)f(y|6)
2
:10—9><£ jeya—e)z-y
6 \y
o« @xH*  sincey=2.

0.1=1/1000,6=0.1 1,6=0.1
Thus f(8|y)o«c6® =< 0.2°=8/1000,0=0.2 tc< 8,6=0.2
0.3°=27/1000,0 =0.3 27,6=0.3.

1°/36=0.02778,0 =0.1
Now, 1+8+27=36,andso f(f|y)=12/36=0.22222,6=0.2
3*/36=0.75,6=0.3,
which is the same result as obtained earlier in Exercise 1.4.

Exercise 1.6 Buses

You are visiting a town with buses whose licence plates show their
numbers consecutively from 1 up to however many there are. In your
mind the number of buses could be anything from one to five, with all
possibilities equally likely.

Whilst touring the town you first happen to see Bus 3.
Assuming that at any point in time you are equally likely to see any of

the buses in the town, how likely is it that the town has at least four
buses?
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Solution to Exercise 1.6

Let @ be the number of buses in the town and let y be the number of the
bus that you happen to first see. Then an appropriate Bayesian model is:
f(y|@)=1/60,y=1,...,0
f(@)=1/56=1,.,5 (prior).

Note: We could also write this model as:

(y|9)~DU(,...,0)

0~DU(L...,5),
where DU denotes the discrete uniform distribution. (See Appendix B.9
for details regarding this distribution. Appendix B also provides details
regarding some other important distributions that feature in this book.)

So the posterior density of & is
f(@]y)ec £(0)f(y[6)
«lx1l/6, 6=y,..,5.

Noting that y = 3, we have that
1/3,6=3
f(@|y)<cs1/4,0=4
1/5,6 =5.

Now, 1/3+1/4+1/5=(20+15+12)/60=47/60, and so
1/3 _20 g
47/60 47’

1/4 15
47160 47
1/5 12
47160 47

f(oly)= 0=4

So the posterior probability that the town has at least four buses is

P@z4ly)=D, T(0ly)=1(@=4]y)+f(@=5]y)

0:0>4

—1-(0=3]y) =1- 22" — o575
47 47
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Discussion

This exercise is a variant of the famous “tramcar problem’ considered by
Harold Jeffreys in his book Theory of Probability and previously
suggested to him by M.H.A. Newman (see Jeffreys, 1961, page 238).
Suppose that before entering the town you had absolutely no idea about
the number of buses . Then, according to Jeffreys’ logic, a prior which
may be considered as suitably uninformative (or noninformative) in this
situation is given by f(8)«<1/6, 6=1,2,3,....

Now, this prior density is problematic because it is improper (since
o110 =). However, it leads to a proper posterior density given by
1

f(O1y)=—, 6=3,4,5,...,
@1y)=—
2
where c=i2+i+i2+...=”——(i2+i2j = 0.394934.
¥ 45 6 L 2

So, under this alternative prior, the probability of there being at least
four buses in the town (given that you have seen Bus 3) works out as

P(O>4]y)=1-P(@=3]y) :1-% =0.7187.

The logic which Jeffreys used to come up with the prior f () «<1/6 in
relation to the tramcar problem will be discussed further in Chapter 2.

R Code for Exercise 1.6

options(digits=6); c=(1/6)*(pi*2)-5/4; c # 0.394934
1-(1/372)/c #0.718659

Exercise 1.7 Balls in a box

In each of nine indistinguishable boxes there are nine balls, the ith box
having i red balls and 9 —i white balls (i = 1,...,9).

One box is selected randomly from the nine, and then three balls are
chosen randomly from the selected box (without replacement and
without looking at the remaining balls in the box).

Exactly two of the three chosen balls are red. Find the probability that
the selected box has at least four red balls remaining in it.
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Solution to Exercise 1.7

Let: N =the number of balls in each box (9)
n = the number of balls chosen from the selected box (3)
¢ = the number of red balls initially in the selected box
1,2,...,.80r9)
y = the number of red balls amongst the n chosen balls (2).

Then an appropriate Bayesian model is:
(y|6) ~ Hyp(N,8,n)  (Hypergeometric with parameters

N, & and n, and having mean n & /N)
¢ ~DU(,...,N) (discrete uniform over the integers 1,2,...,N).

For this model, the posterior density of @ is

(@1y)= 1©)1(y10) %(i)@_‘f}/@'}

o 0!(N - 0)! e Nt
@ DN=b-(—yy” =Y N=(=Y)

In our case,
o~ 0'(9-06)! B (e
O o e-a-a-ay 0 =29 @2,

or more simply,
f(@ly)<c0(@-1)(9-0), 6=2,..,

oo

14,0 =2
36,0=3
60,60 =4
Thus f(@]y)x<80,8=5}=k(0),
90,60=6
84,0=17
56,60 =8

where

8
c=>k(0) =14+36+ ... +56 = 420.

6=1
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14/420=0.03333,0=2
36/420=0.08571,6=3
60/420=0.14286,0 =4
80/420=0.19048, 6 =5
90/420=0.21429,0 =6
84/420=0.20000,0 =7
56/420=0.13333, ¢ =8.

S0 f(9|y)=@=

The probability that the selected box has at least four red balls remaining
is the posterior probability that & (the number of red balls initially in the
box) is at least 6 (since two red balls have already been taken out of the
box). So the required probability is

p(0261)= 0B DB g

R Code for Exercise 1.7

tv=2:8; kv=tv*(tv-1)*(9-tv); c=sum(kv); c # 420
options(digits=4); cbind(tv,kv,kv/c,cumsum(kv/c))
#[1,] 2 14 0.03333 0.03333

#[2,] 3 36 0.08571 0.11905

#[3,] 4 60 0.14286 0.26190

#[4,] 5 80 0.19048 0.45238

#[5] 6 90 0.21429 0.66667

#[6,] 7 84 0.20000 0.86667

#[7,] 8 56 0.13333 1.00000

23/42 #0.5476
1-0.45238 #0.5476 (alternative calculation of the required probability)
sum((kv/c)[tv>=6]) # 0.5476

# (yet another calculation of the required probability)

1.7 Continuous parameters

The examples above have all featured a target parameter which is
discrete. The following example illustrates Bayesian inference involving
a continuous parameter. This case presents no new problems, except that
the prior and posterior densities of the parameter may no longer be
interpreted directly as probabilities.
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Exercise 1.8 The binomial-beta model (or beta-binomial model)

Consider the following Bayesian model:
(y|6) ~ Binomial (n, )
0 ~ Beta(a, 3)  (prior).

Find the posterior distribution of 6 .

Solution to Exercise 1.8

The posterior density is
f(O1y)oc F(0)f(y|6)
a—1 81
_ A= x[”]ey(l_e)”
B(c 5) y
x 0°1—0)""x6'(1—6)"" (ignoring constants which
do not depend on #)

=N TL—g) I 0<ph <.

This is the kernel of the beta density with parameters «+y and
B+n—y. It follows that the posterior distribution of 6 is given by
(01y) ~ Beta(a+y,5+n—y),
and the posterior density of ¢ is (exactly)
e(oﬁry)fl 1_9 (B84+n—y)-1
fo)y) -2 =9

,0<0<1.
B(a+y,0+n—yY)

For example, suppose that o = g =1, that is, 6 ~ Beta(L,1) .
91—1 (1_ 9)1—1
B(L1)
Thus the prior may also be expressed by writing 6 ~U (0,1).

Then the prior density is f(0) = =1,0<6<1.

Also, suppose that n=2. Then there are three possible values of vy,
namely 0, 1 and 2, and these lead to the following three posteriors,
respectively:

(@|y) ~ Beta(1+ 0,1+ 2—0) = Beta(,3)

(#|y)~ Beta(1+1,1+2—1) = Beta(2,2)

(@]y)~ Beta(l+ 2,1+ 2—2) = Beta(3,1) .

These three posteriors and the prior are illustrated in Figure 1.5.

20
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Note: The prior here may be considered uninformative because it is
‘flat” over the entire range of possible values for 6, namely 0 to 1. This
prior was originally used by Thomas Bayes and is often called the Bayes
prior. However, other uninformative priors have been proposed for the
binomial parameter # . These will be discussed later, in Chapter 2.

Figure 1.5 The prior and three posteriors in Exercise 1.8
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R Code for Exercise 1.8

X11(w=8,h=5); par(mfrow=c(1,1));
plot(c(0,1),c(0,3),type="n",xlab="theta",ylab="density")
lines(c(0,1),c(1,1),Ity=1,lwd=3); tv=seq(0,1,0.01)
lines(tv,3*(1-tv)"2,lty=2,Ilwd=3)
lines(tv,3*2*tv*(1-tv),Ilty=3,lwd=3)

lines(tv,3*tv"2,lty=4,lwd=3)

legend(0.3,3,c("prior","posterior if y=0","posterior if y=1","posterior if y=2"),
lty=c(1,2,3,4),Iwd=rep(2,4))
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1.8 Finite and infinite population inference

In the last example (Exercise 1.8), with the model:

(y|6) ~ Binomial(n,#)

0 ~ Beta(a, ),
the quantity of interest @ is the probability of success on a single
Bernoulli trial.

This quantity may be thought of as the average of a hypothetically
infinite number of Bernoulli trials. For that reason we may refer to
derivation of the posterior distribution,

(0]y) ~ Beta(a+y,5+n—y),
as infinite population inference.

In contrast, for the *buses’ example further above (Exercise 1.6), which
involves the model:

f(y|@)=1/60,y=1,..,0

f(0)=1/5,6=1,..,5,
the quantity of interest & represents the number of buses in a population
of buses, which of course is finite.

Therefore derivation of the posterior,
20/47,0=3
f(@|y)=<15/47,0=4
12/47,60 =5,
may be termed finite population inference.

Another example of finite population inference is the ‘balls in a box’
example (Exercise 1.7), where the model is:

(y 1) ~ Hyp(N,6,n)

6~DU(L,...,N),
and where the quantity of interest @ is the number of red balls initially
in the selected box (1,2,...,8 or 9).

And another example of infinite population inference is the ‘loaded dice’
example (Exercises 1.4 and 1.5), where the model is:

2
f(ylo) :(y)ey(l—é’)z‘y, y=012
f(0)=100/6,0=0.1,0.2,0.3,
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and where the quantity of interest @ is the probability of 6 coming up on
a single roll of the chosen die (i.e. the average number of 6s that come
up on a hypothetically infinite number of rolls of that particular die).

Generally, finite population inference may also be thought of in terms of
prediction (e.g. in the ‘buses’ example, we are predicting the total
number of buses in the town). For that reason, finite population
inference may also be referred to as predictive inference. Yet another
term for finite population inference is descriptive inference. In contrast,
infinite population inference may also be called analytic inference. More
will be said on finite population/predictive/descriptive inference in later
chapters of the course.

1.9 Continuous data

So far, all the Bayesian models considered have featured data which is
modelled using a discrete distribution. (Some of these models have a
discrete parameter and some have a continuous parameter.) The
following is an example with data that follows a continuous probability
distribution. (This example also has a continuous parameter.)

Exercise 1.9 The exponential-exponential model

Suppose @ has the standard exponential distribution, and the conditional
distribution of y given @ is exponential with mean 1/ 6. Find the
posterior density of & giveny .

Solution to Exercise 1.9

The Bayesian model hereis: f(y|0)=60e ",y >0
f(0)=e" 0>0.

So f(@|y)x f(O)f(y|0) xe’xhe ™ =" YD y>0,

This is the kernel of a gamma distribution with parameters 2 and y + 1,
as per the definitions in Appendix B.2. Thus we may write
@]y)~Gamma(2,y+1),
from which it follows that the posterior density of @ is
f (0 | y) _ (y +1)20271e76‘(y+l)
I'(2)

,0>0.
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Exercise 1.10 The uniform-uniform model

Consider the Bayesian model given by:
(y]6)~U(0,0)
6~U(0,1).

Find the posterior density of 8 giveny.
Solution to Exercise 1.10

Noting that 0 <y < @ < 1, we see that the posterior density is
f(o)f(yl|@ 1x(1/6
fo)y) - Of10) __1xal0)

) Jl-lx(llé’)dé’

e 1
logl-logy @logy

,y<0<1.

Note: This is a ‘non-standard’ density and strictly decreasing. To give a
physical example, a stick of length 1 metre is cut at a point randomly
located along its length. The part to the right of the cut is discarded and
then another cut is made randomly along the stick which remains. Then
the part to the right of that second cut is likewise discarded. The length
of the stick remaining after the first cut is a random variable with density
as given above, with y being the length of the finally remaining stick.

1.10 Conjugacy

When the prior and posterior distributions are members of the same class
of distributions, we say that they form a conjugate pair, or that the prior
is conjugate. For example, consider the binomial-beta model:
(y|6) ~ Binomial (n, )
0 ~ Beta(a, B) (prior)
= (@|y)~Beta(a+y,5+n—y) (posterior).
Since both prior and posterior are beta, the prior is conjugate.

Likewise, consider the exponential-exponential model:
f(y|0)=0e",y>0
f(@)=e’,0>0 (i.e. ~Gamma(l,1) (prior)
= (0|y)~Gamma(2,y+1) (posterior).
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Since both prior and posterior are gamma, the prior is conjugate.

On the other hand, consider the model in the buses example:
(y|6)~DU({...0)

6~DU(,..,5) (prior)
20/47,6=3
= f(@|y=3)=:15/47,0=4 (posterior).
12/47,0=5

The prior is discrete uniform but the posterior is not. So in this case the
prior is not conjugate.

Specifying a Bayesian model using a conjugate prior is generally
desirable because it can simplify the calculations required.

.11 Bayesian point estimation

Once the posterior distribution or density f(6|y) has been obtained,
Bayesian point estimates of the model parameter # can be calculated.

The three most commonly used point estimates are as follows.
* The posterior mean of 6 is
f 0f(0|y)dd if @ is continuous

E@1y)= [6dF(0]y)= S 0f(01y) if 0isdiscrete

* The posterior mode of 6 is
Mode(f|y) = any value me R which satisfies

f(H:mlx):mglx f(@]x)
or Lim f(@|x)=supf(@]|x),
or the set of all such values.

* The posterior median of 6 is
Median (@ |y) = any value m of # such that

P(O<ml|y)>1/2
and P(@>m|y)>1/2,
or the set of all such values.

Note 1: In some cases, the posterior mean does not exist or it is equal to
infinity or minus infinity.
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Note 2: Typically, the posterior mode and posterior median are unique.
The above definitions are given for completeness.

Note 3: The integral fedF(9| y) is a Lebesgue-Stieltje’s integral. This

may need to be evaluated as the sum of two separate parts in the case
where @ has a mixed distribution. In the continuous case, it is useful to

think of dF (0] y) as Wdez f(0|y)de.

Note 4: The above three Bayesian point estimates may be interpreted in
an intuitive manner. For example, #’s posterior mode is the value of ¢
which is “‘made most likely by the data’. They may also be understood in
the context of Bayesian decision theory (discussed later).

.12 Bayesian interval estimation

There are many ways to construct a Bayesian interval estimate, but the
two most common ways are defined as follows. The 1—« (or
100(1— )% ) highest posterior density region (HPDR) for 6 is the
smallest set S such that:

POeS|y)>1-a

and f(0,]y)>f(0,|y) if6,€S and 6, ¢S.

Figure 1.6 illustrates the idea of the HPDR. In the very common
situation where @ is scalar, continuous and has a posterior density which
is unimodal with no local modes (i.e. has the form of a single ‘mound’),
the 1-« HPDR takes on the form of a single interval defined by two
points at which the posterior density has the same value. When the
HPDR is a single interval, it is the shortest possible single interval over
which the area under the posterior density is 1-«.

The 1-« central posterior density region (CPDR) for a scalar parameter
6 may be defined as the shortest single interval [a,b] such that:
Pl@<aly)<al2

and P(@>bly)<al2.
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Figure 1.6 An 80% HPDR
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Figure 1.7 illustrates the idea of the CPDR. One drawback of the CPDR
is that it is only defined for a scalar parameter. Another drawback is that
some values inside the CPDR may be less likely a posteriori than some
values outside it (which is not the case with the HPDR). For example, in
Figure 1.7, a value just below the upper bound of the 80% CPDR has a
smaller posterior density than a value just below the lower bound of that
CPDR. However, CPDRs are typically easier to calculate than HPDRs.

In the common case of a continuous parameter with a posterior density
in the form of a single “mound’ which is furthermore symmetric, the
CPDR and HPDR are identical.

Note 1: The 1- o CPDR for 6§ may alternatively be defined as the
shortest single open interval (a,b) such that:
P(0<aly)<al2

and P(0>Db|y)<al2.

Other variations are possible (of the form [a,b) and (a,b]); but when the
parameter of interest € is continuous these definitions are all equivalent.
Yet another definition of the 1-a CPDR is any of the CPDRs as defined
above but with all a posteriori impossible values of # excluded.

Note 2: As regards terminology, whenever the HPDR is a single
interval, it may also be called the highest posterior density interval
(HPDI). Likewise, the CPDR, which is always a single interval, may
also be called the central posterior density interval (CPDI).
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Figure 1.7 An 80% CPDR
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Exercise |.1] A bent coin

We have a bent coin, for which 6, the probability of heads coming up, is

unknown. Our prior beliefs regarding # may be described by a standard
uniform distribution. Thus no value of 6 is deemed more or less likely
than any other.

We toss the coin n =5 times (independently), and heads come up every
time.

Find the posterior mean, mode and median of 4. Also find the 80%
HPDR and CPDR for 6.

Solution to Exercise I.11

Recall the binomial-beta model:
(y|6) ~ Binomial (n, )
0 ~ Beta(a, 3),
for which (9| y) ~ Beta(a+Yy,8+n—1yY).

We now apply this result with n=y =5 and o« = =1 (corresponding
to 6 ~U(0,1)), and find that:
(@|y) ~ Beta(1+5,5—5+1) = Beta(6,1)
0671 1_0 1-1
f0y)= o QA-0y

=60°, 0<fh <1
B(6,1)

0
F(9|y):f6t5dt:96, 0<6 <1
0
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Therefore: E@|y)= 5 = L 0.8571
6+1 7
6-1
Mode(@|y)=—"T——7<=
O =T

Median(# | y) = solutionin @ of F(|y)=1/2, i.e. 9°=0.5
= (0.5)"® = 0.8909.

Also, the 80% HPDR is (0.2"°,1) = (0.7647,1) (since f(4]y) is strictly

increasing), and the 80% CPDR is (0.1"%,0.9"°) = (0.6813,0.9826). The

three point estimate and two interval estimates just derived are shown in
Figure 1.8.

Figure 1.8 Inference in Exercise I.11

< posterior mean
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* posterior median
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T T T T
00 02 04 06 0.8 1.0
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|
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R Code for Exercise 1.11

options(digits=4); postmean=6/7; postmode=1; postmedian=0.5*(1/6)
c(postmean,postmode,postmedian) # 0.8571 1.0000 0.8909
hpdr=c(0.2/(1/6),1); cpdr=c(0.1,0.9)*(1/6)

c(hpdr,cpdr) #0.7647 1.0000 0.6813 0.9826

X11(w=8,h=5); par(mfrow=c(1,1)); tv=seq(0,1,0.01); fv=dbeta(tv,6,1)
plot(tv,fv,type="1",Iwd=3,xlab="theta",ylab="posterior density")
points(c(postmean,postmode,postmedian),c(0,0,0),pch=c(1,2,4))
points(hpdr,rep(0.2,2),pch=16); lines(hpdr,rep(0.2,2),Ity=3,lwd=2)
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points(cpdr,rep(0.4,2),pch=16); lines(cpdr,rep(0.4,2),lty=2,lwd=2)
abline(v=c(postmean,postmode,postmedian),lty=3)
abline(v=c(0,hpdr,cpdr),lty=3); abline(h=c(0,6),lty=3)

legend(0.2,5.8,c("posterior mean","posterior mode",

"posterior median"),pch=c(1,2,4))
legend(0.2,2.8,¢("80% CPDR","80% HPDR"),Ity=c(2,3),lwd=c(2,2))

Exercise |1.12 HPDR and CPDR for a discrete parameter

Consider the posterior distribution from Exercise 1.7 (Balls in a box):
14/420=0.03333,0=2

36/420=0.08571, 0 =3
60/420=0.14286, 0 = 4
f(0]y)=180/420=0.19048, 0 =5
90/420=0.21429, 0 = 6
84/ 420 =0.20000, 0 = 7
56/ 420 =0.13333, 0 =S8.

Find the 90% HPDR and 90% CPDR for 4. Also find the 50% HPDR
and 50% CPDR for &. For each region, calculate the associated exact
coverage probability.

Solution to Exercise 1.12

The 90% HPDR is the set {3,4,5,6,7,8};
this has exact coverage 1 — 14/420 = 0.9667.

The 90% CPDR is the closed interval [3, 8];
this likewise has exact coverage 0.9667.

The 50% HPDR is {5,6,7};
this has exact coverage (80 + 90 + 84)/420 = 0.6047.

The 50% CPDR is [4, 7];
this has exact coverage (60 + 80 + 90 + 84)/420 = 0.7476.

Note: The lower bound of the 50% CPDR cannot be equal to 5.
This is because P(€ <5|y)=(14+36+60)/420 = 0.2619, which is not

less than or equal to « /2 =0.25, as required by the definition of CPDR.
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Exercise |.13 lllustration of the definition of HPDR

Suppose that the posterior probabilities of a parameter & given data y
are exactly 10%, 40% and 50% for values 1, 2 and 3, respectively. Find
S, the 40% HPDR for 4.

Solution to Exercise 1.13

The smallest set S such that P(# €S |y)>0.4 is {2} or {3}. With the
additional requirement that f(6,|y)> f(0,|y) if 6,€S and 6, €S, we
see that S = {3} (only). That is, the 40% HPDR is the singleton set {3}.

.13 Inference on functions of the model
parameter

So far we have examined Bayesian models with a single parameter &
and described how to perform posterior inference on that parameter.
Sometimes there may also be interest in some function of the model
parameter, denoted by (say)

w =9(0).

Then the posterior density of y can be derived using distribution theory,
for example by applying the transformation rule,

(w1y)= 1)

in cases where y = g (@) is strictly increasing or strictly decreasing.

Point and interval estimates of y can then be calculated in the usual
way, using f (i |y). For example, the posterior mean of y equals

E(w1y)=[wfly)dy.

Sometimes it is more practical to calculate point and interval estimates
another way, without first deriving f(y |y).

For example, another expression for the posterior mean is
E(w|y)=E(9(0)]Y) =I9(9) f(@]y)do.
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Also, the posterior median of y, call this M, can typically be obtained
by simply calculating

M =g(m),
where m is the posterior median of 4.

Note: To see why this works, we write
Ply <M |y)=P(g(0) <M y)
=P(9(0) <g(m)|y) =P(@<m|y)=1/2.

Exercise |.14 Estimation of an exponential mean

Suppose that & has the standard exponential distribution, and y given &
is exponential with mean 1/6. Find the posterior density and posterior
mean of the model mean, v =E(y|8)=1/6, given the datay.

Solution to Exercise 1.14

Recall that the Bayesian model
f(y|0)=0e",y>0
f@)=e’60>0

implies the posterior (#|y) ~Gamma(2,y +1).

So, by definition, (1| y) ~ InverseGamma(2,y +1),

(y+1)2w7(2+1)ef(y+1)/w B (y+1)2

with density f(y|y)= 0 = yrgor V> 0,

y+

and mean E =
WI)=2—

Iyl

Note: This mean could also be obtained as follows:

o0

1 1
E(¢|y)=E[5‘y]=f—f(e|y>de

0

2-1 —0(y+l)
f 1 (y +1)%6 do
I'(2)
oy’ ] 1 (y+1i6e 0™
- T(Y+D I'(w)
=y-+1 (using the fact that the last integral equals 1).

dé
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Exercise .15 Inference on a function of the binomial
parameter

Recall the binomial-beta model given by:
(y|6) ~ Binomial(n, )
0 ~ Beta(a, 3),

for which (#|y) ~ Beta(a+Yy,8+n—yY).

Find the posterior mean, density function and distribution function of
w =6% inthe case wheren=5,y=5and a=3=1.

Note: In the context where we toss a bent coin five times and get heads
every time (and the prior on the probability of heads is standard
uniform), the quantity y may be interpreted as the probability of the

next two tosses both coming up heads, or equivalently, as the proportion
of times heads will come up twice if the coin is repeatedly tossed in
groups of two tosses a hypothetically infinite number of times.

Solution to Exercise 1.15

Here, (0 |y) ~ Beta(1+5,1+5—5) ~ Beta(6,1)
with pdf f(0|y)=66°,0<0<1.

Now &=y"? and so, by the transformation method, the posterior
density function of y is
1
f(w|y)=f(e|y)3—9=6w5’2 —%w 2| =3y% 0 <y <1,

It follows that the posterior mean of y is
1
v =E(|y)=[v(3p*)dy =075,
0

and the posterior distribution function of v is

v v
Fiwly)=]f(y=tly)dt=[3Cdt=yp° 0<y <L,
0 0
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Note 1: The posterior mean of y = #* can also be obtained by writing
1
v =E(0%|Y) =j92(695)d9 =0.75
0

or y=E@°|y)=V(©@|y)+{E@| Y)Y
= 01 +( 0 j =0.75
(6+1)%(6+1+1) \6+1
or (w|y)~Beta(31) = w=E(y|y)=3/(3+1)=0.75.

Note 2: The distribution function of w =6° can also be obtained by
writing
Fly=v|y)=P(y <v|y)=P(@* <v|y)=P@<Vv*"|y)
=F(@=v"]y) =[96|9_vﬂ2}=v3,0<v<1.

Note 3: In the above, f(y =t|y) denotes the pdf of w given y, but
evaluated att. This pdf could also be written as f (t|y) or as

[ Fw 1Y), | Likewise, Fw =vly) = F,(vy) =| Fw1y),., |

.14 Credibility estimates

In actuarial studies, a credibility estimate is one which can be expressed
as a weighted average of the form
C=(1-k)A+KkB,
where:
A is the subjective estimate (or the collateral data estimate)
B is the objective estimate (or the direct data estimate)
k is the credibility factor, a number that is between 0 and 1
(inclusive) and represents the weight assigned to the
objective estimate.

A high value of k implies C = B, representing a situation where the
objective estimate is assigned ‘high credibility’. A primary aim of
credibility theory is to determine an appropriate value or formula for k,
as is done, for example, in the theory of the Bihlmann model
(Buhlmann, 1967). Many Bayesian models lead to a point estimate
which can be expressed as an intuitively appealing credibility estimate.
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Exercise 1.16 Credibility estimation in the binomial-beta
model

Consider the binomial-beta model:  (y|#) ~ Binomial(n, 6)
0 ~ Beta(a, 3) .

Express the posterior mean of 6 as a credibility estimate and discuss.

Solution to Exercise |.16

Earlier we showed that
(0]y) ~ Beta(a+y,5+n—y),
and hence that the posterior mean of 6 is
é:E(9|y): (a+y) _ a—+y .
(a+y)+(B+n—y) a+p+n

Observe that the prior mean of 8is Ef = o/ (a+ 3), and the maximum
likelihood estimate (MLE) of @ is y/n. This suggests that we write
~ o y
0= +
a+pB+n a+pB+n

i e e
a+6+nl « a+p) a+p+nln
a+ 0
a+pB+n

e
a+p) a+B+nin)

Thus 6 =(1-k)A+kB
- B=Y, & n
n

where: , == =
a+f a+pG+n

We see that the posterior mean 6 isa credibility estimate in the form of
a weighted average of the prior mean A=Ef =« /(a+ f) and the MLE

B =y /n, where the weight assigned to the MLE is the credibility factor
given by k=n/(n+ a+ 3). Observe that as n increases, the credibility

factor k approaches 1. This makes sense: if there is a lot of data then the
prior should not have much influence on the estimation.

Figure 1.9 illustrates this idea by showing relevant densities, likelihoods
and estimates for the following two cases, respectively:
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@) n=5 y=4 «a =2 =6
(b) n=20,y=16, « =2, B =6.

In both cases, the prior mean is the same (A = 2/(2 + 6) = 0.25), as is the
MLE (B = 4/5 = 16/20 = 0.8). However, due to n being larger in case (b)
(i.e. there being more direct data), case (b) leads to a larger credibility
factor (0.714 compared to 0.385) and hence a posterior mean closer to
the MLE (0.643 compared to 0.462).

Note: Each likelihood function in Figure 1.9 has been normalised so that
the area underneath it is exactly 1. This means that in each case (a) and
(b), the likelihood function L(6) as shown is identical to the posterior
density which would be implied by the standard uniform prior, i.e. under

fU (0,1) (0) = fBeta(l,l) ('9) ' ThUS, L(Q) = fBeta(l+y,1+n7y) (9) '

Figure 1.9 lllustration for Exercise 1.16
Legend: solid line = prior, dashed line = likelihood, dotted line = posterior,
circle = prior mean, triangle = MLE, cross = posterior mean

20 30
l

density/likelihood
10

0.0

theta

density/likelihood

theta
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R Code for Exercise 1.16
X11(w=8,h=7); par(mfrow=c(2,1))

alp=2; bet=6; n =5; y = 4; pvec=seq(0,1,0.01)
plot(c(0,1),c(0,3),type="n",xlab="theta",ylab="density/likelihood")
lines(pvec,dbeta(pvec,alp,bet),lty=1,lwd=2)
lines(pvec,dbeta(pvec,1+y,n-y+1),lty=2,lwd=2)
lines(pvec,dbeta(pvec,alp+y,n-y+bet),Ity=3,lwd=2)

points(c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)),c(0,0,0),pch=c(1,2,3),
cex=rep(1.5,3),lwd=2); text(0,2.5,"(a)",cex=1.5)

c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)) # 0.2500000 0.8000000 0.4615385

n/(alp+bet+n) # 0.3846154

alp=2; bet=6; n = 20; y = 16; pvec=seq(0,1,0.01)
plot(c(0,1),c(0,5),type="n" xlab="theta",ylab="density/likelihood")
lines(pvec,dbeta(pvec,alp,bet),lty=1,lwd=2)
lines(pvec,dbeta(pvec,1+y,n-y+1),lty=2,lwd=2)
lines(pvec,dbeta(pvec,alp+y,n-y+bet),Ity=3,lwd=2)

points(c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)),c(0,0,0),pch=c(1,2,3),
cex=rep(1.5,3),lwd=2); text(0,4.5,"(b)",cex=1.5)

c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)) # 0.2500000 0.8000000 0.6428571

n/(alp+bet+n) # 0.7142857

Exercise |.17 Further credibility estimation in the binomial-
beta model

Consider the binomial-beta model:
(Y |6) ~ Binomial(n, )
0 ~ Beta(a, 3) .

If possible, express the posterior mode of # as a credibility estimate.

Solution to Exercise 1.17

Since (0|y) ~ Beta(a+y, 3+ n—Yy), the posterior mode of & is
(a+y-1 a+y-1

Mo = Gy D+ (iny D atotn 2
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(a—=1) a-1

Now, the prior mode of & is Mode(f) = = .
(a-D)+(8-1) a+5-2

a—1 n y
a+pB+n—-2 a+pB+n-2

a+ﬁ—2][ a—1 ]+ n [l]
a—-1 Jla+p-2) a+p+n-=2\n)

We see that the posterior mode is a credibility estimate of the form
Mode(6 | y) = (1—c)Mode(d) + ¢4,

So we write Mode(0|y) =

B a—1
a+pB+n-2

o —

where: Mode(d) = is the prior mode
(6]

0= Y is the maximum likelihood estimate
n

(mode of the likelihood function)
n

¢ =————— s the credibility factor
n+a+p3-2
(assigned to the direct data estimate, 5).
Exercise |.18 The normal-normal model

Consider the following Bayesian model:
(Voo Yo | 1) ~iid Nz, 0?)
=~ N(t,05),
where o, 11, and o are known or specified constants.

Find the posterior distribution of 1 given data in the form of the vector
Y= (Y1 Ya)-

Solution to Exercise 1.18

The posterior density of 4 is
FQely)oc £(u) F(yln)

L

2
1 _
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1[1 1(L _
= eXp[—E‘—z(uz —2pupt, +u§)+—2[2 Y, —2pny + nuz]
Oy o iz

where ¥ = (Y, +...+Y,)/n is the sample mean.

, (1.1)

We see that the posterior density of 4 is proportional to the exponent of
a quadratic in x . That is,

f (] Y) exp[— — (u—u*)z] , (12)

which then implies that
(1Y)~ N(w.,0?),
for some constants ;.. and o?.

It remains to find the normal mean and variance parameters, ;. and o7.
(These must be functions of the known quantities n, y, o, y, and o,.)

One way to obtain these parameters which completely define u’s

posterior distribution is to complete the square in the exponent of (1.2).
To this end we write

al

20I :
where

q= iz(uz - 2##0)+i2(_2ﬂn7+ nuz)
o, o

f(]y)ocexp

(ignoring constants with respect to 1)
Ho | NY
Tt
o, O

(where c is a constant with respect to 1)

2

1 n
—z+—z]—2M
o, O

_ M
> and b=—=+—=
o, O o, O

]

(where ¢’ is a constant with respect to 1)

1 n nvy
—au’ —2bp+c where a=-"+— y

/

+C

:a[;ﬁ—zgu]—kc =a

_ 1
1/a

2
,u—B] +c’.
a
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Thus, f(u]y)ox exp[—

u—E] ] . (L3)

2(1/a) a

So, equating (1.2) and (1.3), we obtain:

, 1 1 olol
Oy =— = =
a 1 n o 4nol
P
o, o
Ho Y
2 2 2
b oy 0" o'py+nogy L4
Mo == 1 - 2 2 ( ' )
a n o +no,
P
o, o

Note 1: A little algebra (left as an additional exercise) shows that the
posterior mean can also be written as
fe = (L=K) o + Ky,

and the posterior variance can be written as
2

O
ocl=k—,
n
where
n
k= —
n+Z
o,

We see that ’s posterior mean is a credibility estimate in the form of a
weighted average of the prior mean x, and the sample mean y (which
is also the maximum likelihood estimate), with the weight assigned to y
being the credibility factor, k . More will be said on this further down.

Note 2: Another way to derive . and o7 is to write (1.2) as

1
f(uly) ocexp|—==(p* — 2pups. + 112 (15)

207
and then equate coefficients of powers of y in (1.1) and (1.5). This logic

1 1 n ny .
leads to — =—+— and “’; :“—g+—{ and ultimately the same
Ox 0y O Ox 0y O

formulae for .. and o7 as given by (1.4).
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Note 3: Since both prior and posterior are normal, the prior is
conjugate.

Note 4: The posterior mean, mode and median of x are the same and
equal to p.. The 1-« CPDR and 1-« HPDR for p are the same and

equal to (. tz,,,0.).

Note 5: The posterior distribution of x depends on the data
vector y=(Y,,...,y,) only by way of the sample mean, i.e.

Y =(y, +...+Y,)/n. Therefore, the main result, (;|y) ~ N(u,,0?),
also implies that (11| y) ~ N(u,,07).

That is, if we know only the sample mean Yy, the posterior distribution
of y is the same as if we know vy, i.e. all n sample values. Knowing the
individual y, values makes no difference to the inference.

Note 6: The formula for the credibility factor in Note 1, namely

n 1
k= 2 2 1
o o /n
n+— 1+——
Oy Oy

makes sense in the following ways:

(i) If the prior standard deviation o, is small then k~0, so that
p, ~u, and o, ~o,. Therefore (u|y) = N(u,,07).

That is, if the prior information is very ‘precise’ or ‘definite’, the data
has little influence on the posterior. So the posterior is approximately
equal to the prior; i.e. f(u|y)~ f(w), or equivalently, (u|y)~p. In
this case the posterior mean, mode and median of p are approximately
equal to p,. Also, the 1-a CPDR and 1-o HPDR for p are

approximately equal to (z, £ 2z,,,0,).

(ii) If o, is large then k~1, so that u, ~V, o’ ~c°/n, and so
(1ly)~ N(Y,0°/n).
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That is, a large o, corresponds to a highly disperse prior, reflecting little
prior information and so little influence of the prior distribution (as
specified by p, and o,) on the inference. In this case the posterior
mean, mode and median of p are approximately equal to y. Also, the
1-a CPDR and 1-« HPDR for p are approximately equal to
(Y£ za,za/\/ﬁ). Thus, inference is almost the same as implied by the
classical approach.

(iii) If the sample size n is large then ka1, so that u, ~Yy and
o’ ~oc”In. Therefore (i|y) < N(¥,0°/n).

So, in this case, just as when o, is large, the prior distribution has very

little influence on the posterior, and the ensuing inference is almost the
same as that implied by the classical approach.

Note 7: In the case of a priori ignorance (meaning no prior information
at all) it is customary to take o, = oo, which implies that
i~ N(0,00).

This prior on u appears to be problematic, because it is improper.

However, it meaningfully leads to a proper posterior, namely
(1ly)~N(Y,0°/n),

which then leads to the same point and interval estimates implied by the

classical approach, namely the MLE y and 1-« CI (Y + za,za/ﬁ).

The improper prior x~ N(0,00) may be described as “flat” or ‘uniform
over the whole real line” and can also be written as
~ U (—o0,00)
or f(u)cl, ueR.

In some cases (more complicated models not considered here), using an
improper prior may lead to an improper posterior, which then becomes
problematic. For more information on this topic, see Hobert and Casella
(1996).
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Summary: For the normal-normal model, defined by:
Yar-os Yo | 1) ~iid N (p1,0)
p~N (Movag) '
the posterior distribution of the normal mean z is given by
(1Y) ~ N(n,,0?),
where: . = (1—K)p, +Ky

2

o2 =k
n
k= % (the normal-normal model credibility factor).
n+o°/o,

The posterior mean, mode and median of p are all equal to 4.,
and the 1— o CPDR and HPDR for p are both (. £2,,,0.).

In the case of a priori ignorance it is appropriate to set o, = .

This defines an improper prior
f(u)clueR
and the proper posterior

(uly)~N(y,0°/n).

Exercise |.19 Practice with the normal-normal model

In the context of the normal-normal model, given by:
(Voo Yo | 12) ~ iid N(p1,0°)
p~ N, 03)
suppose that y = (8.4,10.1,9.4), o0 =1, g, =5and o, = 1/2.

Calculate the posterior mean, mode and median of .
Also calculate the 95% CPDR and 95% HPDR for .

Create a graph which shows these estimates as well as the prior density,
prior mean, likelihood, MLE and posterior density.
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Solution to Exercise 1.19

Here: n=3,
Yy =(8.4+10.1+9.4)/3=9.3
k = ;2 = E =0.4285714
1°/3 7
+ 2
1/2)
3 3
Lo = 1—7 5+7><9.3 =6.8428571
2
o’ =§xl—:1 =(.1428571.
7 3 7

So the posterior mean/mode/median is
. = 6.84286,

and the 95% CPDR/HPDR is

(1 +2,,,:0+) = (6.84286+1.96./0.14286)
= (6.102, 7.584).

Figure 1.10 shows the various densities and estimates here, as well as the
normalised likelihood. Note that the likelihood function as shown is also
the posterior density if the prior is taken to be uniform over the whole
real line, i.e. u~U (-0, ).

Discussion

If we change o, from 0.5 to 2 we get k = 0.923 and results as illustrated
in Figure 1.11.

If we change o, from 0.5 to 0.25 we get k = 0.158 and results as
illustrated in Figure 1.12 (page 46).

If we keep o, as 0.5 but change o from 1 to 2 we get k = 0.158 and
results as illustrated in Figure 1.13 (page 46).

Note that the posteriors in Figures 1.12 and 1.13 have the same mean but
different variances.
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Figure 1.10 Results if o, =05, o =1, k=n/(n+c”/c)=0.429

1.2

- — Prior density
— — Likelihood function (normalised)
= --+- Posterior density

10

- O Prior mean

A Sample mean (MLE)
X Posterior mean

® 95% CPDR bounds

density/likelihood

00 02 04 068 08
l

Figure I.11 Results if o,=2, o =1, k=n/(n+c°/0})=0.9223

12

- — Prior density
— — Likelihood function (normalised)
- --+- Posterior density

1.0

- O Prior mean ,-' W
A Sample mean (MLE) A
— * Posterior mean S oA
® 95% CPDR bounds S WY

density/likelihood

00 02 04 06 08
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Figure 1.12 Results if 6, =0.25, o =1, k=n/(n+c°/c.)=0.158

1.2

- — Prior density
— — Likelihood function (normalisgd)
= --+- Posterior density

10

- O Prior mean

A Sample mean (MLE)
— X Posterior mean

® 95% CPDR bounds

density/likelihood

00 02 04 068 08

Figure 1.13 Results if 5,=0.5, =2, k=n/(n+0c’/0.)=0.158

12

- — Prior density
— — Likelihood function (normalised)
- --+- Posterior density

1.0

- O Prior mean

A Sample mean (MLE)
— X Posterior mean

® 95% CPDR bounds

density/likelihood

00 02 04 06 08
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R Code for Exercise 1.19
X11(w=8,h=5); par(mfrow=c(1,1)); mu0=5; sig0=0.5; sig=1

y =c(8.4,10.1, 9.4); n = length(y); k=1/(1+(sig"2/n)/sig0"2); k # 0.4285714
ybar=mean(y); ybar # 9.3

mus = (1-k)*mu0 + k*ybar; sigs2=k*sig"2/n

c(mus,sigs2) # 6.8428571 0.1428571

muv=seq(0,15,0.01)

prior = dnorm(muv,mu0,sig0); post=dnorm(muv,mus,sqrt(sigs2))

like = dnorm(muv,ybar,sig/sqrt(n))
cpdr=mus+c(-1,1)*gnorm(0.975)*sqrt(sigs2)

cpdr # 6.102060 7.583654

plot(c(0,11),c(-0.1,1.3),type="n",xlab="",ylab="density/likelihood")
lines(muv,prior,lty=1,lwd=2); lines(muv,like,lty=2,lwd=2)
lines(muv,post,lty=3,lwd=2)
points(c(mu0,ybar,mus),c(0,0,0),pch=c(1,2,4),cex=rep(1.5,3),lwd=2)
points(cpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2))
legend(0,1.3,

c("Prior density","Likelihood function (normalised)","Posterior density"),

Ity=c(1,2,3),Iwd=c(2,2,2))

legend(0,0.7,c("Prior mean","Sample mean (MLE)","Posterior mean",

"95% CPDR bounds"), pch=c(1,2,4,16),pt.cex=rep(1.5,4),pt.lwd=rep(2,4))
text(10.8,-0.075,"m", vfont=c("serif symbol","italic"), cex=1.5)

# Repeat above with sig0=2 to obtain Figure 1.11
# Repeat above with sig0=0.25 to obtain Figure 1.12
# Repeat above with sig0=0.5 and sig=2 to obtain Figure 1.13

Exercise 1.20 The normal-gamma model

Consider the following Bayesian model:
(Y- ¥, [A) ~iid N(g, 1/ X)
A~G(a, ).

Find the posterior distribution of A given y =(y,,...,y,).

47



Bayesian Methods for Statistical Analysis

Note 1: In the normal-normal model, the normal mean p is unknown

and the normal variance o is known. Now we consider the same
Bayesian model but with those roles reversed, i.e. with ;. known and o

unknown. For an example of where this kind of situation might arise, see
Byrne and Dracoulis (1985).

Note 2: For reasons of mathematical convenience and conjugacy, we
parameterise the normal distribution here via the precision parameter

A=1/c?
rather than using o directly as before in the normal-normal model.

Note 3: An equivalent formulation of the normal-gamma model being
considered here is:

(Yir-or Yo | 0®) ~iid N, 0%)
o’ ~1G(a, B),
where this may be called the normal-inverse-gamma model.

Solution to Exercise 1.20

The posterior density of X is
fFATY) o £(A) F(Y[A)

2
Y votm T L Ly, —n
S te P [T ex __[-_]
gl/& p{ 2\1/V\
—_ /\ar—le—ﬁk ><)\n/2 exp{_%Z(yl _H)Z}
i=1
=\*% ™ forsomeaandb.

We see that
(Aly)~G(a,b),

n
me:a:a+§
n
b:6+5§

1 n
Si :H;(yi _N)Z-
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Note 1: The posterior mean of A, namely
a a+n/2
EQAlY)=x-="7T7—75"
b B+ns,/2

converges to A= iz (the MLE of \)as n— .
S

0

If «=/=0then E(A|y)=AX exactly for all n.

Note 2: Unlike the posterior mean of x in the normal-normal model, the

posterior mean of A cannot be expressed as a credibility estimate of the
form

A—c)\ + ch,
where: )\, = EA\ :% (the prior mean of \)

X:Siz (the MLE of \).

I

Note 3: We may write the posterior as

2a+n 2B+ns’
A ~G : L
(AlY) > >

It can then be shown via the method of transformations that

(u|y)~G[2a2+n,%]~xz(2a+n),

where u=(25+ns’)\.

So the 1- A CPDR for u is (Xf,A/z (2a+n), X%, (2a+ n)) :

u .

S X12—A/2 (2a+n) Xi/z (2a+n) .
2B+ns,

28+ns? " 2B+ns’
26+ns: 2(6+ns’
X/i/z(za +n) ’ X127A/2(204 +n)

So the 1- A CPDR for 1 =

So the 1— A CPDR for o? < is

If o = =0, this is exactly the same as the classical 1- A Cl for &°.

49



Bayesian Methods for Statistical Analysis

Note 4: The classical 1- A CI for o® may be derived as follows. First
consider all parameters fixed as constants. Then

Yook I THid N(,1).
O (2

So
(%)2(%]2 ~iid £2(1).
>0 2
Z;[yf;ﬂ) =—~x'(n).
So

ns’
1-A=P [le—A/Z (n) < O'_; < Z/ilz (n)j

ns? ns
=P| —~t—<of<——2L—|.
a2 (N) Zinz(N)

Note 5: Notes 1 to 3 indicate that in the case of a priori ignorance, a
reasonable specification is

a=p3=0,
or equivalently,

f(\)x1/A, A>0.

This improper prior may be thought of as the limiting case as ¢ — 0 of
the proper prior

A~ Gam(e,e),
where £~0.
Observe that
Elx=c¢cle=1
forall ¢, and
Vi=ele? >0
as ¢ —0.

50



Chapter |: Bayesian Basics Part |

Summary: For the normal-gamma model, defined by:
(Vore-or Yo | A) = iid N (2,17 \)

A~G(a,0),
the posterior distribution of A is given by
(A 1Y) ~G(a,b),
n n, , 1 )
where: a=a+—, b=g+-s2, sI==>"(y,—n)’.
2 2" " onim

The posterior mean of 4 is a/b. The posterior median is F;;, (1/2).
The posterior mode of 4 is (a—1)/b if a > 1; otherwise that mode is 0.

G(ab)

The 1- A CPDR for A is (Fgiy (Al2),Folhy (L—Al2))

XlZ—AIZ (2a.+n) X/sz(za +n)

and may also be written as R 5
26+ns, 2B8+ns,

23+ns; 26+ns;

The 1- A CPDR for o =1/ 1 is |— — :
X2 (2a+n) leA/z(ZOZ +n)

In the case of a priori ignorance it is appropriate to set « = 5 =0.
This defines an improper prior with density

f(1)xcl/1,1>0,
and a proper posterior distribution given by

(siATy) ~ x*(n) .

Exercise 1.21 Practice with the normal-gamma model

In the context of the normal-gamma model, given by:
(Yyse-r Yy | A) ~iid N(p,17 )
A~ Gamma(a, 3),

suppose thaty =(8.4,10.1,94), . =8, « =3and g =2.

(a) Calculate the posterior mean, mode and median of the model
precision A. Also calculate the 95% CPDR for \. Create a graph which
shows these estimates as well as the prior density, prior mean,
likelihood, MLE and posterior density.
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(b) Calculate the posterior mean, mode and median of the model

variance o> =1/\. Also calculate the 95% CPDR for o*. Create a
graph which shows these estimates as well as the prior density, prior
mean, likelihood, MLE and posterior density.

(c) Calculate the posterior mean, mode and median of the model
standard deviation o. Also calculate the 95% CPDR for o. Create a
graph which shows these estimates as well as the prior density, prior
mean, likelihood, MLE and posterior density.

(d) Examine each of the point estimates in (a), (b) and (c) and determine
which ones, if any, can be easily expressed in the form of a credibility
estimate.

Solution to Exercise 1.21

(a) The required posterior distribution is (\|y) ~ Gamma(a,b), where:

a:a+% =45, b:ﬁ+gsj =5.265, s ZEZ:(yi —p)® =2.177.
N =

So:
» the posterior mean of 4 is E(\|y) =a/b =0.8547

» the posterior mode is Mode(\|y) =(a—1)/b =0.6648

* the posterior median is the 0.5 quantile of the G(a,b) distribution
and works out as Median(\|y)=0.7923

(as obtained using the ggamma() function in R; see below)
* the 95% CPDR for \ is (0.2564, 1.8065) (where the bounds are
the 0.025 and 0.975 quantiles of the G(a,b) distribution).

Also:
e the priormeanis EA=«a/3 =15
* the prior mode is Mode(\) = (a—1)/5 =1
* the prior median is Median(\) = 1.3370
s the MLE of 2 is A =1/s’ = 0.4594
(note that this estimate is biased).

Figure 1.14 shows the various densities and estimates here, as well as the
normalised likelihood function.
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Note: The normalised likelihood function (with area below equal to 1) is
the same as the posterior density of A if the prior is taken to be uniform
over the positive real line, i.e. 2 ~U(0,). This prior is specified by

taking o =1and 8 =0, because then f(A)oc A" 1.

Figure |1.14 Results for Exercise 1.21(a)

Inference on the model precision parameter

o — Priordensity _ o Priormode, median
B = — = Likelihood function (normalised) & mean (left to right)
_g * Posterior density A MLE
E 2 PR
= v £ .
%‘ ;s RN Posterior mode, median
S 9 }’ : . & mean (left to right)
T ° ® 95% CPDR bounds
S L~eaxxo0 oo 3"T"~~-———I— —————— | |
0 1 2 3 4 5
lambda

(b) As regards the model variance o> =1/ X we note that o ~ IG(a, 5)
with density
dA

f(o%)= f(>\)‘da2

o) T e
F(a)

where A = (02 )_1

(™))

3°
['(«)

(0_2)7ufleﬂ3/02, 0,2 > 0 ] (16)

Then, by well-known properties of the inverse gamma distribution and
maximum likelihood theory:

» the prior mean of o® is Ec®* =3/(a—1) =1
» the prior mode is Mode(c®) = 3/ (av+1) =0.5
» the prior median is Median(c®) =1/ Median()\) = 0.7479
« the MLE of ¢% is 6 =1/ A =s? = 2.1767
(note that this estimate is unbiased).
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By analogy with the prior (1.6), we find that (¢ |y) ~ IG(a,b) with
density

a

f (0_2 | y) — b (0_2)—a71e7b/<12’ 0_2 > O,

I'(a)
and hence that:
« the posterior mean of o* is E(c”|y)=b/(a—1) = 1.5043
« the posterior mode is Mode(c” |y) =b/(a+1) =0.9573
* the posterior median is
Median(o? | y) =1/ Median(1|y) = 1.2622
(since 1/2=P(c®<m|y)=P@A/A<m|y)=P@A/m<Aily))

« the 95% CPDR for o is (0.5535, 3.8994)  (where the lower
and upper bounds are the inverses of the 0.975 and 0.025
quantiles of the G(a,b) distribution, respectively).

Figure 1.15 shows the various densities and estimates here, as well as the
normalised likelihood function.

Note: The normalised likelihood function is the same as the posterior
density of o if the prior on & is taken to be uniform over the positive
real line, i.e. (o)1, o®>0. This prior is specified by A ~G(—1,0),
i.e.by ¢ =-1 and B =0 asis evident from (1.6) above.

Figure 1.15 Results for Exercise 1.21(b)

Inference on the model variance parameter

™
| — Priordensity _ o Prior mode, median

"§ — — Likelihood func_tlon (normalised) & mean (left to right)
2 g _ * Posterior density A MLE
£ i
= < Posterior mode, median
% S T & mean (left to right)
o a ® 95% CPDR bounds

o | L = T m e A — =

(e]

\ T T T T T
0 2 4 6 8 10

sigma”2 = 1/lambda
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(c) As regards the model standard deviation o = 1/+/), observe that the
prior density of this quantity is

f(o)=f()\) d—/\‘ where 1 =c"?
do

_ 4 5.2
— ﬂ“(o- 2)u le o |_20_73| — 2604 0_720171 —Blo?

@) (@) e ,0>0. (L7)
We find that:
* the prior mean of o is
N P e s
) F(a)
BT(a-112)7 " 21 B e
= 12 I d4
LT () IN'a-1/2)
= p" —F(“ —172) _ .9400

I'(a)

* the prior mode of o is Mode(o) = 28 _ 0.7559

a+1

(obtained by setting the derivative of the logarithm of (1.7)
to zero, where that derivative is derived as follows:

I(0) =log f (0) = —(2a+1)logo — 3o + constant

2a+1 o 23
:}Il g +2 3 0:> —
(o) Bo o* 2a+1)

« the prior median of o is Median(c) = /Median(c?) =0.8648
«the MLE of o is 5= [s? =1.4754 (which is biased).

By analogy with the above, f(o|y)= 2b o2 550,

I'(a) ’
So we find that:
« the posterior mean of o is E(c|y) = blle =1.1836
I'(a)
: . 2b
» the posterior mode is Mode(o | y) =,|—— =1.0262
2a+1
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* the posterior median is
Median(o | y) = /Median(c? | y) = 1.1235
(since 1/2=P(c? <m|y)=P(c <~/m|Y))
* the 95% CPDR for o is (0.7440,1.9747) (where these bounds
are the square roots of the bounds of the 95% CPDR for o).

Figure 1.16 shows the various densities and estimates here, as well as the
normalised likelihood function.

Note: The normalised likelihood function is the same as the posterior
density of o if the prior on o is taken to be uniform over the positive
real ling, i.e. f (o) <1, o > 0. This prior is specified by A ~G(—1/2,0),
i.e.by a=-1/2 and =0, as is evident from (1.7) above.

Figure 1.16 Results for Exercise 1.21(c)

Inference on the model standard deviation parameter

+

— Prior density a Prior mode, median

o — = Likelihood function (normalised) & mean (left to right)
- Posterior density AMLE

Posterior mode, median
& mean (left to right)

® 95% CPDR bounds

density/likelihood

T T—_--_.o_da-r XX T T T

0.0 0.5 1.0 15 20 25

sigma = 1/sqri{lambda)

(d) Considering the various point estimates of 1, o° and o derived
above, we find that two of them can easily be expressed as credibility
estimates, as follows. First, observe that

b  B+nsi/2  23+ns]

E (o2 = = =
(@ 1Y) a-1 a+(n/2)-1 2a+n-2
:[L]S%L,
n+2a—2)" n+2a-2
where
23 2/ a-1_ B _ 2a-2

Eo’.

X

— X = X
n+20—2 n+20—2 4 “a—1 n+20-2
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We see that the posterior mean of o

E(c®|y)=(1—-c)Eo?+cs’

w!

is a credibility estimate of the form

where:
Eo’ = B is the prior mean of &
a—1
2 1 x 2 2
s :H;(yi —p)? isthe MLE of &
¢ =——— s the credibility factor (assigned to the MLE).
n+2a—2
Likewise,
+ns?/2 23+ns’
Mode(o? | y) = b__ g - = b -
a+l a+(/2)+1 2a+n+2
= s, + 5
n+2a+2)" n+2a+2
where
28 24 Lo+l 3
N+2a+2 n+2a+2 F o+l
_ 2972 | Mode(o?)
n+2a+2
_ [1—#] Mode(o?) .
n+2a+2

We see that the posterior mode of o is a credibility estimate of the form

Mode(o? | y) = (1—d)Mode(c?) + ds’,
where:

Mode(o?) = B is the prior mode of o2
a+1
1¢ .
s’ :H;(yi —pu)? isthe MLE of ¢°
(i.e. mode of the likelihood function)

= ————— is the credibility factor (assigned to the MLE).
n+2a+2
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R Code for Exercise 1.21

# (a) Inference on lambda

y =¢(8.4, 10.1, 9.4); n = length(y); mu=8; alp=3; bet=2; options(digits=4)
a=alp+n/2; sigmu2=mean((y-mu)”2); b=bet+(n/2)*sigmu2

c(a,sigmu2,b) # 4.500 2.177 5.265

lampriormean=alp/bet; lamlikemode=1/sigmu2; lampriormode=(alp-1)/bet
lampriormedian= ggamma(0.5,alp,bet)

lampostmean=a/b; lampostmode=(a-1)/b; lampostmedian=ggamma(0.5,a,b)
lamcpdr=ggamma(c(0.025,0.975),a,b)

c(lampriormean,lamlikemode,lampriormode,lampriormedian,
lampostmode,lampostmedian, lampostmean,lamcpdr)
# 1.5000 0.4594 1.0000 1.3370 0.6648 0.7923 0.8547 0.2564 1.8065

lamv=seq(0,5,0.01); prior=dgamma(lamv,alp,bet)
post=dgamma(lamv,a,b); like=dgamma(lamv,a-alp+1,b-bet+0)

X11(w=8,h=4); par(mfrow=c(1,1))

plot(c(0,5),¢(0,1.9),type="n",
main="Inference on the model precision parameter",
xlab="lambda",ylab="density/likelihood")
lines(lamv,prior,lty=1,lwd=2); lines(lamv,like,lty=2,lwd=2);
lines(lamv,post,lty=3,lwd=2)
points(c(lampriormean,lampriormode, lampriormedian,
lamlikemode,lampostmode,lampostmedian,lampostmean),
rep(0,7),pch=c(1,1,1,2,4,4,4),cex=rep(1.5,7),lwd=2)
points(lamcpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2))

legend(0,1.9,
c("Prior density","Likelihood function (normalised)","Posterior density"),
Ity=c(1,2,3),lwd=c(2,2,2))
legend(3,1.9,c("Prior mode, median\n & mean (left to right)",
"MLE"), pch=c(1,2),pt.cex=rep(1.5,4),pt.lwd=rep(2,4))
legend(3,1,c("Posterior mode, median\n & mean (left to right)",
"95% CPDR bounds"), pch=c(4,16),pt.cex=rep(1.5,4),pt.Iwd=rep(2,4))
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# (b) Inference on sigma2 = 1/lambda

sig2priormean=bet/(alp-1); sig2likemode=sigmu2; sig2priormode=bet/(alp+1)
sig2postmean=b/(a-1); sig2postmode=b/(a+1);
sig2postmedian=1/lampostmedian

sig2cpdr=1/ggamma(c(0.975,0.025),a,b); sig2priormedian= 1/lampriormedian

c(sig2priormean, sig2likemode, sig2priormode, sig2priormedian,
sig2postmode, sig2postmedian, sig2postmean, sig2cpdr)
#1.0000 2.1767 0.5000 0.7479 0.9573 1.2622 1.5043 0.5535 3.8994

sig2v=seq(0.01,10,0.01); prior=dgamma(1/sig2v,alp,bet)/sig2v/2
post=dgamma(1/sig2v,a,b)/sig2v/2;
like=dgamma(1/sig2v,a-alp-1,b-bet+0)/sig2v/2

plot(c(0,10),c(0,1.2),type="n",
main="Inference on the model variance parameter",
xlab="sigma”2 = 1/lambda",ylab="density/likelihood")
lines(sig2v,prior,lty=1,Ilwd=2); lines(sig2v,like,lty=2,lwd=2)
lines(sig2v,post,lty=3,lwd=2)

points(c(sig2priormean, sig2priormode, sig2priormedian, sig2likemode,
sig2postmode, sig2postmedian,sig2postmean),
rep(0,7),pch=c(1,1,1,2,4,4,4),cex=rep(1.5,7),lwd=2)

points(sig2cpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2))

legend(1.8,1.2,
c("Prior density","Likelihood function (normalised)","Posterior density"),
Ity=c(1,2,3),Iwd=c(2,2,2))
legend(7,1.2,c("Prior mode, median\n & mean (left to right)",
"MLE"), pch=c(1,2),pt.cex=rep(1.5,4),pt.lwd=rep(2,4))
legend(6,0.65,c("Posterior mode, median\n & mean (left to right)",
"95% CPDR bounds"), pch=c(4,16),pt.cex=rep(1.5,4),pt.Iwd=rep(2,4))

# abline(h=max(like),lty=3) # Checking likelihood and MLE are consistent
# fun=function(t){ dgamma(1/t,a-alp-1,b-bet+0)/t*2 }
# integrate(f=fun,lower=0,upper=Inf)Svalue

# 1 Checking likelihood is normalised
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# (c) Inference on sigma = 1/sqgrt(lambda)

sigpriormean=sqrt(bet)*gamma(alp-1/2)/gammalalp);
siglikemode=sqrt(sigmu?2); sigpriormode=sqrt(2*bet/(2*alp+1))
sigpostmean= sqrt(b)*gamma(a-1/2)/gamma(a)

sigpostmode= sqrt(2*b/(2*a+1)); sigpostmedian=sqrt(sig2postmedian)
sigcpdr=sqrt(sig2cpdr); sigpriormedian= sqrt(sig2priormedian)

c(sigpriormean, siglikemode, sigpriormode, sigpriormedian,
sigpostmode, sigpostmedian, sigpostmean, sigcpdr)
#0.9400 1.4754 0.7559 0.8648 1.0262 1.1235 1.1836 0.7440 1.9747

sigv=seq(0.01,3,0.01); prior=dgamma(1/sigv/2,alp,bet)*2/sigv*3
post=dgamma(1/sigv”2,a,b)*2/sigv”3;
like=dgamma(1/sigv*2,a-alp-1/2,b-bet+0)*2/sigv”3

plot(c(0,2.5),c(0,4.1),type="n",
main="Inference on the model standard deviation parameter",
xlab="sigma = 1/sqrt(lambda)",ylab="density/likelihood")

lines(sigv,prior,lty=1,lwd=2)

lines(sigv,like,lty=2,lwd=2)

lines(sigv,post,lty=3,lwd=2)

points(c(sigpriormean, sigpriormode, sigpriormedian, siglikemode,
sigpostmode, sigpostmedian,sigpostmean),
rep(0,7),pch=c(1,1,1,2,4,4,4),cex=rep(1.5,7),lwd=2)

points(sigcpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2))

legend(0,4.1,
c("Prior density","Likelihood function (normalised)","Posterior density"),
Ity=c(1,2,3),lwd=c(2,2,2))
legend(1.7,4.1,c("Prior mode, median\n & mean (left to right)",
"MLE"), pch=c(1,2),pt.cex=rep(1.5,4),pt.lwd=rep(2,4))
legend(1.7,2.3,c("Posterior mode, median\n & mean (left to right)",
"95% CPDR bounds"), pch=c(4,16),pt.cex=rep(1.5,4),pt.Iwd=rep(2,4))
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2.1 Frequentist characteristics of Bayesian
estimators

Consider a Bayesian model defined by a likelihood f(y|#) and a prior
f (0), leading to the posterior
f(0)f(yl0)
fOly)=—"—-""
f(y)

Suppose that we choose to perform inference on 6 by constructing a

point estimate 0 (such as the posterior mean, mode or median) and a
(1— @) -level interval estimate | =(L,U) (such as the CPDR or HPDR).

Then @, 1, L and U are functions of the data y and may be written é(y),

I(y), L(y) and U(y). Once these functions are defined, the estimates
which they define stand on their own, so to speak, and may be studied
from many different perspectives.

Naturally, the characteristics of these estimates may be seen in the
context of the Bayesian framework in which they were constructed.
More will be said on this below when we come to discuss Bayesian
decision theory.

However, another important use of Bayesian estimates is as a proxy for
classical estimates. We have already mentioned this in relation to the
normal-normal model:

(Yarees Yo | 1) ~iid N(p,0%)

pu~N (,%105) )
where the use of a particular prior, namely the one specified by o, =,
led to the point estimate 1 = i(y) =y and the interval estimate

1(y) = (L(Y)U(Y) = (V£ 2,,0/n).

As we noted earlier, these estimates are exactly the same as the usual
estimates used in the context of the corresponding classical model,
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Yireons Y, ~iid N(,07),
where 1 is an unknown constant and o is given.

Therefore, the frequentist operating characteristics of the Bayesian
estimates are immediately known. In particular, we refer to the fact that
the frequentist bias of /. is zero, and the frequentist coverage probability

of I is exactly 1— « . These statements mean that the expected value of
y given g is u for all possible values of 4, and that the probability of

w being inside I given p is 1—« for all possible values of .

More generally, in the context of a Bayesian model as above, we may
define the frequentist bias of a Bayesian point estimate

6=46(y)
as A
B, = E{d(y) -0 6}.

Also, we may define the frequentist relative bias of 0 as

R(9 — E(é(y)_g
0

0j=% (6+0).

Furthermore, we may define the frequentist coverage probability (FCP)
of a Bayesian interval estimate

I(y) = (L(y), U(y))

C,=P{0el(y)|6}.

as

Thus, for the normal-normal model with o, = o, we may write:
B, =E{u(Y)-u|l@3=E(Y 1) pu=pu-u=0VueR
R =2:0 (u#0)
y7;

U

C,=Pluel(y)|s}

=P V_Za/Zi</’l<7+Za/2i‘/’l =l-a V#Em
n Jn

The above analysis is straightforward enough. However, in the case of
an informative prior (one with o, <), or in the context of other
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Bayesian models, the frequentist bias of a Bayesian point estimate (B,)

and the frequentist coverage probability of a Bayesian interval estimate
(C,) may not be so obvious. Working out these functions may be useful

for adding insight to the estimation process as well as for deciding
whether or not to use a set of Bayesian estimates as frequentist proxies.

Exercise 2.1 Frequentist characteristics of estimators in the
normal-normal model

Consider the normal-normal model:
(Ypre-o Yy |10 ~ iiid N (1, 0%)
11~ N(po,09)

Work out general formulae for the frequentist and relative bias of the
posterior mean of x, and for the frequentist coverage probability of the

1-«a HPDR for .

Produce graphs showing a number of examples of each of these three
functions.

Solution to Exercise 2.1

Recall that

(1Y)~ N(p,,07),
where:
e =0 —K)p, +Ky is wp’s posterior mean
2 o’ . , . .
ol =k—is u’s posterior variance
n

k = 2, 2

= is a credibility factor.
n+o° /o,

Also, recall that ;’s HPDR (and CPDR) is

(IL[/* :i: Zn//ZO-*) .
Using these results, we find that the frequentist bias of the posterior
mean of  is

B, =E(u—u|u)=Q-K)u +KE(Y | 1) — p
=(1-K)py+kp—u
=(1-K)(1 — 1) -
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Also, the frequentist relative bias of that mean is
R =R _ A=K (= p)
Yoop 2

:(1—k)(%—1j (u#0).

Further, the frequentist coverage probability of the 1—« HPDR for p is
C,=Plue(u*z,,0.)|u}
= P(,u*—z 120 < U< e+ 7,0

#)

= P (e = 2,500 < pt, 1 < o+ 2,00 1)

((1— K)o +KY —2,,,0. < pt, £ <(1=K)py +Ky + 2,0 ,u)

(_< PRty + 2,00 1= (K)o = 2,500 7‘ ﬂ)
k k

=P(y<b(u), a(u) <y|u),

Il
-
<

(=K + 2,0,
k
a(/J) — H—= (1_ k)l:'lo = 2,0+« '

b(u) =+

Thus, we find that
C,=P(a(u) <y <b(u)|u)

P(a(ﬂ) p_Y-u _blu)- 4l ]
oln O'/\/_ 0/\/—|

a(u) —u b(x) — p
P( ol CS a/fj

- i Y-H| |-
where Z ~ N(0,1), since (G/\/ﬁ"u] N (0,1)
b(x) — p a(u)—u
_CD( 0/«/_] (D( oln )

Note: Here, ® denotes the standard normal cdf.
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Figures 2.1, 2.2 and 2.3 (pages 66 and 67) show B,, R, and C, for
selected values of o,, with n=10, x4, =1, o =1 and a =0.05 in each

case. The strength of the prior belief is represented by o,, with large
values of this parameter indicating relative ignorance.

In Figure 2.1, we see that, for any given value of ., the frequentist bias
B, of the posterior mean . =E(u|y) converges to zero as the prior

belief tends to total ignorance, that is, in the limitas o, — .

Also, B, — u, — i as the prior belief tends to complete certainty, that
is, in the limitas o, —> 0.

Note: One of the thin dotted guidelines in Figure 2.1 shows the function
B, =, —u in this latter extreme case of ‘absolute’ prior belief that

1= 1, . Inall of the examples, x, =1.

In Figure 2.2, we see that, for any given value of u, the frequentist
relative bias R, of the posterior mean g =E(u|y) converges to zero

as o, > . Also, R, = (1, / 1) -1 as o, >0.

Note: The curved thin dotted guidelines in Figure 2.2 shows the function
R, = (1 / 1) —1 in this latter extreme case of ‘absolute’ prior belief that

M=y -

In Figure 2.3, we see that, for any given value of u, the frequentist
coverage probability C, of the 1-¢« (i.e. 0.95 or 95%) HPDR, namely

(u.£27,,0.), convergesto 1-a as o, —> «.

al

Also, C, — 0 as o,—0, except at exactly u =y, where C, >1;
thus, C, > 1(u=4,) as o,—>0 (where | denotes the standard
indicator function).

Note: In Figure 2.3, the thin dotted horizontal guidelines show the
values 0, 0.95 and 1.
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Figure 2.1 Frequentist bias in Exercise 2.1
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Figure 2.2 Frequentist relative bias in Exercise 2.1
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Figure 2.3 Frequentist coverage probability in Exercise 2.1

(=]
A P ot .-.—- -“I—-
------- - ‘o” * T . --—"""—sq_.
- ] \ ‘.
S ' \
. { \
w ," , 1 ’ .
S R ! \ .
Lt — sig0=0.1 ! \ .
. - = s5ig0=0.2 \ ..
= | --- §ig0=05 { .
° e - = sigo=10| \ .
! \
s ! !
! \
)
o 2 \
o

mu

R Code for Exercise 2.1

biasfun = function(mu,n,sig,mu0,sig0){

k = n/(n+(sig/sig0)*2)

(1-k)*mu0-mu*(1-k)

}

coverfun = function(mu,n,sig,mu0,sig0,alp=0.05){

k =n/(n + (sig/sig0)"2)

sigstar = sig*sqgrt(k/n); z=qnorm(1-alp/2)
a=( mu-(1-k)*mu0-z*sigstar )/ k

b=( mu-(1-k)*muO+z*sigstar )/ k

u= pnorm((b-mu)/(sig/sqrt(n)))

I= pnorm((a-mu)/(sig/sqrt(n)))

u-| }

X11(w=8,h=5.5); par(mfrow=c(1,1))
muvec=seq(-5,5,0.01); mu0=1; sig=1; n=10; sigOv=c(0.1,0.2,0.5,1)

plot(c(-2,2),c(-1,3),type="n",xlab="mu",ylab=
abline(1,-1,Ity=3); abline(v=0,Ity=3); abline(h=0,lty=3)

,main=" n)

lines(muvec,biasfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sigOv[1]),

lty=1,lwd=3)
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lines(muvec,biasfun(mu=muvec,n=n,sig=sig, mu0=mu0,sig0=sig0v[2]),
lty=2,lwd=3)

lines(muvec,biasfun(mu=muvec,n=n,sig=sig, mu0=mu0,sig0=sig0v[3]),
lty=3,lwd=3)

lines(muvec,biasfun(mu=muvec,n=n,sig=sig, mu0=mu0,sig0=sig0v[4]),
lty=4,lwd=3)

legend(1,2.8,c("sig0=0.1","sig0=0.2","sig0=0.5","sig0=1.0"),
lty=1:4,Iwd=rep(3,4))

plot(c(-2,2),c(-2,4),type="n",xlab="mu",ylab="",main="")

abline(v=0,lty=3); abline(h=0,Ity=3); lines(muvec, mu0/muvec-1,lty=3)

lines(muvec, biasfun(mu=muvec,n=n,sig=sig,mu0=mu0, sig0=sigOv[1])/muvec,
lty=1,lwd=3)

lines(muvec, biasfun(mu=muvec,n=n,sig=sig,mu0=mu0, sig0=sigOv[2])/muvec,
lty=2,lwd=3)

lines(muvec, biasfun(mu=muvec,n=n,sig=sig,mu0=mu0, sig0=sigOv[3])/muvec,
lty=3,lwd=3)

lines(muvec, biasfun(mu=muvec,n=n,sig=sig,mu0=mu0, sig0=sigOv[4])/muvec,
lty=4,lwd=3)

legend(-2,4,c("sig0=0.1","sig0=0.2","sig0=0.5","sig0=1.0"),
lty=1:4,lwd=rep(3,4))

plot(c(-1,3),c(0,1),type="n" xlab="mu" ylab=""

abline(h=c(0,0.95,1),lty=3)

lines(muvec, coverfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sig0v[1]),
lty=1,lwd=3)

lines(muvec, coverfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sig0v[2]),
lty=2,lwd=3)

lines(muvec, coverfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sig0v[3]),
lty=3,lwd=3)

lines(muvec, coverfun(mu=muvec,n=n,sig=sig,mu0=mu0,sig0=sig0v[4]),
lty=4,lwd=3)

legend(-0.55,0.6,c("sig0=0.1","sig0=0.2","sig0=0.5","sig0=1.0"),

Ity=1:4,lwd=rep(3,4))

,main="")

Exercise 2.2 Frequentist characteristics of estimators in the
normal-gamma model

Consider the normal-gamma model given by:
(Yy.-oor Yy | N) =i N (11,17 )
A~ Gamma(a, 7).
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(a) Work out general formulae for the frequentist bias and relative bias
of the posterior mean of o> =1/X, and for the frequentist coverage

probability of the 1—« CPDR for o°.

Produce graphs showing examples of each of these three functions.

(b) Attempt to find a single prior under this model (that is, a single
suitable pair of values «, #) which results in both:

(i) a Bayesian posterior mean of o that is unbiased (in the

frequentist sense) for all possible values of &*; and

(ii) a CPDR for ¢° that has frequentist coverage probabilities

exactly equal to the desired coverage for all possible values

of o2.

Solution to Exercise 2.2

(a) Recall that the posterior mean of o2

5 — E(o?|y) = >,
a—1

where: a:a+g , b=p+—s

_ B+(n12)s;  28+ns]

Thus, &2

So the frequentist bias of &° is

B.= E(5°—0°|0?)

a+(n/2)—=1 2a+n—2

2
S,

%i(yi )2

__a3+nE@ju¥)_Uz_ 23+ no?
200+n—2

T 2a4n-2

Note: This follows because, conditional on &2, it is true that

nsZ n . 2
—7§::§:{L——E]-X%n) (with mean n).
g i—1 g

Therefore the frequentist relative bias of 52 is

B, _(28/0")+n_,

2

R,=
o 2a0+n—2

a

2
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Note: We see that for any fixed o°, « and g itis true that
B, ,R,—0asn—o.

Thus the posterior mean of o2

frequentist sense.

is asymptotically unbiased, in the

Next, recall that the 1— A CPDR for o? =1/ 1 is

2B+ns’ 23+ns?
I — I(y) — /B_I_ i ’ 6—'_ y ,
u
where: = X4, (2a+n) = 2(2 +n)(1 Al2)
U—Xl w2(2a+n)=F (2 +n)(A/Z)

So the frequentist coverage probability of | is
C,= P{a2 e I(y)|c72}

23 +ns> 23 +ns>
:P[—'B ”<o-2<—ﬂ “
v u

g

az]
_ 2p 2p
=F o (V_?j ~Frw (u _?j '

Figures 2.4, 2.5 and 2.6 (pages 72 and 73) show B ,, R , and C _, for
selected values of « and g, with n =10 and A = 0.05 in each case.

= P{a2 € I(y)|0'2}
I:{nsz 28 2B

L<v-—— u——<—2
O J o O

(b) Observe that under the prior given by o =1 and =0
(that is, f(1)oc A% oc1), it is true that:
« the posterior mean of o2 equals the MLE, namely sj, and so is
unbiased
2 2
«the 1— A CPDR for o* is | — "5, — "5, ,
Xaz(N+2) X1 a(N+2)

which has coverage probability less than 1— A for all o
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Also, under the prior given by = =0 (i.e. f(1)c A" ocl/A),
it is true that:
« the posterior mean of o equals sj /(1—2/n) and so is biased

« the 1— A CPDR for & is the same as the classical Cl, namely
nSZ 2

1 1
X/Z-\/Z (n) X12—A/2 (n)

2
g .

], and so has coverage exactly 1— A for all

We see that there is no single gamma prior for 1 =1/c° which results
in both:

(i) a Bayesian posterior mean of o that is unbiased (in the
frequentist sense) for all possible values of ¢ ; and

(i) a CPDR for ¢ that has frequentist coverage probabilities
exactly equal to the desired coverage for all possible values
of o2.

Note: It is easy to modify or ‘correct’” the posterior mean under
a = [ =0 so that it becomes unbiased. Explictly, if « = =0, then

no?

n—2

E(c’|0%)=

So an unbiased estimate of o2 is
, h—=2., n—2 0+(n/2)s’
g = g = X
n n 0+(n/2)-1

2 -
=s, (i.e. the MLE).
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Figure 2.4 Frequentist bias in Exercise 2.2
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Figure 2.5 Frequentist relative bias in Exercise 2.2
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Figure 2.6 Frequentist coverage probability in Exercise 2.2
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R Code for Exercise 2.2

biasfun = function(sig2,n=10,alp=0,bet=0){ (2*bet+n*sig2)/(2*alp+n-2)-sig2 }

coverfun = function(sig2,n=10,alp=0,bet=0,A=0.05){
u = gchisq(A/2,2*alp+n); v = qchisq(1-A/2,2*alp+n)
pchisg(v-2*bet/sig2, n) - pchisq(u-2*bet/sig2, n) }

X11(w=8,h=5.5); par(mfrow=c(1,1))
sig2vec=seq(0.01,5,0.01); n=10; alpv=c(0.1,1,5); betv=c(0.1,1,5)

plot(c(0,5),c(-2,1),type="n",xlab="sigma’2",ylab=

abline(h=0,lty=3)

lines(sig2vec,biasfun(sig2=sig2vec,alp=0,bet=0), Ity=1,lwd=3)
lines(sig2vec,biasfun(sig2=sig2vec,alp=0,bet=1), Ity=2,lwd=3)
lines(sig2vec,biasfun(sig2=sig2vec,alp=1,bet=0), Ity=3,lwd=3)

lines(sig2vec,biasfun(sig2=sig2vec,alp=1,bet=1), Ity=4,lwd=3)
legend(0,-0.5,c("alp=0, bet=0","alp=0, bet=1","alp=1, bet=0","alp=1, bet=1"),

lty=1:4,lwd=rep(3,4))

,main="")
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plot(c(0,3),c(-1,6),type="n",xlab="sigma”2",ylab="",main="")
abline(h=0,Ity=3); abline(v=0,lty=3)

lines(sig2vec,biasfun(sig2=sig2vec,alp=0,bet=0)/ sig2vec, lty=1,lwd=3)

lines(sig2vec,biasfun(sig2=sig2vec,alp=0,bet=1)/ sig2vec, lty=2,lwd=3)

lines(sig2vec,biasfun(sig2=sig2vec,alp=1,bet=0)/ sig2vec, Ilty=3,lwd=3)

lines(sig2vec,biasfun(sig2=sig2vec,alp=1,bet=1)/ sig2vec, lty=4,lwd=3)

legend(1.5,6,c("alp=0, bet=0","alp=0, bet=1","alp=1, bet=0","alp=1, bet=1"),
lty=1:4,Iwd=rep(3,4))

plot(c(0,2),c(0,1),type="n",xlab="sigma”2",ylab="",main="")

abline(h=c(0,0.95,1),lty=3)

lines(sig2vec, coverfun(sig2=sig2vec,n=10,alp=0,bet=0,A=0.05), lty=1,lwd=3)

lines(sig2vec, coverfun(sig2=sig2vec,n=10,alp=0,bet=1,A=0.05), lty=2,lwd=3)

lines(sig2vec, coverfun(sig2=sig2vec,n=10,alp=1,bet=0,A=0.05), lty=3,Iwd=3)

lines(sig2vec, coverfun(sig2=sig2vec,n=10,alp=1,bet=1,A=0.05), lty=4,lwd=3)

legend(1,0.6,c("alp=0, bet=0","alp=0, bet=1","alp=1, bet=0","alp=1, bet=1"),
lty=1:4,lwd=rep(3,4))

2.2 Mixture prior distributions

So far we have considered Bayesian models with priors that are limited
in the types of prior information that they can represent. For example,
the normal-normal model does not allow a prior for the normal mean
which has two or more modes. If a non-normal class of prior is used to
represent one’s complicated prior beliefs regarding the normal mean,
then that prior will not be conjugate, and this will lead to difficulties
down the track when making inferences based on the nonstandard
posterior distribution.

Fortunately, this problem can be addressed in any Bayesian model for
which a conjugate class of prior exists by specifying the prior as a
mixture of members of that class.

Generally, a random variable X with a mixture distribution has a density
of the form

F00=3c,f. (%),

where each f_(x) is a proper density and the c_ values are positive and
sum to 1.
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If our prior beliefs regarding a parameter ¢ do not follow any single
well-known distribution, those beliefs can in that case be conveniently
approximated to any degree of precision by a suitable mixture prior
distribution with a density having the form

£0)=Y ¢, f.(0).

It can be shown (see Exercise 2.3 below) that if each component prior
f,(0) is conjugate then f(8) is also conjugate. This means that 9°’s

posterior distribution is also a mixture with density of the form
M
f@ly)=2.c.f.(01y), (2.1)
m=1

where f_(€]y) is the posterior implied by the mth prior f_(6) and is
from the same family of distributions as that prior.

Exercise 2.3 Binomial-beta model with a mixture prior

(a) Consider the following Bayesian model:
(y0) ~ Bin(n,0)

f (6) = kaeta(al,bl) (0) + (1_ k) fBeta(az,bz)(e) !
where n, k and the a;, b, are specified constants.

Note: Here, fg,. . (t) denotes the density at t of the beta distribution
with parameters a and b (and mean a/(a+Db)).

Find the posterior distribution of # and shows that 6’s prior is
conjugate. Then create a figure showing the prior, likelihood and
posterior for the situation defined by:

n=5k=3/4,a =8, b =25 a,=20, b,=20andy = 4.

Also calculate the prior mean of @, the posterior mean of 6 and the
MLE of 6. Then mark these three points in the figure.

(b) Show that any mixture of conjugate priors is also conjugate and

derive a general formula which could be used to calculate the mixture
weights ¢/, in (2.1) above.
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Solution to Exercise 2.3
(a) The posterior density is
f(@1y)oc £(0)f(yl0)

a-1m g1 Q-1 b1
B ) SR )

]xey(l—e)“y
B(a,.b) B(a,.b,)

Bty b+ n—y)|f0e 7)o

a B(a,,b) }[ B(a1+y,b1+n—y)]

_ (a2+y)-171 _ p)(b+n—y)-1
+{(1_k) B(a, +y,b, +n y)} 0 (1 6) ]
B(azibz) B(a2+y’b2+n_y)
Thus
f@y)oxcf(@y)+c,f,@01y),
where:
C _k B(a1+y1b1+n_y)
=
B(a,,b)
c, :(1—k) B(a2+ y’b2+n_y)

B(a,,b,)

Q(ai+Y)_1 (1_ 9)(bi +n—y)-1
f)y)=f 0) =
.( | y) Beta(aﬁry,bﬁrn*)’)( ) B(ai + y’bi +n— y)

(the posterior density corresponding to 6 ~ Beta(a,,b,)
as prior).

,0<0<1

Now,
[ f@1y)ydo=1,
and so
f@ly)=c fBeta(a1+y,b1+n7y) (0)+@1—c) fBeta(a2+y,b2+n7y) ),
where
Cl

C= .
C,+¢C,
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Note: This ensures that f f(@)y)dd=cx1+(1—c)x1=1.

We see that the prior f(#) and posterior f(6|y) are in the same family,

namely the family of mixtures of two beta distributions. Therefore the
mixture prior is conjugate.

For the situation where
n=5k=3/4,a =8, b =25, a, =20, b,=20and y = 4,
we find that:

* the prior mean is

EQ - k( ajbljJr(l_k)[Lbj = 0.3068

a1+ 2+2

« the maximum likelihood estimate is
y/n=0.8

* the posterior mean is

E<e|y):c(ﬂj+<1_c)(ﬂ} 04772,
811 n

+b, +n a,+b, +

Figure 2.7 shows the prior density f(0), the likelihood function L(#),
and the posterior density f(6]y), as well as the prior mean, the MLE
and the posterior mean.

Note: The likelihood function in Figure 2.7 has been normalised so that
the area underneath it is exactly 1. This means that this likelihood
function is identical to the posterior density under the standard uniform
prior’ Ie Under fU 0,1) (0) = fBeta(l,l) (0) ' ThUS, L(G) = fBeta(l+y,1+n7y) (9)

Figure 2.7 also shows the two component prior densities and the two
component posterior densities. It may be observed that, whereas the
lower component prior has the highest weight, 0.8, the opposite is the
case regarding the component posteriors. For these, the weight
associated with the lower posterior is only 0.2583. This is because the
inference is being ‘pulled up’ in the direction of the likelihood (with the
posterior mean being between the prior mean and the MLE, 0.8).
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Figure 2.7 Densities and likelihood in Exercise 2.3

== Prior —— Component priors O Prior mean
== Likelihood --+- Component posteriors NOMLE
= = Posterior X Posterior mean

density/likelihood

theta

(b) Suppose that @ has a mixture prior of the general form
M
f(0)=2 c.f.(0),
m=1

where each f_(0) is conjugate for the data model.

Then the posterior density is

F(O]y)ec f(9)f(YI9)=(ZCmfm(9)Jf(vle)

=ikﬁﬂmfww»=§{@JAW{L&MQQ@}’

m=1 fm(y)
where f_(y) =] f.,(0) f(y|6)da is the unconditional density of the data
under the mth prior, f_(&). Thus

(01) % Yk, 1, 019),
where i
k,=c,f,(y)and f (6| y):%&w

Is the posterior density of @ under the mth prior, f_(0).
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It follows that
M
f@1y)=> c.f.(01Y),
m=1

where ¢, =k, /(k, +...+Ky,) .

Thus @°’s posterior is a mixture of distributions from the same families
to which the components of #’s mixture prior belong, respectively. This
shows that €’s mixture prior is conjugate. Note that the component prior
distributions can be from different classes, so long as each is conjugate
in relation to its own class.

R Code for Exercise 2.3

n=5; k=3/4; a1=8; b1=25; a2=20; b2=20; y=4; thetav=seq(0,1,0.01)
priorl=dbeta(thetav,al,bl); prior2=dbeta(thetav,a2,b2)
postl=dbeta(thetav,al+y,bl+n-y); post2=dbeta(thetav,a2+y,b2+n-y)
prior = k*priorl + (1-k)*prior2

cl=k*beta(al+y,bl+n-y)/beta(al,bl); c2=(1-k)*beta(a2+y,b2+n-y)/beta(a2,b2)
c=c1/(cl+c2); post=c*postl + (1-c)*post2; options(digits=4); c # 0.2583
like=dbeta(thetav,1+y,1+n-y) # likelihood = post. under U(0,1)=beta(1,1) prior

X11(w=8,h=5.5)

plot(c(0,1),c(0,8),type="n" xlab="theta",ylab="density/likelihood")

lines(thetav,prior,lty=1,lwd=4)

lines(thetav,like,lty=2,lwd=4)

lines(thetav,post,Ity=3,lwd=4)

legend(0,8,c("Prior","Likelihood","Posterior"),lty=c(1,2,3),lwd=c(4,4,4))

lines(thetav,priorl,lty=1,lwd=2)

lines(thetav,prior2,lty=1,lwd=2)

lines(thetav,post1,Ity=3,lwd=2)

lines(thetav,post2,Ity=3,lwd=2)

legend(0.3,8,c("Component priors","Component posteriors"),
Ity=c(1,3),lwd=c(2,2))

mle=y/n; priormean=k*al/(al+b1)+(1-k)*a2/(a2+b2)

postmean=c*(al+y)/(al+bl+n) + (1-c)*(a2+y)/(a2+b2+n)

points(c(priormean,mle,postmean),c(0,0,0),pch=c(1,2,4),cex=c(1.5,1.5,1.5),
Iwd=c(2,2,2))

c(priormean,mle,postmean) # 0.3068 0.8000 0.4772

legend(0.7,8,c(" Prior mean"," MLE"," Posterior mean"),
pch=c(1,2,4),pt.cex=c(1.5,1.5,1.5),pt.lwd=c(2,2,2))
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2.3 Dealing with a priori ignorance

The Bayesian approach requires a prior distribution to be specified even
when there is complete (or total) a priori ignorance (meaning no prior
information at all). This feature presents a general and philosophical
problem with the Bayesian paradigm, one for which several theoretical
solutions have been advanced but which does not yet have a universally
accepted solution. We have already discussed finding an uninformative
prior in relation to particular Bayesian models, as follows.

For the normal-normal model defined by (y,,..., Y, | p) ~ iid N(u,0?)
and g~ N(u,,0¢), an uninformative prior is given by o, =, that is,
f(u) xl, peRr.

For the normal-gamma model defined by (y,,..., Yy, | ©) ~1id N(u,1/ )
and A ~Gamma(«, 3), an uninformative prior is given by a=4=0,
thatis, f(\) oc1/A, A>0.

For the binomial-beta model defined by (y|#)~ Binomial(n,#) and
0 ~ Beta(a, 3) (having the posterior (0|y)~ Beta(a+Yy,5+n—Y)),
an uninformative prior is the Bayes prior given by a = =1, that is,
f(#)=1,0<6<1. This is the prior that was originally advocated by
Thomas Bayes.

Unlike for the normal-normal and normal-gamma models, more than one
uninformative prior specification has been proposed as reasonable in the
context of the binomial-beta model.

One of these is the improper Haldane prior, defined by o =3=0, or

f(H)oc;, 0<6o<1.
6(1-6)
Under the prior 6 ~ Beta(a, 3) generally, the posterior mean of 6 is

é:E(Qly): (a+y) __aty .
(a+y)+(B+n—-y) a+B+n

This reduces to the MLE y/n under the Haldane prior but not under the
Bayes prior. In contrast, the Bayes prior leads to a posterior mode which
is equal to the MLE.
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The Haldane prior may be considered as being most appropriate for
allowing the data to ‘speak for itself’ in cases of a priori ignorance.

However, the Haldane prior leads to an improper and degenerate
posterior if the data y happens to be either 0 or n. Specifically:
y=0 = (0|y)~ Beta(0,n), or equivalently, P(6 =0|y) =1
y=n = (0|y)~ Beta(n,0), or equivalently, P(6 =1|y)=1.

So in each case, point estimation is possible but not interval estimation.

No such problems occur using the Bayes prior. This is because that prior
is proper and so cannot lead to an improper posterior, whatever the data
may be. Interestingly, there is a third choice which provides a kind of
compromise between the Bayes and Haldane priors, as described below.

2.4 The Jeffreys prior

The statistician Harold Jeffreys devised a rule for finding a suitable
uninformative prior in a wide variety of situations. His idea was to
construct a prior which is invariant under reparameterisation. For the
case of a univariate model parameter &, the Jeffreys prior is given by
the following equation (also known as Jeffreys’ rule):

£(0) oc J1(0)

where 1(8) is the Fisher information defined by
a 2

1(@)=E<{| —Ilog f a)|16;.

0) {(ae gf(yl )j }

Note 1: If log f(y|@) is twice differentiable with respect to 4, and
certain regularity conditions hold, then

62
1(6) :—E{ag2 log f(y|6) 9}.

Note 2: Jeffreys’ rule also extends to the multi-parameter case (not
considered here).

The significance of Jeffreys’ rule may be described as follows. Consider
a prior given by f () oc \/1(8) and the transformed parameter ¢ = g(@),
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where g is a strictly increasing or decreasing function. (For simplicity,
we only consider this case.) Then the prior density for ¢ is

f(g) o 1(6) 2—9
8«9
op

ol -}

_ E{(%log f(y|e)%f 9}

=\/E{(%Iog f(y|¢)}2 ¢}

1(#) -
Thus, Jeffreys’ rule is ‘invariant under reparameterisation’, in the sense
that if a prior is constructed according to

f(0) cJ1(0),

then, for another parameter ¢ = g(#), it is also true that

f(4) o J1(9) -

Exercise 2.4 Jeffreys prior for the normal-normal model

by the transformation rule

Find the Jeffreys prior for p if (y,,..., Y, | ) ~iid N(u,0%), where o is
known.

Solution to Exercise 2.4

Here: f(y|u)o’éﬂexp{—22 —uf}:exp{—zizi(yi—ﬂf}

log f(y|u)=- 212 > (y,—u)*+c (where c is a constant)
O izt

0 1 n _

a|09f(y|#)=— 2Z‘,Z(yi—ﬂ)l(—l)——z(y )

(ailog f(ym)j :”—4(7 [
i
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u}— E{”—AV—#)Z u}
(o2

2 2

=LV (T 1) =

Therefore the Fisher information is

l(u)—E{[ailog f(ym)j
u

azn
n

Q|3

It follows that the Jeffreys prior is f (u) oc /1 (u) = /Lz oﬂcl, ueR.
o

Note 1: This is the same prior as used earlier in the uninformative
case.

Note 2: The Fisher information here can also be derived as follows:
2

0
slog f(y|u)=-
o

- |(y)=_5{6502 log f (y|0) 9}:-5(-%]:%.

Exercise 2.5 Jeffreys prior for the normal-gamma model

Find the Jeffreys prior for X if (y,,...,y, |A\) ~iid N(x,1/X), where
is known.

Solution to Exercise 2.5

Here: f(yu)ocm“exp{——(y. m} z““exp{—ii(yi—uf}

1

log f(y|A) _—Iog/l—EZ(y, 1)? +c¢ (where c is a constant)

i=1

olog f(y|4) _ n Z( 3 OClogf(ylA)_ n
oA 20 2% 042 2

n
Ab=—ro.
}2@2

So the Fisher information is

I(/I):—E{az log fz(yli) ﬂ}:—E{— n2
oA 24
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So the Jeffreys prioris f(4)oc/I(4) = YE oc

Note 1: This is the same prior as used earlier in the uninformative
case.

Note 2: Another way to obtain the the Fisher information is to first write

olog f(y|4) n _1,
a1 o4 21{ IZI:(Y. ) }—2/1@ a),

where: g = 2(1/\/»} @lA)~ x*(n), E(@|A)=n, V(q|1)=2n.

olog f(y| 1)) 1
g@/l(y| )j :4/12 (n2_2nq+q2)’

b

i {n*—2nE(q| 2)+E(0* | 4)} = TE {n —2nn+[2n+n? ]}

We may then write (

and so the Fisher information is (1) =E {(6 log ;/iy | /1))

EVER
Exercise 2.6 Jeffreys prior for the binomial-beta model

Find the Jeffreys prior for 6 if (y|6)~ Binomial(n,d), where n is
known.

Solution to Exercise 2.6

Here: f(y|9):(3}9ya—e)“y

log f (y|0) = |og[;j+ ylogd+(n—y)log(l—0)

o . .
Elog f(y|9)=0+yo'—(n-y)1-6)"

2

C10g 1(y10)=-y0* - (n-y)A-0) "
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So the Fisher information is

82
1(0)= —E{@gz log f(y|6) 6’}

=-E{-y0" ~(n-y)1-0)"|6|
=(n0)o* +(n—-no)(1-0)°

(1 1 j 1-0+60) n
=Nn| —+ =N = .
0 1-6 01-0) 0@-0)

It follows that the Jeffreys prior is given by

£(0) o J1(0) = |—"

oc ! 0
o(1-0) Joa-6)’

4

<@<1l.

Note: We may also write the Jeffreys prior density as
4, 4,
£(0)oc 02 (1-0)? , 0<0<1.
Thus the Jeffreys prior can be specified by writing

0 ~ Beta(a, 3)
with o = f=1/2.

We see that the Jeffreys prior may be thought of as “half-way’ between:

» the Bayes prior, defined by o = f=1; and
» the Haldane prior, defined by o = f=0.

Exercise 2.7 Jeffreys prior for the tramcar problem

Recall the discussion of the tramcar problem following Exercise 1.6, in
relation to the model (y|8) ~ DU(L,...,6) . Find the Jeffreys prior for 6.

Solution to Exercise 2.7

Here,
f(y|9)=1/0=6"
= log f(y|8)=-logé

0 1
= —Ilogf ) =—=
509 (ylo) 7

85



Bayesian Methods for Statistical Analysis
0 1
= | —logf(y|0)| ==
( 209 (yl )j 7

a 2
= 1(0)= E{(glog f(y|0)j

1
9}=?

It follows that the Jeffreys prior for & is given by
f(0)c1(0) xcl/0, 0=12,3,..

2.5 Bayesian decision theory

The posterior mean, mode and median, as well as other Bayesian point
estimates, can all be derived and interpreted using the principles and
theory of decision theory. Suppose we wish to choose an estimate of ¢

which minimises costs in some sense. To this end, let L(é, 0) denote
generally a loss function (LF) associated with an estimate 0.

Note: The estimator @ is a function of the data y and so could also be
written 6(y). For example, in the context where (y|#) ~ Bin(n,0), the

sample proportion or MLE is the function given by § = é(y) =y/n.

The loss function L represents the cost incurred when the true value 6 is
estimated by ¢ and usually satisfies the property L(#,0) =0.

The three most commonly used loss functions are defined as follows:
L(0,0)=10—-0]| the absolute error loss function (AELF)

L(0,0)=(0—6)>  the quadratic error loss function (QELF)
0 ifg=4
1 ifh=0
function (IELF), also known as the zero-one loss function
(ZOLF) or the all-or-nothing error loss function (ANLF).

L(0,0) = 1(0 = 0) = [ } the indicator error loss

Figures 2.8 and 2.9 illustrate these three basic loss functions.
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Figure 2.8 The three most important loss functions

L(8.6) L(6.6) L(8.6)

absolute quadratic | Zero-one

g ) /
H_.

I o 4

Figure 2.9 Alternative representation of the absolute error
loss function
(The other two loss functions can be represented similarly)

L(6.6)
absolute

N

-~

7

Ios
I

Given a Bayesian model, loss function and estimator, we would like to
quantify what the loss is likely to be. However, this loss depends on 6
and y, which complicates things. An idea of the expected loss may be
provided by the risk function, defined as the conditional expectation

R(0) = E(L0,0)10)= [ L(@(y),0)f (y|6)dy.

The risk function R(#) provides us with an idea of the expected loss
given any particular value of 6. Figure 2.10 illustrates the idea.
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Figure 2.10 The idea of a risk function

R(8)

To obtain the overall expected loss we need to average the risk function
over all possible values of 8. This overall expected loss is called the
Bayes risk and may be defined as

r = EL(9,0) = EE{L(0,0) |6} = ER()) = f R(0) f (6)d0 .
Exercise 2.8 Examples of the risk function and Bayes risk
Consider the normal-normal model: (y,,..., Y, | u) ~iid N(u,o%)

11~ N(po,09)

For each of the following estimators, derive a formulae for the risk
function under the quadratic error loss function:

@) p
(b) /2

V= l(yl +..4+Y,) (the sample mean)
n

|¥|  (the absolute value of the sample mean).

In each case, use the derived risk function to determine the Bayes risk.

Solution to Exercise 2.8

For both parts of this exercise, the loss function is given by
L(fi 1) = (= 2)*.

(@) If 4=y then the risk function is

R(1) = E{L(ft, 1) | 1} = E{(Y — 1) | i} =V (Y | 1)
=o%/n (aconstant).
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So the Bayes risk is simply
r=ER(u)=E(c*/n)=0?/n (i.e. the same constant).

(b) If /i =|y| then the risk function is
R(:) = E{(9]-1* |} =E{|y] —2u[y]+ 4’
= E(V* |1) ~ 24E(|¥] ) + 1

)

:[U_2+M2]—2um+u2, where m = E(|7||u).
n

Now,

m= [N IFImay+ [ V) (T 1)y
=— [V Iy + [ V(T Imdy+ [ (yImdy— [ V(Y |p)dy

0 0 -
=2 [V (7Imdy+ [ V(71 u)dy

0

—u—21,  where szyf(vm)dv.

—00

Here,

—plc

= +cz)o(z)dz after puttin 7= 7H with c=-Z
[ (n+c2)e2) putting

e ol/<n Jn

—pulc —pulc

— 1 f H(2)dz +c f 26(2)dz

—plc
:ué[—%]-l—cJ, where J = fz¢(z)dz.

—00

1,

Note: Here, qﬁ(z):%e_22 and @(z):fqﬁ(t)dt are the standard
ar —00

normal pdf and cdf, respectively.
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Now, J= zie 2 dz

Hence |—uCI>[——]-|—CJ _/@[ ﬁ] c¢[ﬁ],
c c

andso m=p—21 = M_z'MQ[_ﬁ]_ng[ﬁ]
c c

Therefore

R(u):%+2u2—2um:0—+%{—2ul/ 2‘;@[ ] c¢[ ]

n

|

Thereby we obtain:
2
o 2 H o H
R(u)=—+4u“®|— — Ay —=0|———|,
(,LL) n 2 [ O'/\/ﬁ] M\/ﬁ¢[a/\/ﬁ
The Bayes risk is then given by
r=ER(u) = [RG)T(dp= [ g(udp,

peR.

where
I A A - 1
g(u)—{n+4u®[ a/JH] 4u\/ﬁ [ /\/—” ¢

We see that the Bayes risk r is an intractable integral equal to the area
under the integrand, g(u)= R(u)f(x) . However, this area can be
evaluated numerically (using techniques discussed later). Figures 2.11
and 2.12 show examples of the risk function R(x) and the integrand

function g(u). For the case n=o0 = i, =0, =1, we find that r = 1.16.

B Hy
Oy
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Figure 2.11 Some risk functions in Exercise 2.8

— sig=1,n=1
== sig=2,n=5
sig=3, n=5
— \ . Lemem = EEEEES
g 7] B o. '--',-
¥ .“ ".'..
Q s----,d'-
\\_’/""——-—
g | \-‘_-"_-ﬁ"—'
o
o
T T T T
0 1 2 3 4

mu

Figure 2.12 Some integrand functions used to calculate the

Bayes risk

v
= mu0=0, sig0=1.0 == r=3.000
= = mu0=1, sig0=1.0 ==r=1.160
=== mu0=5, sig0=1.0 == r=0.999
- — mu0=0, sig0=0.5 == r=1.500
2 2
= L]
5 \
E .
i '
% In each case, n=1 and sig=1
E w |
@ _
o \I" ‘§“‘
S e et .
T T T T
-5 0 5 10

mu
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R Code for Exercise 2.8

Rfun=function(mu,sig,n){ sig"2/n+4*mu*( mu*pnorm(-mu/(sig/sqrt(n))) -
(sig/sqrt(n))*dnorm(mu/(sig/sqrt(n))) ) }
muvec=seq(-10,10,0.01); options(digits=4)

X11(w=8,h=5.5); par(mfrow=c(1,1));
plot(c(-0.5,4),c(0,3),type="n",xlab="mu",ylab="R(mu)",main="")

n=1; sig=1; lines(muvec,Rfun(muvec,sig=sig,n=n),lty=1,lwd=3);
abline(v=0,lty=3); abline(h=c(0,sig"2/n),lty=3)
n=5; sig=2; lines(muvec,Rfun(muvec,sig=sig,n=n),lty=2,lwd=3);
abline(h=sig"2/n,lty=3)
n=5; sig=3; lines(muvec,Rfun(muvec,sig=sig,n=n),lty=3,lwd=3);
abline(h=sig"2/n,Ity=3)
legend(0.2,3.05,c("sig=1, n=1","sig=2, n=5","sig=3, n=5"),
Ity=c(1,2,3),lwd=c(2,2,2))

Ifun = function(mu,sig,n,mu0,sig0){
Rfun(mu=mu,sig=sig,n=n)*dnorm(mu,mu0,sig0) }

plot(c(-5,10),c(0,1.5),type="n", xlab="mu",ylab="g(mu) = R(mu)*f(mu)",
main="")

n=1; sig=1; mu0=0; sig0=1

lines(muvec, Ifun(mu=muvec,sig=sig,n=n,mu0=mu0, sig0=sig0),Ity=1,lwd=3)
# Check range over which to integrate the integrand

integrate(f=Ifun,lower=-7,upper=7, sig=sig,n=n,mu0=mu0, sigl=sig0)Svalue
#3

n=1; sig=1; mu0=1; sig0=1

lines(muvec, Ifun(mu=muvec,sig=sig,n=n,mu0=mu0, sig0=sig0),Ilty=2,Ilwd=3)
# Check range over which to integrate the integrand

integrate(f=Ifun,lower=-7,upper=7, sig=sig,n=n,mu0=mu0, sig0=sig0)Svalue
#1.16

n=1; sig=1; mu0=5; sig0=1

lines(muvec, Ifun(mu=muvec,sig=sig,n=n,mu0=mu0, sig0=sig0),Ity=3,Ilwd=3)
# Check range over which to integrate the integrand

integrate(f=Ifun,lower=0,upper=10, sig=sig,n=n,mu0=mu0, sig0=sig0)Svalue
#0.9994
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n=1; sig=1; mu0=0; sig0=0.5

lines(muvec, Ifun(mu=muvec,sig=sig,n=n,mu0=mu0, sig0=sig0),Ity=4,lwd=3)
# Check range over which to integrate the integrand

integrate(f=Ifun,lower=-5,upper=5, sig=sig,n=n,mu0=mu0, sigl=sig0)Svalue
#1.5

legend(1,1.5,c("mu0=0, sig0=1.0 => r=3.000", "mu0=1, sig0=1.0 => r=1.160",
"mu0=5, sig0=1.0 =>r=0.999","mu0=0, sig0=0.5 =>r=1.500"),
Ity=c(1,2,3,4),lwd=c(3,3,3,3)); text(5,0.6,"In each case, n=1 and sig=1")

2.6 The posterior expected loss

We have defined the risk function as the expectation of the loss function
given the parameter, namely

R(6) = E(L(0,0)|0) = [ L@O(y),0)f (y|0)dy .

Conversely, we now define the posterior expected loss (PEL) as the
expectation of the loss function given the data, and we denote this
function by

PEL(y) = E{L(4,0) | y} = [ L(O(y),0) (0] y)do.

Then, just as the risk function can be used to compute the Bayes risk
according to

r = EL(9,0) = EE{L(0,0) |6} = ER(H) = f R(0) f (0)d0,
so also can the PEL be used, but with the formula
r = EL(0,0) = EE{L(,0) | y} = E{PEL(y)}= f PEL(y) f (y)dy.

Note: Both of these formulae for the Bayes risk use the law of iterated
expectation, but with different conditionings.

Exercise 2.9 Examples of the PEL and Bayes risk

Consider the normal-normal model:
(Yireoe Yo | 1) ~iiid N (1, 0%)
11~ N(po,09)
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For each of the following estimators, derive a formula for the posterior
expected loss under the quadratic error loss function:

- 1
@ p=y= H(yl +..4+Yy,) (the sample mean)
(b) A =1y| (the absolute value of the sample mean).

In each case, use the derived PEL to obtain the Bayes risk.

Note: This exercise is an extension of Exercise 2.8.

Solution to Exercise 2.9

(@) If 4=y then the PEL function is
PEL(y) = E{L(, 1) | y}
=E{(y-1)’ 1y}
= V' —2yE(uly)+E(’|y),

where:
E(ely) = p
E(u’y) =V (uly)+{E(u|y)¥
:Uf—l—plf
s = A—K)py + K, o2 =k, QS —
n n+o° /o,

Thus, more explicitly,
PEL(y) = y* — 2y {@—K)po + Ky } + 02 +{A—K)pto + Ky}’

=V? =200 —K) 1,V — 2ky* + 07 + (L—K)? g +2(1—K) o Ky + k*y°
=V (L—K)* = YA —K)*2u, + 07 +A—k)* 1
=0l +(1—K)* (VT — 1p)°

Note: This is a quadratic in y with a minimum of o at y = s, .
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The Bayes risk is then
r=E{PEL(y)}
=l + (1=K E{(Y — 1)},
where
E{(Y — 1) }=Vy
=EV (Y| 1) +VE(Y | 1)

2
:E[U— +Vu

n

2
Thus r=o02+(1—-k)’ [”—+a§]
n

n

2 2
:k"—+(1—k)2["—+a§] (where k = —
n n n+o° /o,

2

= ‘; (after a little algebra).

Note: This is in agreement with Exercise 2.8, where the result was
obtained much more easily by taking the mean of the risk function, as
follows:

r=ER(u)=E(c’/n)=0%/n.

(b) If /i =|y] then the posterior expected loss function is
PEL(y) = E{(¥]- 1)’ v}
=¥*—2|Y|E(ul )+ E(*]y)
=y°-2|y
=2 —2|y{@—K)pto + K7} + 02 +{@— K)o + Ky}

u*-l—af-l—,uf

Some examples of this PEL function are shown in Figure 2.13. In all
these examples, n=o0=1.
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Figure 2.13 Some posterior expected loss functions
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In terms of the PEL function, the Bayes risk can be expressed as
r = E{PEL(Y)}= [ PEL(T) T (Y)Y,

where

=1, ),

Ho\T8 +(12/n)

since

2
- c
y~ N(yo,ofvtT].

As an example, we consider the case n=0 =y, =0, =1. Figure 2.14
shows the integrand function PEL(Y) f (). The area under this function

works out as 1.16, in agreement with an alternative working for the
Bayes risk in Exercise 2.8 (taking an expectation of the risk function).

96



Chapter 2: Bayesian Basics Part 2

Figure 2.14 An integrand function with area underneath equal
to 1.16
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R Code for Exercise 2.9

PELfun=function(ybar,sig,n,sig0d,mu0){
k=n/(n+sig"2/sig0"2)
mustar=(1-k)*mu0+k*ybar
sigstar2=k*sig"2/n
ybar~2-2*abs(ybar)*mustar+sigstar2 + mustar®2

}

ybarvec=seq(-10,10,0.01); options(digits=4)
X11(w=8,h=5.5); par(mfrow=c(1,1));

plot(c(-4,5),c(0,3),type="n",xlab="ybar",ylab="PEL(ybar)", main="")
abline(v=0,lty=3); abline(h=0,lty=3)

n=1; sig=1; mu0=0; sig0=1
lines(ybarvec,PELfun(ybarvec,sig=sig,n=n,sig0=sig0,mu0=mu0),lty=1,lwd=3);

n=1; sig=1; mu0=1; sig0=1
lines(ybarvec,PELfun(ybarvec,sig=sig,n=n,sig0=sig0,mu0=mu0),lty=2,lwd=3);
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n=1; sig=1; mu0=-0.5; sig0=1
lines(ybarvec,PELfun(ybarvec,sig=sig,n=n,sig0=sig0,mu0=mu0),lty=3,lwd=3);

n=1; sig=1; mu0=0; sig0=2
lines(ybarvec,PELfun(ybarvec,sig=sig,n=n,sig0=sig0,mu0=mu0),lty=4,lwd=3);

legend(-4,1.5,c("mu0=0, sig0=1","mu0=1, sig0=1","mu0=-0.5, sig0=1",
"mu0=0, sig0=2"), lty=c(1,2,3,4), lwd=c(3,3,3,3))

# Calculate r when n=1, sig=1, mu0=1, sig0=1 (should get 1.16 as before)

Jfun = function(ybar,sig,n,sig0,mu0){
PELfun(ybar=ybar,sig=sig,n=n,sig0=sigd,mu0=mu0)*
dnorm(ybar,mu0,sqrt(sig0”2+sig”2/n))

}

n=1; sig=1; mu0=1; sig0=1

plot(ybarvec, PELfun(ybar=ybarvec,sig=sig,n=n,sig0=sigd,mu0=mu0)*
dnorm(ybarvec,mu0,sqgrt(sig0”2+sig”"2/n)),
type="1", xlab="ybar",ylab="PEL(ybar)*f(ybar)", lwd=3)

integrate(f=Jfun,lower=-10,upper=10, sig=sig,n=n,mu0=muO0, sig0=sig0)Svalue
#1.16 Correct (same as in last exercise)

2.7 The Bayes estimate

The Bayes estimate (or estimator) is defined to be the choice of the
function é:é(y) for which the Bayes risk r = EL(é,Q) IS minimised.
This estimator has the smallest overall expected loss over all estimators
under the specified loss function L(é,e) .

In many cases, the procedure for finding a Bayes estimate can be
considerably simplified by considering which estimate minimises the

posterior expected loss function, PEL(y) = E{L(é,e) | v}

If we can find an estimate é:é(y) which minimises PEL(y) for all

possible values of the data y, then that estimate must also minimise the
Bayes risk.
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This is because the Bayes risk may be written as a weighted average of
the PEL, namely

r = EL(,0) = EE{L(3.0)| y} = E{PEL(y)}= [ PEL(y)f (y)dy.
Exercise 2.10 Bayes estimate under the QELF

Find the Bayes estimate under the quadratic error loss function.
Solution to Exercise 2.10
Observe that PEL(y) = E{(6 - 0)? | y} = E{0° - 206 + 6% | y}
—0?—20E(0|y)+E(6%]Y)
~ 2
=[0-E@IY)| HE@IY)¥ +E@y).

Note: We have completed the square in 6.

We see that the PEL is a quadratic function of 6 which is clearly
minimised at the posterior mean, 0= E(@]y). So the Bayes estimate
under the QELF is that posterior mean.

Note 1: This result can also be obtained using Leibniz’s rule for
differentiating an integral, which is generally

d | " 0G(u, X) db da
&[G(u,x)du :[Tdu +G(0X) -~ G@x) -

0G(u, x) du+0—0 ifaand b are constants.
X

b
and which reduces to f 5

) 0 0 ~
Thus we may write —<PEL(y)=—|(8-0)*f(8|y)dé
ywiite —PEL(y) =—=[(0-0)" f(01)

=I%{(é—0)2f(¢9| )|d6+0-0

= [26-0yt(01y)do =2{6-[of(©0]y)do}.

Setting this to zero yields 0= [0 (0|y)d0=E(@]y).
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Note 2: To check that this minimises the PEL (rather than maximises it)
we may further calculate

82
= PEL(Y) - Za_{ jef(9|y)d9} 2{1-0}>0.

Thus the slope of the PEL (aPEL(y)/aé) IS increasing with 0,
implying that PEL(y) is indeed minimised at 0= é(y) =E@|Yy).

Exercise 2.1 1 Bayes estimate under the AELF

Find the Bayesian estimate under the absolute error loss function.

Solution to Exercise 2.1 1

Suppose that the parameter & is continuous, and let t denote 0= é(y) .

Then PEL(y):flt—Gl f(0]y)do

—00

:f(t—@)f(0|y)d9+j(9—t)f(0|y)d@.

So, by Leibniz’s rule for differentiation of an integral (in Exercise 2.10),

) | roa—o) B g_ d(— oo)
gPEL(y)—UOO o f(0]y)do+{(t t)f(9—t|y)} () }

+{f8(98t Yt 1yyan 90 - {(t—t)f(eztw)}%}

t

:{f f(0|y)d0+0—0}+{7(—1)f(0|y)d9+0—0}

—00

=P <t|y)—P@O>1t]y).

Setting this to zero implies P(6 <t|y)=P(#>t|y) which yields t as
the posterior median. So the Bayes estimate under the AELF is the
posterior median. This argument can easily be adapted to the case where
6 is discrete. The idea is to approximate @’s discrete prior distribution
with a continuous distribution and then apply the result already proved.
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Exercise 2.12 Bayes estimate under the IELF

Find the Bayes estimate under the indicator error loss function.

Solution to Exercise 2.12

Let t denote & = é(y) and first suppose that the parameter @ is discrete.
The indicator error loss function is L(t,0)=1(t=60) =1—-1(t=0) .
Therefore
PEL(y) = E{L(t,0)| y}=E{1-1(t=0)| y}=1-E{I(t=0)| y}
=1-P(t=40]|y)
=1-f(O=t]y).

Thus PEL(y) is minimised at the value of t which maximises the
posterior density f(@|y). So, when @ is discrete, the Bayes estimate
under the IELF is the posterior mode, Mode(&]Y) .

Now suppose that & is continuous. In that case, consider the
approximating loss function

L(t0)=1-1(t—c<l<t+e),
where ¢ > 0, and observe that

ILrTO1 L(t,0)=1-1(t=0)=L(t,0).

The posterior expected loss under the loss function L_(t,0) is
PEL (y)=E{L.(t,0)|y}=1-E{l(t—c<O<t+¢)|y}
=1-Plt—ec<O<t+ely).

The value of t which minimises the PEL_(y) is the value which
maximises the area P(t—e <6 <t+¢<|y). But in the limit as ¢ — O,

that value is the posterior mode. So, when & is continuous, the Bayes
estimate under the IELF is (as before) the posterior mode, Mode(€|y).

Note: To clarify the above argument, observe that if ¢ is small then
PEL_(t) ~1—2sf,(t]y).

This function of t is minimised at approximately t = Mode(4 | y) and at
exactly t = Mode(d|y) in the limitas £ — 0. Figure 2.15 illustrates.
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Figure 2.15 lllustration for the continuous case in Exercise 2.12

f@1y) p largest possible strip under
posterior with width 2¢

Exercise 2.13 Bayesian decision theory in the Poisson-gamma
model

Consider a random sample vy,,...,y, from the Poisson distribution with
parameter A whose prior density is gamma with parameters « and (3.

(a) Find the risk function, Bayes risk and posterior expected loss implied
by the estimator A = 2y under the quadratic error loss function.

(b) Assuming quadratic error loss, find an estimator of A with a smaller
Bayes risk than the one in (a).

Solution to Exercise 2.13

(a) The risk function is
RO = E{L(\, ) [ A}

—e{(2y-NAl
= E{4y’ 472+ X°|A}
= 4E{V’ |\ |- ME{F|A}+°

=4V {77} + E{TIAY |- rE{T]A} -+ X°

= 4[%+)\2]—4)\)\+>\2
=M\ +4\/n, A>0 (an increasing quadratic).

102



Chapter 2: Bayesian Basics Part 2

So the Bayes risk is
r=ER(\,\)
=E(\* +4)\/n)
={VA+(EN?}+4(EN)/n

:g+[2]2+4_a
# " \5) Tha

To find the posterior expected loss, we first derive \’s posterior density:
fFAlY)oc A F(Y[A)
aya—1,—06\ n =AY
_ B\ e " e A
['(a) i1 Y!

A
x )\(LJranlef)\(ﬁJrn)

We see that
f(\|y) ~Gam(a+ny,3+n).

It follows that A
PEL(y) = E{L(\,\) | v}
=e{(27-A)y}
=E{47?—ayr+ |y}
=472 —4VE(\|y)+E(|Y)

_ _ _\2
:472—47[0‘+”y]+{ atny +[O‘+”V] l

B+n (B+n)? | B+n

Note: The Bayes risk could also be computed using an argument which
begins as follows:

r = E{PEL(y)}

B o2 ol atny a—+ny a+n72
_E14y 4y[5+n]+(ﬂ+n)2+[ﬁ+n]}'

where, for example,
Ey =EE(Y|\) =EE(y,|\)=EXA=al/(.
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(b) The Bayes estimate under the QELF is the posterior mean,

+ny
E(My):“mny.

This estimator has the smallest Bayes risk amongst all possible
estimators, including the one in (a), which is different. So E(\|y) must

have a smaller Bayes risk than the estimator in (a).

Discussion

The last statement could be verified by calculating r according to

— 2
E[OH—I‘IY _)\] '
G+n

The result should be an expression for r which is smaller than

g+[2]2 L da
g \B) ng’
foralln=1,23,...,and all o,5>0.
We leave the required working as an additional exercise.
Exercise 2.14 A non-standard loss function
Consider the Bayesian model given by:

(ylp)~N(uw1)

1w~ N(0,1).

Then suppose that the loss function is
0if0<pu<t<2u
L(t, p) = :
1 otherwise.

(a) Find the risk function and Bayes risk for the estimator =y .
Sketch the risk function.
(b) Find the Bayes estimate and sketch it as a function of the data y.

Explicitly calculate the Bayes estimate at y = —1, 0 and 1, respectively.
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Solution to Exercise 2.14

(@) For convenience we will sometimes denote 1=y by t. Then, the
loss function may be written as
1-lT(u<t<2u),u>0
L(t, p) =
1, p<0.

Now, for 1 <0 the risk function is simply
R(p) = E{L(y, ) | p}=1.

For x>0, the risk function is
R(p) =1-P(p<y<2ulp) =1-PO<y—p<p|u)
=1-P(0<Z<pu) whereZ~N(0,1)
=1—(P(u)—1/2) =1.5—D(u).

1, p<0

In summary, R(u)={15_@(u) )

}, as shown in Figure 2.16.

Figure 2.16 Risk function in Exercise 2.14
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The associated Bayes risk is
r=ER(u) = fw o(u)dp +§ f S(u)dp— f B(y1) ()

1,31
2 272

1
where | :fwdw = 3/8, after putting w= ®(u) with S—W=¢(M)-
ol

1/2

So, for the estimator /1=y, the Bayes risk is

(b) Here, by the theory of the normal-normal model we have that

(1Y) ~ N(p,02),
where:
e =QA—K)p, +Ky, oZ=ko’In, k=1/1+0c"/(ncl))
n=1, =0, o,=1, y=Yy.

Thusk=1/2, . =y/2 and o2 =1/2, and so
(wly)~N(y/21/2).

The posterior expected loss is
PEL(y) = E{L(t, ) | ¥},
where t is a function of y (i.e. t =t(y)).

Now
L(t,u) =1-10<pu<t<2u),
and so
PEL(y)=E{1-10<pu<t<2u)|vy}
=1-PO<pu<t<22uly).

We see that if t =t(y) <0 then
PEL(y)=1.
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Also, if t >0 then
PELM)=1-E{lO<pu<t<2u)|y}.
=1-PO<pu<t<2uly)
=1-Pt/2<u<t]y)
=1-9(t),
where
Yt)=F(u=tly)-F(u=t/2]y)
is to be maximised.

Now, o'(t)=f(u=t|y)—f(u=t/2]y)x1/2
_2(11/2)

2 1 2
(t-y/2) 1 1 —2(1/2)((t/2)—)’/2)

NGO

1
BTN

Setting /'(t) to zero we obtain
2 (-V12" _ o= (/2)-y/2)’

I e RS R

3, 1
=—t"—=ty—log2=0
4 2y g

y oy 3

Yo ¥ 1axZlog2

2 \/4+ “4
2(3/4)

=t=

Hence we find that the Bayes estimate of . is given by

fi=p(y) zé(yﬂ/yz +12log 2),

as shown in Figure 2.17.

We see that the Bayes estimate is a strictly increasing function of y and
converges to zero as y tends to negative infinity. The required values of
the Bayes estimate are:

[i(-1) :%(—1+«/1+12log 2) = 0.6842
ﬁ(O):%(OJm/OJrlZIogZ) = 0.9614
() :%(1+«/1+12log 2) = 1.3508.
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Figure 2.17 Bayes estimate in Exercise 2.14

Bayes estimate

R Code for Exercise 2.14

X11(w=8,h=5.5)

muvec <- seq(0,5,0.01) ; Rvec <- 1.5-pnorm(muvec);
plot(c(-2,5),c(0,1.1),type= "n",xlab="mu",ylab="R(mu)",cex=1.5)
lines(muvec,Rvec,lwd=2) ; lines(c(-2,0),c(1,1),lwd=2)

yvec <- seq(-30,10,0.01); muhatvec <- (1/3)*(yvec+sqrt(yvect2 + 12*log(2)))
plot(yvec,muhatvec,type="I",xlab="y",ylab="Bayes estimate",cex=1.5,lwd=2)

abline(h=0,lty=2)

(1/3)*(c(-1,0,1)+sqrt(c(-1,0,1)22 + 12*log(2)))
#0.6841672 0.9613513 1.3508339
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3.1 Inference given functions of the data

Sometimes we observe a function of the data rather than the data itself.
In such cases the function typically degrades the information available
in some way. An example is censoring, where we observe a value only if
that value is less than some cut-off point (right censoring) or greater than
some cut-off value (left censoring). It is also possible to have censoring
on the left and right simultaneously. Another example is rounding,
where we only observe values to the nearest multiple of 0.1, 1 or 5, etc.

Exercise 3.1 Right censoring of exponential observations

Each light bulb of a certain type has a life which is conditionally
exponential with mean m=1/c, where ¢ has a prior distribution which
is standard exponential. We observe n = 5 light bulbs of this type for 6
units of time, and the lifetimes are:

2.6,3.2,*% 12, %,
where * indicates a right-censored value which is greater than 6. (Only
values less than or equal to 6 could be observed.)

Find the posterior distribution and mean of the average light bulb
lifetime, m.

Solution to Exercise 3.1

The data here is
D={y,=26,y,=32,y,>6,y,=12,y, > 6},
and the probability of censoring is

P(y, >6]c) :Ice‘widyi =e .
6

Therefore the posterior density of c is
f(c|D)ex f(c)f(D|c)

o £(e) T(y,[c) F(y,[c)P(ys>6]c)f(y,[c)P(y; >6]c)
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oce®(ce™)(ce ) (e )(ce™)(e*)
=c’exp{-c(l+y,+Yy,+6+y,+6)}
=c*'exp{~c(1+2.6+32+6+1.2+6)}
=c*"exp(-20c).

Hence: (c|D)~ G(4,20)
(m| D) ~ 1G(4,20)
f(m|D)=20"m “Pe /T (4),m>0
E(m|D)=20/(4—1) = 6.667.

It will be observed that this estimate of m is appropriately higher than
the estimate obtained by simply averaging the observed values, namely
(1/3)(2.6 + 3.2 + 1.2) = 2.333.

The estimate 6.667 is also higher than the estimate obtained by simply
replacing the censored values with 6, namely
(1/3)(26 +3.2+6+ 1.2 +6)=3.8.

Exercise 3.2 A uniform-uniform model with rounded data

Suppose that:
(y16)~U(0,0)
6~U(0,2),

where the data is
x =g(y) = the value of y rounded to the nearest integer.

Find the posterior density and mean of & if we observe x = 1.

Solution to Exercise 3.2

Observe that:
x=0 if 0<y<1/2
x=1 if 1/2<y<3/2
x=2 if 3)2<y<?2.

Therefore, considering y and 8 on a number line from 0 to 2 in each
case, we have that:

110



Chapter 3: Bayesian Basics Part 3

1 1 if @<1/2
P(x=0|0)=P|0<y<—0
weo=plocy<fol-i vz o,

0 if0<fd<l/2

Jp 0z el p 3
27772

1 3
(x=1[6) {2 y<3

if§<9<2
2

7
3 0 if 0<0<3/2
P(x:2|0):P(E<y<20j -3

if §<¢9<2.
2

Since we observe x = 1, the posterior density of € is
6-1/2 1 3

1x , —<O<—
F(O]x=1) e f(O)F(x]|6) « 0 ; 2
Ix—, —<0<?2.

0 2

Now, the area under this function is

3/2 2
B j9 /2404 j Lao
1/2 3/2
{0——Ioge } Iog@|3/2
31 3 l 3
=|——=log=——= Io log2 —log—
{2 2977272 } { d gz}
=0.7383759.

So the required posterior density is

6-1/12 1 3
Bo ' 2°9%3

f@lx=0=1 S
—_—, —<0<2,

B& 2

and the associated posterior mean of & is
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3/2 2
E,=E@|x=1)= je(e_llzjdm j eﬁijde
1/2 Be 3/2 Be

= % =1.354 (after some working).

Discussion

In contrast to f (& ]x), the posterior density of & given the original data

yis

f@)f(ylo) @/2)1/ o) 1

f@ly)= == =

f(y) [fw2@ ode 0(log2-logy)
y

and the corresponding posterior mean is

é:E(my):fe( ! jd@ 2=

,y<0<2,

O(log2—log y) B log2—-logy

Figure 3.1 shows f(#|x=1) and examples of f(&|y) which are
consistent with x = 1.

Figure 3.1 Posteriors given x = | and giveny = 0.6, I, 1.1, 1.4
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It is now of interest to also calculate f(&|x) for the other two possible
values of x, namely 0 and 2. We find that:

%, 0<6<%
f(@|x=0)= L L

—, =<0<2

2A0 2

where A= 1+£Iogz —ilogi =1.1931
2 2 2 "2
F0x=2)=~[1-2 ] 2cp<2
C 20) 2
where C =2 —Elog 2 —§+§Iog§: 0.068477.
2 2 2 72
Figure 3.2 shows these two posteriors, and further examples of f(@]y).

Figure 3.2 Posteriors given x =0, |, 2, and giveny = 0.1, ..., 1.9

= = f{theta|x=0)
— fthetalx=1)
@ - == fitheta|x=2)
fithetaly)

-
*.
-
..
-
e
.
-
-
-
ol e sdessnsndesass

density

|

0
|
:
[
[
:
[
[
:
[
[

C:’A
=1
O_
tn
-
g
-
o
M_
=

theta

For completeness and checking we now also calculate the other two
posterior means:

.

E,=E(0|x=0)=— =0.7334
0 =E@Ix=0)=c7
1

E,=E(0|x=2)=—— =1.8254,
, =E(0Ix=2)=2~
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as well as the unconditional probabilities of the data:

PO:P(Xzo):p[y<£]:EP[y<1 9}:]P(y<%‘9jf(9)d9

1/2
_jlx do+ jll—z 1o|.9_—(1+|ogz—|og%j = 0.5966

12

P, = P(x :1) = 0.3692
P, = P(x=2) =0.0342.

As a check on our calculations, we note that
P, + P, + P, =1 (which is correct).

We may also calculate the prior mean of ¢ (which is obviously 1) as

EO=EE(@]|x)
=E(@|x=0)P(x=0)+E(@|x=)P(x=D)+E(@|x=2)P(x=2)
= E,P,+E,P, +E,P,

=0.7334 x 0.5966 + 1.354 x 0.3692 + 1.825 x 0.03424
=1.000 (correct).

R Code for Exercise 3.2

X11(w=8,h=5.5); par(mfrow=c(1,1)); options(digits=7)

B=1.5-0.5*log(3/2)-0.5+0.5*log(0.5)+log(2)-log(1.5); c(B,1/B)
#0.7383759 1.3543237

postfunB= function(theta,B=0.7383759){ res=0;
if((theta>=1/2)&&(theta<3/2)) res=1-1/(2*theta)
if((theta>=3/2)&&(theta<=2)) res=1/theta
res/B }

thetavec = seq(0,2,0.001); postvecB=thetavec;
for(i in 1:length(thetavec)) postvecBli]=postfunB(theta=thetavec[i])
plot(c(0,2),c(0,2),type="n" xlab="theta",ylab="density", main="")
lines(thetavec, postvecB,lwd=3)
y=0.6; k=1/(log(2)-log(y))

lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], Ity=2,lwd=3)
y=1; k=1/(log(2)-log(y))

lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], lty=3,lwd=3)
y=1.1; k=1/(log(2)-log(y))

lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], Ity=4,lwd=3)
y=1.4; k=1/(log(2)-log(y))

lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], Ity=5,lwd=3)
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legend(0,2,c("f(theta|x=1)","f(theta|y=0.6)","f(theta|y=1)","f(theta|y=1.1)",
"f(theta|y=1.4)"), Ity=c(1,2,3,4,5), lwd=c(3,3,3,3,3))

C=2-1.5*log(2)-1.5+1.5*log(1.5)
A=0.5+0.5*log(2)-0.5*l0g(0.5)
options(digits=7); c(A,B,C) # 1.19314718 0.73837593 0.06847689
E0=7/(8*A); E1=1/B; E2=1/(8*C); c(EO,E1,E2)
#0.7333546 1.3543237 1.8254333

P0=1/4+(1/4)*(log(2)-log(1/2))
P1=0.5*(1.5-0.5*log(1.5)-0.5+0.5*log(0.5)) +0.5*(log(2)-log(1.5))
P2=0.5*(2-1.5*log(2)-1.5+1.5*log(1.5))

PO+P1+P2# 1 Correct
c(P0O,P1,P2) #0.59657359 0.36918796 0.03423845
EO*PO + E1*P1 + E2*P2 # 1 Correct

postfunA= function(theta,A=1.19314718){ res=0;
if((theta>=0)&&(theta<1/2)) res=1
if((theta>=1/2)&&(theta<=2)) res=1/(2*theta)
res/A }

postfunC= function(theta,C=0.06847689){ res=0;
if((theta>=3/2)&&(theta<2)) res=1-3/(2*theta)
res/C }

postvecA=thetavec; postvecC=thetavec;
for(i in 1:length(thetavec)){ postvecAli]=postfunA(theta=thetavecli])
postvecC[i]=postfunC(theta=thetavec[i]) }
plot(c(0,2),c(0,3.7),type="n",xlab="theta",ylab="density", main="")
lines(thetavec, postvecA,lty=2,lwd=3)
lines(thetavec, postvecB,lty=1,lwd=3)
lines(thetavec, postvecC,lty=3,lwd=3)
for(y in seq(0.1,1.9,0.1)){ k=1/(log(2)-log(y))
lines(thetavec[thetavec>y],k/ thetavec[thetavec>y], Ity=1,lwd=1) }

legend(0.7,3.6,c("f(theta|x=0)","f(theta|x=1)","f(theta|x=2)","f(theta]|y)"),
lty=c(2,1,3,1), lwd=c(3,3,3,1))
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3.2 Bayesian predictive inference

In addition to estimating model parameters (and functions of those
parameters) there is often interest in predicting some future data (or
some other quantity which is not just a function of the model
parameters).

Consider a Bayesian model specified by f(y|#) and f(0), with
posterior as derived in ways already discussed and given by f(8]y).

Now consider any other quantity x whose distribution is defined by a
density of the form f(x|y,8).

The posterior predictive distribution of x is given by the posterior
predictive density f(x|y). This can typically be derived using the

following equation:
f(xly)=[f(x0ly)do
=[f(x1y.0)f(@1y)do.

Note: For the case where & is discrete, a summation needs to be
performed rather than an integral.

The posterior predictive density f(x|y) forms a basis for making
probability statements about the quantity x given the observed data y.

Point and interval estimation for future values x can be performed in
very much the same way as that for model parameters, except with a
slightly different terminology.

Now, instead of referring to X =E(x|y) as the posterior mean of x, we
may instead use the term predictive mean.

Also, the ‘P’ in HPDR, and CPDR may be read as predictive rather than
as posterior. For example, the CPDR for x is now the central predictive
density region for x.

As an example of point prediction, the predictive mean of x is
>2=E(x|y)=fxf(x|y)dx.
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Often it is easier to obtain the predictive mean of x using the equation
x=E(x]y)=E{E(x]Yy,0)| v}
=[E(x1y.0)f(@1y)de.

Note: The basic law of iterated expectation (LIE) implies that
E(x) =EE(x]|8). This equation must also be true after conditioning

throughout on y. We thereby obtain E(x|y) = E{E(Xx]|Y,0)]|Y}.

Likewise, the predictive variance of x can be calculated via the equation
V(x]y)=E{/(x]y,0) | y}+V{E(x|y,0) | y}.

Note: This follows from the basic law of iterated variance (LIV),
Vx = EV (x|8)+VE(x|8), after conditioning throughout on y.

An important special case of Bayesian predictive inference is where the
quantity of interest x is an independent future replicate of y.

This means that (x|y,#) has exactly the same distribution as (y|8),

which in turn may be expressed mathematically as
(x]y,0)~(y|0)
or equivalently as

f(xly.0)=f(y=x10)=| f(yl0)],_, |-

Note: The last equation indicates that the pdf of (x|y,#) is the same as
the pdf of (y|&) but with y changed to x in the density formula.

In the case where x is an independent future replicate of y, we may write
f(x|y,@) as f(x|8), and this then implies that

f(xly) =] f(x|0)f(0]y)do.

Exercise 3.3 Prediction in the exponential-exponential model

Suppose that & has the standard exponential distribution, and the
conditional distribution of y given & is exponential with mean 1/6.

Find the posterior predictive density of X, a future independent replicate
ofy.
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Then, for y = 2.0, find the predictive mean, mode and median of x, and
also the 80% central predictive density region and 80% highest
predictive density region for x.

Solution to Exercise 3.3

Recall that the Bayesian model given by:
f(y|0)=0e",y>0
f(@)=e"’,0>0

implies the posterior (#|y) ~Gamma(2,y +1).

Now let x be a future independent replicate of the data y, so that
f(x]y,0)=f(x|0)=f(y=x|0)=0e ™ x>0,

Then the posterior predictive density of x is
fxly)= [ F(xly.0)f(01y)do

Jlen [0
0

I'(2)
O TE(Y+D? P (x+y+1)PeF e 0y y
L) (x+y+1)° < rG)
_ 2yl
(x+y+1)°*
T 2(y+1)°
Check: [ f(x|y)dx= [ =2"~ gx
f w1y ) (x+y+1)°
co+y+1
=2(y+1)* [ uldu (whereu=x+y+1)
0+y+1
—2[;®
=2y +1°| = Z—(erl)z'iZ_ - 2} =1 (correct).
- Clu=y co”  (y+1)

Next, suppose that y = 2. Then
f(x|y)=18(x+3) 3 x>0.

This is a strictly decreasing function, and so the predictive mode is zero.
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The predictive mean can be calculated according to the equation

E(x]y)= 7x18(x +3)dx.

An easier way to find the predictive mean is to note that
@|y) ~ Gamma(2,3)
and then write
- o - 32 92—1e—30
E(x|y) = ECE(x] y.6) [y} = E@O | y) = [0 1[_]dg
0 I'(2)
B 32 F(l) oo 319171e736‘

_ —3.
3T T

An even easier way to do the calculation is to recall a previous exercise
where it was shown that the posterior mean of w =1/6 is given by

E(w|y)=y+1.
Thus, E(x|y)=E{E(X|Y,0)|y}=E(@|y)=y+1=3wheny=2.

One way to find the predictive median of x is to solve F(x|y)=1/2 for
X, where F(x|y) is the predictive cdf of x, or equivalently, to calculate

Q(1/2), where Q(p)=F*(p|y) is the predictive quantile function of
X.

Now, the predictive cdf of x is
3+x

F(x]|y) :f18(t+3)‘3dt = f18u‘3dt whereu =3+t
0 3

_p |3+X

B 11 9

(B+x)? 3 (3+X)

)

u=3

Setting this to p and solving for x yields the predictive quantile function,
1
=F* =3 -1].
QP =F~(ply) [ ip j

So the predictive medianis Q (%j = 3(

1

= 1| = 12426
J1-1/2 j
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The predictive quantile function can now also be used to calculate the
80% CPDR for x,

(Q(O.l),Q(O.9)) =(0.1623, 6.4868),
and the 80% HPDR for X,
(0,Q(0.8)) = (0, 3.7082).

Another way to calculate the predictive median of x is as the solution in
of
! 1/2=P(x<qly)
after noting that the right hand side of this equation also equals
E{P(x<qly,0)|y}=E(l-e"]y)
=1-m(-q),
where m(t) is the posterior moment generating function (mgf) of 6.

But (4]y)~Gamma(2,y+1),andso m(t)=(1-t/(y+1)7.

So we need to solve 1/2=(1-(-q)/(y+1)?* for g. The result is
q=(y+1)(2-1) =1.2426 wheny =2 (same as before).

R Code for Exercise 3.3

Qfun=function(p){ 3*(-1+1/sqrt(1-p)) }; Qfun(0.5) # 1.242641
c(Qfun(0.1),Qfun(0.9)) # 0.1622777 6.4868330
¢(0,Qfun(0.8)) # 0.000000 3.708204

Exercise 3.4 Predicting a bus number (Extension of Exercise 1.6)

You are visiting a small town with buses whose license plates show their
numbers consecutively from 1 up to however many there are. In your
mind the number of buses could be anything from 1 to 5, with all
possibilities equally likely. Whilst touring the town you first happen to
see Bus 3.

Assuming that at any point in time you are equally likely to see any of
the buses in the town, how likely is it that the next bus number you see
will be at least 4?

Also, what is the expected value of the bus number that you will next
see?
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Solution to Exercise 3.4

As in Exercise 1.6, let & be the number of buses in the town and let y be

the number of the bus you happen to first see. Recall that a suitable
Bayesian model is:

f(y|9)=1/0,y=1,..,6
f(#)=1/56=1,..5 (prior),
and that the posterior density of & works out as
20/47,6=3
f(@|y)=:15/47,0=4
12/47,0 =5.

Now let x be the number on the next bus that you happen to see in the
town. Then

f(x|y,6) :%, x=1,...,0 (same distribution as that of (y|#&)).

This may also be written
f(x]y,0)=1(x<0)/60,x=12,3,...,
and so the posterior predictive density of x is

fxly)=2 f(x01y)=2 f(xIv.0)f(@ly) =ZI )f(HIY)

o=y

In our case, the observed value of y is 3 and so:

fx=1]y)=ox2 i1 %_027270

f(x=2|y)==x—+=x"—+= 4—-027270

f(x=3]y)==x+ x>+ Zx== =0.27270
327 2 475 W
Fx=aly)=1x12 1,12 _ 513085
4747 5 47

f(x= 5|y)_1xi—2 = 0.05106.

5)
Check: > f(x]y)=0.27270x3+0.13085+0.05106 =1 (correct).

x=1
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0.27270, x=1,2,3
In summary, fory = 3, we have that f(x|y)=<0.13085 x=4
0.05106, x=5.

So the probability that the next bus you see will have a number on it
which is at least 4 equals

P(x24ly)=2 f(x|y)=Tf(x=4]y)+f(x=5]y)

X:x=4

=0.13085 + 0.05106 = 18.2%.

Also, the expected value of the bus number you will next see is
E(x|y)=1(0.27270) + 2(0.27270) + 3(0.27270)

+ 4(0.13085) + 5(0.05106) = 2.4149.

Alternatively, E(x|y)=E{E(x]|Yy,0)|y}= E(?

1
YJ=§E(9|y)

_ {1+3(20/47)+4(15/47)+5(12/47)} _ 1+180/47 _ 227 _ 24149,

2 2 94

R Code for Problem 3.4

fv=rep(NA,5); fv[1]=(1/3)*(20/47)+(1/4)*(15/47)+(1/5)*(12/47)
fv[2] = fv[1]; fv[3] = fv[1]; fv[4] = (1/4)*(15/47)+(1/5)*(12/47)
fv[5] = (1/5)*(12/47); options(digits=5)

fv #0.272695 0.272695 0.272695 0.130851 0.051064

sum(fv) #1 (OK)

sum(fv[4:5]) #0.18191

sum((1:5)*fv) # 2.4149

227/94 # 2.4149

Exercise 3.5 Prediction in the binomial-beta model

(a) For the Bayesian model given by (Y |6) ~ Bin(n,#) and the prior
0 ~ Beta(«, 3), find the posterior predictive density of a future data
value x, whose distribution is defined by (x| y,#) ~ Bin(m,6) .

(b) A bent coin is tossed 20 times and 6 heads come up. Assuming a flat
prior on the probability of heads on a single toss, what is the probability
that exactly one head will come up on the next two tosses of the same
coin? Answer this using results in (a).
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(c) A bent coin is tossed 20 times and 6 heads come up. Assume a
Beta(20.3,20.3) prior on the probability of heads.

Find the expected number of times you will have to toss the same coin
again repeatedly until the next head comes up.

(d) A bent coin is tossed 20 times and 6 heads come up. Assume a
Beta(20.3,20.3) prior on the probability of heads.

Now consider tossing the coin repeatedly until the next head, writing
down the number of tosses, and then doing all of this again repeatedly,
again and again.

The result will be a sequence of natural numbers (for example
3,1,1,4,2,2, 1,5, 1, ..), where each number represents a number of
tails in a row within the sequence, plus one.

Next define y to be the average of a very long sequence like this (e.g.
one of length 1,000,000). Find the posterior predictive density and mean
of y (approximately).

Note: In parts (c) and (d) the parameters of the beta distribution (both
20.3) represent a prior belief that the probability of heads is about 1/2, is
equally likely to be on either side of 1/2, and is 80% likely to be between
0.4 and 0.6. See the R Code below for details.

Solution to Exercise 3.5

(a) First note that x is not a future independent replicate of the observed
data y, except in the special case where m =n.

Next recall that (6| y) ~ Beta(a,b), where:
a=a+y, b=pg+n-y.

Thus the posterior predictive density of x is
f(xly)= [ F(x.01y)do
= [ f(xIy.0)f (01 y)do

1

_ f[mJQX(l_e)mx eail(l_e)bil d@
) x B(a,b)
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M| B(x+a,m-x+b) (6 A—O)" "
B(a,b) ) B(x+a,m—x+b)
B(x+a+y,m—x+3+n—y)

Bla+vy,6+n—-Yy)

X
m

x=0,...,m.

X
Note: The distribution of (x|y) here may be called the beta-binomial.

(b) Here, we consider the situation in (a) with n = 20, y = 6, m = 2,
a =1 g =1andx =0, 1or 2. So, specifically,
(x| y):[Z] B(x+é+6,2—x+1+20—6)
(1+6,1+20—-6)
2\T(7+ X)I'(A7 — x)/T(24)
B [x] [(7)[(15)/T(22)
2 (6+x)(16—x)1/23!
CxI(2—x)! 61141/ 21!
0.4743, x=0
=10.4150, x=1
0.1107, x=2.

Check: 0.4743 + 0.4150 + 0.1107 = 1 (correct).

So the (posterior predictive) probability that heads will come up on
exactly one of the next two tosses is f(x=1|y=06) =41.5%.

Note: An alternative way to do the working here is to see that if y = 6
then
(@]y) ~ Beta(1l+6,1+ 20 —6) ~ Beta(7,15),

so that:
7 7
E(]y)=—— ="
O =7"1"%
V(O|y)= 72X15 = 0.009432.
(7+15)%(7 +15+1)

Also, (x|y,8) ~ Bin(2,8) (ify = 6).
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It follows that
P(x=1[y)=E{P(x=1]y,0)|y}
=E{20(1-0)| y}
=2{E(@]y)—E@©*y)}
=2{E@|y)-IV@y)+(E@] )]}

Y !
22

2
0.009432 +|—
i
(c) Let z be the number of tosses until the next head. Then
(z|y,®0) ~ Geometric(6)
with pdf
f(z]y,0)=(1-0)""60,2=1,23,....

l =0.415.

So the posterior predictive density of z can be obtained via the equation

f(zly)=[f(z01y)do=]1(z]y,0)f(0]y)d6.

It will be noted that (z|y) has a density with a similar form to that of
(x]y) in (a), but with an infinite range (z = 1,2,3,...). If we were to write
down f(z|y), we could then evaluate the expected number of tosses
until the next head according to the equation

E2ly) =Y 4 (2 ).

More easily, the posterior predictive mean of z can be obtained as

B B i _llxé’a_l(l—ﬁ)b‘l
E(zly)—E{E(ZIy,H)Iy}—E(H yj—oe “B@b) do

_ B(a-1b) ;0“7 (1-0)"" do
B(a,b) 3 B(a-1b)
_I@-Jrp)/r@a-1+b) , _a+b-1

r'@rb)/I'(a+b) a-1
_(a+y)+(B+n-y)-1 a+p+n-1
- (a+y)-1 B a+y-1

Forn=20,y=6and « = f# =20.3, we find that E(z|y) = 2.356.
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(d) Here, v represents the average of a very large number of

independent realisations of the random variable z in (c). Therefore
(approximately), v =E(z|y,0)=1/6.

It follows that the posterior predictive density of y is
déo
fwly)= f(ﬁly)d—

where @ =y " and d@/dy =y . Thus
(L y) M @A-11y)* -1
Bab) |y’

_ )™
l//a+bB(a, b)

flwly)=
>l

So the posterior predictive mean of y is

_, =D
EWIN=[v 5

:B(a—l,b)T (v -)"*
B(a,b) {1y V™B(a-1b)

dy

dy .

The last integral is 1, by analogy of its integrand with f (x| y). Thus we
obtain the same expression as for E(z|y) and E(@/&]|y) in (c), namely

a+p+n-1
E(wy):af—y—l'

R Code for Exercise 3.5

options(digits=4); pbeta(0.4,20.3,20.3) # 0.1004
pbeta(0.6,20.3,20.3) - pbeta(0.4,20.3,20.3) #0.7993

x=0:2
( 2*factorial(6+x)*factorial(16-x)/factorial(23) )/
( factorial(x)*factorial(2-x) * factorial(6)*factorial(14)/factorial(21) )
#0.4743 0.41500.1107

7*15/(2242*23) #0.009432

2 *(7/22 - ( 0.009432267 + (7/22)A2 ) ) #0.415
(20.3+20.3+20-1)/(20.3+6-1) # 2.356
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Exercise 3.6 Prediction in the normal-normal model (with
variance known)

Consider the Bayesian model given by:
Yar-es Yo | 1) ~iid N (1,0
p~N (,%105) '
and suppose we have data in the form of the vector y = (y,,..., ¥,).

Also suppose there is interest in m future values:
(Xpr-oms X Yo 12) ~fid N (p1,0%).

Find the posterior predictive distribution of
X=(X+..+X,)/m,
both generally and in the case of a priori ignorance regarding 1 .

Solution to Exercise 3.6

By Exercise 1.18 the posterior distribution of . is given by
(k1Y) ~ N(w.,0?),

2 2 -1
where: . = (L—K)p, +Ky, Gf=k%, k=£1+a énj :

Oy

Now, (X |y, )~ N(u,o®/m), and therefore

f(Yly):ff(Yly,u)f(uly)du

(X — )’ (p— M*)
Jonl 252 o 527
This is the integral of the exponent of a quadratlc in both X and x and
so must equal the exponent of a quadratic in X . It follows that
(X1y)~ N(n,6%),
where 1 and 6% are to be determined. This final step is easily achieved
as follows:

n=E(X]y)
=E{E(X|y, 1) |y}
=E{uly}=mn
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§* =V (x|y)
=BV X1y, ) | yY}+V{EXX Y, &) | v}

2 2
= E{O—— y}+V{y| =2 452,
m m

Thus generally we have that

o

2 2 2
(x1y)~ N[u*,af+“—]~ N[(l—k)uo+k7,ka—+_ ,
m n m

A special case is where there is no prior information regarding the
normal mean . In this case, assuming it is appropriate to set o, =

(sothat f(u)ocl, ueNR), we have that k =1 and hence

(X|y)~N [7,%+%]-

Exercise 3.7 Prediction in the normal-gamma model (with a
known mean)

Consider the Bayesian model given by :
(Yyoe-er ¥, | A) ~iid N(p,1/X)
A~G(a, ),
and suppose we have data in the form of the vector y = (y,,..., ¥,).

Also, suppose we are interested in m future values:
(Xyyeeos Xy | Y5 A) ~0id N (2,17 ).

Find the posterior predictive distribution of
X=(X+..+X,)/m,
both generally and in the case of a priori ignorance regarding \.

Solution to Exercise 3.7

By Exercise 1.20 the posterior distribution of X is given by
(A y) ~Gamma(a,b),

where: a=a+g, b=p3+=5’ siM:EZ(yi—u)z.
Nz
Now, (X|Yy,A) ~ N(u,1/(m))), and therefore
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f(YIY)fo(YI y,A) F(A]y)dA

x j«/Xexp {—m—)‘(f— u)z})\“ exp(—Ab)dA

ng

exp{ [b-l—%(Y—,u)z”d)\

1o
{mZa(Y—u)z} S(2at1)

g 2b
b+ —(X 2 1
O<l +2( 1) o |1+ 2a
m2a(X — j)? X — [t _ Jb/a
Now let Q = = , S0 that X = )
Q 2 [Jola)Nm M

Then by the transformation rule,

) B dY Q2 1 (2a+1) \/F Q2 —%(2a+1)
f(Qly)—f(le)Em[HgJ 7 O{“zj .

This implies that (Q | y) ~t(2a), or equivalently,

X—p
2
\/sw +206/n / Jm
1+2a/n
A special case of this general result is when there is no prior information

regarding the precision parameter A . In that case, and assuming it is then
appropriate to set « = =0 (sothat f(4) o<1/ A1, 4>0), we have that

y|~t(n+2a).

y|~t(n).

X—p
syulx/ﬁ
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3.3 Posterior predictive p-values

Earlier, in Section 1.3, we discussed Bayes factors as a form of
hypothesis testing within the Bayesian framework. An entirely different
way to perform hypothesis testing in that framework is via the theory of
posterior predictive p-values (Meng, 1994). As in the theory of Bayes
factors, this involves first specifying a null hypothesis

H,: E,
and an alternative hypothesis

H,: E,,
where E, and E, are two events.

Note: As in Section 1.3, E;, and E; may or may not be disjoint. Also,
E, and E, may instead represent two different models for the same data.

In the context of a single Bayesian model with data y and parameter 6,
the theory of posterior predictive p-values involves the following steps:
(i) Define a suitable discrepancy measure (or test statistic), denoted
T(y.0),
following careful consideration of both H, and H, (see below).
(ii) Define x as an independent future replicate of the data y.
(iii) Calculate the posterior predictive p-value (ppp-value), defined as
p=P{T(x,0)=T(y,0)|y}.

Note 1: The ppp-value is calculated under the implicit assumption that
H, is true. Thus we could also write p=P{T (x,0) >T(y,0)|y,H,}.

Note 2: The discrepancy measure may or may not depend on the model
parameter, &. Thus in some cases, T (y,8) may also be written as T(y).

The underlying idea behind the choice of discrepancy measure T is that
if the observed data y is highly inconsistent with H, in favour of H,

then p should likely be small. This is the same idea as behind classical
hypothesis testing. In fact, the classical theory may be viewed as a
special case of the theory of ppp-values. The advantage of the ppp-value
framework is that it is far more versatile and can be used in situations
where it is not obvious how the classical theory should be applied.
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An example of how ppp-value theory can perform well relative to the
classical theory is where the null hypothesis is composite, meaning that
it consists of the specification of multiple values rather than a single
value (e.g. H,:|@|<¢& as compared to H,:0=0). The next exercise

illustrates this feature.

Exercise 3.8 Posterior predictive p-values for testing a
composite null hypothesis

Consider the Bayesian model given by:
(y|A) ~ Poisson(4)
f(1)=e*,1>0,

and suppose that we observe y = 3.

(a) Find a suitable ppp-value for testing
Hy:4 =1 versus H;:4 >2.

(b) Find a suitable ppp-value for testing
H,:Ae{,2} versus H;:4 >2.

Solution to Exercise 3.8

(a) Here, (x]y,A) ~ Poi(1), and we may define the test statistic as
T(y,4)=y.
Then, the posterior predictive p-value is
p=P(xz2yly,A=1)
=1- FPoi(l)(y -1,
where y = 3 and where F,(r) is the cumulative distribution function
of a Poisson random variable with mean g, evaluated at r.

Thus a suitable ppp-value is
~140 -141 -142
pzl—(e 1 et +32|1 j = 0.08030.

0! 1

Note: This is just the probability that a Poisson(1) random variable will
take on a value greater than 2, and so is the same as the classical
p-value which would be used in this situation.

131



Bayesian Methods for Statistical Analysis

(b) Here we first observe that
f(A1y,Ho) e f£(A[Hp) f(y[H,,4)

-1 -1y
S A ey, a=12 (with y=3).
e +e y!
e—2><113
Thus: P(A=1|y,H,)= =0.48015

e—2><113 + e—2><2 23
P(A=2]y,H,) = 1-0.48015 = 0.51985.

So a suitable ppp-value is
p=P(x=y[y,Hy) =E{P(x=y[y,Hy )|y, Ho}
=E{1-Fo) (Y =D 1y, Ho}
= 0.48015x(1~ Fy ;) (2)) +0.51985x(1 - Fy ) (2))

-140 -141 -142
:0.48015{1—[6 r,et el J}
o 1 2l

-2An0 -2l -2n2
+O.51985{1—(e 2, e2 e J}
or 1 2l

= 0.20664.

R Code for Exercise 3.8

options(digits=5); 1-ppois(2,1) # 0.080301
pl=exp(-2)/(exp(-2)+8*exp(-4)); c(p1,1-p1) # 0.48015 0.51985
pl1*(1-ppois(2,1))+(1-p1)*(1-ppois(2,2)) # 0.20664

Exercise 3.9 Posterior predictive p-values for testing a normal
mean

Consider a random sample y;,...,y, from a normal distribution with

variance o, where the prior on the precision parameter A =1/c? is
given by 4 ~Gamma(0,0), or equivalently by f(4)o«c1/4,1>0.

We wish to test the null hypothesis
H,: that the normal mean equals u

against the alternative hypothesis
H, : that the normal mean is greater than u

(where 1 is a specified constant of interest).
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Derive a formula for the ppp-value under each of the following three
choices of the test statistic:

(@ T(y.A)=y. (b) T(y,ﬂ){/‘jﬁ, © T(y,/l):syl_j%,

where: V= %Z y,  (the sample mean)
i=1
35 = Ll (y,—Y)* (the sample variance).
n

For each of these choices of test statistic, report the ppp-value for the
case where ¢ =2andy=(2.1,4.0,3.7,55,3.0, 4.6,8.3,2.2,4.1,6.2).

Solution to Exercise 3.9

(a) Let X = (x, +...+ x,)/ n be the mean of an independent replicate of
the sample values, defined by (x,,..., X, | y,A) ~iid N(u,o?).

1 n
y|~t(n), where s == "(y,—u)’.
N >

Then, by Exercise 3.7, [ almd

yp

From this, if the test statistic is T(y,4) =y, then the ppp-value is

o X—u y- /J| Y —u
=P(X > =P > =1-F, | 22—
P=PX>¥1Y) [sy#/\/n /</n | J t(")(s /\/n}

Syu yu

Here: 4 =2, n=10, y== Zy, 4.370, s ZEZ(yi—Mf:z.g?s.
i-1 n5=

y — —
Therefore =2.51658,and so p=1-F 2.51658) = 0.01528.
S /\/ n P 1o ( )

yu

2 then the ppp-value is

(b) I T(y, 1) = Vl‘ﬁ

X—p _ Y=u| ) proe o
b= [a/\/_ 0/\/—| j_P(X>y|y).

We see that the answer here is exactly the same as in (a).
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() If T(y, /1)—

then the ppp-value is

[
D= p{ \77 jﬁI where sf:ﬁg(xi—f)z

Pl

by the law of iterated expectation
{1 Ft(n—l) n ]

y since Xou
s, /</n
=1 t(n D(S /\/’}

We see that the ppp-value derived is exactly the same as the classical
p-value which would be used in this setting. Numerically, we have that:

1 ¢ - Y-
f=—"_ - —Vy)? =1.901, = 3.942645.
; n_1;(3/. y) N

y,/lj ~t(n-1)

Consequently, the ppp-value is p =1-F, (3.942645) = 0.001696.

Note: A fourth test statistic which makes sense in the present context is

T(y,A)= V=M \where s2, == Z:(yi—u)2 (as before).
i=1

/</n

yu

This implies a ppp-value given by

_p| X-Hu y- ,U| 15, e
pP[S /\f /\/,| J where sxu_n;:(xi w)?.

Syu

This ppp-value is more difficult to calculate, and it cannot be expressed
in terms of well-known quantities, e.g. the cdf of a t distribution, as in

(@), (b) and (c). (Here, X and s, are not independent, giveny and 4 .)

For more details, regarding this exercise specifically and ppp-values
generally, see Meng (1994) and Gelman et al. (2004).
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R Code for Exercise 3.9

options(digits=4); mu=2;y =c(2.1,4.0,3.7,5.5,3.0, 4.6,8.3,2.2,4.1,6.2);
n=length(y); ybar=mean(y); s=sd(y); smu=sqrt(mean((y-mu)”2))
c(ybar,s,smu) # 4.370 1.901 2.978
arga=(ybar-mu)/(smu/sqrt(n)); pppa=1-pt(arga,n); c(arga,pppa)

#2.51658 0.01528

argc=(ybar-mu)/(s/sqrt(n)); pppc=1-pt(argc,n-1); c(argc,pppc)
#3.942645 0.001696

3.4 Bayesian models with multiple parameters

So far we have examined Bayesian models involving some data y and a
parameter €, where @ is a strictly scalar quantity. We now consider the
case of Bayesian models with multiple parameters, starting with a focus
on just two, say ¢, and 6,. In that case, the Bayesian model may be

defined by specifying f(y|8) and f (&) in the same way as previously,
but with an understanding that & is a vector of the form 6 =(6,,6,) .

The first task now is to find the joint posterior density of 6, and 6,,

according to
f(@ly) e« £(0)f(y]0),
or equivalently
f(0,0,1y) o< £(0,6,)f(y16,6,),
where
f(0)=1(6.,6,)
is the joint prior density of the two parameters.

Often, this joint prior density is specified as an unconditional prior
multiplied by a conditional prior, for example as
£(6,0,)=1(6)f(6,16).

Once a Bayesian model with two parameters has been defined, one task
is to find the marginal posterior densities of 6, and 6,, respectively, via

the equations:
t(6,1y)=]1(6,6,1y)d6,

10,1y)=[1(6,6,1y)d6,.
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From these two marginal posteriors, one may obtain point and interval
estimates of ¢, and 6, in the usual way (treating each parameter
separately). For example, the marginal posterior mean of 6, is

0,=E@0,1y)=[01(61y)d6,.

Another way to do this calculation is via the law of iterated expectation,
according to

6,=E(6,|y)=E{E(41Y.6,) ]y}
= [E@,1Y.6,)1(6,y)d6, .

Note: The equation E(6, |y)=E{E(4,|Y.6,)|y} follows from the
simpler identity E6, = EE(6, | 6,) after conditioning throughout on'y.

Here, E(6,|y,6,) is called the conditional posterior mean of 4, and can
be calculated as

E(el | y,Hz) = J-Hlf (91 | y102)d‘91'

Also, f(6,|y,6,) is called the conditional posterior density of 4, and

may be obtained according to
f(el | Yfez) oC f(@l,Hz ly). (3.1)

Note: Equation (3.1) follows after first considering the equation
f(6,16,) < f(6,,6,) and then conditioning throughout on y.

The main idea of Equation (3.1) is to examine the joint posterior density
f(6.,0,1y)

(or any kernel thereof), think of all terms in this as constant except for

6,, and then try to recognise a well-known density function of 4,.

This density function will define the conditional posterior distribution of
6,, from which estimates such as the conditional posterior mean of &

(i.e. E(G,]Y,6,)) will hopefully be apparent.

One may also be interested in some function,
v =9(6,,6,),
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of the two parameters (possibly of only one).Then advanced distribution
theory may be required to obtain the posterior pdf of v, 1.e. f(y|y).

This posterior density may then be used to calculate point and interval
estimates of . For example, the posterior mean of y is

v =EWly)=[yf(yly)dy.

Alternatively, this mean may be obtained using the equation
‘/; = E(g(glvgz) | y) = J.Jg(ﬁl,ﬁz) f (‘91’92 | y)deldez .

Further, one may be interested in predicting some other quantity x,
whose model distribution is specified in the form f(x|y,8).

To obtain the posterior predictive density of x will generally require a
double integral (or summation) of the form

f(xIy)=[]f(x1.6,.6,)f(6,6,]y)d6,dd,.

Further integrations will then be required to produce point and interval
estimates, such as the predictive mean of x,

R=E(x]y) = [ xf (x] y)dx.

Exercise 3.10 A bent coin which is tossed an unknown nhumber
of times

Suppose that five heads have come up on an unknown number of tosses
of a bent coin.

Before the experiment, we believed the coin was going to be tossed a
number of times equal to 1, 2, 3, ..., or 9, with all possibilities equally
likely. As regards the probability of heads coming up on a single toss,
we deemed no value more or less likely than any other value. We also
considered the probability of heads as unrelated to the number of tosses.

Find the marginal posterior distribution and mean of the number of
tosses and of the probability of heads, respectively. Also find the number
of heads we could expect to come up if the coin were to be tossed again
the same number of times.
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Solution to Exercise 3.10

For this problem it is appropriate to consider the following three-level
hierarchical Bayesian model:

(y|6,n) ~ Binomial(n, )
(61n)~U(0,1)
n~DU(..k), k=9  (ie. f(n)=1/9, n=1,..,9).

Under this model, the joint posterior density of the two parameters n and
0 is
f(n,0]y)oc f(n,0)f(y|n,0)
=f(m)f@[n)f(y[n0)

:lxlx[n]ﬁy(l—ﬁ)”y
k y

oc[;]ey(i—e)“y, 0<6<l n=y,y+1..9.

So the marginal posterior density of n is

f(nly)= [ f(n.0]y)do

9y+1—1(1_9)n7y+1—1
B(y+Ln—y+1)

1
[n]B(y+l,n—y+1)f df, n=567809
0

y

:[n]F(y+1)F(n—y+1)
y) I'(y+1+n—-y+1)

x1 (since the integral equals 1)

_ . ntyin—y)!
Cyln=y)! (n+1)!
1
T n+l
(1/6, n=5
1/7, n=6
=11/8, n=7
1/9, n=8
1/10, n=o.
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After normalising (i.e. dividing each of these five numbers by their sum,
0.6456), we find that, to four decimals, n’s posterior pdf is
0.2581, n=5

0.2213, n=6
f(n|y)=40.1936, n=7
0.1721, n=8
0.1549, n=09.

Thus, for example, there is a 17.2% chance a posteriori the coin was
tossed 8 times.

It follows that n’s posterior mean is
9
A=E(|y)=)_nf(nly)
n=6

— 0.2581%5+0.2213% 6 ...+ 0.1549 % 9
= 6.744.

Next, the marginal posterior density of 6 is

f@ly)=>_f(noly)

X

[”]ey(l—e)”y
y

9y+171 (1_ e)n—yﬂ—l
B(y+Ln—-y+1)

[;]B(y+l,n— y+1)

1

n+1

Il
M 1 10

fBeta( y+1,n—y+1) (9) '

>
Il
<

Recall that f(n|y)o1/(n+1). It follows that #’s marginal posterior
density must be exactly

9
FO1Y) =D F (1Y) foragyian yin ()
n=>5

95 (1_ 9)575 + + 01549 95(1_ 9)975

=0.2581 .
51(5—5)1/ (5+1)! 51(9—5)!1/ (9+1)!

We see that 6’s posterior is a mixture of five beta distributions.
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Note: This result can also be obtained, more directly, as follows. By
considering the ‘ordinary’ binomial-beta model (from earlier), we see
that in the present context the conditional posterior distribution of &
(given n) is given by

(@]y,n)~Beta(y+Ln—y+1).

It immediately follows that

f@ly)=>_f@nly)=>_ f(ly)f(@]y.n)

I
Mm s

f (n | y) fBeta(y+1,n—y+1) (0) '

n=5

We may now perform inference on 6. The posterior mean of 6 is

G=E(0]y)=EE@1 .| v} = E[y+1 y]

+2
—(y+1)2[ L ]f( )

—6 [1]0.2581+[ ]o 2213+[ ]0 1936+[ ]o.1721+[—]o.1549
7 8 9 10 11
= 0.7040.

Figures 3.3 and 3.4 (page 141) show the marginal posterior densities of n

and 6, respectively, with the posterior means i = 6.744 and f =0.7040
marked by vertical lines.

Finally, we consider x, the number of heads on the next n tosses.
The distribution of x is defined by (x|y,n,8) ~ Bin(n, &) .

So the posterior predictive mean of x is
E(x|y)=E{E(x|y,n,0)|y}=E(nd|y)
=E{E(n0]y,n)|y}=E{nE(@]|y,n)|y}

v =3[ iy

5 6 7 8 9
=64]—10.2581+|—=10.2213+|—10.1936 +|—10.1721+|—10.1549
{[7] +[8] +[9] +[10] +[11] }

:E[nx y+1
n-+2

=4.592.
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Figure 3.3 Posterior density of n

finly)
02 03 04
l
L ]

01

00
I

Figure 3.4 Posterior density of ¢
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R Code for Exercise 3.10

y <- 5; k <- 9; options(digits=4)
nvec <-y:k; avec<-1/(nvec+1); sumavec <- sum(avec); sumavec #0.6456
fny <- avec/sumavec; rbind(nvec,avec,fny)
# nvec 5.0000 6.0000 7.0000 8.0000 9.0000
# avec 0.1667 0.1429 0.1250 0.1111 0.1000
# fny 0.2581 0.2213 0.1936 0.1721 0.1549
nhat <- sum(nvec*fny); nhat #6.744
thhat <- sum( fny * (y+1)/(nvec+2) ); thhat #0.704
xhat <- sum( fny * nvec * (y+1)/(nvec+2) ); xhat # 4.592
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thvec <- seq(0,0.99,0.01); fthyvec <- thvec
for(i in 1:length(thvec)) fthyvec]i] <- sum( fny * dbeta(thvec[i],y+1,nvec-y+1))

X11(w=8,h=4); par(mfrow=c(1,1))

plot(nvec,fny,type="n",xlab="n",ylab="f(n|y)",ylim=c(0,0.4))
points(nvec,fny,pch=16,cex=1); abline(v=nhat)

plot(thvec,fthyvec,type="n" xlab="theta",ylab="f(theta|y) ",ylim=c(0,2.5))
lines(thvec,fthyvec,lwd=3); abline(v=thhat)

Exercise 3.1 1 The uninformative normal-normal-gamma model

Consider the following Bayesian model:
(Yoo Yo [, A) ~ 1id N (g, 17 X)
(11 2) ~ N(0,0)
A~ Gamma(0,0),

with observed data y =(y,,..., y,) -

(a) Find the marginal posterior distribution of .

(b) Find the marginal posterior distribution of A .

(c) Find the posterior mean of the signal to noise ratio, defined as
y=ulo=uli.

(d) Find the posterior predictive distribution of
X=(X+..+x,)/m,

where the x; values have a distribution given by
(Xl""7xm | y,,ll,)\) -~ N(,u,l/)\) .

Note: Both p and A are assigned uninformative priors. The joint prior
distribution of these two parameters could also be specified by:
f(u|\)xL per
f(\) x1/ A A>0,
or by the single statement
f(u,A\) x1/ A\, peR,A>0.
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Solution to Exercise 3.11

(a) The joint posterior density of the two parameters p and A is
fQuAlY) o (A EQy [ A) = F)F(elA) F(y[rA)

C(yi—m)*
21/ \)

R —

So the marginal posterior density of p is
f(uly)= [ f(uAly)dA

I L 10
A2 exp|-M\{= C— )2 Hd A

B I'(n/2) i
- gfr(n/Z){ Z(y. u)}
{ZZ(Yi_M) ]’
XAzlexp[_Agi(yi_u)z} 0

_ I'(n/2) - &{i(yl _H)z} 2
{;Z(yi -

oc)\ ><1><H\/_

Note: The last integral is that of a gamma density and so is equal to 1.

Now observe that

i(yi it =i{(yi YT

=i(yi Yy +2(7—u>i(yi P+ (V—u)zil

~ -9 253097 |2y e )y -

=(n—1)s*+n(u—Y)?, where s® is the sample variance.

143



Bayesian Methods for Statistical Analysis
This result implies that

f(uly)oc{(n—1)s* +n(u—7)’} 2
) —%{(n—l)Jrl}

1 =y
g( " n(,u _ 7)2 —2%(n-1)+1} _ [S / \/—
(n—1s° (n—1)
We now define r = so that y+—=r and d_“ _S
s/ f o \/ﬁ dr Jn’

By the transformation rule, we then have that

f(r|y)=f(u|y)f'j—“

2 7;{(n—l)+l}
r r S
i1+ X |—=
{ (n—1>}

; |’2 7%{(n—l)+l}
{1+ .
Jn { (n—l)}

By definition of the t distribution, we see that (r|y) ~t(n—1).

It follows that the marginal posterior distribution of 1 is given by

A=Y~ tn—
< y] t(n—1). (3.2)

Note 1: In result (3.2), the data vector y appears only by way of the
sample mean 7 and sample standard deviation s. So it is also true that

o/ \/, Y, s]~t(n 1).

Here, s may not be left out of the conditioning. So it is not true that

E=Y ol tin_
s/Jn y] t(in-1).

Note 2: Result (3.2) implies that the marginal posterior mean, mode and
median of x are all equal to y, and the 1-« CPDR/HPDR for u is
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(Y £t ,(n—1)s/~/n).

This inference is identical to that obtained via the classical approach and
thereby justifies the use of the joint prior
f(,\) <1/ X\, peR,A>0

in cases of a priori ignorance regarding both p and 4.

Note 3: The exact marginal posterior density of . is

f(uly) = I},
where r = 5/‘% and (r]y)~t(n—1).
Thus  f(uly)= P((I;(f(l’;:g gnlf’ 5’, 5
X l+i[g/_\fz]z 2«“”1)@, peR.

This density can be calculated in R at any point p by first calculating

the corresponding value of r and then returning
dt(r,n-1)*sqrt(n)/s
(see below for examples).

(b) The marginal posterior density of A is
F ) = [ fuAly)dp

x f)\g_lexp[—%{(n—l)sz+n(u—7)2}]du
et e”[%l]sz JaI(m)V2r
Xj = exp[—;(u—wz]du
JJarmNer 2(1/ (X))

n-1 n;l]sz
2

_ AgleA[nZ_l]sz./(l/(nA))JZ TR
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Note: The last integral is that of a normal density and so equals 1.

It follows that

(M| y) ~ Gamma nT—l][nT—l]sz] (3.3)
and hence also that
(n-Ds*A]y) ~ x*(n-1). (3.4)

Note 1: Result (3.4) can be proved as follows. Let
u=(n-1s°1,

u dA 1
n

sothat A=—+— and —=—-——.
(n=1)s du (n-1)s

Then, by the transformation rule,

(@)= FAINIT
u
n—1
c:c[ : J[2]1e<nu1)sz[n21]52 1
(n—1s° (n—1s°
oucu[%l]fle_%.

Thus (u]y)~ Gamma[nT_l,%] ~ x*(n—1), which confirms (3.4).

Note 2: Results (3.3) and (3.4) imply that A has posterior mean 1/s°.
This makes sense because 1 =1/c", and s* is an unbiased estimator of
o’ . We see that the inverse of the posterior mean of A provides us with
the classical estimator of &2.

Also, result (3.4) implies that the 1—« CPDR for A is

Zzl—alz(n_l) Zzalz(n_l)
(n-Ds* ' (n-1s* )

It follows that the 1—« CPDR for o2 =1/ 1 is
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( (n-1)s? (n-1)s? )
Zza/z(n -1) ’ Zzl—a/z (n-1) .

It will be observed that this is exactly the same as the usual classical
1-a Clfor o* when the normal mean g is unknown.

(c) The posterior mean of y = u/o = uﬁ could be calculated using the
equation

7=[rf(1y)dr,
where f(y|y) is the posterior density of y.

However, obtaining this density may be difficult. We could use Jacobian
theory to find the joint posterior density of # and y, and then integrate

that joint density with respect to 4. The result would be f(y|y).

Another approach is to calculate the mean as

A=Y= [ [ NGl y)dud),

p=—00 A=0

where: f(u,A|y)= @

(a2 =22 exp[—%i(yi —u)Z]

i=1
o
c= [
J=—00

More simply, we may use the law of iterated expectation to write
7=E(uNA1y) = EEWNA |y, A) |y} = ENAE(u]y. A)| v}
= E(JAY |y} =VE(Z"|y)

%)
(%) (%)

C

%g

h(p, \)dpd .

A

0

=y by (3.3)

y
S

n?
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c 2 2
n 1/2 '
(n—l) r(n—lj
2 2
Note 1: By a well-known property of the gamma function, ¢, -1 as

n — . So for large n the posterior mean of y = i/ o is approximately
the same as y’s MLE, y/s.

where

Note 2: Suppose that we wish to find the posterior median or mode of y

or the 95% CPDR or HPDR for that quantity. Then we first need to
determine f(y|y). This and subsequent calculations may be difficult.

This points to the need for another strategy. As will be seen later, most
of these issues can be easily sidestepped using Monte Carlo methods.

(d) Recall from previous exercises that:

(X1y.2) ~ N[ 1/>\+1/)\] N[V’n—i—m]
n nm\

Salend
ST .

2 2

Hence f(Y|y):ff(Y|y,/\)f()\|y)d>\

o(j“ A\Y2 ax p{ nmA(X — ) H

2(n+m)

)\{71]_1 exp {— [nT—l] sz)\}

[ -y)’ +[n _1]52H>d)\
2(n+m) 2

(Aly) ~ Gamma

X d\

nm(X—y)> (n-1 27[2]
“an+m) +[ H
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nm(X - y)°
(n—1)(n+m)s?

2 7[2]

X—y
Jr[(s/x/ﬁ)\/(ner)/m

n-1

It follows that

X—y |
(s/\/ﬁ)\/(n+m)/m|y

Note 1: Equation (3.5) can be used to derive the predictive distribution
of the average of all n + m values considered (both past and future).

~t(n—1). (3.9)

That average may be written

(B3 ) T

n+m

n+m

Consequently,
(n+m)a—ny
-

X =

It follows that in (3.5),
(n+ma—-ny| _
Xy _[ m ]_y
(s/~n)J(n+m)/m  (s/+/n)\/(n+m)/m
~ (@=y)(n4+m)/m
(/) J(n+m)/m

_ a—-y
~ (s/Nn)ymi(n+m)’

a—y |
[(s/\/ﬁ)«/m/(n+m)|y

and therefore

~t(n—1). (3.6)
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This may look familiar to some readers, the reason being as follows.

Denote the total number of values, n + m, as N, and write the average of
all these observations, a, as Y . Then (3.6) is equivalent to the result

-y
s fon

Jn N

y|~t(n—1). (3.7)

So the posterior predictive mean of Y is the observed sample mean y,
and the 95% central (and highest) predictive density region for Y is

_ S n
y+t,,(n _1)ﬁ’/l_ﬁ

It will be noted that this inference is exactly the same as implied by the
standard approach in the classical survey sampling framework (e.g. see
Cochran, 1977).

. (3.8)

Recall that in this framework, ~1—n/N s the finite population
correction (fpc) factor. As N increases, the fpc factor tends to 1 and (3.8)
reduces to

[Vita,z(n—l)%],

which is the ‘standard’ Cl for a normal mean when the normal variance
is unknown.

We have here touched on the topic of Bayesian finite population
inference. More will be said on this topic later in the book.

Note 2: The exact posterior predictive density of the finite population
mean Y may be obtained according to

f(Y‘|y):f<q|y)j—Y‘1,

Y-y
(s//n)Vi—n/N
(aly)~t(n-1).

where: q=
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T{(n—1)+1/2)

We thereby obtain the densit fY|y)=
Y y ) T((n—1)m)C((n—1)/2)

_ 2\ 5 (4D =
v -y ~ V1 Vew.
n—1{(s/</n)v1—n/N svl—n/N

This density can be calculated in R at any point Y by first calculating

the corresponding value of g (as defined above) and then returning
dt(qg,n-1)*sqrt(n)/(s*sqrt(1-n/N))

(see below for an example).

Note 3: The posterior predictive density of Y converges to the marginal
posterior density of . as N tends to infinity with n fixed. That is,

f(Y=cly)> f(u=c|y) as N > .

This is on account of the fpc factor /1-n/N converging to unity. Thus
1 may be interpreted as the average of a hypothetically infinite number
of values from the underlying superpopulation, N(z,1/4).

Figure 3.5 shows the predictive density f (Y | y) for various values of N,
as well as the posterior density f(u|y), corresponding to the limiting
case N =oo. In each case, the values of n, y and s are (arbitrarily) taken
as 5, 10 and 2, respectively. Note that N =00 <> m =00 since m=N —n.

Note 4: Consider the following Bayesian model:
(Yyreoor Yy [y A) ~iid N (2,17 X)
(1 12) ~ N (g, 95)
A~ Gamma(a, 3),
where o, is not necessarily « and o and g are not necessarily 0.

This may be called the (general) normal-normal-gamma model, as
distinct from the uninformative normal-normal-gamma model, here in
Exercise 3.11. In the general model, the inferences typically required are
much more difficult to perform. Later in the book, it will be shown how
to proceed in this—and similarly difficult—situations using Monte Carlo
methods, including Markov chain Monte Carlo (MCMC) methods.
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Figure 3.5 Predictive density of the finite population mean
(See Note 3 on page 151)
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R Code for Exercise 3.11

X11(w=8,h=6); par(mfrow=c(1,1))
ybar=10; s=2; cv=seq(0,20,0.005)
plot(c(4,16),c(0,1),type="n",xlab="Ybar",ylab="f( Ybar | y )", main="")
n=5; rv=(cv-ybar)*sqrt(n)/s; lines(cv, dt(rv,n-1)*sqrt(n)/s,Ity=1,lwd=2)
Nvec=c(6,7,10,40)
for(i in 1:length(Nvec)){ N=Nvec[i]; qv=rv/sqrt(1-n/N)
lines(cv, dt(qv,n-1)*sqrt(n)/(s*sqrt(1-n/N)),lty=i+1,lwd=2) }
legend(4,1,
c("N=6 (m=1)","N=7 (m=2)","N=10 (m=5)","N=40 (m=35)","N=infinity (=m)"),
Ity=c(2:5,1),lwd=2)
text(6,0.6,
"The solid line is also the\nposterior density of mu,\nnamely f( mu | y).")
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4.1 Solving equations

In most of the Bayesian models so far examined, the calculations required
could be done analytically. For example, the model given by:

(Y | 8) ~ Binomial (5, 6)

6~U(0,1),
together with data y = 5, implies the posterior (#|Yy) ~ Beta(6,1). So ¢
has posterior pdf f(6|y)=66° and posterior cdf F(0|y)=6°. Then,

setting F(#|y) =1/2 vyields the posterior median, § =1/2"® = 0.8909.

But what if the equation F(#|y) =1/2 were not so easy to solve? In that

case we could employ a number of strategies. One of these is trial and
error, and another is via special functions in software packages, for
example using the gbeta() function in R. This yields the correct answer.
Yet another method is the Newton-Raphson algorithm, our next topic.

R Code for Section 4.1

gbeta(0.5,6,1) #0.8908987
4.2 The Newton-Raphson algorithm

The Newton-Raphson (NR) algorithm is a useful technique for solving
equations of the form g(x)=0.

This algorithm involves choosing a suitable starting value x;, and
iteratively applying the equation

X =X, — g/(xj)_lg(xj)
until convergence had been achieved to a desired degree of precision.

How does the NR algorithm work? Figure 4.1 illustrates the idea.
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Figure 4.1 The Newton-Raphson algorithm

g(x)

g(c)

Here, a is the desired solution of the equation g(x) = 0, c is a guess at that
solution, and b is a better estimate of a. Observe that the slope of the

tangent at point Q is equal to both g’(c) and g(c)/(c —b) . Equating these
two expressions we get b=c—g(c)/g’(c).

Note: Sometimes the NR algorithm takes a long time to converge, and
sometimes it converges to the wrong or even impossible value or gets
‘stuck’ and fails to converge at all. This is a general problem with the
NR algorithm, namely its instability and the need to start it off with an
initial guess that is sufficiently close to the desired solution.

Exercise 4.1 Calculating a posterior median via the Newton-
Raphson algorithm

Suppose that the posterior cdf of a parameter is F(6|y)=6°.

Find the posterior median by solving the equation F(0|y)=1/2
via the Newton-Raphson algorithm.

Note: The algorithm should converge to the analytical solution, namely
0 =1/2"° = 0.8909.

Solution to Exercise 4.1

We wish to solve g(0) =0, where g(6)=F(@|y)—1/2.

Here, g'(0) = f (0| y)—0, where f(0|y)=266"°.
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So the algorithm is given by
B a(9,) _s _F(0j|y)—1/2 _g 9?—1/2.

o o=0. . :
O R T I

Starting at the posterior mode, ¢, = 1 (chosen arbitrarily), we get the
sequence shown in Table 4.1.

Table 4.1 NR algorithm starting from |

j 0 1 2 3 4
9 | 1.0000 09167 08926  0.8909  0.8909

J

So the posterior median is 0.8909. The same result is obtained if we start
with 6, = 0.8, as shown in table 4.2

Table 4.2 NR algorithm starting from 0.8

j 0 1 2 3 4
9. | 0.8000 09210  0.8933  0.8909  0.8909

J

Note 1: The median must satisfy
0°—1/2

0=0—
66°

This equation is indeed satisfied at the solution 6 = 0.8909 (working
to four decimals). This illustrates how to check whether or not the NR
algorithm has converged properly.

Note 2: In this simple example, one could get the answer by solving the
equation 0 =0—g(0)/g’(9) analytically. In general, that won’t be
possible, and iterating the algorithm will be required. Of course, if it is
possible to solve that equation analytically, there is no need to iterate.
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R Code for Exercise 4.1

NR <- function(th,J=5){
# This function performs the Newton-Raphson algorithm for J iterations
# after starting at the value th. It outputs a vector of th values of length J+1.
thvec <- th; for(j in 1:J){
num <- th"6-1/2 # theta’s posterior cdf minus 1/2 (numerator)
den <- 6*%th”5 # theta’s posterior pdf (denominator)
th <- th - num/den
thvec <- c(thvec,th) }
thvec }

options(digits=4)

NR(th=1,J=6) # 1.0000 0.9167 0.8926 0.8909 0.8909 0.8909 0.8909
NR(th=0.8,J=6) # 0.8000 0.9210 0.8933 0.8909 0.8909 0.8909 0.8909
0.8909-(0.890976-0.5)/(6*0.89095) # 0.8909 (Check)

Exercise 4.2 Further practice with the NR algorithm

Use the Newton-Raphson algorithm to solve the equation t* =¢'.
Note: In this case there is no analytical solution.

Solution to Exercise 4.2

We wish to solve g(t)=0, where g(t)=t>—¢'. Now, g'(t) =2t —¢'.

. . t? —e
So we iterate according to t;,, =t, —( ‘ J :

bt -
Let us arbitrarily choose t, =0. Then we get:
0% —g° _1)? _et
t,=0-——— =-1.000000, t,= (-1 —L_l =-0.733044
2(0)—e 2(-1)—e
_0733044 2 4-0.733044
t = (-0.733044) ) —¢ —-0.703808

2(~0.733044) — g 075504

(—0-703808)2 — e*0-703803
t, = (—0.703808) — 2(—0.703808) — g %% =—0.703467

~0.703467)% —g 07047
t, = (~0.703467) - ;(_0.70346;) — o = 0703467, cte.
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Thus the output of the NR algorithm starting from 0 is:
0.000000, -1.000000, -0.733044, -0.703808, -0.703467, -0.703467,
-0.703467, -0.703467, .....

Also, we find that the output of the NR algorithm starting from 1 is:
1.000000, -1.392211, -0.835088, -0.709834, -0.703483, -0.703467,
-0.703467, -0.703467, .....

From these results we feel confident that the required solution to 6
decimals is —0.703467. As a check, we calculate

9(~0.703467) = (~0.703467)% —e*"™* =0,000000803508 =~ O.

Figure 4.2 illustrates the function g and the output of the NR algorithm
starting from —5, which is:
-5.000000, -2.502357, -1.287421, -0.802834, -0.707162, -0.703473,
-0.703467, -0.703467, .....

Figure 4.2 Solution via the NR algorithm starting at =5

30

10

R Code for Exercise 4.2

options(digits=6); t=0; tv=t; for(j in 1:7){ t=t-(t*2-exp(t))/(2*t-exp(t))
tv=c(tv,t) }; tv
# 0.000000 -1.000000 -0.733044 -0.703808 -0.703467 -0.703467 -0.703467
#-0.703467
# Check:

t"2-exp(t) #0

(-0.703467)"2-exp(-0.703467) # -8.03508e-07
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t=1; tv=t; for(j in 1:7){ t=t-(t*2-exp(t))/(2*t-exp(t)); tv=c(tv,t) }; tv
#1.000000 -1.392211 -0.835088 -0.709834 -0.703483 -0.703467 -0.703467
#-0.703467

t=-5; tv=t; for(j in 1:7){ t=t-(t*2-exp(t))/(2*t-exp(t)); tv=c(tv,t) }; tv
# -5.000000 -2.502357 -1.287421 -0.802834 -0.707162 -0.703473 -0.703467
#-0.703467

tvec=seq(-6,2,0.01); gvec= tvec 2-exp(tvec)
X11(w=8,h=4.5); par(mfrow=c(1,1))
plot(tvec,gvec,type="1"lwd=2,xlab="t",ylab="g(t)", main=
abline(h=0,v=t); points(tv, tvA2-exp(tv),pch=16)
text(tv[1:4], tv[1:4]"2-exp(tv[1:4])+3, 0:3)

Exercise 4.3 Another example of the NR algorithm

Consider the Bayesian model:
(x| p) ~ Bin(3, p)
p~U(01),
and suppose the observed value of x is 2. Find the posterior median of p.

Solution to Exercise 4.3

The posterior distribution of p is given by
(p|x)~Beta(1+2,1+1),

with density
P -p)"

f(p|x):F(3)F(2)/F(5) =12p?(l-p),0<p<1.

So, the posterior cdf is
p p3 p4
F(p|x) :Ilzrz(l—r) dr :12[?_TJ =4p°-3p*, 0<p<1.
0
To find the posterior median of p we need to solve F(p|x)=1/2, or
equivalently g(p)=0, where g(p)=F(p|x)-1/2=4p>-3p*-1/2.

Now, g'(p) =12p*—12p®. So the NR algorithm is defined by iterating
g(p) _  [4p;—3p;-1/2
g'(p)) '\ 12pj-12p]

Pjn=P;—
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What’s a good starting value here? Let’s try the MLE, p, =2/3.

Using this value, we get:
0.666667, 0.614583, 0.614272, 0.614272, 0.614272, 0.614272,
0.614272,0.61427, .....

Starting at other values (0.5, 0.9 and 0.1), we get the following (three)
sequences (respectively):
0.500000, 0.625000, 0.614306, 0.614272, 0.614272, 0.614272,
0.614272, 0.614272, .....

0.900000, 0.439403, 0.649191, 0.614501, 0.614272, 0.614272,
0.614272, 0.614272, .....

0.10000, 4.69537, 3.62690, 2.83403, 2.25146, 1.83195, 1.54254,
1.36156, .....

The last sequence does not seem to have converged. Let’s run this for a
bit longer. The result is:
0.10000, 4.69537, 3.62690, 2.83403, 2.25146, 1.83195, 1.54254,
1.36156, 1.27282, 1.24913, 1.24749, 1.24748, 1.24748, 1.24748,
1.24748, 1.24748, 1.24748, 1.24748, 1.24748, 1.24748, .....

Thus if we start at 0.1, the algorithm converges to an impossible value of
p, namely 1.24748.

It appears that the required posterior median is 0.61427. As a check we
may calculate

F(p =0.61427 | x) = 4(0.61427)° —3(0.61427)* = 0.499999 ~0.5,

Figures 4.3 and 4.4 show the posterior median 0.61427, as well as the
other solution of g(p) =0 (i.e. root of g), namely 1.24748. This is not

actually a solution of F(p|x) = 0.5, because the values of F(p|x) for
p<0andp>1are0and 1, respectively.

Thus, the definition of g above is ‘deceptive’, and a better definition is:

0-1/2=-1/2, p<0
g(p)=F(plx)-1/2 =<4p*-3p*-1/2, 0<p<1
1-1/2=1/2, p>1.
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Figure 4.3 Posterior cdf and median of p
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Figure 4.4 Posterior median of p and the other root of g
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R Code for Exercise 4.3

options(digits=6); p=2/3; pv=p; for(j in 1:7){

p =p - (4*p"3-3*p”4-1/2)/(12*p"2-12*p"3); pv=c(pv,p) }; pv
# 0.666667 0.614583 0.614272 0.614272 0.614272 0.614272 0.614272
#0.614272

p=0.5; pv=p; for(j in 1:7){ p = p - (4*p"3-3*p"4-1/2)/(12*p~2-12*p~"3);
pv=c(pv,p) }; pv # 0.500000 0.625000 0.614306 0.614272 0.614272 0.614272
#0.614272 0.614272
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p=0.9; pv=p; for(j in 1:7){ p = p - (4*p"3-3*p"4-1/2)/(12*p~2-12*p~"3);
pv=c(pv,p) }; pv # 0.900000 0.439403 0.649191 0.614501 0.614272 0.614272
#0.614272 0.614272

p=0.1; pv=p; for(j in 1:7){ p = p - (4*p"3-3*p"4-1/2)/(12*p~2-12*p~"3);
pv=c(pv,p) }; pv
#0.10000 4.69537 3.62690 2.83403 2.25146 1.83195 1.54254 1.36156

p=0.1; pv=p; for(j in 1:20){ p = p - (4*p"3-3*p~4-1/2)/(12*p 2-12*p"3);
pv=c(pv,p) }; pv

#0.10000 4.69537 3.62690 2.83403 2.25146 1.83195 1.54254 1.36156
#1.27282 1.24913 1.24749 1.24748 1.24748 1.24748 1.24748 1.24748
#1.24748 1.24748 1.24748 1.24748 1.24748

4*(0.614272)"3-3%(0.614272)"4 # 0.499999
pvec=seq(-0.5,1.4,0.005); Fvec = 4*pvec”3-3*pvecr4
Fvec[pvec<=0] = 0; Fvec[pvec>=1] =1

X11(w=8,h=4.5); par(mfrow=c(1,1))

plot(pvec,Fvec,type="1"lwd=3,xlab="p",ylab="F(p|x)", main="")
abline(h=0.5,v=0.614272,lty=3); points(0.614272,0.5,pch=16, cex=1.2)
abline(h=c(0,1),lty=3); abline(v=c(0,1),lty=3)
gvecwrong=4*pvec”3-3*pvec”4-0.5

plot(pvec, gvecwrong,type="n",lwd=2,xlab="p",ylab="g(p) = F(p|x) - 1/2",
main="")

lines(pvec,Fvec-0.5,lwd=3)

lines(pvec[pvec<0], gvecwrong[pvec<0],lty=2,lwd=3)

lines(pvec[pvec>1], gvecwrong[pvec>1],lty=2,Ilwd=3)

abline(v=c(0.614272, 1.24748),Ity=3); abline(h=0,lty=3)

points(c(0.614272, 1.24748),c(0,0),pch=16,cex=1.2)

abline(h=c(-0.5,0,0.5),lty=3); abline(v=c(0,1),lty=3)

4.3 The multivariate Newton-Raphson
algorithm
The Newton-Raphson algorithm can also be used to solve several

equations simultaneously, say
9 (X %) =0, k=1,... K.
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X 9:(x) 0
Let: x=| : [, g(x)=| : |, 0=|:| (acolumnvector of length K).

Xk gk (X) 0

Then the system of K equations may be expressed as

9(x)=0,
and the NR algorithm involves iterating according to
X0 — D _ g/ (xD)Lg(xDy,

X
where: x =] : is the value of x at the jth iteration
XD
X 9.(xM) ] |[ 9.0
U+ — : ’ g(x“)) — : — :
X g X))o

g'(x") =[g'(%)

x:x(j)]

8gl(X)/3XT agl(x)/axl 8g1(x)/aXK

9'(x) = : = : . : .
99, (010X | |09 (010% -+ 09, (x) ] O%,

Exercise 4.4 Finding a HPDR via the multivariate NR algorithm

Consider the Bayesian model: (x| A) ~ Poisson(4)
f(1)cl, 1>0,
and suppose that we observe x = 1. Find the 80% HPDR for 1.

Solution to Exercise 4.4
First, f(A|Xx)oc f(A)f(x|A)=1xe*A*/x!=e*A, sincex=1.

Thus (4| x) ~Gamma(2,1), with f(1|x)=1e*,1>0.
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The 80% HPDR for A is (a,b), where a and b satisfy the two equations:
F(b|x)-F(a]x)=0.8 (4.2)
f(b]x)=f(alx). (4.2)

Note: Here, f(b]|X) is the posterior pdf of A evaluated at b, F(b|x)
is the posterior cdf of A evaluated at b, etc. Equations (4.1) and (4.2)
reflect the requirement that A € (a,b) with posterior probability 0.8,

and that the posterior density of 4 must be the same at both a and b,
considering that A’s posterior pdf is bell-shaped and unimodal.

Thus we wish to solve the equation
g(t)=0,

0 t F(b|x)-F -0.8
0:( J t{a) g(t):(gl‘)]:( (b1 ~F(al) j
0 b g, (t) f(b]x)-f(alx)
The Newton-Raphson algorithm for solving this equation is
00 =t _gr @Dy g ),

where:

where:
_ a.
() _ ]
“(s)
00 = og,(t)/da og,(t)/db) [ —ae™ be™®
g,(t)/6a og,(t)/ob) |e?(a-1) e’@-b))
Starting at

() _ a, _ 0.5
b, 3.0
(based on a visual inspection of the posterior density f(4]x)=1e™*), we
obtain results as shown in Table 4.3.

Table 4.3 Multivariate NR algorithm

i o 1 2 3 4 5
05 00776524 0.163185 0.167317 0.16730 0.16730

b. | 3.0 2.7406883 3.025571 3.079274 3.08029 3.08029

163



Bayesian Methods for Statistical Analysis

It seems that the 80% CPDR for A is (0.16730, 3.08029). This interval is
illustrated in Figure 4.5 and appears to be correct.

As another check on our calculations, we find that:
f(41=3.08029|x)— f(4=0.16730|x) =0.14153-0.14153=0
F(1=3.08029|x)-F(41=0.16730| x) =0.81253-0.01253=0.8.

Figure 4.5 An 80% HPDR
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R Code for Exercise 4.4

gfun = function(a,b){
gl=pgammalb,2,1)-pgamma(a,2,1)-0.8; g2=dgamma(b,2,1)-dgamma(a,2,1);
c(gl,82)}

gpfun = function(a,b){ mll=-dgamma(a,2,1); ml2=dgammalb,2,1)
m21=exp(-a)*(a-1); m22=exp(-b)*(1-b)
matrix(c(m11,m12,m21,m22),nrow=2,byrow=T) }

gvec=c(0.5,3); gmat=gvec; for(j in 1:7){
a=gvec|[1]; b=gvec[2]
gvec = gvec - solve(gpfun(a,b)) %*% gfun(a,b)
gmat = cbind(gmat,gvec) }

options(digits=6); gmat

#1[1,] 0.50.0776524 0.163185 0.167317 0.16730 0.16730 0.16730 0.16730
#1[2,] 3.02.7406883 3.025571 3.079274 3.08029 3.08029 3.08029 3.08029
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lamv=seq(0,5,0.01); fv=dgamma(lamv,2,1)

X11(w=8,h=4.5); par(mfrow=c(1,1))
plot(lamv,fv,type="1",lwd=3,xlab="lambda",ylab="f(lambda|x)", main="")
abline(h=c(dgamma(a,2,1)),v=c(a,b),lty=1)

# Checks:

c(a,b,dgammal(c(a,b),2,1)) #0.167300 3.080291 0.141527 0.141527
c(pgamma(a,2,1), pgammal(b,2,1), pgamma(b,2,1) - pgamma(a,2,1))
# 0.01252750.8125275 0.8000000

4.4 The Expectation-Maximisation (EM)
algorithm

We have shown how the Newton-Raphson algorithm for solving g(x) =0

numerically can be useful for finding the posterior median and the HPDR.

That algorithm can also be used for finding the posterior mode, when this

is the solution of
@1y _,

00

or equivalently

olog f(@]y) 0
00 '

In some situations, finding the posterior mode either analytically or via
the NR algorithm may be problematic because the posterior density
f(@|y) has a very complicated form. In that case, one may consider
applying the Expectation-Maximisation (EM) algorithm.

This algorithm first requires the specification (i.e. definition by the user)

of some suitable latent data, which we will denote by z, and then the
application of the following two steps iteratively until convergence.

Note: The choice of the latent data z will depend on the particular
application.

Step |. The Expectation Step (E-Step)

Determine the Q-function, defined as
Q@) =E/flog f(@|y,2)|y.6}

:jmg f(01y,2)f(z]y.0,)dz, (4.3)
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or, in words, as
the expectation of the log-augmented posterior density with respect
to the distribution of the latent data given the observed data and
current parameter estimates.

Step 2. The Maximisation Step (M-Step)

Find the value of & which maximises the Q-function, for example using
the Newton-Raphson algorithm.

This value becomes the current parameter estimate in the next iteration.

Note 1: For mathematical convenience, the Q-function may also be
defined as at (4.3) but plus and/or multiplied by any constants which do
not depend on the parameter &. This extended definition allows us to
ignore terms which have no impact on the final results. If (4.3) is
multiplied by a negative constant, the resulting Q-function should be
minimised at Step 2 rather than maximised.

Note 2: If there is a choice between using the NR algorithm or the EM
algorithm, one should consider the fact that the EM algorithm is slower
to converge but far more stable. In fact, under certain regularity
conditions, the EM algorithm is guaranteed to move closer to the
required solution at each iteration. By contrast, the NR algorithm may
not converge at all if started at a value far away from the required
solution. Thus, one plausible strategy is to use the EM algorithm to
obtain an approximate solution which is sufficiently close to the correct
answer, and then to obtain a very high precision using just a few
iterations of the NR algorithm.

Exercise 4.5 lllustration of the EM algorithm

Consider the Bayesian model given by:
(Yyrmr Y, | A) ~ 11d Gamma(l, 2)

f(A)ocl, A>0.

Suppose that the data, denoted D, consists of the observed data vector,
denoted by
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Yo = (Yir- i)
and the partially observed (or missing) data vector, denoted by

Yo = Vit Vo) -

We don’t know the values in y,, exactly, only that each of those values
is greater than some specified constant c.

Suppose thatc =10, n=5,k=3and y, = (3.1, 8.2, 6.9).

(a) Find the posterior mode of A by maximising the posterior density
directly.

(b) Find the posterior mode of A using the EM algorithm.

Solution to Exercise 4.5
(@) First, f(A|D)oc f(1)f(D]|A)

oclx[lj[f(yi Il)j(ll[ P(y, >CM)J,

i=k+1

where:  f(y,|1)=1e™

P(y,>c|A) = J‘/le*yi*dyi =e .

Then f(1|D)c (ﬁ Ae M J(ﬁ e‘”j

i=k+1

= 2 exp{~ ALy, +(n—k)c]},
where y; =V, +..+Yy, =182 (the total of the observed values).
So I(A4)=log f(4|D)=klogA—-A[y, +(n—k)c]
, k
=1'(1) =z—[ym +(n—k)c].

Setting 1'(4) to zero yields the posterior mode,
k

———— =0.078534.
Yor +(n—k)c
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(b) The latent data here may be definedas z=Yy, = (Y. Y,) -

Then, the augmented posterior density is

f (i | Yoo ym) oc Hﬂe’lyi =A" exp{_/l[yoT T Yor ]}!

i=1
where Y. =V, +...+Y, (the total of the missing values).

So the log-augmented density is
IOg f(ﬂ’| yo’ ym) =N Iogﬂ’_/l[yoT + ymT]+Cl
(where c, is a constant with respect to 4).

_lyl

Now, £(y,1y,>6,2) = = 26709, y, >

-l

(an exponential pdf shifted to the right by c).

Therefore, E(y, |y, >c,A)= c+%.
It follows that the Q-function is given by

]

J
(note the distinction here between 4 and 4,).

That concludes the E-Step.

As regards the M-Step, we now calculate the derivative

Q;(z)zg{yﬂ+(n—k)fc+%ﬂ.

Setting this derivative to zero yields a formula for the next value,
n

A= Yor +(—K)(c+1/4,)

(4.4)

Implementing the above EM algorithm starting at 4, =1 we get the

following sequence:
1.000000, 0.124378, 0.092115, 0.083456, 0.080431, 0.079282,
0.078832, 0.078653, 0.078581, 0.078553, 0.078542, 0.078537,
0.078535, 0.078535, 0.078534, 0.078534, .....
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We see that the EM algorithm has converged correctly to the answer
obtained in (a), namely 0.078534.

Note: Writing (4.4) with 4, = 4,, = 4 (i.e. the limiting value) gives
A= d |
Yor +(n—Kk)(c+1/2)

and this can be solved easily for the same formula as derived in (a),
namely

3 k
yoT +(n—k)C .

Thus, in this exercise it was not necessary to actually perform any
iterations of the EM algorithm.

R Code for Exercise 4.5

#(a)
n=5; k=3; c=10; yo=c(3.1, 8.2, 6.9); yoT=sum(yo); yoT # 18.2
k/(yoT+(n-k)*c) # 0.078534

# (b)

lam = 1; lamv = lam; options(digits=5)

for(jin 1:20){ lam=n/(yoT+(n-k)*(c+1/lam)); lamv=c(lamv,lam) }

lamv

# 1.000000 0.124378 0.092115 0.083456 0.080431 0.079282 0.078832
# 0.078653 0.078581 0.078553 0.078542 0.078537 0.078535 0.078535
#0.078534 0.078534 0.078534 0.078534 0.078534 0.078534 0.078534

Exercise 4.6 EM algorithm for right-censored Gaussian data

Consider the Bayesian model given by:
(Y0 Y, | A) ~iid N(u,0%)
f(u)c,ueR,

Suppose that the data, denoted D, consists of the observed data vector

Yo = (Ypreer Yid)
and the partially observed (or ‘missing’) data vector

Yo = Yierr oo Vo) -
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We don’t know the values in Yy exactly, but only that each of these
values is greater than some specified constant c.

Suppose thatc =10, n=5,k=3and y, = (3.1, 8.2, 6.9).

(a) Find the log-posterior density of 4 and describe how it could be used
to find the posterior mode of x . (Do not actually find that mode in this

way.)

(b) Find the posterior mode of 4 using the EM algorithm. Then check

your answer by showing the mode in plots of the likelihood and log-
likelihood functions.

Solution to Exercise 4.6

(a) Observe that f (x| D) oclx(f[ f(y. |,u)j(ll[ P(y, >c|,u)j.

i=k+1

(i —n)?
Here, Hf(y.lu)ocHez" n =e><p{—2(172

—exp{— 1
207

Kk
where: ¥, :12 y, (the observed sample mean)

Z(yi _/J)z}

——)2]},

k
s?= %z (y,—V,)* (the observed sample variance).

1 2
_E( Yi—u)

Also, P(y,>c|u) :J.a\/lge dy.

(-2 of 2]

where Z ~ N(0,1) and ®(z) = P(Z < z) (the standard normal cdf).

o)

Therefore f(,u|D)ocexp{— k2
20
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So the log-posterior is

K
log f(«|D)=-

(-, +(n—k)log[1—®(“—”jj+cl
20 o

(where c, is a term which does not depend on ).

To find the posterior mode of x we could solve the equation

I'() =0,
where 1'(u) :M
ou
k _ n—k c— -1
L ]
o)
O
This solution could be obtained via the NR algorithm defined by
o V)
j+1 T M " !
M ()
where 1"(u) = A'w) = —LZ
ou

As a further exercise, one could complete the formula for 1"(x) above
and actually implement the NR algorithm.

Note: The posterior mode here is also the maximum likelihood estimate,
since the prior is proportional to a constant.

(b) With y. =(Y,,,,--- Y,) as the latent data, the augmented posterior is

Gty )< T 10000 | TT 0010
1 < ) 1 3 )
ocexp{—z(jz;(yi—ﬂ) }exp{—z 72, (Vi—4) }

i=k+1

So the log-augmented posterior is

EONVEINE

20 i=

1 & )
22(y|_ﬂ) +Cl
i=1

log f(ut]YsrYn) =~ o
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k

= yZ = 2uy, + p? )—2 > O (Y2 —2uy, +u*)+¢,

2 i1 0 iZku
{ 2= 2umy, ) +((n=K)ps* ~2u(n=K)Y, )|+,
K
where: Z (the sample mean of the observed values)
i=1
Y, = Lk Zn: (the sample mean of the missing values).
=k+

Thus the Q-function may be taken as
Q; (1) = ku® =24ky, +(n=K) " —=2u(n—Kk)e,
=2nu - 2{ky, +(n—k)e;},
where ej:E(leDhuj):E(yithuj) (i>k).

We see that €, :[E(X |X >c)| }
H=Hj

where X ~N(u,0°) (with z taken as a constant).

Now observe that

E(X|X >¢)= jx 109 o1
P(X >c¢) P(X >¢)

where  P(X >c)=1—P(X <c)=1—P(Z < C_”j=1—cp(c_—”j,
(e (o2

and where

21 ey
I :jx e 20 dx

. oN2rm

2( —u)? L (xeup?

T 1
_I(x /,1)0\/_ dX+J.y0\/§ez

c

dx

) 1

= e " dt+ uP(X >c)
(CJ)Z 1, ON 21

where t:%(x—y)2 and dt = (x— w)dx

0 1 —izt
- j — e 7 dt+ uP(X >¢)

T 2
27 (-2 @
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2
L e-wi2 1(“7”]

O o 1 2¢
=— +uP(X >¢C) =0| — +uP(X >c
e P> =0\ g HPOE>0)
:a¢(c_’uj+yP(x >c) where ¢(z) is the standard normal pdf.
O

o

:ﬂ+a¢(c—ﬂj /{1_@(C—ﬂj},
(o} (o}
()
and consequently €, =x,+o¢| —— 1-® :
(o2 (o2

That completes the E-Step, which may be summarised by writing
Q; (1) = nu® = 2u{ky, +(n—k)e;},
where e, is as given above.

Thus E(X|X >c)= P(X1> 5 {0¢(C_ﬂj+yP(X >c)}

The M-Step then involves calculating

Qj’(:u) =2nu—2Aky, +(n— k)ej}
and setting this to zero so as to yield the next parameter estimate,
_ ky, +(n—K)e,
- n

_ %lkvo +(n- k)(ﬂ,— +0¢£C_aﬂjj/ {1_(1)(:%]}}]

Implementing the above EM algorithm starting at 5 (arbitrarily), we
obtain the sequence:
5.000000, 8.137838, 8.371786, 8.395701, 8.398209, 8.398473,
8.398501, 8.398504, 8.398504, 8.398504, 8.398504, .....

j+1

We conclude that the posterior mode of 4 is 8.3985.

Figure 4.6 shows the posterior density (top subplot) and the log-posterior
density (bottom subplot). Each of these density functions is drawn scaled,
meaning correct only up to a constant of proportionality. In each subplot,
the posterior mode is indicated by way of a vertical dashed line.
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Figure 4.6 Posterior and log-posterior densities (scaled)
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R Code for Exercise 4.6

# (b)
options(digits=6); yo = c(3.1, 8.2, 6.9); n=5; k = 3; c= 10; sig=3;
yoT=sum(yo); c(yoT, yoT/3) # 18.20000 6.06667
mu=5; muv=mu; for(jin 1:10){
ej = mu + sig * dnorm((c-mu)/sig) / ( 1-pnorm((c-mu)/sig) )
mu = (yoT +(n-k)*ej )/n
muv=c(muv,mu) }
muv #5.00000 8.13784 8.37179 8.39570 8.39821 8.39847
# 8.39850 8.39850 8.39850 8.39850 8.39850
modeval=muv[length(muv)]; modeval # 8.3985

muvec=seq(0,20,0.001); lvec=muvec
for(i in 1:length(muvec)){ muval=muvec[i]
Ivec[i]=(-1/(2*sig"2))*sum((yo-muval)*2) +
(n-k)*log(1-pnorm((c-muval)/sig)) }
iopt=(1:length(muvec))[lvec==max(lvec)]; muopt=muvec[iopt]; muopt # 8.399

X11(w=8,h=6); par(mfrow=c(2,1));
plot(muvec,exp(lvec),type="1",Iwd=2); abline(v=modeval,lty=2,lwd=2)

plot(muvec,lvec,type="1",lwd=2); abline(v=modeval,lty=2,lwd=2)
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4.5 Variants of the NR and EM algorithms

The Newton-Raphson and Expectation-Maximisation algorithms can be
modified and combined in various ways to produce a number of useful
variants or ‘hybrids’. For example, the NR algorithm can be used at each
M-Step of the EM algorithm to maximise the Q-function.

If the EM algorithm is applied to find the mode of a parameter vector, say
0 =(6,,0,), then the multivariate NR algorithm for doing this may be

problematic and one may consider using the ECM algorithm (where C
stands for Conditional).

The idea is, at each M-Step, to maximise the Q-function with respect to
6,, with 6, fixed at its current value; and then to maximise the Q-function

with respect to 6,, with 6, fixed at its current value.

If each of these conditional maximisations is achieved via the NR
algorithm, the procedure can be modified to become the ECM1 algorithm.
This involves applying only one step of each NR algorithm (rather than
finding the exact conditional maximum). In many cases the ECM1
algorithm will be more efficient at finding the posterior mode than the
ECM algorithm.

Sometimes, when the simultaneous solution of several equations via the
multivariate NR algorithm is problematic, a more feasible solution is to
apply a suitable CNR algorithm (where again C stands for Conditional).

For example, suppose we wish to solve two equations simultaneously, say:
g (a,b)=0
9,(a,b) =0,

for a and b. Then it may be convenient to define the function
g(a,b)=g,(a,b)* +g,(ab)*

which clearly has a minimum value of zero at the required solutions for a

and b.

This suggests that we iterate two steps as follows:
Step 1. Minimise g(a,b) with respect to a, with b held fixed.

Step 2. Minimise g(a,b) with respect to b, with a held fixed.
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The first of these two steps involves solving
ag(ab) o
oa

where 29(8.0) _ 0.(a b)agl(a b) Zgz(a’b)agz(a,b)_
oa oa oa

Assuming the current values of aand bare a; and b, , this can be achieved

via the NR algorithm by setting a; =a; and iterating until convergence
as follows (k=0, 1, 2, ...):

RS
2 —a oa
k+1 — Yk 2 '
{a 9(a.b) a=a,b=b }
oa’
and finally setting
a,,=a,. (4.5)

The second of the two steps involves solving
d9(a,b)

=0,
ob
og(a,b 0g,(a,b 0g,(a,b
where 9(8 ) _29,(ab) gl(b )29, (ab) gza(b ).

This can be achieved via the NR algorithm by setting by =b; and iterating
until convergence as follows (k=0, 1, 2, ...):

k )
62
|: abZ J+l’ b b :|

and finally setting
by, =hy. (4.6)

4 —
bk+1 -

A variant of the CNR algorithm is the CNR1 algorithm. This involves
performing only one step of each NR algorithm in the CNR algorithm.

In the above example, the CNR1 algorithm implies we set a,,, =a; at
(4.5) and b;,, =b/ at (4.6) (rather than a;,, =a’ and b, =D ).
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This modification will also result in eventual convergence to the solution
of g,(a,b)=0 and g,(a,b)=0.

One application of the CNR and CNR1 algorithms is to finding the HPDR
for a parameter.

For example, in Exercise 4.4 we considered the model given by
(x| A) ~ Poisson(A4)
f(A)xcl, 1>0,

with observed data x = 1.

The 80% HPDR for A was shown to be (a,b), where a and b are the
simultaneous solutions of the two equations:

0,(a,b)=F(b|x)-F(a]x)-0.8
9,(a,b)=f(b|x)-f(alx).

Applying the CNR or CNR1 algorithm as described above should also
lead to the same interval as obtained earlier via the multivariate NR
algorithm, namely (0.16730, 3.08029).

For further details regarding the EM algorithm, the Newton-Raphson
algorithm, and extensions thereof, see Lachlan and Krishnan (2008).

Exercise 4.7 Application of the EM and ECM algorithms to a
normal mixture model

Consider the following Bayesian model:
(Y, |R, £,6) ~L N(u+ SR ,5%),i=1,...,n
(R,,...R | &,0) ~iid Bernoulli(z),i=1,...,n
f(u,0)cl, ueR, 6>0.

This model says that each value y, has a common variance o’ and one
of two means, these being: if R =0
u+o if R =1

Each of the ‘latent’ indicator variables R, has known probability 7z of
being equal to 1, and probability 1— 7 of being equal to 0.

177



Bayesian Methods for Statistical Analysis

Note: In more advanced models, the quantity 7 could be treated as
unknown and assigned a prior distribution, along with the other two
model parameters, x and 6 . The model here provides a ‘stepping
stone’ to understanding and implementing such more complex models.

(a) Consider the situation where n =100, 7 = 1/3, x =20, 6 =10 and
o = 3. Generate a data vector y =(Y,,...,¥,) using these specifications
and create a histogram of the simulated values.

(b) Design an EM algorithm for finding the posterior mode of & = (x,0) .
Then implement the algorithm so as to find that mode.

(c) Modify the EM algorithm in part (b) so that it is an ECM algorithm.
Then run the ECM algorithm so as to check your answer to part (b).

(d) Create a plot which shows the routes taken by the algorithms in parts
(b) and (c).

Solution to Exercise 4.7

(a) Figure 4.7 shows a histogram of the sampled values which clearly
shows the two component normal densities and the mixture density. The

sample mean of the data is 23.16. Also, 29 of the 100 R values are equal
to 1, and 71 of them are equal to 0.

Figure 4.7 Histogram of simulated data
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(b) We will here take the vector R=(R,,...,R ) as the latent data. The
conditional posterior of  and & given this latent data is
F(u, 61y, R) e £(,6,Y,R)
= f(u,0) (Rl 1,6) F (Y[R, 1,0)
1

ocle[ﬂR‘ (1—nz)" " xljexp{— 557 (yi —[/J-l— Rié‘])z}
13 2
oclxlxexp{— > (v —[u+R5]) }

i=1

So the log-augmented posterior density is

log f (1,5]Y,R) =—2(172 i(yi —[u+ Rif?])2

i=1

- 12 i(yf =2y [+ RS]+[u+ Rié']z)

20" 3
[+ Rié]z}

1 n ) n
=— A : R
| -2 Lol

=—c1{(:2 —2uny =26 YR +nu? +2u5Y R+62) Rf},
i=1 i=1 i=1

where ¢, and ¢, are positive constants which do not depend on « or &
in any way. We see that

log f (11,5]Yy,R)=—¢, {cz —2uny —25) YR +nu’ +2u6R; +§2RT} ,
i=1

M-

5 L

where R, =Zn:Ri :

i=1
Note: Each R, equals 0 or 1, and therefore R’ =R,

So the Q-function is
Q;(1,0) =Eg{log f(u, 8|y, R) Y, 1;,6,}

:—cl{cz—ZynV—Zﬁz Y&y +Nu’ +2ude, +52en},
i=1
where: e; =E(R | Y, 4;,9;)

€ = E(RT |yuuj15j) :Zeij :
i1
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We now need to obtain formulae for the e; values. Observe that
FRIY, p1,6) o T(12,6,y,R)

oc 1x Hﬂ'R‘ (1—x)" " xHeXp {— 21 5
i=1 i=1 <

(LR |

It follows that
(R |y, u,0)~L Bernoulli(e,), i =1,...,n,

where
. l zexp(z%(y.[um])zj 1 |
T W
Therefore
. ’TeXp(—;z(yi—[ﬂj +5J.])2]

ij

1 2 1 2\’
”eXp(—w(yi _[,Uj +5,—]) j+ (1—77)9Xp(—&._2(yi _/Jj) j
Thereby the E-Step of the EM algorithm has been defined.

Next, the M-Step requires us to maximise the Q-function. We begin by

writing:
RQ;(w.9) _ —¢, {0—2ny -0+ 2nu + 25e; + 0|
ou
a j 15 n
%: —cl{O—O—ZZ yie; +0+2pe; +25eTJ},
i=1

Setting both of these derivatives to zero and solving for 4 and o6
simultaneously, we obtain the next two values in the algorithm:

_ 1 i
y-—2. Ve 2.V,
_ NS 5. = _
Hia= 1 i+l e Hi-

The EM algorithm is now completely defined.
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Starting the algorithm from (,,d,) = (10,1), we obtain the sequence
shown in Table 4.4. We see that the algorithm has converged to what we
believe to be the posterior mode, (i,5) = (20.08, 9.72).

Running the algorithm from different starting points we obtain the same
final results. Unlike the NR algorithm, we find that the EM algorithm
always converges, regardless of the point from which it is started.

Table 4.4 Results of an EM algorithm

J H; 51'

0 10.000 1.000
1 21.169 3.032
2 20.321 7.07
3 19.843 9.139
4 19.926 9.518
5 20.005 9.626
6 20.046 9.674
7 20.066 9.697
8 20.075 9.708
9 20.08 9.713
10 20.082 9.715
11 20.083 9.717
12 20.084 9.717
13 20.084 9.717
14 20.084 9.718
15 20.084 9.718
16 20.084 9.718
17 20.084 9.718
18 20.084 9.718
19 20.084 9.718
20 20.084 9.718

(c) The ECM requires us to once again examine the Q-function,
Q;(1,0) = —cl{c2 —2uny —25 ) Vg +nu’ +2udey, +52en},
i=1

but now to maximise this function with respect to » and ¢ individually
(rather than simultaneously as for the EM algorithm in (c)).
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: 0Q.(u,0
Thus, setting % = —c1{0—2n7—0+ 2np+20€y; +0}

17
tozerowe get  u;,, =Y -9, %en (after substituting in 6 =6,).

0Q. (u,0 n
Then, setting % =—C, {0 -0- 2; yie; +0+2ue, +25e; }
V&
to zerowe get §,,, == —H;,, (same equation as in (c)).

]

We see that the ECM algorithm here is fairly similar to the EM algorithm.

Starting the algorithm at (z,,0,) = (10, 1) we obtain the sequence shown

in Table 4.5 (page 184). We see that the ECM algorithm has converged to
the same values as the EM algorithm, but along a slightly different route.

(d) Figure 4.8 (page 185) shows a contour plot of the log-posterior density
log f(u,0|Y,R) and the routes of the EM and ECM algorithms in parts

(b) and (c), each from the starting point (z,,d,) = (10, 1) to the mode,

(1, 5) = (20.08, 9.72). Also shown are two other pairs of routes, one pair
starting from (5, 30), and the other from (35, 20).

Note 1: In this exercise there is little difference between the EM and
ECM algorithms, both as regards complexity and performance. In more
complex models we may expect the EM algorithm to converge faster
but have an M-Step which is more difficult to complete than the set of
separate Conditional Maximisation-Steps (CM-Steps) of the ECM
algorithm.

Note 2: The log-posterior density in Figure 4.8 has a formula which can
be derived as follows. First, the joint posterior of all unknowns in the

model is
f(u,0,Rly)oc f(u,0,y,R)
oclxll[ﬂ'R‘ 1L-r) & xﬁexp{— 12
i=1 i=1 20_

(-l Ro]) }
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. Ri(1_ \R _ 1 _ 2
zli;[ﬂ (1-7) exp{ ZGZ(yi [y+Ri5])}.

So the joint posterior density of just 4 and & is
F(u81y)=2 fF(wd,R1Y)
R

oc ﬁ i s (1—72')1‘Ri exp {— Zi'z (yi —[,u+ Riﬁ])z}

i=L R=0

=rj(ﬁexp{_zil(yf_p,+5pz}+0:4ﬂexp{—zig(yr—uf}j.

i=1

So the log-posterior density of 4 and & is
|(,6)=log f(u,5]y)

=C+anlog(7r9Xp{— Zi'z (v _[/“+5])2}

+(1-7) exp{— 2<1y2 (y; —ﬂ)z}j,

where c is an additive constant and can arbitrarily be set to zero.

Note 3: As an additional exercise (and a check on our calculations
above), we could apply the Newton-Raphson algorithm so as to find the

mode of I(x,0). But this would require us to first determine formulae
for the following rather complicated partial derivatives:

a(w,8) A(w,8) 0w, 8) (w,s) 4(u,d)

ou o5 | ot T 88 ' osou

and could prove to be unstable. That is, the algorithm might fail to
converge if started from a point not very near the required solution.

Another option is to apply the CNR algorithm (the conditional Newton-
Raphson algorithm). This would obviate the need for one of the

2
derivatives above, % , and might be more stable, albeit at the cost

oou
of not converging so quickly as the plain NR algorithm.
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As yet another possibility, we could apply the CNR1 algorithm. This is
the same as the CNR algorithm, except that at each conditional step we
perform just one iteration of the univariate NR algorithm before moving

on to the other of the two conditional steps.

Finally, we could use the R function optim() to maximise I(,?).
Although this function will be formally introduced later, we can report
that it does indeed find the posterior mode, (4,5) = (20.08, 9.72). For

details, see the bottom of the R code below.

Table 4.5 Results of an ECM algorithm

J H; 51'
0 10.000 1.000
1 22.505 1.696
2 22.566 3.882
3 21.905 6.811
4 21.139 8.729
5 20.611 9.501
6 20.322 9.732
7 20.181 9.774
8 20.118 9.764
9 20.093 9.746
10 20.085 9.732
11 20.083 9.725
12 20.083 9.720
13 20.083 9.719
14 20.084 9.718
15 20.084 9.718
16 20.084 9.718
17 20.084 9.718
18 20.084 9.718
19 20.084 9.718
20 20.084 9.718
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Figure 4.8 Routes of the EM and ECM algorithms
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R Code for Exercise 4.7

# (a)
X11(w=8,h=4.5); par(mfrow=c(1,1)); options(digits=4)
ntrue=100; pitrue=1/3; mutrue=20; deltrue=10; sigtrue=3

set.seed(512); Rvec=rbinom(ntrue,1,pitrue); sum(Rvec) # 29
yvec=rnorm(ntrue,mutrue+deltrue*Rvec,sigtrue)
ybar=mean(yvec); ybar # 23.16

hist(yvec,prob=T,breaks=seq(0,50,0.5),xlim=c(10,40),ylim=c(0,0.2),

xlab="y", main=

35

185



Bayesian Methods for Statistical Analysis

yv=seq(0,50,0.01); lines(yv,dnorm(yv,mutrue,sigtrue),lty=2,lwd=2)

lines(yv,dnorm(yv,mutrue+deltrue, sigtrue),lty=2,lwd=2)

lines(yv, (1-pitrue)*dnorm(yv,mutrue,sigtrue)+
pitrue*dnorm(yv,mutrue+deltrue,sigtrue), Ity=1,lwd=2)

legend(10,0.2,c("Components","Mixture"),lty=c(2,1),lwd=c(2,2))

# (b)

evalsfun= function(y=yvec, pii=pitrue, mu=mutrue,del=deltrue,sig=sigtrue){

# This function outputs (el,e2,...,en)
term1lvals=pii*dnorm(y,mu+del,sig)
termOvals=(1-pii)*dnorm(y,mu,sig)
term1lvals/(term1vals+termOvals) }

EMfun=function(J=20, mu=10, del=1, y=yvec, pii=pitrue, sig=sigtrue){
muv=mu; delv=del; ybar=mean(y); n=length(y)
for(j in 1:J){
evals=evalsfun(y=y, pii=pii, mu=mu, del=del, sig=sig)
sumyevals = sum(y*evals); sumevals=sum(evals)
mu=(ybar-sumyevals/n) / (1-sumevals/n)
del=sumyevals/sumevals - mu
muv=c(muv,mu); delv=c(delv,del)
}
list(muv=muyv,delv=delv)
}
EMres=EMfun(J=20, mu=10, del=1,y=yvec,pii=pitrue,sig=sigtrue)
outmat = cbind(0:20,EMresSmuv, EMresSdelv)
print.matrix <- function(m){ write.table(format(m, justify="right"),
row.names=F, col.names=F, quote=F) }
print.matrix(outmat)
0.000 10.000 1.000
1.000 21.169 3.032
2.000 20.321 7.070
3.000 19.843 9.139
4.000 19.926 9.518
5.000 20.005 9.626

H R O O W

# 16.000 20.084 9.718
#17.000 20.084 9.718
# 18.000 20.084 9.718
# 19.000 20.084 9.718
#20.000 20.084 9.718

muhat=EMresSmuv[21]; delhat=EMresSdelv[21];
c(muhat,delhat) # 20.084 9.718

186



Chapter 4: Computational Tools

#(c)
CEMfun=function(J=20, mu=10, del=1, y=yvec, pii=pitrue, sig=sigtrue){
muv=mu; delv=del; ybar=mean(y); n=length(y)
for(j in 1:J){
evals=evalsfun(y=y, pii=pii, mu=mu, del=del, sig=sig)
sumyevals = sum(y*evals); sumevals=sum(evals)
mu=ybar-del*sumevals/n
del=sumyevals/sumevals - mu
muv=c(muv,mu); delv=c(delv,del)
}
list(muv=muv,delv=delv)
}
CEMres=CEMfun(J=20, mu=10, del=1,y=yvec,pii=pitrue,sig=sigtrue)
outmat2 = cbind(0:20, CEMresSmuv, CEMresSdelv)
print.matrix(outmat2)

0.000 10.000 1.000
1.000 22.505 1.696
2.000 22.566 3.882
3.000 21.905 6.811
4.000 21.139 8.729
5.000 20.611 9.501

ETSE S T S T

# 16.000 20.084 9.718
#17.000 20.084 9.718
# 18.000 20.084 9.718
# 19.000 20.084 9.718
# 20.000 20.084 9.718

#(d)

X11(w=38,h=9); par(mfrow=c(1,1))

logpostfun=function(mu=10,del=10,y=yvec,pii=pitrue,sig=sigtrue){
sum(log(pii*dnorm(y,mu+del,sig)+(1-pii)*dnorm(y,mu,sig))) }

mugrid=seq(0,35,0.5); delgrid=seq(0,30,0.5)

logpostmat=as.matrix(mugrid %*% t(delgrid))

dim(logpostmat) #4121 OK

for(i in 1:length(mugrid)) for(j in 1:length(delgrid)) logpostmat[i,j] =
logpostfun(mu=mugrid[i],del=delgrid[j],y=yvec,pii=pitrue,sig=sigtrue)

contour(x=mugrid, y=delgrid, z=logpostmat, nlevels=20,
xlab="mu", ylab="delta"); points(muhat,delhat, pch=16,cex=1.2)

points(10,1,pch=16,cex=1.2)
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EMres=EMfun(J=20, mu=10, del=1,y=yvec,pii=pitrue,sig=sigtrue)
CEMres=CEMfun(J=20, mu=10, del=1,y=yvec,pii=pitrue,sig=sigtrue)
lines(EMresSmuv, EMresSdelv,Ity=1,lwd=3)

lines(CEMresSmuv, CEMresSdelv, lty=2,lwd=3)

points(5,30,pch=16,cex=1.2)

EMres=EMfun(J=50, mu=5, del=30,y=yvec,pii=pitrue,sig=sigtrue)
CEMres=CEMfun(J=50, mu=5, del=30, y=yvec,pii=pitrue,sig=sigtrue)
lines(EMresSmuv, EMresSdelv,lty=1,lwd=3)

lines(CEMresSmuv, CEMresSdelv,Ity=2,lwd=3)

points(35,20,pch=16,cex=1.2)

EMres=EMfun(J=50, mu=35, del=20,y=yvec,pii=pitrue,sig=sigtrue)
CEMres=CEMfun(J=50, mu=35, del=20, y=yvec,pii=pitrue,sig=sigtrue)
lines(EMresSmuv, EMresSdelv,Ity=1,lwd=3)

lines(CEMresSmuv, CEMresSdelv,lty=2,lwd=3)
legend(21,30,c("EM","ECM"),lty=c(1,2),lwd=c(3,3))

# Note 2. Maximisation of the logposterior density of mu and delta using optim()
logpostfun2=function(theta=c(10,1),y=yvec,pii=pitrue,sig=sigtrue){
-sum(log(pii*dnorm(y,theta[1]+theta[2],sig)+
(1-pii)*dnorm(y,theta[1],sig)))
}
res=optim(par=c(10,1),fn= logpostfun2)Spar; res # 20.08 9.72
res=optim(par=c(5,30),fn= logpostfun2)Spar; res # 20.085 9.716
res=optim(par=c(35,20),fn= logpostfun2)Spar; res # 20.084 9.716
res=optim(par=res,fn= logpostfun2)Spar; res # 20.084 9.718
# Here we fine-tune the answer by starting at the previous solution.

4.6 Integration techniques

Bayesian inference typically involves a great deal of integration (and/or
summation). For example, consider the posterior density

f(0]y)=66°,0<0<1
(which featured in previous exercise involving the binomial-beta model)

and suppose that we wish to find the posterior mean estimate of 1 =6?.
This estimate is

A=E(0y) :J@Z x(66°)d6 =0.75.
0

But what if this integral did not have a simple analytical solution?
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In that case, we could consider a number of other strategies. First, we
might re-express the posterior mean as

X:fAf(My)dA,
where, using the method of transformation,
POy = FO1y) S =6(x2) 2

Ex”z =3)\%, 0<\<1,
so that

do

dx
1

A= [ A(3)\?)d)\ =0.75.
[2(v)

If this strategy does not help, we may then consider using a numerical
integration technique.

For example, we could apply the integrate() functionin Rto get A =0.75,
as follows:
gfun = function(t){ 6*t*7 } # Define the function to be integrated
integrate(f=gfun,lower=0,upper=1)Svalue # 0.75

In some cases the function requiring integration is very complicated or
does not have a closed form expression. In that case, direct application of
the integrate() function may not work or be practicable, and then it may
be useful to apply the trapezoidal rule or Simpson’s rule to evaluate the
integral.

When working in R, the following is often a convenient strategy:
(i) evaluate g(f) =6°x66° at each 6 on the grid
0,0.1,0.2, ..., 0.9, 1 (say); then
(i) create a spline through these points, using the fit() and predict()
functions; and then
(iii) find the area under this spline using the integrate() function.

Applying this method (see the R code below for details) yields 0.7558 as

an estimate of \. Repeating, but with the evaluations on the grid 0.01,
0.02, ...,1 yields 0.7500. Repeating again, but with evaluations on the grid
0.001, 0.002, ..., 1 yields 0.7500. It appears that a limit has been reached
and that using a finer grid would not result in any improvements to the
results of this numerical procedure.

We may conclude that \ = 0.7500 (to 4 decimals).
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R Code for Section 4.6

gfun = function(t){ 6*t"7 } # Define the function to be integrated
integrate(f=gfun,lower=0,upper=1)Svalue # 0.75

INTEG <- function(xvec, yvec, a = min(xvec), b = max(xvec)){
# Integrates numerically under a spline through the
# points given by the vectors xvec and yvec, from a to b.
fit <- smooth.spline(xvec, yvec)
spline.f <- function(x){predict(fit, x)Sy }
integrate(spline.f, a, b)Svalue }

gfun=function(t){ 6*t*7 }

tvec <-seq(0,1,0.1); gvec <- gfun(tvec)
INTEG(tvec,gvec,0,1) # 0.755803

tvec <-seq(0,1,0.01); gvec <- gfun(tvec)
INTEG(tvec,gvec,0,1) #0.75

tvec <- seq(0,1,0.001); gvec <- gfun(tvec)
INTEG(tvec,gvec,0,1) #0.75

Exercise 4.8 Numerical integration

Suppose that X ~N(u,0°) and Y =(X | X >c) where 4 =8, o = 3
and ¢ = 10. Find EY using numerical techniques and compare your answer
with the exact value,

weod(*5) o)

which was derived analytically in Exercise 4.6.

Solution to Exercise 4.8

The required integral is

EY = T g(x)dx,

where: g(x) :% : f(x) :iqﬁ(x;’uj :
P(X >0)=1—q>(c_”j.
O

Applying the integrate() function directly to g(X) we get EY = 11.7955.
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Applying the INTEG() function (defined in Section 4.6) with coordinates
given by (10,10.1,10.2,...,30) and (g(10), 9(10.1), g(10.2),...,9(30)), we
also get EY = 11.7955. The exact value of EY is in fact

ol

Note: If we use the integrate() function with bounds from 10 to 20 rather
than 10 to 30, we get 11.7929, which is slightly in error. Exactly the
same happens with the INTEG() function. Thus, when using either of
these functions, care must be taken to choose a large enough range.
Ideally, we will sketch the integrand function and make sure the range
of integration is sufficiently broad to cover all important regions (where
the integrand is significantly positive). In practice, it is useful to
gradually increase the range of integration until the answer stops
changing. Likewise, it is useful to gradually increase the grid density
chosen for the INTEG() function until the answer stops changing.

R Code for Exercise 4.8

# First declare the function INTEG() as defined in the previous exercise

mu=8; sig=3; ¢ = 10; options(digits=6)

PXpos = (1-pnorm((c-mu)/sig))

gfun=function(x){ x * dnorm(x,mu,sig) / PXpos }

integrate(gfun,c,20)Svalue # 11.7929

integrate(gfun,c,30)Svalue # 11.7955

xvec <- seq(c,20,0.1); gvec <- gfun(xvec); INTEG(xvec,gvec,c,20) # 11.7929
xvec <- seq(c,30,0.1); gvec <- gfun(xvec); INTEG(xvec,gvec,c,30) # 11.7955
true=mu + sig*dnorm((c-mu)/sig)/(1-pnorm((c-mu)/sig)); true # 11.7955

Exercise 4.9 Double integration

Use the integrate() and INTEG() functions in at least two different ways
so as to calculate the double integral

| = i@ttdtJ dx.

Illustrate your calculations with suitable graphs of the relevant functions
involved.
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Solution to Exercise 4.9

Using the integrate() function alone (and not the INTEG() function), the
integral can be worked out as follows:

integrate(function(x) {
sapply(x, function(x) {
integrate(function(t) {
sapply(t, function(t) tAt)
}, 0, xA3)Svalue }) },0,1)

#0.192723 with absolute error < 7.8e-10

Another approach is as follows. Observe that
1

= [ 909 dx,
x=0
where

X3

g(x) = j h(t)dt
and _

h(t) =t".

We will now use the integrate() function to obtain g(x) for each value of

x in the grid 0, 0.01, 0.02, ..., 1. We will then apply the INTEG() function
to the resulting coordinates.

Figure 4.9 below displays the two functions h(t) and g(x). The value
0(0.8) =0.381116 is the area under h(t) between 0 and 0.8. The total area
under h(t) (from 0to 1) is 0.78343.

The total area under g(x) (from 0 to 1) is estimated as 0.192723. Using

the grid 0, 0.001, 0.002, ..., 1 also leads to 0.192723, whereas using the
grid 0,0.1, 0.2, ..., 1 leads to 0.193054.

We conclude that the exact value of the required integral | to 4 decimals

is 0.1927, which is in agreement with the first approach above which
doesn’t make use of the INTEG() function.
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One could also adapt the second approach above so as to calculate the
double integral using the INTEG() function only (without using the
integrate() function directly). This might be useful if the inner integral

9(x) = j h(t)dt  where h(t) =t'
t=0
could not be evaluated easily using integrate() directly, for example if
h(t) were a very complicated function which could not be expressed in

closed form.

Note: The integrate() function is called within the INTEG() function and
so is used at least indirectly in all of the approaches considered here.

Figure 4.9 Two functions
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R Code for Exercise 4.9

integrate(function(x) {
sapply(x, function(x) {
integrate(function(t) {
sapply(t, function(t) t*t)
}, 0, xA3)Svalue }) },0,1)
#0.192723 with absolute error < 7.8e-10
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# Declare the function INTEG() as defined in the previous exercise
options(digits=6); X11(w=8,h=6); par(mfrow=c(2,1))

hfun= function(t){ t"t }
tvec=seq(0,1,0.01); hvec=hfun(tvec)
plot(tvec,hvec,type="1",xlab="t",ylab="h(t)",Iwd=2); abline(v=0.8,lty=2)

integrate(f=hfun,lower=0,upper=0.83)Svalue

#0.381116 Thisis g(0.8) = area under h(t) to left of 0.8
integrate(f=hfun,lower=0,upper=1)Svalue

#0.78343 This is the total areas under h(t) (from 0 to 1)

xvec = seq(0,1,0.01); gvec = rep(NA,length(xvec))
for(i in 1:length(xvec)){ xval = xvec][i]

gvecl[i] = integrate(f=hfun,lower=0,upper=xval”*3)Svalue }
INTEG(xvec,gvec) #0.192723
plot(xvec,gvec,type="1",xlab="x",ylab="g(x)",lwd=2)
points(0.8, 0.381116 , pch=16, cex=1)

# Apply INTEG() using different grids

xvec = seq(0,1,0.001); gvec = rep(NA,length(xvec))
for(i in 1:length(xvec)){ xval = xvec]i]

gvecl[i] = integrate(f=hfun,lower=0,upper=xval~*3)Svalue }
INTEG(xvec,gvec) #0.192723

xvec = seq(0,1,0.1); gvec = rep(NA,length(xvec))
for(i in 1:length(xvec)){ xval = xvec][i]

gvec[i] = integrate(f=hfun,lower=0,upper=xval”3)Svalue }
INTEG(xvec,gvec) #0.193053

4.7 The optim() function

The function optim() in R is a very useful and versatile tool for
maximising or minimising functions, both of one and of several variables.

This R function can also be adapted for solving single or simultaneous
equations and provides an alternative to other techniques such as trial and
error, the Newton-Raphson algorithm and the EM algorithm.

The second of the next two exercises shows how the optim() function can
be used to specify a prior distribution.
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Exercise 4.10 Simple examples of the optim() function

Use the optim() function to ‘find’ the mode of each of the following:
(@) g(x)=x’>,x>0  (mode= 2/5)

| X |x e—()(—l)2

1+ | x|

(b) 9(x) =

, XeR (the mode has no closed form)

(©) g(x,y) =y HEVHIT y e R y>0
(mode = (x,y) = ((1 + 3)/2, 3/2)).

Solution to Exercise 4.10

In each of these cases, the optim() function (which minimises a function
by default) may be applied to the negative of the specified function (so as
to maximise that function).

(a) The function correctly returns x =2/5. (NB: The warning message
may be ignored.)

(b) The function returns a value of 1.5047. (We presume that this is
correct; see below for a verification.)

(c) The mode is correctly computed as (x,y)=(2,1.5). (Note that this

solution is obvious by analogy with maximum likelihood estimation of
the normal mean and variance.)

Figure 4.10 illustrates these three solutions, with each mode being marked
by a dot and vertical line. Subplot (c) shows several examples of the
function g(X,y) in part (c) considered as a function of only x, with each
line defined by a fixed value of y on the grid 0, 0.5, 1, ...,4.5, 5.

195



Bayesian Methods for Statistical Analysis

Figure 4.10 Maximisation of function g in parts (a), (b) and (c)
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R Code for Exercise 4.10
help(optim); options(digits=5); X11(w=8,h=8); par(mfrow=c(3,1))

#(a)
fun=function(x){ -x*2 * exp(-5*x) }
resO=optim(par=0.5,fn=fun)Spar; resO # 0.4
# Warning message:
# In optim(par = 0.5, fn = fun) :
# one-diml optimization by Nelder-Mead is unreliable:
# use "Brent" or optimize() directly
plot(seq(0,5,0.01), -fun(seq(0,5,0.01)),type="1",lwd=3,xlab="x",ylab="g(x)");
abline(v=res0); points(res0, -fun(res0), pch=16, cex=2); text(4,0.02,"(a)",cex=2)

# (b)

fun=function(x){ -exp(-(x-1)*2) * abs(x)*x/(1+abs(x)) }
resO=optim(par=1,fn=fun)Spar; resO # 1.5047

plot(seq(-2,5,0.01), -fun(seq(-2,5,0.01)),type="1",lwd=3, xlab="x",ylab="g(x)");
abline(v=res0); points(res0, -fun(res0), pch=16, cex=2); text(4,0.45,"(b)",cex=2)
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#(c)

fun=function(v){ -v[2]*3 * exp( -v[2] * ((v[1]-1)*2 + (v[1]-3)*2) ) }

resO=optim(par=c(2,2),fn=fun, lower = c(-Inf,0), upper = c(Inf,Inf),
method = "L-BFGS-B")Spar; resO # 2.0 1.5

fun2=function(x,y){ y*3 * exp( -y * ((x-1)*2 + (x-3)*2) ) }

plot(c(0.5,3.5),c(0,0.2), type="n",xlab="x",ylab="f(x,y)")
for(y in seq(0,5,0.5))

lines(seq(0,5,0.01), fun2(x=seq(0,5,0.01),y=y), Ity=1)
abline(v=res0[1]); points(res0[1],fun2(res0[1],res0[2]), pch=16, cex=2);
lines(seq(0,5,0.01),fun2(x= seq(0,5,0.01), y=res0[2]),Ity=1,lwd=3);
text(3,0.17,"(c)",cex=2)

Exercise 4.1 | Specification of parameters in a prior
distribution using the optim() function

Consider the normal-gamma model given by:
(Yyr-en Yy [ A) ~iid N (1,17 X)
A~G(n,7).

Use the optim() function in R to find the values of » and 7 which
correspond to a prior belief that the population standard deviation

o =1/ lies between 0.5 and 1 with 95% probability, and that o is
equally likely to be below 0.5 as it is to be above 1.

Solution to Exercise 4.1 |

We wish to find the values of 7, and 7 which satisfy the two equations:
Plc<a)=al?2 and Plo<bh)=1-al2,
wherea=0.5,b=1and «=0.05.

These two equations are together equivalent to each of the following five
pairs of equations:

P(c*<a’)=al2 and P(o’<b*)=1-a/2
Pl/A<a®)=al2 and  PA/A<b*)=1-al2
Pl/a®*<A)=al?2 and  PA/b°<A)=1-al2

P(A1<l/a®)=1-al2 and  P(A<1/b)=al2
Fopo@/a®)—(1-a/2)=0 and F;,  (1/b*)—a/2=0.
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We now focus on the last of these pairs of two equations. Two obvious
ways to solve these equations are by trial and error and via the multivariate
Newton-Raphson algorithm, as illustrated earlier. But the solution can be
obtained more easily by using the optim() function to minimise

9(7.7) =| Py (/@) —(1-a/ 2)]2 +[ Fapn@/0%) = (a/2)]

2

Note: Clearly, this function has a value of zero at the required values of
nand 7.

With the default settings and starting at » = 0.2 and 7 = 6, optim()

produced some warning messages (which we ignored) and provided the
solution, np =8.4764 and 7 = 3.7679.

Now, this solution is not exactly correct, because the probabilities of a
Gamma(8.4764, 3.7679) random variable lying below 1/b*> = 1 and

below 1/a” = 4, respectively, are 0.025048 and 0.975104 (i.e. not exactly
0.025 and 0.975 as desired).

However, applying the optim() function again but starting at the previous
solution, namely n = 8.4764 and 7 = 3.7679, yielded a ‘refined’

solution, n =8.4748 and T = 3.7654.

This solution may be considered correct, because the probabilities of a
Gamma(8.4748, 3.7654) random variable being less than 1/b° =1 and
less than 1/a = 4, respectively, are exactly 0.025 and 0.975.

Discussion

It is instructive to derive and plot the corresponding density of the
precision parameter A, and then to do this also for the variance parameter

o® = 27" and the standard deviation parameter ¢ = A respectively.

The three densities are plotted in Figure 4.11 (in the stated order from top
to bottom). The vertical lines show the 0.025 and 0.975 quantiles of each
distribution. The formulae for the three densities are as follows:
Tl]ﬁﬂ—le—ri
f(A)=1fe,n(A)=—F——, 1>0
I'(n)
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dAa

T R TCo|

where 1 =(c?)"

f (0'2) = f|G(77,T) (0'2) =f (/1)‘

~ 7" (1/0_2)77—le—r(1/62)
['(n7)
dA " S >
f(0)=fA)|= = fsn(A=07)|-207  wherei=(o)
do

(%)%, o°>0

2_77 (1/ GZ)q—le—r(l/az)
. I'()

-3

207, 0>0.

As a check on the last of these three densities, the integrate() function was
used to show that the area under that density is exactly 1, and that the areas
underneath it to the left of 0.5 and to the right of 1 are both exactly 0.025.

Figure 4.11 Three prior densities
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R Code for Exercise 4.1 |

options(digits=5); a=0.5; b=1; alp=0.05;

fun=function(v,alp=0.05,a=0.5,b=1){
(pgamma(1/a”2,v[1],v[2])-(1-alp/2))*2 +
(pgamma(1/b”2,v[1],v[2])-(alp/2))*2 '}

resO=optim(par=c(0.2,6),fn=fun)Spar
resO # 8.4764 3.7679
pgammalc(1/b”2,1/a*2),res0[1],res0[2]) # 0.025048 0.975104 Close

res=optim(par=res0,fn=fun)Spar; res # 8.4748 3.7654
pgammalc(1/b”2,1/a”2),res[1],res[2]) # 0.025 0.975 Correct

res2=optim(par=c(6,3),fn=fun)Spar; res2 # 8.4753 3.7655
pgammalc(1/b”2,1/a”2),res2[1],res2[2]) # 0.024992 0.974996 Close

res3=optim(par=res2,fn=fun)Spar; res3 # 8.4748 3.7654
pgamma(c(1/b”2,1/a*2),res3[1],res3[2]) # 0.025 0.975 Correct

par(mfrow=c(3,1)); tv=seq(0,10,0.01)

plot(tv, dgamma(tv,res[1],res[2]),type="1",Iwd=2, xlim=c(0,6),
xlab="lambda",ylab="density"); abline(v=c(1/a*2,1/b"2));
abline(h=0,lty=3)

plot(tv,dgamma(1/tv,res[1],res[2])/tv"2, type="1", Iwd=2, xlim=c(0,1.5),
xlab="sigma”2",ylab="density");
abline(v=c(a”*2,b"2)); abline(h=0,Ity=3)

plot(tv,dgamma(1/tv~2,res[1],res[2])*2/tv/3, type="1", lwd=2,
xlim=c(0.35,1.4), xlab="sigma",ylab="density");
abline(v=c(a,b)); abline(h=0,lty=3)

# Check areas under the last curve

func=function(t){ dgamma(1/t*2,res[1],res[2])*2/t*3 }
integrate(func,lower=0,upper=Inf)Svalue # 1 Correct
integrate(func,lower=0,upper=0.5)Svalue # 0.025 Correct
integrate(func,lower=1,upper=Inf)Svalue # 0.025 Correct
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5.1 Introduction

The term Monte Carlo (MC) methods refers to a broad collection of tools
that are useful for approximating quantities based on artificially generated
random samples. These include the Monte Carlo integration (for
estimating an integral using such a sample), the inversion technique (for
generating the required sample), and Markov chain Monte Carlo methods
(an advanced topic in Chapter 6). In principle, the approximation can be
made as good as required simply by making the Monte Carlo sample size
sufficiently large. As will be seen (further down), Monte Carlo methods
are a very useful tool in Bayesian inference.

To illustrate the basic idea of Monte Carlo methods, consider Buffon’s
needle problem, where a needle of length 10 cm (say) is dropped randomly
onto a floor with parallel lines being distance 10 cm apart. What is p, the
probability of the needle crossing a line? The exact value of p can be
worked out analytically as 2/ = 0.63662 (this is done in one of the
exercises below). But this takes mathematical effort. If this analytical
solution were not possible (or just too much work), we could instead
estimate p via Monte Carlo. The simplest way to do this would be to toss
the needle onto the floor 1,000 times (randomly and independently). If the
needle crosses a line 641 times (say), then the Monte Carlo estimate of p
is just 641/1,000 = 0.641.

As a variation on this physical experiment (which could be rather
laborious), we could toss the needle 1,000 times virtually, meaning that
we simulate each drop (or rather the parameters of each drop) on a
computer and each time determine whether the virtual needle has crossed
a virtual line.

This method will be faster and more accurate; but it will also require at
least some mathematical work to identify exactly what the parameters of
each drop are and what configuration of those parameters correspond to
the needle crossing a line (again, this is done in one of the exercises
below).
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In this chapter, we will first discuss Monte Carlo methods and their
usefulness under the assumption that we have available or can generate
the required random samples. As we will see in the exercises and their
solutions, such samples can often be obtained very easily using inbuilt R
functions, e.g. runif() and rnorm().

After this we will describe special methods for generating a random
samples, starting with the simplest, such as the inversion technique and
rejection sampling. We reserve the more complicated techniques which
involve Markov chain theory to the next and later chapters.

Also, as part of the structure of the present chapter, we will first discuss
Monte Carlo methods and random number generation in a fully general
setting. Only after we have finished our treatment of these two topics (to
a certain level at least) will we discuss their application to Bayesian
inference. Hopefully this format will minimise any confusion.

5.2 The method of Monte Carlo integration for
estimating means

One of the most important applications of Monte Carlo methods is the
estimation of means. Suppose we are interested in x, the mean of some

distribution defined by a density f (x) (or by a cumulative distribution
function F(x)), but we are unable to calculate x exactly (or easily), for
example by applying the formula

U= EX:J-xf(x)dx
(or  wu=Ex=>xf(x) or y:Ex:deF(x)).

Also suppose, however, that we are able to generate (or obtain) a random
sample from the distribution in question. Denote this sample as
Xpyeen X, ~1d F(X)

(or Xpyeeny Xy ~ 1A F(X)).

Then we may use this sample to estimate x4 by

o 13
x:jjz_l:xj.
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Also, a 1- « confidence interval (CI) for x given by

Cl=(X%z,,5//3),
where

1 J
2 \2
sS=——)> (x;—X
. 1;( i~ %)
is the sample variance of the random values.

In this context we refer to:

Xpyeeer X as the Monte Carlo sample values
or the Monte Carlo sample

X as the Monte Carlo sample mean
or the Monte Carlo estimate

Cl as the Monte Carlo 1— « confidence interval
for u

J as the Monte Carlo sample size

s as the Monte Carlo sample variance

s as the Monte Carlo sample standard deviation
s/J as the Monte Carlo standard error (SE).

Three important facts here are that:

e X isunbiased for y (i.e. EX=p)

« the CI has coverage approximately 1— « , by the central limit
theorem

« the width of the CI converges to zero as the MC sample size
J tends to infinity.

Exercise 5.1 Monte Carlo estimation of a known gamma mean

(a) Use the R function rgamma() to generate a random sample of size
J =100 from the Gamma(3,2) distribution, whose meanis u =3/2=1.5.

Then use the method of Monte Carlo to produce a point estimate x and a
95% CI for u.

(b) Repeat (a) but with MC sample sizes of 1,000 and 10,000, and discuss
the results.
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Note: In this exercise we are focusing on the integral
o0 23X3—1e—2x
= xf(x)dx = x(—]dx,
Pacon= X "
showing how it could be estimated via MC if it were not possible to

evaluate analytically. Exactly the same approach could be applied if the
integral were impossible to evaluate.

Solution to Exercise 5.1

(a) Applying the above procedure (see the R code below) we estimate u
by X =1.5170. The Monte Carlo 95% confidence interval for u is

Cl = (X £2,,,,5/~/3) = (1.3539, 1.6800).

We note that X is ‘close’ to the true value, ¢ = 1.5, and the CI contains
that true value.

(b) Repeating (a) with J = 1,000 we obtain the point estimate 1.5199 and
the interval estimate (1.4658, 1.5740).

Repeating (a) with J = 10,000 we obtain the point estimate 1.4942 and the
interval estimate (1.4773, 1.5110).

As in (a) we note in each case that X is ‘close’ to w, and the ClI contains
L. We also note that as J increases the MC point estimate tends to get
closer to u, and the 95% CI tends to get narrower. (The widths of the
three Cls are 0.3261, 0.1081 and 0.0337.)

R Code for Exercise 5.1

options(digits=4); J = 100; set.seed(221); xv=rgamma(J,3,2)
xbar=mean(xv); s=sd(xv); ci=xbar + c(-1,1)*gnorm(0.975)*s/sqrt(J)
c(xbar,s,s”2,ci,ci[2]-ci[1]) # 1.5170 0.8320 0.6921 1.3539 1.6800 0.3261

J=1000; set.seed(231); xv=rgamma(J,3,2)

xbar=mean(xv); s=sd(xv); ci=xbar + c(-1,1)*gnorm(0.975)*s/sqrt(J)
c(xbar,s,s”"2,ci,ci[2]-ci[1]) # 1.5199 0.8722 0.7607 1.4658 1.5740 0.1081
J=10000; set.seed(211); xv=rgamma(J,3,2)

xbar=mean(xv); s=sd(xv); ci=xbar + ¢(-1,1)*gnorm(0.975)*s/sqrt(J)
c(xbar,s,s"2,ci,ci[2]-ci[1]) # 1.4942 0.8597 0.7391 1.4773 1.5110 0.0337
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5.3 Other uses of the MC sample

Once a Monte Carlo sample Xx,,...,X; ~iid f(X) has been obtained, it can

be used for much more than just estimating the mean of the distribution,
u = Ex. For example, suppose we are interested in the (lower) p-quantile

of the distribution, namely
g, = F'(p) = {value of x such that F(x)=p}.

The MC estimate of g, issimply q,, the empirical p-quantile of x,,...,X;.
For instance, the median ¢, can be estimated by the middle number
amongst X,,..., X; after sorting in increasing order. This assumes that J is
odd. If J is even, we estimate ¢, by the average of the two middle
numbers. Thus we may write the MC estimate of g,,, as
X112 J odd
Gy, = X2y T Xu+yr2)
2

where X, is the kth smallest value amongst x;,...,x; (k=1,...,J).

, J even,

Also, we estimate the 1— « central density region (CDR) for x, namely
(U2 %) » BY (G Gy ) -

Further, suppose we are interested in the expected value of some function
of x, say y=g(x). That is, we wish to estimate the quantity/integral

v =Ey=[yf (y)dy=Eg() = [ g(x) f (x)dx.

Then we simply calculate y; = g(x;) foreach j=1..,J. The result will

be a random sample vy,,...,y, ~iid f(y) to which the method of Monte
Carlo can then be applied in the usual way. Thus, an estimate of v is

J
y :%Z y;  (the sample mean of the y-values),
j=1

anda 1—«a Clfor y is
yiz,,-2
- 05/2\/3 !
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J
where s; = JLZ (y;—¥)® (the sample variance of the y-values).
~14
This idea applies to even very complicated functions y = g(x) for which

the exact or even approximate value of = Ey would otherwise be very

difficult to obtain, either analytically or numerically using a deterministic
technique such as numerical integration (or quadrature).

Also, the density f(x) can be estimated by smoothing a probability
histogram of X;,...,X, . Likewise, the density f(y) can be estimated by
smoothing a probability histogram of y,,..., y,. (This could be extremely
useful if y is a very complicated function of x.)

Note 1: As we will see later, it is often the case that we are able to sample
from a distribution without knowing—or being able to derive—the
exact form of its density function.

Note 2: Smoothing a histogram requires some arbitrary decisions to be
made about the degree of smoothing and other smoothing parameters.
So the MC estimate of a density is not uniquely defined.

Exercise 5.2 Monte Carlo estimation of complicated quantities

Suppose that x ~ G(3,2) . Use MC methods and a sample of size J = 1,000

to estimate:
4 = EX, the 80% CDR for x, and f(x)

x%e™*

w =Ey, the 80% CDR fory, and f(y),where y=——.
1+x+1/x

Present your results graphically, and wherever possible show the true
values of the quantities being estimated. Then repeat everything but using
a Monte Carlo sample size of J = 10,000.

Solution to Exercise 5.2

The required graphs are shown in Figures 5.1 to 5.4. See the R code below
for more details.
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Figure 5.1 Histogram of x-value (J = 1,000)
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Figure 5.3 Histogram of x-value (J = 10,000)
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R Code for Exercise 5.2

X11(w=8,h=4.5); par(mfrow=c(1,1)); options(digits=4);
J=1000; set.seed(221); xv=rgamma(J,3,2)

xbar=mean(xv); xci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J)
xcdr=quantile(xv,c(0.1,0.9)); xden=density(xv)

yv=xvA2 * exp(-xv) / (1 +xv+ 1/xv)

ybar=mean(yv); yci=ybar + c¢(-1,1)*qnorm(0.975)*sd(yv)/sqrt(J)
ycdr=quantile(yv,c(0.1,0.9)); yden=density(yv)
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hist(xv,prob=T,breaks=seq(0,7,0.25),xlim=c(0,7),ylim=c(0,0.6),xlab="x",
main=""); lines(xden,lty=2,lwd=2)

xvec=seq(0,10,0.01); lines(xvec,dgamma(xvec,3,2),lty=1,lwd=2)

abline(v= c(xbar, xci, xcdr), lty=2, lwd=2)

abline(v=c(3/2,qgamma(c(0.1,0.9),3,2)), lty=1,lwd=2)

legend(4,0.6,c("MC estimates","True values"),lty=c(2,1),lwd=c(2,2))

hist(yv,prob=T,breaks=seq(0,0.2,0.005),xlim=c(0,0.2),ylim=c(0,30),xlab="y",
main=""); lines(yden,lty=2,lwd=2)

abline(v= c(ybar, yci, ycdr), lty=2, lwd=2)

legend(4,0.6,c("MC estimates","True values"),lty=c(2,1),lwd=c(2,2))

# Repeat with J = 10000

J =10000; set.seed(221); xv=rgamma(J,3,2)

xbar=mean(xv); xci=xbar + c¢(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J)
xcdr=quantile(xv,c(0.1,0.9)); xden=density(xv)

yv=xvA2 * exp(-xv) / (1 +xv+1/xv)

ybar=mean(yv); yci=ybar + ¢(-1,1)*qnorm(0.975)*sd(yv)/sqrt(J)
ycdr=quantile(yv,c(0.1,0.9)); yden=density(yv)

hist(xv,prob=T,breaks=seq(0,9,0.25),xlim=c(0,7),ylim=c(0,0.6),xlab="x",
main=""); lines(xden,lty=2,lwd=2)

xvec=seq(0,10,0.01); lines(xvec,dgamma(xvec,3,2),lty=1,lwd=2)

abline(v= c(xbar, xci, xcdr), lty=2, lwd=2)

abline(v=c(3/2,ggamma(c(0.1,0.9),3,2)), Ity=1,lwd=2)

legend(4,0.6,c("MC estimates","True values"),lty=c(2,1),lwd=c(2,2))

hist(yv,prob=T,breaks=seq(0,0.2,0.005),xlim=c(0,0.2),ylim=c(0,30),xlab="y",
main="")

lines(yden,lty=2,lwd=2); abline(v= c(ybar, yci, ycdr), Ity=2, Iwd=2)
legend(4,0.6,c("MC estimates","True values"),lty=c(2,1),lwd=c(2,2))

5.4 Importance sampling

When applying the method of MC to estimate an integral of the form
v =Eg(x)=[g(x)f (x)dx,

suppose it is impossible (or difficult) to sample from f(x), but it is easy
to sample from a distribution/density h(x) which is ‘similar’ to f(x).
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Then we may write

v=| [g(x) e jh(x)dx= Jwoon(dx,

where
f(x)

w(x) = g(x)-——= ho

This suggests that we sample X,,...,X; ~iid h(x) and use MC to estimate
y by

where

f(x;)

w; = w(x;) = Q(X)h()

This techniques is called importance sampling, and there are several
issues to consider. As already indicated, the method works best if h(x) is

chosen to be very similar to f (x).

Another issue is that f(x) may be known only up to a multiplicative
constant, i.e. where f(x) =k(x)/c, where the kernel k(x) is known
exactly but it is too difficult or impossible to evaluate the normalising
constant ¢ = [k(x)dx. In that case, we may write

(), J 90OK0x
jk(x)dx
k(x)
I(g(x) h(x )jh(x)dx  Jweon(aex
j(k(x)jh( Jx fuCon(xdx

v =[900=

h(x)
where:
w(x) = g(x) hEX;
_k()
u(x) = h(o
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This suggests that we sample Xx,,...,x; ~iid h(x) (as before) and apply
MC estimation to the means of w(x) and u(x), respectively (each with
respect to the distribution defined by density h(x)) so as to obtain the

estimate
J

1
2

EZU' U, +...+ U,
J J

=1

W W,

A

[//:

C||é|

where w; =w(x;) a nd u; =u(x;).
Exercise 5.3 Example of Monte Carlo with importance sampling

We wish to find x = Ex where x has density

f(x)ocie‘x, x>0,
X+1

Use Monte Carlo methods and importance sampling to estimate 4 .
Solution to Exercise 5.3

Here, k(x) = ile‘x, and it is convenient to use h(x)=e™,x>0
X+

(the standard exponential density, or Gamma(1,1) density). Then,
j xk (x)dx

j k (x)dx
j( ‘;E ;jh(x)dx X oo
I(k(x)jh(x)dx jﬁh(x)dx |

U= EX:J‘xf (x)dx =
0

h(x)

1 X

JEx+1

1 1

J =X +1

So a MC estimate of x is 4=

i

where X,...,X; ~1id G(L1).
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Implementing this with J = 100,000, we get 4 = 040345 _ 0.67631.

0.59655

Note 1: For interest we use numerical techniques to get the exact answer,
u =0.67687.

Thus the relative error is —0.084%. Figure 5.5 illustrates.

Note 2: The exact value of the normalising constant is
c=[k(x)dx is 0.596347.

From the above we see that our MC estimate of ¢ is 0.59655 (similar).

Figure 5.5 lllustration of importance sampling

o |
o™
X E(x) = area under x*f(x) — = f{x) = (Vc)exp(-x)(x+1)
\ # E(x) = area under x™h(x) = h{x) = exp(-x)
w | \ © MC estimate of E(x)
Y
=y \ ---- XX
w o
[ — |
[i7]
o
v
(=]
o |
o

R Code for Exercise 5.3

options(digits=10);

kfun=function(x){ exp(-x)/(x+1) }
c=integrate(f=kfun,lower=0,upper=Inf)Svalue; c # 0.5963473624
ffun=function(x){ (1/ 0.5963473624)*exp(-x)/(x+1) }
integrate(f=ffun,lower=0,upper=Inf)Svalue; # 0.9999999999

xffun= function(x){ x*(1/0.5963474)*exp(-x)/(x+1) }

mu= integrate(f=xffun,lower=0,upper=Inf)Svalue; mu # 0.6768749849
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J=100000; set.seed(413); xv=rgamma(J,1,1)

num=mean(xv/(xv+1)); den=mean(1/(xv+1))

est=num/den; c(num, den, est) # 0.4034510685 0.5965489315 0.6763084254
err=100* (est-mu)/mu; err # -0.08370222467

plot(c(0,3),c(0,2),type="n",xlab="x",ylab="density"); xvec=seq(0,5,0.01);
lines(xvec,dgamma(xvec,1,1),lty=1,lwd=3)
lines(xvec,xvec*dgamma(xvec,1,1),lty=1,lwd=1)
lines(xvec,ffun(xvec),lty=2,lwd=3); lines(xvec,xvec*ffun(xvec),Ity=2,lwd=1)
points(c(1,mu,est),c(0,0,0),pch=c(16,4,1),Iwd=c(2,2,2),cex=c(1.2,1.2,1.2))
legend(1.7,2,c( "f(x) = (1/c)*exp(-x)/(x+1)", "h(x) = exp(-x)" ),

lty=c(2,1), Iwd=c(3,3))
legend(1.7,1.3,c( "x*f(x)", "x*h(x)" ), lty=c(2,1), lwd=c(1,1))
legend(0.5,2,c("E(x) = area under x*f(x)", "E(x) = area under x*h(x)",

"MC estimate of E(x)"), pch=c(4,16,1),pt.lwd=c(2,2,2),pt.cex=c(1.2,1.2,1.2))

5.5 MC estimation involving two or more
random variables

All the examples so far have involved only a single random variable x.
However, the method of Monte Carlo generalises easily to two or more
random variables. In fact, the procedure for MC estimation of the mean of
a function, as described above, is already valid in the case where x is a
vector. We will now focus on the bivariable case, but the same principles
apply when three or more random variables are being considered
simultaneously.

Suppose that we have a random sample from the bivariate distribution of
two random variables x and y, denoted (X, Y,),....(X;,y,) ~iid f(x,y),

and we are interested in some function of x and y, say r = g(x,y). Then
we simply calculate r; =g(x;,y;) and perform MC inference on the

resulting sample r;,...,r; ~iid f(r).

Note 1: This procedure applies whether or not the random variables x
and y are independent. If they are independent then we simply sample
x;~ f(x)and y; ~ f(y).

Note 2: If x and y are dependent, it may not be obvious how to generate
(Xj’ y]) ~f(xy).
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Then, one approach is to apply the method of composition, as detailed
below. If that fails, other methods are available, in particular ones which
involve Markov chain theory. Much more will be said on these methods
later in the course.

5.6 The method of composition

Suppose we wish to sample a vector (x;,y;) ~ f(x,y). Often this can be
done in two different ways via the method of composition, as follows.

One way is to first sample x; ~ f(x) and thensample y; ~ f(y|x;). The
result will be the desired (x;,y;) ~ f(x,y). This follows by the identity

(or ‘composition’)
fOxy)=f(x)f(y[x).

Note: Having obtained (x;,y;) ~ f(x,y) in this manner, suppose we
‘discard’ x;. Then this will leave behind a single number, y, ~ f(y).

This could be useful if all we really want is a sample from f(y) but
sampling from this distribution/density directly is difficult.

Alternatively, first sample y, ~ f(y) and then sample x; ~ f(x|y;).
The result will again be (x;,y;) ~ f(x,y). This follows by the identity

fFxy) =Ty f(x]y).

Note: Having obtained (x;,y;)~ f(x,y) in this second manner,
suppose that we “discard” y,. This will leave behind a single number,
X; ~ f(x). This could be useful if all we really desire is a sample from
f (x) but sampling from this distribution/density directly is difficult.

This idea of composition generalises easily to higher dimensions. For
example, one of several different ways to sample a triplet

(vaijzj) ~f(xy,2)
is first sample y, ~ f(y), then sample x; ~ f(x|y;) and finally sample
z; ~ f(z]x,,y,). This works because of the identity

f(xy,2) = T(y) F(xy)F(z[xy).
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Exercise 5.4

Suppose that we are interested in the distribution of a random variable
defined by r = y/(x+\/M), where x and y have a joint distribution

defined by the pdf f(x,y)= f(x)f(y|x), and where x ~G(3,2) and
(Y %)~ N(x,x) .

Use the R functions rgamma() and rnorm() to generate a sample of size
J = 1,000 from the joint distribution of x and y. Then use the method of
MC to estimate w = Er, and report a 95% CI fory . Also estimate the

80% CDR for r and f(r). Present your results both graphically and
numerically.

Solution to Exercise 5.4
Numerically, we estimate y by 0.4256, and our 95% CI for y is

(0.4026, 0.4486). We also estimate the 80% CDR for r by (-0.1025,
0.8339). The required graph is shown in Figure 5.6.

Figure 5.6 Histogram of r-values (J = 1,000)
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R Code for Exercise 5.4
X11(w=8,h=4.5); par(mfrow=c(1,1)); options(digits=4);

J=1000; set.seed(221); xv=rgamma(J,3,2); yv = rnorm(xv,sqrt(xv))
rv = yv/(xv+sqrt(abs(yv)))

rbar=mean(rv); rci=rbar + c(-1,1)*qnorm(0.975)*sd(rv)/sqrt(J)
rcdr=quantile(rv,c(0.1,0.9)); rden=density(rv)

c(rbar,rci,rcdr) # 0.4256 0.4026 0.4486 -0.1025 0.8339

hist(rv,prob=T, breaks=seq(-1,1.8,0.1),xlim=c(-1,1.6),ylim=c(0,1.3),xlab="r"
main=""); lines(rden, lty=1,Ilwd=2); abline(v= c(rbar, rci, rcdr), lty=2, lwd= 2)

5.7 Monte Carlo estimation of a binomial
parameter

Suppose we are interested in a binomial proportion (i.e. probability) p but
have difficulty calculating this quantity exactly. Then we may interpret p
as the mean . of a Bernoulli distribution and directly apply the method

of Monte Carlo in the usual way. In this special case, there are certain
simplifications which result in slightly different-looking final formulae.

Explicitly, suppose we are able to generate
X,,..., X, ~iid Bernoulli(p).
Then the MC estimate of p is
J
X = %Z X (the sample proportion of 1s in the sample),

and the MC sample variance is

J
1 Do x - Jx?
~1\ &

J—1(JX Jx*) since x?=x; (becauseeach x; is0or 1)

J
=——X(1-X).
7 4%

X(1-X)

SotheMCSEis\/S_ Jl_\/ x(l—_)\/ .
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It follows thata MC 1—« Cl for pis
- S = X(@1-X)
Xtz ,— |=[Xtz .| :
( al2 \/jj [ al? J—l ]

The MC estimate X is often written as p, and J —1 is often replaced by

J (for simplicity). These changes lead to the standard form of the MC
1- « confidence interval for p,

. p(AL-p
(piza/Z p(J p)]

Note 1: The above theory is really nothing other than the usual classical
theory for estimating a binomial proportion. Thus, there are many other
Cls that could be substituted, (e.g. the Wilson CI whose coverage is
closer to 1—«, and the Clopper-Pearson Cl whose coverage is always
guaranteed to be at least 1—« but which is typically wider).

Note 2: The above MC inference depends on the x; values only by way
of the sample mean X or, equivalently, by way of the sample total
X; =X +...+X; =JX. A consequence of this is that exactly the same
Monte Carlo inference can be performed if we observe only a single
value of the total X;, whose distribution is given by x, ~ Bin(J, p).

Note 3: A common application of the theory here is where the binomial
parameter is the probability of some event involving random variables,
forexample p=P(x>1) and p=P(x<Yy).

For the first example here, we generate x, ~ f(x),let , = I(x, >1), and
then repeat independently many times so as to generate a random sample
r,....r; ~iid Bern(p). That sample can then be used for MC inference

on p=P(x>1).

The procedure for the second example is similar, except that it involves
sampling (x,,y,) ~ f(x,y) and determining r, =1(x, <), etc.
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Note 4: One use of MC Cls for a binomial proportion is to assess the
coverage of MC Cls.

Often, the true coverage probability of a MC CI is not exactly the
nominal level, say 95%. This may be due to the MC sample size J being
insufficiently large or for some other reason.

If we are concerned about this, we may wish to estimate the true
coverage of the MC CI by repeating the entire MC inference procedure

itself a large number of times, say M. Each time we record an indicator
r for the MC CI containing the quantity of interest.

The result will be a sample r,,...,1,, ~iid Bern(p), where p is the true

coverage probability, which can then be estimated via MC methods in
the usual way.

Exercise 5.5 Estimating a probability via Monte Carlo

Use MC to estimate p = P( /Ll > 0.3eXJ , Where x ~Gamma(3,2).
X+

Solution to Exercise 5.5

With J = 20,000, we sample X,,...,x; ~iid G(3,2) and let

X .
rjzl( ! >0.3e’].
xj+1

: : . 1
Thereby we obtain an estimate of p equalto p= TZ r, =0.2117
j=1

and a 95% Cl for p equal to | p1.96.|2E=P) | — (02060, 0.2173).
200000

Note 1: We may also view p as p=P(y>0.3), where y=¢"" ﬁ

(for example). In that case, we sample x,,...,x, ~iid G(3,2), calculate
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y. =e X;

! x;+1
the same results regarding p. As a by-product of this second approach,
we obtain an estimate of the density function of the random variable

y=e", /ﬁ , hamely f(y), which would be very difficult to obtain
+

analytically. Figure 5.7 illustrates.

,and then let r; =1(y; >0.3). This leads to exactly

Note 2: The density() function in R used to smooth the histogram does
not adequately capture the upper region of the density f(y), nor the

fact that f(y)=0 wheny<O0.

Figure 5.7 Histogram of 20,000 values of y

Density
4
!
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R Code for Exercise 5.5
X11(w=8,h=4.5); par(mfrow=c(1,1)); options(digits=4)

J=20000; set.seed(162); xv=rgamma(J,3,2); ct=0

yv=sqrt(xv)*exp(-xv) / sqrt(xv+1)

for(jin 1:J) if(yv[j] > 0.3) ct=ct+1

phat=ct/J; ci=phat+c(-1,1)*qnorm(0.975)*sqrt(phat*(1-phat)/J)
c(phat,ci) # 0.2117 0.2060 0.2173
hist(yv,prob=T,breaks=seq(0,0.5,0.005),xlim=c(0,0.4),xlab="y",main="")
abline(v=0.3,lwd=3); lines(density(yv),lwd=3)
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Exercise 5.6 Buffon’s needle problem

A needle of length 10 cm is dropped randomly onto a floor with lines on
it that are parallel and 10 cm apart.

(a) Analytically derive p, the probability that the needle crosses a line.

(b) Now forget that you know p. Estimate p using Monte Carlo methods
on a computer and a sample size of 1,000. Also provide a 95% confidence
interval for p. Then repeat with a sample size of 10,000 and discuss.

Solution to Exercise 5.6

(a) Let: X = perpendicular distance from centre of needle to nearest line
in units of 5 cm
Y =acute angle between lines and needle in radians
C = ‘The needle crosses a line’.

Then: X ~U(0,1) withdensity f(x)=10<x<1
% ~u(o,ﬁj with density  f(y)=2,0<y<X
2 V4 2

X LY (i.e. XandY are independent, so that
F0y) = FOO F(y)=1x2, 0<x<1 O<y<%)
T
C={X<sinY}={(x,y): x<siny}.

Figure 5.8 illustrates this setup.

It follows that
p=P(C)=P(X <sinY)

_fff(x y)dxdy = — T[imfydx]dy_ ilfsmydy

x<siny y=0\ x=0
= 2{ oS y|m} 2[—c03[1]_(—c050)]
T 0 2
2

~2(-0-(-1) =2 =0.63662.

™

Figure 5.9 illustrates the integration here.
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Figure 5.8 lllustration of Buffon’s needle problem

Figure 5.9 lllustration of the solution to Buffon’s needle
problem
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Note 1: Another way to express the above working is to first note that
P(Cly)=P(C|Y =y)=P(X <siny|y)=P(X <siny)=siny,
since (X |y)~ X ~U(0,1) withcdf F(x|y)=F(x)=x,0<x<1.

It follows that
7l2

p=P(C)=EP(C|Y)=EsinY = [ (sin y)idy _2,
0 T T
as before.
Note 2: It can be shown that if the length of the needle is r times the

distance between lines, then the probability that the needle will cross a
line is given by the formula

2r | r, r<i
P= 1—3(\/r2—1—r+sin‘1(ln, r>1.
7 r

(b) For this part, we will make use of the analysis in (a) whereby
C={(x,y):x<siny},
and where:

x~U(0,1), y~U(O,%j, X LY.

Note: We suppose that these facts are understood but that the integration
required to then proceed on from these facts to the final answer (as in
(@)) is too difficult.

We now sample X,...,X; ~iidU(0,1) and y,,...,y, ~iidU(0,7/2) (all
independently of one another). Next, we obtain the indicators defined by

e = 1(x <siny) 1 ifx;<siny,
.= < )=
! ! Yi 0 otherwise.

The result is the MC sample r,,...,r, ~iid Bern(p) (i.e. a sample of
size J to be used for inference on p). (Equivalently, we may obtain

I, =1 +...+1, ~ Bin(J, p), which will lead to the same final results.)
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The MC estimate of pis =T:%er =3i,
1

and a 95% Cl forpis CI :(ﬁiza,z MJ

Carrying out this experiment in R with J = 1,000 we get
p =0.618 and CI = (0.588, 0.648).

Then repeating, but with J = 10,000 instead, we obtain
p =0.633 and Cl = (0.624, 0.643).

We see that increasing the MC sample size (from 1,000 to 10,000) has
reduced the width of the MC CI from 0.060 to 0.019. Both intervals
contain the true value, namely 2/ z = 0.6366.

R Code for Exercise 5.6

# (a)

X11(w=8,h=4.5); par(mfrow=c(1,1))
plot(seq(0,pi/2,0.01),sin(seq(0,pi/2,0.01)), type="I",lwd=3,xlab="y", ylab="x")
abline(v=c(0,pi/2),Ity=3); abline(h=c(0,1),lty=3)

text(0.2,0.4,"x = sin(y)"); text(1,0.4,"C"); text(0.35,0.8,"Complement of C")
text(1.52,0.06,"pi/2")

# (b)
1=1000; set.seed(213); xv=runif(J,0,1); yv=runif(J,0,pi/2); rv=rep(0,))
options(digits=4); for(j in 1:J) if(xv[j]<sin(yv[j])) rv[jl=1

phat=mean(rv); z=qnorm(0.975); pci=phat+c(-1,1)*z*sqrt(phat*(1-phat)/J)
c(phat,pci,pci[2]-pci[1]) # 0.61800 0.58789 0.64811 0.06023

1=10000; set.seed(215); xv=runif(J,0,1); yv=runif(J,0,pi/2); rv=rep(0,))
for(j in 1:J) if(xv[j]<sin(yv[j])) rv[j]=1

phat=mean(rv); z=qnorm(0.975); pci=phat+c(-1,1)*z*sqrt(phat*(1-phat)/J)
c(phat,pci,pci[2]-pci[1]) # 0.63320 0.62375 0.64265 0.01889

223



Bayesian Methods for Statistical Analysis

Exercise 5.7 MC Cls for the coverage probabilities of MC Cls
for a gamma mean

(a) Using the R function rgamma(), generate a random sample of size
J =100 from the gamma distribution with parameters 3 and 2 and mean
4 = 3/2. Then use the method of Monte Carlo to estimate . In your
estimation, include a 95% CI for x and the width of this CI. Also report

whether the CI contains the true value of .

(b) Repeat (a) but with J = 200, 500, 1,000, 10,000 and 100,000,
respectively. Report the widths of the resulting Cls and, for each ClI, state
whether it contains £ . Discuss any patterns that you see.

(c) Repeat (a) M =100 times and report the proportion of the resulting M
95% MC Cls which contain the true value of the mean. (In each case use
J =100.) Hence calculate a 95% CI for p, the true coverage probability of
the 95% MC CI for y based on a MC sample of size J = 100 from the

Gamma(3,2) distribution.

(d) Repeat (c), but with M = 200, 500, 1,000 and 10,000, respectively.
Discuss any patterns that you see.

Solution to Exercise 5.7

(a) Applying the procedure (see the R code below) we estimate u by
X =1.517. The Monte Carlo 95% confidence interval for u is

Cl = (X +2,,,5//J) = (1.354, 1.680).
We observe that this interval has width 0.326 and contains .

(b) Repeating (a) as required, we obtain:

X =1.471 and CI = (1.348, 1.593) with width 0.245 for J =200
=1.430 and CI = (1.358, 1.502) with width 0.144 for J =500
=1.475 and Cl = (1.419, 1.530) with width 0.111 for J=1,000
=1.490 and CI = (1.473, 1.508) with width 0.0344 for J = 10,000
=1.502 and CI = (1.497, 1.507) with width 0.0107 for J=100,000.

x| x| x| x| X<

We see that X appears to be converging towards x = 1.5. The width of

the CI appears to be decreasing as J increases. Each of these five Cls
contains u, just like the Cl in (a).
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(c) Repeating (a) M = 100 times leads to M = 100 MC Cls of which 93
contain # =1.5.Thus p =93%, which as expected is ‘close’ to the 95%

nominal coverage of the CI.

A 95% Cl forpis (O.93i1.96, /%J =(0.880 0.980).

This is consistent with the MC 95% CI for x having coverage 95%.

A

(d) Repeating (a) M = 200 times leads to p = 94.5% of the 200 Cls
containing 1.5, with a 95% ClI for p,

(0.945i1.96\/ 0'945(;0_00'945)] = (0.913, 0.977).

Repeating (@) M = 500 times leads to p = 94.2% of the 500 Cls
containing 1.5 with a 95% CI for p,

(0.942i1.96\/ 0'942(;500'942)] = (0.922, 0.962).

A

Repeating (a) M = 1,000 times leads to p = 93.5% of the 1,000 Cls
containing 1.5, with a 95% ClI for p,

0.935+1.96, | 22300 =0.935) | _ 4 935 0.963).
1,000

A

Repeating (a) M = 10,000 times leads to p = 94.4% of the 10,000 Cls
containing 1.5, with a 95% ClI for p,

0.944-+1.96 |2240-094) | _ (0.940, 0.949).
10,000

The widths of all five Cls for p are: 0.100, 0.063, 0.041, 0.027 and 0.009.
We see that the CI for p becomes narrower as M increases. Also, the
proportion of Cls containing 1.5 converges towards 95% as M increases.
The convergence does not seem to be uniform. This is because of Monte
Carlo error. If we repeated the experiment again, we might find a slightly
different pattern.

Each of the Cls for p is consistent with p = 0.95, except the one with
M = 10,000, which is the most reliable. In that case the CI for p is
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(0.940, 0.949), which is entirely below 0.95. This suggests that the true
coverage probability of the 95% MC CI for  is slightly less than 95%.

The observed proportions appear to be converging to this limit rather than
to 95% exactly. This is explainable by the fact that the MC sample size
J =100 is far from infinity. If we repeated (d) with a larger value of J in
each case, say J = 1,000, we would see the proportion of the M Cls
converge towards a limiting value which is even closer to 95%. But then
an even larger value of M would be necessary to establish that there is in
fact any difference between the limiting value and 95%.

R Code for Exercise 5.7

#(a)

options(digits=5); J = 100; set.seed(221); xv=rgamma(J,3,2)
xbar=mean(xv); ci=xbar + c¢(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J)
c(xbar,ci) #1.5170 1.3539 1.6800

# (b)

Jvec=c(100,200,500,1000,10000,100000); K = length(Jvec)

xbarvec=rep(NA,K); LBvec= rep(NA,K); UBvec= rep(NA K);

set.seed(221);

for(kin 1:K){  J=Jvec[k]; xv=rgamma(J,3,2); xbar=mean(xv)
ci=xbar + c(-1,1)*gnorm(0.975)*sd(xv)/sqrt(J)
xbarvec[k]=xbar; LBvec[k]=ci[1]; UBvec[k]=ci[2]
}

Wvec=UBvec-LBvec

print(rbind(Jvec, xbarvec, LBvec,UBvec, Wvec),digits=4)

# Jvec 100.0000 200.0000 500.0000 1000.000 1.000e+04 1.000e+05
# xbarvec 1.5170 1.4705 1.4299 1.475 1.490e+00 1.502e+00
#LBvec 1.3539 1.3480 1.3577 1.4191.473e+00 1.497e+00

# UBvec 1.6800 1.5930 1.5020 1.5301.508e+00 1.507e+00
#Wvec 0.3261 0.2451 0.1443 0.1113.441e-02 1.073e-02

# (c)

J=100; M=100; ct=0; set.seed(442); for(m in 1:M){
xv=rgamma(J,3,2)
xbar=mean(xv); ci=xbar + c¢(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J)
if((ci[1]<=1.5)&&(1.5<=ci[2])) ct=ct+ 1}

p=ct/M; ci=p+c(-1,1)*gnorm(0.975)*sqrt(p*(1-p)/J)

c(ct,p,ci) #93.00000 0.93000 0.87999 0.98001
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#(d)
J=100; Mvec=c(200,500,1000,10000); set.seed(651)
for(M in Mvec){ ct=0
for(m in 1:M){
xv=rgamma(J,3,2); xbar=mean(xv)

ci=xbar + c(-1,1)*qnorm(0.975)*sd(xv)/sqrt(J)
if((ci[1]<=1.5)&&(1.5<=ci[2])) ct=ct + 1
}
p=ct/M; ci=p+c(-1,1)*qnorm(0.975)*sqrt(p*(1-p)/M)
print(c(M,p,ci,ci[2]-ci[1]),digits=3) }

#[1] 200.0000 0.9450 0.9134 0.9766 0.0632
#[1]500.000 0.942 0.922 0.962 0.041

#[1] 1.00e+03 9.49e-01 9.35e-01 9.63e-01 2.73e-02
#[1] 1.00e+04 9.44e-01 9.40e-01 9.49e-01 9.00e-03

5.8 Random number generation

So far we have assumed the availability of the sample required for Monte
Carlo estimation, such as X,,..., X, ~iid f(X). The issue was skipped over

by making use of ready made functions in R such as runif(), rbeta() and
rgamma(). However, many applications involve dealing with complicated
distributions from which sampling is not straightforward.

So we will next discuss some basic techniques that can be used to generate
the required Monte Carlo sample from a given distribution. More
advanced techniques will be treated later. We will first treat the discrete
case, which is the simplest, and then the continuous case. It will be
assumed throughout that we can at least sample easily from the standard
uniform distribution, i.e. that we can readily generate u~U(0,1).

Note: This sampling is easily achieved using the runif() function in R.
Alternatively, it can be done physically by using a hat with 10 cards in
it, where these have the numbers 0,1,2,....,9 written on them. Three cards
(say) are drawn out of the hat, randomly and with replacement. The three
numbers thereby selected are written down in a row, and a decimal point
is placed in front of them. The resulting number (e.g. 0.472, 0.000 or
0.970) is an approximate draw from the standard uniform distribution.
Repeating the entire procedure several times results in a random sample
from that distribution. Increasing ‘three” above (to ‘five’, say) improves
the approximation (e.g. yielding 0.47207, 0.00029 or 0.97010).
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5.9 Sampling from an arbitrary discrete
distribution

Suppose we wish to sample a value x ~ f(x) where f(x) is a discrete
pdf defined over the possible values X = X,,..., X, . First define

fo=1(x)
and
F="f+.+f (k=1,..K),

noting that F, =1.

Then sample u~U(0,1), and finally return:

X=X if 0OSu<F
X=X, if F<u<F,
X=X if Fe,<u<F (=1).

One way to implement the above is to set k = 1, to repeatedly increment k
by 1 until F_, <u<F, and then, using the final value of k thereby

obtained, to return X=X, .

Note 1: We see that this procedure will work also in the case where K is
infinite. In that case a practical alternative is to redefine K as a value k

for which F, isvery close to 1 (e.g. 0.9999) and then approximate f (x)
by zero for all x> X, .

Note 2: In R, an alternative to using u ~U(0,1) is to apply the function
sample() with appropriate specifications of x,,...,x, and f,..., f, (as
illustrated in an exercise below).

Exercise 5.8 Example of sampling from a simple discrete
distribution

Show that the above method works when applied to generating a value x

from the Bin(2,1/2) distribution, i.e. that it returns x = 0, 1 and 2 with
probabilities 1/4, 1/2 and 1/4, respectively.
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Solution to Exerci