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1. Introduction 

Physical pain is one of the most common somatic symptoms in patients that suffer 
depression and conversely, patients suffering from chronic pain of diverse origins are often 
depressed. Indeed, symptoms of physical pain in depressed patients are associated with a 
more severe prognosis of longer duration, greater functional impairment, a poorer clinical 
outcome and increased health-care costs. Moreover, the intensity of pain has been correlated 
with the severity of the symptoms of depression. While these data strongly suggest that 
depression is linked to altered pain perception, pain management has received little 
attention to date in the field of psychiatric research (Elman et al., 2011). 

The monoaminergic system influences both mood and pain (Delgado, 2004), and since many 
antidepressants modify properties of monoamines, these compounds may be effective in 
managing chronic pain of diverse origins in non-depressed patients and to alleviate pain in 
depressed patients. There are abundant evidences in support of the analgesic properties of 
tricyclic antidepressants (TCAs), particularly amitriptyline, and another TCA, duloxetine, 
has been approved as an analgesic for diabetic neuropathic pain. By contrast, there is only 
limited data regarding the analgesic properties of selective serotonin reuptake inhibitors 
(SSRIs) (Saarto & Wiffen, 2007). In general, compounds with noradrenergic and serotonergic 
modes of action are more effective analgesics (Saarto & Wiffen, 2005), although the 
underlying mechanisms of action remain poorly understood, antidepressants appear to 
enhance endogenous analgesia and they are thought to increase the activity of the 
descending inhibitory bulbospinal pathway, which is compromised in chronic pain (Mico et 
al., 2006a).  

While the utility of many antidepressant drugs in pain treatment is well established, it 
remains unclear whether antidepressants alleviate pain by acting on mood (emotional pain) 
or nociceptive transmission (sensorial pain). Indeed, in many cases, no correlation exists 
between the level of pain experienced by the patient and the effect of antidepressants on 
mood. Thus, in this chapter we will summarize our current knowledge relating to the use of 

www.intechopen.com



 
Effects of Antidepressants 

 

144 

antidepressants in chronic pain conditions and in the treatment of pain as a somatic 
symptom of depression. We will review the pharmacological mechanisms and the 
neurobiological substrates underlying the analgesic properties of antidepressants, and 
discuss the varying analgesic effects of specific types of antidepressants.  

2. Depression and pain: Linked diseases 

Depression and pain are two reciprocally linked and highly prevalent conditions (Figure 1). 
Epidemiological studies in pain clinics indicate that major depressive disorder has a 
prevalence of 52%,  ranging from 1.5-100% depending on the chronic pain condition 
considered, and the prevalence of pain in depressed patients ranges from 15-100% (Bair et 
al., 2003). Depression is defined as an affective disorder characterized by ill mood, feelings 
of worthlessness, diminished interest in pleasurable stimuli and impaired decision making 
abilities. Moreover, depression involves a somatic dimension that is characterized by weight 
change, fatigue, sleep disturbances, headaches, stomach aches and other painful symptoms 
(DSM-IVR, 2000), such as back pain, neck-shoulder pain and musculoskeletal pain (Leino & 
Magni, 1993). Depressed patients may also experience an heightened response to pain or in 
the associated suffering, and in a primary care setting, they frequently complaining of 
specific types of pain, including abdominal, joint and chest pain, and headaches (Kroenke et 
al., 1994; Mathew et al., 1981). Indeed, lower back pain is twice as likely to be reported by 
depressed versus non-depressed patients (Croft et al., 1995).  

According to the IASP (International Association for Study of Pain), pain is defined as “an 
unpleasant sensory and emotional experience associated with actual or potential tissue 
damage, or described in terms of such damage” (Merskey, 1994). The experience of pain can 
also be significantly influenced by emotional and psychosocial factors. Accordingly, 
depression may exacerbate the response to painful stimuli (Berna et al., 2010).  

 

 
 

Fig. 1. Pain and depression. Pathological conditions of chronic pain and depression are 
associated with a decrease in the levels of both noradrenaline and serotonin. Treatment with 
some antidepressant drugs can improve both conditions.  
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3. Evidence of the analgesic effects of antidepressants 

Currently, drugs that increase monoamine levels by inhibiting neurotransmitter reuptake 
represent the first line of treatment for depression, constituting a pharmacologically 
heterogeneous group known generically as “antidepressants”. Typical antidepressant drugs 
are classified according to their mechanism of action (see Table 1) and they include the 
classical TCAs, SSRIs, noradrenaline reuptake inhibitors (NRIs) and mixed non-TCA 
antidepressants (SNRIs – serotonin and noradrenaline reuptake inhibitors). This group also 
includes dopamine and noradrenaline reuptake inhibitors (DNRIs), and reversible 
monoamine oxidase inhibitors (MAOIs) that inhibit both A and B subtypes of enzyme 
monoamine oxidase (MAO-A and MAO-B). The effects of atypical antidepressants include 
or rely exclusively on blocking of the ǂ2-adrenoceptor and/or 5-HT2A receptors.  

 

 Pharmacological action Observations 

Tricyclic antidepressants (TCAs)

 Desipramine 

Clomipramine 

Amitriptyline 

Nortriptyline 

Imipramine 

Inhibitor of serotonin and noradrenaline 

reuptake 

Desipramine is essentially noradrenergic 

Clomipramine is principally serotonergic 

Demethylated metabolites are associated 

with a more noradrenergic action 

The affinity for cholinergic, histaminergic 

and ǂ1-adrenergic receptors limits their use 

(side effects) 

Widely used in the treatment of pain 

Selective serotonin reuptake inhibitors (SSRIs)

 Citalopram 

Escitalopram 

Fluoxetine 

Fluvoxamine 

Paroxetine 

Sertraline 

Inhibitor of serotonin reuptake Highly selective. Most commonly used in 

the treatment of depression. 

Not useful for pain treatment. 

Noradrenaline reuptake inhibitors (non-tricyclic) (NRIs) 

 Reboxetine Inhibitor of noradrenaline reuptake Low activity at histaminergic, cholinergic 

and ǂ1-adrenergic receptors. Some evidence 

of analgesic activity 

Serotonin and noradrenaline reuptake inhibitors (non-tricyclic) (SNRIs) 

 Venlafaxine 

Duloxetine 

Milnacipran 

Inhibitor of serotonin and noradrenaline 

reuptake 

No affinity for cholinergic, histaminergic or 

ǂ1-adrenergic receptors 

Widely used in the treatment of pain 

Dopamine and noradrenaline reuptake inhibitors (DNRI)

 Bupropion Inhibitor of dopamine and noradrenaline 

reuptake 

Minimal effect on serotonin reuptake 

Highly selective. Currently used for 

smoking cessation treatment. Some studies 

have demonstrated efficacy in pain 

treatment 

Inhibitors of monoamine oxidase (IMAOs)

 Phenelzine 

Tranylcyppromi

ne 

Irreversible inhibition of MAO-A and MAO-B First generation drugs. Rarely used 

nowadays. 

Moclobemide Selective and reversible blockade of MAO-A Less effective. Not currently used 

Others 

 Mianserin 

Mirtazapine 

Noradrenergic receptor antagonists Increase in noradrenergic transmission 

Trazodone Antagonist of postsynaptic 5-HT2 receptors Some inhibitory effects on serotonin 

reuptake 

Tianeptine Increases serotonin reuptake and dopamine 

release 

 

Table 1. Classification and general characteristics of antidepressants 
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3.1 Clinical studies 

Several studies have demonstrated the intrinsic analgesic effects of antidepressants 
(McQuay et al., 1996; Onghena & Van Houdenhove, 1992; Smith et al., 1998). However, it 
remains unclear whether antidepressants are efficacious for the treatment of all types of pain 
or only for specific subtypes. Pain is a heterogeneous disorder that may have different 
origins: 1) nociceptive pain: caused by a lesion or potential tissue damage; 2) inflammatory: 
occurred as a consequence of an inflammatory process, 3) neuropathic pain: induced by an 
injury to the nervous system and finally, 4) pain that is not originated by a neurological 
disorder or peripheral tissue abnormality (irritable bowel syndrome, fibromyalgia and 
tension headache). The evidence currently available suggests that the antinociceptive effect 
of antidepressants is particularly relevant for the management of chronic pain, specifically 
neuropathic pain. Thus, antidepressants constitute the first line of pharmacological 
treatment of this disease, together with anticonvulsants such as gabapentin and pregabalin 
(Baidya et al., 2011; Moore et al., 2011). Neuropathic pain is a condition of chronic pain caused 
by injury to the nervous system. Currently, TCAs (amitriptyline, nortriptiline, imipramine 
and clomipramine) are the most common antidepressants used in the treatment of 
neuropathic pain processes associated with diabetes, cancer, viral infections and nerve 
compression. Among the TCAs, amitriptyline is considered the “gold standard” (Fishbain, 
2003), with a demonstrated analgesic effect in several pain conditions, including headaches 
and fibromyalgia (Arnold et al., 2000; Descombes et al., 2001; Reisner, 2003).  Other clinical 
studies have demonstrated also the efficacy of venlafaxine in several conditions, such as 
migraine, fibromyalgia and neuropathic pain, as well as cancer pain (Dwight et al., 1998; 
Tasmuth et al., 1998; Taylor & Rowbotham, 1996). Despite being a SNRI, at lower doses 
venlafaxine primarily acts on serotonergic transmission and it has no affinity for cholinergic 
or histaminergic receptors, providing an advantage over TCAs in terms of unwanted side 
effects. Following recent positive findings in controlled clinical studies, duloxetine has also 
been proposed as a suitable treatment for diabetic neuropathy (Goldstein et al., 2005; Leo & 
Barkin, 2003), while another SNRI with analgesic effects, milnacipran, has proved effective 
in the treatment of fibromyalgia (Leo & Brooks, 2006). SSRIs were successfully introduced in 
the 1980´s as effective treatments for depression, although in terms of chronic pain, these 
compounds have proved no more effective than traditional TCAs (McMahon, 2006). 
Moreover, some authors have proposed that SSRIs may enhance the process underlying 
acute pain (Dirksen R, 1998). A meta-analysis of antidepressant-induced analgesia by 
Onghena and colleagues found that selective NRIs were no more efficacious than dual-
action antidepressants (Onghena & Van Houdenhove, 1992). However, based on the 
evidence described here, we can conclude that drugs that inhibit the reuptake of 
monoamines are likely to be effective in the treatment of chronic pain. In chronic pain it is 
known that there is a higher rate of action potential firing in nociceptors (Emery et al., 2011) 
that activate multiple pathophysiological mechanisms that lead to the different cluster of 
symptoms (spontaneous pain, hyperalgesia, allodynia…) in every pain condition. Evidences 
up-to-date are limited to the association of pain types with categories of drugs; for example, 
non-steroidal anti-inflammatory drugs (NSAIDS) with inflammatory pain or 
antidepressants and anticonvulsants with neuropathic pain. However, the distinction of 
different types of symptoms remains relevant for mechanism-based pain assessment and 
management. This makes difficult to identify the correlation of different pain symptoms to 
differently neurotransmission system (noradrenergic, sertonergic, opioid…). 
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In addition to their use in the treatment of chronic pain, antidepressants also alleviate 
physical symptoms (pain) associated with depression. This analgesic effect is typical of 
antidepressants that augment the levels of noradrenaline and serotonin. In general, TCAs 
demonstrated analgesic efficacy in a variety of pain conditions (e.g., back pain, fibromyalgia 
and migraine) in patients with depression (Barbui et al., 2007; Hansen et al., 2005; 
McDermott et al., 2006; Mico et al., 2006b). In clinical studies, the SNRI venlafaxine was 
more efficacious in treating the physical symptoms of depression than SSRIs, suggesting 
that the emotional and physical symptoms of depression are modulated by distinct 
mechanisms (Nemeroff CN, 2003; Thase et al., 2001). Duloxetine also improves physical 
symptoms in depression (Detke et al., 2002a; 2002b) and thus, together these findings 
demonstrate that antidepressants that act on serotonergic and noradrenergic systems are 
useful to treat the physical symptoms of depression.  

Many issues associated with the analgesic properties of antidepressants remain unclear. For 

example, are the antidepressant and analgesic effects of these compounds exerted at 

equivalent doses? It has been generally assumed that all antidepressants exert analgesic effects 

at doses lower than those at which antidepressant activity is induced, as demonstrated for 

TCAs (Lynch, 2001). However, more recent studies of the antidepressant/analgesic effects of 

non-TCA SNRIs (venlafaxine and duloxetine) do not support this hypothesis. While 

venlafaxine is effective in treating depression at doses of 75-225 mg/day (Golden & Nicholas, 

2000), higher doses are required to relieve pain for review see (Briley, 2004; Sumpton & 

Moulin, 2001), although effective pain relief has been obtained with venlafaxine in the upper 

dose range of 150-225 mg/day (Rowbotham et al., 2004). In humans, venlafaxine inhibits 

preferentially serotonin uptake at 75 mg/kg, while doses of 150 mg/kg inhibit the uptake of 

both serotonin and noradrenaline (Roseboom & Kalin, 2000). These data are consistent with 

preclinical data suggesting that the contribution of both monoamines is required for the 

analgesic effect of venlafaxine (Berrocoso et al., 2009). By contrast, duloxetine inhibits the 

reuptake of serotonin and noradrenaline at similar doses, and exerts antidepressant and 

analgesic effect within the same dose range (Brannan et al., 2005; Goldstein et al., 2005). Thus, 

TCAs appear to provide effective pain relief at lower doses than those required for their 

antidepressant effects, while medium to high doses of SNRIs are necessary to produce 

analgesia (Sansone & Sansone, 2008). 

3.2 Animal studies 

The mechanisms by which antidepressants produce analgesic effects have been primarily 
studied in experimental animal models that reproduce the pathophysiological changes that 
occur in patients suffering pain (Yalcin et al., 2009b). While it is difficult to develop animal 
models that encompass all the processes associated with chronic pain, a variety of 
methodological approaches have been developed to model individual aspects of 
neuropathic pain, including chronic constriction injury of the sciatic nerve (Bennett & Xie, 
1988) and induction of diabetic neuropathy through the administration of streptozotocin 
(Jakobsen & Lundbaek, 1976). These animal models permit the pain thresholds in response 
to different painful stimuli to be determined (mechanical, thermal, electrical, etc.) and using 
such approaches, it was demonstrated that diverse antidepressants reduce allodynia in a 
model of peripheral neuropathy, such as desipramine, venlafaxine, reboxetin and 
nortriptyline (Yalcin et al., 2009a; 2009b). Moreover, anti-allodynic effects of amitriptyline 
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and nortriptyline (TCAs) have been described in models of chronic but not acute pain 
(Benbouzid et al., 2008a), and fluoxetine (SSRI) was seen to be ineffective at relatively high 
doses. Hence, inhibition of serotonin reuptake appears to be insufficient to alleviate 
allodynia associated to neuropathy, further evidence of the analgesic effects of inhibiting 
noradrenaline reuptake (Benbouzid et al., 2008a).  

 

Anti-

depressant 

Treatment (dose)* Pain model# Behavioural 

test 

Effect References 

Amitriptyline Acute (10 mg/kg i.p.) Neuropathic Tail flick Analgesia (Iyengar et al., 2004) 

Imipramine Acute (5 mg/kg i.p.) Tonic Acetic acid Analgesia (Aoki et al., 2006) 

Acute (25 mg/kg i.p.) Tonic  

(carrageenan) 

Paw oedema Analgesia (Abdel-Salam et al., 2004) 

Fluoxetine Acute (30 mg/kg i.p.) Phasic Tail flick Analgesia (Pedersen et al., 2005) 

Acute (30 mg/kg i.p.) Tonic (formalin) Second phase Analgesia (Pedersen et al., 2005) 

Acute (10 mg/kg i.p.) Neuropathic Von Frey Analgesia (Pedersen et al., 2005) 

Acute (20 mg/kg i.p.) Tonic  

(carrageenan) 

Paw oedema Analgesia (Abdel-Salam et al., 2004) 

Chronic (20 mg/kg i.p.) Tonic  

(carrageenan) 

Paw oedema Analgesia (Abdel-Salam et al., 2004) 

Fluvoxamine Chronic (10 mg/kg i.p.) Neuropathic Paw pressure No analgesic effect (Gutierrez et al., 2003) 

Acute (40 mg/kg i.p.) Tonic Acetic acid Analgesia (Aoki et al., 2006) 

Acute (0.1 M i.t.) Neuropathic von Frey Analgesia (Ikeda et al., 2009) 

Reboxetine Acute (30 mg/kg i.p.) Phasic Tail flick Analgesia (Pedersen et al., 2005) 

Acute (10 mg/kg i.p.) Tonic (formalin) Second phase Analgesia (Pedersen et al., 2005) 

Paroxetine Acute (0.1 M i.t.) Neuropathic Von Frey Analgesia (Ikeda et al., 2009) 

Duloxetine Acute (10 mg/kg i.p.) Neuropathic Place escape/ 

avoidance 

Improvement in the 

emotional dimension of 

pain  

(Pedersen & Blackburn-

Munro, 2006) 

Acute (3 mg/kg i.p.) Neuropathic Tail flick Analgesia (Iyengar et al., 2004) 

Acute (10 mg/kg p.o.) Neuropathic von Frey Analgesia (Iyengar et al., 2004) 

Acute (10 mg/kg i.p.) Phasic Hot-plate Analgesia (Jones et al., 2005) 

Acute (30 mg/kg p.o.) Tonic Acetic acid Analgesia (Jones et al., 2005) 

Venlafaxine Acute (10 mg/kg i.p.) Neuropathic Tail flick Analgesia (Iyengar et al., 2004) 

Acute (100 mg/kg p.o.) Neuropathic von Frey Analgesia (Iyengar et al., 2004) 

Acute (30 mg/kg i.p.) Tonic (formalin) Second phase Analgesia (Pedersen et al., 2005) 

Milnacipran Acute (10 mg/kg i.p.) Neuropathic Tail flick Analgesia (Iyengar et al., 2004) 

Acute (200 mg/kg p.o.) Neuropathic von Frey Analgesia (Iyengar et al., 2004) 

Acute (5 mg/kg i.p.) Tonic Acetic acid Analgesia (Aoki et al., 2006) 

Acute (60 mg/kg i.p.) Neuropathic Paw pressure Analgesia (Barbui et al., 2007) 

Acute (0.1 M i.t.) Neuropathic von Frey Analgesia (Ikeda et al., 2009) 

* The dose and route of administration is shown in parentheses ( i.p., intraperitoneal; i.t., intrathecal;  p.o., oral) 
 # Pain models are categorized as phasic (short-duration pain), tonic (long-duration pain) and neuropathic, according to (Le Bars et al., 

2001). 

Table 2. Analgesic effects of antidepressant drugs in animal models of pain  
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The role of the monoaminergic system in antidepressant-induced analgesia has been 
demonstrated in several studies. Inhibition of noradrenergic, serotonergic or dopaminergic 
tone significantly attenuates the analgesic effect of antidepressants. For example, the 
inhibition of tyrosine hydroxylase (an essential enzyme for noradrenaline synthesis) or 
tryptophan hydroxylase (an essential enzyme for serotonin synthesis) antagonizes the 
analgesic effect of antidepressants in a wide range of experimental models (Valverde et al., 
1994). Monoamines act on multiple receptor subtypes in the nervous system, some of which 
mediate the analgesic effect of antidepressants, such as ǂ-adrenoceptors (Ghelardini et al., 
2000; Yokogawa et al., 2002) and ǃ-adrenoceptors (Mico et al., 2006b), 5-HT1A, 5-HT2 and 5-
HT3 serotonin receptors (Bonnefont et al., 2005; Yokogawa et al., 2002), and D2 dopamine 
receptors (Gilbert & Franklin, 2001). 

4. Analgesic mechanism of action 

Although antidepressants have been used as pain-relieving drugs for over 40 years, the 
mechanism of action underlying their analgesic effects remains unknown. Although their 
primary effect on neural circuits is to increase the availability of noradrenaline and/or 
serotonin, direct and indirect effects of antidepressants on other systems have also been 
proposed, including opioid neurotransmission. Given the established links between chronic 
pain and depression, it is plausible that antidepressants may act on substrates common to 
both conditions. 

4.1 The monoaminergic system 

Several common biological processes are deregulated in depression and chronic pain, 
producing hypothalamic-pituitary adrenal axis dysfunction (Blackburn-Munro, 2004), 
increases in plasma pro-inflammatory cytokines (Omoigui, 2007; Raison et al., 2006), 
alterations in brain-derived neurotrophic factor (BDNF) expression (Duman & Monteggia, 
2006; Geng et al., 2010) and opioid signalling (Gold et al., 1982; Spetea et al., 2002). 
Nonetheless, the monoaminergic system is the predominant biological substrate linking 
both conditions, as witnessed by the key role played by serotonin and noradrenaline in 
pain and depression (Gormsen et al., 2006; Robinson et al., 2009). These observations 
strongly suggest that pain transmission may be compromised in depression and vice versa.  

Serotonin and noradrenaline neurotransmitters are primarily synthesized in the dorsal 
raphe nuclei and locus coeruleus, respectively. Ascending projections from these two 
brainstem nuclei (mainly to the hypothalamus, anterior cingulate cortex and amygdala) are 
involved in the regulation of anxiety, mood and emotion. Moreover, deterioration in mood 
appears to be associated with impaired transmission along ascending serotonergic and 
noradrenergic pathways (Figure 1). Descending projections from the raphe nuclei and locus 
coeruleus project to the spinal cord (descending pain pathway), where they exert inhibitory 
influences on pain threshold. Furthermore, projections from the nucleus raphe magnus, 
locus coeruleus and A5 (also a noradrenergic centre) control the release of serotonin and 
noradrenaline at the level of the spinal cord. As a general rule, when these monoamines 
augment in synaptic clefts within the spinal cord there is a decrease in the pain threshold 
(Figure 1). However, it should be noted that serotonin can both dampen and enhance the 
sensation of pain, depending on the receptor subtypes activated. Given the common 
noradrenergic and serotonergic pathways implicated in chronic pain and depression, 
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antidepressants are the most effective treatment to deal with chronic pain of diverse origins, 
with or without co-existing depression (Blier & Abbott, 2001; Campbell et al., 2003; Mico et 
al., 2006a). At the supraspinal level, these compounds increase noradrenaline and serotonin 
levels in the synaptic clefts while simultaneously enhancing the activity of the descending 
inhibitory bulbospinal pathways, thereby producing analgesia.  

4.2 The opioid system  

Some preclinical studies have demonstrated a functional relationship between endogenous 
opioid peptides and the analgesic effect of antidepressant drugs (Table 3). For example, the 
opioid antagonist naloxone or nor-binaltorphimine antagonize the analgesic effect of several 
TCAs and monoamine reuptake inhibitors in models of acute and chronic pain (Ardid & 
Guilbaud, 1992; Valverde et al., 1994). As opioid and monoaminergic systems appear to share 
common molecular mechanisms mediating nociception, opioid compounds are frequently co-
administrated with antidepressants for pain relief. However, the validity of this therapeutic 
strategy for the treatment of mood disorders with comorbid pain remains unclear (Alba-
Delgado et al., 2011; Berrocoso & Mico, 2009a; 2004; 2009; Rojas-Corrales et al., 2002; 2004). 
Moreover, the opioid doses required to produce antidepressant-like effects are higher than 
those required to produce analgesic effects, suggesting that these two processes are mediated 
by distinct mechanisms (Berrocoso & Mico, 2009a; Rodriguez-Munoz et al., 2011). 

The influence of antidepressants on opioid signalling is region-specific. Indeed, the 

administration of antidepressants increases opioid receptor density in brain areas implicated 

in pain and depression (Ortega-Alvaro et al., 2004; Reisine & Soubrie, 1982). For example, 

chronic citalopram administration increases naloxone binding in cortical membranes 

(Antkiewicz-Michaluk et al., 1984), while imipramine and fluoxetine increase neuronal μ-

opioid receptor expression in the prefrontal cortex, hippocampus and caudate putamen (de 

Gandarias et al., 1999; 1998). There is data revealing considerable variation in opioid 

receptor responses to antidepressant treatment depending on treatment duration, dose, the 

brain region analyzed and the antidepressant’s mode of action. Importantly, opioids can 

also modify the action of antidepressants and a significant attenuation of the behavioural 

effects of two TCAs, clomipramine and desipramine, was observed in mice treated with the 

non-selective opioid antagonist naloxone (Devoize et al., 1984). This antagonistic effect was 

corroborated in subsequent studies, demonstrating a reduction in the antidepressant 

efficacy of tricyclic and non-tricyclic antidepressants in response to opioid pretreatment 

(Baamonde et al., 1992; Berrocoso et al., 2004; Besson et al., 1999; Tejedor-Real et al., 1995).  

4.3 Other mechanisms involved 

In addition to the monoaminergic and opioid systems, some antidepressants seem to exert their 

analgesic effect acting by other lesser-known mechanisms (see revision in Table 3). This is not 

surprising because other neurotransmission systems have been involved in the 

etiopathogenesis of pain and also in depression. Most evidences indicate the involvement of 

ionic channels (such as calcium, potassium and sodium) and neurotransmitter receptors 

(gamma-aminobutyric acid or GABA, N-methyl-D-aspartate, or NMDA and substance P) in the 

analgesic mechanism of action of antidepressants. It is interesting to note that among 

antidepressants, TCAs are those that act on multiple nociceptive targets both at central and  
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Mechanism of 
action 

TCAs SSRIs NRIs SNRIs DNRIs Other 
ADs 

References 

+ δ and μ-opioid 
receptors 

Amitriptyline 
Mipramine 
Clomipramine
Maprotiline 
Desmethylclo 
Imipramine 
Desipramine 
Nortriptyline 
Amoxapine 

Paroxetine Oxaprotiline
Viloxazine 

Venlafaxine Nomifensine Nefazodone
Mirtazapine
Mianserin

(Gray et al., 1998; 
Hamon et al., 1987; 
Marchand et al., 
2003; Ortega-Alvaro 
et al., 2004; 
Schreiber et al., 
1999; Schreiber et 
al., 2002; Valverde 
et al., 1994) 

− Na+ channel Amitriptyline 
Imipramine 
Trimipramine
Desipramine 
Doxepin 

Not known Not known Venlafaxine Not known Not known (Sudoh et al., 2003) 

+ K+ channel Amitriptyline 
Clomipramine

Citalopram 
Fluoxetine 

Not known Not known Not known Not known (Galeotti et al., 2001) 

− Ca2+ channel Amitriptyline 
Clomipramine
Imipramine 
Trimipramine
Desipramine 
Doxepin 

Citalopra
m 

Oxaprotiline Not known Not known Not known (Antkiewicz-
Michaluk et al., 
1991; Beauchamp et 
al., 1995; Lavoie et 
al., 1994) 

+ A1-adenosine  
receptor 

Amitriptyline Not known Not known Not known Not known Not known (Esser & Sawynok, 
2000; Sawynok et 
al., 1999; Sawynok 
et al., 2008; 
Sawynok et al., 
2005) 

↑ Adenosine 
levels 

Amitriptyline Not known Not known Not known Not known Not known 

GABAB receptor 
↑ function 

Amitriptyline 
Desipramine 

Fluoxetine Not known Not known Not known Not known (McCarson et al., 
2006; McCarson et 
al., 2005; Sands et 
al., 2004) 

− NMDA 
receptor 

Amitriptyline 
Desipramine 
Clomipramine

Not known Not known Milnacipran Not known Not known (Cai & McCaslin, 
1992; Eisenach & 
Gebhart, 1995; 
Mjellem et al., 1993; 
Skolnick et al., 1996; 
Su & Gebhart, 1998) 

↓ Substance P 
synthesis 

Imipramine 
Clomipramine

Not known Not known Not known Not known Not known (Bianchi et al., 1995; 
Iwashita & Shimizu, 
1992) 

Abbreviations: ADs, antidepressants; DNRIs, dopamine and noradrenaline reuptake inhibitors; GABA, gamma-aminobutyric 
acid;  NMDA, N-methyl-D-aspartate; NRIs, noradrenaline reuptake inhibitors; SNRIs, serotonin and noradrenaline reuptake 
inhibitors; SSRIs, selective serotonin reuptake inhibitors; TCAs, tricyclic antidepressants; +, activation; −, blockade; ↑, increase; 
↓, decrease. 

Table 3. Non-monoaminergic mechanisms implicated in the analgesic effect of 
antidepressants 
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peripheral levels (Table 3) and this may be the reason why TCAs seem to be more effective than  

other antidepressants with a more selective monoaminergic mechanism of action. For example, 

many actions have been described for amitriptyline: blocking NMDA receptors and sodium 

channels (Sudoh et al., 2003). Also, it decreases intracellular calcium levels in the dorsal horn 

(Cai & McCaslin, 1992), and increases adenosine levels and the activity of A1 receptor (Esser & 

Sawynok, 2000; Sawynok et al., 1999; Sawynok et al., 2008; Sawynok et al., 2005). Finally, it 

promotes GABAB receptor function (McCarson et al., 2005), among other actions. This may help 

to explain why amitriptyline is one of the most widely used antidepressants in the treatment of 

pain. However, it is important to bear in mind that many of these targets are closely related to 

monoaminergic system and that these actions could lead ultimately to the increased of 

noradrenaline, serotonin and dopamine levels in the synaptic cleft.  

4.4 Lessons from knockout mice  

Recent advances in the field of genomics have led to the creation of new preclinical models 

where mutations are targeted to specific genes. The use of genetically manipulated rodents, 

mainly mice, has contributed to a better understanding of the mechanisms underlying mood 

and pain disorders, and of the mechanism of action of antidepressants. Knockout (KO) 

phenotypes are characterized using behavioural tests to evaluate the basal nociceptive 

threshold following pain induction and in general, the sensorial threshold is not modified in 

transgenic animals, although some exceptions have been reported.  

Knockout mice have been used to explore the relative contributions of serotonergic and 

noradrenergic pathways in antidepressant-mediated analgesia (Table 4). Using homologous 

recombination, a KO mouse was generated lacking the noradrenaline transporter (Xu et al., 

2000), resulting in reduced noradrenaline reuptake. In the tail-flick test, these mice 

displayed a modest elevation in the pain threshold. Moreover, unlike wild-type mice, pre-

treatment with desipramine did not enhance morphine analgesia in these mutants (Bohn et 

al., 2000), highlighting the importance of the noradrenaline transporter in desipramine-

mediated analgesia.  

The role of other noradrenergic targets in analgesia has also been studied in KO mice, 

including that of ǂ- and ǃ-adrenoceptors. The ǂ-adrenergic receptors are pre- and 

postsynaptic autoreceptors that regulate neuronal activity (noradrenaline release, firing rate, 

etc.), and their activation also promotes antinociceptive, sedative and sympatholytic effects 

in vivo. Significantly, ǂ2-adrenoceptor agonists are widely used clinically to mimic these 

effects and the ǂ2A receptor subtype has been identified as the principal mediator of 

antinociception (Lakhlani et al., 1997). Indeed, amitriptyline analgesia is abolished in ǂ2A-

adrenoceptor KO mice in the hot plate and tail-flick tests (Ozdogan et al., 2004), suggesting  

that ǂ2A-adrenoceptors play a significant role in mediating the acute analgesic effects of 

amitriptyline, although other neurotransmitter systems may also be involved. The 

expression of ǃ-adrenoceptors in the descending noradrenergic inhibitory pathway 

(Nicholson et al., 2005) also suggests a role for these receptors in the analgesic effects of 

antidepressants and the ǃ2 subtype has been shown to fulfil a critical role in the 

antiallodynic effects of nortriptyline (Yalcin et al., 2009a), venlafaxine and desipramine 

(Yalcin et al., 2009b).  
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   Effects  

Target Antidepressant Behavioural test WT mice KO mice References 

Monoaminergic system

ǂ2A-adrenoceptor Amitriptyline Tail-flick Analgesia No effect (Ozdogan et al., 2004) 
Amitriptyline Hot plate Analgesia No effect (Ozdogan et al., 2004) 

ǃ2-adrenoceptor Desipramine  von Frey Analgesia No effect (Yalcin et al., 2009b) 
Nortriptyline von Frey Analgesia No effect (Yalcin et al., 2009a) 
Venlafaxine  von Frey Analgesia No effect (Yalcin et al., 2009b) 

Noradrenaline transporter Desipramine Tail-Flick Analgesia No effect (Bohn et al., 2000) 

Lmx1b (LIM homeodomain-
containing transcription factor) 

Fluoxetine Tail-Flick Analgesia No effect (Zhao et al., 2007) 
Fluoxetine Formalin  (2º phase) Analgesia No effect (Zhao et al., 2007) 
Fluoxetine von Frey Analgesia No effect (Zhao et al., 2007) 
Amitriptyline Tail-Flick Analgesia Analgesia (Zhao et al., 2007) 
Duloxetine Tail-Flick Analgesia No effect (Zhao et al., 2007) 
Duloxetine Formalin  (2º phase) Analgesia No effect (Zhao et al., 2007) 
Duloxetine von Frey Analgesia Analgesia (Zhao et al., 2007) 

RGS9-2 (Regulator of  
G-protein signalling 9-2) 

Desipramine von Frey Analgesia Analgesia (Zachariou & Terzi, 2009) 
Desipramine Hargreaves Analgesia Analgesia (Zachariou & Terzi, 2009) 

Opioid system 

μ-opioid receptor Nortriptyline von Frey  Analgesia Analgesia (Bohren et al., 2010) 

δ-opioid receptor Nortriptyline von Frey  Analgesia No effect (Benbouzid et al., 2008b) 

Other systems 

A1-adenosine receptor Amitriptyline Formalin  (2º phase) Analgesia Analgesia (Sawynok et al., 2008) 
Amitriptyline Formalin  (2º phase) Analgesia Analgesia (Sawynok et al., 2008) 

Abbreviations: KO, knockout; WT, wild-type.

Table 4. Analgesic response to antidepressant drugs in knockout and wild-type mice 

While the majority of studies of the serotonergic action of antidepressants have focused 

specifically on antidepressant effects, antidepressant-induced analgesia has been studied in 

mice lacking Lmx1b (Zhao et al., 2007), a LIM homeodomain-containing transcription factor 

required for postmitotic differentiation of serotonergic neurons (Ding et al., 2003). These 

mice display dysfunctional central serotonergic neurotransmission and thus, they represent 

a novel tool to study the mode of action of antidepressants. Indeed, the analgesic effects of 

fluoxetine, amitriptyline and duloxetine on phasic and tonic pain (formalin and carrageenan 

tests) were abolished or greatly attenuated in transgenic mice (Zhao et al., 2007). This 

demonstrates the contribution of serotonergic neurotransmission to antidepressant-

mediated analgesia, and provides important genetic evidence regarding the modulatory role 

of serotonin in inflammatory and acute pain. 

While the contributions of noradrenaline and serotonin to pain and depression are well 
established, the role of other neurotransmitter systems, including the opioid system, 

remains unclear. Further studies are required to elucidate the neuroanatomical and 
molecular links between antidepressant action and opioid signalling. Indeed, several studies 

have suggested that this action may be centrally mediated, e.g., via noradrenergic 
descending pathways. The generation of mice lacking μ- (Bohren et al., 2010) and δ-opioid 

receptors (Benbouzid et al., 2008b) has provided a novel approach to analyse the 
relationship between antidepressant activity and opioid signalling. Chronic treatment with 

the TCA nortriptyline induces antiallodynic effects in neuropathic wild-type and δ-opioid 
KO mice (Benbouzid et al., 2008b; Bohren et al., 2010), but not in μ-opioid deficient mice 

(Bohren et al., 2010), indicating that μ-opioid receptors are not required for the analgesic 
effects of nortriptyline in neuropathic pain. These results highlight the functional differences 
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between μ- and δ-opioid receptors in antidepressant-mediated analgesia. It was proposed 
that the analgesic effect of nortriptyline may involve signalling via the endogenous opioid 

system through the δ subtype (Benbouzid et al., 2008b). However, further studies will be 
necessary to determine whether a similar mechanism may also underlie the antidepressant 

effects of these compounds. 

5. Conclusion 

Depression and chronic pain are two multifaceted illnesses with a common and complex 

neurobiological basis. While several neurotransmitters have been implicated in the 
biological origins of both conditions, the monoaminergic system appears to be the principal 

pathway affected. Accordingly, the primary therapeutic approach involves the use of drugs 
that act on this system, normalizing monoamine levels. Antidepressants that act on 

noradrenergic and serotonergic systems are commonly used to treat both the emotional and 
somatic symptoms of depression, and they are effective as analgesics for the treatment of 

chronic forms of pain, such as neuropathic pain. However, further studies in the analgesic 
mechanism of action of antidepressants beyond the monoaminergic level might help to 

develop new therapeutic options and to improve the treatment and prognosis of patients. 
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