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1. Introduction 

1.1. Overview of spindles as thalamocortical (TC) oscillations 

Spindles appear in the EEG as sinusoidal waves with frequency in the range 11 to 16 Hz. 

Together with K-complexes they are the hallmarks of NREM sleep and their appearance is 

taken as evidence of the onset of light sleep. Their specific distribution and exact frequency, 

changes in early and late sleep during the night. Sleep spindles are also known as “sigma 

waves” a term initially recommended (1961) but later discouraged by the International 

Fenderation of Societies for Electroencephalography and Clinical Neurophysiology 

(IFSECN), and redefined as a “group of rhythmic waves characterized by progressively 

increasing, then gradually decreasing amplitude”[1].  

Spindles are one of the basic TC EEG rhythms appearing in sleep, these include the slower 

rhythms in the 0.05–1 Hz (slow rhythm), the 1-4 Hz (delta rhythm), and the 8–12 Hz (alpha 

and mu rhythms) .On the other side of the spindle frequency range we encounter the higher 

rhythms in the 16 to 25 (beta band), the 26 to 90 Hz (gamma band), the 100-200Hz bursts 

(hippocampal ripples that are associated with spindles) and the 300–600 Hz (ultrahigh-

frequency oscillations) [2]. Although spindles have been the most thoroughly studied of these 

rhythms, in experimental animals as well as humans, with electrophysiological, metabolic, 

brain imaging and pathology, molecular genetic and computational modeling methods, their 

nature is still elusive. Their role has been debated for a long time but it is now believed that 

their contribution includes sleep promotion and maintenance associated to sensory gating, 

motor representation development, and cognition and memory consolidation.  

The existence of two types of spindles were first described by Gibbs and Gibbs (1964), which 

differed in frequency by approximately 2-Hz; fast spindles, with a frequency of 14-Hz in the 

centro-parietal region; and slow spindles with a frequency of around 12 Hz, which are more 
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pronounced in frontal region [3]. Recent studies using simultaneous EEG and MEG 

recordings have clarified multiple simultaneously activating cortical sources of two types of 

spindles in the centro-parietal areas [4-6], involving motor and sensory-motor cortex.  

In this chapter we will review the basic mechanisms of sleep spindles and consider their 

possible uses as biomarkers for the state of the brain, focusing specifically on recent work on 

changes in sleep spindle activity during recovery from stroke. 

2. Neural mechanism of sleep spindles during NREM sleep 

2.1. Neural mechanisms underlying spindle generation 

The existing fragmented views of the spindles' underlying mechanisms constitute a 

formidable puzzle. The main questions addressed so far will be covered in the following 

subsections.  

Spindles and the neuronal mechanisms underlying their generation have been extensively 

studied in experimental animals [2,7] It is important to distinguish the mechanisms 

underlying the spindle rhythm generation, those producing the electrical sources of spindles 

recorded on EEG/MEG and those responsible for triggering, spread, synchronization and 

stopping this rhythm.  

The spindle rhythm is considered to be paced from thalamus since it disappears after 

destruction of thalamus and survives in decorticated animals and even in thalamic slices [8]. 

The spindle frequency is basically determined by an interplay between the mutually 

interconnected GABAergic inhibitory neurons of the reticular nucleus of thalamus (RT) and 

the TC neurons (Figure 1), their intrinsic properties and their influence by cortical as well as 

brainstem ascending inputs. RT neurons impose hyperpolarization on TC neurons. This 

activates a nonspecific cation current, Ih, which depolarizes TC neurons and thus leads to 

activation of low threshold Ca++ currents (LTC) and bursting. The latter feeds back 

excitation on RT neurons, thus closing the loop and preparing for the next cycle. Each TC 

bursting besides feedback to RT imposes on pyramidal neurons an EPSP, which underlies 

each EEG spindle wave. The degree/duration of IPSPs imposed by RT on TC determines the 

intra-spindle frequency, but corticothalamic inputs have a decisive role on this pacing 

mechanism. This mechanism explained the old observation of two modes of TC activity, a 

rhythmical bursting and a tonic activity, the former prevailing (in the form of spindles or 

delta EEG waves) during quiescent NREM sleep and the latter in wakefulness. A simple 

common path for initiating the bursting mode is the hyperpolarization of potentially 

bursting neurons, so that Ih would be de-inactivated. Brainstem, hypothalamic, basal 

forebrain and the quantitatively most prominent cortical afferents to nRT neurons gate 

through this hyperpolarization the involvement of TC neurons in this cyclical interaction 

with nRT. This leads to the swich of TC neurons from tonic to bursting mode. Since the 

bursting mode is incompatible with faithful relay of sensory information to the cortex, 

spindles assume a gating role of dynamic sensory deafferentation during sleep.  
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Regarding the electrical generators of spindles, depth EEG recordings in humans have 

demonstrated superficial as well as deeper frontal cortical sources as well as sources in 

ventrobasal thalamus, which are usually but not necessarily synchronous to those on scalp 

EEG [1]. Animal experiments using depth profiles and intracellular recordings in thalamus 

and cortex have demonstrated that individual EEG spindle waves are scalp reflections of 

currents generated in cortex by EPSPs of cortical neurons. The elementary dipoles are 

considered to be generated primarily on the long apical dendrites of single pyramidal 

neurons; their extracellular current return branch contributing to EEG. These EPSPs are 

usually subthreshold depolarizations of apical dendrites and so give rise to smooth surface 

negative waves (type I spindle waves resembling recruiting responses). Only a few of the 

TC EPSPs progress from apical dendritic depolarization to deep soma and basal dendritic 

depolarization leading to cell firing and are shown on EEG as negative –positive sharper 

spindle waves (type II resembling augmenting responses). A spindle is usually a mixture of 

these two types of spindle waves [9]. These elementary dipoles will generate EEG spindles 

to the degree that they occur synchronously in a large number of neurons and in accordance 

to the rules of volume conduction in brain.  

 

Figure 1. Main TC (TC) circuits relevant to spindles generation (simplified diagram based on Guillery 

et al., and Jones [10-11]). Excitatory connections are shown terminating with arrows and inhibitory 

connections are shown with bars. TCs and TCns are TC-specific and non-specific projections to 

pyramidal neurons (PN) in cortex. They are subject to feedback inhibition by nucleus reticularis (RT) 

and cortical inhibitory interneurons (II), respectively, shown as filled circles. TCs, considered as `core', 

'first order' or `specific', excite PN of cortical layer 6 of the same TC sector (1) and RT neurons (2) and 

are inhibited by the latter (3). PN feed back to thalamus (4,5) and have a rich recurrent collateral 

network exciting other PN (6) as well as local inhibitory interneurons (7). TCns, considered as `matrix', 

`high order' or `non-specific', have similar connections with RT and PN of the same sector (not shown 

here), except for their rather non-discriminatory efferents to the upper cortical layers (10) rather than 

the fourth cortical layer. The PN of layer 5 (middle) constituting the main output of cortex can excite the 

latter type of TC neurons of remote sectors (9). 
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Several factors appear to allow or instigate the appearance of spindles. In the former one 

may include influences from brainstem, hypothalamic and basal forebrain to both TC and 

cortex, but the instigation role is attributed to cortical activation of RT neurons. This appears 

to occur in phase with a slow cortical oscillation (~0.75 Hz) [12] sporadically and during the 

A1 phase of the cyclic alternating pattern [13]. 

Cortical excitation of RT neurons is also found instrumental in the spreading and 

synchronizing spindles through TC and cortico-cortical excitation (Figure 1). It is 

noteworthy that the two function-related modes of firing characterize not only relay 

(specific) TC neurons but also the `non-specific' intralaminar nuclei. Cortical activation of 

the latter as well as of recurrent cortico-cortical excitation spread the spindle rhythm to wide 

cortical areas. The initially waxing amplitude of the EEG waves is grossly correlated to the 

amplitude of neuronal EPSPs and reflects gradual recruitment of more and more neurons in 

analogy to the augmenting and recruiting responses which are experimentally induced by 

activation of TC neurons in sensory-motor and intralaminar nuclei respectively, i.e. an initial 

specific activation of cortex leads to feedback excitation of nonspecific TC which will in turn 

project back to a much larger cortical area. This will then lead to the large amplitude EEG 

and hence the maximum amplitude in the middle of the spindle The waning is attributed to 

deterioration of synchronization of more and more extensive TC sectors, their asynchronous 

feedback to thalamus rendering RT neurons out of phase to each other, while also the 

recruitment eventually reaches a large enough number of cortical neurons whose feedback 

to the thalamus depolarizes TC neurons and thus terminates the rhythm.  

Ascending arousal influences disallow spindles. For example cholinergic afferents from 

brainstem excite TC and inhibit RT neurons during awake and REM states, thus inhibiting 

the rhythm generation that prevails in NREM sleep i.e. spindles and deltas. 

The incidence of spindles is reported to peak at a frequency of 0.2-0.3 Hz [14]. In longer time 

terms, spindles are under both circadian and homeostatic control [15]. Spindles density is 

decreased in early sleep stages (in inverse homeostatic relationship to slow waves). The 

same is observed after sleep deprivation, when there is also an increase in spindle amplitude 

and a reduction in intra-spindle frequency variability, which indicates a higher level of 

synchronization in TC cells under conditions of increased sleep pressure. 

The incidence of spindles has considerable variance (1±40 s inter-spindle intervals in 

humans). Also variable is their topographic prevalence in the brain, their time of appearance 

in sleep stages, their association to other EEG landmarks (like K-complexes) and their 

dependence on drugs. All these suggest that spindles do not constitute a unique and/or 

uniform phenomenon.  

2.2. Association/dissociation of spindles with other EEG waves of NREM sleep 

The association of spindles the slow cortical oscillation (~0.75 Hz) [12] is proposed to be 

causative in the sense that this oscillation which is supposedly generated within neocortical 
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networks, synchronizes neuronal activity into generalized down-states (hyperpolarization) 

of global neuronal silence and subsequent up-states (depolarization) of increased wake-like 

neuronal firing. With the beginning of the latter cortico-thalamic volleys are proposed to 

drive the generation of spindle activity.  

During the A1 phase of the cyclic alternating pattern [13] spindles gather together with K-

complexes. It is interesting that spindles are associated to K-complexes but are mutually 

exclusive with delta. The latter may be explained by the afore mentioned involvement  

of voltage-gated channels Ih and LTC, since the membrane can be only at one voltage level 

at a time. During sleep spindles the membrane potentials of TC neurons are between –55 

and –65 millivolts, whereas delta oscillations occur in the range –68 and –90 millivolts. The 

progressive hyperpolarization of TC neurons during the course of sleep may explain the 

prevalence of spindles in early stages and delta dominance in stage 4 sleep [16].  

K-complexes (the descending phase of their prominent negative wave) are associated with a 

population burst discharge of cortical neurons, including layer 5 and 6 pyramidal cells 

projecting to the thalamus. Such a strong and synchronous input may discharge reticular 

cells directly or indirectly and thus could serve as the initiator of sleep spindles [2]). In a 

recent study the incidence of spindles immediately following K-complexes was between  

65-70% [17]. However in this study neither the probability of appearance nor the power of 

spindles correlated to the amplitude or any other feature of the K-complexes that preceded 

them. When K-complexes appeared spontaneously after the start of a sporadic spindle, the 

spindles were invariably shut down for the duration of the K-complex, usually being 

replaced by a short lived oscillation in the high theta frequency band. Also the spindles 

appearing immediately after a K-complex had invariably faster spectral frequency than the 

sporadic spindles. Such findings suggest that the association of K-complexes with spindles 

is strong but may be due to a common trigger rather than a causative interaction. 

2.3. Spectral spindles frequency. Whence the appearance of two 

spatiotemporally distinguished types of spindles? 

The observations of Gibbs and Gibbs (1950) [3] that the frequency of frontally recorded 

spindles is slower (about 12 per second) than that of spindles above the centroparietal cortex 

(about 14 per second), later confirmed in animals, suggest that several seeds of synchrony 

can emerge within the thalamus that are temporally coordinated by their corresponding 

neocortical networks. The different spectra of the two types are proposed to depend on 

anatomical differences (different thalamic rhythm generators and different distance from the 

cortical electrical generators). A possible explanation has been based on the fact that TC 

neurons in anteroventral and anteromedial nuclei, which connect limbic structures with 

cingulate and prefrontal areas, do not receive inhibition from RT but from zona incerta and 

other areas and so do not fire in coherence to other TC neurons during spindles [18-19]. The 

two types of spindle activity show different maturational courses [20] suggesting some 

fundamental difference.  
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Observing the actual intervals between individual waves of fast and slow spindles peaks on 

EEG we do not see a continuous spectrum with two peaks but rather a step like transition 

between two stable spectral frequencies even in cases the two types follow each other. More 

generally EEG spindles have been shown to display high intra- and inter-night robustness 

and stability of spectral frequency in individual subjects in spite of larger differences 

between subjects. This unique profile of spindles was suggested to be one of the most 

heritable human traits (heritability of 96%, not influenced by sleep need and intensity). 

Consistent with this suggestion is the demonstration that several diseases with strong 

genetic background are associated with changes in spindles, like Asperger syndrome, 

developmental dyslexia, Williams syndrome or malformations of cortical development ([21] 

and references therein). So, EEG studies propose for each of the two types of spindles a 

stable spectral frequency determined probably by the degree of hyperpolarization of TC 

neurons; determined in turn by intrinsic properties of these neurons. The latter as well as 

neuroanatomical differences are hypothesized to reflect genetically determined traits rather 

than sleep-dependent mechanisms. However the thalamic neurons membrane properties 

contributing to spindles rhythm display diurnal variation when recorded in vitro (more 

depolarization, bursting, LTC and Ih when recorded at night compared to the day [22]). 

3. Electroencephalographic (EEG) and magneto encephalographic (MEG) 

findings, and other neurodiagnostic method of spindles 

Sleep research is enjoying its second renaissance. Just like the first renascence in the late 50s 

and 60s the new one is driven by advances in accessing directly the correlates of electrical 

activity in the brain. The first renascence of sleep research was founded on the new 

capability of using EEG to extract a direct correlate of mass electrical activity of the sleeping 

brain. The pioneers sensed that something new was in the air with the advent of the new 

neuroimaging methods of PET and fMRI and remarkable progress in electrophysiology 

(EEG and MEG). This sentiment of great expectations is nicely captured in Jouvet’s words: 

“.. so the majority of researchers are waiting with bated breath for the results of studies 

combining PET scanning, “functional’ magnetic resonance imaging (fMRI), 

magnetoencephalography and tomographic electroencephalography …” [23].  

We are now living this much awaited new era of sleep research, its second renaissance with 

the spotlight falling to the study of spindles for the reasons already outlined in the earlier 

sections. To appreciate the results obtained so far and even more importantly to sense the 

promise of things yet to come, it is important to understand what the new techniques can 

deliver and what they cannot and contrast this with what has been done so far. We will 

therefore describe snippets of new research obtained from different methods and point out 

in each case how these results add to earlier studies thanks to the new capabilities, but also 

how they are constrained by the limitations of the method. We will group the results in 

terms of the major categories of measurements in roughly the chronological order that each 

became available. 
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3.1. Non-invasive mass early mass-electrophysiology 

The foundation of the modern neuroscientific study of sleep was laid by the questions posed 

by Henri Pieron [24] and Nathaniel Kleitman [25] about the physiological basis of sleep and 

the nature of regulation of sleep and wakefulness and of circadian rhythms. It took many 

decades though and critically the improvement in electrophysiological measurements that 

allowed the critical categories of sleep stages and sleep processes to be documented in an 

objective way. The key finding was of course the discovery of rapid eye movement (REM) 

sleep and its reproducible identification in any well designed study with polysomnography 

[26]. The cascade of discoveries that followed by the same pioneers together with William 

C. Dement, Michel Jouvet and many others continues for over a decade but by the 70’s the 

field appeared to be running out of steam. In retrospect the big picture is easier to see and it 

can be summarized as the inability to connect the view of electrical events revealed by non-

invasive mass electrophysiology mostly in humans and the detailed description of sleep 

control provided by highly invasive animal electrophysiology.  

The source electrical activity is greatly distorted as it crosses the highly resistive skull, and 

as a result the EEG signal generated lacks spatial specificity. The EEG record at any one 

electrode is a crude average of real electrical events; at any one instance the signal could be 

due to any one or more generators spread over wide range of brain areas. The reader of 

sleep literature is used to EEG records that appear smooth with regular oscillatory patterns 

that cover wide parts of the scalp. This smoothness of the EEG signal is often interpreted as 

a consequence of uniformity in activity of the sleeping brain. In reality much of this 

apparent smoothness is a byproduct of EEG technical limitation and the efforts to limit them 

(e.g. through filtering). 

A fine spatial and temporal detail in the pattern of activations would be smoothed by the 

passage through the highly resistive skull and in any case it would not survive the pre-

processing of the signal. The absence of high spatial and temporal variability should not 

therefore be interpreted as evidence of absence. Spatial uniformity was however exactly 

what was implicit in the descriptions of brain activity within each of the major subdivision 

of sleep. This interpretation was of course at odds with the identification of fine spatial 

differentiation of mutually interacting nuclei at the brainstem and hypothalamus revealed 

by exquisite animal experiments of the pioneers. The reality of invasive neurophysiology 

was not of course inconsistent with the signal recorded by EEG but the interpretation of the 

latter was. 

As is often the case in science, the animal neurophysiologists and the EEG researchers 

continue developing their own studies and terminology and practically ignored the 

inconsistencies between the implicit frameworks each society of researchers constructed. 

The unrecognized impact of this impasse probably contributed to the relative stagnation of 

sleep research that followed in the seventies and eighties as new methods were needed to 

bridge the results produced by the refined electrophysiology of animal sleep research and 

the gross electrophysiology of human sleep EEG.  
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In the early 1970s and through the 1980’s mass electrophysiology was changing in 

fundamentals ways. First the advent of superconductivity and other technological 

innovations allowed measurements of the magnetic field generated by the human brain [27]. 

Magnetoencephalography (MEG) had some clear technical advantages over EEG, but the 

inertia of sticking largely to analysis techniques developed for EEG and the heavy pre-

processing of the very noisy and limited data that early MEG hardware with only one or 

very few MEG sensors meant that the new capabilities were not exploited for almost a 

decade [28]. The advances in MEG, especially in terms of localization of cortical activity at 

the peaks of evoked response, spur a revitalization of EEG technology. In terms of 

instrumentation it eventually lead to computerized (paperless) EEG; which allowed long 

term recordings; in terms of analysis it lead to attempts to extract spatial information about 

the brain generators – it was not adequate anymore to describe the topology of the EEG 

signal on the scalp.  

These advances augmented the effectiveness of standardization of sleep recording protocols. 

A proper sleep study had to provide enough electrophysiological records to produce a 

hypnogram, i.e. to divide a night’s sleep into stages according to well-defined standards 

[29]. This classification essentially used the dominant frequency components and the big 

graphoelements to define each sleep stage. Sleep spindle activity is the highest during 

NREM 2 sleep stage and together with the K-complex are the two defining graphoelement 

for this sleep stage.  

The contribution of MEG to the study of spindles has been limited in the 70s and 80s, partly 

because sleep studies with MEG are difficult and partly because partly because there is no 

timelocking mechanism for averaging and partly because there is little one can do that 

cannot be done with EEG with instruments offering limited coverage of the head with one 

or at most few sensors. Inability to identify spindles using a particular instrument and 

protocol was sometimes interpreted as inability to detect spindles with MEG [30] and 

different models were proposed to explain the apparent discrepancy between EEG and 

MEG spindle detection [31]. Eventually researchers recognized that when only few sensors 

were available the placement of the sensors is a critical determinant whether or not 

correlates of focal events in the brain will be captured in the measurements [32].  

The advent of multichannel arrays covering a wider area, and especially the ones using 

planar gradiometer meant that events from at least part of the brain could be identified from 

the area below the sensor array. Indeed for the first time a concordance was reported for 

gross signal properties using such 24-channel array of MEG sensors and the EEG for 

simultaneous recordings from the scalp midline. However using the current dipole model 

for the generators no focal generators could be identified for spindles and slow waves [33]. 

The use of multichannel MEG hardware covering the entire head demonstrated that 

spindles involved activation of wide areas of the cortex. However, with modelling restricted 

to equivalent current dipoles all that could be done was to compare the relative occurrence 

of spindle-like activity in different parts of the cortex [34-36].  
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The EEG and MEG studies until the first few years of the new millennium have provided 

valuable information about the distribution of spindles in early and late sleep and the 

relation between spindle frequency and the phase of the slow cortical oscillations as 

described in section 2. In particular regularities in topography and timing were described in 

more detail than the original description of Gibbs, as already described in the previous 

section.  

Defining cortical sources of spindles using simultaneous EEG and MEG recordings can 

provide valuable information on the role of the cortex and the underling neural basis and 

mechanism of generation of spindles [37] (Figure 2). Cortical activation centered in four 

areas, the precentral and postcentral areas in frontal motor cortex and parietal cortex of each 

hemisphere. Fast spindles were associated with more frequent activation of postcentral 

areas with stronger activation strengths, whereas slow spindles were associated with more 

frequent activation of precentral areas with stronger activation strengths. The differences in 

cortical activation patterns and activation strengths between the two types of spindles 

suggest that two distinct forms of spindle bursts propagate to cortex through different 

underlying neuronal circuits.  

 

Figure 2. Symmetric distribution of 14-Hz fast spindles recorded with simultaneous 

electroencephalogram(EEG) and magnetoencephalogram (MEG). EEG shows spindles with a frequency 

of 14 Hz and amplitude of 30μV in the centro-parietal areas with the highest amplitudes in the central 

midline(Cz) and parietal midline(Pz) (Left) . Simultaneous MEG shows spindles with a frequency of 14 

Hz and amplitude of 100.0 fT/cm distributed symmetrically in the MEG middle channels. The head is 

viewed from above (middle). The cortical sources of the same spindle were estimated as ECDs 

(equivalent current dipoles) with MEG clustered around the central sulcus of both hemispheres (right). 

Four locations consisting of the precentral and postcentral areas, in precentral areas of the posterior part 

of frontal cortex of each hemisphere and the postcentral areas of the parietal cortex activated. These 

cortical sources constituted the cortical distribution of spindles.  
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3.2. Hemodynamic studies (including combined EEG/fMRI) 

PET does not have sufficient temporal resolution to probe in detail the evolution of activity 

correlated with large sleep graphoelements, so early studies have mostly focused on 

changes between sleep stages and awake state [38] with some attempts to characterize 

activity in spindles [39]. Advances in PET and particularly the simultaneous recording of the 

EEG allowed changes in PET signal to be correlated with changes in spindle activity, 

showing mostly CBF decrease in the human thalamus during stage 2 and SWS sleep, in 

proportion to the power density in the spindle-related sigma frequency range. A more 

recent study provided evidence for positive correlations in the thalamus and right 

hippocampus with sleep spindle activity [40]. Despite heroic efforts by PET researchers and 

some useful information obtained, it is difficult to draw firm conclusions about spindles 

from the PET data because the duration of the unit of measurements in PET is so much 

longer than the duration of spindles (< second) and even the periods of high and slow 

spindle activity (few seconds).  

The advent of fMRI and its rapid development has revolutionized neuroscience and it has 

produced images of the sleeping brain that surpass even the most optimistic expectations of 

sleep researchers. The fMRI technology still relies on hemodynamic processes, but it has some 

clear advantages compared to PET. First, it allows much finer temporal and spatial resolution 

– its basic temporal unit is in the order of seconds rather than minutes; the spatial resolution is 

better and it can cover the entire brain, cerebellum and brainstem. It is also less invasive as it 

uses no radiation, although it still exposes the subjects to magnetic fields much higher than 

what humans are usually exposed to in their natural environment. Despite these advances, the 

use of fMRI in sleep research was limited for a long time because the rapid changes in the 

magnetic field create huge EEG artifacts. Without EEG it is difficult to do serious sleep 

research because sleep stages and the characterization of sleep events can only be done using 

EEG. This serious drawback has been removed with the development of methods that allow 

(nearly) simultaneous EEG and fMRI [41]. This new capability has lead to an avalanche of EEG 

gated fMRI sleep studies with important new insights about the nature and role of spindles 

coming with each new study. We focus on a couple of recent studies that arrive at significant 

conclusions and also point out the direction that research is following today. 

Maquet and colleagues having done pioneering research on sleep with PET have recently 

moved to fMRI studies of sleep. The collaboration of Maquet’s team with Schabus who has 

done some pioneering work on spindles with EEG has produced an excellent study where 

EEG gated fMRI allowed a detailed characterization of fast and slow spindles in terms of 

generators that are commonly active for both types of spindles and distinct neural networks 

that are activated for each one [42]. They reported an activation pattern common to both 

spindle types involving the thalami, paralimbic areas (anterior cingulated and insular 

cortices), and superior temporal gyri. No thalamic difference was detected in the direct 

comparison between slow and fast spindles but at a lower statistical threshold slow spindles 

showed increased activity in both thalami. Fast spindles showed thalamic activation in the 

common areas, but restricted to the lateral and posterior part of both thalami. At the cortical 

level identified significant common increases in activity were detected in paralimbic areas: 
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the left insula and the anterior cingulate cortex, bilateral superior temporal gyri (auditory 

cortex). The differences between slow and fast spindles were clear-cut. For slow spindles 

activity in the superior frontal gyrus was the only addition to the common activation 

pattern. The absence of additional frontal activity for slow spindles, what distinguishes slow 

from fast spindles with EEG, was attributed to a non-systematic participation to each slow 

spindle occurrence by any one frontal region. Fast spindles were correlated with activity in a 

number of areas in addition to the common activation pattern. These activations include 

areas around the sensorimotor strip, mid cingulated cortex and the SMA – all areas showing 

sensorimotor (μ) rhythm activity in relaxed wakefulness. Direct contrast between the two 

spindle types showed a larger recruitment of mesial-prefrontal and hippocampal areas 

during fast, relative to slow, spindles, a result consistent with the notion that fast but not 

slow spindles are related to learning (see below). 

The complex relationship between spindles and specific activations was further explored in 

another recent study using EEG gated fMRI. In this study, 30 minutes of simultaneous 

whole brain fMRI data at 1.5 Tesla and polysomnographic EEG were collected while 

subjects were falling asleep in the MR scanner. From these data, 5 minute epochs were 

extracted each from a single sleep stage for more than 85% of the time. All in all, 93 epochs 

of a single sleep stage were extracted. 27 epochs during wakefulness, 24 during sleep stage 

1, 24 during stage 2 and 18 in SWS were used for the final analysis. In addition to 

comparisons between stages and identification of regional changes of activity the 

researchers compared the connectivity network of timeseries extracted from timeseries of 

regional activations. Specifically the connectivity of the hippocampal formation with the rest 

of the brain was examined at different sleep stages and during spindles. The analysis failed 

to show increased hippocampal BOLD signal during fast spindles; instead, it was functional 

connectivity between the hippocampal formation and neocortical areas that increased 

during the appearance of fast spindles [43].  

3.3. Invasive electrophysiology 

Reviewing the development of our understanding of sleep spindles, it is becoming clear that 

important new insights were obtained when new tools became available that allowed a 

qualitatively new view of either local or global brain activity related to spindles or how local 

and global spindle-related brain activity relate to each other. While the foundations for the 

important developments in electrophysiology and neuroimaging were laid in late eighties, 

the mechanisms underlying sleep spindles (and TC rhythms in general) were seen in a new 

light thanks to pioneering work of Rodolpho Llinas and Mirca Steriade. Llinas and 

colleagues employed in vitro preparations to show that the membrane ionic channels 

endowed pacemaker properties to thalamic neurons. Steriade and colleagues employed in 

vivo experiments to demonstrate the importance of the nucleus reticularis thalami and its 

activation by the cortex in the generation and spread of the spindles rhythm, reviewed 

together in Steriade and Llinas [44]. This concept was refined as the “thalamic clock” theory 

[45]. The historical irony is that in spite of this revolutionary advance in understanding 

spindles made possible only by the synthesis of in vitro and in vivo studies, Steriade himself 

remained an outspoken critic of data collected in vitro [46]. 
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Invasive electrophysiology in normal humans is of course not justified, but implantation of the 

brain for clinical reasons provides unique opportunities to access the brain directly. An 

important recent study has provided valuable insights by characterizing sleep spindles  

in humans by pooling together simultaneous recordings of intracranial depth EEG and unit 

spiking activities in multiple brain regions in the hippocampus and cortex of 13 individuals 

undergoing presurgical localization of pharmacologically resistant epilepsy [47-48]. The authors 

of these studies report that spindles occur across multiple neocortical regions, and less 

frequently also in the parahippocampal gyrus and hippocampus. Most spindles are spatially 

restricted to specific brain regions with topographically organized spindle frequency with  

a sharp transition around the supplementary motor area between fast (13–15 Hz) centroparietal 

spindles and slow (9 –12 Hz) frontal spindles occurring 200 ms later on average, consistent with 

earlier reports. They further report that fast spindles often occur with slow-wave up-states  

and that spindle variability across regions may reflect the underlying TC projections. They do 

not find a consistent modulation of neuronal firing rates during spindles [47]. They also report 

that most sleep slow waves and spindles are predominantly local inferring therefore that the 

underlying active and inactive neuronal states also occur locally [48].  

3.4. Tomographic MEG and EEG studies 

The results described above showed that spindle-related activity involves widespread 

activity in multiple cortical and subcortical areas. It involves characteristic times that are a 

fraction of the typical spindle period and the ones that characterize sleep periodicity as this 

is reflected in the sleep stages or the cyclic alternating pattern (CAP) [49] with characteristic 

phases of quiet activity and groupings of the large graphoelements that characterize each 

sleep stage. In short the study of spindles, like the study of much else about the brain, 

requires techniques that can look at the whole of the brain with time resolution from a few 

milliseconds to many minutes. The solutions described above were the ones that satisfied, at 

least partly, this need by combining more than one technique. As we will see below a more 

direct approach is provided by tomographic analysis of MEG and EEG data. The key 

transition came in the late 1980s and early 1990s for MEG with the introduction of truly 

tomographic analysis of multichannel MEG data [50] and a few years later for EEG [51]. 

Tomographic analysis of minimally pre-processed MEG data revealed a dynamic view of 

brain function [28, 52] that was very different to the smooth version of reality that was the 

consensus of decades of studies using equivalent current dipole analysis of highly pre-

processed (filtered and averaged) MEG and EEG signals. The EEG and MEG community 

remained skeptical of tomographic analysis for a long time, despite convincing evidence 

converging from many directions: the agreement between results obtained with the analysis 

of the standard average and heavily filtered MEG signal with the results obtained after the 

same average and filtering operations were applied to the tomographic single trial solutions 

[52], the more consistent picture obtained with single trial analysis of MEG data with the 

variability encountered in animal invasive electrophysiology and the detailed justification of 

the methodology in terms of mathematical properties of the lead fields [53] 

The change in heart came slowly and moved primarily by the demonstration of high 

variability with the advent of single-trial fMRI studies. Tomographic analysis of sleep data 
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offers some great advantages, but the difficulty of sleep studies and the skepticism of the 

community posed great obstacles. The first such study with MEG focused on eye 

movements [54]. Attempts to characterize the graphoelements of NREM 2, K-complexes and 

spindles produced results showing activity in widespread areas as previously reported, but 

without much order to be useful for clarifying the role of different sleep stages. It was 

therefore decided instead to compare the quiet periods across different sleep stages with 

each other and with the state of wakefulness with eyes closed just before sleep [55]. These 

comparisons produced clear cut differences and notably a gradual increase in gamma band 

activity in the left dorso-medial prefrontal cortex from awake state through the four NREM 

sleep stages, culminating in the highest gamma band activity during REM sleep. It is 

tantalizing that this area or frontomedial areas close to it are implicated in memory 

consolidation in animals and in EEG-gated fMRI studies and shows increased connectivity 

with the hippocampal formation during fast spindles [43]. A meta-analysis of a group of 192 

patients with focal brain lesions found the highest association between insomnia and left 

dorso-medialprefrontal damage [56]. Recent work from our team showed that this area is 

activated in the spindle range of frequencies during the core periods of NREM2 [57]. 

Specifically a direct comparison between activity during NREM 2 and awake state showed 

that the activity in posterior brain areas is substantially reduced compared to the awake 

state, while in the left dorso-medial prefrontal cortex – the centre of the area identified in the 

gamma band in the comparison between core states in REM and awake state – the activity is 

higher in the spindle range of frequencies (Figure 3A). A direct comparison between the 

activity during core states of NREM 2 and NREM1 showed increase in the spindle range of 

frequencies in the same left dorso-medial prefrontal cortex and in the thalamus (Figure 3B). 

The implication of this same area in the spindle range of frequencies during the quiet 

periods of NREM 2 stage provides yet another tantalizing clue hinting of some involvement 

of this area in the process of memory consolidation. 

 

Figure 3. Comparisons between MEG recorded actications in the spindle frequency range (12-16 Hz) in 

core states of NREM2 and awake (A) and NREM1 (B) states. The thin yellow contour bounds the area 

that shows statistically significant increase in activity for all three subjects studied with p < 0.0001. In 

each case the areas identified in the comparison between REM and awake state in the gamma band are 

also shown by heavy outlines: the left dorso-medial prefrontal cortex (L-DPFC) in white and the pre 

SMA and precuneus in green.  
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The ability of EEG to be recorded simultaneously with fMRI and PET is an important 

advantage that has not yet been fully explored, at least not for sleep studies. It is nowadays 

possible to obtain some information about source generators from just the EEG signal [58-

59]. Simultaneous EEG/MEG studies, notably from the team of Halgren and colleagues [60-

62] are not only valuable in the richer information they capture, but they can also guide us 

how to reliably obtain information from more widely available EEG measurements, that are 

also more suitable for clinical applications as we will describe next. Finally, in closing this 

section it is worth noting that the increase sophistication in EEG measurements and 

experiment design are producing new information not just about the nature of sleep 

spindles but also about their role [63-64]. 

4. Stable sleep profiles in clinical and other conditions 

4.1. Consciousness and spindles  

As we gradually fall asleep spindles appear in the EEG at stage 2 NREM, when consciousness 

has evidently been lost. Their rate appears to correlate with the sleeper's tolerance to noise and 

sleep maintenance. The futility of correlating a physical to a psychological phenomenon 

withstanding, one may therefore ascribe to spindles a role of marker or neural correlate of the 

loss of consciousness. However, we are still searching for possible roles of spindles in the 

several and complex aspects of consciousness, its neurological levels, its variable memory 

contents and its physiologically or pathologically altered states.  

Animal and human studies show that spindles are sleep maintaining events [65-66] that 

block the transfer of sensory information to the cerebral cortex during sleep [64], thus 

preventing sleep-interrupting arousals. The frequency of the spindles decreases with 

deepening of sleep and increases as sleep becomes lighter in each consecutive sleep cycle 

[68]. Teleologically speaking, in order to sleep, consciousness for all but the most relevant of 

stimuli must be prevented and a host of studies convince us that this is accomplished at the 

level of TC circuits [69]. TC neurons upon a decrease of ascending from brainstem mostly 

cholinergic afferents shift to a bursting mode of firing dictated by their hyperpolarization by 

RT inhibitory neurons the duration of which determines the frequency of their oscillation 

subsequently transmitted to and augmented by the cortex as spindles rhythm of 11-15 Hz 

(see 2.1.). While TC neurons are hyperpolarized and engaged in this bursting mode, sensory 

afferents are expectedly prevented from reaching the cortex, resulting in almost complete 

deafferentation, except for very strong or alarming stimuli [65]. In consistency to these 

observations, thalamic metabolic activity was shown to decline in association to increased 

spindle-frequency [70]. The recent observation (described in 2.2.) that spindles are 

invariably shut down for the duration of the K-complex and they appear right after at 

increased spectral frequency [71] support a role of spindles in preventing stimuli (which 

triggered the K-complex) to reach consciousness. 

The definition of ‘‘Consciousness as information integrated’’ [72] leads to the question: Has 

our unconscious sleeping brain lost its dynamic complexity or its capacity to integrate the 

enormously diverse patterns of its activity into a unique consciously perceived whole?[73]. 

Among the arguments supporting the second of the two explanations is that spindles 
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prevent integration of brain activity. Furthermore, their spatiotemporal dynamics and 

relationship to K-complexes as well as their involvement with hippocampus into a memory 

consolidating "dialogue" contribute to a very complex image of the sleeping brain [55]. 

During the whole of sleep, and especially in the second stage of NREM sleep, a dynamic 

confrontation of arousing and anti-arousing mechanisms is evident in the macro- and 

microstructure of the EEG. Loss and regaining of consciousness is continuously debated by 

hundreds of K-complexes and tens of microarousals each night, which are normally too 

short to fully awaken us, but constitute an opening of a dynamic window of information-

processing, allowing some monitoring of possible threats. If the stimuli represent a lack of 

threat, sleep is maintained or protected partly with the help of spindles. 

Anesthetics lead also to loss of consciousness - in the sense of turning the subjects oblivious 

to their environment - with different mechanisms depending on the drug used. One 

mechanism they partly share with natural sleep is apparently the production of spindles in a 

similar way, as several anesthetics hyperpolarize TC neurons (by activating 2PK channels 

and/or by potentiating GABA receptors) and halothane induced spindles are antagonized 

when carbachol is injected into the pontine reticular formation [74]. Spindling then causes a 

decorrelation between sensory input to TC neurons and these neurons’ output to the cortex, 

thus contributing to the loss of consciousness.  

4.2. Spindle-coma 

Coma can be considered as a deregulation of the brain’s arousal system caused by diffuse 

brain damage or by focal brainstem lesions. The arousal systems are 1) an upper level 

encompassing cerebral cortex and white matter 2) a middle level encompassing thalamus 

and upper brainstem and 3) a lower level encompassing lower midbrain and pons [75].  

In coma the EEG shows a various patterns, a generalized slowing in the delta or theta range, 

alpha-coma, spindle-coma, burst-suppresion and epileptiform activity. In coma, regardless 

of pathology, a normal sleep-wake cycle is mostly disrupted or completely absent. However, 

the coma tracing may resemble normal wakefulness [76] or normal sleep [77]. The 

occurrence of spindles in comatose patients is refereed as spindle-coma is often caused by 

Central Nervous System (CNS) trauma, infection, and metabolic encephalopathy. The 

mechanism of abnormal spindling has been considered as midbrain involvement with 

sparing thalamic structures [77-79]. Silverman (1963) suggested that the spindle-coma in 

supratentorial lesions suggests relatively intact cortical function and a good prognosis [80].  

Spindle-coma is considered as a benign form of coma, with EEG reactivity to stimuli 

heralding a favorable outcome. Spindles in comatose patients are best demonstrated during 

first few days [81] after trauma. They observed spindle activity in 91% of patients of post-

traumatic coma, and 30% of these went to prolonged coma. Symmetrical occurrence of 

spindles was found to be of good prognosis, asymmetry and decrease of spindles showed a 

rather poor prognosis [81]. 

The presence of spindle activity after hypoxic or anoxic injury does not always indicate a 

good outcome. A more recent works supports these findings in comatose children and 
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concludes that the reappearance of sleep patterns and sleep spindles is sign of good 

prognosis. In traumatic coma, these sleep elements are more frequently observed. Spindle 

coma represents a combination of physiological sleep and coma, the latter accounting for the 

failure of arousal. The neurophysiological mechanism of spindle coma is the preservation of 

pontine raphe nuclei and TC circuits subserving sleep spindle activity, with the impairment 

of ascending reticular activating pathways at the midbrain level that maintain wakefulness 

[82-84]. The presence of sleep-like patterns was shown to be indicative of a better outcome. 

NREM sleep elements, K-complexes and sleep spindles as well as rapid eye movements 

(REM) sleep elements alternating with NREM sleep elements were also indicators of a better 

outcome. Only monophasic EEG or a cyclic alternating pattern with absence of sleep 

elements indicates a poor outcome. 

4.3. Spindles and epilepsy  

Epilepsy and sleep disorders are considered by many to be common bedfellows. Sleep can 

affect seizure occurrence, threshold, and spread, while epilepsy can have a profound effect 

on the sleep/wake cycle and sleep architecture [85-87]. NREM sleep differentially activates 

interictal epileptiform discharges (IED) during slow wave (N3) sleep, while ictal seizure 

events occur more frequently during light NREM stages N1 and N2. Some types of seizures 

preferentially occur during NREM stage-2 sleep with spindles, and association between 

sleep and activation of epileptiform activity on EEG has been of interest to investigators for 

years. Medial temporal spindles are present in some children with focal epilepsy.and the 

frequency of spindles may be slower in patients with epilepsy, probably as an effect of 

antiepileptic drugs. Longer spindle duration has been observed just prior to seizures of 

nocturnal frontal lobe epilepsy. Overall IED rate may be increased during sleep with 

spindles, but the spatial distribution of spike frequency appears similar during wakefulness 

and sleep in children with intractable focal seizures. Thus sleep with spindles may decrease 

the threshold of emergence of IED activity diffusely rather than focally [88]. These EEG 

clinical observations are consistent with spindles representing a series of depolarizations of 

lower (type I) or higher (type II) firing capacity (riding on top of a DC negativity) and so 

constitute a state of relatively higher cortical excitability (see chapter 2.1.). The effect is 

rather non specific in the sense that the slow (<1 Hz) oscillation of NREM sleep, and in 

particular spindles, K-complexes and delta waves, share some features that may contribute 

to the aggravation of epileptic phenomena (see also clinical studies at the end of this 

chapter). These effects may be related to the dynamic bistability of neuronal membrane 

potentials and neuronal readiness for bursting and widespread synchronization [86]. 

Spike and wave discharges (SWDs), the electrographic hallmark of typical absence seizures, 

which are an integral component of several idiopathic generalized epilepsies [89], have been 

reported to occur preferentially during the light stages of NREM sleep, where the majority 

of sleep spindles are observed and in a reverse relationship to their rate throughout the 

night [90]. Gloor in 1978 [91] proposed that the same TC circuit producing sleep spindles 

would generate SWDs in states of cortical hyperexcitability [91]. The hypothesis was based 

in experiments in the animal model of feline generalized epilepsy with penicillin (FGPE) 
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and developed further on the basis of in vitro and in vivo experiments, especially using 

rodent genetic models of absence seizures [92-95].  

A more recent report [96] concludes that "the hypothesis that sleep spindles are transformed 

in SWDs now appears highly doubtful" based mainly on the arguments that (a) SWDs occur 

also during the day (during quiet awake state), (b) a compromised thalamic GABA 

receptors' function as a necessary condition for SWDs generation are not defensible and (c) 

spindles are initiated in thalamus while SWDs in the cortex. In our opinion SWDs do not 

develop from spindles (any more than humans developed from apes); they develop from 

the same TC circuit under different conditions - a thesis with solid experimental support to 

which the above paper subscribes to. The transition from spindles to SWD was just what was 

observed in the particular FGPE model (awake cats under fentanyl and curare successively 

injected with pentobarbital and penicillin [97]) and gave major support to the hypothesis that 

SWDs develop from the same TC circuits as spindles. Further more it was these experiments in 

FGPE, which first argued in favor of above (b - not compromised GABA inhibition) and (c - 

primacy of cortical mechanisms) [9, 69, 91, 92, 93, 99, 100]. One of the first robust observations, 

pivotal to the suggestion of this hypothesis, but not adequately followed up since, is that the 

spectral frequencies of spindles and SWD model co-varied in different cats displaying an 

impressively accurate for EEG almost 2:1 or 3:1 relationship [98] and most importantly that the 

transition from one to the other in FGPE was not continuous but step-like. This observation 

suggested that SWD may result from an increased cortical excitability which enhances the 

firing of pyramidal neurons to thalamic volleys of each spindle wave and thus activates 

recurrent cortical inhibition annulling the effect of the next one or two thalamic volley, i.e. it 

conferred to cortex the mechanism of SWD elaboration (as demonstrated and explained later 

in other animal models), through cortical recurrent GABAergic inhibition. This slower cortical 

rhythm was proposed to be transferred to the thalamus to gradually grow as a cortico-

thalamo-cortical SWD rhythm. The experiments in the FGPE model that followed and 

supported this hypothesis have been reviewed [92-93, 100]. Further testing of this hypothesis 

was made possible when in vivo and in vitro studies revealed the exact mechanism of spindles 

generation in thalamus [44] (see chapter 2.1) and when this knowledge was applied to 

experiments on rodent genetic models of absence seizures [94-95]. 

In a general view, EEG alpha rhythm presents itself in awake state, when visual and other 

environmental stimuli cease; sleep spindles reflect the bursting mode of TC neurons which 

raise awakening threshold by blocking the weak sensory inputs, an effect further 

aggravated during delta waves in NREM N3; and finally SWD almost totally incapacitate 

awareness of and reaction to the environment either in awake or sleep condition and 

especially in the transition between the two. There is evidence suggesting that this may 

depend more on a top-down effect rather than merely being allowed by a decrease in 

arousal inputs from the brainstem [69,93]. There is little doubt however that all these 

rhythms - alpha, spindles, delta and SWD - (and not only) appear to cardinally involve 

cortico-thalamo-cortical circuits and bursting of TC and cortical neurons, albeit at distinct 

frequencies. The task is to understand why the frequency spectrum of TC rhythms is distinct 

rather than continuous and what is the role of internal (membrane and circuit) properties as 
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well as external influences on this reentrant TC system in setting the frequency constrains, 

but also allowing, triggering, augmenting, spreading and stopping each of these rhythms. 

The elegant experiments of Steriade and his colleagues identified the cortex as responsible 

for instigation, augmentation and generalization of spindles (ch. 2.1.) and this may be truer 

for SWDs [65], as explained above [9, 69, 91, 92, 93, 99, 100]. In spite of the long held view of 

a brain-wide synchronous start of SWDs out of a normal background, one of the most 

important recent discoveries in the field has been the identification of a cortical ‘initiation 

site’ of SWDs. A consistent cortical site of initiation of SWDs within the perioral region of 

the somatosensory cortex was demonstrated in rodent absence seizures. High density EEG 

as well as MEG and fMRI studies in patients with different types of idiopathic generalized 

epilepsy (IGE) has shown SWDs in discrete, mainly frontal and parietal cortical regions 

before they appear over the rest of the cortex [101-106]. These studies strongly suggest that 

the frontal lobe is important for the generation of the 3Hz corticothalamic oscillations Do 

spindles play a role in this new view of IGE? 

In a study aiming to investigate the relationship between IED and phasic sleep phenomena 

in patients with juvenile myoclonic epilepsy, only 2.7% of IED emerged specifically through 

sleep spindles as opposed to 65% from K-complexes, while IEDs were both facilitated by 

increased vigilance (CAP - A phase) and promoted the appearance of such periods [107]. In 

a further study of childhood absence epilepsy [108] focal SWDs occurred mainly during 

non-CAP and CAP-B periods (periods of reduced vigilance) of NREM sleep, whereas 

generalized SWDs occurred during the CAP-A of NREM sleep and especially at the 

transition from reduced to enhanced vigilance of NREM sleep. Regarding the efforts to 

understand the relationship between spindles and epilepsy, these studies emphasize the 

importance of (a) mutual interaction between the two, (b) recognizing that different types of 

epilepsy may have different mechanisms and (c) the importance of observing the "bigger 

picture" in both time (i.e. CAP periods) and brain space, since both sleep and epilepsy by 

definition involve large brain circuits. 

4.4. Spindles in dyslexia  

Much of the interest in sleep spindles arises from their putative role in learning through 

memory consolidation. An early comparison of sleep architecture of children with reading 

difficulties with normal children of the same age (8 – 10 years old) showed differences but 

no special emphasis was placed in spindle activity [109]. A very recent study however 

comparing Dyslexic and normal children (ages 8 to 16) identified important differences in 

sleep architecture including an increase in spindle density during NREM 2 [110]. More 

importantly only the sigma band power in NREM2 was positively correlated with the Word 

Reading test and in a Memory and Learning Transfer reading test while no significant 

correlations were found with the Non-Word Reading test; also, a positive significant 

correlation was found between spindle density and the Word Reading. Although these 

findings seem to implicate non-rapid eye movement (NREM) sleep and specifically sleep 

spindles in learning the relation is far from clear and more research is needed. 
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4.5. Spindles in schizophrenia  

Recent studies using high-density electroencephalography have revealed a marked 

reduction in sleep spindles in Schizophrenia. Ferrarelli et al reported using whole-night 

high-density EEG recordings in 49-schizophrenia patients [111]. They had whole-night 

deficits in spindle power (12-16Hz) and in slow (12-14 Hz) and fast (14-16 Hz) spindles 

amplitude, duration, number and integrated spindle activity in prefrontal, centroparietal a d 

temporal regions. These results indicate that spindle deficits can be reliably established in 

schizophrenia, are stable across the night, are unlikely to be due to antipsychotic 

medications, and point to deficit in the thalamic reticular circuits. The reticular thalamic 

nucleus (TRN) consists of a gamma amino butyric acid (GABA) ergic neurons, which receive 

excitatory afferents from both cortical and thalamic neurons and sends inhibitory 

projections to all nuclei of dorsal thalamus.  

TRN-thalamus circuits are involved in bottom-up activities, including sensory gating and the 

transfer to the cortex of sleep spindles. The TRN is implicated in the neurobiology of 

schizophrenia, the reduction of sleep spindles revealed in schizophrenias, and deficits in 

attention and sensory gating have been consistently found in Schizophrenia [112]. 

Schizophrenic patients failed to demonstrate normal sleep-dependent improvement in motor 

procedural learning. In normal subjects, overnight improvement on the finger tapping motor 

sequence test (MST) and other simple motor skill tasks specifically correlates with the amount 

of Stage 2 sleep in the last quartile of the night [113-114]. MST improvement also correlates 

with number and density of fast spindles [115]. The MST is performed with the left hand, and 

right>left asymmetry of spindle density and power in the motor cortex observed [114]. Sleep 

spindles are hypothesized to mediate the consolidation of procedural memory on the MST 

[114-116] and other motor tasks [64]. However, spindle activity of schizophrenic patients has 

reduced [117], and s positive relation between stage 2 spindle density and verbal declarative 

memory performance was observed [118]. In the context of intact practice-dependent learning, 

chronic medicated schizophrenic patients failed to demonstrate significant overnight 

improvement of motor procedural memory. They differed significantly from healthy controls, 

which did show significant improvement. The amount of sleep in the last quartile of the night 

significantly predicted initial overnight improvement in schizophrenia. The reduction of sleep-

dependent consolidation of procedural memory in schizophrenia and sleep makes an 

important contribution to cognitive deficits [119] and now link variation in the expression of 

this deficit to specific sleep stages. 

5. Clinical use of dynamic sleep spindle profiles in organic brain injuries 

5.1. Sleep, the distribution of spindles, recovery after stroke 

The sleep of stroke patients during night time has reported both insomnia and hypersomnia 

[120]. In the acute stage of hemispheric stroke, poor sleep efficiency [121-122], augmented 

wakefulness after sleep onset (WASO) [122], increased numbers of awakenings have been 

reported [123].  
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Poor sleep efficiency and wakefulness after sleep onset will reduce cognitive function in the 

acute phase after stroke [124]. Sleep is described as restless, light, or poor-quality sleep, 

although its duration appears normal.  

Spindle distribution may be locally depressed by various types of cortical, subcritical 

pathology, including the generation of ascending reticular formation and thalamo-cortical 

pathways. The ipsilateral spindle depression following unilateral frontal leucotomy was first 

observed [125-126].Cress and Gibbs (1948) observed spindle asymmetries (ipsilateral 

depression) in 98 % of patients with hemispheric cerebrovascular accidents, whereas only 

48% had focal abnormalities in the waking EEG [127]. 

Many investigations have reported sleep EEG changes following thalamic lesions [128-130]. 

Such studies may clarify the neuroanatomical circuitry that underlies sleep spindle rhythm 

generation, and may reveal clinically useful information such as for prognostic purpose or 

as an objective assessment of recovery from stroke.  

Paramedian thalamic stroke (PTS) is an occasional cause of organic hypersomnia, which in 

the absence of sleep-wake cycle, and has been attributed to disruption of ascending 

activating impulses and considered a “dearoused “state, the disruption of both arousal and 

NREM sleep. 

A decrease of sleep spindles, slow wave sleep, and REM sleep occurs in patients with the 

syndrome of fatal thalamic insomnia (FTI), in which neuronal loss is restricted to the 

anterior and dorsomedial nuclei of the thalamus. Bassetti et al. (1996), reported in 12 

patients showed nocturnal polysomnographic findings paralleled the severity of 

hypersomnia [128]. Hypersomnia following PTS is accompanied by deficient arousal during 

the day and insufficient spindling and slow wave production at night, The center of the 

ischemic lesion was the inferior region of dorsomedial nucleus(DM) and the medial anterior 

part of the CM(centromedian neucles), confirming the autopsy study of Castaine et al [131]. 

The DM nucleus plays a important role in sleep regulation, and the reduction of spindles 

and slow-sleep-wave (SWS) was observed, these oscillatory activities are the expressions at 

neuronal level of different degrees of a same TC neuronal networks. However, an increase 

of spindles not of SWS suggests that the transition from spindling to SWS depends on the 

hyper polarization of a critical number of TC neurons. 

PET scans showed bilateral thalamic hypometabolism with additional basal ganglia or 

mesiolateral frontal and cingular hypometabolism in patients with paramedian thalamic 

calcifications [132]. Wake-sleep studies showed abnormal sleep organization and in the case 

with frontal and limbic PET hypometabolism ,pre-sleep behaviour associated with 

“subwakefulness” EEG activities, lack of EEG and spindles and K-complexes, and features 

of status dissociates. Paramedian thalamic stuructures and interconnected, especially frontal 

and cingular, areas play a part in the organization of the wake-sleep cycle. 

Hermann et al., demonstrated the neurological, neuropsychological, and sleep-wake deficits 

of 46 paramedian thalamic stroke patients [133]. Oculomotor palsy (76%), mild gait ataxia 

(67%), deficits of attention (63%), fluency and error control (59%), learning and memory 
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(67%), and behavior (67%) were common in the acute stroke phase. Outcome was excellent 

with right-sided infarcts but mostly incomplete with bilateral and left-sided lesions. Long-

term recovery after paramedical thalamic stroke is significantly better in right-sided than in 

bilateral and left-sided. Bilateral and left-sided strokes regularly present with deficits in 

executive functions and memory, which may persist and will be the unfavorable outcome. 

Initially, hypersomnia was present in all patients associated with increased stage 1 sleep, 

reduced stage 2 sleep, and reduced sleep spindles. Post-stroke hypersomnia improves 

within months, a moderate improvement in sleep spindle activity may occur at the same 

time, whereas sleep EEG changes may remain unchanged for years.  

Further studies are needed to confirm the specificity of these findings for hypersomnia 

following PTS and to confirm the hypothesis of relationship between spindles, NREM sleep, 

and cognition.  

However there have been few prior studies of the effects of extrathalamic hemispheric 

lesions on the human sleep EEG. the role of the cerebral hemispheres (cortical, subcortical 

regions) in the regulation of sleep-wake functions and the modulation of the sleep EEG 

remains unclear[134]. Physiological experiments with an encephalae isole cat preparation 

(transected between caudal medulla and spinal cord) established that cortical activation 

facilitates waking EEG activity due to the presence of corticoreticular projections [135]. The 

cerebral hemispheres have also been found to contribute to the generation of sleep EEG 

patterns. The corticothalamic feedback could to support large-scale synchronization of 

spindle oscillatory activity [136]. Gottselg et al., demonstrated a significant reduction in the 

power and coherence of sleep spindle activity in EEG recorded over that hemisphere 

ipsilateral to the lesion during the acute stage of stroke [137]. The cerebral hemispheres are 

crucially involved in generating synchronous sleep spindles. And they demonstrated that a 

significant increase in the power and coherence of sleep spindle frequency activity from the 

acute to the chronic phase of stroke. The plastic mechanism allowed the possibility of 

recovery to spindle frequency, power and coherence. The stronger ipsilateral effects of 

cerebral lesions on spindle oscillations indicated reduction of amplitude of sleep spindles in 

the ipsilateral hemisphere, as well as reduction of cortical activation of spindle oscillations 

and underling corticothalamic projections [138]. 

5.2. Sleep and the distribution of spindles after traumatic brain injury 

Electroencephalographic approach to the clinical assessment of consciousness has been tried 

in clinical situations with the anticipation that will support the diagnosis and prognosis. 

Electrical activities of brain tissue to immediately and secondary brain damage have been 

considered of good prognostic value for brain injury. Many neuroimaging techniques have 

shown the alterations in the brain parenchyma following severe traumatic brain injury, such 

as DAI (Diffuse axonal injury), which at the neuronal level, rapid acceleration and 

deceleration and the consequent rotational forces damage the axons in the cerebral and 

brain stem white matter, cerebellum. The magnetic resonance imaging (MRI) can show 

white matter degenerations or small penetrate hemorrhages that normal appearance on CT. 
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Urakami demonstrated spindle alterations following DAI using simultaneous EEG and 

MEG recordings [139]. 

In the postacute stage (mean 80 days) of DAI patients, frequency, amplitude, cortical 

activation source strength of spindle activities was significantly decreased compared with 

normal subjects. In the chronic stage (mean 151 days), spindles significantly increased, and 

no significant difference was found between normal subjects. DAI patients’ cognitive 

functions also improved, with favorable 1-year outcome. Spindle activities may reflect 

recovery of consciousness, cognitive functions following a DAI [139].  

The wide spectrum of sleep disorders in patients with chronic traumatic brain injuries occur, 

hypersomnia, insomnia, and parasomnia (such as acting out dream, nightmares, sleep 

paralysis, sleep walking and so on) [140]. Sixty adult patients with TBI, who presented with 

sleep-related complaints 3 months to 2 years following TBI were analyzed. Sleep disorders 

are a common finding after the acute phase of TBI. Daytime somnolence may lead to poor 

daytime performance, altered sleep-wake schedule, heightened anxiety, and poor sense of 

well being, insomnia and depression. Noticeably, sleep changes and deranged sleep 

architecture are common in chronic TBI patients. The same as stroke patients, regarding for 

TBI patients, spindles improve during subacute to chronic stage, while a wide spectrum of 

sleep disorders remains in chronic stage. Sleep disturbance can compromise the 

rehabilitation process and the ability to return to work. A diagnosis and subsequent 

treatment of these disorders may facilitate physical and cognitive rehabilitation of TBI 

patients.  

6. Sleep and motor learning  

6.1. The sleep cycle, memory systems, and memory stages 

The human sleep cycle across the night, NREM and REM sleep cycle every 90 min, while the 

ratio of NREM to REM sleep shifts. During the first half of the night, stages 3 and 4 NREM 

(SWS) dominate, while stage 2 NREM and REM sleep succeed in the latter half of the night. 

EEG patterns shows in the different sleep stages, K complexes and sleep spindles occurring 

during stage 2 NREM, slow (0.5-4 Hz) delta waves developing in slow wave sleep (SWS), 

and theta waves seen during REM.  

Sleep plays an important role in learning process and memory consolidation.  

Human memory is divided into declarative forms, with subdivisions into episodic and 

semantic; and non- declarative forms, subdivided into procedural skill memory [141]. 

Following the initial encoding of a memory, several ensuring stages are proposed, 

developing stages of memory, beginning with consolidation, as well as integration of the 

memory representation, translocation of the representation, during the periods of erasure of 

the memory. Following later recall, the memory representation is believed to become 

unstable once again. Memory consolidation refers to a process whereby a memory become 

increasingly resistant to interference from competing or disrupting factors in absence of 

further practice [142].  
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All stages of sleep except sleep onset stage 1 NREM sleep have been implicated in one or 

more aspects of memory consolidation [143]. 

Regarding for which stage of sleep is important for the consolidation of a certain memory 

types, there is some agreement among researchers, however, two different theories exist 

which explain the role of the various sleep stages on the consolidation of different memory 

traces [144]. The dual-process theory explains a single sleep stage (REM sleep or SWS) acts 

and is necessary to form distinct memory traces (procedural or declarative), depending on 

which memory system that traces is form. The sequential hypothesis, memories are 

consolidated through the ordered sequence of non-REM sleep followed by REM sleep, so 

that both stages of sleep are necessary for consolidation. Both non-REM and REM sleep 

stages, the repeated pattern of non-REM sleep followed by REM sleep are important for 

memory consolidation. Some memory traces may require more SWS (declarative memory), 

whereas other memory traces may require more stage 2 non-REM or REM sleep (procedural 

memory). Rapid eye movement (REM) sleep may be important in processing memory traces 

and previously learned motor and sensory task. Non-REM (NREM) sleep, particularly slow 

wave sleep (SWS), its maximal expression in the frontal brain areas, relate to sleep 

homeostasis and frontal cognitive functions. SWS may increase neuronal plasticity 

enhancing attention, consolidating procedural and declarative memory [145]. The 

variability’s of the emotional content of the memory, the cognitive weight of the task, and 

the initial skill level of the learner affect the stage of sleep which concerned the declarative 

and procedural memory consolidation.  

6.2. Sleep –dependent memory consolidation 

Sleep consolidates new memories by strengthening and integrating them with existing 

memories. Differentiating sleep-stage specific contributions to neural plasticity as proposed 

in sleep-dependent memory consolidation. Interest in relationship between mamory 

consolidation and sleep spindles is comparatively recent. The theories of memory 

consolidation suggest that storage is initially hippocampally mediated, but gradually gains 

neocortical representation through dialogue between two structures [146]. Slow oscillations 

(<1 Hz) allow synchronization between neocortical activity and hippocampal ripples, which 

are crucial to memory consolidation. Spindles increase during the up-state of slow 

oscillations [147] and are temporally aligned with hippocampal ripples[148-149],implicating 

them in the plasticity of hippocampal-neocortical consoridation process. Spindle activity is 

associated with improvements in procedural and declarative memory [150-152]. Word-pair 

learning before sleep induced higher sleep spindle activity than a nonlearning task, and 

spindle activity correlated positively with recall after sleep [153]. Further, Tamminen et al 

(2010) showed the role of spindles in the integration of newly learned information with 

existing knowledge, contrasting this with explicit recall of the new information [154]. 

Spindle activity was associated with overnight lexical integration in the sleep group, but not 

with gains in recall rate or recognition speed of the novel words themselves. Spindle activity 

appears to be particularly important for overnight integration of new memories with 

existing neocortical knowledge.  
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The strongest functional connectivity between the HF (Hippocampal Formation) (cornu 

ammonis, dentate gyrus, subiculum)and neocortex was observed in sleep stage 2(compared 

with both slow-wave sleep) [155]. A strong interaction of sleep spindle occurrence and HF 

connectivity in sleep stage 2 with increased HF/neocortical connectivity during spindles.  

An increase of acetylcholine and a decrease in serotonin during REM sleep in rodents 

facilitate protein synthesis and long-term potentiation (LTP) in the hippocampus [156]. Both 

REM sleep and non-REM sleep play a role in long-term synaptic potentiation. Sleep spindles 

play an important role in sleep-dependent memory improvement. Sleep spindles may 

depolarize the postsynaptic membrane, resulting in a large influx of calcium ions that leads 

to cascade of cellular events. These events result in gene expression and protein synthesis 

necessary for LTP of the postsynaptic membrane.  

6.3. Sleep promotes motor learning 

Sleep following motor skill practice has been demonstrated to enhance motor skill learning 

off-line (continued overnight improvements in motor skill that are not associated with 

additional physical practice) for young people who are healthy. However, older adults who 

are healthy do not benefit from sleep to promote off-line skill enhancement. Patients with 

chronic stroke demonstrate sleep-dependent off-line motor learning of both implicit and 

explicit versions of a continuous sequencing task. Sleep enhances both spatial and temporal 

movement components of a continuous tracking task after stroke. This effect is unique to 

stroke, age and sex- matched controls that are healthy did not experience sleep- or time-

dependent of-line motor learning on either version of the spatial or temporal movement 

component of task. During the chronic stage of stroke, sleep should be positive between 

therapy sessions to promote off-line learning of the skill practiced during therapy.  

The motor system comprises a network of cortical and subcortical areas interacting by 

excitatory and inhibitory circuits. 

The motor network will be disturbed after stroke when the lesion either directly affects any 

of these areas or damaged-related white matter tracts. Also abnormal interactions among 

cortical regions remote from the ischemic lesion might also contribute to the motor 

impairment after stroke. Pathological intra-and inter-hemispheric interactions among key 

motor regions constitute an important path pathophysiological aspect of motor impairment 

after subcortical stroke. Much of the neurobiological mechanisms leading to changes to the 

changes in cortical connectivity after stroke remain to be elucidated [157]. 

6.4. Sleep-dependent off-line learning in older adults who are healthy 

Evidence suggests that stage 2 non-REM sleep, REM sleep or both are associated with 

consolidation of simple motor task off-line for young people who are healthy. In particular, 

sleep spindles are an important mechanism of sleep-dependent off-line memory 

improvement. Sleep-dependent off-line performance enhancement has been conducted 

using young people who are healthy, and older people are considered not benefit from sleep 
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to enhance motor learning. One hypothesis that older adults fail to demonstrate sleep-

dependent off-line motor learning because they experience a reduction in both the time 

spent in REM sleep and the number of sleep spindles. If older adults who are healthy do not 

demonstrate sleep-dependent off-line motor learning due to changes in their sleep 

characteristics, it would follow that altering the sleep characteristics of older adults may 

enable these individuals to benefit from sleep to enhance off-line motor learning. Increased 

time spent in REM sleep, greater REM density, and decreased REM latency through the use 

of sleep-aid medication were correlated with enhanced performance of older adults on a 

word-recall task [158]. If REM sleep is important for promoting off-line motor learning, 

older individuals may benefit from sleep to enhance off-line learning if underlying changes 

in sleep architecture are addressed. Further attempts are required to relate sleep stages and 

sleep spindles with performance improvement for older people, and potential benefits of 

modifying these sleep parameters via medication or other means remain to determined.  

6.5. Sleep-dependent off-line learning after stroke, brain injury 

Recent evidence has demonstrated that people with brain injury benefit from sleep to 

enhance off-line motor learning. Damage to the prefrontal cortex due to stroke, tumor, or 

trauma demonstrated sleep-dependent off-line learning of a finger sequencing task 

[159].People with chronic stroke benefit from sleep to enhance motor skill learning of both 

implicit and explicit versions of a continuous tracking task [160-161]. Sleep also promote off-

line motor learning through both improved spatial tracking accuracy and anticipation of 

upcoming movements in people with chronic stroke [162].A few studies to date have 

demonstrated the importance of sleep in promoting off-line motor skill learning suggest that 

stroke or brain injured patients benefit from sleep to enhance off-line learning of motor 

tasks. Patients with chronic stroke spent about the same amount of time in REM sleep but 

more time in stage 2 non-REM sleep compared with published norms. The number of sleep 

spindles increases from acute to chronic stroke. The alterations in sleep architecture 

demonstrated by chronic stroke patients (maintenance adequate amounts of REM sleep, 

increase stage 2 non-REM sleep, and increase spindle activity) enable them to demonstrate 

sleep-dependent skill enhancement. Further works utilizing sleep laboratories is needed to 

evaluate EEG data and understanding of alterations of sleep architecture and off-line 

learning of chronic stroke patients.  

7. Conclusion 

7.1. Spindles: Outlook and open questions 

OQ-1: What is the role of sleep spindles in general and more specifically how do they relate 

to learning and memory consolidation mechanisms.  

OQ-2: What mechanism keeps spindle spectral frequency within so narrow limits, which are 

stable through the night for a given individual?  
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OQ-3 related to OQ-2: Why do we observe a step like transition of TC neurons membrane 

hyperpolarization, which leads from spindles to delta TC rhythm, without appreciable 

intermediate rhythm frequencies?  

QQ-4: How can spindle properties be used as biomarkers for the normal brain function and 

specific pathological conditions? 
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