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Abstract

Recent European strategic plans for the successful monitoring of the status of the ocean 
push on the development of an integrated observing system able to further link existing 
instruments and techniques with the aim to complement each other and answer open 
issues. A more intensive use of acoustic devices could contribute to the knowledge of 
oceanographic processes exploiting the characteristic of sound to travel in the ocean for 
a wide area than in the atmosphere. In this context, the installation of passive acoustic 
instruments, able to listen to ambient noise on fixed or mobile platforms, could contribute 
to provide information on sound budget and to enhance the monitoring capacity of mete-
orological phenomena also in the open ocean. Instead, the deployment of active acoustic 
instruments can be of benefit for monitoring biological activities through the analysis of 
backscatter data as well as for monitoring ocean waves.

Keywords: active underwater acoustics, ocean passive underwater acoustic, underwater 
ambient noise, oceanography, in-situ monitoring

1. Introduction

A fully comprehensive picture of the ocean status can be obtained only by combining different 
methods and monitoring techniques exploiting the characteristics of each approach. The recent 

enhancement of remote sensing capabilities, in terms of a variety of measured parameters 

and accuracy of the corresponding estimates, has been contributing to an effective improve-

ment of the skill of forecasting models and, generally speaking, to the whole domain of opera-

tional oceanography which also benefits in real-time measurements provided by equipped 
buoys, moorings, and mobile platforms (floats, AUV, glider, etc.) that represent the principal 
resources to acquire in-situ ocean measurements.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



While methodologies for the monitoring of the physical properties of the ocean are fully 

assessed and guarantee a good spatial and temporal coverage, techniques to monitor biochem-

ical processes as well as meteorological phenomena over the ocean are still open issues [1].

Underwater acoustic systems, both active and passive, could contribute to fill this gap by 
listening to the ocean noise or by transmitting pulses and interpreting the received echoes 
to improve the knowledge on biological activities or meteorological phenomena at sea such 

as rain and wind and the potential harmful impact of human activities on the ecosystem.

The feasibility of using underwater acoustics to propagate signals date back to 1918 but only 

during the Second World War there was a massive exploitation of devices to detect subma-

rines through sound navigation and ranging system (sonar). The first civilian experiments to 
measure the sea bottom and to detect schools of fishes were carried out in the first half of the 
twentieth century [2]. Since then, the benefits of underwater acoustics were proportional to 
the technological developments in both hardware and software components, especially for 

oceanographic applications.

Several aspects have to be taken into account when planning an underwater acoustics 

 measurement program. The most important factor is the type of noise being measured and, 

accordingly, its expected features in terms of amplitude, frequency, duration, and so on, which 

drive the choice of measurement equipment. Indeed, the sound in the ocean is characterized by 

speed of propagation, attenuation, and presence of obstacles along the path and by the way in 
which the sound is scattered, backscattered, and refracted by both the bottom and the surface.

Ocean stratification is the main responsible event for the generation of beams (convergent 
and/or divergent) and grey areas, depending on the change in the speed due to the depth. 
In turn, sea temperature profiles are influenced by diurnal cycle, season, and weather condi-
tions. During winter months, the surface water that is colder and saltier tends to sink, and it is 

replaced by warmer and deeper water masses. This mixing could originate a layer of isotherm 

water characterized by a homogeneous sound velocity defined as “mixed layer.” Below, the 
thermocline, that is the area in which temperature rapidly decreases with depth, dwells. The 

mixing of the water column implies an enlargement of the mixed layer and an erosion of the 

thermocline. The layer below the thermocline is characterized by a quite constant temperature 

and presents a minimum in the sound speed profile.

In the ocean, sound pressure levels (SPL) are retrieved using the sonar equation (Eq. (1)) as the 
difference between the transmitted power (SL) and the power loss (TL) through the path [3].
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P
0
 is the pressure of the transmitted signal at a known distance R

0
, P

R
 is the reference pressure 

(generally equal to 1 μPa), and R is the distance of the listener from the source.

Equation (1) allows the quantification of SPL acquired by passive devices that simply listen to 
the numerous and heterogeneous ocean sounds like, among others, those produced by mam-

mals, marine organisms, volcanoes, submarines, human activities, wind, waves, and rain.
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Since active instruments are able to transmit a pulse and listen to its echo, it is necessary to 

consider also the intensity of the echo one meter from the target, that is, relative to the part 

of the sound that hits the target, the so-called target strength (TS). Thus, Eq. (1) is modified 
in Eq. (2)

  SPL   [  dB ]    = SL  [  dB ]    − 2TL  [  dB ]    + TS   [  dB ]    = 10 log   (    
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Among the others types of applications, active instruments are commonly used to detect 

schools of fish, mines, and currents.

In the design of an acoustic experiment also, the availability, or the construction, of adequate 

infrastructure for carrying out the measurements for a desired duration is a key requirement. 

The two most common approaches consist of using mobile and fixed platforms.

In vessel-based surveys, hydrophones (either individually or in arrays) are deployed from the 
ship, and the analysis and recording equipment remain on the vessel, which may be either 

anchored or drifting. This solution is relatively easy to implement, the deployments can be 

quick, a relatively large area may be covered, the risk of losing instrumentation is low, the 

configuration of hardware devices can be adjusted online, and data can be monitored in real 
time. Nonetheless, the main disadvantage consists of the pre-defined and limited (usually 
short) period of time during which the measurements can take place. Also, autonomous mov-

ing platforms such as gliders can be equipped with hydrophones to explore the soundscape 

of relatively large areas of the ocean.

When continuous time monitoring is of interest or when the objective is to observe episodic 
and non-predictable phenomena (i.e., biological and geological events), a Eulerian approach is 
preferable. This consists of the use of fixed observatories that can be based on sea bottom sta-

tions cabled to the shore [4] or on instruments deployed on oceanic sub-surface moorings [5] 

or surface buoys. Several large initiatives are currently operational all over the world: Ocean 

Observatories Initiative (OOI) in the USA, Neptune in Canada, European Seas Observatory 
NETwork (ESONET), and the neutrino telescope sites in Europe [6]. Cabled observatories 
allow data to be streamed directly to the shore base and checked in real time [7]. Unless the 
goal is to measure air-sea surface interactions through acoustics or characterize the acoustic 

signature of ships, bottom-mounted deployments offer the advantage of minimizing both the 
influence of surface wave action and the disturbance by surface vessels, reducing the risk 
to keeping the hydrophone away from the pressure-release water-air surface and the risk of 

damage to the equipment.

The characterization of the ambient sound all over the world oceans, through the variety of 

approaches mentioned above, has become more common as interest in the trends in anthro-

pogenic sound in the ocean grows. The European Commission endorsed this issue consid-

ering the introduction of energy, including underwater noise, into the ocean as a pollutant 

[8] and requesting to monitor it with the same operative methodologies like other physical, 

biological, and chemical parameters.
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2. Ocean waves statistics inferred by active acoustic devices

2.1. Ocean waves

Sea surface shows ripples of different dimensions and shapes, depending on the force of the 
wind speed, and on the basis of their characteristics, they can be subdivided in two categories: 

capillary and gravity waves. Ocean capillary waves are strictly connected to surface tension 

and show short wavelength, whereas ocean gravity waves are due to the force of the air-sea 

interface conditions and their wavelength can reach several meters, especially in open oceans 

during storms. The characteristics of the waves, induced by winds, are identifiable by wind 
speed intensity and distance and by the duration of the event [9, 10].

When energy loss due to the air-sea friction is negligible, waves can propagate until one of 

these events occur: wind forcing persists, waves are hindered by the presence of dams or 

consume their energy on the coastline. Dissipations of energy reduce inversely proportional 

to wavelength; thus, large wavelengths, generally faster, smooth slowly and propagate over 

long distance even where wind is absent.

Waves induced by wind force can be modeled by Eq. (3) as N
w
 sinusoids linearly interact 

each other, where each component is identified by an own amplitude (A
m

), wavenumber (k
m

), 
direction of propagation (θ

m
), frequency (f

m
), and initial phase(ϕ

m
).
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where x is the displacement along x axes, y the displacement along y axes, and ϕ is a random 

uniformly distributed variable between −π and π. Sinusoidal waves with different frequen-

cies propagate with the same speed related to bottom depth in shallow water, whereas they 
have a decreasing speed as the frequency rises in open ocean.

Wind blowing for an extended period of time over a long distance induces a rapid increase of 

both wave steepness and height. The upper limit of the height is reached when wave breaking 

generates a dissipation of energy able to balance the energy supplied by wind and, in this case, 

wave motion can be considered as fully developed. Each component of fully developed waves 

is a random ergodic process characterized by a variance equal to the mean quadratic value 

A2
m

/2. The variance of the whole wave field can be expressed as a summation of the N
w
 compo-

nents in the Δf frequency band through Eq. (4) and it represents the monolateral power spectra.
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Through the 0th and 1st spectral moments of S(f), it is possible to estimate the main character-

istics of ocean waves. In fact, the mean pulse is the ratio between the 1st moment and the 0th 

moment, whereas the mean period is obtained dividing 2π by the mean pulse. The significant 
wave height can be defined as the average height of one-third of the highest measured waves 
(H

1/3
) and can be expressed as 4.005 times the root square of the 0th moment [11].
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2.2. Measuring ocean waves with acoustics

Several methodologies have been developed to estimate wave characteristics for open sea 

and coastal studies. In both environments, the difficulties to obtain measurements also with 
rough sea increased the use of data provided by satellite and, in the meantime, gave rise to a 

growing interest in the autonomous system capable to measure meaningful parameters in a 

continuous way and in all meteo-marine conditions.

In-situ technologies such as wave buoys [12], pressure and acoustic water level sensors [13], 

and upward-looking acoustic Doppler current profilers (ADCPs) [14] are generally employed 

to monitor and estimate ocean waves. Nonetheless, the use of a wave buoy is quite prohibitive 

in real open ocean environment with sea bottom deeper than 1000 m. In this case, the only 
possibility to collect wave estimate on long-term basis is to employ vertically oriented sonar 

installed on spar buoys [15, 16] that do not follow the surface but are designed to allow for 

negligible sensitivity to sea heave and height.

Acoustic wave meter systems are commonly based on a directional array of high frequency 

precision, and acoustic altimeters are installed in an upward-looking configuration. The echo-

sounder transmits a short pulse, and the acoustic returns are amplified and subjected to com-

pensation through a time-varying-gain circuit, which corrects for acoustic losses associated 

with beam spreading and attenuation in sea water. After digitization, the amplitudes of the 
echo are scanned to select a single target for each ping. The selection procedure chooses the 

target with the longest persistence from all targets having amplitudes above a user-specified 
threshold level.

Under the hypothesis of a constant sound speed, each altimeter emits a single beam toward 
the sea surface and measures the time between the emission and the received echo. Under 
stationary conditions of the sea state, wave height process can be considered as a stationary 

and ergodic stochastic process with zero mean. However, a truthful statistical description of 

sea waves is achieved only if the wave height process is supposed to be Gaussian [17].

In a real environment, not all samples satisfy the properties of the Gaussian distribution, and 

the measured echoes of the array of altimeters could be disturbed by reverberation of bubbles, 

dishomogeneity close to sea surface, and the presence of fishes lying between the altimeter 
and the sea surface. To overcome these issues, an ad-hoc processing algorithm has taken into 

account the correction for the motion of the platform hosting the acoustic array.

2.3. Wave meter system on spar buoys

An acoustic wave meter system was installed at a depth of 10 m on the spar buoy part of the 

W1M3A observatory moored in the open Ligurian Sea (Northwestern Mediterranean Sea) [18].

The array was constituted of three brackets, which were 2.5 m long, equally spaced at 120°, 

hosting three high-frequency (500 kHz) altimeters that emit a narrow conical beam (6.0° 
width at −3 dB) which results in a small area being insonified at the surface (about 1.04 m). A  
Transistor-Transistor Logic (TTL) signal triggered the emission of the pulse by each altimeter. 
In order to avoid interferences, the acquisition system, which controlled and collected the 
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output signals from the altimeters, synchronized and slightly shifted in time with the three 

TTL signals so that each ping (and consequently each sample acquisition) was delayed with 
respect to the others of few milliseconds.

The slow motion of the spar buoy, especially in the presence of strong winds and currents, can 

influence the acoustic measurements, thus, the wave mater package was inclusive of vertical 
accelerometers and a couple of two axis orthogonal inclinometers installed along the horizon-

tal axis to correct the acquired data for the buoy motion.

The acquisition system simultaneously collected the time series provided by the three echo-

sounders at a frequency of 2 Hz and buoy motion data (inclination and acceleration). First, the 
time series of the three echosounders was quality controlled in order to identify spikes, outliers, 

and samples not satisfying the Gaussian condition. The detected samples were then interpo-

lated by means of spline functions. In order to preserve the phase-shift information between 

the three time series in all the cases in which the reconstruction of part of the overall time series 

was not possible due to the elevated number of bad samples, all waveforms (provided by the 

altimeters, the inclinometer, and the accelerometer) were adjusted homogeneously.

The obtained time series was then filtered to compensate for platform motion [19], and stan-

dard statistical parameters (i.e., wave height, period) were computed on the basis of the spec-

tral density features of the acoustic profiles [9, 20]. The wave meter system was designed 

to create an equilateral-triangular array (Figure 1), allowing the estimates of the prevalent 
direction of the wave by means of the theory of the direction of arrival [21] valid under the 

assumption of the incoming planar wave.

Let us consider to divide the three altimeters into pairs (i, j), (j, l), and (i, l): the time delay 
between the sensors of each pair when the planar wave passes through can be expressed in 

matrix form through Eq. (5):

    τ ¯¯   =  X ¯¯   ⋅   ̄  k.    (5)

   τ ¯¯  ,  X ¯¯  ,    k ¯¯    represent the matrices of time delay, the displacement between the two devices of each 

pair, and the direction, respectively. If the triangularity condition between the three pairs (i, j), 
(j, l), and (i, l) of echosounder is satisfied  ( x  

(i,j)
   +  x  

(j,l)
   +  x  

(i,l)
   = 0 ) , and it is known as the time delay vec-

tor, the propagation vector can be obtained by solving the last squares pseudo inverse Eq. (6).

   k 
^

   =  ( X   T  X )   −1   X   T   τ ^  .  (6)

The assessment of the method was carried out comparing simultaneous wave estimates 

obtained by using the acoustic wave meter and acquired by a Datawell Waverider (DWR) 
directional buoy, a spherical one with 0.9 m of diameter, specifically designed to monitor 
wave characteristics. Wave data acquired by DWR buoys are basically displacement signals: 

one (the heave signal) for the non-directional wave rider and three (heave, north, and west 
displacement) for the directional wave rider. The mean, variance, skewness, and kurtosis of 
these signals are also computed. In the wave-statistical processing, zero-upcross waves are 
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constructed from the heave signals, which are sorted by wave height and averaged in several 

fashions. This is the classic method of wave analysis that generates the significant wave height 
H
1/3

. In the spectral analysis, the power spectral density is computed using Fourier methods. 
The wave direction as a function of wave frequency is calculated from the co-spectral and 

quadrature spectral densities of the three displacement signals. Using a maximum entropy 
method (MEM), the 3D spectrum, that is, the power spectral density as a function of both 
wave frequency and wave direction is computed.

The two buoys were moored at a nominal distance of 4 km for safety reasons, since the main 

buoy of the W1M3A observatory can span a circular area of 2 km by means of its slack moor-

ing. These systems were continuously operational within the time of the validation which 

lasted 2 months from June to August, and all available estimates were used for the validation. 

During the period of the assessment, significant wave heights spanned from a minimum of 
0.14 m to a maximum of 3.20 m and two storms occurred with the corresponding rough sea 

and strong wind speed. Thus, the acoustic wave meter was tested for several sea-state condi-

tions. Although the majority of samples regard a smooth sea-state condition, a statistically 
significant number of samples refer to slight, and a moderate sea-state class was observed.

The validation of the acoustic wave meter system in terms of H
1/3 

was based on the slope and 

the intercept of the linear regression line, considering the estimates are obtained using the 

acoustic method as the independent variable and the DWR observations as the dependent 

variable. Due to the constraints of the designed array, only sea wave with period greater than 

3.3 s could be successfully measured without aliasing issues. The performed analysis shows 

Figure 1. A sketch of the array of acoustic altimeters.
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a very good agreement between the two time series (Figure 2a) with a correlation coefficient 
of 0.97 and a linear regression defined by a slope of 0.9017 and an intercept of 0.1052. The 
observed small variations can be considered as a feature of the natural sea state since the 

measurements were carried out in two different positions, about two nautical miles far. Wave 
direction estimates were compared considering the results of the direction of the arrival tech-

nique for the W1M3A data and the most powerful direction retrieved by the DWR directional 

spectrum. Results show an overall satisfactory agreement within the error of ± 15° that is 

consistent with the accuracy of the DWR estimates, except for few cases related to changes in 

wind direction and low wind intensity (Figure 2b).

Results demonstrate the feasibility to use an acoustic wave meter array as an affordable tool 
to measure waves on the long term and also in an open ocean where it is difficult to deploy 
discus buoys on deep sea bottom for an extended period of time. The system is still deployed 
on the W1M3A observatory and the collected data were used to indirectly assess the perfor-

mance of the Dust Regional Atmospheric Model (DREAM) model to predict sea salt aerosol 
concentrations [22].

3. Migratory patterns of zooplankton detected by acoustic Doppler 
current profiler

3.1. Acoustic Doppler current profiler data

The first prototypes of acoustic Doppler current profilers were developed at the end of the 1980s 
with the aim of a continuous monitoring of ocean currents along the water column. Initially, 

Figure 2. (a) Time series of significant wave height as estimated trough the acoustic wave meter system and measured 
by the Datawell Waverider buoy. (b) Scatter plot of the wave direction estimated by the acoustic wave meter versus the 
one measured by the Datawell Waverider buoy.
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these instruments transmitted a single narrowband pulse and through the auto-correlation 
technique and provided measurements of the first spectral order. Ten years later, the second 
generation of ADCP was put on market. It was characterized by a wider band and an enhanced 
data processing, exploiting the principle of Doppler effects. Nowadays, ADCP instruments 
transmit a pulse with known frequency and listen to the return echo that is backscattered from 
water drop, sediments, planktonic organisms, and all particles that are freely transported by 

ocean currents.

Part of the transmitted sound is backscattered in all directions, part is dissolved in the ocean, 
and another part comes back to the instrument. This signal is twice phase shifted because 

of the Doppler effect: when the scattering elements present in the ocean move away from 
the transducer, the sound is phase shifted of a quantity proportional to their relative speed 

(S) respect to the ADCP. If source and receiver are approaching or moving along a direction 
maintaining the same distance between them, no Doppler effect is present. For this reason, 
ADCP devices measure the parallel component to the acoustic beam, and the frequency of the 
signal turning back to the instrument (F

d
) can be described through Eq. (7).

   F  
d
   =  2  F  

p
    (    S _ c   )   cos α  (7)

F
p
 is the frequency of the transmitted pulse, c is the sound speed in the ocean, and α is the 

angles between the beam and the water speed.

Mathematically, a phase displacement corresponds to dilation in the time domain. The sound 

produced by a single particle and also its backscatter echo remains unchanged until the parti-
cle doesn't move, but in case of a small displacement from the source, the echo will need more 

time to reach the transducer and thus the return signal will be phase shifted. ADCP devices 
measure the phase of the signal to obtain the time dilation exploiting the principle that the 

speed of the particles can be calculated if the interval of time between two pulses is known. 

The only ambiguity is represented by the fact that the phase is measured in the interval 0–360° 

and when the phase exceeds 360°, it starts again at 0°. The easy solution consists of transmit-

ting a train of pulses with very short time delay for each pulse in order to avoid changes in the 

phase of the particles of more than 360°.

Generally, ADCP instruments are constituted of two couples of transducers to measure north, 
east, and vertical components of the ocean current, and the profile is obtained subdividing 
the water column in several segments called bins. The main outputs of the ADCP devices are 
current speed and direction, but several ancillary parameters, used to calculate current char-

acteristics, are also available.

3.2. Diel vertical migration of zooplankton

The diel vertical migration (DVM) can be defined as the cyclic vertical displacement per-

formed by most zooplankton species. Different DWM patterns have been observed, but the 
most common behavior is the swimming upward at sunset and downward at sunrise. Several 

environment causes such as light, temperature, food, and predation pressure, as well as 
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endogenous origins like sex and age, influence DVM characteristics. Generally, the vertical 
distribution of the zooplankton is determined by net tows or pump samples that allow one to 

identify with the different species, but these samples are sparse in time and space and do not 
provide detailed information on the temporal variability, especially in the long-term period.

ADCP instruments are a powerful tool to overcome this issue, guaranteeing a quite continu-

ous monitoring, also in extreme environments such as the Polar regions [23, 24] or highly pro-

ductive basin, such as the Mediterranean Sea [25–27], at the expense of a specific taxonomic 
analysis.

Patterns of DVM can be detected through the analysis of the backscatter strength data (S
v
) of 

the signal that, for the current profiler made by [28], can be expressed by Eq. (8).
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α is the absorption coefficient, T
x
 is the internal temperature of the device in °C, B is the distance 

in m beyond which the measure is valid, L is the length in m of the transmitted pulse, D is the 

dimension in m of the bin, L
a
 is the lag length of the pulses in m, n is the number of the cell in 

which the measure is taken, and ϑ is the inclination angle of the transducers. E is the raw echo 

signal as measured by the ADCP and E
r
 is the minimum acquired value during the deploy-

ment. R is defined as slant range and represents the spatial coefficient related to the inclination 
of the pulses with respect to the vertical of the instrument. The constant A is the best linear 

regression fit between Eqs. (8) and (9) proposed in Ref. [29] for all samples satisfying the condi-

tion of signal-to-noise ratio exceeding 10 (K
c
(E-E

r
)<10).
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C is a constant typical for each model of Teledyne RD Instruments (RDI) profiler and LBDM and 

PBDM are the logarithms of pulse length in m and of power transmission in Watt, respectively. 
C' is the sound velocity depending on the depth and C

1
 is the sound speed used by the instru-

ment to calculate the time between the pulse transmission and the received echo.

Equation (8) was applied to high-resolution acoustic ADCP backscatter data acquired during 
winter 2009–2010 in the Ligurian Sea. The used backscatter data were provided by an upward 
looking 300 kHz ADCP (by RDI) deployed at about 150 m depth on a deep sea bed of 1200 
m from November 2009 to April 2010. The device was set to sample every 15 min with a bin 

length of 2 m in order to obtain high resolution data both in time and in space.

Backscatter strength values show a seasonal variability with low values in winter from 70 m 
depth down to 127 m and a gradual increase till 100 m in early spring in correspondence with 
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the increment of the net primary productivity that, in turn, implies more availability of food 

in the water column and less need for the zooplankton population to reach the surface to 

feed themselves. The analysis of the S
v
 time series clearly evidences a circadian cycle with a 

quite perfect agreement between the decrease of backscatter intensity and the hour of sunrise 
(spanning from 5:08 to 06.38 UTC in the deployment period) and, vice versa, an increase of S

v 

in correspondence to the hours of sunset (ranging from 15:48 to 17:50 during the deployment). 
The analysis of corresponding vertical speed presents negative values around dusk and posi-

tive ones at dawn, showing a well-defined nocturnal DVM pattern with a rapid ascent of zoo-

plankton from the bottom to the sea surface during dusk and a rapid descent from the surface 
to deep water at dawn (Figure 3).

Furthermore, in December and January, the DVM was influenced by moonlight: during full 
moon nights and clear skies ( December 2 and 31, 2009), the backscatter strength decreased in the 
surface layers while greater values extended in the water column down to the maximum ana-

lyzed depth, making the values acquired at different depths quite homogenous along the water 
column (Figures 4a and b). This behavior, in contrast with the common nocturnal DVM of new 
moon periods (Figures 4c and d), is a characteristic of macrozooplankton/micronekton species 
and can be interpreted as a way to escape from visual predators [30]. Indeed, corresponding ver-

tical velocities show more variability in the surface layers and a marked downward movement 

at midnight that is not present during the other moon phases (Figures 4e and f).

Obtained results demonstrate the feasibility to use non-calibrated ADCP data to infer zoo-

plankton behavior with respect to daily seasonal and inter-annual variability as well as to 

astronomic phenomena. In fact, the observed intense DVM signal can be an indication of 
the presence of the Clausocalanus spp., Fritillaria spp., and, among the macrozooplanktons/

Figure 3. (a) Daily averaged backscatter strength with, superimposed, the mean values and (b) daily averaged vertical 
velocity with, superimposed, the mean values, the hours of sunrise and sunset.
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micronektons, of euphausiids (mainly Meganyctiphanes norvegica) that perform nocturnal 
migration and are abundant in the Ligurian Sea from December to March. Furthermore, the 
different patterns of DVM seen during full moon nights further support the hypothesis of the 
presence of euphausiids since, among the main migrators in the Ligurian basin, only euphau-

siids exhibit a sinking closely related to moonrise.

4. Ocean monitoring through passive acoustic measurements

4.1. Ocean environmental noise

Within the framework of the “Marine Strategy Directive to save Europe’s seas and oceans” 
edited in June 2008, one of the main challenges of the Europe member state is to adopt mitiga-

tion actions and policy plans aiming at an effective protection of the overall marine environ-

ment by 2020. The increase of the maritime traffic and of anthropogenic activities at sea, such 
as the extensive use of sonar and oil drilling activities, has contributed to modify the natural 

ocean environmental noise so much that in some basins, it is the main cause of changes in the 

behavior of marine mammals.

Underwater environmental noise plays a fundamental role in biodiversity conservation, and 
the first studies date back to the Second World War when acoustic experiments established 
that environmental noise is the sum of several factors including ship traffic, breaking waves, 
wind, rain, mammals' vocalizations, and sound produced by marine organisms. In 1962, 

Figure 4. Temporal series of backscatter strength profiles during the full moon on (a) 2, December 2009 and (b) 31, December 
2009 and (e) the corresponding average vertical velocities. Temporal series of backscatter strength profiles during the new 
moon on (c) 16, November 2009 and (d) 16, December 2009 and (f) the corresponding average of vertical velocities.
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Wenz [31] demonstrated that ships generate noise at low frequencies and proposed curves 

that describe the spectrum level at different frequencies for noise generated by ships and wind 
that were at the base, and still are, of forecasting systems. The National Research Council in 
Ref. [32] introduced a new definition of environmental noise as the “noise associated with the 

background din emanating from a myriad of unidentified sources.” The most common sources can 
be distinguished by their acoustic signatures and can be subdivided into four major groups 
depending on their origin: physical, geological, biologic, and anthropogenic.

Wind is the major physical producer of noise over sea surface, and its spectral characteristics 
span a broadband frequency band, from less than 1 up to 50 kHz. The spectral curves show 

an increment for frequencies below 1 Hz, followed by a decrease as frequencies increase. As 

wind speed increases, the spectral curves maintain the same shape but show greater pressure 

levels. For wind speed > 10 ms−1, the sound produced on the sea surface can be undistin-

guished by the sound due to the passage of a distant ship. Moreover, it is often associated 

with a high wave that is responsible for the generation of small bubbles that, in turn, produce 

sound and make the detection, and especially the quantification, quite difficult.

Also, precipitation contributes to the ocean noise in the frequency band from hundreds of Hz 

to more than 20 kHz, and the corresponding spectra show different characteristics depend-

ing on the type of precipitation. In the case of drizzle, a clear peak originated at the acoustic 

resonance of small drops splashing on the sea surface is observable around 15 kHz. This 

peak tends to disappear with the increase of the drops' dimension that produce sound at a 

frequency lower than 10 kHz and another peak at about 1–2 kHz in case of convective rain.

Tectonic processes, earthquakes, volcanic, and hydrothermal activities are the major geologi-
cal sources contributing to the ocean environmental noise. Their spectra range from 1 to 100 

Hz, show an initial burst, and the same noise persists for several minutes.

Biological sources are strictly related to marine organisms and mammals living in the ocean 
that produce signals spanning from 10 up to 200 kHz, depending on the species. In very 

productive basins, the biological sources are prevalent on the physical and geological com-

ponents, whereas in high anthropological areas, the main responsible events of the noise are 

human activities.

Noise generated by ship passages is characterized by low frequencies (5–500 Hz) and propa-

gates over long distances affecting wide areas. Each type of vessel (research vessels, leisure or 
fishing boats, tankers, commercial ferries, etc.) and also each single vessel are characterized by 
an own acoustic signature depending on cavitation phenomena, on the modulation of blade 

propeller, and on the on-board engines. Furthermore, noise produced by ships is variable 
and could be affected by environmental conditions especially for the interaction with the sea 
bottom.

Measurements of ocean environmental noise are related to the power of the propagating sig-

nal and to the characteristics of the acoustic path between source and receiver that can be 

modified by oceanographic dynamics, sound velocity propagation, and bathymetry. These 
components cause fluctuations in the pressure levels of the environmental noise depending 
on depth, time instants, and areas; thus, it is necessary to perform further experiments and to 
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Figure 5. Average sound spectra for (a) different types of precipitation and (b) wind speed greater than 2 ms-1 subdivided 
in Beaufort classes compared to the average spectrum of the background noise.

continuously monitor environmental noise to deepen the knowledge of its dynamic and the 

impact of the human activities.

4.2. Rainfall and wind speed measurements inferred by acoustic passive measurements

Passive acoustic data of ocean ambient noise consists of measurements of sound pressure as 

a result of the superimposition of sounds generated by several types of events (i.e., rainfall, 

ship passages, or mammals' vocalizations) to background noise, which is the natural noise 
in the absence of any sources, whose level is closely related to the intensity of blowing 

wind. Although background noise levels can be different from basin to basin, each source 
shows unique spectral characteristics that can be used to classify its type (physical, biologi-

cal, anthropogenic) and, in some cases, also to obtain an estimate of atmospheric param-

eters over the sea surface (i.e., wind, rain). Indeed, multivariate analysis techniques can be 
applied to a combination of spectral levels, acquired at specific frequencies and least-square 
fit in different spectral bands to provide insights about the different sources forming the 
environmental noise.

Figure 5 shows the results of the multivariate analysis applied to acoustic data that was 

acquired in the open Ligurian Sea from March to November 2015 by means of a hydrophone 

installed on the W1M3A observatory. The output signal of the hydrophone was band-pass 

filtered and then digitalized at 16 bit with a sampling frequency of 100 kHz. Acoustic data 
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were collected for few seconds, every tens of minutes, due to the large amount of data that 

such a sampling rate produces.

During the analyzed period, wind was continuously blowing over the sea surface and gener-

ated a sound that increased proportionally to the reinforcement of its speed, and, similarly, 

spectral levels tended to increase monotonically from 0.5 to about 25 kHz. Beyond this thresh-

old, the sound produced by strong wind resulted comparable and even lower than the one 

generated by moderate breeze because of the contemporary arising of large waves and, in 

turn, the generation of small bubbles that absorbed the emitted sound. Wind spectra were 
very different to the one obtained during episodes of convective rain but could mask events 
of stratiform and light rain since the spectral levels from 20 up to 30 kHz were very similar 

for wind speed greater than 8 ms−1. Furthermore, the resonance frequency of bubbles splash-

ing on the sea surface is inversely proportional to their size and for this reason, large drops 

associated with heavy rain showed loud sound and, instead, small drops, typical of light rain 

events, presented a peak in the 10–15 kHz frequency band.

Several studies were carried out to quantify wind speed and rainfall amounts through the 

analysis of acoustic data. In Ref. [33], a logarithmic relation based on the sound pressure 

levels acquired at 8 kHz was proposed, and, recently, new parameterizations has been intro-

duced for the Mediterranean region based on the results achieved during the Ionian Sea rain-

fall experiment and Ligurian sea acoustic experiment [34, 35].

The equation proposed in Ref. [35] was applied to the acquired acoustic data and compared 

to the in-situ wind speed observations provided by the W1M3A observatory for wind speed 

greater than 2 ms−1 (Figure 6a). Results show a good agreement between wind speed measure-

ments provided by the anemometer and the estimates obtained using acoustic data, with a 

correlation of 87.5% and a root mean square error of 1.294 ms−1 taking into account that 2 ms−1 

can be considered as the minimum wind speed that is acoustically detectable.

Rainfall rate and sound intensity are related by a logarithmic expression based on the sound 

pressure level at 5 kHz, whose coefficients can vary depending on the area of deployment 
[36]. Available acoustic data acquired in 2015 were processed following the algorithm pro-

posed in Ref. [35] and compared to rainfall observations simultaneously acquired by a rain 

gauge installed on the W1M3A offshore observing system (Figure 6b). Results evidence the 
feasibility to use passive acoustic data to detect rainfall episodes, especially in case of intense 

events and the capability of quantity rainfall amounts with good accuracy, independently 

from rain types and the presence of wind speed.

4.3. Marine mammals monitoring through passive acoustic observations

Passive acoustic observations provide powerful support to complement visual surveys for 

the monitoring of marine mammals due to the fact that acoustic waves propagate for long 

distance. Visual observations are weather dependent, not available in remote or inaccessible 
areas, often limited in their use due to the short times animals may spend at the surface, and 

are sparse in time, whereas passive acoustic devices can be successfully employed for an 

extended period of time and can monitor a wide area providing information about both the 

presence and the species of the animals.
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Vocalizations are the principal sounds generated by marine mammals that use them to com-

municate, to echolocate, and also for predatory or mating purposes [37]. Every species, and 

even each individual, can be recognized by its acoustic signatures, and for this reason, time-

frequency analysis of time series of passive acoustic data is useful for the marine mammals' 

monitoring. This is particularly true for basins where human activities are scarce and the 

environmental noise is dominated by mammals' vocalizations like Thetys Bay in Antarctica or 
in a very productive area such as the “Cetacean Sanctuary” in the Ligurian Sea.

During the 29thItalian Antarctic expedition, a hydrophone was installed under the sea ice in 

Thetys Bay to study sound propagation. The basin is a natural habitat of different pinnipeds 
species (i.e., crabeater seal (Lobodon carcinophaga), leopard seal (Hydrurga leptonyx), Ross seal 
(Ommatophoca rossii), and Weddel seal (Leptonychotes weddellii)), and the vocalizations of some 
of these mammals were the preponderant sound in the collected measurements (Figure 7).

The experiment took place in November, during the Weddel seals mating period [38], and this 

explains the reason why the prevalent types of detected calls from Weddel seals are trills and 

whistles, both ascending or descending as defined in Ref. [39]. Trill calls show a descending 

pattern, are emitted once, last for 15 s and cover a wide frequency range from 6 kHz down 
to few hundreds of Hz. Whistles ascending, although being single pulses, last few seconds 

maximum, and their patterns are characterized by a sharp increase from about 4 up to 5 kHz, 
followed by a smooth rise up to 6 kHz maximum. Whistles descending are a series of pulses 

initially emitted at about 1-s intervals, progressively reducing the interval and dropping from 
10 to 2 kHz. The typical vocalization produced by crabeater seal is known as moan; its spec-

trum has power content lower than trills and whistles in the whole range of frequencies and 

the signal spans from 700 up to 6 kHz.

Figure 6. Time series of (a) wind speed and (b) rainfall as measured by the anemometer and the rain-gauge installed on 
the W1M3A marine observatory, and the estimates obtained from acoustic samples.
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A similar experiment took place in the Ligurian Sea during 2015, allowing one to identify 

the presence of sperm whales (Physeter macrocephalus), striped dolphins (Stenella coeruleoalba), 
and Cuvier’s baked whales (Ziphius cavirostris) through the analysis of their spectrograms 

(Figure 8).

Sperm whales are the most common mysticete species in the Ligurian-Corsican-Provençal 
basin due to the high productivity that characterized the area supported by the permanent 

frontal structure of rich large biomass of krill, especially of Meganyctiphanes norvegica that is 

the favorite prey of the sperm whales. The vocalizations of sperm whale are constituted of 

sequences of clicks, which are brief impulsive sounds, variable in length that can reach 35 kHz 

in frequency. The pattern is depending on the area, the sex, the age of the animal, and also on 
the meaning: train of pulses with a repetition rate of two to three clicks per second are emitted 
during the diving to make recognition of the environment or for hunting, whereas high rate 

clicks referable to creaks are commonly used for echolocation.

Odontocetes calls are much different from mysticete’s vocalization, presenting a wide vari-
ety of patterns of whistles ranging from few Hz up to more than 20 kHz and clicks used for 
echolocation that can extend between 50 and 150 kHz. Using the spectrograms, it is possible 
to distinguish the different species of the odontocetes and, in some cases, the sound emitted 
by the same individual.

The availability of passive acoustic recordings covering a long period of time could really 

improve the knowledge of mammals' vocalizations in their natural environment, especially 

in winter months where it is difficult to carry out visual surveys due to potential bad weather 
conditions.

Figure 7. Spectrograms of vocalizations by Weddel and crabeater seals acquired during the 29th Italian Antarctic 

expedition.
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5. Summary

The combination of active and passive underwater acoustic methods could significantly con-

tribute to the monitoring of the oceanic environment and to a better characterization of the 
ocean status. Analysis of acoustic observations in the time domain allows the detection of 

seasonal trends or inter-annual variability helpful for the identification of climate change’s 
causes and/or impacts, as well as for the definition of mitigation actions and strategic plans 
devoted to the protection of the marine environment. Otherwise, analysis of acoustic data in 

the frequency domain makes possible to distinguish geophysical phenomena, such as wind 

and rain, and biological sources, such as vocalizations of marine mammals and anthropogenic 

Figure 8. Spectrograms of vocalization by (a) sperm whales, (b) Cuvier’s baked whales, and (c) striped dolphins acquired 
in the Ligurian Sea.
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noise by means of their own acoustic signatures. Specifically, the application of Fast Fourier 
Transform (FFT), wavelet, and autocorrelation techniques could provide insights about wave 
fields and give evidence of the presence of several marine mammals or different patterns 
referable to migratory processes, typical of zooplankton and micronekton species.

Indeed, in-situ acoustic measurements provided by a directional array of upward looking 

echosounders, installed on a spar buoy, have been used to obtain estimates of wave height, 

period, and direction in the open Ligurian Sea. Results show the feasibility to use acoustics 

to obtain reliable observations of wave field using a fixed platform not specifically designed 
to follow the slope of the waves. Measurements provided by active devices have been also 

successfully employed to monitor the behavior of zooplankton in relation to daily cycle and 

moon illumination for a long period of time that cannot be obtained using sporadic cruises or 

net samples sparse in time.

Experiments based on the installation of hydrophones carried out in different basins demon-

strated the potentiality of passive acoustic data used to identify a variety of processes. Known 

as the mean noise level of the basin in which the hydrophones are deployed, it was possible 

to apply algorithms to automatically quantify rain and wind by means of the noise produced 

on the sea surface. Furthermore, the application of time-frequency analysis allowed the cre-

ation of spectrograms from which the types of mammals living in a different basin were easily 
detected.
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