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Abstract

Plasmonic nanomaterials have emerged in the last years as a very interesting option for 
many photocatalytic processes. Their localized surface plasmon resonance (LSPR) brings 
in some unique properties that overcome some of the drawbacks associated with tradi-
tional photocatalysis based on semiconductors. Even when in its infancy, many advances 
have been made in the field, mainly related to the synthesis of new structures with the 
capabilities of light absorption in the whole solar spectrum. A great number of reactions 
have been attempted using nanoplasmonic materials. In this chapter, we present the most 
recent advances made in the field of plasmonic photocatalysis comprising an introduc-
tory section to define the main types of plasmonic nanomaterials available, including 
the most recently labeled alternatives. Following with the major areas of catalytic appli-
cation, a second section of the chapter has been devoted to liquid-phase reactions for 
the treatment of pollutants and a selection of organic reactions to render added-value 
to chemicals under mild conditions. The third part of the chapter addresses two specific 
applications of nanoplasmonic photocatalysts in gas-phase reactions involving the reme-
diation of volatile organic compounds and the transformation of carbon dioxide into 
valuable energy-related chemicals. Finally, a fourth section of the chapter introduces the 
most recent applications of plasmonics in biochemical processes involving the regulation 
of cofactor molecules and their mimetic behavior as potential enzyme-like surrogates.

Keywords: surface plasmon, photocatalysis, NIR, pollutants, energy, VOCs, CO
2
, 

semiconductor, mimetic enzymes
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1. Introduction

Solar energy harvesting has become an important matter nowadays.The use of solar light 
as energy source is a cleaner and even a more economic way to provide energy to pro-

cesses. In this sense, conventional photocatalysis, as it makes use of mainly semiconductors 
as  catalyst, is not the most efficient way to harvest the light coming from the sun, since it 
only contains 5% of UV light, which is the kind of radiation necessary to excite those cata-

lysts [1]. In the quest of new materials that could help to improve the efficiency of tradi-
tional photocatalyst, plasmonic nanomaterials have attracted much attention lately among 
the scientific community. This is so because this new family of materials offers/exhibits sev-

eral advantages over their bulk counterparts that can be useful in very different fields like 
sensors,  biomedicine, photocatalysis, etc [2]. Besides their size, what makes these materials 

so interesting is their characteristic localized surface plasmon resonance band (LSPR). This 

LSPR can be defined as the collective coherent oscillation of free charges on the surface of the 
nanoparticle when they are in resonance with the incident light. This resonance generates 

an enhancement in the electric field on the surface of the nanomaterials that may affect mol-
ecules or materials surrounding it. The LSPR can be very useful for photocatalysis in many 

different aspects depending mostly on the type of plasmonic material used. We have tenta-

tively classified them into three main categories: (1) Pure plasmonic materials; (2) Hybrid 
plasmonic materials and (3) Alternative plasmonic materials.

1.1. Pure plasmonic materials

The photocatalysts belonging to this group are only composed by unsupported plasmonic 

metals and those supported on photocatalytic insulators allowing all the chemistry to happen 

on the metal nanomaterial. In this case, after excitation of the plasmon band, a high density of 
charge carriers are generated on the surface of the nanoparticle that can undergo reduction or 

oxidation reactions with the molecules adsorbed on their surfaces [3].

This mechanism is generally referred to as direct charge transfer since the carrier is directly 

transferred from higher energy levels in the metal to the lower unoccupied molecular orbital 

of the adsorbate initiating the chemical reaction (Figure 1). Another property of the plasmonic 

nanoparticles is the generation of heat on their vicinity. Following the excitation, the charges 

generated can suffer radiative or nonradiative relaxation. The former will be discussed later in 
this section. The nonradiative relaxation is mainly related with electron-electron and electron-

phonon interactions, which give rise to the generation of heat, very localized in the surface of 

the nanoparticle. This heat can be transferred to the surrounding media, helping in thermally 

activated reactions. The temperature reached on the surface of the metal is dependent on 

the nature of the metal itself. For gold, it has been estimated to be as high as 500–700°C [4] 

and for silver, is expected to be much higher since the absorption cross section of the latter is 
around 10 times higher than for gold. An example of photocatalytic reaction performed by 

gold plasmonic nanoparticle (AuNP) is given by Hallet-Tapley et al., using them for the selec-

tive oxidation of alcohols [5]. They used green laser and LED in order to excite the plasmon 
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band of the AuNP and oxidize selectively the alcohol molecules surrounding the AuNP. In 
their work, the authors proposed two possible mechanisms for the reaction, one involving a 

single electron transfer from gold to H
2
O

2
 providing the radicals that initiate a chain reaction, 

and the other implicating the generation of heat as the cause for the breaking of the peroxide 

bond. Another interesting example is the use of nanorattles composed of a gold nanosphere 
inside and a nanoshell of gold/silver [6]. In this case, the authors claim that the better perfor-

mance of this structure comes from the formation of electromagnetic hot spots in the interface 

of the two different materials. These hot spots create a higher density of reactive oxygen 
species responsible for the oxidation reaction. In order to expand the absorption of light to 
the visible and even the IR part of the spectrum, many researchers have tried to synthesize 
anisotropic nanoparticles. One of these examples is the synthesis of hexagonal Pd nanoplates 
for their use in the Suzuki coupling reaction. Trinh et al. [7] were able to obtain plasmonic Pd 

nanoparticles with their plasmon band located along the visible and the near IR according to 
their aspect ratio. They used this LSPR to generate hot electrons with the energy to perform 

the Suzuki reaction on the surface of the catalyst.

In this group, we can also include nanomaterials consisting of metal nanoparticles supported 
on photochemical insulators. The latter means that since the bandgap of the material is  too 
high, it cannot be excited in the visible or near UV part of the spectrum. Metal oxides like 

ZrO
2
, Al

2
O

3
, or SiO

2
 with bandgap energies above 5–6 eV are representative of this group. Liu 

et al. [8] performed a selective reduction of nitrocompounds to the azoxy derivatives using 

Ag-Cu alloy nanoparticles supported on ZrO
2
. They demonstrated that by irradiating in the 

Figure 1. Typical mechanism of pure plasmonic materials. Reprinted with permission from Ref. [3]. Copyright (2014) 
American Chemical Society.
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visible region, they could control the selectivity of the reaction only with the composition of 

alloy with no influence from the support.

1.2. Hybrid plasmonic materials

Semiconductors photocatalysts have dominated the field since Fujishima and Honda used 
TiO

2
 to do water splitting with UV light in 1972 [9]. Despite the convenient properties of 

this semiconductor for photocatalysis, it also has some drawbacks in order to use them in 

real photocatalytic applications like low photon efficiency, high charge carriers recombina-

tion rate and a high bandgap (3.2 eV), that means it can only be excited with UV light. To 
overcome these problems, great efforts have been devoted in the past years to develop a 
new family of photocatalysts consisting of supporting metal plasmonic nanoparticles on the 

surface of semiconductors. The metal nanoparticle brings in some properties that comple-

ment and fix some of the downsides previously mentioned for the semiconductors (Figure 2). 

First, they enhance the absorption of light bythe material. They do this in different ways. 
The plasmon bands of the metal nanoparticles are usually in the visible region, expanding 

the absorption of the hybrid material to the visible or even near IR. Also, the huge absorp-

tion extinction coefficient of plasmonic materials allows them to absorb most of the light 
incoming to the hybrid, therefore, keeping most of the photon absorbed on the surface of the 

material, avoiding in a high extent the recombination of carriers that usually takes place in 

the semiconductor. Another feature of these materials that aids the absorption of light is the 

scattering. Plasmonic nanoparticles can scatter part of the light that are not able to absorb, 
thereby allowing its reemission and potential absorption by other nanoparticles allocated on 

its vicinity and increasing the pathway of light absorbed by the material. Another character-

istic of these materials is the formation of what is called Schottky barrier between the metal 
and the semiconductor. In that interface, an electric field is built in that separates the charge 
carriers formed in or close to the barrier, avoiding in that way of the recombination of electron 

and holes, and therefore increasing the lifetime of those carriers, so they can react with other 

molecules adsorbed on the surface.

Figure 2. Different plasmonic effects in hybrid plasmonic structures. Different colors and shapes are used to identify 
each of them: absorption (red oval), structural (orange square), nonradiative (yellow hexagon) and radiative (green 
trapezium).
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Besides absorption, plasmonic materials contribute to improve the photocatalytic perfor-

mance of semiconductors through other mechanisms. After absorption of light, the excited 

electrons reach high-energy levels, so they can overcome the Schottky barrier formed between 
the metal and the semiconductor, and can be transferred from the nanoparticle to the semi-

conductor and start the photocatalytic process. This electron transfer means that a material 

that was only viable before for use with UV light due to its high bandgap, now can be used 
in almost any wavelength, because the shape and size of these metal nanoparticles can be 

tailored to have the plasmon band in the visible or even in the IR region of the spectrum. 
This is a very important feature when we think about the use of these materials under solar 

light illumination, since the excitation area can be expanded to the other 95% of the solar 
spectrum. Other mechanism by which plasmonic materials can enhance the photocatalytic 
performance of semiconductors is by the generation of an intensive local electric field that 
can promote/enhance the generation of more charge carriers on the surface of the semicon-

ductors. Because of this electric field, plasmonic nanoparticles can also generate charge car-

riers without any contact with the support, which is beneficial when the contact between the 
metal and the semiconductor is not well enough to form a Schottky barrier, or when a layer 
of other material is needed to support the nanoparticles. It has also been probed that this 
electric field may help to polarize nonpolar molecules surrounding the metal nanoparticles 
and increase their adsorption to the surface of the semiconductor. Finally, another important 

feature of the plasmonic materials that enhances the photocatalytic response of these hybrid 

systems is the generation of heat on the vicinity of the nanoparticles. The high temperature 

generated in highly localized points can improve the reactions rate and the mass transfer in 

the reaction system.

Due to these properties, plasmonic hybrid materials are certainly a very interesting option to 

make some industrial processes environmentally and economically attractive.

1.3. Alternative plasmonic materials

Until very recently, nonmetal materials considered were not able to hold a LSPR due to 

the low free charge carrier concentration on their surface. However, lately many studies 
have probed that a whole variety of materials can be tuned to increase the free carrier 

concentration, and therefore be able to behave as plasmonic materials in the visible and 

IR regions [10]. Usually, doping the structure of metal oxides or adding oxygen vacancies 

increase the concentration of free electron within the metal oxide, and is a good way to get 

a plasmonic material. Examples of this are oxides of aluminum, zinc, cadmium, or tung-

sten, which after doping with different element acquire plasmonic characteristics in the 
visible or IR region due to the increase of the electron concentration [11]. Creating oxygen 
vacancies is also  possible to get an analogous effect. For instance, tungsten oxide renders 
a plasmonic behavior in the IR, allowing their use in photocatalytic applications after the 
induced generation of oxygen vacancies [12]. A different circumstance happens with chal-
cogenides like CuS, in which the reduction of the Cu percentage creates an increase of the 
hole concentration, which results in a wide plasmon band in the IR region (Figure 3) [13]. 

All these materials are suitable to act as plasmonic photocatalysts with any of the mecha-

nisms mentioned before.
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2. Nanoplasmonic photocatalysis in liquid phase

2.1. Plasmonic-driven photocatalytic degradation of aqueous contaminants

Heterogeneous photocatalysis has been demonstrated as an economical and effective 
technology to remove organic pollutants from aqueous environments [14, 15]. In recent 
years, the LSPR effect of plasmonic materials has been applied to boost the photocatalytic 
performance of chemical transformations under visible light irradiation. A vast number 

of studies have focused on the preparation of plasmonic nanostructures and further appli-

cation for the removal of pollutants from aqueous media. As there are some previous 

reviews reporting the use of plasmonic materials for pollutant removal [16–18], in this 

section we only show some recent applications on this topic, aiming at illustrating various 

types of plasmonic photocatalysts as well as target contaminants. These are summarized 

in Table 1.

Among the target pollutants, dyes such as rhodamine B (RhB), methylene blue (MB), or 

methyl orange (MO) are the most studied ones due to the ease of monitoring their removal. 
Nevertheless, in dye compounds the effect of photosensitization could produce extra electrons 
and accelerate the photocatalytic process. For this reason, the photoremediation of colorless 

target contaminants represents a more interesting case study [19]. For instance, the photocata-

lytic removal of other organic pollutants such as phenolic compounds, including bisphenol 

A, nitrophenol, and chlorophenols, antibiotics such as tetracycline or ciprofloxacine, organic 
solvent as trichloroethylene or even chlorinated paraffins have also been reported and sum-

marized in Table 1. In addition to organic pollutants, this technology has been successfully 
applied for the treatment of hazardous inorganic compounds, such as the reduction of carci-

nogenic Cr (VI), from K
2
Cr

2
O

7
 to Cr (III) [20].

Figure 3. Schematic diagram (not to scale) to illustrate the energy level alignment and photocharge carrier dissociation at 

the CuS-RGO interface. Reprinted with permission from Ref. [13]. Copyright (2012) American Chemical Society.
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Catalyst Pollutant Irradiation Performance Refs.

Ag@g-C
3
N

4
@BiVO

4
TC 300 W Xe lamp, λ > 350 nm, 

λ > 420 nm or λ > 760 nm
Removal of 90.8% (λ > 350 nm), 
82.7% (λ > 420 nm), and 12.6 % 
(λ > 760 nm) in 60 min

[27]

Ag
2
SO

3
/AgBr

GO/Ag
2
SO

3
/AgBr

MO, RhB, MB 500 W Xe lamp, λ > 420 nm, 
100 mW/cm2

99.9% removal of MO in 9 min, 
almost complete removal of RhB 

and MB in 20 min

[28]

Ag/AgCl-Bi
2
WO

6
@ 

Fe
3
O

4
@SiO

2

RhB, Phenol 300 W halogen tungsten 
projector lamp, λ > 410 nm

100% RhB removal in 90 min ~70% 
Phenol removal in 300 min

[19]

Pd/PdCl
2
-Bi

2
MoO

6
Phenol 300 W halogen tungsten 

projector lamp, λ > 410 nm
22.2% removal in 30 min and 

almost 100% removal in 300 min

[26]

g-C
3
N

4
@Bi@Bi

2
WO

6
2,4-DCP, MO, 
RhB

300 W Xe lamp, λ > 400 nm ~70% removal of MO and 
2,4-DCP, and almost complete 
removal of RhB in 120 min

[22]

Ag@AgCl/TP RhB, X-3B, CIP, 
phenol

300 W Xe lamp, λ > 400 nm Complete removal of RhB in 8 min 
and of X-3B in 12 min, 48% CIP 
removal and 51% phenol removal 

in 3 h

[29]

Au-Fe-doped 

Bi
4
Ti

3
O

12
 (BTO) 

nanosheets

Phenol, BPA 400 W halogen lamp, VIS 
light

BPA removal of 72%, 87%, 99% 
on pure BTO, 2%Fe/BTO and 
Au-2%Fe/BTO, respectively, in 
50 min

Phenol removal of 37, 54, and 64% 

on BTO, 2% Fe/BTO, and Au-2% 
Fe/BTO, respectively, in 80 min

[30]

Bi/Bi
2
WO

6
RhB, 4-CP 300 W Xe lamp, λ > 400 nm, 

200 mW/cm2

93.0% removal of RhB in 25 min, 
54.4% removal of 4-CP in 120 min

[23]

TiO
2
/SiO

2
/Au 

(bipyramid-like gold 

nanoparticles)

FA LED lamp (400–800 nm), 

156 mW/cm2 for tests in VIS 
region, high-pressure Hg 
lamp for tests in UVA + VIS 
region

With UVA + VIS irradiation, 58% 
removal in 1 h

No photocatalytic activity under 

VIS irradiation alone

[31]

Au/BiOCl@ 
mesoporous SiO

2

FAD, RhB 350 W Xe lamp, λ > 420 nm For FAD removal, the CO
2
 

evolution is ca. 49-fold higher 
than that of N-TiO

2
 NPs (used as 

standard VIS light photocatalyst) 
~100% removal of RhB in 1 h

[32]

RGO/CoFe
2
O

4
/Ag Short chain 

chlorinated 

paraffins

500 W Xe lamp, λ > 400 nm, 
60 mW/cm2

91.9% removal in 12 h [33]

Ag/Ag
2
CO

3
-RGO MO Phenol 350 W Xe lamp, λ > 420 nm 

40 mW/cm2

93% MO removal in 15 min, 93% 
phenol removal in 30 min

[34]

Pt–BiOBr 
heterostructures

PNP, TBBPA 300 W Xe lamp 
Simulated sunlight (320–680 

nm) or VIS light (400–680 
nm),

150 mW/cm2

For PNP: Complete removal in 
30 min with simulated sunlight 

and 99% removal in 1.5 h with 
VIS light
For TBBPA: 100% removal in 
5 min with simulated sunlight and 

98% removal with VIS light

[35]
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Although most of plasmonic photocatalysts devoted to pollutants removal have been based 

on hybrid structures containing noble metals such as Au and Ag, supported on semiconduc-

tors (mostly TiO
2
 or ZnO), novel plasmonic materials and structures are currently under 

development [21]. For instance, low-cost bismuth (Bi) has been reported to be an alternative to 

noble metals due to their direct plasmonic photocatalytic ability [22] which makes it a prom-

ising cocatalyst to enhance the efficiency of multiple photocatalysts, as reported in various 
recent studies [22–24]. Plasmonic semiconductor Cu2−xSe deposited on the surface of graphitic 

carbon nitride (g-C
3
N

4
) was also proposed as visible light photocatalysts for dye removal [25]. 

Recently, Meng and Zhang [26] developed and investigated for the first time a Pd-doped 
Bi

2
MoO

6
 photocatatalyst (Pd/PdCl

2
-Bi

2
MoO

6
) which exhibited an enhanced efficiency for phe-

nol removal due to the reduction of electron-hole recombination rate, the SPR of Pd nanopar-

ticles, and the generation of the strong oxidizing agent Cl0 from Cl− on the surface of Bi
2
MoO

6
.

2.2. Organic synthesis

The application of heterogeneous photocatalysis in organic synthesis constitutes a more chal-

lenging issue than the degradation of organic contaminants [37] and much effort is being 
devoted in this field, as recently reviewed elsewhere [37–40]. The use of plasmonic nanoma-

terials as visible light-driven photocatalysts constitutes an interesting and appealing alterna-

tive to carry out a wide variety of chemical reactions to generate fine chemicals of industrial 

Catalyst Pollutant Irradiation Performance Refs.

Cu2−xSe–g-C
3
N

4
MB 500 W Xe lamp, Λ > 420 nm >95% removal in 2 h [25]

Bi/I−codecorated 

BiOIO
3

Phenol, 2,4-

DCP, BPA, 
RhB, TC

500 W Xe lamp
VIS light (λ ≥ 420 nm) or 
simulated sunlight

With λ ≥ 420 nm: 76.8% RhB 
removal in 4 h and >40% BPA 
removal in 5 h

With simulated sunlight: 55% 
TC removal in 2h, 60% 2,4-DCP 
removal in 2 h, >90% phenol 
removal in 3 h

[24]

AgCl:Ag hollow 
nanocrystals

Reduction of 

Cr (VI) to Cr 
(III)

500 W Xe lamp, λ ≥ 420 nm 100% of Cr (VI) photoreduced 
in 10 min (only 44.7% and 16.5% 

of Cr (VI) was reduced over 
AgCl-normal and commercial P25, 
respectively

[20]

SiO
2
-Au seeded 

nanoparticles

MO, TCE Green laser λ= 532 nm For MO, 61% removal by SiO
2
-Au 

seeded NPs and 29% removal 
by bare Au seeds after 1 h laser 

irradiation at 2 W
For TCE, 50% removal after 1 h 
laser exposure at 2 W

[36]

BPA: Bisphenol A; CIP: ciprofloxacin; 4-CP: 4-Chlorophenol; 2,4-DCP: 2,4-Dichlorophenol; FA: Formic acid; FAD: 
Formaldehyde; GO: Graphene oxide; MB: methylene blue; MO: Methyl orange, PNP: P-nitrophenol; RGO: reduced 
graphene oxide; RhB: rhodamine B, TBBPA: tetrabromobisphenol-A; TC: tetracycline; TCE: Tricholoroethylene, TP: 
titanium phosphate nanoplates; X-3B: reactive brilliant red.

Table 1. Recent studies on the utilization of plasmon-assisted photocatalysts for removal of aqueous contaminants.
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 interest while working under mild conditions [41]. This chapter section overviews some 

examples of representative reactions with both industrial and fundamental interests.

2.2.1. Oxidation reactions

The selective oxidation of alcohols to their corresponding carbonyl counterparts is one type 

of mostly studied plasmon-assisted photocatalyzed reactions [16]. For instance, Au/CeO
2
 was 

applied for the selective oxidation of benzyl alcohols to corresponding benzaldehydes in 

aqueous suspensions under irradiation by visible light from a green LED [42]. Hallet-Tapley 
et al. [43] also demonstrated the ability of Au supported on hydrotalcite, ZnO, or Al

2
O

3
 to 

selectively oxidize sec-phenethyl to acetophenone and benzyl alcohol to benzaldehyde, in 

presence of H
2
O

2
 using 530 nm LED as the photoexcitation source (Figure 4A). Yu et al. [44] 

and more recently, Chen et al. [45] supported gold catalysts for the selective aerobic oxidation 

of benzyl alcohol to benzaldehyde driven by visible light. Plasmonic photocatalysis has also 

been applied to amide production via tandem oxidation/amidation processes catalyzed by 
Au/SiO

2
 under 532 nm laser irradiation [46].

Esterification is one of the fundamental reactions in organic synthesis, as its products are 
widely used as precursors and intermediates for the production of fine chemicals, fragrances, 
natural products, or polymers [38]. Traditionally, esters are synthesized by the reaction of 

activated acid derivatives with alcohols, in multi-step reaction processes that yield high 

amounts of undesirable byproducts. In addition, these usually require harsh conditions of 
temperature, pressure, and pH [38, 47]. Xiao et al. [47] reported a one-pot process for the 

direct oxidative esterification of aliphatic alcohols under mild conditions, using gold-pal-
ladium alloy nanoparticles (Au-Pd alloy NPs) on a phosphate-modified hydrotalcite as a 
recyclable photocatalyst (Figure 4B). It was found that the intensity and wavelength of the 
irradiated light could remarkably change the reactivity. The explanation was that higher irra-

diance provides more light excited energetic electrons, resulting in a stronger electromagnetic 

field in the vicinity of the NPs (LSPR field enhancement effect). On the other hand, photons 
with a shorter wavelength (<550 nm) are able to excite metal electrons to higher energy lev-

els, and these electrons have more chances to transfer to the antibonding orbitals and induce 

reaction. Wavelength effect is more important at low temperatures, when the excited electron 
transfer effect dominates the photocatalytic activity, and the thermal and photothermal effect 
contributes much less [47].

Likewise, Zhang et al. [48] reported the visible light driven esterification from aldehydes and 
alcohols using supported Au nanoparticles (Au/Al

2
O

3
) at ambient temperatures. From the 

results at different wavelength ranges, it is concluded that gold plays an active role in harvest-
ing visible light and that the LSPR effect plays a critical role in enhancing the reaction activity 
in the catalyzed processes.

2.2.2. Reduction reactions

Chemical reduction reactions constitute another interesting route for the synthesis of fine 
chemicals, and plasmonic materials have also been utilized in several photocatalytic reduction 
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processes. For instance, plasmonic gold nanoparticles (Au NPs) were successfully applied as 

catalyst to perform the reduction of resazurin to resorufin [49] via laser drop (532 nm) or LED 

(530 nm) plasmon excitation. The use of Au NPs supported on different materials was also 
investigated for the selective reduction of organic compounds under visible light (or simu-

lated sunlight) [50]. Au/CeO
2
catalysts were found to be efficient in the reduction of nitroaro-

matics to azocompounds, hydrogenation of azobenzene to hydroazobenzene, reduction of 

ketones to alcohols, and deoxygenation of epoxides to alkenes. The SPR effect of Au NPs was 
reported to play a key role in assisting activation of N=O bonds, so that the main product 
in the reduction of nitrobenzene under visible irradiation was different from that obtained 
under UV irradiation [50].

It has also been reported that Cu/graphene catalyst exhibits high activity for the reduc-

tive coupling of nitroaromatics to aromatic azocompounds under solar irradiation [51]. 

The product selectivity changed significantly with temperature, and conversion was 
found light intensity dependent. The light absorbed by Cu nanoparticles was the major 
 driving force of the reaction as the highest conversion in the visible light range was in the 

range 530–600 nm, where the Cu nanoparticles strongly absorb the light due to the LSPR 
effect [52].

Another representative example is referred to the reduction of styrene in the presence of 

hydrogen to yield ethylbenzene. This chemical reduction was successfully achieved in the 

presence of Ag–Pd nanocages under visible light irradiation. In these photocatalysts, Pd pro-

vides active sites for hydrogenation reactions, whereas Ag offers plasmonic properties to con-

vert light into heat [53].

2.2.3. Cross-coupling reactions

Plasmonic materials have also been investigated as photocatalysts for cross-coupling reac-

tions, which have been accepted as convenient one-step methods to render complex mol-

ecules of interest for the synthesis of natural and advanced materials, bioactive products, 

agrochemicals, or medicines [38]. Au-Pd nanostructures consisting of Au nanocrystal cores 

and tightly bonded Pd nanoparticles could harvest visible to near-infrared (NIR) light for 
Suzuki coupling of iodobenzene or bromobenzenes and aromatic boronic acids to biphenyls 

under solar radiation, and also under 809 nm laser irradiation [54].

In a study by Xiao et al. [3], five different cross-coupling reactions, namely the Sonogashira, 
Stille, Hiyama and Ullmann C-C couplings, and the Buchwald-Hartwig amination (C-N 
cross-coupling) were investigated to demonstrate the possibility of applying Au-Pd alloy NP 

photocatalyst to enhance the intrinsic catalytic activity of Pd sites under visible light irradia-

tion and at low temperatures (Figure 4C). The results suggest that electrons of alloy NP are 

excited under light irradiation and are then transferred from the nanoparticle surface to the 

reactant molecules adsorbed on the nanoparticle surface, weakening the chemical bonds of 

the molecules and facilitating the reactions. Increasing the light intensity accelerates the reac-

tion rate due to increased population of photoexcited electrons. The irradiation wavelength 

also affected the reaction rates, and ultraviolet irradiation was required to drive some reac-

tions with certain substrates.
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Hu et al. [55] developed a novel and efficient approach to synthesize interfaced dimers 
made of Au NPs and bimetallic nanoshells, such as Au/Ag, Pt/Ag, or Pd/Ag. The Au NP-Pd/
Ag bimetallic nanoshells were then used for catalyzing Suzuki coupling reactions between 

phenylboronic acid and iodobenzene at 80°C, yielding biphenyl. After 45 min in the dark, 

the conversion of reactants was 95%. Under visible light illumination, the reaction was sig-

nificantly accelerated, 95% conversion in only 15 min. The increase in the reaction rate under 
illumination was attributed to the strong SPRs in the Au NPs, which enabled absorption of 
visible light in the dimers, leading to an enhancement in catalytic performance.

Cui et al. [56] synthesized Cu
7
S

4
@Pd heteronanostructures and probed their photocatalytic 

potential for Suzuki coupling reaction, hydrogenation of nitrobenzene, and oxidation of ben-

zyl alcohol in the NIR range, respectively. As the Cu
7
S

4
@Pd LSPR peak position was close to 

1500 nm, a 1500 nm diode laser was used as illumination source for the photocatalytic reac-

tions. Additionally, irradiation at 808 and 980 nm were also evaluated. The highest conver-

sions rates were obtained for 1500 nm irradiation due to LSPR enhancement in this region. To 

evaluate the pragmatic feasibility of the photocatalyst, the catalytic reactions were evaluated 

under real sunlight irradiation (~40 mW/cm2) as well, and high conversion rates were attained 
(Figure 4D).

In a study by Trinh et al. [7], plasmonic Pd hexagonal nanoplates, with tunable longitudinal 

LSPR were synthesized and applied to catalyze Suzuki coupling reaction. The catalytic activ-

ity of the Pd nanoplates was 2.5 and 2.7 times higher than that of nonplasmonic Pd nanooc-

tahedral and Pd nanocubes, respectively, upon illumination at wavelengths in the range 

300–1000 nm. These results, along with theoretical studies, revealed that Pd hexagonal nano-

plates are able to harvest visible to NIR light, and that the increase in the catalytic activity on 
Pd nanoplates is primarily a result of the plasmonic photocatalytic effect of plasmon-induced 
hot electrons. Recently, it has been revealed that metal oxide nanostructures, such as WO3−x, 

MoO3−x, and TiO2−x, can exhibit LSPR in the visible and NIR region due to abundant oxygen 
vacancies or heavy doping [57, 58]. Lou et al. [57] demonstrated that the plasmon excitation of 

WO3−x nanowires by long wavelength irradiation can enhance main product yield and selec-

tivity in Suzuki coupling reactions catalyzed by the attached Pd nanoparticles.

2.3. Disinfection

While TiO
2
 photocatalytic inactivation of bacteria and viruses has been known for decades 

[59], the number of studies using plasmonic materials for water disinfection is still rather 

limited.

Silver halides (Ag/AgX where X = Cl, Br, I) supported on TiO
2
 or carbon materials have 

been the most studied photocatalysts for antimicrobial applications. Tian et al. [60] pre-

pared a AgCl@Ag@TiO
2
 sandwich-structured photocatalyst and evaluated its bactericidal 

activities in terms of the inactivation of Gram-negative bacteria Escherichia coli K12 (E. coli 

K12) under visible light irradiation. In the absence of irradiation, the catalyst exhibited a 
negligible killing response, whereas visible light irradiation in absence of photocatalyst 

only achieved the inactivation of 6% E. coli colonies in 30 min. In contrast, when AgCl@
Ag@TiO

2
 was used, nearly 77% of E. coli K12 population was inactivated after 6 min under 
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Figure 4. (A) Proposed mechanism for the plasmon-mediated oxidation of sec-phenethyl (R = CH
3
) and benzyl (R = H) 

alcohols in the presence of supported AuNP. Reprinted with permission from Ref. [43]. Copyright (2013) American 
Chemical Society. (B) Direct oxidative esterification of aliphatic alcohol (1-octanol as example). Adapted with permission 
from Ref. [47]. Copyright (2015) American Chemical Society. (C) Scheme of cross-coupling reactions catalyzed by Au-Pd 
alloy NPs under visible light irradiation. Adapted with permission from Ref. [3]. Copyright (2014) American Chemical 
Society. (D) Schematic representation of plasmon enhanced Suzuki coupling reaction, oxidation of benzyl alcohol 

and hydrogenation of nitrobenzene, over Cu
7
S

4
@Pd heteronanostructures. Reprinted with permission from Ref. [56]. 

Copyright (2015) American Chemical Society.
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visible light irradiation,  reaching total inactivation at 15 min. Under visible light irradia-

tion, Ag NPs produce electrons and holes, which can be separated by the SPR-induced 

local electromagnetic field. Due to the suitable conduction band and valence band energy 
levels of AgCl and TiO

2
, the photo-generated electrons transfer to TiO

2
 while holes transfer 

to AgCl. The electrons are trapped by adsorbed O
2
 to form •O

2
−, while the holes combine 

with OH−/or Cl− ions to form •OH/or Cl0 radicals. All of •O
2

−, •OH, and Cl0 radicals are 

reactive species responsible for the inactivation of bacteria. Simultaneously, Shi et al. [61] 

studied the photocatalytic inactivation of E. coli by Ag/AgX-CNTs under visible light. The 
Ag/AgBr-CNTs exhibited an excellent photocatalytic disinfection performance, achieving 
the complete inactivation of 1.5 × 107 cfu/mL of E. coli within 40 min. This was attributed to 
the SPR of Ag nanoparticles and the efficient photo-generated carrier separation owing to 
the CNTs. Thus, a high concentration of electrons migrates to the surface of CNTs, where 
they can be trapped by O

2 
and H

2
O to produce •O

2
− and H

2
O

2
.

   O  
2
    + e   -   →   •   O  

2
        -   (1)

       •   O  
2
        -   + H  

2
  O  →   •   OOH + OH   -   (2)

   2   •  OOH →  O  
2
    + H  

2
   O  

2
    (3)

These species, along with •OH produced from holes in the surface of AgBr, are involved in the 
photocatalytic bacterial inactivation process.

More recently, Xia et al. [62] prepared a series of Ag/AgX/RGOs (RGO = reduced graphene 
oxide) composites and evaluated their performance for water disinfection upon visible light. 

The visible light irradiation without plasmonic catalyst or the photocatalyst in the absence of 

light irradiation showed no bactericidal effect. Upon visible light irradiation, Ag-AgBr/RGO 
exhibited high photocatalytic inactivation efficiency and attained complete inactivation of 7 log 
cfu/mL E. coli cells in 8 min. Remarkably, additional experiments were also carried out to eval-

uate the possible effect of Ag+ ions in order to clarify the disinfection mechanism of Ag-based 

plasmonic photocatalyst. Authors found that light irradiation promoted the release of free Ag+ 

ions from Ag-AgBr/RGO and also enhanced the antimicrobial activities of Ag+ ions. These were 

able to induce the damage of metabolic process while the cell membrane damage was rather 

limited. The primary bactericidal effect of visible light irradiated Ag-AgBr/RGO resulted from 
the sustainable generation of reactive species. Plasmonic-induced H

2
O

2
 plays the leading role, 

collaborating with e-, •O
2
−, •OH to induce damage of microbial metabolism processes, destroy 

the cell envelope and lead to the leakage and degradation of intracellular substances.

AuNP-based nanocomposites have also been investigated for disinfection applications. In 
this regard, Sarkar et al. [63] developed a plasmonic photocatalyst derived from functional-

ized amylopectin and in situ incorporated TiO
2 
and AuNPs (g-AP-pAA/TiO

2
-Au), and dem-

onstrated its antimicrobial activity in the presence of both UV, and especially, visible light 
irradiation, as depicted in Figure 5.

Li et al. [64] developed a nonnoble metal plasmonic photocatalyst consisting of a TiN/TiO
2
 

composite and evaluated its performance for the photocatalytic disinfection of E. coli in a buf-

fer solution under visible light illumination. In the absence of photocatalyst or visible light, 
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Figure 5. Field emission scanning electron microscopes images of E. coli (a) in absence of light source; (b) in presence of 
UV light; (c) in presence of g-AP-pAA/TiO

2
 along with UV light; and (d) in presence of g-AP-pAA/TiO2-Au along with 

visible light. Reprinted with permission from Ref. [63]. Copyright (2016) American Chemical Society.

the survival ratio of E. coli population showed no obvious change. In the presence of TiN/TiO
2
 

photocatalyst under illumination (λ > 400 nm), the survival ratio of E. coli colonies dropped 

continuously upon increasing irradiation times. According to the proposed  mechanism, TiN 

nanostructures constitute the plasmonic component in the composite to harvest visible light 

and generate hot electrons by the LSPR effect. These hot electrons, once they were excited 
above the Fermi energy level of TiN, could be injected quickly into the conduction band 

of TiO
2
, to react with O

2 
yielding •O

2
− and subsequently •OH, which are able to disinfect 

microorganisms.

3. Nanoplasmonic photocatalysis in gas-phase reactions

Besides their use in aqueous media photocatalysis, plasmonic nanomaterials have been lately 

investigated for their use in gas-phase reactions. Due to the broad range of reactions in gas 

phase currently under study, in this section we will focus on two big groups of them: degra-

dation of volatile organic compounds (VOCs) and chemical to energy conversion.

3.1. Photo-degradation of volatile organic compounds

Air pollution is of great concern nowadays due to the damage that a long exposure can do 

to human health. Indoor and outdoor environments are suitable to suffer from high con-

centration of VOCs due to human activity, so currently it is considered urgent to address 
this problem in a more efficient way. Currently, the methods used to eliminate VOCs vary 
from physical methods like filtration or adsorption, to chemical ones like UV irradiation or 
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ozone treatment [65]. The latter, being efficient for the purpose of eliminating the hazardous 
 materials from air, is also harmful to human health, so there is a need for new methods to 

eliminate VOCs from air. In this case, the use of plasmonic materials seems to be a logical step 
forward, not only in order to avoid exposure to dangerous atmospheres, but also because of 

the possibility of using solar energy instead of other expensive and unsafe source of energy. 

While the examples of photocatalysis for VOCs elimination are growing lately, the ones using 
plasmonic materials, even when growing every year, are still far from conventional semicon-

ductors ones. One of the first examples in using plasmonic materials for VOCs remediation 
comes from Chen et al. [66]. They used Au NPs supported in different metal oxides to get the 
total oxidation of formaldehyde with visible light. In this case, the authors wanted to use a 
pure plasmonic material, so they attached the Au NPs to oxide supports like ZrO

2
 or SiO

2
, 

both with high band gap (5 and 9 eV, respectively) in order to avoid excitation of the sup-

port from the visible light source. The mechanism proposed involves two of the features of 

plasmonic materials mentioned above. In one hand, irradiating the Au NPs on their plasmon 
band will increase the temperature locally high enough to perform the VOCs oxidation in 
high extent. Besides the temperature effect, the high electric field generated on the surface of 
the nanoparticles would activate polar molecules as formaldehyde present on the surface of 

Au NPs, aiding to the total oxidation of the compound. Another example of decomposition of 

VOCs using plasmonic materials is the isopropanol oxidation performed by Dinh et al. [67]. 

In this case, the structure of the catalyst is a key for its performance. It consists of Au/TiO
2
 

nanostructured photocatalyst that is constructed by the three-dimensional ordered assembly 

of thin-shell Au/TiO
2
 hollow nanospheres. Due to that composition, it can be considered a 

hybrid plasmonic structure with some special qualities. The authors claim that the photonic 

structure of the catalyst enhances the absorption of the plasmonic AuNP by the multiple 

scattering and the slow photon effect characteristic of these architectures. This enhancement 
absorption of the plasmon band provides an activity several times higher than the normal 

Au/TiO
2
 structure.

The last example for VOCs oxidation using plasmonic materials comes from Sellappan et al. 
[68]. They combine gold and silver nanoparticles with TiO

2
 with different configurations in 

order to evaluate the electron transfer after light excitation. They evaluate the photocatalysis 

of the degradation of methanol and ethylene under different conditions. One of those condi-
tions is the physical contact between the metal and the semiconductor. When the nanoparticles 
are in contact with TiO

2
, a Schottky barrier is formed, which enhances the charge separation 

under UV light illumination. When the metals are not in contact with the support, they also 
observe an enhancement in the activity of the photocatalyst that they assign to a near and far 

field effect of the plasmonic nanomaterial. This is so because, even when they are separated, 
the distance is short enough from the support to feel the high electric field generated on the 
metal nanoparticle.

3.2. Plasmonic-driven chemical to energy conversion processes

Global warming is nowadays one of the biggest problems to be addressed in our society. The 
vast amount of fossil fuel consumed during the last decades has broken the natural balance 
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of CO
2
 emission and uptake, leading to high concentrations of this gas in the atmosphere and 

in the oceans, and provoking a sharp climate change. Besides, due to this enormous grow-

ing in fossil fuel consumption, the society is exhausting their reserves at a very high rate 

 creating an urgent need for alternative sources of energy. With this in mind, photocatalysis 
has emerged as a promising tool to kill two birds with one stone. On one hand, it can help to 
reduce the CO

2
 emitted to the atmosphere and also in that process give products that could 

be able to store energy. As a first example of this, in 1979 Inoue et al. [69] attained for the 
first time the reduction of CO

2
 with light using several semiconductors as photocatalysts. 

Even when the reaction was performed in liquid phase, we consider appropriate to mention 

it here since it was the first attempt that obtained valuable products after the reduction of CO
2 

using light as energy source. Since that first work, many attempts have been made in order 
to synthesize photocatalysts to reduce CO

2
 to different interesting products. Most of those 

catalysts are semiconductors like TiO
2
 or ZnO which, while they possess many interesting 

properties to be used as photocatalysts, they also have some drawbacks that limit their use 

on large scale applications, as low photon absorption efficiency, high charge carrier recom-

bination rate or being restricted to the UV region of the spectra. In order to overcome these 
downsides, in recent years the scientific community have paid attention to plasmonic materi-
als as an attractive tool to be used for the reduction of CO

2
. Liu et al. [70] first reported the 

use of plasmonic gold catalyst for the dry reforming of CO
2
 with methane to obtain syngas. 

This reaction usually requires high temperatures (800–1000°C) and is of great interest since 

it would transform two greenhouse gases into molecules suitable for energy storage like CO 
and H

2
. They prepared a catalyst consisted of Rh and Au supported on SBA-15 in order to 

use the good properties of Rh for this reaction and the plasmon band of Au to activate the 

reactants. They claim that the high electric field generated on the AuNP induces polarization 
on the CO

2
 and the CH

4
 molecules activating them, and enhances the conversion to syngas. 

Another interesting reaction involving the consumption of CO
2
 is the reverse water gas shift 

reaction (RWGS). Upadhye et al. [71] probed that using AuNP supported over TiO
2
 and CeO

2
, 

they could enhance the yield of the reaction illuminating with visible light from 30 to 1300%. 

According to them, the LSPR of the catalyst changed the intrinsic kinetics of the reaction on 

the surface of the catalyst by increasing the rate constant of either the carboxyl decomposition 

or the hydroxyl hydrogenation, two of the key steps in this reaction. They attributed the rate 
enhancement either to the generation of hot electrons or the polarization effect of the high 
electric field generated by the plasmonic nanoparticles on the adsorbates. Not only conven-

tional semiconductor materials have been used to support plasmonic nanoparticles, lately 

several authors have used graphene and derivative as active supports for photocatalysis. This 

is the case of Shown et al. [72] that evaluated the activity of Cu NPs supported on graphene 
oxide (GO) for the reduction of CO

2
 (Figure 6). In their work, they prepared the catalyst with 

different Cu loading and evaluated the photoreduction using visible light, and compared the 
results with GO alone and with TiO

2
 P25. The authors found an increase in the products yield 

for the CuGO hybrid material by 60 times with respect to the GO, and 240 times with respect 
to the P25, obtaining methanol and acetaldehyde as the main products. They attributed the 
enhancement to a modification in the work function of the GO by the Cu NPs that improved 
the charge separation.

Nanoplasmonics - Fundamentals and Applications326



Finally, some additional examples where CO
2
 has been successfully hydrogenated to yield 

methane in the presence of nanoplasmonic photocatalysts are briefly described below and 

summarized in Table 2. Methane has gained an increasing interest, given its abundance 

and its extended use as fuel in fertilizers or as intermediate in the petrochemical industry 

[73]. Most of the studies report the combination of titania or P25 semiconductor supports 

with noble-metal-based cocatalysts, which are able to expand the band gap toward the 

visible range through their surface plasmon band [74], act as charge reservoirs, and also 

as active and selective catalytic centers [74–81]. In this regard, the presence of Pd or Pt 
strongly enhances the selectivity toward methane in comparison with the preferential 

pathway toward CO observed in TiO
2
, being of paramount importance for the proper 

formation of organic intermediates. As a major drawback, progressive deactivation was 

observed upon oxidation of Pd into PdO domains [79]. Furthermore, the effective forma-

tion of Au-Cu alloys was also found extremely active, thereby outperforming the photo-

Figure 6. (a) UPS-determined work functions of GO and Cu/GO hybrids and (b) band-edge positions of pristine GO 
and Cu/GO hybrids as compared with CO

2
/CH

3
OH and CO

2
/CH

3
CHO formation potential. (c) Schematic photocatalytic 

reaction mechanism. Reprinted with permission from Ref. [72]. Copyright (2015) American Chemical Society.
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catalytic conversions of their respective single metal counterparts, while expanding their 

response in the visible range as nicely demonstrated by transient absorption spectroscopy 

studies [74].

Other relevant studies additionally dealt with the use of catalytic monoliths [75], fluidized-
bed reactors combined with LEDs [77] or included the use of novel semiconductor supports 

based on carbon nitride or reduced graphene oxide that provided additional sites for the 

accommodation of CO
2
 and the active cocatalysts [76, 82]. Finally, Zhang et al. synthesized 

a hybrid material consisted of Rh nanocubes supported on Al
2
O

3
 and used for the selective 

hydrogenation of CO
2
 to CH

4
, avoiding almost completely the competitive production of CO 

(see Figure 7). The authors used UV and blue light coming from LED irradiators in order to 
excite the plasmon band of the metal nanoparticles and generate high-energy electrons that 

are transferred to the adsorbates [81].

Catalyst Reductant Cocatalyst Remarks Refs.

Au, In/TiO
2

H
2

Au, In Irradiation with UV lamp 
(200 W; 150 mW/ cm2)

Use of monolithic reactors

[75]

Pd/TiO
2

H
2
O Pd Irradiation with UV-LED 

arrays (40 pieces) (365 nm)

Fluidized bed reactors + T 

= 140°C

[77]

Pd/TiO
2

H
2
O Pd Irradiation at λ > 310 nm

Formation of organic 

adsorbates is critical

[79]

Core-shell
Pt/TiO

2

PtCu/TiO
2

H
2
O Cu, Pt Light source 780 > λ > 320 

nm

Strong influence of 
cocatalysts on selectivities

[80]

Au,Cu/P25 H
2
O Au, Cu, Au-Cu alloys λ= 355 and 532 nm

Performance of transient 

absorption experiments

[74]

Ternary composition 

Metal + RGO + TiO
2

H
2
O Pt, Pd, Ag, Au Visible light irradiation 

(energy daylight bulb, 15 W)
Pt-doped showed best 

activity

[76]

Ag(AgCl)− Carbon 
Nitride

H
2
O - In situ generation of Ag 

plasmonic domains

400 < λ < 650 nm
30 fold enhancement with 

P25

[82]

Rh cubes/Al
2
O

3

Au/Al
2
O

3

H
2

– Irradiation with UV, blue 
and white LEDs

Comparison with thermal 
reaction

[81]

Table 2. Summary of selected photocatalysts for conversion of CO
2
 into CH

4
.
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4. Plasmonics in biocatalytic processes

4.1. Photobiocatalysis

A promising field for the use of nanoplasmonics currently under development is the photo-

biocatalysis. In this relatively novel area, the main goal is obtaining photocatalysts inspired 
in natural photosynthetic centers. A brief overview of the current state of the art in this field 
devoted to regular semiconductors has been recently published elsewhere [83].More recent 

studies involving the use of plasmonic materials have been reported by Sanchez-Iglesias et 
al. Their studies focused on the evaluation of multiple gold-shaped plasmonic nanostructures 

(see Figure 8) and their effect on the effective photoregeneration of nicotinamide adenine 
dinucleotide (NADH) molecules. These latter molecules are extremely important in natu-

ral biochemical routes as mediating cofactors in many enzymes [84, 85]. Moreover, cofactor 

molecules are necessary, for instance, in the photosynthesis process as light harvesters and 

intervening in the reduction-oxidation balances involved in respiration [86]. The major draw-

backs associated with cofactor molecules have arisen from the limited success achieved in 

the past year attempting their regeneration (reduction) via nonenzymatic pathways. Organic 
dyes, semiconductors, or polymers have been previously used as photocatalysts to regener-

ate NADH cofactors, but these molecules intrinsically possess a poor quenching ability to 
accept electrons. Therefore, the need for implementing an electron relays acting as mediator 

Figure 7. Representative example of recently developed plasmonic catalysts for the CO
2
 hydrogenation into methane: 

Reaction mechanism on Rh nanocube comparing the preferential activation of CO in the thermocatalytic process in 
contrast to the methane pathway favored under photocatalytic conditions. Adapted with permission from Ref. [81]. 

Copyright (2017) Nature Publishing Group.
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has been suggested to overcome this limitation. Up to date, the choice of suitable mediators 

has been rather scarce and limited to a few examples of Rh-based organometallic complexes. 

The use of gold plasmonic nanostructures represents a more straightforward and affordable 
alternative.

The first successful example of plasmonic cofactor photoregenerator was reported for gold 
nanorods coated with Pt domains on their tips (Figure 8B), thereby representing a previ-

ously defined plasmonic photocatalyst containing a heterojunction that combines a plasmonic 
structure (Au NRs) and a catalytic active site (Pt) to successfully carry out the regeneration 

(reduction) of NADH cofactor molecules [85]. A subsequent study carried out by the same 

authors determined an even more remarkable photo-response of gold nanostars with epi-

taxially grown Pt domains that was associated to the major light harvesting capacity of the 

star-shaped plasmonic structures (see Figure 8A) [84, 85]. The potential combination of these 

plasmonic heterojunctions with other semiconductors represents a very promising alternative 

to obtain suitable mediators that can help to modulate multiple biochemical processes via 

light-induced inputs.

4.2. Artificial enzymes

Another niche of great biotechnological interest for the potential application of nanoplas-

monics is related with the search for novel artificial enzymes [86]. Natural enzymes are well-

known biocatalysts that regulate every biochemical processes involving living organisms. 

Recently, an emerging research subfield has emerged to find novel nanomaterials that can 
mimic the role of natural enzymes as highly active, and specific catalysts without incurring in 

Figure 8. STEM-EDX analysis of Pt-decorated gold nanoplasmonics with different shapes and corresponding 3D models 
used for photoregeneration of NADH cofactor molecules: (A) stars; (B) nanorods; and (C) nanocubes. Adapted from 
Refs. [84, 85] with permission of The Royal Society of Chemistry.
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their intrinsic limitations, such as limited stability by denaturalization, strong sensibility on 

variations of their optimal environment, difficulties for effective retrieval and reuse, and high 
costs derived from the multiple synthesis and purification steps implied in their preparation. 
In order to circumvent these major drawbacks, the search for stable and affordable alterna-

tives has brought the spotlight on the development of artificial systems based on inorganic/
organic nanomaterials.

In this regard, it is worth mentioning that Prof. Santamaria’s group recently developed and 
tested one of the first NIR-activated enzyme-like plasmonic photocatalysts used as a glucose-
oxidase surrogate (Figure 9) [87]. Glucose-oxidase biomimetic systems hold a huge potential for 
biomass conversion, selective detection of glucose in blood at trace levels, and control/monitor-

ing of internal metabolism in cells. Previous candidates based on photocatalytic semiconductors 

such as TiO
2
 or ZnO rendered promising photoconversion of glucose [88, 89], but the com-

bination of plasmonic gold nanorods cores holding excellent NIR absorption capabilites with 
an outer titania nanoshell proposed by Ortega-Liebana et al. provided not only an extended 
response toward the whole visible-NIR range, but also additional thermal stability and photoac-

tivity toward the effective and preferential oxidation of glucose into gluconic acid and hydrogen 
peroxide (Figure 9). In addition, the activity of these core-shell nanostructures was maintained 
in a wide pH range and was effective at near room temperature. The authors claimed that the 
minimal thickness of the TiO

2
 shell ensured the formation of an effective Schottky barrier at the 

interface between Au and TiO
2
. It was also remarkable to find out that the uncoated Au NRs 

exhibited negligible photo-response toward the glucose oxidation, thereby corroborating the 

need of the semiconductor titania shell fraction to promote the generation of active radicals and 

the selective oxidation of the sugar molecules [87].

Figure 9. (Left) Schematic plot displaying the glucose-oxidase mimetic action of the titania-coated gold nanorods 

plasmonic photocatalyst under NIR irradiation; (Right) Colorimetric detection of the glucose when selectively converted 
into gluconic acid via the formation of a Fe-hydroxamate complex. Uncoated Au-NRs exhibit negligible photooxidation 

properties in comparison with the coated ones. Photocatalytic experiments were carried out with an 808 nm laser. 

Partially reprinted with permission from Ref. [87].
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5. Conclusions

Plasmonic-based nanomaterials hold a very promising future as potential alternatives for the 

fabrication of next generation photocatalysts and processes where the wavelength irradia-

tion range is expanded toward the visible and near-infrared windows, thereby maximizing 

the use of the solar irradiation. A wide variety of fields of action can be foreseen including 
those described in the present chapter and some additional options including the generation 

of biofuels from water or biomass, photoelectrocatalysis, solar cells, or photovoltaics. The 

use of these types of catalysts for light-triggered therapy treatments and the specific target-
ing for cell-mechanisms can also be envisioned as another promising area of expansion. In 
conclusion, the use of plasmonics is likely going to emerge with abundant and interesting 

breakthroughs in the next future.
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