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Preface 
The investigation of new memory schemes, neural networks, computer 

systems and many other improved electronic devices is very important for future 
generations of electronic circuits and for their widespread application in all the 
areas of industry. Relatedly, the analysis of new efficient and advanced electronic 
elements and circuits is an essential field of highly developed electrical and 
electronic engineering. The resistance-switching phenomenon, observed in many 
amorphous oxides, has been investigated since 1970 and is promising for inclusion 
in technologies for constructing new electronic memories. It has been established 
that such oxide materials have the ability to change their conductance in 
accordance to the applied voltage and memorizing their state for a long time 
interval. Similar behavior was predicted for the memristor element by Leon Chua 
in 1971. The memristor was proposed in accordance with symmetry considerations 
and the relationships between the four basic electric quantities—electric current i, 
voltage v, charge q and flux linkage Ψ. The memristor is a passive one-port 
element, together with the capacitor, inductor and resistor. The Williams Hewlett 
Packard (HP) research group has made a link between resistive switching devices 
and the memristor proposed by Chua. In addition, a number of scientific papers 
related to memristors and memristor devices have been issued and several models 
for them have been proposed. The memristor is a highly nonlinear component. It 
relates the electric charge q and the flux linkage Ψ, expressed as a time integral of 
the voltage v. It has the important capability of remembering the electric charge 
passing through its cross-section, and its respective resistance, when the electrical 
signals are switched off. Due to its nano-scale dimensions, non-volatility and 
memorizing properties, the memristor is a sound potential candidate for 
applications in high-density computer memories, artificial neural networks, and 
many other electronic devices. 

A number of memristor models have been proposed in order to analyze their 
behavior in electric fields. Each model contains two basic equations. The first 
equation represents the relationship between the memristor voltage and current. 
This relationship is a state-dependent function—the state is related to the charge 
accumulated in its nanostructure. The second equation associates the time 
derivative of the memristor state variable and the current. The best models, such as 
the Biolek and Joglekar models, and the Boundary Condition Memristor model 
(BCM), describe titanium dioxide memristors and contain a window function in 
the right side of the state differential equation. The main window functions are 
state-dependent polynomials with a fixed positive integer exponent. The value of 
the applied exponent determines the nonlinearity of the used window function. 
The window function is used in the models to represent nonlinear ionic drift in the 
memristor nanostructure at high voltages. It has been established through many 
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experiments and measurements that the nonlinearity of the ionic dopant drift 
depends on the applied voltage. However, in the existing basic memristor models, 
the integer exponent in the respective window function has a fixed value. By 
reason of the use of this constant integer exponent in the applied window function, 
the nonlinearity of the corresponding models does not depend on the memristor 
voltage. To the best of the author’s knowledge, there is no established relationship 
between the positive integer exponent in the window functions applied in the basic 
memristor models and the memristor voltage. A motivating factor for the work 
presented here was to fill this gap and propose modifications to several titanium 
dioxide memristor models, and detailed analysis of the memristor element and 
several basic memristor circuits and devices. The modified models more 
realistically represent the voltage-dependent nonlinearity of the ionic dopant drift, 
according to the memristor state variable. The main modifications to the models 
are associated with the use of a voltage-dependent integer exponent in the window 
functions, for increasing the ionic motion nonlinearity, and a more realistic 
representation of the behavior in the general electric mode. This book presents a 
detailed analysis of several specific phenomena in the titanium dioxide memristor, 
such as the parasitic mutual inductances and capacitances in a memristor crossbar, 
the temperature influence on memristor behavior, and internal diffusion. The 
principle advantages of the proposed memristor models are the use of window 
functions with increased nonlinearity, which improve the memristor model 
behavior representation for higher voltages and avoid issues of lack of 
convergence. 

This monograph summarizes results from several of the author’s papers about 
memristors and memristor circuits. These papers are especially based on titanium 
dioxide memristors, which still have very wide application, and for this reason are 
main objects of investigation. It is organized as follows. Chapter 1 is an 
introduction to memristors; the basic physical description of the titanium dioxide 
memristor nanostructure and processes associated with the ionic current is 
presented. In Chapter 2, the fundamentals of titanium dioxide memristor modeling 
and simulations are described in detail, using the existing models and the models 
modified by the author. Chapter 3 reports the analysis of several basic memristor 
devices and circuits, such as memristor generators, integrators, and anti-parallel 
and series circuits, applying the author’s memristor models. In Chapter 4, the 
investigation of memristor networks—memories and artificial neurons—is shown, 
paying attention to the basic electrical parameters and properties of the proposed 
memristor models and devices, and especially the modified memristor synaptic 
circuits. Finally, concluding remarks are presented. 

VALERI MLADENOV 
Technical University of Sofia 

Sofia, Republic of Bulgaria 
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CHAPTER I 

Introduction to Memristors 
  





1.1. General Information for Memristors

The resistance-switching phenomenon, observed in a number of amorphous
metal and transient chemical oxides, such as SiO2, Al2O3, Ta2O5, has been
investigated since 1970 [1]. It has been established that such oxide materials placed
in a metal-oxide-metal structure have the capability of changing their conductance in
accordance to the applied voltage and memorizing their conductance for a long-time
interval [1,2]. Similar unusual and surprising behavior has been predicted for the
memristor element by Leon Chua in 1971 [3].

The memristor element is proposed in accordance to symmetry considerations
and the relations between the four basic electric quantities (current, voltage, electric
charge and flux linkage) [3]. The electric charge is defined as a time integral of
the current, and the magnetic flux is expressed as a time integral of the voltage.
The resistor relates the voltage and current, the inductor is described with Faraday’s
Law using the relation between the current and magnetic flux, and the basic
capacitor equation is expressed using the relation between electric charge and voltage.
The proposed fourth fundamental two-terminal element relates the flux linkage,
expressed as a time integral of the applied voltage, to the electric charge. The relations
between the described electrical quantities and the fundamental one-port elements [4]
are presented in Figure 1.

Figure 1. The relationships between the four basic electrical quantities (current i,
voltage v, electric charge q and flux linkage Ψ) and the fundamental two-terminal
elements (the resistor with a resistance R, the capacitor with a capacitance C, the
inductor with an inductance L, and the memristor M). M is also used to denote the
resistance of the memristor element, the so-called memristance.
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The memristor is an essential passive one-port element together with the resistor,
inductor, and capacitor [3–5]. The memristor is a highly nonlinear component [5,6].
It directly relates the electric charge and the flux linkage Ψ which is expressed
as a time integral of the memristor voltage [3,4]. The memristor has the valuable
capability of remembering the electric charge moving through its cross-section and
its resistance M, when the electrical signals are switched off [4,5]. Its current–voltage
relationship that will be discussed in detail later is a pinched hysteresis loop, of
which the shape and range depend on both the magnitude and the frequency of the
applied signal [4,6]. Since the memristor element could remember its conductance
after the source is turned off, then the memristor could be applied as a non-volatile
memory element [4–7]. The memory effect is based on accumulating electric charges
in the memristor structure and holding them when the memristor voltage is zero.

1.2. Main Types of Memristors

Several basic types of memristors exist. They are based on different chemical
and physical structures and have different principles of operation.

1.2.1. Titanium Dioxide Memristor

It is one of the leading nanostructured elements which still have broaden
applications, owing to the fact that it is an object investigated in detail in the present
technical research [4].

1.2.2. Polymeric Memristors

The polymeric memristors [8] are based on unique plastic materials. Single or
parcels of molecules are able to conduct and switch currents and memorize
information using charge accumulation. Instead of coding “0” and “1” as the amounts
of charge stored in a silicon memory unit, polymer-based resistive random-access
memory supplies information in a diverse way, for instance, based on the low or high
conductance in reply to an applied external electrical field. The conductance states
can be read non-destructively. Because electric conductivity is the multiplication
of charge volumetric concentration and ionic mobility, changes in either the
charge concentration or ionic mobility, or both can cause changes in the element
resistance states. In the polymeric memory materials, the resistance bi-stability
may appear from alterations of the characteristics of the switching material, and a
few switching algorithms, together with charge transport, structure alteration and
reduction-oxidation exchange [8].

1.2.3. Ferroelectric Memristors

Resistance switching has been observed in special sandwich-like structures
consisting of ferroelectric thin films [9]. Their resistance can be reversibly changed
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between OFF state and ON state by applying an external signal. These two
conductance states can be used in bistable memory components. More significantly,
continuously tunable resistors, i.e., memristors, have been illustrated in ferroelectric
tunnel junctions [9]. Resistance-switching behavior in BiFeO3 has received enormous
attention because it suggests additional degrees of independence for flexible
devices. The established resistive-switching phenomena in such thin films appear
to differ from those in the processing atmosphere and microstructures of the thin
materials, given that several mechanisms could be involved. Since the polarization
transfer has great stability for a chemical alteration and is basically rapid, the
interfacial resistance-switching phenomenon is optimistic to the new ferroelectric
memristors [9].

1.2.4. Spintronic Memristors

The spintronic memristor device [10] is based on an oxide thin film placed
among two regions with magnetic properties. The first magnetic layer has
permanent magnetic characteristics. The other film is a region with a field barrier.
The magnetization of the free region on the left surface of the area divider is
understood to be associated with the magnetic properties of the first region. The right
surface magnetization is in the opposite location to the magnetic field of the first
region. The domain barrier moves if the current flows through the described structure.
This motion depends on the current path. The area wall can be fully transported
to the left region and thus a total antiparallel magnetization between the regions
occurs. This phenomenon leads to low conductance [10]. If the barrier is completely
transported to the second region, a parallel magnetization between the first magnetic
film and the pinned regions is realized. Then, high conductance is established.
The state variable describes the length of the parallel magnetized section of the
second region. This section has high conductivity and the antiparallel layer has lower
conductance [10].

Principally, all types of memristor elements could be described using an
equation describing the current–voltage relationship and an equation relating the
time derivative of the state variable and the memristor current. In the next section,
the titanium dioxide memristor nanostructure will be discussed in detail.

1.3. Basic Principles of Titanium Dioxide Memristor Nanostructure, and Its
Physical Description in Electric Fields and Memory Effect

1.3.1. Main Memristor Nanostructure and Its Description

The titanium dioxide memristor nanostructure has been invented by
Stanley Williams during his investigations on resistance-switching materials in
Hewlett-Packard (HP) research group [4]. A simplified schematic of the memristor
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structure is presented in Figure 2(a). The electrodes of the memristor element are
made of platinum or titanium material. The structure of the memristor element
is based on a thin film of amorphous titanium dioxide material. The first region
of the memristor element is formed in the titanium dioxide structure by doping
with oxygen vacancies and the second one is based on pure titanium dioxide [4].
The oxygen vacancies have positive electric charge. The process of doping with
oxygen vacancies is called electroforming and is based on applying a high direct
current (DC) voltage with a value of 5 V [4]. Due to the high electric field, a partial
evaporation of oxygen near the positive electrode occurs and a certain amount
of oxygen vacancies appears in the left region of the titanium dioxide memristor
sample [4]. The stoichiometric chemical formula of the doped region is TiO2-z, where
the index z has a value between 0.02 and 0.05.

Figure 2. (a) A simplified memristor nanostructure based on titanium dioxide;
(b) A simplified electrical circuit substituted for the schematic of memristor
nanostructure, using a series connection of two state-dependent nonlinear resistors,
which represent the resistances of the doped and the undoped memristor
layers, respectively.

The doped region of the memristor nanostructure has high conductance, while
the pure titanium dioxide layer possesses very low conductance [4]. The length of
the whole memristor nanostructure D is about 10 nm. The length of the doped region
could be changed by applying an external electric field [4]. When a positive voltage
is applied to the memristor, the positive potential on the anode repels the oxygen
vacancies, and these oxygen vacancies start moving to the cathode. The length
of the doped region increases until the oxygen vacancies reach the cathode. If a
negative voltage is applied to the memristor nanostructure, then the anode has a
negative potential. It attracts the oxygen vacancies and the length of the doped region
decreases [4]. The resistances of the doped and undoped layers of the memristor
depend on their instantaneous lengths, and on the specific resistances of these
regions [4]. If the boundary between the doped and the undoped regions of the
memristor element reaches the right edge of the whole memristor nanostructure, the
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doped region has a maximum length. In this state, the memristor has a minimum
resistance, which has a value of 100 Ω [4]. This state of the memristor element is
known as a fully closed state and the corresponding resistance is known as the
ON-resistance (RON). If the boundary between the doped and the undoped regions
of the memristor is on the left edge of the whole memristor nanostructure, then
the whole region of the memristor is composed of pure titanium dioxide, and the
memristor has a maximum resistance with a value of 16,000 Ω [4].

1.3.2. Mathematical Description of the Titanium Dioxide Memristor

This state of the memristor element, in which its maximum resistance is
reached, is known as a fully open state, and its maximum resistance is known as the
OFF-resistance (ROFF) [4]. The instantaneous length of the doped layer is denoted
with w and the whole length of the memristor is represented as D [4]. The state
variable of the memristor x is expressed as a ratio between the length of the doped
region w and the length of the whole memristor D [4]:

x =
w
D

(1.1)

The doped and the undoped regions of the memristor element are connected in a
series connection [4]. A simplified electrical circuit of the titanium dioxide memristor
substituted for the schematic of its nanostructure is shown in Figure 2(b) to explain
the memristor behavior in electric fields and further derive the state-dependent
current–voltage relationship.

The resistance of the memristor region is proportional to the layer length and
the specific resistance of the considered layer. The conductance of the saturated
region is reversely proportional to the multiplication of the ON-resistance and its
corresponding length.

The resistance of the undoped region is proportional to the length of the
undoped region and the OFF-resistance of the element [4]. The equivalent resistance
of the memristor Req, according to the electrical circuit (Figure 2(b)), is [4]:

Req = RON x + ROFF(1− x) (1.2)

It is clear from Equation (1.2) that the state variable x determines the total
resistance Req of the memristor element and the ON- and OFF-resistances. If a
voltage signal v is applied to the element, the relationship between the memristor
current i and the applied voltage v is expressed using the state-dependent Ohm’s
Law [4]:

v = i Req = i [RON x + ROFF(1− x)] (1.3)

7



The voltage across the saturated layer of the element vw is expressed using the
Ohm’s Law; it is a multiplication of the memristor current i, the resistance of the
doped layer RON and the state variable x [4,11]:

vw = i RON x = i RON
w
D

(1.4)

The electric field strength in the doped region of the memristor
→
Ew can

be expressed as a ratio between the voltage across the doped layer vw and its
instantaneous length w [4,11,12]:

→
Ew =

vw

w
=

i RON
w
D

w
= i

RON
D

(1.5)

The relationship between the velocity of the oxygen vacancies
→
v , expressed as

a time derivative of the instantaneous value of the doped region length w, and the

electrical field strength in the saturated region
→
Ew is:

→
v =

dw
dt

=
d
dt
(x D) = D

dx
dt

= µ
→
Ew = µ i

RON
D

(1.6)

where µ = 1× 10−14 m2/(V·s) is the ionic mobility of oxygen vacancies in the titanium
dioxide material [4]. Equation (1.6) can be transformed as follows [4]:

dx
dt

= µ
RON
D2 i = k i (1.7)

where k is a constant, dependent only on the memristor parameters µ, RON and D [4].
Equation (1.7) is the basic state differential equation of the idealized memristor
element with linear ionic drift [4]. Equations (1.3) and (1.7) completely describe the
memristor element behavior in an electric field [4] and are combined to constitute
System of Equations (1.8):∣∣∣∣∣∣∣

v = i [RON x + ROFF(1− x)]

dx
dt = k i

(1.8)

If the applied memristor voltage v is a known variable, then the unknown
variables are the memristor state variable x and the current i. First, the current i has
to be expressed by the first equation in System of Equations (1.8) and then to be
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substituted into the state differential equation—the second equation in System of
Equations (1.8). Therefore, System of Equations (1.8) can be rewritten as:∣∣∣∣∣∣∣

i = v
[RON x+ROFF(1−x)]

dx
dt = k i = k v

[RON x+ROFF(1−x)]

(1.9)

After performing the derivative of the state variable x of the element with
respect to the time variable t in the second equation in System of Equations (1.9), the
following state differential equation of the memristor element is acquired:

[(RON − ROFF) x + ROFF] dx = k v dt (1.10)

The left side of Equation (1.10) is integrated with respect to the state variable x
from the initial value x0 to the present value x, and the right side of the equation is
integrated with respect to the time variable t from zero to the present moment of the
analysis t, which can be described as:

x∫
x0

[(RON − ROFF)y + ROFF] dy = k
t∫

0

v dτ = k Ψ (1.11)

where Ψ is the flux linkage. The state variable x of the memristor is limited
according to physical considerations [4]. Its minimum value is zero when the
border between the doped and the undoped regions is on the left edge of the
whole memristor nanostructure, and the maximum value is unity when the
described boundary between the memristor layers is on the right edge of the whole
memristor nanostructure.

The initial value of the state variable x0 is in the same region—[0, 1]. After
integration of the state differential equation (1.11), the dependence between the state
variable x and the flux linkage Ψ is derived—Equations (1.12a), (1.12b) and (1.2c):

(RON − ROFF)
y2

2

∣∣∣∣∣ x
x0

+ ROFFy

∣∣∣∣∣ x
x0

= k Ψ

(RON−ROFF)
2

(
x2 − x0

2)+ ROFF(x− x0) = k Ψ

(RON−ROFF)
2 x2 + ROFFx−

[
k Ψ + (RON−ROFF)

2 x0
2 + ROFFx0

]
= 0

D = ROFF
2 − 4 (RON−ROFF)

2

[
k Ψ + (RON−ROFF)

2 x0
2 + ROFFx0

]
(1.12a)
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The Equation (1.12) has two solutions, expressed with the next formulae—(1.13b)
and (1.12c):

x1 =
−ROFF +

√
ROFF

2 − 4 (RON−ROFF)
2

[
k Ψ + (RON−ROFF)

2 x02 + ROFFx0

]
RON − ROFF

(1.12b)

x2 =
−ROFF −

√
ROFF

2 − 4 (RON−ROFF)
2

[
k Ψ + (RON−ROFF)

2 x02 + ROFFx0

]
RON − ROFF

(1.12c)

Only the second solution (1.14) of the state Equation (1.12) has a physical
meaning, because the first one, expressed by (1.13), is higher than the upper limit of
the physical value of the memristor state variable x. If it is assumed that RON << ROFF,
then the difference between the ON- and OFF-resistances could be approximately
expressed as: RON − ROFF ≈ −ROFF.

1.3.3. State–Flux Relationship of the Memristor

After the described simplification, using this approximation about the difference
of the ON- and OFF-resistances of the memristor, the state–flux relationship of the
considered element can be expressed as Equation (1.13):

x = 1−
√

1 + 2k
ROFF

t∫
0

v dτ − x02 + 2x0

x = 1−
√

1 + 2k
ROFF

Ψ− x02 + 2x0

(1.13)

The first equation in System of Equations (1.13) confirms mathematically the
memory effect of the titanium dioxide memristor element. It is observable that the
memristor state variable x depends on the definite integral of the memristor voltage,
and if the applied voltage becomes zero for a given time interval, the memristor state
variable x retains its previous value, acquired immediately before the memristor
voltage is switched off.

1.3.4. Current–Voltage Characteristic of the Memristor

Substituting the first equation in System of Equations (1.13) into the first
equation in System of Equations (1.8), the current–voltage relationship of the
memristor element is acquired—Equation (1.14):

i =
v[

(RON − ROFF)

[
1−

√
1 + 2k

ROFF

t∫
0

v dτ − x02 + 2x0

]
+ ROFF

] (1.14)
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1.3.5. Basic Memristor Characteristics

The derived state–magnetic-flux and current–voltage relationships in this case
are valid for an idealized and simplified memristor element model. Several basic
memristor models, based on physical experiments and data, will be discussed in
the next chapter. Using System of Equations (1.13) and (1.14), the following basic
results are obtained in MATrix LABoratory (MATLAB) Environment [13]. First, the
described memristor element is investigated for an applied sinusoidal voltage signal,
using System of Equations (1.13) and (1.14). The derived time diagrams of memristor
voltage and current according to Equation (1.14) are presented in Figure 3(a). A
sine-wave voltage signal with amplitude of 1 V and a frequency of 1 Hz is applied
to the memristor element. The current flowing through the memristor i has a
non-sinusoidal waveform. This confirms the nonlinear behavior of the considered
element. The corresponding time graphs of memristor state variable x and flux
linkage Ψ are shown in Figure 3(b). It is obvious that if the applied voltage v and the
magnetic flux Ψ are sinusoidal functions, then the curves describing the memristor
current i and state variable x are non-sinusoidal.

Figure 3. (a) Time diagrams of the applied memristor voltage v = 1× sin
(
2πt− π

6
)

and the current i in sinusoidal mode; (b) time diagrams of the state variable x and
the flux linkage Ψ in sinusoidal mode.
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These nonlinearities are due to the nonlinear state–magnetic-flux relationship of
the memristor element. The state variable of the memristor x does not achieve its
limiting values—zero and unity. The state–flux and current–voltage relationships are
presented in Figure 4(a,b) for the description of the basic memristor characteristics
and properties. The state–magnetic-flux relationship is a monotonically increasing
nonlinear curve, while the current–voltage relationship is a pinched hysteresis loop.
The state–magnetic-flux relationship is a single-valued curve. It is obvious that
the current–voltage characteristic has several regions with negative differential
resistance [4]. In these regions, the memristor current i increases when the voltage v
decreases [4]. There are two basic branches in the current–voltage relationship for
memristor ON and OFF states, respectively [4].

Figure 4. (a) The corresponding state-flux and (b) current–voltage characteristics of
the memristor element in sine-wave regime, describing the main memristor properties.

The intersection of the main branches of the current–voltage characteristic of
the element matches the origin of the current–voltage coordinate system. It could
be concluded that the memristor is a passive element, although its current–voltage
relationship has several regions with negative differential resistance [4].
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1.3.6. Memory Effect of the Memristor Element in Electric Fields

This effect of the memristor element, operating in electric fields is visually
expressed in Figure 5(a,b). The applied memristor voltage in this case is a sequence
of positive rectangular pulses. The duty cycle of the pulse sequence is 50%. When a
positive voltage pulse is applied to the memristor element, its state variable x
increases, and the memristance (known as the resistance of the memristor element),
proportional to the state variable x, decreases, according to Equation (1.2).

In the duration of the pauses between the voltage pulses, when the memristor
voltage is zero, the state variable x of the memristor retains its previous value, and
on the time diagram, it is presented with a horizontal line segments. The observed
phenomenon confirms the memorizing effect of the memristor element. When a new
positive voltage pulse is applied, the state variable increases again from its previously
reached value. The state–flux and current–voltage relationships in pulse mode are
presented in Figure 6(a,b). The passivity of the memristor is observed in Figure 6(b);
the memristor current i is zero for a voltage signal v with a value of zero.

Figure 5. (a) Time diagrams of the applied memristor pulse voltage with an
amplitude of 0.1 V, a main frequency of 1 Hz and a duty cycle of 50%, and the
memristor current i; (b) time diagrams of the state variable x and the flux linkage Ψ
in pulse mode, visually presenting the memristor memory effect.
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Figure 6. (a) The corresponding state–flux and (b) current–voltage relationships of
the memristor element in pulse mode, illustrating the passivity of the memristor
element. If the applied voltage v is zero, the memristor current i is also zero.

The described properties and characteristics of the memristor element are valid
for the idealized case, when the state variable x does not reach its limiting values,
according to the assumption of linear ionic dopant drift [4].

In the next chapters, several additional effects, associated with experimentally
established nonlinear ionic drift [5,6], will be investigated and discussed.
The inspiration for the present investigation is related to several established results by
the author, lacking specific relationships and additional effects in the main memristor
models. Therefore, the main purpose of the book is to provide a detailed description
of the relationships between the nonlinearity of the ionic dopant drift in the titanium
dioxide memristor and the applied voltage v, and to propose several improved
memristor models and analyses of memristor devices and networks, based on the
proposed memristor models.

In Chapter 2, the basic existing memristor models and the proposed improved
models by the author are represented and discussed. In Chapter 3, the investigation
of several memristor circuits and devices with the use of the proposed advanced
memristor models by the author is presented. Chapter 4 represents the analysis of
several memristor networks, such as memory crossbars and artificial neurons, with
the application of the proposed memristor models.
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2.1. Classical Memristor Models

The representation of memristor behavior in electric fields by System of
Equations (1.8), describing the memristor state differential equation and the
corresponding state-dependent Ohm’s Law, has a certain disadvantage. Based on
the analysis, if the voltage signal applied to the memristor is at a high level or
the corresponding signal frequency is very low, it is mathematically possible for
the state variable x to become higher than unity or lower than zero. However,
this behavior is impossible by physical considerations [3,4], so a modification of
System of Equations (1.8) has to be applied. The easiest way of limiting the state
variable x is the application of a window function with the following properties: for
the limiting values of the state variable—zero and unity, the window function has to
be equal to zero; for the other values of the state variable between zero and unity, the
window function is near unity, or between zero and unity [5,6]. The modified state
differential equation of the memristor in a combination with the state-dependent
Ohm’s Law is then described as System of Equations (2.1) [5,6,11]:

dx
dt = k i f (x)

v = i [RON x + ROFF(1− x)]
(2.1)

where f(x) is the applied window function [5,6,11]. The first equation in System of
Equations (1.8) remains the same as the second equation in System of Equations (2.1),
which fully describes the corresponding memristor model [5,6,11]. The solution
to System of Equations (2.1) for voltage-supplied memristor is based on the
memristor current expressed by the second equation in System of Equations (2.1)
and substitution of the current into the first equation in System of Equations (2.1),
which can be shown as follows in Equation (2.2):

i = v
[RON x+ROFF(1−x)]

dx
dt = k i f (x) = k v

[RON x+ROFF(1−x)] f (x)
(2.2)

After separating the state variable x and the time variable t, the following state
differential Equation (2.3) for the memristor element is derived:

[RON x + ROFF(1− x)]
f (x)

dx = k v dt (2.3)

If the left side of Equation (2.3) is too difficult or impossible for analytical
integration, the finite difference method could be applied for the numerical solution
of this differential equation. The solution to Equation (2.2) relates the state variable x
and the flux linkage Ψ which is expressed as a time integral of the voltage.
The denoted window function above could be used for other types of memristors, if
they could be described by similar equations to System of Equations (2.1).
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2.1.1. Strukov and Williams’s Memristor Model

During the investigation of the titanium dioxide memristor nanostructures,
Strukov and Williams in Hewlett Packard (HP) research laboratory proposed a
simple parabolic window function for the titanium dioxide memristor description [4],
expressed by Equation (2.4):

fsw(x) = x (1− x) (2.4)

The proposed parabolic window function has high nonlinearity and is used
for limiting the state variable and for introducing nonlinearity to the ionic dopant
drift representation [4]. The maximum value of this window function is 0.25 [4].
The corresponding System of Equations (2.5) describes this memristor model [4]:

dx
dt = k i fsw(x) = k i [x (1− x)]

v = i [RON x + ROFF(1− x)]
(2.5)

The following approximation for the resistance of the memristor M (2.6) is
applied [4,5], using the assumption that the ON-resistance is many times lower than
the OFF-resistance of the memristor element:

M = RON x + ROFF(1− x) ≈ ROFF(1− x) (2.6)

This approximation is valid if the OFF-resistance of the memristor is many times
higher than its ON-resistance. In this case, the first term in the expression above for
the resistance of the memristor element could be neglected [4]. After substituting
Equation (2.6) above into the first equation in System of Equations (2.4), the state
differential equation of the memristor (2.7) is obtained [4]:

1
x

d x =
1

ROFF
k v dt (2.7)

After integration of Equation (2.7) within the respective integration ranges
for the memristor state variable x and the time variable t, the following state–flux
relationship of the memristor, expressed by Equation (2.8) is derived:

x = x0 exp

 k
ROFF

t∫
0

v dτ

 = x0 exp
(

k
ROFF

Ψ
)

(2.8)

In this case, an exponential relationship between the state variable x and the
flux linkage Ψ is obtained. Its shape is related to the initial value of the state
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variable x0. The corresponding current–voltage relationship of the memristor
element is derived after substitution of Equation (2.8) into the second equation
into System of Equations (2.4). The following Equation (2.9) is derived:

i =
v[

(RON − ROFF) x0 exp

(
k

ROFF

t∫
0

v dτ

)
+ ROFF

] (2.9)

In this case, the initial value of the state variable has to be higher than zero.
If the initial value of the memristor state variable is chosen equal to zero, the other
values of the state variable are also equal to zero, although the flux linkage is
changing. This behavior of the state–flux relationship in this case does not physically
describe the real state–flux relationship and it is derived according to the assumed
approximation. The basic electric quantities related to memristor operation in the
time domain are presented in Figure 7(a,b) for further discussion. The derived time
graphs of the memristor voltage v(t) = 3 sin

(
2π × 0.5t− 2π

3
)
, and the current i

according to Strukov and Williams’s memristor model are presented in Figure 7(a,b)
for describing the memristor nonlinearity and visual expression of the basic quantities
in the time domain.

Figure 7. (a) Time diagrams of the applied sinusoidal memristor voltage

v(t) = 3 sin
(

2π × 0.5t− 2π
3

)
and the non-sinusoidal current i according to the

Strukov and Williams’s model with a parabolic window; (b) time diagrams of the
memristor state variable x and flux linkage Ψ, expressed as a definite time integral
of the applied voltage.
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By comparing the results to these derived by the idealized memristor model
without a window function, given in Figure 4, it could be concluded that the
current in the present case has several times lower magnitude than that in the
idealized case. This behavior of the Strukov and Williams’s memristor model could
be explained with the low maximum value of the applied parabolic window function,
i.e., 0.25. The corresponding memristor state variable in the present case changes
in a narrower range, because its change is proportional to the time integral of the
applied voltage. The corresponding state–flux and current–voltage relationships
of the memristor are shown in Figure 8(a,b), for further descriptions of these basic
memristor characteristics. The state–flux relationship is a monotonically increasing
nonlinear function. Its nonlinearity determines the area of the corresponding
current–voltage characteristic in the respective coordinate system of the memristor
element [3,4].

Figure 8. (a) The state–flux characteristic of the memristor element for a sinusoidal
memristor voltage; and (b) the corresponding current–voltage characteristic of the
memristor element.

It is confirmed by many experiments that if the curve describing the state–flux
relationship is similar to a straight line, then the corresponding current–voltage
relationship curve is also a straight line. A fragment of Strukov window function,
derived based on the analysis for the same sinusoidal voltage signal, is presented in
Figure 9(a) for illustrating the trajectory of the memristor operating point in the field
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of the coordinates representing the state variable x and the corresponding segment
of the window function f(x).

The presented fragment is only a part of the whole window function, which
could be obtained for the hard-switching operation mode (for higher voltages and
lower frequencies). The time diagram of the resistance of the memristor element (the
memristance) is presented in Figure 9(b). It has a non-sinusoidal form and the range
of the memristance is between 700 and 1350 Ohms.

The time graphs of the voltage and the corresponding state variable in pulse
mode are given in Figure 10. The applied voltage is a sequence of positive and
negative impulses. The maximum level of the memristor voltage is 0.3 V. In the
time intervals, when positive and constant memristor voltages are used, the state
variable x increases. The relationship between the state variable x and the time
integral of the applied voltage is almost a linear function. When the applied voltage v
has a negative polarity, the state variable x decreases and is proportional to the
integral of the applied voltage.

Figure 9. (a) A fragment of Strukov’s window function, derived from the memristor
operation; it represents only a part of the whole parabolic function; (b) time
diagram of the resistance of the memristor element (memristance), which in this
case represents a soft-switching operation mode.
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Figure 10. Time diagrams of the applied pulse voltage v and the corresponding
state variable x for expression of the memristor memory effect. When the memristor
voltage is zero, the state variable of the memristor holds its previous value.

The memory effect, associated with the memristor element, is observable.
If the applied voltage is zero, the state variable retains its previous value. In these
time intervals, the memristor state variable x is represented by a horizontal line,
demonstrating that the state variable x is a constant quantity.

2.1.2. Joglekar Memristor Model

A frequently used polynomial window function with second and higher power
in the memristor modeling was proposed by Joglekar [5]:

f J(x) = 1− (2x− 1)2p (2.10)

where p is a positive integer exponent [5]. The nonlinearities of the discussed window
function and of the memristor ionic drift grow up with the decreasing of the exponent
in the Joglekar window function [5]. Several Joglekar window functions for different
integer exponents are presented in Figure 11 for visual representation of their
different shapes and nonlinearities. The state differential equation of the memristor
element, acquired by applying the Joglekar window function, in combination with
the state-dependent Ohm’s Law, is described as the following Equation (2.11) [4,5]:

dx
dt = k i f J(x) = k i

[
1− (2x− 1)2p

]
v = i [RON x + ROFF(1− x)]

(2.11)

The time diagrams of memristor voltage v(t) = 3 sin
(
2π × 0.5t− 2π

3
)
, the

current i, state variable x and flux linkage Ψ are presented in Figure 12(a,b).
The applied memristor voltage signal v has a sinusoidal form, while the current i and
the state variable x has highly non-sinusoidal form.
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Figure 11. Joglekar window functions for different values of the integer exponent p,
expressing their different shapes and nonlinearities. For lower integer exponent
values, the nonlinearity of the window function is higher; with the increased
positive integer exponent p in the Joglekar window function, the curves describing
the Joglekar window function becomes almost linear, while only for the periphery,
the Joglekar window function is nonlinear, approaching the abscissa axis.

Figure 12. (a) Time diagrams of the applied sinusoidal memristor voltage

v(t) = 3 sin
(

2π × 0.5t− 2π
3

)
and the current i; (b) time diagrams of the state

variable x and the flux linkage Ψ, according to Joglekar’s model with a polynomial
window function.
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The state–flux and current–voltage characteristics of the memristor element,
rendering to the Joglekar model, are given in Figure 13(a,b) for representation of the
basic memristor characteristics and further discussion. The current–voltage pinched
hysteresis loop has a larger area in the field of the respective coordinates, according to
the corresponding results, derived by Strukov and Williams [4]. The corresponding
time diagrams of the memristance (dependent on voltage, current, state variable and
flux linkage) with the Joglekar window function are represented in Figure 14(a,b).

Figure 13. (a) The state–flux characteristic of the memristor element according
to the Joglekar model, for the same sinusoidal memristor voltage as in
Figure 12(a,b); (b) the current–voltage relationship of the memristor for the voltage

v(t) = 3 sin
(

2π × 0.5t− 2π
3

)
.

The state variable x almost reaches its minimum value of zero and its
corresponding maximum value is about 0.7. The flux linkage is a sinusoidal quantity,
equal to the definite time integral of the voltage v [4,5]. After analyzing the state–flux
relationship of the Strukov model, it could be concluded that, in the present case, this
relationship has higher nonlinearity. The observed phenomenon could be explained
with the higher maximum value of the Joglekar window function.

The presented segment of the window function has a large horizontal linear
fragment because the used value of the positive integer exponent is comparatively
high, i.e., p = 5.
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Figure 14. (a) A fragment of the Joglekar window function for p = 5; (b) time
diagram of the resistance of the memristor (memristance) in the time domain in a
soft-switching mode.

2.1.3. Biolek Memristor Model

A frequently used and widespread window function, dependent on the
memristor state variable x and the current direction, was first proposed by Biolek [6]
and is also identified as a Biolek window function, which can be written as the next
Equation (2.12):

fB(x, i) = 1− [x− stp(−i)]2p (2.12)

where the used relay function “stp” is expressed by the following Equation (2.13) [6]:

stp(i) =

{
1, i f i ≥ 0 (v ≥ 0)
0, i f i < 0 (v < 0)

(2.13)

The Biolek memristor model is expressed with the next System of
Equations (2.14) [4,6]:

fB(x, i) = 1− [x− stp(−i)]2p

stp(i) =

{
1, i f i ≥ 0 (v ≥ 0)

0, i f i < 0 (v < 0)

v = [RON x + (1− x)ROFF] i

(2.14)

where the last equation in System of Equations (2.14) is based on the
state-dependent Ohm’s Law for the titanium dioxide memristor element [4,6]. After
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substituting the second equation in System of Equations (2.14) into Equation (2.12),
the following form of Biolek window function, written by Equation (2.15) is acquired:

fB(x) = 1− (x− 1)2p, v(t) ≤ 0, [i(t) ≤ 0]

fB(x) = 1− x2p, v(t) > 0, [i(t) > 0]
(2.15)

Several Biolek window functions for different positive integer exponents are
presented in Figure 15. Each Biolek window function is completed by two different
branches, derived for different polarities of the memristor current. By increasing
the value of the positive integer exponent p, the nonlinearity of Biolek window
function decreases.

Figure 15. Biolek window functions for different values of the integer exponent p.
With increasing of the positive integer exponent p in the model, the nonlinearity of
the Biolek window function decreases.

The time diagrams of the applied sinusoidal memristor voltage
v(t) = 3 sin

(
2π × 0.5t− 2π

3
)
, the corresponding current i, flux linkage Ψ and state

variable x according to the Biolek model are presented in Figure 16(a,b). The current
flowing through the memristor is rectified with respect to the applied voltage v.
It is obvious that the memristor current i has a highly non-sinusoidal and
non-symmetrical shape with the applied sinusoidal voltage. The state variable of
the memristor x reaches its upper limiting value. Due to this phenomenon, the
memristor operates in a state near the hard-switching regime. The corresponding
state–flux and current–voltage characteristics of the memristor element according
to the Biolek model in hard-switching mode are presented in Figure 17(a,b).
The state–flux relationship is shown by a multi-valued hysteresis curve, according
to the boundary effects. In this case, the curve describing the current–voltage
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relationship is asymmetrical, similar to that representing the current–voltage
relationship of a semiconductor rectifier diode.

Figure 16. (a) Time graphs of the applied voltage v(t) = 3 sin
(

2π × 0.5t− 2π
3

)
and

the current i; (b) time diagrams of the memristor state variable x and flux linkage
Ψ, according to the Biolek model; in the present case, the state variable x of the
memristor almost reaches its limiting values.

Figure 17. (a) The state–flux characteristics of the memristor element; and
(b) the current–voltage relationship, according to the Biolek model. In the
present case, the state–flux relationship is shown by a multi-valued hysteresis
curve; a non-symmetrical curve shows the current–voltage relationship for the
hard-switching mode.
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A fragment of the applied Biolek window function derived in the operation
process of the memristor element is presented in Figure 18(a). In this case, almost the
whole window function could be observed because the memristor element operates
in a state near a hard-switching mode. The corresponding time diagram of the
memristance is given in Figure 18(b). The memristance in the present case is changing
in a very wide range. This phenomenon corresponds to a hard-switching mode.

Figure 18. (a) A segment of Biolek window function for a state close to
hard-switching mode; (b) time diagram of the memristance M.

2.1.4. A Memristor Model Based on the Boundary Conditions

The Boundary Condition Memristor (BCM) model, proposed by Corinto and
Ascoli [11], could be expressed with the following system of two equations (2.16) [11]:

dx
dt = k i fBCM(x)

v = i [RON x + ROFF(1− x)]
(2.16)

where the first equation in System of Equations (2.16) is the state differential equation,
fBCM is the applied window function, and the second one is the state-dependent
Ohm’s Law of the memristor element. The BCM model could realistically represent
the memristor boundary effects [11].

The window function for this model is a special case of the Biolek window
function for very high values of the positive integer exponent. The applied
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window function fBCM [11] is presented with the following voltage-dependent and
state-dependent Equations (2.17):

fBCM(x) = 1, x ∈ (0, 1)

fBCM(x) = 1, x = 0 & v ≥ vthr

fBCM(x) = 0, x = 0 & v < vthr

fBCM(x) = 1, x = 1 & v < −vthr

fBCM(x) = 0, x = 1 & v ≥ −vthr

(2.17)

The BCM model is suitable for investigating memristor elements both for
soft-switching and hard-switching regimes [11]. For the soft-switching mode, the
state variable x does not achieve its limiting values—zero and unity. For the
hard-switching regime, the state variable x reaches its limiting values, and for a
forward-biased memristor, if the state variable x is equal to 0, its assessment could be
altered only if the direction of the electric current flowing through it and accordingly
that of the voltage across the memristor element become positive [11].

If the applied voltage is negative, the boundary between the doped and the
undoped regions of the memristor element could not move in the left direction
due to physical and mechanical restrictions [4,11]. If the state variable x grows up
and becomes unity, the border between the doped and the undoped regions of the
memristor could not be moved in the right direction due to physical limitations [4,11].
The state variable x could be altered only if the electric current and the corresponding
voltage across the memristor are negative. For a reverse-biased memristor element,
operating in a hard-switching state, if the state variable x becomes zero, it could be
altered if the electric current (and accordingly the voltage) is negative. If the state
variable x becomes unity, it could be changed if the current flowing through the
memristor is positive [11].

The time graphs of the applied sine-wave memristor voltage v, the
corresponding current i flowing through the memristor, the flux linkage Ψ and
the state variable x are presented in Figure 19(a,b) for further discussion. The
current has only positive values, due to the rectification effect of the memristor
element, operating in a hard-switching mode. The state variable x is a double-sided
limited function and reaches its limiting values. The state–flux relationship, shown
in Figure 20(a), is expressed by a multi-valued hysteretic loop. The curve describing
the corresponding current–voltage characteristic is non-symmetrical (Figure 20(b)).
In this case, the memristor behaves as a semiconductor diode and could be used for
high-level and low-frequency signal rectification.
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Figure 19. (a) Time diagrams of memristor voltage v(t) = 3 sin
(

2π × 0.5t− 2π
3

)
and the current according to the BCM model with a boundary-condition-dependent
rectangular window function; (b) time diagrams of the state variable x and the flux
linkage Ψ where the state variable x reaches its limiting values, and the flux linkage
Ψ has a sinusoidal shape.

Figure 20. (a) State–flux characteristic of the memristor element according to the
BCM model expressed by a multi-valued curve; (b) Current–voltage relationship of
the memristor element, expressed by a non-symmetrical function; the memristor
element has a rectification effect.

30



The window function for the BCM model is presented in Figure 21(a). It has
a rectangular form and represents the boundary effects [11]. The time diagram of
the memristance is presented in Figure 21(b). It is observable that the memristance
of the element changes in the whole possible range from the ON-resistance to the
OFF-resistance of the memristor element.

Figure 21. (a) BCM rectangular window function, derived for a hard-switching
mode; (b) time diagram of the resistance of the memristor (memristance)
according to the BCM model for a hard-switching mode. The resistance reaches its
limiting values.

The memristor element is also investigated for the pulse voltage according to the
BCM model [11]. The time graphs of the voltage and the corresponding state variable
are shown in Figure 22. The state variable x is proportional to the time integral of
the applied memristor voltage. It is observable that, when the voltage v is zero,
the corresponding memristor state variable x retains its previous value. This result
confirms the memory effect of the analyzed memristor element.
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Figure 22. Time diagrams of the applied pulse voltage v and the corresponding
state variable x; the state variable x is proportional to the time integral of memristor
voltage v. the memristor holds its previous value of the state variable x when the
voltage v is zero, which is the so-called memory effect.

2.1.5. Generalized Memristor Model Based on the Boundary Conditions

The Generalized Boundary Condition Memristor (GBCM) model [14] is highly
similar to the previous one—the BCM model [11]. The main difference between them
is only the use of activation threshold vthr not only for the boundaries, but for all the
values of the memristor state variable x in the GBCM model [14]. The corresponding
window functions for the universal boundary condition model is described by System
of Equations (2.17) [14].

The other equations describing the analyzed memristor element according
to the GBCM model are the same as the ones used in Section 2.1.4 for the BCM
model—System of Equations (2.17).

fGBCM(x) = 1, i f x > 0 and x < 1 and |v| ≥ vthr

fGBCM(x) = 0, i f x > 0 and x < 1 and |v| < vthr

fGBCM(x) = 1, i f x = 0 and v ≥ vthr

fGBCM(x) = 0, i f x = 0 and v < vthr

fGBCM(x) = 1, i f x = 1 and v < −vthr

fGBCM(x) = 0, i f x = 1 and v > −vthr

(2.18)
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2.1.6. Introducing a Polarity Coefficient in the Idealized Memristor Models

The memristor behavior depends on its biasing—forward or reverse connection.
This property is especially important, if a given circuit contains more than one
memristor elements [5,15,16]. An example for such a situation is presented in
Figure 23—an anti-series memristor circuit with two memristor elements. The current
flowing through the memristors has the same direction for both the first and the
second elements. This current decreases the resistance of the first memristor, and at
the same time, it increases the resistance of the second one. This fact confirms the
behavior of the memristor as a polar element, which has a cathode and an anode
electrodes. The memristors presented in Figure 23 are coupled in a series. The cathode
of the first memristor is connected to the cathode of the second memristor. Due to
this, the circuit is named “an anti-series biasing”. The polarity of the memristors is
important property both for soft-switching and hard-switching modes. Due to the
described polarity of the memristor element, a modification has to be introduced to
the describing System of Equations (2.1), which is shown as the following System of
Equations (2.19):

dx
dt = η k i f (x)

v = i [RON x + ROFF(1− x)]
(2.19)

where η is a polarity coefficient; for a forward-biased memristor, it has a value
of 1, and for reverse-biasing it is equal to −1 [15,16]. System of Equations (2.19)
describing the anti-series memristor circuit (Figure 23), after transformation, is as
follows—System of Equations (2.20):∣∣∣∣∣ vM1 = [(RON − ROFF)x1 + ROFF] i, dx1

dt = k i
vM2 = [(RON − ROFF)x2 + ROFF] i, dx2

dt = −k i
(2.20)

Figure 23. An anti-series circuit with two memristors. The circuit contains polar
elements connected in reverse biasing, that is, the cathode of the first memristor is
connected to the cathode of the second element.
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After applying the KVL for the analyzed circuit given in Figure 23
(vM1 + vM2 = v) and System of Equation (2.20), the next System of Equations (2.21) is
derived: ∣∣∣∣∣∣∣

[(RON − ROFF)(x1 + x2) + 2ROFF]dx1 = k v(t)dt

−[(RON − ROFF)(x1 + x2) + 2ROFF]dx2 = k v(t)dt
(2.21)

The primary values of the state variables of the memristors are x10 and x20. Using the
finite difference method [14,16] Equations (2.11) and (2.12) are solved numerically
in MATrix LABoratory (MATLAB) environment [13]. Using System of Equations
(2.21), the initial values of state variables x10 and x20 and Kirchhoff Voltage Law
(KVL) [4,12,17] after transformations, the equivalent resistance of the anti-series
memristor circuit could be theoretically acquired:

Req =
v
i
= (RON − ROFF)(x10 + x20) + 2ROFF = constant (2.22)

Since the equivalent resistance of the circuit Req is not dependent on the
applied voltage v or the current i, the anti-series memristor circuit as a whole is
a linear one. Let the initial values of the state variables be x10’ and x20’ and the
equivalent resistance of the circuit is Req’ at the moment t = 0. Due to the boundary
effects, if x10’ 6= x20’, it is sometimes possible for one of the memristors to reach
and retain a fully open or fully closed state for a given time interval. After this
interval, it is possible for the other memristor element to still operate in an active
mode (0 < x < 1). If, at this moment, the source voltage changes its direction, then it
could be assumed that a new process starts, but with different initial values of the
state variables. The equivalent resistance of the circuit will reach a different value:
Req” 6= Req’. If both the memristors start to operate in a hard-switching mode, then
the equivalent resistance reaches and retains its new stable and constant value:
Req = RON + ROFF. Only in the special case, when x10’ = 1 − x20’, the equivalent
resistance of the circuit has a stable and constant value of Req = RON + ROFF for the
general electric mode. The diagrams of the state variables of the memristors for the
hard-switching and soft-switching modes are shown in Figure 24(a,b).
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Figure 24. (a) Time diagrams of the state variables of the memristors M1 and
M2 for the hard-switching mode with a magnitude of 4.3 V and a frequency
of 70 Hz; (b) time diagrams of the state variables of the memristors M1 and M2

for the soft-switching mode with a magnitude of 4.3 V, and a frequency of 140 Hz.
For anti-series connection, if the resistance of the first memristor decreases, at the
same time, the memristance of the second element grows up.

The memristors are switched to the anti-phase mode. When the state variable
of the first memristor increases, at the same time, the state variable of the second
memristor diminishes, and vice versa. For the hard-switching mode, if the state
variable of the first memristor has a value of zero, at the same time, the state variable
of the second memristor has a value of unity. Sometimes, if the initial values of the
state variables are chosen with specific values, an equivalent constant resistance of
the anti-series circuit could be acquired. The corresponding time diagrams of the
applied voltage, the current and the equivalent resistance of the circuit are presented
in Figure 25(a,b), for both hard-switching and soft-switching regimes. The equivalent
resistance acquires a constant value during its operation. The state–flux relationships
of the single memristor elements for hard-switching and soft-switching states are
given in Figure 26(a,b).
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Figure 25. (a) Time graphs of the sine-wave voltage, applied to the memristor circuit
with a magnitude of 4.3 V and a frequency of 70 Hz for the hard-switching mode,
the current, and the equivalent resistance of the electric circuit, and (b) the time
diagrams of the voltage, current, and the equivalent memristance of the memristor
circuit, supplied by a sine voltage with s magnitude of 4.3 V and a frequency
of 140 Hz; for the hard-switching mode, the equivalent resistance has a constant
value; for the soft-switching mode, it is possible to obtain the equivalent resistance
with a constant value if x1 + x2 = 1.

Figure 26. (a) State–flux relationships of the single memristor elements for
hard-switching and (b) for soft-switching modes; due to the different biasing
polarities of the memristors, the first state–flux relationship is expressed by an
increasing curve, while the second one is illustrated by a decreasing curve.
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Due to the different biasing polarities of the memristors, the first state–flux
relation is shown by an increasing curve, while the second one is illustrated by
a monotonically decreasing curve. For the hard-switching mode, the state–flux
characteristic is a multi-valued function. The corresponding current–voltage
relationships of the single memristors are presented in Figure 27(a,b). They both are
pinched hysteresis loops.

Figure 27. (a) Current–voltage relationships of the single memristor elements for
hard-switching and (b) for soft-switching modes. The single memristors operate
in a soft-switching mode and their current–voltage characteristics are pinched
hysteresis loops, as shown in Figure 27(a,b). An interesting phenomenon is the
behavior of the whole circuit in an electric field. At each instant time, the sum of
the resistances of the memristors is a constant.

For the hard-switching mode, these characteristics are multi-valued
functions, while for the soft-switching mode, they are single-valued graphs.
The current–voltage relationship of the whole circuit for the soft-switching mode is
illustrated by a straight line, while for the hard-switching mode, the corresponding
current–voltage relationship is a double-valued function, as shown in Figure 28(a,b).
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Due to this fact, the corresponding current–voltage relationship of the circuit
is demonstrated by a straight line. This phenomenon could be explained with the
deviations of the resistances of the memristors. The increase of the resistance of the
first memristor is equal to the decrease of the resistance of the second memristor at
each moment. For description of this specific circuit behavior, the simplified linear
drift memristor model is especially appropriate [4].

Figure 28. Current–voltage relationship of the memristor circuit, for hard-switching
(a) and for soft-switching modes (b); for the soft-switching mode, the
current–voltage characteristic is shown by a straight single-valued line, while
for the hard-switching mode, it is a multi-valued function, due to the change of the
equivalent resistance of the memristor circuit.

2.1.7. Pickett Memristor Model

The Pickett model is based on physical measurements and analyses of the
mechanism of the electric current flowing through a thin tunnel barrier in insulating
oxides [7]. At this point of view, the Pickett model is a physical nonlinear model [7,17].
It is a highly nonlinear memristor model. The structure of a memristor cell according
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to the Pickett [7,17] and Simmons models [18] is shown in Figure 29(a) for further
discussion and clarification of the basic parameters and the memristor behavior in
electric fields.

Figure 29. (a) A simplified memristor nanostructure according to Pickett and
Simmons models, presenting the metallic electrodes, the formed conducting layer
of doped titanium dioxide, the tunnel barrier and the insulating layer of titanium
dioxide in the memristor volume; (b) time diagrams of the memristor voltage
and current for the sinusoidal voltage signal with a frequency of 0.5 Hz and an
amplitude of 0.68 V.

The memristor electrodes are made of titanium or platinum and the dielectric
layer is completed by pure amorphous TiO2 material. The conducting conduit in
the memristor element is formed by a thin region of TiO2 material saturated with
oxygen vacancies, derived by the forming process [4,7]. There is also a thin tunnel
wall with a length of w. The resistance of the conducting channel is approximately
equal to Rs = 215 Ω [7]. The Pickett memristor model is based on the Simmons
model of the electrical current flowing through a thin tunnel wall in an insulating
material [18]. According to the Simmons model, the memristor could operate mainly
in two states—ON-state and OFF-state [7,18]. Time diagrams of the memristor
voltage with a frequency of 0.5 Hz and an amplitude of 0.68 V and the current
in sinusoidal mode are shown in Figure 29(b) for representation the nonlinear form
of the memristor current i [19].

When the memristor is in the open state (OFF-resistance; i > 0), the differential
equation of the state variable w has to be expressed by the next Equation (2.23) [7]:

dw
dt

= fo f f sinh

(
i

io f f

)
exp

[
− exp

(w− ao f f

wc
− |i|

b

)
− w

wc

]
(2.23)
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The memristor parameters used in Equation (2.23) and their respective values [7]
are given in Table 1. The corresponding numerical values of these parameters are
experimentally derived [7,17,18].

Table 1. Parameters for a memristor element in the OFF-resistance state.

Quantity foff ioff aoff B wc

Measurement unit µm/s µA nm µA pm
Value 3.5 115 1.20 500 107

If the element is in the ON-state (ON-resistance; i < 0), the state differential
equation of the state variable w is the following Equation (2.24) [7]:

dw
dt

= fonsinh
(

i
ion

)
exp

[
− exp

(
w− aon

wc
− |i|

b

)
− w

wc

]
(2.24)

The corresponding characteristics and the numerical evaluations for the
ON-state [7] are given in Table 2. These parameters of the analyzed memristor
are established by laboratory experiments [7,17,18].

Table 2. Basic parameters for the ON-switched memristor element.

Quantity fon ion aon B wc

Measure µm/s µA nm µA pm
Value 40 8.9 1.80 500 107

The electric current through the tunnel wall of the memristor element [7,17,18]
is presented in the next Equation (2.25):

i =
j0 A
∆w2

[
Φ1 exp

(
−B
√

Φ1

)
−
(
Φ1 +

∣∣vg
∣∣) exp

(
−B
√

Φ1 +
∣∣vg
∣∣)] (2.25)

where vg is the voltage drop across the tunnel wall [7]. This voltage drop could be
evaluated using the Kirchhoff’s Voltage Law (KVL) [12] and the voltage v across the
memristor element [7] could be expressed by the next Equation (2.26):

vg = v− iRs (2.26)

The quantity j0 [7] could be illustrated with Equation (2.27):

j0 =
e

2πh
=

1.6× 10−19

2× 3.14× 6.63× 10−34 = 3.84× 1013, [C/(J · s)] (2.27)

where e is the electric charge of the electron, and h is the Planck’s constant.
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The surface area of the tunnel joint [7,17,18] is A = 104 nm2. The variation of the
length of the tunnel junction [7] is described by the next Equation (2.28):

∆w = w2 − w1 (2.28)

The second term in Equation (2.28) [7] is presented in the following
Equation (2.29):

w1 = 1.2× λw
Φ0

, nm2 (2.29)

where Φ0 = 0.95 V is the height of the described potential wall. The variable λ [7] in
Equation (2.29) is expressed by the next Equation (2.30):

λ =
e ln 2

8 k π ε0 w× 10−9 , V (2.30)

where k = 5 is the permittivity of the TiO2 medium [7,17], and ε0 is the absolute
permittivity of the vacuum space, which is equal to 8.85 × 10−12 F/m [12].

Substituting Equation (2.30) into Equation (2.29), it is derived that w1 = 0.126 nm.
According to Reference [7], the next Equation (2.31) is acquired by using
Equation (2.30):

w2 = w1 + w

(
1− 9.2× λ

4λ + 3Φ0 − 2
∣∣vg
∣∣
)

, nm (2.31)

The measure B [7] is expressed with the following Equation (2.32):

B =
4π
√

2me ∆w× 10−9

h
, V−

1
2 (2.32)

where m is the electron weight [7]. The variable Φ1 [7,18] is presented with the
following Equation (2.33):

Φ1 = Φ0 −
∣∣vg
∣∣w2 + w1

w
− 1.15× λ w

∆w
ln
[

w2(w1 − w)

w1(w2 − w)

]
, V (2.33)

The Pickett memristor model [7,17,18] is fully described with
Equations (2.23)–(2.33). The memristor circuit under test contains a sinusoidal
voltage source and a memristor element. The sinusoidal voltage signal produced by
the voltage source and applied for the present investigation is: v(t) = 0.6 sin(2πt).
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The acquired flux–charge relationship rendering to the Pickett memristor
model [17,19] is shown in Figure 30 for observation of one of the main
memristor characteristics. In the present case of analysis, the flux–charge relationship
is shown by a multi-valued curve [17,19]. The corresponding current–voltage
characteristic is given in Figure 31. It is also a multi-valued pinched hysteresis curve.
Based on the present investigations, it is established that for voltage signals higher than
0.75 V, many convergence issues appear [19], although the Pickett model has the highest
accuracy and sometimes it is used as a reference memristor model [7,17].

Figure 30. Flux–charge characteristic of the element according to the Pickett
memristor model, derived for the memristor voltage v(t) = 0.6 sin(2πt). It is one of
the main characteristics of the memristor, and in this case, it is a multi-valued curve.

Figure 31. Current–voltage characteristic according to Pickett memristor
model, presenting the behavior of the memristor for the sinusoidal voltage
v(t) = 0.6 sin(2πt). In the present analysis, it was derived as a multi-valued curve.
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2.1.8. Other Nonlinear Memristor Models

More appropriate memristor device models without convergence problems
have been proposed [17,18,20,21]. In References [20,21], a physical memristor model
is described. It is based on experimental results [20]. The approximated relationship
between the memristor current i and the applied memristor voltage v is presented by
the next nonlinear Equation (2.34) [20,21]:

i = xnβsinh(α v) + χ[exp(γ v)− 1] (2.34)

where α = 2 V−1, β = 0.9 µA, γ = 0.0004 V−1 and χ = 1.10−4 µA are fitting parameters,
and n = 1 is a factor that determines the influence of the state variable x on the
electric current. In this discussed memristor model [20–22], the state variable x is
a normalized parameter in the interval [0, 1]. This memristor model presents an
asymmetric performance [20].

When the memristor element is in the ON-state, the state variable is near unity
and the electric current is dominated by the first term in Equation (2.34). It illustrates
a tunneling performance [17,18]. If the memristor element is in the OFF-status, the
state variable x is near zero and the current is primarily represented by the second
term in Equation (2.34), which describes a diode equation [20,21].

The applied memristor model [20,21] uses a nonlinear function for the voltage
in the corresponding state differential Equation (2.35) [17,20,21]:

dx
dt

= a f (x) vm (2.35)

where a = 1 V−m·s−1 is a constant, m = 9 is an odd integer exponent, and f(x) is a
window function applied for approximate description of the nonlinear ionic motion
and the boundary effects [6,11]. The window function introduces nonlinearity with
respect to the state variable x of the memristor element [11]. Equations (2.34) and (2.35)
completely define the corresponding physics-based memristor model [20,21].

The ion transport in the memristor element is linked to the ionic dopant
drift in the corresponding material [22]. The ions of the oxygen vacancies jump
between two neighboring positions via a migration barrier [23,24]. This potential
barrier could be decreased by the applied electric field [20,21,23]. The ions can
acquire more thermal energy by Joule heating and they can therefore
straightforwardly overcome the tunnel barrier [23,24]. The nonlinearity of the
ionic dopant drift starts from local Joule heating or high electric fields [23,25].
The used window function gives an approximate relationship between the state change
and the electric current [6,23]. The present nonlinear model was investigated for the
sinusoidal memristor voltage v(t) = 1.5 sin

(
2π × 2t− 2π

3
)
. The derived state–flux
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relationship is presented in Figure 32. It represents a multi-valued hysteresis
loop, due to the boundary effects and the applied window function [6]. The
corresponding current–voltage relationship is presented in Figure 33 for expression
of the memristor non-symmetric behavior. In this case, the memristor operates in
hard-switching mode [11].

Figure 32. State–flux relationship of the memristor according to the analyzed model

together with a Biolek window; the applied signal is: v(t) = 1.5 sin
(

2π × 2t− 2π
3

)
,

the state-flux relation is described by a multi-valued hysteresis curve and represents
a hard-switching operation.

Figure 33. The corresponding current–voltage characteristic of the described
nonlinear model, representing asymmetric memristor behavior for the
hard-switching state. The applied memristor voltage is described as: v(t) =

1.5 sin
(

2π × 2t− 2π
3

)
.

It was established by several analyses that, for very low voltages, the
corresponding current–voltage relationship is a non-hysteretic nonlinear function.
The described nonlinear memristor model is based on physical measurements and
it is capable to realistically represent the phenomenon of exponential ionic drift. In
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the real memristor elements, increasing the voltage with several hundred mV leads
to increase of the switching rate by several orders of magnitude [24]. Several classic
memristor models are not able to illustrate this phenomenon [21,24].

2.2. Author’s Modified Memristor Models

2.2.1. Dependence between Charge Mobility and Temperature of the Titanium Dioxide
Memristor Element

In Reference [26,27], an investigational diagram of the dependence between
oxygen vacancies mobility and the absolute temperature T of a pure TiO2 material
is offered. It is exciting that in this oxide material, the slope of this experimentally
derived function is positive. The ionic drift mobility grows up with the increased
temperature [26–28]. The oxygen vacancies mobility at room temperature is
µv = 1.10−14 (m2/V·s). By the use of these physical data, an interpolation polynomial
with the lowest degree of −18 is acquired in MATLAB [13]. The approximated
function is presented by Equation (2.36):

µv = 3× 10−12 + 1× 1029
(
−0.0005× T−18 − 0.2394× T−17

)
(2.36)

The electric charge mobility grows up with the increased memristor temperature.
The relationship between the oxygen vacancies mobility and the temperature
measured in degrees Celsius is presented in Figure 34(a) and is used for further
description. The operation of the memristors, especially the switching rate, depends
on ambient temperature [27,28].

Figure 34. (a) Dependence between oxygen vacancies mobility in the amorphous
titanium dioxide material and the temperature measured in Celsius; (b) dependence
between the memristor’ resistances in the open state (ROFF) and in the closed state
(RON) and the temperature measured in Celsius t.
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2.2.2. Relationship between the Resistances of the Memristor Element in OFF- and
ON-States and the Temperature Measured in Celsius

An investigational relationship between the specific conductivity of titanium
dioxide σ and the absolute temperature T is shown in Reference [28]. The variables
on the coordinate axes are in logarithmic degree [26,28]. The relationship between
them is approximately represented by Equation (2.37) [26–28]:

lg σ = 5.72 lg T − 9 (2.37)

where σ is the specific conductivity of the amorphous titanium dioxide material. Using
Equation (2.36) and the expression of the specific resistances (2.37), the resistances ROFF
and RON (Equations (2.38) and (2.39), respectively) are acquired [27,28]:

ROFF = 2.06× 1018T−5.72 (2.38)

RON = 6.33× 1016T−6 (2.39)

In Figure 34(b), the relationships between ROFF and RON and the temperature t
are presented. It is obvious that the resistances of the memristor ROFF and RON
decrease lightly with the increased memristor temperature. The resistance in the
closed state diminishes with the increased memristor temperature. The characteristics
of these relationships are related to the thermal generation of charge carriers in this
type of semiconductor material. The change of these resistances is non-desirable in
an operation mode [26–28].

2.2.3. Investigation of the Internal Diffusion Processes in the Strukov and Williams
Titanium Dioxide Memristor Element

This concentration gradient of the oxygen vacancies causes diffusion processes
from the saturated layer to the undoped region of the memristor element, which
is equivalent to flow of diffusion current [27,29,30]. The density of this diffusion
current (unit: A/m2) is presented by the Fick’s first law [29]—Equation (2.40):

JVO = −qD
∂N
∂x

(2.40)

where q is the charge of an oxygen vacancy and can be written as: q = 2e = 3.2 ×
10−19 C, D (unit: m2/s) is the diffusion coefficient of the dopant ions, N (unit: m−3)
is the volumetric concentration of oxygen vacancies in the memristor element, and
x is the coordinate in which location the diffusion is realized [27,28]. The diffusion
coefficient of the oxygen vacancies is presented by Equation (2.41) [26,28,30]:

D =
µVkBT

q
(2.41)

where kB is the Boltzmann constant and it is equal to 1.3787 × 10−23 J/K.
The dependence between the diffusion coefficient D and the temperature t is drawn
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in MATLAB [13] using Equations (2.36) and (2.41) is presented in Figure 35. It can
be used if the memristor operates at different ambient temperatures. It is obvious
that the diffusion coefficient D grows up quickly with the increased temperature.
This phenomenon could be physically explained by the increase of the kinetic energy
of the oxygen vacancies and their simplified penetration from the doped layer to the
depleted (undoped) region of the memristor element.

Figure 35. Dependence between the diffusion coefficient of the oxygen vacancies
in the titanium dioxide material D and the temperature measured in Celsius t of
the memristor one-port element.

The volume of a memristor element could be calculated as a volume of
rectangular parallelepiped with a length l of 10 nm, a width a of 50 nm and a
height b of 50 nm by the following Equation (2.42):

Vtotal = l × a× b = 10× 10−9 ×
(

50× 10−9
)2

= 2.5× 10−23 [m3] (2.42)

The volume of the doped region of the memristor element is described by the
next Equation (2.43):

Vdoped = ldoped × a× b = 0.1× 10× 10−9 ×
(

50× 10−9
)2

= 2.5× 10−24 [m3] (2.43)

The density of titanium dioxide material [29] is ρ = 4230 kg/m3. Its molar mass
is M(TiO2) = 79.86 [g/mol] [29]. The mass of a molecule of TiO2 is expressed by the
next Equation (2.44):

mTiO2 =
M(TiO2)

NA
=

79.88
6.02× 1023 = 1.327× 10−22 [g/molecule] (2.44)
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where NA is the Avogadro constant and it is equal to 6.02 × 1023 mol−1 [29].
The number of the TiO2 molecules in a volume of 1 m3 is given in the following
Equation (2.45):

NTiO2 =
ρ(TiO2)

mTiO2

=
4230

1.33× 10−25 = 3.19× 1028 [m−3] (2.45)

The volumetric concentration of the oxygen vacancies in the doped region of
the memristor element is presented in the next Equation (2.46) [29]:

NV(O) = z× NTiO2 = 0.03× 3.19× 1028 = 9.56× 1026 [m−3] (2.46)

where z is the stoichiometric coefficient in the material TiO2-z. The number of oxygen
vacancies in the saturated layer of the element is given in the next Equation (2.47):

nV(O) = Vdoped NV(o) = 2.5× 10−24 × 9.56× 1026 = 2390 (2.47)

The ionic diameter d of an oxygen vacancy has an approximate value
of 0,2 nm [28,29]. The length of the saturated region w is 1 nm. The number of
the atomic layers in the doped region is expressed by the following Equation (2.48):

nat.layers =
w
d
=

1
0.2

= 5 (2.48)

Then, the number of oxygen vacancies closest to the border between the two
sub-regions of the element is presented in the next Equation (2.49):

nV(at.layer) =
nV(O)

nat.layers
=

2390
5

= 478 (2.49)

The surface concentration of oxygen vacancies Q0 close to the border between
the doped and the undoped layers of the memristor element is expressed by
Equation (2.50) [27,29]:

Q0 =
nV(at.layer)

a× b
=

478

(50× 10−9)
2 = 1.91× 107 [m−2] (2.50)

The Fick’s second law [29,30] for the process of diffusion in the memristor is
presented in Equation (2.51):

∂NV(O)

∂t
= D

∂2NV(O)

∂x2 (2.51)
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In the case presented here, a diffusion process from a limited source of dopant
ions exists. The initial conditions (dopant concentration) according to the dopant
(charge) concentration are expressed by Equation (2.52):

N(t, x) = NS, t = 0, x = 0 (2.52)

In the initial moment and for the left boundary of the memristor, the oxygen
vacancies concentration has a maximal value of Ns. The respective limiting conditions
(dopant concentration) are described by Equation (2.53):

N(t, x) = 0, t > 0, x → ∞ (2.53)

The time derivative of the charge concentration near to the left boundary is
expressed by Equation (2.54):

dN
dx

= 0, t ∈ (0, ∞), x = 0 (2.54)

The result derived after solving Equation (2.51) at the initial and the limiting
conditions presented above is given in the next Equation (2.55) [27,29,30]:

N(x, t) = NS
I exp

(
− x2

4Dt

)
[m−3] (2.55)

where NsI is the instant volumetric concentration of oxygen vacancies near the border
between the saturated and undoped regions of the memristor [29,30] and it is written
in the next Equation (2.56) as:

NS
I =

QO√
πDt

[m−3] (2.56)

With the increased diffusion time, the ion’s concentration in the depleted layer
decreases. This is due to the penetration of the dopant in the volume of the memristor
and the depletion of oxygen vacancies. With the increased distance from the dopant
source, the concentration of oxygen vacancies decreases, but after a very long time,
the concentration of the dopant ions equalizes in the whole volume of the memristor
cell. With growing up of the memristor temperature, the charge carriers’ mobility
increases, but the conductances of the memristor at open and closed states increase.
As an outcome, at an absolute temperature T of 400 K, the whole charge that could
be accumulated by the memristor element is about 100 times lower than that at room
temperature. The electric current through the investigated memristor is higher than
the electric current at room temperature (about 20 degrees Celsius). Therefore, the
switching speed of the element grows up as well and the operational state changes.
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The properties and the characteristics of the memristor element as an electronic
switch are worse at high ambient temperature.

The diffusion processes in the Strukov Williams’ titanium dioxide memristor
are parasitic phenomena and exist due to the concentration gradient around
the boundary between the doped and undoped regions [27]. The coefficient of
diffusion D increases with the increased ambient temperature. This is an undesired
process because the internal diffusion in the memristor causes losses of stored
information. For example, if a logical zero has been written in the memristor cell
(in this case, the resistance of the element is close to ROFF), after a very long time
interval, due to the diffusion of oxygen vacancies, the dopant ions penetrate from
the doped region in the whole volume of the memristor, so that the resistance of
the memristance will acquire a new value—RON. The described process of losing
information initially stored in the memristor is quicker at very high temperatures.
In the end, it could be concluded that the increasing of the ambient and operating
temperatures of Williams memristor has a negative influence on its parameters. For
improvement of the memristor’s characteristics in an operation mode, the application
of a cooling device is recommended [27].

2.2.4. Analysis of Memristor’s Parasitic Parameters and Mutual Inductances between
Neighboring Elements of a Memristor Crossbar

The equivalent circuit of two neighboring memristors placed on a crossbar is
presented in Figure 36 for clarification of the parasitic currents and explanation of
the influence of the parasitic phenomena on the normal operation of the memristor
elements. The parasitic capacitances C1 and C2 represent these two memristors’ own
capacitances, respectively, due to the overlapping between the memristors’ electrodes.
The parasitic inductances L1 and L2 present the inductances of each of the electrodes
of the memristor crossbar, respectively [31]. The coefficient of mutual inductance
between the memristor elements M is almost equal to each of the own inductances
due to the full embracement of the magnetic flux by both the platinum rims of the
memristor elements. The coefficient of magnetic influence k has a value very close to
unity. In this investigation, three values of the coefficient k are used: k = 0.90, k = 0.95
and k = 0.99 [12,31].
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Figure 36. An equivalent circuit of two neighboring memristors with a memory
crossbar for clarification of the appearance of parasitic capacitances and inductances
and their influence on the normal operation of the considered memristor crossbar.

The capacitances C1 and C2 are calculated as a capacitance of a flat capacitor.
The parasitic capacitance is a combination of two capacitances of the doped and
the un-doped regions connected in a series. The values of the relative dielectric
permittivities of the doped and the un-doped regions of the memristor, (εr1 and
εr2), respectively, are 170 and 150 [4,12]. The width of the memristor electrodes a
is 50 nm. The lengths of the doped (D1) and undoped (D2) regions of the memristor
are D1 = w1 = 1 nm, and D2 = D− w1 = 9 nm, respectively. The equivalent capacitance
between the memristor electrodes is given by Equation (2.57) [12]:

Cpar =
C1C2

C1 + C2
=

ε0εr1
a2

D1
ε0εr2

a2

D2

ε0εr1
a2

D1
+ ε0εr2

a2

D2

(2.57)

The numerical result for the parasitic capacitance of the memristor is
Cpar = 3.10−16 F. The parasitic own inductance is calculated by solving a definite
double-sided integral with the use of electromagnetic field theory. A conductor with
a finite length l is disposed over the z-axis. A permanent current with intensity i
flows through the wire. A current element idl is placed in the center of a Cartesian
coordinate system (Figure 37) [12,31]. The induction lines of the magnetic field are
concentric circles which are placed in planes, parallel to the coordinate x0y plane.
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Figure 37. Three-dimensional coordinate geometry for deriving the coefficient of
own inductance of the Williams titanium dioxide memristor and mutual inductance
between the considered memristor elements.

The tangent vector to the circle B(x,z) at a given point is the vector of magnetic
flux density. It is determined by the next Equation (2.58)—the Biot-Savart Law [12,31]:

d
→
B(r) =

µ0 i dl
4 π r2

→
k ×→e r (2.58)

where
→
B is the magnetic flux density vector, µ0 is the magnetic permeability of

vacuum medium, r is the radius-vector of the previously chosen point M, k is the
unity vector parallel to the z-axis, and er is the unity vector, parallel to the present
radiusvector of the point M. The radius of the sphere on which the chosen point M
lies has a length given by Equation (2.59) [12,31]:

r =
√

x2 + z2 (2.59)

The single vector on the radius-vector of point M is presented by Equation (2.60)
with geometrical considerations [12,31]:

→
e r =

x
→
i + z

→
k√

x2 + z2
(2.60)
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After substituting Equations (2.59) and (2.60) into Equation (2.58), the following
Equation (2.61) for the elementary magnetic flux density is derived [12,31]:

d
→
B(x, z) =

→
j

µ0 i
4 π

x

(x2 + z2)
3
2

d z (2.61)

where
→
j is the unity vector parallel to the y axis. The full magnetic flux acquired by

the current element idl is presented by Equation (2.62), using definite double-sided
integration [31]:

d Φ =
+∞∫
−∞

+∞∫
0

d
→
B(x, z) dx dz

→
j =

+∞∫
−∞

+∞∫
0

→
j µ0 i

4π
x

(x2+z2)
3
2

dz dx dz
→
j =

= dz
+∞∫
−∞

+∞∫
0

µ0 i
4π

x

(x2+z2)
3
2

dx dz

(2.62)

The full magnetic flux generated by the wire with a limited length of l is acquired
after integration with respect to the z coordinate and it is expressed by Equation (2.63):

|Φ| = µ0i
4

l∫
0

dz =
µ0i
4

l (2.63)

The own inductance of the memristor element is given by the next
Equation (2.64), taking into account the lengths of the respective memristor
electrodes [31]:

L =
∣∣∣Φ

i

∣∣∣ = ∣∣∣∣ µ0 i
4 l
i

∣∣∣∣ = µ0
4 l = 4π×10−7

4 × 0, 03 =

9, 4248× 10−9 H = 9, 4 [nH]

(2.64)

The parasitic inductance of the memristor element in the center of the analyzed
memory crossbar is L = 9.4 nH. The mutual inductance between the memristors M is
calculated with involvement of the mutual magnetic flux between the corresponding
parallel memristor wires. Its value is close to the numerical value of the memristor’s
own inductance. The parameters of the second memristor were chosen, of which the
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values are 5% larger than those of the first memristor element parameters, and they
are expressed by Equation (2.65):

C2 = 1.05 × C1 = 1.05 × 3 × 10−16 = 3.15 × 10−16 F
L2 = 1.05 × L1 = 1.05 × 9.4 × 10−9 = 9.87 nH

vm1 = vm2 = 1 V
RON2 = 1.05 × RON1 = 1.05 × 100 = 105 Ω

ROFF2 = 1.05 × ROFF1 = 1.05 × 16 = 16.8 kΩ

(2.65)

The mutual inductance between two neighboring memristors is calculated with
the use of the coefficient of magnetic connection k and the own inductances of the
memristors [12,31] and it is expressed by Equation (2.66):

M1 = k1
√

L1L2 = 0.90×
√

9.4× 10−9 × 9.87× 10−9 = 8.67 nH

M2 = k2
√

L1L2 = 0.95×
√

9.4× 10−9 × 9.87× 10−9 = 9.15 nH (2.66)

M3 = k3
√

L1L2 = 0.99×
√

9.4× 10−9 × 9.87× 10−9 = 9.54 nH

The parasitic parameters were found to have very low values. After several
analyses, it was established that the parasitic parameters—own and mutual
inductances and capacitances—do not strongly affect the normal operation of the
memristor crossbars. Only for very high frequencies, these parameters have to be
taken into account [31].

2.2.5. A Nonlinear Memristor Model with a Sensitivity Threshold and a Changeable
Window Function

The new memristor model proposed in this paper is based on both Joglekar and
GBCM models. The model applies the Joglekar window function with a changeable
positive integer exponent. The new idea in the proposed model is that the positive
exponent of the Joglekar window function and the corresponding nonlinearity extent
of the memristor model could be altered in the operation process of the proposed
memristor in accordance to the applied electric field intensity [32].

The state differential equation for the memristor element according to
Reference [5] is expressed by the next Equation (2.67):

dx
dt

= k i f J(x) = k i
[
1− (2x− 1)2p

]
(2.67)

where x is the state variable, k is a constant dependent only on the physical parameters
of the memristor element, fJ(x) is the Joglekar window function, and p is a positive
integer exponent [5]. In the state differential equation shown above, the Joglekar
window function is used for representation of the nonlinear ionic dopant drift of the
memristor for high-intensity electric fields [5].
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If the value of the integer exponent p increases, the window function tends to
become almost parallel to the abscissa in the plateau region [5,32]. For very high
values of the positive integer exponent p, the window function has an almost constant
value of 1, except in the boundaries, where it has a value of zero. The approximate
expression of the state-dependent current–voltage relationship for the memristor if
ROFF »RON is presented in the next Equation (2.68) [4,5]:

v(t) =
[

Ronx + Ro f f (1− x)
]

i(t) ≈ Ro f f (1− x)i(t) (2.68)

where ROFF and RON are the memristances for ON- and OFF-states, respectively [5].
After substituting Equation (2.68) into Equation (2.67), the current i(t) from the
state-dependent Ohm’s Law as a function of the voltage signal v(t) and the
memristor state variable x, substituting the result in the state differential equation,
and separating the variables x and t, the following expression (Equation 2.69) is
derived [5,32]:

1− x

1− (2x− 1)2p dx =
k

ROFF
v(t)dt (2.69)

Equation (2.66) above is numerically solved with the finite difference method in
MATLAB [13]. The time diagrams of the memristor voltage—a pseudo-sinusoidal
signal with exponentially increasing amplitude: v(t) = 0.04et sin

(
2π × 1.7t− π

4
)

and the corresponding memristor state variable x are given in Figure 38(a,b) for
description of the memristor model behavior for different modes [32].

Figure 38. Time graphs of (a) the memristor voltage and (b) the state variable for
signal v(t) = 0.04et sin

(
2π × 1.7t− π

4
)

for representation of the behavior of the
suggested memristor model for a pseudo-sinusoidal voltage with an exponentially
increasing magnitude; the soft-switching and hard-switching modes could be
visually observed when the state variable becomes zero and unity, respectively.
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If the voltage signal is lower than the activation threshold of the memristor, the
corresponding state variable does not change in the time domain and the memristor
has a constant resistance.

When the voltage becomes higher than the sensitivity threshold, then the state
variable starts to change and the element operates in a soft-switching mode. In this
situation, the state variable does not reach its limiting values. When the memristor
voltage has very high amplitude, the element operates in a hard-switching state.
In this case, the state variable reaches its limiting values. The corresponding curve of
the memristor state variable is double-sided limited [32].

The state–flux and current–voltage characteristics acquired for the same
voltage signal - v(t) = 0.04et sin

(
2π × 1.7t− π

4
)
, as two of the basic memristor

characteristics, are shown in Figure 39(a,b). It is obvious that for voltage values lower
than the activation threshold of the memristor vthr with a value of 40 mV, the state
variable x remains unchanged and the memristor behaves as a linear resistor.

Figure 39. (a) State–flux and (b) current–voltage characteristics of the memristor
element for a pseudo-sinusoidal voltage signal with an exponentially-increasing
amplitude, described as v(t) = 0.04et sin(2π × 1.7t − π

4 ). The derived
characteristics express the transition between the soft-switching mode and the
hard-switching mode when the voltage signal is lower than the memristor
sensitivity threshold.

When the voltage exceeds the sensitivity threshold of the element vthr,
the memristor two-terminal component starts to operate in a soft-switching mode.
For very high voltages, the memristor element operates in a hard-switching mode.
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Then the state–flux relationship of the memristor is a multi-valued hysteresis curve
and the corresponding current–voltage relationship is shown by an asymmetric curve
with rectifying properties [32].

It was established by additional simulations that the transition between
soft-switching and hard-switching regimes is associated with a rapid increase of the
effective value of the memristor current.

2.2.6. A Model with Nonlinear Dopant Drift, a Modified Biolek Window Function and a
Sensitivity Threshold

The basic suggestion of the proposed research is offering a new adapted
memristor model with a strongly nonlinear dopant drift, appropriate for analysis of
TiO2 memristors for a large range of applied voltages [33]. For this reason, a mixture
of the standard Biolek window function and a weighted sine-wave component is
used [33]. The proposed altered model is based both on the GBCM model [14] and
on the standard Biolek model [6]. The new modified memristor model proposed by
the author has an improved assets—an increased extent of nonlinearity of the ionic
motion due to the use of the additional normalized sinusoidal window component.
The modified model is compared to the reference Pickett model, which is applied
as a standard model. After the comparison, the altered Biolek memristor model is
tuned with respect to Pickett model, and its main characteristics are almost identical
to these of Pickett model [33]. The maximum amount of charges qmax that the element
could accumulate is computed [12,33], when the border between the saturated and
the undoped layers of the memristor is in the right edge of the whole memristor
nanostructure and the state variable x has a value of unity [12,33], and is shown in
the following Equation (2.70):

qmax =

τ∫
0

i(t)dt =
1
k

1∫
0

dx =
1
k
=

D2

µRON
=

(
10 · 10−9)2

1 · 10−14 · 100
= 1 · 10−4 C (2.70)

where the time for complete charging of the memristor element τ depends on the
electric current i. It could be easily acquired that the charge memorized in the
memristor element, given in Equation (2.71) is comparative to the maximum amount
of charge qmax and the instantaneous value of the state variable x [12,33]:

q(x) =
τ1∫

0

i(t) dt =
1
k

x∫
0

dy = qmax x = 10−4 · x, C (2.71)

where τ1 is the time for charging the memristor, which is less than τ; in the right
side of Equation (2.69), the state variable x is substituted with the variable y, and x
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is the upper limit of the applied definite integral [12]. The standard Biolek window
function is shown in the next Equation (2.72) [6]:

f (x) = fB(x) = −(x− 1)2p + 1, v(t) ≤ 0, [i(t) ≤ 0]

f (x) = fB(x) = −x2p + 1, v(t) > 0, [i(t) > 0]
(2.72)

Here, a simple modification of Biolek window function is realized. To grow
up the nonlinearity of the altered Biolek memristor model, the author proprosed an
extra weighted sine-wave window function of the state variable of the memristor x,
given in the Equation (2.73) [33]:

f (x) = fBM(x) =
[
−(x−1)2p+1+m(sin2(πx))

m+1

]
, v(t) ≤ −vthr

f (x) = fBM(x) =
[
−x2p+1+m(sin2(πx))

m+1

]
, v(t) > vthr

f (x) = fBM(x) = 0, −vthr ≤ v(t) ≤ vthr

(2.73)

where m = 0.2 is a weight coefficient in front of the additional sinusoidal component
of the window function, chosen after comparison of the results to experimental
data [20,21]; it is established practically that for m ε [0, 0.7], the behavior of the
proposed memristor model is similar to those of the original Biolek model; if m > 0.7,
and if the analysis is made for the hard-switching mode, the derived current–voltage
relationship is illustrated by a multi-pinched hysteresis loop, and for higher values
of m, the window function is similar to the Joglekar window, when it represents
the soft-switching mode; vthr is the activation threshold of the memristor and is set
to 0.2 V, according to experimental measurements [20,21]; and fBM is the modified
Biolek window function of the memristor model [33]. The modified Biolek model
proposed by the author is completely described with the following System of
Equations (2.74) [33]:

dx
dt = η k i

[
−(x−1)2p+1+m(sin2(πx))

m+1

]
, v(t) ≤ −vthr

dx
dt = η k i

[
−x2p+1+m(sin2(πx))

m+1

]
, v(t) > vthr

dx
dt = 0, −vthr ≤ v(t) ≤ vthr

v = R i = [RON x + (1− x)ROFF] i

(2.74)
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where the first three equations of formula (2.74) represent the normalized modified
window functions. The fourth equation in System of Equations (2.74) is the
state-dependent Ohm’s Law. Several analyses were made in MATLAB [13], using
the numerical solution to System of Equations (2.74) by the finite difference
method. After adjusting the model, the main results were acquired. The flux–charge
relationship presented in Figure 40 is almost identical to that of the Pickett memristor
model [7,33].

Figure 40. Flux–charge relationship according to the altered Biolek model.
The applied memristor voltage is: v(t) = 0.6 sin

(
2πt− π

3
)
; for the soft-switching

mode, the acquired flux–charge characteristic of the element is shown by a
multi-valued curve.

The working point of the memristor element in the field of the corresponding
coordinate system moves among two segments of the window function in accordance
to the direction of the applied voltage [33]. The corresponding current–voltage
characteristic is shown in Figure 41 and is almost similar to that of the Pickett model,
acquired in almost the same environment. The tuned values of the model coefficients
are p = 7 and m = 0.2. The corresponding graphs of the applied voltage and state
variable are given in Figure 42 for examination of the altering of the memristor state.
The state variable x does not attain its limiting values and it could be accomplished
that the memristor works in a soft-switching mode. The range of the state variable x
is between 0.4 and 0.7.
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Figure 41. Current–voltage relationship of the memristor according to the adapted
Biolek model. The applied memristor voltage is: v(t) = 0.6 sin

(
2πt− π

3
)
; in this

case, the memristor element is in a soft-switching regime.

Figure 42. Time graphs of memristor voltage signal and state variable, shown for
visual observation of the change of the state variable x for the soft-switching mode.
The applied memristor voltage is: v(t) = 0.6 sin

(
2πt− π

3
)
.
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The dependence between the altered window function fM(x) and the state
variable x is shown in Figure 43 [33].

Figure 43. The dependence between the improved window function and the
state variable of the memristor element according to the altered Biolek model.
The applied memristor voltage is: v(t) = 0.6 sin

(
2πt− π

3
)
.

The tuned improved model was tested for a signal with a higher magnitude
and with a negative initial voltage phase, that is, v(t) = 3.6 sin

(
2πt− 2π

3
)
.

The corresponding flux–charge characteristic is given in Figure 44 for illustration
of the hard-switching memristor regime. In this situation, it is illustrated by
a multi-valued hysteresis loop. It attains its upper limit, corresponding to the
memorized charge. The lower limiting value of the electric charge is almost attained.
Then, it could be established that the memristor element operates in a state close to a
hard-switching regime [33]. The corresponding current–voltage characteristic of the
memristor element is shown in Figure 45 for presenting the memristor behavior in
the field of the coordinates of the voltage v and the electric current i. In this case, the
resistance of the memristor element for the applied positive voltage is comparatively
low. The resistance of the memristor for the applied negative voltages is very
high [33]. It could be concluded that if the element operates in a hard-switching state,
then it behaves like a rectifier element. The time graphs of the memristor voltage
and state variable for the hard-switching mode are shown in Figure 46 for visual
observation of the shape of the state variable x. In this case, the state variable x
attains its limiting values—0 and 1. The corresponding dependence between the
altered window function fM(x) and the state variable x is presented in Figure 47.
In this situation, the state variable values of the window function are in the interval
between 0 and 1.
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Figure 44. Weber–Coulomb characteristic according to the modified model for the

hard-switching state. The applied memristor voltage is: v(t) = 3.6 sin
(

2πt− 2π
3

)
.

Figure 45. Current–voltage characteristic of the memristor element according to
the altered model for the hard-switching regime. The applied memristor voltage is:

v(t) = 3.6 sin
(

2πt− 2π
3

)
.
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Figure 46. Time graphs of memristor voltage signal v and state variable x according
to the modified model for the hard-switching regime. The applied memristor

voltage is: v(t) = 3.6 sin
(

2πt− 2π
3

)
.

Figure 47. The modified window function for the hard-switching state. The applied

memristor voltage is: v(t) = 3.6 sin
(

2πt− 2π
3

)
.

The operating point of the memristor element in the field of the corresponding
coordinate system moves on all the length of the two segments in accordance to the
memristor voltage polarity [11,33].

The investigation of the improved Biolek memristor model for a voltage signal
with an exponentially growing magnitude is conducted for confirmation of the
expected performance of the memristor model with voltages lower and higher than

63



the sensitivity threshold vthr. The corresponding flux–charge characteristic in this case
is shown in Figure 48. In the beginning, the working point of the memristor element
in the field of the corresponding coordinate system moves on a straight line, because
the state variable does not alter with voltages lower than the activation threshold.
When the voltage signal is higher than the sensitivity threshold of the memristor, the
operating point starts to move in a different segment of the flux–charge characteristic,
which is a nonlinear function. The value of state variable x of the memristor element
is altered in accordance to the flux linkage Ψ [11,33].

Figure 48. Flux–charge characteristic of the element according to the modified
model for a pseudo-sinusoidal voltage with an exponentially growing magnitude,
represented by v(t) = 0.1et sin(2π × 3t).

The corresponding current–voltage characteristic is presented in Figure 49.
In the beginning, it is shown by a straight line, and for voltages higher than the
activation threshold, the curve representing the current–voltage relationship is
a multi-valued pinched hysteresis loop. The corresponding time graphs of the
memristor voltage and the state variable are given in Figure 50 for illustration
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of the transition between the different memristor states. The voltage signal is
pseudo-sinusoidal with an exponentially growing magnitude. In the beginning,
for voltages lower than the activation threshold, the state variable x does not change,
but for higher voltages, it starts to change [33]. For voltages lower than the sensitivity
threshold, the memristor element behaves like a linear resistor. If the voltage signal
becomes higher than the sensitivity threshold, then the state variable x changes and
the memristor element behaves like a standard memristor. The dependence between
the improved window function fM(x) and the state variable x is shown in Figure 51.
According to the voltage direction, the operating point of the memristor element in
the field of the corresponding coordinate system moves between the two segments
of the characteristics. After finishing the tuning process of the altered Biolek model
and deriving the basic results, several conclusions could be made [33]. The improved
model based on both the Biolek memristor model and GBCM model is a general
one. It contains an altered window function, which is the sum of the standard Biolek
window function, and a weighted sine-wave window function element. In the special
case when the coefficient of the sine-wave window m and the sensitivity threshold
vthr are zero, the standard Biolek model is obtained.

If the improved memristor model shown here is tuned, we could derive results
identical to those derived by the Pickett memristor model. Of course, the results
derived in the present investigation are not precisely the same as those produced by
the Pickett memristor model, which have the highest correctness but also have many
convergence issues and is not suitable for computer simulations.

The basic benefit of the considered model according to the Pickett model is the
absence of computational issues and the opportunity for its application in analysis of
memristors and memristor circuits and devices [33]. The improved memristor model
proposed by the author was compared to the Joglekar model for the soft-switching
regime. The state–flux characteristic derived by the Joglekar model is shown by a
single-valued graph, which is a benefit of the Joglekar model with respect to the
altered memristor model which has multi-valued state–flux characteristics.

On the other hand, the altered model suggested in this research has several
benefits, which the Joglekar model does not possess, that is, higher nonlinearity of
the ionic drift, capability for realistic representation of the border effects, and the use
of activation voltage threshold [33].

After comparison of the modified model to the Pickett model, it could
be concluded that the latter could be simulated for a narrower voltage range.
For voltages higher than 0.75 V, many convergence problems occur, and only
operation in a soft-switching mode can be observed. An advantage of the modified
model with respect to the Pickett memristor model is the possibility for simulation
in a broad voltage range and the observation of the results for the hard-switching
mode [33].
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Figure 49. Current–voltage relationship according to the altered model for a
pseudo-sinusoidal voltage with an exponentially increasing magnitude, expressed
by v(t) = 0.1et sin(2π × 3t).

Figure 50. Time diagrams of the memristor voltage signal v and the state variable x
according to the improved memristor model for a voltage with an exponentially
increasing magnitude expressed by v(t) = 0.1et sin(2π × 3t).
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Figure 51. The modified window function fM(x) corresponding to a
pseudo-sinusoidal memristor voltage with an exponentially increasing amplitude,
expressed by v(t) = 0.1et sin(2π × 3t).

2.2.7. Advanced Model with a Modified Biolek Window Function and a Voltage-Dependent
Changeable Integer Exponent

If the memristor voltage signal grows up, then the ionic drift nonlinearity
increases as well [4,5,34]. Basically, the representation of the increased nonlinearity of
the ionic drift could be illustrated by the decreased integer exponent p in the standard
Biolek window function of the memristor [6,34].

The proposed relationship between the positive exponent of the altered Biolek
window function p in the suggested memristor model [34] and the absolute
value of the memristor voltage signal v could be expressed with a hyperbolic-like
dependence [34]—Equation (2.75):

p = round
[

10
1 + |v|

]
(2.75)

where the special function “round” is used for acquiring an integer result [13]. Then,
the suggested improved Biolek window function fBM(x,v) applied in the suggested
memristor model is Equation (2.76) [34]:

fBM(v, x) = 1− (x− 1)[2 round ( 10
1+|v| )], v (t) ≤ 0

fBM(v, x) = 1− x[2 round ( 10
1+|v| )], v (t) > 0

(2.76)
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The suggested memristor model could be completely described with System of
Equations (2.77) [34]:

dx
dt = k η i

[
1− (x− 1)2round ( 10

|v|+1 )
]

, v(t) ≤ 0, [i(t) ≤ 0]

dx
dt = k η i

[
1− x2round ( 10

|v|+1 )
]

, v(t) > 0, [i(t) > 0]

v = R i = i [RONx + (1− x)ROFF]

(2.77)

where the third equation in System of Equations (2.77) is the state-dependent
Ohm’s Law for the memristor element [12,34]. Using Equation (2.77) and the finite
difference method [13], a pseudo-code-based algorithm is acquired and applied for
the computer investigation of the suggested memristor element [34].

The investigations of the suggested memristor model were made in MATLAB
environment [13]. Here, a comparison between several results derived by the
use of the standard Biolek memristor model and the suggested altered Biolek
model was made. The voltage signal for testing the memristor element is:
v(t) = 0.6 sin

(
2π × 40t− π

3
)
. The time graphs of the memristor voltage v and the

corresponding value of the integer exponent p are shown in Figure 52(a,b) for visual
observation of the alteration of the window function exponent in accordance to the
memristor voltage v. In this case, the integer exponent p changes in a range from 6
to 10 in accordance to the total value of the memristor voltage signal v [34].

The state–flux characteristics of the memristor element, according to the
standard Biolek model and the suggested modified model, are presented in
Figure 53(a,b) for their visual comparison regarding the form and the corresponding
ranges [34]. According to the standard Biolek model, the state–flux relationship is a
multi-valued function, while under the same conditions, the state–flux characteristic
of the suggested memristor model is approximately a single-valued function which
is a benefit of the model proposed by the author. The time graphs of memristor
current, according to the standard Biolek model and the suggested model, are
shown in Figure 54(a,b) for a comparison of these two models and discussion of
the main benefits of the suggested model. For both the memristor models, the
electric current has a non-sinusoidal shape due to the memristor nonlinearity [5,34].
The current–voltage characteristics of the memristor element according to the
standard Biolek model and the suggested altered Biolek model are presented in
Figure 55(a,b). It is obvious that the current–voltage functions are pinched hysteresis
loops for both the standard Biolek model and the suggested modified Biolek model,
and they almost coincide with one another. For the standard Biolek model, the i–v
characteristic is a multi-valued function, while for the suggested altered Biolek model,
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it is approximately shown by a double-valued curve. The diagrams of the standard
Biolek window function fB (x,v) and the suggested altered Biolek window function
fBM(x,v) acquired for different values of the positive integer exponent p and for
the altered Biolek model with a voltage-dependent integer exponent are presented
in Figure 56(a,b). The range of the state variable x for the modified Biolek model
grows up with the rising of the integer exponent p, while at the same time, the range
of the window decreases. For integer exponents higher than unity, the standard
Biolek window function attains its maximum value. With the increasing of the
positive integer exponent in the standard Biolek window, the ionic drift nonlinearity
decreases [34].

Figure 52. (a) Time diagrams of voltage v and (b) time diagram of the integer
exponent p in the altered Biolek window function for the soft-switching regime.
The applied voltage is written as: v(t) = 0.6sin

(
2π × 40t− π

3
)
.
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Figure 53. State–flux characteristics of the memristor element according to
(a) the standard Biolek memristor model; and (b) the altered Biolek model
for the soft-switching state. The applied voltage is written as: v(t) =

0.6 sin
(
2π × 40t− π

3
)
.

Figure 54. Time graphs of electric current according to (a) the standard Biolek
model; and (b) the altered Biolek model for the soft-switching regime. The applied
voltage is written as: v(t) = 0.6 sin

(
2π × 40t− π

3
)
.
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Figure 55. Current–voltage relationships of the memristor according to (a)
the standard Biolek model; and (b) the modified Biolek memristor model
for the soft-switching state. The applied voltage is written as: v(t) =

0.6 sin
(
2π × 40t− π

3
)
.

Figure 56. Diagrams of the window functions according to (a) the standard Biolek
model, and (b) the altered Biolek model for the soft-switching state. The applied
voltage is written as: v(t) = 0.6 sin

(
2π × 40t− π

3
)
.
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After a comparison of the standard Biolek window functions for different values
of the positive integer exponent p with the suggested altered window function,
it could be concluded that the altered Biolek window function is created from
several fragments taken from the standard Biolek window functions derived for
different integer exponents. According to the suggested improved memristor model,
the positive integer exponent p changes without human intervention in the simulation
process in accordance to the absolute value of the voltage v. The working point of the
memristor in the field of the dependence between the improved window function
and the state variable x is moving between several different fragments for different
values of the positive integer exponent p [34].

The voltage signal applied for the computer analysis in a hard-switching state
is: 2 sin

(
2π × 40t− π

3
)
. The diagrams of the voltage and the corresponding integer

exponent p of the suggested improved Biolek window function for the hard-switching
state are shown in Figure 57 for observation of the change of the window function
integer exponent p, in accordance to the memristor voltage signal v [34]. In the case of
hard-switching regime, the integer exponent p changes in a broad range (from 3 to 10)
than that acquired for the soft-switching state (from 6 to 10), and the corresponding
nonlinearity of the dopant drift is higher.

Figure 57. Time graphs of memristor voltage (a) and the integer exponent p (b) in
the altered Biolek window function for the hard-switching regime. The applied
voltage is described as: v(t) = 2 sin

(
2π × 40t− π

3
)
.
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The corresponding state–flux characteristics of the memristor for the standard
Biolek memristor model [6] and for the suggested modified Biolek model by the
author [34] are shown in Figure 58. It is obvious that both the standard Biolek
memristor model and the altered Biolek memristor model are capable of restricting
the value of the state variable x to the range (0, 1). For the standard Biolek model,
the state variable x does not attain the minimum limit of zero, but for the improved
memristor model, this limit is almost reached. The diagrams of the electric currents,
according to the standard Biolek model and the offered modified Biolek model,
are shown in Figure 59(a,b). In both cases, the memristor operates as a rectifier
diode [11,34]. In the suggested memristor model, the maximum value of the current i
is slightly higher than the corresponding maximum current value for the standard
Biolek model [6,34].

Figure 58. State–flux characteristics of the memristor according to (a) the standard
Biolek model and (b) the modified Biolek memristor model for the hard-switching
state. The applied voltage is described as: v(t) = 2 sin

(
2π × 40t− π

3
)
.
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Figure 59. Time graphs of the electric current according to (a) the standard Biolek
memristor model; and (b) the altered Biolek model for the hard-switching state.
The applied voltage is described as: v(t) = 2 sin

(
2π × 40t− π

3
)
.

The current–voltage characteristics of the memristor derived, according to the
Biolek memristor model and the altered Biolek model, are shown in Figure 60.
In both cases, the current–voltage characteristic is an anti-symmetrical function
and confirms the rectifying performance of the memristor when it operates in a
hard-switching state [34]. The corresponding current–voltage relationships of the
memristor element in both models almost match each other [34]. The diagrams of
the standard Biolek window function for different values of the integer exponent p
and the altered Biolek window function are given in Figure 61(a,b). For the standard
Biolek memristor model, if the integer exponent p is higher than 2, the state variable x
and the corresponding window function obtain their maximum ranges, that is, from
zero to unity. This phenomenon is also obtained for the suggested altered Biolek
memristor model [34].
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Figure 60. Current–voltage characteristics of the memristor according to (a) the
standard Biolek model and (b) the suggested improved model for the hard-switching
state. The applied voltage is described as: v(t) = 2 sin

(
2π× 40t− π

3
)
.

For the standard Biolek memristor model, the nonlinearity is permanent and the
integer exponent p has a value of 1, 2 or 5, while for the improved Biolek model, the
nonlinearity depends on the voltage v. Owing to the full range of values of the state
variable x (from zero to unity), the hard-switching performance of the memristor
element is more remarkably expressed by the altered Biolek memristor model.

For testing the suggested altered memristor model, an Alternating Current (AC)
voltage signal with exponentially increasing amplitude is applied. In this case, the
transition between the soft-switching regime and hard-switching regime could be
visually expressed in the time domain.

The voltage applied for the current computer analysis is as follows:
v(t) = 0.6e3t sin

(
2π × 40t− π

3
)
. The time graphs of the pseudo-sinusoidal voltage v

and the corresponding integer exponent p of the suggested improved Biolek window
function are shown in Figure 62 for visual illustration in the time domain. It can
be observed the alteration of the positive exponent range is dependent on the used
memristor voltage v [34].
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Figure 61. Diagrams of the window functions according to (a) the standard Biolek
model; and (b) the suggested altered Biolek model for hard-switching regime.
The applied voltage is described as: v(t) = 2 sin

(
2π × 40t− π

3
)
.

Figure 62. Time graphs of (a) the memristor voltage v and (b) the positive integer
exponent p for a pseudo-sinusoidal voltage with an exponentially increasing
amplitude, described as v(t) = 0.6e3t sin

(
2π × 40t− π

3
)
.
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The state–flux characteristics of the memristor, derived by the standard
Biolek memristor model and the altered Biolek model are shown in Figure 63(a,b).
In both cases, the state–flux characteristics are acquired as multi-valued hysteresis
functions [34]. The time graphs of the memristor currents for the standard Biolek
model and the suggested altered Biolek model are shown in Figure 64. For
both Biolek models, the current has very low-level values and in the end of the
analysis the current amplitude grows up and the memristor starts to operate in a
hard-switching state [34].

Figure 63. State–flux characteristics of the memristor according to (a) the standard
Biolek model; and (b) the improved Biolek model for a pseudo-sinusoidal
voltage with an exponentially increasing amplitude, described as v(t) =

0.6e3t sin
(
2π × 40t− π

3
)
.

For the suggested improved Biolek model, the memristor current is derived
with a magnitude several times higher than the current magnitude acquired
by the standard Biolek model. The current–voltage characteristics of the
memristor element, according to the standard Biolek model and to the offered
altered model, for a pseudo-sinusoidal voltage signal with an exponentially
increasing magnitude are shown in Figure 65(a,b). Observing the current–voltage
characteristics of the memristor element, one can establish the transition between
the soft-switching and hard-switching memristor states. In the same environment,
the soft-switching behaviour is dominating for the standard Biolek model, while
the hard-switching regime is more remarkable for the improved memristor model
suggested by the author [34].
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Figure 64. Time graphs of the electric current according to (a) the standard Biolek
model and (b) the altered Biolek model for a pseudo-sinusoidal voltage with an
exponentially increasing magnitude, described as v(t) = 0.6e3t sin

(
2π × 40t− π

3
)
.

Figure 65. Current–voltage characteristics of the memristor, according to (a) the
standard Biolek model; and (b) the altered Biolek model for a pseudo-sinusoidal
voltage with an exponentially increasing amplitude, described as v(t) =

0.6e3t sin
(
2π × 40t− π

3
)
.
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The window functions for several different positive exponents in the standard
Biolek model and the improved memristor model are shown in Figure 66(a,b) for
illustration of the trajectories of the working point of the memristor element during
the computer analysis.

Figure 66. Diagrams of window functions according to (a) the standard Biolek
model; and (b) the modified Biolek model for a pseudo-sinusoidal voltage with an
exponentially increasing amplitude, described as v(t) = 0.6e3t sin

(
2π × 40t− π

3
)
.

If we examine the window functions for the standard Biolek model shown in the
first sub-figure of Figure 66(a,b), then it could be established that for the given
conditions, the state variable x tends to attain its minimal value of zero when we
grow up the integer exponent p.

In this situation, the ionic drift nonlinearity for the altered Biolek memristor
model changes in the investigation process, while for the standard Biolek memristor
model, the integer exponent has a constant value. The nonlinearity of the dopant
drift decreases if a higher value of the integer exponent p is chosen [34].

The suggested improved window function shown in the second sub-figure of
Figure 66(a,b) is acquired by the application of several fragments of the standard
Biolek window function with different positive integer exponents. This fact is based
on the suggested relationship between the integer exponent p and the absolute
value of the voltage v [34]. After the comprehensive analytical explanation and
the computer investigation of the suggested improved Biolek memristor model, in
parallel to the standard Biolek model analysis, several conclusions for the discussed
model could be made.
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The new altered nonlinear model proposed in this research is based mostly
on the standard Biolek model and has many benefits of the standard Biolek model.
The suggested model has a nonlinear ionic drift and a mechanism for restriction of
the state variable x to the range from zero to unity, established by investigations for
hard-switching state.

The new improved model [34] has a benefit, which the standard Biolek model
with a constant exponent does not have, that is, the capability of more realistically
depicting dopant drift nonlinearity in accordance to the absolute value of the
applied voltage v. As it could be observed from the acquired results, the state–flux
characteristics of the altered Biolek model for the soft-switching mode are almost
single-valued functions. This is an advantage of the proposed model the standard
Biolek model lacks, which illustrates, under the same circumstance, multi-valued
state–flux characteristics of the memristor [34].

2.2.8. A Model with a Modified Window Function and an Activation Threshold

The proposed model is constructed by the use of Biolek model [6],
Joglekar model [5] and GBCM model [14]. The considered model has the main
benefits of the described memristor models above. The application of a window
function with a voltage-dependent positive integer exponent is the new suggestion
in this model. The adapted window function is based on both Biolek and Joglekar
window functions [35]. As the GBCM memristor model, the adapted model uses
activation threshold [35]. The new suggestion in the altered memristor model is
the possibility for changing the integer exponent of the window function and
the corresponding nonlinearity of the ionic motion in accordance to the voltage
signal v. This mechanism is significant for the rational illustration of the nonlinear
ionic flow [35], which is a function of the memristor voltage v. The inspiration
for the current investigation is related to the absence of a correlation between the
ionic motion nonlinearity and the voltage v in many models, such as GBCM [14],
Joglekar [5], and Biolek [6] models. The opportunity for realistic depiction of
the nonlinear dopant motion and the fractional improvement of the flux–charge
characteristic of the element, in accordance to the Pickett memristor model, is
connected to the use of a function between the integer exponent of the window
function p [35] and the applied voltage signal v.

The suggested memristor model by the author is based on the Biolek
model, Joglekar model and GBCM memristor model [35]. It has their benefits—
demonstration of the nonlinear dopant drift in the memristor element according
to the state variable x, a constant resistance for signals lower than the sensitivity
threshold, and realistic illustration of the boundary effects for the hard-switching
regime. The main and interesting new benefit of the suggested model is the realistic
depiction of the nonlinear ionic motion, in which nonlinearity is dependent on the
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applied voltage v and on the corresponding electric field intensity E. For this reason,
a simplified hyperbolic-like approximated function between the window integer
exponent p and the voltage v is offered [35]. The applied additional hyperbolic
function has two variables in the numerator and the denominator. The numerical
values of these variables are approximately established after comparison of the
results with those acquired by the Pickett model and the following adjustment. The
altered window function fM(x) proposed here is based both on Joglekar [5] and
Biolek [6] window functions. It is a simple linear mixture of the described window
functions. Its maximum value of the state variable x is unity and the corresponding
minimum value is zero. The suggested window function fBJM(x) by the author is
given in Equation (2.76) [35]:

f (x) = fBJM(x, v) =
fB(x, v) + f J(x)

2
(2.78)

After substituting the expressions for Joglekar and Biolek window functions
into Equation (2.76), a more suitable expression of the window function is acquired
and presented in Equation (2.79):

fM(x) = 1− (x−1)2p+(2x−1)2p

2 , v(t) ≤ 0

fM(x) = 1− x2p+(2x−1)2p

2 , v(t) > 0

(2.79)

If the signal v grows up, the nonlinearity of the ionic drift increases [35].
The depiction of the increased nonlinearity of the ionic motion could be expressed
by diminishing the positive integer exponent p in the altered window function [35].
There are many potential expressions for illustrating such a relationship. The author
tried to apply a simplified relationship for optimizing the model and reducing
the needed computational time. The offered simplified window function between
the positive integer exponent p and the memristor voltage v is given in the next
Equation (2.80) [35]:

p = round
(

a
c + |v|

)
(2.80)

where the specialized function “round” is applied for deriving an integer outcome [35];
the variables a and c could be approximately established after comparison of the
acquired results to those derived by the Pickett memristor model and correction
of the modified model; the constant c is used for avoiding the division by zero
if the memristor voltage signal v has a value of zero in the simulation process.
The adapted window function fM(x,v) (System of Equations (2.80)) is substituted
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into Equation (2.79). Applying the state-dependent current–voltage relationship, the
offered model could be illustrated with System of Equations (2.79) [35]:

dx
dt = η k i

1− 1
2

 (x− 1)2·round ( a
|v|+c )+

+(2x− 1)2·round ( a
|v|+c )

, v(t) ≤ 0

dx
dt = η k i

1− 1
2

 x2·round ( a
|v|+c )+

+(2x− 1)2·round ( a
|v|+c )

, v(t) > 0

v = R i = [RON x + ROFF(1− x)] i

(2.81)

where the third equation in System of Equations (2.81) presents the state-dependent
Ohm’s Law [4,12]. The analysis of the memristor element is completed using the
numerical solution to System of Equations (2.81) by applying the finite difference
method in MATLAB [13]. An algorithm similar to those used in the GBCM model [14]
is used here for illustration of the border effects. The offered memristor model is
analyzed for the same voltage signal described as v(t) = 0.5 sin(2π × 4t), used for
the Pickett model investigation in the PSpice environment [19]. The current–voltage
and flux–charge characteristics of the element according to the Pickett model are
shown in Figure 67(a,b).

Figure 67. (a) Current–voltage relation of the memristor according to the
adjusted altered model; (b) flux-linkage–charge relationship according to the
adjusted suggested memristor model. The applied voltage signal is described
as: v(t) = 0.5 sin(2π × 4t).
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After numerous analyses of the offered memristor model for different values of
the variables a and c, it is established that, for a = 30 and c = 2, the current–voltage and
the flux–charge relationships shown in Figure 67(a,b) are approximately identical to
those acquired by the Pickett model. Then, the suggested memristor model is tuned
according to the Pickett model.

The current–voltage and the flux–charge characteristics of the element are
illustrated by multi-valued curves derived in approximately comparable ranges in
the fields of the respective coordinates. During the investigations of Pickett memristor
model and applying voltage signals higher than 0.7 V, several convergence issues
appear [35]. The basic advantage of the suggested memristor model by the author,
compared to the Pickett model, is the absence of computational issues.

Investigation of the suggested memristor model for the soft-switching state, in
parallel to the GBCM model and the standard Biolek model, is completed for voltage
described as v(t) = 2.55 sin(2π × 4t). Its current–voltage characteristics acquired
by the computer simulation are shown in Figure 68(a) for representation of its main
properties. The current–voltage characteristic of the suggested memristor model is
a multi-valued pinched hysteresis loop. After a comparison with experimentally
derived current–voltage curves [17,20], a good correspondence between the
respective relations is established. The current–voltage function acquired by the
GBCM memristor model is a double-valued pinched hysteresis loop due to the
linearity of the ionic motion in the present case [35].

The current–voltage characteristic derived by the standard Biolek memristor
model for p = 1 is a multi-valued pinched hysteresis loop, which has a higher
nonlinearity according to the proposed model. The ranges of the electric current
for the offered model and for GBCM model are almost similar, while for the Biolek
model, this range is narrower. In this situation, the best results can be obtained
by the GBCM model owing to the double-valued current–voltage relationship.
The corresponding Weber-Coulomb characteristics are illustrated in Figure 68(b).
For the suggested memristor model and the GBCM model, their flux–charge
relationships are single-valued curves which approximately match each another [35].
The flux–charge characteristic of the memristor, according to the standard Biolek
model, is a multi-valued function in a narrower range, according to the coordinate
axis. In this case, the suggested memristor model and the GBCM model are
almost equivalent to each other according to their behavior [35]. The analysis of
the proposed model [35], the GBCM model [14] and the standard Biolek memristor
model [6] for the hard-switching state is made for the following voltage signal:
v(t) = 3.5 sin

(
2π × 0.7t− π

2
)
. In this case, the current–voltage characteristics

presented in Figure 69(a) and derived by the memristor models under test are almost
identical and practically match each other. They are similar to the i–v relationship of
a semiconductor diode. The flux–charge characteristics of the memristor element are
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illustrated in Figure 69(b). The flux–charge relationships derived by the suggested
model and the GBCM model are almost similar. These curves describing the
flux–charge relationships have a hysteresis shape owing to the border effects.
The charge of the memristor reaches its limiting value [35]. According to the standard
Biolek model, the memristor charge does not reach its minimum value. In this
situation, the behaviors of the suggested model and GBCM model are almost
identical. The Biolek model acquires high-quality results. The modified model is
tested for a signal with a magnitude lower than the activation threshold vthr = 0.1 V,
and is established that the state variable x in this case is a constant, equal to its initial
value x0. The memristor element behaves as a linear resistor. During the simulations
of the suggested model [35], no convergence issues have been observed.

Figure 68. (a) Current–voltage relationships of the proposed model, the GBCM
model and the standard Biolek model with p = 1 for the soft-switching state;
(b) Weber–Coulomb characteristics of the proposed model, the GBCM model and
the standard Biolek memristor model with p = 1 for the soft-switching regime.
The voltage signal for analysis is described as: v(t) = 2.55 sin(2π × 4t).
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Figure 69. (a) Current–voltage relationships, derived by the proposed model,
GBCM model and Biolek memristor model for the hard-switching mode; (b) The
corresponding Weber–Coulomb relationships derived by the proposed model,
GBCM model and Biolek model. The voltage signal for analysis is described as:
v(t) = 3.5 sin

(
2π × 0.7t− π

2
)
.

The time diagrams of the window function integer exponent p, the state
variable x of the memristor element and the window function f(x) in dependence on
the state variable x are presented in Figure 70(a–c) for clarification of the main features
of the proposed model for the hard-switching mode [35]. The integer exponent p
in the modified window function changes in accordance to the applied voltage v.
This integer exponent changes in the range between 6 and 15. The state variable x
reaches its limiting values. The modified window function contains several segments.
The memristor operating point moves on the window function curve in accordance
to the applied flux linkage Ψ [35].

The needed computational times for the suggested model, GBCM model and
standard Biolek model are 0.39 s, 0.28 s and 0.15 s, respectively. After a comparison
of GBCM memristor model and Biolek model, it could be concluded that the
performance of the suggested model is closer to that of the GBCM model [14,35].
The suggested memristor model is tested in a real electronic scheme [35]. For this
goal, the integrator given in Figure 71 [35] is principally suitable because it uses two
processes—writing information in the memristor by changing its conductance and
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using an input voltage signal higher than the memristor sensitivity threshold, and
reading the stored information by a very small DC current lower than the activation
threshold of the element. Several basic models, such as Strukov and Williams’s,
Joglekar, Pickett and Biolek models are not suitable to be used in such integrators,
because they do not have an activation threshold. The integrator device presented
in Figure 71 has been simulated in MATLAB environment [13] using the suggested
model by the author and the GBCM model [14]. The operation of the proposed
integrator device is based on transformation of the time integral of the input voltage
signal in electric charge, stored in a memristor [35]. For avoiding the violation of
the integration and the related boundary effects, the memristor is operating in a
soft-switching regime for low input voltages [35].

Figure 70. (a) Time diagram of the window function integer exponent p in
dependence on the applied voltage v; (b) time diagram of the memristor state
variable x; representation of the modified window function, derived for the
hard-switching mode; the window function contains several segments, the
operating point of the memristor moves on the window function in accordance to
the applied flux linkage Ψ.
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The information for the resistance of the memristor is read by a DC signal acquired
by the current source with a current of 30 µA. This value is lower than the activation
threshold of the memristor element [35]. The voltage across the current source and
the capacitor is proportional to the resistance of the memristor element [12,35].
The switches sw1, sw3 and sw2, sw4 are controlled in an anti-phase regime. They are
applied for sampling the input signal and for separating the signals in the time domain,
to avoid parasitic communication between the electric sources [12,35]. The capacitor C
with a capacitance of 560 pF is applied for filtering and smoothing the output voltage
signal. The memristor models applied for the simulations have equal values of their
basic parameters. The time diagrams of the control signals for the electronic switches
are presented in Figure 72(a,b) for visual expression of their anti-phase operating mode.
According to the applied control signals, if sw1 and sw3 are open, in the same time,
s2 and s4 are closed, and vice versa [35]. The time diagram of the memristor state
variable x and the memristance are presented in Figure 73(a,b) for visual observation
of the change of memristor state in time domain. It is observable that both the
state variable x and the resistance of the memristor element M change piece-wise
linearly and the memristance is proportional to the time integral of the input voltage v.
The state–flux and the current–voltage characteristics are shown in Figure 74(a,b). The
time diagrams of the input and output voltages of the considered integrator, derived
from the present analysis, are given in Figure 75(a,b). The input voltage is a sequence
of rectangular pulses with different polarities [35]. The output voltage is proportional
to the time integral of the input voltage. When the input voltage is a positive signal
with a constant value, the corresponding output signal is illustrated by a monotonically
increasing straight line. When the input voltage changes its polarity, the output voltage
is shown by a monotonically decreasing straight line. The graphics of the output
voltage according to the suggested model and GBCM model match each another. The
computational time for GBCM model is 0.31 s and for the offered model it has higher
value—0.33 s. For analysis of electronic devices such as the integrator illustrated
above, only the GBCM and the proposed model are appropriate due to the use of
sensitivity threshold. Both the GBCM and the proposed memristor models derive
realistic results [35].
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Figure 71. Memristor integrator for testing the suggested memristor model.

Figure 72. Control signals for the electronic switches in the memristor integrator:
(a) Control signal for the switches 1 and 3; (b) Controlling signal for the switches 2
and 4.
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Figure 73. Time diagrams of (a) the state variable x and (b) the memristance M of
the memristor element in an operation mode.

Figure 74. (a) State–flux and (b) current–voltage characteristics of the memristor
element, derived in the normal working mode.
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Figure 75. Graphs of the input voltage (a) and output voltage (b) acquired for the
operating impulse regime of the memristor integrator.

The memristor model suggested here is based on several main models, i.e.,
the Joglekar memristor model, Biolek model and GBCM model. It has their main
properties and benefits [35]. It has an activation threshold, a switch-based algorithm
for illustration of the boundary effects and the capability for representation of
the nonlinear ionic drift. Another advantage of the suggested memristor model,
according to the Pickett memristor model, is the established absence of convergence
issues. The proposed model has a new improvement compared to the previous
described models—the capability for realistic depiction of the ionic drift nonlinearity
in accordance to the voltage [35]. For this purpose, the modified window included
in the suggested model has a voltage-dependent integer exponent. The suggested
memristor model has been effectively tested in a switch-based integrator device in
parallel with the GBCM model. The results derived by these two models are almost
identical [35].

2.2.9. Summary of the Described Window Functions

In Table 3, the basic described existing and modified window functions by the
author are summarized. They could be applied for different types of memristors
with equations, similar to th se illustrating the titanium dioxide memristor elements.
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The main results, the advantages and the behavior of the proposed four
memristor models by the author are summarized in Table 3. Their applications
and performances in memristor-based electronic circuits are also discussed.
The suggested memristor models by the author with modified window functions are
based mainly on the three previously described classical memristor models—Joglekar,
Biolek and BCM models, and have their basic properties and advantages. The main
new advantages of the suggested memristor modified models by the author are
related to the realistic representation of the ionic dopant drift, dependent on
the applied voltage and the increased nonlinearity, especially in the memristor
model [33]. The increased nonlinearity of the suggested memristor models is
presented according to the memristor state variable. The improved representation
of the nonlinear dopant drift is also shown according to the state variable of the
memristor element. Another advantage of the proposed models is the improved
similarity between the derived current–voltage relationship and the corresponding
experimental current–voltage characteristics. Almost all of the suggested models,
except the one in Reference [34], use activation threshold, giving them the possibility
for application in devices which have to differentiate high-level signals from low-level
signals, for instance, the memristor-based memory crossbars [38,40] introduced in
Chapter 4 and the switch-based integrator [35].
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CHAPTER III 

Investigation of Memristor Circuits and 
Devices 





3.1. Investigation of a Series Circuit with Two Memristor Elements for the
Sinusoidal and Pulse Regime

3.1.1. General Information

The series circuit proposed here for analysis contains two equivalent memristor
elements connected in a series connection [41]. The circuit is supplied by a sinusoidal
voltage source. The purpose of the present analysis is to compare the behavior of
the memristor circuit and the single memristors, and obtain their basic parameters,
properties and characteristics. The electrical circuit of the considered scheme is
presented in Figure 76 for further comments [41].

Figure 76. A series circuit with two memristor elements.

3.1.2. Mathematical Description of the Memristor Circuit

For the current analyses, the linear dopant drift model is applied [3,4,41].
It could be briefly described by System of Equations (3.1):∣∣∣∣∣∣∣

v = i [RON x + ROFF(1− x)]

dx
dt = k i

(3.1)

where the first equation is the state-dependent Ohm’s Law and the second one is the
state differential equation [3,4]. The voltage drops across the two memristor elements
and their state differential equations are as follows—System of Equations (3.2) [41]:∣∣∣∣∣∣∣

vM1 = [(RON − ROFF)x1 + ROFF] i, dx1
dt = k i

vM2 = [(RON − ROFF)x2 + ROFF] i, dx2
dt = k i

(3.2)

After expression of the current and using Kirchhoff’s Voltage Law [12],
the following current–voltage relationship of the whole memristor circuit is
derived–Equation (3.3):

v = [(RON − ROFF)(x1 + x2) + 2ROFF] i (3.3)
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Using System of Equations (3.2) and Equation (3.3), the state differential
Equation (3.4) of the whole memristor circuit is acquired:

|[(RON − ROFF)(x1 + x2) + 2ROFF]d(x1 + x2) = 2 k v(t)dt (3.4)

The equivalent resistance of the considered memristor circuit is expressed by
Equation (3.5):

Req =
v
i
= (RON − ROFF)(x1 + x2) + 2ROFF (3.5)

3.1.3. Results Derived by the Analysis of the Memristor Circuit

The time diagrams of the applied memristor voltage, the current and the
resistance of the memristor for the hard-switching mode are presented in Figure 77(a)
for establishing several basic memristor properties. The voltage signal used for the
hard-switching mode is: v(t) = 7 sin(2π × 70t) [41].

Figure 77. (a) Time diagrams of the current, source voltage, and the equivalent
resistance of the memristor circuit, for hard-switching; (b) Time diagrams of
the current, source voltage, and the equivalent resistance for soft-switching
modes, respectively, which demonstrates that the memristor circuit has a
single-memristor behavior.

Similar time diagrams of the applied memristor voltage, the current and the
resistance of the memristor are presented in Figure 77(b) for the soft-switching mode.
The voltage signal used for the soft-switching mode is: v(t) = 7 sin(2π × 140t).
For the hard-switching mode, the memristance changes in the whole range, and
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the current only has positive values, due to the rectifying effect of the memristor
operating in a hard-switching mode. For the soft-switching mode, the memristance
of the whole circuit changes in a narrower range than that for the hard-switching
mode, and does not reach its limiting values. In this case, the series memristor
circuit does not have a rectifying effect and the current has positive and negative
values [3,41].

On a basis of the results for hard-switching and soft-switching modes, it could be
concluded that the series memristor circuit behaves like a single memristor element.
The time diagrams of the state variables of the memristors x1 and x2 are presented in
Figure 78(a,b) for observation of their behavior in the time domain. The initial values
of the state variables x1 and x2 are different.

Figure 78. Time diagrams of the state variables x1 and x2 of the memristors for (a)
hard-switching and (b) soft-switching modes. For the hard-switching mode, the
two graphs the state variables x1 and x2 match each other; for the soft-switching
mode, the two graphs do not exactly coincide, due to their initial values.

For the hard-switching mode, these time diagrams of the state variables x1

and x2 almost match each other, while for the soft-switching mode, they do not
coincide, but are very close to each other [41]. The state–flux relationships of the two
memristor elements for hard-switching and soft-switching modes are presented in
Figure 79 for description of their behavior and the memristor properties. For the
hard-switching mode, the state–flux relationships of the two memristor elements due
to the boundary effects are illustrated by hysteretic curves. For the soft-switching
mode, the state–flux relationships of the two memristor elements are expressed
by monotonically increasing single-valued curves. The respective current–voltage
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characteristics of the two memristor elements are presented in Figure 80 for
expression of their shapes and ranges for hard-switching and soft-switching modes.
For the hard-switching mode, the current–voltage relationships of the memristor
elements almost match each other and the memristor elements have rectifying
behavior. For the soft-switching mode, the respective current–voltage relationships
of the two memristor elements are pinched hysteresis loops, which are very close to
each other [41].

Figure 79. State–flux relationships of the memristors for (a) hard-switching and for
(b) soft-switching modes, representing the behavior of a single memristor for these
specific modes.

Figure 80. (a) Current–voltage relationships of the two memristor elements in the
series memristor circuit for hard-switching and (b) for soft-switching modes.
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The equivalent current–voltage relationships of the whole memristor circuit
for hard-switching and soft-switching modes are presented in Figure 81 for
expression of the behavior of the whole memristor circuit. Based on the respective
current–voltage relationships of the two memristor elements, it could be established
that the series circuit with two memristors behaves like a single memristor [41].
The equivalent resistance of the circuit is higher than the resistance of a single
memristor. The respective harmonic components in the frequency spectrum of the
memristor current for hard-switching and soft-switching modes are presented in
Figure 82(a,b). It is observable that the frequency spectrum for the hard-switching
mode is many times richer than the frequency spectrum for the soft-switching
mode [41].

Figure 81. (a) Equivalent current–voltage relationships of the whole circuit for
hard-switching and (b) for soft-switching modes.
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Figure 82. Spectral analyses of the current for (a) hard-switching and (b) for
soft-switching modes.

3.1.4. Discussion of the Derived Results

The behavior of the series memristor circuit is similar to that of the single
memristor element. The resistance of the entire circuit is higher than that of a single
memristor. The states of the included memristor elements depend on the initial
values of the state variables and on the applied voltage.

3.2. Investigation of a PSpice Model of a Titanium dioxide Memristor Element
and a Memristor-Based Wien Oscillator

3.2.1. General Information for the Analyzed Circuit

A significant property of the memristor is that its memristance could be simply
regulated by applying electrical impulses. Besides this, in some segments of its
current–voltage relationship, the memristor element has a negative differential
resistance [3,4,12,42]. The discussed memristor properties are prerequisite for its
potential application in generator schemes [12,42]. The main goals of this analysis
are synthesis of a suitable PSpice [19] memristor model and explanation of its
application for investigation of a memristor-based Wien oscillator [19,42]. For the
current investigations, the current–voltage correlation for linear ionic dopant drift,
expressed by Equation (3.6) is applied [12,42]:

i(t) =
v(t)

ROFF

√(
1− q(t0)

QD

)2
− 2η

QD ROFF

∫
v(t)dt

(3.6)
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The circuit of the investigated memristor-based Wien oscillator is shown
in Figure 83 [12,42]. It is derived by alteration of the classical scheme of the
generator with Wien bridge by substituting several resistors with memristors [42].
The operational amplifier applied in the circuit operates as a master nonlinear
unit [12,19,42]. The resistances of the memristor elements applied in the circuit
could be changed by external sources as presented in Figure 83 [12,42]. The deviation
of the resistances of the memristor elements M1 and M2 is used for controlling the
frequency of the output signal of the generator device. By altering the equivalent
resistance of the memristor elements M3 and M4, the amplitude of the output signal
could be altered in a predetermined time interval [12,42].

Figure 83. A memristor-based Wien generator scheme, representing its basic
structure and principle of operation in oscillating mode.

The function of the diodes D3 and D4 is to stabilize the amplitude of the output
voltage when the ambient temperature changes. The Wien bridge consists of two
capacitors (C1 and C2) with equal capacitances of 4.7 nF and two memristor elements
M1 and M2 with equal values of the initial state variables [12,42]. At each moment,
the resistances of the memristor elements M1 and M2 must be equal to each other.

Theoretically, the frequency of the generated output voltage signal is established
with Equation (3.7) [12,42]:

f0 =
1

2πReqM1C1
(3.7)

The supply voltage of the operational amplifier does not grow up instantly but
increases almost linearly from 0 to 15 V for a very small time interval. That is the
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initial actuation pulse for creating the further signal generations in the Wien oscillator.
The voltage signal generations could be actuated in several different ways, either
by short external current or voltage impulse or by previously charging of some of
the capacitors in the analyzed device. The initial normalized electric charge of a
titanium dioxide memristor element is denoted with aM = q(t0)/Qd, where q(t0) is
the instantaneous electric charge accumulated in the memristor element, and Qd is
the maximum amount of charge accumulated in the memristor nanostructure [42].
The resistances of the memristor elements M3 and M4 must not be smaller than 21.1
kΩ. This requirement follows the stability criterion for the oscillator scheme [12,42].

3.2.2. Results and Discussion

The time graph of the generated output voltage signal for aM3 = aM4 =
0.3 is presented in Figure 84, especially for initial transient observation [19,42].
The duration of the initial transient in the oscillator is about 12 ms. After this process,
the output voltage has amplitude and frequency stability. In this case, the normalized
memristor charges of the memristor element M1 and M2 (aM1 and aM2) are both
0.4 [12,19,42].

Figure 84. Time diagram of the output voltage of the memristor generator. In the
beginning, a transient with a duration of about 12 ms is observed; the basic reason
for this transient is the use of capacitors and resistors.

Theoretically, the maximum-to-minimum frequency ratio can be expressed as:

fmax
fmin

= 1
2πReqM1minC1

: 1
2πReqM1maxC1

=

=
ReqM1max
ReqM1min

= ROFF
RON

= 16000
100 = 160

(3.8)
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This ratio is comparatively high and it could be concluded that a similar
memristor-based Wien oscillator may almost cover the audio frequency range [12,42].
The phase portrait of the analyzed oscillator is shown in Figure 85 for visualization
of the trajectory of the operating point in the field of the respective coordinates of the
capacitor’s voltage and current, which are most frequently used [12,19,42]. In this
case, the phase portrait is obtained using the current–voltage characteristic of the
capacitor C2 during the operation of the generator circuit. The limit cycle derived for
the established stable oscillations is visibly expressed [12,19,42].

Figure 85. A phase portrait of the considered memristor-based generator,
representing the trajectory of the memristor operating point in the field of the
respective coordinates of the capacitor’s voltage and current. The limit cycle,
responsible for the derived stable oscillations, is clearly observable in the periphery
of the curve.

From the results shown above, it is obvious that the memristor elements could
be applied as trimming elements in oscillator devices. The memristor elements
could replace some of the resistors in the Wien oscillator device. The memristor
elements could be applied in the frequency-determining circuits as the Wien bridge
and in the circuit for balancing the oscillator scheme. The ease of using memristor
elements is the opportunity for their simple and fine adjustment by applying external
pulses. In spite of the memristor’s nonlinearity, it has been established that for a
suitable mode, it does not introduce nonlinear distortions to the generated output
signal. It has also been established that for very high frequencies, the memristor
elements could operate with high levels of the applied signals without occurrence of
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breakthrough or another destructive effects. These phenomena could be explained
with the high frequency of the generated signal and the inertia of the memristor
components. The movement of the boundary between the doped and the undoped
regions of the memristor element, in fact, has a very low amplitude, owing to the
growing of the frequency, and the decreasing of corresponding flux linkage.

According to the state–flux characteristic of the investigated memristor, the state
variable x is proportional to the flux linkage. This is the reason for determining
very low divergence in the memristor state variable x, if the applied voltage has a
high frequency [12,42]. The states of the memristor elements and their respective
resistances are changing by applying pulses with large durations and low frequencies
from external sources. By changing the memristor’s resistance and electric charge,
the frequency of the generated output signal could be tuned in a wide range.
Memristor circuits similar to these shown above could be applied in audio-frequency
signal generator devices [12,42].

3.3. Investigation of Anti-Parallel Circuit with Two Memristors

3.3.1. General Information and Mathematical Description of the Anti-Parallel Memristor
Circuit

An anti-parallel memristor circuit with two memristor elements is investigated
in an oscillator circuit [16,43]. The absence of detailed analysis of anti-parallel
memristor circuits for the sine-wave regime is the basic motivation for the present
research [13]. The modified linear drift memristor model proposed here is based on
the GBCM model [14], but for simplicity, the model investigated is without activation
thresholds. For the present investigations, an algorithm based on the finite difference
method for numerical analysis is applied [16,43]. The main purposes of the present
research are to acquire the basic important characteristics of the memristor circuit
and its equivalent conductance for a sine-wave current source, and to derive the
main results for hard-switching and soft-switching electric regimes [43].

The memristor circuit under analysis is presented in Figure 86 for derivation of
its basic properties and behavior in electric fields [16,43]. The circuit contains two
equivalent memristors with different initial values of the respective state variables
x1 and x2. The anode of the first memristor element is connected to the cathode
of the second memristor element, and the cathode of the first memristor element
is connected to the anode of the second memristor element. The corresponding
state differential equations of the memristor elements are as follows—System of
Equations (3.9) [43]:

dx1
d t = η1 k i1 = k i1

dx2
d t = η2 k i2 = −k i2

(3.9)
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where η1 and η2 are the respective polarity coefficients of the first and second
memristor elements; for the first memristor element connected in a forward direction,
the polarity coefficient is 1; for the second memristor element connected in a reverse
direction, the polarity coefficient is equal to −1 [16,43]. According to the Kirchhoff’s
Current Law (KCL), the following relationship is expressed for the upper node
(Figure 86) [12,16,43]—Equation (3.10):

je(t) = i1 + i2 (3.10)

Figure 86. An anti-parallel circuit under analysis. The cathode of the first memristor
element is connected to the anode of the second memristor element, and the
anode of the first memristor element is connected to the cathode of the second
memristor element. The applied current (unit: mA) can be described as: je(t) =
0.1 sin

(
2π × 40t− π

3
)
.

By expressing the resistances of the memristor elements, the equivalent resistance
R12 of the anti-parallel-connected memristor elements can be found [12,16,43]—System
of Equations (3.11):

R1 = (RON − ROFF)x1 + ROFF

R2 = (RON − ROFF)x2 + ROFF

∆R = RON − ROFF

R12 = R1R2
R1+R2

= (ROFF+∆Rx1)(ROFF+∆Rx2)
2ROFF+∆R(x1+x2)

(3.11)

The voltage drop across the two memristor elements is expressed, using the
Ohm’s Law [12]—Equation (3.12):

v = je(t) · R12 = je(t)
(ROFF + ∆Rx1)(ROFF + ∆Rx2)

2ROFF + ∆R(x1 + x2)
(3.12)
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The currents flowing through the two memristor elements are acquired using
the current divider rule [12]—Equation (3.13):

i1 = je(t)
(ROFF+∆Rx2)

2ROFF+∆R(x1+x2)
i2 = je(t)

(ROFF+∆Rx1)
2ROFF+∆R(x1+x2)

(3.13)

A sinusoidal current source is applied for the computer simulation of the
circuit [12,16,43]. Using Equations (3.10), (3.12) and (3.13), the KCL and the finite
difference method, a pseudo-code-based algorithm is created and applied for analysis
of the suggested memristor circuit [16,43].

The anti-parallel circuit presented in Figure 86 is analyzed for soft-switching
and hard-switching modes [16,43] and its simulations were done in MATLAB [13].
For investigation of the anti-parallel memristor circuit for the soft-switching regime,
a sinusoidal current source with the following current signal (unit: mA), described
as je(t) = 0.1 sin

(
2π × 40t− π

3
)
, is applied.

3.3.2. Analytical Results. Investigation of the Anti-Parallel Circuit for the Soft-Switching
Mode

The time graphs of the source current and the voltage drop across the
anti-parallel-connected memristor elements, acquired after the numerical analysis,
are shown in Figure 87 for visual illustration of the forms of the signals and their
distortions. It is clear that the source current has a sine-wave shape, but the voltage
across the memristors has a non-sinusoidal form, owing to the nonlinearity of the
circuit [43].

Figure 87. (a) Time graphs of the source current je(t) and (b) time diagram of the
voltage v across the memristor elements M1 and M2 for the soft-switching mode.
The voltage drop across the memristors is a non-sinusoidal function.
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The time graphs of the state quantities x1 and x2 for the two memristor elements
are presented in Figure 88(a,b) for observation of their forms and performances in
the time domain. It is obvious that the state quantities x1 and x2 do not attain their
limiting values [16,43]. When the state variable x1 grows up, the state variable x2

decreases, due to the anti-parallel memristor biasing [16,43].

Figure 88. (a) Time diagrams of the state variable x1 and (b) time diagram of
the state variable x2 of the memristor elements for the soft-switching regime,
representing their change and behavior in the time domain.

The time graphs of the state variables presented in Figure 88(a,b) have
non-sinusoidal shapes. The state–flux characteristics of the elements M1 and M2

are given in Figures 89 and 90, respectively. They are single-valued nonlinear
functions. Owing to the anti-parallel bonding, they have different signs of their slopes,
that is, the state–flux characteristic of the first memristor element is an increasing
function while that of the second memristor element is a decreasing function [16].
When x1 grows up, the state variable x2 decreases, and vice versa. The applied
flux linkage causes alterations in the state variables of the memristor elements in
different directions.
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Figure 89. State–flux characteristic of the memristor element M1 for the
soft-switching mode; due to its forward biasing in the investigated circuit,
containing anti-parallel-connected memristors, increasing the flux linkage Ψ causes
the increasing of the state variable x1.

Figure 90. State–flux relationship of the second memristor M2 for soft-switching
state; due to the reverse biasing of the element in the circuit, increasing the flux
linkage Ψ causes the decrease of the state variable x2 of the memristor element.
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The time graphs of the memristances of the elements in the investigated circuit
are represented in Figure 91(a,b). Owing to the anti-parallel connection of the
memristor elements, when the resistance R1 grows up, then R2 decreases, and
vice versa.

Figure 91. (a) Time graphs of the memristance of M1 and (b) time diagram of the
memristance of M2 of the anti-parallel memristor circuit for the soft-switching
regime, representing the change of the resistances of the elements M1 and M2 in
different directions. The applied flux linkage Ψ causes the increase of the resistance
of the first memristor element, and the decrease of the second one.

The time graph of the equivalent resistance R12 of the anti-parallel circuit is
shown in Figure 92 for illustration of the unpredicted performance of the memristor
circuit. It is clear that the time graph of the anti-parallel resistance of the memristor
connection is a periodical, time-dependent and non-sinusoidal curve.
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Figure 92. Time diagram of the equivalent resistance R12 of the anti-parallel
memristor circuit for the soft-switching mode. The resistance changes in a
comparatively narrower range.

The memristance–flux characteristic of the anti-parallel memristor circuit is
shown in Figure 93. It is a single-valued function with a local maximum which
is derived for a specific value of the resistances R1 and R2 according to System
of Equations (3.11). The performance of the memristance–flux relationship of the
anti-parallel memristor circuit is unpredicted, because it differs from the behavior of
a single memristor, owing to the existence of its local maximum [16].

Figure 93. Memristance–flux characteristic of the anti-parallel memristor circuit for
the soft-switching mode. The performance of the memristance–flux characteristic
of the anti-parallel memristor connection is unpredicted because it differs from the
behavior of a single memristor element due to the occurrence of its local maximum.
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The respective i–v characteristics of the memristor elements M1 and M2 are
shown in Figures 94 and 95. It is obvious that the current flowing through the second
memristor M2 is higher than the current through the memristor element M1. This fact
could be explained with the different initial values of the state variable and the
different connection polarities of the memristor elements.

The current–voltage characteristic of the anti-parallel memristor circuit is shown
in Figure 96. It is shown by a pinched hysteresis loop and it indicates that in this case,
the parallel connection of two anti-parallel memristor components has a performance
of a single memristor [16,43]. An interesting fact is the occurrence of a linear region
in the current–voltage characteristic (Figure 96). This region corresponds to the
OFF-resistance state of the circuit. The other nonlinear section of the current–voltage
relationship is acquired when the circuit is in the ON-state with a lower resistance
than that for the OFF-state.

Figure 94. Current–voltage characteristic of the first memristor M1 for the
soft-switching mode.
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Figure 95. Current–voltage relationship of the first memristor element M2 for the
soft-switching mode. It is obvious that the area of this pinched hysteresis loop is
larger than the that of the first memristor element M1; this fact could be explained
with the different initial values of the memristor state variables x1 and x2 and the
different biasing polarity of the memristor elements.

Figure 96. Current–voltage characteristic of the whole anti-parallel memristor
circuit for the soft-switching regime.
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3.3.3. Analysis for the Hard-Switching Mode

For investigation of the anti-parallel circuit for the hard-switching mode,
a sinusoidal current source with the following signal (unit: mA), described as
je(t) = 1× sin

(
2π × 40t− π

3
)
, is applied. The time graphs of the source current

and the voltage across the memristors are shown in Figure 97(a,b). It is observable
that the source current has a sine-wave form, but the voltage across the passive
elements has a strongly non-sinusoidal shape by reason of the extended nonlinearity
of the circuit for the hard-switching regime. The time graphs of the state variables
x1 and x2 for the hard-switching mode are given in Figure 98(a,b). It is obvious that
the state variables attain their limiting values—zero and unity, that is, if x1 has a
value of 1, then the state variable x2 is equal to 0, and vice versa. The state–flux
characteristics of the two memristor elements are shown in Figure 99(a,b). It is
obvious that they are multi-valued hysteresis functions.

Figure 97. (a) Time graphs of the source current je(t) and (b) time diagram of the
voltage vj across the memristors M1 and M2 for the hard-switching mode.
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Figure 98. (a) Time graphs of the state variable x1 and (b) time diagram of the
state variable x2 of the memristor elements for the hard-switching mode. The state
variables attain their limiting values—zero and unity. If x1 has a value of 1, then x2

is equal to 0, and vice versa; the memristors are switched in the anti-phase regime.

Figure 99. (a) State–flux relationships the memristor element M1 and (b) state-flux
relationship of M2 for the hard-switching mode. The applied flux linkage Ψ causes
the increase of the state variable of the first memristor element and the decrease of
the second memristor element.
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Owing to the different biasing directions of the memristors, the slope and the
corresponding first derivative of the state–flux relationships are different for the two
memristor elements. When x1 grows up to unity, then the state variable x2 decreases
to zero, and vice versa.

The memristance–flux relationship of the anti-parallel memristor connection is
given in Figure 100. The state–flux characteristic is a multi-valued hysteresis function
with local maximums. The memristances of the two memristor elements are reversely
proportional to their state variables.

The time graphs of the memristances of the two memristor elements are
given in Figure 101(a,b). It is obvious that their resistances attain their limiting
values—100 Ohms and 16 000 Ohms, respectively, without the transition time
intervals between the ON- and OFF-states [16,43]. In the time intervals, when the
elements work in a soft-switching state, the total resistance of the scheme is higher
than 100 Ohms [16,43]. The time graph of the total resistance of the anti-parallel
connection is given in Figure 102. It is clear that for more time intervals, the first
or the second element operates in a hard-switching mode and has its maximal
conductance [16].

Figure 100. Memristance–flux characteristic of the complete anti-parallel memristor
circuit for the hard-switching mode.
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Figure 101. (a) Time graphs of the memristance of M1 and (b) time diagram of the
memristance of M2 of the anti-parallel circuit, containing the memristors M1 and
M2 for the hard-switching regime.

Figure 102. Graph of the total resistance of the anti-parallel circuit R12 for the
hard-switching regime. In the higher duration of the investigation, the total
resistance of the anti-parallel memristor circuit is close to 100 Ohms.

By virtue of the mentioned information, the total resistance of the circuit for the
long-time intervals has its minimum value, which is lesser than the ON-resistance of
a single element, i.e., 100 Ohms [16,43].
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A remarkable fact could be derived if the switching speed of the memristors is
very high and the switching process from the OFF-state to the ON-state is established
almost instantly. Then, the resistance of the whole circuit would be a constant,
because one of the memristors is always in the ON-state. Practically, a very short
time interval is needed for switching the single memristor from the OFF-state to the
ON-state, and the described mode is only theoretically realized.

The current–voltage characteristics of the particular elements are shown in
Figure 103(a,b). These functions in the current case are anti-symmetrical. For the
hard-switching regime, the memristors have a rectifying effect and their performance
is analogous to that of the semiconductor diodes [16]. When the first memristor
element is in a fully open state, the second memristor element reaches its fully
closed position, and vice versa. The current–voltage relationships of the equivalent
anti-parallel circuit are presented in Figure 104. Due to the anti-parallel biasing of the
memristor elements, the equivalent memristor scheme has a symmetrical pinched
multi-valued current–voltage relationship and does not have rectifying properties in
this situation.

Figure 103. (a) Current–voltage characteristics of the first element M1 and
(b) current-voltage characteristic of the second memristor M2 for the hard-switching
mode. These graphs in the present case are anti-symmetrical; for the hard-switching
regime, the memristors have a rectifying effect and their performance is similar to
that of the rectifier diodes.
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Figure 104. Current–voltage characteristic of the complete anti-parallel memristor
scheme for the hard-switching regime.

Owing to the high nonlinearity of the memristor elements for the hard-switching
mode, the corresponding memristance–flux characteristics and the current–voltage
relationships are multi-valued functions. The maximum values of the total
memristance of the anti-parallel circuit are in a range from 4400 Ohms to 5600 Ohms.
When the equivalent resistance of the anti-parallel circuit under analysis has its
maximal values, then both the elements are operating in a regime close to a fully
closed state [16,43].

When the total resistance of the analyzed anti-parallel circuit is smaller
than 100 Ohms, then at least one of the memristor elements is working in a fully
closed state, of which the corresponding state variable is equal to unity. The
corresponding resistance of the circuit is close to 100 Ohms [16,43].

3.3.4. Discussion of Results

After finalizing the investigations and the computer analysis of the anti-parallel
memristor circuit, several conclusions could be made. The analytical results verify
the theoretical analysis made in Section 3.3.1. The influence of the source has a
different effect on the two memristor elements due to their different biasing.
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For a sine-wave source current signal with amplitude of 0.1 mA, both the
elements operate in a soft-switching regime. For the soft-switching state, if one of
the memristors has a growing conductance, the resistance of the other memristor
element increases [16,43]. The whole memristor circuit has a single-valued pinched
hysteresis function of the current–voltage characteristic. In the current situation, it
behaves as a single memristor element.

For a sine-wave signal with an amplitude of 1 mA, both the memristors operate
in a hard-switching state. In many time intervals with a reasonably long duration,
the first memristor element is in a fully open state, while the second memristor
element is in a totally closed state, and vice versa. Then, the anti-parallel circuit has
its minimum resistance lower than 100 Ohms.

During the other time both the memristor elements operate in an active
state, Therefore, the state variables are in the interval (0, 1). The corresponding
current–voltage characteristic of the whole anti-parallel circuit is shown by a
symmetrical multi-valued graph, despite the fact that each memristor element in the
anti-parallel circuit has an anti-symmetrical current–voltage characteristic. Then, the
corresponding behavior of the anti-parallel memristor scheme is different from that
of the known rectifier components. For the hard-switching regime, the circuit has a
higher nonlinearity [16].

3.4. Integrator Scheme with a Memristor

3.4.1. General Information for the Analyzed Circuit and the Applied Memristor Model

Integrator schemes are important and extensively applied modules in many
complex radio electronic circuits. The awareness of their new schematic design is
basically related to their universal applications in electronics. The goal of this analysis
is to offer an inclusive investigation of a suggested memristor-based integrator device
with an operational amplifier by the author. The scheme under analysis is based
on the traditional resistor–capacitor integrator device with an operational amplifier.
In the proposed circuit, the resistor liable for the integrating processes is replaced by
a memristor [36].

Integrator schemes are main modules of large electronic circuits. They are
applied for acquiring a signal, proportional to the time integral of the input signal.
If the input signal is a sequence of rectangular impulses with different directions,
the corresponding output signal is a piecewise linear function with growing and
decreasing regions [36]. The integrator units are applied in radio-electronics,
automatics and many other areas of technical industry [36].

Many measurements of electronic modules also enclose integrator circuits.
The conventional integrator devices contain resistors, capacitors and operational
amplifiers [36]. To the best of the author’s knowledge, derived after the reference

119



check, there is definitely an absence of complete results derived by measurements
or by investigations of memristor integrators with the well-identified memristor
models [5–7,33]. The motivation for the present analysis is to fill this absence,
offering a detailed investigation of a memristor–capacitor integrator device with
an operational amplifier [14]. For the present investigation, an altered strongly
nonlinear memristor model suggested by the author in Reference [33] is used.
Several basic memristor models are applied as well [5–7,33]. A comparison with a
traditional Resistor-Capacitor (RC) integrator device with an operational amplifier
is accomplished [36]. The ability of the used memristor model [33] for operation in
multipart electronic devices containing integrator units is established [14].

The suggested altered Biolek model [6] applied here is described by System of
Equations (3.14) [6,33]. If both the coefficient m and the sensitivity threshold vthr
of the memristor element are zero, then the suggested improved Biolek model is
modified in the form of the standard Biolek model [33].

dx
dt = k η i

[
−(x−1)2p+m(sin2(πx))+1

1+m

]
, v(t) ≤ −vthr

dx
dt = k η i

[
−x2p+m(sin2(πx))+1

1+m

]
, v(t) > vthr

dx
dt = 0, −vthr < v(t) ≤ vthr

v = R i = [(RON − ROFF)x + ROFF] i

(3.14)

The flux–charge and the current–voltage characteristics of the memristor
element, according to the reference Pickett memristor model [7], are acquired in
PSpice environment [19] for a sinusoidal voltage signal, and they are applied for
tuning the used altered memristor model [33]. The corresponding flux–charge and
current–voltage relationships of the suggested modified memristor model [33] are
derived after a number of simulations and adjustment of the improved memristor
model, in accordance to the reference Pickett model [6]. These characteristics are
established by simulations in MATLAB [13]. After finishing the tuning procedures
and deriving a reasonably good matching between the main characteristics—the
current–voltage and flux–charge relationships, the improved memristor model
offered by the author in [33] is applied for analysis of the memristor-based integrator
device [36].
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A resistor–capacitor integrator scheme with an operational amplifier [12] and
its corresponding memristor analogue are shown in Figures 105 and 106. The resistor
R2 is applied for incomplete discharging of the capacitor during the operation of the
integrator circuit. The analyses are made in MATLAB environment [13].

Figure 105. Classical Resistor-Capacitor (RC) integrator device with an operational
amplifier, representing the basic integrator structure. It can be used as a basis for
construction of the new memristor integrator.

Figure 106. An integrator device with an operational amplifier, a capacitor and a
memristor, based on the traditional structure, shown in Figure 105. The resistor R1

is replaced with the memristor element M1.

3.4.2. Results and Discussion

The graphs of the corresponding input and output voltage signals are presented
in Figure 107(a,b) to be compared with the results acquired by the BCM memristor
model. In both schemes, the capacitor has a capacitance of 20 µF. The resistor
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R1 applied in the first scheme has a resistance of 7 kΩ. This resistance is close to
the average value of the resistance of the memristor element in the time domain.
It is obvious that the magnitude of the output voltage signal for the memristor
integrator is higher than that of its resistive analogue. This is a benefit of the
suggested memristor-based integrator by the author [36]. It is observable from the
graphs presented in Figure 107(a,b) that the output voltages of both the traditional
and the memristor integrators are proportional to the time integral of the input
voltage signals. Owing to the use of the inverting input of the operational amplifier,
the output voltage signal changes in the inverse direction compared to the input
voltage [12]. After an additional analysis for a very long-time interval, it is established
that due to the influence of the capacitor, there is a transient in the integrator device.
In this time interval, the magnitude of the output voltage signal is growing up with
the time to a certain steady value [36]. It is established that the transient in the
suggested memristor-based integrator is slightly shorter than the transient of the
traditional scheme [12].

Figure 107. (a) Time diagram of the input voltage signal and (b) time diagram of
the corresponding output voltage for the resistor–capacitor integrator device with
an operational amplifier, and for the memristor-based integrator device, using the
BCM memristor model.
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A comprehensive time graph of the input and the output voltage signals
according to several memristor models [5–7,36] is shown in Figure 108. The graphs
of the output voltage derived by the application of the BCM, Biolek and the altered
Biolek models cited above are very close to each other. For all the characteristics
derived by the memristor-based device, the amplitude of the output voltage signal
is higher than the amplitude of the output signal of the traditional integrator
scheme [12].

Figure 108. Complete time graphs of the output voltage signal for the RC
integrator device with an operational amplifier and the memristor-based integrator
scheme, according to the BCM model, Biolek model and the altered Biolek model.
The respective time graphs for these models are very close to each other.

It is established that the applied altered memristor model is able to illustrate
the behavior of the memristor-based integrator electronic device [33,36]. The time
graphs of the resistance of the memristor element in the operation processes of the
integrator scheme for the BCM model, Biolek model and the suggested altered Biolek
model are shown in Figure 109, and they are almost identical [36].
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Figure 109. Comprehensive time diagrams of the memristance M according to
several main memristor models (BCM, and Biolek) and the improved Biolek model.
The derived time diagrams for these three models are very close one to another.

It is obvious that the resistance of the memristor M changes in the range
between 3300 Ω and 5000 Ω. The range of the memristance is almost the same
for all the applied models [5–7,33]. The maximum possible value of the memristance
is 16 kΩ, so it could be established that in the present case, the memristor works
in a soft-switching state. The memristance–flux characteristics of the memristor
for the BCM model, Biolek model the applied memristor models are shown in
Figure 110(a,b). They all are approximately monotonically increasing single-valued
functions owing to the memristor element operation in a soft-switching regime [7,33].
The acquired state–flux characteristics for these are identical [36]. The corresponding
current–voltage characteristics of the memristor for these three models are given
in Figure 111(a–c). It is established that they approximately match each another.
According to the performance of the current–voltage relations acquired by the
suggested altered Biolek models, the memristor operates in a soft-switching regime.
The behavior of the suggested altered Biolek model is similar to the performance of
BCM and Biolek memristor models [5–7,33].
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Figure 110. (a) Memristance–flux characteristics for the BCM model,
(b) Memristance-flux relationships of Biolek memristor model and of the suggested
improved Biolek model, which are very close to each other.

Figure 111. (a) Current-voltage characteristics of the memristor according to BCM
model; (b) Current-voltage relation according to Biolek model; (c) Current-voltage
characteristics according to the modified Biolek model.
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After many computer analyses, it has been established that if the resistor R1 in
the RC integrator scheme with an operational amplifier is replaced by a memristor
element, the scheme is still able to work as an integrator module [36].

Benefits of the offered memristor–capacitor integrator device with an operational
amplifier are the lower duration of the transient and the higher magnitude of the
output voltage signal [36]. By virtue of the nano-scale sizes of the memristor element,
the suggested integrator device could be realized in integrated electronic schemes
with very high concentrations. The integration procedure of rectangular voltage
pulses is a linear one and it could be done by the application of a linear RC scheme
with an operational amplifier. Though the memristor element is a nonlinear one,
after replacement of one of the resistors with a memristor, the device operates as
an integrator scheme. It is established that the transient in the memristor integrator
module is shorter than that of the traditional integrator. The magnitude of the output
voltage signal for the memristor integrator is higher than the amplitude of the
output signal of the traditional integrator. These details are benefits of the suggested
memristor integrator scheme [36]. In the operation mode of the proposed scheme,
the memristor element works in a soft-switching regime. The computer analyses
are realized by applying several main memristor models and the suggested in a
different research improved memristor model by the author in different research
areas [33,36]. The corresponding graphical results for these models are similar to
each other. Then, it could be established that the altered Biolek model suggested by
the author is suitable for analysis of memristor-based electronic devices containing
integrator modules, operating in an impulse state [36]. Owing to the nano-scale sizes
of the memristor elements, the suggested memristor integrator module could be
incorporated into very-large-scale integrated circuits.
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CHAPTER IV 

Analysis of Memristor Networks 





4.1. A Memristor Perceptron for Logical Function Emulation

4.1.1. General Information and Mathematical Description of the Investigated
Memristor-Based Perceptron

The artificial neural networks are very important modules in almost all the
present electronic and computer devices and systems [44]. They could represent
the behavior and operation of biological neural systems and are used for solving
many technical issues, such as signal processing, data clustering, image recognition,
and decision-making [44]. The perceptron is a simplest kind of neural network.
It is a nonlinear neuron and could implement the basic learning processes. It could
also emulate several basic logical functions [44]. For the classical artificial neurons,
Complementary-Metal–Oxide–Semiconductor (CMOS) circuits are used in the
synaptic-weight circuits [44].

In the last few years, many scientists and engineers have paid attention to
memristor neural networks because memristor elements and circuits have a memory
effect and are appropriate for emulating the biological synapses by changing and
holding their state [3,4]. Several different memristor synapses, such as bridge synapse
and simple one-memristor synapse for neurons, are investigated [4,45]. One of the
main advantages of the memristor-based synapses is the nano-scale dimensions of the
memristor element and the possibility for high-density integration in crossbar-like
structures together with CMOS elements [5–7,14]. The lack of detailed analysis of
memristor-based linear synapses with two serial-biased memristors is a motivating
factor for the present investigations. The basic purpose of the present research is to
realize a complete investigation of the proposed memristor synapse by the author.
The perceptron circuit for emulating the logical functions “OR” and “AND” is shown
in Figure 112 [44] for describing the network structure and signals.

Figure 112. A perceptron circuit representing the basic structure of the considered
artificial neuron and the used signals.

The simplest memristor synapse with one memristor [4] is presented in
Figure 113(a). Its basic advantage is the use of only one memristor per synapse.
The main disadvantages are the dependence of its operation on the input resistance
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of the summing device and realization of only positive weights in the interval (0, 1).
The proposed memristor-based synapse by the author in the present research is
presented in Figure 113(b) [46] for representation of the input–output relationships.
The basic advantage of this memristor synapse is the simplified tuning of the
weight and the lesser dependence of its operation on the input resistance of the next
module—the summing device. The main disadvantage is the use of two memristors
per synapse. Its synaptic weight could be changed in the interval (0, 1).

Figure 113. (a) A simple synapse with one memristor element; (b) a
memristor-based anti-serial synapse circuit with two memristors, connected in
an anti-series connection

The sampled time variable is denoted by t. The input binary signals x1(t) and
x2(t) are first multiplied by the initial values of the respective synaptic weights w1(t)
and w2(t). The weight coefficients are equal to the transfer function of a circuit
containing memristors. There is a possibility for updating the synaptic weights by
changing the memristor state variables x1 and x2. The weighted signals are applied
to a summing device with a shift coefficient b. The output signal of the summing
device s(t) is [44,46] Equation (4.1):

s(t) = w1(t)x1(t) + w2(t)x2(t) + b (4.1)

The acquired signal s(t) acts as an input to a module with a relay activation
function and with a threshold of Θ = 0. The output signal y(t) of the relay element is
presented with Equation (4.2) [44,46]:

y(t) = stp[s(t)] =

{
0, s(t) < Θ
1, s(t) ≥ Θ

(4.2)

The error signal e(t) is derived by applying the present value of the output
signal y(t) and the desired (target) output signal d(t), which is evaluated with respect
to the logical functions “AND” and “OR” [44].
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The error signal e(t) is expressed as a difference between the desired (target)
signal d(t) and the output signal y(t) [44]—Equation (4.3):

e(t) = d(t)− y(t) (4.3)

The signal of the error e(t) is used to be multiplied with the input signals x1(t)
and x2(t), respectively, for realizing the correcting tuning amounts ∆w1 and ∆w2 and
∆b of the synaptic weights w1 and w2 and of the shift coefficient b, which are written
with the next Equation (4.4) [44,46]:

∆w1(t) = x1(t)e(t)

∆w2(t) = x2(t)e(t)

∆b(t) = e(t)

(4.4)

The new values of the synaptic weights w1new, w2new, and bnew are acquired by
summing their old values w1old, w2old, and bold with the correcting amounts ∆w1, ∆w2,
and ∆b. After updating the synaptic weights, after one epoch, all the input data are
again applied to the circuit. The new values of the synaptic weights are expressed by
the following Equation (4.5) [44,46]:

w1new(t + ∆t) = ∆w1(t) + w1(t)old

w2new(t + ∆t) = ∆w2(t) + w2(t)old

bnew(t + ∆t) = ∆b(t) + bold(t)

(4.5)

where ∆t is the time interval between two neighboring epochs. This time interval is
used for updating the synaptic weights.

4.1.2. Results and Discussion

The preliminary assessments of the synaptic weights and the shift coefficient are
chosen in accordance to the possibility for isolating the logical unity and zero for the
logical functions “OR” and “AND”. The initial sampled data are applied to the inputs
of the perceptron scheme. The results, presented in Figures 114 and 115, confirm that
the memristor-based perceptron effectively emulates the logical functions “OR”
and “AND” by learning and training for 4 epochs [46]. The final 5th epoch is
additional and is applied to verify that after adjusting the synaptic weights, they
remain constant quantities if another logic sequence is applied to the inputs of
the perceptron. After the final epoch, the error signal of the neuron e(t) is zero.
The weights tuning amounts of the synaptic weight ∆w and the shift coefficient ∆b
have their values of −1 and 1, respectively. Applying the final values of the weights
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of the adjusted perceptron, the separated line equation for the logical functions is
derived—Equation (4.6) [44,46]:

w1 f inal x1 + w2 f inal x2 + b f inal −Θ = 0 (4.6)

Figure 114. Representation of the results and the memristor perceptron
dividing line for emulation of the logical function “OR”, after finishing the
learning processes.

Figure 115. Results after emulation of the logical function “AND”, and the derived
separating line of the memristor perceptron.

The mathematical expression of the state–flux characteristic of the memristor
elements, used in the synaptic circuits (Figure 112(b)), is shown in the next
Equation (4.7) [4]:

x = x0 + η
µRON

D2

t∫
t0

i dt′ (4.7)
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The variable x0 is the initial state variable of the memristor element [4]. At
the initial moment, the first memristor M1 is set to the OFF-state and x01 = 0,
and the corresponding polarity coefficient η is 1 because the memristor element
is forward-biased [14].

The second memristor element M2 is put in a fully closed state and the
corresponding state variable x02 is 1. Due to its reverse-biasing with respect to the
first memristor, its polarity coefficient η2 is −1. The resistance of the first memristor
element M1 is expressed by Equation (4.8) [14,46]:

M1 ≈ ROFF(1− x1) = ROFF

1− µRON
D2

t∫
t0

i dt′

 (4.8)

The resistance of the second memristor element M2 in the synapse is expressed
by Equation (4.9) [14,46]:

M2 ≈ ROFF(1− x2) = ROFF
µRON

D2

t∫
t0

i dt′ (4.9)

The quantity ROFF depicts the resistance of the memristor element in the
OFF-state [4]. According to Kirchhoff’s Voltage Law, by applying Equations (4.8)
and (4.9), the total resistance of the memristor synaptic circuit Req is
acquired—Equation (4.10) [46]:

Req = M = M1 + M2 = ROFF (4.10)

The synaptic weight (transfer function) w of the memristor-based synaptic circuit
shown in Figure 113 is given in Equation (4.11) [4,14,46]:

w =
M2

M1 + M2
=

µRON
D2

t∫
t0

i dt′ = k
t∫

t0

i dt′ (4.11)

Using the Ohm’s Law for the same circuit, supplied by a voltage input signal, a
similar relationship is obtained—Equation (4.12) [46]:

w = k
t∫

t0

i dt′ = k
t∫

t0

vin
ROFF

dt′ =
k

ROFF

t∫
t0

vin(t)dt′ (4.12)

Equations (4.11) and (4.12) are used for adjusting the synaptic weights by the use
of rectangular voltage or current impulses with suitable durations and polarities [14,46].

133



For a positive weight tuning, non-negative voltage impulses are needed, and
by applying a negative voltage impulse, we can derive negative weight tuning
of the corresponding weight [46]. In the preliminary moment, the weight of the
memristor-based synaptic scheme has its minimum value wmin [46]—Equation (4.13):

wmin =
M2

M1 + M2
=

100
16000 + 100

≈ 0.0062 (4.13)

The maximal possible synaptic weight wmax for the memristor circuit is
expressed by Equation (4.14) [46]:

wmax =
M2

M1 + M2
=

16000
16000 + 100

≈ 0.9937 (4.14)

The weight range of the suggested circuit could not cover the range needed for
expressing the logical functions [46]. By applying a scaling process, the synaptic
weight range could be extended and translated to the desirable range for the logical
function emulation. The first weight range is ∆w1max = 0.9937 − 0.0062 = 0.9875.
The second weight range, applied in the present investigation, has the length:
∆w2max = 2 − (−3) = 5.

The ∆w2max/∆w1max ratio g with a value of 5.0633 is applied for amplification of
the output signal of the memristor neural circuit, which is practically the synaptic
weight for an input impulse voltage with a level of unity.

After increasing the acquired signal, a summing procedure of the mentioned signal
with a constant voltage v1, described as v1 = −3 − 0.0314 = −3.0314 V, is applied for
overlapping of the corresponding weight intervals [46]. The synaptic-weight-adjusting
quantity is ∆w = 1 or ∆w = −1. By dividing the ∆w2max/∆w1max ratio of 5.0633, the
actual synaptic adjustment for the memristor synaptic circuit is obtained as: |∆wreal|=
1/5.0633 = 0.1975. If a rectangular voltage impulse with an amplitude of 1 V is applied
to the input, the impulse duration desirable for adjusting the corresponding synaptic
weight is computed [46]—Equation (4.15):

∆ti =
∆wreal ROFF

k vm
=

0.197× 16000×
(
10−8)2

10−12 × 100
= 0.0032 s (4.15)

The same input of the circuit is used for applying the information pulses of
the signals x1 and x2. To avoid changing the memristors states when the working
signals are used, the duration of the logical signals x1 and x2 must be many times
shorter than the impulse width of the adjusted signals [4,46]. The logical signal
amplitude is several times lower than those of the tuning signals. To avoid shifting
the boundary between the doped and undoped regions of the memristor element
due to the memory effect, the following levels for the input signals x1 and x2 are
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applied: a voltage impulse with a level of 0.2 V for logical unity and a level of −0.2 V
for logical zero [46]. The information signals x1 and x2 have lengths with a value
of 320 µs, that is, about 10 times shorter than the width of the adjusted signals.
For applying the information signals and the tuning signals to the memristor-based
synaptic input, different time intervals are applied and a multiplexer for sorting out
the signals is applied as well [46].

The advantage of the applied memristor-based synapses in the present research
is the very small dimensions of the used memristors, their low power consumption
and stable non-volatility.

4.2. A Memristor-Based Neural Network and Artificial Neurons

4.2.1. General Information

The neural networks and systems are very important and applicable modules
in many electronic schemes and devices, such as telecommunication and electronic
circuits, computers and many others [44]. They are frequently used in digital
signal processing, image recognition, data clustering, neural computing and many
other new areas of the technical industry [37,44]. The traditional neural networks
use CMOS technology for the synaptic bonds among the artificial neurons [44].
Software realizations of the synaptic weights are also used [44]. Owing to the high
implication of the neural networks, especially their parts—the artificial neurons,
the investigation of their new schematic solutions is very supportive for the
future generations of the electronic devices, circuits, schemes and networks [37,44].
The memristor element is a promising contender for building the synaptic bonds
between the neurons due to its nano-range sizes, low energy consumption, memory
effect and the fine compatibility with the present CMOS nanotechnology [14]. To the
best of the author’s knowledge, there is a definite absence of detailed analyses
of neural networks with different memristive synaptic circuits. The motivation
for the present research is to fill this absence, offering a precise investigation
of a memristor-based linear neural network with one artificial neuron for noise
cancellation [37]. The used synapses are memristor-based with only one memristor
and three resistors. This synaptic circuit has the possibility for realizing positive,
zero and negative synaptic weights in a comparatively broad range. A previously
memristor model suggested by the author [33] is applied for the present research.

4.2.2. Mathematical Description of the Applied Memristor Model and the Investigated
Artificial Neuron

An adapted bridge synaptic circuit with three nano-scale resistors and a
memristor element is suggested and investigated. The bridge synaptic circuits have a
specific benefit compared to the single memristor synapses and the memristor-based
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anti-series synaptic circuit [37]. The bridge schemes [45] are suitable for acquiring
negative and zero synaptic weights, and three of the memristors in the bridge
circuit are replaced with resistors [37]. For the present research, an improved
highly nonlinear memristor model offered by the author in Reference [33] is used.
Several main memristor models are also applied for comparison of the obtained
results [5,6,14,45]. The ability of the applied memristor model [33] for operation in
multipart electronic circuits and schemes is established as well [37].

To augment the nonlinearity of the altered Biolek memristor model for realistic
illustration of the nonlinear ionic drift, the author suggests an extra sinusoidal
window function component in Reference [33]—System of Equations (4.16):

fBM(x) =
[

1−(x−1)2p

m+1 +
m[sin2(πx)]

m+1

]
, v(t) ≤ −vthr

fBM(x) =
[

1−x2p

m+1 +
m[sin2(πx)]

m+1

]
, v(t) > vthr

dx
dt = k i fBM(x, i)

dx
dt = 0, −vthr < v ≤ vthr

v = [RON x + ROFF(1− x)] i

(4.16)

where the variable m is between 0 and 1, and fBM is the improved Biolek window
function [33]; the first and the second equations depict the altered window function
for different voltage directions; the third equation is the state differential equation
of the memristor element; the fourth equation is the state-dependent Ohm’s Law.
The modified Biolek model applied here is completely defined by System of
Equations (4.16). If both the variable m and the sensitivity threshold of the memristor
are zero, the altered Biolek model is changed into the standard Biolek model.
The flux–charge and the current–voltage characteristics of the memristor element for a
sinusoidal voltage signal, according to the Pickett memristor model as a reference [45],
are acquired in the PSpice environment [19] and are applied for adjusting the used
modified memristor model [33]. The corresponding flux–charge and current–voltage
relationships of the applied memristor model [33] are derived after a number of
simulations and finetuning of the improved memristor model in accordance to the
Pickett model as a reference [7].

The characteristics mentioned above are found by computer analysis, using
the numerical solution to System of Equations (4.16) [13,19,37]. After finishing the
adjustment processes and obtaining a good matching between the corresponding
relationships—the current–voltage and flux–charge relationships, the improved
memristor model offered by the author in Reference [33] is applied here for investigation
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of the considered memristor-based artificial neuron. The basic configuration of the
memristor-based artificial neuron under test [37] is shown in Figure 116 for depiction
of its structure and the basic signals [37]. This neuron is used for noise cancellation of a
low-frequency signal described as x1(t) = 0.02 sin

(
2π × t + π

6
)
. The desired (target)

signal is expressed with d(t) = 0.03 sin
(
2π × t + 5π

18
)
. The used activation function in

the artificial neuron is linear [39,44]. The output signal derived by the memristor-based
artificial neuron y(t) is given in the next equation (4.17) [37,44]:

y(t) = x1w1(t) + bw0(t) (4.17)

where x1 is the input signal and b is the shift coefficient [37]. The quantities w1(t)
and w2(t) are the synaptic weights of the corresponding synapses of the artificial
neuron. The error signal e(t) acquired by the memristor neuron is expressed by
Equation (4.18) [44]:

e(t) = −y(t) + d(t) (4.18)

Figure 116. A schematic of a linear neuron for noise cancellation, presented for
clarification its basic configuration and the applied signals.

The error correction algorithm for learning the neuron is based on tuning of the
corresponding synaptic weight coefficients—Equation (4.19) [44]:

w(t + ∆t) = w(t) + η1 e(t) x1(t + ∆t) (4.19)

where η1 with a value of 0.05 is the used learning rate [37,44]. The synapses in the
neural network are memristor-based and their circuit is shown in Figure 117.
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Figure 117. A memristor-based bridge synaptic device with three nano-scale
resistors and a memristor component.

The synaptic scheme illustrated in Figure 117 contains three nano-scale
resistors with dimensions similar to the memristor size and a memristor element.
The bridge circuit makes it possible to acquire negative synaptic weights [37,45].
After investigation of the synaptic circuit, the weight of the circuit w is derived from
the following Equation (4.20) [37]:

w =
vout

vin
= − R4

R2 + R4
+

M3

R1 + M3
(4.20)

where the memristance of the element M3 is given in Equation (4.21) [45]:

M3 = RON x + ROFF(1− x) (4.21)

The sign and value of the synaptic weight w are functions of the resistances
R1, R2, and R4 and the memristance M3. The synaptic weight could be changed by
the use of voltage impulses with an amplitude of 2 V and different polarities and
durations, dependent on the desired synaptic weight [37,45].

The main advantages of the proposed synaptic circuit by the author (Figure 117),
with respect to the synapses shown in Figure 113, is the possibility for obtaining
zero and negative synaptic weights. It is established that the range of the synaptic
weight for the present memristor circuit is from −0.33 to 0.47 and it is able to cover
the needed interval for the present investigation. The disadvantage of the described
circuit (Figure 117), with respect to the bridge circuit in Reference [45] which has
synaptic change in the interval (−1, 1), is the narrower interval for changing the
synaptic weight. An advantage of the presented circuit with respect to the bridge
circuit in Reference [45] is the reduced number of the used memristors. The electric
current flowing through the memristor M3 in the tuning time intervals is given in
Equation (4.22) [37]:

iM3 =
vin

M3 + R1
=

vin
(RON − ROFF)x + (R1 + ROFF)

(4.22)
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Using Equations (4.21) and (4.22), the state differential Equation (4.23) for the
memristor element in the synaptic circuit is derived:

(−ROFF + RON)x + (ROFF + R1)

fMB(x)
dx = k vin dt (4.23)

Applying System of Equations (4.16), and Equations (4.20) and (4.23), a
pseudo-code is obtained for their numerical solution according to the relationship
between the synaptic weight w and the duration of the adjusted pulses. The suggested
memristor neuron is first analyzed in MATLAB [13,37] using an algorithm for
investigation of the idealized circuit. Then, it is established that the weight changes
in a range from −0.3 to 0.3.

The memristor-based artificial neuron is analyzed, using the suggested
memristor model [33] and several main existing models as well [5,6,14]. A reasonably
good similarity between the obtained results is established. The durations of the
adjusted impulses are different for the different iterations and are numerically
calculated in accordance to the desired synaptic weights. The input signal applied
for noise suppression has a magnitude lower than the sensitivity threshold of the
memristor element and it does not change the synaptic weights [14,33].

The basic parameters, characteristics and constants, connected to the present
investigation, are presented in Table 4.

Table 4. Parameters and constants of the used elements and the memristor model.

Parameter Explanation Numerical Value SI Unit

RON ON-resistance of M3 100 Ω
ROFF OFF-resistance of M3 16,000 Ω

R1 Resistance R1 500 Ω
R2, R4 Resistances of R2 and R4 100 Ω

vin Adjusting signal level 2 V
µ Oxygen vacancies mobility 1 × 10−14 m2/(V·s)
D Memristor element length 10 × 10−9 m
η Polarity (biasing) coefficient 1 -
p Positive integer exponent in the altered window function 10 -
m Weight variable in the altered window function 0.2 -
η1 Learning rate of the memristor-based artificial neuron 0.05 -

4.2.3. Results and Discussion

The time graphs of the input signal, the desired (target) and the output
signals after training the artificial memristor neuron are presented in Figure 118
for additional explanations. It is clear that a fine matching between the desired
(target) and the output signals is established. The neuron successfully suppresses the
noise signals.

The time graphs of the memristance and the state variable x3 of the memristor
M3 in the working process are shown in Figure 119(a,b) for describing the state
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alteration and the adjustment processes of the synapses. The normal value of the
resistance of the memristor element is 500 Ω. The alteration of the memristance in
this situation is about several ohms. The corresponding value of the state variable of
the memristor element is about 0.97 and its change is in a very narrow interval [37].

Figure 118. Time graphs of the input signal, the output signal and desired (target)
signal, acquired by the memristor-based artificial neuron for noise suppression.
A good overlapping between the desired (target) and the output signals is realized.
The artificial neuron effectively suppresses the noise signals. The input signal is
described as: x1(t) = 0.02 sin

(
2π × t + π

6
)
. The output and desired (target) signals

are the same, expressed as: d(t) = 0.03 sin
(

2π × t + 5π
18

)
.

Figure 119. (a) Time graph of the memristance of the memristor; (b) Time
diagram of the state variable of the memristor element in the memristor-based
artificial neuron.
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After discussing the results, it could be established that the suggested altered
memristor-based synaptic scheme could be successfully used in artificial neurons and
neural networks for noise suppression. The used memristor model previously offered
by the author in Reference [33] is very appropriate for analyzing memristor-based
neural networks, because it has an activation threshold for low-voltage signals
and a strong nonlinearity for realistic illustration of the nonlinear ionic drift in
the memristor elements. The described neuron could be used in multilayer neural
networks for different purposes.

4.3. Learning a Neuron with Resistor–Memristor Synapses

4.3.1. General Information

Due to the high importance of the artificial neurons, synthesis and analysis of their
new well-organized circuit solutions are valuable for the future generation of electronic
systems and devices [44]. The memristor element is a promising candidate for building
the synaptic connections between the neurons due to its nano-scale dimensions, low
power consumption, memory effect and the compatibility with the current CMOS
nanotechnology [14]. To the best of the author’s knowledge, there is a certain absence
of detailed analysis of artificial neurons with different memristor-based synaptic
schemes. The motivation for the present analysis is to fill this lack, offering a detailed
investigation of a memristor-based linear neuron for noise suppression with memristor
bridge synapses with two memristors and two nanoscale resistors [39]. In a previous
proposal [37], a neuron with synaptic circuits containing only one memristor element
is investigated. For the present research, a modified bridge synaptic circuit with two
nano-scale resistors and two memristors is offered and analyzed [39]. A different
modified highly nonlinear memristor model offered by the author in Reference [35]
is used as well. Several basic memristor models are applied for a comparison of the
basic significant characteristics [5,6,14]. The ability of the used memristor model [35]
for operation in complex neural electronic circuits is established.

4.3.2. Mathematical Description of the Used Memristor Model and the Memristor-Based
Artificial Neuron

The main state differential equation of the memristor element [14] is given in
the next Equation (4.24):

dx
dt

= η k i (x, v) f (x) = η
µ RON

D2 i f (x) (4.24)

where η is a polarity coefficient; for a forward-biasing, it has a value of 1, and for
reverse-biased memristor element, it is equal to −1; k is a constant, dependent on
memristor physical characteristics, µ is the ionic mobility of the oxygen vacancies in
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TiO2 and equal to 1 × 10−14 m2/(V·s), and f(x) is a window function [5,6,14] used for
representation of the nonlinear dopant drift and the boundary effects. The Joglekar
window function is used in Reference [5] and it is expressed by Equation (4.25):

f (x) = f J(x) = 1− (2x− 1)2p (4.25)

where p is a positive integer exponent and x is the memristor state variable. Another
very significant window function with extensive application [6], first presented by
Biolek in Reference [6] and also known as a Biolek window function [6,7], is given in
Equation (4.26):

f (x) = fB(i, x) = 1− [x− stp(−i)]2p (4.26)

where stp(i) is the relay function dependent on the current direction and can be
written in the next Equation (4.27):

stp(i) =

{
1, i f i ≥ 0 (v ≥ 0)
0, i f i < 0 (v < 0)

(4.27)

After substituting stp(i) into Equation (4.26), a different expression of the Biolek
window function is acquired [6,7]—Equation (4.28):

fB(x) = 1−
[
(x− 1)2p

]
, i(t) ≤ 0

fB(x) = 1− x(2p), i(t) > 0

(4.28)

The memristor model applied for the analysis in the present research is offered
by the author and described in details in Reference [35]. The modified window
function fM(x) proposed in Reference [35] is based on both Joglekar [5] and Biolek [6]
window functions. It is a simple combination of these two window functions. Hence,
the used final window function is presented with Equation (4.29) [35]:

fM(x, v) =
f J(x) + fB(x, i)

2
(4.29)

After substitution of Equations (4.25)–(4.28) in (4.29), a more suitable expression
of the suggested altered window function is obtained—Equation (4.30) [35]:

fM(x) = 1− (x−1)2p+(2x−1)2p

2 , i(t) ≤ 0

fM(x) = 1− x2p+(2x−1)2p

2 , i(t) > 0

(4.30)
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The depiction of the nonlinearity of the memristor ionic drift could be
expressed by decreasing the integer exponent [5,6,14] in the suggested improved
window function. There are many possible formulae for illustrating such a function.
The author attempted to apply a simplified variant for this relationship to optimize
the memristor model performance. The applied relationship between the integer
exponent p and the applied voltage v is Equation (4.31) [35]:

p = round
(

a
|v|+ c

)
(4.31)

where the special function “round” is applied for deriving the integer result; the
quantities a and c could be roughly acquired by comparing the results with
these obtained by the Pickett model and adjusting the altered memristor model;
the constant c is used for avoiding the division by zero [35].

The suggested improved window function fM(x,v), shown in System
of Equations (4.30), is substituted into the state-dependent current–voltage
characteristic, and the suggested memristor model could be depicted by System
of Equations (4.32) [35]:

dx
dt = η k i

{
1− 1

2

[
(x− 1)2·round( a

|v|+c )+

+(2x− 1)2·round( a
|v|+c )

]}
, v(t) ≤ 0

dx
dt = η k i

{
1− 1

2

[
x2·round( a

|v|+c )+

+(2x− 1)2·round( a
|v|+c )

]}
, v(t) > 0

v = R i = [RON x + ROFF(1− x)] i

(4.32)

It is established that for a = 30 and c = 2, the corresponding current–voltage and
the flux–charge relationships are almost identical to those acquired by the use of the
reference Pickett model. The current–voltage and the flux–charge relationships of
the memristor are multi-valued functions. During the analyses of Pickett model [7],
when voltages higher than 0.75 V are applied, many computational problems occur.
The main advantage of the suggested modified model [35] compared to the standard
Pickett memristor model is the absence of convergence issues.

The configuration of the memristor-based artificial neuron under
investigation [39] is illustrated in Figure 120 for explanation of the basics of
learning and adjusting the artificial neuron. It is used for noise suppression of
a low-frequency signal described as x1(t) = 0.03 sin

(
2π × 2t + π

9
)
. The desired

(target) signal is denoted by d(t) = 0.07 sin
(
2π × 2t + 5π

18
)

[39]. The error correction
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algorithm for learning and tuning the neuron is based on adjustment of the weight
coefficients of the synaptic bonds [44]—Equation (4.33):

w(t) = w(t− ∆t) + η1 x1(t) e(t) (4.33)

where η with a value of 0.03 is the used learning rate of the neuron [39,44].
The synapses are memristor-based and their schematic is shown in Figure 121 [39] for
further explanations of the basics of the neuron synapse operation processes and the
input and output signals. The memristor elements are connected in an anti-parallel
biasing manner [39].

Figure 120. A schematic for illustration of the neuron learning processes.
The input signal is x1(t) = 0.03 sin

(
2π × 2t + π

9
)
, and the desired (target) signal is

d(t) = 0.07 sin
(

2π × 2t + 5π
18

)
.

Figure 121. A memristor–resistor synaptic scheme with two nano-scale resistors
and two memristors, realized in a bridge circuit.

The synaptic scheme shown in Figure 121 contains two nano-scale resistors with
sizes similar to the memristor element size, and two titanium dioxide memristor
components [39]. The bridge schematic makes it possible to acquire negative synaptic
weights because the output voltage of the circuit is the difference between the voltages
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across the memristors [33,39]. After investigation of the synaptic scheme, the output
signal and the weight of the synapse w are obtained [39]—Equation (4.34):

vout =
(
− M4

R2+M4
+ M3

R1+M3

)
vin

w = vout
vin

= − M4
R2+M4

+ M3
R1+M3

(4.34)

where the memristances of the elements M3 and M4 and the weight w are presented
in the System of Equations (4.35):

M3 = RON x3 + ROFF(1− x3)

M4 = RON x4 + ROFF(1− x4)
w =

R(M3 −M4)

(R + M3)(R + M4)
(4.35)

The sign and value of the synaptic weight w depend on the resistances R1, R2,
and the memristances of the elements M3 and M4 [39]. The synaptic weight could be
altered by the application of voltage pulses with amplitude of 2.4 V and different signs
and impulse durations, dependent on the corresponding target synaptic weight [39].
It is established that the range of the synaptic weight for the present memristor-based
scheme is from −0.49 to 0.49. The memristor synapse shown in Figure 113(b) has
also two memristors but it cannot represent zero and negative weights, owing to
the polarities of the input and the output voltages. An advantage of the memristor
synapse shown in Figure 121, compared to that illustrated in Figure 117 [37], is the
broader interval for change of the synaptic weights. Another advantage with respect
to the bridge synapse in Reference [45] is the reduced number of the used memristors
per synapse. A disadvantage of the discussed synapse (Figure 121) with respect to the
synapse proposed in Reference [45] is the narrower range for change of the synaptic
weights. This established broad range of altering the synaptic weight is a benefit of
the applied synaptic scheme with two memristors compared to the corresponding
circuit suggested in Reference [37]. The currents flowing through the memristors M3

and M4 in the tuning time intervals are given by System of Equations (4.36) [39]:

iM3 = vin
M3+R1

= vin
(RON−ROFF)x3+(ROFF+R1)

iM4 = vin
M4+R2

= vin
(RON−ROFF)x4+(ROFF+R2)

(4.36)
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Using System of Equations (4.36), the state differential equations for the
memristors are acquired—System of Equations (4.37):

(RON−ROFF)x3+(R+ROFF)
fM(x3)

d x3 = k vin dt

(RON−ROFF)x4+(R+ROFF)
fM(x4)

d x4 = − k vin dt
(4.37)

The basic parameters and constants, associated with the present analysis, are
shown in Table 5.

Table 5. Parameters of the elements and the used memristor model.

Quantity Determination Numerical value SI unit

RON ON-resistance of M3 100 Ω
ROFF OFF-resistance of M3 16,000 Ω

R1, R2 Resistance of R1 and R2 100 Ω
vin Adjusting signal level 2.4 V
µ Oxygen vacancies mobility 1 × 10−14 m2/(V·s)
D Memristor size 10 × 10−9 m

η3, η4 Polarity coefficients of the elements M3 and M4 1; −1 -

4.3.3. Results and Discussion

It is established that the synaptic weights in the noise cancellation process
changes in the range from −0.06 to 0.06. The corresponding range acquired by
the present memristor synapse completely covers the needed interval and no extra
scaling components are needed. The memristor-based artificial neuron is investigated
using the applied model [35] and several existing basic models as well [5,6,14].
A reasonably good similarity between the results obtained by these models is
established. The durations of the adjusted voltage pulses are different for the different
iterations and are calculated in dependence on the weights [39]. A good overlapping
between the desired (target) and the output signals is established (Figure 122).
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Figure 122. Time graphs of the input signal, the output signal and the
desired signal, acquired by the memristor neuron for noise suppression.
A good coincidence between the desired (target) and the output signals is
established; the neuron effectively suppresses the noise signals. The input
signal is x1(t) = 0.03 sin

(
2π × t + π

6
)
, and the desired (target) signal is

d(t) = 0.07 sin
(

2π × t + 5π
18

)
.

The input signal used for noise filtering has a level lower than the activation
threshold of the memristor element and does not affect the synaptic weights [39].
It could be established that the suggested altered memristor synaptic scheme could
be successfully applied in artificial neurons [35,39]. The analyzed neurons could be
used in multilayer neural networks.

4.4. A Passive Memristor Matrix

4.4.1. General Information

The memristor memory technology is promising, which could potentially
replace the conventional CMOS and flash-based non-volatile memory-integrated
circuits and devices [25,38,47,48].

The memristor element is used in the memory schemes as a storing element [47,48].
To the best of the author’s knowledge, there is a certain lack of detailed and complete
results derived by memristor memory analysis with the basic memristor models.
The motivation for the present research is to fill this absence, suggesting detailed
investigation of a passive memristor memory fragment, using an altered highly
nonlinear memristor model suggested by the author in Reference [33], and making
a comparison of the current–voltage characteristic derived by the proposed model with
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experimentally recorded current–voltage characteristics of memristor elements in memory
crossbar circuits.

A comparison of the derived results with these acquired by the application of
Generalized Boundary Condition Memristor (GBCM) model [14] is completed as
well. The ability of the suggested memristor model [33] for realistic illustration of
the behavior of complex memristor-based electronic schemes is established.

4.4.2. Mathematical Description of the Applied Memristor Model and the Basic Processes in
the Passive Memristor Memory Matrix

The adapted author’s memristor model applied for the computer simulations in
the present investigation is illustrated in details in Reference [33].

A plain modification of the standard Biolek window function is realized in
Reference [33]. For growing the nonlinearity of the proposed altered Biolek model, the
author suggests an additional sinusoidal window function term—Equation (4.38) [33]:

fBM(x) =
[

1−(x−1)2p+m[sin2(πx)]
m+1

]
, v(t) ≤ 0

fBM(x) =
[

1−x2p

1+m +
m[sin2(πx)]

1+m

]
, v(t) > 0

(4.38)

where the coefficient m is between 0 and 1, and fBM is the suggested modified Biolek
window function [33]. The improved Biolek memristor model applied here is fully
described with the next System of Equations (4.39) [33]. The optimum value for the
coefficient m has been acquired with a value of 0.2 [33].

dx
dt = η k i

[
1−(x−1)2p+m(sin2(πx))

1+m

]
, v(t) ≤ 0, i(t) ≤ 0

dx
dt = η k i

[
1−x2p+m(sin2(πx))

1+m

]
, v(t) > 0, i(t) > 0

v = R i = [(RON − ROFF) x + ROFF] i = [∆R x + ROFF]i

(4.39)

A fragment of memristive memory matrix with 16 memory cells according to
Reference [48] is illustrated in Figure 123 for the following explanation of the
signals used for writing and reading procedures. The electrical circuit of the
memory fragment is shown in Figure 124 for describing the corresponding working
procedures. It contains four rows (bit lines) and four columns (word lines) [38].
Selecting the particular memory component makes possible loading a bit of
information—logical unity or logical zero.
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Figure 123. A fragment of a memristor matrix representing the rows, the columns,
the memristor memory cells, the selected memristor current path and a parasitic
sneak path.

Figure 124. A simplified substituting electric circuit of a fragment of a passive
memristor-based memory crossbar.
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The resistance of the rims between the neighboring memristor elements is
about 1.25 Ω [38] and it could be neglected according to the minimum memristance
of the memory cells. For writing logical unity, a positive pulse with a level of 2 V
is applied to the corresponding memristor. For writing logical zero, a negative
voltage signal with the same amplitude is applied [38]. For the reading processes, a
positive voltage signal with a value lower than the memristor sensitivity threshold is
used [14,33].

Memristor models with activation thresholds, such as the GBCM model and
the applied nonlinear memristor model by the author [33], are appropriate for
investigation of the reading processes in passive memory matrices. In the first 100 ms,
logical unity is stored in the memristor cell M1. In the next 100 ms, a reading
signal with a level of 200 mV is applied to the memristor element M1. This level
is lower than the sensitivity threshold of the memristor element, and during the
reading process, the information accumulated in the memristor will not be affected.
The voltage across a series-connected sense resistor with a resistance of 1788 Ω [38]
is proportional to the logical level stored in the corresponding memristor cell [38,47].
In the next 100 ms, a negative impulse with an amplitude of 2 V is used and logical
zero is written in the memristor memory cell [25,38].

The next procedure is reading the information from the memory cell for 100 ms.
A parasitic sneak path between the electrodes is illustrated in Figures 123 and 124.
It has been specified by a number of analyses and a comparison with a single-cell
memory that, in this case, the sneak paths do not strongly affect the normal operation
of the memory device [38]. This fact could be explained with the occurrence of a
reverse-biased memristor element with a very high resistance in the sneak path and
the corresponding rectifying effect related to the operation of the memristors in a
regime close to a hard-switching mode [14,38].

4.4.3. Results and Discussion

For selecting the memristor element M1, a positive potential with a value of 2 V
is applied to the first row electrode of the crossbar. The first column electrode is
grounded [38,47]. The time graphs of the memristor voltage, the resistance of the
memristor M1 and the output voltage taken after a reading procedure are presented
in Figure 125 for further explanation of the device operation. They characterize the
range of the resistance of the memristor element and the result obtained by applying
the reading signal [38]. The resistance of the corresponding memory element changes
in a very wide range from 200 Ω (for logical unity) to about 12 kΩ (for logical zero).
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Figure 125. (a) Time graph of the memristor voltage; (b) Time diagram of the
memristance, according to the GBCM and the modified Biolek model; (c) Time
digram of the output voltage, according to the GBCM and the modified Biolek
model and derived by applying the reading procedure.

The comparatively wide range of variation of the memristance is valuable for
the precise recognition of the logical levels, because the output voltage depends on
the memristance derived immediately after the writing process. The GBCM model
and the altered Biolek model are used for the present investigations of the derived
results comparison. The corresponding time diagrams of the memristance almost
match each other.

An advantage of the suggested memristor model is that the output voltage
acquired by the use of the improved Biolek model for the reading process is
slightly higher than the corresponding voltage signal acquired by the GBCM
model [14,38]. It is established by additional investigations that low variations of
the main memristor quantities do not strongly affect the normal operation of the
memory crossbar.

The current–voltage and memristance–flux characteristics of the memristor M1

derived in the operation process of the memory scheme are presented in Figure 126
and they illustrate the memristor performance in the corresponding operating regime.
The current–voltage relations, which are basic characteristics of the memristor
element for a given signal, practically matchingeach other.
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Figure 126. (a) Current–voltage and (b) memristance–flux characteristics of the
memristor M1 according to the applied model and GBCM model, derived during
the memory operation.

The resistance of the memristor element almost attains its limiting values.
The memristor element operates in a state close to a hard-switching regime [38].
After comparing the current–voltage characteristics of the memristor derived
by the use of the applied model [33] with an experimental current–voltage
relationship [47,48], a good similarity between these two current–voltage functions
is established. The results acquired by the application of the suggested memristor
model are identical to the experimentally recorded characteristics [25,49] and the
results derived by the use of GBCM model [14,38]. The respective memristance–flux
characteristics derived by the use of GBCM model and the altered Biolek model are
similar and they almost overlap with each other [38].

The output voltage of the memory circuit is derived during the reading
procedure by the application of a resistor and an amplifier [38]. The output
voltage has a comparatively high level, which is a good precondition for a precise
differentiation of the logical levels. Comparing the corresponding current–voltage
relationship of the memristor element with experimental data [47,48] derived
under similar conditions and with the results acquired by the GBCM memristor
model, their good similarity is obtained. It could be concluded that the suggested
nonlinear memristor model [33] could be applied for analysis of many complex
memristor-based electronic schemes and devices. An advantage of the memristor
model used here, compared to the GBCM model, is the reasonably high nonlinearity
extent of the ionic dopant drift [38].
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The established good convergence of the computational procedures using the
corresponding algorithm for the computer simulations [33] is also an advantage of
the applied model [38]. The successful operation of a memristor memory matrix
with the suggested memristor model for the general impulse mode confirms that
this model could be used for analysis of many memristor-based electronic circuits
and devices [38]. After analyzing the derived results, it could be concluded that the
applied memristor models have almost similar behavior in the operation procedures:
writing and reading logical information [38].

The respective current–voltage relationship and memristance–flux characteristics
derived by the memristor model offered by the author in Reference [33] and the GBCM
model are identical and practically they match one to another. The model used here has
the ability to represent the behavior of a memristor in memory circuits for the general
impulse regime. With a comparison of the current–voltage characteristics derived
by the proposed model with experimentally recorded current–voltage relationship, it
could be concluded that the model used there could realistically illustrate the behavior
of the memristor elements in multipart schemes. The memristor model proposed in
Reference [33] could be effectively applied for representation of writing procedures
in a memristor memory matrix when the memristors operate in a state close to a
hard-switching regime and for the reading processes with a voltage lower than the
activation thresholds of the memristor elements.

4.5. A Hybrid Resistance-Switching Memory Device with Memristors

4.5.1. General Information

The analysis of new memory schemes is important for upcoming generation
electronic circuits and devices [40,47–49]. The goal of this investigation is to present
a detailed analysis of a resistance-switching memory fragment with memristors
and separate MOS transistors [40]. The hybrid MOS–memristor technology is a
very significant new part of electronics [40,48]. This technology could potentially
alter the traditional memory chips [40,49]. The memristor element is applied in the
hybrid memories as a storing component [40]. The MOS transistors are applied
for removing the sneak path problems existing in the passive memristor memory
matrices [40,47,48]. To the best of the author’s knowledge, there is a certain lack
of comprehensive results acquired by memristor memory physical measurements
and analysis with the main memristor models. The motivation for the present
investigation is to fill this deficiency, offering extra detailed research of a section of a
hybrid memory scheme [40]. For this analysis, a highly nonlinear model [40], and
a modified nonlinear window function, suggested by the author in Reference [35],
are used. A comparison of these results with experimental data is done as well.
The capability of the used memristor model [21,22,25,40] with the improved window
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function [35] for realistic depiction of the behavior of multipart memristor schemes
for soft- and hard-switching modes is established.

4.5.2. Mathematical Description of the Applied Memristor Model and the Processes in the
Memristor-Based Memory Crossbar with MOS Transistors

The nonlinear current–voltage relationship of the memristor is advantageous
for logic circuits, and therefore more suitable memristive device models without
convergence issues have been proposed [25]. In References [20–22], a physical
memristor model is illustrated, based on the experimental data in References [20,21].
The approximated relationship between the memristor current i and the applied
voltage signal v is presented in Equation (4.40) [20,21]:

i = β xnsinh(α v) + χ[−1 + exp(γ v)] (4.40)

whereα,β, γ and χ are tuning parameters, and n is a parameter determining the influence
of the state variable x on the memristor current i. In this memristor model [20,21], the
state variable x is a normalized parameter in the interval [0, 1]. This model illustrates
an asymmetric switching behavior. When the memristor element is in the ON-state,
the state variable is close to unity and the electric current is dominated by the first
term in Equation (4.36), which depicts a tunneling effect [20,26]. When the memristor
element is in the OFF-state, the state variable is close to zero and the current is mainly
expressed by the second term in Equation (4.36), which is similar to semiconductor diode
current–voltage characteristic [35]. The used memristor model [20,21] applies a nonlinear
dependence on the memristor voltage v in the state differential Equation (4.41) [20,21]:

dx
dt

= f (x) a vm (4.41)

where a is a constant, m is an odd integer exponent, and f(x) is a window function used
for rough illustration of the nonlinear dopant drift and the boundary effects [14,35,40].
The used window function introduces nonlinearity according to the state of the
memristor element [14,41]. Equations (4.40) and (4.41) classify the corresponding
physics-based memristor model [20,21]. The ionic transport is associated to the ionic
drift in the corresponding memristor material [20,25]. The ions jump between two
neighboring states via a migration wall [20,25]. This potential barrier could be
decreased by the applied external electric field. The ions can derive more thermal
energy by heating and can easily overcome the tunnel wall. The nonlinearity of the
ionic drift starts from local Joule heating or higher electric fields [20,25]. The applied
window function [35,40] gives an approximate relationship between the state variable
and the flowing electric current [5,6,14]. The improved window function fM(x)
proposed in Reference [35] is based on both Joglekar [5] and Biolek [6] window
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functions. It is a linear combination of these window functions with the maximum
value of unity and the corresponding minimum value of zero, can be written as the
next Equation (4.42) [35,40]:

fM(x, v) =
f J(x) + fB(x, i)

2
(4.42)

A more suitable form of the altered window function is presented in
Equation (4.34) [35,40]:

fM(x) = − (x−1)2p+(2x−1)2p

2 + 1, i(t) ≤ 0

fM(x) = − x2p+(2x−1)2p

2 + 1, i(t) > 0

(4.43)

If the applied voltage increases, the ionic drift nonlinearity increases as
well [5,6,40]. The representation of the alteration of the nonlinearity of the dopant
drift could be illustrated with the decrease of the integer exponent in the improved
window function [35]. There are many potential equations for representing this
relationship. The author tried to suggest a simple variant for this function to optimize
the performance and reduce the computational time. The applied relationship
between the integer exponent p and the applied memristor voltage v [35] is expressed
by Equation (4.44):

p = round
[

a
c + |v|

]
(4.44)

where the specialized function “round” is applied for deriving an integer result;
The quantities a and c could be acquired by comparing the results of the suggested
altered model with those derived by the Pickett model and then tuning the altered
model. The constant c is applied for avoiding division by zero if the applied voltage
has a value of zero. The altered window function fM(x,v) [35] is substituted into
the equation describing the current–voltage memristor relationship. The used
memristor model [20,22,35,40] could be illustrated with the following System of
Equations (4.45) [40]:

dx
dt = a

{
1− 1

2

[
(x− 1)2·round( a

|v|+c )+

+(2x− 1)2·round( a
|v|+c )

]}
vm, v(t) ≤ 0

dx
dt = a

{
1− 1

2

[
x2·round( a

|v|+c )+

+(2x− 1)2·round( a
|v|+c )

]}
vm, v(t) > 0

i = χ[exp(γ v)− 1] + β xnsinh(α v)

(4.45)
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where the third equation depicts the state-dependent Ohm’s Law for the memristor
element [11]. The analysis of the memristor element is made using numerical
solution to System of Equations (4.45) in accordance to the finite difference method.
After many computer simulations of the applied memristor model for different
values of the quantities a and c, it is established that for a = 30 and c = 2, the
current–voltage characteristic is almost identical to this acquired by the Pickett
model [7]. The current–voltage characteristic of the memristor is a multi-valued
function. For the simulations using the Pickett model as a reference [7,20] with
voltages higher than 0.75 V, many convergence issues occur [41]. The basic benefit
of the suggested model [20,22,40] compared to the Pickett model is the absence
of computational problems. After finishing the tuning procedures and deriving
a reasonably good similarity of the current–voltage relationships between the
suggested model and the Pickett model with respect to their current and voltage
ranges and current–voltage relationship forms, the suggested memristor model is
applied for analysis of the resistance-switching memory [40].

A fragment of a resistance-switching memory scheme with four memristor cells
and several separate MOS transistors according to [47,48] is shown in Figure 127
for the following description n of the signals for writing and reading processes.
Selecting the corresponding memory elements makes it possible to store a bit of
information—logical unity or logical zero in the memory element [47,48]. The MOS
transistors are applied for eliminating the parasitic sneak paths between the bit rims
and the corresponding word lines [47]. The “write enable” and “read enable” signals
are applied to the gate electrodes of the respective MOS transistors and the target
memory element will be selected [40,47,48]. For writing logical unity, a positive
voltage impulse is applied to the corresponding memristor. For writing logical zero,
a negative signal is used [40,48].

Figure 127. A fragment of a hybrid memristive resistance-switching memory circuit.
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For analysis of the hybrid memory circuit fragment, a nonlinear physics-based
memristor model [20,22] with an improved window function by the author [35]
is introduced. The potentials of the source electrodes of the MOS transistors T1

and T3, needed for the processes of writing and reading logical information, are
impulses with different levels and directions. In the first 100 ms, logical unity is
stored in the memristor element M1. In the next 100 ms, logical zero is written in
the same memory cell. In the last 100 ms, a reading impulse with a low level is
applied to the corresponding memristor [40]. The write- and read-enable signals
applied to the gate electrodes of the transistors T1 and T3 are also impulse signals
with different magnitudes and polarities. For selecting the memristor element M1,
positive potentials with a value of 2 V are applied to the gate electrodes of both MOS
transistors T1 and T3 with respect to their source electrodes. The resistance of the
memristor element changes in a very large range [40]. Practically, the memristor
element operates in a regime close to hard-switching state.

After a comparison of the current–voltage relationships of the memristor
cell derived by the use of the applied model [22,47] and the improved window
function [35] with experimentally recorded current–voltage characteristics [21]
acquired under similar conditions, a reasonably good similarity between them
is established.

4.5.3. Results and Discussion

The results acquired by the use of the applied model are identical to the
experimentally recorded relationships [21].

The time graphs of the state variable, the resistance of the memristor element M1

and the output voltage derived after a reading process by low-level pulses applied to
the source of T1 are presented in Figure 128(a–c) for explaining the memory device
operation [40]. These time graphs illustrate the variation range of the resistance of
the memristor element and the result derived by the applied reading signal [40]. It is
clear that the state variable and the resistance of the corresponding memory element
change in a very large range [40]. The wide alteration range of the memristance of
the memory cell is useful for the correct recognition of the logical signals.
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Figure 128. (a) Time graph of the state variable x; (b) Time diagrams of the
memristance of the element M1 according to the modified model and Biolek model;
(c) Time diagram of the output voltage signal derived after reading the memory
fragment, using the applied memristor model, with the modified and the standard
Biolek window functions, presented for confirmation of the correct work of the
memristor memory scheme.

The output voltage signal of the memory circuit, derived during the reading
processes, has a reasonably high value, which is a good precondition for a correct
separation of the logical signals [41]. Comparing the current–voltage relationships
of the memristor element with experimental data [20,21] derived under similar
conditions, a good rough correspondence with respect to the ranges of current and
voltage and the current–voltage relationship form is established [40]. Identical results
are acquired and it could be established that the proposed nonlinear memristor
model with an improved window function could be applied for investigation of
many complex memristor electronic schemes and devices [40].

An advantage of the suggested model [21,40] with the improved window
function [35] applied here, compared to several existing models such as GBCM [14],
Biolek [6] and Joglekar [5] models, is the reasonably high nonlinearity of the
ionic dopant drift of the applied memristor model and the possibility for realistic
illustration of the highly nonlinear relationship between the ionic current and the
memristor voltage [35,40]. The sufficient convergence of the computing procedures
using the corresponding algorithm for computer simulations is also a benefit of
the applied model and the altered window function proposed by the author [35].
The successful operation of a fragment of resistance-switching memory circuit with
the applied model and the improved window function for the general impulse
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mode confirms that this memristor model, together with the altered window
function, could be applied for analysis of many memristor-based electronic schemes
and devices. After investigation of the results acquired by the use of the applied
memristor model [20,21] with the changed window function [35] and the standard
Biolek window function [6], it could be established that they have almost similar
performance based on the analysis of the memory operation processes: writing and
reading information. The procedures of writing and reading in a hybrid memory
fragment are successfully investigated with the suggested memristor model and the
improved window function [35]. A good similarity between the derived and the
experimentally recorded results [21] is established. The current–voltage relationship
curves of the memristor element obtained by the suggested model [20,21] with the
altered window function [35,40] and the standard Biolek window [6] are almost
identical with respect to the ranges of current and voltage and current–voltage
relationship outline. It could be established that the memristor model applied here
with the altered window function [35] has the ability to illustrate the behavior
of a memristor in memory devices for different electric regimes. An advantage
of the suggested model [21,25] and the modified window [35], compared to the
reference Pickett memristor model, is the established absence of computational
issues [40]. Another advantage of the used memristor model is the use of a strongly
nonlinear window function [35,40]. The applied memristor model with the improved
window function [35] is suitable for realistic representation of the performance
of the memristors in electronic devices and schemes for high voltages without
convergence problems [40]. The suggested applied memristor model with the altered
window function could be used for depiction of the memristor behavior for both
soft-switching and hard-switching states [40].
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CONCLUSION 





In the present monograph, the basic analyses of memristors and memristor
circuits and networks are described. A detailed reference check for memristor-based
research is completed. The titanium dioxide memristors are still very applicable to
many areas, and hence they are extensively investigated in the present researches.
Owing to several disadvantages of the existing memristor models observed in the
references, the author proposes modifications to the existing memristor models.
These modifications are mainly associated with the improvement of the state
differential equation for several basic models—Joglekar and Biolek memristor models.
For the improvement of the relationship between the time derivative of the memristor
state variable and the current, the author proposes two main variants for modification
of the memristor state differential equation.

The first modification is proposing a voltage-dependent positive integer
exponent in the applied memristor window function. This relationship relates the
integer exponent applied to the used window function to the memristor voltage with
a hyperbolic-like decreasing function. The reason for introducing this relationship
is the established dependence between the nonlinearity of the ionic dopant drift
and the applied memristor voltage. By increasing the voltage, the nonlinearity
of the drift of the oxygen vacancies increases and it becomes an approximated
exponential function of the voltage. On the other hand, the window function
nonlinearity increases with the decrease of the applied positive integer exponent.
Then, it could be concluded that the increase of the ionic drift nonlinearity could
be realistically modeled by decreasing the integer exponent in the applied window
function. In other words, for realistic representation of the nonlinear ionic dopant
drift, a nonlinear decreasing dependence between the window function exponent
and the memristor voltage is needed to be introduced in the corresponding state
differential equation. The improved models have the capability of automatically
changing their integer exponents in the window function in accordance to the
applied memristor voltage. The basic advantage of the suggested models is the
realistic representation of the memristor behavior in electric fields. The introduced
nonlinearity of the models by the author is related to the memristor state variable.
The proposed memristor modified models by the author have been investigated and
the derived results have been compared with experimentally recorded characteristics
of real memristor devices. A good similarity between the respective memristor
characteristics derived with the suggested models and the experimental results is
established. A simple linear combination of Joglekar and Biolek window functions
with a voltage-dependent integer exponent is also applied, with a combination of
a physical memristor model, for realistic representation of the memristor element
behavior for the general electric mode.

The second basic modification of the memristor models is related to the
application of an additional sinusoidal window function component in the standard
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Biolek window function. For the alteration of the suggested model, a weighted
sinusoidal window function component is used. The derived nonlinearity of the
modified memristor model is higher than that of the standard Biolek model. In this
modified model, an activation threshold is also applied. If the weight coefficient in
front of the applied additional sinusoidal component of the window function and the
corresponding activation threshold are zero, then the modified model is transformed
into the standard Biolek model, so it could be concluded that the standard Biolek
memristor model is a special case of the modified model by the author. The use of
an activation threshold allows analyzing a memristor element for very-low-voltage
signals. Then, the memristor element behaves as a linear resistor. The described
properties of the modified memristor model are advantageous over those of the
standard Biolek and Joglekar models.

Several memristor-based devices, such as series and parallel circuits, a
generator, memory crossbars and artificial neurons, are investigated with the
use of the proposed memristor models. The acquired results are compared with
experimental data derived by physical measurements, and a good similarity of their
current–voltage relationships is established. It could be concluded that the modified
memristor models could be used for analysis of many different memristor-based
electronic circuits, devices and networks.

The problems, following the main purpose of the present research, are
completely executed. The analyses are mainly made by using a numerical solution
to the basic system of equations of the memristor element solved with the
finite difference method. The relationships between the ionic mobility of the
oxygen vacancies and the specific resistance of the titanium dioxide memristor
and the temperature are analyzed and expressed by a high-order polynomial.
The dependence between the internal diffusion intensity and the temperature is
also investigated. It is established that for lower temperatures, the operation of
the memristor in electric fields is stable and improved, according to the diffusion
processes between the doped and the undoped regions.
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Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOS) 2018, 8, 9–14. [CrossRef]

44. Fausett, L. Fundamentals of Neural Networks; Prentice Hall: Englewood Cliffs, NJ, USA,
1994; ISBN 0130422509.

45. Sah, M.; Yang, C.; Kim, H.; Roska, T.; Chua, L. Memristor Bridge Circuit for
Neural Synaptic Weighting. In Proceedings of the 13th International Workshop on
Cellular Nanoscale Networks and Their Applications (CNNA), IEEE, Turin, Italy,
29–31 August 2012; pp. 1–5. [CrossRef]

46. Mladenov, V.; Kirilov, S. Synthesis and Analysis of a Memristor-Based Perceptron for
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