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Preface 

Elementary particle physics has made remarkable progress in the past ten 
years. We now have, for the first time, a comprehensive theory of particle 
interactions. One can argue that it gives a complete and correct description of 
all non-gravitational physics. This theory is based on the principle of gauge 
symmetry. Strong, weak, and electromagnetic interactions are all gauge 
interactions. The importance of a knowledge of gauge theory to anyone 
interested in modern high energy physics can scarcely be overstated. 
Regardless of the ultimate correctness of every detail of this theory, it is the 
framework within which new theoretical and experimental advances will be 
interpreted in the foreseeable future. 

The aim of this book is to provide student and researcher with a practical 
introduction to some of the principal ideas in gauge theories and their 
applications to elementary particle physics. Wherever, possible we avoid 
intricate mathematical proofs and rely on heuristic arguments and illustrative 
examples. We have also taken particular care to include in the derivations 
intermediate steps which are usually omitted in more specialized communi­
cations. Some well-known results are derived anew, in a way more accessible 
to a non-expert. 

The book is not intended as an exhaustive survey. However, it should 
adequately provide the general background necessary for a serious student 
who wishes to specialize in the field of elementary particle theory. We also 
hope that experimental physicists with interest in some general aspects of 
gauge theory will find parts of the book useful. 

The material is based primarily on a set of notes for the graduate courses 
taught by one of us (L.F.L.) over the past six years at the Carnegie-Mellon 
University and on lectures delivered at the 1981 Hefei (China) Summer 
School on Particle Physics (Li 198 l ). It is augmented by material covered in 
seminars given by the other author (T.P.C.) at the University of Minnesota 
and elsewhere. These notes have been considerably amplified, reorganized, 
and their scope expanded. In this text we shall assume that the reader has had 
some exposure to quantum field theory. She or he should also be moderately 
familiar with the phenomenology of high energy physics. In practical terms 
we have in mind as a typical reader an advanced graduate student in 
theoretical physics; it is also our hope that some researchers will use the book 
as a convenient guide to topics that they wish to look up. 

Modern gauge theory may be described as being a 'radically conservative 
theory' in the sense used by J. A. Wheeler (see Wilczek 1982b). Thus, one 
extrapolates a few fundamental principles as far as one can, accepting some 
'paradoxes' that fall short of contradiction. Here we take as axioms the 
principles of locality, causality, and renormalizability. We discover that a 
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certain class of relativistic quantum field theory, i.e. the gauge theory, 
contains unexpected richness (Higgs phenomena, asymptotic freedom, 
confinement, anomalies, etc.), which is necessary for an understanding of 
elementary particle interactions. And yet, this does not occasion any revision 
of the basic principles of relativity and quantum mechanics. Thus the 
prerequisite for the study of gauge theory is just the traditional preparation in 
advanced quantum mechanics and quantum field theory, especially the 
prototype gauge theory of quantum electrodynamics (QED). 

The book is organized in two parts. Part I contains material that can be 
characterized as being 'pre-gauge theory'. In Chapters 1, 2, and 3 the basics 
of relativisitic quantum field theory (quantization and renormalization) are 
reviewed, using the simple A.¢ 4 theory as an illustrative example. In Chapters 
4 and 5 we present the elements of group theory, the quark model, and chiral 
symmetry. The interrelationship of the above main topics-renormalization 
and symmetry-is then studied in Chapter 6. The argument that quarks are 
the basic constituents of hadrons is further strengthened by the discovery of 
Bjorken scaling. Scaling and the quark-parton model are described in 
Chapter 7. These results paved the way for the great synthesis of particle 
interaction theories in the framework of the non-Abelian gauge theories, 
which is treated in Part II. After the classical and quantized versions of gauge 
theories are discussed in Chapters 8 and 9, we are then ready for the core 
chapters of this book-Chapters 10-14-where gauge theories of quantum 
chromodynamics (QCD), quantum flavourdynamics (QFD), and grand 
unification (GUT) are presented. As a further illustration of the richness of 
the gauge theory structure we exhibit its nonperturbative solutions in the 
form of magnetic monopoles and instantons in Chapters 15 and 16. 

We have also included at the end of the book two appendices. In Appendix 
A one can find the conventions and normalizations used in this book. 
Appendix B contains a practical guide to the derivation of Feynman rules as 
well as a summary of the propagators and vertices for the most commonly 
used theories-the A.¢ 4 , Yukawa, QCD, and the gauge) standard model 
of the electroweak interaction. 

In the table of contents we have marked sections and chapters to indicate 
whether they are an essential part (unmarked), or details that may be omitted 
upon a first reading (marked by an asterisk), or introductions to advanced 
topics that are somewhat outside the book's main line of development 
(marked by a dagger). From our experience the material covered in the 
unmarked sections is sufficient for a one-semester course on the gauge theory 
of particle physics. Without omitting the marked sections, the book as a 
whole is adequate for a two-semester course. It should also be pointed out 
that although we have organized the sections according to their logical 
interconnection there is no need (it is in fact unproductive!) for the reader to 
strictly follow the order of our presentation. For example, §1.2 on path 
integral quantization can be postponed until Chapter 9 where it will be used 
for the first time when we quantize the gauge theories. As we anticipate a 
readership of rather diverse background and interests, we urge each reader to 
study the table of contents carefully before launching into a study pro-
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gramme. A certain amount of repetition is deliberately built into the book so 
that the reader can pick and choose different sections without any serious 
problems. An experimentally inclined reader, who is not particularly 
interested in the formal aspects of relativistic quantum field theory, can skip 
Chapters 1, 2, 3, and 6 on quantization and renormalization. After an 
introductory study of group theory and the quark model in Chapters 4, 5, 
and 7 she or he should proceed directly to the parts of Chapters 8, 10, 11, 12, 
14, etc. where a general introduction to and applications of gauge theory 
can be found. 

The sections on references and bibliography at the end of the book 
represent some of the commonly cited references that we ourselves are 
familiar with. They are not a comprehensive listing. We apologize to our 
colleagues who have been inadequately referenced. Our hope is that we have 
provided a sufficient set so that an interested reader can use it to go on to find 
further reviews and research articles. 

It is a pleasure to acknowledge the aid we have received from our 
colleagues and students; many have made helpful comments about the 
preliminary version of the book. We are very grateful to Professor Mahiko 
Suzuki who undertook a critical reading of the manu,script, and also to 
Professors James Bjorken, Sidney Drell, Jonathan Rosner, and Lincoln 
Wolfenstein for having encouraged us to begin the conversion of the lecture 
notes into a book. One of us (T.P.C.) would like to thank the National 
Science Foundation, UMSL Summer Research Fellowship Committee, and 
the Weldon Spring Endowment for support. During various stages of 
working on this project he has enjoyed the hospitality of the theoretical 
physics groups at the Lawrence Berkeley Laboratory, the Stanford Linear 
Accelerator Center and the University of Minnesota. L.F.L. would like to 
thank the Institute for Theoretical Physics at the University of California­
Santa Barbara for hospitality and the Department of Energy and the Alfred 
P. Sloan Foundation for support. Finally, we also gratefully acknowledge the 
encouragement and help given by our wives throughout this project. And, we 
are much indebted to Ms Susan Swyers for the painstaking task of typing this 
manuscript. technical assistance by Ms Tina Ramey and Mr Jerry 
McClure is also much appreciated. 

Note added in proof As this manuscript was being readied for publication we 
received the news that the CERN UAl and UA2 groups have observed events 
in pp collisions which may be interpreted as the production of an 
intermediate vector boson W with a mass approximately 80 GeV. Also, the 
Irvine-Michigan-Brookhaven collaboration reported a preliminary result 
setting a lower bound for the lifetime t(p-+ e+ n°) > 6.5 x 1031 years. 

St. Louis and Pittsburgh 
September 1982 

T.P.C. 
L.F.L. 
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1 Basics in field quantization 

The dynamics of a classical field ¢(x) are determined by the Lagrangian 
density !£'( ¢, a µcP) through the action principle 

(1.1) 

where S is the action 

This extremization leads to the Euler-Lagrange equation of motion 

(}!£' (}!£' 

aµ 1J(aµ¢) - bf= 0 · (1.2) 

To quantize a system we can adopt either of two equivalent approaches. 
The canonical formalism involves the identification of the true dynamical 
variables of the system. They are taken to be operators and are postulated to 
satisfy the canonical commutation relations. The Hamiltonian of the system 
is constructed and used to find the time evolution of the system. This allows 
us to compute the transition amplitude from the state at an initial time to the 
state at final time. Alternatively, we can use the Feynman path-integral 
formalism to describe the quantum system. Here the transition amplitude is 
expressed directly as the sum (a functional integral) over all possible paths 
between the initial and final states, weighted by the exponential of i times the 
action (in units of the Planck's constant h) for the particular path. Thus in the 
classical limit (h -> 0) the integrand oscillates greatly, making a negligible 
contribution to the integral except along the stationary path selected by the 
action principle of eqn (1.1 ). 

In this chapter we present an elementary study of field quantization. First 
we review the more familiar canonical quantization procedure and its 
perturbative solutions in the form of Feynman rules. Since we will find that 
gauge field theories are most easily quantized using the path-integral 
formalism we will present an introduction to this technique (and its 
connection to Feynman rules) in §1.2. For the most part the simplest case of 
the self-interacting scalar particle will be used as the illustrative example; 
path-integral formalism for fermions will be presented in §1.3. 

Since the path-integral formalism will not be used until Chapter 9 when we 
quantize the gauge fields, the reader may wish to postpone the study of §§1.2 
and 1.3 until then. It should also be pointed out that even for gauge theories 
we shall use these two quantization formalisms in an intermixed fashion. By 
this we mean that we will use whatever language is most convenient for the 
task at hand, regardless of whether it implies path-integral or canonical 
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quantization. For example, in the discussion of the short-distance pheno­
mena in Chapter 10, we continue to use the language of 'operator product 
expansion' even though strictly speaking this implies canonical quantization. 
The reader is also referred to Appendix B at the end of the book where one 
can find a practical guide to derivation of Feynman rules via path-integral 
formalism. 

1.1 Review of canonical quantization formalism 

We assume familiarity with the transition from a classical nonrelativistic 
particle system to the corresponding quantum system. The Schrodinger 
equation is obtained after we replace the canonical variables by operators 
and the Poisson brackets by commutators. These operators act on the 
Hilbert space of square integrable functions (the wavefunctions), and they 
satisfy equations of motion which are formally identical to the classical 
equations of motion. 

A relativistic field may be quantized by a similar procedure. For a system 
described by the Lagrangian density 2(¢, oµ</J), the field ¢(x) satisfies the 
classical equation of motion given in eqn (1.2). We obtain the corresponding 
quantum system by imposing the canonical commutation relations at equal 
time 

[n(x, t), ¢(x', t)] = -ic53 (x - x') 

[n(x, t), n(x', t)] = [¢(x, t), ¢(x', t)] = 0 

where the conjugate momentum is defined by 

The Hamiltonian 

c52 
n(x) = c5(oo¢). 

H = J d 3x[n(x) o0¢(x) - 2(x)] 

governs the dynamics of the system 

o0 ¢(x, t) = i[H, ¢(x, t)] 

o0 n(x, t) = i[H, n(x, t)]. 

Example 1.1. Free scalar field. Given the Lagrangian density 

eqn (1.2) yields the Klein-Gordon equation 

(o2 + µ2 )¢(x) = 0. 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

In quantum field theory the field ¢(x) and its conjugate momentum operators 
given by eqn (1.4), n(x) = o0 ¢(x), satisfy the canonical commutation 
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relations 

[ oo¢(x, t), ¢(x'' t)] = - ii53(x - x') 

[oo¢(x, t), oo<f>(x', t)] = [¢(x, t), ¢(x', t)] = 0. (1.8) 

The Hamiltonian is given by 

Ho= I d3xt[(oo¢)2 + (V¢)2 + µ1¢2]. (l.9) 

The time evolution equation (1.6), which is basically Hamilton's equation of 
motion, can be cast in the form of (l. 7). Thus the field operator ¢(x) formally 
satisfies the Klein-Gordon equation. This simple non-interacting case can be 
solved and we have 

I d3k .(k .k ,.J..(x t) = [a(k) e' ·x-cokt) + a1(k) e-•( ·x-cokl)J 
'f' ' [(2n)32wk] 112 

(1.10) 

where wk= (k2 + µ 2) 112 . The coefficients of expansion a(k) and at(k) are 
operators. The canonical commutation relations of eqn (1.8) are transcribed 
into 

[a(k), at(k')] = i5 3(k - k') 

[a(k), a(k')] = [at(k), at(k')] = O 

and the Hamiltonian of eqn (1.9) can be expressed as 

H0 = J d3kwkat(k)a(k) 

(1.11) 

(1.12) 

where we have discarded an irrelevant constant. Remembering the situation 
of the harmonic oscillator, we see immediately that a(k) and at(k) can be 
interpreted as destruction and creation operators. Thus the one-particle state 
with momentum k is given by the creation operator acting on the vacuum 
state 

(1.13) 

where the normalization is 

(k'lk) = (2n) 32wk i53(k - k'). 

The product ata has the usual interpretation as a number operator and eqn 
(1.12) shows that H0 is the Hamiltonian for a system of non-interacting 
particles. 

Given the solution, (1.10), and ( 1.1 l ), we can easily calculate the Feynman 
propagator function, which is the vacuum expectation value for a time­
ordered product of two fields, 

ii:i(x 1 - x2) = (OIT(¢(xi)¢(x2))10) 

=()(ti - t2)(01¢(xi)¢(x2)IO) + (J(t 2 - t 1)(01¢(x2)¢(xi)IO) 

-Jd4k i {'k· - )l - --4 2 2 . exp I (x1 X2 f. 
(2n) k - µ + ie 

(1.14) 
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Example 1.2. Scalar field with A</J4 interaction. The Lagrangian density is 
given by 

the equation of motion is 

(l.15) 

The conjugate momentum and canonical commutation relations are the 
same as those for the free-field case in Example 1.1. The Hamiltonian is of the 
form 

H=H0 +H' 

where H0 is given by eqn (l.9) and 

where 

H' = J d 3x£' 

Yr'= 3- </J4 
4! 

(l.16) 

(l.17) 

is the interaction Hamiltonian density. Since the free-field theory is soluble 
we can obtain transition amplitudes and matrix elements of physical interest 
by a systematic expansion in A. This approximation scheme of perturbation 
theory will be briefly outlined below. 

In the usual Heisenberg picture the operators are time-dependent and the 
time evolutions of the dynamical variables of the system are governed by the 
Hamiltonian 

</J(x, t) = eiH'</J(x, 0) e-iHi 

n(x, t) = eiH'n(x, 0) e-iHi. 

The state vector la) is time-independent. But, in the Schrodinger picture, the 
operators are time-independent and state vectors carry time dependence. 
They are related to those in the Heisenberg picture by 

</Js(x) = e-iH'</J(x, t) eiH1 

ns(x) = e-iH'n(x, t) eiH1 

la, ti= e-iH'la). 

In perturbation theory we introduce another picture-the interaction 
picture-with operators and states defined by 

</J'(x, t) = eiH0 r</Js(x) e-iH0r 

= U(t, O)</J(x, t)V- 1(t, 0) (l.18) 
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Similarly, for 11:1{x, t), 

where 

la, t)1 = eiHotla, t)s 

= U(t, O)la) 

U(t, O) = eiH0t e-iH1 

7 

(l.19) 

(l.20) 

is the unitary time-evolution operator. Since the operators in the interaction 
picture (l.18) satisfy the (soluble) free-field equation 

aocJ}(x, t) = i[Ho, c/>1(x, t)J 

(l.21) 

the dynamic problem in this language becomes that of finding the solution 
for the U-matrix. 

The time-evolution operator U can be defined more generally than in 
(1.20), 

la, t)1 = U(t, t0 )la, to)1 

where U(t0 , t 0 ) = 1 and satisfies the multiplication rule, 

U(t, t')U(t', t0 ) = U(t, t0 ) 

U(t, O)U- 1(t0 , 0) = U(t, t0 ). 

(1.22) 

(l.23) 

The equation of motion for the U-operator can be deduced from eqns (l.19) 
and (l.20) 

i :t U(t, 10 ) = H'1(t)U(t, t0 ) 

where 

is the interaction Hamiltonian in the interaction picture, i.e. 

H'i = H'(c/>1). 

Eqn (1.24) has the solution 
t 

U(t, t0 ) = Texp[ -i I dt 1H'1(t1)] 

lo 
I 

(l.24) 

(l.25) 

= Tex{ -i I dt1 I d 3x 1Yl'"(xi. ti)] (1.26) 

to 

which can be expanded in a power series 
t t 

C(l ( -w I 4 I 4 U(t, t0 ) = l + L - 1- d x 1 d x 2 ••• 
p=l p. 

t lo to 

x f d4xpT(Yl'"(x1)Yl'"(x2 ) • .• Yl'"(xp)). (l.27) 
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Green's functions in J,.¢ 4 theory. Next we need to translate this formal 
perturbative solution into quantities that will have more direct physical 
meaning. 

In field theory we are interested in calculating Green's function defined by 

c<•>(x1 , ... , x.) = (OIT(</J(x1), ... , </J(x.))10) (1.28) 

from which the S-matrix elements can be readily obtained. By a straightfor­
ward application of eqns (1.18), (1.23), and (1.26) we have 

c<•>(x, .. . , x.) = (OIU- 1(t, O)T(</J1(x 1 ) ... </J'(x.) 
t 

x exp[ -i f dt'Hfl(t')}U(-t, 0)10) (1.29) 

-t 

where tis some reference time which we shall eventually let approach oo. In 
this limit the vacuum state becomes an eigenstate of the U-operator, and the 
eigenvalue product of the two Us in (1.29) becomes 

<01r( exp[ -i J :
00 

dt'H 11(t')])o> 
(1.30) 

The effect of these two Us acting on the vacuum states is to take out 'the 
disconnected part' of the vacuum expectation value (see, for example, 
Bjorken and Drell 1965). Also, after we substitute the power series expansion 
of (1.27), then-point Green's function with the notation of (1.25) takes on the 
form 00 

c<•>(x1, .. ., x.) = I (-:)P l d4yi. ... , d4yP (OIT(</J1(x1), ... , </J'(x.) 
p=O p. .l 

- 00 

(1.31) 

The subscript c denotes 'the connected part'. The terminology clearly reflects 
features in the graphic representation of the Green's function. 

Consider the simplest example of a first-order (p = 1) term for a four­
point (n = 4) Green's function in the theory with Yf '(</J) = J,./4 ! ¢ 4 as in (1.17) 

G\4 >(x i. ... , x4 ) = - J d4 y(OI T(</J'(xi), ... , ¢'(x4 )[</J1(y)] 4 ))0). (1.32) 

We then normal-order the entire time-ordered product by moving the 
creation operators to the left of the annihilation operators and eliminating 
those terms which end up with the annihilation operator on the right and/or 
the creation operator on the left. After this application of Wick's theorem 
(1950) the connected part of the expression in (1.32) decomposes into a 
product of two-point functions 

G\4 >(xi. ... , x4 ) = (-iA) f d4y(O)T(</J'(x1 )</J1(y))IO)(OIT(¢1(x2 )¢1(y))IO) 

(01 T(</J1(x3 )</J1(y)))O)(OIT(</J1(x4 )</J'(y)))O). (1.33) 
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The original 4 ! factor in the denominator of (l .32) is cancelled because there 
are a corresponding number of ways to contract the cf>'(x;)s with each field in 
[cf>'(y)]4. The interaction picture field obeying the free-field equation, the 
propagator iA(x, y) = <OIT(c/>1(x)cf>'(y))IO), is a known quantity and is given 
by eqn (l.14). A graphic representation of the expression in (l.33) is shown in 
Fig. 1.1. 

FIG. I. I. Graphic representation of eqn (1.33). 

We next consider the example of the second-order term for the four-point 
function, i.e. the p = 2, n = 4 term in eqn (1.31) 

G(4)( 1 (-iA.)2 I 4 4 l l l 4 2 X1 · · · X4) = 2! --;v- d Y1 d Y2<0IT(cf> (x1) ... cf> (x4)[cf> (y1)] 

X [c/>1(y2)]4)IO). (1.34) 

We then use Wick's theorem to reduce it and keep only the connected parts, 

... X4) 

= ;! (-iA.)2 J d4y 1 d4Yz[iA(y1, Y2)J 2{[A(x1, Y1) A(x2, Y1)J 

x [A(x3, Yz) A(x4, Y2)J + [A(xi. Y1) A(x3, Y1)J[A(x2, Y2) A(x4, Y2)J 

+ [A(x1, Y1) A(x4, Y1)J[A(x2, Y2) A(x3, Y2)J} + ;! (-iA.)2 f d4y 1 d4Yz 

x [iA(y1, y 1)][iA(y1, Yz)]{A(x1, Y1) A(x2, Y2) A(x3, Y2) A(x4, Y2) 

+ A(x1, Y2) A(x2, Y1) A(x3, Y2) A(x4, Y2) + A(x1, Yi) A(x2, Y2) 

x A(x3, y 1 ) A(x4, Yi)+ A(xi. y2) A(x2, Yi) A(x3, y2) A(x4, yi)}. (1.35) 

The symmetry factor 2 ! in the first term on the right-hand side of (1.35) can 
be understood as follows. The original factors of (l/2!)(1/4!)2 in eqn (1.34) 
are cancelled by the permutation of y 1 and y2 and by the multiple ways in 
which we can attach the fields emanating out of each vertex. However, this is 
an over-counting. Since there are two identical internal lines connecting a 
pair of vertices, we need to divide out a factor of 2 !. The factor 1/2 in the 
second term of (l.35) has a different origin. It comes from the fact that an 
internal line starts and terminates in the same vertex. Eqn (1.35) is shown 
graphically in Fig. 1.2. 

Similarly, for a first-order (p = 1) two-point (n = 2) function, we have 

Gi2>(x1, x2) = J d4y[iA(x1, y)][iA(y, y)][iA(x2, y)] (1.36) 

as shown in Fig. 1.3. 
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xix! X2 X1HXi XiAXi 

Yi Yi 

h h 

X3 X4 X3 X4 X3 X4 

X)\ Yi Yi 
Yi Yi Y2 Yi 

Yi Y1 
X4 X4 X4 X4 

X3 X3 X3 X3 

FIG. 1.2. Graphic representation of eqn (1.35). 

0 • y 

FIG. 1.3. Graphic representation of eqn (1.36). 

Usually it is more convenient to work with Green's function in momentum 
space 

(2n)4 b4 (P1 + ... + Pn)G<">(P1 .. ·Pn) = f .D d4 x; e-ip;x;c<n>(x1 ... xn) 
•-l (1.37) 

and with the amputated Green's function, which is related to G<">(p1 •.• Pn) 
by removing the propagators on external lines 

G<n> ( ) _ In" -=i__J o<n>( ) 
ampPl···Pn P1···Pn (1.38) 

where p 1 + p 2 + ... Pn = 0. In fact for spin-0 particles the amputated 
Green's function is just the usual transition amplitude (the T-matrix element) 
from which the cross-section can be directly computed. 

Feynman rules of .A¢4 theory. The result of perturbation theory may be 
conveniently summarized in terms of the Feynman rules for the transition 
amplitude. With the Yf1 = (.A/4!)¢4 (x) interaction, we have the following 
prescription for calculating the N-point amputated Green's function. 

l. Draw all possible connected, topologically distinct, graphs with N 
external lines; 

2. For each internal line, put in the propagator factor 

(i) 
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For each vertex, "" x -;;; 
3. For each internal momentum I not fixed by momentum conservation at 

each vertex, perform an integration J d41/(2n)4 ; 

4. Each graph has to be divided by a symmetry factor S corresponding to the 
number of permutations of internal lines one can make for fixed vertices. 

1.2 Introduction to path integral formalism 

In the first section the canonical quantization procedure via operator 
formalism was briefly reviewed. We have outlined the steps through which 
the perturbative solution of an interacting field theory may be obtained in the 
form of Feynman rules. In this section the same set of rules will be recovered 
using the path-integral (PI) formalism (Dirac 1933; Feynman 1948a; 
Schwinger 195lb). This alternative quantization approach has the advantage 
of exhibiting a closer relationship to the classical dynamical description and 
the manipulation involves only ordinary functions. This allows us to see 
more clearly the effect of any nonlinear transformations on the fundamental 
variables. Thus the PI formalism is particularly suited for handling 
constrained systems such as gauge theories. 

Quantum mechanics in one dimension 

We first introduce the PI formalism in the simplest quantum-mechanical 
system in one dimension. Generalization to field theory with infinite degrees 
of freedom, together with its perturbative solution, will be presented in a later 
part of this section. 

In quantum mechanics a fundamental quantity is the transition matrix 
element corresponding to the overlap between initial and final stages 

(q'; t'\q; t) = (q'\ e-iH(t'-tl\q) (1.39) 

where the \q)s are eigenstates of the position operator Qin the Schrodinger 
picture with eigenvalue q 

Q\q) = q\q) (1.40) 

and the \q; t)s on the left-hand side of (1.39) denote the states in the 
Heisenberg picture, \q; t) = eiH'lq). It should be remembered that the 
Heisenberg-picture states do not carry time-dependance. The notation used 
here means that the Heisenberg-picture states \q; t) and \q'; t') in eqn (1.39) 
coincide with two distinctive Schrodinger-picture states \q(t)) and \q'(t)) at 
time t and t' respectively. In the PI formalism the transformation matrix 
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element of eqn (1.39) is written as a functional integral 

t' 

(q'; t'lq; t) = N f [dq] exp{i f L(q, q) dr} (1.41) 

where N is the normalization factor and L(q, q) is the Lagrangian. The 
integration is performed in the function space q(t). It represents the sum of 
contributions over all paths that connect (q, t) and (q', t'), weighted by the 
exponential of i times the action. In the following we will derive (l.41) using 
the familiar canonical-operator formalism. The definition of the integration 
measure [dq] will be given in eqns (1.50) and (1.51) and this should clarify the 
meaning of the functional integral. 

We first divide the interval (t', t) into n segments with space bt = 

(t' - t )/n. Then the transition amplitude in eqn (1.39) may be written 

< 'I -iH(t'-r>1 > - f·d d < 'I -iH/Jtl >< I -iH{Jtl > q e q - ql ... qn-1 q e qn-1 qn-1 e qn-2 ... 

(1.42) 

where we have inserted complete sets of eigenstates of the Schrodinger 
picture operator Q8. For sufficiently small bt, 

(q'I e-iH&Jq) = (q'l[l - iH(P, Q) l>t]Jq) + O(i5t)2 • (1.43) 

If the Hamiltonian has the form 

p2 

H(P, Q) = 2m + V(Q), (1.44) 

then 

(q'IH(P, Q)lq) = (q'I Jq) + v( q i q') b(q - q') 

(dp (q'Jp)(pl p2 lq) +v(q + q') fdp eip(q'-q> J 2n 2m 2 2n 

= f eip(q'-q> [ + v( q q')} 
We have used (q'lq) = b(q' - q) and (qlp) = eipq. Also, symmetric ordering 
of operators in V(Q) is assumed. Then 

fdp eip(q'-q> e-io1H(p,q+q'f2>_ 

2n 
(l.45) 
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Thus, H(p, q) is the classical Hamiltonian. Substituting into (1.42), we have 

The transition amplitude can then be written symbolically as 
t' 

<q'I e-iH(r'- 1ljq) = J[ J exp{i I dt[pq - H (p, q)]} (l.47) 

The second line defines the path integral. We almost have the promised 
result of eqn (l.41) if we can perform the momentum-space [dp/2n] = 
Ili dp;/2n part of the path integral. The integrand being oscillatory, we 
analytically continue it to Euclidean space by formally treating (i '5t) as real. 
The Gaussian integral formula 

00 

I dx e - ax'+ bx = _1_ eb'/4a 

2n 
(1.49) 

- 00 

can then be used to obtain 

Pi -1 ut 2 . m 1m qi - qi- l Id [ . J; J ( )1/2 [' ( )2] 
2n exp + ipi(qi - qi-d = 2ni '5t exp 2'5t . 

In this way we have for eqn (1.48) 

. , ( m )n/2 In-1 <q'I e-•H<t -tljq) = Jim -. - n dqi 
n-+oo 2m'5t i 

x exp{i .f, '5t[m2 (qi - 15 qi- 1 )
2 

- v]} 
i=l t (l.50) 

or 
t' 

<q; tlq'; t') = <q'I e-iH(t'-t)lq) =NI [dq] exp{i q2 - V(q) ]} 

t 

(1.51) 

which is the stated result of eqn (1.41), where L = (mq2/2) - V(q). 
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Green's functions of one-dimensional quantum mechanics. We will next 
translate the basic result of eqns (1.41) and (1.47) into forms that can be easily 
generalized to PI formulae for Green's functions in field theory. 

Let us start with the simplest two-point function: the matrix element of a 
time-ordered product between ground states, 

G(11 , 12 ) = (OIT(QH(11)QH(12 ))10) 

where 10) denotes the ground state. Inserting complete sets of states, 

G(t1. 12) =I dq dq'(Olq'; t')(q'; 1'IT(QH(l1)QH(l2))lq; l)(q; 110). (l.52) 

The matrix element 

(Olq; 1) = cPo(q) e-iEor = c/J0 (q, 1) (l.53) 

is the wavefunction for the ground state. We next concentrate on the PI 
formulation of (q'; 1'IT(QH(11)QH(12 ))lq; 1). For 11 > 12 (i.e., I'> 11 > 
12 > t), we have 

(q'; l'IT(QH(ti)QH(l2))lq; I)= (q'I e-iH(1'-11JQS e-iH(1,-12)QS e-iH(t1-t2Jlq2) 

=I (q'I e-iH(1'-11Jlq1)(q1IQs e-iH(11 -r2Jlq2) 

x (q2IQse-iH(12-1llq) dq1 dq2. 

Taking eigenvalues in the Schrodinger picture and applying the basic PI 
result of eqn (1.47), it follows that 

(q'; l'IT(QH(li)QH(12))1q; 1) 
t' 

= J d-r[pq-H(p,q)]}· (1.54) 

A minute of thought will convince us that exactly the same PI formula holds 
for the time sequence t2 > 11 (i.e., 1' > 12 > 11 > 1). Thus eqn (l.54) is a 
general result. Substituting eqns (1.54) and (1.53) into eqn (1.52) we have 

G(t1, t2) = J dq dq'c/Jo(q', t) f [ J q1(tdq2U2) 

t' 

x exp{i f d-r[pq - H(p,q)]} (1.55) 

or 

t' 

x exp{i f d-r[pq - H(p, q)] }· (l.56) 
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The presence of the ground-state wavefunctions c/>0 (q', t') and <Mj(q, t) in eqn 
(1.55) makes it clumsy to do practical calculations. To remove them, consider 
the matrix element 

(q'; l'l(IJ(t1, l2)lq; l) = f dQ dQ'(q'; t'IQ'; T') 

x (Q'; T'l(ll(11, l 2)IQ; T)(Q; Tlq; t) (1.57) 

where (ll(t1 , 12) = T(QH(t 1)QH(l2)) and l' T' (t1 , 12) l. Let In) be 
the energy eigenstate with energy En and wavefunction </Jn(q), 

Hin)= Enln) 

(qln) = <P:(q). 
Then we·have 

(q'; t'IQ'; T') = (q'I e-iH(r'-T'JIQ') = L (q'ln)(nl e-iH(r'-T'JIQ') 
n 

= L </J:(q')</Jn(Q') e-i£,(1'-T'>. (1.58) 
n 

To isolate the ground-state wavefunction in this equation, we use the fact 
that En> E0 for all n '# 0, and take the limit l' -+ -ioo, which yields 

lim (q'; t'IQ'; T') = e-Eolt'I eiEor. (1.59) 
r'-+ -ioo 

Similarly, 
lim (Q; Tlq; t) = e-Eoltl e-iEoT. (1.60) 

r--+ioo 

Then eqn (1.57) becomes 

(q'; l'l(D(11t2)lq; t) = f T'l(D(1112)IQ, T) 
t--+ioo • 

X e-Eolt'I e+iEoT' e-iEoT e-E0 1tl 

= e-£011·1 e-EoltlG(t1 , ti) (1.61) 

where we have used eqn (1.52). From eqns (1.59) and (1.60) it is clear that 

lim (q'; t'lq; t) = e-Eolt'I e-Eol'I. (1.62) 
t'--+-ioo 
t--+ioo 

Combining eqns (1.61) and (1.62), we obtain for Green's function 

G(t1, t2) = lim [(q'; t'IT(QH(t1)QH(t2))iq; t)J 
t'-+ -;-ioo (q'; t'lq; t) 

r--+100 

. 1 f [dq dp] 
= , hm < '· t'I . 1> -2- q(ti)q(t2) 

t -+ -100 q ' q' 1t 
t-+ ioo 

t' 

x exp{i f d-r[pq - H(p, q)} (1.63) 
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where we have used eqn (1.54) and the path-integral representation for the 
factor (q'; t' I q; t) in the denominator is given in eqn (1.51). This clearly can 
be generalized to the n-point Green's fune;tion 

G(t1 ... tn) = (OIT(q(ti)q(t2) ... q(tn))IO> 

. 1 f [dq dp] ( '· 'I . ) - 2- q(t1) ..• q(tn) 
t'-+ -100 q' t q, t 1t 

t-t>ia::> 

t' 

x exp{i f d-r[pq - H(p, q)} · (l.64) 

This entire set of Green's functions can be generated as follows. 

(l.65) 

with 

W[J] = lim 1 f [dq dp] 
r'-+-:-ioo (q';t'lq;t) 2n 

t-+100 

t' 

x exp{i f d-r[pq - H(p, q) + J(-r)q(-r)] }· (1.66) 

Comparing this expression for W[J] with the Green's function in eqn (l.64), 
we see that the generating functional W[ J] corresponds to the transition 
amplitude from the ground state at t to the ground state at t' in the presence 
of an external source J(-r), 

W[J] = (010), (1.67) 

with the normalization W[O] = 1. Thus the computation of Green's 
functions is now reduced to the computation of W[J]. We will see later in the 
case of quantum field theory that the J(t)-independent factor (q; tlq'; t') in 
eqn ( 1.66) is irrelevant for generating the connected Green's functions and can 
be neglected. 

Euclidean function. In the formulae for Green's function (eqns (1.63) 
and (1.64)) the unphysical boundary condition t'-+ -ioo, t-+ ioo should be 
interpreted in terms of the 'Euclidean' Green's functions which are defined by 

(l.68) 

The generating functional for the S-function is then given by 

(l.69) 
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with 

The unphysical limits t' --+ -ioo, t--+ ioo make sense in 'Euclidean 
space' where t is replaced by -i-r. Furthermore, the path integral in 
Euclidean space (eqn (l.69)), is well-defined for those potentials V(q) which 
are bounded below. This is because we can always readjust the zero point of 
V(q) such that 

m (dq)2 
2 dt + V(q) > O (l.70) 

and the exponential in (l .69) will always give a damping factor so that the 
path integral converges. Note that (l.70) is satisfied for a physically stable 
system. 

Thus, the path-integral formalism has well-defined meaning only in 
Euclidean (or imaginary-time) space. To obtain physical quantities in real 
space, we have to do an analytic continuation. In practice, we will just do the 
manipulations in real space with the understanding that they can be justified 
in Euclidean space. 

Let us summarize the discussion of the PI formulation of the quantum­
mechanical description of a one-dimensional system. The basic results are the 
functional-integral formulae for the transition amplitude of eqns (l.41) and 
(l.47). In preparation for generalizing the formalism to field theory we have 
derived from these results then-point Green's functions in (l.64). All these 
a<n>(t1 ••• tn)s can be generated from W[J], the ground-state transition 
amplitude in the presence of an external source J. This central quantity can 
be computed according to (1.66) with an obvious generalization to systems 
with N degrees of freedom as 

W[J1, .. . , JN],.., f6 [dqi dpJ 
. . ' t-+100 

I' 

x exp{i Piqi - H(pi, Jiqi]} 
I 

or 

W[J1,. .. ,JN]- J9[dqJ 
t-+100 

I' 

x exp{i J d{ L(qi, Jiqi]}· (l.71) 

Field theory 

We consider a field theory as a quantum-mechanical system with infinite 
degrees of freedom and make the following identifications for the results 
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presented above 
N 

TI [dq; dp;]---)- [d¢(x) dn(x)] 
i= 1 

L(q;, q;), H(q;, P;)---)- f d3x!f'(¢, 8µ¢), f d3xJlf(¢, n) (1.72) 

with n(x), !f'(x), and Jlf(x) being .the conjugate momentum field, the 
Lagrangian density, and the Hamiltonian density, respectively. The ground 
state in field theory is generally referred to as the vacuum state. Thus the 
generating functional W[J] is the vacuum-to-vacuum transition amplitude 
in the presence of an external source J(x). The generalization of eqn (l.71) 
takes the form 

W[J] "'f [d¢ dn] exp{i f d4x[n(x) 80 ¢(x) - Jff(n, ¢) + J(x)<f>(x)]} (1.73) 

or 

Furthermore, the limit t---)- ioo in (1.71) suggests that we first calculate the 
Euclidean-space quantity WE[J], which is the analytic continuation of W[J] 
with xi'= (r = it, x) replacing xi'= (t, x). 

For field theory what we are interested in is the connected Green's function 
which is related to the generating functional by 

Thus in order to remove the disconnected part of the Green's function, an 
extra factor of W[J] has been inserted in the denominator of the definition 
(1.69). We recall that the same division was involved in our previous 
discussion of Green's function (eqns (1.30) and (l.31)). The important 
practical consequence of this division is that the J-independent absolute 
normalization of W[J] is immaterial for any subsequent calculation of the 
Green's function. 

We now return to our illustrative example of .A¢4 theory 

with 

ff'o(<f>) = -5;(8;.</>)W"</>) --5;µ2¢2 

-.A 
!!'1(¢) = 41¢4. 
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The Euclidean generating functional 

W[J] = I [d</J] exp{- J )2 + (V¢)2 + µ1¢2 + :, ¢4 + 1¢ J 

(1. 77) 

may be written as 

W[J] =[exp Jd4xY1(:1)] W0 [J] (1.78) 

where 

Wo[JJ =I [d</J] ex{J d4x(Y0 +1¢)] 

is the free-field generating functional. (For simplicity of notation we drop the 
subscript E and the bar over x indicating Euclidean space.) The factors 
-(o¢/or)2 - (V¢)2 in eqn (1.77) can be replaced by ¢(o2/or2 + V2)¢ 
because the difference is a total four-divergence and we have 

Wo[JJ = J [d¢] J d4x d4y</J(x)K(x, y)</J(y) + J d4zl(z)¢(z)J (1.79) 

where 

) ( 02 2 2) K(x, y = u (x - y) - 0, 2 - V + µ · (1.80) 

As x and y may be taken as 'continuous indices', W0 [1] of eqn (1.79) can be 
considered an infinite-dimensional (N -+ oo) Gaussian integral of form 

1 [l " -1 J "" K exp 2 f.J .f;(K . (l.81) 

The right-hand side is obtained by a generalization of the result cited in eqn 
(1.49). In this way the¢ functional integral in (1. 79) can be performed and we 
obtain, up to an inessential multiplicative factor, 

W0 [J] = I d4 x d 4yl(x) A(x, y)l(y) J (1.82) 

where A(x, y) should be the inverse of K (x, y) in (l.80). Thus, 

I d4yK(x, y) A(y, z) = J4 (x - z). (1.83) 

It is not difficult to see that 

( 1.84) 

where K = (ik0 , k) forms a Euclidean momentum four-vector. The perturba-
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tive expansion in powers of !.e1 of the exponential in (1.78) gives 

W[J] = W0 [J]{l + A.w1[J] + A.2w2 [J] + ... }, (1.85) 
where 

ro1[J] = - :, W01[J] {f d4x W0 [J] 

ro2[JJ = - wo 1[JJ {f d4x wo[JJ 

1 - 1 {f 4 [ {J ] 4
} = - 2(4!) Wo [J] d x M(x) ro1[JJ. (l.86) 

When we plug in the explicit form (eqn (1.82)) for W0 [J], we obtain 

1 
ro1[JJ = - 4 ! [L\(x, yi) L\(x, Y2) L\(x, 13) L\(x, y4)J(yi)J(y2)J(y3)J(y4) 

and 

1 2 
W2[JJ = l W1[JJ 

1 
+ 2(3!)2 L\(x1, yi) L\(x1. Y2) L\(x1, y3) L\(x1. X2) L\(x2, y4) 

x L\(x2, Ys) L\(x2, Y6)J(yi)J(y2)J(y3)J(y4)J(ys)J(y6) 

3 2 + 2(4 !) L\(x1, yi) L\(x1, Y2) L\ (x1, X2) L\(x2, y3) L\(x2, y4) 

2 
x J(yi)J(y2)J(y3)J(y4) + 241 L\(x1, Y1) L\(x1, xi) L\(x1, X2) 

x L\(x2, Yi) L\(x2, 13) L\(x2, y4)J(y1)J(y2)J(y3)J(y4) 

(1.87) 

1 + 8 L\(x1, Y1) L\(x1, xi) L\(x1, X2) L\(x2, X2) L\(x2, 12)J(y1)J(y2) 

1 2 + 8 L\(x1, Y1) L\ (X1, X2) L\(x2, X2) L\(x1' Y2)J(y1)J(y2) 

1 3 + 12 L\(x1, Yi) L\ (x1, X2) L\(x2, Y2)J(y1)J(y2) (1.88) 

where we have dropped all J-independent terms (see Figs. 1.4 and 1.5). It is 
understood that all arguments (x;, Y;) are integrated over. 

It is clear that the first factor on the right-hand side of (1.88), 
corresponds to a disconnected contribution. For the connected Green's 
function defined by (1. 76) 

G<"1(x 1 .•• Xn) = {J" In W[J] I • (1.89) 
M(x1) ••• M(xn) J=O 
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YXX Y3 

Y2 Y4 

__Q 
Yt x Y2 

FIG. 1.4. Graphic representation of w1 in eqn (l.87). 

FIG. 1.5. Connected parts of w2 in eqn (1.88). 

such terms would not contribute. To see this explicitly, 

In W[J] =In W0 [J] + ln{l + W0 1[J](W[J] - W0 [J])} 

=In W0 [J] + ln{l + W01[J](e<-Pi> - l)W0 [J]}, 

21 

(1.90) 

where we have used (l.78). Since W01(e<-PI> - l)W0 is also small, we can 
expand the exponential as well as the logarithm. Thus from eqn (l.85) 

In W[J] =In W0 [J] + (Aw1 + A2w2 + ... ) --!{Aw1 + A2w2 + ... )2 + ... 
( l.91) 

Thus the disconnected -!wi in w2 is in fact cancelled. It is not difficult to 
generalize this, to prove that all disconnected contributions disappear in 
In W[J]. 

We note that what corresponds to Wick's theorem is simply the rule for 
functional differentiation 

bJ(y) b I 
bJ(x) = bJ(x) J(x)b(x -y)dx 

=b(x-y). (1.92) 

Differentiation according to (1.89) finally yields the (Euclidean) Green's 
function. For example, the terms with four Js in (l.87) and (l.88) give rise to 
the first- and second-order four-point functions. These results are the same as 
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those in (1.33) and (1.35) (with the propagator given in eqn (l.14)) except 
that they are valid in Euclidean space. 

The analytic continuation xµ --> xµ and Kµ --> kµ of Li(x - y) in (1.84) yields 
the familiar Feynman propagator (1.14) 

I d4k e-ik·(x-y) 

- Li(x - Y) --> iLiF(x - y) = i -- . · 
(2n)4 k 2 - µ 2 + rn 

The is factor in the denominator indicates how the boundary condition on 
the propagator is to be imposed. It corresponds to the addition of a !is¢2 

term in the Lagrangian and hence provides a.suitable damping factor for the 
path integral (1.77) in Minkowski space. 

Clearly the same set of Feynman rules, which we briefly reviewed in §1.1, 
follow from PI quantization formalism. The reader is referred to Appendix B 
where a practical guide to the derivation of the Feynman rules is given. 

1.3 Fermion field quantization 

Here we discuss the quantization procedure for systems with fermions. After 
briefly reviewing the canonical formalism, we indicate how the correspond­
ing path-integral quantization can be formulated (see, for example, Berezin 
1966). This involves the subject of Grassmann algebra. 

Canonical quantization for fermions 

In §1.1 we reviewed the canonical quantization procedure for a scalar field. 
Bose-Einstein statistics follow naturally from the commutation relations of 
the particle creation and annihilation operators (1.11), i.e. from the 
commutation of scalar field operators (1.3). For a many-fermion system, in 
order to arrive at an exclusion principle the field operations must satisfy a set 
of anticommutation relations. Consider the case of free Dirac field, 

2'(x) = i/l(x)(iyµ oµ - m)i/f(x). (1.93) 

Eqn (1.2) yields the Dirac equation 

(iyµ oµ - m)i/f(x) = 0. (1.94) 

In quantum theory, the field i/f(x) and its conjugate momentum n(x) = 

ii/f t(x) are postulated to be operators; they satisfy the canonical anticommu­
tation relations 

{ t/J(x, t), i/ft(x', t)} = <5 3 (x - x') 

{i/f(x, t), i/f(x', t)} = {i/!t(x, t), i/ft(x', t)} = 0 

where {A, B} =AB+ BA. Following the same steps as in the scalar case of 
§1.1 we formally solve the Dirac equation and calculate the Feynman 
propagator function 
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= -- 1 e-ik·(x1 -xz) I d4k ( . ) 
(2n )4 k - m + ie a.P • 

(l.95) 

For interacting systems the perturbative solution in the form of Feynman 
rules can be developed, again much in the same manner as the scalar case of 
§l. l. We shall not repeat the steps here except noting that a consequence of 
the anticommutation relation is that there will be a minus sign for each closed 
fermion loop in a Feynman diagram. 

Path-integral quantization for fermions 

Quantization of the fermion system can also be carried out by expressing the 
transition amplitude directly as the sum over all possible world lines 
connecting the initial and final states. The generating functional is then 

W[17, '7] =I [difr(x)][di]i(x)] exp{i I d4x[2(ifr, If/)+ l/i11 + '7ifr]} (l.96) 

where ifr(x), l/i(x), 17(x), and ;;(x) are (classical) fermion fields and sources, 
respectively. While the sum over the path for a boson system is a functional 
integral over ordinary c-number functions (classical scalar fields), the 
functional integral in (l.96) must be taken over anticommuting c-number 
functions ('classical' fermion fields) 

{ ifr(x), ifr(x')} = { ifr(x), l{i(x')} = { tlf(x), l/l(x')} = 0 

{17(x), 17(x')} = {17(x), '7(x')} = {;;(x), ;;(x')} = 0. 

Thus they are elements of Grassmann algebra. In the following section we 
shall provide a brief introduction to this subject. 

Grassmann algebra 

In an n-dimensional Grassmann algebra, the n generators 01 , 02 , ••• , (Jn 

satisfy 

i,j= 1,2, ... ,n (l.97) 

and every element can be expanded in a finite series 

p(O) = Po + + Pl7lz9;, O;z + · · · + .. i,,ei1 · · · O;. 

where each of the summed-over indices i 1 , i2 , •.. , in ranges from I ton. The 
expansion terminates because of (l.97). We shall now discuss the subject of 
differentiation and integration in such an algebra. Before stating the general 
n-dimensional results, we first motivate them with the simplest case of one 
Grassmann variable, 

{O, O} = 0 or 02 = 0. (l.98) 
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Thus any element of the algebra has the simple expansion 

p(e) = P0 + eP1 • (1.99) 

If we take p(e) to be an ordinary number, then P0 and P1 are ordinary and 
Grassmann numbers, respectively. (We can imagine embedding this one­
dimensional Grassmann algebra into a higher-dimensional one so that we 
would have more than one anticommuting element.) 

The operation of differentiation may be taken from left or right with the 
basic definition 

We have the 'left derivative' 

and the 'right derivative' 

d 
-p(e)=P1 
de 

.... 
d 

p(e) de= -P1 

because (dP0 /de) = 0 and (d/de) anticommutes with P1 . 

(1.100) 

(1.101) 

(1.102) 

We next introduce the integration operation, which ordinarily is taken to 
be the inverse of differentiation. However such an inverse is ill defined in a 
Grassmann algebra, as can be seen by the fact that, for either type of 
derivative, 

d2 
de2 p(e) = 0. (1.103) 

Thus we must be content with a formal definition of the integration 
operation which preserves some general properties of our intuitive notion of 
integration. We require it to be invariant under a translation of the 
integration variable by a constant. Thus 

J dep(e) = f dep(e + 0!). (1.104) 

From (l.99) we must have 

fdeP10!=0 or fde=O (1.105) 

where O! is another element in the Grassmann algebra which is independent of 
e and anticommutes with e. We can normalize the remaining integral using 

f dee= 1. (l.106) 

From (l.105) and (l.106) it follows that 

f dep(e) = P1 (l.107) 
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which is the same as left differentiation in (l.101). Thus our definitions of 
integration and (left) differentiation lead to the same result 

f dOp(O) = : 0 p(O) = Pi. (l.108) 

We next consider the problem of change of integration variable 
(} - 'lJ = a + bO, where a and b are anticommuting and ordinary numbers, 
respectively. For an ordinary c-number we have the familiar relation 

f dxf(x) = f dx ( ::) f(x(x)). (l.109) 

What will be the corresponding result for Grassmann numbers? Since, by 
(l.108), 

I diJp(iJ) = :o p(iJ) = Pi (1.110) 

and 

f dOp(iJ) = f d(}b(}P i = bP i , (1.111) 

we have I diJp(iJ) = f d(} (::)-i p(iJ(O)). (1.112) 

Thus for anticommuting numbers the 'Jacobian' is the inverse of what we 
would ordinarily expect. 

We now proceed to generalize our one-variable results of (I .101 ), (I. I 02), 
(l.105), and (l.106) to the n-dimensional Grassmann algebra. We have the 
'left derivative' 

and the 'right derivative' 

(Oi02 •••(Jn) = tl;nOi · · · (}n-i - • • · + (- l)n-i flli(}2 ·•·(Jn· 
I 

Thus, to calculate the left (right) derivative (d/dO;) of Oi 9 2 , .•. , (Jn, commute 
O; all the way to the left (right) in the product; then drop that 9;. The symbol 
dOi, d02 , ..• , d(}n is introduced with the conditions 

and 
{ d(Ji> d(}j} = 0 

f dO; = 0 

f d(}i(}j = (1.113) 
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which defines the integration operation. For a change of integration variable 

ll; = b;/)j, 

we have the generalization of (1.112) 

(1.114) 

(l.115) 

To show this result we follow the same steps as in the one-0 case. Just as in 
(1.110) and (1.111), we need to compare J dlJn ... dlJ1p(lJ) and 
J dOn ... d01p(lJ(O)). The only terms in p(O) which can contribute to these 
integrals are terms with n lJs, 

(l.116) 

The right-hand side is non-zero only if i1, ... , in are all different and we can 
write 

(l.117) 

However, in order to maintain the normalization conditions (1.113), we must 
have 

(1.118) 

hence the result of (1.115). To repeat, for anticommuting variables inte­
gration is equivalent to differentiation and we get [det (dO'/dO)r 1 rather 
than [det (dO'/dO)]. 

As we have seen in §1.2 the Gaussian integral plays an important role in 
the PI formalism. Thus we need to evaluate 

G(A) = I dOn ... d01 exp(t(O, AO)) (1.119) 

where A is an antisymmetric matrix and (0, AO) = O;A;iOi. First consider the 
simple case of n = 2 

and 

( 
0 

A-
-A12 

G(A) = I d02 d01 exp(0102A12 ) 

=I d02 d01(1 + 0102A12) 

= A 12 = .Jdet A. (1.120) 

For the general case where A is an n x n antisymmetric matrix, we can first 
put A in the standard form by a unitary transformation. (Here n is taken to 
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be even as the integral vanishes for odd n.) 

UAut =A, 
with 

A,= 

27 

(l.121) 

(l.122) 

This can be seen as follows. Since iA is hermitian, it can be diagonalized by a 
unitary transformation V 

V(iA)vt =Ad (l.123) 

where Ad is real and diagonal with diagonal elements which are solutions to 
the secular equation 

detliA - A.II = O. (1.124) 

Since AT= -A, we have detliA - illlr = detl-iA - A.II= O.Thus, if il is a 
solution, so is (-il), and Ad is of the form 

a 

-a 

b (l.125) 

-b 

To put Ad into the standard form of (l .122), we use the 2 x 2 unitary matrix 

1 (i 
S2 = .J2 1 :) (l.126) 

which has the property 

S,( -i) G - S\ ( _ (l.127) 

Thus S( - iAd)st = A, for c s, ...) (l.128) 

and the unitary matrix in (1.122) must be the product U = SV because 
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(SV)A(SV)t = S( -iAd)st =A,. Furthermore, let 

T= 

Thus, 

det(T- 1) = y'det A. 

We can then write 

0 1 

-1 0 

0 1 

-1 0 

The Gaussian integral (1.119) can then be written as 

G(A) =I dOn ... d01 exp(}(O, utr- 1A,r- 1 ue). 

Change the integration variable 

i1=(T- 1 U)O 

and use (1.115) 

G(A) = I diJn ... diJ1 exp(}(iJ, A,iJ)) [de{::) J 
= det(:!} 

Since, by (l.133) and (1.130) 

det(:!) = det(T- 1 U) = det(T- 1) = y'detA, 

we obtain the result 

G(A) = I dOn ... d01 exp(}(O, AO)) = y'det A 

(1.129) 

(1.130) 

(1.131) 

(1.132) 

(1.133) 

(1.134) 

(1.135) 

(1.136) 

which should be contrasted with the Gaussian integral with ordinary 



l. 3 Fermion field quantization 

commuting real variables 

I dx1 dxn 1 I 
.j2n · · · .j2n exp( -t(x, Ax)) = .jdet A 

or with ordinary commuting complex variables (z = x + iy) 

I dz1 dz" dzf dz: * 1 
-.j ... -;-.j ... -.j exp( -(z , Az)) = -­

n yn n n det A 

29 

(1.137) 

(1.138) 

where J dz dz* = J dx dy. The Gaussian integral for complex Grassmann 
variables can be shown to have the value 

f d01 dl11 .' .• dOn dlJ" exp(Y, AO) = det A 

where O; and ff; are independent generators of the algebra. 

(1.139) 

The classical fermion fields t/J(x) and i{!(x) are then taken to be elements of 
an infinite-dimensional Grassmann algebra. All the above results for the 
general n-dimensional case can be naively extended. 

Since the fermion fields always enter the Lagrangian quadratically 
.P = (t/iAt/J), the functional integral of (1.96) will be a generalized Gaussian 
integral. The result in (1.139) can then be applied 

W = f [dt/J(x)][dt/i(x)] exp{J d4xt]/At/l} 

= detA (1.140) 

where we have not bothered to display the source fields. Wis the vacuum-to­
vacuum amplitude and the (connected) Feynman diagram representation, as 
generated by In W, will be a set of single-closed-fermion-loop graphs (Fig. 
1.6 ). The change of going from the ordinary functional integral ( 1.138) to the 
anticommuting variable functional integral (1.140), with the replacement of 
(det A)- 1 by (det A), corresponds to changing the overall sign of In W. This 
is the familiar Feynman rule of an extra minus sign for each closed fermion 
loop. 

FIG. 1.6. Vacuum-to-vacuum amplitude as represented by single closed loops. 



2 Introduction to renormalization 
theory 

Given any quantum field theory one can construct the Feynman rules for 
calculating the Green's functions and S-matrix elements in perturbation 
theory as described in Chapter 1. But in relativistic field theory one often 
encounters infinities in the calculation of diagrams containing loops. This is 
because the momentum variable in the loop integration ranges all the way 
from zero to infinity. In other words, for a relativistic theory, there is no 
intrinsic cut-off in momenta. These divergences will render the calculation 
meaningless. The theory of renormalization is a prescription which allows us 
to consistently isolate and remove all these infinities from the physically 
measurable quantities. It has been of utmost importance to the development 
of relativistic quantum field theory. 

It should be emphasized however that the need for renormalization is 
rather general and is not unique to the relativistic field theories. 
Renormalization has its own intrinsic physical basis and is not brought about 
solely by the necessity to expurgate infinities. Even in a totally finite theory 
we would still have to renormalize physical quantities. The following 
example should illustrate this point. Consider an electron moving inside a 
solid. Due to the interaction of the electron with the lattice, the effective mass 
of the electron m*, which determines its response to an externally applied 
force, is certainly different from the mass of the electron m measured outside 
the solid. The electron mass is changed (renormalized) from m to m* by the 
interaction of the electron with the lattice in the solid. In this simple case one 
can in principle measure both m* and m by switching on and off the 
interaction (i.e. by placing the electron inside or outside of the solid). Clearly 
the difference is finite since both m and m* are finite and measurable. For the 
relativistic field theory, the situation is the same except for two important 
distinctions. First, renormalization due to the interaction is generally infinite 
(corresponding to the divergent loop diagrams). Second, there is no way to 
switch off the interaction; hence quantities in the absence of interaction, 
called the unrenormalized or the bare quantities, are not measurable. For 
example, in quantum electrodynamics the difference between the bare 
electron mass m and the renormalized mass m* is infinite, and the bare mass 
cannot be measured because the electron interacts with the virtual photon 
field constantly and there is no way to turn off this interaction. 

The programme of removing infinities from physically measurable quan­
tities in a relativistic theory, the renormalization programme, involves 
shuffiing all divergences into the bare quantities. In other words, the 
unrenormalized quantities are assumed to be appropriately divergent to 
begin with and the infinite renormalization due to interaction then cancels 
these divergences to produce finite renormalized quantities. We should recall 
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that in a relativistic quantum field theory the renormalized quantities are 
physically measurable while the bare ones are not. This difficult programme, 
as originally formulated for quantum electrodynamics by Feynman (1948b), 
Schwinger (1948, 1949), Tomonaga (1948), and Dyson (1949), has been 
quite successful and in the case of QED the agreement between theory and 
experiment has been spectacular. 

Technically the theory of renormalization is rather complicated. A detailed 
and thorough discussion of this subject is beyond the scope of this book. In 
this chapter we shall explain the principal ideas behind it and give examples to 
illustrate how it works. 

2.1 Conventional renormalization in A.</>4 theory 

We shall first use the simple A.</J4 theory as an example to illustrate the 
renormalization procedure. The Lagrangian density is separated into free 
and interacting parts 

ff' = ff'o + ff'1 (2.1) 
with 

ff'o = ![(a,,</Jo)2 - µ6</J6J (2.2) 
and 

A.o 4 
ff'1 = - 4! <Po· (2.3) 

The propagator and the vertex of this theory are displayed in Fig. 2.1. 

FIG. 2.1. 

We will concentrate on the one-particle-irreducible (lPI) diagrams. They 
are the Feynman diagrams which cannot be disconnected by cutting any one 
internal line. Correspondingly, we define the one-particle-irreducible (lPI) 
Green's functions, denoted by r<n>(p 1 ••. Pn), which have contributions 
coming from lPI diagrams only. For example the graph in Fig. 2.2(a) is a lPI 
diagram while the one in Fig. 2.2(b) is not. The reason for selecting 1 PI 
diagrams is that any one-particle-reducible diagram can be decomposed into 
lPI diagrams without further loop integration, and if we know how to take 
care of the divergences of lPI diagrams we will also be able to handle the 

0 0 
(a) (b) 

FIG. 2.2. 
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reducible diagrams. For example, the two-point Green's function 
(propagator) 

iA(p) = f d4 x e-iv·x(OIT(¢0 (x)¢0 (0))IO) (2.4) 

can be decomposed in terms of the lPI self-energy parts L(p) as in Fig. 2.3. 

-er = -- + ---4!JJJl!fp- + + .•. 

FIG. 2.3. The propagator as a sum of lPI self-energy insertions. 

Then we can write the propagator as 

. i i . 2 i 
1A(p) = 2 2 . + 2 2 · (-1L(p )) 2 2 · + ... 

p - µ0 + rn p - µ0 + rn p - µ0 + rn 

i 1 

= p2 - µ6 + ii; [ 1 + iL(p2) i . ] 
P2 - µ5 + rn 

(2.5) 

Clearly if we can make the proper self-energy part L(p2) finite, the propagator 
A(p) will also be finite. 

Since there is no divergence in the tree (zero-loop) diagrams, we begin our 
calculation with the one-loop lPI graphs. It is not difficult to see that Figs. 
2.4 and 2.5 represent an exhaustive listing of all the one-loop divergent lPI 
diagrams in this ).¢4 theory. Fig. 2.4 is the self-energy graph 

. 2 i).0 f d4 / i 
-1L(p ) = -- -- · 

2 (2n)4 /2 - µ5 +ii; 
(2.6) 

The factor of 1/2 is the symmetry factor, of which some examples were given 
in §I. I. Or we can deduce it directly from the fact that there are 4 · 3 = 12 

I 

) 
Q) 

p p 

FIG. 2.4. 

P3 P4 
P3 P4 

)C)( 
P1 P2 

P1 P2 
P1 P2 

(a) (b) (c) 
FIG. 2.5. 
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ways to 'contract' cf>(xi)cf>(x2 ) into the interaction term cf>4 (x) and this does 
not completely compensate for the 1/4! factor in (2.3). The integral in (2.6) is 
quadratically divergent. Fig. 2.5 shows the vertex corrections with contri­
butions given by 

2 (-iA.o)2 I d4 l i i 
r. = r(p ) = r(s) = 2 (2n:)4 (I - p)2 - µ5 + ie 12 - µ5 + ie <2·7) 

rb = r(t), re = r(u) (2.8) 
where 

are the Mandelstam variables. The contributions in (2. 7) and (2.8) diverge 
logarithmically. 

In the renormalization programme one first introduces some appropriate 
regularization schemes so that all divergent integrals are made finite. We 
are then free to manipulate (formally) these quantities, which are divergent 
only when the regularization is removed (e.g. by letting the cutoff approach 
infinity) at the end of the calculation. The commonly used regularization 
schemes will be discussed in §2.3. In the meantime it should be understood 
that by divergences we mean the regulated divergent quantities which are 
finite and cutoff-dependent. 

For any divergent diagram we will first separate the divergent part from 
the finite part, then absorb the divergences in some appropriate redefinitions 
of mass, coupling, and field operators. To make the separation one uses an 
important property of the Feynman integrals given in (2.6) and (2. 7): if one 
differentiates the divergent integral with respect to the external momenta, 
this increases the power of the internal momenta in the denominator and 
makes the integral less divergent. (These are examples of the 'primitively 
divergent' diagrams-for further discussion, see §2.2.) Therefore, when 
differentiated a sufficient number of times, the result is completely con­
vergent. For example, if one differentiates r(p2 ) with respect to p 2 , one finds 

a 2 l a 2 
ap2 r(p ) = 2P2 Pµ opµ r(p ) 

A.5Jd4 / (l-p)·p I 
= p2 (2n:)4 [(/ - p)2 - µ5 + ie] 2 /2 - µ5 + ie 

(2.10) 

which is finite. This means that the divergences will reside only in the first few 
terms of a Taylor series expansion in external momenta of the Feynman 
diagrams. For example, the Taylor expansion r(p2 ) around p2 = 0 is of the 
form 

where 

(2.11) 
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The ans are finite for n 1 and only a0 contains the logarithmic divergence. 
We can sum up all the finite terms and write 

r(s) = r(O) + f(s) 

where r(O) = a0 is divergent and f(s) is finite with the property 

f(O) = 0. 

(2.12) 

(2.13) 

These functions r(O) and f(s) will be calculated explicitly in §2.3. Note that 
the finite part f(s) is just the original r(s) with its value at s = 0 subtracted 
out. Hence this procedure is sometimes referred to as the subtraction. 

In the following discussion we shall use the Taylor expansion of (2.6) and 
(2. 7) to separate the divergent part from the finite part and absorb the 
divergent parts into redefinitions of the bare quantities. 

Mass and wavefunction renormalization 

The self-energy contribution given in eqn (2.6) is quadratically divergent. But 
this one-loop contribution has the peculiar property of being independent of 
the external momentum p. Hence the Taylor expansion is trivial; i.e. 
L.(p2) = L.(O). This is true only for the one-loop approximation in A</J4 

theory. For example the two-loop self-energy diagram in Fig. 2.2(a) is 
quadratically divergent and has a non-trivial dependence on p 2 • Thus in 
general the Taylor expansion in external momenta around some arbitrary 
value µ 2 will have two divergent terms 

(2.14) 

where L.(µ 2) is quadratically and L.'(µ 2) logarithmically divergent, as each 
differentiation with respect to the external momentum a;ap,, decreases the 
degree of divergence by one unit and L.'(µ 2) can be written in the form 
i(8/8p,,)(8/8p,,)L.(p2 )lp'=µ'- Note that in general a quadratically divergent 
diagram will have three divergent terms with quadratic, linear, and 
logarithmic divergences. But in L.(p2) there is no linearly divergent term 
because a term proportional top,, is not Lorentz invariant. The last term in 
(2.14) is finite and has the properties 

f(µ 2) = 0, (2.15) 

(2.16) 

Of course in the one-loop approximation L.'(p2} = f(p2} = 0 for all values 
of p 2 . But in general the self-energies do not vanish. Substituting (2.14) into 
the expression for the full propagator in (2.5), we have 

1 

= p2 _ µ6- L.(µ2)- (p2 _ µ2)'1:.'(µ2)- f(p2) + ia· (2.17) 

The physical mass is defined as the position of the pole of the propagator. 
Since up to this point µ2 is arbitrary, we can choose it to satisfy the equation 

(2.18) 
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Then 

(2.19) 

Using (2.15) one sees that L'l(p2 ) has a pole atp2 = µ 2 • Thus µ 2 is the physical 
mass and is related to the bare mass through eqn (2.18). This is the mass 
renormalization. Since I:(µ 2 ) is divergent, the bare mass must also be 
divergent so that the physical mass µ2 is finite. To remove the divergent term 
I:'(µ 2 ) we note that both I:'(µ2 ) and !:(p2 ) are of order A.0 (again keep in 
mind that all divergent quantities are regulated to be finite); we have 

(2.20) 

and the propagator function can be written as 

(2.21) 

where 

Zq, = [1 - I:'(µ 2)r 1 = 1 + I:'(µ 2 ) + (2.22) 

In this form the divergence is a multiplicative factor and can be removed by 
rescaling the field operator </>0 . More specifically, if we define the re­
normalized field </> by 

""_ z-112,1,. 
.,, - "' '1'0> (2.23) 

then the renormalized propagator function given by 

iL'lR(P) = f d4x e-ip·x(OIT(</>(x)</>(0))10) 

= z; 1 f d4 x e-ip·x<OIT(q)0 (x)</>0 (0))10) 

i • - 1 A( 
= 2 2 !:( 2) . = IZ"' L1 p) p -µ - p +rn 

(2.24) 

is completely finite. Zq, is usually referred to as the wavefunction renormaliza­
tion constant. In this way, the divergences in self-energy are removed by 
mass renormalization (2.18) and wavefunction renormalization (2.23). 

The renormalized field </> given in eqn (2.23) defines the renormalized 
Green's functions which are related to the unrenormalized ones by 

... xn) = (OIT(</>(x1) ... </>(xn))IO) 

Or, in momentum space, 

= z;n12 (01T(</>0(x1) ... </>o(xn))IO) 

= ... xn). (2.25) 

(2.26) 
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where 

(2n:)4 J4 (p1 + ... + Pn)G';_>(P1 ... Pn) = f Ca dx; e-ipj"X) 
X G\r>(x1 ... x") (2.27) 

(2 )4 )G<">( ) - f ( n" d -ipi"x;) 1t u P1 + ... + p. 0 P1 ... Pn - i = 1 X; e 

x G';_>(x1 ... x") (2.28) 

To go from the connected Green's function given in (2.26) to the lPI 
(amputated) Green's function, we have to eliminate the one-particle 
reducible diagrams, and also to remove the propagators for the external 
lines in lPI Green's functions, i.e. remove the D.R(p;)s from ... p.) and 
the D.(p;)s from .. . P.). Since D.R(p) and D.(p) are related by 

(2.29) 

the renormalized and unrenormalized lPI Green's functions are related by 

r';.>(P1 ... Pn) = 24,12rgi>(P1 ... p.). (2.30) 

Coupling constant renormalization 

We now proceed to renormalize the lPI four-point function of Fig. 2.5. 
From eqns (2. 7) and (2.8), this unrenormalized Green's function is given, to 
order A.6, by 

(2.31) 

where on the right-hand side the first term is the tree-graph contribution and 
the last three terms are the one-loop contributions which are divergent. We 
want to absorb these divergences by a redefinition of the coupling constant. 

How is the coupling constant measured in A.cp4 theory? Since the basic 
vertex involves four particles, it would be natural to define the coupling 
constant in terms of the two-particle scattering amplitude, which is physically 
measurable. But for the discussion of the renormalization, it is more 
convenient to define the coupling constant in terms of the closely related 
renormalized lPI (amputated) four-point function rk4 >(p1 , ... , p4 ). Since 
rk4> is a function of the kinematical variables s, t, and u (i.e. it is not a 
constant), some particular point in the kinematical region has to be chosen to 
define the physical coupling constant. Remembering that for particles on the 
shell Pl = µ2 these variables satisfy the relation s + t + u = 4µ 2 , one may 
choose, as a convention, the symmetric point, 

4µ2 
s0 = t 0 = u0 = - 3- (2.32) 

to define the coupling constant. Thus, 

r\t\so, 10 , u0 ) = -iA. 

where A. is the physical coupling constant. 

(2.33) 
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We will now separate the divergent and finite parts in the unrenormalized 
vertex function of (2.31) by making a Taylor series expansion around the 
symmetric point given in (2.32) 

r1141(s, t, u) = -iA0 + 3r(s0 ) + f(s) + f(t) + f(u) (2.34) 

where f(s) = r(s) - r(s0 ) is finite and has the property 

f(s0 ) = 0. 

One defines the vertex renormalization constant Z;. by 

-iZi 1A0 = -iA0 + 3r(s0 ). 

Eqn (2.34) becomes 

(2.35) 

(2.36) 

rb41(s, t, u) = -iZi 1Ao + f(s) + f(t) + f(u) (2.37) 

which at the symmetric point gives 

(2.38) 

From the relation between the unrenormalized and the renormalized 1 PI 
Green's functions eqn (2.30), we have 

(2.39) 

Then using eqns (2.33), (2.38), and (2.39), we see that the renormalized 
(physical) coupling constant A defined in (2.33) is related to the un­
renormalized coupling constant Ao by 

(2.40) 

It is now easy to demonstrate the finiteness of the renormalized lPI four­
point function. From eqns (2.37), (2.39), and (2.40), one has 

... , p4) = .... , p4} 

= + + f(t) + f(u)] 

= -iA + + f(t) + f(u)]. (2.41) 

Since z. = 1 + 0(A0 ), f = and A= Ao+ we write to order A2 

••• , p4 ) = -iA + f(s) + f(t) + f(u) + 0(A3 ) (2.42) 

which is completely finite. 
For the renormalization of the connected four-point Green's function to 

one loop, we have to add the one-particle reducible one-loop diagram (Fig. 
2.6) and attach propagators for the external lines. Thus the unrenormalized 

., .. ..., ....... 
FIG. 2.6. 
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Green's function G\i4l(Pi ... Pn) is given by 

(4 ) [ TI4 
( 1 )]{ . _ _ _ Go (P1···P4)= 2 2 . -1Ao+3r(so)+r(s)+r(t)+r(u) 

i= 1 Pi - µo + le 

i 2 .)11. (2.43) 
k=I Pk -µo+le 

The first and last terms in (2.43) can be combined to give 

(-iA.o)[ TI ( 2 \ . )][1 + I L(pt}( 2 12 . )] 
i= 1 Pi - µo +le k= 1 Pk - µo + le 

=(-iA.o)[TI ( 2_ 2_1L( 2) . )J+o(A.6). (2.44) 
i= 1 Pi µo Pi + le 

Since r O(A.6), f O(A.6), we can also write 

[ TI ( 2 _ 12 . )][3r(s0 ) + f(s) + f(t) + f(u)] 
i= 1 Pi µo +le 

= [l11 CJ- µ6-1
L(pj) + ie)] 

x [3r(s0 ) + f(s) + f(t) + f(u)] + O(A.6). (2.45) 

Using eqns (2.44) and (2.45), we can write eqn (2.43) as 

(4) TI4 [ 1 J Go (P1 · · · p4) = 2 _ 2 _ L( 2) 
i= 1 Pi µo Pi 

x [ -iA.0 + 3r(s0 ) + f(s) + f(t) + f(u)] 

= [i11 iA(pi)J r1>4>(P1 ... p4) (2.46) 

where we have used eqns (2.5) and (2.31). The renormalized four-point 
Green's function is defined by (2.26) as 

G<4l( ) _ z-2a<4l( ) R p .. p4 - </> 0 P1 ... p4 . (2.47) 

Then from eqn (2.46) and the relations between the renormalized and the 
unrenormalized quantities (2.29) and (2.39), we get 

G\:l(P1 ... p4) = z;; 2 [ Z! l11 iAR(P)J z;; 2rk4l(P1 ... p4) 

4 

= TI [iAR(P)Jrk4l(P1 ... p4) (2.48) 
i= 1 

which is also finite because AR(p) and rk4)(p1 ... p4) have been shown to be 
finite. 

We see that the mass, wavefunction, and vertex renormalizations remove 
all the divergences ·in the two- and four-point Green's functions in the one­
loop approximation. There is no divergence in the other lPI diagrams 
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although the one-particle reducible graphs for the higher-point functions 
have divergent one-loop graphs. For example, the six-point function in Fig. 
2.7 is divergent. However, it is clear that the divergence is brought about by 
that of the four-point vertex function and it is removed once we renormalize 
the four-point vertex function. 

FIG. 2.7. 

In summary, Green's function can be made finite if we express the bare 
quantities in terms of the renormalized ones through relations (2.18), (2.23), 
and (2.40) 

<P = z;; 1/2¢o 

A= 

µ2 = µ6 + Jµ2 

(2.49) 

(2.50) 

(2.51) 

where Jµ2 = I:(µ 2 ). More specifically, for an n-point Green's function when 
we express the bare mass µ 0 and bare coupling constant Ao in terms of the 
renormalized massµ and coupling A, and multiply by z;; 112 for each external 
field as in (2.26), then the result (the renormalized n-point Green's function) 
is completely finite 

G<n>( . 1 ) _ z-n;2G<n>( . 1 A) 
R P1, · · ., Pn, A,µ - q, o P1, · · ., Pn• Ao, µo, (2.52) 

where A is the cut-off needed to define the divergent integrals. This feature, in 
which all the divergences, after rewriting Ao and µ 0 in terms of A and µ, are 
aggregated into some multiplicative constants [z;;n1 2 in eqn (2.52)], is called 
being multiplicatively renormalizable. Equivalently, the lPI Green's functions 
are made finite as in (2.30) by multiplying by and expressing the bare 
quantities A0 , µ0 in terms of the physical quantities A, µ, 

(2.53) 

The programme of removing divergences as outlined in this section is closely 
related to the one originally developed and we shall refer to this as the 
conventional renormalization scheme. 

2.2 BPH renormalization in A.</> 4 theory 

BPH renormalization (Bogoliubov and Parasiuk 1957; Hepp 1966; 
Zimmermann 1970) is completely equivalent to conventional renormaliza­
tion. This alternative formulation of the programme is often more 
convenient for many applications of the renormalization theory. In this 
section we shall simply illustrate the connection between these two re­
normalization schemes. For a concise and lucid presentation see Coleman 
(197lb). 
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For the original (unrenormalized) Lagrangian (2.1) 

ff 0 = i[(Oµ</>o) 2 - µ5</>5] - </>6 (2.54) 

we can replace the bare quantities by renormalized quantities using eqns 
(2.49), (2.50), and (2.51) to obtain 

ff 0 = ff + 11ff 
where 

(2.55) 

and 

11ff = (Z.p 2- 1) [(8µ</>)2 - µ1</>2] + Z.p</>2 - 1) </>4. (2.56) 

ff, which has exactly the same form as ff 0 but with all the unrenormalized 
quantities replaced by renormalized ones, is called the renormalized 
Lagrangian density. 11ff contains the divergent renormalization constants. 
(Z.p - 1), (Z;. - 1), and <5µ2 are all of order ...1. and this makes 11ff of order 
A.ff. We call 11ff the counterterm Lagrangian. 

'The BPH renormalization prescription consists of the following sequence 
of steps 

(1) One starts with the renormalized Lagrangian of eqn (2.55) to construct 
propagators and vertices. 

(2) The divergent part of the one-loop 1 PI diagrams is isolated by the 
Taylor expansion. One then constructs a set of counterterms 11ff!1l which is 
designed to cancel these one-loop divergences. 

(3) A new Lagrangian ffOl =ff+ 11ffOl is used to generate two-loop 
diagrams and to construct the counterterm l1ff<2J which cancels the 
divergences up to this order and so on, as this sequence of operations is 
iteratively applied. 

The resulting Lagrangian is of the form 

ff(oo) = ff + 11ff 

where the counterterm Lagrangian 11ff is given by 

11ff = 11ff(l) + 11ff(2) + ... + 11ff(n) + .... (2.57) 

In order to show that this renormalization scheme is equivalent to the 
conventional one which develops the perturbation theory 
directly we need to show that the counterterm Lagrangian (2.57) has the 
same structure as that of eqn (2.56). To demonstrate this we shall use the 
power-counting method to study the counterterms. 

Power-counting method 

To analyse the divergent structure of any Feynman diagram we introduce the 
term superficial degree of divergence D, which is the number of loop momenta 
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in the numerator minus the number of loop momenta in the denominator. 
For example the graph shown in Fig. 2.8 has D = 4 - 4 = 0. Hence it is 
expected to be logarithmically divergent. To calculate D for any graph in the 
A</J4 theory we define the following numbers. 

B = number of external lines; 
IB = number of internal lines; 

n = number of vertices. 

Since each vertex has four lines and both ends of an internal line must 

)6(' 
P2 P4 

FIG. 2.8. 

terminate on vertices while only one end of an external line is connected to a 
vertex, we have the relation 

4n = 2(/B) + B. (2.58) 

We need to convert some of these to the number ofloop momenta. The usual 
Feynman rule requires us to integrate over internal momenta which are not 
fixed by momentum conservation at each vertex. Thus we expect the number 
of loop momenta (L) to be the number of internal lines (/B) minus the 
number of vertices (n). But one of the combinations of momentum 
conservation £5-functions just expresses the overall momentum conservation 
and it does not depend on the internal momenta. For example the graph in 
Fig. 2.8 has two vertices and hence two £5-functions: i5 4 (p 1 + p 2 - 11 - 12 ) 

£54 (/1 + 12 - p 3 - p4 ). But this can be written as b4 (P1 + p 2 - p 3 - p4 ) 

i54 (p 1 +Pi - 11 - 12 ). The two vertices eliminate only one, rather than two, 
internal momenta. Therefore, we have 

L = /B-n + 1. (2.59) 

For each internal line the propagator contributes two powers of loop 
momenta in the denominator and each loop integration contributes four 
powers of loop momenta in the numerator. For A</J 4 theory the vertices do 
not contribute any momentum factors and the superficial degree of 
divergence is given by 

D = 4L - 2(/B). (2.60) 

We can eliminate L and IB in favour of B and n by using eqns (2.59) and 
(2.58), 

D = 4-B. (2.61) 

Since A</J 4 theory has reflection symmetry </J ---t - </J, B must be an even 
number and eqn (2.61) implies that only the two-point function (B = 2) and 
four-point function (B = 4) are superficially divergent. 
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From this power counting, which is valid to all orders of perturbation 
theory, we can now study the structure of the counterterms. For the two­
point function we have, according to (2.61), D = 2. Being quadratically 
divergent, the necessary Taylor expansion is taken to be 

I.(pz) = I.(O) + p2I.'(O) + f.(pz) 

where I.(O) and I.'(O) are divergent while f.(p2) is finite. There is no term 
linear in Pµ as I.(p2) is a Lorentz scalar. We need to add two counterterms 
!I.(0)¢2 + !I.'(0)(8µ¢) 2 to cancel the divergences. They correspond to the 
Feynman-rule vertices shown in Fig. 2.9(a), (b). The four-point function has 
D = 0 and the Taylor expansion 

r<4>(p;) = r<4>(o) + f<4>(p;) 

where r<4>(0) is a logarithmically divergent term which is to be cancelled by a 
counterterm of the form (ir<4>(0)/4!)¢4. This has the graphic representation 
shown in Fig. 2.9(c). 

i p2 

X-r(4)(0) :> • ) ') . ') 

(a) (b} (c) 

FIG. 2.9. Feynman-rule vertices corresponding to the counterterm Lagrangian (2.11). 

The general counterterm Lagrangian is then of the form 

11.ff7 = I.(O) cpl+ I.'(O) (o ¢)2 + ir<4l(O) ¢4 
2 2 µ 4! 

which is clearly the same as eqn (2.56) with the correspondences 

L'(O) = Zq, - 1 

I.(O) = -(Zq, - 1)µ2 + bµ2 = -I.'(0)µ2 + bµ2 

r<4 >(0) = -iA(l - Z;,). 

(2.62) 

(2.63) 

They are consistent with eqns (2.22), (2.51 ), and (2.36) as the renormalized 
coupling ..1 here is defined at the zero momentum point, thus r<4>(0) = 3r(O). 
This demonstrates the equivalence of BPH renormalization and conven­
tional renormalization. 

Comments on subgraph divergences 

We shall not present any proof that, to all orders in the perturbation 
theory, this renormalization programme removes all divergences in the 
Green's functions. We merely illustrate some general features of the 
renormalization procedure for higher-order diagrams and the convergence 
properties of Feynman integrals with the following remarks. 

(I) We state without proof the following convergence theorem (Weinberg 
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1960). The general Feynman integral converges if the superficial degree of 
divergence of the graph together with the superficial degree of divergence of all 
subgraphs are negative. To be more explicit, consider a Feynman graph with n 
external lines and / loops. Put a cut-off A in the momentum integration to 
estimate the order of divergence 

A 

r<nJ(P1 ... Pn- i) = I d4q1 ... d4qi/(P1 ... Pn-1; ql ... q,) (2.64) 

0 

where /is the prod,uct of vertices and propagators depending on Pi (external 
momenta) and qi (internal momenta). Take a subset S = { q; ... of the 
loop momenta {q1 ••• q1} and scale them to infinity (all q;--+ A with A--+ oo), 
all other momenta being fixed. Let D(S) be the superficial degree of 
divergence associated with the integration over this set, namely 

A 

I I d4q; .. . Av<s'{ln A} (2.65) 

0 

where {ln A} is some function of ln A. Then the above theorem states that the 
integral over {q 1 ••• q1} converges ifthe D(S)s for all possible choices of Sare 
negative. For example the graph in Fig. 2.10 being a six-point function has 
D = - 2. But the integration inside the box having D = 0 is logarithmically 
divergent. Thus a successful renormalization programme must systematically 
remove all divergences including those associated with the subintegrations. 
In the BPH procedure these subdiagram divergences are in fact renormalized 
by low-order counterterms. For example, the graph in Fig. 2.11 with its 
counterterm vertex will cancel the subgraph divergence of Fig. 2.10. 

FIG. 2.10. FIG. 2.11. 

(2) There is another aspect of the renormalization programme related to 
these graphs with divergent subintegrations: not all divergences in a multi­
loop diagram can be removed by subtracting out the first few terms in the 
Taylor expansion around the external momenta. This can be illustrated by 
the following example. Consider the two-loop graph of Fig. 2.12(a) which 
has the Feynman integral 

(2.66) 
where 

re ) = ! I d4[ 1 1 
p 2 /2 - µ 2 + ie (/ - p )2 - µ 2 + ie 

(2.67) 

with p = p 1 + p2 • With each of the r(p) factors being logarithmically 
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divergent, cannot be made convergent no matter how many derivatives 
operate on it, even though the overall superficial degree of divergence is zero. 
However we have the lower-order counterterm -A.2r(O) corresponding to 
the subtraction introduced at the one-loop level. This generates the 
additional A.3 contributions of Fig. 2.12(b), (c) with rL4> oc -A.3r(p)r(O) and 
n4> oc -A. 3r(O)r(p), respectively. 

''l<X><'' 
Pi 11-P 12-P P4 

(a) 

xx 
(b) (C) 

FIG. 2.12. s-channel .1.3 four-point functions. The black spots represent the countertenn 
-.i.2r(O). 

Adding the three graphs, Fig. 2.12(a), (b), (c), we have 

r(4>(p) = n4> + rL4> + 
= -A.3[r(O)J2 + A.3[r(p) - rcon2 

= r<4l(O) + f'<4>(p). 

(2.68) 

Only the first term on the right-hand side is divergent and can be removed by 
a A. 3 counterterm of the form ir<4 >(0)<J>4 /4 ! . We see how, with the inclusion of the 
lower-order counterterms, divergences take on the form of polynomials in the 
external momenta. Thus for diagrams with more than one loop it is useful to 
characterize a divergent contribution as being primitively divergent or not. A 
primitively divergent graph has a non-negative overall superficial degree of 
divergence but is convergent for all subintegrations. Thus, they are diagrams in 
which the only divergence is caused by all of the loop momenta growing large 
together. In general only primitively divergent graphs such as Fig. 2.13 can have 
their divergences isolated by direct Taylor-series expansion. For other cases, 
diagrams with lower-order counterterm insertions must be included in order to 
aggregate the divergences into the form of polynomials in the external 
momenta. 

Fm. 2.13. A primitively divergent four-point function. 

(3) In the above example of a two-loop, four-point function we have seen 
how the overall divergence can be isolated when diagrams with lower-order 
counterterms are included. For such cases where the divergent subinteg-
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rations are disjoint this can be accomplished in a fairly direct manner. 
Similarly, it is also relatively easy for cases with nested divergences, i.e. for 
cases where one of each pair of divergent lPI subgraphs is entirely contained 
within the other (see the example in Fig. 2.14). After the subgraph divergence 

FIG. 2.14. Nested divergences and a diagram with a lower-order counterterrn which cancels the 
subintegration divergence. 

is removed by diagrams with lower-order counterterms (Fig. 2. l4(b)), the 
overall divergence is then renormalized by a ..1. 3 counterterm. Thus for both 
disjoint and nested divergences the renormalization procedure is rather 
straightforward. The difficult step in the proof of the convergence (to all 
orders) involves disentangling the overlapping divergences, which are neither 
disjoint nor nested divergent lPI diagrams. Fig. 2.2(a) is an example of 
overlapping divergence. Here it is difficult to see in a simple way how the 
subintegration divergences can be removed in a systematic fashion because 
they do not factorize in a simple manner. Nevertheless, this problem has been 
overcome and we refer the interested reader to the literature (Hepp 1966; 
Zimmermann 1970; ltzykson and Zuber 1980). The purpose of these 
comments is to indicate how the proof of renormalizability generally involves 
complicated graph classifications and combinatorial analysis. 

2.3 Regularization schemes 

In this section we will give detailed calculations of the various renormaliza­
tion constants in the renormalized perturbation theory described in the 
previous sections. To make any meaningful mathematical manipulations on 
the divergent integrals we must cut off, or regularize, the momentum 
integration to make the integral finite. The divergent part will then be a 
function of the cut-off A while the finite part will be cut-off-independent in 
the limit oo. The cut-off procedure must be chosen in such a way that it 
maintains the Lorentz invariance and symmetry of the problem. There are 
two commonly used regularization schemes: the covariant cut-off and 
dimensional regularization. We shall illustrate them in turn. 

Covariant regularization 

In this procedure (Pauli and Villars 1949) the propagator will be modified as 

1 a. 
12 - µ 2 + is + /2 - + is I I 12 - µ 2 +is (2.69) 

where Ar » µ2 and the a;s are chosen in such a way that in the asymptotic 
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region the modified propagator will have a sufficient number of internal 
momenta in the denominator so that the integral is convergent. 

Let us start with the four-point function. The graph in Fig. 2.5(a) yields a 
contribution (2. 7) 

r = r(p2 ) = -- -- . (2.70) (-i).)2 Jd4 / i i 
a 2 (2n)4 (I - p)2 - µ 2 + ie /2 - µ 2 + ie 

Clearly the replacement 

1 1 1 µ 2 - A 2 
- = 

/2 - µ2 + ie /2-µ 2 +ie /2-A2+ie (/2 -µ 2 +ie)(/2 -A2 +ie) 

will be sufficient to render the integral finite. Eqn (2. 70) then becomes 

-A2A2 I d4/ 1 
r(p2) = 2 (2n)4 ((I - p)2 - µ 2 + ie)(/2 - µ 2 + ie)(/2 - A2 + ie). 

(2.71) 

We choose to make the Taylor expansion around p 2 = 0 (or to make 
subtraction at p 2 = 0), 

(2.72) 
with 

-A2A2 I d4/ I 
r(O)= - . . 

2 (2n)4 (/2 - µ2 + rn)2(/2 - A2 + rn) 
(2.73) 

f(p2) = -A2A2 I 
2 (2n)4 (12 - µ2 + ie)(/2 - A2 + ie) 

x [ (/ - p )2 µ2 + ie - /2 - : 2 + ie] 

;_2 I d4, 2/·p- p2 

= 2 (2n)4 (12 - µ2 + ie)2((1- p)2 - µ2 + ie) 
(2.74) 

where in the last line we have taken the limit A --+ oo inside the integral 
because f(p2) is convergent. The standard method to evaluate these integrals 
is to first use the identity to combine the denominator factors 

(2.75) 

where the z;s are called the Feynman parameters. We can also differentiate 
with respect to a 1 to get 

(2.76) 

This formula has the advantage that one less Feynman parameter is needed 
for the case where there are two identical factors in the denominator. Using 
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(2. 76), we can combine the denominators in (2. 74) to give 

where 

with 

Thus, 

1 

1 . 1 = 2 f (1 - ex) dex 
(12 - µ2 + is)2 (I - p)2 - µ2 +is A3 

0 

A = (1 - ex)(/2 - µ2) + ex[(/ - p)2 - µ2] +is 

= (/ - exp)2 - a2 +is 

a2 = µ2 - ex(l - ex)p2. 

1 

t 2 - 2 f 1 - f d4[ 21 ·p - p2 
(p ) - A ( ex) dex (2n)4 [(l - exp)2 - az + is]3 

0 

1 

= Jc2 f (1 - ex) dex f d4[ (2ex - l)p2 
(2n)4 (12 - a2 + is) 3 

0 
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(2.77) 

(2.78) 

where we have changed the variable l to l + exp and have dropped the term 
linear in l which will vanish upon symmetric integration. It is more 
convenient to do the integration by the Wick rotation, which transforms the 
Minkowski momentum to the Euclidean momentum. First we note that 
d4/ = dl0 d/1 d/2 d/3 and 

t2 - a2 + is = 16 - 12 - a2 + is 

= 16 - [(12 + a2)112 - is]2. 

This shows that the integral (2. 78) has poles in the complex /0 -plane as shown 
in Fig. 2.15. 

I 

/o=-(12 +a2)2+ie 

• 
• 1 Re 10 

10= (1 2+a 2)2-ie 

FIG. 2.15. 

Using Cauchy's theorem we then have 

f dl0 /(/0 ) = 0 (2. 79) 

c 
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where 
I 

f(lo) = _ ((l2 + a1)112 _ ie)2]3 

Since f(/0 )-+ /06 as /0 -+ oo, the contribution from the circular part of 
contour C vanishes. Eqn. (2. 79) implies that 

oo +ioo 

J d/of(/o) = J dl0 f(/0 ) . 

- 00 -ioo 

Thus, the integration along the real axis has been rotated to that along the 
imaginary axis. Change the variable /.0 = i/4 so that /4 is real and 

+ioo oo 

J d/0 f(/0 ) = i J d/4 f (i/4 ) 

-ioo - 00 

00 . I d/4 
= -l (Ii+ a2 - ie)3 · 

(2.80) 

- 00 

If we define Euclidean momentum k; = (/1 , 12 , 13, 14) with k2 = li + 
+ + li, then the results in eqns (2.79) and (2.80) may be written 

I d 4 / I I d4 k I 
(2n)4 (12 - a2 + ie)3 = -1 (2n)4 (k2 + a2 - ie)3 (2.81) 

where d4k = d/1 d/2 d/3 d/4. Using polar coordinates in four-dimensional 
Euclidean space, we have 

00 21t 7t 7[ 

J d4k = J k3 dk J dcp J sin() d() J sin2 x dx (2.82) 

0 0 0 0 

and 
00 

I d4k I I k3 dk I 
(2n)4 (k2 + a2 - ie)3 = 2n2 (2n)4 (k2 + a2 - ie)3 

0 
00 

I I k 2 dk2 

= 1611:2 (k2 + a2 - ie)3. (2.83) 
0 

Using the formula for beta functions 
00 f tm- l dt I r(m)r(n - m) 

(t + a2)n = (a2)n-m r(n) ' (2.84) 

0 

we obtain 

f d4 k I I 

(2n)4 (k2 + a2 - ie)3 = 32n2(a2 - ie) 
(2.85) 
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or the vertex function in eqn (2. 78) becomes 

I 

r 2 -iA.2 f da(l -a)(2a- l)p2 

(p ) = 32n2 [µ 2 - a(l - a)p2 - ie] · 
0 
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(2.86) 

Since O <a< 1 we get µ 2 - a(l - a)p2 > 0 for p2 < 4µ 2 and we can drop ie 
in the denominator. It is straightforward to evaluate the integral to give 

t(p2) = t(s) = 3i;;2 {2 + Sr ln[{(4µ2 - s)t 

- (lsl)t}/{(4µ2 - s)t + (lsl)t}]} for s < 0 

= {2 - 2(4µ
2
8- sy tan- 1( 4µ/- sY} for 0 < s < 4µ 2 

= iA.2 {2 + (s - 4µ2)t In [st - (s - 4µ2)t] +in} 
32n2 s st+ (s - 4µ 2)t 

for s > 4µ2. (2.87) 

With the same procedure, the divergent term r(O) given in eqn (2. 73) can be 
calculated 

(2.88) 

For large A2, this gives 
iA.2 A2 

(2.89) 
327t2 µ2 

Thus the one-loop contribution to the four-point function is 

t, u) = 3r(O) + t(s) + f(t) + t(u) (2.90) 

where the cut-off-dependent r(O) is given by eqn (2.89) and the finite r(s) is 
given by eqn (2.87). We have to add the counterterm (3ir(0)/4!)t/>4 to cancel 
these divergences. By (2.36) this corresponds to the renormalization constant 

Zi 1 =I+ 3ir(O) = l (2.91) 
A. 327t2 µ2 

Having cancelled the divergences, the total four-point function up to this 
order is then given by (2.42) 

I, u) = -iA. + t(s) + t(t) + t(u). (2.92) 

For the two-point function of eqn (2.6), corresponding to the graph in Fig. 
2.4, we have 

-i:E(p2) = -iA. f d4/ i . 
2 (2n}' 12 - µ2 + ie 

(2.93) 
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This is a quadratically divergent integral and it can be regularized by 
choosing a 1 and a2 in eqn (2.69) such that 

a1 a2 1 
----+ + --+ - as 12--+ oo. 
12 - µ2 + ie 12 - Ai + ie 12 - + ie 16 

It is not difficult to see that we need 

µi 
a1 =Ai Ai 

2 - 1 

Ai- µi 
and a 2 =Ai Ai· 

2 - 1 

Then the modified propagator becomes 

a1 a2 

12 - µ2 + ie + 12 - Ai + ie + 12 - + ie 

(Ai - - µi) A4 
= --+ -------(12 - µ2)(12 - Ai)(l2 - AD (12 - µ2)(12 - A2)2 

for A1 and A2 both approach a large A. The regularized self-energy is 

-i:E(p2) d4[ A4 
2 (2n)4 (12 - µ2 + ie)(/2 - A2 + ie)2 

1 

-i.A.A4 I oc doc 
= 32n2 ocA2 + (1 - oc)µ 2 

0 

-i.A. [ 2 2 A2] =-- A-µ In-· 
32n2 µ2 

(2.94) 

Since it is independent of the external momentum p, the Taylor expansion is 
trivial, 

(2.95) 

As we have mentioned before, this p-independence is a special property of the 
one-loop approximation in A.¢4 theory. For a more general self-energy 
graph, I:(p) will have a nontrivial dependence on p and the Taylor series 
around p 2 = 0 will be 

(2.96) 

where :E(O) and I:'(O) are cut-off-dependent and i:(p2) is finite. And we have 
to add !I:(O)</J2 and !I:'(0)(13µ</J)2 counterterms to cancel these divergences. 

To summarize, the total Lagrangian up to one loop has the form 

2<1> = 2<0> + A2<1> (2.97) 
where 

2 <o> = [(oµ</J)2 _ µ2</J2J _ :, ¢4 

A2<t> = 3ir(O) ¢4 + I:(O)</J2 + I:'(O)(o </J )2 
4! 2 2 µ • 
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Combining terms of the same structure, we can write (2.97) as 

= (o </>)2 - (µ2 - l>µ2)</>2 - A.Z;,, </>4 (2.98) 
2 µ 2 4! 

with 
= 1 + I:'(O), 

A.Z_i" I =A+ 3ir(O), 

l>µ2 = I:(O). (2.99) 

The values of these renormalization constants in the one-loop approximation 
are 

z., = 1 since I:'(O) = 0, 

3A. A2 
Z;,, = 1 + 327t2 In µ2' 

2 A. 2 
l>µ = 327t2 A . (2.100) 

If we express everything in terms of the bare quantities through eqns (2.49), 
(2.50), and (2.51), we find 

= [(8µ</>o) 2 - - (2.101) 

which is exactly the same as the unrenormalized Lagrangian (2.1) as it should 
be. 

Finally we comment on the convention used in making the Taylor series 
expansions (2.72) and (2.96) around pi= 0 to fix the finite part of the Green's 
function. An equivalent way to state the same convention is to specify the 
normalization conditions of Green's function. From (2.96), the finite part of 
the self-energy has the properties 

t(p2)lp2=0 = 0 
and 

I = 0. 
op p2=o 

These properties imply that the full propagator 

i<'.\R(P2) = p2 - µ2 -it(p2) + ie 

will satisfy the normalization conditions 

<'.\a 1(p2)lp2 =O = - µ2 
and 

8<'.\R'l I 
-2- = 1. op p2=o 

(2.102) 

' 
(2.103) 

(2.104) 

(2.105) 

(2.106) 

Similarly from (2.72) and thus from t(O) = 0, we have from (2.92) the 
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normalization condition for the vertex function 

o, o) = -i2. (2.107) 

(Remark: Although (2.104) was originally derived with a Taylor expansion of 
L(p2 ) around p2 = µ2 it also holds for the present p2 = 0 expansion as a 
derivation entirely similar to eqns (2.14)-(2.22) will show.) 

In short, one can use conditions (2.105), (2.106), and (2.107) to replace the 
prescription 'Taylor expansion around P; = O' to fix the finite part of Green's 
function. 

In this connection we observe that the renormalized coupling constant 
defined by (2.107) differs from that defined by eqn (2.41) where a Taylor 
expansion has been made around the symmetric point s0 = t 0 = u0 = 4µ 2 /3. 
It implies condition (2.33) 

(2.108) 

to be contrasted with (2.107). Thus, different Taylor expansions or 
subtraction points yield different definitions of the coupling constant. This 
leads to the concept of a running coupling constant (see Chapter 3). Clearly 
the physics should not depend on the choice of subtraction point which is 
purely a convention. In practice how is this apparent difference taken care 
of? Consider the two-body scattering cross-sections calculated using two 
different definitions of the coupling constant. The calculated cross-sections 
may appear to be different by an overall constant (the angular distributions 
are identical). But this is immaterial because we need to define the coupling 
constant operationally as the value of the cross-section at some kinematical 
point. Thus the difference is only apparent and the two seemingly different 
calculations really yield the same result. 

Dimensional regularization 

The basic idea of this scheme ('t Hoo ft and Veltman 1972; Bollini and 
Giambiagi 1972; Ashmore 1972; Cicuta and Montaldi 1972) is that, since the 
ultraviolet divergences in Feynman diagrams come from the integration of 
internal momenta in four-dimensional space, the integrals can be made finite 
by lowering the dimensionalities of the space-time. Then the Feynman 
integrals can be defined as analytic functions of the space-time dimension n. 
The ultraviolet divergences will manifest themselves as singularities as n --+ 4. 
As before, the finite part can be obtained by subtracting out the first few 
terms in the Taylor expansion. This regularization scheme has the important 
advantage that it will not destroy any algebraic relations among Green's 
functions that do not depend on space-time dimensions. In particular, the 
Ward identities, which are relations among Green's functions resulting from 
the symmetries of the theory, can be maintained in this dimensional 
regularization scheme. For a review see Leibrandt (1975). 

We will illustrate this method with an example. Consider the one-loop 
four-point Green's function in eqn (2. 7) corresponding to the diagram in Fig. 
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2.5(a). It is proportional to the integral 

I= fd 4 / l (2.109) 
(I - p)2 - µ 2 + ie /2 - µ 2 + ie 

which is logarithmically divergent. To define the integral in n-dimensional 
space, we take the internal momentum to have n components: 
lu = (/0 , 11 , •• ., /n_ 1), while the external momentum has four nonvanishing 
components: Pµ = (p0, p1, p1, p3 , 0 ... 0). The integral inn-dimensional space 
is then defined as 

l(n) = f dnl l . l (2.110) 
(/ - p )1 - µ1 + IC /2 - µ1 + ie 

which is convergent for n < 4. To define this integral for non-integer values 
of n, we first combine the denominators using Feynman parameters and 
make the Wick rotation (eqn (2. 75)), 

1 

f f dnl 
I(n) = dix . 

[(I - ctp)1 - a1 + rn]1 
0 

1 

f f dn/ 
= i dix [/2 + a1 - ie]1 

0 

with a1 = µ1 - ix(l - ix)p1. 

(2.111) 

The integrand is now independent of the angles of the integration 
momentum, which can then be integrated out 

00 27t n: 1t 

f dnl = f in- I di f d81 f sin 81 d81 f sin1 83 d83 ... 

0 0 0 0 

" 
X f sinn-l On-1 d8n-1 

0 
00 

= _n_ 1n-1 di 2 n/2 f 
rG)o 

where we have used the formula 

" n111r(m + 1) 
I sin• 

Thus eqn (2.111) may be written 
1 00 

2inn/2 f f 1n- I di 
J(n) = (n) dix [11 + a1 - ie]1. 

r - o o 
2 

(2.112) 

(2.113) 

(2.114) 
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The dependence on n is now explicit. For complex n, the integral is well­
defined as long as 0 < Re(n) < 4; the lower bound results from the apparent 
divergence of the integral at the I = 0 limit. This infrared divergence is 
actually an artefact of our procedure as it is cancelled by the singularity in 
r(!n) as n --+ 0. We can extend this domain of analyticity by integration by 
parts 

00 00 

1 I 1n - 1 dl _ 2 I d ( 1 ) 
[l2 + a2 - ie]2 = ) Lndl dl [/2 + a2 - ie]2 

20 r2+1 o 
(2.115) 

where we have used 

zr(z) = r(z + 1). (2.116) 

The integral is now well defined for -2 < Re(n) < 4. If we repeat this 
procedure v times, the analyticity domain is extended to - 2v < Re(n) < 4 
and eventually to Re(n)--+ - oo. Thus the integral given in eqn (2.114) can be 
taken as an analytic function for Re(n) < 4. To see what happens as n --+ 4, 
we use (2.84) to evaluate the integral for n < 4, 

1 

/(n) = inn12r(2 - [a2 - (2.117) 

0 

Using formula (2.116) 

as n--+ 4, 

we see that the singularity at n = 4 is a simple pole. If we now expand 
everything around n = 4 

r( 2 - = 4 : n +A + (n - 4)B + ... 

an- 4 = 1 + (n - 4) ln a+ ... , 

where A and B are some constants, we obtain the limit 
1 

(2.118) 

(2.119) 

J(n)--+ 4
2in2 - in2 Jdocln[µ 2 - oc(l - oc)p2] + in2A. (2.120) 

n-+4 - n 
0 

With the one-loop contribution of (2. 7) (r = ).,2 l/32n4), we have 
1 

( 2 .A_2 { 2i . f d 1 [ 2 ) 2 . } r p ) = -- -- - 1 oc n µ - oc(l - oc 1JJ ] +tA · 
32n2 4 - n 

(2.121) 

0 
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The Taylor expansion around p 2 = 0 gives 

r(p2) =r(O) + f(p2) 
where 

I'(O) = ( 4 n - i In µ2 + iA) 

iA.2 

and 
1 

55 

_, (2.122) 

(2.123) 

f(p2) = -iA.2 I dodn[µ2 - ix(l - ix)p2] 
32n2 µ 2 

0 

1 

= - iA. 2 f dix(l - ix)(2ix - 1 )p2 

32n2 [µ2 - ix(! - rt)p2] 
(2.124) 

0 

where we have performed an integration by parts. Clearly the finite part is 
exactly the same as that given by the method of covariant regularization in 
eqn (2.86). Thus the finite part of Green's function is independent of the 
regularization schemes as it should be and only depends on the subtraction 
point. The I'(O) term diverges as a simple pole at n = 4 corresponding to the 
In A term (2.89) in the covariant regularization calculation. 

The one-loop self-energy (Fig. 2.4) is given by eqn (2.6) which in the 
dimensional-regularization scheme becomes 

i:E( 2) - f 1 
- p - 2 (2n)4 /2 - µ 2 +ii; 

-iA.nn12r( 1 -

32n4(µ2) 1 - n/2 (2.125) 

Since, from eqn (2.116), 

(2.126) 

the quadratic divergent term (2.95) has poles at n = 4 and also at n = 2. For 
n-+ 4 we have 

- i:E(O) = iA.µ2 (-1 -) . 
16n2 4 - n 

(2.127) 

To compare the two regularization methods we list the results for the 
divergences in Table 2.1. Thus divergent Feynman integrals when evaluated 
in n-dimensional space appear as poles of the resulting r function at 
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n = 4, ... etc., keeping in mind that the quadratic divergence also has a pole 
at n = 2, see eqn (2.126). 

1(0) 

TABLE 2.1 

Covariant 
regularization 

iA.2 /\2 
-ln-

3211:2 µ2 

_A._J\2 
32n2 

2.4 Power counting and renormalizability 

Dimensional 
regularization 

Jc (-2µ 2
) 

32n2 4 - n 

In the previous sections the renormalization procedure in ).¢4 theory has 
been illustrated in some detail. Here we will discuss the problem of 
renormalization for the more general types of interaction. The BPH 
renormalization procedure will be followed in this discussion. In a later part 
of this section, renormalization of composite operators will also be 
examined. 

Theories with fermion and scalar particles 

For simplicity we shall first concentrate on theories with spin-1/2 and spin-0 
particles only. For the Lagrangian density, ff'= 2 0 +Li fi'i> where 2 0 is 
the free Lagrangian quadratic in the fields and the are the interaction 
terms (for example, ff';= g 11/fyµ,l/J iJll<jJ, 92(1/11/1)2, 9 31/11/1¢, 94 ¢ 3 , 9 5¢ 4 , ... ), for 
a given graph we can define the quantities 

n; = number of ith type vertices; 
bi = number of scalar lines in the ith type vertex; 
f; = number of fermion lines in the ith type vertex; 
di = number of derivatives in the ith type vertex; 
B = number of external scalar lines; 
F = number of external fermion lines; 

IB = number of internal scalar lines; 
IF = number of internal fermion lines. 

Thus for 2 1 = 9 11/fy µ,l/J ol'</J we have b1 = 1, Ji = 2, d1 = 1. From the 
structure of the graph we have relations like that of (2.58) 

B + 2(/B) = I nibi 
i 

F + 2(IF) =I nif;. 

(2.129a) 

(2.129b) 

Just as in (2.59), the number of loop integrations L can be calculated 

L = (IB) + (IF) - n + 1 (2.130) 
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where 

The superficial degree of divergence D is then given by 

D = 4L - 2(IB) - (IF)+ L n;d; 
i 

= 4 + 2(IB) + 3(/F) + L n;(d; - 4). 
i 

Using (2.129) we can eliminate IB and IF, 

D = 4 - B - + L n; b; 
i 

where 
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(2.131) 

(2.132) 

(2.133) 

b; = b; + + d; - 4 (2.134) 

is called the index of divergence of the interaction .P;. For ).<jJ4 theory, i5 = 0 
and (2.133) reduces to (2.61). In general b; can be related to the dimension of 
the coupling constant in units of mass. Knowing that the Lagrangian density 
has dimension four and that the scalar field, the fermion field, and the 
derivative have dimensions 1, 3/2, and 1, respectively, the dimension of the 
coupling constant is given by 

dim(g;) = 4 - b; - - d; = -b;. (2.135) 

From (2.133) we see that, for a fixed number of external lines, the superficial 
degree of divergence will have different behaviour for the following three 
cases. 

(1) g; has positive dimension (orb; < 0). Then D decreases with the number 
of ith type vertices. In this case .P; is called a super-renormalizable interaction 
and the divergences are restricted to a finite number of graphs. For example, 
consider the graphs for the two-point Green's functions in the super­
renormalizable ).<jJ3 theory. The one-loop diagram in Fig. 2.16(a) is divergent 
while the two-loop one in Fig. 2. l 6(b) is not. 

-0-
(a) (b) 

FIG. 2.16. 

(2) 9; is dimensionless (orb; = 0). Here Dis independent of the number of 
ith type vertices. The divergences are present in all higher-order diagrams of 
a finite number of Green's functions . .P; = g1 ¢4 , 9 21/it/l<P are such examples, 
and they are called renormalizable interactions. 

(3) 9; has negative dimension (orb;> 0). In this case, D increases with the 
number of ith type vertices and all Green's functions are divergent for 
sufficiently large n;. These types of interactions are non-renormalizable, and 
are exemplified by .P; = 9 11/iyµt/I oµ</J, gi(lfit/1)2 , g3 </J 5 , •.. etc. 
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The index of divergence i5; is also related to the canonical dimension of the 
field operator. The latter is defined in terms of the high-energy behaviour of 
the free-field propagator, which is clearly relevant for power counting. Write 
the propagator for the free-field operator as 

DA(p2 ) = f d4 x e-ip·x(OIT(A(x)A(O))IO). (2.136) 

If the asymptotic behaviour is of form 

DA(P2) ---> (p2)-wA/2, (2.137) 
p2-+ CX) 

then the canonical dimension for th_e field operator is defined as 

d(A) = (4 - wA)/2. (2.138) 

Thus for the scalar and fermion fields and their derivatives, we have 

d(</J) = 1, 

d(t/J) = l 
d( a"¢) = 1 + n , 

d(a"tjl) = i + n. (2.139) 

For composite operators that are polynomials in the fields the canonical 
dimension is the algebraic sum of the constituent fields: for example, 
d(¢2 ) = 2d(¢) = 2, d(l/ft/1¢) = 2d(t/J) + d(</J) = 4. In the case of theories with 
fermions and scalars only, the canonical dimension of an operator is the 
same as that of the naive dimension in units of mass. But as we shall see later, 
these dimensions are different for massive vector fields. With these definitions 
and those in (2.128), the canonical dimension for each term in the interaction 
Lagrangian density becomes 

d(!e;) = b; + y; + d;. (2.140) 

With the index of divergence i5; = d(fi';) - 4, we see that a dimension-four 
term corresponds to a renormalizable interaction, that less than four is super 
renormalizable, and that greater than four is nonrenormalizable. 

Counterterms 

Since the counterterms are constructed to cancel the divergences in the n­
point Green's function, their structures are closely related to that of the 
superficially divergent Green's function. For example, we have seen that in 
Acp4 theory to cancel the quadratically divergent parts in the two-point 
function, we need counterterms (aµ¢)(aµ¢) with dimension 4 and ¢ 2 terms 
with dimension 2, while the logarithmically divergent four-point function 
needs the dimension-4 counterterm ¢ 4 . In general we have to add counter­
terms to cancel all divergences in Green's functions with superficial degrees 
of divergence D 2: 0 as determined by (2.133). For convenience we will use 
the Taylor expansion around zero external momenta P; = 0 to isolate the 
divergent terms. The structure of the counterterms depends on the number of 
divergent terms in the Taylor expansion. For example, if a Green's Junction 
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is quadratically divergent, the first three terms in the expansion will be 
divergent 

r<n>(p;) =a+ bf P;µ + cfj'/J;µPi" + f(n)(p;). (2.141) 

The counterterms designed to cancel the a-term will have no derivative, the 
terms designed to cancel the b-term will have one derivative, etc. In the 
notation of (2.128) the counterterm will have the form Oct= (oµt(t/Jt(</>) 8 

with ix= d, 1, ... , D. For A¢4 theory, for example, we have terms cor­
responding to F = 0, B = 2 with ix= 0 and 2, B = 4 with ix= 0. The 
canonical dimension of Oct is given by 

dct = !F + B + IX. (2.142) 

The index of divergence of the counterterm can then be written through 
(2.133) as 

= (ix - D) + L n; b;. 
i 

Since ix D, we have the result 

(2.143) 

(2.144) 

Thus, the counterterms induced by a Feynman diagram have indices of 
divergence <>ct less or equal to the sum of the indices of divergence of all 
interactions b; in the diagram. 

The renormalizable interactions which have b; = 0 will generate counter­
terms with 0. If all the b; 0 terms are present in the original 
Lagrangian, so that here the counterterms have the same structure as the 
terms in the original Lagrangian, they may be considered as redefining 
parameters like masses and coupling constants in the theory. These 
renormalized parameters are inputs of the theory and we need measurements 
of some physical processes to determine them. With these inputs, we can then 
predict the outcome of all other physical processes. For example, in A¢4 

theory we have two free parameters, the coupling constant A and massµ. We 
can use the two-particle elastic scattering cross-section at two different 
scattering angles to determine the values of A andµ. The cross-sections for all 
other angles and/or all other energies (and also all other inelastic cross­
sections) can then be predicted. Much the same holds for super­
renormalizable theories. On the other hand, non-renormalizable interactions 
which have b; > 0 will generate counterterms with arbitrary large <>ct in 
sufficiently high orders and clearly they cannot be absorbed into the original 
Lagrangian by a redefinition of parameters. For example, the non­
renormalizable interaction A</J6 which has b = 2, will produce counterterms 
consisting of all even powers of¢ and their derivatives: ¢ 2 n and o2"'¢2 n with 
n, m = 1, 2, ... , oo. We need an infinite number of measurements to fix the 
coefficients of these terms. Thus non-renormalizable theories will not 
necessarily be infinite; however the infinite number of counterterms 
associated with a non-renormalizable interaction will make it lack in pre-
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dictive power and hence be unattractive, in the framework of perturbation 
theory. 

We will adopt a more restricted definition of renormalizability. A 
Lagrangian is said to be renormalizable by power counting if all the 
counterterms induced by the renormalization procedure can be absorbed by 
redefinitions of the parameters in the Lagrangian. With this definition, the 
theory with a single-fermion interaction with a single scalar through the 
Yukawa coupling l[Jy 5 1/J<P is not renormalizable even though the coupling 
constant is dimensionless. This is because the one-loop diagram of Fig. 2.17 
is logarithmically divergent and we need a ¢4 counterterm. But such a term is 
not present in the original Lagrangian. The same theory with a ¢ 4 interaction 

"'Mt/> "' "' 
"' </> </> 

FIG. 2.17. 

is renormalizable. On the other hand, if a term can be excluded on symmetry 
grounds, then the renormalizability of the theory is not disturbed because 
higher-order terms will not generate such a term. For example, in a theory 
with only one scalar field, 

2 = !(oµ</J)2 _ !µ2<P2 _ :! <P4 

is renormalizable because it contains all terms with lJ 0 (equivalently with 
dimension less than or equal to 4) which are consistent with the symmetry 
<P -+ -<P. The </J 3 counterterm will be forbidden by such a reflection 
symmetry. Also, in this context we can understand result (2.133), or the more 
restricted ).<jJ4 result (2.61). The higher-order contributions to, say, a six­
point function should be finite in (renormalizable) ).<jJ4 theory. This must be 
the case because, if they were not, one would need a ¢ 6 counterterm to 
absorb the divergences. Such a counterterm having lJ = 2 would ruin the 
renormalizability of the theory. 

Theories with vector fields 

Since the asymptotic behaviour of free vector-field propagators is very 
different for the massless and massive cases, we will discuss them separately. 

Massless vector field. In a theory with local gauge invariance such as QED, 
the vector field is massless. The asymptotic behaviour of the free propagator 
is mild. For example the Feynman-gauge photon propagator in QED is given 
by 

A k -igµI' 
Llµ,,( ) = -k2 . -+ + 16 k-+oo 

(2.145) 
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This implies that the photon field will have unit canonical dimension: 
d(A) = 1, like that for the scalar c/J. Consequently power counting for a 
massless vector field is the same as that for the scalar field. Theories with a 
massless vector field will be renormalizable if they contain all interactions 
with dimension less than or equal to four and consistent with local gauge 
invariance. Denoting the massless vector field by Aµ, we have, for example, 
the dimension-4 operators 

-1/iyµt/IAµ, c/J2 AµAµ, (oµc/J)cjJAµ. 

This in fact represents an exhaustive listing of all possible renormalizable 
interactions (i.e. dimension-4 or -3) of spin-0 and -1/2 fields with massless 
vector fields. The only possible dimension-3 operator (oµc/J)Aµ, which is 
bilinear in fields, is part of the free Lagrangian. 

Massive vector field. Generally the free Lagrangian for a massive vector field 
Vµ has the form 

!t'o == -i(oµv;. - a,.vµ)(oµV'· - o''Vµ) + !M;vµvµ. (2.146) 

The vector propagator in momentum space 

(2.147) 

has the asymptotic behaviour 

Dµv(k) --+ 0(1). (2.148) 
k-+ <Xl 

This means that the canonical dimension for the vector field is two which 
differs from its (naive) dimension by a mass unit of one. The power counting 
is now modified with the superficial degree of divergence given by 

D = 4 - B - !F - 2 V + L n;(fl; - 4) (2.149) 
i 

and 
(2.150) 

where Vis the number of external vector lines, V; is the number of vector fields 
in the ith type of vertex, and fl; is the canonical dimension of the interaction 
term !!';. To have a renormalizable interaction we need fl;:::; 4 but, from 
(2.150), the only such term trilinear in the fields is c/J2 Aµ, which is not 
Lorentz-invariant. There is no nontrivial interaction of the massive vector 
field which is renormalizable. However, two important exceptions to this 
statement should be noted. 

(A) In a gauge theory with spontaneous symmetry breakdown, the vector 
(gauge) boson will acquire mass in such a way as to preserve the 
renormalizability of the theory. We will discuss this in detail in Chapter 8. 

(B) A theory with a neutral massive vector boson coupled to conserved 
current is also renormalizable. Heuristically we can understand this as 
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follows. The propagator Dµv(k) given in (2.147) always appears between the 
conserved currents Jµ(k) and J'(k)and the kµkv/M; term will not contribute 
because of current conservation. kµ lµ(k) = 0 or, in the coordinate space, 
13µ Jµ(x) = 0. Then power counting is essentially the same as for the massless 
vector field case. 

Renormalization of composite operators 

So far we have only considered Green's functions involving elementary field 
operators. In many practical applications we are interested also in functions 
of composite operators, i.e. local monomials offields and their derivatives, e.g. 
tf/yµl/J, </>2 , </> 13 2 </>, etc. 

Again we will illustrate the renormalization of such composite operators in 
A</> 4 theory. Consider the composite operator i</> 2(x). The Green's function 
with one insertion of i</> 2(x) has the form 

(2.151) 

or, in momentum space, 

(2n )4 b4 (p + P1 + ... P1, · · ·, Pn) 

= f d4 xe-,p·x f:CT ... ,x"). (2.152) 

In perturbation theory we can use Wick's theorem to work out Green's 
function in terms of Feynman diagrams. For example, for x 1 , x2)tothe 
zeroth order in ). we have 

x 1 , x 2 ) = (OIT(J</>2 (x)<f>(xi)<f>(x2 ))10) 

= ifl(x - xi) ifl(x - x 2 ) 

or, in momentum space, 

p 1, - p - pi)= ifl(pi) ifl(p + P1). 

If we truncate the propagators on the external lines, we have 

-p - pi)= 1 

(2.153) 

(2.154) 

(2.155) 

as represented in Fig. 2.18(a). The same Green's function to first order in). is 

with (amputated) lPI momentum-space Green's function given below (see 
Fig. 2.18(b)) 

. <2 > • -i). f d4 / i i . 
rq,2 (p,p1, -p -pi)= (2n)4 12 - µ2 + ie (/- p)2 - µ2 + ie 

(2.156) 
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p 

(a) (b) 

FIG. 2.18. Zeroth- and first-order diagrams of rw (p; p 1 , -p - p 1). 

We see that the composite operator generates a vertex very much like a 
term in the Lagrangian except that the composite operator can carry off 
momenta. This suggests the following method of systematically calculating 
Green's functions with composite operators. As we have seen in §1.2, we can 
generate Green's functions of elementary fields </J(x) with the insertion of 
J(x)</J(x) in the Lagrangian density, J(x) being an arbitrary c-number 
function. For a composite operator Q(x) we can similarly insert x(x)Q(x) in 
the Lagrangian density where x(x) is the c-number source function 

.P[xJ = .P[OJ + xn. (2.157) 

Following exactly the same procedure of constructing the generating 
functional W[x], which is the vacuum-to-vacuum transition amplitude in the 
presence of this external source x(x), we obtain the connected Green's 
functions by first differentiating In W[x] with respect to x and then setting 
the source x to zero. With Q(x) = !</J2(x) we have the vertex shown in Fig. 
2.19(a) which may appear for example in the one-loop four-point <P function 
in Fig. 2. l 9(b ), 

4) . - (-i.A.)2 f d4[ i 
rg (P,P1 .. . p4) - -2- (2rr)4 /2 - µ2 + ie (l + p)2 - µ2 + ie 

l 
x 2 2 .. 

(I - Pi - Pi) - µ + rn 
(2.158) 

p 

(a) 

FIG. 2.19. 

We are now ready to discuss the renormalization of this new set of Green's 
functions rgi>(p; p1 ... Pn). The procedure is exactly the same as that for 
Green's functions without Q(x), r<n>(p1 ••• Pn). Since an insertion of a 
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composite operator is like an additional vertex, a straightforward application 
of (2.133) will show that the superficial degree of divergence Dn of rgii differs 
from D of r<nl by the index of divergence c5n of the composite operator 

Dn = D + c5n = D + (dn - 4), (2.159) 

where dn is the canonical dimension of Q. Thus, for dn 4, the insertion of 
(renormalizable or superrenormalizable) composite operators will not 
worsen the convergence property of the Green's function; the insertion of a 
dn > 4 operator worsens the divergence of the diagram. For the case of 
n = !¢2 , we have d(</> 2 ) = 2 and, for an n-point function, D<f>' = 2 - n. Thus 
only is logarithmically divergent and needs to be renormalized. The 
relevant one-loop diagram shown in Fig. 2.18(b) has the Taylor expansion 

p1 , - p - pi)= 0, 0) + p1 , -p - pi) (2.160) 

where is finite and has the normalization 

0, 0) = 0. 

We can combine the counterterm 

with the original term to write 

-i i -i 
2 x</> 2 - 2 0, O)x</> 2 = 2 Z<1>2x</> 2 

with 

Thus, the total contribution to up to one loop is 

P1, -p - Pd= 1 + P1, - P - Pd 
with the normalization 

(2.161) 

(2.162) 

(2.163) 

(2.164) 

In general we need to insert the counterterm AQ into the original addition of 
(2.157). 

ff'+ x(O +AO). (2.165) 

In particular, for the counterterm proportional to the original composite 
operator itself, AO = CO, as is the case with !¢2 , we have 

with 

ff'[x] = ff'[OJ + xz0 n 
= ff'[O] + xOo (2.166) 

Such composite operators are said to be multiplicatively renormalizable. This 
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means that the Green's function of the unrenormalized operator Q 0 is related 
to that of the renormalized operator Q by 

Gg'!(x; X 1 , ... x.) = (OIT(Q0 (x)</J 0 (x 1 ), ... </J 0 (x.))10) 

(2.167) 

The composite operator Q = !¢2 is multiplicatively renormalizable be­
cause it is the only operator with dimension-two. For more general cases, 
AQ "# CQ, the renormalization of a composite operator may require 
counterterms proportional to other composite operators. In this way 
renormalization may introduce mixings among composite operators. For 
example, for Q = ¢4, the counterterms AQ = ¢ 2, (i\<P )2 , and ¢ 4 will be 
needed. To be definite we will restrict our illustration to the case of two 
composite operators A and B which can mix under renormalization 

2[xJ = 2[0J + XA(A + AA) + xiB + AB). (2.168) 

The counterterms AA and AB are some linear combinations of A and B 

We can write 2[x] as 

where 

AA = CAAA + CABE 

AB= C0 AA + CaaB. 

2[xJ = 2[0] + (XA• 

(2.169) 

(2.170) 

(2.171) 

Such a matrix C can be diagonalized with a bi-unitary transformation (see 
§11.3). Thus, 

ucvt = (zA. o ) 
0 Z 8 

(2.172) 

where U and V are unitary matrices. The Lagrangian can then be written 

where 

(2.173) 

(XA'• Xn·) = (XA• Xa)Ut. 

This means that the linear combinators A' and B' as defined by (2.173) are 
multiplicatively renormalizable 

(OIT(A'(x)B'(y)</J(xi) ... </J(x.))10) 

= z; 1 ZiJ. 1 Zi"'2 (01T(A0(x)B0(y)</J0(x1) ••• ¢ 0 (x.))10). (2.174) 
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An example of such simple mixing involving only two composite operators is 
the theory defined by 

,r; . µ 1 2 1 2 2 A. 4 ,r; A.' ¢3 
2 = '1'(1y aµ - m)t/1- 2 (oµ</J) -2 µ <P - 4! <P - g'!'tfl</J - 3! 

(2.175) 

with A = ¢ 3 and B = tfitfl. These two composite operators can mix under 
renormalization because of the divergences in the diagrams shown in Fig. 2.20. 

I I I 
I I I 

FIG. 2.20. One-loop divergent diagrams involving composite operators A = cf> 3 and B =fl/I. 
The dashed lines represent </>-fields; solid lines I/I-fields. 



3 Renormalization group 

The renormalization theory discussed in the last chapter has some arbitrari­
ness related to our choice of kinematic points in defining physical parameters 
such as the mass and the coupling constants. For example, the BPH 
renormalization prescription only requires that the divergent part of the lPI 
graph be cancelled by counterterms constructed from Taylor expansions. 
However the reference points for the expansions are arbitrary. Different 
choices of the reference points, i.e. different subtraction points, lead to 
different definitions of the physical parameters of the theory. But any choice 
is as good as any other; the physics should not depend on the choices of the 
normalization conditions. This is the renormalization group: the physical 
content of the theory should be invariant under the transformations which 
merely change the normalization conditions. This seemingly empty statement 
actually provides us with highly nontrivial constraints on the asymptotic 
behaviour of the theory. In systems with infinite degrees of freedom (such as 
quantum field theory), renormalization can be defined in such a way that it 
involves a series of redefinitions of physical parameters on the relevant 
length or energy scales. There must be relations between the physical quan­
tities so defined. Hence the renormalization group equation expresses the 
effect of a scale change in the theory or, more accurately, expresses the con­
nection of renormalizability to scale transformations. 

Gell-Mann and Low (1954) were the first ones to use renormalization group 
techniques to study the asymptotic behaviour of Green's functions in 
quantum electrodynamics. The renormalization group was discovered by 
Stueckelberg and Peterman (1953); its role in the Gell-Mann-Low analysis 
was discussed by Bogoliubov and Shirkov (1959). The recent interest in the 
applications of renormalization group has largely been brought about by the 
work of Wilson (1969). Our presentation is patterned after the lecture by 
Coleman (197la). There are a number of ways to set up the renormalization 
group equation. In §3.1 we study this in the form of the Callan-Symanzik 
equation (Callan 1970; Symanzik 1970b) which is associated with momen­
tum subtraction schemes. In §3.2 we briefly discuss the mass-independent 
renormalization or minimal subtraction scheme ('t Hooft 1973; Weinberg 
1973a) and its associated renormalization group equation. The solutions to 
these equations in the asymptotic region are found in terms of the 'effective 
coupling constants' which are studied in more detail in §3.3. 

3.1 Momentum subtraction schemes and the Callan-Symanzik 
equation 

As stated above the existence of a renormalization group is related to the 
freedom one has in the choice of the reference points for Taylor expansions 
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leading to different definitions of the physical parameters of the theory. 
These choices may be expressed as different normalization conditions on 
certain lPI amplitudes. The physical parameters should then be regarded as 
dependent on the choices of normalization conditions. We shall first 
illustrate this in A.</J4 theory by giving two specific examples of mass­
dependent normalization conditions (or momentum-subtraction schemes). 

Intermediate renormalization 

This corresponds to a Taylor expansion around zero external momenta. For 
the self-energy we have 

'f.(p2 ) = 'f.(0) + 'f.'(O)p2 + t(p2 ). (3.1) 

The finite part t(p 2 ) will have the properties 

l:(O) = 0 

I = 0. 
op p2=o 

The full propagator AR(p2) is related to the self-energy t(p2 ) by 

iAR(P2) = 2 2 i t( 2) p -µ - p 

and the lPI two-point function rif>(p2) is given by 

irif>(p2) = iAR(p2 )[iAR(p2 )]- 2 

= -i[AR(p2)]-t 

= -i[p2 - µ2 - t(p2)]. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The normalization conditions on l:(p2) (eqns (3.2) and 
translated in terms of rk2>(p2) as 

(3.3)) can be 

rif>(o) = µ2 (3.6) 

ork2>(p2) I - -
- 1. 

op p2=o 

(3.7) 

For the four-point function, the finite part of the higher-order contribution is 
defined by 

Thus we have 

fk4>(Pt, p2, p3) = 0 at Pt = P2 = p3 = 0. (3.9) 

Including the tree-level contribution 

rk4)(Pt>P2>P3) = -iA. + rk4\Pt' P2. p3), (3.10) 

the normalization condition on the total four-point function reads 

rC:>(pt,P2.P3) = -iA. at Pt= P2 = p3 = 0. (3.11) 
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We note that µ2 in this subtraction scheme is not the physical mass and that A. 
is not the physical coupling constant because the points P; = 0 are not in the 
physically allowed region. But we can express all physically measurable 
quantities in terms of these two parameters. In this sense they are physical 
parameters. 

On-shell renormalization 

This corresponds to a Taylor expansion for external momenta on the mass 
shell, i.e. pf = µ2 • For the self-energy, this gives 

Thus, 
I:(p2) = I:(µ2) + (p2 - µ2)I:'(µ2) + t(p2). 

t(µ 2 ) = 0 

I = 0 
op p2=µ2 • 

Or, in terms of rifl(p2) of (3.5), 

rifl(µ 2 ) = 0 

orif><;2 )I = _ 1. 
op p2=µ2 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

For the four-point function, a convenient choice of the reference point for 
the Taylor expansion will be the symmetric momentum point 

= -iA. at Pf= µ2, 

s = t = u = 4µ 2 /3 (3.17) 

wheres, t, and u are the Mandelstam variables. In this case the parameters µ2 

and A. are the physical mass and, up to some kinematical factors, the physical 
differential cross-section at s = t = u = 4µ 2 /3, respectively. 

These two examples are specific realizations of a general renormalization 
scheme where the normalization conditions R can be a function of several 
fixed 'reference momenta', 1 , •.• such that 

= µ2 (3.18a) 

ork2>(p2)1 = -1 
op2 

(3.18b) 

and 
= -iA. (3.18c) 

Renormalization group. Consider two different renormalization procedures, 
R and R'. Since both start from the same bare Lagrangian 

.ft' = .ft' R(R-quantities) 

= .fi'R{R'-quantities), (3.19) 
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in terms of the unrenormalized fields (see eqn (2.23)), we must have 

<PR = z;; 112 (R)</Jo; <PR' = z;; 112(R')<Po. (3.20) 
Thus, 

where 

Zq,(R', R) = Zq,(R')/Zq,(R). (3.21) 

This means that the renormalized fields in different subtraction schemes are 
related by a multiplicative constant. Since both <PR and <PR' are finite, 
Zq,(R', R) must also be finite even though it is a ratio of two divergent 
quantities. Similar relations between the coupling constants, masses, and 
Green's functions can be worked out 

where 

AR' = z-; 1(R', R)AR 

= + bµ2(R', R) 

Z;i.(R', R) = Z;i.(R')/Z;JR) 

6µ 2(R', R) = 6µ2 (R') - bµ2 (R). 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

are all finite. The operation which takes the quantities in one renormalization 
scheme R to quantities in another scheme R' can be viewed as a 
transformation from R to R'. The set of all such transformations is said to 
form the renormalization group. We now translate this renormalization group 
invariance into the analytic form. 

Callan-Symanzik equation 

First we note that differentiation of the unrenormalized Green's function 
with respect to the bare mass is equivalent to an insertion of the composite 
operator n0 = -!-¢6 carrying zero momentum 

ar<n>(p;) = - T<")(O· ·) a 2 I q, 'p, 
µo 

because r<n>(p;) depends on µ6 only through the bare propagator 

iLio(P) = 2 i 2 . 
p - µo + rn 

and because 

a G2 - + i£) = P2 - + i£ ( - i) P2 - + i£ · 

In terms of the renormalized (!Pl) Green's functions, we can write 

rk">(p;; A,µ)= z12r<n>(p;; A0 , µ0 ) 

P;; A,µ)= z;;, 1 p;; Ao, µo)-

(3.26) 

(3.27) 

(3.28) 

(3.29a) 

(3.29b) 
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After substituting (3.29) into (3.26) and using the following relation 

i3 <•> • [i3µ 2 a i3A. a J <•> • 
aµ6 r R (Pb A.,µ)= aµ6 aµ2 + oµ6 aA. r R (p;, A.,µ), (3.30) 

we have the Callan-Symanzik equation in A.¢4 theory 

[µ :µ + /3 :A. - ny J A.,µ)= - p;; A.,µ) (3.31) 

where IX, /3, and y are dimensionless functions 

/3 = 2µ2 oA./oµ6 
i3µ2 /8µ6 

2 8 ln Zq,/8µ6 
y = µ 8µ2/i3µ6 

8Zq,2/8µ6 
IX= . 

i3µ2/i3µ6 

(3.32) 

(3.33) 

(3.34) 

The function IX is related toy: for n = 2 we have the normalization conditions 
(3.6) and (2.164) 

r (R2 )(0,· 1 , µ) = 1°µ 2 and r< 2 l (0 0· 1 µ) 1 A q,t R , , A, = . (3.35) 

Hence, from eqn (3.31), 

IX=2(y-l). (3.36) 

Since the renormalized quantities and are both cut-off independent 
to all orders in A., we expect that the functions IX, /3, and y are also cut-off 
independent. To see this explicitly we set n = 2 in (3.31) and differentiate 
with respect to p 2 

[ !__ /3 .!3_ - J (2) • 1 - - • 2 (2) • µ 8µ + aA. 2y 8P2 r R (p, A,µ) - 1µ IX 8P2 r <P'R(o, p, A.,µ). 

(3.37) 
Set p 2 = 0 and use the normalization condition (3.7) 

ar<J>(p2; A., µ)I = -1. 
op p2=o 

(3.38) 

Then (3.37) turns into 

Y = µ2(1 -y) [8a2 A.,µ)] . 
p p2=0 

(3.39) 

This demonstrates that y is cut-off independent. Every function except f3 in 
(3.31) is now independent of the cut-off; hence f3 is also cut-off independent. 
Since, IX, /3, and y are dimensionless, the cut-off independence implies that 
they are functions of the dimensionless coupling constant only, i.e. IX = 1X(A.), 
f3 = f3(A.), and y = y(A.). 

In practical calculations of a, /3, and y it is convenient to use the cut-off (A) 
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dependence of the renormalization constants Z 4 , Zq, as follows. In un­
renormalized perturbation theory with unrenormalized Ao and µ0 , the 
renormalized parametersµ and A, defined in (2.51) and (2.50), 

µ2 = µ'fi + ()µ2 (3.40) 

and 
A= ZA0 (3.41) 

with 

(3.42) 

are functions of A0 , µ0 , and A. From dimensional argument, A and the Z;s 
can depend only on dimensionless quantities like Ao and A/ µ0 . If we further 
replace µ0 byµ= µ(A 0 , µ0 , A), we have A= A(A0 , A/µ) and Z; = Z;(A0 , A/µ). 
Using the chain rule of differentiation 

a I aµ 2 a I 82 A(A0 , A/µ) = 82 :iz A(A0 , A/µ) , 
µo 1U0 µo l µ A. -lo 

(3.43) 

we have 
a 

/3 = µ oµ [A(Ao, A/µ)]A,Ao 

a -
= µ oµ [Z(Ao, A/µ)Ao]A,;. 0 

a -
= -A0A oA [Z(A0 , A/µ)]µ,Ao (3.44) 

or 

(3.45) 

Similarly, we obtain 

(3.46) 

This means that to calculate the Callan-Symanzik f3 and y functions we only 
need to know the In A term in the Z;s. At the one-loop level we have (eqn 
(2.100)) 

Hence 

3Ao A 2 2 
Z 1 = 1 +--2 ln-2 + 0(A0 ) 

11, 32n µ 

Zq, = 1 + O(A'fi). 

/3(A) = 136A;2 + 0(A3) 

y(A) = O(A2). 

(3.47) 

(3.48) 

The generalization of the Callan-Symanzik equation to Green's functions 
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involving several composite operators A, B, C ... can be carried through in a 
straightforward manner. First we choose the appropriate linear combination 
of operators such that they are multiplicatively renormalizable (see §2.4). 

{G<n> } = z-1 z-1 z-n12{G<n> } 
AB ... R A B • • · <f> AB ... 0 (3.49) 

or 

{ r(n) } = z-1 z-1 zn!2 {r(n) } 
AB ... R A B · · · </> AB ... O· (3.50) 

The Callan-Symanzik equation can be readily shown to be 

[µ :µ + f3 :A - ny + YAB J JR = - }R (3.51) 

with 

Weinberg's theorem on the asymptotic behaviour of Green's function 

The large-momentum or short-distance behaviour of Green's function is 
clearly of great interest. It is related to the renormalizability properties of the 
theory. An important theorem here is the one due to Weinberg (1960). It 
concerns this behaviour for nonexceptional values of momenta in the 
Euclidean region. In the Euclidean region all momenta are space-like, pf < 0, 
which can be realized most easily by having real space and imaginary time 
components. A momentum configuration p 1 , p 2 , ..• , Pn is said to be 
nonexceptional if no nontrivial partial sum vanishes, P; 1 + P; 2 + ... P;k = 0 
for i 1 , i 2 , ... , ik take on any of the labels, 1, 2, ... , n. (A trivial partial sum 
which vanishes would be p 1 + p 2 + ... Pn = 0 because of the overall energy­
momentum conservation.) 

Again we state without proof Weinberg's theorem. If the momenta are non 
exceptional and parametrized as P; = CJk;, the IP! Green's function rW> grows 
in the deep Euclidean region (corresponding to CJ --> oo with k;fi.xed) as CJ4 -n 

times polynomials in In (J to any finite order in the coupling A. Similarly 
grows as CJ 2 - " times polynomials in In CJ. 

We note that the powers of (J for and nn,>R are just their superficial 
degrees of divergence (see Chapter 2), which are also their (nai"ve) dimensions 
in unit of the mass. 

For convergent diagrams it is not difficult to understand this result 
intuitively. For a nonexceptional external momentum configuration, the 
hard momenta must flow through the internal loops and set the scale for the 
loop integration momenta as well. (For an exceptional momentum configura­
tion this need not be true.) This explains why the same degrees of divergence 
appear in our study of the large internal momentum limit and of the large 
external momentum limit. For divergent diagrams the result stated by 
Weinberg's theorem may not be so obvious. One would expect that the 
ultraviolet portion of the integration would be controlled by the cut-off A 
even for hard external momenta. However, the cut-off-dependent part is 



74 Renormalization group 3.1 

cancelled when the necessary counterterms are included. The surviving 
leading contribution again corresponds to the portion of the loop integration 
with momentum of the same order of magnitude as the hard external 
momenta. To illustrate this remark, consider the one-loop four-point 
function in Fig. 2.5, 

I d4[ 

r,...., [(I - p)2 _ µ1J[l2 _ µ1J · (3.52) 

In the three integration regions, we haver ,...., In A for l » p; r "' In p for l "' p; 
r ,...., p- 2 for l « p. After the inclusion of the counterterm of Fig. 2.9(c ), the In A 
term is cancelled and replaced by some term constant in p. Thus the dominant 
asymptotic behaviour comes from the region of integration where l ,...., p. This 
is why the power of u in the asymptotic behaviour is the same as the superficial 
degree of divergence. In this particular case, we have D = 4 - n = O; we 
expect from Weinberg's theorem the asymptotic form r = (u0) x 
(polynomial in In u). This agrees with the estimate given above. 

We note that, in the deep Euclidean region, particles are very off their mass 
shell Pt » µ 2 • Nevertheless, as we shall see later in Chapters 7 and 10, in cases 
such as deep inelastic lepton scatterings we can still extract useful infor­
mation with the help of the operator product expansion. 

Weinberg's theorem tells us that Green's function in perturbation theory 
takes on the asymptotic form 

(3.53) 

with the constants ai and bi unspecified. Thus, it leaves open the question as 
to what the power series in polynomials ofln u sums up to. If this sums up to 
some power of u, say uY, then y will be called the anomalous dimension as it 
modifies the canonical behaviour u4 -n to u4 -n-y. Clearly, we would like to 
learn all we can about the anomalous dimension y. 

The asymptotic solution of the renormalization-group equation 

Ifwe can ignore the inhomogeneous term on the right-hand side of eqn (3.31) 
involving mass insertions, the Callan-Symanzik equation can provide 
information on the asymptotic behaviour of Green's function. As it relates 
quant1t1es of different orders in the coupling (µ(8/8µ)"' 0(1), 
[3(8/8).) "' 0().), and y is of even higher order), the equation can be viewed as 
some kind of recurrence relation among the ais and bis of (3.53). Thus the 
asymptotic solution of the Callan-Symanzik equation should be relevant to 
the study of the true large-momentum or short-distance behaviour of Green's 
function. In other words, this renormalization-group equation sums up all 
the leading logarithmic terms to all orders of the perturbation series. 

From Weinberg's theorem we have » to any finite order of A in 
the deep Euclidean region (u oo). Ifwe assume that this is true even when 
the perturbation series is summed to all orders, we can then drop the right­
hand side of the Callan-Symanzik equation (3.31) and obtain a homo-
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geneous differential equation 

[ 8 8 J µ 8µ + /3().) 8A. - ny(A.) A.,µ) = 0 (3.54) 

where is the asymptotic form ofrl;'>. Thus in the deep Euclidean region, a 
small change in the mass parameter (the µ(8/8µ) term) can always be 
compensated for by an appropriate small change in the coupling (the f3(8/8A.) 
term) and an appropriate small rescaling of the fields (the -ny term). 

First we replace the change in mass parameter trivially by the correspond­
ing change in the scale parameter. From dimensional analysis we can write 

A.,µ) = µ4-nf\;'l(p;/µ, A.) 

where f\;'1 is dimensionless and satisfies 

( 8 8 )-(n) -µ 8µ +<I 8(J rR (<Ip;/µ,A.)- 0. 

We have from (3.55) and (3.56) 

[µ :µ + (J :(J + (n - 4)] A.)= 0. 

(3.55) 

(3.56) 

(3.57) 

The asymptotic form of the Callan-Symanzik equation can be written 

[(J :(J - /3(A.) :A.+ ny(A.) + (n - 4)] A.,µ)= 0. (3.58) 

To solve this equation we first remove the nonderivative terms with the 
transformation 

). 

Thus, 

r (n)( 1 ) 4-n [ J y(x) d Jp(n)( 1 ) 
as <Ip;, 11., µ = <I exp n /3(x) x <IP;, 11., µ . 

0 

(3.59) 

[ 8 8 J <n> <I 8<J - /3(A.) 8A. F (<Ip, A.,µ)= 0. (3.60) 

For convenience, define t = In <I. We need to solve 

(3.61) 

In order to do this we introduce the effective, or running, coupling constant I 
as the solution to the equation 

dI(t, A.) = /3(I) 
dt 

(3.62) 

with the boundary condition I(t = 0, A.) = A.. To obtain another form of 
(3.62) we first integrate it with respect to t 

X(t,J.) 

t = J dx/f3(x), (3.63) 

). 
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then differentiate both sides with respect to Jl 

I dI 1 
o = /3(X) dll - f3(Jl) 

or 

[ a a]_ 
at - f3(Jl) all JL(t, Jl) = 0 · (3.64) 

Thus if F1"> depends on t and Jl through the combination of I(t, Jl) it will satisfy 
(3.61). must have the form 

A. 

Jl, µ) = u4 -" exp[ n f dx ]F<">(p;, I(t, Jl), µ). (3.65) 

0 

We can write 
A. I A. 

ex{ n f dx ]- ex{ n f dx + n f dx J 
O O I 

I 

= H(X) exp[-n f dx J 
A. 

I 

= H(X) ex{ -n f y(X(t', Jl)) dt'] (3.66) 

0 

where 
I 

[ f y(x) J 
H(X) = exp n f3(x) dx · 

0 

Thus, we have 
I 

Jl, µ) = u4 -" exp[ -n f y(X(x', Jl)) dx'] H(X(t, Jl))F1">(p;, I(t, Jl), µ). 

0 

(3.67) 

If we set t = 0 (u = I) in eqn (3.67), we see that the combination 
H (I)F(n)(I) is just Therefore, 

I 

Jl, µ) = u4 -" exp[ -n f y(X(x', Jl)) dx'] X(t, Jl), µ). (3.68) 

0 

In this form the asymptotic solution has a simple interpretation. The 
effect of rescaling the momenta P; in the Green's function is equivalent to 
replacing the coupling constant Jl by the effective coupling constant I, apart 
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from some multiplicative factors. The first factor u4 -n in (3.68) is the 
canonical dimension coming from the fact that has dimension 4 - n in 
units of mass. The exponential factor in (3.68) is the anomalous dimension 
term which is the result of summing up the leading logarithms in 
perturbation theory. This factor is controlled by the y-function. Thus y is 
often called the anomalous dimension (Wilson 1971). 

The result in this section may be viewed as follows. The expectation that in 
the large-momentum limit masses become negligible and theory should be 
scale-invariant is too simple. Even without physical masses the renormaliz­
able theory still has an energy scale as we must always impose normalization 
conditions at some mass scale. Thus naive dimension analysis is generally 
inadequate and scale invariance is broken. However the dependence of the 
theory on this normalization mass scale is given by the renormalization­
group equation which expresses the effect of a small change of scale. In 
favourable cases when the inhomogeneous term in the Callan-Symanzik 
equation may be dropped the solution indicates that the asymptotic 
behaviour displays a certain universal character with operators being 
assigned anomalous dimensions. 

3.2 The minimal subtraction scheme and its renormalization-
group equation 

In this section we will illustrate other forms of the renormalization-group 
equation. Again let us examine the multiplicative renormalizability statement 
(3.29a) which may be written as 

(3.69) 

lfwe regard the bare parameters A.0 , µ0 , <Po as independent variables, then the 
renormalized quantities are functions of these bare parameters and the 
normalization scale parameter K. In this form, the right-hand side of (3.69) 
depends on K explicitly as well as implicitly through the definitions of A. and µ. 
However the left-hand side is independent of K; we then have 

[ o o o J KOK + /3 oA. + Ymµ oµ - ny = 0 (3.70) 

with 

f3 A,- = K-( µ) oA. 
K OK 

(3.71) 

( µ) olnµ 
Ym =Kai( (3.72) 

Y( Ko In z"'. 
K 2 OK 

(3.73) 

Compared to the Callan-Symanzik equation (3.31), this renormalization­
group equation has no inhomogeneous term to begin with. We will try to 
approach it with a procedure similar to that used in solving the asymptotic 
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form (3.54) of the Callan-Symanzik equation. But the coefficients /3, Ym, and 
y are now dimensionless functions of two variables A. and µ/K which makes 
the solution difficult. However, in contrast to the momentum subtraction 
schemes discussed in §3.1, there exists a mass-independent renormalization 
procedure in which the mass dependences of these renormalization group 
equation coefficients disappear. We now give an outline of this subtraction 
scheme due to 't Hooft (1973); see also the discussion in Ramond 
(1981). 

Minimal subtraction scheme 

This renormalization procedure is particularly suitable for dimensional 
regularization. Here the divergences show up as poles when the dimension 
n ---> 4. The minimal subtraction scheme consists of adding counterterms to 
cancel these poles. In other words, the counterterms have no finite parts. 

As an example, consider the one-loop self-energy (Fig. 2.4) in A.¢4 theory. 
In momentum subtraction schemes of §3.1 the presence of the arbitrary mass 
scale K is obvious (e.g. as the normalization point). In the dimensional 
regularization one also needs to introduce a mass scale K to compensate for 
the na·ive dimensions of coupling constants and masses: A.---> (K)4 -"A. and 
µ ---> Kµ. We have 

-iL( 2 ) = -iA.K' i 
p 2 (2n)" /2 - µ 2 

= -- = -- re - 1 + s/2) - 2'n'12 - iAK' n"12r(I - n/2) - iA.µ 2 (K)' 
2(2n)" µ2 - n 32n2 µ 

(3. 74) 

where 
s = 4-n. (3. 75) 

To make an expansion around s = 0, we use the formulae 

( -1 )" [1 J r(-n + s) = -- - + t/l(n + 1) + O(s) 
n! s 

(3. 76) 

a' = e' In a = 1 + f, In a + 0( s2 ) (3. 77) 
where 

1 1 
t/l(n + 1) = 1 + 2 + ... - y 

and y = 0.5772 ... is the Euler constant. Thus ass---> 0, eqn (3.74) becomes 

-iL(p2 ) ___. + t/1(2) + 2 ln(K/µ) + 2 ln 2.jn + O(s)]· (3.78) 
32n s 

Thus the counterterm L(0)</J2 /2 to be added, as in eqn (2. 62), in the minimal 
subtraction scheme is 

A.µ2 1 
/),,!£' 2 = -- - ¢2. 

"' 32n2 s 
(3. 79) 

This is to be contrasted with the counterterm (A.µ 2 /32n 2 )[1/s + tt/1(2) + 
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ln(K/µ) + ln 2.Jn]¢ 2 that one would have added in the momentum subtrac­
tion schemes. Thus the minimal subtraction counterterm Lagrangian when 
expanded in a Laurent series in i; will contain only divergent terms. The 
relations between the physical A., µ, and ¢ and the bare parameters are 

A. 0 = K{ A.+ J1 a,(A.)/i;' J (3.80) 

µ 0 = K[ 1 + b,(A.)/i;' J (3.81) 

<Po = <t>[ 1 + c,(A.)/i;' J = ¢z;; 112 . (3.82) 

Thus the coefficients, reflecting the same property of the counterterms, are 
independent of the arbitrary parameter Kand (since they are all dimension­
less) the particle massµ. Hence this minimal subtraction scheme is also called 
the mass-independent renormalization procedure. One can easily understand 
this feature as the counterterms have no finite part; they just have the 'bare­
bone' structure needed to cancel the infinities at very large momenta where 
the theory is not sensitive to its masses (provided the amplitude are well­
behaved as p --> oo ). 

To calculate the renormalization-group parameters of eqns (3.71}-(3.73), 
we use the fact that the bare quantities are independent of K. Thus, from 
(3.80), 

cA. + ( ai + K + J1 K + a,+ 1 J = 0. (3.83) 

Since K(8A./8K) is analytic at i; = 0, we can write 

a2 z 
K aK = d0 + d1c, + d2i; + .... (3.84) 

From (3.83), it is clear that d, = 0 for r > 1 and 

( da1) '\'l[ da, da,+ 1 ] i;(A. +di)+ a 1 + d0 + d1 CU + 1;'-;f a,+ 1 +do dI + d1 = 0 

which implies that 

Thus, 

(A.+ di)= 0 

da 1 
a 1 + d 1 CU = - do 

aA. da1 
K - = -a + A. - - A.c, 

8K 1 dA_ 

(3.85) 

(3.86) 
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or 

(3.87) 

We also have 

(I - .le :.le) [a,+ 1 (.le) - a 1 (.le)] = :.le a,(.lc). (3.88) 

Similarly, we have, from (3.81), 

Y = Ko ln µ = .le db1 . 

m OK d)c 
(3.89) 

.le db,+ 1 = b .le db 1 _db, (l (.le) 
d.lc r d.lc d.lc d.lc a 1 

(3.90) 

and, from (3.82), 

y =!Ko ln Z"' =.le dc1 

2 OK d)c 
(3.91) 

dc,+ 1 dc1 de,( d) 
c,.lcdf-dI I -A d.lc a 1(.lc). (3.92) 

Thus eqns (3.87), (3.89), and (3.91) enable us to calculate /3, Ym, and y directly 
from the residues of the simple poles a 1 , b1 , and c1 . The recursion relations 
(3.88) and (3.90) are useful in computing the residues of the higher-order pole 
terms in terms of the simple pole. (This is the same reason why the leading 
logarithms, the next-to-leading logarithms, etc. can be calculated to all 
orders by using the renormalization-group equation with the computation of 
just a few low-order terms.) Here we will just make a simple check that the /3-
function result agrees with previous calculation. From eqns (2.50), (2.63), 
and (2.123) we have 

with 

z"' = 1 
.1c2 1 

.lcZ<I> =.le - ir(O) =.le+ 16n2 

Thus, a 1 being quadratic in A, .lc(daifd.lc) = 2a1 and 

3)c2 

/3 = a1 = l6n2 

which agrees with (3.47). 

(3.93) 

(3.94) 

The fact that /3, y, and Ym in this subtraction scheme are functions of A only 
will simplify the solution to the renormalization-group equation (3. 70). The 
procedure will be similar to the steps of eqns (3.55)-(3.68). From dimensional 
analysis, eqn (3. 70) can be written as 

[cr :CJ - /3(.lc) :A - (Ym - 1) :µ + ny(.lc) + (n - 4)] r<;>(crp;, µ,A, K) = 0. 

(3.95) 
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To solve (3.95) we now introduce not only an effective coupling constant I(t), 
but also an effective mass iJ.(t) (with t =In u as before) 

with boundary conditions 

dX(t) = f3(I) 
dt 

d;J.(t) -dt = [ym(A.) - l]µ(t) 

X(t = 0) =.A. 

iJ.(t = 0) = µ. 

The solution to eqn (3.95) may be written down: just as eqn (3.68), 

t 

(3.96) 

(3.97) 

(3.98) 

(3.99) 

µ,A, K) = u4-n ex{ -n I y(I(t')) dt'] iJ.(t), I(t), K). 

0 

In this formulation the large-momentum limit (3.54) and the validity of the 
asymptotic solution (3.68) hinge on whether or not the effective mass iJ.(t) 
vanishes in the deep Euclidean limit t -+ oo. 

We should remark that in the momentum-subtraction schemes of§3.l, one 
can also introduce the arbitrary mass scale µ as the subtraction point to 
derive a homogeneous renormalization-group equation (Weinberg 1973a). 
But then the functions y, /3, Ym will depend on (m/µ) in addition to depending 
on the coupling constant .A.. This will cause some difficulty in solving the 
renormalization-group equation. In practice one can get around this by 
choosing the subtraction point µ large enough so that the dependence on 
(m/µ) of y, /3, and Ym can be neglected. 

3.3 Effective coupling constants 

Apart from the trivial dimensional factor u4 -n, the Green's function 
up;, )., µ) in the deep Euclidean region with u -+ oo (or e1 -+ oo) depends 

on u only through the effective coupling constant I(t, .A.), which we will 
concentrate on in our study of the asymptotic behaviour of Green's function. 

As we discussed in §3.l, the definition of the coupling constant). depends 
on the subtraction point. For example in the intermediate renormalization 
scheme, the four-point function in the .A.¢4 theory is given by eqn (2.42), 

(3.100) 

where f(s, .A.) is given by eqn (2.86), and .A.1 is the coupling constant defined in 
the intermediate renormalization scheme. The cross-section for two-particle 
elastic scattering is related to the four-point function by 

du = _l _ ! 1r(4Jl2. 
dn 64:n:2 s 

(3.101) 
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But in the on-shell renormalization scheme the coupling is defined differently 
with the four-point function expanded around the symmetric point 
s = t = u = 4µ 2 /3. 

n4 >(s, t, u) = -iAs + i\(s, As)+ f's(t, As)+ f's(u, As) (3.102) 

where 

f's(s, As)l.= 4 ,,213 = 0 and n4 >(s = t = u = 4µ 2/3) = -iA.s. 

Since the cross-section (3.101) should be the same in these two schemes of 
renormalization, we have 

rj4l(s, t, u) = n4>(s, t, u). (3.103) 

Evaluating both sides at the symmetric point, s0 = t0 = u0 = 4µ 2/3, eqn 
(3.103) implies 

-iAs = -iA1 + f(s0 , Ai) + f(t0 , Ai) + f(u0 , Ai). 

This gives the relation between coupling constants defined by different 
subtraction schemes. Clearly the subtraction point can be taken at any point 
in the physical or unphysical region. And the coupling constant in any 
renormalization scheme should be regarded as a function of the subtraction 
point. In this sen.se the coupling constant is energy-dependent and is called 
the effective, or the running coupling constant. 

There is another way to look at the running coupling constant. It simply 
reflects the effect of the leading radiative-correction terms. In perturbation 
theory the effective expansion parameter is actually the coupling constant 
multiplied by some logarithmical factors. Normally one picks the normaliza-' 
tion point to be of the same order of magnitude as the typical momentum 
scale of the problem. The argument of the logarithm, which is typically the 
ratio of these scale factors, is then generally of order one. However, for a 
problem involving a large range of energy scale, the radiative correction 
through these large log factors can be substantial. The solution to the 
renormalization-group equation simply represents the summation of these 
logarithmic factors to all orders of perturbation theory. 

The running coupling constant I satisfies the differential equation (3.62) 

dX(t, A) = p(A) 
dt 

or more explicitly as a renormalization-group equation (3.64) 

(:t - p :A) X(t, A) = 0. 

(3.104) 

(3.105) 

Thus the change in the effective coupling X induced by the change in energy 
scale is governed by the renormalization-group P-function. To study the 
asymptotic behaviour ofA let us suppose that P(A) has the form shown in Fig. 
3.1. The points 0, A1 , and A2 where p vanishes are called.fixed points. If the 
coupling constant A is at any one of these points at t = 0, it will remain there 
for all values of momenta. Furthermore, we can distinguish two types of 
fixed points. Consider the neighbourhood of A1 . Because p().) > 0 for 
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0 <Jc< Jc 1 , the effective coupling constant X in (3.104) increases with 
increasing momenta (i.e. dX/dt = j3(t) > 0) and is driven to Jc 1 , as t ---+ oo. As 
j3(Jc) < 0 for A1 < A < Jc 2 , it decreases with increasing momenta and is again 
driven to Jc 1 . Thus in the interval 0 < A < Jc 2 , the coupling constant Jc is always 
driven to A1 for large momenta. A1 is called an ultraviolet stable.fixed point. By 
similar argument it is straightforward to see that in the neighbourhood of 0 
and Jc 2 the coupling will be driven to these points for small momenta, i.e. as 
t ---+ 0. Hence the origin and Jc 2 are examples of infrared stable fixed points. 

/3 ().) 

FIG. 3.1. An example of the Callan-Symanzik /3-function exhibiting an ultraviolet stable fixed 
point at -1. 1 and infrared stable fixed points at 0 and -1. 2 • The direction arrows indicate how the 

coupling constant will move for increasing momenta. 

Now we can study the asymptotic solution of the Callan-Symanzik 
equation. Suppose 0 < Jc < Jc 2 . Then 

Jim X(t, Jc) = Jc 1 (3.106) 
00 

and 

(3.107) 

For purposes of illustration let us assume that j3(Jc) has a simple zero at Jc 1 
and that y(Jc1) does not vanish; then we have in the neighbourhood of Jc 1 

j3(Jc) a(Jc1 - Jc) with a> 0. (3.108) 
From 

(3.109) 

we obtain 
(3.110) 

Thus for (3.108) the approach of X to A1 is exponential in the variable t. In the 
same approximation, we have 

t x 

I - I y(y) dy 
y(Jc(x, Jc)) dx = j3(y) 

0 A 

-y(Jc1) I dA' 
a A' - Jc 1 

!. 

(3.111) 
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Thus the particular realization of (3.68) takes on the form 

(3.112) 

This means that in the deep Euclidean region, the field scales with anomalous 
dimension y(A. 1 ) and Green's function takes on a value with A. replaced by A. 1 . 

In general it is difficult to calculate the zeros of the P-function since this 
requires results beyond perturbation theory. However {J(A.) has a trivial zero 
at the origin A. = 0, where the anomalous dimension y(A.) also vanishes. 
Besides the practicality of calculating /J(A.) for small A. it turns out that this 
may have particular phenomenological relevance. As we shall discuss in 
Chapter 7 deep inelastic lepton-hadron scattering probes the large­
momentum behaviour of products of hadronic electromagnetic (or weak) 
currents. The observed phenomena of Bjorken scaling can be interpreted as 
indicating that the product of these currents has the free-field singularity 
structure. Hence, if we can find a field theory which has an ultraviolet stable 
fixed point at the origin A. = 0, it may be taken as a candidate theory for the 
hadron constituent (quark) interactions. In other words, the Bjorken scaling 
phenomena in deep inelastic lepton-hadron scattering may be explained if 
the effective interaction among quarks vanishes in the short-distance limit. 
This suggests that a theory of quark interactions should have the feature that 
it become a free-field theory in the ultraviolet asymptotic limit (asymptotic 
freedom) and one needs to calculate the /J-function and to see whether /J(A.) < 0 
for A. <: 0. 

For A.¢ 4 theory, from (3.47) we see that it is not ultraviolet asymptotically 
free. More explicitly we can integrate (3.104) 

to obtain 

dX 3A.2 

dt - 16n2 

A. 
X=----

3A. 
1---t 

16n2 

(3.113) 

(3.114) 

where A.= X(t = 0, A.). Of course (3.113) and (3.114) are valid only for small 
X. We have dropped higher-order terms in X. Had it been applicable for large 
couplings also, eqn (3.114) would predict that interaction strength would 
blow up at the 'Landau singularity' of t = 16n2 /3A.. 

The P-functions for other theories will be discussed in Chapter 10. It will be 
shown in particular that no theory without a non-Abelian gauge field can be 
asymptotically free. 

We can summarize this introduction of the renormalization group and its 
effective couplings as follows. The aim of the renormalization-group 
approach is to describe how the dynamics of a system evolves as one changes 
the scale of the phenomena being observed. Generally one is particularly 
interested in the behaviour of the system at extremely small (ultraviolet) or 
extremely large (infrared) limits of the scale. These renormalization-group 
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transformations (of the effective theories at different scales) after some 
iterations often have the property of approaching a fixed point in these limits. 
The attractive feature is that the behaviour of effective theory at the fixed 
point is relatively insensitive to details of the theory at ordinary length scales 
and in some cases these fixed-point effective theories are particularly simple 
to calculate. 



4 Group theory and the quark 
model 

Ever since Einstein, symmetry has played a fundamental role in theoretical 
physics. In this chapter and the next one, we shall discuss the more familiar 
subject of global symmetry. The notion of local gauge symmetry with its 
space-time-dependent transformation will be introduced in Chapter 8. Such 
gauge symmetries can be used to generate dynamics, the gauge interactions. 
The natural mathematical language of symmetry is group theory. After the 
development of quark models and non-Abelian gauge theories of strong and 
electroweak interactions, some knowledge of Lie groups has become 
indispensable for anyone interested in the study of elementary particle 
theory. Here we shall present a practical introduction to the subject. It begins 
with a mathematical preliminary section composed mostly of definitions and 
illustrative examples. Our approach is informal. The basic notions intro­
duced here are for group theory as applied in practice in particle physics. The 
groups SU(2) and SU(3) are studied with elementary techniques and 
supplemented with graphic methods in §4.2. The tensor method which is 
appropriate for the general SU(n) groups is presented in §4.3. The physical 
realization of the flavour symmetry SU (3) of strong interactions is the quark 
model which is briefly studied in §4.4. 

4.1 Elements of group theory 

A group G is a set of elements (a, b, c, ... ) with a multiplication law having 
the following properties. 

(i) Closure. If a and b are in G, c =ab is also in G; 
(ii) Associative. a(bc) = (ab)c; 

(iii) Identity. There exists an element e such that ea= ae =a for every a 
in G; 

(iv) Inverse. For every a in G, there exists an element a- 1 such that 
aa- 1 = a- 1a = e. 

Also, if the multiplication is commutative-ab = ba for all a and b in G, G is 
an Abelian group. If the number of elements in G is finite, it is a.finite group. A 
subgroup is a subset of G, which also forms a group. 

Here are some examples. The cyclic group of order n, Zn, consists of a, a2 , 

a3 , •• ., an = e (identity). It is a finite Abelian group. The symmetric group (or 
permutation group), Sn, being the set of all permutations of n objects is a finite 
non-Abelian group. The unitary group, U(n), is the set of n x n unitary 
matrices: uut = utu = 1. It is non-Abelian for n > 1. The Abelian group 
U(l) consists of 1 x 1 unitary matrices, i.e. they are phase transformations 
eid. The group of n x n unitary matrices with a unit determinant is called the 
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special unitary group, SV(n). Similarly, SO(n) is the group of n x n 
orthogonal matrices: AAT =AT A = 1 with unit determinant. Thus S0(3) is 
just the familiar rotational group. 

Given any two groups G = {g1 , g2 , •• • } and H = {h1 , h2 , •• • }, if the gis 
commute with the his, we can define a direct-product group G x H = {gihi} 
with the multiplication law 

(4.1) 

Examples of direct-product groups are SU(2) x U(l) (the group consists of 
elements which are direct products of SU(2) matrices and the U(l) phase 
factor) and SU(3) x SU(3) (the group consists of elements which are direct 
products of matrices of two different SU(3)s). These groups will play an 
important role in the application of group theory in particle physics (see 
Chapters 5 and 11 ). If we can write a group as a direct product of smaller 
groups, the study of group structure will be greatly simplified. To see whether 
this decomposition is possible, it is useful to introduce the notion of an 
invariant subgroup, which is the subgroup N such that for any element tin N 
then rtr- 1 is still in N for all r in G. Thus each component of a direct­
product group is an invariant subgroup. If the group does not contain any 
non-trivial invariant subgroup, i.e. it cannot be written as a direct-product 
group, it is a simple group. SV(n) is such an example, but U(n) is not because 
it can be written as SU(n) x U(l). The groups which are a direct product of 
simple groups without any Abelian factors are called semi-simple groups. 

A representation is a specific realization of the multiplication of the group 
elements by matrices. Thus, it is a mapping of the abstract group elements to 
a set of matrices a-+ D(a) such that, if ab= c, then D(a)D(b) = D(c), i.e. the 
group multiplications are preserved. Thus properly speaking the above 
definitions of the groups U(n) and SU(n) are given in terms of their defining 
representations. Also note that the permutation operations of Sn may be 
represented by a finite number of n x n matrices. If a representation D(a) can 
be put in block-diagonal form, i.e. if there exists a non-singular matrix M, 
independent of the group elements, such that 

f D,(a) O ] for all a in G, (4.2) 

D(a) is called a reducible representation. It is denoted by a direct sum 
D1 (a) EB D2 EB .... If this cannot be done, D(a) is said to be irreducible. We 
can consider the matrices D(a) as linear transformations on a set of basis (or 
state) vectors. The dimension of a representation is just the dimension of the 
vector space on which it acts. The reducible representation means that a 
subset of states is never connected to other states and in irreducible 
representations all states are connected with each other through group 
transformations. 

Of particular relevance to physical applications are the Lie groups, which 
we shall first define narrowly as continuous groups (having elements labelled 
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by continuous parameters such as the Euler angles for the rotation 
group S0(3)) with representations by unitary operators. Let 
a(O) = a((} 1 , e2 , •• • , (}n) be the group elements labelled by n continuous real 
parameters. The identity element is taken to be e = a(O). The group 
multiplication a(O)a(<!>) = corresponds to the mapping of the parameter 
space on to itself 

f(O, <!>) = (4.3) 

which satisfies the requirements of 

f(O, 9) = f(O, 0) = 9, f(O, f(<I>, = f(f(O, (4.4) 

and f(O, 9') = 0 if a(O)- 1 is parametrized as a(O'). This is a Lie group if the 
function fin (4.3) is an analytic function (or continuously differentiable) with 
respect to its variables. Thus we can use the usual analytic methods in 
abstract group space when dealing with Lie groups. Also, since trans­
formations in quantum mechanics are unitary operators in Hilbert space we 
are particularly interested in those Lie groups with unitary representations 

a(O) = exp{iO · X} = a(O) + i(}k:X,, + ... (4.5) 
where 

. oa I Xk= -1- (4.6) 

are called the (infinitesimal) group generators. For unitary a(O), the Xk are a 
set oflinearly independent hermitian operators. For example, when a((}) is an 
element of the S0(2) group, the group of two-dimensional rotations, the 
generator is simply the Pauli matrix 

(4.7) 

Define the commutator of two group elements a(<!>) and a(O), lying near 
the identity, as a(<!> )a(O)a(<I> )- 1a(0)- 1 . This product should also be a group 
element, call it must be a function of 9 and q,, 

= g;(O, <I>) with g(O, <I>) = g(O, 0) = 0. 

For small 9 and <I> we can expand g;(O, <I>) in powers of(}; and ¢;, 

= A1 + + + qkei<{Jk + + C}kcPicPk + · · · · 
The boundary conditions in (4.8) imply that 

or 

When we equate 

= e + + ... 
to 

(4.8) 

(4.9) 

( 4.1 Oa) 

(4.lOb) 
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we have the Lie algebra 

( 4.11) 

The C}ks, called the structure constants of the group, are a set of real numbers 
with 

(4.12) 

For example, the generators of the rotation group in three dimensions S0(3) 
are just the angular momentum operators 11 , 12 , and 13 . They satisfy the 
commutation relation 

(4.13) 

where eikl is the totally antisymmetric Levi-Civita symbol with e123 = 1. 
If the D(a)s form a representation of the group, the D*(a)s form the 

complex conjugate representation, since D(a 1 )D(a2 ) = D(a 1a2 ) implies 
D*(a 1)D*(a2 ) = D*(a 1a2 ). From (4.6) we have the representation matrix of 
the generators = 1), 

D(a(9)) = exp{i9·T} (4.14) 
with 

( 4.15) 

Clearly the - Tjs also form a representation of the generators. If 1j and 
- Tj are equivalent, i.e. if there exists a nonsingular matrix S such that 

SIJS- 1 = -Tj for all}, (4.16) 

then the Ti is called a real representation. As we shall see below in §4.2, all 
irreducible representations of SU(2) are real; some properties of real 
representations will also be discussed in §4.2. 

From the Jacobi identity 

[Xk, Xi]] + [Xi, Xk]] + [Xk, [Xj, = 0 

and ( 4.11 ), we have the relation among structure constants 

Cfi,C?m + + Ck'1Cfm = 0. 

We can define a set of matrices 

(4.17) 

(4.18) 

( 4.19) 

which satisfies the commutation relation of ( 4.15). Thus the structure 
constants also generate a representation of the algebra, the adjoint represen­
tation. It has dimension equal to the number of real parameters necessary to 
specify a group element. 

For the semi-simple group (i.e. one having no U(l) invariant subgroup) a 
normalization convention of the Ijs that is compatible with the nonlinear 
commutation relation ( 4.15) is 

(4.20) 

because tr(T;T) is a real symmetric matrix and can be diagonalized by 
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taking an appropriately chosen real linear combination of the generators. The 
diagonal coefficients have been set to a constant A.. With this basis in the 
vector space of the generators, the structure constants may be written 

-i c; = T tr(Tm[Tj, Tk]) (4.21) 

which implies that C]k is totally antisymmetric in all three indices. 
Because the representation matrices of the group elements and their 

generators are related by exponentiation (4.14), many of their properties can 
be directly translated into one another. Trivially, they have the same 
dimension, etc. In the following, unless the ambiguity makes a difference, the 
term 'representation' will mean either that of the group elements or their 
generators. Also, the set of basis states of the representation is sometimes 
referred to, for brevity, as the representation. 

4.2 SU(2) and SU(3) 

The special unitary groups SU(n) are encountered repeatedly in particle 
physics theories. It is SU(2) in isospin invariance; SU(3) in 'the eightfold 
way'; the standard gauge model of strong and electroweak interactions uses 
SU(3) x SU(2) x U(l); the simplest grand unification group is SU(5). In this 
section we shall concentrate on groups SU(2) and SU(3). The subject of the 
tensor method in SU(n) is presented in §4.3. 

SU(n) is the group of n x n unitary matrices with unit determinant: 
ut U = uut = l and det U = 1. Any unitary matrix U can be written in 
terms of a hermitian matrix Has U = ei8 • From the identity det(eA) = e1•A 

and det U = l, it follows that tr H = 0. Since there are n2 - 1 traceless 
hermitian n x n matrices, an element of SU(n) can be written as 

(4.22) 

where the Bas are (real) group parameters. The las are group generators 
represented by traceless hermitian matrices. Only n - 1 of n2 - 1 generators 
::ire diagonal. We say SU(n) is a group of rank n - 1. 

The SU(2) group 

There are three group parameters. We write the 2 x 2 unitary unimodular 
matrices as 

(4.23) 

where the aas are 2 x 2 traceless hermitian matrices. We choose the basis to 
be the standard Pauli matrices. 

( 0 -i) 
<12 = i 0 ' a 3 = (1 o)· 

0 -1 
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The generators defined by l; = u;/2 will give the commutation relation 

(4.24) 

where Babe is the totally antisymmetric Levi-Civita symbol and s123 = 1. We 
then abstract this as the general Lie algebra of SU(2) and all representations 
of the generators satisfy this set of commutation relations. 

SU(2) representations. The algebra (4.24) is the same as that in (4.13). We 
say SU(2) is isomorphic to the rotation group S0(3). The standard method 
of setting up angular momentum eigenstates will be followed here to get all 
the irreducible representations of SU (2). 

First define 

J2 = lf + + (4.25) 

which is an invariant operator, a Casimir operator, commuting with all the 
generators of the group 

a= 1, 2, 3. 

Also define the raising and lowering operators 

1± = 11 ± il2 
then 

We have from (4.24) 

[J+' l_] = 213 

[1±, 13] = +1±. 

Consider an eigenstate of 1 2 and 13 with eigenvalues A. and m 

12 IA., m) =A.IA., m) 

13IA., m) = mlA., m). 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

( 4.31) 

Because of (4.30) the states l±IA., m) are also eigenstates of 13 with 
eigenvalues m ± 1, and, because of (4.26), the same eigenvalue A. 

(4.32) 

where the C±(A., m)s are constants to be determined later. For a given A, 
values of m are bounded 

A. - m2 2 0 

because J2 - = lf + 2 0. Let j be the largest value of m 

l+IA.,J> = o. 
Eqns (4.34), (4.28), and (4.29) then imply 

o = l_l+IA.,J> 

= (J2 - - l3)IA.,J) = (A. - j2 - J)IA.,J) 

(4.33) 

(4.34) 

(4.35) 
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or 
A=jU+l). (4.36) 

Similarly, let j' be the smallest value of m 

We obtain 
J _IA,j') = 0. 

A =j'U' - 1). 

(4.37) 

(4.38) 

Thus j U + 1) = j'U' - 1) which has the solutions j' = -j and j' = j + 1. 
Since second solution violates the assumption thatj is the largest value of m, 
we have 

j'=-j. (4.39) 

Since J _ lowers the value of m by one unit, j - j' = 2j must be an interger. 
This means that j can be either an integer or half-integer. To determine 
C±(A, m) in (4.32) we use 

<A, mlJ_l+IA, m) = IC+(A, m)l2. (4.40) 

because J _ = implies that <A, mil_ = C°t(A, m)(A, m + 11. We also 
have, from (4.35) 

(A, mlJ _J +IA, m) =(A, ml(J 2 - J 3 )IA, m) 

= j U + 1) - m2 - m. (4.41) 
Hence, 

C+(A, m) = [U - m)U + m + 1)] 112 • (4.42) 

Similarly, 
C_(A, m) = [U + m)U - m + 1)] 112 . (4.43) 

These states lj, m) with m =j,j- 1, ... , -j form the basis of an SU(2) 
irreducible representation, characterized by j which is either an integer or 
half-integer. Thus the dimension of the representation is 2j + 1. We can use 
the relations 

J 3lj, m) = mjj, m) 

J ±lj, m) = [U + m)(j ± m + 1)] 112lj, m ± 1) (4.44) 

to work out the representation matrices. 

Example 1. J = t, m = ±t 
J 3lt, ±t> = ±tit, ±t>. (4.45) 

If we denote 

(4.46) 

then 

(4.47) 
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From J +I!,!>= 0 and J +I!, -!>=I!,!> we have 

(4.48) 

Also, 

J_ (4.49) 

Ji= (J+ + J_)/2 = J2 = (J + - J _)/2i = !G 
(4.50) 

Example 2. J = l, m = l"O, - l. 
Denote 

(4.51) 

Then 

J3 = ( (4.52) 

0 0 -1 

From J+ll, 1) = 0, J+ll, 0) = .J2ll, l), and J+ll, -1) = .J211, 0), we 
have 

( 0 .J2 0) 
J+ = 0 0 .J2 . 

0 0 0 

(4.53) 

Then 

J _ = 
0 .J2 0 

(4.54) 

(0 1 0) 
Ji= J2 , 1 0 1 

0 1 0 

-i 

0 -n (4.55) 

It is straightforward to check that the satisfy the Lie algebra of (4.24). 

SU(2) product representations. In applications, we often need to deal with 
product representations. For example, if we have two spin 1/2 particles, we 
want to know the total spin J of the product of the two wavefunctions. In 
this simple case, the answer is J = 0 or 1. Let us study this case in terms of 
group theory. Denote the spin-up and spin-down wavefunctions of the first 
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particle by r1 and r2 • Similarly denote those of the second particle by s1 

and s2 • Under SU(2) transformation 

(4.56) 

where U(t:) = exp{ieala} and Ja = aa/2. Then the product will transform as 

(risk)= U(t:)iiU(t:)k1(ris1) = D(t:h.i1(ris1). (4.57) 

Generally D(t:) is reducible. To see what irreducible representation it 
decomposes into, it is easier to work with the generators directly by taking 
e; « 1. 

r{ = (1 + ieala);/j = (1 + iea.J<,/>);jrj 

s/, = (1 + iealah1s1 = (1 + (4.58) 

where Pa1> operates only on r; and does not affect s;; operates only on s; 

and not on r;. Define the total angular momentum operator as 

J = JOl + J<2l. (4.59) 

We now change to the more familiar notation. Let oci denote the spin-up 
wavefunction of the ith particle and /3; the spin-down wavefunction. There 
are four combinations of two-particle wavefunctions: oc1 oc2, oc 1/32 , /31 oc2, /31/32. 
Take the one with the largest value of J3 

J3(1X11X2) = + IX1(,fll>oc2) 

= (1X11X2). 

Clearly it is a state with J3 = 1. To find its J value, we use 

J2 = (JC1))2 + (J<2>)2 + 2J<l). J<2l 

(4.60) 

= J(0>)2 (JC2>)2 + + j<.!_>J<J>) + (4.61) 

to find that 

J 2(1X11X2) = 2(1X11X2). (4.62) 

This means J = 1 and we can make the identification 

11, 1) = (1X11X2)· 

We use the lowering operator J_ = J<.!_> + J<!> to reach all other states of the 
J = 1 irreducible representation 

J_(oc1oc2) = (.f<!>oc1)1X2 + 1X1(.f<!>oc2) 

= (/311X2 + IX1/32). 

On the other hand, using eqn (4.44), we get 

Lil, 1) = 0). 

Thus, 

(4.63) 

(4.64) 

(4.65) 
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Obviously, 
11, - I)= /31/32° 

The remaining independent state must be identified as 

1 
10, 0) = ,J2 (rx.1/32 - /31rx.2). 

95 

(4.66) 

(4.67) 

Again, we can check this assignment by applying eqn (4.6I). In short, the 
two-particle wavefunctions can be organized as 

II, I)= rx.1rx.2 

1 
11, 0) = ,J2 (rx.1/32 + /31rx.2) 

II, - I)= /31/32 

which is symmetric under the interchange of particles I +-+ 2, and 

I 
10, 0) = ,J2 (rx.1/32 - /31rx.2) 

which is antisymmetric under I +-+ 2. 

(4.68) 

(4.69) 

More generally the product representations Iii, m1) x li2, m2) can be 
combined into eigenstates I.I, M) of total J = J<1> + J<2> 

IJ, M) = L G1m1i2m2IJM)lj1m1)lj2m2). (4.70) 

The coefficients <i1 m1i 2 m2 IJM) are called the Clebsch-Gordon coefficients. 
Thus for the above case (eqns (4.68) and (4.69)) we have 

<!!!! 111)=1, <! -!!-! 110)= j2 ,etc. 

The procedure of working out the irreducible representations of the 
product representations can be summarized as follows. 

(1) Start with the combination of states with the largest 13 • This is also the 
state with the largest total J. 

(2) Use the lowering operator J_ = J'!.> + J<!:.> to get to all the other states 
in the same irreducible representation. 

(3) Find the orthogonal combination to IJm, Jm - I) where Jm is the 
maximum value of J in the product. This should be the state llm - I, 
lm - 1). Then use the lowering operator to reach the other J = (Jm - I) 
states. 

(4) Repeat these steps until J = li1 - i 21. 

We can also graphically represent SU(2) representations. The group is 
rank I, i.e. it has one diagonal generator; each irreducible representation j 
can be characterized by a straight-line segment with points on it denoting 
values of m (see Fig. 4. I). In a product representation the eigenvalues of the 
diagonal generators .f<l> and are additive. We can represent this addition 
graphically by repeatedly placing the centre (m = 0) of one representation, 
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say j 1 , over on every point of the other, }2 , representation (see examples in 
Fig. 4.2). As we shall see, this graphical method can be generalized to the 
rank-2 group of SU(3), where the results are less trivial and difficult to see 
without such a diagramatical aid. 

j-t -tlt Kt 
-1 0 +l 

j=I lt It K 

-t -t t i j=t lt It II K 

FIG. 4.1. Graphical representation of SU (2) multiplets. The raising (lowering) operator J + ( J _) 
moves a state to the right (left). 

t® t 
x 

:II II K=O{±)I 

I 
I@ 1 

-t t -1 0 I 
: 11-----K @ II II K : 

FIG. 4.2. 

The Reality property of SU(2) representations. We shall denote the repre­
sentation matrices of the generator by T(J a) = Ta. As we already mentioned 
in §4.1, SU(2) has the property that all its representations are real, i.e. there 
is a (fixed) matrix S such that 

sr,,s- 1 = -T:. (4.71) 

For example, in the defining representation Ta= aa/2 we have -a!= -a1 , 

-a!= a2 , and -a!= -a3 . The reality condition (4.71) can be satisfied 
with S = a 2 • In general the eigenvalues of diagonal generators change sign as 
we go from T,, to - T: because the Tas are hermitian with real eigenvalues. 
The eigenvalues of -T: are precisely the negatives of those for Ta. In SU(2) 
all the irreducible representations have the property that their J3 eigenvalues 
occur in pairs, i.e. m = ±}, ± (j - 1 ), . . . . This is why they are real 
representations; - T: can be obtained from Ta by changing the basis from 
lj, m) to lj, -m). For example, in the j = 1 representation, the 11, 1) and 
ll, -1) states of (4.51) are interchanged, leaving 11, 0) invariant, by the 
transformation 

C D (4.72) 

and we can easily check that ( 4. 71) is satisfied. Clearly, it is a general property 
of any group representation that, if one of the diagonal generators does not 
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have eigenvalues in pairs of opposite signs, then that representation is not 
real. 

We state once again some of the SU(2) properties which the reader should 
keep in mind when studying the less familiar SU(3) group. 

(1) Only the representation matrix of J3 is diagonal; SU(2) is a rank-I 
group. 

(2) The irreducible representation labelled by j (dimension 2j + 1) has 
basis states lj, m) 

J2lj, m) = jU + l)lj, m) 

J 3lj, m) = mlj, m). 

(3) States with different values of m are connected through the raising and 
lowering operators 

J ±lj, m) = W + m)U ± m + 1)]112 lj, m ± 1). 

(4) Each irreducible representation can be pictured by a one-dimensional 
graph because of (1), with equally spaced points representing the 2j + 1 
states. The T ± operator moves these points along the line. 

+-T_ 

-j -j+ 1 j-1 j 

Products of two representations j 1 and j 2 can be obtained simply by placing 
the first representation line 2j2 + 1 times over the second representation line, 
with the m1 = 0 centres coinciding with each state of the j 2 -representation. 

The SU(3) group 

There are eight group parameters. For the defining representation we write 
the 3 x 3 unitary unimodular matrices 

U(e 1 , •• • , e8 ) = exp{ieaA.a} a= 1, .. . , 8. (4.73) 

The A.as are 3 x 3 traceless hermitian matrices, which may be chosen to have 
the form (Gell-Mann 1962a) 

c D -i n 0 0) 
0 0 -1 0 

0 0 0 0 

0 D 0 -n 0 0 

0 0 

0 

D 
0 

-!) G 0 

(4.74) 0 0 I 

0 -2 
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They have the normalization 

(4.75) 

and satisfy the commutation relation 

[ A.a' Ab] = i l"b Ac • 
2 2 !lac 2 (4.76) 

labc is totally antisymmetric with nonvanishing members, 

fi23 = 1, fi41 = 1/2, /is6 = -1/2, h46 = 1/2, hs1 = 1/2, 

/J45 = 1/2,/J67-= -1/2,f°4_58 = ./3/2,/678 = ./3/2 (4.77) 

The generators F,, of SU(3) satisfy the Lie algebra 

(4.78) 

We can follow the pattern of the SU(2) procedure to obtain irreducible 
representations of SU(3). Here we follow the presentation of Gasiorowicz 
(1966). 

SU(3) is a rank-2 group; since A. 3 and A. 8 are both diagonal, 

(4.79) 

F3 and F 8 can be diagonalized simultaneously. We define the following raising 
and lowering operators 

T± = F1 ± iF2, u± = F6 ± iF7, v± = F4 ± iF5. 

We also define 

(4.80) 

In terms of these operators, the communication relations of (4.78) can be 
written as 

[T3 , T±] = ± T± 

[T3 , U±] = + 1/2U± 

[T3 , V±] = ± 1/2V± 

[T+, T_] = 2T3 

[U+, U_] = 3/2Y- T3 = 2U3 

[V+, V_] = 3/2Y + T3 = 2V3 

[T+, V+] = [T+, U_] = [U+, V+] = 0 

[T+,V_]=-U_ [T+,U+]=V+ 

[U+, V_] = T_. [T3 , Y] =0. 

(4.81) 

(4.82) 

(4.83) 

SU(3) representations. Since T3 and Y can be diagonalized simultaneously, 
the states in an SU(3) irreducible representation must be labelled by two 
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eigenvalues: t 3 and y. A representation is then pictured as a two-dimensional 
figure on the t 3-y plane, just as an SU(2) representation is an one-dimen­
sional line (Fig. 4.2). From the commutation relations in eqns (4.81}­
(4.83), it is not difficult to see the results of raising and lowering operators 
acting on the states: 

T+ raises t 3 by 1 unit and leaves y unchanged; 

U+ lowers t 3 by 1/2 unit and raises y by 1 unit; 

V + raises t 3 by 1/2 unit and raises y by 1 unit, etc. (4.84) 

If the units oft 3 and y are appropriately scaled in the graph, these raising and 
lowering operators connect points along lines that are multiples of 60° with 
each other (Fig. 4.3). 

y 

V+ 

T_ T+ 

-1 13 

v_ u_ 

FIG. 4.3. 

Each irreducible representation of SU(3) is characterized by a set of two 
integers (p, q). Graphically it shows up as a figure with a hexagonal 
boundary on the t 3-y plane: three sides havingp units oflength and the other 
three sides having q units (see Fig. 4.4(a)); the hexagon collapses into a 
equilateral triangle when either p or q vanishes (Fig. 4.4(b)). The boundary is 
symmetric under reflections in the y-axis. We recall that an SU(2) irreducible 
representation is characterized by one integer j; graphically it is a straight line 
of 2j units of length. There are 2j + 1 sites, each of them singly occupied by 
one state. For the SU(3) representation (p, q) the multiplicity of states on 
each site in the t 3-y plane form the following pattern: the sites in the 
boundary are singly occupied, on the next layer they are doubly occupied, on 
the third layer triply occupied, etc., until a triangle layer is reached beyond 

p 

(a) (b) 

FIG. 4.4. Boundaries of the SU(3) representation (p, q), (p, 0), and (0, q). 
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which the multiplicity ceases to increase and remains q + I for p > q (or 
p + I for q > p). 

The procedures used to deduce these properties of the irreducible 
representation from the commutation relations are all similar. We shall 
present one such proof to illustrate the general algebraic technique. To show 
that the boundary layer is singly occupied, take two neighbouring states IA) 
and IB) on the boundary shown in Fig. 4.5. Thus 

U_IA) = IB). (4.85) 

We need to show that, given IA), the state IB) is unique regardless of the path 
taken to go from IA) to IB). Consider an alternative path ACB; we have 

V_T+IA) = ([V_, T+] + T+ V_)IA) = U_IA) = IB) 

where we have used V_IA) = 0 and (4.83). 

x-x-x-x-x-x 

Ix xx xx\ 
x x-x-x-x-x xw 
\\XX J /max 
Ax-xc x x x x 

\/\ x xi I 
8 x x x x x 

\ \x xi / 
x x x x 

\ \xi I 
x x x 

\ I 
x-x 

(4.86) 

FIG. 4.5. A typical representation with (p, q) = (5, !). Multiplicity of states at each site is 
indicated by the crosses. i/Jmax is the t = t 3 = (p + q)/2 = 3 state. 

It is not difficult to convince oneself that the result holds independently of 
the path taken to go from IA) to IB); hence, given IA), the state IB) is 
unique. Since the state of maximum eigenvalue of T3 is unique and resides on 
the boundary, all boundary sites are singly occupied. 

Once the multiplicity of states at each site is given, we can add them up. 
This sum is the dimension of the irreducible representation. To do this we 
start with counting the number of sites in the inner triangle which has sites 
p-q 

p-q+ i 1 
I: t=-<p-q+t)(p-q+2). 

I= 1 2 
(4.87) 

Here the multiplicity is (q + 1 ). On the next outer layer there are 
3(p - q + 2) sites with multiplicity q; on the next one, 3(p - q + 4) sites 
each with (q - 1) states, etc. Thus the dimension is equal to 

1 q 

- (q + l)(p - q + l)(p - q + 2) + L 3(q - v)(p - q + 2v + 2) 
2 r=O 

(4.88) 
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or 
d(p, q) = (p + l)(q + l)(p + q + 2)/2. (4.89) 

Instead of labelling an irreducible representation by (p, q), another 
common practice is to denote it by its dimensionality. Thus an m­
dimensional irreducible representation is labelled by m and its complex 
conjugate by m*. Some of the more important representations are shown in 
Fig. 4.6. 

(p,q)=(O,I ), 3* (triplet) 

(p,q)={ 1,1 ), 8(octet) (p,q);=(3,0), IO(decuplet) 

F10. 4.6. Examples of SU(3) representations with states labelled by (t3 , y). Here all sites are 
singly occupied except the centre of 8: one is at= 0 state; another is the t3 = 0 member of a 

t = I triplet. 

One more remark about the graphical representation (p, q). Since there are 
generally several states for a given value of (t3 , y), at a given site we need 
further labelling to distinguish the different states. For this we can specify the 
SU(2) subgroup to which they belong. A convenient choice will be the T-spin 
value t. There are p + I sites each singly occupied on the top line, 
corresponding to t = p/2. The next line has two T-spin multiplets: 
t 1 = (p + 1)/2 and t2 = (p - 1)/2. etc. Also since the widest portion of the 
hexagon has width (p + q) we conclude that 

lmax = (p + q)/2. (4.90) 

For the product representation we can follow a procedure similar to that 
for the SU(2) group. The method of using the raising and lowering operators 
gives not only the decomposition of the product representations but also the 
Clebsch-Gordon coefficients. But this method is rather tedious as there are 
quite a few raising and lowering operators in SU(3). lfwe are interested only 
in the decomposition, we can use the simple graphical method. Again we will 
place one representation figure on top of each member state of the second 
representation: the centre (t 3 = y = 0) of the first one coinciding with the site 
of each state of the second representation. The simplest case of 
3 x 3* = 8 + 1 is illustrated in Fig. 4.7. The more systematic approach of 
the tensor method will be presented in the next section. 
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+®-t-= 
= 0 x 

FIG. 4.7. 

4.3 The tensor method in SU(n) 

The analysis of SU(2) and SU(3) in the last section shows that, as the 
group gets larger, the elementary techniques used to dissect the represen­
tation structure and product become inadequate. For the SU(4) group, 
which is rank-3, the irreducible representations have to be pictured in a three­
dimensional plot and one would need a keen spatial sense to work out the 
decomposition of the product representation. This approach becomes rather 
hopelessly complicated for groups of rank-4 or higher. Clearly one needs a 
more efficient approach. The tensor method turns out to be particularly 
appropriate for the study of irreducible representations and the de­
composition of the product representations in the general SU(n) group. 

Transformation law of tensors 

The SU(n) group consists of n x n unitary matrices with unit determinant. 
We can regard these matrices as linear transformations in an n-dimensional 
complex vector space en. Thus any vector t/I; = ( t/1 1 , t/1 2 , ••• , t/I n) in en is 
mapped by an SU(n) transformation U;i as 

(4.91) 

The tf;;s also belong to en, with uut = utu = I and det U = I. Clearly for 
any two vectors we can define a scalar product 

(4.92) 

which is an SU(n) invariant. The transformation law for the conjugate vector 
is given by 

t/lr --+ tf;;* = U0t/Jj = t/JjU}i· 

It is convenient to introduce upper and lower indices 

tf;i = t/Jr, U/ = U;i and = Uo. 

(4.93) 

(4.94) 

Thus complex conjugation just changes the lower indices to upper ones, and 
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vice versa. In this notation, eqns (4.91) and (4.93) read 

t/I; t/I;' = U}tjli. 

The SU(n) invariant scalar product is 

(t/J, </>) = t/li</>;. 
and the unitarity condition becomes 

. k . 
U'kU i = f>'i 

where the Kronecker delta is defined as 

. {l f>j = [>ij = 0 
if i =J 
otherwise 
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(4.95) 

(4.96) 

(4.97) 

(4.98) 

Note that in this notation the summation is always over a pair of upper and 
lower indices. We call this a contraction of indices. The t/J;s are the basis for 
the SU(n) defining representation (also called the fundamental or vector 
representation and denoted as n), while the tfr;s are the basis for the conjugate 
representation, n*. 

Higher-rank tensors are defined as those quantities which have the same 
transformation properties as the direct products of vectors. Thus tensors 
generally have both upper and lower indices with the transformation law 

(4.99) 

They correspond to the basis for higher-dimensional representations. 
The Kronecker delta and Levi-Civita symbol are invariant tensors under 

SU(n) transformations. They play important role in the study of irreducible 
tensors. 

(1) From the unitarity condition of (4.97) we immediately have 

(4.100) 

Hence f>} is an invariant tensor. Generally, contracting indices with the 
Kronecker delta will produce a tensor of low rank. For example, 

(4.101) 

We can regard the right-hand side as the trace between the pair of indices, in 
this case i 1 andj1 . Also, a tensor with all its indices contracted an 
SU(n) invariant scalar. 

(2) The Levi-Civita symbol is defined as the totally antisymmetric 
quantity 

{ 
1 if (i1 , .•. , in) is an even permutation of (1, ... , n) 

1l1; 2 · • • ;. = E;1; 2 •.. ;. = -1 if (i1, •.• , in) is an odd permutation of (1, ... , n) 

0 otherwise. ( 4.102) 
It is an invariant tensor 

(4.103) 
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where we have used the definition of determinant and det U = 1 for SU(n). 
Similar to the contraction by <5{ we can sum over indices by using the Levi­
Civita symbol. For example, 

(4.104) 

Thus tensors with upper indices can be constructed from those with lower 
indices, and vice versa 

(4.105) 

So, in principle, to study the transformation properties of the tensor we need 
work with a tensor having only upper (or lower) indices. 

In this connection we also note that 

(4.106) 

is an SU(n)-invariant scalar. And eqns (4.103) and (4.106) imply that a totally 
antisymmetric tensor of rank n is invariant under SU(n) transformations. 

Irreducible representations and the Young tableaux 

Generally the tensors we have just defined are bases for reducible represen­
tations of SU(n). To decompose them into irreducible representations we use 
the following property of these tensors. The permutation of upper (or lower) 
indices commutes with the group transformations, as the latter consist of 
identical (or VLs). We will illustrate this with the following example. 
Consider the second-rank tensor t/t;i whose transformation is given by 

t/t'ii = u i u { t/tkl. 

Since the Us are the same, we can relabel the indices 

t/t'ii = U{Uit/t'k = UiU{t/t1k. 

(4.107) 

(4.108) 

Thus the permutation of the indices does not change the transformation law. 
If P12 is the permutation operator which interchanges the first two indices 
P12 t/tii = t/tii, then P12 commutes with the group transformation 

P ,1,1ii _ U; UiP ,1,k1 
12'1' - k I 12'1' · (4.109) 

This property can be used to decompose t/tii as follows. First we form 
eigenstates of the permutation operator P12 by symmetrization or 
antisymmetrization, 

Thus, 
(4.110) 

It is clear that Sii and Aii will not mix under the group transformation 

(4.111) 
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This shows that the second-rank tensor tfJii decomposes into Sii and Aii in 
such a way that group transformations never mix parts with different 
symmetries. It turns out Sii and Aii cannot be decomposed any further and 
they thus form the basics for irreducible representations of SU(n). This can 
be generalized to tensors of higher rank (hence the possibility of mixed 
symmetries) with the result that the basis for irreducible representations of 
SU(n) correspond to tensors with definite permutation symmetry among (the 
positions of) its indices. The task of finding irreducible tensors of an 
arbitrary rank f (i.e. number of upper indices) involves forming a complete 
set of permutation operations on these indices. The problem of finding the 
irreducible representation of the permutation group has a complete solution 
in terms of the Young tableaux. They are pictorial representations of the 
permutation operations off objects as a set of /-boxes each with an index 
number in it. For example, for the second-rank tensors, the symmetrization 
of indices i and j in S;i is represented by ITJI]; the antisymmetrization 

operation in A;i is represented by Hl For the third-rank tensors, we have 

I i I j I k I in the case of the completely symmetric S;;., ffi in the totally 

antisymmetric Aiik> and ffi1J for the tensor with mixed symmetry 

"'ij;k = "'ijk + "'jik - "'jki - "'kji• 

A general Young tableau is shown in Fig. 4.8. It is an arrangement of/boxes 
in rows and columns such that the length of rows should not increase from 
top to bottom: Ji fi . . . and Ji + fi + ... = f Each box has an index 
ik = 1, 2, ... , n. To this tableau we associate the tensor 

(4.112) 

with the following properties. 

(1) Indices appearing in the same row of the tableau are first subject to 
symmetrization. 

(2) Subsequent indices appearing in the same column are subject to 
antisymmetrization. 

FIG. 4.8. 

A tableau where the index numbers do not decrease when going from left to 
right in a row and always increase from top to bottom is a standard tableau. 
For example, the n = 3 mixed-symmetry tensor ffi1J has the 
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following standard tableaux 

while tableaux such as HJTI· tf!II· and tifI1 are not standard. 

The non-standard tableaux give tensors that, by symmetrization or 
antisymmetrization, either vanish or are not independent of the standard 
tableaux. Thus for a given pattern of the Young tableaux the number of 
independent tensors is equal to the number of standard tableaux which can 
be formed. It is not hard to see that this number for the simplest case of a 
tensor with k antisymmetric indices is 

(n) = n(n - 1) ... (n - k + 1) 

k 1.2 ... k (4.113) 

and that for a tensor with k symmetric indices the number is 

I I I I (n + k - 1)- n(n + 1) ... (n + k - 1). (4.114) 
'-v--' ' k - 1.2 ... k 

k 

One should note that because of antisymmetrization there are not more 
than n rows in any Young tableau. Also, if there are n rows, we can use 
B; 1; 2 ••. ;. to contract the indices in the columns with n entries. Pictorially we 
can simply cross out any column with n rows (see, for example, eqns (4.123) 
and (4.125)). 

Fundamental theorem (See, for example, Hammermesh 1963.) A tensor 
corresponding to the Young tableau of a given pattern forms the basis of an 
irreducible representation of SU(n). Moreover if we enumerate all possible 
Young tableaux under the restriction that there should be no more than 
n - 1 rows, the corresponding tensors form a complete set, in the sense that 
all finite-dimensional irreducible representations of the group are counted 
only once. 

We next give two formulae of the dimensionality of irreducible represen­
tations. If the Young tableau is characterized by the length of its rows 
(Ji, h, ... , f,,_ 1), define the length differences of adjacent rows as 
A.1 =Ii -Ji, A.2 =f2 -h,, .. . , A.n- 1 =fn- 1. The dimension of an SU(n) 
irreducible representation will then be the number of standard tableaux for a 
given pattern 

d(A.1, A2, · · ., An_i) = (1 + A.i}(l + A2) • • • (1 + An_i) 

x (1 + A.1; A.2 )(1 + A.2; A.3). .. (l + A.11-2; A.11-1) 
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x (l + A1 +A;:+ .. . An-t)· 
n - 1 
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(4.115) 

One can easily check that the special results of ( 4.113) and ( 4.114) for the 
tableaux (k, 0, 0, ... ) and (0, 0, ... , 1, 0, 0, ... ) are recovered. 

'--v---' 
k 

Example 1. SU(2) group. The Young tableaux can have only one row: 
d(A.i) = (1 + .A. 1). Thus .A. 1 = 2). It follows that a doublet is pictured as D 
and a triplet as o=J, etc. 

Example 2. SU(3) group. The Young tableaux can have two rows, hence 
d(.A. 1 , .A. 2 ) = (1 + A. 1 )(1 + .A. 2 )(1 + (.A. 1 + .A. 2 )/2). Thus, .A. 1 = p and .A. 2 = q of 
(4.89). 

D (1, 0) 3, [I] (2, O) 6, I I I I (3, O) 10, 

B co. 1) 3*. EB co. 2) 6*, G:=J o. 1) 8. (4.116) 

The formula (4.115) is rather cumbersome to use for large values of n; in such 
cases the second formulation is perhaps more useful. For this we need to 
introduce two definitions-'hook length' and 'distance to the first box'. For 
any box in the tableau, draw two perpendicular lines, in the shape of a 
'hook', one going to the right and another going downward. The total 
number of boxes that this hook passes, including the originating box itself, is 
the hook length (h;) associated with the ith box. For example, 

( 4.117) 

The distance to the first box (D;) is defined to be the number of steps going 
from the box in the upper left-hand corner of the tableau (the first box) to the 
ith box with each step towards the right counted as + l unit and each 
downward step as -1 unit. For example, we have 

(4.118) 

The dimension of the SU(n)-irreducible representation associated with the 
Young tableau is given by 

d = 0 (n + D;)/h; (4.119) 
i 

The products are taken over all boxes in the tableau. For example, for the 
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tableau pattern Ej=J· we have hook lengths tIJTI and distances to the first 

box LQII]. This yields the dimension d = n(n - l)(n + 1)/3, which gives 
l=.!J. 

d = 8 for n = 3. 

Reduction of the product representations 

One of the most useful applications of the association of SU(n)-irreducible 
representations with the Young tableaux is the decomposition of the product 
representations. To find the irreducible representations in the product of two 
factors, 

(1) In the tableau for the first factor, assign the same symbol, say a, to all 
boxes in the first row, the same b to all the boxes in the second row, etc. 

(4.120) 

(2) Attach boxes labelled by the symbol a to the tableau of the second 
factor in all possible ways, subject to the rules that no two a's appear in the 
same column and that the resultant graph is still a Young tableau (i.e. the 
length of rows does not increase going from top to bottom and there are not 
more than n rows, etc.). Repeat this process with the bs, ... etc. 

(3) After all symbols have been added to the tableau, these added symbols 
are then read from right to left in the first row, then the second row ... , and 
so forth. This sequence of symbols aabbac ... must form a lattice permu­
tation. Thus, to the left of any symbol there are no fewer a than b and no 
fewer b than c, etc. 

We consider two examples in the SU(3) group. 

Example 1. 

(4.121) 

which corresponds to 

3 x 3 = 3* + 6. (4.122) 

Example 2. 

First step: 
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Secondstep:LJ 

Third step: L1I a I a I+ r + E@E + 

27 10 10* 

(4.123) 

8 8 1 

As we have already explained, any column with n boxes in an SU(n) tableau 
can be 'crossed out'-indicated by a vertical line over the column-thus the 
last three tableaux yield two octets and one singlet. 

Note that tableaux such as LJ I a I a I b j and .-L1J-.-a...,-,.....a...,l ... b-.1 are rejected 

because the symbols do not form a lattice permutation. Thus 

8 x 8 = 1 + 8 + 8 + 10 + 10* + 27. (4.124) 

Young tableaux for conjugate representations. If ljJ; and t/J; are the bases for 
the defining representation n and its complex conjugate n*. Clearly t/J;t/I; is 
SU(n) invariant. It is not difficult to see from the reduction of product 
representation that the Young tableau for the conjugate representation is a 
column of n - 1 boxes so that there will be an identity representation 
(a column of n boxes) in the product n x n*. 

(4.125) 

In general if we take the Young tableau for a representation and fill the 
boxes such that rectangular tableau of n rows is obtained, the additional 
boxes, when rotated by 180°, form the standard tableau for the complex 
conjugate representation = For example, in SU(3) we have 6 
as pictured by CTI which can be filled in as CD . Thus CD is the 
Young tableau for 6*. EB CD 

Group generators in tensor notation 

We first concentrate on the (defining) vector representation and later 
generalize our study to the action of generators on higher-rank tensors. 

(1) Hermitian and real generator matrices. Any n x n unitary unimodular 
matrix U may be written in the form 

(4.126) 
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where H is hermitian and traceless. Normally we choose the group 
parameters to be real. If ea = e:, a = I, 2, ... , n2 - I, then 

(4.127) 

where the A.as are n x n hermitian generator matrices. Those for SU(3) have 
been displayed in (4.74). From their commutation relation 

ifabc i· (4.128) 

we can extract the Lie algebra with the identification of !A.a = F,, as the 
generators 

(4.129) 

where the labcs are the structure constants. For the tensor-method approach 
instead of the form ( 4.127) we can write the hermitian matrix H as 

H{ = (4.130) 

where all indices (oc, /3, i, 1) range from 1 to n. We can choose to have real 
generator matrices which take the form 

(4.131) 

The hermiticity condition on H is then satisfied by having the hermitian 
group parameter matrix 

Using (4.131) we can work out the commutator 

= - (4.132) 

The group generators are defined to satisfy the same commutation relation 
(the Lie algebra) 

= -

The structure constants are simply some combinations of the It is not 
difficult to find the relation between the real generators and the hermitian 
generators F", 

F" = (4.133) 

Eqn ( 4.133) can be inverted by using the identity, 

(4.134) 

which can be derived as follows. Since the n x n hermitian traceless matrices 
A.a, a= 1, ... , (n 2 - 1), together with the n x n identity matrix form a 
complete set of n x n hermitian matrices, we can expand an arbitrary 
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hermitian matrix M in terms of them 
n2-1 

M = + L m) .. a 
a=l 
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(4.135) 

where is then x n identity matrix. We normalize the Aas such that 

tr(Aa Jcb) = 2Jab. 

The coefficients m0 and the mas in eqn ( 4.135) can be calculated by 
multiplying matrices of the corresponding bases and taking traces, 

Eqn (4.135) then becomes 

1 
m0 =-tr M 

n 

1 a 
ma= l tr(MJc ). 

1 n2-1 1 
M =-(tr + L - (tr MJca)Aa 

n a= 1 2 

or, in terms of the components, 

(I MD)' b1·b) bap (Jca)apW))'DMD)'' 
n y,b 2 a y,b 

Since Map is arbitrary, we get 

which is just the identity (4.134). Using eqn (4.134) we can write the real 
generator as 

a 

where we have used the fact that tr pa= 0. 

(2) Real generators in vector representation. The nondiagonal real gener­
ators rx =I= {3, are simply raising and lowering operators. For the defining 
vector representation, has a nonzero element only at the rxth row and {3th 
column. The infinitesimal SU(n) transformation on the basis 
I/Ji --+ l/Jli = I/Ji + JI/Ji with JI/Ji = sp( shows that 

(4.136) 

Thus, will take the rxth component of ljJ and turn it into the {3th 
component, and the result will be zero for all other components. The 
diagonal generators F:,,s form a set of mutually commuting operators. Their 
eigenvalues can be used to characterize the basis functions (states) of 
irreducible representations. For example, in the defining vector represen­
tation, any particular diagonal generator D 1, which is some linear combi-
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nation of the may be written 

(Di)}= (di); <5} 

where the ,(di);s are the eigenvalues of state 1V 

(4.137) 

(3) Real generators on higher rank tensors. The group generator acting 
on any tensor is defined as 

(4.138) 

Given (4.99), the general transformation law of tf! with the SU(n) transfor­
mation factor given by 

(4.139a) 
and 

U j - . "(Wfi\.i 
i - ui - ICp all ' (4.139b) 

where the i,j (k, /) indices belong to untransformed (transformed) tensors, 
we have 

m=l 

q 
- " ( Wfi\.i. ... I •.. . j,. 

i...J all,. Y' 11 .. ·'p (4.140) 
n=l 

The presence of the minus sign reflects the fact that the tensors with upper 
indices correspond to complex conjugate representations, as compared to 
those with lower indices (see eqns (4.94) and (4.95)). In particular for the 
diagonal generators F = D1 (4.137) we have 

(4.141) 

Thus the quantum number of the tensor is simply the algebraic sum of the 
corresponding quantum numbers of the component vectors which make up 
the tensor. 

We will summarize this discussion by working through the simple example 
ofthej = 1 representation ofSU(2). Instead of using them= l, 0, -1 states 
as in (4.51) and as its hermitian generator the 3 x 3 matrices in (4.52) and 
(4.55), in the tensor method approach the bases are taken to be t/!;j"' 
The indices i,j = 1, 2 are symmetrized (see (4.68)). The superscripts A and B 
distinguish the two vectors. The real generators for the SU(2) defining 
representation are 2 x 2 matrices: 

W) -wJ 

is the diagonal generator, giving eigenvalues d(t/1 1) = 1/2 and d(t/1 2 ) = -1/2 
for the two states int/!;. We can read off the quantum numbers for the triplet 
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states as 

d(t/111) = t + t = 1, d(l/112) = t - t = 0, 
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d(t/122) = -t - t = -1. (4.142) 

w1 = 

is the lowering operator. Thus, 

1 (00) AB (0 W21/111 = 1 0 A 1/111/11 + 1 
0) l/111/lf = + (4.143) 
0 B 

One last comment-the adjoint representation which we have defined in 
terms of the structure constants of a group ( 4.19) takes on a particularly 
simple form in tensor notation. The basis for adjoint representation is simply 

with 0, where its Young tableau is the last one in (4.125) and 
evidently is self-conjugate. One can show that this is the correct identification 
by converting using a method similar to that in eqn ( 4.133) to an n2 - 1 
component vector <Pa using 

(4.144) 

The transformation law (4.140) can be used to demonstrate that the 
matrices for its generators (Fa)bc are indeed the structure constants fabc· 

4.4 The quark model 

Group theory is relevant in physics because the various symmetry 
transformations which leave the physical system invariant form a group. The 
consequence of symmetry can then be deduced through group-theoretical 
analysis, independent of any detailed dynamical considerations. For ex­
ample, if a quantum-mechanical system, described by the Hamiltonian H(r), 
has no preferred direction, all rotation operators R(O) will leave the 
Hamiltonian invariant, 

R(O)H(r)R- 1(9) = H(r). (4.145) 

Or, in terms of the generators of the rotation, R(O) = eiO·J, this gives 

[H, J] = 0. (4.146) 

The consequence of this symmetry, i.e. (4.145), is that 

H(J;ln)) = E.(J;ln)) (4.147) 
if 

(4.148) 

Thus, all states connected by a rotation transformation are degenerate. These 
states form the basis vectors for irreducible representations U) of the group. 
From the result on the dimensionality of the irreducible representations 
in S0(3) we conclude that there is a (2j + 1) degeneracy of energy levels. 

In internal symmetries the states are identified with various particles. Such 
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symmetry transformations change particle labels but not the coordinate 
system, and irreducible representations of the group manifest themselves as 
degenerate particle multiplets. In this section we shall present a brief dis­
cussion of the early successful internal symmetries of the strong interaction. 
First we have the isotopic spin, or isospin, invariance of SU(2). It is later 
found to be part of a larger group SU(3). This is the Eightfold Way theory of 
Gell-Mann (1961) and Ne'eman (1961). This in turn led to the proposal by 
Gell-Mann (l964b) and by Zweig (1964a) that quarks are constituents of 
hadrons. Our purpose here is to give an informal historical introduction and 
to establish, so to speak, the kinematics of the quark model-all in 
preparation for the study of the dynamics, with quarks being the funda­
mental matter field. 

Isospin invariance-SU(2) symmetry 

In the early studies of nuclear reactions it was found that, to a good 
approximation, the nuclear forces (strong interactions) are independent of 
the electric charge carried by nucleons. The strong interactions are invariant 
under a transformation which interchanges proton (p) and neutron (n). 
More precisely the strong interaction has an SU(2) isospin symmetry in 
which the p and n states form an isospin doublet. Thus the group structure of 
isospin symmetry is very similar to that of the usual spin. The isospin 
generators T; satisfy the Lie algebra of SU(2) 

[1';, Tj] = ii-:ijkTk (4.149) 

where the indices range from 1 to 3. That p and n form a means 

that (see eqn (4.45)) 

and 
T+ln) =Ip), Lip)= In). (4.150) 

That the strong interaction does not distinguish n from p means that the 
strong-interaction Hamiltonian H, has the property 

[T;, H,] = 0 i = 1, 2, 3. (4.151) 

The concept of isospin can be extended to other hadrons. For example, 
(n+, n°, n-), (l:+, 1:0 , 1:-), and (p+, p0 , p-) are (T = 1) isotriplets; 
(K +, K0 ), (K0 , K -), and (3°, 2-) are (T = 1/2) doublets; TJ, ro, q,, and A are 
(T = 0) isosinglets. 

Since different members of the isospin multiplet have different electric 
charges, the electromagnetic interaction clearly does not respect the isospin 
symmetry. Thus isospin cannot be an exact symmetry. How good a 
symmetry is it? If the symmetry is an exact one, we have 

[Tb H] = 0 (4.152) 

for the total Hamiltonian of the system; all members of an isomultiplet 
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would be strictly degenerate in mass. Thus the mass differences within an 
isomultiplet are a good measure of the symmetry breaking. Experimentally 
they are typically at most a few per cent of the masses themselves, e.g. 

m"+ - m"o _2 --- '.'.:::'. 1.7 x 10 etc. (4.153) 
m"+ + m"o 

We conclude that isospin is a rather good symmetry and write the total 
Hamiltonian as 

where 
[H0 , T;] = 0, (4.154) 

with 
(4.155) 

Thus we can treat the symmetry-breaking part (H 1) as a small perturbation. 
As we have mentioned, the electromagnetic interaction must belong to H 1 . It 
turns out that weak interactions also violate isospin symmetry. One 
interesting question is whether the strong interaction contains a part that 
does not respect isospin invariance. We shall return to this question of a 
possible small isospin violation by the strong interaction in §5.5. 

SU(3) symmetry and the quark model 

When the A and K particles were discovered they were found to be produced 
copiously but to decay with a long lifetime. It was postulated that these 'new' 
particles possessed a new additive quantum number, strangeness S, which is 
conserved in the strong interaction (associated production) but is violated in 
the decay of these particles via the weak interaction. For example, the pions 
and nucleons have zero strangeness but S(A0 ) = -1, S(K0 ) = + 1, so that 
we have the strangeness-conserving strong production 1t- + p --+ A 0 + K0 

which is followed by the strangeness-changing weak decays, A 0 --+ 1t- + p 
and K0 --+ n+ + n-. The strangeness S, like the electric charge Q, is 
associated with a U(l) symmetry. In fact it was noted that there is a linear 
relation, the Gell-Mann-Nishijima relation, among S, Q, and the diagonal 
generator T3 of the isospin SU(2) (Gell-Mann 1953; Nishijima and Nakano 
1953), 

with 

y 
Q = T3 +2 

Y=B+S 

(4.156) 

where Bis the baryon number and Y is called the hypercharge. Thus isospin 
and strangeness (or hypercharge) are only approximately conserved, but a 
certain linear combination, the electric charge, is preserved by all known 
interactions. 

The search continued for 'higher symmetry' that could incorporate isospin 
T; and hypercharge Y together in one group by enlarging the multiplet, i.e. to 
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find a larger simple group which contains SU(2h x U(l)r as a subgroup. 
Gell-Mann (1961) and Ne'eman (1961) pointed out that we could group all 
mesons or baryons with the same spin and parity on the (T3 , Y) plot (Fig. 
4.9), and they look very much like representations of the SU(3) group (Fig. 
4.6(c), (d)). One sees that o-, 1- mesons and 1/2+ baryons fit nicely into the 
octet representation (p = q = 1) while 3/2+ baryons fit the decuplet represen­
tation (p = 3, q = 0). The octet particles l/J} being tensors of only two indices 
can be written in matrices 

no 1'/o 

.j2 + .j6 
n+ K+ 

M= -no 1'/o Ko n 
.j2 + .j6 

K- 1(0 
-2rio 

.j6 

po roo 

.j2 + .j6 
p+ K*+ 

V= p 
_po roo 

.j2 + .j6 
K*o (4.157) 

K*- K*o -2ro0 

.j6 

Lo Ao 
L+ 

.j2 + .j6 p 

B= L-
-Lo Ao 

.j2 + .j6 n 

30 -2A0 
.... 

.j6 

Of course at the time of the Eightf<Jld-Way proposal not all the mesons and 
baryons predicted by this pattern were well established. The discovery of 
n- (Barnes et al. 1964) at the predicted mass value and with the correct 
decay properties (Gell-Mann 1962b) played an important role in convincing 
a large segment of the physics community as to the correctness of this 
SU(3) classification scheme. Clearly this SU(3) is not as good a symmetry 
as the isospin SU(2). A measure of the SU(3) breaking is the mass splitting 
within the multiplet, e.g. (mr. - + mN) 0.12. 

One notable feature of the hadron spectrum in the Eightfold-Way scheme 
is that the fundamental (or defining) representation of SU(3) (Fig. 4.6(a), (b)) 
is not identified with any known particles. The significance of the funda­
mental representation in any SU(n) group is that all higher-dimensional 
representations can be built out of the tensor products of the fundamental 
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representation. This property is particularly transparent in the tensor­
method approach to SU(n) (see §4.3). On the other hand, more and more 
strongly interacting 'elementary particles' had been discovered. It is difficult 
to believe that all these hadrons are truly elementary and devoid of structure. 

y 

n- n+ 

T3 

(a) 

y 
N•-

I:+ 

T3 

(c) 

K.-

N•O 

y 

(b) 

y 

c 
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p+ 

T3 

N•+ N•++ 

FIG. 4.9. Hadrons in SU(3) representations. Octets for (a) o- mesons; (b) 1- mesons; (c) ! + 

baryons; and decuplet for (d) 3/2+ baryons. 

Against this background, the quark model was proposed, in which all 
hadrons are built out of spin-1/2 quarks which transform as members of 
the fundamental representation (p = l, q = 0) of SU(3). (Clearly even if one 
does not believe in the physical reality of quarks, they are a useful mnemonic 
device for the less familiar group of SU(3).) 

(1) There are three types (flavours) of quarks, 'up', 'down', and 'strange', 
in the fundamental representation, 3 

(4.158) 

corresponding to a Young tableau of O. The members have quantum 
numbers 

Q T T3 y s B 

u 2/3 1/2 1/2 1/3 0 1/3 

d -1/3 1/2 -1/2 1/3 0 1/3 

s -1/3 0 0 -2/3 -1 1/3 
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Their antiparticles, called antiquarks, are in the conjugate representation, 3* 

(4.159) 

corresponding to the Young tableau .Ej· Their additive quantum numbers 

are just the negative of those for the quarks 

Q T T3 

u -2/3 1/2 -1/2 

o 1;3 1;2 112 

1/3 0 0 

y 

-1/3 

-1/3 

2/3 

s B 

0 -1/3 

0 -1/3 

-1/3 

(2) The mesons (B = 0) are qq bound states. From 3 x 3* = 1 + 8 we 
have mesons in SU(3) singlets and octets. For the o- mesons, we have 

7t+ "'OU, 7t0 "' (uu - od)/ .J2, 7t- "'ud, 

K + "'SU, K0 "'sd, K0 "'OS, K- "'us, 

'11° "' (uu + od - 2ss)/ .J6. (4.160) 

Similarly octet 1- vector mesons have the same quark contents. The o­
meson ll' and the 1- meson '<I>' (more on this later) can be identified with the 
SU(3) singlet qiqi = (uu + od + ss). 

(3) The baryons (B = 1) are qqq bound states. From the multiplications 

oxo=a+co i.e. 3 x 3 = 3* + 6 

i.e. 3 x 3* = 1 + 8 

we have 

D x [IJ = B:J + I I I I i.e. 3 x 6 = s + 10, 

3 x 3 x 3 = 1+8 + 8 + 10. (4.161) 

The octet parts have the same quantum numbers (T3 , Y) as the octet mesons, 
even though they have different quark contents, because T3 and Y (also total 
isospin T) are generators of the SU(3) group and their eigenvalues for a given 
representation are uniquely defined. Meson octet states and baryon octet 
states will have a different baryon number; B is not a generator of SU(3). 
Specially, for the 1;2+ baryons 8=1 

p "' udu, n "' udd, 

I:+ "' suu, I:0 "' s(ud + du)/ .J2, I:- "' sdd, 
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3° ,....., ssu, :=:- ,......., ssd, 

A 0 ,.,., s(ud - du)/ y12 

and for the 3/2+ baryons I I I 
N*+ + ""'uuu, N*+ ,.,., uud, N* 0 ""'udd, N*- ""'ddd 

L*+ ,.,., suu, L* 0 ,.,_,sud, L*- ,.,., sdd, 

3*0 ""' ssu, 3* - ,.,., ssd, 

(4.162) 

Q- ,.,_,SSS. (4.163) 

The Gell-Mann-Okubo mass formula 

Here we study the hadron spectrum in the presence of the SU(3)-breaking 
H 1 « H 0 similar to (4.154). The isospin, as mentioned above, seems to be a 
good symmetry, hence the mass difference in the isospin multiplet can be 
neglected in discussing the SU (3) breaking. We can proceed in a pure group­
theoretical manner. With an assumption about the SU(3) transformation 
property of H 1 (- Y, or equivalently -F 8 ), the relation among masses of 
isospin multiplets in a given SU (3) representation can be derived (Gell­
Mann 1961; Okubo 1962). Here we will demonstrate this with a simple 
calculation in the quark model: we assume that the binding energies of 
quarks are independent of quark flavours (this can be justified later) and 
that the mass differences in an SU (3) representation are entirely due to the 
quark mass difference. This is a specific realization of the H 1 ,.,., F 8 assump­
tion. In the approximation of exact SU(2) isospin symmetry, we have 
mu = md. First consider the o- meson masses. In terms of the quark masses we 
have from (4.160) 

m; = m0 + 2mu 

mt = m0 + mu + m, 

= m0 + + 2m,) (4.164) 

where m 0 is the flavour-independent common mass. We have used the 
quadratic mass for mesons. The principal reason is that this works better 
(than linear masses). A possible justification is that o- meson masses vanish 
in the SU(3) symmetry limit (see Chapter 5) and perturbation of the energy 
around such a value automatically leads to a relation among quadratic 
masses. From (4.164) we obtain 

4mt = m; + (4.165) 

Experimentally the left-hand 0.98 GeV2 , and the right-hand 
0.92 GeV2 • Thus this mass relation is good to a few per cent. Similarly 

for the 1/2+ baryons from (4.162), 

mN = m0 + 3mu 

m-r. = m0 + 2mu + m, 
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m:::; = m0 + mu + 2m, 

mA = m0 + 2mu + m,. 

Eliminating the three parameters m0 , mu, and m., we have one relation 
among the baryon masses 

(4.166) 

which is experimentally very well satisfied. We have the left-hand 
2.23 GeV and the right-hand 2.25 GeV. The quark model 

allows us to identify the particular mass shifts from the SU(3) average value 
m0 • This yields an additional relation 

(4.167) 

For the 3/2+ baryon decuplet (4.163) we easily derive the equal-spacing rule 

(4.168) 

In fact the mass of n- was first (correctly) predicted from this rule. 

co-cl> mixings 

The Gell-Mann-Okubo mass formula for the 1- vector meson multiplet does 
not seem to work. In analogy to the o- mesons (4.165), we would have 

(4.169) 

With mK* = 890 MeV and mµ = 770 MeV, this equation would predict 
mw = 926.5 MeV, while the experimental value is mw = 783 MeV. It turns out 
that there is another 1 - vector meson <I> with the same quantum numbers as 
ffi (i.e. T = 0 and S = 0) and it has a mass of 1020 MeV. This leads to the idea 
that ffi is not a pure SU(3) octet state but has a mixture of an SU(3) singlet 
state (Sakurai 1962). Let Va be the T = Y = 0 member of the SU(3) octet and 
V1 be the SU(3) singlet state, then ffi is a linear combination of Va and V1 

while <I> is the other orthogonal combination. More precisely, write the mass 
matrix in Va and V1 space as 

The wavefunctions for Va and V1 are 

Va = (iiu + od - 2ss)/ .J6 

V1 = (uu + od + ss)/ .J3. 

The eigenvalues of M should be m., and mq, 

where 

RTMR = (m;, 0) 
O 

R= . ( cos (} sin (} ) 
- sin (} cos (} 

(4.170) 

(4.171) 

(4.172) 

(4.173) 
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Hence 
ro = cos(} Vs - sin(} Vi 

<l> = sin(} Vs +cos(} Vi. 
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(4.174) 

Since (4.169) predicts that mss is 926.5 MeV, we can calculate the mixing 
angle. From (4.172), 

we have 

sin(}= - m!)/(m; - m!)Ji12 

= 0.76. 

(4.175) 

(4.176) 

The fact that sin(} is very close to .J(2/3) = 0.81 has the following 
significance. If sin(} is exactly .J(2/3), called 'ideal mixing', we have 

ro = (iiu + od)/ .J2 
<j> = ss. 

(4.177) 

(4.178) 

Namely, for ideal mixing, <l> is completely built out of the strange quarks and 
ro out of the non-strange quarks. Thus with the value of(} in (4.176) it is clear 
that <j> is predominantly ss and has very few iiu and od components. 

The Zweig rule and the discovery of 'charm' 

As ro and <l> have the same quantum numbers T = 0, Y = 0, one would expect 
that they should have very similar strong-interaction properties. In particular 
their strong decay widths should be comparable. Experimentally this is not 
so. ro decays predominantly, as it should, into the 31t channel, while <l> --. 31t is 
suppressed relative to <l> --. KK even though the phase space for the latter 
decay is very small (m+ is barely above 2mK 998 Me V). This indicates a 
strong preference for <l> to decay into channels involvi!lg strange particles 
rather than into channels without strange particles. To explain this, Zweig 
(1964b) and also others independently (Okubo 1963; Iizuka 1966) suggested 
that strong processes in which the final states can only be reached through q 
and q annihilations are suppressed. Thus, since <l> is a predominantly ss state, 
the decay into pions must proceed through the annihilation diagram of Fig. 
4.lO(a) while the decay into the KK channel involves no annihilation of s 
ands, as shown in Fig. 4.lO(b). 

_ __£')"' 
<P{!--

u)'1t+ s} 
(a) (b) K-

FIG. 4.10. <I> decays: (a) disallowed; (b) allowed by the Zweig rule. 
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In 1974 the \j!/1(3100) particle was dicovered (Aubert et al. 1974; Augustin 
et al. 1974). It has the rather unusual property of having a width (only about 
70 KeV) much narrower than the widths of typical hadrons (e.g. 
rP - 150 MeV, r"' - 10 MeV). Also width should increase with mass as 
there will be more decay phase space. The interpretation is that \j!/J is a 
bound state of a new heavy quark, the charmed quark c and its antiparticle c, 
i.e. \j! - cc. It is below the threshold for Zweig-rule allowed decays into 
charmed mesons (bound states involving at least one charmed quark), see 
Fig. 4.11. 

(a) (b) 

FIG. 4.11. Zweig-rule allowed decays such as (b) ljt --> D + o- are forbidden by phase space. 

For a detailed discussion on charmed particles see Gaillard, Lee, and 
Rosner (1975). Here we only note that this new 2/3-charged quark was 
predicted earlier on the basis of lepton-quark symmetry (Bjorken and 
Glashow 1964) and, more compellingly, on the basis of the requirement to 
suppress strangeness-changing neutral-current effects (Glashow, Iliopoulos 
and Maiani 1970). With this new quantum number the flavour symmetry is 
enlarged from SU(3) to SU(4). Of course SU(4) is badly broken as me is heavy 
(:::d.5 GeV). Consideration of such badly broken symmetry is no longer 
particularly meaningful. One should go directly to the dynamical considera­
tion of quark models of such hadrons carrying new quantum numbers. For 
example, we have the additional o- meson states 

D+ - ac, D- - cd, D 0 - ilc, D 0 - cu, 

(4.179) 

In fact one of the most convincing bits of evidence for the quark model is the 
detailed verification of level structure and transitions among the various (cc) 
'quarkonium' states. 

In 1977 yet another set of narrow-resonance Ys were discovered (Herb et 
al. 1977; Lederman 1978) and they were successfully interpreted as bound 
states of yet another heavy quark, b (for 'beauty' or 'bottom') carrying 
charge - 1/3 with a very large mass mh ::::: 5 Ge V. 

As we shall see (especially §11.3), from the pattern of fermion family 
replication in the standard electroweak theory one anticipates at least one 
more superheavy flavour of quark: this quark, t (for 'truth' or 'top'), should 
carry charge 2/3. It is to be associated with the b-quark in the same way as 
pairing of (u, d) and (c, s). 
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The pioneering paper on heavy quarkonium is Appelquist and Politzer 
(1975). (For more recent discussions, including (ob) quarkonium, and 
reviews see, for example, Appelquist, Barnett, and Lane 1978; Quigg and 
Rosner 1979; Eichten et al. 1980; Shifman 1981.) 

Paradoxes of the simple quark model 

By simple quark model we mean the model of three, or more, types of quarks 
as originally invented with no hidden degrees of freedom. This simple model 
has the following difficulties. 

(1) The quarks have fractional electric charges while all the observed 
hadrons have integer charges. With charge conservation, this implies that at 
least one of the quarks is absolutely stable. The fractionally charged stable 
quark has been searched for and so far there is no generally accepted positive 
evidence for its detection (see however LaRue, Fairbank and Hebard 1977). 

(2) Hadrons are seen to be built exclusively out of qq and qqq states (and 
their conjugates). There is no evidence for qq and qqqq bound states. It is 
difficult to understand the absence of such hadron states with masses 
comparable to the observed particles. 

(3) The most serious problem is that the f = 3/2 + decuplet baryon 
wavefunctions seem to violate the connection between spin and statistics. 
Take the example of N* + + "' uuu. Since it is a ground state for the system of 
three u-quarks, the spatial wavefunction has zero total angular momentum 
and is totally symmetric. But N* + + has spin-3/2 and the spins of all u quarks 
must be lined up in the same direction for the N* + + wavefunctions (with the 
third component of spin s3 = + 3/2) so the spin wavefunction is also totally 
symmetric. Consequently the overall wavefunction is totally symmetric with 
respect to the interchange of any pairs of constituent quarks. This violates 
Fermi-Dirac statistics since the u-quark is a spin-1/2 fermion. 

Colour degree of freedom 

The way out of all these difficulties graduately emerges (Greenberg 1964; 
Han and Nambu 1965; Nambu 1966). It is to postulate that each quark has a 
hidden degree of freedom, called colour. More specifically each type of quark 
is assumed to come in three different colours which form a triplet under a 
colour SU(3) group. Thus for the known quarks we have 

I 
flavour 

1 
Ucz = (u1, U2, U3) 

d" = (d1, d2, d3) 

Scz = (s1, S2, S3) 

c" = (c1, Cz, C3) 

b" = (b1, b2, b3) 
+-----colour----+. 

(4.180) 

The five types (flavours) of quarks con:espond to five distinct colour triplets 
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The colour group operators change the quark from one colour to another but 
leave the flavour unchanged: u 1 -u2 , u2 -u3 , u3 -ut> or d1 -d2 , 

d2 -d3 , d3 -d1 , etc. Along with this supposition of an extra degree of 
freedom, it is further postulated that only colour singlet states are physically 
observable states. 

Since there are colour singlets in the product of 3 x 3* and 3 x 3 x 3, see 
(4.161), only qq and qqq configurations can bind into physically observable 
hadrons while q, qq, or qqqq states cannot be seen experimentally. The 
N* + + wavefunction is now antisymmetric 

(4.181) 

where a, /3, y are colour indices 1, 2, 3. 
It cannot be overemphasized that this colour SU(3) has nothing to do with 

the original flavour SU(3) of the Eightfold Way. In fact, unlike all the flavour 
SU(n) symmetries with n = 2, 3, 4, ... , the colour SU(3) symmetry is 
assumed to be exact. 

We now have a very peculiar situation where hadrons are composed of 
particles which cannot themselves be directly observed. Quarks can exist only 
inside hadrons and can never be free. This property is usually referred to as 
quark confinement. It should be a part of any viable theory of hadrons as 
quark bound states. 

In recent years physicists have converged on a gauge theory called 
quantum chromodynamics (QCD) in which the colour quantum number 
plays a similar role to that of the electric charge in QED. In QCD the 
coloured quarks will interact with each other through the exchange of the 
gluons in a manner analogous to the exchange of the photon between 
charged particles. These interactions are responsible for the (colour-depen­
dent and flavour-independent) binding of quarks into hadrons. Even though 
QCD has many attractive features (see Chapter 10), quark confinement has 
not up to now been derived from QCD in a convincing way. But there are 
many arguments (see for example §10.5), which indicate that it should be a 
property of QCD. 



5 Chiral symmetry of the strong 
interaction 

In §4.4 we studied the flavour symmetry of the strong interaction and its 
physical realization in terms of the quark model. The symmetries SU(2), 
SU(3), etc. are supposed to be manifestations of the quark mass degeneracies 
mu= md and, to a less good approximation, mu= md = m,. As it turns out, 
the reason we have such close equalities is not so much that the three quarks 
happen to have equal masses but that they all are light on the typical strong­
interaction energy scale. Thus the symmetry limits should really be 
mu = md = 0, and also to a lesser extent m, = 0, with the corresponding 
flavour symmetries being SU(2)L x SU(2)R and SU(3)L x SU(3)R, the chiral 
symmetries. However, we do not see any particle degeneracy patterns 
ascribable to such symmetries. The resolution of this paradox lies in the fact 
that the physical vacuum is not invariant (not a singlet) under these chiral 
symmetries and, we say, the symmetry is spontaneously broken. The physical 
manifestation of such symmetry-realization is the presence of a set of near­
massless bosons: the three pions, and also the whole octet of o- mesons. 
Here we present the basics of an approach commonly referred to as current 
algebra. The matrix elements of these light pseudoscalar mesons in certain 
kinematic limits are calculated by a direct application of the commutation 
and conservation relations of the chiral symmetry currents. 

This chapter is organized as follows. In §5. l we discuss the relation 
between symmetry and the conservation laws in field theory, and also 
establish the important result that charge commutation relations are valid 
even in the presence of symmetry-breaking terms. In §5.2 we emphasize the 
point that, in field theory, symmetry currents are actually the physical 
(electromagnetic and weak) currents. Adler's test of the current algebra (of 
chiral symmetry) in high-energy neutrino scattering is presented. In §5.3 we 
study spontaneous breakdown of global symmetries and the Goldstone 
theorem. This introduces us to the subject of partially conserved axial-vector 
current (PCAC) in §5.4. In the chiral symmetric limit of massless pions we 
can use PCAC and current algebra to derive a number of low-energy 
theorems: the Goldberger-Treiman relation, Adler's consistency conditions 
on the 7tN scattering amplitude, the Adler-Weisberger sum rules, etc. In §5.5 
we study the pattern of (explicit) chiral symmetry breaking as revealed by the 
pseudoscalar meson masses and the 7tN a-term. 

The discussion of this chapter will show that the hadronic interactions 
obey an approximate chiral symmetry, which is realized in the Goldstone 
mode. Thus any satisfactory theory of the strong interaction must have 
these flavour-symmetry properties (also confer comments at the end of 
§5.5). As we shall see, the gauge theory QCD naturally displays such global 
symmetries. 
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5.1 Global symmetries in field theory and current commutators 

Conservation laws in physics can be attributed to symmetry principles. The 
invariance of the physical system under certain symmetry transformations 
implies an appropriate set of conservation laws. In classical physics we have 
the familiar examples 

Translational invariance in time 

t-+t+a 

Translational invariance in space 

Energy conservation 

dE = O 
dt 

Momentum conservation 

di 
-=0 
dt 

Rotational invariance Angular momentum conservation 

dli 
-=0. 
dt 

In quantum mechanics, observables are associated with operators. Their 
time evolution in the Heisenberg picture is governed by the commutator with 
the Hamiltonian 

d(9 "[ ] dt = t H, (9 . (5.1) 

The conservation law is then equivalent to the statement that the correspond­
ing operator commutes with the Hamiltonian. For example, the angular­
momentum conservation dl;/dt = 0 means that 

[l;, H] = 0. (5.2) 

It follows that the energy levels of the system have a (2j + 1)-fold degeneracy, 
j being the angular momentum eigenvalue. In group theory language the 
Hamiltonian operator is invariant under the rotation group 0(3), which has 
the generators 11 , 12 , and 13 satisfying the commutation relation 

i,j,k=l,2,3. (5.3) 

The states with definite energy eigenvalues then form representations of the 
group 0(3). The degeneracy of the energy levels is associated with the 
dimensionalities of the irreducible representations. 

Noether's theorem 

In field theory, symmetries and conservation laws are related in a similar 
manner. This connection is made precise by the Noether theorem (Noether 
1918). For a system described by the Lagrangian 

L = f d3xf!'(c/>;(x), oµc/>;(x)) (5.4) 
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with the equation of motion 
{Jft' {Jft' 

oµ fJ(oµ</J;) - fJ</J; = 0 (5.5) 

any continuous symmetry transformation which leaves the action S = J L dt 
invariant implies the existence of a conserved current 

with the charge defined by 

Q(t) = f d3xJ0(x) 

which is a constant of motion 

dQ = 0 
dt 

because the surface term at infinity being negligibly small 

J d3xo0J0 = J d3xollJµ = o. 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Noether's theorem can be illustrated easily in the case of internal symmetry. 
The Lagrangian density ft' is invariant under some symmetry group G, i.e. 
under the infinitesimal transformation 

</J;(x) --+ ¢;(x) = </J;(x) + fJ</J;(x) (5.10) 
where 

fJ</J;(x) = ieat'ti</Ji(x) 

eas are (x-independent) small parameters and the tas are a set of matrices 
satisfying the Lie algebra of the group G 

(5.11) 

where the cabcs are the structure constants of the group G. We have the 
corresponding change in the Lagrangian density 

(Jft' {Jft' 

fJY = fJ</J; fJ</J; + fJ(oµ</J;) fJ(oµ</J;). (5.12) 

Using (5.5) and the fact that 

fJ(oll</J;) = oµ</J; - oµ</Ji = oµ(fJ</J;), (5.13) 

(5.14) 
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Clearly if the Lagrangian is invariant under the transformation (5.10), i.e. 
fJ.P = 0, eqn (5.14) implies a conserved current 

iY' = 0 

with 

l a · [Jff' a ,h 

µ = -I fJ(oµ</J;) t;j'f'j· 

The conserved charges given by 

Qa = I d3xJg(x) 

are the generators of the symmetry group. 

(5.15) 

(5.16) 

These types of symmetries which are characterized by the space-time­
independent parameters ea in ( 5.10) are called global symmetries. The fields 
</J;(x) are transformed in exactly the same way for all space-time points x. 

Example 1. Abelian U(I) symmetry. The Lagrange density given by 

.::e = ![(oµ</J1) 2 + (oµ</J2) 2J - iµ 2(</Ji + <PD - tA(</Ji + <PD2 (5.17) 

is invariant under the transformation 

</J1 </J'1 = </J 1 cos rx - ¢ 2 sin rx 

<P2 ¢; = ¢ 1 sin rx + </J2 cos rx. (5.18) 

It is the 0(2) symmetry corresponding to the invariance under rotations in 
the (¢ 1, ¢ 2) plane. For infinitesimal transformation, rx « 1, 

¢1 = <P 1 - rx</J2 

i.e. ¢; = </J; + irxtii</J i with 

t=( i)· 
-I 0 

According to (5.15), the conserved current is 

1µ = -(oµ</J1)</J2 + (oµ</J2)<P1· 

In terms of the complex fields defined as 

<P = :2 (¢1 + i¢2) 

</J* = : 2 (¢1 - i</Jz), 

the Langrangian of (5.17) may be written 

.::e = (oµ</J*)(oµ</J) - µ2(</J*</J) - A(</J*</J)2 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 
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which is invariant under the U(l) transformation 

(5.24) 

giving rise to the conserved current 

(5.25) 

We note that </> 1 and </> 2 (or</> and </>*)are degenerate in mass because of 
the 0(2), or U(l), symmetry. 

Example 2. Isospin symmetry SU(2). We now consider the simple example of 
non-Abelian symmetry. Let</> be an isodoublet 

(5.26) 

The Lagrange density given by 

2 = (aµ</>t)(aµ<f>) _ µ2(</>t</>) _ (</>t</>)' (5.27) 

is invariant under the infinitesimal isospin rotation 

(5.28) 

where the -ras are the standard Pauli matrices. The conserved isospin current 
is given by 

-i 1: = 2 (aµ</>i'r'h</>i - </>[-rfjaµ</>). (5.29) 

The time-components 10 have a simple form 

lo = (ao</>[-r'ti</>i - </>Mjao</>j) 

(5.30) 

where n; is the canonical momentum conjugate to </>;. Using the canonical 
commutators 

[n;(x, t), </>i(x', t)] = -iliiili3 (x - x'), 

we can show (see eqn (5.37) below) that the charges defined by 

Qa = I d3xl0(x) a = l, 2, 3 

satisfy the commutation relations of SU(2) symmetry 

[Qa, Qb] = ieabcQc. 

(5.31) 

(5.32) 

This means that the Qas are the generators of the SU(2) symmetry. Again, the 
</> 1 , </> 2 fields have the same mass because of SU(2) symmetry. 
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Current algebra 

In the above we see that the exact symmetries lead to conserved current and 
their charges generate the group algebra of symmetry transformations. These 
simple commutation relations are useful for classifying particle states. For 
instance, the SU(2) transformations in Example 2 give rise to Q", a= 1, 2, 3 
which are generators ofisospin SU(2) symmetry (5.32). As we have discussed 
in §§4.2 and 4.4, they transform a particle into others within a given isospin 
multiplet. We shall demonstrate below that commutation relations such as 
(5.32) will hold even in the presence of symmetry-breaking terms. Consider 
the Lagrangian 

(5.33) 

where 2'0 is invariant under the symmetry group G while 2'1 is not. Under 
the infinitesimal transformation (5.10) we can still define the current 1: as in 
(5.15) but it will no longer be conserved and the charge defined as 

Q"(t) = f J 0(x) d3x = -i d3x (5.34) 

will not be time-independent. However the factor {J,!l'/()(8°¢;) is still the 
canonical momentum conjugate to cPi even in the presence of 2'1 

{J,!l' 
ni(x) = {J(fJo</J;) 

and satisfies the canonical commutation relation at equal time 

[n:i(x, t), </Ji(y, t)] = -i{J3(x - y) {Jii· 

(5.35) 

(5.36) 

From this we can, without knowing the explicit form of the symmetry­
breaking term 2'1 , calculate the (equal-time) commutator of the charges, 
by using the identity [AB, CD] = A[B, CJD - C[D, A]B when 
[A, CJ = [D, BJ = 0 

[Q"(t), Qb(t)] = - f d3x d3y[n:i(x, t)tficPi(x, t), nk(y, t)tt1</J1(y, t)] 

= - f d3x d3y(ni(x, t)tfi[</Ji(x, t), nk(y, t)Jtt1</J1(y, t) 

+ nk(y, t)tt1[ni(x, t), c/J1(y, t)]tficPi(x, t)) 

= - f d3x(nk(x, t)i[t", tb]ki<Pix, t)). 

Or, using (5.11), we have 

[Q"(t), Qb(t)] = iCabcQ"(t). (5.37) 

Thus even though the Q"(t)s change with time, at any given instant t, the 
commutation relations of the group algebra will still be satisfied. These 
relations are usually referred to as charge algebra. 
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Example. Broken symmetries of the free SU(3) quark model. Here we are 
concerned with the flavour SU (3) group (not colour!). The quark fields are in 
the triplet representation 

q(x) = ( :::::) = (::::) 

q3(x) s(x) 

with the transformation properties 

qi -+ q; = qi+ iaa(A.a/2)ijqj, 

where the A.as are the eight Gell-Mann matrices 

[ ;.a A.b] = vabc ;.c. 
2' 2 !/ 2 

aa « l 

The fabcs are the SU(3) structure constants. We have the Lagrangian 

2 = 2o + 21 

with 
2o = iqyµoµq 

and 

21 = m0 fiu + mdod + m,SS. 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

2 0 is SU(3)-invariant while 2 1 is not. The currents associated with the SU(3) 
transformation are given by 

v:(x) = q(x)yµ(A.a/2)q(x). 

The charges defined by 

Qa(t) = f d3x 

will satisfy the SU(3) algebra 

[Qa(t), Qb(t)] = irbcQ'(t) 

as a consequence of the canonical commutation relation 

{qai(X, t), t)} = bijbapb3(x - y) 

(5.44) 

(5.45) 

(5.46) 

where i,j are the flavour indices and a, pare the Dirac indices. To have exact 
SU(3) symmetry we actually need m0 = md = m,. In the 2 1 = 0 limit, 2 0 

is invariant under transformations of a group larger than SU(3). Besides the 
transformation of (5.39), 2 0 is also unchanged under the axial 
transformation 

qi-+ q; = qi+ ipa(A.a/2)ijy5qj, 

The corresponding currents are given by 

pa« l. (5.47) 

(5.48) 
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which are axial-vector currents. Thus even in the presence of the symmetry­
breaking term 2 1 , we can define the axial charge Q50 

Qsa(t) = I Ao(x) d3x. (5.49) 

Together with the vector charge Q0(x), the axial charges generate the 
following equal-time commutation relations 

[Qa(t), Qb(t)] = ij°bcQ"(t) 

[Qa(t), QSb(t)] = ifabcQS"(t) 

[QSa(t), QSb(t)] = ij°bcQ"(t). (5.50) 

These commutation relations correspond to the chiral SU(3)L x SU{3)R 
algebra. To see this, we form left-handed and right-handed charges defined 
by 

= t(Qa _ QSa) 

Qft = t(Qa + Qsa). 

Eqn (5.50) may then be written as 

[m(t), Qt(t)] = if0 bcQW) 

[Qft{t), = 

[QW), Qft(t)J = o. 

(5.5la) 

(5.5lb) 

(5.52) 

Thus the generate the SU(3)L algebra while the generate the SU(3)R 
algebra. 

One can extend the charge algebra (5.37) by considering the equal-time 
commutators of the charges and their currents. With exactly the same 
calculation as that leading to (5.37) we can show that 

[Q0(t), t)] = iCabc J0(x, t). (5.53) 

Then from Lorentz covariance, we can include the other components of the 
currents 

[Q0 (t), t)] = t). (5.54) 

Similarly we can go further than (5.53) and have 

[J0(x, t), t)] = iC0 b•JO(x, t)<P(x - y). (5.55) 

These relations, and similar extensions of (5.50), are called current algebra, 
see eqn (5.80) below. 

If one tries to include spatial components in the current algebra (5.55), one 
encounters additional terms which vanish upon spatial integration. For 
example, 

[Jo(x, t), J7(y, t)] = iC0 b•Jj(x, t)<P(x - y) 

0 + - ,P(x - y) (5.56) 
•1 oyj 
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where Sjf(x) is some operator depending on the explicit form of Jj(x). This 
term vanishes upon integration over space 

Sjf(x) I '53(x - y) d3y = 0 (5.57) 

so it will not modify the charge-<:urrent algebra of (5.54). Terms of this type 
are called Schwinger terms (Schwinger 1959). A simple argument will show 
that they cannot vanish in general. Consider the simplest case of the U(l) 
symmetry where there is no need of group indices and the structure constants 
vanish. If we assume the absence of Schwinger terms, the commutator (5.56) 
becomes 

[Jo(X, t), J;(y, t)] = 0 

which implies 

[Jo(X, t), a;J;(y, t)] = 0. 

From current conservation a,, J,, = 0, we obtain 

[Jo(X, t), aoJo(y, t)J = 0. 

(5.58) 

(5.59) 

(5.60) 

Taking the vacuum expectation value and inserting a complete set of energy 
eigenstates, we have 

(Ol[Jo(X, t), aolo(y, t)JIO) = L ((OIJo(X, t)ln)(nlaolo(Y, t)IO) 
n 

- (Olaolo(y, t)ln)(nllo(x, t)IO)) 

= i L: (eip,·(x-y) + e-ip,·(x-y)) 
n 

Thus in the limit x --+ y, eqn (5.60) would imply that 

n 

From the positivity of energy we must conclude that 

(OIJ0 (0)ln) = 0 for all In). 

(5.61) 

(5.62) 

(5.63) 

Thus, we have J 0 = O identically and the relation (5.60) is trivial. Therefore, 
we must have a nonvanishing Schwinger term. 

We should also note that the free quark model in fact has two more U(l) 
symmetries. The first U(l) symmetry corresponds to .IR (eqn (5.41)) being 
invariant under the common phase change for each of the quark fields 

q;(x)--+ eiPq;(x) (5.64) 

with the conserved (baryon-number) current 

(5.65) 
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The second U(l) symmetry corresponds to 2 0 (eqn (5.42)) being invariant 
under 

q;(X) __... eiPYsq;(X) 

with the (partially) conserved ('axial baryon number') current 

J:(x),..., <''.ii(x)yµy5q;(x). 

(5.66) 

(5.67) 

The problems associated with this axial U(l) symmetry will be discussed in 
§16.3. 

5.2 Symmetry currents as physical currents 

As we studied in the previous chapter, symmetry groups are of great 
importance in particle classification. Now we see in field theoretical studies 
that these symmetry currents (Noether currents) and charges satisfy definite 
commutation relations that are valid even in the presence of symmetry­
breaking terms. Another important result of field theoretical studies is that 
these symmetry currents are just the physical currents appearing in 
electromagnetic and weak interactions, i.e. the same Noether currents, or 
some linear combinations thereof, appear in the interaction Lagrangian. 
Thus current algebra, which represents symmetries of the strong interaction, 
can be directly tested in electromagnetic or weak-interaction processes 
involving hadrons. For reviews of applications of current algebra see Adler 
and Dashen (1968) and de Alfaro et al. (1973). 

Electromagnetic currents 

The most familiar physical current is the electromagnetic current J1m(x) 
which is coupled to the photon field A;.(x) in the interaction Lagrangian by 

(5.68) 

where e is the electromagnetic charge coupling constant. We can decompose 
the current into leptonic and hadronic parts 

(5.69) 

The leptonic current can be written directly in terms of the charged lepton 
fields 

J1T = -ey;.e - µy;.µ +... (5.70) 

where the fermion field operators are denoted by their particle names. Since 
the leptons do not have strong interactions and the electromagnetic 
interaction can be treated perturbatively, we can directly measure nr in 
physical processes. In this respect the hadronic electromagnetic current is 
quite different. It cannot be written directly in terms of hadronic fields such 
as 7t, K, N, etc. because they are not elementary constituents. While we can 
express in terms of the quark fields, 

(5.71) 
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it cannot be used in the same way as the leptonic current. We do not know 
the hadronic wavefunction in terms of the quark fields and quarks have 
strong interactions which must be taken into account to all orders. Until 
this can be done we have to rely on the experimental measurement to learn 
the structure of the matrix elements of this current. On the other hand, the 
electromagnetic current is also a symmetry current. In fact it is conserved by 
all known interactions. The hadronic charge operator 

Qhm = f Jom d3x (5.72) 

obeys the Gell-Mann-Nishijima relation (see §4.4) 

Qem T Y 
h = 3 +2" 

This implies a similar relation for the corresponding currents, 

+ vr. 
In the quark model this corresponds to 

Weak currents 

= - jdtd -!sts + ... 
= !(utu - dtd) + i{utu + dtd - 2sts) + ... 

(5.73) 

(5.74) 

In weak interactions the currents play a similar role in electromagnetic 
interaction. We shall see (cf. Chapter 11) that these two interactions are 
'unified' in modern gauge theories and that the weak and electromagnetic 
currents are members of one multiplet; hence they really have similar 
theoretical status. In this chapter we shall restrict our discussion to the 
charged weak current J ;.-to the part of J;. that does not bear any of the new 
quantum numbers: 'Charm', 'bottom', etc. Similarly to (5.68) it is coupled 
to the charged intermediate vector boson (IVB) field W;. in the interaction as 

(5.75) 

where g is the coupling constant. From this we have the effective low-energy 
Lagrangian for a current-current interaction 

Gp t ;. 
fi'.tr = - .../2 J ;/ + h.c. (5.76) 

where g2 /Ma, = Gp/ ..j2, as the massive IVB propagator, contributes the Ma, 
mass factor in the denominator. 10-s is the Fermi constant measured 
in units of inverse proton mass squared. The weak current J;. can also be 
separated into leptonic and hadronic parts 

(5.77) 
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with 

(5.78) 

where ve(x) and vµ(x) are field operators for the neutrino fields. The hadronic 
current can be written in the V-A form 

=[(Vi+ - (Ai+ cos (Jc 

+[(Vi+ - (Ai+ sin (Jc (5.79) 

where 0.25 is the Cabibbo angle (Cabibbo 1963). The subscripts on the 
vector and axial vector operators are the flavour SU(3) octet indices. The 
various selection rules and symmetry relations implied by the SU(3) and 
SU(2) transformation properties ofhadronic currents are well tested in semi­
leptonic weak processes. For example, the strangeness-conserving vector 
current Vi + i and its conjugate Vi - i are partners of the isovector 
electromagnetic current in an isospin triplet and the corresponding 
charges will form the generators of the isospin SU(2) subgroup of SU(3). 
These isospin currents are of course approximately conserved. This is called 
the conserved vector current (CVC) hypothesis (Feynman and Gell-Mann 
1958). Thus from our knowledge of the electromagnetic-current matrix 
elements (form factors) we can predict the strangeness-conserving weak 
vector-current form factor by isospin rotations. Similarly the weak form 
factors of the strangeness-changing vector currents can be fixed by SU(3) 
rotations since all these vector currents are members of the same SU(3) 
octet, etc. Furthermore, these vector and axial vector currents are postulated 
to satisfy the SU(3)L x SU(3)R algebra (Gell-Mann 1964a) 

t), t)] = t)b 3 (x - y) 

t), t)] = t)c5 3(x - y) 

t), t)] = t)b 3(x - y). (5.80) 

We note that these relations in which the left-hand sides are quadratic in the 
currents while the right-hand sides are linear will give rise to non-linear 
constraints among currents. Thus the normalizations of the currents are fixed 
by these non-linear commutation relations. 

A great triumph of the quark model of hadrons is its successful and simple 
explanation of all the above symmetry features of the weak hadronic current. 
Very much like the leptonic current in (5.78), the hadronic weak current in 
(5. 79) can be written directly in terms of quark fields 

(5.81) 

and, as we have seen in §5.1, the SU(3)L x SU(3)R algebra (5.80) is also 
satisfied in a free quark model. The key problem of course remains of 
finding a fully interacting theory of the quarks in which the strong interaction 
naturally has this approximate global SU(3)L x SU(3)R chiral symmetry. 
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Current algebra sum rule 

As an illustration of the type of results that can be obtained from the current 
algebra of (5.80) we will derive the Adler's sum rule for neutrino scattering 
(Adler 1966). 

FIG. 5.1. 

Consider (Fig. 5.1) the neutrino scattering off a nucleon target producing 
a charged lepton r and some hadron state xn (n particles with total 
momentum Pn) 

v(k) + N(p) -+ 1-(k') + X(pn). 

Define 

q = k- k' 

v =p·q/M 

where M is the nucleon mass. In the lab-frame 

we have 

p,, = (M, 0, 0, 0), k,, = (E, k), 

q2 = -4EE' sin2 

2 

v = E-E' 

= (E', k'), 

(5.82) 

(5.83) 

(5.84) 

where () is the angle between k and k', and the energy is high enough so that 
we can make the approximation of taking the charged lepton mass m1 to be 
zero. From (5.76) and (5.78) the amplitude for this process can be written 

and the unpolarized differential cross-section as 

du<vJ = _!__1 __ 1 d3k' IT [ d3pi J 
" lvl 2M 2E i= 1 (2n)32p;0 

1 
X - L iJ;,vJl 2(2n)4 c5(k + p - k' - Pn) (5.86) 

2 a.V.' 

where u, A., and A.' are spin labels of nucleon, initial and final lepton, res­
pectively, and 

n 

Pn = L Pi· 
i= 1 
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Ifwe sum over all possible hadronic final states, we obtain the inclusive cross­
section 

d 2 <vi G1 
(J = __ F_ fa/J w<v) 

dlq2I dv 32nE1 afJ 

with the leptonic tensor 

lap= tr[(k')ya(l - y5)(k)yp(l -ys)J 

= 8(kakp + - k · k'gafJ + ieafJyok'Yk0 ) 

and the hadronic tensor 

1 I . [ d 3p. J 
q) = 4M (2n) 3;Pio 

(5.87) 

(5.88) 

x (p, a)(2n)3<54 (Pn - p - q) 

= (p, a) ein. (5.89) 

Note that is non-zero only for q0 = E - E' > 0. Since it is a second­
rank tensor depending only on momenta p and q, it can be written as 

= - + -

+ + + Ppqa)/M 1 

(5.90) 

where the W\vls are Lorentz-invariant functions of q1 and v of (5.84), called 
structure functions. The cross-section in (5.87) is now 

d2a<vJ - (E') [2 w<vJ . z w<vl z - (E + E') sin2 w<vl]. 
dlq21 dv - 2n E 1 sm 2 + 2 cos 2 M 2 3 

(5.91) 

The 5, 6 s do not appear in the m1 = 0 limit. 
Similarly for anti-neutrino scattering 

v + N t+ + X, (5.92) 

we have 

d2a<"l - (E')[2w<vl . z () w<"l z () (E + E') . z () w<"l] 2 - - - 1 sm - + 2 cos - + sm - 3 
<liq I dv 2n E 2 2 M 2 

(5.93) 

where the structure functions W\"l are defined by 

- w<"lg + w<"lp n /M1 - i w<"le pYq0/M1 
- - 1 a/J 2 rxr fJ 3 afJyo 
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+ + + ppqa)/M 2 

+ i - ppqa)/M2 . 
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(5.94) 

Again they are non-zero only for q0 > 0. We can alter (5.94) slightly using 
translational invariance 

q) = eiq Y(p, cr) 

= _l_ L Jd4y e-iq Y(p, cr\Jhp(O)na(Y)\p, cr). (5.95) 
4M a 2n 

Now consider the tensor Wap defined by 

When this is compared to (5.89) and (5.95) we have 

Wap(p, q) = q) for q0 > 0 

(5.96) 

= - -q) for qo < 0. (5.97) 

To derive the sum rule, we take W00 and integrate over q0 

00 00 

I Woo(p, q) dqo = I q) - q)) dq0 

-oo 0 

= f d3y e-iq y (p, 0), Jho(O)]\p, cr). 

(5.98) 

This equal-time commutator can be evaluated using the current algebra of 
(5.80). The simplest way to calculate this is to use the fact that these 
commutation relations are also satisfied in the free-quark model (see §5. l) 
where the current is given by (5.81). Using the canonical anti-commutation 
relations 

(5.99) 

where the indices are those of the Dirac matrix space as well as the flavour 
space of (5.38), we have 

Jh0(0)] =[(cos ecdt(y, 0) +sin ecst(y, 0))(1 - y5)u(y, 0), 

ut(O)(l - y5)(cos ecd(O) + sin ecs(O))] 

= 2(cos ecdt(y, 0) +sin ecst(y, 0))(1 - y5) 

x {u(y, 0), ut(O)}(cos ecd(O) +sin ecs(O)) 

- 2ut(O)(l - y5)(cos2 ec{dt(y, 0), d(O)} 

+ sin 2 ec{st(y, 0), s(O)})u(y, 0) 
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= 2c:53(y)(cos2 Bedt(O)(l - y5)d(O) 

+ sin2 Best(O)(l - y5 )s(O) 

+sin Be cos Bc(dt(O)(l - y5)s(O) + st(O)(l - y5)d(O)) 

- ut(O)(l - y5)u(O)) 

= -<53(y)[4 cos2 Bc(Vg(O) - Ag(O)) 

+ sin2 Bc(3(VMO) - + 2(VMO) - AMO))) 

+ 4 sin Be cos Bc(Vg(O) - A&(O))] (5.100) 

where 

= (utu + dtd - 2sts)/3 

vg = (utu - dtd)/2 

(uty 5u + dty 5d - 2sty5s)/3 

Ag = (uty5u - dty 5d)/2 

vg = (dts + std)/2 Ag = (dty 5s + sty5d)/2. 
(5.101) 

Since vg and Ag are strangeness-changing operators, their matrix elements 
vanish when taken between nuclear states. Also averaging over nucleon spin, 
we have 

1 "' . 2 L... (p, CT)= 0 for all i. 
a 

(5.102) 

Thus (5.98) becomes 

co 

f q) - q)] dq0 = 

0 

where T3 and Y are the isospin and hypercharge of the nucleon state 

1 "' 3 2 L... (p, CTI V olP, CT) = 2T3p 0 
a 

1 "' y 2 L... (p, CT!VolP, CT)= 2YPo· 
a 

(5.104) 

We now proceed to express the left-hand side of (5.103) in terms of the 
structure functions 

co 

f dqo = f [ - + + 
0 

(5.105) 

A judicial choice of reference frame will simplify this equation. Instead of the 
nucleon rest frame, we will take the infinite-momentum frame (Fubini and 



5.3 Spontaneous breaking of global symmetry, the Goldstone theorem 141 

Furlan 1965) in which the nucleon has infinite momentum orthogonal to q 

Then in this frame, 

IPI _. oo with p · q = o. 

Po = (p2 + M 2 ) 112 IPI _. oo 

v = p ·q/M = p0 qo/M 

q2 = _ q2 = (vM/po)2 _ q2 _. -q2 

and the largest term on the right-hand side of (5.105) is 
00 00 

Jim J dq0 = PMo J v) 
IPI oo 

0 0 

(5.106) 

(5.107) 

(5.108) 

where we have assumed that it is valid to intercharge the limit and the 
integration. Thus the sum rule in (5.103) becomes 

00 

J v) - v)] dv = 4T3 cos2 (Jc+ (3Y + 2T3 ) sin2 Be 

0 

= { 2 cos2 (Jc + 4 sin2 (Jc 

- 2 cos2 (Jc + 2 sin2 (Jc 

for a proton target (5.109) 
for a neutron target. 

This is the Adler current-algebra sum rule for neutrino scattering. We remark 
that even though it is derived in the infinite-momentum frame, the final result 
expressed in terms of Lorentz invariants should be true in any given frame. It 
has the notable feature that the q2-dependence of the left-hand side gets 
'integrated away'. This sum rule can be used for any target with appropriate 
T3 and Y quantum numbers on the right-hand side. An extension to include 
other additive flavour quantum rules (beyond strangeness) can be carried 
out in a straightforward fashion. 

5.3 Spontaneous breaking of global symmetry, the Goldstone 
theorem 

The SU(3)L x SU(3)R algebra (5.80) generated by the various physical 
currents suggests that we have a strong-interaction Hamiltonian 

(5.110) 

where H 0 is invariant under SU(3)L x SU(3)R transformations and H 1 is not. 
In the limit of A. = 0, all generators of the chiral algebra are conserved. We 
would expect particles to form degenerate multiplets corresponding to 
irreducible representations of the group SU(3)L x SU(3)R. For example, the 
octet pseudoscalar mesons should be accompanied by an octet of scalar 
mesons, and the JP= (1/2)+ baryons should have partners with opposite 
parities. But in reality there is no evidence for this larger multiplet structure. 
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This leads to the idea that SU(3)L x SU(3)R symmetry is spontaneously 
broken and that this symmetry of H0 is not realized by the particle spectrum. 

Non-invariance of the ground state as a symmetry-breaking condition 

Let Ube an element of the symmetry group which leaves H0 invariant. Then 

UH0 ut = H 0 (5.111) 

and it connects states that form an irreducible representation (basis ) of the 
group 

UIA) = IB). 

From (5.111) and (5.112) it follows immediately that 

EA = (AIHolA) 

= (BIH0 IB) = EB. 

(5.112) 

(5.113) 

Thus the symmetry of the Hamiltonian H 0 is manifest in the degeneracies of 
the energy eigenstates corresponding to the irreducible representations of the 
symmetry group. However implicit in the statement of (5.112) and hence 
(5.113) is the invariance of the ground state under symmetry transformation. 
Since IA) and IB) must be related to the ground state 10) through some 
appropriate creation operators <PA and <PB 

IB) =<!>BIO) (5.114) 

and 

(5.115) 

eqn (5.112) follows only if 

UIO) = 10). (5.116) 

When (5.116) is not satisfied, this vitiates (5.113) and the usual symmetry 
consequence of degenerate energy levels. Such a situation is commonly 
referred to as a spontaneous symmetry breakdown. However, it must be 
emphasized that, even though the symmetry is not manifest in the degenerate 
energy levels, there are still symmetry relations coming from the fact the 
Hamiltonian or the Lagrangian is still invariant under the symmetry 
transformation. 

Ferromagnetism as an example of spontaneous symmetry breakdown 

This lack of degeneracy in particle spectra in a symmetry theory may come as 
a surprise, but there are a number of familiar situations where the ground 
state is not a symmetric state. A well-known example is ferromagnetism near 
the Curie temperature Tc. For T > Tc, all the dipoles are randomly oriented; 
the ground state is rotationally invariant. For T < Tc, all the dipoles are 
aligned in some arbitrary direction (spontaneous magnetization) and the 
rotational symmetry is hidden. Consider the description of this phenomenon 
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by the Ginzburg-Landau theory (1950). For temperatures near the Curie 
point, the magnetization Mis expected to be small; a power series expansion 
of the free energy density can be made, with higher powers of M being 
neglected 

u(M) = (o;M)2 + V(M) (5.117) 

where 

V(M) = oc 1(T)(M · M) + oc2(M · M)2 • (5.118) 

The energy densities u and V are clearly rotationally symmetric. We have 
assumed a slowly varying field and kept only the first derivatives. The 
(M · M)2 term in (5.118), with a positive coefficient oc2 > 0, is included 
because, at the Curie point, oc 1 vanishes 

oc 1 = oc(T - Tc) with oc > 0. 

Since the (o;M)2 term is non-negative, to obtain the ground-state magnetiza­
tion we simply minimize V(M) 

bV/bM; = 0 (5.119) 

or 

M(oc 1 + 2oc2M · M) = 0. 

For T > Tc (i.e. oc 1 > 0), the solution is at M = 0. For T < Tc (i.e. oc 1 < 0) 
M = 0 is a local maximum and the minimization fixes the magnitude of 
magnetization (the order parameter) to be 

(5.120) 

But its direction is unspecified by the theory itself. The ground state, having 
Min some definite direction, is one member of this infinitely degenerate set; 
it is fixed by the boundary condition and is not rotationally symmetric. For 
temperatures below the Curie point the rotational symmetry of the magnet is 
spontaneously broken. Thus the symmetry-breaking condition is the non­
invariance of the vacuum (ground state) 

UIO) # 10). (5.121) 

For U = exp(ie"Q"), where the e"s are the continuous group parameters, 
(5.121) can be expressed by the statement that the symmetry charge does not 
annihilate the vacuum 

Q"IO) # O. (5.122) 

An equivalent statement to (5.121) and (5.122) is that certain field operators 
have nonvanishing vacuum expectation values 

(5.123) 

This can be seen easily as a symmetry transformation of the type (5.115) or 
(5.10) may be represented in terms of generators as 

(5.124) 
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where tii is the appropriate representation matrix. Thus (5.122) implies the 
existence of at least some nonvanishing matrix element (01</>ilO). We should 
also remark that translational invariance of the vacuum state leads to the 
conclusion that these matrix elements are space-time-independent constants, 

(01</>(x)IO) = (01 eip·x</>(O) e-ip·xlO) 

= (01</>(0)IO). (5.125) 

The Goldstone theorem 

Spontaneous breakdown of a continuous symmetry implies the existence of 
massless spinless particles. The study of this connection was initiated by 
Nambu (1960; Nambu and Jona-Lasinio 196la, b) and subsequently the 
proofs, with various degrees of rigour and generality, were provided by 
Goldstone (1961) and others (Goldstone, Salam, and Weinberg 1962). Such 
scalar particles are referred to as Nambu-Goldstone bosons or simply as 
Goldstone bosons. In the following we shall first give a formal proof 
(Guralnik et al. 1968). This is followed by a number of illustrative examples. 

Any continuous symmetry of the Lagrangian, by Noether's theorem, 
implies the existence of a conserved current 

(5.126) 

Normally we can convert this into the statement of the charge being a 
constant of motion dQ(t)/dt = 0 with Q(t) = J d3xJ0(x, t). However, with 
spontaneous symmetry breakdown (5.123), Q(t) is not well defined because 
of the poor convergence property of the field operator in the integrand. Even 
the weak limit, corresponding to the matrix element (OIQ2 (t)IO), does not 
exist. The translational invariance property of the vacuum state leads to the 
result 

(OIQ2(t)IO) = f d3x(OIJ0 (0)Q(O)IO) 

which diverges because the integrand is nonvanishing and x-independent. 
The nonexistence of Q does not really matter since in actual calculation only 
the commutator of Q need ever appear. For the transformation of some 
generic field operator </>(x), we have 

</>(x) </>'(x) = ei•Q<J>(x) e-i•Q 

= </>(x) + ie[Q, </>(x)] + .... 
Here we shall only assume that the commutator exists and formulate the 
proof entirely in terms of its properties. Current conservation ( 5.126) implies 
that 

o = J d3x[o" J 11(x, t), </>(O)] 

= a0 I d3x[J0(x, t), </>(O)] + I dS. [J(x, t), </>(O)]. 
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For a large enough surface and thus for large space-like separations the second 
term on the right-hand side vanishes. Hence 

d 
dt [Q(t), ¢(0)] = 0. (5.127) 

This commutator being some combination of fields, if it has nonvanishing 
vacuum expectation value 

(Oj[Q(t), ¢(0)]!0) = ri i= 0, (5.128) 

we say that the symmetry is spontaneously broken. After inserting a 
complete set of intermediate states and using a translation operator, (5.128) 
may be written 

n 

-(Oj¢j(O)jn)(njl0 (0)j0) ei£"1} = YJ. (5.129) 

The right-hand side is nonvanishing and time-independent because of (5.128) 
and (5.127). Since the positive and negative frequency parts do not mutually 
cancel, (5.129) can be satisfied only if there exists an intermediate state for 
which 

En = 0 for Pn = 0. 

Thus, it is a massless state (the Goldstone boson). This particle will have the 
property that 

(n!¢(0)j0) i= 0, (Ojl0 (0)jn) i= 0. (5.130) 

Thus it can be connected to vacuum by the current 10(0) or the operator ¢(0). 
This theorem is true independently of perturbation theory. We will illustrate 
it in a few examples. 

Discrete symmetry case 

Goldstone bosons are not expected to be present in the discrete symmetry 
case. Our purpose is to illustrate the circumstance in which the symmetry­
breaking condition (5.123) can take place. The Lagrange density given by 

1 2 l22A4 
2 =2(o;.¢) -2µ¢ -4¢ (5.131) 

has the discrete symmetry 

¢--+ ¢' = -¢. (5.132) 

Since 80 ¢ is the momentum field conjugate to ¢, the Hamiltonian density is 
given by 
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Thus the classical potential (energy density) may be identified as 

u(cf>) = (Vcf>)2 + V(cf>) 

with 

(5.133) 

Since the (Vcf>)2 term is non-negative, the minimum of u(cf>) will have the 
property Vcf> = 0 with the constant value cf> given by minimizing V(cf>) of 
(5.133) directly. Since the coupling A. is positive (so that energy is bound from 
below), V(cf>) for the two possible cases of µ2 > 0 and µ2 < 0 is shown in Fig. 
5.2. For µ2 < 0, the ground-state field is nonvanishing 

(5.134) 

V(.f,) 

µ2>0 µ2<0 

FIG. 5.2. Effective potential with the quadratic term having different signs. 

In quantum field language, the ground-state is the vacuum and the classical 
ground-state fields in (5.134) correspond to the vacuum expectation values 
(VEV) of the field operator cf> 

(Olcf>IO) = v 

with 

(5.135) 

The two possible values in (5.135) correspond to the two possible vacua. One 
can choose either one (and only one) to build the theory. Either choice, say 
v = + ( µ2 /°A )t, clearly breaks the original reflection symmetry cf> --+ - cf> of 
the theory. (Since the Fock spaces built on the two possible vacua are 
mutually orthogonal, it is not meaningful to build a theory based on some 
superposition of the two vacua.) This is the broken symmetry condition. 

Since the symmetry in this case is discrete, we do not expect massless 
Goldstone bosons. To verify this we need to consider small oscillations 
around the true vacuum. Thus define a new quantum field variable with zero 
VEV. In terms of this 'shifted field' 

cf>'= cf>-v, (5.136) 
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the Lagrangian density becomes 

2 = ! (o ;.c/>')2 _ ( _ µ2)c/>'2 _ Avc/>'3 _ c/>'4. 
2 4 

cf>' describes a particle with mass ( -2µ 2}t. 

Abelian symmetry case 

The Lagrange density given by 

1 1 
2 = 2 (o;.u)2 + 2 (o;.n)2 - V(u2 + n2) 

with 

-µ2 ;. 
V(u2 + n2) = -- (u2 + n2) + - (u2 + n2)2 

2 4 

has (continuous) U(l), i.e. 0(2), symmetry 

(u) (u') ( cos ex sin ex ) (u) 
n -+ n' = - sin ex cos ex n · 

The extremum of the potential Vis determined by 

c5V 2 2 2 
c5u = u[ - µ + ).( u + n )] = 0 

c5V 2 2 2 
- = n[ -µ + A(u + n )] = 0. 
c5n 

For µ 2 > 0, the minimum is at 

u2+n2=v2 

with 
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(5.137) 

(5.138) 

(5.139) 

(5.140) 

(5.141) 

(5.142) 

(5.143) 

A graphic representation of the potential is given in Fig. 5.3. The minima 
consist of points on a circle with radius v in the (u, n) plane. They are related 

v 

FIG. 5.3. The potential function of eqn (5.139) for µ 2 > 0. 
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to each other through 0(2) rotations. Hence they are all equivalent and there 
are an infinite number of degenerate vacua. Any point on this circle may be 
chosen as the true vacuum. We can pick, for example, 

(OlulO) = v, (OlnlO) = 0. (5.144) 

Thus the 0(2) symmetry is broken by the vacuum state. 
To find the particle spectrum in perturbation theory we consider small 

oscillations around the true minimum and define a shifted field 

u' = u - v. (5.145) 

The Lagrange density may be written 

There is no quadratic term in the n-field and that in the cr' field has the right 
sign. Therefore, n is the massless Goldstone boson and cr' is a particle with 
mass (2µ 2}t. In fact it is easy to see this pictorially in Fig. 5.3. Small 
oscillations around any point of the minimum circle may be decomposed into 
the radial and polar angle components. The polar-angle oscillations are 
along an equipotential trajectory and it does not cost any energy and hence 
corresponds to a massless particle. With our choice of vacuum (5.144) the 
polar angle oscillation is along the n direction-hence n becomes the 
Goldstone boson. 

We shall also examine these features more formally through the 
Goldstone theorem and make connection to the proof of eqns (5.128) and 
(5.130). The conserved current generated by the U(l) symmetry (5.140) is 
given by 

J;.(x) = [(a;.n)u - (a;.u)n] 

with the associated charge being 

Using the canonical commutation relations 

we can derive 

[a0n(x, t), n(y, t)] = -i<53(x - y) 

[a0u(x, t), u(y, t)] = -i<53(x - y), 

[Q, n(O)] = - icr(O) 

[Q, cr(O)] = in(O). 

(5.147) 

(5.148) 

(5.149a) 

(5.149b) 

(5.150a) 

(5.150b) 

According to the formal proof (eqns (5.128)-(5.130)) of the Goldstone 
theorem, the symmetry-breaking condition (5.144) implies the existence of a 
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massless particle state, in this case the quanta of the 7t-field with 

(7tl7t(O)IO) # 0 

(01Jo(O)l7t) # 0. (5.151) 

To see more explicitly that the right-hand side is nonvanishing we note that 
(5.129) for our case takes on the form 

L (27t)3<P(pn){ (OIJ0 (0)ln)(nl7t(O)IO) e-iE.i 
n 

-(Oln(O)ln)(nlJ0(0)10) eiE•'} = -iv. (5.152) 

The only contribution on the left-hand side is from the massless 7t state: 
In) = l7t). Thus 

f b3(p ){ ( 01 J o(O)l7t{p) )( 7t(p )l7t(O)IO) 

- (Ol7t(O)l7t{p))(7t{p)IJ0 (0)IO)} = -iv (5.153) 
which is satisfied for 

(01Jo(O)l7t(p)) =ivp0 (5.154) 

if the normalization condition (Ol7t(O)l7t{p)) = 1 is taken. We note that 
manifest covariance requires that 

(01 J µ(O)ln(p )) = ivpµ. 

Thus the matrix element of the current divergence is 

(018µJµ(O)l7t(p)) = vm; 
and current conservation implies that either 

v = (Oicr(O)IO) = O 

or 

m"=O. 

(5.155) 

(5.156) 

(5.157) 

(5.158) 

Thus in this example, the nonvanishing VEY, v = (OlcrlO), is related to the 
pion decay constant (see eqn (5.178) below). 

Non-Abelian symmetry case: the SU(2)L x SU(2)R a model 

Consider a theory (Schwinger 1958; Polkinghorne 1958; Gell-Mann and 
Levy 1960) with the following fields: isotriplet ofpions 7t = (7t 1 , 7t2 , n3), an 
isoscalar a-field and an isodoublet of nucleons N = (p, n). The Lagrangian 
given by 

.ft' = t[(aµa)2 + (aµn)2 ] + NiyµaµN 

+ gN(a +it ·ny5)N - V(a2 + n 2 ) (5.159) 

with 

(5.160) 
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is invariant under the SU(2) transformations 

cr -+ cr' = cr 

n -+ n' = n + or x n 

N -+ N' = N - ior · N 
2 

for ex; « 1 with the conserved currents given by 

'ta 
J 0 = Ny - N + t'bc1tbfJ 1tc for a= l, 2, 3. 

µ µ 2 µ 

The SU(2) generators are 

Qa = f Jo(x) d3x. 

(5.161) 

(5.162) 

(5.163) 

This Lagrangian (5.159) is also invariant under the axial SU(2) 
transformations 

cr-+ cr' = cr + P·n: 

n: -+ n:' = n: - pcr 

N-+ N' = N + 
2 

with the conserved currents given by 

and 

Qsa = I Ao(x) d3x. 

These charges generate the SU(2)L x SU(2)R algebra 

[Qa, Qb] = it'bcQc 

[Qa, Q5h] = ieabcQ5c 

[Qsa, Qsb] = ieabcQ". 

(5.164) 

(5.165) 

(5.166) 

(5.167) 

The spontaneous symmetry breakdown will happen for µ2 > 0 and the 
minimum of the potential is at 

cr2 + n2 = v2 with v = (µ2 j),)t. (5.168) 

We can choose (Oln:IO) = 0 and 

(OlcrlO) = v. (5.169) 

With the shifted field defined as cr' = cr - v in V(cr2 + 1t2); we can easily 
check that its are the massless Goldstone bosons. Following a similar 
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procedure to that outlined in the previous example, we can work out 
commutators such as 

[Qsa, 1tb] = -im5ab. (5.170) 

And the choice of (5.169) implies that axial charges Q5a do not annihilate the 
vacuum; in fact 

(5.171) 

Thus the SU(2)L x SU(2)R symmetry is broken spontaneously into the 
SU(2) symmetry generated by the charges Qa of (5.163) because 

QalO) = 0 for a = 1, 2, 3. (5.172) 

We note that in the original Lagrangian (5.159) there is no nucleon mass term 
because a mNNN term would not be invariant under the axial transformation 
(5.164). However the chirally symmetric Yukawa coupling of 
gN(a +it ·ny5)N generates a mass term for the nucleon after spontaneous 
symmetry breakdown 

gN(a +it· ny5)N --+ gvNN + gN(a' +it· ny5 )N 

and the isodoublet nucleon mass is 

(5.173) 

(5.174) 

The meson masses are (isoscalar) ma = .J2µ and (isotriplet) mn = 0. Thus the 
symmetry of the Lagrangian SU(2)L x SU(2)R is not realized in the particle 
spectrum which displays only the isospin SU(2) symmetry. Ifwe have µ 2 < 0, 
then the symmetry is not hidden: cr and 1t will be degenerate in mass and form 
the (2, 2) irreducible representation of the SU(2)L x SU(2)R group. 

5.4 PCAC and soft pion theorems 

The symmetry of the Lagrangian is always reflected in the algebra of 
currents. But in spontaneous symmetry breakdown the particle spectrum 
only realizes that portion of the symmetry which is also respected by the 
ground state. Thus in the SU(3)L x SU(3)R algebra of electromagnetic and 
weak currents (see §5.2) we want the symmetry to be broken spontaneously in 
such a way that the vacuum is only SU(3) symmetric. The Goldstone 
theorem then implies that there must be eight massless pseudoscalar mesons 
associated with the spontaneously broken axial charges Q5a, a = 1, .. ., 8. 
Clearly in reality we do not have such massless particles but eight relatively 
light mesons, n, K, and TJ. We then conclude that the flavour 
SU(3)L x SU(3)R symmetry must also be broken explicitly and the masses of 
the o- mesons reflect this chiral symmetry breaking (Dashen 1969) 

(5. l 75a) 

where Jll'0 is SU(3)L x SU(3)R invariant and Jll'' is not. Also the pion 
isotriplet being much lighter than the Ks and TJ suggests that we can further 
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decompose the symmetry-breaking Hamiltonian into two terms 

A.Yf' = A. 1 £ 1 + A.2Yf2 (5.175b) 

where £ 1 is SU(2)L x SU(2)R invariant and A. 1 » A.2. Thus, SU(2)L x SU(2)R 
is a much better symmetry than SU(3)L x SU(3)R. An example is the free­
quark model where chiral symmetry is broken explicitly by the quark mass 
term (5.43) with m, »mu, md; and we identify A. 1£ 1 = m,ss and 
A.2£ 2 = muflu + mdod. Thus the pions are expected to have masses propor­
tional to the nonstrange quark masses, and the kaons and eta meson to have 
masses proportional to the strange quark mass (more on this in the next 
section). In this section we shall derive a number of soft pion theorems which 
hold in the chiral symmetry limit (A.2 = 0) with pions taken to be massless 
particles. In the next section soft meson theorems sensitive to the structure of 
the symmetry-breaking term A. 1£ 1 + A.2 £ 2 will be studied. 

PCAC 

As the discussion in §5.3 indicates, the Goldstone bosons na(x) have direct 
couplings to the broken axial charges Q5a and currents A: as in (5.171): 

a, b = 1, 2, 3 (5.176) 

where Jab is some nonzero constant. If we assume that the SU(2) isospin 
symmetry is unbroken, it may be written as 

(5.177) 

where !rt is the pion decay constant measured in n+ --+ 1+ + v1• 

Experimentally we have 93 MeV. Taking the divergence of the axial­
vector current, we have 

(5.178) 

Thus, if A. 2 = 0 in (5.175), the SU(2)L x SU(2)R symmetry in the Hamiltonian 
is exact, and 

aµA:=o (5.179) 

which implies that m; = 0 in (5.178), as required by the Goldstone theorem. 
However ifthe symmetry is explicitly broken, A.2 #- 0, we can rewrite (5.178) 

(Oloµ A:(O)lnb(p )) = frtm;(Ol<faa(O)lnb(p )) (5.180) 

where <Pa is the pion field operator with the normalization 

(O\</Ja(O)\nb(p)) = [Jab. 

The generalization of (5.180) into an operator relation 

a=l,2,3 (5.181) 

is known as the partially conserved axial-vector current (PCAC) hypothesis 
(Nambu 1960; Chou 1961; Gell-Mann and Levy 1960). One would think that 
such a relation which connects the weak currents A: and the strong 
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interacting pion fields </>0 should have a host of experimental implications. In 
practice, in order to translate this PCAC hypothesis into relations connecting 
physically measurable quantities, additional assumptions need to be made as 
we shall see in the following example. 

Low energy theorems with one soft pion 

(1) Goldberger-Treiman relation. Consider the matrix element of the weak 
axial vector current between nucleon states (p(k')l(A! + iA;)ln(k)) which is 
measured in the neutron From Lorentz covariance we have 

(p(k')l(A! + iA;)ln(k)) = iip(k')[yµySgA(q2 ) + qµyshA(q2 )]uo(k) 
(5.182) 

where q = k - k' is the momentum transfer between n and p. The form 
factors gA, hA are functions of the invariant q2 • Experimentally we have 
gA(O) 1.26. The current divergence has the matrix element 

(p(k')I o"(A! + iA;)ln(k)) = 

iUp(k')YsUn(k)[2mNgiq2 ) + q2hA(q2 )] (5.183) 

where mN is the nucleon mass. The PCAS hypothesis of (5.181) with 

(5.184) 

yields 

(p(k')I o"(A! + iA;)ln(k)) = .J2f,,m;(p(k')I</>: ln(k )) 

2J,,m; ( 2)· - (k') (k) 2 2 UrcNN q lUp YsUn 
-q +m,, 

(5.185) 

where UnNN(q2) is the 1tNN vertex function. The physical pion-nucleon 
coupling constant g,,NN is defined as 

(5.186) 

with an experimental value of (i;1NN/4n 14.6. Comparing (5.185) with 
(5.183) we have 

2.f ,,m; ( 2) 2 ( 2) 2h ( 2) 2 + 2 UnNN q ,= mNgA q + q A q . -q m,, 

If we set q2 = 0 in this equation, we have 

hUnNN(O) = mNgiO). 

(5.187) 

(5.188) 

This relates the nucleon axial vector coupling gA(O) to the 1tNN vertex at an 
off-mass-shell point g,,NN(O). In order to convert this into a physical relation 
we need to make an additional assumption that the variation g,,NN(q2 ) from 
q2 = 0 to q2 = m; is small, i.e. that g,,NN(q2) is a 'smooth' function 

(5.189) 
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Only then do we obtain the Goldberger-Treiman relation (1958) 

h9nNN = mNgA(O) (5.190) 

which is satisfied within 10 per cent for the above-quoted measurement 
values. 

We should remark that only the form factor hiq2 ) has a pion pole term 
corresponding to the diagram in Fig. 5.4 

pion pole of hA(q2 ) = f 2fn 2 ,.J2gnNN(q2). 
mn -q 

(5.191) 

At the pion mass shell point q2 = m;, eqn (5.187) yields a trivial identity 

2/nm;gnNN(m;) = 2/nm;gnNN(m;). 

ir',@Aµ 

FIG. 5.4. 

This example illustrates that the additional smoothness assumption is 
needed in order to obtain relations among physical quantities from the 
PCAC hypothesis. In particular we have to extrapolate the pion field from 
the off-shell point q2 = 0 to the on-shell point q2 = m;. Since numerically the 
pion mass m; is rather small on the hadronic scale, this extrapolation is 
believed to cause only a small error. The Goldberger-Treiman relation 
(5.190) serves as a measure of the typical accuracy of this type of 
extrapolation. This means that if we extend the PCAC hypothesis to other 
pseudoscalar mesons, the Ks and T], the extrapolation must be over a much 
larger kinematical region (from 0 to or Thus the kaon and eta meson 
PCAC relations are not expected to be as good as those for the pions. 

One can also derive the Goldberger-Treiman relation in the chiral 
SU(2)L x SU(2)R limit (A. 2 = 0 in (5.175)). In this symmetric limit the 
currents are conserved 

(5.192) 

which modifies (5.183) to read 

2MNgiq2 ) + q2hiq2 ) = 0 (5.193) 

and pions are massless Goldstone bosons. Hence the pole term of hiq2 ) is at 
q2 = O. From (5.191) we have 

1. h ( 2) _ - 2fngnNN(0) 
Im A q -

q2 
(5.194) 

which, when combined with (5.193) leads again to (5.190). Thus the deviation 
from the Goldberger-Treiman relation measures the chiral symmetry­
breaking term A. 2£ 2 . Similarly the derivation from the kaon and eta meson 
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PCAC relations, which we expect to be larger, measured the chiral SU(3k 
x SU(3)rbreaking term Ap*"1 + A.2Jt"2 • 

(2) Adler's consistency condition on the 7tN scattering amplitude. Consider 
the pion-nucleon scattering amplitude 

(7ta(q2)N(p2)l7tb(q1)N(pi)) = i(27t)4 04 (p1 + q1 - P2 - q2) (5.195) 

which has the invariant decomposition 

= u(p2 { Aab + y. (qi; q2) Bab}(pi). 

The invariant amplitudes A and B are functions of the usual Mandelstam 
variables s and t or the more symmetric variables 

v = q1 · (p1 + P2)/2M = q2 ·(pl+ P2)/2M 
VB =: -qi · q1/2M. 

We note that v -+ 0, Va -+ 0 for either of the pions becoming soft, q1 -+ O or 
q2 -+ 0. One easily works out the pole-term, i.e. single-nucleon term, 
contribution to the invariant amplitudes. It can be shown that the 
combination of invariant amplitudes (which is just the forward scattering for 
qf = qD 

T= A+ vB (5.196) 

is nonsingular for either q1 -+ 0 and/or q2 -+ 0. Furthermore we have the 
isospin-even and -odd amplitudes 

Aab = 0abA<+> + ![-ra, -rb]A<->; 

similarly for B<±> and r<±>. 
To derive the single soft pion theorem we use the standard reduction 

formula (see, for example, Bjorken and Drell 1965) for the one-pion field 
operator in (5.195) 

= + m;}(N(p2)lt/>a(O)l7tb(q1)N(p1)) 

(5.197) 

where we have used the PCAC relation (5.181). Taking the q2 -+ 0 limit, the 
nonsingular amplitude of (5.196) T(v, Va, qf, qD vanishes 

r<+>(o, 0, m;, 0) = 0. (5.198a) 

This is Adler's PCAC consistency condition (Adler 1965a). That r<-> is zero in 
this limit is trivial since it is odd under crossing and we expect it to be 
proportional to the variable v. Similarly, we also have the condition, 

r<+>(o, 0, 0, m;) = 0 

when taking the q1 -+ 0 limit. 

(5.198b) 
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Low-energy theorems involving two soft pions 
For matrix elements involving more than one current, low-energy theorems 
may be derived if we combine PCAC and current algebra. In fact the physics 
and the mathematical procedure to be used are similar to those of the 
familiar soft-photon theorems which reflects the U(l) gauge invariance of 
charge conservation (see, for example, Low 1954). 

Consider the double divergence of a time-ordered product of two axial 
vector currents 

= -

+ O(y0 -

= - y0)A:(x) 

+ O(yo - Xo) a'-
- o(x0 - y0)A:(x)Ai(y) 

+ o(yo - Xo)Ai(y)A:(x)) 

= T(oµA:(x) 

+ o(xo - y0)[A0(x), o'-

- o(x0 - y0)[A:(x), Ai(y)]. (5.199) 

Sandwiching this identity between nucleon states and taking the Fourier 
transform 

we obtain 

f d4x eiq, 

= f d4x eiq, ·x{ (N(p2)1T(oµ A:(x) o'-

A:(x)JIN(p1)) 

+ (N(p2)lo(xo)[Ao(x), (5.200) 

where we have used translational invariance and factored out a (2n)4 

o(p1 + q1 - p2 - q2 ). This relation between the matrix elements of currents 
and the matrix elements of divergences is an example of the Ward identities. It 
is the starting point for the derivation of low-energy theorems. The question 
of maintaining the Ward identities in higher-order perturbations will be dis­
cussed in §§6. l and 6.2. 

PCAC implies that the first term on the right-hand side of (5.200) is the 
(nucleon) matrix element of a time-ordered product of two-pion operators, 
i.e., it is the nN scattering amplitude. The second term can be evaluated 
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from the SU(2)L x SU(2)R current algebra of (5.80) 

<5(x0)[At(O), A:(x)] = -i 
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(5.201) 

In principle there is also the contribution from the Schwinger term in this 
commutator. But as it turns out, the time-ordered product defined in (5.199) 
is not covariant because of the singularities in the product T(A:(x)Ae(y)) as 
x 0 -+ y0 and an extra term should be added to make it covariant. This extra 
term will cancel the Schwinger term in the commutator of (5.201) (see, for 
example, Adler and Dashen 1968). The net result is that if one uses the usual 
time-ordered product one does not have to be concerned about the 
Schwinger term in the derivation of the Ward identities. 

The third term on the right-hand side of (5.200) is an equal-time 
commutator of a current and a divergence. This commutator, called the a­
term, is not governed by the current algebra and it depends on the symmetry­
breaking terms (5.l 75b). In the following application we shall eventually take 
the limit of p1 -+ p2 = p, q1 -+ q2 = q -+ 0. In such a kinematical configura­
tion the a-term can be shown on general grounds to be symmetric in the 
indices a and b. To see this, write 

lim aW(p, q) = aw= if d4x <5(xo)(N(p)l[Ao(X, Xo). Xo)]IN(p)). 
q-O 

(5.202) 

Using translational invariance and changing variables x to -x, we can write 
(5.202) as 

aw= if d3x(N(p)l[Ao(O, Xo), Xo)]IN(p)) 

= i I d3x(N(p)l[Ao{X, Xo). a0 At(O, Xo)JIN(p)) (5.203) 

where we have used the fact that the spatial divergence vanishes upon 
integration over all space. We then have 

or 

aw= i8o I d3x(N(p)l[Ao(X, Xo), At(O, Xo)]IN(p)) 

-if d3x(N(p)l[80AO{x, x0 ), At(O, x0 )]1N(p)) 

aw - = iao I d3x(N(p)l[Ao(X, Xo). At(O, Xo)]IN(p)). 

(5.204) 

The commutator on the right-hand side will give an isospin charge after the 
integration over space is performed, and it is time-independent if we neglect 
isospin-breaking effects. Thus we have 

(5.205) 
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It is also clear from the form of eqn (5.203) that the u-term, being pro­
portional to i7'' A,., represents chiral symmetry-breaking effects. 

Adler-Weisberger relation. To derive the low-energy theorems for nN 
amplitudes involving two soft pions we reduce out both of the pions in 
(5.195) and apply the PCAC formula (5.181) 

x (N(p2)IT(cf>a(x)c/i(O))IN(p1)) 

= i(qf - - m;)m;4f;2 f d4x eiq, ·x 

x (N(p2)IT(oµ A:(x) (5.206) 

Similarly consider the weak axial-vector current amplitude 

(2n)4 t'.54 (P1 +qi - P2 -

= f d4x d4y e;q, ·x (5.207) 

The amplitudes of (5.206) and (5.207) are related by the Ward identity 
(5.200). With the forward scattering kinematics p1 = p2 = p and q1 = 

q2 = q, we have 

= -i(q2 - + iv[i-a, i-b]/2 - q) 
(5.208) 

where we have used the definitions in (5.206), (5.207), and (5.202). The 
commutation relation in (5.201) implies that the second term on the right­
hand side of (5.200) takes on the form 

-iqµ f d4 x e;P(N(p)li5(x0)[At(O), A:(x)JIN(p)) 

= Babcqµii(p)yµi- 0u(p)/2 

= 2p ·qeabci-•/2 = -iv[i-a, 't"b]/2. (5.209) 

The u-term, as we have demonstrated above, is symmetric in a, b. Since the 
pion has isospin 1, the isospin symmetric t-channel state must be O or 2. Only 
the isospin-zero state can contribute here since the nucleon has isospin 1/2. 
Thus we write 

(5.210) 

The left-hand side of (5.208) is quite complicated as it involves contributions 
from all possible intermediate states that can couple to the nucleon through 
the axial vector currents. This can be simplified by taking the low-energy 
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limit qµ -> 0 so that the only surviving terms in are those singular in this 
limit. It is easy to see that such terms correspond to the one-nucleon pole 
diagrams in Fig. (5.5). 

p p+q p 

FIG. 5.5. 

Aa 
µ 

(5.211) 

where 9A is defined in (5.182). Since q2 « v = p · q for small q, we have 

ra, rb]/2. 

Thus in the low-energy limit, the Ward identity (5.208) becomes 

rb]/2 = + iv[ra, rb]/2 - ibabo-N. 

(5.212) 

(5.213) 

The forward amplitude T,N is just the combination A+ vB of (5.196). We 
have the following soft-pion theorems for the isospin odd and even nN 
amplitudes r<±l(v, VB, qi' qD: 

lim v- 1 r<-l(v, 0, 0, 0) = (l - (5.214) 

and 

(5.215) 

To make contact with physical amplitudes (qi = = m;) we can extrapolate 
the result to the physical threshold (scattering length) at v = v0 = m,mN, 

VB= -m;/2, 
v01 r<-l(v0 , -m;/2, m;, m;) = f ; 2(1 - + O(A.2 ) 

r<+l(v0 , -m;/2, m;, m;) = O(A.2) 

(5.216) 

(5.217) 

where we have used the fact that m; and the o--term are chiral symmetry­
breaking effects and are of order O(A.2) in (5.175b) (Weinberg 1966). 
Alternatively we can convert the low-energy theorem to sum rules by using 
dispersion relations. For example, since r<->(v, q2 ) is odd under v -> -v, we 
can write an unsubtracted dispersion relation for v- 1 r<-l(v, 0), 

oc; 

r<-l(v, 0) Im r<-l(v', 0) dv'. 
v n v' 2 - v2 

(5.218) 
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Then setting v = 0 and using (5.214), we get 

"' 
1 - _ f Im r<->(v, 0) dv. 
1; - n v2 

(5.219) 

We may use the Goldberger-Treiman relation (5.190) to eliminate!,, 

"' _!_ _ 1 + f Im r<->(v, 0) dv. 
2 - 2 2 

UA 1tUnNN V 
(5.220) 

If we make the smoothness assumption 

Im r<->(v, 0) r<->(v, m;), 

we can relate the on-shell amplitude Im r<- 1(v, m;) to the nN cross-section 
from the optical theorem 

Im r<->(v, m;) = vu!.;;>(v) = - (5.221) 

The sum rule in (5.220) becomes 

(5.222) 

This is the Adler-Weisberger relation (Adler 1965b; Weisberger 1966). 
Using experimental values for the np total cross-sections we get the weak 
axial nucleon coupling gA 1.24 which agrees quite well with the 
experimental value 1.259 ± 0.017. 

The isospin-even amplitude is related to the chiral symmetry-breaking u­
term, which will be examined in the next section. 

5.5 Pattern of chiral symmetry breaking 

Soft-pion theorems such as the Goldberger-Treiman relation and the Adler­
Weisberger sum rule are exact chiral SU(2)L x SU(2)R symmetric results. 
They are not sensitive to the structure of the symmetry-breaking terms in 
(5.175b). On the other hand, the u-term represents chiral symmetry-breaking 
effects. Consider this commutator of axial current with its divergence 
appearing in (5.199) and (5.203), taken between some general hadronic states 
of momentum p 

= if d3x(p(p)l[A0(x, 0), o0 Ai(O)]ltX(p)) 

= - f d3y(p(p)l[Q 5a, [Jr(y, 0), Ai(O)]]ltX(p)) 

= - f d\·(p(p)l[Q5a, [Jr(O), Ai(y, O)]]jtX(p)) 

= (p(p)J[Q5a, [Q 5b, Jr(O)]]JtX(p)). (5.223) 
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Thus the a-term is simply a double commutator of the Hamiltonian density 
Jt' with two axial charges. If the chiral symmetry-breaking term is absent in 
Jt', the axial charges are conserved. They commute with the Hamiltonian and 
the a commutator vanishes. Thus we can replace Jt' in (5.223) by the chiral 
symmetry-breaking term (5.175b). 

Measuring the nucleon and vacuum a-terms 

We have already seen (5.215) that the isospin-even nN scattering amplitude 
in the soft-pion limit is proportional to the a-commutator between the 
nucleon states. One must be careful in relating this result for r<+>(o, 0, 0, 0) 
to the on-shell qf = = m; amplitude since this extrapolation involves 
a correction term of the same order as the a-term itself. However a systematic 
expansion in the chiral SU(2)L x SU(2)R symmetry-breaking parameter A.2 of 
(5. l 75b) is possible (Cheng and Dashen 1971) 

r<+>(o, 0, m;, m;} = r<+>(o, 0, 0, 0) 

ar<+> ar<+> 
+ m;:i""T + m;-8 2 + O(m:). (5.224) 

uq1 q2 

Using Adler's consistency conditions (5.198) such as 

ar<+> 
r<+>(O, 0, m;, 0) = r<+>(O, 0, 0, 0) + m;-0 2 + O(m:) = 0, 

ql 

we have 

r<+>(o, 0, m;, m;) = -T<+>(o, 0, 0, 0) + O(m:) 

= aN/f; + O(m:). (5.225) 

In this expansion in powers of the symmetry-breaking parameter A. 2 (i.e. m;), 
we have ignored any possible non-analyticity problem (Li and Pagels 1971). 
It should be noted that even for the on-shell amplitude the kinematic point 
v = v8 = 0 is still outside the physical region. However the amplitude value at 
this point can be reliably extrapolated from the physical quantities via 
ordinary dispersion relations. 

So far we have concentrated on the SU(2)L x SU(2)R chiral symmetry. The 
generalization to SU(3)L x SU(3)R is straightforward. The PCAC relation 
for octet axial-vector currents reads 

oµA: a= 1, 2, ... , 8 (5.226) 

where the </J"s are the field operators for the octet pseudoscalar mesons. The 
generalized Goldberger-Treiman relations and soft-meson theorems for 
meson-baryon scattering amplitudes can be derived in a similar fashion. 

We can also obtain more low-energy theorems in the soft-meson limit by 
considering other matrix elements of the currents. In particular, from (5.226) 
we have 

(5.227) 
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Using the reduction formula and PCAC, we can write this equation as 

i(m2 - kz) f 
babm;Ja = ./; 2 d4x e-ik-x(OIT(8µA:(O) avAe(x))IO) 

bmb 

= - 2 k
2

) {ikv f d4x(OIT(8µ A:(o) Ae(x))IO) e-ik-x 
bmb 

-f d4 x e-ik x(016(x0 )[Ag(x ), aµ A:(O)]IO)}. (5.228) 

The low-energy theorem is then 

babm;J; = i f d4 x(Ol6(x0)[Ag(x), aµ A:(O)]IO) = a't} (5.229) 

where 

Thus the pseudoscalar meson masses are related to the vacuum matrix 
elements of the a-term. (This relation (5.229) can also be derived by directly 
sandwiching eqn ( 5.199) between the vacuum states.) 

The (3, 3*) + (3*, 3) theory of chiral symmetry breaking 

The nucleon and vacuum matrix elements of the a-commutator are related to 
the experimentally measurable quantities through the relations in (5.225) and 
(5.229). We now need a theory of chiral symmetry breaking. What is the 
structure of the A.J'f'' term in (5.175)? 

A simple possibility is that the chiral symmetry is broken by the quark 
mass term only 

or 

A. 1£ 1 = m,ss and A.2£ 2 = muiiu + mdad 

since the quark fields transform as 

qL =to - Ys)q (3, O) 

qR =to + Ys)q (O, 3) 

(5.230) 

(5.231) 

of the SU(3)L x SU(3)R group. A.J'f'', being of the form qLqR + qRqL, trans­
forms as a member of the (3, 3*) + (3*, 3) representation. This is the theory of 
chiral symmetry-breaking proposed by Gell-Mann, Oakes, and Renner (1968), 
and by Glashow and Weinberg 0968). In group-theoretical language we say 

(5.232) 

where the uas are a set of scalar densities. In terms of the quark fields (5.38) 
and Gell-Mann matrices they have the representation 

(5.233) 
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with 

A.0 = (2/3)1-t. 

Similarly define the pseudoscalar density as 

V; = -iQA;Y 5Q. 
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(5.234) 

(5.235) 

With the representation of U;, v; in (5.233) and (5.235) and Q0, Q50 in (5.44) 
and (5.48) one can then work out their commutators using the canonical anti­
commutation relations for quark fields, 

(5.236) 

where oc, f3 label the Dirac and flavour indices. We shall illustrate this 
procedure for the case [Q 50(t), ub(x, t)]. Suppressing all space-time depen­
dences we have 

[ q YoYsQ, qA.bq] = [q!qp, qtq,,](A0Ys)txp(A.by0 )1,,/2 

= q,,} + q!{qp. qnq,, - qUq!, q,,}qp 

+ { q!, qt}qpq.i)(A.ay s)txp(A.byO)y11/2 

= qlA.ay5, A_byO]q/2 = -qy5{Aa, A_b}q/2. (5.237) 

We can define a totally symmetric symbol dabc by 

{ ;,a ;_b} =!6"1'l dabcAc 
2'2 3 + 2· (5.238) 

The nonvanishing elements are 

dus = d22s = d33s - dsss = l/../3,d44s = dsss = d668 = dns = -!(r!), 
d344 = d3ss = -d366 = -d311 = d146 = dis1 = -d241 = d1s6 = 1/2. 

(5.239) 

Furthermore, if we supplement this with (5.234) and 

doab =i(i)t c5ab• 

we have 

Similarly, 

c5(xo)[Q;(xo), vj(x, x0 )] = idaikuk(O) c54 (x) 

c5(xo)[Qa(Xo), ui(x, x0 )] = ifaikuk(O) c54 (x) 

c5(xo)[QaCxo), vi(x, x0 )] = ifaikvk(O) c54 {x) 

(5.240) 

(5.24la) 

(5.24lb) 

(5.24lc) 

(5.241d) 

with a= 1, ... , 8 and j, k = 0, 1, ... , 8. The fabcs are the usual SU(3) 
structure constants with !abo = 0. 
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In the quark model language 

Uo = + Od + SS) 

Us = (-j-)-!-(uu + Od - 2ss) 

U3 = (uu - Od). 

The coefficients in (5.232) correspond to quark masses 

1 
Co = .J6 (mu + md + m,) 

Cs= J3 (mu; md _ m,) 
1 

C3 = 3(mu - md). 

(5.242) 

(5.243) 

In the following we shall first assume isospin invariance; hence mu = md or 
c3 = 0. The question of isospin violation due to mu # md will be taken up at 
the end of this section 

A.£' = CoUo + CsUs. (5.244) 

Thus SU(3) symmetry breaking is due entirely to the CsUs term. 

Current quark masses 

The double commutator of the a-term can be calculated using (5.24la) and 
(5.241 b). In actual computation it is simpler if one takes A.£' and the F;s to 
be 3 x 3 matrices and computes the anticommutator of (5.237) directly. One 
finds (eqn (5.229)) 

J7rz; = (mu ; md) <Oluu + odlO) 

12 2 - (mu+ m,) <OI- + - 10) KmK - 2 UU SS 

= (mu: md)_ <Oluu + odlO) + 4;' <OlsslO). (5.245) 

Since the SU(3) symmetry is not spontaneously broken, we will take the 
vacuum to be SU(3)-symmetric, i.e. 

<Oluu!O) = <OlodlO) = <OlsslO) = µ3 ' (5.246) 

and, from the definition of decay constants (5.176) and conditions for 
spontaneous chiral symmetry-breaking ((eqns (5.169) and (5.154)), we have 

(5.247) 

Besides recovering the Gell-Mann-Okubo mass relation 4mi = 3m; + m;, 
we obtain the ratio of quark masses 

m; 1 
2mi - m; 25. 

(5.248) 
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The pseudoscalar masses suggest that the strange quark has a much larger 
mass than the masses of the non-strange quarks u and d. This means that the 
SU(2)L x SU(2)R symmetry is a much better symmetry than SU(3)L 
x SU(3)R. In terms of the parameters in (5.244), this means that 

Cs 
- c::: -1.25 
Co 

is not far from the SU(2)L x SU(2)R symmetric value of -2t. 

1tN O"-term 

(5.249) 

The 1tN CT-term for the symmetry-breaking Hamiltonian (5.244) can be 
similarly computed in the quark model 

CTN = !(mu + md)(Nluu + odlN). (5.250) 

At this stage of theoretical development we still do not have a reliable 
method for calculating such a matrix element. One possible way to estimate 
this quantity is to invoke the Zweig rule (Cheng 1976) 

(NlsslN) c::: O (5.251) 

since the nucleon is supposed to contain little strange-quark component (see 
the discussion following eqn (7.85)). Eqn (5.250) may then be written 

CTN c::: !(mu + md)(Nluu + od - 2sslN) 

3Cmu + md) (NlcsuslN) 
mu+ md - 2m, 

(5.252) 

where we have used eqns (5.242) and (5.243). The nucleon mass shift due to 
the SU(3)-breaking Hamiltonian CsUs is 

(5.253) 

which can be related to the general baryon octet mass splittings by 

!J.m8 = (BlcsuslB) =a tr(BusB) + /3 tr(BBus). (5.254) 

On the right-hand side we have written the baryon octet (and us) in 3 x 3 
matrices (see (4.157)). That there are two terms on the right-hand side reflects 
the fact that there are two 8s in the product 8 x 8 (eqn (4.124)); hence two 
SU(3) scalars are contained in the product 8 x 8 x 8. Reading off eqn 
(5.254) the coefficients a and f3 are then related to the baryon mass shifts as 

mN = m0 + (a - 2/3) 

mr. = m 0 +(a+ /3) 

ma = m0 - (2a - /3) 

m" = m0 - (a + /3) (5.255) 

where we have absorbed an inessential common factor of ...)3 into a and /3. 
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Besides recovering the Gell-Mann-Okubo mass formula eqn (4.166) we can 
identify 

(Nlc8u8 IN) = (a - 2/3) = mA - m8. (5.256) 

Hence, from (5.252), 

(5.257) 

For the ratio (5.248) we obtain aN 30 MeV. It is clear that there is quite a 
bit of uncertainty in this estimate, yet the 7tN a-term is one of the few places 
where one can probe the chiral symmetry-breaking pattern with any sort of 
reliability. 

m. # md and isospin violation by the strong interaction 

To close this section we also examine the possibility of isospin symmetry 
breaking due to m. # md. Since we already know that electromagnetic 
interaction violates this invariance, we must untangle these two separate 
mechanisms ofisospin-breaking; the SU(3)L x SU(3)R-violating term may be 
written 

with 

Yfm = m.uu + mdod + m,ss 

£ 1 = e2 f d4x T(JP'(x)J'(O))Dµ,(x) 

(5.258) 

(5.259) 

(5.260) 

where JP'(x) is the electromagnetic current operator and Dµ,(x) is the photon 
propagator. 

There are two contributions to the pseudoscalar meson masses: one 
coming from the a-term due to Yfm, the other from the a-term due to £ 1 • 

Eqn (5.229) reads 

where 

But 

(Ol[Qsa, [Qsb, .YfmJJIO) 

(Ol[Qsa, [Qsb, Yfy]]IO). 

[Qsa, Yfy] = 0 

for any electrically neutral .Q5a operator. Thus (Dashen 1969) 

a01(1t0 ) = a0y(K0) = a 0 y('r1°) = 0. 

Also from SU(3), i.e., U-spin invariance, we have 

CTo1(1t+) = CT01(K+):: µ-y. 

(5.261) 

(5.262) 

(5.263) 

(5.264) 

(5.265) 

(5.266) 
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After an entirely similar calculation to that which leads to (5.245) and using 
the SU(3) results (5.246) and (5.247), we have (Weinberg 1977) 

/2m2(rr+) = (mu + md)µ 3 + 
f 2m2(rr0 ) = (mu + md)µ 3 

/2m2(K +) = (mu + m,)µ 3 + 
f2m2(Ko) = (md + m,)µ3 

f 2m2(rt 0 ) =!(mu + md + 4m,)µ3. 

We obtain the (improved) Gell-Mann-Okubo relation, as well as 

m2(1to) mu+ md 

m2(K0 ) = m, + md 

and 

m2(K +) - m2(K0) - m2(rr+) md 
m2(K0 ) - m2(K +) + m2(rr+) - 2m2(rr0 ) = mu. 

Besides the quark-mass ratio of (5.248) we also obtain 

md/mu 1.8. 

(5.267) 

(5.268) 

(5.269) 

(5.270) 

This indicates that u and d quarks are actually not degenerate in mass. This 
helps us to resolve a number of longstanding difficulties in our picture of 
isospin invariance being broken only by electromagnetism: the sign puzzle of 
the proton-neutron and K + - K 0 mass differences, and the ri -+ 3rr problem. 
If one considers this isospin-violating decay ri --+ 3rr to proceed via a second­
order virtual electromagnetic interaction, a straightforward current-algebra 
calculation then predicts that, in the SU(2)L x SU(2)R chiral symmetric limit, 
it is strictly forbidden. (For further discussion see §16.3.) It has, of course, 
been well-known for a long time (Feynman and Speisman 1954) that this 
picture for isospin breaking produces the 'wrong' sign for the n-p mass 
difference. Also if electromagnetism is the only source of isospin symmetry­
breaking, we will have (through eqns (5.265) and (5.266)) the Dashen sum rule 

(5.271) 

which again yields a wrong sign for the K + -K0 mass difference. But the 
result in eqn (5.270) shows that there actually is a substantial isospin 
violation coming from the strong interaction itself. 

If mu and md are so different, how do we account for the smallness of the 
observed isospin violation? This is possible if the u and d mass difference is 
comparable to mu and md themselves and they are all small on the typical 
strong-interaction scale. Indeed a modern-day calculation of the n-p mass 
difference (Gasser and Leutwyler 1975) gives 

4MeV, (5.272) 

and we now know (see Chapter 10) that the intrinsic strong-interaction 
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mass-energy scale is about 200 to 400 MeV. Thus SU(2) isotopic spin is a 
good symmetry because the chiral SU(2)L x SU(2)R is a good symmetry! 

To a lesser extent a similar situation holds for the flavour SU(3) and chiral 
SU(3)L x SU(3)R symmetries. From eqns (5.248) and (5.272) we have 

m, 25(mu + md)/2 130 MeV. (5.273) 

We should emphasize the quark masses we have been discussing are 
current-algebra quark masses, or current quark masses. They are the 
parameters of the chiral symmetry breaking. In quantum field theory (e.g. in 
the free quark model of (5.41)), they are the parameters appearing directly in 
the Lagrangian. These are different from the constituent quark masses m 
appearing as parameters in (nonrelativistic) bound-state calculations of 
hadrons: mproton 3m, mP 2m. Since even in the full strong-interaction 
theory of quantum chromodynamics (QCD) we have not been able to solve 
the bound-state problem from first principles, the connection between these 
two types of quark masses has not been rigorously established. But, as a rule 
of thumb, the constituent masses m and current masses m; differ by a 
common constant 

(5.274) 

m0 , being somehow related to the scale parameter of strong interactions, is of 
order 300 MeV. 

Global flavour symmetry of the strong interaction-a summary 

The discussion of this chapter leads us to expect that a viable theory of the 
strong interaction must be approximately chiral SU(3)L x SU(3)R symmetric. 
The field theory of free quarks (5.41) indeed displays such a global symmetry. 
It must then be endowed with an interaction that formally (i.e. at the 
Lagrangian level) preserves this invariance. However the dynamics must be 
such that this chiral symmetry is spontaneously broken with the vacuum 
state having quark-antiquark condensate (OlqqlO) =F 0, hence not being a 
chiral singlet. This dynamical breaking should be characterized by a 
momentum scale comparable to f". It should be symmetric with respect to the 
diagonal subgroup SU(3)v so that the hadron spectra and interactions 
exhibit the familiar SU(3) symmetry of Eightfold-Way and there is an octet of 
pseudoscalar Goldstone bosons. This chiral symmetry is also broken 
explicitly (hence the Goldstone bosons are not strictly massless) with a 
pattern consistent with the three light quark mass terms in the Lagrangian 
being the soft symmetry breaking terms. As we shall see in Chapter 10, the 
gauge theory of the strong interaction (QCD) has all the features compatible 
with these expectations. 



6 Renormalization and symmetry 

THE topics of renormalization and symmetry are closely related. The 
symmetry relations among Green's functions are generally known as the 
Ward identities (Ward 1950; Takahashi 1957). In a theory with nontrivial 
symmetry, renormalizability depends critically on the cancellation of diver­
gences from different sectors of the theory as enforced by the Ward identities. 
This is even more so for gauge theories where we often need to introduce 
spurious degrees of freedom (e.g., photon longitudinal polarization state, 
etc.), and one has to be certain that, through the use of Ward identities, these 
unphysical states are all cancelled in the physical S-matrix elements. On the 
other hand, one is also concerned with the effects of renormalization on the 
symmetries themselves. It is this latter aspect of the relation between 
renormalization and symmetry that we will concentrate on in this chapter. 

In §6.1 we first see how the vector-current Ward identity in the A.</J4 theory is 
maintained up to one-loop diagrams. However similar considerations in §6.2 
lead us to the conclusion that the QED Ward identities involving axial-vector 
currents are spoiled by renormalization, by the triangle fermion loops. There 
must be 'anomalous terms' in the axial-vector-current divergence equation. 
This allows us to derive the correct current-algebra low-energy theorem for 
the n° --... 2y decay. 

The last two sections concern the relationship between spontaneous 
symmetry breakdown and renormalization. Again we concentrate on the 
effects of renormalization on symmetry. In §6.3 we present several topics 
illustrating the renormalization of theories with spontaneous symmetry 
breaking. Finally in §6.4 we show how the classical potential, which we have 
used repeatedly to study spontaneous symmetry breaking, can be regarded as 
the first term in a systematic expansion in powers of Planck's constant and 
how in certain situations, radiative corrections themselves bring about 
spontaneous symmetry breakdown. 

6.1 The vector-current Ward identity and renormalization 

In eqn (5.200) we saw an example of Ward identities. These relations among 
Green's functions follow from the symmetry properties of the Lagrangian 
(i.e., current conservation, charge commutator, etc.). They play a crucial role 
in the derivation of current-algebra low-energy theorems and, as we shall 
elaborate later on, they are essential in the renormalization programme of 
any theory with nontrivial symmetries. Thus it is important to check that 
these Ward identities are not spoiled by higher-order correction terms in 
perturbation theory. In this section we shall first see, in simple A.</J4 theory, 
how the vector-current Ward identity is maintained up to one-loop diagrams. 



170 Renormalization and symmetry 6.1 

The vector-current Ward identity 

The A</J4 theory of eqn (5.23) has U(l) symmetry with the conserved (vector) 
current of (5.25). The canonical commutation relation for the complex fields 
of (5.22) 

then leads to the commutators 

[J0 (x, t), </J(x', t)] = i[80¢t(x, t), </J(x', t)]</J(x, t) 

= J 3(x - x')</J(x, t) 

[J0 (x, t), </Jt(x', t)] = -J3(x - x')</Jt(x, t). 

Consider the three-point Green's function given in Fig. 6.1 

FIG. 6.1. The Green's function of two scalar fields coupled to a vector current. 

(6.1) 

(6.2) 

G,,(p, q) = J d4x d4y e-iq·x-ip·y(OIT(J,,(x)</J(y)</Jt(O))IO). (6.3) 

We make the standard current-algebra manipulation 

q,,G,,(p, q) = -i I d4x d4y e-iq·x-ip· y ,,(x)</J(y)</Jt(O))IO) 

= -i J d4x d4y e-iq·x-ip·y{ (OIT(81J J,,(x)</J(y)</Jt(O))IO) 

+ (OIT(J(xo - Yo)[Jo(x), </J(y}]</Jt(O)IO) 

+ (OIJ(x0 )[J 0 (x ), </J t(O)]</J(y))IO)}. (6.4) 

The first term on the right-hand side vanishes because of current conserva­
tion, 8,, J,, = 0, and the other terms can be simplified by using (6.2) 

q,,G,,(p, q) = -i J d4x e-i(p+q)·x(OIT((</J(x)</Jt(O))IO) 

+ i J d4y e-ip·y(OIT(</Jt(O)</J(y))IO). (6.5) 

The right-hand side is just the propagators for the scalar field 

(6.6) 
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Eqn (6.5) may be written 

-iqµGµ(p, q) = A(p + q) - A(p) (6.7) 

which is an example of vector-current Ward identities. 

ZJ = 1 and Ward identities 

Here we digress briefly to illustrate an application of the Ward identities. 
They can be used to show that conserved current J µ(x) is not renormalized 
as a composite operator. The identity given in (6. 7) is for the unrenormal­
ized fields which satisfy the canonical commutation relation (6.1). (For the 
renormalized fields there will be a factor of Z;; 1 on the right-hand sides of 
the commutation relations.) In terms of the renormalized quantities, using 
the relation (2.167), 

G:(p, q) = z;; 1z; 1Gµ(p, q) 

AR(p) = z;; 1 A(p). 

We can express the Ward identity (6.7) as 

-iZJqµG:(p, q) = AR(p + q) - AR(p). 

Since the right-hand side of this equation is cutoff-independent, ZJ on the 
left-hand side must also be cutoff-independent, and we do not need any 
counter term to renormalize Jµ(x). In other words, the conserved current 
Jµ(x) is not renormalized as a composite operator, i.e., ZJ = 1. Thus the 
Ward identity (6. 7) also holds for the renormalized quantities: 

(6.8) 

From now on we will drop the superscript R in (6.8) with the understanding 
that these Green's functions refer to the renormalized quantities. 

Such a nonrenormalization result holds for all sorts of conserved 
quantities, in Abelian (as this example shows) and in non-Abelian cases. 
Actually, for currents associated with non-Abelian symmetries, there is a 
direct way to understand this result. These currents must obey fundamental 
commutation relations such as eqn (5.55). The nonlinear nature of commu­
tators fixes their normalizations so that no renormalization is possible. 

The vector Ward identity at the one-loop level 

It is instructive to see how the one-loop diagrams satisfy the Ward identity of 
(6.7). In terms of the amputated Green's function rµ(p, q) and the lPI self­
energy ! defined by (see eqns (2.48) and (2.24)), 

rµ(p, q) = [iA(p + q)r 1Gµ(p, q)[iA(p)r 1 

[A(p)r1 = p2 _ µ1 _ !(p), 

the Ward identity (6.7) takes the form 

iqµrµ(p, q) = (p + q)2 - p2 - !(p + q) + t(p). 

(6.9) 

(6.10) 
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(a) (b) 

(c) 

(d) 

FIG. 6.2. Tree and one-loop diagrams for the vector current and scalar fields vertex function. 

For the contributions of r µ(p, q) Fig. 6.2(a) shows the vertex function in 
the tree approximation 

(6.11) 

which is just the lowest-order Ward identity. 
Using dimensional regularization for the one-loop diagram (Fig. 6.2(b )), 

we have 

q) = iqll J iA. k2 µ1 ( -i)(2k + q)µ (k + q;1 _ µ1 

I d"k [ 1 l J 
= iA. (2n:)4 (k + q)1 - µ1 - k1 - µ1 . (6.12) 

For n < 2, the first integral on the right-hand side is convergent and we can 
shift the integration variable k to k - q, to get 

• IL (b) - • A. [ l - 1 J -Iq rµ (p,q)- l (2n:)4 k2 _ µ1 k1 _ µ1 - Q. (6.13) 

This will still be true when we analytically continue to n > 2, in particular to 
n = 4. The contribution of Fig. 6.2(c) is given by 

q) = iqll( -i)(2p + q)µ ( ;1 2 [L(p + q) - L(O)] 
p+q -µ 

(6.14) 
where 

iA. I d"k i 
-iL(p + q) = -2 (2n:)4 k1 _ µ1 (6.15) 
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which is independent of the external momentum. We get 

t(p) = L(p) - L(O) = 0. 

Hence the right-hand side of (6.14) vanishes and we have 

q) = o. 
Similarly, we also have 
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(6.16) 

(6.17) 

(6.18) 

Thus up to the one-loop order we have, from the sum of Fig. 6.2(a), (b), (c), 
and (d), 

(6.19) 

which is the Ward identity of (6.10) because of (6.16). 
We note that the above proof of the Ward identity (6.7) (or (6.10) in 

perturbation theory) involves two important ingredients: (i) the algebraic 
relation of (6.11 ); and (ii) the translation of the integration variable in going 
from (6.12) to (6.13). Generally, in order to maintain the Ward identity, 
which is the consequence of the symmetry, we must not choose a 
regularization scheme that will spoil the original symmetry. (It is clear that 
the dimensional regularization fulfils those requirements.) 

6.2 Axial-vector-current Ward identity anomaly and n° ---+ 2y 

Following essentially the same steps as in §6.1 we shall see that the validity of 
the (axial) Ward identity is not automatic when there are fermions in the 
theory, even after the theory is regularized symmetrically. This is because 
certain one-loop diagrams introduce anomalous terms which prevent the 
Ward identities from reproducing themselves recursively at higher orders in 
the perturbative expansion. Such anomalies were discovered by Adler (1969, 
1970) and by Bell and Jackiw (1969) in their current-algebra studies. In the 
following we shall present an elementary introduction to this subject of ABJ 
anomalies. 

The tree-level Ward identities and current divergences from the equation of 
motion 

Consider the three-point functions in electrodynamics 

Tµv;.(k1, k1, q) =if d4 x 1 d 4 x2(0!T(Vµ(x 1)V.(x2)A;.(0))!0) eik,·x,+ik,·x, 

(6.20) 

Tµv(k1' k1, q) = i I d4X1 d4 x2(0!T(Vµ(x1) v.(x2)P(O))IO) eik, ·x, +ik,·x, 

(6.21) 



174 Renormalization and symmetry 6.2 

where V,,, A,,, and Pare the vector, axial vector, and pseudoscalar currents, 
respectively, 

and 

V,,(x) = t/i(x)y,,t/J(x), 

A,,(x) = t/i(x)y,,y51/J(x), 

P(x) = t/f(x)y 51/J(x), 

q =kl+ k2. 

(6.22) 

For the Ward identities relating T,,,4 and T,,., we need the divergences of V,, 
and A,, which are calculated from the equation of motion 

o"V,,(x) = 0 

o" A,,(x) = 2imP(x) (6.23) 

where mis the mass of the fermion field t/J(x). With an elementary application 
of current-algebra techniques such as 

= T(o" J,,(x)<9(y)) + [J0(x), <9(y)] c5(xo - Yo) (6.24) 

for the current J,,(x) and the local operator <9(y) and with the knowledge that 
in our case the equal-time commutators vanish 

[Vo(x), Ao(Y)] c5(xo - Yo) = 0, (6.25) 

we can formally derive the following vector and axial-vector Ward identities 

(6.26) 

and 

(6.27) 

Anomalies arising from renormalization 

But when we calculate the lowest-order contributions to T,,,;. and T,,, (see 
Figs (6.3) and (6.4) we find that the Ward·identities (6.26) and (6.27) are not 
satisfied 

T,,,;. =if ( -1) {tr[,, _i m Y;.Ys i Yv i y,,] 
,. r (p - q) - m (p - k 1) - m 

(6.28) 

(6.29) 
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p 

v µ 
k1 k1 

FIG. 6.3. Lowest-order contributions to Tµ, 4 of eqn (6.20). 

k1 k1 
µ v 

p 

-7- p-k1 --7- p-ki 
q q 

p-q 

v µ 

k1 k1 

FIG. 6.4. Lowest-order contributions to Tµ, of eqn (6.21). 

To check the Ward identities, in particular (6.27), we can use the relation 

f!Ys = Ys(P- q- m) + (p- m)ys + 2my 5 • (6.30) 

to find that 

).T - 2 T A(l) A(2) q µv). - m µv + LJ.µv + tlµv (6.31) 

with 

A<1> - f d4p_ {-i- i 
µv - (2 )4 tr YsYv ( "'· ) "/µ n p - m p - ll- 1 - m 

i i } 
- (p - k2) - m YsYv (p - q) - m "/µ 

(6.32a) 

A<2> - f d4p {-i- i 
µv - (2 )4 tr YsYµ ( "'· ) Yv n p - m p - /l, 2 - m 

- i YsY i Y }· 
(p - k 1) - m IL (p - q) - m " 

(6.32b) 

If the integrals vanish we have the Ward identity in (6.27). Superficially 
this appears to be the case. The two integrals in cancel each other if we 
can shift the integration variable p to p + k2 in the second term. Similarly the 
other pair of integrals in (6.32b) would cancel. But the integrals are linearly 
divergent and a translation of integration variable produces extra finite terms 
with =f. 0 and =f. 0. This ruins the Ward identity. 
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Shift of integration variable for linearly divergent integrals 

It can easily be demonstrated in one dimension that a shift of integration 
variable may be illegitimate for a divergent integral (see, for example, Jackiw 
1972) 

00 

A(a) = I dx[f (x + a) - f (x)]. (6.33) 

-00 

To see that A(a) may be nonzero, we expand the integrand 
00 

A(a) = I dx[ af'(x) +a; f"(x) + ... J 
-00 

2 

[f'(oo)-f'(-oo)]+ ... (6.34) 

where the primes signify differentiation. When the integral 00 /(x) dx 
converges (or at most diverges logarithmically) we have 0 =f(±oo) = 
f'( ± oo) = ... , and A(a) vanishes. However, for a linearly divergent integral, 
0-:f=f(±oo), 0 =f'(±oo) = ... ,and A(a) need not vanish 

A(a) = a[f( oo) - f( - oo )]. (6.35) 

This corresponds to a 'surface term' ('surface' in one dimension is the end­
points). The generalization to a linearly divergent integral inn dimensions is 
straightforward 

A(a) = f d"r[f (r + a) - f (r)] 

= f d"{ a' + ... J (6.36) 

After applying Gauss's theorem, all but the first term vanish upon integrating 
over the surface r = R -+ oo 

A(a) = f (R)Sn(R) (6.37) 

where Sn(R) is the surface area of the hypersphere with radius R. For the case 
of four-dimensional Minkowski space, we have 

A(a) = a' Id4 r oJ(r) = 2in2a' lim R2 RJ(R). (6.38) 
R-oo 

Ambiguities in T,,.,. 
The one-loop amplitude T,,.,. is (superficially) linearly divergent; hence it is 
not uniquely defined. The expression in (6.28) implies a particular routing of 
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the loop momentum p: the fermion line between the vector and axial vector 
vertices carries momentum p. We could have chosen to route it differently so 
that this fermion line carries p +a, where a is some (arbitrary) linear 
combination of k 1 and k 2 

(6.39) 

The fact that integral is linearly divergent implies that Tµ,;. has an ambiguity 
in its definition by an amount 

{ [ 1 1 1 J x tr Y;.Ys Yv Yµ 
(p +a) - m (p+a-q)-m (p+a-ki)-m 

[ 1 1 1 ]} (k 1 +-+k2 )) -tr --Y;_')'s Yv Yµ + 
p-m (p-q)-m (p-k 1)-m µ+-+v 

= + (6.40) 

Applying the result (6.38), we have 

(1) I d4p • a [ 1 1 1 J AµvJ. = (-1) (2 )4 a -a tr --Y;.Ys (p ) Yv(p k) Yµ n p, p-m -q -m - 1 -m 

·2 2 < 
-I 7r a . 2 ) a f3 "/ 6 

= (2 )4 hm P p, tr(YahYsYpYvYoYµ PP P P 
n p--too 

i2n2aa . papp . 
= --4- hm - 2- 4rnµvJ.p. 

(2n) p-oo P 

After replacing papP/p2 by gPa/4, we have 

A(l) _ P/8 2 LlµvJ. - f,pµv;.a n . 

(6.41) 

(6.42) 

Since is related to (6.42) by the exchanges k1 +-+ k2 andµ+-+ v, we have 
from eqns (6.40), (6.42), and (6.39) 

A _ A(l) A(2) _ _!!__ (k _ k )P Llµv). - Llµv). + Llµv). - 87[2 f,pµvJ. 1 2 · (6.43) 

Thus the definition of Tµv;. has an ambiguity signified by the arbitrary 
parameter (3 

(6.44) 

Determination of the anomalous term 

We now attempt to determine (3 by imposing the Ward identities. We shall 
see that no value of (3 exists such that Tµ,;.(a) satisfies both the vector and 
axial-vector Ward identities (eqns (6.26) and (6.27)). 
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Let us first check the axial Ward identity (6.27). Like those in (6.40) the 
two surface terms in (6.31) can again be evaluated using (6.38) 

= _ _!1_ Jd4 !___ (tr[(p + m)YsYv<P- k1 + m)yµ]) 
µv (2n)4 pop, (p2 - m2)[(p - k1)2 - m2] 

k' 
2 2· 2 l" p, ( ) "k/J = - (2 )4 In Im 2 tr Yo:YsYvYpYµ P 1 

n 

and 
= µv µv · 

Thus from (6.44) and (6.31), we have 

1 - /3 
q).T;.v;.(/3) = 2mTµv(O) - - 2-4n 

For the vector Ward identity (6.26) we have 

[ 1 1 1 ]} +tr --Y;.Ys k1 Yv · 
p-m (p-q)-m (p-k2)-m 

Using 
k 1 = (p- m) - [(p- k 1) - m] 

= [(p- k2) - m] - [(p- q) - m], 

we can rewrite (6.48) 

I d4p [ 1 1 
k'f Tµv;.(O) = ( -1) (2 )4 tr YAYs ( ) Yv ( .r. ) n p- q - m p- 11- 1 - m 

1 1 J -Y;.Ysr,. k) Yv-- · 
\F- 2 -m p-m 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

(6.50) 

Again the right-hand side is a surface term that can be evaluated using (6.38) 

kµT (0)=_S__Jd4 !__(tr[Y;.Ys<P-k2+m)yv(p+m)]) 
1 µv). (2n)4 pop, [(p - k1)2 - m2](p2 - m2) 

- 2· 2 l" p, ( )k" /3 - (2 )4 In Im 2 tr YsY;.Yo:YvYp 2P 
n 

-1 
- -e kPkU - 8n2 Mvp 1 2 (6.51) 

or, with (6.44) 

kµ T (/3) - (1 + /3) kukp 
1 µv). - 2 Gv).up 1 2 · 8n 

(6.52) 
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Thus it is not possible to put (6.47) into the form of (6.27) and (6.52) into the 
form of (6.26) with any choice of f3. As it turns out that there is no anomalous 
term in the Ward identities for (OIT(VVV)IO) and that there are anomalous 
terms for (OIT(AAA)IO), it is logical to associate the anomaly with the axial­
vector current. Thus we fix the momentum routing so that the vector Ward 
identity (6.26) is maintained: i.e., if /3 = -1, the axial Ward identity becomes 

(6.53) 

This corresponds to a modification of the axial-vector current divergence eqn 
(6.23) as 

(6.54) 

where Fµ,(x) is the usual electromagnetic field tensor. This extra term, the 
ABJ anomaly, is thus produced by the renormalization effect and has the 
following properties: 

(I) The anomaly is independent of the fermion masses and should also be 
present in the massless theory. 

(2) Adler and Bardeen (1969) showed that the coefficient in the anomaly 
term is not affected by higher-order radiative corrections, i.e., triangle 
diagrams with more than one loop do not contribute to the anomaly term. 
This can be understood heuristically by noting that the superficial degrees of 
divergence of the higher-order triangle diagrams are less than one and the 
momentum-routing ambiguity does not exist for such diagrams. 

(3) As our presentation has been in terms of momentum routing and 
conventional cut-off regularization, the reader may inquire how this anomaly 
problem rears its head in the dimensional regularization scheme. There the 
problem shows up as the difficulty of giving a proper definition to the Dirac 
y5 matrix in space-time dimensions other than four. 

(4) It was pointed out by Fujikawa (1979) that the ABJ anomalous Ward 
identity could be formulated rather directly in the path-integral formalism. 
He showed that the path-integral measure for gauge-invariant fermion 
theory is not invariant under the y5 transformation. The extra Jacobian 
factor gives rise to the ABJ anomaly. 

The ABJ anomaly for non-Abelian cases. In non-Abelian theories, Green's 
functions with odd number of axial vector couplings up to five-point 
functions contribute anomalous terms to the divergence of axial-vector 
current (Bardeen 1969). However the triangle anomaly may be regarded as 
the basic one since it is the simplest and its absence implies the absence of all 
other anomalous diagrams. In the following we shall continue to restrict our 
discussion to the triangle anomaly. Consider 

kz; q) = i f d4x 1 1)Ve(x2)A1(0))10) eik, ·x, +ik, ·x,_ 

(6.55) 
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where 

v:(x) = ifi(x)T"yµl/l(x) 

A1(x) = ifi(x)J'CYJ.Ysl/J(x) 

and the T"s are the internal symmetry matrices. Also consider 

(6.56) 

r:t:<k1, k2; q) = f eik, ·x,+ik,·x, 

(6.57) 

with 

P<(x) = ifi(x)T<y51/J(x). (6.58) 

The anomaly in the axial-vector Ward identity is 

1 
qJ.Tabc = 2mTabc - - e kPk" Dabe+ commutator terms (6.59) µvJ. µv 27t2 µvpa 1 2 

where 

(6.60) 

In the non-Abelian situation the Ward identity usually also involves equal­
time commutators (see eqn (6.65) below for an example). 

1to-+ 2y 

An important application of the ABJ anomaly in current algebra is in the 
derivation of the soft-pion theorem for the n° -+ 2y decay. This amplitude is 
defined as 

(y(k1e1)y(k2e2) I n°(q)) = i(2n)4c54(q - k1 -

(6.61) 

with 

rµ.(k1' k2, q) = e2 I d4z d"y eik, 

(6.62) 

which has the Lorentz covariant structure 

P'(k1, k2, q) = (6.63) 

To derive the low-energy theorem, consider the amplitude 

r µv).(k1' k2' q) = I d4x d4y eik, 

(6.64) 
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which satisfies the Ward identity 

q;.r (k k q) = -i Jd4x d4y eik,-.r-iq·x µv). l • 2• 

x { 

+ (OIT(c5(xo - Yo)[AMx), 

+ (6.65) 

From the current algebra of eqn (5.80) the commutator terms vanish. 
Naively one would identify the first term on the right-hand side as the 
n°--+ 2y amplitude via PCAC (5.181) 

-ie2(-q2 + m2) I 
rµ'(k l • k2' q) = f, 2 " d4x d4y eik, ·.r-•q·x 

,.m,. 
x (OIT(o;. (6.66) 

Then there should be the soft-pion result ofr(q2 = 0) = 0 (Sutherland 1967; 
Veltman 1967) since the left-hand side of (6.65) vanishes when q;. --+ 0 as r µv;. 
does not have intermediate states degenerate with the vacuum and coupling 
to the vacuum through the axial-vector current However one must 
include the anomaly term in the Ward identity (i.e., PCAC is modified in this 
case) 

;. f,.m: iD 
qrµ,;.(k1,k 2 ,q)= 2 ( 2 2 )rµ.(k 1 ,k2,q)--2 (6.67) 

e m,. -q n 

where Dis the anomaly coefficient (6.60) (see eqn (6. 72)). We then obtain the 
low-energy theorem 

(6.68) 

or 

(6.69) 

Thus in the soft-pion limit the contribution to the n° --+ 2y amplitude comes 
entirely from the anomaly (Adler 1969). To calculate D, let us first assume 
the simple quark model (without the colour degrees of freedom) where the 
currents are given by 

with 

= q(x)yµQq(x) 

.P 
= q(x)YµYs 2 q(x) (6.70) 
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The anomaly coefficient (6.60) takes on the value 

(6.72) 

yielding r(O) = 0.0123m; 1 which is about a factor of 3 smaller than the 
experimental value of r(mj 0.0375m; 1 . This lends support to the idea 
that quarks carry colour degrees of freedom. The anomaly coefficient D is 
proportional to the trace of the fermion loops and there will be an additional 
factor of 3 coming from summing over the three colours 

r(O) = 0.037m; 1 . (6. 73) 

We note that in the above calculation the strangeness flavour does not play a 
role as .A. 3 is nonzero only for the first two components. Physically this 
corresponds to the statement that the pion is composed of nonstrange 
quarks. Clearly ( 6. 73) is not modified when other flavours ( c, b, ... ) are 
included. 

6.3 Renormalization in theories with spontaneous symmetry 
breaking 

In this section we discuss two topics related to the renormalization of theories 
with spontaneous symmetry breaking. First we study the one-loop renor­
malization of the simplest .A.¢4 theory (5.131) with spontaneous breaking of 
its discrete symmetry. We show how 'tadpole diagrams' contribute to a shift 
in the vacuum expectation value (VEV) of the scalar field and that the 
counterterms are the same as those of the symmetric theory. We next study a 
case of spontaneously broken continuous symmetry and show how the 
Goldstone particles remain massless even in the presence of higher-order 
radiative corrections. 

One-loop renormalization and the VEV shift 

We return to the theory considered in eqn (5.137). The original Lagrangian 
(5.131) 

(6.74) 

has the discrete symmetry ¢ ¢' = - ¢. When µ2 > 0, this symmetry is 
broken by the vacuum with ¢ developing VEV 

<01¢10) = v 

v = (µ2/.A_)t. 

Perturbing around this vacuum, we define a shifted field 

¢' = ¢ - v. 

(6.75) 
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In terms of this field we have the potential (5.137) 

A. 
V(<//) = µ2<//2 + A.v<f/3 + _ </>'4 

4 
(6.76) 

which corresponds to a scalar with mass 2µ 2 with the self-interacting vertices 
shown in Fig. 6.5. 

FIG. 6.5. Interaction vertices for the Lagrangian in eqn (6.76). 

We now study the renormalization effects at the one-loop level. 

(1) One-point function (the tadpole diagram in Fig. 6.6). We have 

FIG. 6.6. 

. 1 I d4 k i 
T = ( -61.A.v) 2 (2n)4 k2 - 2µ2 

= -3i.A.vl2 

where 
(6.77) 

(6.78) 

To cancel this divergence we need a counterterm - D</>' in the Lagrangian 
with 

D = -3A.vl2 • (6.79) 

(2) Two-point function (Fig. 6.7). Diagrams (a) and (b) give rise to self­
energy terms 

(a) (b) 

FIG. 6.7. 

= (-6i.A.) k2 2µ2 = -3iAI2 (6.80) 

= (-6i.A.v)2 (k2 2µ2 )2 = l8i.A.2v2J4 (6.81) 

where 

(6.82) 
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We have 

!:(O) = !:.(O) + !:b(O) = - 3iAI2 + 18i.lc 2v2 / 4 . (6.83) 

This requires a counterterm -A<f/ 2 with 

3 2 2 A= - 2 AI2 + 9.lc v 14 . 

(3) Three-point function (Fig. 6.8). 

FIG. 6.8. 

r3(0) = f (k2 2µ2 r 
= 54i.lc2v/4 . 

For this we need counterterm -B<f/ 3 with 

B = -;, (54i.lc2v/4 ) = 9.lc 2vl4 • 

(4) Four-point function (Fig. 6.9). 

FIG. 6.9. 

r (0) = 3(-6iJc)2 d4k ( i )2 
4 2 (2n)4 k 2 - 2µ 2 

= 54i.lc2/4 

which requires the counterterm -iC<f/4 with 

c = -;, (54i.lc2/4) = 9A2/4. 

Therefore, the one-loop counterterms are 

JV(</>')= Ac/>' 2 + Bc/>' 3 + c/>'4 +De/>' 
4 

(6.84) 

(6.85) 

(6.86) 

(6.87) 

(6.88) 

(6.89) 
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and the effective potential to the one-loop level is given by 

V1(¢') = V(</J') + c5V(</J') = (µ2 + A)</J'2 + (A.v + B)</J' 3 

+!(A.+ C)¢'4 + D</J'. (6.90) 

Let c5v be the shift in VEV due to the one-loop contribution 

I = 0 
c5</J r/>' 

or 

2(µ 2 + A) c5v + 3(A.v + B)(c5v)2 +(A. + C)(c5v) 3 + D = 0. (6.91) 

Since c5v is small, we can neglect higher-order terms so that 

D -D 
c5v- - "' --- 2(µ 2 + A) - 2µ 2 . 

Thus to eliminate the linear term in ¢', we define a shifted field 

¢" = ¢' - c5v 

(01</>"10) = 0 to one loop. 

In terms of this new field, the potential can be written as 

where 

3A.2v 
b = A.v + B +A. c5v = A.v + 9A.2vJ4 + 2µ2 12 

(6.92) 

(6.93) 

(6.94) 

(6.95) 

a= µ2 +A+ 3 c5vA.v = µ2 + 3A.12 + 9A.2v21 4 . (6.96) 

From (6.96) we can check that 

b2 - ac = 0. (6.97) 

Throughout the above computation we have consistently dropped higher 
powers of c5v. Eqn (6.97) means that we have 

(6.98) 

This means the effective potential still has reflection symmetry in terms of 

¢ = ¢" + (6.99) 
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in spite of the addition of counterterms (6.89). In other words the 
counterterms still have the original symmetry as they reflect the ultraviolet 
properties of the theory which are insensitive to soft symmetry breaking. 
Therefore, even for broken symmetry theory, we only need the counterterms 
of the symmetric theory. Further discussion on this point will be given below 
in the study of U(l) symmetric theory. 

Goldstone bosons remain massless in higher orders 

We now take up theories with continuous symmetries where spontaneous 
symmetry breaking is accompanied by the presence of Goldstone bosons. We 
show how the Goldstone particles remain massless even in the presence of 
higher-order radiative corrections. Again we will illustrate the point with the 
simplest example of U(l) symmetry at the one-loop level. 

The U(l) symmetric Lagrangian (eqn (5.138)) 

1 1 µ 2 A. 
!£' = 2 (o;.cr)2 + 2 (o;.n)2 + 2 (cr2 + n2) + 4 (cr2 + n2)2 (6.100) 

when expressed in terms of the shifted field 

cr' = cr - v 

with the VEV 

(OlcrlO) = v = (µ 2/A.)± 

gives rise to the Lagrangian (eqn (5.146)) 

1 
2 = [(o;.cr')2 + (o;.n)2] _ µ2cr'2 _ A.vcr'(cr'2 + n2) 

2 

(6.101) 

(6.102) 

(6.103) 

which has a massless field n and massive (2µ2 ) field cr' interacting through the 
vertices shown in Fig. 6.10. To see how the n-field remains massless at the 
one-loop level we need to check that the mass renormalization counterterm 
15m vanishes. This must be so since it cannot be absorbed in any redefinition 
of the physical n-mass. We recall that the self-energy diagrams have the 
expansion 

(6.104) 

0 1 a' a' a' 

1t 1t a' 0 1 

FIG. 6.10. Interaction vertices for the Lagrangian of eqn (6.103). 
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a' 1t 

_2_ _6_ _2_ _Q_ 
1t 1t 1t 1t 1t 1t 1t 1t 1t 

(a) (b) (c) (d) (e) 

FIG. 6.11. Self-energy diagrams for the it-particle. 

where <5m1 is identified with L(O). The one-loop diagrams shown in Fig. 6.11 
can be calculated using the Feynman rules of Fig. (6.10) 

. , i . , 1 I d4k i 3, 2) 
La(O) = (-2111.v) _ 2µ1 (-6111.v) 2 (2n)4 k2 _ 2µ1 = - Al(2µ 

. 1 f d 4k i 2 
Lb(O) = ( - 212) 2 (2n)4 k1 - 2µ2 = A.1(2µ ) 

L (0) = (- 2i2v) _i - (- 2i2v) f d4k = -A./(O) 
c - 2µ1 2 (2n)4 k1 

. 1 I d4 k i 
La(O) = ( - 612) 2 (2n)4 k2 = 3A./(O) 

. 2 I d4k i i 2 
Le(O) = (-212v) (2n)4 k2 k 1 _ 2µ1 = 22[1(2µ ) - /(O)] 

(6.105) 

where the subscripts on the LS indicate the diagram number in Fig. 6.11 and 

I d4k 1 
/(m2) = (2n)4 k2 - m2 . (6.106) 

Thus /(2µ 2 ) = i/2 of (6.78). Again we have the usual symmetry factors 1/2. 
Clearly the contributions to L(O) coming from all five diagrams sum up to 
zero 

(6.107) 

This is the promised result: the rt-particle remains massless as required by the 
Goldstone theorem 

Soft symmetry breaking and renormalizability 

We note that the Feynman rule of Fig. 6.10 shows that there are five vertices 
which in turn depend only on the two parameters 2 and v. This means that 
there are three relations among these five couplings (five Green's functions). 
These Ward identities are consequences of the original U(l) symmetry. The 
counterterms for these vertices must satisfy the same relations in order that 
they can be absorbed into the redefinitions of <J and v (Lee l 972a). This can 
be checked explicitly in the one-loop approximation, as was done in the 
earlier example of discrete symmetry. Again this illustrates that the 



188 Renormalization and symmetry 6.3 

counterterms in the spontaneously broken theory have the, same structure as 
in the corresponding symmetric theory. In fact this is the key point which 
explains why spontaneous symmetry breaking ultimately does not spoil the 
renormalizability of the theory. 

We will amplify briefly the important point that the renormalizability of a 
spontaneously broken theory depends only on the renormalizability of the 
symmetric theory. This is in fact a slightly stronger version of a theorem 
(Symanzik 1970a) which states that soft symmetry-breaking terms do not 
destroy the renormalizability of a symmetric theory. By soft symmetry 
breaking we mean asymmetric terms of dimension less than four, i.e., they 
correspond to vertices with a negative index of divergence (eqn (2.134)) 

b; = d; - 4 < 0. (6.108) 

From the result of eqn (2.144) for the index of divergence of the counterterm 

(6.109) 

and from the fact that symmetry-breaking counterterms can arise only from 
diagrams that involve at least one symmetry-breaking interaction, one 
deduces immediately that the index for asymmetric counterterms must be 
negative 

(6.110) 

We can illustrate this theorem with two simple examples in the U(l) 
theory of eqn (6.100). 

(1) 2'58 = C(J, which has dimension one or b58 = - 3. Thus the only 
counterterm which satisfies -3 is = -Acr (as the 7t-term can be 
excluded by the reflection symmetry 7t--+ -7t). This does not destroy the 
renormalizability of the theory. 

(2) 2' ss = c( cr2 - n2), which has dimension two or b88 = - 2. Since the 
only interactions with dimension less than two or bet ::;; - 2 are ( cr2 + n2) and 
( cr2 - n2 ) (as terms linear in the fields can be excluded by reflection 
symmetry), the renormalizability is again maintained. 

Spontaneous symmetry breaking is clearly of the soft variety as shifting the 
fields only changes the terms with dimension less than four. The remarkable 
point is that these breaking terms not only do not induce asymmetric terms 
having dimension equal to or greater than four but the lower-dimensional 
terms maintain the same algebraic relations as the original theory. Thus, the 
process of renormalization does not introduce additional symmetry break­
ing, in the sense that symmetric counterterms suffice to remove infinities from 
the theory whether or not the symmetry is realized in the 'conventional' or 
Goldstone modes. 
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6.4 The effective potential and radiatively induced spontaneous 
symmetry breakdown 

In previous discussions of spontaneous symmetry breaking (SSB) in field 
theory, we used the classical potential part of the Lagrangian to decide at 
each level of perturbation theory which is the true vacuum. We have to shift 
the field at each order (see calculations in the previous section). We need a 
more systematic method for treating SSB which enables us to survey all 
possible vacua at once, and to compute higher-order correction before 
deciding which vacuum the theory finally picks. The formalism is the 
effective potential (Schwinger 1951a,b; Goldstone et al. 1962; Jona-Lasinio 
1964) and the appropriate approximation scheme is the loop expansion 
(Nambu 1968). Here we follow the presentation of Coleman and Weinberg 
(1973). 

The effective potential formalism 

To illustrate this approach in path-integral formalism, we first consider the 
simple case of one scalar field. The generating functional for the Green's 
function is given by eqn (1.74) 

W[J] = f [dt/>] exp{i f d4x[.P(t/>(x)) + J(x)tf>(x)] }· (6.111) 

We can also think of this as the vacuum-to-vacuum transition amplitude in 
the presence of the external source J(x) 

W[J] = (OJO)J. (6.112) 

When we expand In W[J] in a functional Taylor series in J(x), the 
coefficients will be the connected Green's functions (1.76) 

ln W[J] = L Jd4X1 ... d4xnG(nl(x1 .•. Xn)J(x1) ... J(xn). (6.113) 
n n. 

We define the classical field tf>c as the vacuum expectation value (VEV) of the 
operator t/> in the presence of the source J(x) 

t/> ( ) = o ln W = [<OJtj>(x)JO)J 
c x oJ(x) <O IO) / 

((6.114) 

The effective action of the classical field r(t/>c) is defined by the functional 
Legendre transform 

r(t/>c) = ln W[J] - f d4 xJ(x)tj>c(x). 

From this definition, it follows that 

or(tf>c) = -J(x). 
bt/>c 

(6.115) 

(6.116) 
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We can also expand r(cf>c) in powers of <Pc 

rc<t>c) = Jd4x1 ... d4x.r<•>cx1 ... x.)<f>,.Cx1) ... <PcCx.). (6.111) 
n n. 

It is possible to show that r<•>(x1 ... x.) is the sum of all lPI Feynman 
diagrams with n external lines. Alternatively we can expand the effective 
action r( cf>c) in powers of momentum. In position space this expansion takes 
on the form 

rccf>c) =I d4X[ - VC<Pc) + tC011<f>c)2Z(<f>c) + ... ]. (6.118) 

The term without derivatives V(<f>c) is called the effective potential. To express 
Vin terms of lPI Greens functions, we first writer<•> in momentum space 

(6.119) 

Putting this into (6.117) and expanding in powers of k;, we get 

" 1 I 4 4 Jd4k1 d4k. 
r(</Jc) = n! d X1 · • • d Xn (27t)4 · · · (27t)4 

x I d4x ei(k, + ... k,) ·x ei(k, ·x. + ... k. ·x.) 

x [r<•>co, ... O)<f>cCx1) ... <f>cCx.) + ... J 

= Jd4x {r<•>co, ... O)[<f>cCx)J" + ... }. 
n n. 

(6.120) 

Comparing (6.118) and (6.120) we see that the nth derivative of V(<f>c) is just 
the sum of all lPI diagrams with n external lines carrying zero momenta 

1 
V( <Pc) = - L 1 r<•>co, ... O)[ <f>cCx)]". 

n n. 
(6.121) 

The usual renormalization conditions of the perturbation theory can be 
expressed in terms of functions occurring in eqn (6.118). For example in A</>4 

theory we can define the mass squared as the value of the inverse propagator 
at zero momentum 

r<2>co) = - µ2. (6.122) 

Then we have 

. 
d<f>c 

(6.123) 

Similarly, if we define the four-point function at zero external momenta to be 
the coupling constant 

(6.124) 
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then 

d4vl A=p . 
</>c 

(l.125) 

Similarly, the standard condition for wavefunction renormalization becomes 

(6.126) 

Consider now the SSB of a theory with some internal symmetry. SSB 
occurs if the quantum field </>develops a non-zero VEV even when the source 
J(x) vanishes. In this language with eqns (6.114) and (6.116), this means that 
it occurs if 

(6.127) 

for some nonzero value of <Pc. Furthermore, since we are typically only 
interested in cases where VEV is translationally invariant, we can simplify 
this to 

for </>c =f 0. (6.128) 

The value of <Pc. for which the minimum of V(</>c) occurs will be denoted by 
< </>), which is the expectation value of </> in the new vacuum. 

Loop expansion 

To calculate V(</>c) we need an approximation scheme which preserves the 
main advantage of this effective potential formalism, i.e., the capability to 
survey all vacua at once before deciding which is the true ground state. 
Clearly ordinary perturbation theory with its expansion in coupling con­
stants is not appropriate as we need to, at each order, identify the true 
vacuum state and shift the field. 

Instead, we will here organize perturbation theory in the form of loop 
expansion. This is an expansion according to the increasing number of 
independent loops of connected Feynman diagrams. Thus the lowest-order 
graphs will be the Born diagrams or tree graphs. The next order consists of 
the one-loop diagrams which have one integration over the internal 
momenta, etc. For the effective potential (6.121) each loop level still involves 
an infinite summation corresponding to all possible external lines. The usual 
classical potential we have been working with is simply the first term (the tree 
graphs) of V(</>c) in this loop expansion. In fact the loop expansion can be 
identified as an expansion in powers of the Planck's constant Ii. This can be 
seen as follows. Let I be the number of internal lines and V the number of 
vertices in a given Feynman diagram. The number of independent loops L 
will be the number of independent internal momenta after the momentum 
conservation at each vertex is taken into account. Since one combination of 
these momentum conservations corresponds to the overall conservation of 
external momenta, the number of independent loops in a given Feynman 
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diagram is given by 

L =I - (V - 1). (6.129) 

To relate L to the powers of n, we have to keep track of the factor n in the 
standard quantization procedure. First there is one power of n in the 
canonical commutation relation 

[c/J(x, t), n(y, t)] =in c5 3(x - y). (6.130) 

This will give rise to a factor of n in the free propagator in momentum space 

(OIT(c/J(x)c/J(O))IO) = J d4k eik-x in . · 
(2n)4 k 2 - m2 + 1e 

(6.131) 

The other place where n appears is in the evolution operator exp[ -iHt/n] 
which gives rise to the operator exp[i/n J .Pi01(¢) d4x] in the interaction 
picture. This means that there will be a factor of 1/n for each vertex. Thus, for 
a given Feynman diagram, we have P powers of n with 

P=l-V=L-1. (6.132) 

Thus the number of loops and the power of n are directly correlated. The 
statement that loop expansion corresponds to an expansion in Planck's 
consti;mt is really a statement that it is an expansion in some parameter a that 
multiplies the total Lagrange density 

(6.133) 

The above counting of the n powers (P) reflects the fact that while every 
vertex carries a factor a- 1, the propagator carries a factor a because it is the 
inverse of the differential operator occurring in the quadratic terms in ft'. 
Because n, or a, is a parameter that multiplies the total Lagrangian, it is 
unaffected by shifts of fields and by the redefinition or division of ft' into 
free and interacting parts associated with such shifts. In short it allows us to 
compute V(c/J0 ) before the shift; thus it is an appropriate perturbation 
scheme for our purpose. 

We should remark that this loop expansion is certainly not a worse 
approximation scheme than the ordinary coupling-constant expansion 
perturbation theory since the loop expansion includes the latter as a subset at 
a given loop level. In fact if we fix the number of the external lines (which we 
do not in the calculation of V(c/J0 )) these two expansions are identical for the 
simple case of one coupling constant. For example, in A.¢4 theory we have 
(eqn (2.58)) for Green's functions with E external lines 

4V=E+2l (6.134) 

which can be converted into a relation between the powers of the coupling 
constant (V) and the number of loops by using (6.129) to eliminate I 

(6.135) 
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The effective potential of the A.c/J4 theories 

We now illustrate the calculation of the effective potential in the simple case 
of A.cjJ4 theories in the one-loop approximation. The Lagrangian density is 
given by 

with 

.Po= !(o,,c/J)2 - !µ2c/J2 

)., 4 
21 = - 4! cjJ • 

(6.136) 

We shall study the three cases corresponding to µ2 > 0, µ2 < 0, and µ2 = 0. 

(1) µ2 > 0 case (no SSB). To calculate the effective potential in eqn 
(6.121), we must sum all one-loop diagrams with an even number of external 
lines having zero momenta (see Fig. 6.12). 

FIG. 6.12. 

The lPI Green's function is given by 

(2n) _ • __ _. 1 I d4k [ . ]" r (0, ... 0) - iS" (2n)4 ( iA.) k2 - µ2 + ie (6.137) 

where Sn is the symmetry factor 

S = (2n)! 
" 2"2n 

(6.138) 

corresponding to the fact that there are (2n) ! ways to distribute 2n particles to 
the external lines of the diagram and that interchanges of any two external 
lines at a given vertex or reflections and rotations of n vertices on the ring do 
not lead to new contributions. The no-loop and one-loop effective potential 
is then given by 
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The integral is divergent. If it is cut off at some large momentum, we obtain 

I 2 2 A. 4 A1 ( 2 A. "'2) 
V( </Jc) = 2 µ </Jc + 4 ! </Jc + 32n2 µ + 2 'l'c 

+ 6;n2 (µ2 + ¢; )2[1n(µ2 + +is)- (6.140) 

The appearance of the combination µ 2 + (A./2)¢; results from the summation 

I I 2 I I 
k2 _ µ2 + k2 _ µ2 2 A</Jc k2 _ µ2 + · • • = k2 _ (µ2 + A.</J; /2)' 

(6.141) 

i.e., the A.¢; /2 term acts effectively as a mass insertion (for further remarks 
see eqn (6.147) below). 

To remove the cut-off dependence we introduce counterterms which have 
the same structure as the original potential 

A 2 B 4 
Vc1(</Jc) = l </Jc + 4! </Jc· (6.142) 

so that the renormalized effective potential, given by 

(6.143) 

is finite and cut-off-independent. The coefficients A and Bin (6.142) can be 
determined by the renormalization conditions ( 6.123)-{ 6.126). In this way we 
have 

(6.144) 

We see that the large <Pc behaviour of V(</Jc) is modified by radiative 
corrections. 

(2) µ 2 < 0 case (with SSB). For illustrative purposes we choose this time 
to separate the Lagrangian differently 

(6.145) 
where 

(6.146) 

and take U(</J) as a perturbation. There are two vertices: µ2 and !A.¢2, shown 
in Fig. 6.13(a). Their combination is the second derivative U"(</J) which is just 

µ2 \ I 
-i(-- + __),/__ 

(a} (b) 
FIG. 6.13. 
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the scalar mass squared for <P = (</J). Thus we use the notation 

(6.147) 

The effective potential calculated by summing up the diagrams in Fig. 
6.13(b), with a massless propagator and vertices, has the form 

(6.148) 

We see that, apart from an irrelevant constant, this is the same result as case 
(l) with µ2 > 0. Thus, if we choose the same renormalization condition as in 
case (l), we arrive at the renormalized potential (6.144). In this case the 
quantity µ2 has a different physical meaning and is not the mass of the 
particle in the zeroth order. Nevertheless it is still a finite quantity which 
serves to parametrize the theory. 

The calculations in cases (l) and (2) illustrate the advantage of this 
perturbative approach: the same result can be obtained whether there is SSB 
or not; we need not shift the field beforehand. Also, this approach is 
insensitive to how we divide up the Lagrangian, whether as in (6.136) or 
(6.145). More importantly, the calculations illustrate the feature that even in 
the presence of SSB the counterterms are still the same as those of the 
symmetric theory. In other words the ultraviolet divergences respect the 
symmetry of the Lagrangian even if the vacuum does not. This reflects the 
fact that SSB is generated by the nonzero VEV ( <P) which has the dimensions 
of mass and the ultraviolet divergences are insensitive to finite mass scales. 

(3) µ2 = 0 case (SSB driven by radiative corrections?). In this case V(</J) is 
flat at <P = 0 and the usual procedure of using the classical potential is 
inadequate to determine whether SSB is induced or not, and we have to go 
to higher orders to see the pattern of symmetry realization. Coleman and 
Weinberg (l 973) were the first ones to point out this interesting phenomenon 
of radiatively induced SSB. We cannot take the µ2 --+ 0 limit of eqn (6.144) 
because of the infrared singularity. To get around this difficulty, we will 
choose a renormalization condition for the coupling constant different from 
that of (6.125). Instead, at <Pc = 0, we have 

(6.149) 

where Mis an arbitrary mass parameter. The effective potential now takes, 
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forµ« M, the form 

1 2 2 A. 4 
V,{</Jc) = l µ </Jc + 4! </Jc 

+ 6:n2 { (µ2 + </>; y In [µ2 +)<I>; /2 J 
1 2 2 25 2 4 1 2 4 ( 2µ 2 

)} - l A.µ </>c - 24 A. </>c + 4 A. </>c In A.M2 . (6.150) 

This has the µ2 = 0 limit 

1 A. 2 </> 4 [ </> 2 25] 
Vr(</>c) = 4! A.</>c4 + 256;2 ln - 6 . (6.151) 

Since the second term in eqn (6.151) is negative for small </>c, it has the effect 
of turning the zeroth-order minimum at the origin into a local maximum 
and producing a new minimum at some point away from the origin. In other 
words, the one-loop correction has generated SSB. However this conclusion 
is unwarranted as the new minimum is located at 

(</>)2 -32 2 
A. In M2 = -3- n + O(A.). (6.152) 

The fact that A. ln((</>2)/M2) is bigger than one (i.e., the loop contribution 
is larger than that of the tree) means that the new minimum lies outside 
the validity of the one-loop approximation. In this simple theory with one 
coupling constant such a result is inevitable. Since we want the one-loop con­
tribution to compete with the three contribution, A. In ( </>2) must be large, yet 
A. is the only parameter in the theory. This implies that to avoid this 
difficulty we should examine theories with more than one coupling. 

Massless scalar QED (dimensional transmutation) 

The Lagrange density is given by 

ff'= + 1(8µ - ieAµ)</>1 2 - :! (</>*</>)2 (6.153) 

where Aµ is the photon field with Fµv = aµAv - aVAµ' </>is a complex scalar 
field 

</> = </> 1 + i</>2' (6.154) 

where </>1.2 is real. Now we have two coupling constants A. and e and it will be 
possible to obtain a small expansion parameter. 

The calculation will be considerably simplified in the Landau gauge, where 
the photon propagator is 

• A (k} = _. Bµv - kµkv/k 2 

lLlµv l k2 . +ie 
(6.155) 
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Because we always work with zero external momenta and because k" A,,,(k) 
= 0, all graphs of the type shown in Fig. 6.14 make no contribution. Also 
note that the effective potential can depend only on</>; = </>:</>c = </>ic + </>t. 

FIG. 6.14. 

We need only compute diagrams having </> 1 external lines; there are three 
basic classes of graphs with different particles running in the loop (Fig. 6.15). 

A x +··· x +··· x + ... 

FIG. 6.15. 

In this way we obtain 

The calculation is entirely analogous to the previous case; we only need to 
note that the coupling is 1/3 of the <f>i coupling because of the different 
Wick contractions and that the extra factor 3 in the photon loop comes from 
the trace of Landau-gauge propagator. Ifwe assume that A. is of order e4 , we 
can neglect the A.2 term in (6.156). Since Mis arbitrary, we take it to be the 
actual location of the new minimum, M = (</>). The effective potential 
becomes 

_ _!_ 4 3e4 4(1 _jl__ _ 25)· 
V(</>c) - 4! A.</>c + 64n2 </>c n (</>)2 6 

We also have the relation 

or 

0 = V'((</>)) = - lle4)(</>)3 
6 16n2 

33 4 
A. = 8n2 e . 

(6.157) 

(6.158) 

Surprisingly, the two independent coupling constants are related. This can be 
understood from the fact that we start out with two dimensionless para­
meters e and A.; we end up also with two parameters e and ( </>). In other 
words we have traded a dimensionless parameter A. for a dimensional 
parameter (</>). This has been called dimensional transm.utation (Coleman 
and Weinberg 1973) which is a general feature of the theory without any 
mass scale. Changes in M always involve a new definition of the coupling 
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constant. With (6.158), the potential in (6.157) can be written simply as 

3e4 
( <f>2 1) 

V(</>c) = 64n2 <1>: ln (</>)2 - 2 (6.159) 

which has a minimum at </>c = ( </>) and symmetry is spontaneously broken. 
This time the loop expansion is valid as the one-loop contribution can be 
smaller than that of the tree. Incidently since the mass of the 'photon' after 
SSB, mv = e(c/J), we may use the notation 

mv(cP) = e</> (6.160) 

and write (6.157) as 

( </>; 1) 
V(c/Jc) = 64n2 ln (¢)2 - 2 . (6.161) 

This is to be contrasted with eqn (6.148) for the scalar loop. 
We should also remark that, ifthere are fermions in the theory, there will 

be, in addition to the scalar and vector loops, fermion loops. We can 
calculate their contribution in an analogous manner. If we follow the 
procedure of case (2) above and work with massless propagators, we will 
have the general vertex mr(c/J) = m + h</>, where mis the bare fermion mass 
and h is the Yukawa coupling. Since the trace of an odd number of Dirac 
y-matrices is zero, we must have an even number of fermion propagators. 
Then we can group terms as 

(6.162) 

Then the calculation becomes exactly the same as the scalar case except the 
important difference of an overall minus sign for the loop integral. And we 
have the fermion loop contribution 

{J -4 4 2 2 
V(c/Jc) = 647t2 mr(c/Jc)[ln </>c/M + ... ]. (6.163) 

The factor of 4 arises from the trace of Dirac matrices. Thus in a theory 
having vector, scalar, and fermion loops, we can combine (6.161), (6.148), 
and (6.163) to obtain the one-loop contribution 

fJV(c/Jc) = 6;7t2 + - 4m1(¢c)J In ¢;/M2 + .... 
(6.164) 



7 The parton model and scaling 

LEPTON-NUCLEON scatterings at high energy and large momentum transfer 
exhibit the remarkable phenomenon known as Bjorken scaling. This 
correlation pattern of the energy and angular distribution of the scattered 
leptons in these deep inelastic processes can be described simply by 
Feynman's parton model (Feynman 1972). At short distances hadrons may 
be viewed as composed of (almost free) point-like spin 1/2 constituents, the 
partons. It is natural to identify them as quarks. After a description of 
the quark-parton model and some of its applications in the first two sections 
we will then present the formal field theoretical apparatus required to 
describe the short-distance behaviour. This is Wilson's operator product 
expansion (Wilson 1969) with coefficients satisfying the renormalization 
group equations. Thus the stage is set for a field theory of strong interactions 
with the quarks being identified as the fundamental matter fields. 

7.1 The parton model of deep inelastic lepton-hadron 
scattering 

Kinematics and Bjorken scaling 

The leptons used in deep inelastic processes are either charged leptons 
(electron or muon) or neutrinos which scatter off the target nucleons via the 
electromagnetic or weak interactions, respectively. 

Electron-nucleon case. The momenta for the reaction 

e(k) + N(p) --... e(k') + X(pn) (7.1) 

are shown in Fig. 7.1, where Xis some hadronic final state with total four­
momentum Pn. 

e(k) 
e(k') 

N(p) 

FIG. 7.1. 

We define the kinematic variables by 

q = k - k', v = p · q/M, W 2 = p; = (p + q)2 (7.2) 

In the lab-frame we have 

Pµ = (M, 0, 0, 0), kµ = (E, k), = (E', k'). (7.3) 
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Then 
v = E- E' (7.4) 

is the energy loss of the lepton and, when the lepton mass m1 is neglected 

q2 = (k - k') 2 = -4EE' sin2 0, Q2 = -q2 (7.5) 

where 8 is the scattering angle of the lepton. The amplitude is given by 

1 
Tn = e2u(k', A')yµu(k, A) 2 rr) 

q 
(7.6) 

where is the hadronic electromagnetic current. The unpolarized differen­
tial cross-section is given by 

1 1 1 d3k' n [ d3p; J 
drrn = - - - 3 , fl 3 lvl 2M 2E (2n) 2k0 ; = 1 (2n) 2p;0 

X L 1Tnl 2 (2n)4 b4(p + k - k' - Pn). (7.7) 
4u.l.A' 

where Pn = 1:?= 1 P;· lfwe sum over all possible hadronic final states (i.e., they 
are not observed) we obtain the inclusive cross-section 

d2 rr a2 (E') 
dQ dE' = q4 E /µv Wµv (7.8) 

where a = e2 /4n is the fine structure constant. The leptonic tensor corres­
ponds to 

lµv = tr(k'y/<:yv) = + + q2
2 

gµv) 

and the hadronic tensor is given by 

1 I n [ d3pi J 
Wµv(p, q) = 4M I\ (2n) 3 2p;o 

X <P, rr)(2n) 3 b4 (Pn - p - q) 

= f d;: e'q '<p, rr). 

(7.9) 

(7.10) 

Sometimes it is more convenient to rewrite this in the form of a commutator; 
we observe that 

f d;: ei(p,-p+ql '<P, rrllv(O)ln)<nlJµ(O)lp, rr) 

= L (2n) 3 b4 (Pn - p + q)<p, rrlJ.(O)ln)<nllµ(O)lp, rr). 

(7.11) 
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In the lab frame q0 = v > 0 there is no intermediate state In) with energy 
En= M - v M which can contribute; thus the above term vanishes. We 
can therefore write 

(7.12) 

From current conservation oµ = 0 we have 

or 

(7.13) 

From (7.13) and the fact that Wµv is a second-rank Lorentz tensor depending 
on the momenta Pµ and qµ, one can deduce its covariant decomposition 

Wµv(p, q) = [ - W1 (9µv -

+ :; (Pµ - qµ )(Pv - pq·2q qv) J (7.14) 

where W1, 2 are Lorentz-invariant structure functions of the target nucleon 
depending on the invariant variables q2 and v of (7.2) and (7.5). We can then 
write (7.8) 

rx2 ( • 2 (} 2 (}) (} 2 W 1 sm - + W2 cos 2 · 
4£2 sin4 - 2 

2 

(7.15) 

A measurement of the inclusive cross-section yields information about the 
structure functions W 1 2 (q2 , v) which are the strong-interaction quantities 
characterizing the (and hence the structure) of the target nucleon to 
electromagnetic probes. 

To get some feeling about the structure functions, we first consider the 
special case where the final hadronic state X(pn) is also a nucleon. The matrix 
element of the electromagnetic current between either the proton or the 
neutron states can be written as 

= u(p')[yµF 1(q2) 

+iuµvqvF 2(q2)/2M]u(p) (7.16) 

with q = p - p'. F 1 2 (q2 ) are Lorentz-invariantformfactors. For the case of 
the proton, F'l(O) = 1 and Pi(O) = 1.79 (nucleon magnetons) measure the 
total charge and anomalous magnetic moment, respectively, of the proton; 

= 0 and Pi(O) = -1.91 measure the total charge and anomalous 
magnetic moment, respectively, of the neutron. To check that Fl(O) = 1 
does give the total charge of the proton as + 1, we note that the charge 
operator 

Qlp) =IP) (7.17) 
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implies 

<P'IQlp) = <P' IP)= 2E(2n)3 b3(p' - p). (7 .18) 

On the other hand from (7 .16) we have 

<P'IQJp) = f d 3x<p'JJQm(x)Jp) 

= f d3x 

= (2n) 3 b3(p' - p)ii(p')y0u(p)Fi(O) 

= 2E(2n) 3 J3(p' - p)Fi(O). (7.19) 

Thus (7 .17) implies that Fi (0) = 1, as promised. It is straightforward to take 
the elastic limit p; = M 2 in (7.10) and obtain 

2 
v) = b(q2 + 2Mv) 

v) = J(q2 + 2Mv) (1 _ [ -

(7.20) 

where 
2 

GE(q2) = Fi(q2) + F1(q2) 

GM(q2) = Fi (q2) + F1(q2) (7.21) 

are the electric and magnetic form factors, respectively. The elastic electron­
nucleon cross-section is then 

II. 

dQ = 4£ 2 

cos2 (1 - - - sin2 

[ 1 + (2E/ M) sin2 sin4 

(7.22) 

Thus measurements of the elastic eN differential cross-section yield infor­
mation about the electric and magnetic form factors. Experimentally GE and 
GM for the proton are given by (for a review see Taylor 1975) 

2 GM(q2) 1 
Gdq) (1 - q2/0.7 GeV2)2 (7.23) 

where Kp = 2. 79 is the magnetic moment of the proton. If the proton were a 
point-like (structureless) particle, we would have GM(q2) = GE(q2) = 1. Thus 
the nontrivial dependence of q2 in (7.23) indicates the structure of the proton. 
Also for large q2 , the elastic cross-section falls off rapidly as GE GM q- 4 . 
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If the inelastic cross-sections for final states other than the nucleon all 
behaved much like the elastic cross-section, we would expect them to fall off 
rapidly for large q2 • The surprise is that experimentally these cross-sections 
for large final-state invariant mass W » M seem to have a much more 
moderate dependence on q2 (for a review see Panofsky 1968). This leads to 
the idea that there must be some point-like constituents inside the nucleon 
much as the large-angle scattering of the ct-particle in Rutherford's 
experiments suggested that the charge of the target atom was concentrated in 
the 'point-like' nucleus. These structureless particles inside the nucleon are 
called partons. A proper description of the parton model will be given after 
we have made a more precise statement of the deep inelastic scattering 
behaviour in terms of Bjorken scaling (Bjorken 1969). 

Define the dimensionless scaling variables 

-q2 Q2 
X=--=--· 

2Mv 2Mv 
(7.24) 

The range of x 

0::::;; x::::;; 1 (7.25) 

is given by the fact that the invariant mass of the unobserved final hadronic 
state is larger than the nucleon mass 

W 2 = (p + q)2 = q2 + 2Mv + M 2 M 2. (7.26) 

Note that the elastic scattering corresponds to x = 1. Also define the variable 

v E' 
y=-=1--

E E (7.27) 

which is the fraction of the initial energy transfered to the hadrons. From the 
fact that 0 ::::;; E' ::::;; E we obtain the range of y 

0::::;; y::::;; 1. (7.28) 

It is convenient to express the cross-section in terms of the x and y variables. 
Using the relation 

and the definitions 

E'dOdE' 
dxdy=--­

E 2nyM 

MW1 (q2, v) = F1 (x, q2 / M 2) 

vW2(q2,v) =F2(x,q2/M2), 

we can write ( 7 .15) in the form 

d1a = 8no:2 [xy2 F, + (i - y - M xy)F2 ]· 
dx dy MEx2y 2 2E 

(7.29) 

(7.30) 

(7.31) 

Bjorken scaling is the statement that in the large Q2 limit with x fixed, the F;s 
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are functions of x only. Thus, 

. ( q2) hm F; x, M 2 = F;(x). 
lq21-+oo 
xfixed 

(7.32) 

The dimensionless structure functions become independent of any mass 
scale. The F;(x)s are called the scaling functions. Experimentally Bjorken 
scaling seems to be obtained for a rather modest value of Q2 2(Ge V)2 in ep 
scattering. 

Neutrino-nucleon scattering. Next we come to the case of the charged 
weak-current process 

(7.33) 

Since the basic idea is exactly the same as for the electromagnetic lN 
scattering considered above and since the reaction has also been presented in 
our discussion of the Adler-current-algebra sum rule in §5.2, we merely 
summarize the results. We will assume the current-current interaction for the 
weak effective Lagrangian 

GF t .. !l'0rr = - .J2 J,,J + h.c. (7.34) 

where GF is the Fermi constant. The (charged) weak current J" can be 
separated into the leptonic and hadronic parts 

J" = Jt + 
The leptonic weak current has the explicit form 

Jf = v.y"(l - Ys)'e + v11y"(l - y5)µ + .... 

(7.35) 

(7.36) 

The cross-section for neutrino and antineutrino scatterings can be written as 

d2 u<v> = E'2 [2 sin2 w<v> · + cos2 w<v> - (E + E') sin2 w<v>] 
dQ dE' 2n2 2 1 2 2 M 2 3 

(7.37) 

d2 u<v> = E'2 [2 sin2 w<v> + cos2 w<v> + (E + E') sin2 wv>] 
ctn dE' 2n2 2 1 2 2 M 2 3 

where the structure functions w1v) are defined as 

= f eiP(p, ul[Jhp(x), Jia(O)lp, u) 

= - w<{>g"p + - iw<;>e"p1ap1qa/M2 

+ wz>q"qp/M2 + + ppq")/M2 

+ iw<6>(p"qp - Ppq")/M2. 

(7.38) 

(7.39) 
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The W!v>s can be obtained from (7.39) using Jha +-+ 1ia (also see §5.2). We also 
define dimensionless structure functions 

MW\v>(q2 , v) = q2/M 2 ) 

v) = q2/M 2 ) 

v) = q2/M 2). 

These structure functions will also satisfy the Bjorken scaling 

lim G!v>(x, q2/M 2 ) = F!v>(x). 
lq21-+oo 
xfixed 

(7.40) 

(7.41) 

It is often useful to have structure functions with definite helicities. They can 
be obtained as follows. In the lab frame, choose the z-axis such that 

Pµ = (M, 0, 0, 0) and qµ = (q0 , 0, 0, q3). 

The longitudinal polarization vector is then of the form 

(S) 1 
Bµ = .J 2 (q3, 0, 0, qo) 

-q 

and the corresponding structure function is 

W8(q2 , v) = 

2 

= - Wi - W2 = (1 - v2/q2 )W2 - Wi 
q 

(7.42) 

(7.43) 

(7.44) 

where we have suppressed the neutrino superscript (v). The right- and left­
handed transverse polarization vectors are 

(R) 1 . 0) 
Bµ = .J2 (0, 1, 1, (7.45) 

(L) 1 . 
Bµ = .J2 (0, I, -1, 0) (7.46) 

and their structure functions are 

I 2 2 t WR = Wi + 2M (v - q ) W3 

I 2 2 t WL = Wi - -(v - q ) W3 • 
2M 

(7.47) 

Note that these structure functions with definite helicities, WL, WR, and W8 , 

have to be positive. In the scaling limit, the following helicity functions are 
functions of x only 

I 
2MW8 -+ Fs =-F2 - 2Fi 

x 

MWL -+ FL = Fi - !F3 

MWR-+ FR= Fi+ !F3. (7.48) 
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The differential cross-section can be written 

d2 <vJ ME 
_a_= [(l -y)ft>·+ Ft'>+ (1 
dx dy n 

(7.49) 

2 (v) 

= MEx [(1 - + (1 - y)2 ft> + 
dx dy n 

(7.50) 

Note that these equations imply that the total cross-section will grow 
linearly with· energy. (This is also the typical behaviour of the neutrino 
scattering off the point-like lepton.) That this is indeed the behaviour 
observed experimentally also suggests that there are point-like constituents in 
the nucleon. 

The parton model 

We shall now calculate the lepton-nucleon structure functions in the parton 
model (Feynman 1972; Bjorken and Paschos 1969) which is the subnucleon 
version of the familiar impulse approximation of high-energy scattering of 
composite particles with weakly bound constituents. The inclusive scattering 
is viewed as due to incoherent elastic scattering from point-like constituents 
of the nucleon, the partons, depicted in Fig. (7.2). The final-state partons 
then recombine (fragment) somehow into hadronic states. Thus we are mak­
ing the physical assumptions that (1) during the time of current-parton 
interaction one can ignore interactions among partons themselves and (2) 
the final-state interactions (necessary for partons to fragment into hadrons) 
take place on such a relatively long time-scale that they can be ignored 
in the calculation of the inclusive cross-sections. For a more detailed 
presentation the reader is referred to Close (1979). 

Specifically, each of the spin-1/2 partons is hypothesized to carry a fraction 
of the original nucleon momentum ep with 0::;; e::;; 1, i.e., we neglect any 
parton momentum transverse to the nucleon momentum. Then the contri­
bution to the hadronic tensor (7.10) from such a spin-1/2 parton can be 
immediately worked out as 

1 d3p' 
Kµ,(e) = L (2n) 32p' 

':. spm 0 

x (ep, a')(p', a)(2n)3 c54 (p' - ep - q) 

1 
= L u(ep)yµu(p')ii(p')y,u(ep) c5(po - ePo - qo)/2Po. 

spm 
(7.51) 

p 

FIG. 7 .2. Inelastic lepton-nucleon scattering as incoherent elastic scattering from partons. 
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The factor of e in the denominator appears because of the change in the 
relative flux from p to ep. The delta function may be written as 

b(Po - ePo - qo)/2p0 = e(p0) b[Po2 - (ePo + qo)2 ] 

= e(p0) i5[p' 2 - (ep + q)2J 

= e(ePo + qo) '5(2Mve + q2 ) 

b(e - x) 
= e(ePo + qo) 2Mv . 

For the spin sum, we have 

1 
2 L u(ep)yµu(ep + q)u(ep + q)yvu(ep) 

spm 

e 
= 2 tr[pyµ(ep +,q)yv] 

= 2e[pµ(ep + q)v + Cep + q)µPv -p · (ep + q)gµv] 

= 4M 2 e2(PµPv/M 2 ) - 2Mvegµv + ... 

(7.52) 

(7.53) 

where we have neglected the parton mass. The parton tensor (7.51) is then 

Kµvm = '5(e - - + .. } (7.54) 

Let/(e) de be the number of partons with momenta between e and e +de 
(weighted by the squared charge). Then we can calculate the hadronic tensor 
in terms of an integral over Kµv(e) 

1 

Wµv = ff mKµvm de 

0 

xf(x) PµPv f(x) 
= -v- Mz - 2.M 9µv + .... (7.55) 

In this way the delta function that enforces the mass-shell condition of the 
final parton leads to the structure-function dependence on x = -q2/2Mv 
alone, 

MW1 

vW2 F2(x) = xf(x). 

(7.56) 

(7.57) 

Thus the scaling functions of (7.32) are measures of the momentum 
distribution of the the parton in the target nucleon. 

We also note, from eqns (7.56) and (7.57), that 

(7.58) 

which is known as the Callan-Gross relation (1969). This is a direct 
consequence of the assumed spin-1/2 nature of partons. For example if we 
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had used spin-0 partons, we would have had 

Kµv ex (xpllµlxp + q)(xp + qllvlxp) 

ex (2xp + q)µ(2xp + q)v. 

With the absence of a 9µv term this would lead to 

F1(x) = 0. (7.59) 

There is a simple interpretation of (7.58) and (7.59) in terms of the helicity 
structure functions. If we define photon polarization vectors as in (7.43) and 
(7.46), we have eqn (7.48) 

FT = FL + FR = 2F1. 

Thus (7.58) and (7.59) can be translated into 

for a spin-1/2 parton 

for a spin-0 parton. 

(7.60) 

(7.61) 

(7.62) 

(7.63) 

To see that these results follow from angular momentum conservation, we go 
to the Breit frame of reference in which the momentum of the parton just 
reverses its direction without changing its magnitude upon collision with the 
virtual photon 

qµ = (0, 0, 0, -2xp), 

xpµ = (xp, 0, 0, xp), 

= (xp, 0, 0, -xp). (7.64) 

If the parton has spin-0, only the virtual photon with zero helicity (e8) can 
contribute while the helicity ± 1 states (eL, eR) do not conserve angular 
momentum along the direction of motion. On the other hand, for the spin-
1/2 parton (with negligible mass) the spin component also gets reversed upon 
collision and this will require the virtual photon to be in the ± 1 helicity state; 
hence Fs = 0. Experimentally (7.58) or (7.62) is reasonably satisfied in the 
scaling region and we can conclude that nucleons do indeed have charged 
spin-1/2 point-like constituents. 

7.2 Sum rules and applications of the quark-parton model 

It is natural to identify these charged spin-1/2 partons with the quarks which 
were first invented to account for the spectroscopic properties of hadrons. 
Eventually we shall develop a field theory of the strong interaction, quantum 
chromodynamics (QCD), which is a non-Abelian generalization of the 
familiar theory of quantum electrodynamics (QED). In QCD the quarks, like 
the electrons in QED, are the basic matter fields with interactions mediated 
by the electrically neutral vector fields, the gluons, much as the photon 
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mediates the electromagnetic interactions among electrons. With this picture 
we can also have a qualitative understanding of the form of the parton 
distribution function f(x). Experimentally it has the shape shown in Fig. 
(7.3). To understand this we follow the presentation by Close (1979) and start 
with a primitive model of three free quarks of the nucleon (see Fig. 7.4) for 
which the parton distribution function is essentially a delta function at 
x = 1/3, i.e., f (x) ,.., b(x - 1/3). We tum on the interaction of the quarks 
with gluons; this distribution will be smeared by the gluon exchange be­
tween quarks (Fig. 7 .5). Then, just as the case of QED where the virtual 
photon (emitted with a bremsstrahlung momentum spectrum of dk/k) can 
create e+e- pairs, the gluons (emitted with a probability -dx/x) can pro­
duce qq pairs. These processes of internal conversion and bremsstrahlung 
will produce a 'qq sea' at small x to give the final distribution (Fig. 7.6). 

We would like to see whether the high-energy lepton-nucleon scattering 
data are consistent with the quark quantum number fixed by the spectro­
scopic phenomenology. Working with the quark model with only light 

f(x) 

x 

FIG. 7.3. 

L 
FIG. 7.4. 

L 
I 

FIG. 7.5. 

L 
I 

FIG. 7.6. 
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quarks u, d, and s, the hadronic electromagnetic current has the explicit 
form 

(7.65) 

and, below the charm threshold, the hadronic (charged) weak current has the 
form 

(7.66) 

We shall work in the approximation of vanishing Cabibbo angle (Oc O); 
hence 

(7.67) 

Here we have used the quark labels as particle field operators. In the 
following we shall use these names to denote the quark-parton distribution 
function instead. With the squared electric charges factored out explicitly, we 
have, through eqns (7.56) and (7.61), 

F/(x) = fp(x) fip) + !(dp + dp) + !(sp + sp) (7.68) 

p;n(x) = fn(x) fin)+ !(dn + dn) + !(sn +Sn) (7.69) 

where qN(x) denotes the probability of finding a parton with longitudinal 
momentum fraction x carrying the quantum number of quark q in the target 
nucleon N. They are constrained by the quantum number of nucleon. For 
example, 

Isospin: 

(7.70) 

Strangeness: 
1 f [sp(x) _ sp(x)] dx = o (7.71) 

0 

Charge: 
1 1 

f 2 Jl -3 [up(x) - fip(x)] dx - 3 [dp(x) - dp(x)] dx 

0 0 

1 - [sp(x) - sp(x)] dx = 1. 

0 

Using isospin symmetry (i.e., the invariance under the interchanges p-n 
and u - d), we have 

up(x) = dn(X) = u(x) 

dp(x) = Un(x) = d(x) 

sp(x) = Sn(x) = s(x). (7.72) 
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Thus (7.68) and (7.69) may be written 

Ff'(x) = J;,(x) = i(u + u) + + 3) + + s) 

= fn(x) = i(d + 3) + + u) + + s) 

The ratio of the proton and neutron structure function is then 

Ft'(x) 4(u +ii)+ (d + 3) + (s + s) 
A 0 (x) = (u + ii)+ 4(d + 3) + (s + s) 

211 

(7.73) 

(7.74) 

(7.75) 

Since all q(x)s are positive, we must have the bounds (Nachtmann 1972) 

! < An(x) < 4 
4 - F/(x)-

which is in fact consistent with experimental data. 

(7.76) 

Furthermore, our discussion of the quark-parton model at the beginning 
of this section also suggests (e.g., Kuti and Weisskopf 1971; Landshoff and 
Polkinghorne 1971) that the quark distribution function can be usefully 
decomposed into valence quarks and sea quarks 

q(x) = qv(x) + q,(x). (7.77) 

The presence of the valence quarks is already indicated by the original quark 
model. Thus protons and neutrons have valence quarks of (uud) and (udd), 
respectively. The sea quarks correspond to those quark pairs produced by the 
gluons: they are symmetric with respect to the flavour SU(3) group and, as 
indicated by our discussion above, they should be concentrated in the small-x 
region. For the proton target we have 

Uv(x) = 2dv(x) 

Sv(x) = iiv(x) = 3v(x) = Sv(x) = 0 

u,(x) = ii,(x) = d,(x) = 3,(x) = s,(x) = s,(x) = G(x). 

Thus eqns (7.73) and (7.74) may be written as 

Ff'(x) = tuv(x) + 1G(x) 

A 0 (x) = iuv(x) + 1G(x). 

Their difference directly measures the valence quark distribution 

F/(x) - = iuv(x) 

(7.78) 

(7.79) 

(7.80) 

which should have a peak approximately around x = 1/3, as suggested by 
Fig. 7.5. 

Also, the experimental observations 

p;/(x)/FT0 (x)---+ { ! asx-+O 
as x---+ 1, 

(7 .81) 

supports the expectation that G(x) is important only in the x---+ 0 region, and 
the feature that the valence distributions dominate in the x ---+ 1 region with 
u0 (x) » 
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For the neutrino-nucleon structure functions, corresponding to eqns 
(7.73) and (7.74), we will merely list the basic results 

F'((x) = 2d(x) F[°(x) = 2u(x) 

F'/(x) = 2fi(x) £R0 (x) = 2o(x) 

F'SP(x) = 0 F'S0(x) = 0 

ptP(x) = 2u(x) pt0(x) = 2d(x) 

F/(x) = 2o(x) fii.0 (x) = 2fi(x) 

= 0 Fs0 (x) = 0. (7.82) 

The functions on the right-hand sides are distribution functions for proton 
targets and the factors of 2 reflect the presence of both vector and axial­
vector parts in the weak currents. We can then isolate the strange-quark 
distribution as follows. Using F2 = x(FL +FR+ F8) and (7.82), we have 

+ = 2x(u + fi + d + o). (7.83) 

From F2 = xFr and eqns (7.73) and (7.74), we have 

F/(x) + Fi0 (x) = x[5(u + fi + d + o)/9 + 2(s + s)/9]. (7.84) 

They imply that 

5 2x _ 
Fj(x) + Fi0(x) - ls [Fj(x) + I'i0 (x)] = "9 [s(x) + s(x)]. (7.85) 

The experimental data are consistent with a vanishing right-hand side, except 
for the small x ( <0.2) region. In other words the strange quark and 
antiquark content of the nucleon is very small. Furthermore, if we assume 
that the sea-quark distributions are SU(3) symmetric, the fi(x) and o(x) 
contents should also be small. 

We next consider a number of sum rules; their validity strongly supports 
the quark-parton picture we have presented. 

The Adler sum rule 

This sum rule has already been derived in our discussion of current algebra. 
Eqn (5.109) takes on the following (Be = 0) form in the scaling limit 
- q2 --+ oo, v --+ oo, with x fixed 

1 

f dx -x [Fi(x) - Fj(x)] = 2. (7.86) 

0 

We can obtain the same result directly from the quark-parton model. Since 

(7.87) 

the combination of structure functions appearing on the left-hand side of 
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(7.86) can be expressed in terms of the quark distribution function through 
(7.82) 

F/(x) - Fi(x) = 2x{[u(x) - ii(x)] - [d(x) - o(x)]} (7.88) 

= 4xT3(X) 

where T3 is the third component of the isospin density. Using the fact that 
proton has isospin-1/2 (eqn (7. 70)) we immediately recover (7.86) 

1 1 

f dx - f x [F'/(x) - Fi'(x)] = 4 T3(x) dx = 2. (7.89) 

0 0 

Gross-Llewellyn Smith sum rule 

The sum of the scaling functions F3 =FR - Ft 

F':f(x) + Fj(x) = -2[u(x) + d(x) - ii(x) - o(x)J (7.90) 

can be written as a combination of baryon number and strangeness densities 

F':f(x) + F;0 (x) = - 6[B(x) + iS(x)] (7.91) 

with 

B(x) = i[u(x) + d(x) + s(x) - ii(x) - o(x) -s(x)] (7.92) 

S(x) = -[s(x)- s(x)]. (7.93) 

Since the proton has baryon number 1 and zero strangeness, we obtain the 
Gross-Llewellyn Smith (1969) sum rule 

1 f dx[F':f(x) + Fj(x)] = -6. (7.94) 

0 

The momentum sum rule 

If the quarks were to carry all the momentum of the target nucleon, we would 
have the sum rule 

1 f [u(x) + d(x) + s(x) + ii(x) + o(x) + s(x)]x dx = 1. (7.95) 

0 

Since the x 0 region is not important to this integral, we can drop all the 
sea-quark contributions 

1 f [u(x) + d(x)] x dx = I. (7.96) 

0 
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The quark density functions on the left-hand side can be expressed directly in 
terms of the measurable structure functions (7.84) and we obtain 

1 

J [F"!(x) + dx = (7.97) 

0 

Similarly, 

1 

J + dx = 2. (7.98) 

0 

Experimentally, however, we find the integrals in (7.97) to be approximately 
0.28. This indicates that almost 50 per cent of the nucleon momentum is 
carried by some constituents which do not interact with the electromagnetic 
or the weak currents (Llewellyn Smith 1974). This again is in accord with the 
expectations of the QCD-parton model where one identifies these neutral 
constituents with the gluons. 

Other applications of the quark-parton model 

For the remaining part of this section we shall briefly touch upon two 
other topics of the quark-parton model-its applications in the description 
of high energy e + e - annihilations and the Drell-Yan process of lepton pair 
production in hadron-hadron collisions. We will follow the presentation of 
(Close 1979) and (Aitchson and Hey 1982). 

e + e - annihilation 

(1) e+e- --+ µ+µ-. We shall use e+e- annihilation through the one-photon 
intermediate state into a µ + µ - pair (Fig. 7.7(a)) as the 'reference reaction' in 

(a) (b) 

FIG. 7.7. 

describing annihilations into other final states. The total cross section for 
e+e---+ µ+µ-may be calculated in QED as 

4mx2 ( 4m2 ) 112 
a(e+e---+ µ+µ-) = 3q4 1 - q/ + q2 ) (7.99) 

where q is the intermediate photon momentum 

q2 = (p + + p - )2 = s ;:::: 0. (7.100) 
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For high energies s » we obtain 

+ + 4na2 
a( e e - -+ µ µ -) = --. 

3s 
(7.101) 

The fact that the cross-section falls as s- 1 is typical for e + e - annihilation 
into point-like particles. 

(2) e+e- -+pp. The amplitude for this process (Fig. 7.7(b)) is related to that 
of ep elastic scattering by crossing symmetry. We calculate the cross-section 
to be 

4na2 
( 4M 2 

)
112 

a(e+e- -+pp)= 3q4 1 -qi- + 

(7.102) 

where GE(q2 ) and GM(q2 ) are the electric and magnetic form factors, 
respectively (see (7.21) with q2 ;;::: 0. For large q2 , Giq2 ) oc GM(q2)"' q- 4 . 

Thus for high energies s » the cross-section a(e+e--+ pp)"' s- 5 falls 
off rapidly as is typical for annihilations into any given final state of hadrons 
with structure. 

(3) e+e- -+hadrons. We now consider the inclusive process of e+e­
annihilation into all possible hadronic final states. In the quark-parton 
model we expect this to take place via e + e - -+ qA_; and the quarks then 
fragment into free hadrons (Fig. 7.8(a)). The subscript i ranges over all 
possible (flavour and colour) labels of the produced quarks. Thus 

(7.103) 

(a) 
(b) 

FIG. 7.8. 

The ratio to the reference reaction e + e - -+ µ + µ - cross-section is then 

R = a(e+e- -+hadrons) 
a( e + e - -+ µ + µ - ) ; ' 

(7.104) 

so the ratio R measures the sum of squared quark charges (Cabibbo, Parisi, 
and Testa 1970). Thus for energies below the charm threshold we sum over 
three colours of the u, d, and s quarks 

R = + ! + !) = 2 for .)s < 2m, (7.105) 
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and above charm and bottom thresholds 

R = 2 + + = 1l for .js > 2mb. (7.106) 

The data seems to support this scaling behaviour with three colours. (See 
Fig. 7.9 taken from a recent review by Feist (1981).) 

0 .;; 

6 

4 
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FIG. 7.9. Compilation of R-values from different e+e- experiments. Only statistical errors are 
shown. The quark-parton model prediction (eqn (7.106)) is also indicated. 

One should also mention that e+e- annihilations have many other 
detailed features that check well with the quark-parton model description. 
For example, one finds Bjorken scaling in the differential cross-section for 
the inclusive reaction e+e- -+ hX (i.e., one of the final hadrons is detected) 
which is related by crossing to the inelastic ep -+ eX scattering. Also, there is 
strong experimental evidence that the e + e - annihilation final-state hadrons 
form jets, i.e., they tend to flow in preferred cones of small width. For 4 GeV 
< .js < 7.5 GeV one finds two-jet events (Hanson et al. 1975; Fig. 7.8(b)) 
with the jet axes having the angular distribution ,..., (1 + cos2 0), where (}is the 
polar angle of the jet axis with respect to the e + e - beam. Such a distribution 
is characteristic of an e + e- final state of spin-1/2 point-like particles. This is 
clearly in agreement with the expectation of the quark-parton model with its 
implicit assumption of transverse momentum cut-off. Finally at even higher 
energies ( > 7. 5 Ge V) corresponding to the gluon bremsstrahlung as expected 
in the QCD-parton model, one begins to find evidence for three-jet events 
(Brandelik et al. 1979; Barber et al. 1979; Berger et al. 1979). 

The Drell-Yan process 

As we shall see in the next section, it is possible to provide a more formal 
basis for parton-model descriptions of the deep inelastic IN scattering and 
high-energy e + e - annihilation in terms of the light-cone and short-distance 
operator product expansions. However this cannot be done for other high-
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energy and large-momentum transfer processes. The parton formulation has 
the advantage of suggesting parton descriptions for which direct formal 
operator argument may not be possible. The most important example is the 
Drell-Yan process (1971) (Fig. 7.lO(a)) 

(7.107) 

p µ 

p 

(a) (b) 

FIG. 7.10. 

where a µ + µ - pair is produced in hadron-hadron (usually proton-proton) 
collisions along with the unobserved hadron state X. The parton model leads 
us to expect that in the limit of larges= (Pi + p2 ) 2 --+ oo and large virtual 
photon mass q2 --+ oo, with the ratio q2/s fixed, the reaction can be assumed 
to proceed via the annihilation of a parton and antiparton, each coming from 
one of the initial hadrons, into a massive virtual photon which then decays 
into the observed µ +µ- pair (Fig. 7.lO(b)). In the centre-of-mass system, 
neglecting all masses, we have 

Pi= (p, 0, 0,p), Pi= (p, 0, 0, -p) 

and 
(7.108) 

Also neglecting the parton masses and transverse momenta, the parton 
momenta have the form 

ki = XiPi, ki = X2Pi 

leading to the photon momentum 

qµ = ((Xi + X2)p, 0, 0, (Xi - X2)p). 

Thus we have 

(7.109) 

(7.110) 

(7.111) 

The probabilities of a quark and antiquark pair of the ith type with 
momentum fractions Xi and x 2 in the initial protons are given by 

(7.112) 

This is to be multiplied by the cross-section for the basic parton process of 
qiqi--+ µ+µ-of 

(7.113) 
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to obtain the cross-section for the Drell-Yan process 

(7.114) 

Thus the parton model will have q4 (do/dq2) to scale as a function of q2/s. The 
experimental support for this prediction is quite convincing. Note that the 
same quark distribution functions are measured in the deep inelastic lepton 
proton scatterings, so one can also make a prediction of the absolute 
magnitude. 

7.3 Free-field light-cone singularities and Bjorken scaling 

In this section we study Bjorken scaling in the framework offield theory, thus 
giving some of the parton model results a more formal foundation. For a 
general introduction see, for example, Gross (1976) and Ellis (1977). 

The deep inelastic limit and the light cone 

First we will demonstrate that the deep inelastic lN processes of §7.1, with 
-q2 , v-+ oo, and -q2/2Mv fixed, probe the light-cone behaviour of the 
current commutator. We recall (7.12) that the hadronic tensor in the 
differential cross-section can be expressed as a current commutator 

( ) 1 "Jd4x iq·x( I[ ( W,,,p,q 2n e p,a J,,x),J,(O)]jp,a). (7.115) 

The scalar product in the exponential may be written 

(qo + q3) (xo - X3) (qo - q3) (xo + X3) 
q. X = ..j2 ..j2 + ..j2 ..j2 -qT. XT, (7.116) 

where qT = (qi, q2) and xT = (xi, x2). In the rest frame of the 
target nucleon, the momenta are given by 

P,, = (M, 0, 0, 0,), q,, = (v, 0, 0, (v2 - q2)t). (7.117) 

In the deep inelastic limit ( - q2, v -+ oo with - q2 /2Mv fixed) we observe that 

q0 +q3 -2v and q0 -'q3 -q2/2v. (7.118) 

We expect that the dominant contribution to the integral (7.115) comes from 
regions with less rapid oscillations, i.e., q · x = 0(1); hence 

x 0 - x3 "' 0(1/v) and x 0 + x3 "' 0(1/xM) (7.119) 
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or 

2 2 ( 1 ) Xo - X3,...., 0 -q2 . (7.120) 

Thus x2 = - - xf - ,...., 0(1/- q2 ) which vanishes as 
-q2 __.. oo. In other words, in the scaling limit we are probing the structure of 
the current product near the light cone. This reduces the study of Bjorken 
scaling in field theory to the study of the light-cone behaviour of the current 
product. 

Free-field light-cone singularities 

As it turns out, Bjorken scaling corresponds to the statement that the current 
commutator has the light-cone behaviour of a free-field theory (for a review 
see Frishman 1974). To pave the way, we shall first study the free-field light­
cone behaviour of some simpler products. 

(1) Products of fields. In free field theories, the products of fields such as 
commutators and propagators are singular on the light cone (x2 0) and the 
leading singularities are independent of the masses. Consider, for example, 
the propagator of the scalar field given by 

I d4k -ik·x 

(OIT(cf>(x)cf>(O))IO) = iAF(x) = i (211:)4 k2 m2 +is· (7.121) 

The Fourier transform in (7.121) can be calculated to give (see, for example, 
Bogoliubov and Shirkov 1959) 

-1 m 
AF(x) = 4n<5(x2) + Sn..jx2 9(x2)[J 1(m..jx2)- iN1(m..jx2)] 

im 2 2 
4 2 / 2 9(-x )K1(m..j-x) 

1t ....; -x 
(7.122) 

where Jn, Nn, and Kn are Bessel functions. For x2 0, we have 

-1 i 1 im2 m ..jx2 m2 

AF(x) = 4n <5(x2) + 411:2 x2 - 811:2 In -2- - 1611:2 O(x2) 

i 1 2 2) 
= -4 2 ( 2 . ) + O(m x . 

1t x -IS 
(7.123) 

The leading singularity is independent of the masses as the x2 0 region 
corresponds to the large k2 in the momentum space. Thus we can also 
calculate this mass-independent singularity directly from a simpler object, 
the massless propagator 

I d4k e-ik·x 

AF(x) = (211:)4 k1 + is 

(7.124) 

-oc 
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The k0 -integration can be performed by the standard contour method 
00 

o = __ [O(x ) e-ilklx. + 0(-x ) eilklx•] I dk e-ikoXo -i7t 

- k2 + ie lkl 0 0 • 
(7.125) 

-oo 

We then have 

00 

L\F(x) = - - 1-f dK(e"" - e-"")[O(x0 ) e-iKxo + 0( -x0 ) eiKx•J (7.126) 
8n2r 

0 

where K = lkl and r = lxl. Using the identity 

we obtain 

00 00 

f e±iat d. = I e±i(a±i•)t d. = + 1 • 
i(a ± i8) 

0 0 

AF(x) = - O(xo) . + . -1 [ ( 1 1 ) 
8n2r r - x 0 + 18 r + x 0 - 18 

+ O(-x0 ) . + . ( 1 1 )] 
r + x 0 + 18 r - x 0 - rn 

-i [ O(x0 ) O(-x0 ) J 
=-2 2 2 . + 2 2 . 4n r - x0 + rnx0 r - x0 - rnx0 

(7.127) 

(7.128) 

which agrees with (7.123). One can do a similar calculation of the leading 
singularity for the commutator of two scalar fields 

[<f>(x), <f>(O)] = iL\(x) = f d4k e-ik·x8(k0 ) fJ(k2 - m2 ) 

with the result 

for x2 0. 

Thus, we have the singular-function identity 

i f d4k e-ik·x8(k0 ) fJ(k2 ) = (2n)28(x0 ) fJ(x2). 

(7.129) 

(7.130) 

(7.131) 

The result (7 .130) can be viewed in another way: the light-cone singularity of 
the commutator A(x) and that of the propagator function AF(x) are directly 
related 

L\(x) = 28(x0 ) Im(iAF{x)). (7.132) 
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This reflects the singular-function identity 

1 1 
2 . = -2nie{x0 ) <5(x2) 

-x2 + ie -x - rn 
(7.133) 

which is a special case of the general identity 

( 21 . )n -( 21 . )n = ( e(xo) b(n-l)(x1). 
-x +16 -x -16 n- . 

(7.134) 

In the following calculations we shall obtain the commutator singularities 
through those of the propagators by making the replacement 

(-x1 - ie)-"--+ 2nie(x0 ) <)Cn-ll(x2)/(n - l)! (7.135) 

For the fermions, the results are summarized as 

{l/fa(x), fp(Y)} = iSap(x - y), 

Sap(x) = (iy · o + m)ap A(x), 

<OIT(l/Ja(x)fp(y))IO) = - y), 

= (iy. a+ m)ap AF(x). 

For x2 0, we have 

Sap(x) (iy · o)ap [ 2
1n e(x0 ) <5(x2) J 

(iy. o)ap [ (x2 ie) l 

(7.136) 

(7.137) 

(7.138) 

(2) Product of scalar currents. We can extend this analysis to the case of 
composite operators. Consider for example the scalar current 

J(x) = :(p2(x):. (7.139) 

Note that the effect of the normal ordering is to remove the singularities 
which occur in the product </J(x + 0</J(x - O as (µ --+ 0. The singularities in 
the product T(J(x)J(O)) can be worked out by using Wick's theorem 

T(J(x)J(O)) = T(:</J2(x)::¢2(0):) 

= 2[ <OI T(</J(x)</J(O))IO) ] 2 

+ 4<01 T(</J(x)</J(O))IO): </J(x)</J(O): 

+ :¢2(x)¢2(0): 

= -2[AF(x, m)] 2 + 4iAF(x, m2):¢(x)</J(O): 

+ : ¢2(x)¢2(0):. 

Hence for x2 0, we get 

1 
T(J(x)J(O)) 8 4( z . )2 n x -16 

+ : ¢2(x)</J2(0):. 

: </J(x)</J(O): 

n1(x2 - ie) 

(7.140) 

(7.141) 
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If we take (7.141) between two arbitrary states IA) and IB), 

(A I B) (Al:<f>(x)cf>(O):IB) 
(AIT(J(x)J(O))IB) 8 4 ( 2 . )2 

7t x -lB 

+ (Al:</>2(x)c/>2(0):1B) (7.142) 

which corresponds to the diagrams in Fig. 7 .11. 

x 0 

A B A B 

(a) (b) (c) 

FIG. 7.1 I. Diagrams that are singular on the light cone. Free massless propagators are 
represented by light straight lines: (a) has two; (b) has one; (c) has none. Note that only (a) will 

contribute if IA> = IB) = 10). 

To calculate the singularities of the commutator [J(x), J(O)] we only need 
use the identity given in (7.135). 

Free-field singularities and scaling 

Now we are ready to demonstrate Bjorken scaling in free-field theory. 
Consider the electromagnetic current given by 

J,,(x) = :ifi(x)y,,Qt/J(x): (7.143) 

where Q is the charge operator. Following the same procedure used in the 
above case of scalar current densities, instead of the commutator 
[J,,(x), J.(O)], we will first calculate the time-ordered product by using 
Wick's theorem 

T(J,,(x)J.(O)) = T(: l/i(x)y,,Qt/J(x):: l/i(O)y.Qt/J(O):) 

= tr[iSF(-x)y,,iSF(x)y.Q2] 

+ : l{i(x)y ,,QiSF(x)y.Qt/J(O): 

+ :l/i(O)y.QiSF(-x)y,,Qt/J(x): 

+ : l/i(x)y,,Qt/J(x)l{i(O)y.Qt/J(O): 

where SF(x) was defined in (7.136). Using (7.138) and the identity 

(7.144) 

(7.145) 
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where Sµv;.p = 9µv9;.p + 9µp9v;. - 9µ;.9vp• we can write (7.144) in the limit 

T(J (x)J.(O)) Q2) (X29µv -
µ n4(x2 - rn)4 

where 

If we write 

and 

ix" { /J /J + 2 2( 2 . )2 Sµavp[V (x, 0) - V (0, x)] 
7t x -18 

+ iBµavp[Af1(x, 0) - Af1(0, x)]} 

+ :t/f(x)yµQt/!(x)t/i(O)y.Qtf!(O): (7.146) 

Vf1(x, y) = :t/i(x)yf1Q2tf!(y): 

Af1(x, y) = :t/i(x)yf1y 5Q2tf!(y):. 

X29µv - 2XµXv = 9µv - __!_ iJ iJ 
(x2 - is)4 3 (x2 - is)3 12 µ • (x2 - is)2 

(7.147) 

(7.148) 

(7.149) 

(7.150) 

and use the substitution (7.135), we obtain the leading light-cone singularities 
of the current commutator 

+ {Sµav/J[Vf1(x, 0) - Vf1(0, x)] 

. /J /J } " [b(x2 )s(x0)] + IBµav/J[A (x, 0) - A (0, x)] a 2n 

+ : t/i(x)y µQt/!(x)t/i(O)y.Qtf!(O):. (7.151) 

We can then translate this explicit form of the current commutator into 
statements on the cross-sections for e + e - annihilation and for inelastic lN 
scatterings. 

(1) e+e- annihilation. Following the procedure of §7.1 it is straight­
forward to show that the total hadronic cross-section for e+e- annihilation 
can be written as a current commutator 

(7.152) 

The most singular light-cone term comes from the first one on the right-hand 
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side of (7 .151 ). (Thus this actually probes the short distance behaviour of the 
current commutator.) 

8n2ix2i tr Q2 I . u(e+e- 3n 3(q2 ) 2 d4x e'q·xa b"(x2 )e(x0 ) 

+ t a2 [b'(x2)e(x0)]}. (7.153) 

Using the identity in (7.131), we get 

(7.154) 

or 

(7.155) 

This justifies the results of the parton model (7.104) if the leading short 
distance singularity is that of the free-field theory. We next consider the 
genuine light-cone process of deep inelastic lepton-hadron scattering. 

(2) Lepton-hadron scattering. For deep inelastic IN scattering (7 .115), the 
first term on the right-hand side of (7.151) will not contribute since it is a c­
number; thus the nontrivial leading singular term will be the second one 

[ 1µ(I). 1v( -I) J -I}- :f( J 
+ -I} 
_ :f (-I) (I}]} aa[a(x21:(xo)J 

(7.156) 

We can expand the bilocal operator 

[ xv' -+ 1 xv' xv2 -+ -+ J 
x I - 2 av, + 2 ! 2 2 av, av2 - . . . 

(7.157) 
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to get 

(7.158) 

where 

... µ.(0) = f(O) 0µ 1 0µ 2 ... oµ;·yPQ 2t/l(O) (7.159a) 

(7.159b) 

To calculate the structure functions, we write 

l "< 1/n(n+ 1) (0)1 ) A(n+ 1) /J 2L.. P<lC!pµ,µ2 ... µ. pa= PPl'IPµ 200 ·Pµ.+traceterms 
" 

(7.160) 

where A<"+ ll some constant and where the trace terms, which contain one 
or more factors of gll;ll;' will produce powers of x2 when contracted with 
xll 1xll2 ..• xi'• in (7.158) and are less important near the light cone x2 0. Also 
the @'<n+ l) term will not contribute to the spin-averaged structure functions 
due to the antisymmetry property of eµavfJ. We then have for (7.115) 

Wµv(p, q) _1_ fd4x e•q I (x ·p)" A(n+ 1) 

2M 2n oddn 2 n. 

(7.161) 

Define 

L x P = e'' oo ( • )" A(n+ 1) f 
odd 11 2 n' 

(7.162) 

then 

Wµv(p, q) f d2; e'' q f e'' 

a /J b(x2 )b(xo) 
X Sµavp(q + p 2n (7.163) 
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(7.164) 

we have 

Wµv f W i5(q2 + 

X (9wi9v(J + 9µp9va. - 9µv9a.p)(q + 

= f + q2/2Mv)(-Mvgµv + + ... ) 

= f(x)[- 9µv + ::._ PµPv + J 2M v M 2 ... 
(7.165) 

for x = -q2/2Mv. Thus we recover the parton-model results of eqns (7.56) 
and (7.57) 

MW1 F1(x) = if(x) 

v W2 F2(x) = xf (x). (7.166) 

This implies that the assumption of canonical free-field light-cone structure is 
equivalent to that of the parton model. 
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8 Gauge symmetries 

THE symmetries we have discussed up to this point are global symmetries. The 
parameters Ba of the symmetry transformation in eqn (5.10) are independent 
of space-time; thus fields at different space-time points are all supposed to 
transform by the same amount. We now consider theories where the 
symmetry transformations are space-time dependent, i.e., Ba = ea(x). They 
are called local symmetries or gauge symmetries (Wey! 1929). We shall see 
that such symmetries may be used to generate dynamics, the gauge 
interactions. The prototype gauge theory is quantum electrodynamics. It is 
now believed that all fundamental interactions are described by some form of 
gauge theory. In the first section, after an introductory discussion of QED 
with its Abelian U(l) local symmetry, we study the fundamentally richer 
systems ofnon-Abelian gauge theories, the Yang-Mills theories (1954). After 
an elementary geometric look at gauge invariance, we present in the last 
section the subject of spontaneous symmetry breakdown in a gauge theory. 

8.1 Local symmetries in field theory 

AbeJian gauge theory 

As we have already stated, QED is an Abelian gauge theory. It is instructive 
to show that the theory can actually be 'derived' by requiring the Dirac free 
electron theory to be gauge invariant and renormalizable. 

Consider the Lagrangian for a free-electron field l/J(x) 

2 0 = r/f(x)(iyµ - m)l/J(x). (8.1) 

Clearly it has a global U(l) symmetry corresponding to the invariance of the 
theory under a phase change 

l/J(x) --> l/J'(x) = e-'"l/J(x) 

r/f(x) --> r/f'(x) = ei"r//(x). (8.2) 

We are going to turn this symmetry into a local symmetry, i.e., 'to gauge the 
symmetry' by replacing a with a(x). Thus we are going to construct a theory 
which will be invariant under a space-time dependent phase change, 

l/J(x)--> l/J'(x) = e-ia(x)l/J(x). 

r/f(x) --> r/f'(x) = eia(x)r/f(x). (8.3) 

The derivative term will now have a rather complicated transformation 

r/f(x) oµl/J(x)--> t/l'(x)oµl/J'(x) = tf/(x) eia(x) oµ(e-ia(x)l/J(x)) 

= r/l(x) oµl/J(x) - ir/f(x) oµa(x)l/J(x). (8.4) 
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The second term spoils the invariance. We need to form a gauge-covariant 
derivative Dµ, to replace aµ, and Dµt/J(x) will have the simple transformation 

(8.5) 

so that the combination if/(x)Dµt/J(x) is gauge invariant. In other words, the 
action of the covariant derivative on the field will not change the 
transformation property of the field. This can be realized if we enlarge the 
theory with a new vector field Aµ(x ), the gauge field, and form the covariant 
derivative as 

(8.6) 

where e is a free parameter which we eventually will identify with the electric 
charge. Then the transformation law for the covariant derivative (8.5) will 
be satisfied if the gauge field Aµ(x) has the transformation property 

1 
Aµ(x) ---> = Aµ(x) + - aµa(x) 

e 

From (8.1) we now have 

(8.7) 

(8.8) 

To make the gauge field a true dynamical variable we need to add a term to 
the Lagrangian involving its derivatives. The simplest gauge-invariant term 
of dimension-four or less (with a conventional normalization) is 

(8.9) 

where 

(8.10) 

By direct substitution of (8. 7) we see that Fµv is in fact gauge invariant by 
itself. It is useful to see this in another way-the antisymmetric tensor Fµv is 
related to the covariant derivative as 

(DµDv - DvDµ)t/J = ieFµvt/J. 

From (8.5) is it easy to see that 

or 

or 

Combining (8.8) and (8.9) we arrive at the QED Lagrangian 

2 = ifliyµ(aµ + ieAµ)t/1 - mif/t/J - !Fµvpv. 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 
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The following features of (8.15) should be noted 

(1) The photon is massless because a AµAµ term is not gauge invariant. 
(2) The minimal coupling of photon to the electron is contained in the 

covariant derivative Dµl/I which can be constructed from the transformation 
property of the electron field. In other words, the coupling of the photon to 
any matter field is determined by its transformation property under the 
symmetry group. This is usually referred to as universality. Other (higher­
dimensional) gauge-invariant couplings such as if/(Jµvl/!Pv are ruled out by 
the requirement of renormalizability. 

(3) The Lagrangian of (8.15) does not have a gauge-field self-coupling, 
because the photon does not carry a charge (or U(l) quantum number). 
Thus, without a matter field, the theory is a free-field theory. 

We shall see that the first two features will still hold for non-Abelian 
gauge theories but the last will not. The presence of gauge-field self­
coupling will make such non-Abelian theories highly nonlinear and will give 
rise to a number of fundamentally distinctive properties. 

Non-Abelian gauge symmetry-Yang-Mills fields 

In 1954 Yang and Mills extended the gauge principle to non-Abelian 
symmetry. (For subsequent development of the Yang-Mills theories see 
Utiyama 1956; Gell-Mann and Glashow 1961.) We shall illustrate the 
construction for the simplest case of isospin SU(2). 

Let the fermion field be an isospin doublet, 

(8.16) 

Under an SU(2) transformation, we have 

{ -it·O} l/J(x) -+ l/J'(x) = exp - 2 - l/J(x) (8.17) 

where t = ( r 1 , r 2 , r 3) are the usual Pauli matrices, satisfying 

i,J,k=l,2,3 (8.18) 

and 9 = (81 , 82 , 83) are the SU(2) transformation parameters. The free 
Lagrangian 

2 0 = if/(x)(iyµ oµ - m)l/f(x) (8.19) 

is invariant under the global SU(2) symmetry with { 8;} being space-time 
independent. However under the local symmetry transformation 

l/J(x) -+ l/J'(x) = U(8)l/f(x) (8.20) 

with 

{ -it·O(x)} 
U(8) =exp 2 , (8.21) 
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the free Lagrangian 2 0 is no longer invariant because the derivative term 
transforms as 

if/(x) 8µl/l(x)-+ ifi'(x) aµl/l'(x) = if/(x) 8µl/l(x) 

+ if/(x)U- 1(0)[8µU(O)]l/J(x). (8.22) 

To construct a gauge-invariant Lagrangian we follow a procedure similar to 
that of the Abelian case. First we introduce the vector gauge fields 
i = 1, 2, 3 (one for each group generator) to form the gauge-covariant 
derivative through the minimal coupling 

Dµl/I =(aµ - ig t ·2Aµ )l/I (8.23) 

where g is the coupling constant in analogy to e in (8.6). We demand that 
Dµl/I have the same transformation property as l/J itself, i.e. 

Dµl/1-+ (Dµl/I)' = U(O)Dµl/I· (8.24) 

This implies that 

( t · A' ) ( t · A ) aµ - igT (U(O)l/J) = u(O) aµ - igT lfi. (8.25) 

or 

[ 
t ·A' J t ·A 

aµu(e) - igT u(e) lfJ = -igU(O)Tl/I 

or 

= U(O) t·Aµ U(O)]U- 1(0) (8.26) 
2 2 g µ 

which defines the transformation law for the gauge fields. For an in­
finitesimal change O(x) « l, 

U(O) l - it. (8.27) 

or 

(8.28) 

The second term is clearly the transformation for a triplet (the adjoint) 
representation under SU(2). Thus the carry charges, in contrast to the 
Abelian gauge field. 
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To obtain the antisymmetric second-rank tensor of the gauge fields we can 
follow (8.11) and study the combination 

(8.29) 

with 

or 

(8.31) 

From the fact that Dµt/I has the same gauge transformation property as t/J, we 
see that 

[(DµDv - DvDµ)t/f ]' = U(e)(DµDv - DvDµ)t/I. (8.32) 

Substituting the definition (8.29) of on both sides of (8.32), we have 

t. = U(e)t. Fµvt/J 

or 

t · = U(e)(t · Fµv)u- 1(e). 

For the infinitesimal transformation ei « 1, this translates into 

Fi' = Fi + £iikei Fk 
µv µv µv· 

(8.33) 

(8.34) 

Unlike the Abelian case, transform nontrivially, like a triplet under 
SU(2). However the product 

tr{ ( t · F µv)( t · Fllv)} OC 

is gauge invariant. 
We can summarize the above discussion by displaying the complete gauge­

invariant Lagrangian which describes the interaction between gauge fields 
and the SU(2) doublet fields 

(8.35) 

where 

(8.36) 

Dµt/I =(al' - ig t ·:I' )t/J. (8.37) 

The SU(2) gauge transformations of fields are 

t/J(x) --+ t/J'(x) = exp{- it. t/J(x) = U(e)tjJ(x) (8.38) 

t. Al' --+ t. = u(e) (t. Aµ)u-i(e) - u(e)Ju-i(e) 
2 2 2 g I' 

(8.39) 
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with infinitesimal forms 

,/, ,,,, ,/, . t ·9 ,/, '!'-+'!' =.,,-1-.,, 
2 

(8.40) 

(8.41) 

Generalization to higher groups and arbitrary representation for i/l is 
straightforward. Let G be some simple Lie group with generators satisfying 
the algebra 

(8.42) 

where the cabcs are the totally antisymmetric structure constants. i/l is 
supposed to belong to some representation with representation matrices Ta. 
Thus 

[ra, Tb] = icabcrc_ 

The covariant derivative is then 

Dµi/l = (oµ - igTaA:)ifl 

and the second-rank tensor for gauge fields is 

pa = o Aa - o Aa + gCabc Ab Ac µv µ v v µ µ v 

(T · F)µv = oµ(T ·A.) - o.(T ·Aµ) - ig[T ·Aµ, T ·A.] 

ff' = -iF:.Fa.µv + r/i(i'/Dµ - m)ifl. 

(8.43) 

(8.44) 

(8.45) 

(8.46) 

(8.47) 

The Lagrangian is then invariant under the transformation of the group G 

ifl(x) -+ i/l'(x) = U(T · O(x))ifl(x) = U(Ox)ifl(x) 

T · Aµ(x) -+ T · = U(Ox)T ·Aµ u- 1(0x) 

i -1 - - [oµU(Ox)]U (Ox) 
g 

with the infinitesimal variations taking on the forms 

ifl(x) -+ i/l'(x) = ifl(x) - iTaea(x)ifl(x) 

1 
A:(x)-+ A:'(x) = A:(x) + - g oµOa(x). 

(8.48) 

(8.49) 

(8.50) 

(8.51) 

The pure Yang-Mills term, -iF:.paµ•, contains factors that are trilinear 
and quadrilinear in A:, 

(8.52) 

which correspond to self-couplings of non-Abelian gauge fields. They are 
brought about by the nonlinear terms in F:. (8.45), because the gauge fields 
A: themselves transform nontrivially, like the generators, as members of the 
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adjoint representation. While this is fundamentally different from (rather, 
richer than) in the Abelian case, the properties of universality and 
masslessness of the gauge fields remain essentially the same. We note that the 
number of massless gauge fields is equal to the number of generators of gauge 
symmetry. Concerning universality we should make two comments about the 
coupling strength. 

(I) In the case of Abelian gauge theories there is no restriction on the 
coupling strength between the gauge field Aµ and other fields. Thus the 
electron carries charge e and another particle can in principle carry any 
charge A.e with an arbitrary A. (for instance A. = n). In a non-Abelian gauge 
theory such as the SU(2) case considered above with a doublet tfl, the 
situation is more restrictive. If one tries, for example, to couple the gauge 
field to an extra doublet </> with a coupling A.g, the commutation relation 
(8.18) insuring gauge invariance gets rescaled and implies A. 2 = A. or A. = 1. 
Basically in non-Abelian theories the normalization of the generators are 
fixed by the non-linear relation of commutator, hence g cannot be scaled 
arbitrarily. 

(2) Can there be different gauge couplings associated with different gauge 
fields? If the group is simple, as just stated, there can be only one coupling 
constant. However ifthe group is a product ofsimple groups such as SU(2) 
x SU(3) where each set of generators closes under commutation and 
commutes with other sets, there will be an independent coupling for each factor 
group. 

8.2 Gauge invariance and geometry 

Einstein's successful formulation of general relativity in 1916 unveiled a 
profound connection between gravitation and geometry. This discovery 
inspired Wey! (1919, 1921) to incorporate electromagnetism into geometry 
through the concept of a space-time dependent (local) scale transformation. 
Namely, at a neighbouring point, a distance dxµ away, the scale is changed 
(from one) to (I + sµ dxll), and thus a space-time dependent function is 
changed according to 

f(x)-+ (f + (oµf) dxll)(l + Sµ dxll) + [(oµ + Sµ)f] dxµ. (8.53) 

Wey! tried to derive electromagnetism by requiring invariance under this 
local scale transformation and by identifying the scale factor with the vector 
potential: Sµ +--+Aµ. His initial attempt was not successful. By 1925 modern 
quantum mechanics has emerged. Here a key concept was to identify the 
momentum with the operator (-iiJµ), and the canonical momentum in the 
presence of electromagnetic field with ( -ioµ + eAµ)· It was then realized that 
the correct identification of Weyl's scale factor should be Sµ +--+ iAµ, and that 
what would be required would be invariance of the theory under space-time 
dependent phase transformation, see eqn (8.3). However when Weyl (1929) 
finally worked out this approach he retained his original terminology of 
'gauge invariance', the invariance under a change of the scale, a change of the 
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gauge. For a concise history of the gauge field concept, the reader is referred 
to the lectures by Yang (1975). 

The framework for a proper geometrical discussion of gauge fields is the 
modern theory of fibre bundles. However such a differential geometry study 
would be beyond the scope of this presentation. It suffices for us to note the 
existence of a deep geometric foundation to the gauge field concept. Here we 
merely present an elementary geometric look at gauge invariance. We will 
show how gauge fields Aµ describe parallel transport in charge space with the 
curvature tensor being the field intensity Fµv. 

We briefly review some of the basic geometric concepts for a curved space. 
First, there is the notion of parallel transport. In any space, to compare two 
vectors (or any tensors) at two different space points Vµ(x) and Vµ(x'), we 
must first move (parallel transport) Vµ from x to x', i.e. the two vectors must 
be in the same coordinate system before we can take their difference. Thus 
there are always two steps in such a comparison 

(8.54) 

where (JVµ is the (apparent) change due to moving these two vectors to the 
same coordinate origin and d Vµ is their difference measured in the same 
coordinate system. The operational definition of parallel transport is such as 
to keep the vector, throughout the transport, at a fixed angle to the tangent of 
the trajectory. Clearly parallel transport is a trivial operation in flat 
(Euclidean) space as it does not introduce any change of the vector (JVµ = 0, 
and covariant differentiation is simply ordinary differentiation 

DP= dP = (8;.Vµ) dx;. in flat space. (8.55) 

However, in a curvilinear system there will be an apparent change in such a 
translation, as the coordinate axes differ from point to point in such a system 
(i.e. the metric is position-dependent). For x andx' infinitesimally separated 
by a distance dx\ we expect (JVµ to be linear in dx;. and Vµ 

(J p = - re). vv dx). 

and 

(8.56) 

since (J(VµVµ) = 0. The coefficient re;. is the Affine connection or the 
Christoffel symbol and may be shown to be (some combination of) the 
derivative of the metric (and hence vanishes in a space with constant metric). 
The comparison of the original vector at x' after parallel transport from x to 
x' results in 

D Vµ = Vµ(x') - [ P(x) + (JVµ] 

= (8;. vµ +re). vv) dx). (8.57) 

where the combination in the parenthesis is the covariant derivative. This 
contrast between flat and curved spaces is illustrated in Fig. 8.1. 

Another important concept in non-Euclidean geometry is the curvature 
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tensor which can be best introduced through the notion of parallel transport 
of a vector around a closed path (see Fig. 8.2 for an illustrative comparison). 
Consider the apparent variation of the vector after being moved around a 
small parallelogram PP 1P2P 3 composed of two vectors aµ and bµ (and their 
parallel displacements) (Fig. 8.3). Let 8Vµ and be the apparent changes 
along the paths PP 1P2 and PP3P2 , respectively. Thus the total apparent 
change for a round trip is 

with 

8 vµ = <r;" v.)p0" + (r;11 v.)p, (bP + 8bP) 

8 = (r;11 v.)pbP + (r;" v.)p,(a" + 8a") 

(8.58) 

(8.59a) 

(8.59b) 

We can expand the quantities evaluated at points P 1 and P 3 so that all 
tensors are measured at a common point P 

(r;11 V,)p, = (r;11 + o"r;11a")(V, + r:"vaa"); 
similarly for (r;" V,)p,. Substituting these results and 

(a) 

(8.60) 

(8.61) 

FIG. 8.1. Apparent changes induced by parallel transport (a) in flat space (no apparent change); 
and (b) in curved space. 

' /\1 
-:r-

(a) (b) 

Fm. 8.2. Apparent changes induced by parallel transport (a) around a closed path 1-2-3-4 in 
flat space; and (b) on a spherical surface. 

P1 P2 

i fHa• 
P---bfi---<•- P3 

FIG. 8.3. 
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and a similar expression for (bP + f>bP) into eqns (8.59) and (8.58), we have 

(8.62) 

The apparent change around a closed path is proportional to the vector itself, 
to the area (tensor) bounded by the path aaP = aabP, and to the curvature 
tensor 

(8.63) 

For the rather simple example of a spherical triangle with 90° at each vertex 
(Fig. 8.2), the apparent change is clearly n/2. This agrees with eqn (8.62) as 
the curvature tensor reduces to a curvature R = 1/r2 where r is the radius of 
the sphere. When multiplied by the area of the triangle nr2 /2 one gets an 
apparent change of n/2. 

A direct comparison of (8.57) with the gauge covariant derivative Dµt/I 
(8.44) indicates that T ·Aµ has a geometrical interpretation as the 'connec­
tion' (i.e. Christoffel symbol) in the internal charge space. As in (8.56), under 
a parallel transport the field t/J(x) undergoes, because of the local change of 
axes, an apparent change 

t/J(x) t/J(x + dx) = t/J(x) + f>t/l(x) 

with 

f>t/l(x) = igT · Aµt/I dxµ (8.64) 

where T is the set of representation matrices of the symmetry generators and 
t/J is the basis vector. 

For parallel transport of a finite interval from x to x' we can exponentiate 
(8.64) and obtain 

x' 

P(x', x) = exp {ig f T · Aµ(y) dyµ} (8.65) 

x 

where the line integral is taken along a path joining x and x'. Thus for every 
path we can associate a group element. Let us check that such an 
interpretation is compatible with the transformation properties of gauge 
fields. For simplicity consider infinitesimal parallel transport (8.64) 

t/J(x + dx) = (I + igT ·Aµ dxµ)t/J(x). (8.66) 

Now for a different choice of frame at each point, we make a gauge 
transformation, a rotation of axes, at each point by T · 0(x) as in (8.48) 

t/J(x) t/l'(x) = U(8x)t/J(x) (8.67) 

and 

t/J(x') t/l'(x') = U (ex' )t/J(x'). (8.68) 

In order to keep the product if/(x + dx)P(x + dx, x)t/J(x) invariant, parallel 
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transport 'connection' must transform according to 

1 + igT dxµ = U(Ox+dx)(l + igT ·Aµ dxµ)U- 1(0x) 

239 

= (U(Ox) + o,U(OJ dx')(l + igT ·Aµ dxµ)U- 1(0x) (8.69) 

or 

T · = U(Ox)T · AµU- 1(0x) - [oµ U(Ox)J u- 1(lJx) (8.70) 
g 

which is the required transformation property of gauge fields as given in 
(8.49). This result clearly holds also for finite separations. Thus the parallel 
transport operator (8.65) has the gauge transformation 

P(x', x)-+ P'(x', x) = U(Ox.)P(x', x)U- 1(0x). (8.71) 

A direct comparison of T · F µv (8.46) with (8.63) suggests that T · F µv 

be interpreted as the curvature of internal charge space. This can be checked 
explicitly by considering parallel transport around a closed path C. For 
simplicity we choose C to be a parallelogram with one corner at xµ and two 
sides dxµ and bxµ. 

Po = P(x, x + dx)P(x + dx, x + dx + ox) 

x P(x + dx + ox, x + ox)P(x + ox, x) (8. 72) 

where the Ps are the parallel transport matrices of (8.65). Using the matrix 
identity 

(8.73) 

we find 

P(x, x + dx)P(x + dx, x + dx +ox) 

= exp[igAµ(x) dxµ] exp[igA,(x + dx) ox'] 

2 

= exp{ig(Aµdxµ + A,ox' + oµA,dxµox')- [Aµ, A.] dxµox'} 

(8.74) 

and 

P(x + dx + ox, x + bx)P(x + Ox, x) 

=exp[ -igAµ(x +bx) dxµ] exp[ -igA,(x) ox'] 

(8.75) 

Thus (8.72) may be written as 

Po = exp{ig(oµAv - o,Aµ - ig[Aµ, A.]) dxµ ox'}. (8.76) 

In eqns (8.74)-(8.76) we have simplified the notation by writing T ·Aµ as Aw 
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The above calculation justifies the identification of 

T·Fµv = aµT·Av - avT·Aµ - ig[T·Aµ, T·AJ (8.77) 

as the curvature tensor of the internal charge space. 
In summary, the essential point is that, in any (physical or internal) space 

where the coordinates are position-dependent, the significance of comparing 
two vectors (or any two tensors) at different points is lost. The standard way 
of dealing with this problem is to introduce the notion of parallel transport 
or affine connection. In the case of physical curved space-time the Christoffel 
symbol is introduced and in the case of internal charge space the gauge fields 
are introduced. They 'compensate' for the change of local frames at each 
space time point. 

8.3 Spontaneous breaking of gauge symmetry, the Higgs 
phenomenon 

We saw in §8.1 that the imposition of local symmetry implies the existence of 
massless vector particles. Ifwe want to avoid this feature of the gauge theory 
and obtain massive vector bosons, the gauge symmetry must be broken 
somehow. If we introduce explicit breaking terms in the form of arbitrary 
gauge boson masses we alter the high-energy behaviour of the theory in such 
a way that the renormalizability of the theory is lost (see the discussion in 
§2.4). We may contemplate the possibility of spontaneous breaking of the 
symmetry, as discussed in §5.3. Thus, we have the situation of a hidden 
symmetry: the Lagrangian is still fully invariant under the symmetry 
transformations but the dynamics are such that the vacuum, the ground 
state, is not a singlet of the symmetry group. The choice of one from all the 
possible degenerate ground states as the physical vacuum breaks the 
symmetry. This spoils the usual symmetry consequence of energy-level 
degeneracies. But, according to the Goldstone theorem of §5.3, this would 
imply the existence of a set of massless scalar bosons. Thus either way it 
would seem that we run into undesirable massless particles. 

As it turns out the Goldstone theorem is evaded in gauge theories as the 
proof of the theorem requires the validity of all the usual field theory axioms: 
manifest Lorentz covariance, positivity of the norm, etc. There is no gauge­
fixing condition we can impose for which a gauge theory obeys all the axioms 
of the usual field theories. In covariant gauges we have states of negative 
norm (longitudinal photons); in the radiation or axial gauges, we do not have 
manifest Lorentz covariance. If we regard the massless gauge bosons and 
massless Goldstone bosons as diseases of the theory, each turns out to be the 
cure of the other. They both disappear from the physical spectrum of the 
theory by combining to form massive vector particles, without ruining the 
good high-energy behaviour of the symmetric theory. This remarkable 
phenomenon was first suggested by Anderson (1958, 1963) who pointed out 
that several cases in nonrelativistic condensed-matter physics may be 
interpreted as due to massive photons. Particularly in superconductivity we 
have the phenomenon of magnetic flux exclusion (the Meissner effect) and 
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this corresponds to a finite-range electromagnetic field, hence a 'massive 
photon'. The extra longitudinal component is in fact coupled to the collective 
density fluctuation of the electron system-the plasma oscillation. The 
proper generalizations to relativistic field theory were carried out by Englert 
and Brout (1964), and by Guralnik et al. (1964), and more completely, by 
Higgs (1964a, 1966). In the literature it is commonly referred to as the Higgs 
phenomenon. 't Hooft (1971b) first showed that gauge theories are re­
normalizable even in the presence of spontaneous symmetry breakdown. 

Abelian case 

Consider the simple case of Abelian U(l) gauge theory. 

ff= (Dµ<p)\Dµ</>) + µ2</Jt<P - 2(¢t¢)2 - iFµvpv 

where 

Fµv = oµAv - ovAµ-

The Lagrangian is invariant under the local gauge transformation 

</J(x) -> </>'(x) = e-i•(x)</J(x) 

Aµ(x)-> = Aµ(x) - oµct(x). 
g 

When µ 2 > 0, the minimum of the potential 

V(</J) = -µ2</Jt</> + 2(¢t¢)2 

is at 

1¢1 = v/ .)2 

with 

(8.78) 

(8.79) 

(8.80) 

(8.81) 

(8.82) 

(8.83) 

This means that the field operator ¢ develops a vacuum expectation value 

1(01¢10)1 = v/ .)2. 

If we write ¢ in terms of the real fields ¢ 1 and ¢ 2 

I 
</> = .)2 (¢1 + i</>2), 

we can choose 

(01¢ 110) = v and (01¢210) = 0. 

(8.84) 

(8.85) 

(8.86) 

Thus, the Lagrangian (and the potential) have U(l) symmetry and the 
minimization can only fix the modulus of¢. To pick one as in (8.86) out of 
this infinite number of possible minimum values as the physical vacuum 
breaks the symmetry. (This example is essentially the one given in §5.3 with a 
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change of notation: ¢ 1 and n ¢ 2 .) Thus with the shifted fields 

(8.87) 

we would conclude that ¢2 corresponds to the massless Goldstone boson. 
The added feature of the case at hand is of course that we have a local gauge 
symmetry. The ordinary derivative is replaced by the covariant derivative. 
That term will yield 

IDµ¢1 2 = 1(8µ - igAµ)¢1 2 

= !(0µ¢ 11 + gAµ</J2)2 + !(8µ¢2 - gAµ¢;)2 

g1v2 
- gvAµ(oµ¢2 + gAµ</J'i) + -2-Aµ Aµ. (8.88) 

The last term can be interpreted as a mass term for Aw Thus the gauge boson 
acquires a mass M = gv. 

Unitary gauge (Abelian case). The presence of the term 

gvAµ 8µ¢2 (8.89) 

in eqn (8.88) will bring about a mixing between Aµ and ¢2 to make this 
interpretation Jess clear. To remove this mixing term, we will parametrize the 
complex field in polar variables and shift only the modulus field 

1 . 
¢(x) = ..)2 [v + 17(x)] exp(1e(x)/v) 

= [v + 11(x) + ie(x) + ... ] . (8.90) 

Thus, for small oscillations, 17(x) and e(x) are really ¢'1 (x) and ¢2(x), 
respectively. The free Lagrangian also keeps the same form 

.5.t'o = [(0µ17) 2 - (oµe) 2] - µ; (11 2 + e1 ). (8.91) 

The canonical quantization conditions are not changed; 17(x) and e(x) have 
the same particle interpretation as ¢ 1 and ¢ 2 . 

We can now remove the unwanted term (8.89) by transforming ¢2(x) or 
e(x) away or, more accurately speaking, by fixing the gauge (the unitary 
gauge). To do this, we define new fields 

¢"(x) = exp(-ie/v)¢(x) = (v + 17(x)) 

1 
Bµ(x) = Aµ(x) - - aµe(x). 

gv 

From the property of gauge transformation (8.80), we have 

Dµ¢ =exp( -ie/v)(oµ</J" - igBµ</J") 

= exp(-ie/v)(oµ17 - igBµ(v + 17))/ ..)2 

(8.92) 
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and 

(8.93) 

and also 

F,,. = o,,B. - fJ,B,,. 

The Lagrangian of (8. 78) may be written 

1 l 
ff' = 2 lfJ,.17 - igB,.(v + 17)12 + l (v + 17)2 - 4 (v + 17)4 

1 2 - 4 (o,,B, - fJ,B,,) 

with 

_1 2 22 1 2 1 2 /l 
.!t'o-2(8,,17) -µ11-4(8,,B,-8,B,,) +2(gv)B,,B 

1 1 
ff'1 = 2 g2 B,.B"17(2v + 17) - lv217 3 - 4 l174 . (8.94) 

It is clear that 2 0 is the free Lagrangian density for a massive vector boson 
with mass M = gv and a scalar meson with mass m = ..)2µ. The field e(x) has 
disappeared from the Lagrangian. This may be less surprising when we count 
the degrees of freedom. Before spontaneous symmetry breaking, we had two 
scalar fields </> 1 and </>2 and one massless gauge boson A,. (with only two 
polarization states). After the symmetry breaking, we have only one scalar 
field 17 and one massive gauge boson B,. (with three polarization states). Thus 
the massless gauge field A,, combines with the scalar field e to become a 
massive vector field B,. in (8.92). This is the Higgs mechanism for the Abelian 
case. The e(x) field is called a would-be-Goldstone boson. 

Non-Abelian case 

It is straightforward to generalize the Higgs mechanism to theories with non­
Abelian gauge symmetry. Consider the case of an SU(2) gauge theory with a 

complex doublet of scalar fields </> = ( !J 
ff' = (D,,</>)t(D,,</>) - V(</>) - !F:.P"' (8.95) 

where 

D,,</> = ( o,, - ig 

pa = 0 Aa _ 0 Aa + geabcAb Ac 
,,. /l • • /l /l • 

(8.96) 
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For µ2 > 0 the classical potential is a minimum at 

(<//¢)0 = v2/2 with v = (µ 2/}.)t. (8.97) 

We can choose the physical vacuum corresponding to the expectation value 
having the form 

If we define the new field 

<<P>o =_I (o)· J2 v 
(8.98) 

(8.99) 

then <¢') 0 = 0. The covariant derivative term will generate a mass for the 
vector boson field since 

(Dµ</J)t(Dµ</J) =((aµ - + <<P>o)y 

x ((aµ - ·Aµ)<<P' + <<P>o)) 

contains the factor 

corresponding to Aµ having a mass 

In the scalar sector, we have 

gv 
MA=-· 

2 

<Pt<P = <P't<P' + <<Pt)o</J' + <P't<<P>o + <<Pt>o<<P>o 
(</Jt</J)2 = v2</J't<P' + C<</Jt)o</J' + </J't<<P)o)2 + .... 

the term quadratic in¢' is 

AV2 µ2 
-(¢2 + ¢2t)2 = -(¢2 + ¢2t)2. 
2 2 

(8.100) 

(8.101) 

(8.102) 

(8.103) 

(8.104) 

This means that only the combination (¢2 + ¢2t)/ J2 is massive (physical 
Higgs particle). The other three states t, and ( ¢2 - ¢2 t)/ J2 are the 
would-be-Goldstone bosons, which will combine with the original three 
massless gauge bosons to become three massive vector bosons. 

Unitary gauge (non-Abelian case). To see this explicitly we go to the unitary 
gauge. We parametrize the scalar doublet 

ef>(x) oxpH·i;(x)}( v (8.105) 
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where (ea)0 = (17) 0 = 0. We can then define the new fields by 

<f>11(x) = U(x)<f>(x) = C ,,) 

where 

U(x) = exp{-i ·;(x)}· 

From the properties of the gauge transformation, we obtain 

Dµ</> = u- 1(x)Dµ</> 11 

where 

Dµ</>" =(aµ -

Ga· = (o Ba - o B0 + geabcBb B') µv µ v v µ µ v · 

Then the Lagrangian density in the unitary gauge is simply 

2 A. I 
ff' = (Dµ</>")t(Dµ</>") + (v + 17)2 - 4 (v + 17)4 - 4 a:vaaµv. 

(8.106) 

(8.107) 

(8.108) 

(8.109) 

(8.110) 

(8.111) 

(8.112) 

(8.113) 

(8.114) 

We have vector particles with mass M8 = gv/2. Thus the original SU(2) 
gauge symmetry is completely broken; all three gauge fields acquire mass. 

Pattern of symmetry breaking 

It is important to keep in mind that the pattern of symmetry breaking is not 
arbitrary but depends on the structure of the theory in particular the (group) 
representation content of the scalar field (Kibble 1967; Li 1974). For 
example, if we have a triplet of real scalar fields <I> instead of the complex 
doublet, the gauge symmetry SU(2) will be broken down to a residual U(l) 
gauge symmetry with one massless vector boson remaining. To see that this is 
the case, start with the scalar potential 

Again, minimization of V(«I>) only deterrpines the magnitude 

I< <I> )ol = v/ .J2 withl v = (µ2 /A.)-!. 

(8.115) 

(8.116) 
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We are free to choose the vacuum state so that 

(8.117) 

The ground state <I> points in the 3-direction, the symmetry is spontaneously 
broken. The covariant derivative term 

(8.118) 

will not contain any term quadratic in A!. Thus the A! field continues to 
describe a massless vector boson. We note that this pattern of symmetry 
breaking is related to the fact that (<I> ) 0 of (8.117) is still invariant under an 
0(2), i.e. a U(l), rotation in (1, 2) space. 

The number of massive gauge bosons 

Since the number of massless gauge bosons corresponds to the number of 
generators of the (unbroken) gauge symmetry group, the number of gauge 
bosons that become massive (or the number of would-be-Goldstone bosons) 
is equal to the difference in the number of generators of the original 
symmetry and of the final symmetry. We shall present a proof of this 
statement; this also will provide us with a chance to introduce some general 
formalism. 

Consider the general Lagrangian density 

2 = ![(oµct>i + igTfiA:¢i)][(oµ¢i - igTikAaµcPd] 

- V(cjJ;)--i:F:Jaµv (8.119) 

where ¢; is a set of real fields, transforming according to some (possibly 
reducible) representation of the gauge symmetry group G with n generators 

¢;(x) ¢;(x) = ¢;(x) + iaa(x)Tfi¢ix), a= 1, 2, ... , n. (8.120) 

Given that the potential in (8.119) is invariant under an arbitrary group 
transformation (if the potential is invariant under a larger group, there will 
be scalars which become massive only through radiative corrections. They 
are often referred to as the pseudo-Goldstone bosons (Weinberg 1972b)), 

av av 
0 = 0 V = ocjJ; OcjJ; = Ba acjJi TfjcjJj 

or 

av 
o¢; TiicPi = 0, a= 1, ... , n. (8.121) 

Differentiation gives 

(8.122) 
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If Vis a minimum at </>; = v;, then the second term in (8.122) vanishes, and 

a2v \ 
a,i... 0,i.. Tfii'i = 0. 

'+'• '+'k ... 
(8.123) 

We should remark that, in the global symmetry case, (8.123) corresponds to 
the statement that a number of scalars are massless. That this second 
derivative matrix corresponds to a mass matrix can be seen by an expansion 
of V(</>;) around the minimum 

1 a2 v \ V(</>J = V(v;) + -2 o<J>· o</> _. (</>; - i•;)(</>k - l\) + .... 
I k </>;-I; 

(8.124) 

Thus the mass matrix is 

(8.125) 

Now suppose G has a subgroup G' with n' generators that leaves the vacuum 
invariant 

(8.126a) 

and 
T/ivi=FO for c=n'+l, ... ,n. (8.126b) 

If we choose ra to be linearly independent, eqns (8.126), (8.125), and 
(8.123) clearly imply that M 2 has n - n' zero eigenvalues and hence (n - n') 
Goldstone bosons. In the gauge symmetry case, these (n - n') massless states 
correspond to the (n - n') would-be-Goldstone bosons. In preparation for 
gauging them away, we re-parametrize </>;by 

(8.127) 

where c = 1, 2, ... , (n - n'), i.e. we sum over the broken generators. v in the 
exponent is the magnitude of v;. The '7;(x)s are the remaining scalar fields 
which are orthogonal to ecs. After a gauge transformation. Aµ with 
gauge function O(x) = -ire"(x)/v. The Lagrangian has a quadratic term in 

2 

_92 (Tcv, (8.128) 

After diagonalization this leads to (n - n') massive vector bosons. To 
summarize, the number of would-be-Goldstone bosons is equal to the 
difference in the number of generators of the original and the final gauge 
symmetries. 

In this section we have chosen to fix the gauge so that the particle content 
of the theory is obvious (the unitary gauge). In the next chapter, at the 
end of §9.2, we shall also discuss another class of gauge choices (the 
renormalizable gauge or the R gauge) where the would-be-Goldstone bosons 
are not eliminated explicitly but the gauge-field propagators manifestly have 
good high-energy behaviour and the renormalizability of the theory is more 
transparent. 



9 Quantum gauge theories 

WE now proceed to quantize the gauge theories, explain their perturbative 
solutions, and discuss the generalized Ward identities of such theories. 

9.1 Path-integral quantization of gauge theories 

Gauge theories, being gauge invariant, represent systems with constrained 
dynamical variables, i.e., there are variables that do not represent true 
dynamical degrees of freedom. The quantization procedure of such theories 
is more involved than that for the scalar field theory discussed in Chapter 1. 
For gauge theories the path-integral formalism provides the most direct 
quantization procedure. 

Difficulties of gauge theory quantization 

We are already familiar with the problem of quantizing the electromagnetic 
field Aµ(x ). In the canonical formalism one identifies the canonical variables 
Aµ(x) and their conjugate momenta nµ(x) = 6£'(x)/D(o0Aµ(x)) as operators 
and postulates their commutation relations. One immediately discovers that 
n0(x) and V · 1t(x) vanish, which implies that A0(x) and V · A(x) commute with 
all canonical operators. They are really c-numbers. The four-vector field 
Aµ(x) actually represents only two independent dynamical degrees of 
freedom. The canonical commutation relations for these transverse fields 
AJ_(x) and 1tj_(x) have to be formulated so that they are compatible with the 
above-mentioned constraints. For example, we can take the constraint in the 
form of V · A(x) = 0 (radiation gauge) or A3(x) = 0 (axial gauge). In such 
formulations one sacrifices manifest Lorentz covariance. Alternatively, one 
maintains explicit Lorentz covariance and introduces spurious degrees of 
freedom into the theory. This brings about a Hilbert space with indefinite 
metric (the Gupta-Bleuler formulation). A physically sensible theory is 
recovered only after we restrict the admissible states to those satisfying (the 
Lorentz gauge) oµ Aµl'I') = 0. The key point in all these formulations is that 
one must remove the redundant degrees of freedom (resulting from gauge 
invariance) of the theory by some acceptable gauge-fixing conditions. In the 
language of path-integral quantization formalism, one must restrict the 
functional integration to reflect these gauge-fixing conditions. A consistent 
implementation of such constraints for non-Abelian theories is a highly 
nontrivial matter, and the problem was finally solved through the work of 
Feynman (1963), DeWitt (1967), Faddeev and Popov (1967), and many 
others (Mandelstam 1968; Popov and Faddeev 1967; Veltman 1970; 't 
Hooft 197la, b). 
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We shall restate the difficulty of quantization directly in terms of the path­
integral formulation of gauge theories. To be specific, we consider the case of 
SU(2) Yang-Mills fields 

!£ = _lpa paµv a = 1 2 3 
4 µv ' ' ' 

(9. l) 

with 

(9.2) 

If we write the generating functional as 

W[J] = I [dAµ] exp{i I d4x[f£(x) + Jµ(x) · Aµ(x)] }· (9.3) 

the free-field part is then 

W0 [J] = I [dAµ] exp{i I d4x[f£0(x) + Jµ(x) · Aµ(x)]} (9.4) 

with 

I d4XfEo(X) = - ovA:)(oµAav - avAaµ) 

d4 xA:(x)(gµv 82 - aµ (9.5) 

Now we have a situation very similar to the scalar field theory and we would 
like to proceed and perform the Gaussian integration as in eqns (1. 79) and 
(l.81) 

I [d</>] exp[ -!<<PK</>)+ (Jcj>)]"' K exp(JK- 1J). (9.6) 

However this is not possible, because the operator 

Kµv = 9µv o2 - oµ ov 
in (9.5) does not have an as we shall demonstrate below. 

Assuming Gv;.(x - y) is the inverse of Kµ., 

Using the Fourier transform 

GvJ.(x) = --e-ik·xGv;.(k) I d4k 
(2n)4 ' 

we have 

( -k2gµv + kµkv)GvJ.(k) = 

With the invariant decomposition 

Gv;.(k) = a(k2 )gvJ. + b(k2 )kve, 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 
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it is clear that the left-hand side of eqn (9.10) = - kµk1") cannot 
be equal to the right-hand side. Thus Kµv does not have an inverse. Another 
way to see this is that the operator Kµv given in (9.7) satisfies the relation 

oc Kµ;.(x). This means that it is a projection operator (which 
projects out the transverse degree of freedom of the gauge field) and clearly 
does not have an inverse. Equivalently, for the case det K vanishes and eqn 
(9.6) is not applicable. This singular nature of the path integral, i.e. this extra 
infinity, is related to the gauge invariance of the theory. In eqns (9.3) and 
(9.4) we have summed over all the field configurations, including 'orbits' that 
are related by gauge transformations. This overcounting is at the root of the 
divergent functional integral. We need to seek a prescription to divide out 
this infinite (functional) volume of the orbit. To quantize a gauge theory, it is 
necessary to fix the gauge. 

Isolating the path-integral volume factor 

(1) A two-dimensional case as illustrative example. Before launching into the 
actual calculation that will isolate this volume factor from the functional 
integration (hence in infinite-dimensional space) we shall use a two­
dimensional integral to illustrate our strategy 

w =I dx dy eiS(x,y) 

= I d2r eiS(r) (9.12) 

where r = (r, 8) is the label in the polar coordinate system. S(r) is supposed 
to be invariant under a rotation in two-dimensional space 

S(r) = S(rq,) (9.13) 

for 

r = (r, 8)--> rt/>= (r, 8 + <f;). (9.14) 

Thus S(r) is a constant over the (circular) orbit. In this simple case if we only 
wish to sum over the contribution from the inequivalent S(r)s we can simply 
divide out the 'volume factor' corresponding to the polar angle integration, 
J d8 = 2n. To do this we adopt the following procedure which can be 
generalized to more complicated situations. First we insert 

1 = f d<f; 6(8 _ </>) (9.15) 

into the original expression for W 

w = I d<f; I dr eiS(r) 6(8 - </>) = I d<f; wt/> (9.16) 

where Wt/>= J dr 6(8 - </>) eiS(rJ is evaluated for a given angle </J. Thus, we first 
calculate W along a fixed angle 8 = </J, then integrate over the contributions 
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g(r)=O 

(a) (b) 

FIG. 9.1. 

for all values of¢ (see Fig. 9.l(a)). Using the invariance property of Sin 
(9.13) we have 

Wq,= Wq,·· 

Thus the volume of the orbit can be factored out 

W = f def> Wq, = Wq, f def> 

= 2nWq,. 

(9.17) 

(9 .18) 

Generally a constraint that is more complicated than (J = ¢ may be chosen, 
and we represent this by 

g(r) = 0 (9.19) 

which intersects each of the orbits once as shown in Fig. 9 .1 (b ), i.e. the 
equation g(rq,) = 0 must have a unique solution ¢ for a given value of r. For 
this general constraint (9.19), instead of the simple eqn (9.15), we need (to 
define) a function Llg(r) such that 

[Ll9(r)]- 1 = f def> J[g(rq,)]. (9.20) 

Hence 

Ll ( ) = og(r) I 
g r ae ' (9.21) 

and Ll9(r) is itself invariant under the two-dimensional rotation (9.14) since 

[Llg(rq,·)r 1 = f def> J[g(rq,+q,·)J 

= f def>" J[g(rq,")] 

= [Llg(r)]- 1 . (9.22) 

Repeating steps (9 .16)-(9 .18) the volume factor in W can then be isolated 

(9.23) 
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with 

Wq, = I dr eiS(r) L\g(r) <5[g(rq,)]. (9.24) 

Wq, is rotationally invariant 

Wq,, = I dr eis(rl Au(r) <5[g(rq,.)J 

= I dr' eiS(r'l L\g(r') 

= Wq,. (9.25) 

where we have introduced the variable r' = (r, </>')and have used the fact that 
S(r), Ag(r), and the integration measure dr, are invariant under rotations. 
Thus to remove the 'volume factor', we can insert a constraining <>-function 
and multiply it by a function L\u defined by (9.20). 

(2) The PI volume factor in gauge theories. We now return to the task of 
isolating the actual volume factor in the functional integration of the 
generating functional in gauge theory. The procedure will be exactly the same 
as for the simple case we have just discussed. The action is invariant under 
the gauge transformation 

where 

with 

U((}) =exp[ -iO(x)- 't/2]. (9.26) 

Os are the space-time dependent parameters of the group. The 'ts are the 
Pauli matrices. Thus the action is constant on the orbit of the gauge group 
formed out of all the A!s for some fixed Aµ with U(O) ranging over all 
elements of the group SU(2). A proper quantization procedure must restrict 
the path integration to a 'hypersurface' which intersects each orbit only once. 
Thus, if we write the equation for the hypersurface as 

a= 1, 2, 3, (9.27) 

then the equation 

(9.28) 

must have an unique solution 0 for a given Aµ. Eqn (9 .27) is clearly a gauge­
fixing condition. 

We also need to define the integration over the group space. Let(} and(}' be 
elements of an SU (2) group. In terms of the representation matrices U ( (}) the 
multiplication of group elements takes on the form 

U(O)U(O') = U((}(}'). (9.29) 
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In the neighbourhood of identity, we can write 

U(O) = 1+iO·t/2+0(02 ). 

The integration measure over group space can be chosen as 
3 

[dO] = fl d00 

a=l 

which is invariant in the sense that 

d(OO') = dO'. 
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(9.30) 

(9.31) 

We can now isolate the desired volume factor by defining a function 
LiI[Aµ] 

Lij 1[Aµ] = f [dO(x)] c5[fiA:)]. (9.32) 

Thus 
LiI[Aµ] = det MI (9.33) 

where 
c5f,, 

(MI)ab = c50b. (9.34) 

Thus, MI is just the response of f 0 [Aµ] to the infinitesimal gauge 
transformation. More precisely, from (9.30), the infinitesimal gauge trans­
formation is of the form 

A9a = Aa + Babcob Ac - ! a ea (9.35) µ µ µ g µ 

and the response of f 0 [ Aµ] is 

f,.[A:(x)] = f,.[Aµ(x)] + I d4y[MI(x, y)]0 bOb(y) + 0(02 ). (9.36) 

Because of the requirement that eqn (9.28) have a unique solution, (det MI) 
does not vanish. 

LiI[Aµ] has the important property that it is gauge invariant. To see this, 
we write (9.32) as 

then 

Lij 1[A:] = f [dO'(x)] c5[f0 (A:9'(x))] 

= I [d(O(x)O'(x))] c5[f,.(A:9'(x))] 

= J [dO"(x)] c5[fa(Anx))] 

= Lij 1[Aµ]· 

(9.37) 

(9.38) 
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We now substitute (9.32) into the path-integral representation of the 
vacuum-to-vacuum amplitude 

f [dAµ] exp{i f d4 x2(x)} = f [d0(x)][dAµ(x)] Lif[Aµ] 

x exp{i f d4 x2(x)} 

= f [d0(x)][dAµ(x)] Lif[Aµ] 

x exp{i f d4x2(x)}· 

(9.39) 

To arrive at the last line we used the fact that both Li1 [Aµ] and exp{i J d4 x 
2(x)} are invariant under a gauge transformation A: --+ Aw Now, the 
integrand is independent of 8(x) and the integration over Ilx d8(x) is the 
infinite orbit volume we have been seeking to identify. This suggests that the 
prescription for the generating functional of the gauge field A" (after 
applying eqn (9.33) and eqn (9.39)), should be 

WJ[J] = f [dAµ](det MI) exp{i f d4x[2(x) + J" ·Aµ]}· 

(9.40) 

This is the Faddeev-Popov ansatz (1967). In other words, we can get rid of the 
unwanted redundancy in the quantization procedure by restricting the 
functional measure with detlbf/b81 b[f(Aµ)]. 

Consistency check of the FP ansatz in axial gauge 

Before proceeding further with the formalism we shall make an elementary 
check of the FP ansatz with a specific example. Consider the following choice 
of the gauge-fixing condition (9.27), the axial gauge (Arnowitt and Fickler 
1962) 

fa= A3 = 0. 

Under the gauge transformation (9.35) we have for (9.36) 

1 
j . (Ao) = Aa + 6abceb Ac __ 0 ea 

a µ 3 3 g 3 

1 a 
= -- 038 

g 

(9 .41) 

(9.42) 

because of (9.41). Thus we have the response matrix M1 = (-1/g) o3 bah, 

which is independent of the gauge field. For this choice of the (axial) gauge 



9 .1 Path-integral quantization of" gauge theories 255 

we can therefore ignore the (det M1 ) factor in W1 [J] 

W1 [J] = f [dAµ] 6(A3 ) exp{iS[JJ] (9.43) 

S[J] = I d4 x[ -i(F:J2 + 1:Aaµ] 

It is more convenient to work with an alternative form of the generating 
functional 

with 

S'[J] =I d4x[-i(F:v)2 + -

+ gr.abc + 

If we integrate over Wj[J] reduces to W1 [J] of (9.43). 

(9.44) 

(9.45) 

Let us check the compatibility of the FP formulation eqns ((9.43) and 
(9.44)) with the canonical quantization, to see whether it does restrict the 
functional integration to the same dynamical variables as deduced with the 
canonical procedure. 

We first identify the independent canonical variables in the axial gauge 
A3 = 0. The Lagrangian in (9.45) becomes 

!£' = _.l(Fa )2 + .lpija(a.Aa _ + 
2 µv 2 I J J I ' I J 

where i,j = 1,2. 

+ FOia(aoA't - aiAo + gr.abcAgAD 

+ pi3a(-83Af) + po3a(-83Ao) 

The Euler-Lagrange equations 

a;. bf!' (Jff'' 

b( 8" F:v) 1JF:, 

and 

(9.46) 

(9.47) 

(9.48) 

give rise to the following constraint equations (having no time derivatives) 

Fij = aiA'j - ajA't + 

Ff3 = -83Af 

F03 = -83A0 

a;Fo; - 83Fo3 = -gr.abcpgiAic (9.49) 
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and to the following dynamical equations 

F'Q; = o0 Af - o;Ao + gsabcAgAf 

= -gsab<(F7iAic + Fg;A 0c). 

(9.50a) 

(9.50b) 

Thus A0, Ffi, Ff3, and F03 are constraint variables; they can be eliminated 
from S' (resulting in S") by the constraint equations (9.49) in terms of the 
remaining variables Af and F0;. This identification of independent canonical 
variables leads us to construct the generating functional 

W[[J] = f [dF01 ][dF02][dA1][dA2] exp{iS"[J]}. (9.51) 

Our consistency check of the FP ansatz now consists in showing the 
equivalence of this functional integral to that in (9.44) and thus (9.43). We 
need to show that, if a dynamical variable appears at most quadratically 
(with a constant coefficient) in the action, then integrating over the variable is 
the same as eliminating it from the action by the Euler-Lagrange equation. 
This is indeed the case and we can illustrate this theorem as follows. Consider 
the functional (Gaussian) integral 

f [d</>] exp{iS[</>J} = f [d<f>] exp{i f d4 x[ia<f> 2(x) + f(x)<f>(x)]} 

= exp{-L f d4x[f(x)] 2 }· (9.52) 

On the other hand, the Euler-Lagrange equation from Sin (9.52) yields 

a<f>(x) + f(x) = 0. (9.53) 

Thus eliminating <f>(x) in S, we have 

S = _ __!__ f d4 x[f(x)] 2 

2a 
(9.54) 

which is the same as eqn (9.52). This also completes our demonstration that 
the FP ansatz indeed provides the correct restriction (i.e. the same as 
canonical procedure) on the integration measure. As we illustrated in the 
introduction to Pl formalism in Chapter 1, the Hamiltonian PI formalism 
where 

W[J] f [d</> dn] exp{i f d4 x[no0 <f> - Jf'(n, </>) + J<f>]} 

is equivalent to the Lagrangian PI where 

W[J] J [d¢]exp{i f d4x[2(</>,oµ</>)+J<f>]}· 

(9.55) 

(9.56) 

It is not difficult to check that (9.51) is the Hamiltonian formulation with F0; 
being the transverse canonical momenta. 

Because we can drop the FP determinant with this choice of axial gauge, 
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the quantization is particularly simple. But in this gauge we lose manifest 
Lorentz invariance and Feynman rules are complicated. 

Abelian gauge theory 
We should remark that all the formalism developed in this section also 
encompasses the simpler case of Abelian gauge theory. Under a U(l) gauge 
transformation, eqn (9.35) reads 

B 1 
Aµ(x) = Aµ(x) - - 13µ(J(x). 

g 
(9.57) 

It is then clear that for any choice of linear gauge-fixing condition of (9.27) 
the response matrix MI in (9.34) or (9.36), like the special case of non­
Abelian theory in the axial gauge just considered, will be independent of 
Aµ(x). The FP factor (det MI) plays no physical role and can be dropped 
from the generating functional, 

(9.58) 

9.2 Feynman rules in covariant gauges 

For practical calculations it is more convenient to use the covariant gauges 
where unlike the axial gauge unphysical 'ghost fields' are needed. We start 
with the generating functional (9.40) in the form 

(9.59) 

Thus, the FP modification of the integration measure det MI b[fa(Aµ)] can 
be exponentiated and expressed as additional terms in the action, leading to a 
new Serr· In this language, the problem of gauge field quantization is solved 
because these new factors lead to a new K operator for the prototype 
Gaussian integrand in (9.6), which will have a nonvanishing determinant and 
possess an inverse. 

Faddeev-Popov ghosts 

It is straightforward to write det MI in an exponential form, 

det MI= exp{tr(ln MI)}. (9.60) 

If we further write 

MI=l+L, (9.61) 
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then 

exp{ tr(ln M 1) J = exp{ tr L + L 2 + ... tr L" + ... } 

=exp{ f d4 xLaa(X, x) + f d4 x d4 ylab(x, y)Lba(y, x) + .. ·} 
(9.62) 

which is represented diagramatically in Fig. 9.2. 

L 

0 
a 

FIG. 9.2. Diagrammatical representation of the Faddeev-Popov determinant. 

This series may be viewed as arising from loops generated by a fictitious 
isotriplet of the complex scalar fields c(x). Their presence and interactions 
can be described by the generating functional 

det M1 "' f [dc][dct] exp{i f d4x d4y Fi, c:(x)[M1(x, y)Jabcb(y)}· 

(9.63) 

Because the Gaussian integral is proportional to det M 1 as in the case for the 
Grassmann number, rather than (det M 1)- 1, we see that the scalar fields c(x) 
must obey Fermi statistics (recall the discussion in §1.3, especially eqns 
(l.139)-(1.141)). They are referred to as Faddeev-Popov ghost.fields. 

Gauge-fixing terms 

We next attempt to convert the delta function b[fa(A,,)] into an exponential 
factor. This can be accomplished by first generalizing the gauge-fixing 
condition fa(A,,) = 0 to 

(9.64) 

where Ba(x) is an arbitrary function of space and time, independent of the 
gauge field. The definition (9.32) of A1 is correspondingly generalized 

f [d8(x)] A1[A,,J J[fa{A:) - Ba(x)] = I. (9.65) 

Clearly this definition yields the same A1 as in (9.32). And we can extract the 
infinite-orbit volume factor as before and prescribe a generating functional as 

W[J] = f [dA,,J[dB](det M1 ) b[fa{A,,) - Ba] 

(9.66) 
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where we have inserted a constant 

constant"' f [dB] f d4xB2(x)} 

where is some arbitrary constant coefficient, the gauge parameter. The 
generating functional of (9.66) differs from that of (9.40) by an immaterial 
normalization factor. We can then use the delta functional to perform the 
integration over [dB(x)]. Also, substituting in (9.63), we have 

W[J] = f [dAµ][dc][dct] exp{iSerr[JJ} 

with 

Serr[JJ = S[J] + Sgr + SFPG 

where the additional terms are the gauge-fixing term 

(9.67) 

Sgr = I d4x{f0 [Aµ(x)]} 2 (9.68) 

and the FP ghost term 

SFPG = Jd4x d4y y)] 0 bcb(y). (9.69) 
a,b 

Covariant gauges in symmetric gauge theories 

Here we shall make a specific choice for the condition in (9.27), i.e. (9.64) (the 
covariant, or Lorentz, gauges) 

a= 1, 2, 3. (9.70) 

Under the infinitesimal gauge transformation 

U(O(x)) = 1+iO(x)·t/2+0(02) (9.71) 

1 
A:9(x) = A:(x) + eabceb(x)Aµ(x) - g oµO"(x), (9.72) 

we have 

/"(A:)= f"(Aµ) + - oµO"(x)J 

= f"(Aµ) + f d4y[M/x, y)]0 bOb(y) (9.73) 

with 

1 
[M1(x, y)Jab = -- oµ[b"b oµ - .:54 (x - y). (9.74) 

g 

From (9.70) and (9.74) we can calculate the extra terms (9.68) and (9.69) in 
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the effective action s.rr. 
l f 4 2 Sgr = - d x(o,,A,,) (9.75) 

SFPG = ! f d4x L oil[ Jab o,, -
g a,b 

(9.76) 

Introducing the source functions 110 for the ghost fields c0 and we can 
write the generating functional 

WJ[J, 1), 'It] = f [dA,, de dct] exp{i f d4x[ 2(x) - (o,, AZ)2 

+ oil[ Jab o,, -

+ JZAµa + 11"tca + 11"cat]} 
where we have redefined c and ct to absorb the l/g factor in MJ. 

(9.77) 

(A) Perturbation expansion in covariant gauges. To do the perturbation 
expansion first for a pure Yang-Mills theory, we decompose S.rr = S0 + S1 

where the free action is quadratic in the fields, 

S = f d4x[-! (o A0 - o A0 ) 2 - __!__ (o,, A0 ) 2 
0 4 IL v v IL IL 

+ o2ca + JZA,,a + 11atca + 11acat]. (9.78) 

and the remainder is the interaction term 

S1[A,,, c, ct]= f d4x[ - o.AZ)geabcAb,,Ac• 

+ 1g28abc8ade Ab Ac Adµ Aev 
4 µ v 

- igc"t olleabc 

The generating functional can then be written 

t {· [ t5 t5 t5 J} 0 0 t W[J, 1), 1)] =exp 1S1 it5J,,' it51)' it51)t WA[J]Wc [1), 1)] 

with 

= f [dA,,] exp{i f d4x[ - o.AZ)2 

- (o,, AZ)2 + JZAa,, ]} 

'It]= f [dct][dc] exp{-iJ d4x[c0 t o2c0 

_ 11at c" _ 11a c"t]} . 

(9.79) 

(9.80) 

(9.81) 
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(B) Propagators. To calculate the propagator for the Aµ field, we rewrite 
as 

= f [dAµ] exp{i f a2 

- - l aµ av) 6 Ab+ r Aaµ]} ab v µ 

= f [dAµ] exp{i f d4xD + 1:Aµa]} (9.82) 

with 

= [gµv a2 - ( l - z) aµ av] 6ab 

which possesses an inverse and we can use (9.6) to integrate over [dAµ], 

J d4 x - y)Je(y)} (9.83) 

where 

It is easy to check that 

f - - z) = 64 (x - z). (9.84) 

Similarly, we find 

flt]= exp{-i f d4xd4y71at(x)Gab(x - y)71a(y)} (9.85) 

where 

f d4k e-ik·(x-y) 

Gab(x - y) = - (2n)4 k2 + it: 6ab. 

Thus we have the Feynman rules. 

(i) Vector boson propagator 

= -6ab{gµv -(1 -

(ii) FP ghost propagator 

. ab k . s: l IA ( ) = -1uab-k2 .. 
+rn 

a b 
r"\J\JV\../\J\. 
µ v 

••••• ·> ••••• 
a b 

A ghost field line, like that for a fermion, has directions. Thus a ghost 
is distinct from its antiparticle. 
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(C) Gauge field couplings. For non-Abelian theories there are self­
couplings among the gauge fields, with polarization vectors f,µ(k) 

(9.86) 

and 

(9.87) 

The Feynman rules for the vertices (rs) follow from S1 in eqn (9.79). One can 
work them out by a straightforward application of the procedure outlined in 
Chapter 1 (for the ).¢4 theory). But they can just as easily be deduced from 
their symmetry properties under the interchange of gauge fields. Such a 
derivation also helps us to remember their structure. In momentum space the 
first term of (9.79) has the form 

;, k2, k3) (9.88) 

where the As are the Fourier transform of the gauge fields, and is the 
Feynman rule vertex of (9.86) which must be totally symmetric under the 
interchange of As. The SU(2) structure is already fixed, 

(9.89) 

The Lorentz structure can then be deduced. It is clear from (9. 79) that 
r µv.i.(k 1, k2, k3 ) is made up of terms like k2µgv.i.. The precise combination can 
be worked out from the condition that rµv.i.(k 1 , k 2 , k 3) must be antisym­
metric with respect to index interchanges: µ v, etc. since f,abc is 
totally antisymmetric. In this way we find 

k1.,µ, a 

(iii) ·rabc · abc[(k k ) I µv). = Igf, 1 - 2 .i.9µv 

with 

Similarly for the quartic gauge-field self-coupling in (9.79) we have the vertex 

(iv) 

with 

= ig2[f,abef,cde(9µ.i.9vp - 9v.i.9µp) 

+ f,acef,bde(gµvg).p _ g,i.vgµp) 

+ f,adef,cbe(gµ;.gpv _ gp;.gµ.)] 

For the covariant gauge vertex which couples the ghost fields to a gauge field 
with polarization vector f,µ(k 1 + k2 ) we have a. .b 

(v) 
k··.\ •• 

;.Jk2 
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Note the asymmetric appearance of this vertex. One should preserve a 
consistent convention of entering the momentum of either the left or the 
right ghost line at every vertex. The ghost only enters in closed loops. 
Topologically for every diagram with a gauge-field closed loop there is 
one with a ghost loop in the same place. Most importantly, like the case 
of a fermion loop, we must insert an extra minus sign for every ghost 
loop. 

We note that only the propagator depends on the gauge and 
we can make suitable choices of for specific purposes. Within this class of 
covariant gauges, the choice = 1 is called the 't Hooft-Feynman gauge; 

= 0 is the Landau gauge. 

(D) Fermions. It is straightforward to add fermions to the pure Yang­
Mills theory considered above: we merely insert in the Lagrangian all the 
possible gauge-invariant terms that have dimension less than four 

(9.90) 

where 

Dµl/I = oµl/1- igT"A:l/I. 

T" is the representation matrix. For example, if 1/1 is an SU(2) doublet, 
T" = r:"/2. We then have the additional Feynman rules involving fermions 
(with group indices n, m, .. . ). 

(vi) Fermion propagator 

. i 
1f1nm(k} = (jnm k . 

y· -m+rn 
n m 

(vii) Fermion gauge boson vertex 

ir:::, = ig(T"}nmYµ 

R, gauges in spontaneously broken gauge theories 

Finally we come to the covariant-gauge Feynman rules for gauge theories 
with spontaneous symmetry breakdown. First, let us consider the case of 
Abelian symmetry. Recalling the discussion of §8.3, it is desirable to 
eliminate the mixing terms of eqn (8.89) 

(9.91) 

where c/J 2 is the would-be-Goldstone boson field. There, we choose a gauge, 
the unitary gauge, so that c/J 2 is absent from the theory. Thus, c/J 2 can be 
identified with the phase of the complex scalar field and this fictitious degree 
of freedom can be eliminated by a gauge transformation. The advantage 
of the unitary gauge is that the particle content of the theory is manifest; all 
we have in the theory are the physical states of the real Higgs particle and the 
massive gauge boson, which has the propagator normally expected for a 
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massive vector field (with mass M = gv) 

(9.92) 

We have already mentioned in Chapter 2 that a theory with such a spin-I 
propagator seems to be unrenormalizable from the power-counting 
arguments-unless there are hidden cancellations among Green's functions. 
However, from the observation that the original Lagrangian before spon­
taneous symmetry breaking is renormalizable by power counting, 't Hooft 
(I97Ia,b) proved that the theory remains renormalizable even after the 
symmetry breakdown. The key is to choose another set of gauges, the 
renormalizable gauges, in which the theory has good high-energy behaviour. 
The point is that in the unitary gauge, although the particle content is simple, 
renormalizability is not transparent, as the finite S-matrix only results from 
cancellations among divergent Green's functions. But the theory should be 
equivalent to that in the renormalizable gauge, where we obtain propagators 
with mild high-energy behaviour at the expense of introducing fictitious 
particles (the would-be-Goldstone bosons). Thus in the renormalizable 
gauge, unitarity is not manifest and we have to check that the spurious 
degrees of freedom do cancel in the physical amplitude. Such theories have 
been described as being 'cryptorenormalizable'. 

A general class of renormalizable gauges may be represented by choosing 
the gauge-fixing condition (9.64) as 

(9.93) 

where e is an arbitrary parameter. Then the gauge-fixing Lagrange density 
(9.68) is generalized to 

(9.94) 

which is added to the original Lagrangian. In this way the mixing term (9.91) 
is eliminated without transforming away the ¢ 2 field. Not displaying the FP 
ghost part, the free Lagrange density is given below where the ¢'1 and are 
the shifted scalar fields eqn (8.87), 

2o = [(81'¢'d2 - + -
2 2 

(9.95) 

This yields 

(viii) Higgs scalar propagator 

(k) = kl 2i 2 + . ; 
- µ 18 

il>i--,--
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(ix) Would-be-Goldstone boson propagator 

= k2 - +is; 

(x) Gauge boson propagator in the gauge 

= k2 _ ;)2 + is [9µv - (1 - ¢) k2 

= -i[9µv - k 11k)M2 + k 11k)M2 ]· 
k2 - M 2 + is k 2 - ¢M2 + is 

The interaction Lagrangian is given by 

265 

ff',= </>2 - + 9 2 A11 Aµ(</>'12 + </>22) 

- ( ¢>'? + ¢22)2 + g2vA 11 - Jcv<f>'1 ( </>'? + <f>'l) (9 .96) 

which yields the vertices 

(xi) </>'1 ¢2A-vertex 

-vertex 

AA</><f>-vertex 

¢>¢>¢>-vertices 
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This class of gauges, called the Rcgauge (Fujikawa, Lee, and Sanda 1972; 
Yao 1973), is characterized by a gauge parameter e. For any finite values of e 
the vector boson propagator has the asymptotic behaviour 

A,,.(k) --+ O(k- 2 ) as k --+ oo. 

Hence, from the fact that the coupling constants in the interaction 
Lagrangian have dimension 0 or 1 in units of mass, the theory is 
renormalizable by power counting. For example the particular choice e = 1 
leads to the propagator form 

•A (k) -I9µv 
ILlµv = k2 M2 . - + 18 

On the other hand in the limit e --+ oo, the propagator for the </>2-field (ix) 
vanishes and the would-be-Goldstone boson decouples. The vector meson 
propagator (x) reduces to the standard form for a massive spin-1 particle 
(9.92). Thus we recover the unitary gauge where there are no unphysical 
fields. 

For any finite values of e we have the unphysical singularities in the </>2-
propagator (ix) at k2 = eM2 and in the gauge boson propagator (x) also at 
k 2 = eM2 • In order to preserve unitarity, these unphysical poles must cancel 
in the S-matrix element involving only physical particles: A,, and</>;. This is 
indeed the case. We can illustrate this with the following example (Fujikawa 
et al. 1972). For the process 

</>'1(k1) + </>;(k2)--+ A(k3 ) + A(k4 ), 

among the tree-level diagrams, we have those in Fig. 9.3 (as well as those with 
the final A-lines crossed). Fig. 9.3(a) due to A-exchange is given by 

iT(A) = i;ll(k3)(2ig2v)2e•(k4)(-i)[g,,.q-; + J 
At the unphysical pole q2 = eM2 , it may be written as 

4· 2 

= q2-_ [k1,,e,,(k3)][k2.e•(k4)]. 

But the diagram in Fig. 9.3(b) due to </>2-exchange contributes as 

iT<4>2l = i;ll(k3)g(k1 + q),,e•(k4)g(k2 - q). q2 _ 1eM2 

4ig2 

q2 _ eM2 [k1,,e,,(k3)][k2.e•(k4 )] 

(9.97) 
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which will cancel the unphysical pole due to A-exchange in (9.97). This type 
of cancellation of unphysical poles is very general and can be proven to all 
orders in perturbation theory by using the generalized Ward identities which 
are a consequence of the gauge invariance of the theory. In practice a good 
check on the gauge invariance of a calculation of some physical S-matrix 
element is the disappearance of the arbitrary in the final result. 
An example of such an gauge calculation will be given in §13.3. 

The generalization to non-Abelian symmetries is straightforward. For 
example, the corresponding gauge-fixing term in the Lagrangian for the 
SU(2) example with complex doublet </> will be 

!l'gr = - [aµAµ - <<f>>b </>' - </>'t <<f>>o) J · (9.98) 

The Rcgauge Feynman rule for the SU(2) x U(l) standard theory of the 
electroweak interaction is given in Appendix B. · 

9.3 The Slavnov-Taylor identities 

Having outlined the quantization procedure and Feynman rules for gauge 
theories in §§9.1 and 9.2, we can proceed to make perturbative calculations. 
The regularization and renormalization procedure reviewed in Chapter 2 can 
be applied. From the Feynman rules of §9.2 we see that all couplings are 
dimensionless and that the high-energy behaviour of the propagators is such 
that the theory should be renormalizable by power counting. The divergent 
higher-order diagrams can be regularized by the dimension (d) continuation 
scheme. We can thus identify the appropriate counterterms to be inserted in 
the Lagrangian. They are of the same form as those in the original 
Lagrangian but are multiplied by coefficients which diverge in the limit 
E = (4 - d) 0. After the addition of these counterterms, the resultant 
Lagrangian will generate, to all orders, Green's functions that are finite when 
E 0. In practice, it is a very complicated programme. The resurgence of 
field theoretical studies of particle interactions in recent years was to a large 
extent brought about by 't Hooft's proof (197la,b) that non-Abelian gauge 
theory is renormalizable, and that renormalizability is not spoiled even if the 
gauge symmetry is spontaneously broken. A detailed discussion of gauge 
theory renormalization (Lee and Zinn-Justin 1972, 1973) is beyond the scope 
of this book. Here we only study the generalized Ward identities of the 
Yang-Mills theory, sometimes referred to in the literature as the Slavnov 
(1972) and Taylor (1971) identities, which play an important role in the 
renormalization programme. 

The Ward identities are relations among different Green's functions. They 
reflect the theory's (nontrivial) symmetry (here the gauge invariance of the 
original action). These relations are important to the renormalization 
programme as they restrict the number of independent ultraviolet diver­
gences to ensure that gauge-noninvariant counterterms are absent. Recall 
that in the simple Abelian gauge theory of QED we have, because of the 
Ward identities, the equality Z 1 = Z2 which ensures that if two particles have 
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the same bare charges then they will also have the same renormalized 
charges. In non-Abelian theory we have many more renormalization 
constants and many more such equalities are required to ensure that the 
renormalized Lagrangian is still gauge invariant. Furthermore, as we shall 
presently illustrate, Ward identities ensure that all the unphysical singular­
ities are cancelled in the physical amplitudes. The formal derivation of the 
generalized Ward identities for non-Abelian gauge theory will be given at the 
end of the section. 

The Ward identities and unitarity 

Consider a simple SU(2) gauge theory with fermions (f) in a doublet 
representation. The requirement that the S-matrix must be unitary, 

sst = sts = 1 or I sacS6c =(jab 

implies that the scattering amplitude Tab, which is related to Sab by 

Sab = Dab+ i(2n)4 i5 4 (pa - Pb)Tab' 

will satisfy the relation 

1 '\' 4 4 Im Tab = - L., Tac T'tc(2n) 0 (Pa - Pc)· 
2 c 

(9.99) 

(9.100) 

In other words, the requirement that the S-matrix must be unitary implies 
that the imaginary part of the scattering amplitude Tab is directly related to a 
sum over products of matrix elements connecting the initial and final states 
to all physical states with the same energy-momentum as the initial and final 
states. For our calculation we shall consider the fermion and anti-fermion 
scattering amplitude T(ff Tf) with the intermediate states being the two 
gauge boson states (see, for example, Feynman 1977; Aitchison and Hey 
1982). This is represented schematically in Fig. 9 .4. 

Al f A 
(a) (b) 

FIG. 9.4. The unitarity condition relates (a) the absorptive part of the fT-> fT amplitude to (b) 
the sum of the squared amplitude for fT-> AA in the physical region of two gauge bosons. 

The imaginary part of the scattering amplitude on the left-hand side of eqn 
(9 .100) can be calculated by replacing the propagators in the intermediate 
states by their imaginary parts and multiplying them by the on-shell 
scattering amplitudes T(ff and T*(AA (Cutkosky 1960). 

For the vector boson propagator (i) of §9.2 we take the 't Hooft-Feynman 
gauge with the gauge parameter = 1, 

(9.101) 
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It has the imaginary part 

(9.102) 

where w = lkl. Similarly the imaginary part of the ghost propagator (ii) of 
§9.2 is 

(9.103) 

The step functions in (9.102) and (9.103) have the effect of constraining the 
intermediate gauge particle states and ghost states to the same physical 
region. The unitarity condition for the fourth-order amplitude then reads 

= 1 f dp Tab Tab* pµ,µ,'(k )Pvv'(k ) 2 2 µ,v µ,'v' 1 2 (9.104) 

where and sab are the ff-+ and ff-+ catcb amplitudes where A: 
and ca are the gauge and ghost fields, respectively. The dp2 integration is over 
the two (massless)-particle phase space. The P,,.s are polarization sums of 
gauge particles 

pµ,µ,'(k 1) = L e't(k1, a) 
a= 1,2 

pv•'(k2 ) = L e2(k2 , a)er(k2 , a) (9.105) 
a= 1,2 

where e't(k 1 , a) and ei(k2 , a) are polarization four-vectors of the two gauge 
particles with momenta k1 and k 2 respectively. 

We note that in this case the left-hand side of (9.104) receives a 
contribution coming from the ghost fields while the right-hand side does not 
because ghosts are not physical states. This is the feature that makes the 
demonstration of the unitarity relation nontrivial. As we shall see, what 
ultimately allows the unitarity relation to hold is that the polarization sum 
pµ,v in (9. I 05) is not just gll• and the effect of the ghost fields is just to make up 
the difference. 

We shall carry out the lowest nontrivial order calculation as in eqn 
(9.104). The imaginary part of the amplitude fT-+ fT of eqn (9.100) (the cut­
diagrams of Fig. 9.5) has been written via eqns (9.102) and (9.103) as 
squares of the ff-+ AA amplitude (Fig. 9.6) and of the fT-+ etc amplitude 
(Fig. 9.7). The factor of 1/2 on the left-hand side in (9.104) arises because 
there are nine diagrams when one squares the amplitude in Fig. 9.6, eight 
of them are just twice those of Fig. 9.5(a)-(d) and the ninth one corres­
ponds to Fig. 9.5(e) with the closed gauge boson loop having a symmetry 
factor of 1/2. The FP ghost field c behaves like a fermion with c i= ct; hence 
there is a minus sign and no symmetry factor in front of the SS* term. 
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I!IX 
I 

(a) (b) 

(C) (d) 

(e) 

FIG. 9.5. Fourth-order cut-diagrams for fT-+ fTwhere the intermediate-state particles are gauge 
particles and FP ghosts. 

FIG. 9.6. Diagrams for T:e where the final state is two gauge bosons. 

- - - ••• ,, •• /vvvv ... 
P2 • •• k2 

FIG. 9.7. Diagram for s•b where the final state is two FP ghosts. 

The lowest-order diagrams for and sab are shown in Figs. 9.6 and 9.7, 
respectively 

rab = µv 
!b 1 !a 

- ig2v(p 2)-2 Yv ( fc ) -2 YµU(P1) 
1'1 - 1 -m 

ra I rb 
- ig2iJ(p2) 2 Yµ (k1 - /'2) - m 2 y.u(p1) 

-g2eabc[(k1 - k2);.Uµv + (k1 + 2k2)µUv;. 

I r' 
- (2k1 + k2)vUµ;.] (ki + k 2)2 v(p2)2y"u(p1) (9.106) 

ab ·2abc l - r' 
S = -1g e (ki + k 2)2 v(p2) 2 k 1u(p1). (9.107) 
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Gauge-particle polarization. We now digress to a discussion on gauge­
particle polarization. First, concentrate on one of the particles. The gauge 
particle being massless has only two physical polarization states, eµ(k, u), 
u = 1, 2. Thus the three four-vectors kµ, eµ(k, 1), eµ(k, 2) do not completely 
span the four-dimensional space. We can furnish another vector '1µ such 
that 

'1 · e(k, u) = 0, O' = 1,2, 

where eµ(k, u) satisfies the orthogonality condition 

e(k, 1) · e(k, 2) = 0, 

and the transverse condition 

k ·e(k, u) = 0. 

(9.108) 

(9.109) 

(9.110) 

Since k 2 = 0 and '1µ cannot be proportional to kµ, we must have k · '1 =I= 0. By 
the usual procedure of establishing completeness relations, these orthogo­
nality conditions and the normalizations, e2(k, u) = -1, yield the polariz­
ation sum 

with 

(9.111) 

Clearly the extra term Qµv subtracts out the nontransverse polarization states. 
The task of checking the unitarity condition of (9.104) involves verifying that 
the FP ghost term precisely compensates for the extra projection terms in the 
polarization sum. Our calculation will be simplified if we adopt the 
convenient choice 172 = 0. Then the extra terms in the two polarization sums 
of (9.105) take on the forms 

Qµµ' (kl• '11) = + k'{ 17))/(k1 · 171) (9. l 12a) 

and 

(9.112b) 

Ward identities from lowest-order diagrams. To evaluate the right-hand 
side of (9.104) we need to study the contractions etc. The first two 
terms of (9.106) do not vanish 

. 2-( >("Cb 'ta (Jh - k1) + m k 
-lg V P2 TTYv (pl_ ki)2 _ m2 1 

"C0 "Cb (k1 - /12) + m ) 
+ 22k1 (k1 - Pi)2 - m2 Yv u(pi) 

(9.113) 
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where we have used 

(P1 + m)k1u(p1) = [2p1k1 - k 1(P1 - m)]u(pi) = (2p1ki)u(p1), 

etc. We make the parenthetical remark that, for the case of Abelian gauge 
theory (QED) in the covariant gauge, we would obtain a null result in this 
contraction because Babe = 0, yielding the familiar Ward identities: k'f. Tµv 
= Tµvk2 = 0. It follows immediately that for Abelian theory the Qµµ' and 
Qvv' terms in the polarization sums will not contribute, and unitarity can be 
maintained without the presence of the FP ghosts in closed loops. The last 
term in of (9.106), which is present only in non-Abelian theories, when 
contracted with k'f. yields 

-g2sabc[2k1 ·k2gvA + (k1 - k2)Aklv 

1 - LC A 
-(2k1 + k2)vku] (ki + k2)2 v(p2)2y u(p1) 

(9.114) 

(9.115) 

2 abc k2v -(p ) Lek ( ) 
- g e (k1 + k2)2 v 2 2 iU P1 . (9.116) 

Now (9.114) cancels (9.113), and the second term (9.115) vanishes because 
p1 + p2 = k1 + k2 and because of Dirac's equation. The third term (9.116) 
is proportional to the ghost amplitude sab of (9.107). Thus we have 

(9.117) 
Similarly, 

T abkv ·sabk 
µv 2 = -I 1µ- (9.118) 

From these relations we can also deduce k'f. = 0. These are examples of 
Ward identities for non-Abelian theories. (Their formal derivation will be 
presented later on.) 

It is then simple to check that the unitarity condition (9 .104) is indeed 
satisfied as the right-hand side reads 

J dp2{TµvT!·v{ -gµµ' + (k'f.rJ't' + kfl'/'t)(k 11'/ 1)- 1] 

X [ -gvv' + + k2'1'/2)(k21'f2)- l] 

= dp2{ TT*gg + [(k1 T112)(1'/1 T*k2) 

+ (I'/ 1Tk2)(k1T*112)J(k11'/1)- 1(k21'/2)- 1 

- [(k1T) '(11 1 T*) + (11 1T) '(k1T*)](k111 1)- 1 

-[(Tk2) · (T*112) + (T112) · (T*k2)J(k21'/2)- 1} 
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dp2{TT*gg + 2SS* - 2SS* - 2SS*} 

dp2{TT*gg - 2SS*} 

where we have used eqns (9 .117) and (9 .118). 
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(9.119) 

To summarize, the unitary condition (9.104) relates the left-hand side, 
where we have used the covariant gauge Feynman rules of §9.2 with their 
spurious states of longitudinal polarization and FP ghosts, to the right-hand 
side where only the physical transverse polarization states appear because of 
the (axial) gauge conditions of (9.108). The spurious states of covariant 
gauge on the left-hand side do cancel among themselves and in the axial 
gauge on the right-hand side there are only physical states. In short, the FP 
ghost fields are needed in order to maintain the unitarity condition. 

The BRS transformation and the Ward identities 

In non-Abelian gauge theories with their FP ghost terms, the most efficient 
way to derive the Ward identities is through the use of the BRS (Becchi, 
Rouet, and Stora 1974) generalized gauge transformations. Again consider 
simple SU(2) theory with a set of fermions in doublet representation 

where 

Dµt/I = (oµ - igA:ra)t/I 

pa = 0 Aa _ 0 Aa + geabc Ab Ac 
µv µ v v µ µ v 

with 

a= 1, 2, 3 and ya = r:a/2. 

The Lagrangian is invariant under the local gauge transformation 

bl/I= -iraOat/J 

bA: = eabc()b - ! a µ()a. 
g 

(9.120) 

(9.121) 

(9.122) 

(9.123) 

(9.124) 

(9.125) 

When we include the gauge-fixing term and the Faddeev-Popov ghost term 
according to (9.75) and (9.76), the effective Lagrangian density in the 
covariant gauge (9.70) becomes 

(9.126) 

with 

.Pgr = - (oµA:)2 (9.127) 

.PFPG = ic1Oµ[bab0µ - (9.128) 



274 Quantum gauge theories 9.3 

Instead of the complex ghost fields c and ct it turns out to be more convenient 
to work with real Grassmann fields p and a defined by 

Ca= (Pa+ iaa)/ .)2 

(9.129) 

Using the anticommutivity properties of the Grassmann fields p2 = a2 = 0, 
pa = - ap, etc. we have 

(9.130) 

with 

(9.131) 

Serr is not invariant under the general gauge transformation (eqns (9.124) and 
(9.125)) with an arbitrary ea, but it is invariant under the BRS transform­
ation 

bij; = igw(Taaa)ij; 

bpa = -iw 

baa = _ gwEabc ab ac /2 

(9.132a) 

(9.132b) 

(9.132c) 

(9.132d) 

where w is a space-time-independent anticommuting Grassmann variable 
and is the usual (covariant) gauge parameter. 

Serr is invariant under BRS transformations. As (9.132a) may be written as 

(9.133) 

the BRS transformation is in fact a gauge transformation with a specific 
choice of the gauge function 

(9.134) 

Thus the original action S = J d4x2" is unchanged under this transform­
ation, bS = 0. We need to show that, in eqn (9.67), b(Sgr + SFrG) = 0 also 

(oµA:) 2 + ioµpa(Dµaa)] = oµ(bAaµ) + ioµ(bpa)(Dµaa) 

+ iOµpa b(Dµaa). (9.135) 

Concentrate first on the change of the covariant derivative aa 

b(Dµaa) = b(oµaa - geabcab 

= -gweabc Oµ(abac)/2 

+ gEab"(wDµab)ac + -gWEcdeadae/2). (9.136) 

Terms linear in g and in g 2 separately cancel 

- gWEab"( 0 µab)ac + gweab"( 0 µab)ac = 0 (9.137) 
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and 
(9.138) 

The last combination vanishes because of the Jacobi identity. Thus 

b(Dµa 0 ) = 0. (9.139) 

Using (9.132a) and (9.132c) in (9.135) we then have, 

b{Sgr + SFPG) = f (a"A).) 8µ(wDµaa) d4x 

= f aµ[z (a" J d4x = o. (9.140) 

This completes the proof that Serr is invariant under the BRS generalized 
gauge transformation (9 .132). 

Derivation of the generalized Ward identities. The generalized Ward 
identities reflect the symmetry corresponding to the invariance of the 
effective action under the BRS transformation. To obtain these relations 
among Green's functions we study the generating functional of the Green's 
functions by introducing the sources Jµ, ex, p, i and x for the fields Aµ, p, a, 1/1, 
and t/1 respectively. It turns out that to obtain identities that are linear in 
derivatives with respect to the sources, it is convenient to also introduce the 
source terms Kµ, v, A., and X for the composite operators Dµa, ta x a, T ·at/I 
and I/IT ·a which appear in the BRS transformation (9.132). Thus the 
generating functional is of the form 

W[J, ex, p, x, i, K, v, A., X] 

= f [dAµ][dp][da][dt/l][df] exp{i f d4x(2err +I:)} (9.141) 

where the source term I: is given by 

I: = J µ · Aµ + ex · p + P · a + i.t/1 + f x + Kµ · Dµa 

+ -!v ·(a x a)+ IT· at/I + fT · aA.. (9.142) 

Since Serr is invariant under the BRS transformation, so is the generating 
functional of the Green's functions bW = 0, which implies 

f d4x f [dAµ] [dp][da][dt/l][df](bI:) 

x exp{i f d4x'[2etr(x') + I:{x')J} = 0 (9.143) 

where bI: is the infinitesimal change of the source term due to the BRS 
transformation 

bI: = Jµ · bAµ +ex· bp + P · ba + i bt/1 + bfx 

(9.144) 
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We shall first demonstrate that not only c5(Dµa) = 0 as in (9.139); the changes 
of the composite operators all vanish 

c5(aaab - abaa) 

= ( -gw/2)(eacd(jc(jd(jb + - ebcd(jc(jd(ja - eacd(jb(jc(jd) = 0 (9.145) 

and 

c5(T · a)t/J = T · c5at/J + T ·a c5t/J 

= T · ( wa x a )t/I - igw(T · a)(T · a)t/J = 0 (9.146) 

because 

(9.147) 

Thus eqn (9.143) may be written 

(JJ f d4x f [dAµ] ... [dt/i](Jµ. Dµa +IX. oµAµ/e - gp. CJ x a/2 

+ igif · at/J - igt[IT ·ax) exp(i f d4x'[2'.1T + I:]) = 0 (9.148) 

or 

(JJ f d4x(r _!____+IX.a aµ_!____ - !!_pa _i_ 
µ c5K: e c5J: 2 c5va 

+ iux :;, - ig :xx) W[J, .. . , XJ = o. (9.149) 

This equation is the generalized Ward identity which relates different types 
of Green's functions. To obtain relations for any particular set of Green's 
functions we simply differentiate (9 .149) with respect to the external source 
functions Jµ, rx., /3, ... and set them equal to zero afterwards. This is a rather 
tedious procedure. A simpler way to get the content of (9.149) for the Green's 
functions at hand is to use the fact that c5 W = 0 also implies that Green's 
functions are invariant under the BRS transformation (see, for example, 
Llewellyn Smith 1980). This can then be used to give relations that are 
equivalent to (9.149). For instance, 

(9.150) 

implies that 

(9.151) 

or 

(9.152) 
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Clearly, if we differentiate (9.149) with respect to 1:(x) and and set all 
source terms equal to zero, we also obtain (9.152) as the result. In practice 
this method used in (9.150) and (9.151) is quite direct. However all the 
information about gauge invariance is contained in eqn (9.149), which is 
more compact and is very useful for formal manipulation. 

Formal derivation of the Ward identity (eqn (9.117)). Finally we shall 
demonstrate that the Ward identities (9 .117) and (9 .118) used in proving 
unitarity in the illustrative example are contained in eqn (9.149). Consider 
the four-point function (OIT(pAvt/il/t)IO). Its invariance under the BRS 
transformation yields 

(OIT(bpAvt/il/t)IO) + (OIT(p <>Avt/il/t)IO) 

+ <OIT(pAv bt/il/t)IO) + <OIT(pAvt/i bl/t)IO) = 0. (9.153) 

But when the I/ts are on-shell the composite operators corresponding to bt/i 
and bl/t will not contribute because they do not have a one-particle pole. To 
see this more explicitly, 

(01 T(p(x1)Av(x2)t/i(x3) bl/l(x4 ))10) 

= igro(OI T(p(x1)Av(x2)t/i(x3)T · a(x4)l/t(x4))10) (9.154) 

which has the momentum space representation shown in Fig. 9.8. Clearly it 
does not have a one-particle pole in the variable k4 and will vanish when we 
put l/t on the mass shell by multiplying the inverse propagator (y · k4 - m) 

FIG. 9.8. 

with k4 -.. m. Therefore when all particles are on-shell, only those terms that 
are linear in the field will survive. Eqn (9 .153) reduces to the form 

+ w(OIT(pa ovubt/il/t)IO) = 0. 

For the choice of 't Hooft-Feynman gauge (9.101) with the gauge parameter 
e = 1, this corresponds to 

k"Tab ·sabk 1 llV = -1 2v• 

just the Ward identity of (9.117). 

A final comment. We have illustrated the importance of Ward identities in 
checking the proper cancellation of the unphysical singularities (the longitu­
dinal component of the gauge fields and FP ghosts) in the physical 
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amplitudes. This issue of unitarity is particularly relevant for the spon­
taneously broken gauge theories. In a class of gauge choices for such 
theories, one encounters further unphysical particles, the would-be­
Goldstone-bosons. One needs to check their decoupling by using Ward 
identities. Thus we must be sure that Ward identities are satisfied to all orders 
in perturbation theory. Since they are reflections of the theory's symmetries, 
it is important that we adopt regularization procedures that respect these 
symmetries. One of the virtues of the dimensional regularization scheme is 
that it clearly preserves invariance under the BRS transformation-hence its 
consequence, the generalized Ward identities. However, as we studied in §6.2 
the validity of certain axial-vector-current Ward identities is not automatic 
even after the theory is regularized symmetrically. Thus for theories with 
fermions one must check that the theory is free of the ABJ anomaly which 
would spoil the renormalizability of the theory. 



10 Quantum chromodynamics 

HlsTORICALL v the first successful application of the Yang-Mills theory was 
the unification of the weak and electromagnetic interactions (see Chapter l l). 
We choose to present first, however, the gauge theory of the strong 
interaction, quantum chromodynamics (QCD), since the basic structure of 
this theory is a somewhat simpler introduction to the subject as it does not 
involve spontaneous breaking of the gauge symmetry. 

QCD represents a remarkable synthesis of the various ideas we have 
developed about hadronic physics: quarks, partons, colour, current algebra, 
etc. The simple quark model was initially developed in early- l 960s to account 
for the regularities observed in the hadron spectrum, with hadrons inter­
preted as bound states of localized but essentially noninteracting quarks 
(§4.4). This view of quarks as the fundamental constituents became more 
plausible as relations abstracted from the quantum field theory of quarks, i.e. 
the algebra of quark currents and their divergences were successfully applied 
in the late 1960s (Chapter 5). It was also gradually realized that the above 
picture needed to be augmented with quarks having a hidden three-valued 
quantum number called colour. Then came a series of important experi­
mental measurements, starting with the ones performed by the SLAC-MIT 
group at the end of the decade, on deep inelastic lepton-nucleon scatterings. 
The cross-sections were revealed to satisfy Bjorken scaling which could be 
successfully interpreted by Feynman's parton model (Chapter 7). The 
significance of scaling and the parton model picture is that although the 
hadron constituents (quarks) are not produced as free particles in the final 
states of deep inelastic scatterings, they behave as if they were weakly bound 
inside the target nucleon. As we shall see, all these features can be elegantly 
combined in the theory of QCD. 

The property of QCD that led directly to its discovery in 1973 as a 
candidate theory of the strong interaction is asymptotic freedom, i.e. 
coupling strength decreases at short distances. In this chapter we shall 
concentrate mainly on the short-distance properties where perturbative QCD 
is applicable. Only in the last section will we touch upon the long-distance 
feature of quark confinement as analysed by the non-perturbative method of 
lattice gauge theory. It is a remarkable fact that here we have a theory of the 
strong interaction in which we are reasonably confident as to the correctness 
of the Lagrangian, but do nut know how to deduce many of its dynamical 
implications for low energy-momentum scales: confinement, spontaneous 
breaking of chiral symmetries, and the hadron mass spectrum. It should be 
pointed out that all indications are that the assumed properties are indeed 
consistent with QCD. 
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10.1 The discovery of asymptotic freedom 

Gross and Wilczek (1973a,b) and Politzer (1973, 1974) discovered that, for 
non-Abelian gauge theories, the origin of the coupling constant is a stable 
fixed point in the deep Euclidean limit. ('t Hooft (1972) also noticed that 
in Yang-Mills theories the slope of the renormalization group /3-function at 
the origin is negative.) Theories having this property are referred to as being 
asymptotically free. This is remarkable as we shall show that no renor­
malizable field theory can be asymptotically free without non-Abelian gauge 
fields (Zee 1973a; Coleman and Gross 1973). Thus in Yang-Mills theories, 
contrary to the case in all other field theories, the coupling constant 
decreases at short distances. In the familiar Abelian theory of QED, one 
has an intuitive understanding of the decrease of the effective coupling 
constant at long distance as being due to dielectric screening by the cloud 
of virtual electron-positron pairs. Thus, for non-Abelian gauge theories, 
we have to understand an anti-screening effect. As we shall discuss, the cloud 
of virtual gauge particles, which are bosons carrying (colour) charge and 
spin, makes the Yang-Mills vacuum behave like a paramagnetic substance 
and, through relativistic invariance, this implies that the vacuum anti­
screens charges. 

Theories without Yang-Mills fields are not asymptotically free 

Let us recapitulate some of the relevant points made in Chapter 3 where the 
renormalization group was illustrated with the simple ).¢4 theory 

(10.1) 

When all energy-momenta are scaled up ap;, a oo (the deep Euclidean 
region), apart from trivial dimension factors, the Green's function depends 
on t = In a only through the effective coupling constant I()., t), which is in 
turn governed by the renormalization group /3-function (see eqns (3.104) and 
(3.105)) 

dI _ 
di= /J(A). (10.2) 

We are interested in the slope of the /3-function at the origin). = 0 because, 
for small couplings, P can be calculated perturbatively and because the sign 
of the slope determines whether ). = 0 is an ultraviolet or an infrared fixed 
point. If the theory is asymptotically free with ). = 0 being a ultraviolet 
fixed point, we recover the canonical (i.e. free field theory) light cone 
singularities and the parton model with its free quarks at short distances as 
given in Chapter 7. 

The /3-function can be calculated as follows. In a massless theory, the only 
scale parameter µ appears in the subtraction point which is needed to define 
all the renormalized quantities. From eqns (3.32) or (3. 71), the /3-function in 
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this case is given by 

dA. 
/J(A.) = µ dµ 
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(10.3) 

where A. is the renormalized coupling constant related to the bare coupling as 
given by eqn (2.50) 

A.= 

Zq, is the scalar wavefunction renormalization constant, 

cf>= z;112c/>o 

(10.4) 

(10.5) 

or, equivalently, is defined ill terms of the unrenormalized scalar propagator 
at the subtraction point chosen to be, for example, some Euclidean point 
p2 = -µ2, 

(10.6) 

Similarly, the vertex renormalization constant z,_ can be defined through the 
unrenormalized four-point vertex function as in eqn (2.38) 

r<4l(p1,P2,p3,p4) I = -iA.o/Z,_. (10.7) 
pl= -µ2 

The one-loop contributions to the two-point and four-point Green's 
functions and hence to Zq, and z,_ are shown in Fig. 10.1. Thus the 
renormalization constants are functions of the bare coupling A.0 and the ratio 
of the cut-off A to the subtraction parameterµ. 

,.-\ 
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FIG. 10.1. Lowest-order scalar meson (a) self-energy and (b) vertex radiative correction graphs. 

To obtain the /J-function as in (10.3) one merely has to calculate the 
divergent part of the Zs and differentiate with respect to the cut-off (see eqn 
(3.44)) 

a 
fJ = -A. 0 In A [2 ln Zq,(A.0 , A/µ) - In Z,_(A.0 , A/µ)]. (10.8) 

The one-loop contribution to Zq, in Fig. 10.l(a) vanishes (Zq, = 1); the 
only nontrivial diagrams are those in Fig. 10.l(b) (see eqn (3.47)). We obtain 

+322 
/J(A.) = -1-2 + O(A.3). 

6n 
(10.9) 



282 Quantum chromodynamics 10.1 

As the A.< 0 region is not allowed (since the Hamiltonian is unbounded from 
below), the positive slope for A. > 0 means that the simple A.¢4 theory of 
(I0.1) does not exhibit free-field asymptotic behaviour at large Euclidean 
momenta. This situation actually holds for the entire class of scalar field 
theories with internal symmetries, i.e. eqn (IO.I) is generalized to 

<P --t cP; 

AcP4 --t AijklcPicP jcPkcPI 

where A.iikl is symmetric in its indices. The scalar fields ¢,(x) belong to some 
(possibly reducible) representation of the symmetry group and in every term 
all the internal symmetry indices are contracted. Now we have a whole set of 
quartic couplings, satisfying equations generalized from (10.9). 

dA.ijkl + 1 
{3ijkl = df = 16n2 [A.ijmnAmnkl + AikmnAmnjl + AilmnAmnjk]. (I0.10) 

The theory is still not asymptotically free because one can easily find that 
there are {3-functions having positive slopes. For example, 

(IO.II) 

We now consider theories with scalar bosons and fermions interacting 
through the renormalizable Yukawa coupling 

ft'= ifi(iyµ aµ - m"')t/I + t[(oµ</J) 2 - - A.¢4 + pifit/J<P. (I0.12) 

We have two coupled renormalization group equations corresponding to the 
graphs in Figs I0.2 and I0.3 

dA. , 2 2 4 
{3;. = dt = A;.11. + B;_),p + C;.p (I0.14) 

(I0.15) 

It should be noted that the lowest-order terms are not necessarily all single­
loop diagrams. In particular, Fig. 10.3(b) is a two-loop term. However, in 

' / ', // ' ...... -, / 
)( +2 others 

/ ....... _,,,. ' 
/ ' 

/ ' 
/ ' 

' / 'o / ' / )< +3 others 
/ ' 

/ ' 
/ ', 

' / 'n/ +1other 

/ ' 
/ ' 

FIG. 10.2. Lowest-order contribution to the A.-coupling renormalization constant. 

)---- )---- )---- >--r----
(a) (b) 

FIG. 10.3. Lowest-order contribution to the Yukawa coupling renormalization constant. 
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order to have a negative /3,_ in eqn (10.14) with A,_ positive, we must have p2 
at least of the order of ..1, hence the A.2 p term of Fig. 10.3(b) may be dropped 
when compared to the p 3 term of Fig. 10.3(a) which yields the result 

+l 1 1 3 0 
/3p = 16n2 (2 + 2 + 2 + 2)p > . (10.16) 

Hence the theory ( 10.12) is also not asymptotically free. Again this statement 
can be generalized to the entire class of renormalizable theories with spin-0 
and spin-1/2 fields having all possible internal symmetries. Thus we have the 
interaction Lagrange density 

(10.17) 

The combination = + satisfies the renormalization group 
equation generalized from (10.16) as 

/3P = = 16ln2 [2pipitpi +!pipit pi+ !pipipit 

(10.18) 

repeated indices being summed over. We have used the property that, when 
a (massless) fermion propagator is moved over, the gamma matrix com­
mutation is such that one has p --+ pt. From this, we get 

_!(tr ptipi) = _l_ [2(tr pit pi pit pi) 
dt 8n2 

pitpipitpi) pitpipipit) 
2 2 

+ Re(tr pitpi)(tr pitpi) +(tr pitpi)(tr pipit)]. (10.19) 

The second and third terms on the right-hand side are positive definite since 
they are traces of the square of hermitian matrices (pi /t). The fourth term is 
less than the last term because 

Hence, 

to reach the last line we have written out the trace terms explicitly and 
relabelled some of their indices. Thus all renormalizable theories with only 
spin-0 and spin-1/2 fields are not asymptotically free. Finally we have the 
familiar result that the QED /3-function has a positive slope at the origin of 
coupling space, since 

(10.22) 
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where we have used the Ward identity Z 1 = Z2 and Z 3 is the photon 
wavefunction renormalization constant that can be calculated from the 
vacuum polarization diagram Fig. 10.4(a) 

e1 
Z 3 = 1 - 6n2 ln(A/µ). (10.23) 

(a) 

(b) 

FIG. 10.4. 

Thus, just as in (10.8), we have 

/3 __ o[ln Zil2 (e0 , A/µ)] 
e - e a ln A 

+e3 
= 12n2 + O(es). (10.24) 

Similarly, for scalar QED with Z 3 receiving a contribution from the charged 
scalar meson loop diagram of Fig. 10.4(b), we obtain 

+e3 
f3e = 48n2 + O(es). (10.25) 

Non-Abelian gauge theories are asymptotically free 

The general Yang-Mills theory has the Lagrange density given in §8. l 

ft' = -} tr(FµvF'") 

Fµv = oµAv - ovAµ - ig[Aµ, Av] 

where 

Aµ= Ta A: 

is a matrix of hermitian vector fields with 

[Ta, Tb] = iCab7c 

tr( ra Tb) = t (jab. 

(10.26) 

(10.27) 

To quantize the theory we must fix the gauge. In §9.2 the covariant-gauge 
Feynman rules are given, with its gauge-fixing terms and the Faddeev-Popov 
ghosts. We have in particular the gauge boson propagator in the form 

(jab 
= i[ -gµv + (1 - e)kµk)k 2] -k2 . 

+ie 
(10.28) 
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where e is the gauge parameter. The {3-function can then be calculated much 
in the same manner as in all the other renormalizable theories considered 
above. If we choose to define the gauge coupling through the vector three­
point function according to rule (iii) of §9.2 

k2, k3) = igC0 1n:[gµvCk1 - k2);. + g,;.(k2 - k3)µ 

+ g;.µ(k 3 - k 1).]. (10.29) 

Then the renormalized coupling constant is related to the bare coupling as 

g = (10.30) 

where ZA is the vector wavefuntion renormalization constant 

A = z-112A µ A 0µ (10.31) 

or, equivalently, is defined in terms of the unrenormalized (transverse) vector 
propagator at the (Euclidean) subtraction point k2 = - µ2 

[ . 11.ab(k)]'' I ·z ( kµk•) s:ab; 2 lLlµv 0 k2=-µ2=l A Uµ,.+7 U µ · (10.32) 

Similarly, the vertex renormalization constant Z 9 can be defined through the 
unrenormalized three-point vertex (10.29) 

k2, k3)Jo = Z; 1g0Cabc[gµ,(k1 - k2)A + g,;.(k2 - k3)µ 

+ U;.µ(k3 - k1).] at kf = - µ2. (10.33) 

One may find it helpful to compare eqns (10.30), (10.31), (10.32), and 
(10.33) to their ).</J4 counterparts in eqns (2.40), (2.23), (2.21), and (2.38). 
The one-loop contributions to ZA and Z 9 are shown in Figs. 10.5 and 10.6, 
respectively. After a tedious calculation one finds 

(10.34) 

· ...... ·· 
FIG. 10.5. Vector self-energy graphs (the dotted loop is that of the FP ghosts). 

. 
......... ........ . 

/·: .......... 
FIG. 10.6. Trilinear gauge-boson vertex correction. 
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and 

(17 Zg = 1 + l6n2 6 -2 t2(V) In A/µ (10.35) 

where 

(10.36) 

As we have seen in §4.1 the structure constants cabc themselves form the 
adjoint representation matrix 

cabc = [Ta(V)]bc 

and (10.36) may be written as 

ti(V) t>ab = tr{Ta(V)Tb(V)}. 

(10.37) 

(10.38) 

We have labelled these quantities with V, for vector, since the vector gauge 
fields A: belong to the adjoint representation of the group. Hence (10.38) 
shows that ti(V) can be interpreted as the sum of the squared symmetry 
charges of the vector gauge particles. Also from the simple property of the 
SU(n) adjoint representation discussed in §4.1, we obtain by using eqns (4.21) 
and (4.134) 

t 2(V) = n for SU(n). (10.39) 

From (10.34) and (10.35) we immediately obtain the famous result 

f3 = 
g olnA 2 g 

g3 11 
= - l6n2 3 t2(V) < 0 (10.40) 

which, at this one-loop level, turns out to be independent of the gauge 
parameter If the gauge fields are coupled to fermions and scalar mesons 
with representation matrices Ta(F) and Ta(S), respectively, then we can make 
use of results (10.24) and (10.25) directly 

g3 
[ 11 4 1 J /3g = 16n2 -3 t2(V) + 3 t2(F) +) t2(S) (10.41) 

where 

and 

(10.42) 

are the sums of the squared symmetry charges for the fermions and scalars, 
respectively. For fermions and scalars in the fundamental representation of 
SU(n), we have Ta(S) = Ta(F) = ;..a;2 and 

ti(F) = t2(S) = 1/2. (10.43) 
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If one uses the two component fermion fields or real scalars the coefficient of 
ti(F) and t2 (S) in (10.41) should have an additional factor of 1/2. 

The Yang-Mills vacuum as a paramagnetic medium 

One of the most remarkable features of quantum field theory is that Yang­
Mills theories are the only asymptotically free theories in four dimensions. As 
it turns out there is a simple physical explanation of this phenomenon 
(Nielsen 1981; Hughes 1981). This explanation ultimately has to do with the 
fact that non-Abelian gauge fields have spin and obey Bose-Einstein statistics 
and, unlike the Abelian photon, they carry the gauge symmetry charges 
themselves. 

As we have mentioned at the beginning of this section, asymptotic freedom 
means that the vacuum anti-shields charges, i.e. it acts like a dielectric 
medium with dielectric constant 

E < 1. (10.44) 

Also the quantum field theory vacuum differs from the ordinary polarizable 
medium on a very important point: it is relativistically invariant. This means 
that the (relative) magnetic permeabilityµ is related to the dielectric constant 
by 

µi; = 1 (10.45) 

so that the velocity of light is l in the vacuum. This allows us to translate the 
electric responses into its magnetic responses, which have two elements. 

(1) Landau diamagnetism (µ < 1). The charged particles in the medium, in 
response to the external magnetic field, produce a current which itself induces 
a magnetic field opposing the original field. 

(2) Pauli paramagnetism (µ > 1 ). If the particles have magnetic moments 
they tend to align with the external field. 

It turns out to be easier to visualize the magnetic response of the Yang-Mills 
vacuum; the anti-screening of (10.44) means 

µ > 1. 

The Yang-Mills vacuum acts like a paramagnetic medium. We note that 
such a correspondence does not exist for ordinary polarizable material which 
can, for example, have both the properties of (i; > 1) dielectric screening and 
of (µ > l) paramagnetism. 

It should be emphasized that the electromagnetic terminology is used here 
only as an analogue to ordinary U(l) gauge theory. Thus by charge we really 
mean the gauge symmetry charges. For example, in the SU(3) gauge theory 
of QCD, they are the colour charges; by electric and magnetic responses we 
mean the colour electric and magnetic responses, and so on. When we say 
that the Yang-Mills fields ofQCD (gluons) carry charge, magnetic moment, 
electric quadrupole moment, etc. we mean they carry colour charge, colour 
magnetic moment, etc. (In actual fact gluons are electrically neutral.) What 
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are then the charge, magnetic moment, etc. of the Yang-Mills particle? 
Consider the simple SU(2) theory. It has a trilinear gauge field coupling given 
by the Feynman rule (iii) of §9.2. 

k2, k3) = ieabc[gµv(k1 - k2);. + 9v;.(k2 - k3)µ 

(10.46) 

which can be thought of as the vertex of a charged spin-l particle and a 
photon. For the purpose of this interpretation we assume that the SU(2) 
gauge fields A: have the correspondence 

A! -+ Aµ corresponds to the photon field; 

_l_ (A; -+ corresponds to the charged spin-1 fields with mass M. 
,J2 (l0.47) 

Then the Babe factor gives 

(l 0.48) 

We pick the momentum configuration such that (recall that all k;s are 
supposed to point into the vertex) 

( M, ( -M, k 3 (0, k) 

for M » lkl; the polarization vectors for the charged particles are 

( k · e ) (k · e' ) 
= - 2M, e ' = 2M , e' 

so that e1 ·k1 e2 ·k2 0. After contracting e2 and A;. into (10.46) we 
obtain 

= 2M[ge·e'A0 + !t(e x e')"(k x A)]+ O(k2 ). 

(l 0.49) 

Thus we can identify g with the electric charge and g/M with the magnetic 
moment corresponding to a gyromagnetic ratio of 

Yv = 2. (10.50) 

We can calculate the vacuum energy density in the presence of an external 
magnetic field 

l 2 
Uo = -Bext· 

2µ 
(10.51) 

From this the magnetic permeabilityµ can be extracted. Nielsen (1981) and 
Hughes (1981) have shown that, for µ = 1 + x where x is the magnetic 
susceptibility, 

(10.52) 



10.1 The discovery of asymptotic freedom 289 

where q, y, and s3 are the charge, gyromagnetic ratio, and the projection of 
spin in the direction of the external magnetic field, respectively. The two 
terms correspond to diamagnetic and paramagnetic responses, respectively. 
The factor ( - 1 )2" in front means that there is an extra minus sign for a 
fermion system. When normal-ordering the creation and annihilation 
operators in the Hamiltonian to isolate the vacuum energy term, the 
anticommutation relations of the fermion fields give rise to this extra minus 
sign. (This is the same reason that a fermion loop in Feynman graphs is 
accompanied by a minus sign.) As a simple check one sees that for fermion 
(YF =' 2) 

(10.53) 

That the susceptibility is negative means that the system is diamagnetic 
(µF < 1) hence has the property of dielectric screening BF> 1 as in QED. 
Also note the well-known ratio of 3 for the relative paramagnetic and 
diamagnetic contributions. Keeping in mind that the massless vector gauge 
particles have only two helicity states s3 = ±I, we obtain, for the vector, 
fermion, and scalar particles 

(10.54) 

To convert these to the gauge charges, the squared charge factors are 
identified with the trace terms of (10.38) and (10.42) 

!t2(V) 

ti(F) 

ti(S). (10.55) 

We then obtain a result identical to (10.41). The factor 1/2 in (10.55) reflects 
the fact that in gauge theories the vector particles have been represented by 
hermitian fields and each complex charged field actually has two real 
components (see, for example, eqn (10.47)). 

Gauge theories with scalar mesons 

We now consider the possibility of giving all Yang-Mills vector bosons 
masses through the Higgs mechanism (as in §8.3) without destroying 
asymptotic freedom (Gross and Wilczek 1973b; Cheng, Eichten, and Li 
1974). This appears to be very difficult. The problem has to do with the 
quartic couplings of the Higgs scalars which tend to be ultraviolet unstable. 
The modification of eqn (10.10) involves adding contributions from the 
diagrams in Fig. 10.7 

1 2 4 
- 1611:2 [12si(S)g A.iikl - 3Aiik1g ] (10.56) 

,, 
/ ' / ,,<' + 3 other diagrams + 2 other diagrams 

// ' 
,/ ', / ', ,, ', 

FIG. 10.7. 



290 Quantum chromodynamics 10.1 

where 

S2(S) bij = (T"(S)T"(S))ij 

Aiikt = {T"(S), Tb(S)};i{T"(S), Tb(S)h1 

+ two other terms by permutation. (10.57) 

Thus basically we have renormalization group equations of the form 

dg2 - -b 4 
dt - 0g b0 > 0 

dA. dt = AA.2 + B'A.g2 + Cg4. 

Introducing the variable v = A./g2 , eqn (10.58) becomes 

1 dv 
2-d = Av2 + Bv + C = P. 
g t 

(10.58) 

(10.59) 

with B = B' - b0 • Asymptotic freedom requires that g _.. 0 and A. _.. 0, i.e. v 
approaches a fixed point in the ultraviolet limit. Since the right-hand side of 
(10.59) is a second-order polynomial, the condition for P. = 0 to have real 
roots is simply 

(10.60) 

Let us call these two roots v1 and v2 with v2 > v1 . Since the slopes at these 
two points 

and 

dP. I -d = A(v2 - vi)> 0, 
v •2 

(10.61) 

the smaller v1 is a stable fixed point. But A. and v1 are required to remain 
positive (so that the classical potential is bound from below); this requires 

B<O (10.62) 

because both A and Care positive and v1 = (-B - .J!i)/4A < -B/2A. In 
all the cases examined, these asymptotic conditions (eqns (10.60) and (10.62)) 
always imply that only a small number of scalar mesons are allowed in the 
theory, too small a number to do the job of breaking down the gauge 
symmetry completely and giving all gauge bosons nonzero masses. This 
situation is not changed even in the presence of Yukawa couplings: their 
contributions to (10.58) are generally small. (An important exception is the 
supersymmetric theory.) Thus gauge symmetry is not broken spontaneously 
in an asymptotically free theory and this suggests that one should work with 
such theories omitting elementary scalars altogether. 
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Product groups 

Up to this point we have restricted our considerations to simpe Lie groups, 
i.e. theories with only one gauge coupling constant. The more general case 
involves direct products of simple groups G1 x G2 x ... Gn, each with its 
own coupling constants g;. To lowest-order in g[ the /3-functions are 
independent of each other and, therefore, the results can be deduced directly 
from those for simple groups. In particular, if one of these factors, G;, is an 
Abelian U(l) group, the associated gauge couplings will not be driven to zero 
and the theory is not asymptotically free. 

10.2 The OCD Lagrangian and the symmetries of the strong 
interaction 

The success of the quark-parton model in describing Bjorken scaling as 
observed in deep inelastic lepton-hadron scattering clearly suggests that the 
field theory of the strong interaction should be asymptotically free so that the 
quark can interact weakly at short distances. We have shown in the last 
section that only Yang-Mills theories can exhibit free-field asymptotic 
behaviour at large Euclidean momenta. 

Which symmetry of the quark model should be gauged? We have already 
seen in §4.4 how, by postulating that quarks have a hidden three-valued 
quantum number called colour, one can overcome the paradoxes of the 
simple quark model. This idea of exact colour symmetry is strengthened by 
the agreement with experimental measurements of the anomaly calculation 
of the n°-+ 2y rate (§6.2) and of the parton-model calculation of cr(e+e­
-+ hadrons) (§7.2). Furthermore, since we also need to assume that only 
colour singlets are observable, it suggests that the forces between the 
coloured quarks must be colour-dependent. In fact a colour-independent 
strong interaction would imply the phenomenologically unacceptable result 
that every hadron should have degenerate partners having different colours. 
All this leads to the idea that it is the colour symmetry of the quark model 
that should be gauged. Thus, the strong interaction should be described by 
an SU(3) colour Yang-Mills theory with each flavour of quarks transform­
ing as the fundamental triplet representation. This, together with our 
requirement that the strong interaction theory be renormalizable, fixes 
(almost) completely the form of the Lagrangian. The theory is called 
quantum chromodynamics (Gross and Wilczek 1973a; Weinberg 1973b; 
Fritzsch, Gell-Mann, and Leutweyler 1973) with a Lagrangian usually 
written as 

where 

nr 

.!l'oco = GµvGµv +I ch(iyµDµ - mk)qk 
k 

Gµv = aµAv - avAµ - ig[Aµ, Av] 

Dµqk =caµ - igAµ)qk 
8 

Aµ= L 
a=l 

(I 0.63) 

(10.64) 
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where the A.as are the Gell-Mann matrices that satisfy the SU(3) commutation 
relations 

[Aa Ab] = iijabc A,< 
2' 2 2 

and the normalization condition 

(10.65) 

(10.66) 

The strong interaction gauge fields A: are called gluons and the qks are the 
quark fields with the subscript k being the flavour index k = 1, 2, ... , nr (nr is 
the number of quark flavours) 

qk: u, d, s, c, b, ... (10.67) 

In (10.63) we have left out a possible SU(3)-invariant and dimension-4 
renormalizable term 

tr G (J1tv with (J1tv = lc,l'VAPG 
µv 2 ).p• 

Such a term can be written as the divergence of a current tr GG ,..., (}1' Kl' hence 
it contributes only as a surface term in the action. Making the usual 
assumption of fields vanishing at infinity A: --+ 0, one is normally justified in 
discarding this term. As it turns out, for a class of gauge fields with nontrivial 
topological properties, this justification may not hold. Experimentally we 
know that, if the tr GG term exists in the QCD Lagrangian, it must be 
multiplied by an extremely small coefficient. For the time being we shall 
decree its absence and shall take up this whole area of instanton problems in 
Chapter 16. 

The QCD Lagrangian (10.63) clearly possesses all the well-known strong­
interaction symmetries. It conserves charge conjugation and parity. Because 
the gluons are flavour-independent it conserves strangeness, etc. In fact eqn 
(10.63) has all the flavour symmetries of a free quark model, particularly the 
SU(3) x SU(3) chiral symmetry, broken explicitly by the quark mass term, 
as discussed in Chapter 5 (see comments at the end of §5.5). If QCD dynamics 
is such that chiral symmetry is realized in the Goldstone mode then all the 
successes of PCAC and current algebra can be accounted for. 

Gauge invariance, renormalizability, and QCD symmetries 

It is important to realize that these symmetry properties are not put in eqn 
(10.63) by hand; they are the consequences of gauge invariance and 
renormalizability. In the following we shall show that (10.63) is equivalent to 
the most general renormalizable SU(3) Yang-Mills theory of quarks and 
gluons 

(10.68) 

where A, B, C, and Dare all hermitian matrices in the flavour space and Z is 
a constant. We can rewrite (10.68) in terms of the left-handed and right-



10.2 The QCD Lagrangian and the symmetries of the strong interaction 293 

handed quark fields 

qL = t(l - Ys)q, 

with the result 

2<0 ') = Ci.L(A + B)iyµDµqL + Ci.R(A - B)iyµDµqR 

z 
+ qL(C + iD)qR + Ci.R(C- iD)qL - 2 tr GG. (10.69) 

This can be transformed into eqn (10.63) by the following two steps. 

(1) We will first rescale the gluon field and gauge coupling using 

so that Z ._.. 1 in the gluon kinetic energy term without affecting the covariant 
derivatives of the quark fields. Then introduce new qL and qR quark fields so 
that the two independent matrices A + B and A - B both become unit 
matrices. Now the Lagrangian takes on the form 

where 

2(1) = Ci.LiyµDµqL + Ci.RiyµDµqR + Ci.LMqR + Ci.RMtqL - ! tr GG 

(10.70) 

M= C+iD (10.71) 

or, equivalently 

2<1 "> = qiyµDµq + q(C + iDy5 )q - ! tr GG. (10.72) 

We have not bothered to introduce new labels for the new fields and matrices. 
(2) We now make use of an important result of the linear algebra. (A 

proof of this theorem will be presented in §11.3.) It states that a general 
matrix such as M in (10. 71 ), which is neither diagonal nor symmetric, can 
always be diagonalized with positive eigenvalues by a bi-unitary transform­
ation. Thus, 

(10.73) 

where Sand Tare unitary matrices and Md is diagonal with positive elements 

(10.74) 

We see immediately that this allows us to transform 2<1> of (10.70) into the 
canonical form of (10.63). Thus, we can redefine the quark fields 

(10.75) 

so that the mass term in (10.72) is diagonalized and free ofy5 without at the 
same time introducing y5s into the Dµq terms. The physics that makes this 
possible is that strong interactions are mediated by flavour-neutral vector 
gluons. Had it not been for the flavour-independence of the colour gluon 
fields, we would not have the matrices A, B, C, and Din (10.68) to commute 
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with the generators of the gauge group; had it not been for the spin-I nature 
of the gluon, the symmetries of the strong interactions would be controlled 
by other terms besides the quark mass matrices. Thus this is another 
argument (besides the difficulties discussed in the last section on the Higgs 
mechanism in an asymptotically free theory) against the presence of 
elementary scalar fields in strong interaction theory. 

Two more general comments on QCD symmetries follow. 

(A) Chiral symmetries of QCD. We have already stated that, in the limit 
mu = md = m, = 0, .P0 c0 , like that of the free-quark model, is invariant 
under the chiral unitary transformations of eqns (5.39) and (5.47). In other 
words, in the absence of the quark mass matrix, the theory is invariant under 
the unitary transformations of (10.75), and we have a U(3)L x U(3)R 
symmetry. The diagonal subgroups SU(3) and U(l) are realized in the 
normal mode; i.e. the vacuum is also invariant under the U(3)L+R trans­
formations. The hadrons form degenerate SU(3) multiplets and baryon 
number is conserved. The remaining symmetries-the axial SU(3) and U(l) 
symmetries, corresponding to the U(3)L-R transformations-are not 
manifest in particle degeneracies. Since we are not using any elementary 
scalar fields in the theory, we must assume that the dynamics is such that the 
QCD vacuum breaks these axial symmetries. (Whether this actually takes 
place is a difficult dynamical problem that is still not completely settled yet; 
but all indications are that this indeed takes place according to our 
expectation.) The Goldstone theorem then informs us that there should be 
approximately massless pseudoscalar mesons in the hadron spectrum. Eight 
of them can indeed be identified readily 3 res, 4 Ks, and l 11. However, since 
we need to break an axial U(3) symmetry, we are still one pseudo-scalar 
short. This is the famous axial U(l) problem. Namely, in the massless limit 
QCD (in fact any quark model) is invariant under the phase rotation 

(10. 76) 

where we have the same e for all k, i.e. uL, dL, sL are multiplied by a common 
phase e-ie and uR, dR, sR by eie. This approximate symmetry is not observed 
in the strong interaction: it is not realized either in the normal or the 
Goldstone mode. The resolution of this U(l) problem will be discussed in 
Chapter 16 in connection with the instanton solutions of QCD mentioned at 
the beginning of this section. 

(B) Stability of QCD symmetries against weak radiative corrections. We 
now discuss briefly the problem of symmetry violation terms as induced by 
weak radiative corrections (Weinberg 1973b). Although the subject of gauge 
theories of electroweak interactions has not been introduced, we can still 
discuss this problem since we only need a few general properties of such 
theories. 

(i) The generators of the electroweak gauge group commute with all those 
of QCD, i.e. gluons are flavour-neutral and weak intermediate vector bosons 
(W-bosons) and currents are all colour singlets. 
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(ii) The weak interactions have an energy scale set by the W-boson masses 
Mw = 0(102 GeV). 

(iii) The weak gauge coupling constants are of order e and are related to 
the familiar weak Fermi constant by GF = O(oc/Ma,), where a= e2/4n is the 
fine structure constant. 

Knowing that weak couplings are O(e), a priori one would fear that weak 
radiative corrections would induce unacceptably large O(oc) violations of 
parity and strangeness conservations. However property (i) implies that these 
radiative corrections themselves are all invariant under SU(3)coiour· In 
particular the order a additions to the Lagrangian must be dimension-4 
operators; hence (as we have demonstrated above), with suitable re­
definitions of the gluon and quark fields, the Lagrangian can be restored to 
the canonical form of (10.63) with all its symmetries. Terms involving 
operators of dimension D > 4 will, by dimensional analysis, be multiplied by 
coefficients (Mw)-<D-4J_ For example, a term of the form qyµ(l - y5 )qqyµ 
(1 - y5 )q has D = 6; hence it must have a coefficient O(oc/Ma,) and, by 
property (iii), of order GF. 

Thus QCD has the attractive feature that in zeroth order it automatically 
possesses a set of global symmetries which match perfectly with the known 
strong-interaction symmetries and which are stable against weak radiative 
corrections. 

10.3 Renormalization group analysis of scaling and scaling 
violation 

For the QCD Lagrangian (10.63), the renormalization group P-function 
(eqn (10.41)) with ti(V) = 3, t2(F) = 1/2, and t2 (S) = 0 takes on the value 

-1 
pg= l6n2 (11 -1nr)g3 = -bg3 (10.77) 

where nr is the number of quark flavours. As one changes the momentum 
scale P;--+ A.p;, the effective gauge coupling g(g, t) obeys the equation 

with 

dg = -bg3 
dt 

t=lnA.. 

One can integrate eqn (10.78) to obtain 

2 
-2(t) - g 
g - 1 + 2bg2t 

(10.78) 

(10.79) 

(10.80) 

where g = g(g, 0). Thus for nr < 17, i.e. b > 0, the denominator of (10.80) 
cannot vanish. For large momenta A.p; with A.--+ oo, we have g(t)--+ 0 and 
asymptotic freedom. But we should note that the effective coupling decreases 
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to zero very slowly, as a logarithm, g,.., (2b In ;;r 1 • For convenience, we can 
choose the scaling parameter A. as the ratio of the momentum of interest Q to 
the subtraction scaleµ, i.e. A. 2 = Q2 / µ2 or t = ! ln Q2 / µ2. Then we can rewrite 
eqn (10.80) 

(Q2) 11.,(µ2) 
11., = 1 + 4nba,(µ 2) In Q2/µ 2 (10.81) 

where a,(Q2 ) = [j2(t)/4n and 11.,(µ2) = g 2/4n. We can further simplify this 
equation by defining the parameter A through the equation 

2 2 l 
In A = In µ - a,(µ2)4nb 

to get 

2 4n 
11.,(Q ) = (11 -1nr) In Q2/A2 

(10.82) 

In this form, the strong gauge coupling constant a,(Q2 ) is expressed in terms 
of one si'ngle parameter A. From this we see th•at for small momenta, a,(Q2 ) 

increases and in fact it diverges at Q2 = A2• Even though eqn (10.82) is a 
perturbative formula and breaks down for large couplings, the value of A is 
still a useful measure for the energy scale where the strong-interaction 
coupling constant becomes large. Hence A is the fundamental momentum 
scale of the theory and is called the QCD scale parameter. 

Since QCD is asymptotically free, at first sight one would think that this 
allows us to use the renormalization group and perturbation theory to 
calculate a large number of high-energy processes. Actually this is not the 
case: the renormalization group analysis is a theory of scale transformations 
and this involves uniform mtiltiplication of all components of the four­
momenta; the ultraviolet asymptotic limit is the deep Euclidean region where 
all particles are far away from their mass shell. Fortunately, there are 
physical situations where some of the 'external particles' are infinitely off 
their mass shell. In the lowest-order electroweak coupling approximation, 
the semileptonic inclusive processes can be factorized into a known leptonic 
part and a hadronic quantity that corresponds to a forward scattering 
amplitude of a photon (or W-boson) with variable mass -q2 . In particular 
the cross-sections of e + e - annihilation and lepton-hadron scatterings 
measure the absorptive part of the electroweak current product matrix 
elements (see eqns (7.10) and (7.152)) between some state IA) 

(AIT(Jµ(x)J,(O))IA). (10.83) 

The high-energy and high-( -q2 ) limit does· correspond to the deep Euclidean 
region. (For general descriptions of applications of asymptotic freedom see 
Politzer 1974 and Gross 1976.) 

e + e- annihilation 

According to eqn (7.152), for the case of e+e- annihilation, IA) of eqn 
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(10.83) is the vacuum state. Thus the photon mass q2 is the only scale 
and renormalization group analysis can be applied directly. Consider the 
inverse photon propagator in QED 

(l0.84) 

where the vacuum polarization Il(q2 ) has the naive dimension 2, so that the 
relevant renormalization group equation (3.58) becomes 

[a a J 2 --{3 -+2yA-2 Il(q)=O at g og (10.85) 

where y A is the anomalous dimension of the photon field, 

(10.86) 

Z 3 is the usual photon wavefunction (i.e. vacuum polarization) renormaliz­
ation constant (with its one- and two-loop graphs shown in Fig. 10.8) which 
yields 

( 2)[ 3s2(V) 2 J 'YA = C 3 -r ek I + 167t2 g + . . . · (10.87) 

FIG. 10.8. 

For Ta(V), the representation matrices of the vector gauge fields, we have 

s2(V) Jii = (Ta(V)Ta(V))ii 

= (n2 - l)/2n for SU(n). (10.88) 

For SU(3) gluons si(V) = 4/3. ek is the electric charge of quark flavour k. We 
have not written out the precise form of the proportional constant C since it 
will be cancelled in the result that we shall quote. Solving (10.85) as in eqn 
(3.68), we have for Q2 = -q2 , 

t 

Il(Q2) Q2 exp[ -2 f 'YA(g(t')) dt'] 

0 

(10.89) 

The u(e+e- cross-section can be obtained by taking the 
absorptive part 

(Q 2 ) = u(e+e- = ( 3 " 2)[l oc,(Q2 ) ]· R - ( + _ + _) L. ek + + ... 
uee k 7t 

(10.90) 
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Therefore the simple parton scaling result of eqn (7.104) is recovered 
together with a QCD correction term (Appelquist and Georgi 1973; Zee 
1973b) with o:,(Q2 ) given by (10.81). Thus the ratio R(Q2 ) approaches 
R(Q 2 = oo) from above. This subasymptotic correction term, at least for the 
region above the charm threshold, is still probably less than the experi­
mental uncertainties, so while the e + e - annihilation total cross-section is 
not an ideal place to measure o:,(Q2 ), the overall experimental data is 
consistent with the QCD prediction of eqn (10.90). 

Inelastic IN scatterings 

According to eqn (7.10), IA) of (10.83) is the nucleon state for this case of IN 
scatterings. Hence we will be studying a physical quantity with two mass 
scales: the variable photon mass Q2 = - q2 --> oo, but the nucleon must be on­
shell p 2 = M 2 • One must devise methods to factorize the matrix into a 
product of momentum-independent quantities (which will be identified with 
the structure functions and the parton distribution function) and q2 -

dependent functions which scale according to the renormalization group. 
(For more explicit discussions of this factorization see §10.4.) 

(A) Operator product expansions. The technique effecting such a factoriz­
ation is the operator-product expansion (Wilson 1969) in which the 
singularities of the operator products are expressed as a sum of nonsingular 
operators with the coefficients being singular c-number functions. The 
physical basis for this expansion is that a product of local operators at 
distances small compared to the characteristic length of the system should 
look like a local operator. 

(Al) Short-distance expansion. 

A(x)B(y) I C;(x - y)lD;(i(x + y)) (10.91) 
; 

where A, B, and <'.D; are local operators. The <'.D;s that can appear must have 
quantum numbers which match those of AB on the left-hand side. The C;(x)s 
are singular c-number functions called the Wilson coefficients. It has been 
proven for renormalizable theories that such expansions are valid as x --> y 
to any finite order of perturbation theory. The short-distance behaviour of 
the Wilson coefficients is expected to be that obtained, up to a logarithmic 
multiplicative factor, by naive dimensional counting 

C;(x) --> (x)d;-dA-ds(ln xm)P[l + O(xm)] (10.92) 
x«l/m 

where dA, d8 , and d; are the dimensions (in units of mass) of A, B, and <'.D;, 
respectively. The higher the dimension of <'.D; the less singular are the 
coefficients C;(x); hence the dominant operators at a short distance are those 
with the smallest dimensions. 

The usefulness of this expansion derives from its universality-the Wilson 
coefficients are independent of the processes under consideration. Process 
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dependence is exhibited in the matrix element of the local operator@; which is 
nonsingular at short distances. Another advantage is that in a given theory 
the expansion usually involves a rather small number of operators. Hence the 
ensuing calculation is relatively simple. 

(A2) Light-cone expansion. We already encountered this type of expan­
sion in §7.3. Eqns (7.141) and (7.146) are examples of the generic light-cone 
expansion 

A(I)B( C;(x)@{I' -I) for x 2 0 (10.93) 

with singular c-number functions and regular bilocal operators @;(x, y). 
Then one can expand the bilocal operators in a Taylor series (as in eqn 
(7.157)) to write 

(10.94) 

so that the product of two local operators can also be expanded in terms of 
local operators on the light cone 

L cV>(x2 )xµ' ... xµi(!)(j,i) (0). 
2 2 I µ, ... µ} 

(10.95) 

If we take the bases '.>.. µj to be symmetric traceless tensors with j indices, 
they correspond to operators of spinj. The light-cone, x 2 --+ 0, behaviour of 
the Wilson coefficients (just as in (10.92)) can be obtained by naive 
dimensional counting 

CF>(x) --+ ( .Jx2)d;..-1-dA-dB(ln x2m2 )P (10.96) 
x2-.0 

where dj,i is the dimension .µfO). Hence unlike the case in (10.92) the 
leading term corresponds to the lowest value of (dj,i - j), i.e. the dimension 
of minus the spin of Such a combination is called the twist of 
an operator 

r = d-j (10.97) 

which denotes twist = dimension - spin. The operators with lowest twist 
dominate in the light-cone expansion. 

The scalar field ¢,the fermion field tjJ, and the gauge field Fµv all have twist­
one. Taking the derivative of these fields·cannot reduce the twist and at best 
leaves it unchanged because taking the derivative will increase the dimension 
by one unit while changing the spin by 1 or 0. Thus the minimum twist of an 
operator which involves m fields is m. The most important light-cone 
operators have twist-two, examples of which are listed below 

scalar: 

(10.98a) 

fermions: 

(10.98b) 
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vector: 

(10.98c) 

The derivatives in (10.98a,b) will be replaced by covariant derivatives Dµ in 
gauge theory. We have seen in §7.3 that dominance of the canonical twist-two 
operator in free-field theory leads to Bjorken scaling. 

Now we can begin to see how the deep inelastic IN scattering cross-sections 
can be factorized into two parts-one being momentum-independent and the 
other scaling in a way controlled by the renormalization group, where the 
cross-section is related to the absorptive part of the forward current-nucleon 
scattering amplitude for which one then makes a light-cone expansion; 
the maxtrix elements of the local operators will then give rise to the 
momentum-independent part and the c-number Wilson coefficients satisfy 
the renormalization group equation. We shall first show that these Wilson 
coefficients are related to the integrated moments of the IN structure 
functions. 

(B) Moments of structure functions and Wilson coefficients. In order that 
the principal festures of our manipulations not be obscured by complicated 
Lorentz structures we shall first illustrate our procedure with scalar currents 
J(x). Consider the forward scattering amplitude (Fig. 10.9) 

·x· 
p p 

FIG. 10.9. 

(10.99) 

where v = p · q/ M. (Details of the kinematics may be found in §7.1.) Writing 
the operator-product expansion 

-I)) x2:0 b C{(x2 )xµ1 ... (10.100) 

(with the index i ranging over all twist-2 operators), then the amplitude in 
(10.99) becomes 

T(q 2 , v) fd 4 x e-iq·xxµ' ... .. µiO)lp) 
'·1 

= I (i)j _a _ __!___ ... _?__ 
i,j aqµ1 aqµ2 aqµj 

x [J d4 x e-iq·xc{(x2 ) (10.101) 
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The matrix element of the local operator which is symmetric and 
traceless can be parametrized as 

(j,i) I - u> (pl(9 µ1 ... µiO) p) - O; [Pµ1Pµ2 .. ·Pµi - trace terms] (10.102) 

where oy> is a constant and the trace term will contain at least one gµmµ, 

factor. Replacing 

a a a . (a)j ---- ... - = 21qµ1qµ2 ... qµi -2 
oqµ1 oqµ2 oqµj oq 

+ trace terms, 

we obtain for large - q2 , with - q2 /2Mv fixed, 

T(q2 , v) L (2i)i(p · q)i fd4 x e-'nC{(x2)Joy> 
-q2-oo i,j oq 

where 

C{(q2) = ( -iq2)i(a:2 y I d4x e-iq·xcp>(x2) 

(10.103) 

(10.104) 

(10.105) 

which is essentially the Fourier transform of xµ1 ... xµiC{(x2). Note that the 
trace terms in (10.102) and (10.103) will have lower powers of (2p · q) and can 
be safely neglected in the scaling limit. Thus for the amplitude T(q2 , v), 
decomposed in terms of spin projections 

T(q2, v) = L Tiq2, v), 
j 

we have from (10.104) that 

2 -j" /'lU) (j) Ti(q , v) x L... 1...-; O; 
-q2--+oo 

(10.106) 

(10.107) 

for x = -q2 /2Mv. This implies that to isolate an operator of a given spinj we 
need just expand T(q2 , v) in powers of x- 1 for large -q2 • In deep inelastic 
scattering, since one actually measures the absorptive part of the forward 
amplitude T(q2 , v), 

2 1 2 W(q, v) =-Im T(q, v). 
1T. 

(10.108) 

The amplitude can be reconstructed from the measured quantities by using 
the dispersion relation 

2 I v• dv' 2 ' 2 T(q,v)= '•(' )W(q,v)+P._ 1(q,v) 
v v - v 

(10.109) 

where we have assumed s number of subtractions with P5 _ 1(q2 , v) being a 
polynomial in v of order s - 1 for fixed q2 • If we further assume that, for 
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large -q 2 , we have Ps-i(q2 ,v)-+P5 _i(x), a polynomial in x-i of order 
s - 1, then 

-i 

+i f dx'(x')J-iW(q2 ,x'). 

-i 

(10.110) 

The first s terms in this expansion are undetermined because of the unknown 
subtraction constants. However for J?. s (comparing eqn (10.110) to eqns 
(10.106) and (10.107)), we have 

+ i I dxxJ- i W(q 2 , C:'V)(q2)0V) for J?. s. (10.111) 

-i 

Thus the moments of the structure functions measure the (Fourier trans­
forms of) Wilson coefficient functions C/)(Q2 ). 

For the more realistic case of the electromagnetic current J---+ we 
can make a similar analysis. With the usual assumption about the high­
energy behaviour of the forward Compton amplitude, the relation (I 0.111) 
will hold for all J?. 2, when the t-channel of the Compton scattering (i.e. the 
current x current channel) has the quantum number of the vacuum, and for 
J?. 1 in the non-vacuum channels. When decomposed in terms of the two 
invariant eN inelastic structure functions Fi. 2(x, Q2) as in eqn (7.30) (we 
have changed notation from that used in §7.1: G;(x, q2 ) ---+ F;(x, Q2 )), the 
result corresponding to eqn (10.111) reads 

i f dxxJ-Z F 2(x, Q2 ) C\J)(Q2)0\J) 

-i 

i I dxxJ- i Fi (x, Q 2) cv)(Q2)0V) 

-i 

(10.l 12a) 

(10.112b) 

We have succeeded in isolating from the cross-section, which has two mass 
scales p2 = M 2 and q2 , a factor which depends only on q2 , to which we can 
apply the scale transformation q11 ---+ A.q11 and renormalization group analysis. 
We note that exact Bjorken scaling (eqn (7.32)) F;(x, q2 )---+ F;(x) cor­
responds to free-field behaviour 

(10.113) 

In general we expect this to be modified by the interaction. The simplest 
possible deviation from this scaling behaviour would be such that the 
ln(Q2 /m 2 ) powers in every order of the perturbation are summed up into 
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some Q2 powers as 

(10.114) 

This can be interpreted as an anomalous dimension y J acquired by the 
operator ... flj due to the interaction. As conserved quantities are finite, 
their renormalization constants do not depend on cut-off and their 
anomalous dimension vanishes. The electromagnetic currents and the energy 
momentum tensors are such quantities. If they can appear on the right-hand 
side of the operator-product expansion, then (the Fourier transforms of) 
their Wilson coefficients will scale as in free-field theory without anomalous 
dimensions. For the general moments, eqn (10.114) however implies that 

(10.115) 

Since the structure functions F; are positive definite, the anomalous 
dimension y J must monotonically increase with J and, since the energy­
momentum tensor eµv does appear in vacuum channel of the current 
operator-product expansion, we have y2 = 0 and 

Yi;::.::: 0 for J;::.::: 2. (10.116) 

This means that the moments of the structure functions should in the vacuum 
channel decrease with increasing Q2 . Also experimentally observed ap­
proximate scaling implies that the anomalous dimensions must be very small. 

(C) Renormalization group equations for the Wilson coefficients. In 
Chapter 3 we introduced the renormalization group equation for a general 
Green's function. We can obtain similar equations for the Wilson coefficients 
by comparing the renormalization group equations satisfied by Green's 
functions containing the operator product itself and containing the local 
operators appearing in the expansion of the operator product (Christ, 
Hasslacher, and Mueller 1972). 

Schematically the operator-product expansion is of the form 

A(x)B(O) L C;(x, g, µ)@;(O) (10.117) 
x-0 i 

where g is the coupling constant andµ is the reference (subtraction) point for 
the renormalization. Or, in terms of n-point Green's functions with insertions 
of AB and@;, 

where 

r (n) "°' C ( )r(n) AB £..., i X, g, µ I!'; 
x-+o i 

n 

= (OIT(A(x)B(O) TI </>k(Yk))IO) 
k=l 

n 

= <OIT(@;(O) TI </>k(Yk))IO). 
k=l 

(10.118) 

(10.118a) 

(10.118b) 
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The Green's functions separately satisfy the renormalization group equa­
tions (see eqn (3.58)) 

[ D + 'h(g) - yig) - µ) = 0 

and 

where 

a a 
D = µ- + f3(g)-oµ a9 

(10.119) 

and YA• y8 , and Yi are the anomalous dimensions of the operators of A, B, and 
(!Ji, respectively; we have assumed that they do not mix under renormaliza­
tion. Using (10.118), clearly we have 

[D + yig) + Yo(g) - Yi(g)]Ci(x, g, µ) = 0. (10.120) 

Thus, the Wilson coefficient Ci behaves as if it were a Green's function of the 
operators A, B, and&;. The solution as given by eqn (3.68) takes on the form 

t 

Ci(e-'x0 , g, µ) = e1<dA+ds-diJ exp{ I dt'[yAg(t')) + Yo(9(t')) 

0 

- Yi(g(t'))] }ci(xo, g(t), µ) (10.121) 

where dA> d8 , and di are the naive dimensions of A, B, and (!Ji· Similar 
equations and solutions of course hold for the Fourier transforms of the 
Wilson coefficients C1(q2 , g, µ). For the case of deep inelastic scattering we 
have the light-cone expansion which can be turned into sums of infinite 
towers of local operators of increasing spin n with Wilson coefficients 
Ci(q2 , g, µ), which are related to the moments of the structure functions by 
(10.112) 

1 

MnCQ 2 ) = f dxx"- 2F2(x, Q2 ) Ci(Q2 , g, µ)&f. 

0 

t 

= Ci(Q5, g(t), µ)exp[ - I dt'](!J't_ (10.122) 

0 

where is the anomalous dimension of the 

(D) Deep inelastic scattering in QCD. We will now apply this analysis of 
deep inelastic scattering in QCD (Gross and Wilczek 1974; Georgi and 
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Politzer 1974), where the electromagnetic current is given by 

"J 

lµ(x) = L :iik(x)yµekqk(x): (10.123) 
k=l 

where qk(x) is the quark field operator with flavour index k, ek is the charge 
carried by qk, and the sum over colour is implicit. Consider the forward 
Compton scattering amplitude (averaging over nucleon spin is understood) 

(10.124) 

( qµqv) l ( p · q )( p- q ) 
= -gµv + 7 T1 + M2 Pµ ----;;qµ Pv ----;;qv T2. (10.125) 

The absorptive parts of the invariant amplitudes T; are just the structure 
functions W; measured in deep inelastic scattering 

(10.126) 

(D 1) Operator-product expansion and moments of structure functions. The 
operator-product expansion on the light cone is of the form 

iT(Jµ(y)Jv(O)) = L { -gµvYµ 1Yµ 2 · · g, µ) 
n,i 

+ 9µµ19vµ2Y µ3 . .. y µ)"- 2C\f!;(y2' g, µ) }(!JC7>µ 1µ2 ... µn(O). (10.127) 

In QCD there are three sets of gauge-invariant twist-2 operators (see eqns 
(10.128a, b, c) below) which dominate expansion near the light cone y 2 0 

li"-1{ ;_a · .µn(x) = - - ij(x)-2 yµ1Dµ2 ... Dµnq(x) 
2 n! 

+permutations of vector indices} (10.128a) 

where the ;.as are the standard nr x nr hermitian traceless matrices in the 
flavour group SU(nr); thus for a theory with three flavours u, d, and s they 
are just the familiar SU(3) Gell-Mann matrices. This set of operators will 
contribute to operator-product expansions for the flavour non-singlet 
combinations of structure functions such as Pi - or F;A, for neutrino 
scattering off an isoscalar target A. Here we will devote most of our effort to 
the study of the more involved case of the flavour-singlet combinations. 
They can receive contributions from two sets of operators 

... µn(x) 

l ·n-1 

= --1 -, {ij(x)yµ1Dµ2 ... Dµnq(x) +permutations} (10.128b) 
2 n. 

·n-2 
=-1 -tr{Gµ,vDµ 2 ••• (10.128c) 

n! 
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Because and have identical quantum numbers, they can mix under 
renormalization (see §2.4). 

Substituting (10.127) into (10.124), we obtain 

x ... µ•(O)lp) +.... (10.129) 

Writing the spin-averaged matrix element as 

(pl@lnlµ, · · .µ. (O)IP) = Aln>(pµ 1pµ 2 ••• pµ• + trace terms) (10.130) 

where Alnl is a constant, eqn (10.129) becomes 

Tµv(p, q) {-gµv(2p. qt(a:2 y I d4y einc\n!;(y2, g, µ) 

+ PµP.(2p · qt- 2( 0: 2J f d4y g, µ) }A!nl + ... 

1 " { (2p • q)n -(n) 2 
= 2M'--. -gµv --=--2 C1,;(q ,g,µ) 

n,1 q 

(10.131) 

( a )n-2 I g, µ) = (Q2y-1 aq2 d4y g, µ). (10.132) 

From (I 0.131) we can immediately read out the invariant amplitudes 

T1(x, Q2) = x-nc\"!;(Q2, g, µ)A!nl (10.133a) 
n,1 

l 
T (x Q2) = -" x-n+1c<n>.(Q2 g µ)A!n> 

2 ' 2M '--. 2,1 ' ' I . 
n,1 

(10.133b) 

By the same route we took going from (10.106) to (10.112), we can obtain 
relation between the moments of the structure functions and the (Fourier 
transforms of) Wilson coefficients 

1 I dxxn-2F2(X, Q2) c\n!;(Q2, g, µ)A!n) (10.134a) 

0 

1 

I dxxn-1p (x Q2),... ! "c<n>.(Q2 g µ)A!n> 
1 ' 2,i ' ' i • 

l 

(10.134b) 

0 
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(02) Renormalization group analysis and anomalous dimension matrix for 
the singlet case. We shall concentrate on the flavour singlet case. Because of 
mixing among twist-2 operators, the renormalization group equation for the 
Wilson coefficients takes on the matrix form 

(10.135) 

where y<n> is the 2 x 2 anomalous dimension matrix for the flavour singlet 
operators and The solution to eqn (10.135) is 

t 

g) g(t)) exp{-f dt'yji\g(t'))} (10.136) 

0 

where 

(10.137) 

In asymptotically free QCD one can calculate y<n> perturbatively according to 
the one-loop diagrams of Fig. 10.10 

yjj> = dj'j>g2 + O(g3) (10.138) 

(c) (d) 

FIG. 10.10. Graphs contributing to (a) (b) (c) and (d) 

with 

(
d(n) d(n)) 

d(n) - qq Gq 
ij - d(n) d(n) 

qG GG 

where 

d(n) = _1 - 2 + 4 !)] 
qq 16n2 3 n(n + 1) j 

d(n) _ 1 [ 16 n2 + n + 2 J 
qG- 16n2 -3 n(n2 - 1) 

d(n) - 1 [ 4 nz + n + 2 J 
Gq - 16n2 - nr n(n + l)(n + 2) 

= - 1-{6[! - 4 - 4 + 4 t !] + nr} 
16n2 3 n(n-1) (n+l)(n+2) i=zj 3 

(10.139) 
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nr is the number of quark flavours. This matrix can be diagonalized by 
taking appropriate linear combinations of and and its eigenvalues 
correspond to the anomalous dimensions of the linear combinations that are 
multiplicatively renormalizable. Using the lowest-order expression (10.80) of 
the effective coupling constant in (10.138), we have 

t t 

f (n) - f JI I I dt' 
- dt Yii (g(t )) = - 1 + 2bg2t' 

0 0 

= 2b' ln(l + 2bg2 t) --+ 2b' In t. (10.140) 

The Wilson coefficient functions have the large-q2 behaviour 

[ ( 
2)]-i1>12b 

In ; 2 
1 (10.141) 

where the ctj( -1, O)s are the Wilson coefficients in free-field theory. For 
large Q2 , (10.134) now reads 

1 

= I dxx"-2F2(x, Q2/µ2) 

0 

1 - (n) 8 O)Al">[In(Q2 / µ2)] -d ii tzh (10.142a) 
' 

1 

M\">(Q2) =I dxx"-1F1(x, Q2/µ2) 

0 

I _ <n> 
4 I Cl"!/l, O)Al"l[ln(Q2/µ 2)rdji 12b. (l0.142b) 

' 
These are the principal QCD results on deep inelastic scattering. We have 
obtained them by factoring the inclusive cross-section into a momentum­
independent part (the local operator) and a part that scales according to the 
renormalization group (the Wilson coefficients). In the asymptotically free 
QCD the leading singular (Q2 --+ oo) behaviour of the Wilson coefficients can 
be calculated in terms of the renormalization group P-function and the 
anomalous dimensions YI.fl, while the matrix elements Al"> of the local 
operator cannot be obtained without solving the (long-distance) bound-state 
problem in QCD. While we cannot calculate the scaling functions them­
selves, nevertheless we do have enough information on the pattern of scaling 
and scaling violation. QCD predicts that moments of the structure functions 
have a very weak dependence on q2 as in eqn (10.142). So we have 
approximate Bjorken scaling with logarithmic violations. 

(03) Momentum sum rule revisited. As an illustration we shall work out 
the flavour-singlet second moment (n = 2) of the structure function, say 
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F 2(x, Q2 ). In this case one of the spin-2 and twist-2 local operators will be the 
energy-momentum tensor (}µv· Its conservation implies no renormalization 
Z6 = 1; hence we should find a vanishing anomalous dimension y6 = 0. (For 
a related discussion on the renormalization of the conserved vector current 
operator ZJ = 1, see §6.1.) For n = 2, eqn (10.128) indicates that there are 
two twist-2 operators 

i nr +-+ _ 

= 4 iik(yµ o, + y, oµ)qk (10.143a) 

= tr(Gµ.1.GD. (10.143b) 

We are taking only the lowest-order terms; thus Gµv = oµAv - o,Aµ. The 
matrix in (10.139) takes on the value 

=_I_ ( 16 
I} 36n2 -16 

-3nr). 
3nr 

(10.144) 

It clearly has a zero eigenvalue a6 = 0 corresponding to the left 
eigenvector (1, 1) = (1, 0) + (0, 1), i.e. the combination 

(} = [(9(2) + (9(2)] µv q G µv (10.145) 

which is just the energy-momentum tensor. The other eigenvalue is 
J6• = (16 + 3nr)/36n2 • We can in general express d!j> in terms of its 
eigenvalues ii; and their projection operators P; with respect to the eigen­
vectors 

d!j> = L Jk(Pk)ij, pkpl = <>k,Pk, L pk = 1. (10.146) 
k k 

It is easy to see that for our n = 2 case, we have the projection operators (for 
left vectors) 

1 (3nr 3nr) 1 ( 16 
p 6 = 16 + 3nr 16 16 ' p 6 , = 16 + 3nr -16 

-3nr)· 
3nr 

(10.147) 

The second moment of the flavour singlet structure function can be written 
as 

1 

I dxF 2(X, Q2 ) = { O)(P6)ijA)2> 
1,J 

0 

Since J9, > 0, we have for Q2 -+ oo 
1 

I dxF 2(X, Q2 ) = { O)(P9)ijA)2>}. 
1,J 

0 

(10.149) 

To calculate the right-hand side we note that, to lowest-order in g(t), only the 
quarks contribute to the (current) operator-product expansion; hence the 
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free-field values of the Wilson coefficients are 

0) = 0, 0) = (10.150) 

where 

(10.151) 

is the average quark charge squared. Thus the right-hand side involves only 
I:i (P6)qiA)2>. To evaluate this we first note 

(l O) 1 (3nr 3nr) 
' 16 + 3nr 16 16 <'.Ol?l 

3nr (@<2J + (9!21) = r() 
16 + 3nr q 0 

(10.152) 

where() is the energy-momentum tensor operator (10.145) and where 

3nr 
r=---

16 + 3nr 
(10.153) 

can be interpreted as the fraction of momentum carried by quarks. For three 
flavours of quarks, r = 9/25 which is in accord with the experimental results 
when interpreted in the quark-parton model (momentum sum rule) of §7.2. 
Unlike in the general case, the matrix element of e,,. is known 

(10.154) 

When eqn (10.154) is compared with (10.128) and (10.130), we have 
(P6)qjA}2> = Sr; in this way eqn (10.149) becomes 

1 

[f dxFi(x, q2)] . = r( 
smglet 

0 

(10.155) 

This means that the area under the structure-function curve scales without 
deviation. 

(04) Pattern of scaling violation. For general n, the diagonalized d!"'s 
have the property of increasing slowly with n. For n > 2, where the large x 
("' 1) region is important, the moment M<"l(Q2) decreases as [ln(Q2)]-ld•l/2b; 
for n < 2, where the small-x ("' 0) region is important, the moment 
increases as [ln(Q2)] + ld•IJ2b. This implies the following pattern of scaling 
violation; as Q2 --+ oo, the large-x part of Fi(x, Q2 ) decreases while the small­
x part increases, while the area under the curve remains unchanged 
throughout (see Fig. 10.ll). In the infinite Q2 limit, the structure function 
approaches a sharp spike at x = 0. 

In concluding this section we will briefly discuss a type of experimental 
check on QCD predictions that has been performed. To this end we will 
consider the simpler case of a non-singlet combination of structure functions 
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-- ...... 

FIG. I 0.11. The pattern of scaling violation of F2(x, Q2 ) for > Qi. 

where there is no complication due to operator mixing. Then the result 
corresponding to (10.142) reads 

[M<n>(Q2)] _ s<n>[ln(Q2/µ2)]-d'''/2b 
2 non-singlet - (10.156) 

where s<n> is an unpredicted constant and d(nJ is the g2 coefficient of the 
anomalous dimension for the operator in (10.128), 

1 [ 2 n l] d<n> = -2 1 - + 4 I - . 
6n n(n + 1) i=ii 

(10.157) 

which is the same as as one would expect. Now we take logarithms of the 
moments 

(10.158) 

The dots on the right-hand sides of (10.158) represent non-leading terms 
(which could still be significant at the present energy level). 

Ifwe plot these two logarithms against each other, we should get a straight 
line with slope d<n>;d<n'l. Such experimental plots have been found to agree 
with the QCD prediction within limits of experimental error, see, for 
example, Bosetti et al. (1978) and de Groot et al. (1979). 

10.4 The parton model and perturbative QCD 

In this section we present a brief introduction to the study of perturbative 
QCD. We shall concentrate again on the prototype processes of deep 
inelastic lepton-hadron scattering. First we present the parton-model proba­
bilistic interpretation of the QCD result obtained in the previous section. 
We then show in what ways the same result can be recovered by summing 
the leading logarithms in perturbation theory. 

Let us first recapitulate the QCD result for deep inelastic lN scatterings 
obtained by using the operator-product expansion and the renormalization 
group equation. For the nth moment of the flavour non-singlet combinations 
of the structure functions F 2(x, Q2 ), the result (10.156) may be written 

[ ( ) Jd1' 1/2b 
M<nl(t) = M(nl(O) 

a,(O) 
(10.159) 
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where t = t In Q2 /Q6, a,(t) is the effective strong gauge-coupling constant 
squared (I 0.82) and band d<n> are the leading coefficients of the renormaliza­
tion group {3-function (I 0. 77) and anomalous dimension (I 0.157), respect­
ively. Thus QCD predicts 'almost scaling' with a logarithmical violation. 
This pattern is illustrated in Fig. 10.11. 

The parton picture of scaling violations 

How are we to understand this QCD pattern of scaling violation in the 
parton model or, for that matter, patterns of scaling violation in general? As 
we have discussed in Chapter 7, strict Bjorken scaling can be obtained if we 
are allowed to make an impulse approximation and the reaction may be 
viewed as an incoherent sum of scatterings off the (free) constituent of the 
target. Thus this picture is applicable to any weakly bound system, and can 
be viewed as a process in which the virtual photon probes the structure of the 
target. From the uncertainty principle a virtual photon with mass (Q2 ) 1i 2 

will resolve structure on the length scale of (Q2 )- 112 • When we increase the 
virtual photon mass, then the structure at shorter distances will be revealed. 
Typically this picture of matter as 'a box within a box, etc.' (i.e. discrete 
levels) will lead to scaling violations at particular intervals of Q2 (when the 
next level is reached). Thus we would generally observe scaling and rescaling 
as layers of matter are unravelled. At these scaling violation junctures, the 
structure function will change with Q2 and get redistributed towards the 
region corresponding to smaller values of the scaling variable x, as each 
constituent will carry a smaller fraction of the target momentum. 

In such a parton picture, the QCD result can be interpreted in terms of 
hadrons having a continuous set of constituent layers. At any particular Q2 

the shape of the nucleon structure function can be understood schematically 
as in Figs. 7.4--7.6. As we increase Q2 and penetrate deeper into the dressed 
quark we will find more virtual quarks and gluons and the valence quarks 
will have to share the original nucleon momentum more and more with the 
gluons and sea quarks. Ultimately the structure function approaches a delta 
function at x = 0 

F 2(x, Q2 ) b(x). (10.160) 
Q2-+00 

The Altarelli-Parisi equation 

Thus, according to the above picture, the QCD scaling violation comes from 
the fact that the effective strong coupling a,(t) does not vanish fast enough as 
Q2 --+ oo. Even though the theory is asymptotically free there are still some 
residual interactions at short distances. All this can be cast in well-defined 
quantitative expressions as first suggested by Altarelli and Parisi (1977). For 
a simple presentation see (Close 1979). 

At t = t In Q2 /Q6, let the probability of a quark carrying the fraction x of 
nucleon momentum by q(x ). As we increase the virtual photon mass t to 
t + bt an additional probability bq(x) may be revealed corresponding to the 
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y 

(a) (b) 

FIG. 10.12. 

possibility of another quark with momentum fraction y > x radiating away a 
gluon and reducing its momentum from y to x (Fig. I0.12(a)). Thus we can 
think of this quark as being contained in the one originally observed at a 
lower value of t. This suggests that the quark distribution is actually !­

dependent and that we can define a quantity Pqq(z) corresponding to the 
variation of the probability distribution (per unit t) of finding a quark in a 
quark with z = x/y fraction of its momentum (y). This variation is clearly an 
order-g2 effect; consequently we have the following evolution equation 

1 1 

dq(x, t) I I dt = § 2(t) dy dz c5(x - yz)Pqq(z)q(y, t) 

x 0 

1 

-2 I dy = g (t) y Pqq(x/y)q(y, t). (10.161) 

x 

This convolution integral can be disentangled by a Mellin transform as the 
moment of the product is the product of the moments of the functions. 
Define the moments of the distribution (i.e. structure) function 

1 

M<nl(t) = f dxxnq(x, t). 

0 

Eqn (10.161) then reads 

where 

1 1 

dM(nl(t) I I dy 
dt = g2(t) dxxn y Pqq(x/y)q(y, t) 

0 x 

1 1 

= g2 (t) f dyynq(y, t) f dzznpqq(z) 

0 0 

1 

n<n) = J dzznpqq(z). 

0 

(10.162) 

(10.163) 

(10.164) 
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Thus the parton picture of scaling violations leads to this differential 
equation of the moment of the structure function; its evolution is seen to be 
controlled by the t-dependent quark-gluon coupling oc,(t). The solution to 
(10.163) can be easily obtained by integration 

dM(n)(l) D(n) dt 
---

M<n>(t) 2b t 

or 

Mn(t) [oc,(t)]-D'"'/2b 
Mn(f 0) = oc,(to) 

(10.165) 

This is precisely the QCD result for non-singlet moments ( 10.159) if we make 
the identification 

D(n) = -d(n). (10.166) 

Thus the moments of the Altarelli-Parisi function Pqq are simply the non­
singlet anomalous dimension coefficients 

When we extend the above analysis to the flavour-singlet combination of 
structure functions, we have the additional feature that the (singlet) gluon 
distribution function G(x, t) also contributes (see Fig. 10.12(b)). 
Corresponding to (10.161), we now have 

1 

dq(x. t) I dy 
dt = 9 2(t) y [Pqq(x/y)q(y, t) 

x 

+ PGq(x/y)G(y, t)] (10.167) 
1 

dG(x, t) Idy 
dt = 92(1) y [PqG(x/y)q(y, t) 

x 

+ PGG(x/y)G(y, t)]. (10.168) 

(Appropriate summation over the quark flavour indices to obtain the singlet 
combination is assumed.) Eqn (10.167) shows that the singlet quark 
distribution varies with t, not only because of gluon bremsstrahlung, but also 
because gluons can convert into quark and antiquark pairs in a flavour­
independent way, etc. The coupled evolution equations then correspond to 
operator-mixing in the more formal approach of using the operator product 
expansion and the renormalization group equation. The moments Pqq• PqG• 
PGq• and PGG can be identified with (negative) anomalous dimension 
coefficients and 

Perturbation theory and the parton model 

Now we see that QCD results such as (10.159) have a simple interpretation in 
the parton model with quarks and gluons. This suggests that they can be 
obtained directly in perturbation theory without invoking the formal 
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apparatus of the operator-product expansion and the renormalization group 
equation. Before performing this perturbative calculation we shall give an 
overview of the problem of obtaining the parton-model result in perturbation 
theory. 

As we mentioned in the last section, although QCD is asymptotically free 
with a decreasing effective coupling constant i/(q2 ) "" (In q2 )- 1, it is still 
difficult to apply perturbation theory directly to many high-energy processes. 
There are at least two reasons for this situation. 

(l) Perturbation theory deals with quarks and gluons, which are not 
physical asymptotic states. Thus, by and large, straightforward applica­
tions of asymptotic freedom are restricted to calculating gross features that 
are independent of the detailed final-state properties. Quantities such as 
high-energy e + e - hadronic total cross-sections and deep inelastic lN 
inclusive cross-sections are determined by the initial response of the system at 
short distance-time and are insensitive to the complicated nonperturbative 
process which turns quarks and gluons into hadrons with unit probability. 

(2) Physical quantities usually depend on, in addition to the effective 
coupling g(q2 ), some mass parameter m. Thus if one attempts to expand 
physical quantities in powers of g(q2 ) in the large-q2 limit, one generally also 
encounters terms of the form [q2(q2 ) In q2/m 2 ]" which spoil the expansion. 
Physically, sensitivity tom indicates that the large-distance properties of the 
theory are involved. Thus the use of perturbation theory in QCD requires 
that either of the following conditions be satisfied. 

(A) In q2/m2 terms do not occur. This is the case for u101(e+e­
--+ hadrons), and u(e+e- --+jets) where groups of particles within some 
narrow cones are summed (see §7.2). They are finite in them --+ 0 limit and 
therefore are free of In q2 /m 2 factors. 
(B) In q2/m2 terms can be summed up and the sensitivity to m can be 
somehow factored out. This 'factorization of mass singularities' has 
already been briefly mentioned in the previous section and it occurs in the 
case of deep inelastic lepton scatterings. To see the usefulness of the 
factorization property more explicitly, consider a dimensionless ob­
servable '¥(g(µ 2 ), Q2 / µ2 , m2 / µ2 ). Since the value of\P cannot depend on the 
scale µ chosen to define the coupling constant g, we have 

µ d'P = (µi_ + µ og 0. 
dµ oµ oµ og oµ om 

(10.169) 

This is the renormalization group equation for the observable. If we can 
establish that '¥ factorizes as Q2 --+ oo 

(10.170) 

then (10.169) can be used to determine the Q2-dependence 

d'P ( dC) ( dD) µ-= µ- D+ µ- C=O 
dµ dµ dµ 

(10.171) 
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or 
µ dC µ dD 
Cdµ = - D dµ = y(g) (10.172) 

where the separation constant can depend only on g and C satisfies 
the renormalization group equation in the standard form 

(10.173) 

From this and y(g) = g2d we obtain the familiar solution (e.g. see eqn 
(10.159)) 

2 2 [g2(Q2)Jd/2b 
C(g(µ), Q /µ ) = C(O, 1) g1(µ2) 

= C(O, 1)[1 + bg2(µ 2} 1n(Q2/µ 2)]-d12b (10.174) 

where we have used the explicit form of g 2(Q2 ) as given in eqn (10.80). We 
note that the function C(g(µ), Q2/µ 2) depends on g(µ) and Q2/µ 2 only 
through the combination g2(µ) 1n(Q2/µ2). That each factor of g2(µ 2) is 
accompanied by ln(Q2/µ2) clearly indicates a correspondence to a 
summation in perturbation theory of the leading logarithmical terms, 
which appear as g2n(µ 2)(ln(Q2/µ2)f. 

We saw in the previous section that factorization of mass singularities is 
accomplished using the operator-product expansion; the c-number singular 
functions then satisfy the renormalization group equations. The present 
discussion then suggests the following correspondence between the formal 
field-theoretical apparatus and the simpler perturbative procedures 

Formal apparatus Perturbative procedures 
operator product expansion +-+ factorization of mass singular diagrams 
renormalization group equation+-+ summation of leading logarithms 

It should be pointed out that, while this translation table may be helpful in 
clarifying the meaning of our calculational procedures, in most cases no such 
simple separation of steps is possible. In fact factorization is usually not 
achieved until summation of logarithms have been performed. 

Before further discussion of perturbation theory and the parton-model 
results we will first carry out an explicit calculation illustrating the points 
made above. 

Perturbative calculation of deep inelastic scattering 

We are interested in the forward Compton scattering amplitude of a virtual 
photon (with momentum q,,) by a quark (momentum p,,). Corresponding to 
the operator-product expansion, here we need to identify and factorize 
diagrams containing powers of In p2 • Thus we are looking for diagrams that 
are divergent as the mass p 2 = m2 __,. 0. There are two types of divergences, 
which are often called infrared divergences and mass singularities. 
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The first type of divergence is brought about in the phase-space region 
when the momentum of the (real or virtual) massless particles vanishes. The 
Bloch-Nordsieck theorem (1937) assures us that such infrared divergences 
cancel in the inclusive cross-section. But all cross-sections are in fact inclusive 
because of the finiteness of energy resolution in all experiments. Essentially 
this situation still holds for the deep inelastic scattering. 

We will concentrate on the divergence resulting from mass singularities. 
These mass singularities occur in theories with coupled massless particles, 
and are due simply to the kinematical fact that two massless particles (with 
momenta p and p', say) which are moving parallel to each other have 
combined invariant mass equal to zero 

k 2 = (p + p')2 = 2EE'(l - cos 0) 0 as () 0 (10.175) 

even though neither Pµ nor are soft. This is sometimes called collinear 
divergence. There is also a theorem, by Kinoshita (1962) and by Lee and 
Nauenberg (1964), which can be roughly stated as follows. For inclusively 
enough cross-sections the mass singularities also cancel. The physical basis 
of this theorem is very similar to that of Bloch and Nordsieck; i.e. in physical 
measurements the angular resolution is not perfect and we sum over all 
states within the finite angular resolution. Thus in our calculation we will 
not be concerned with mass singularities coming from undetected final-state 
particles moving parallel to each other, since they cancel. In deep inelastic 
scattering, however, there are still mass singularities left over. They arise 
from regions of phase space where the internal momentum of a massless 
particle is parallel to that of an external massless particle to which it is 
coupled. Consider the one-loop diagrams in Fig. 10.13. Let k = p + p' be the 

q q q q 

9-2 9-2 9-2 

8 8 8 
p' 

p p p p 
{a) {b) 

FIG. 10.13. Mass singularities are present in (a) but not in (b). IJ is the angle between p and p'. 
The heavy-lined propagator diverges as IJ- 2 in the limit IJ-+ 0. 

loop momentum. Hence we have a factor of e- 2 from each of the 1/k2 

propagators, and () d() from the d(cos 0) factor in d4k, and finally each 
massless particle vertex contributes a power of(). Thus Fig. 10.13(a) has mass 
singularity d()/(),.., lnp2 and Fig. 10.13(b) is finite. We shall therefore 
concentrate on Fig. 10.13(a) and its generalizations to higher orders. 

One-loop diagrams. It is convenient to use the axial gauge, eqns (9.41) and 
(9.108), 

(10.176) 
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where Y/µ is some four-vector. The gluon propagator in this gauge is given by 

D (k) = dµ,(k) 
µv k2 +it: 

with 

dµ,(k) = 9µv - (kµY/v + kvY/µ)(k · Y/)- l + Y/ 2kµk,(k • Y/)- 2 . (10.177) 

There is no Faddeev-Popov ghost in this gauge, and the calculation is 
greatly simplified. To take the absorptive part of the amplitude we replace 
the propagator (k2 + ii::)- 1 by n<5(k2 ). Thus the diagram in Fig. 10.14(a) 

q+k 

k 

p 

(a) (b) 

FIG. 10.14. The absorptive part of the forward Compton scattering amplitudes. 

contributes to the hadronic tensor of the inelastic lepton scattering cross­
section (eqn (7 .10)) as 

W (p ) = g2s2(V) f d4k /'J((p - k)2) /'J((q + k)2) dP"( - k)T 
µv ' q 2M (2n)3 (k2)2 p pµvu 

where 

(10.178) 

and si(V) is the usual colour factor of eqn (10.88) and equal 4/3 for 
SU(3)colour· It is convenient to use the Sudakov variables (1956) 

(10.179) 

with 

q' = q + xp and k .i • p = k .i • q' = 0. (10.180) 

We assume that q'2 -::::, p 2 -::::, 0 and that p · q'-::::, p · q, together with -q2 , are 
large. 

d4k = 2n(p · q) d/3 de dki (10.181) 

As we shall see, the final ln( - q2 /p2 ) term comes from regions of phase space 
corresponding to {3-::::, 0 and e-::::, x. Thus the variable x introduced in (10.180) 
has the usual parton-model interpretation as the fraction of the longitudinal 
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target momentum. (This also a posteriori justifies taking q'2 0.) In terms of 
these variables we have 

1 ( ki ) l ( l - x ki ) 
x 2p . q(I - e) (J P - 2p · q(1 - e) 2p · q (J e - x + 1 - e 2p . q · 

(10.182) 
Squaring (10.179) we obtain 

k1 =ki+2pe(p·q) = ki + 1 e ki = ki/(1 - e). (10.183) 

Therefore (10.182) can be rewritten 

I d4k (J((p _ k)2 ) (J((q + k)2 ) = 2pn· q I d{J de dk2 (J({J - q) 

x (J(e - x + (1 - x) (10.184) 
2p·q 

Contracting the gluon polarization tensor dP"(p - k) with the trace term 
Tpµva (taking 17 = q') and doing the Dirac· algebra yields a leading term 
proportional to the tree graph (eqn (7.53)) 

dP"(p - k)Tpµva = (4k2 ) \ tr[xpyµ(q + xp)y.]. (10.185) 

This results from the relative contributions of the first and second terms of 
(10.177) ((1 - e)k2 and 2ek2 /(1 - e), respectively) and from dropping the 
contribution of the third term which is of the order of (k2 ) 2 and thus does not 
contribute to the final ln(Q2/p2 ). Collecting terms (10.184) and (10.185), 

g2 Idk2 (1 + x2 )[x PµPv J Wµ,(p, q) = 6n2 k 2 1 - x v r + . . . . (10.186) 

Comparing (10.186) with the simple parton-model result of eqn (7.55), we see 
that the one-loop diagram makes the following contribution to the parton 
distribution function/(x) (which is one originally); 

1 2 dk2 
df(x) = 2U P(x) k 2 (10.187) 

with 

P(x) = (\ :) (10.188) 

We choose to write it in a form that will be more useful for interpretation and 
for higher-order calculations 

[ 1 2 dk2
]{ Jde ( x) } df = 2 g k2 T (J 1 - Z P(x) . (10.189) 
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Thus the diagram in Fig. 10.14(a) with its gluon bremsstrahlung introduces a 
momentum dependence in the quark distribution function having an 
Altarelli-Parisifunction of P(x). Ifwe have been careful in keeping track of 
p2 terms, we will find the limits of integration for the dk2 integral to be 

Q' f dk2 

k2 = ln(Q2 /m2) for p 2 m2 • (10.190) 

p' 

Thus the one-loop diagram (Fig. 10.14(a)) has a mass-singular form 

(10.191) 

Higher-order diagrams. Features similar to those in one-loop diagrams also 
appear in higher-order contributions. The general feature (Gribov and 
Lipatov 1972) is that the dominant contributions in the axial gauge come 
from the ladder diagrams (Fig. 10.14(b)) from the region of phase space 
corresponding to 

p2 « ki « ... « « Q2 • (10.192) 

It is understood that in Fig. 10.14(b) the vertex and self-energy insertions are 
included. One of the effects of these insertions is that at each vertex we should 
use the momentum-dependent effective couplings g(kt). 

For each rung of the ladder we have a box diagram similar to the one we 
have just evaluated with the result written in the form of (10.189). Now for 
all the transverse momentum integrals dkt, corresponding to the square 
brackets of (10.189), we have 

Q' kj 

J!fl(Q2/m2) = f g2(ki) f ... 
m2 m2 

(10.193) 

Using the asymptotic form of g2(k2 ), we have 

Q2 

f d ln(k2) 1 2 2 2 2 
p = 2b In k 2/µ 2 = 2b [In ln(Q /µ ) - In ln(m /µ )]. (10.194) 

m2 
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The integral over the longitudinal components of momentum, correspond­
ing to the curly brackets of (I 0.189), is of the form 

(10.195) 

The fraction of momentum p carried by quark i is and that by quark i + I 
is 1 . The argument of the Altarelli-Parisi function is the ratio of these two 
fractions This equation is in a multiple-convolution form and we can 
take moments to simplify the result 

1 1 

f dxxn- 11\'.">(x) = [J dzznP(z)J = [d<n>r. (10.196) 

0 0 

Then the moment of the structure function coming from the N-rung ladder 
diagram is 

Summing over N we get 

M(n)(Q2) = L = exp[pd(n)] 
N 

= exp { [In ln(Q2 / µ2 ) - In ln(m2 / µ 2)]} 

= [ln(Q2 / µ2)]d<•>/2b [ln(m2 / µ2)] -d<•>/2b. 

(10.197) 

(10.198) 

This shows the factorization property that M<nl(Q2) decomposes into a 
function of Q2/µ 2 multiplied by a function of m2/µ 2. Note that this 
factorization takes place only after diagram summation; individual terms do 
not factorize. 

Finally let us check to see whether d<n> agrees with the result obtained 
previously. From (10.196) and (10.188), 

1 1 

d(n) = f dzzn P(z) = _l_ f dz zn(I + z2) 
3n:2 1 - z 

(10.199) 

0 0 

which actually diverges as z -+ 1. More carefully analysis shows that when we 
did the calculations for Fig. 10.1 S(a) we should also have included the vertex 
correction diagram (Fig. 10. l S(b )) for the Bloch-Nordsieck infrared diver­
gence cancellation to take place. This corresponds to the replacement 

1 1 

f 
f(z) dz-+ ff(z) - f(I) dz. 
1-z 1-z 

(10.200) 

0 0 
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FIG. 10.15. 

Thus d<n> can be calculated 

1 

d(n) = _1_ f dz zn(l + zz) - 2 
3n2 1 - z 

0 

1 

1 f dx 2 
= 37t2 [(l - xt(2 - 2x + x ) - 2] 

0 

1 [ 2 n 1] 
=-2 i- +4I-. 

6n n(n + 1) i=Z j 
(10.201) 

Thus by summing leading logarithms we obtain exactly the same results as 
obtained by using the more formal procedures of renormalization group 
equations. 

Once we understand the ideas and calculations for the familiar deep 
inelastic case, it is conceptually fairly straightforward to generalize the 
scheme to other hard scattering processes. The real advantage is that in most 
such hard scattering reactions a direct application of the operator-product 
expansion is not feasible. Thus we can use the perturbative QCD approach 
to calculate the Drell-Yan process of inclusive production of lepton pairs 
with large invariant mass in hadron collision (see §7.3). Here factorization is 
achieved and one finds the same parton distribution functions there with 
momentum dependences as those in the deep inelastic case. Another 
outstanding example of the perturbative QCD calculation of physical 
quantities that are not 'infrared sensitive' is the prediction of the final-state 
angular distribution (jets) (Sternman and Weinberg 1977) and energy flows 
in high-energy e+e- annihilations into hadrons (Brown and Ellis 1981). 

10.5 Lattice gauge theory and colour confinement 

Quantum chromodynamics has the remarkable property of being asymptoti­
cally free. The vanishing for short distances of the effective coupling gives the 
correct description of Bjorken scaling (and its violation by logarithms). The 
same statement also suggests that the effective coupling increases for long 
distances and this points towards a possible resolution of the central paradox 
in the phenomenological quark picture, i.e. quarks must behave like free 
particles for short distances while they must also be completely confined on 
long time and length scales. Of course strong coupling itself is not enough to 
explain quark confinement. To do so one must show that in QCD the particle 
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spectrum is realized in terms of bound states of quarks and gluons, etc. In the 
following we shall first give a brief qualitative discussion of how quark 
confinement might come about in the asymptotically free gauge theory. This 
should motivate the lattice method of defining such a theory and we will then 
demonstrate that the confinement property can be obtained in a strong 
coupling approximation of the lattice gauge theory. 

Qualitative picture of confinement 

Qualitative ideas about the nature of confinement that have some correct 
physical consequences tend to picture quarks as being bound by 'strings' 
(Nambu 1974) or tubes of colour flux. It has been suggested that the QCD 
vacuum is a condensate of gluons and as well as light quark-antiquark 
pairs. (For a review see, for example, Mandelstam 1979.) This is somewhat 
analogous to the ground state of a superconductor. There the condensate of 
paired electrons gives rise to the Meissner effect of magnetic flux exclusion 
from the condensate unless the energy balance favours a local breakdown to 
the normal phase. And one can imagine placing a pair of magnetic 
monopole and antimonopole into this superconducting medium; the mag­
netic flux will be confined to a string-like configuration joining the pair of 
monopoles. Analogous to this situation the energetically favoured configura­
tion of, say, a quark and an antiquark, has a strongly localized normal 
region connecting the pair in which the colour (electric) flux lines are 
restricted (see Fig. 10.16). By translational invariance the energy density of 

q<C )>Ci 
q<223>q q <2223>q 

FIG. 10.16. Lines of force between a quark and an antiquark. When the quarks move away 
from each other, the breaking of the string is accompanied by further quark-antiquark pair 

production. 

the gluon field along the flux tube is a constant. Hence the total field energy is 
linearly proportional to distance. This means the quarks are confined by a 
linearly rising long-distance potential 

E(r)-+ Kr (10.202) 

where r is the separation between the sources and K is a constant referred to 
as the string tension. Thus after the production of a quark-antiquark pair 
(say, in e+e- annihilation) it becomes energetically favourable with increas­
ing separation for the string to break and produce another quark-antiquark 
pair, and so on. This proceeds until the original string is broken down into 
several strings of length typical of the hadronic size of ,.., 1 fm (,.., 5 Ge v- 1) 

corresponding to the original quark pair being converted into a whole set of 
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hadrons having a typical energy-mass of 1 GeV. Thus we can crudely 
estimate the string tension to be 

(10.203) 

The string model for hadrons has another consequence in agreement with 
observation: hadrons lie on Regge trajectories (Regge 1959) with slopes 
;:::: 1 Ge v- 2 • A decade of intense study of hadron dynamics through their pat­
tern of particle exchange in which unitarity and the analyticity property of 
the scattering amplitudes play a crucial role has led to many insights into 
particle interactions. One of the important discoveries in this S-matrix 
approach (Chew 1962) was that hadrons of a given internal symmetry 
quantum number but different spins obey a simple spin(J) - mass(MJ) 
relation (Chew and Frautschi 1961); we say they lie on Regge trajectory 

J = oc0 + oc'M], 

with 

oc' '.:::'. 1 Gev- 2 . (10.204) 

Now imagine two massless (and, for simplicity, spinless) quarks, connected 
by a string of length d, rotating with the speed of light (Gasiorowicz and 
Rosner 1981). Thus each point, at a distance r from the centre, has the local 
velocity v/c = 2r/d. The total mass is then 

d/2 

f Kdr nKd 
M = 2 (1 - v2 /c2)1;2 = -2-

o 

and the total angular momentum is 

d/2 

J = 2 f Krv dr = nK d 2 
• 

(1 _ v2 /c2)1;2 8 
0 

(10.205) 

(10.206) 

Thus the string tension K of (10.202) can be expressed directly in terms of the 
Regge slope oc' of (10.204) 

1 
K=-· 

2noc' 
(10.207) 

The experimental value oc' in (10.204) leads to a K;:::: 0.2 GeV 2 in qualitative 
agreement with the rough estimate of (10.203). 

Field theories on the lattice 

In order to study these long-distance properties of QCD we need to 
regularize the theory that is independent of the usual Feynman diagram 
expansion, which is appropriate for weak couplings. For this purpose Wilson 
(1974, 1975) introduced the lattice gauge theory in which the space-time 
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continuum is discretized. This provides a natural cut-off scheme as 
wavelengths shorter than twice the lattice spacing, a, have no meaning and 
this restricts the domain of momenta to a region bounded by n/a. Also this 
formulation of the field theory allows for a close analogy with a statistical 
mechanics system. So we can call upon all our experience and intuition of 
statistical mechanics to solve problems in quantum field theory. With a cut­
off on high momenta the kinetic energy is bounded; we can then treat it as a 
perturbation in the strong coupling limit. This corresponds to the method of 
high-temperature expansion in statistical mechanics. With a finite lattice 
there are a finite number of variables. It is then possible to study various 
physically interesting quantities (e.g. energy spectrum, correlation functions, 
etc.) in the path-integral formalism by computer simulation based on the 
Monte Carlo method. 

As with any cut-off prescription, considerable freedom remains in the 
lattice formulation. In the limit of vanishing lattice spacing, the physics of a 
renormalizable field theory should be independent of the details of the 
regulator; it should, so to speak, lose the memory of the lattice spacing. This 
means that in this limit the coherence length of the theory should be infinite 
when compared to the lattice spacing. In the language of statistical 
mechanics the divergence of the correlation length corresponds to a second­
order, or continuous, phase transition. If a model has only a first-order 
transition, the coherence length never becomes infinite and the desired 
continuum theory does not exist. Furthermore, analytic results in the strong 
and weak coupling regimes can easily be established. We need to ascertain 
whether these properties are connected continuously in the theory, i.e. 
whether there are phase transitions at intermediate couplings. Thus it is 
important to study the phase structure of lattice field theory. At present most 
of our knowledge of the phases of QCD is obtained in various numerical 
studies of the theory. 

There are two popular methods for introducing the lattice in field theory. 
In the Euclidean lattice formulation both space and time are discretized 
(Wilson 1974). Here after a Wick rotation (to Euclidean space) the 
quantization is performed via the path-integral formalism. This method has 
the advantage of keeping some vestige of the original Lorentz symmetry and 
this allows for a particularly elegant formulation. Also, as we shall see in 
the case of lattice gauge theory, there is no need to introduce the gauge­
fixing terms. The other method is the Hamiltonian lattice formulation in 
which only the spatial dimensions are discretized in a Minkowski space-time 
(Kogut and Susskind 1975a). The theory can be canonically quantized with 
the usual Hamiltonian formalism. This has the advantage that some physical 
quantities (especially the mass spectrum) are more directly accessible to 
computation. Our discussion will follow the Euclidean formulation with a 
space-time lattice spacing a. The lattice site will be labelled by a four-vector 
n. The four-dimensional integration will then be replaced by a sum 

f d4x--+ a4 (10.208) 
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Scalar fields. We first study the simplest case of scalar field cfa(x). The con­
tinuum field theory in Euclidean space has the action 

S(cfa) = f d4x[t(oµcfa) 2 + V(cfa)] (10.209) 

where 

(10.210) 

The scalar field cfa exists at every lattice site n, 

cfa(x) cPn· (10.211) 

The derivative is replaced by 

(10.212) 

where µ is a four-vector of length a in the direction ofµ. The lattice action is 
then 

µtl (10.213) 

It is instructive to go over to momentum space to see the spectrum of the 
(A.= 0) free-field theory. For this we take the Fourier transform 

f d4k ik·n 
cPn = (27t)4 e cfa(k). (10.214) 

Since it is meaningless to consider wavelengths less than twice the lattice 
spacing, the above integral is taken over only one 'Brillouin zone' of the 
reciprocal lattice. Thus, 

1t 1t 
-- ::;; kµ::;; - for eachµ 

a a 
(10.215) 

where kµ = k · µ. After substituting eqn (10.214) into eqn (10.213), we have 
factors such as those coming from the kinetic energy term 

4 " f d4k d4k' '(k k') . k . k' a .t... ----e' + ·n(e'" µ - l)(e'" µ - 1) 
n (2n)4 (2n)4 

f d4k . k . k 
= --(e'" µ - l)(e-'" µ - 1) 

(2n)4 

= 4 f sin2 (akµ/2). 

The free field action can then be written 

1 f d4k [" 4 . 2 (akµ) 2 ] So(cfa) = 2 (2n)4 7 a2 sm 2 + m cfa( -k)cfa(k). (10.216) 
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Thus each mode contributes to the action in the momentum space a 
quantity 

S(k) = m2 

rather than the standard m2 + k2. Nevertheless, these two expressions have 
the same continuum limit as they coincide at the minimum value of k = 0 (see 
Fig. 10. l 7(a)). 

S(k)-m2 

I 
I 
I 

I I 

I k 

S(k)-m2 

k 
-Tr/a Trla 

FIG. 10.17. The dispersion relation S(k) for free (a) scalar and (b) fermion systems. The dashed 
curves k 2 are for familiar continuum theories. The solid curves correspond to the latticized 

systems. 

The lattice action (10.213) can be quantized by using the Feynman path­
integral formalism in which the expectation value of a product of fields is 
given by 

where 

Z = f Q [dc/JnJ e-S(</>). (10.218) 

The meaning of the integrals should be clear as we may recall that the usual 
functional integrals are actually defined on a discretized space-time lattice 
and an appropriate continuum limit is taken at the end. If we rescale the 
fields as 

(10.219) 

the lattice action becomes 

S(c/J) = S'(c/J') (10.220) 

where 

S'(c/J') - + 0 4 + }· (10.221) 

i.e. the coupling constant A. has become an overall factor in the action. In this 
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way eqns (10.217) and (10.218) may be written as 

... I I) ... 

x S'(</J')} (10.222) 

Z' =JI) (10.223) 

We note that (10.223) has the same structure as the partition function in 
statistical mechanics if we make the identification 

1 1 
- -+ f3 = -· 
A. kT 

(10.224) 

Thus the strong coupling expansion (in powers of A - i) will correspond to the 
high-temperature expansion in statistical systems. 

Fermion fields. We now consider fermion fields on a lattice. The same 
procedure will yield a Euclidean lattice action for the free-fermion system 

The y matrices are Euclidean, that is 

{yµ, Yv} = 2 bµv· 

Eqn (10.225) has the momentum space form 

I d4 k {· sin ak } 
So(l/I) = (2n)4 if/(-k) 1 Yµ + m l/J(k) 

which yields a dispersion relation 

S(k) = sin2 :kµ + mz 
a 

(10.225) 

(10.226) 

(10.227) 

(10.228) 

shown in Fig. 1O.l7(b ). There are now two equal minima in a Brillouin zone. 
One is located at k = 0 and gives the correct continuum limit. The other 
mode at k = ±n/a carries an infinite momentum as a-+ 0 and yet can be 
excited for finite a. The fermion degeneracy, i.e. the doubling of the number 
of fermionic states, must be suppressed with some appropriate modification 
of the latticized theory. This is permissible as long as the continuum limit is 
not affected. Clearly many degeneracy regularization procedures are 
possible; we will present the one due to Wilson, who proposed the simple 
addition of a non-local factor of 

(10.229) 
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to the lattice Lagrange density. Thus the free fermion action takes on the 
form in Euclidean space 

So(l/J) = L L t/Jn[(l + Y,,)l/Jn+ii 
n µ 

+ (1 -y,,)l/Jn-;;-21/Jn] + ma4 t/lnl/ln} (10.230) 

which has the momentum-space representation 

I d4k ,-,; k {· °" sin ak,, 
So(l/I) = (2n)4 o/(- ) Y,, -a-

+ m _ L cos ak,, - l}l/J(k). 
,, a 

(10.231) 

This increases the unwanted minimum without affecting the small-k 
behaviour and the k = 0 minimum will be only one to survive on the 
continuum limit. 

Local gauge invariance and the QCD action 

As we have illustrated above, considerable freedom exists in lattice 
formulation. One is free to add to the Lagrangian terms which will not 
contribute in the continuum limit. Using this freedom, Wilson has presented 
a particularly elegant lattice formulation for gauge theories. His prescription 
keeps local gauge invariance as an exact symmetry in a mathematically well­
defined system. 

Recall our discussion in §8.2 of the geometric interpretation of gauge 
invariance. When a material particle undergoes a parallel transport along a 
world line C from x to x', it can be represented by a 'non-integrable phase 
factor' of the wavefunction (i.e. for every path we can associate a group 
element as in eqn (8.65)) 

U(x', x) = exp{ig IT· A,,(y) dy" }· (10.232) 

c 

Thus, for a gauge transformation, specified by the gauge function 

<l>(Ox) = exp{iT · 9(x)} 

we have 

and 

l/J(x) -+ <l>(Ox)l/J(x) 

t//(x) -+ t//(x)<l>t((}x) 

(10.233) 

(10.234) 

(10.235) 

(Please note the notation changes for the gauge transformation and parallel 
transport matrices from the notation used in §8.2.) 
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The lattice version of gauge transformation in (10.234) and (10.235) may 
be written as 

(10.236) 

and 
U(n + P,, n) -+ <l>n+ 1;U(n + P,, n)<I>! 

where, for the SU(3) gauge symmetry, 

(10.237) 

.m {·A.;e;} 
'Vn =exp 12 n (10.238) 

with A_i, i = 1, 2, .. ., 8, being the usual Gell-Mann matrices and 

( A {· A_i • } U n+µ,n)=exp (10.239) 

This is the lattice version of the parallel transport matrix between adjacent 
sites n -+ n + µ and is usually called a link variable. From (10.236) and 
(10.237) we have ifinU(n, n + µ}l/ln+µ as a gauge-invariant combination. This 
suggests the modification of (10.230) to obtain the quark part of the SU(3) 
gauge-invariant QCD action 

SQco = S(q) + S(A) (10.240) 

S(q) = L {a; L ifin[(l + y,,)U(n, n + ml/ln+jl· 
n µ 

+ (1 - y,,)U(n, n - µ}1/1.-µ + 21/1.J - ma4 i/f.l/I.}· (10.241) 

What about the lattice action for the gluon field S(A)? Clearly this term must 
be composed of link variables only. The simplest gauge-invariant combina­
tion will be four-link variables. (As they are matrices in SU(3) space two­
and three-link combinations are trivial because of unitarity and deter­
minantal constraints.) This suggests that 

with 

-I 
S(A) = 22 L tr up 

g p 

(10.242) 

UP= U(n, n + p,)U(n + µ, n + µ + v)U(n + µ + v, n + v)U(n + v, n) 
(10.243) 

which is a product of four-link variables around an elementary square 
(called a plaquette; see Fig. 10.18). The sum in (10.242) is over all plaquettes 
of the lattice. From our discussion of a parallel transport around a square 
given in §8.2, it follows that (10.242) may be written as 

S(A) = tr{exp(ia4g2Fn,µv)} (10.244) 
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n+von+µ+,; 

n n+µ 
FIG. 10.18. A lattice plaquette. 

with 

(10.245) 

where An,,, is the gluon field at the site n. The continuum limit can be 
recovered immediately as 

S(A) = ;! {1 - + .. ·} 

-+ - d xF' F'"' 1 f 4 . . 
4 ,,. (10.246) 

where we have used the fact that the A.s are traceless (so the linear F,,, term 
disappears) and tr(A.iA.i) = 2 t5ii. 

Confinement criteria, the Wilson loop 

To see whether QCD has confinement one can study the energy of a system 
composed of a quark at x = (t, 0) and an antiquark at x = (t, R). If there is 
no confinement, we expect 

E(R) -+ 2m for R -+ oo (10.247) 

where mis the quark mass. Confinement implies that the interquark potential 
energy grows without bound, 

E(R) -+ oo for R -+ oo. (10.248) 

We can represent the qq state at time t as (see, for example, Bander 1981) 

lq(t, O)q(t, R)) = Lf(C)r[(t, R), (t, O); CJIO> (10.249) 
c 

where r[x', x; C] is the gauge-invariant qq operator 

r[x', x; C]= q(x')U(x', x; C)q(x) (10.250) 

with 
x' 

U(x', x; C) = exp{ig f A.iAi(y) dy"} (10.251) 

x 

and C is a path joining x and x'. Now consider the overlap between the qq 
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state at t = 0 and the qq state at t = T, 

Q(T, R) = (Olrl(O, 0), (0, R); C]r[(T, 0), (T, R); CJIO). (10.252) 

Inserting a complete set of energy eigenstates, we obtain in the Euclidean 
space 

O(T, R) = L l(Olrt[(O, 0), (0, R); C]ln)l 2 e-E.r. (10.253) 

For large T, the smallest En will dominate. This smallest energy eigenvalue 
corresponds to the potential energy of the qq system separated by a distance 
R 

lim Q(T, R) "' e-E<R>r. (10.254) 

In terms of the quark fields the overlap function Q(T, R) may be written as 

Q(T, R) = (OJq(O, R)U[(O, R), (0, O); C]q(O, 0) 

q(T, O)U[(T, 0), (T, R); C]q(T, R)IO). (10.255) 

lfwe treat the quark fields as external sources (as in the case of heavy quark 
states), then the quark propagator (in a background of gluon fields) can be 
expressed as 

t' 

(0Jq11(t', x)qa(t, x)IO) = exp[i f A0 (i-, x) di-]<01q11(t', x)qa(t, x)IO)rree 

I 

,..., U[(t', x), (t, x); CJ ball e-mlt'-rl. (10.256) 

Combining (10.256) and (10.255), we have 

Q(T, R) ,..., e-2mrW(C) (10.257) 

where 
W(C) = (OJtr U[x, x; CJIO). (10.258) 

Here C is the rectangular path of Fig. 10.19. The correlation function W(C) 

cr.o>Dcr.R) 

(0,0) (0,R) 

FIG. 10.19. A Wilson loop. 

is called the Wilson loop and its behaviour determines the confinement 
property, as a comparison of (10.257) with (10.254) shows that 

lim W(C),..., e-T[E<R>-2mJ. (10.259) 

As we shall illustrate presently, in the strong coupling limit, the Wilson loop 
of lattice gauge theory obeys an area law so that for a large contour 

W(C),..., exp{ -KA(C)} (10.260) 

where K is a constant and A(C) is the area of the surface enclosed by path C. 
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Thus for the rectangular path of Fig. l 0.19 

A(C) =TR. 

333 

(10.261) 

Substituting eqns (10.260) and (10.261) into eqn (10.259) we have the linearly 
rising potential (10.202) for the qq system. Also, we can identify the constant 
Kin (10.260) a:. the string tension. Note that we treat the quarks as a mere 
external colour source. Thus using the Wilson loop it is possible to study the 
question of colour confinement in a pure gluon theory without quark fields. 

The area law in the strong coupling limit 

In eqns (10.222) and (10.223) we displayed the path-intergral formulation of 
the correlation function in a scalar field theory. The Wilson loop may be 
similarly expressed in a pure gluon QCD; it will be a functional integral over 
gluon fields. Since the (infinitesimal) link variables are directly related to the 
gauge fields, we can choose to work with the link variables as the basic 
dynamic degrees of freedom in a lattice gauge theory. As we shall see, this 
allows for a simpler formulation of eqn (10.258) 

W(C) =.!_Jn dU(n, n + fi) tr U(x, x; C) exp{- 2
1

2 L: tr up}· 
Z n,µ g p 

(10.262) 
where 

z =Jn dU(n, n +ft) exp{- 21
2 L tr up}· 

n,µ g p 
(10.263) 

Note that no gauge-fixing term has been added to the action because the 
link variable (i.e. lattice gauge field) has only finite range. The volume in the 
path-integral space generated by all possible gauge transformations is finite. 
Hence no convergence factor corresponding to the gauge-fixing term will be 
necessary before passing on to the continuum limit (see §9.1). The link 
variables are group elements of SU(3). We may set up a generalized Euler 
angle representation for these SU(3) unitary matrices and determine 
explicitly the form of the group integral in terms of the eight Euler angles. In 
any case we have the orthogonality properties 

J dU(n, n + p.)[U(n, n + p.)Ju = 0 (10.264) 

J dU(n, n + fi)[U(n, n + fi)];lUt(n, n + fi)]k1 = {- c5;1 c5ik (10.265) 

J dU(n, n + p.)[U(n, n + fi)Ju[U(n, n + p.)]k1 = 0. (10.266) 

The identity (10.265) implies that two links going in opposite directions will 
cancel each other after integration. Thus, if we have two adjacent plaquettes 
oriented in the same direction, they will merge into a rectangular path after 
integrating over the common link as illustrated in Fig. 10.20. In the strong 
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FIG. 10.20. 

coupling limit we have l/g2 as a small parameter and the exponential in 
(10.262) can be expanded 

W(C) = I dU(n, n + P,) tr U(x, x; C) 

x + .. J 
(10.267) 

For simplicity we will take a planar rectangular path C as in Fig. 10.19. It 
is clear that in this strong coupling limit the orgothonality properties of the 
link variables given in eqns (10.264}-(10.266) imply that the lowest-order 
nonvanishing contribution to W(C) is the (l/g2)Np term where NP is the 
minimal number of plaquettes required to cover the area enclosed by the 
path C, 

( 1 )Np 
W(C)- g2 . (10.268) 

This corresponds to the area law since the area enclosed by the path C is 
given by 

(10.269) 

Hence, 

(10.270) 

or, comparing this with (10.260) we have the linearly arising potential 

with 

E(R) =KR 

lng2 

K=-2-· 
a 

(10.271) 

(10.272) 

The weak coupling expansion of the Wilson loop can also be considered by 
first passing to the continuum limit and replacing the action by the Gaussian 
approximation. We then obtain a perimeter law. It turns out that this is the 
familiar Coulomb's law, E(R) "" R- 1, in disguise. With the appropriate 
renormalization effects taken into account the property of asymptotic 
freedom is recovered. 
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Does this mean that we have proven that QCD possesses both properties 
of asymptotic freedom and colour confinement? No, not yet, as we note that 
the U(l) lattice gauge theory also has both the perimeter (i.e. Coulomb's) law 
and the area law (confinement)-the above strong-coupling result is derived 
without using the non-Abelian nature of the theory. The catch is that the 
weak and strong coupling regimes may be separated by one or more 
discontinuous phase transitions. It has been proven that in four dimensions 
the Abelian gauge theory has a non-trivial phase structure, but similar 
analytic proof that QCD does not undergo a phase transition at some finite 
couplings has not been obtained. However this problem can be investigated 
using numerical analysis. In particular two approaches have been very 
successful. The first involves the use of Pade techniques to extrapolate from 
the strong coupling expansion to a regime where weak coupling predictions 
become valid (Kogut, Pearson, and Shigemitsu 1979). The second approach 
is Monte Carlo simulation in which the path integral (10.263) is considered as 
a partition function for a statistical system (Creutz 1979). Various correla­
tions can be calculated by first generating configurations typical of the 
system in thermal equalibrium. The results from both methods indicate that 
no phase transitions occur in the intermediate coupling region. The strong 
coupling behaviour (10.272) g2(a) - eKa2 does go into the weak coupling 
g 2(a) - 1/(ln a- 1) as a --+ 0. It is found that the transition is smooth and 
rapid (see also Kogut et al. 1981 ), just as a similar calculation for U(l) theory 
shows convincing evidence for a phase transition. Furthermore, these 
methods are able to produce satisfactory numerical relations between the 
long-distance parameter string tension and the gauge coupling at short 
distance (or the conventional QCD scale parameter, 100 MeV 
300 MeV). Thus these numerical results are encouraging in indicating 
that asymptotic freedom and colour confinement do coexist in a single phase 
ofQCD. 



11 Standard electroweak theory I· 
basic structure 

IN this chapter and the following one we shall present the standard gauge 
theory of weak and electromagnetic interactions. It combines in one 
framework quantum electrodynamics and the low-energy V-A theory of 
weak interactions for charged currents. The unified theory is renormalizable. 
It also predicts a new set of neutral currents; its successful experimental 
confrontation in recent years strengthens our confidence as to the correctness 
of the theory. Chapter 11 will serve as an introduction and will emphasize the 
theoretical structure of the model. In Chapter 12 the phenomenological 
implications of the model will be presented. Possible extension and 
modification of the standard electroweak theory will be discussed in Chapter 
13. 

11 .1 Weak interactions before gauge theory 

In this section we shall provide a brief review of weak-interaction theories 
before the advent of gauge models: the four-fermion theory as well as the 
intermediate vector boson theory. We shall discuss in particular the 
difficulties encountered if they were taken to be self-contained theories. 

Four-fermion interactions 

Soon after Pauli's neutrino postulate, Fermi (1934a,b) proposed his theory 
for the n p e v: 

G 
2F(x) = - ..}; [p(x)y;.n(x)][e(x)y .. v(x)] + h.c. (11.1) 

where the fermion field operators are denoted by their particle names, and 

(11.2) 

is the Fermi coupling constant with mP being the proton mass. 
In the ensuing years other processes such as then-µ and µ-e decays have 

been discovered and found, like to have a comparatively long 
lifetime. The concept of a distinctive class of interactions, the weak 
interactions, began to emerge. The surprising discovery of parity non­
conservation (Lee and Yang 1956; Wu et al. 1957) stimulated a great deal of 
research and the eventual formulation of the V-A theory (Feynman and 
Gell-Mann 1958; Sudarshan and Marshak 1958; Sakurai 1958). It is 
suggested that an effective Lagrangian, very much like the one in eqn (11.1), 
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describes the weak interactions 

GF t ;. 
.Perr(x) = - ..)2 J ;.(x)J (x) + h.c. (l 1.3) 

with the weak current J;.(x) being of the vector-minus-axial-vector form. 
If we separate in the current the leptonic and hadronic parts, 

(l 1.4) 

the leptonic current Jf(x) can be written directly in terms of lepton fields 

( 11.5) 

and the hadronic current can be decomposed into parts having definite 
flavour SU(3) transformation properties as in eqn (5.79) and can be neatly 
summarized by writing the current directly in terms of quark fields 

( 11.6) 

with 
(11. 7) 

where (Jc is the Cabibbo angle 13°. When compared eqn (l 1.6) to (11.5), 
lepton-quark symmetry then suggests the generalization of (11.6) to 

= iiy;.(l - Ys) de+ cy;.(l - Ys)se (11.8) 

with 
(l 1.9) 

where the c-field is the postulated new heavy quark, the charmed quark 
(Bjorken and Glashow 1964). More importantly, it has been shown that any 
sensible weak-interaction theory must have this extra hadronic current in 
order to suppress to an acceptable level the induced strangeness-changing 
neutral-current effects (Glashow, Iliopoulos and Maiani 1970). This suppres­
sion mechanism, although invented before the general acceptance of gauge 
theories, can best be explained in this new context and we shall do so in §11.3 
and in more detail in § 12.2. 

We should take note of some of the common properties of the weak 
currents as given by eqns (11.5) and (11.8). They are charged currents, all 
with one unit of charge; in the lowest order there are no neutral-current 
processes such as the reaction v11N-+ v11N. They are bilinear in the 
fundamental fermion fields involving the helicity projection operator 
(1 - y5 ). We can rephrase this by saying· that only the left-handed (LH) 
fermions are present in the weak currents. Thus, 

t/iy;.(1 - Ys)l/I = 2t/iLY;.l/IL (1 l.10) 

with 

I/IL= !(l - Ys)l/I, l/IR =!(I + Ys)l/I (ll.11) 

and 

l/l=l/IL+l/IR• (11.12) 
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The rule that 'parity violation is maximal in weak interactions' has a simple 
interpretation in terms of the lepton and quark fields: in charged-current 
weak interactions the fundamental dynamical degrees of freedom for matter 
are the two-component left-handed fermion fields. 

If we restrict our applications to the leading order in GF, the V-A 
Lagrangian of (11.3) is very successful in describing a vast amount of low­
energy weak-interaction experimental data. The exceptions are few. It is not 
clear whether nonleptonic weak decays are correctly described by a 

coupling as required by (11.3) because of our inability to do 
reliable strong-interaction calculations. The CP violation discovered in the 
neutral K-meson system (Christenson, Cronin, Fitch, and Turlay 1964) 
cannot be incorporated in any simple fashion. The most successful pheno­
menological theory of CP nonconservation postulates the existence of a new 
super-weak interaction (Wolfenstein 1964). In short, the lowest-order V-A 
theory correctly describes the domain of weak-interaction phenomena in 
which one believes it should be applicable. 

Nevertheless the Lagrangian in (11.3) cannot be taken as a self-consistent 
quantum field theory of weak interactions: it is not renormalizable and even 
in the lowest order of GF it violates unitarity at high energies. 

(1) Lack ofrenormalizability. The interaction in (11.3) is not renormaliz­
able. It is a dimension-six operator, or, more transparently, the coupling 
constant GF has dimension (mass)- 2 • Thus the higher-order contributions 
are increasingly divergent and they cannot be organized in such a way as to 
be absorbed in a few 'bare' quantities (see Chapter 2, especially §2.4). In a 
nonrenormalizable theory, even though the coupling may be small, there is 
no guarantee that the higher-order terms are not large. Then the whole 
corpus of selection rules (e.g. the absence of AS> 1, AS= -AQ charged­
current processes) which is the basis of the successful V-A theory will be 
made meaningless if the lowest-order Born terms do not dominate. 

(2) Violation of unitarity. Even if we restrict ourselves to the Born 
approximation there are certain processes which will violate unitarity. 
Consider the reaction of vµ e -+ µv. as described by the effective Lagrangian 
of (11.3): the amplitude has only the J = 1 partial wave and the high-energy 
cross-section 11 ,...., withs = 2m.E (E being the v µenergy in the laboratory 
frame). However unitarity requires that 11( J = 1) be bounded by s- 1 • Thus 
for energies above J s ,...., Gi 112 300 Ge V the theoretical cross-section 
from (11.3) would violate unitarity. (For details see §11.2.) 

It turns out that these two problems are closely related. If the lower-order 
diagrams have bad high-energy behaviour to violate unitarity, the higher­
order contributions, which are integrals over lower-order diagrams, cannot 
be renormalized. 

Intermediate vector boson theory (IVB) 

Like the electromagnetic current, the weak current in !l'.rr (eqn (11.3)) 
transforms as a four-vector under the Lorentz transformation and one may 
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imitate the successful QED by introducing a new massive field W µ and write 
the basic interaction as 

(11.13) 

Then the four-fermion Lagrangian (11.3) can be viewed as the effective low­
energy theory generated by 2 1 in second order (see Fig. 11.l) with the 

-
g 

FIG. 11.1. The four-fermion interaction as the low-energy approximation to the g2 diagram in 
IVB theory. 

identification g 2 M;/ = r 1' 2 Gf, as the massive IVB propagator con­
tributes the M;/ factor. Since QED is a gauge theory, one may interpret 
this interaction Lagrangian as resulting from a Yang-Mills construction­
but with gauge bosons being massive. 

Let us now examine the problems ofunitarity and renormalizability in IVB 
theory. The problem with unitarity remains: but it is shifted to some other 
processes. For example the reaction vv-+ w+w- with longitudinally polar­
ized Ws can be shown (see §11.2 below) in the IVB theory to have a high­
energy amplitude ,.., GFE 2 (E being the neutrino energy) in the pure J = 1 
partial wave, which unitarity requires to be bounded by a constant. 

Even though the coupling g is now dimensionless, this theory is still not 
renormalizable. The free massive vector boson Lagrangian is 

!t'w = -! (oµwt- - a•wµ) + (11.14) 

which gives the propagator in momentum space 

"A (k) __ . 9µv -
ILlµv - I k2 M2 . - w+rn 

(11.15) 

This propagator behaves like a constant as k -+ oo and the interaction is not 
renormalizable by power counting. The problem of course lies in the IVB 
mass, which gives the term kµk./ in the propagator. However just this 
massiveness of W is required in order to yield the desired low-energy four­
fermion theory. The key problem is then how to introduce gauge-boson mass 
terms in the Yang-Mills theory without spoiling renormalizability. 

1.2 Construction of the standard SU(2) x U(1) theory 

As discussed in the last section, weak interactions must involve massive 
intermediate vector bosons and yet their mass terms spoil renormalizability. 
This serious contradiction was finally resolved with the emergence of the 
spontaneously broken gauge theory. Also, the correct renormalizable theory 
displays the unity of weak interactions with electromagnetism. The required 
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gauge symmetry is SU(2) x U(l). This model is now the standard theory of 
the electroweak interaction. 

Noting the vectorial nature of both interactions, Schwinger (1957) was the 
first to advance the idea of weak and electromagnetic unification. Glashow 
(1958) suggested that the desired renormalizable theory of weak interactions 
would involve this unification, and later he (Glashow 1961) proposed such a 
model which has the SU(2) x U(l) gauge symmetry. Renormalizability is 
not preserved in his theory as the IVB masses were inserted by hand. A 
similar attempt was also made by Salam and Ward (1964). Finally the 
renormalizable theory with IVB masses generated by the Higgs mechanism 
was proposed by Weinberg (1967) and also discussed independently by 
Salam a year later (1968). Thus the standard theory is often referred to as the 
Weinberg-Salam model or the Glashow-Weinberg-Salam model. However, 
the importance of this approach was not recognized by the general 
community of high-energy theoretical physicists until 't Hooft (l97la,b) 
transformed the subject by proving the renormalizability of gauge theories, 
with and without spontaneous symmetry breaking. 

In the following discussion we shall present the Weinberg-Salam theory. 
For simplicity we shall restrict our initial consideration to the lightest 
fermion 'family' or 'generation' (v., e, u, d). As we shall show, a theory in the 
one-family approximation is completely self-contained and self-consistent. 
The heavier families (vµ, µ, c, s) and (v,, t, t, b) will be given structures 
identical to the light one. Their incorporation into the standard theory is 
discussed in §11.3. 

Choice of the group SU(2) x U(l) 

The algebraic approach. To motivate the choice of the gauge group we need 
only to consider an IVB theory with an electron and its neutrino. The weak­
interaction Lagrangian is given by eqns (11.13) and (11.5) 

!f'w = g(l;.W;. + h.c.) (11.16) 

where 

l;. = YeY;.(l - Ys) e (11.17) 

is the V-A charged current. On the other hand the electromagnetic 
interaction of these leptons is given by 

(11.18) 

where 

(11.19) 

is the electromagnetic current. In a unified gauge theory of weak and 
electromagnetic interactions, we need at least three vector gauge bosons (W± 
and the photon) to couple to the currents J, Jt, and rm. The simplest group 
with three generators is SU(2). However, as we shall demonstrate imme-
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diately, the three currents listed in eqns (11.17) and (11.19) do not close 
(to form an algebra) under commutation. Define the weak and electric 
charges as 

T+(t)=! f d3xJ0(x)=! f d3xv!(l-y5)e 

T _(t) = 

Q(t) = I d3xJ0m(x) = - f d3x et e. 

Using the canonical commutation relations for fermions 

{l/fi{x, t), l/fj{x', t)} = {Jii b3(x - x'), 

we can show that 

[T+(t), T_(t)] = 2T3(t) 

with 

T3(t) = ! I d3x[v!(l - y5)v. - et(l - y5) e]. 

(11.20) 

(11.21) 

(11.22) 

T3 =F Q and thus T±, Q do not form a closed algebra. The reason behind this 
is not difficult to see. In order for Q to be a generator of SU(2) the charges of 
a complete multiplet must add up to zero, corresponding to the requirement 
that the generators for SU(2) must be traceless. In the case at hand we are 
attempting to form a doublet out of v. and e which clearly do not satisfy this 
condition. Also, T±(t) are of the V-A form while Q is purely vector. 

There are two alternatives at this point. 

(i) We can introduce another gauge boson coupled to T3 as given in eqn 
(11.21). These four generators can now form the group SU(2) x U(l). This is 
the choice we shall adopt eventually. 

(ii) We can add new fermions to the multiplet and thus modify the 
currents in order that the new set of T ± and Q will be closed to form SU(2) 
under commutation. In our case we may attempt to form a triplet withe, v., 
and a new charged heavy lepton E +. Such a theory has in fact been 
constructed by Georgi and Glashow (1972a). (They also introduced a neutral 
heavy lepton Nin order to obtain the V-A form for the weak current at low 
energies.) In this model, 

!(1-y,)(v,cos•E: Nsina} 
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and 

!(l + Ys)(N cos IX - Ye sin IX) 

are the two triplets and one singlet in the model. This yields the weak charge 

T+(t)=! f d 3x[E+(l-y5)(vecos1X+Nsin1X) 

+ (v!cos IX+ Nt sin 1X){l - y5) e 

+Et(l + y5 )N + W(l + y5) e]. (11.23) 

It is then straightforward to see that 

[T+(t), L(t)] = 2Q(t) 

with 

Q = f d 3x[EtE - et e]. (11.24) 

Clearly the only neutral current in this case is the electromagnetic current and 
the model was ruled out by the discovery of weak neutral-current effects in 
1973. Furthermore, it is difficult to incorporate fractionally charged quarks 
into such a model. 

The unitarity argument. Equivalently we can argue from unitarity that it is 
necessary to introduce either a new charged lepton or a new neutral gauge­
boson. Consider the reaction VY--+ w+w- with both Ws being longitudin­
ally polarized. The lowest-order amplitude is given by Fig. 11.2 

v,(p) 

e 

v,(p'l w-(k', c') 

FIG. 11.2. vv--> w+w- with at-channel exchange of leptons. 

Tt(vv--+ w+w-) = -iv(p')( - ig.i)(l - rs) 

x : (-igJJ-)(1 - y5 )u(p) 
p- -me 

= -2g2v(p'{Y-iil - u(p). 
p- - me 

(11.25) 

The polarization vectors with s<il · sUl = -l5ii and k · s<il = 0 may be 
chosen in the rest frame of the W boson as s8l = 0 and = l5ii. To obtain s<il 
for a moving W boson: k 11 =(E,0, 0, k) with k = (E 2 - Ma,)t we can make 
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the appropriate Lorentz boost along the z-axis. The transverse polarizations 
will not change under such a Lorentz transformation while the longitudinal 
polarization vector becomes = M w 1 (k, 0, 0, E ). In the high-energy limit 
with k = E - M a,;2E + ... the vector can be approximated as 

= kµ/Mw + O(Mw/E). 

Thus, substituting (11.26) into (11.25), we have 

Tt -2g2 /(k 2 - 2p · k)v(p')(k'/Mw) 

x (p - k)(k/Mw)(l - y5)u(p) 

2g2 
- 2 v(p')k'(l - y5 )u(p) 
Mw 

(11.26) 

(11.27) 

where we have used the result (p- k)ku(p) = (2p · k - k2 )u(p). To show 
more explicitly that this amplitude is a pure J = 1 partial wave, we can 
choose the following momentum configurations 

with 

Pµ = (E, 0, 0, E), 

kµ = (E, ke), 

= (E, 0, 0, -E) 

= (E, -ke) 

e =(sine, 0, cos 8). 

Since v and v have opposite helicities, we have 

u(p) · l' }-"' 
v(p') = J E xL2((J i'' -1) = J E xi;2(-CIZ, -1) 

where 

X112 = G). 
and thus the combination in eqn (11.27) becomes 

v(p')k'(l - y5)u(p) = Exl;z(-1, -1) 

(11.28) 

(11.29) 

(11.30) 

( E ku · e) ( 1 -1) ( 1) 
x -ku·e -E -1 1 -1 X- 112 

= -4Ex112(E - ku · e)x-112 = 4Ek sin(). (11.31) 

We have Tt GFE 2 sin() as E-> oo. The partial-wave expansion for the 
helicity amplitude is (Jacob and Wick 1959; see also Frazer 1966) in this 
case 

av 

TA3A4,J..1l2(E, ()) = I (2J + 
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where A. 1 = -A.2 = 1/2 and A. 3 = A.4 = 0 are the helicities of the initial and 
final particles with A.= A. 1 - A.2 = 1, µ = A. 3 - A.4 = 0 and M = max(A., µ) 
= 1. is the usual rotation matrix with di 0 (()) = sine. It is clear that T1 

corresponds to a pure J = 1 partial wave and violates the unitarity bound of 
rJ= 1(£) <constant. To cancel this bad high-energy behaviour, we need 
other diagrams for this reaction. There are two possibilities: s-channel or u­
channel exchange diagrams. (The t-channel diagram will not help as it gives 
the similar contribution as before with the same sign.) 

The heavy-lepton alternative; the u-channel exchange diagram in Fig. 
l l.3(a) yields the amplitude 

T ( - w+w-) - -2 12-1 "').s(p - k')s!(l - Ys) ( ) 
" vv --+ - g v\Y ( k')2 2 u P p- -mE 

-2g'2 
- 2- v(p')k'(l - y5 )u(p). 

Mw 
(11.32) 

v(p) v(p) 

v(p'l v{p'l 
(a) (b) 

F1a. 11.3. vv--+ w+w- with (a) u-channel and (b) s-channel exchanges. 

If g2 = g'2 , this will cancel the bad high-energy behaviour given in eqn 
(11.27). 

The neutral vector boson alternative; the s-channel exchange diagram in 
Fig. 1 l.3(b) yields the amplitude 

T,(vv--+ w+w-) = -iv(p')(-ifyp)(l - y5)u(p)Laµ/;'µ(k')r!(k) 

X i[ -gafi + (k + k'Y(k + k')fi / M; ]/[(k + k')2 - M ;]. (11.33) 

Choosing the ZWW coupling to have the Yang-Mills structure 

we get 

Hence 

Laµv = -if'[(k' - k)a9µv - (2k' + k)v9aµ + (2k + k')µgavJ, (11.34) 

e'µev Laµv = -if'[(k' - k>a(e' · e) - 2(k' · + 2(k · e')ea] 

if' 
--2 [(k - k'>a(k. k')]. (11.35) 

Mw 

T, -f( v(p')k'(l - Ys)u(p). 
Mw 

(11.36) 

If we choose ff' = 2g2 , this will also cancel the amplitude in (11.27). 
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In fact if one demands that all the amplitudes which violate unitarity be 
cancelled out, one ends up with a renormalizable Lagrangian which is the 
same as the one derived formally from the algebraic approach. (For 
details of such a construction see Llewellyn Smith 1973; Bell 1973; Cornwall, 
Levin, and Tiktopoulous 1974, 1975.) 

With the choice of the group SU(2) x U(l), it is straightforward to write 
down the gauge-invariant Lagrangian 

(11.37) 

where 

(11.38) 
and 

(11.39) 

are the SU(2) and U(l) gauge-field tensors, respectively. Clearly before 
spontaneous symmetry breakdown this corresponds to four massless gauge 
bosons. 

Fermions (in the one-family approximation) 

In this section we shall study the standard model with its fermionic sector 
composed of e, v. leptons and u, d quarks only. As it turns out such a 
simplified theory is completely self-contained. Heavier fermions such as 
µ, s, c, ... , etc. will be incorporated in §11.3. 

As we have already mentioned in §11.1 the basic fermion dynamic degrees 
of freedom are the two-component fields with definite helicities. More 
pertinently, since gauge interactions conserve helicity, we can and should 
make independent choices for left-handed and right-handed fermions. Thus 
the first family is composed of the following 15 two-component fermions 

(11.40) 

with 
eL = !(1 - Ys) e 

eR = !(1 + y5 ) e, etc. (11.41) 

The colour indices oc = 1, 2, 3 on the quark fields have been suppressed. 

SU(2) x U(l) quantum number assignment. From eqns (11.5), (11.7), 
(11.20), and (11.22) we have learned that the SU(2) group is generated by the 
weak charges 

T+ = f (vJLeL + utdd d3x 

L=(T+)t 

T3 = ! f ML VeL - eteL + utuL - dtdd d3x. (11.42) 
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From these expressions for the SU(2) generators, it is clear that 

lL = and qL = (11.43) 

are SU(2) doublets and eR, uR, and dR are singlets. The U(l) group should be 
chosen in such a way that the electric charge Q 

Q = f ( -ete + - !<ltd) d3x 

f ( t t 2 t 2 t Lltd = -eLeL - eReR + JULUL + 3URUR - JUL L 

-idkdR) d3X (11.44) 

can be a linear combination of the U(l) generator and T3 of SU(2) in eqn 
(l l.42). We observe that the combination 

Q - T3 = f [ -!(vJL VeL + eted + i(utuL + dldd 

(11.45) 

has the property of giving the same quantum number to all members of an 
SU(2) doublet in (l l.43). Clearly it commutes with all the SU(2) generators, 
i.e. 

[Q - T3 , TJ = 0, i = 1, 2, 3. (1 l.46) 

We then choose 

(1 l.47) 

as the generator of the U(l) group and refer to Y as the weak hypercharge. 
Unlike the T;s, Y does not obey any nonlinear commutation relations. Its 
scale and hence the proportional constant between it and (Q - T3) is strictly 
a convention. To obtain the correct electric charges for particles we must use 
eqns (1 l.45) and (1 l.47) and make the assignments 

Y(/L)=-1, Y(eR)=-2, 

Y(qd = 1/3, Y(uR) = 4/3, Y(dR) = -2/3. (1 l.48) 

These hypercharge values may be remembered as twice the average charges 
of each multiplet, as the average T3 value is always zero. We should note that 
the group structure allows for any hypercharge assignment. Thus 'charge 
quantization' (i.e. particle electric charges are integral multiples of some 
basic unit) is not automatic in the SU(2)L x U(l)1 theory. This can be 
obtained only if the gauge group is semi-simple. We shall see in Chapter 14 
that this feature will be obtained when we combine this electroweak theory 
with SU(3) quantum chromodynamics into a 'grand unified gauge 
theory'. 
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Anomaly cancellation. As we have discussed in §§6.2 and 9.3, the ABJ 
anomaly spoils the renormalizability of a gauge theory (Gross and Jackiw 
1972; Georgi and Glashow 1972b; Bouchiat, Iliopoulos, and Meyer 1972). 
The fermionic gauge couplings must not introduce anomalous Ward 
identities. Thus, for the fermion representation R with representation 
matrix T 0 (R), the trace tr({T0 (R), Tb(R)}r(R)) in eqn (6.60) must vanish. 

In the present case, the fermions are either doublets or singlets under 
SU(2). The matrix T 0 will be either the Pauli matrix "C0 or the U(l) 
hypercharge Y. Since the group SU(2) is anomaly-free 

tr( {'ti, "Ci}"Ck) = 2 Jii tr( "Ck) = 0, ( 11.49) 

we will consider cases where at least one of the Ts is the hypercharge Y. 
Because every member of a given SU(2) multiplet has the same hypercharge 
value, for the case of two Ts being a Y we have, 

tr( 'ti YY) oc tr 'ti = 0, 

and for the case of one T being a Y we have, 

tr({'ti, 'ti} Y) = 2 Jii tr Y. (l l.49a) 

Thus this anomaly contribution is proportional to the trace of Y (the sum 
of all fermionic hypercharge values) 

tr Y = L Y; = L Y + L Y. 
i lepton quark 

But this vanishes by explicit calculation for the fermion assignments in each 
generation 

I Y = -1 x 2 - 2 = -4 
lepton 

I Y = 3<! x 2 + !- i) = 4. (l 1.49b) 
quark 

The factor 3 in front of the parenthesis is due to the colour degree of freedom. 
For the case when all Ts are the hypercharge, we have from eqn (11.47), 

tr(YYY) = 8 tr(Q3 - 3Q2 T3 + -

(1 l.50a) 

because tr = 0, and because we can ignore the Q3 term as the 
electromagnetic current is a vector (V) and the VVV type of triangular 
fermion loops does not have anomaly. Explicit calculation of the right-hand 
side of eqn (1 l.50a) yields 

L (Q2 T3 - QTD = -! + i = -i 
lepton 

L (1 l.50b) 
quark 

Thus the anomalies again cancel as in eqn (11.49) and we can conclude that 
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with the fermion assignments of eqns (11.43) and (11.48) the SU(2) x U(l) 
theory is free of ABJ anomaly. 

In fact there is a convenient way to remember the cancellation displayed by 
eqns (11.49) and (11.50). Using eqn (11.47) we can express eqns (1 l.49a) and 
(l l.50a) as 

trYoctrQ 

tr(Q2 T3 - ex: tr(T3QY) ex: ex: tr Q (11.51) 

because tr(T3Q2 ) = tr(T3 Y 2 ) = = 0. Thus the nontrivial contribution 
to the ABJ anomaly in SU(2) x U(l) theory is proportional to 

trQ=IQ=O (11.52) 
i 

Lepton and quark charges cancel when the three colours are taken into 
account. [Remark: Given (11.52) one can easily show that the entire SU(3)c 
x SU(2)L x U(l)v standard model is free of anomaly. Namely, the ad­
ditional triangle diagram contributions involving gluons and electroweak 
gauge bosons also mutually cancel.] 

With the fermions given in (11.40) the gauge-invariant Lagrangian takes 
on the form 

where 

(11.53) 

with the covariant derivative 

D,,1/1 =(a,, - igT ·A,, - ig' B,,)1/1. (11.54) 

For example, 

(11.55) 

and 

(11.56) 

We should note in particular that there are no gauge-invariant terms in .!£ 
that are bilinear in the fermion fields. Hence there are no SU(2) x U(l) 
symmetric fermion mass terms. 

Symmetry breaking via the Higgs mechanism 

We need to introduce a set of scalar fields <I> and this set develops a U(I).m 
symmetric vacuum expectation value (<1>) 0 so that we have the following 
pattern of symmetry breaking 

(<l>)o 

SU(2)L x U(l)v -+ U(l).m 
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Three of the original four SU(2) x U(l) gauge bosons will become massive 
and one, corresponding to the photons, remains massless. 

As we have seen in §8.3, a complex scalar doublet breaks the SU(2) 
symmetry completely and one member of this doublet must be neutral in 
order to have possibility of a U(l).m-invariant (<1>)0 • We need a com­
plex doublet with the charge assignment 

Y(<I>) = 1. (11.57) 

The complete gauge-invariant Lagrangian including the scalar fields is 
then 

(11.58) 

with 

(11.59) 

where 

(11.60) 

and 

(11.61) 

The most general SU(2) x U(l) Yukawa coupling between scalars and 
fermions is given by 

!l74 = pe>/ L <l>eR + t<•lq_L a>uR + J<d>q_L <l>dR + h.c. 

with the isodoublet 

having hypercharge Y(4>) = -1. 

(11.62) 

As we have already discussed in §§5.3 and 8.3, for positive values of µ2 and 
A. in eqn (11.61), we have spontaneous symmetry breakdown as the scalar 
develops VEV 

(4>)0 (014>10) ( : 2 )with v (µ'/J.)t. 

Particle spectra and interactions in the unitary gauge 

Using the polar variables for the scalar fields 

<l>(x) u-•cg(• 
with 

= · -r/v]. 

(11.63) 

(11.64) 
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Thus the original two complex fields <V(x) and ¢ 0 (x) in (11.57) are 
parametrized in terms of four real fields (i(x) and 17(x). These shifted fields 
have zero VEY 

(Oi(dO) = (011110) = 0. (11.65) 

In order to display the particle spectra, we then make a gauge transforma­
tion, i.e., go to the unitary gauge, by defining new fields. [Remark: We have 
simplified the expression in (11.64). In principle (i should be multiplied by 
all the broken symmetry generators, as in (8.127). For the case at hand, 
however, the difference is immaterial.] 

<I>' = = ( 0 ) v + 17(x) 
..)2 

or 

<I>'( ) v + 17(x) . h (0) 
X = X Wlt X = 

..)2 1 
(11.66) 

and 

(11.67) 

We next express each .P; of the Lagrangian (11.58) in terms of the new fields. 
Consider first those containing <l>s and use eqn (11.66) 

(11.68) 

with 

D <I>' = (a - i t ·A' - · rf__ B' )[v + 17(x)] 
/l 11 2 /l I 2 11 .j2 X (11.69) 

(11. 70) 

and 

.P. = 1'/(X) [j<•>e' e' + f(u)ii' u' + J<d>(f' d' ] 
4 ..)2 L R L R L R 
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Mass spectrum. From the above equations one can easily read off the mass 
terms which are bilinear in the fields: 

(i) Scalar mass: (the physical Higgs particle) 

m11 = ..)2µ. (11. 72) 

(ii) Fermion masses: 

me= J<e>v/ ..)2, 

m. = p•>v; ..)2, md = J<d>v; ..)2. (l l.73) 

(iii) Vector meson masses: The three 'would-be-Goldstone bosons' 
are transformed away in eqn (l l.66). (We say they are 'eaten' by the gauge 
bosons to form three massive IVBs.) The vector meson masses are contained 
in the (D µCl>') 2 term in ff'3. 

ff'vMM = v; +; B'µ)x 

z;2 
= S + + _ 

(l l.74) 

We need to make the following identifications of mass and charge 
eigenstates. For the charged vector mesons, 

g 2v2 
Ma,w: w-µ = + (11.75) 

Thus, 

(l l. 76) 

and 

(11.77) 

For the neutral vector mesons, because U(l)em is unbroken Q(Cl>)0 = 0, the 
associated gauge boson (the photon) will remain massless, we have 

! M2z zµ = v2 (gA'3 - g'B' )2 2 z µ 8 ,,. µ 

= (A'3, B'' g -gg 2 ( 2 ')(A'3µ) 
8 µ p.1 - gg' g'2 B'µ 

1 o)(zµ) 
= 2 (Zµ, Aµ) 0 0 Aµ . (11.78) 

We have diagonalized the mass matrix by an orthogonal transformation 

Zµ = cos - sin 

(11.79) 



352 Standard electroweak theory I: basic structure 11.2 

with 

and 
tan Ow= g'/g 

= v2(g2 + g'2)/4. 

(11.80) 

(11.81) 

The angle of rotation Ow is generally referred to as the Weinberg angle. Using 
eqns (11.27), (11.80), and (11.81) we also have the ratio between vector 
meson masses 

(11.82) 

Doublet Higgs and p = 1. The derivation of (11.82) is predicated on our use 
of the Higgs scalar in the doublet representation. To see this we retrace some 
of the steps in its derivation. Gauge invariance requires that the scalar 
potential in eqn (11.61) is a function of 1<1>1 2 , which may be viewed as the 
length of a four-vector made up of the four real components of <I>. Thus 
V(<I>) = V(l<l>l 2) has a larger 0(4) SU(2)L x SU(2)' symmetry and an 
0(3) SU(2) symmetry after SSB (11.63). We have already encountered 
such a symmetry-breaking pattern back in §5.3 with the SU(2) x SU(2) a­
model. The multiplet (a, 1t) transforms as a(!,!) under SU(2) x SU(2) and 
as a four-vector under 0(4) symmetry. The true vacuum singles out a 
direction (chosen to be a in that case) and the theory breaks down to an 0(3) 
symmetry with 1t being still a degenerate triplet. In the case here Aµ remains 
to be a degenerate triplet under the remaining 0(3) symmetry. Thus we have 
the crucial equality for the three terms that are bilinear in Aµ fields (11.74) 

t(<l>) 0Aµ y = Ma,[(A!) 2 + (A;) 2 + (A;)2]. (11.83) 

Once given that A; also has the mass term !M the form for the neutral IVB 
mass matrix in (11.78) is then completely fixed by the trace ( and the 
determinant ( =0) conditions 

.!. A 3 B ( -
2( µ' µ) - - Bµ . 

(11.84) 

The mass relation of eqn (11.82) follows immediately. 

Charged current. In order to identify the currents with those of V-A 
theory, let us next examine the fermion gauge interactions as contained in 2 2 

of eqns (11.53) and (11.54) 

n · - t · /..' + 
2 I I 

- e' g'"'e' +ii' _..!!__ "'u' - o' fl_ rli d' RPR R 3 PR R 3 P R 

tyA + 
+ + - + -

:= (gJ!A.iµ + gl;A' 2 µ) + (gl;A' 3µ + !g'J!B'µ) 

corresponding to charged- and neutral-current interactions. 

(11.85) 
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For the charged current interaction in (11.85), we have 

!fee = + gl;A12µ) 

= __!!__ (1+w+µ+1- w-µ) .J2 µ µ 

with w; given by eqn (11. 76) and 

l + 11 ·12 -I I -1 di µ = µ + i µ = vLyµeL + ULYµ L 

= !v1yµ(l - Ys)e1 + !ii1Yµ(l - Ys)d1
• 
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(11.86) 

(11.87) 

For the low-energy four-fermion interaction shown in Fig. 11.1 we can 
generate the following effective Lagrangian 

2 
!fee = l+ 1-µ 

etr 2Ma, µ • 
(11.88) 

This is just the V-A theory. When eqn (11.88) is compared to eqns (11.3), 
(11.5), and (11.87), we can make the identification 

GF g2 

.J2 = 8Ma,. (11.89) 

Using eqn (11. 77), this implies that the vacuum expectation value in (11.63) 
has the size 

v = T 114 Gi 1/ 2 250 GeV. (11.90) 

Neutral currents. For the neutral-current interaction in (11.85), we have 

ff Ne = gl;A 13µ + !g1l:B1µ 

= gl;(cos ewzµ + sin 8wAµ) 

+tan - l;)(cos 8wAµ - sin 8wZµ) 

where we have used eqns (11.79), (11.80), and (11.47). Thus 

ffNe = + (g/cos 

with 
e = g sinew 

1° = 1 3 - sin 2 e rm µ µ w µ . 

(11.91) 

(11.92) 

(11.93) 

(11.94) 

The neutral currents can be written out explicitly in terms of the fermion 
fields 

0 " 1- 1-1µ = L. [gJLYµfL + 9RfRYµfR] 
l 

= L [g{fyµ(l - Ys)f + g{fyµ(l + Ys)!J 

where f = Ye, e, u, and d. The weak neutral-current couplings are 

g{ R = T3(k R) - Q(f) sin2 ew. 

(l l .95a) 

(l l.95b) 
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From eqns (11.42) and (11.44) we then have 

= !, 
= -! + sin 2 8w, 

gt = ! - sin 2 8w, 

gt = -! + t sin2 8w, 

= 0 

g°rl = sin2 8w 

= sin2 8w 

= t sin 2 8w. (l 1.95c) 

Starting from the coupling (11.92) we can then generate low-energy four­
fermion interactions corresponding to the products of neutral currents 

2 
2NC _ -g JO JOfl 

err - 2 cos2 8wMi 11 

2 
= -g JOJOµ 

2Ma, 11 
(11.96) 

where eqn (11.82) has been used. The factor of 2 in the denominator comes 
from the symmetry factor in Feynman rule for two identical currents in 
(11.96). Thus the SU(2) x U(l) theory predicts a set of new weak interactions 
which are of comparable strength to the more familiar Fermi interactions of 
charged currents. As an illustration, consider the vee elastic scattering; both 
charged and neutral currents contribute. The low-energy amplitude (given by 
Fig. 11.4) is 

2 

T(vee---+ Vee)= {[veyµ(l - Ys)e][ey11(1 - y5)ve] 

-![vey11(1 - y5)ve][ey11(1 - y5)e - 4 sin2 8wey11e]}. (11.97) 

FIG. 11.4. Charged- and neutral-current contributions to elastic v,e scattering. 

After a simple Fierz rearrangement (see Appendix A) these two con­
tributions can be combined, 

where 

a = 2 sin 2 8w + ! and b = ! . (11.98) 

Of course the old V-A theory would have predicted a = b = I. 
As we shall discuss in the next chapter, such a class of neutral-current 

processes has been discovered in high-energy experiments. All data are 
consistent with a value for the Weinberg's angle in the neighbourhood of (for 
a review see Kim, Langacker, Levine, and Williams 1981) 

sin 2 8w 0.22 (11.99) 
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Discussions. The next major step in testing the standard theory will clearly 
be the discovery of charged and neutral gauge bosons having the prescribed 
mass values and couplings. From eqns (11.89) and (11.93) we have 

Mw = r 514eGF 112/sin Ow 

37 GeV/sin Ow. (11.100) 

With the value of Ow given in eqn (11.99) we anticipate Mw 80 GeV and, 
with eqn (11.82), Mz 90 GeV. Another crucial test will be the discovery of 
the Higgs particle 17. However the numerical value of mTJ as given in eqn 
(11. 72) is not fixed by any previously measured quantities. Tfiis makes a 
search for the TJ difficult, particularly in view of its very weak couplings to 
fermions, being of the order of (mr/Mw)e, as given by eqn (11.71). 

In fact the standard theory, even with only one family of fermions, has 
seven arbitrary parameters e, sin Ow, Mw, mTJ, m., mu, md; or in terms of the 
original symmetric Lagrangian the seven arbitrary parameters are the two 
gauge couplings g and g', the two scalar self-couplings µ 2 and A., and the three 
Yukawa couplings: /(0 >, pu>, and f(dl. We note that the electroweak 
unification is in a sense not complete: we need to insert two gauge coupling 
constants g and g' to account for these two classes of interactions. The quest 
for further unification will be discussed in Chapter 14. 

Finally we emphasize that the guiding principle in constructing gauge 
models is gauge symmetry and renormalizability. We must include in the 
Lagrangian all gauge-invariant terms of dimension-four or less. Terms may 
be excluded without destroying renormalizability only with the imposition of 
the appropriate global symmetries. In the case of the standard electroweak 
theory no ad hoc global symmetry has been imposed. The conservation laws 
the theory possesses, such as those of baryon number and lepton number, are 
consequences of gauge invariance and renormalizability once the repre­
sentation content of fermion and scalar particles are given. Thus both 
leptons and quarks in each fermion family must be present in order that 
renormalizability is not spoiled by the ABJ anomalies. On the other hand 
cross-couplings between leptons and quarks are absent in eqn (11.62) 
because they are forbidden by gauge symmetry. For instance, if there were a 
set of scalars transforming as a doublet under the SU(2) symmetry and as a 
triplet under SU(3)colour: (i = 1, 2; IX= 1, 2, 3), then we would have 
the gauge-invariant Yukawa couplings and corresponding 
to baryon- and lepton-number nonconserving terms. Thus the structure of 
the Weinberg-Salam theory automatically leads to B and L conservations. 
[Here we ignore the unobservably small instanton effects ('t Hooft 1976).] 
Lepton number violation by Majorana neutrino mass terms will be studied in 
§13.2. Baryon- and lepton-number conservation laws are both violated in 
grand unified gauge theories (see Chapter 14). 

11.3 Fermion family replication 
In §11.2 we have shown how to construct the basic version of the standard 
electroweak gauge theory with a restricted fermion content: the 15 two-
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component fields of eqn (11.40). The left-hand (LH) fields transform as 
doublets and the right-hand (RH) fields are singlets. Now we would like to 
remove this restriction. Eqns (11.5) and (11.9) would lead us to expect further 
LH fermion doublets 

(11.101) 

with 

(11.102) 

again with all RH fields being singlets. In other words there is a 'duplication' 
of the fermionic structure in the theory. With the discovery oft, v, leptons 
(Perl et al. 1975, 1977) and the b quark (Herb et al. 1977; Lederman 1978) we 
see that this replication continues: the experimental data do not contradict 
the expectation that (v,, t}t is an SU(2) doublet and that there exists an even 
heavier t quark which will complete the doublet with b. The task of this 
section is to study the systematic incorporation of these fermions into the 
standard model. We would like to understand the presence of the Cabibbo 
angle in quark doublets and the absence of a corresponding mixing angle in 
the lepton sector. Other important issues related to the multifamilies of 
fermions are the suppression of flavour-changing neutral-current effects and 
the CP-violation phases in fermion gauge couplings (also see §12.2). 

Gauge vs. mass eigenstates 

The presence of the Cabibbo angle in (11.102) already indicates that we must 
distinguish between two types of fermionic states: gauge interaction eigen­
states (having definite gauge transformation properties, e.g. the d0 and s0 

fields) and mass eigenstates (e.g. the d ands fields); they are related by some 
linear transformations. This is because the fermions are massless before the 
spontaneous symmetry breaking and the fermion mass eigenstates are 
determined by the Yukawa coupling after the spontaneous symmetry 
breaking (SSB). The replication of fermionic structure alluded to in the 
introductory remarks means that there are several groups of identical gauge 
eigenstates. Thus the fermionic states actually carry a 'family' index or 
'generation' index: A= e, µ, t, .... In §11.2 we simplified our construction 
by taking only one family of fermions. In this approximation there is no 
distinction between gauge eigenstates and mass eigenstates. Since only the 
gauge transformation properties were used, the fermion fields in §11.2 should 
be regarded as those of the gauge eigenstates. The proper multi-family 
generalization would then involve replacing each of these gauge eigenstates in 
§11.2 by a vector in the family index space. We need to make the following 
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substitution: 

e--+ = (e', µ', 1') 

u--+ = (u', c', t') 

d--+ = (d', s', b'). (11.103) 

The SU(2) doublets are then 

and qAL = , · 
nA L 

(11.l 04) 

The prime on the field indicates it is a gauge eigenstate. (This represents a 
change of notation from that in§ 11.2 where the primed states are fields in the 
unitary gauge.) The fermionic couplings in the Lagrangian also involve a 
contraction of family indices. The generalizations of eqns (11.53) and (11.62) 
are 

and 

UJ I-·(;,,- ig M' ig' d)[ _, '('./ . 'U\ I 
.z,2 = All p - 2 t. ljl. + 2-¥' AL + eARJ ¥' + 1g P) eAR 

- ·( ig ig' ) + qALI p - 2 t . - 6 Ji qAL 

- I • ( 2ig' ) I - I • ( ig' ,1\ I 

+PAR! 1- -3- ff PAR + nARJ 1+3 fJ )nAR 

!£4 = <I> + f11CiAL 

+ + h.c. 

(11.l 05) 

(11.106) 

Thus the Yukawa coupling constants in eqn (11.62) are replaced by coupling 
matrices in the family index space. After SSB, given in (11.63), we have 

which is a generalization of ( 11. 71 ). Thus in the gauge-eigenstate basis the 
fermionic mass matrices are 

M<il _ _=._!:!_J<i> 
AB - .J2 AB i=e,p,n. (11.108) 

Biunitary transformations. The important point is that there is no reason for 
these mass matrices to be diagonal; in fact generally they are neither 
symmetric nor hermitian. We shall now demonstrate that this type of 
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matrices can be diagonalized by biunitary transformations, i.e. given MAB 

there exist unitary matrices S and T such that 

(I I.I 09) 

where Md is diagonal with positive eigenvalues. Basically the points are that 
any matrix M can always be written as the product of a hermitian matrix (H) 
and a unitary matrix ( V) 

M=HV (11.110) 

and the hermitian H can then be diagonalized by some unitary matrix. 
The proof proceeds as follows. M Mt is hermitian and positive; it can be 

diagonalized by an unitary matrix S 

(II.Ill) 
with 

M 2 m22 (
mi ) 

d = . 

The matrix Sis unique up to a diagonal phase matrix; i.e. if eqn (11.111) 
holds, then 

with 

(1l.l12) 

These phase degrees of freedom will be studied in more detail when we take 
up the question of CP-violating gauge couplings. Here they can be used to 
ensure that all eigenvalues of Md in (11.l 09) are positive 

m;>O. 

Define a hermitian matrix H by 

H = SMdst. 

Then we can show that V defined by 

V= n- 1M and vt = MtH- 1 

is a unitary matrix because of eqns (11.111) and (11.114) 

vvt = n- 1MMtn- 1 

= 

= H- 1(SMdst)(SMdst)H- 1 

= n- 1HHH- 1 = 1. 

(l l.l 13) 

(11.114) 

(1l.l15) 

(11.116) 
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From the definitions of Hand V (eqns (11.114) and (11.115)) we have 

(11.117) 

or 

(11.118) 

where T = vt S is also unitary; this is the promised result. Thus the relation 
between gauge eigenstates and mass eigenstates follows 

with 

i/11,Mt//R = (lfJ,S)(StMT)(Ttt/JF.) 

t/JJ, =St/IL 

t/JF. = Tl/JR· 

Mixing matrix in the quark charged current couplings 

(ll.119) 

(l l.120) 

We now apply this result to the charged weak current for quarks as derived 
from eqn (11.105) or from eqn (11.87) by the substitution of eqn (11.103) 

where 

1-:i, = CIALYµt+qAL 

= 

= PALYµ[S[P>S<n>]AnnnL 

pl,= s<P>PL 

nl, = ScnlnL. 

(11.121) 

(11.122) 

Thus, in terms of the mass eigenstates, the quark doublets of the three 
families are 

(11.123) 

where 

(11.124) 

with U = S[P>SCn). Clearly U is also a unitary matrix. 

CP violation phases. If the mass matrices were real, U would be an 
orthogonal matrix, and all fermion gauge couplings would be real and they 
could not induce CP violations. On the other hand a general 3 x 3 unitary 
matrix, can be parameterized by the three real rotational angles plus six 
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complex phases. Not all complex phases have physical.meaning however, as 
some of them can be removed by a redefinition of quark fields (except for the 
charged current all other terms in the Lagrangian are diagonal in quark 
flavours). At first sight one would think that six quark flavours can absorb six 
phases. (Keep in mind that qL and qR must be rotated by the same phase to 
keep the masses real.) This is actually not correct as the mixing matrix U is 
invariant when we change all quarks by the same phase. Thus only five 
phases can be removed by redefinitions. To see this explicitly, let us start with 
the first doublet in (11.123) 

(11.125) 

If U11 has phase o, i.e. 

R 11 real, (11.126) 

then this o can be pulled out by a redefinition of the u-quark field 

u--> u' = ue-i0 (11.127) 

and 

q!L = eia(R d U' b)· 
11 + 12S + 13 

(l 1.128) 

Similarly, we can factor out the complex phases of V21 and U31 by a 
redefinition of the c and t quark fields in eqn (11.123). These overall doublet 
phases are immaterial because there are no gauge couplings in eqn (11.l 05) 
between doublets with different family indices. Finally we can absorb 
two more phases of U 12 and U 13 by a redefinition of the s and b fields. The 
doublets of (l l.123) take on the form 

(R 11d + + R13b1 (R21 d + + R23e;02b')L 

(R31d + R33ei<l4b')L 
(l l.129) 

We have now reduced the number of parameters to 13, (9 Rijs and 4 ois). The 
normalization of each state gives three conditions and the orthogonality 
conditions among the different states yield six conditions. Therefore we are 
left with four independent parameters. Since we need three parameters for 
the real 3 x 3 orthogonal matrix, we end up with one independent phase. 

We shall summarize the above counting procedure by applying it to the 
general case of n-doublets: A complex n x n matrix has 2n2 real parameters 
which are reduced down to n2 when the unitary condition is imposed. (2n - I) 
phases can be removed by redefinitions of quark states. Keeping in mind that 
there are n(n - 1)/2 parameters (angles) in an n x n orthogonal matrix, we 
arrive at the number of independent physical phases 

n2 - (2n - 1) - n(n - 1)/2 = (n - l)(n - 2)/2. (11.130) 
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Thus for a two-family theory there is one m1xmg angle-the Cabbibo 
angle-and no phase. Only for a theory with 2 x 3 = 6 quark flavours can 
one obtain a nontrivial CP-violating phase in the quark gauge couplings. 
This observation was first made by Kobayashi and Maskawa (1973) and the 
unitary matrix (11.124) is often referred to as the KM matrix. The 
phenomenology of CP violation in gauge theories will be discussed in §12.2. 

Neutrino mass degeneracy and the absence of leptonic mixings 

We have seen that the standard theory gives a natural explanation for the 
presence of the Cabbibo angle and CP phases in quark charged currents. 
Similarly the same theory helps us to understand the absence of such features 
in the lepton sector; the masslessness of neutrinos implies that these mixings 
are physically unobservable. This can be seen as follows. Just as in eqn 
(11.121) we can write down the charged weak current for leptons 

where 

J,; = 

= 

= v AL[Stv,s(e)]ABY µeB 

= S(v)VL 

= SceJeL 

and the lepton doublets in terms of mass eigenstates should be 

where 

(11.131) 

(11.132) 

(11.133) 

(11.134) 

with V = S/v,Sce>· However, neutrinos are massless, hence degenerate. Any 
unitary transformed v-states can be taken as mass eigenstates; in particular 
v AL = or V may be· set to be the identity matrix. Thus, nontrivial lepton 
mixing angles can never show up in any physical processes if the vs are 
degenerate. In this connection we should remark that the conventionally 
referred to neutrino states v1 are really weak-interaction (gauge) eigenstates. 
The v1 is operationally defined to be the 'invisible' particle missing in the 
n -+ I decay and/or detected by /-production in v-matter scattering. With 
V = l, different lepton families are completely decoupled. 

Remark: Here we assume that there is only one set of Higgs doublet. 
Thus the Yukawa couplings are directly proportional to the fermion mass 
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matrix. Mass matrix diagonalization then also diagonalizes the Yukawa 
couplings. With more doublets the Yukawa couplings are usually flavour­
changing (Bjorken and Weinberg 1977). However crude estimates would 
indicate that such a flavour-changing mechanism brings generally too large a 
rate for strangeness-changing neutral-current and muon-number violation 
effects. 

The standard theory (with one doublet of Higgs scalar) possesses global 
symmetries corresponding to the separate conservation of e-, µ-,and 't-lepton 
numbers. Processes such asµ- ey, K0 - µe, etc. are forbidden to all orders. 
Again we emphasize that these features are not ad hoc inputs but are natural 
consequences of the theory when neutrinos are degenerate. The possibility 
that vs may have small masses will be explored in §13.2. Even for massive 
neutrinos we would expect that the nontrivial lepton mixing angles would 
always appear multiplicatively with neutrino mass differences. Hence, muon­
number nonconservation effects are invariably suppressed. These remarks 
will be illustrated with explicit calculations in Chapter 13. 

Flavour conservation in neutral current interactions 

The presence of the unitary transformation (11.124) means that hadronic 
charged currents are flavour nondiagonal and strangeness is not conserved in 
charged-current weak interactions. On the other hand, consistent with 
longstanding experimental observations, (11.124) does not bring about 
flavour-changing neutral currents. When we change in eqn (11.95) 

+ gl. L + .ifR L (l l.135a) 
A A 

the gauge eigenstate bases to mass eigenstate bases through ( 11.122), the 
unitarity condition means that we can simply remove the primes on the 
above equation to obtain 

= L (g{fLY,.iL + g{fRYµfR) (l l.135b) 
f 

for f =Ve, v11 , v., e, µ, 't, u, c, t, d, s, b, .... This is possible because there is 
fermion family replication, in the sense that fermions with the same charge 
and helicity have the same gauge group transformation property. In fact this 
was the original motivation which led Glashow, Iliopoulos, and Maiani 
(GIM) to introduce a charmed quark having the same charge and weak 
couplings as the up-quark. However the GIM mechanism means much more 
than the mere absence of flavour-changing neutral-current coupling in the 
Born approximation. Since the weak gauge coupling g is of order e (eqn 
(11.93)), one must be watchful that higher-order effects do not give rise to 
O(GFix) amplitudes for strangeness-changing neutral-current processes such 
as KL - µ+µ-.(Experimentally they are observed to be at most We 
shall study the GIM cancellation mechanism in the next chapter. It suffices to 
point out that the same relationship between mixing angles and fermion mass 
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difference mentioned above in connection with muon-number nonconserv­
ation applies here: the induced amplitudes as expected, are of the magnitude 
oc g2Gp Am;;Mi Am;, where Amq is the quark mass difference and we 
have used eqn (11.89). 

Summary 

Let us summarize the discussion on the fermion sector of the standard 
model. The fermion gauge eigenstates display a repetitive structure and they 
can be grouped into families. Each family consists of 15 two-component 
fields of leptons and quarks, with four LH doublets and seven RH singlets. 
The ABJ anomalies due to the lepton and quark loops precisely cancel. Thus 
the standard model with one family would be a completely self-consistent 
theory. With more than one family the principal new physical feature is the 
presence of mixing angles and complex phases in fermionic gauge couplings. 
This is because gauge invariance allows for nondiagonal mass matrices for 
each set of the same charged fermions. The mass eigenstates are introduced 
when we diagonalize these mass matrices. They are related to gauge 
eigenstates by unitary transformations. The procedure is irrelevant for 
leptons because of neutrino mass degeneracy. Thus in the standard theory 
with three families there are three mixing angles and one CP violation phase 
in the quark gauge couplings. Altogether we need to insert 17 parameters in 
such a theory (see the discussion at the end of §11.2). At present there is no 
deep understanding of this repetitive fermion structure. (The existence of 
family symmetry group? Lepton and quark substructure?) This is usually 
referred to as the fermion family problem. 



12 Standard electroweak theory 11: 
phenomenological implications 

12.1 Flavour-conserving neutral-current processes 

A basic requirement for any gauge model of electroweak interaction is that it 
should contain the well-established V-A charged weak currents in the low­
energy limit. But the Glashow-Weinberg-Salam model also predicts a set of 
new low-energy phenomena associated with the neutral weak currents. Their 
experimental discovery and the subsequent confirmations in detail of the 
predicted structure have brought about the general acceptance of this model 
as the standard theory of the electroweak interaction. In this section we shall 
discuss processes corresponding to the tree-diagram neutral currents, which 
are diagonal in flavour space (see eqn (11.135)). Flavour-changing neutral­
current effects as induced by higher-order loop diagrams will be studied, 
along with CP violation, in the next section. 

For momentum transfer much less than the vector gauge boson masses, 
the effective Lagrangian for weak-current interaction may be written 

1 1 cc NC 4 .Perr= 4 (.Perr + .Perr) 

= _§_(J+ J-µ + pJO JOµ) 
.j2 µ µ 

(12. l) 

where and are given in eqns (11.87) and (11.95) respectively, and p 
measures the relative strength of charged-current (CC) and neutral-current 
(NC) processes 

Mi p- . 
- cos2 8w 

(12.2) 

For the standard theory with doublet Higgs phenomenon only (eqn (11.82)) 
pis fixed at 

p = 1. (12.3) 

The NC part in (12. l) reflects the basic coupling (eqn (11.92)) 

_pNC = _g_ zµ JO 
cos 8w 11 

(12.4) 

with the neutral current being diagonal in quark-lepton flavours!= I, V1o u, 
d, s, c, ... 

(12.5) 
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where 

g{ = T3(/L) - Q(f) sin2 Bw 

g{ = T3(/R) - Q(f) sin2 Bw 
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(12.6) 

(12. 7) 

where T3 and Qare the third components of weak isospin and electric charge, 
respectively. We have deliberately parametrized the NC pieces in a suf­
ficiently general form to include all models based on the group SU(2) x U(l), 
i.e. models having different fermion content and representation assignments. 
The standard model values g{ R for the first fermion family is given in eqn 
(11.95). Universality (and fermion replication) implies that, for i = L, R, we 
have gi = = g1, = = g}, g1 = gl = and of course, all neutrinos 
have g[ = 1/2. Thus in the standard model prediction for neutral currents 
there is only one unknown parameter: the Weinberg angle Bw which reflects 
the relative coupling strength of the SU(2) and U(l) gauge group factors. 

The neutral currents were first discovered by the Gargamelle collaboration 
at CERN (Hasert et al. 1973). These and most of the subsequent data are on 
inclusive neutrino scattering off an (isoscalar) hadronic target. However we 
choose here to discuss first the theoretically simpler situation of leptonic 
neutral-current processes. 

v11 + e _. v11 + e and v11 + e _. \i11 + e 

These two processes are purely neutral-current processes, described by 
diagrams in Fig. 12.1. The amplitude for vµ + e _. v11 + e is 

2 

T.(A., A.') = 4M2 g z () g[[ii(k')y,,(l - Ys)u(k)] 
zCOS w 

x {ii(p', A.')[gtyµ(I - Ys) + + Ys)] u(p, A.)}. 
(12.8) 

e(p) ---+---'------ e(p') 

FIG. 12.1. 

Summing over the final spin and averaging over initial electron spin (vµ is 
always left-handed), 

ITv(A., A.')1 2 = L;;v(k, k')[(gt)2 L-µv(p, p') 

+ L + µv(p, p')] (12.9) 

where 

Ltv(k, k') = tr[k'yµ(l ± Ys)kyv(I ± Ys)J 

= + k:kµ - k · k'gµv :+ ieaµpvk"'kP). (12.10) 
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We have neglected lepton masses; thus 

(k ·p) = (k' ·p') and (k' ·p) = (k ·p'). 

The leptonic tensor products in (12.9) are 

and 

L;v(k, k')L fµv(p, p') = 128{[{k · p)2 + (k' · p)2 ] 

± [(k ·p)2 - (k' ·p)2]} 

The cross-section is given by 

1 1 1 4 4 I (1 " 2) da=---(2n) 1' (k+p-k -p') -L.ITvl 
2Ev 2me lvl 2 

d 3k' d 3p' x . 
(2n) 32k0 (2n) 32p0 

The phase space integral can be calculated easily 

(12.11) 

(12.12) 

(12.13) 

(12.14) 

(12.15) 

where and Ee are the initial (final) neutrino and final electron energies 
in the laboratory reference frame. Then we have 

(12.16) 

In terms of the conventional scaling variable (of fractional energy transfer), 

(12.17) 

we have 

= meEv(9D2[(gD2 + - y)2] 
y n 

(12.18) 

and the total cross-section is 

(12.19) 

It should be noted that the (1 - y) 2 term in (12.18) and its corresponding 1/3 
factor in (12.19) are associated with the term having the opposite helicity to 
that of the incoming neutrino. Thus the cross-section for the anti-neutrino 
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process Yµ + e -+ Yµ + e can be inferred to be 

8G 2 
a(vµe) = _F + 

n 
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(12.20) 

since Yµ has opposite helicity to vµ. From eqns (12.19) and (12.20) we see that 
measurements of the total cross-sections a(vµe) and a(vµe) map out ellipses in 
the (gL plane (see Fig. 12.3) and these ellipses intersect at four allowed 
regions. The four solutions reflect the two sets of sign ambiguities: the cross­
section results are insensitive to the substitutions (i) 9L +-+ -gL, 9R +-+ -gR, 
and (ii) 9L +-+ 9L, 9R +-+ - 9R. The latter substitution is simply a vector-axial­
vector ambiguity. Thus we need two more independent measurements to 
resolve them. 

v. + e -+ v. + e and v. + e -+ v. + e 

In these two processes both the charged and neutral currents contribute (see 
eqn (11.97) and Figs. 11.4 and 12.2). The cross-sections are computed to 
be 

( v\2[ e 2 1 e)2] a(vee) = - meEv 9LJ (1 + gL) + 3(gR 
n 

0.75 

FIG. 12.2. 

(12.21) 

(12.22) 

F1G. 12.3. ve scattering and e+e- annihilation experimental results for neutral-current 
couplings of the electron. Bv = (gt + ) and BA = (gt - The only allowed region 
common to all four types of pure leptonic processes corresponds to that of the standard model 

with sin2 8w::: 0.22 (Barber et al. 1981). 
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The cross-section in (12.22) has been measured by using reactor neutrinos. 
This resolves the sign ambiguity (i) mentioned above as the sign of 
interference of the CC and NC amplitudes is now known through the 
linear gL term in (12.22). This still leaves us with two possible solutions in Fig. 
12.3 due to the vector and axial-vector ambiguity (ii). 

The neutral-current effect in e + e - --+ J1 + J1 -

The weak Z vector boson can contribute to Bhabha scattering e + e - --+ e + e -
as well as to e + e - --+ µ + µ - , 't + 't-. We shall concentrate on the simpler case 
of e + e - --+ µ + µ - (or 't + 't -) reactions with the diagrams shown in Fig. 12.4. 

e µ 

FIG. 12.4. 

The cross-section can be worked out to be 

du mx2 

--- = -[A(l + cos2 8) + Bcos 8] 
d(cos 8) 2s 

with 

B = 4 Re + 
where 

GFMi s x = . 
2.J2na (s - Mi+ iMzr) 

(12.23) 

(12.24) 

(12.25) 

(12.26) 

gv = (gL + gR) and gA = (gL - gR). 8 is the angle between the outgoing µ­
relative to the incoming e - and r is the width of Z boson. The leading term in 
A of course is the pure photon contribution; the Re x terms correspond to the 
interference of the neutral current with the electromagnetic current; the terms 
proportional to lxl2 are pure Z-boson contributions. Because of the presence 
of the cos 8 term in (12.23) we have a forward-backward (FB) asymmetry 

LlFe = f6 d cos 8(du/d cos 8) - J': 1 d cos 8(du/d cos 8) = "f!.... 
J:. 1 d cos 8(du/d cos 8) 8 A 

At low energies s « Mi, we have 

4sGF 2 1---gv 
..j2 e2 

(12.27) 

(12.28) 
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8sGF 2 ---gA 
.j2 e2 
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(12.29) 

where we have used universality to set =BY.A· We can see two weak 
effects. 

(1) Modification of the total cross-section a(e+e--+ µ+µ-)from that of 
QED. At low energies this is proportional 

(2) The forward-backward asymmetry in the angular distribution, which 
at low energies measures Already at the highest PETRA energy, these 
weak effects can be measured to map out an allowed region in the (gv, gA) 
plane of Fig. 12.3. This singles out one of the remaining two solutions-that 
of the standard theory with sin2 (J 0.22. 

Neutrino-hadron neutral-current processes 

While the pure leptonic processes considered above have the advantage of 
being free of strong interaction complications, their usefulness is diminished 
somewhat because the experimental data in this area generally have poor 
statistics. This is in contrast to the neutrino-nucleon scatterings where we 
have abundant and precise data, especially those of inclusive v scatterings 
from isoscalar targets. To interpret the experimental results in the ap­
propriate kinematic region one invokes the quark-parton model. In this way 
one can extract the first-generation quark weak couplings gt_i in an 
analogous manner to the v-lepton scatterings considered above. For instance 
for the deep inelastic scattering v + N -+ v + X from an isoscalar target 
N = !(n + p) (similar to eqn (12.18)), we have for g[ = ! 

where 
1 

Q = f x[u(x) + d(x)] dx (12.32) 

0 

with u(x), d(x) being the quark distribution functions depending upon the 
Bjorken scaling variable x, and we have set the antiquark distributions 
ii(x) = o(x) = 0 (see eqns (7.72) and (7.78)). We note that the coefficient in 
(12.31) is just the parton cross-section value for the charged-current process 
v + N-+ 1- + X, 

dacc(vN) 
dy n 

(12.33) 

When the ratio Rv = uNc(vN)/ucc(vN) is taken, we are left with the weak 
couplings that we are seeking. Exactly similar results can be obtained for 
anti-neutrino scatterings, but keep in mind that here the (1 - y)2 factor is 
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associated with the gts and dacc/dy. Thus, acc(vN) =!acc(vN). One finds 

O"NC(vN) + O"NC(vN) u 2 d 2 u 2 d 2 
acc(vN) + acc(vN) = (gL) + (gL) + (gR) + (gR) (12.34) 

(12.35) 

Just as in the cases of vµe and vµe scatterings, we need to supplement these 
vN, vN measurements with data from proton and neutron targets, or from 
semi-inclusive pion production off isoscalar targets, to resolve the sign and 
isospin ambiguities. We shall not give the details of this here. Suffice it to say 
that the results are again in accord with the standard theory. Here we will 
only mention a plot of the function corresponding to the standard model 
value for (12.35) of 

aNc(vN) - aNc(vN) = (1 - 2 sin2 Ow). 
acc(vN) - acc(vN) 2 

(12.36) 

This is the Paschos-Wolfenstein relation (1973). Thus measurements of Rv 
and R 11 immediately yield a value of sin2 Ow. The most recent and accurate 
data are from CDHS (Geweniger et al. 1979) and CHARM (Jonker et al. 
1981) collaborations. 

It should be mentioned that in the actual phenomenological analysis much 
more detailed calculations of sea-quark contributions, QCD corrections, etc. 
are taken into account. Further discussion on the phenomenological values 
of the Weinberg angle and the µ-parameter (12.2) will be presented in §12.3 
when we discuss the Wand Z intermediate vector bosons. 

The electron-deuteron asymmetry measurement; a historical note 

Although we have presented the electron weak coupling results gl.. R as 
measured in the leptonic ve and e + e - reactions, historically the first 
elucidation of the electron weak couplings came from the semileptonic e-D 
scatterings in a beautiful experiment performed at SLAC by a SLAC-Yale 
collaboration (Prescott et al. 1978). At the time there was considerable 
confusion over the structure of electron weak couplings as a number of 
searches failed to detect atomic parity violation effects at the level predicted 
by the standard theory. There were also claims of experimental effects 
(an 'anomalous' y-distribution in vN scattering) that might be interpreted as 
indicating the presence of non-trivial V +A charged currents, etc. 
Consequently a number of variants to the Weinberg-Salam model were 
proposed to account for these observations. The SLAC experiment measured 
parity violation asymmetry 

A = a(,1. = 1/2) - a(,1. = -1/2) 

a(,1. = 1/2) + a(,1. = - 1/2) 

where a(,1. = ± 1/2) is the double differential cross-section d2a/dQ dEe for the 
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scattering of right- and left-handed electrons on deuterons. From the 
observed asymmetry parameter and the prior knowledge of g'L: i one can then 
deduce gi., R· The SLAC experiment was decisive in showing that the 
standard model was practically the only viable theory. 

12.2 Weak mixing angles, the GIM mechanism, and CP violation 

In this section we study the phenomenological consequences of the multi­
family structure of the standard theory as presented in §11.3. In particular, 
we will concentrate on the strangeness-changing neutral current and the CP 
violation in the K0 -K0 system as examples illustrating the implications of the 
GIM mechanism. 

We have shown in §11.3 that, because the Yukawa couplings generally 
involve fermions belonging to different particle-families (or generations), 
flavour-space fermion mass matrices are not diagonal. This means that mass 
eigenstates are different from weak eigenstates which have definite gauge 
transformation properties. For the simple case of two generations of 
fermions, this produces the Cabibbo mixing of the quarks in the charged 
current, and the quark weak eigenstates are 

and 

( d') (d) ( cos (Jc sin (Jc)(d) 
S1 L = 9lL S L = - Sin (Jc COS (Jc S L' 

i.e. the weak eigenstates d', s' are rotations of mass eigenstates d, s. Note that 
the Cabibbo angle (Jc is the difference of the rotation angles between the 
(uL, cL) and (dL, sL) sectors. This is why there is no mixing angle in the right­
handed fermion sectors because (uR, cR)s do not couple to (dR, sR)s. The 
neutral current which is proportional to the operator (Q sin2 ew - T3L) (see 
eqn (11.94)), has the important property that it is flavour-diagonal (or 
flavour-conserving). This follows from the fact that all fermions with the 
same charge and same helicity have the same transformation properties 
under the gauge group SU(2) x U(l) (Glashow and Weinberg 1977; Paschos 
1977), so that the rotation matrices such as the above commute with the 
neutral-current operator (Q sin2 (Jw - T3L). For example, in the (dL, sL) 
sector, the (1 - y.) part of the neutral current is 

s) =(a', s')L[ sin2 ew + 

=(a, s)L[ sin2 ew + 

which is flavour-conserving. Actually, this originally motivated Glashow, 
Iliopoulos, and Maiani (1970) to introduce the c quark coupled to sL so that 
sL has the same SU(2) x U(l) quantum number as dL to cancel the 
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strangeness-changing neutral current (GIM mechanism). Otherwise, it 
would give rise to the order GF, tis =f:. 0 neutral-current processes (e.g. 
KL - µ + µ - , K ± - 7t ± vv) which is phenomenologically unacceptable. 
It should be emphasized that the GIM mechanism achieves this suppression 
without any artificial adjustment of the parameters in the theory. In fact, 
as we have mentioned in §11.3, the GIM mechanism means much more 
than this tree-level cancellation; it also provides the additional suppression 
for the tis =f:. 0 neutral currents that are induced by higher-order loop 
diagrams. The need for this additional suppression is that without it these 
induced amplitudes would be of order GFa. while the experimental data 
on these processes are typically of order (with m being a few GeV). 
We shall illustrate this suppression mechanism with a calculation of the 
KL-Ks mass difference: tim = 0.35 x 10- 14 GeV. 

We mentioned in §11.3 that, for the case of three generations of fermions, 
one has the additional feature that there can be a CP-violating phase in the 
mixing matrix. We shall discuss the implication of this in the calculation of 
the CP-violating state-mixing parameter i; in the neutral kaon system. 

Cabibbo--Kobayashi-Maskawa (CKM) mixing matrix 

The basic charged-current (CC) interaction of eqn (11.86) with the mixing 
introduced by the need to diagonalize the quark mass matrices (eqn (11.124)) 
leads to the following CC couplings. In the simple two-family case, we have 
the familiar Cabibbo rotation, augmented by the GIM charmed quark, 

g _ _ µ( cos (Jc sin (Jc )(d) + 
!l'cc = 12 (u, c)LY . () () Wµ + h.c. 

v - sm c cos c s L 
(12.37) 

Since in this case the mass matrices can be taken to be real, the unitary 
transformations are just ordinary rotations. Also the amplitude for any 
strangeness-changing processes d +-+ s must be proportional to (me - mu) 
sin (Jc, as in the me =mu limit one can always choose one linear com­
bination of c and u so that it does not couple to both s and d. A similar 
situation holds if we have d and s degeneracy, etc. In the three-family six­
quark case, the mixing matrices are not just ordinary orthogonal matrices; 
we have 

_ _!!_--- µ + (d) 
!l'cc - (u, c, t)LY U L Wµ + h.c. (12.38) 

where the unitary matrix 

(12.39) 

can have one complex phase and can be parametrized in a form first 
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introduced by Kobayashi and Maskawa (1973) 

(12.40) 

where we have used the abbreviations ci =cos ()i and si =sin ()i· By suitable 
choices of the signs of the quark fields, we can restrict the angles to the ranges 
0 ::; (); ::; n/2 and - n ::; 8 ::; n. 

In this KM parametrization 01 corresponds closely to the Cabibbo angle. 
It is also clear that 03 must be small because of the observed validity of 
approximate Cabibbo universality. To be more precise we recall that, from 
the muon lifetime and from the super allowed o+ --+ o+ nuclear /1-decays, one 
can extract two values of the Fermi constant, which we indicate by and 

respectively (R stands for renormalized parameters). Using (12.39), 
one has the theoretical prediction 

(12.41) 

where.<'.\µ and L\F are, respectively, the radiative corrections to and in 
which their finite part are expected to be different forµ- and for P-decay. This 
difference contributes a non-negligible correction "'2 per cent. One finds 
(Sirlin 1978, 1980). 

IUudl = 0.9737 ± 0.0025. (12.42) 

Also an overall fit to hyperon decays yields (Shrock and Wang 1978) 

IUusl = 0.219 ± 0.003. (12.43) 

Combining the constraints (12.42) and (12.43), one finds that 

1Uudl2 + IUus1 2 = 0.996 ± 0.004. (12.44) 

As the central value is less than one, this indicates a 'leakage' of u-quark 
coupling to the b-quark by 

I Uubl = 0.06 ± 0.06 

which can be translated into the KM angle of 

ls31<0.28. 

(12.45) 

(12.46) 

Thus 03 may be as small as (if not smaller than) the Cabibbo angle. At this 
stage of our knowledge, in order to obtain constraints on other KM 
parameters one needs to proceed by rather indirect routes, for example, by 
calculations of K0 +-+ K0 parameters (see calculation below). All indications 
are consistent with the qualitative feature that the diagonal elements of the 
CKM matrix (12.39) are the largest, and the magnitude of the matrix 
elements decreases as the element moves away from the diagonal 

(Uud U1b) » (Ucd U1, Uu, Ucb) » (Uub U1d)· 
(12.47) 
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Thus, all KM angles O; are small. This implies the dominant decay chain 

t-+ b -+ c -+ s. 

Accordingly it is meaningful to talk about fermion families even in terms of 
the mass eigenstates (u, d), (c, s), (t, b), etc. as intrafamily couplings are the 
strongest. 

In the KM parametrization (12.40) the CP violation phase {J appears only 
in the heavy quark sector. This is a convention. Clearly one can move {J to 
other sectors by redefining the phases of the quark fields. This means that 
one must involve more than one matrix element in the mixing matrix U to get 
CP violation. Physically this corresponds to the fact that CP violation comes 
from interference between amplitudes with different CP eigenvalues. 

Phenomenology of K0-K0 mixing: some basic parameters 

We will give a brief description of the K 0-K0 system in order to set up the 
framework to study the CP violations in the standard model. (For details see 
Marshak, Riazuddin, and Ryan 1969; Kleinknecht 1976; Wolfenstein 1979.) 

In a beautiful application of quantum mechanics Gell-Mann and Pais 
(1955) first discussed the decay of neutral K-mesons. The interesting feature 
is that, because the strong interaction conserves strangeness while the weak 
interaction does not, the neutral kaon eigenstates with respect to these 
interactions are different from each other. In particular, the strong­
interaction eigenstates K 0 and K 0 can mix through weak transitions such as 
K 0 +z 2n +z K 0 • In this K 0-K0 system, the K 0 state is defined as the CP 
conjugate of K 0 , 

IK0 ) = CPIK0 ). (12.48) 

We will describe the weak-interaction-induced transition in the K 0-K0 

system by the S-matrix elements, 

sa'a = (cx'ITexp( -i I dt}cx> (12.49) 

where ex, ex' = K 0 or K 0 and = ei81Hw e-iHr where Hw is the weak 

Hamiltonian. To second order in Hw, we can write the transition matrix (T­
matrix) element Taa' as 

where 

TaAEa) = (cx'IHwlcx) - f 
= (cx'IHwlcx) + ! L 

2 A Ea' - E;. + 18 

(cx'IHwl.A.)(.A.IHwlcx)J + . 
Ea - E;. + ie 

(12.50) 
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Since K0 and K0 are eigenstates of the strong interaction, we have for oc, oc' at 
rest 

<oc'\H,1\oc) = <5 1212 .m12 (12.51) 

Thus combining eqns (12.50) and (12.51) we can represent the matrix 
element of the 'effective Hamiltonian' in the K 0 -K. 0 system as 

<oc'\H0rrloc) =H1212 • = mK <51212' + T1212·(mK) (12.52) 

For convenience, we will write the matrix element in eqn (12.52) as 

H = (H11 H12) (12.53) 
H21 H22 

where the subscript 1 refers to the K0 state and the subscript 2 refers to the 
K0 state. Using the formula 

1 1 
---. = P-- - in b(x - a), 
x-a+rn x-a 

(12.54) 

we can decompose the matrix element of H 0 rr into real and imaginary parts, 

or 

where 

.r 
H=M-1-

2 

r/212' = 2n L <oc'IHw\A)(A.\Hwloc) b(E;. - mK). 
). 

Note that r, Mare hermitian matrices 

(12.55) 

(12.56) 

(12.57) 

(12.58) 

because of the hermiticity of Hw and H,1, while the 'effective Hamiltonian' 
Herr is not hermitian. From CPT invariance, one can show that 

H11 = H22 

or 

(12.59) 

It is straightforward to diagonalize the Hamiltonian given in eqn (12.53) and 
the resulting eigenstates and eigenvalues are 

(12.60) 
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where 
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As= H11 + (H12H21)t 

AL= H11 - (H12H21)t 

1 -
IKs) = .J2(l + lel 2) [(I + e)IKo) + (I - e)IK0 ) J 

1 -
IKL) = .J2(1 + lel 2 ) [(I + e)IKo) - (1 - e)IK0 ) J 

.J H12 - .J H21 
B= . 

.JH12 + .JH21 

(12.61) 

(12.62) 

(12.63) 

The real and imaginary parts of AL. s are, respectively the masses and decay 
rates of KL. s 

(12.64) 

Note that CP invariance will imply that 

M 12 = M 21 and r 12 = r 11 (12.65) 

or 

H12 = H21 

which will give e = 0 from eqn (12.63). Together with the hermiticity con­
dition in eqn (12.58) this will imply that M;i and rii are all real if CP is a 
good symmetry. Since the observed CP violations in the neutral kaon system 
is small, we will make the approximations that Im M 12 « Re M 12 , Im r 12 

« Re r 12 , and e is small. Then we can write 

H12 - H21 

- 4..jH12H 21 

(2 Im M 12 - i Im r 12 ) 

2i(AL - As) 
(12.66) 

The parameter e is a measure of the CP violation in the physical states of 
the K0-K0 system. From eqn (12.57) one can show, by examining the 
contributions coming from all possible intermediate states A = 2n, 3n, 
nev . .. , that I Im r ul « IIm M ul. Then the difference in masses and decay 
rates can be approximated by 

-!'l.y = YL - Ys = 21ru1 
!'l.m = mL - ms = 2IM ul 2 Re M 12 

(12.67) 

(12.68) 
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as Im M 12 is small. The B parameter can then be written as 

-ImM12 
B= . 

!Ay- iAm 
(12.69) 

It is one of the magic properties of the K0-K0 system that with mK being so 
close to the 3n threshold, and (reflecting the smallness of B) with the 
dominant decay modes Ks and KL being the CP-even 2n and -odd 3:n:, 
respectively, KL and Ks have very different lifetimes 

(12.70) 

This allows for a clear separation of these two eigenmodes in the laboratory 
and made possible the eventual discovery by Cronin, Fitch and their 
collaborators (Christenson et al. 1964) of the very small decay mode 
KL-+ 2:n:. Detailed study of the interference between the KL and Ks waves 
allows us to infer the extremely small mass difference Am = mL - ms 

Am/mK = 0.71 X 10-l4 (12.71) 

which corresponds to 

tYs· (12.72) 

We can then deduce the phase of B (confirmed experimentally) 

arg B tan - 1(2Am/ys) 456 (12.73) 

and write its magnitude in a simple form 

1 (ImM12) 
I c (2)312 ReM12 . (12.74) 

It is also clear from (12.72) that Am is a effect and we shall show how 
such a result can be understood with the GIM cancellation mechanism. 

The basic CP violation parameters that have been measured are the 
amplitude ratios 

11+- = (:n:+n-IHwlKL)/(n+n-IHwlKs) 

1100 = (n°:n:01HwlKL)/(:n:0n°1HwlKs) 

and the 'charge asymmetry' 

l> = r(KL-+ n+z-v) - r(KL-+ n-z+v). 
r(KL-+ 7t+ 1-v) + r(KL-+ 7t-1+v) 

(12.75a) 

(12.75b) 

By isospin decomposition of the final 2n state into I = 0 and I = 2 parts, one 
gets 

11+- =(Bo+ B2)/(l + rtw) 

1100 =(Bo - 2B2)/(l - 2tw) (12.76) 
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where 

and 

Bo=(/= OIHwlKL)/(/ = OIHwlKs), 

1 
ez = .j2 (/ = 21HwlKL)/(/ = OIHwlKs), 

(12.77) 

Because of the validity of the Iii= 1/2 rule for CP-conserving decays w « I 
and it can be neglected. Furthermore, we can parametrize the K 0 -+ 2n 
amplitudes as 

(12. 78) 

where <5 0 is the 7t7t phase shift in the I = n channel coming from the final state 
interactions. A commonly adopted phase convention (Wu and Yang 1964) is 
to choose A 0 to be real, 

Im A 0 = 0. (12.79) 

In this case, it is easy-to see from eqns (12.62), (12.77), and (12.78) that 

e0 = e 

Therefore, 

Experimentally we have 

ll+-=e+e' 

lloo = e - 2e' 

b =Ree. 

lel 2 x 10- 3 

le'/el < 1/50. 

(12.80) 

(12.81) 

(12.82) 

(12.83) 

All these results are consistent with an early proposed theory of W olfenstein 
(1964) which relegates all CP violations to a /iS = 2 superweak interaction. 
We shall demonstrate below that the standard electroweak theory with KM 
mixings can yield numbers mimicking the superweak theory results. 

liS = 2 effective Lagrangian for free quarks 

The strategy, originally due to Gaillard and Lee (1974), is to construct first an 
effective /iS = 2 Lagrangian from the free quark model and then to sandwich 

between the K 0 and K 0 states to obtain !im through (12.68) and lel 
through (12.74). 

One first computes the box diagrams of Fig. 12.5 with intermediate quarks 
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FIG. 12.5. Feynman diagrams for the i'i.S = 2 transition amplitude sd--+ sil. The 'annihilation' 
term of (a) is equal to the 'scattering' term of (b). i, j = u, c, t. 

i,j = u, c, tin the approximation of taking all external momenta to be zero 
(as they are small compared to Mw and heavy quark masses). In the 
Feynman-'t Hooft gauge, we have 

where 

(12.85) 

where the Us are elements of the CKM mlXlng matrix (12.39). First 
concentrate on the momentum integration given by 

.. _ f d4 kkakp 
Iap(l,J) = (kz - M?;,)Z(kz - mf)(kz - mJ) 

-in2 

= 4M?;, A(xi, x)ga/J 

where 

A(x- x-) = J(xJ - J(x) · 
" J xi - xi 

1 x2 ln X· 

J(xJ = -1 - + (I' )2' -xi -xi 

and 
mz 

! 
X·=--· 

' M?;, 

Using the identity 

yµyayv = gµayv + gvayµ _ gµvya _ i£µavf3y 5 yp, 

we can evaluate the Dirac matrices 

[yµty"(I - Ys)/2]. · · [YvYaYµ(I - Ys)/2] 

= 4[ya(I - Ys)/2] · .. [ya(I - Ys)/2]. 

(12.86) 

(12.87) 

(12.88) 

(12.89) 
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Substituting the results of (12.86) and (12.89) into (12.84) 

T(sd -+ so) = - . 0(2 e (oLyµsL)(oLy,,8t) L eiejA(x;, x). 
y 7t SID w i,j 

(12.90) 

After taking into account the (2 !)(2 !) Wick contractions, this is an amplitude 
that can be obtained directly from an effective Lagrangian 

i\S-2 GF oc ( l ) 2 

ff'.rr = - .j2 1611: Mw sin Ow A.lDJJ (12.91) 

where 

(12.9la) 

and 

(12.9lb) 
i,j 

QCD gluonic radiative corrections can, in principle, be taken into account. 
However, given all the other uncertainties, such corrections are not expected 
to change our conclusions materially and we shall ignore them. 

The KL-Ks mass difference and GIM cancellation mechanism 

Given the effective Lagrangian (12.91), we can calculate Am through eqn 
(12.68) 

Am= -2 Re (12.92) 

There are two aspects to this calculation. The first is the estimation of the 
matrix element (KllDJJIK); the second is the evaluation of the c-number 
(12.9lb) corresponding to the sum of products of mixing angles and quark 
masses. 

To get an order of magnitude of the size of (KllDJJIK), we make the 
'vacuum saturation' approximation 

8/imi 
= 3 2mK 

(12.93) 

where A 1.23 /" is the kaon decay constant; the factor (2mK)- 1 arises 
from the normalization of the state. The factor 8/3 corresponds to the four 
ways of Wick contraction times a colour factor 2/3. The hope in making such 
an approximation is that the simple vacuum intermediate state will give us a 
representative value of the four-fermion matrix element lDJJ. A somewhat 
more realistic calculation of this matrix element in the MIT bag model yields 
a value about half the size (i.e. the same order of magnitude) as resulting 
from this vacuum insertion calculation (Shrock and Treiman 1979). Even so, 
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there are still uncertainties as to whether these quark diagrams really 
dominate the low-energy parameters such as the KL - Ks mass difference 
(Wolfenstein 1979). Ignoring these complications, we combine eqns (12.91) 
and (12.93) to get 

(12.94) 

At first sight it appears that, as the right-hand side is O(oiGF), it will yield 
much too large a value for Am. This is where the GIM cancellation 
mechanism comes in. Since xi« 1 we can expand A(xi, xi) of (12.87) in xi 
and xi. The leading constant terms cancel in the summation because of the 
unitarity condition 

Lei = L = o. (12.95) 
i i 

In the remainder, the dominant terms are proportional to xi 

2 X·X· X· 
L eiejA(xi> x) = Lei xi + L eiej - 1

-
1- ln --2.. 

i,j i i#j Xi - Xj Xj 
(12.96) 

Thus we see that the factor xi converts GFoi to 

GFoixiei:::::; (12.97) 

Taking m0 = 0, we may write 

mL - ms 2 GF 2 °' ( me )2 . 2 2 
mK = 3 .J2f K 4n 37 GeV sm (}e cos (}e X (12.98) 

with 

X = (sin2 Oecos2 Oe)- 1 Re[(ue,u:.i)2 + (U1,U:d)2 (mi.2/m;) 

+ Ue,u:.iu1.U:d }111t2 
2 ln 

11li - me 
(12.99) 

where we have used eqn (11.100). In the four-quark model, where we have a 
simple Cabibbo rotation (12.37) with (Ue.u:.i)2 = sin2 (}e cos2 (}c, the factor 
X = 1 in (12.99). This is how Gaillard and Lee (1974) before the discovery of 
J/l/J first estimated that 111c:::::; 1.5 GeV. Even though 111i is expected to be very 
large (;:::20 GeV) still it is multiplied by a small mixing angle factor U1d (see 
eqns (12.45) and (12.47)) and we do not expect X to deviate significantly from 
unity. Thus the result in (12.98) must be regarded as a remarkable triumph of 
the GIM mechanism as embodied in the standard electroweak theory. 

Before concluding this subsection on the GIM cancellation mechanism, 
two remarks are in order. 

Remark (1). For a heuristic understanding of how the GIM cancellation 
comes about one may use the concept of mass insertion to view these GIM 
loop calculations (see for example Cheng and Li 1977). Mass insertion can be 



382 Standard electroweak theory II: phenomenological implications 12.2 

thought as either the simple expansion of the fermion propagator 

(12.100) 

or as treating the fermion mass matrix (i/i;Lm;il/liR + h.c.) as a perturbation 
on the symmetric theory (where all fermions are massless). Such a mass 
insertion in an internal line flips the helicity of that particle and may also 
change the identity of the weak eigenstate if one of the off-diagonal elements 
in mii is used. For example the basic mechanism for s d transition is shown 
in Fig. 12.6. The couplings in these diagrams, by inspection, must be 
proportional to (see further comment in remark (2) below) mu;m;0 = 
L; which is just the leading term in a GIM cancellation. (Our 
example of the calculation is slightly complicated by the fact that it is a 

= 2 transition.) 

w w 

CL SL 

FIG. 12.6. The basic mechanism for the s <-+ d transition. All particles are weak-interaction 
eigenstates with i = u, c, t. Hence, the mass matrix has nondiagonal elements. 

Remark (2). Whether the GIM mechanism produces a power suppression 
factor L; which vanishes in the limit where all the m;s are 
equal depends on the convergence properties of the particular loop 
integration under consideration. There are cases where the GIM cancellation 
is much milder than this power suppression. It may take on the form 
L; which also vanishes in the equal-mass limit. An 
example of such a logarithmic GIM cancellation is the s d transition 
charge radius, which is physically relevant for example in the process 
K-+ ne+e- (Gaillard and Lee 1974). In the 't Hooft-Feynman gauge the 
leading contribution comes from the diagram in Fig. 12.7(a). To lowest order 
in Mw 2 the W-propagator may be approximated by 

-i i 
(12.101) 

One then makes a Fierz rearrangement (see Appendix A) in the resulting 
V-A four-fermion interaction 

(12.102) 

Thus we can calculate the transition vertex directly from the diagram in Fig. 
12.7(b) 

(12.103) 



12.2 Weak mixing angles, the GIM mechanism, and CP violation 383 

s(p) d(p') 

d 

(a) (b) 

FIG. 12.7. The leading contribution to the s+->d transition charge radius. (b) is the Fierz­
rearranged V-A four-fermion approximation to (a). 

where 

I .(i) = tr -- y,; 1 y 1 • I d4k . . 

" (2n:)4 y · k - m; "y · (k - q) - m; 
(12.104) 

I µv is just the familiar vacuum polarization tensor with the result that, for 
mf »qi, 

(12.105) 

Again the (divergent) constant terms cancel e; = 0 leaving behind 
a mild GIM suppression factor e; ln(mf/q2 ). 

The kaon CP-violation state-mixing parameter and the CKM angles 

The CP-violation parameters of eqn (12.74) is given by 

I I Im(KI - (Im(.A.)) 
" - 2 Re(KI - - 2 Re(.A.) 

(12.106) 

where the four-fermion matrix element (Kl@JJIK) is divided out and .A. is 
given in (12.91b). Again in the limit mu= 0, we can use (12.95) to get 

Im(.A.) = 2 { ec1eeRm; + etle1Rm; 

+ (ec1e1R + etleeR) 2 e t z ln 
m2m2 (m2)} 

ml -me me 
(12.107) 

Re(.A.) = {<e;R - e;,)m; + (etR -

(12.108) 

where we have used the notation en= Im ei and eiR =Ree;. With the KM 
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parametrization given in (12.40), we note that 

C2S1S2S3 sin J. (12.109) 

This allows us to factor out in (12.107). Thus Im(Jc) and hence the CP 
parameter e itself, is proportional to this combination of KM angles 

(12.110) 

Then the CP-violation parameter is suppressed by all the KM angles. Since 
we have some grounds to expect all the B;s to be small, this elegant theory of 
CP violation naturally gives us a small s. 

For definiteness, we shall write out eqns (12.106)-(12.108) for the case of 
small KM angles. Except for the overall we shall drop all such terms and 
approximate 

-S1C1dC3 

The expression for is only valid for the special case 

(12.111) 

Such a situation is consistent with, but not demanded by, present experi­
mental constraints. We have 

Im(Jc) -

+ - 7zmt 2 In mt - me me (12.112a) 

(12.112b) 

Substituting (12.112) into (12.106), we have (Ellis et al. 1976a,b, 1977) 

. ,{sW + ri In ri) - dri(I +In ri)} e c2s2s3 sm u 4 4 2 2 
s2 + c 2ri - 2s 2c 2ri In YJ 

(12.113) 

where Y/ = mz /mt and some higher-power terms in Y/ have been dropped. 
We conclude this discussion of CP violation with three brief comments. 

(1) Calculating t:'. The calculation of s', the CP-violation parameter in 
decays (as opposed to s in the state), is less certain as it depends on our 
theoretical understanding of the nonleptonic weak decays. In most ap­
proaches s' is found to be very small (much too small to be detectable). 

:Y 
d d 

FIG. 12.8. Penguin diagram for sd ..... dd with i = u, c, t. 
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However if the K -t 2rc decay is dominated by the one-gluon exchange 
'penguin diagram' (Gilman and Wise 1979) of Fig. 12.8, the calculated ratio 
le' /el is fairly insensitive to the values of the mixing angles and is predicted to 
be 0.01 to 0.03. Such a value may be accessible to verification by the next 
generation of experiments. 

(2) Neutron electric dipole moment. This is another important area where 
the standard theory with CP-violating complex CC couplings can simulate 
the superweak model. Both predict an electric dipole moment for neutron 
dn/e much smaller than the already extraordinarily stringent limit of less than 
10- 26 cm (Ramsey 1978; Altarev et al. 1981). The basic reason for the 
smallness of this quantity in the standard electroweak theory is again related 
to GIM cancellation: the one-loop contribution such as Fig. 12.9(a) vanishes 
because it is 'self-conjugate' and there is no CP phase, L; = 1. In such 
diagrams whatever the phase at one vertex it will be cancelled by the opposite 
phase coming from the other vertex. At the two-loop level we have the 
possibility of 'non-self-conjugate' diagrams, Fig. 12.9(b). This results in an 
electromagnetic vertex with 4-momentum transfer k as 

edn(k2 )ii<Iµvkvy 5uAµ. (12.114) 

The form factor dn, being the electric dipole moment in the static limit, is 
suppressed by the usual GIM factor of /im2/M'!;.. = L; Uq;u:,;mf/M'!;... 
However Shabalin (1978, 1980) has shown that even this vanishes in the 
k -t 0 limit as signified by the cancellation between the two sets of diagrams 
shown in Fig. 12.9(c). The CP odd part is proportional to 

[ 1 1 1 1 J 
p + k - m rqq' p- m' - p + k - m' rq'q p- m 

) ) 
u i u u q i q' u 

(a) (b) 

W(r-p) w 

9 u(r) u(r+k) u u 

y (k) y 
(c) 

FIG. 12.9. Diagrams for induced u-quark dipole moment: the photon line is to be attached to all 
the charged lines in (a) one-loop and (b) two-loop diagrams. In (c) the black dots represent the 
quark e.m. transition vertices. Being at least one-loop, the graphs in (c) are actually two-loop 

diagrams, and they cancel in the k --> 0 limit. 
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where rqq's are the regularized quark electromagnetic transition moments, 
and it can be shown that up to one-loop 

rqq' = rq'q· 

In the static limit, k ---> 0, we can drop the momentum k in the quark 
propagators and clearly the above contribution vanishes. Therefore, one 
must include higher order radiative corrections, the leading term being that 
due to QCD gluons. Thus the neutron dipole moment is expected to be of the 
order 

c::)4· (12.115) 

The external factor of mu. ct reflects the helicity-flip nature of the dipole­
moment operator. The numerical value generally quoted is 

ldn/el < 10- 33 cm. (12.116) 

When one considers graphs with exchanges among different valence quarks 
in the neutrons, generally the same bound is obtained. However a possible 
large contribution may come from those involving Penguin diagrams; the 
GIM suppression being only logarithmic, they lead to a (dn/e) value as large 
as 10- 3 o cm (see Gavela et al. 1982 and references cited therein). 

(3) Hard vs. soft CP violations. In the standard theory there is only one 
Higgs doublet so that the vacuum expectation value (<1>) 0 has to be real 
because any possible phase had no physical significance and can be rotated 
away. The sources of the complex mass matrices are the Yukawa couplings 
themselves. This is usually called hard CP violation in the sense that it is an 
effect due to dimension-four operators. This is in contrast to another class of 
CP-violation theories where the violation arises from spontaneous symmetry 

a soft variety (T. D. Lee 1974). To get spontaneous CP 
violation, one has to extend the Higgs structure (e.g. two complex doublets) 
to get the complex vacuum expectation value. Physically the difference 
between hard and soft CP violation is that soft CP violation effects disappear 
at energies higher than the energy scale of the symmetry breaking, while hard 
CP violations will persist. One should also point out with more than one 
Higgs doublet the Yukawa coupling is naturally nondiagonal in the flavour 
space unless some discrete symmetries are imposed. These couplings gener­
ally tend to induce too large a rate for the strangeness-changing and muon­
number nonconserving neutral-current effects (also see remarks in §11.3). 

12.3 The Wand Z intermediate vector bosons 

The most basic and distinctive feature of a gauge theory with spontaneous 
symmetry breaking is the existence of a set of massive gauge bosons. In the 
standard model, there are three such intermediate vector bosons: w+, w-, 
and z. Here we discuss in turn their masses, decays, and possible production 
mechanisms. 
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Masses 

The Wand Z masses can be expressed in terms of the Weinberg angle 8w as in 
eqns (11.l 00) and (11.82). 

1 ( e2 ) 112 1 37.3 GeV 
Mw = 2 .j2 GF sin 8w = sin 8w 

(12.117) 

( e2 ) 112 74.6 GeV 
M z = .j2 GF sin Ww sin Ww 

(12.118) 

Experimental knowledge of 8w will give precise predictions for these 
masses. Since these gauge bosons are rather heavy, at present we have only 
seen their virtual effects in the low-energy charged- and neutral-current 
phenomenology. In the standard model, the Higgs particles are in the 
SU(2) x U(l) doublet representation, Mw and Mz are related (see eqn 
(11.82) and eqn (12.158) below) 

P= =1 
cos2 8w · 

(12.119) 

This fixes the relative strengths of the charged- and neutral-current reactions. 
From the data on the neutrino neutral-current processes a two-parameter fit 
to the standard model yields (Kim et al. 1981) 

p = 0.998 ± 0.050 

sin2 8w = 0.224 ± 0.015. 

(12.120) 

(12.121) 

The fact that p is very close to one lends support to the standard model. Of 
course this does not exclude the possibility that there can be more than one 
Higgs doublet or that there can be other representations of Higgs particles 
with small vacuum expectation values (except singlet Higgs scalars which do 
not couple to the W or Z). 

If we restrict ourselves to p = 1, an average of the neutrino data yields 

sin2 8w = 0.227 ± 0.010. 

Then the intermediate vector boson masses are 

Mw = 78.5 ± 1.7 GeV 

Mz = 89.3 ± 2 GeV. 

(12.122) 

(12.123) 

The fact that these masses are confined to a rather narrow range provides us 
with a clean experimental test of the standard model. 

A more precise determination of sin2 8w and the gauge boson masses 
requires the inclusion of radiative corrections of the weak processes involved 
and of the energy dependence of coupling constants (see §3.3). Since the 
Weinberg angle is defined through the coupling constant (eqn (11.80)), it will 
also depend on energy. After radiative corrections, the value of sin2 8w at Mw 
is found to be 

sin2 8w(Mw) = 0.215 ± 0.10 ± 0.004 (12.124) 
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where ± 0.004 reflects the theoretical uncertainties in the radiative correction 
calculations (Marciano and Sirlin 1980; Sirlin and Marciano 1981; Llewellyn 
Smith and Wheater 1981). If one uses the fine structure constant at Mw 

1 
-(-) = 127.49, 
ex Mw 

the gauge boson masses come out to be 

38.5 GeV 
Mw = . e = 83.0 + 2.4 GeV 

sm w(Mw) -

Mz = Mw/cos 8w = 93.8 ± 2.0 GeV. 

(12.125) 

(12.126) 

(12.127) 

Thus the higher-order effects increase the Mw and Mz values by about 5 per 
cent. It is anticipated that Mz will be measured to within 0.1to0.2 Ge Vin the 
high-energy e + e - machine, thereby probing the higher-order electroweak 
radiative corrections. 

We now discuss W and Z decays. We shall see that the lifetime of these 
particles will be very short as they decay 'semi-weakly'. 

W decays 

The couplings of W to the fermions are given by eqns (11.86) and (11.121) 

!Ew - 2 w: [ (V,, V,, V,)1"' (1 - y,{ 
+ (U, C, l)y'(l - y,)U ( J + h.c. (12.128) 

where U is the Cabibbo-Kobayashi-Maskawa matrix, (12.39). Using 
(12.128) we can calculate the rate for various decay modes. 

Consider the example 

w-(k) - e(p) + v(q). (12.129) 

The matrix element is given by 

Te= iie(p)yµ(l - y5)vv(q)cµ(k) (12.130) 

where Bµ(k) is the polarization vector of the W. Summing over the spins of the 
fermions and averaging over the W polarizations, we have 

(12.131) 
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where we have neglected the electron mass. The decay rate for W at rest is 

1 f 4 4 l " 2 d3p d3q 
re= 2Mw (2n) (> (k - P - q) 3 L.. ITel (2n:)32Po (2n)32qo 

g2 Mw GF Mi 
= 4811: = .J2 611: . (12.132) 

This decay rate is proportional to the Fermi constant GF, rather than to 
as in the usual weak decays; hence we say it is a semi-weak decay. 

Clearly all other leptonic decays w- µv,,. and w- 't'V, will have the 
same decay rate: r µ = r, = re. For the hadronic decays, we can calculate the 
rate of decay of W into a quark pair which then hadronizes with unit 
probability 

(12.133) 

where n; = d, s, band Pi= u, c, t, with re as given in eqn (12.132). The factor 
of 3 in front is due to the colour degree of freedom of quarks. W nJii 
represents all decays into hadrons having the same quantum number as 
n; +Pi· For the light quarks decay products we expect them to have a two­
jet structure, modified occasionally by the emission of a gluon jet. The total 
decay rate can be simplified by using the unitarity property of the U-matrix 

= 1 (assuming m1 « Mw) 

riot= 3re + L 3IUij12re = 12re 
i,j 

.J2 G M 3 
= F w = 5.23(Mw in GeV)3 x 10- 6 GeV. 

n 

Thus for Mw = 83 GeV, the total width is 

r = 2.99GeV 

with the leptonic branching ratios 

r(W 1 
Be= r(W = 12' Be= Bµ = B,. 

(12.134) 

(12.135) 

(12.136) 

The large width of (12.135) reflects both that W decays semiweakly and that 
M w is large, so that there is plenty phase space. 

Remarks 
(1) In the standard model we have three families ofleptons and quarks. If 

we generalize it to Nfamilies and ifall of them are much lighter than Mw, the 
total width and leptonic branching ratio are given by 

.J2NGFMi 
riot= 4Nre = -----

3n 
1 

Be= 4N' (12.137) 
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(2) In the calculation of the hadronic decays we assumed that quark 
masses could be neglected. This may be a poor approximation for decay 
modes involving the t-quark if m, turns out to be substantially larger than the 
present experimental lower bound, - 20 GeV. 

(3) Careful studies of the hadronic decay modes can yield useful 
information about the mixing matrix uij. 

(4) It is clear from the Feynman rule that even if the Higgs mass 
mq, < Mw, W cannot decay directly into the Higgs <)> 0 through the lowest-order 
Lagrangian. An interesting possibility of W--+ <)i 0 /v1 involving a second­
order diagram is shown in Fig. 12.lO(a). At first one may expect that in 

/' c/> (/) 

\v(qJ 
(a) (b) 

FIG. 12.10. 

addition to the extra coupling g there will be further suppression coming 
from the W-propagator - M V:/. But the WW <P coupling has a factor M w; 
this and an additional factor coming from the three-body phase space will 
cancel the W-propagator suppression. Hence we expect this decay rate to be 
only down by an order of g 1 compared to W --+ eve and this could be useful in 
searching for the Higgs particle <)> 0 . The matrix element is given by 

- gz Mw 1 - µ 

Tq, - (p + q)2 _ M2w ue(p)yµ(l - Ys)vv(q)c . (12.138) 

Summing over fermion spins and averaging over the polarization of W, we 
get 

1 2 1 g 4 Mi [ 2 J 3IITq,I =3[(p+q)2-MiJ2 (p·q)+Mi (p·k)(q·k). 

(12.139) 
The decay rate is given by 

1 f 4 4 rq,= 2Mw (2n) (J (k-l-p-q) 

d 3 / d 3p d 3q 1 
x (2n) 32/0 (2n) 32p0 {2n)32q0 3 L ITq,l 2 

· 
(12.140) 

Using the formula 

(12.141) 
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(12.142) 

where we have made the approximations me= 0 and mq, « Mw. Comparing 
this to W --> ev°' we have 

qw- --> cp 0 eve) = .a [ln I 2mq, I+ 23]· 
qw- -->eve) 4n sm2 Bw Mw 24 

(12.143) 

This indicates that if q, 0 is much lighter than W, the logarithm factor can 
give an enhancement. Experimentally this decay mode into q, 0 will be difficult 
to observe because of the missing neutrinos and the short lifetime of the q, 0 . 

Z decays 

If we parametrize the coupling of z0 to any fermion f as 

then the width for each decay model is given by 

G M 3 

r(Z -->ff) = 24: + 

In the standard model, we have 

gt = = = -1 + 4 sin2 Bw, 

= = = 1 - i sin 2 Bw, 

= = gt = - 1 + 4 sin 2 Bw, 

gA = = = - 1 

= gA = = 1 

gi = = = - 1 

(12.144) 

(12.145) 

(12.146) 

and = = 1 for all neutrino flavours. Eqn (12.146) is obtained from eqn 
(11.95) with gv = 2(gL + gR) and gA = 2(gL - gR) and universality. We 
note that with the experimental value (eqn (12.124)) of sin2 Bw = 0.215, 
which is close to 1/4, the vector coupling of the charged lepton = 0.14 is 
small compared to the axial-vector coupling = 1. The partial width for 
decay into a neutrino pair of a particular flavour f is 

0 - GFMi 
rvr = r(Z --> v1v1) = 24n.j2 x 2 

= 2.2(Mz in GeV) 3 x 10- 7 GeV. 

For the M 2 value in eqn (12.127), this gives 

rVJ = 0.18 GeV. 

(12.147) 

(12.148) 

The relative widths of Z --> f J for fin one given family can be just read off 
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from (12.146) 

r(Z --+ vv): r(Z--+ IT):r(Z --+ uu): r(Z--+ d3) 

= 2: [1 + (1 - 4 sin2 Ow)2]: 3[1 + (1 - J sin2 Ow)2] 

: 3[1 + (1 -1 sin2 Ow)2 ] 

= 2: 1.02: 3.54 :4.53. 

The total width is 

rtot = r(Z--+ all) = 24(1 - 2 sin2 Ow+ J sin4 OwWvr 

= 3.0 GeV. 

The branching ratio for decay into a µ + µ - pair is 

B(µ+µ-) = r(Z--+ µ+µ-) = _!_ (1 - 4 sin2 Ow+ 8 sin4 Ow) 
r(Z--+ all) 24 1 - 2 sin2 Ow+ J sin4 Ow 

(12.149) 

(12.150) 

= 3.06 x 10- 2 • (12.151) 

In eqns (12.149)-(12.151) we used the (12.124) value ofsin2 Ow= 0.215. The 
branching ratio of(l2.151) is not very sensitive to sin2 Ow for sin2 Ow around 
0.22. For example, as we vary sin2 Ow from 0.2 to 0.25, B(µ + µ -) goes from 
3.06 to 3.13 per cent. This will be a useful piece of information in our search 
for the hadronic-produced Zs. 

Remarks 

(1) If we generalize the standard model to N fermion families, the results 
in (12.150) and (12.151) become 

r(Z --+ all) = 1.0 x N GeV 

B( + -) - 0.092 
µ µ (12.152) 

(2) While the decay Z--+ cj> 0 cj> 0 is forbidden by angular momentum and 
Bose statistics, we have the interesting decay model Z --+ cj>0µ + µ - (Bjorken 
1977). This is analogous to W--+ cj> 0 lv, as in Fig. 12.lO(b). Similarly to eqn 
(12.143), we obtain 

r(Z--+ µ+µ-cj>o) = IX [in I 2m<I> I+ 23]· (12.153) 
r(Z --+ µ + µ -) 4n sin2 Ow cos2 Ow Mw 24 

Combining eqns (12.153) and (12.151) we get a branching ratio for this decay 
of order 10- 4 for m<I> = 10 GeV. The possibility of detecting this decay mode 
will be much more favourable when compared to W--+ cj> 0ev because one can 
observe both µ + and µ - and cj>0 should show up as a bump in the missing 
mass plot. Also in the future e + e - colliding machines it is expected that 
106 Zs can be produced in a year, so that even decays with small branching 
ratios can be detected. 

(3) Since the Zs will be produced in large quantities, one might hope to 
study the rare decay modes of Z which involve loop diagrams. Those 
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reactions with diagrams involving the trilinear gauge boson couplings will be 
of particular interest in checking the non-Abelian character of the theory. 
Most of the rare Z decays have been studied and are found to be still too 
small to be seen in the near-future (Albert et al. 1980). For example, suppose 
we wish to study a flavour-changing neutral-current decay such as Z --+ uc in 
Fig. 12.11. Because of the GIM cancellation mechanism, the amplitude is of 
order 

T g4 [ J 
which gives the branching ratio 

which is of order 10- 9 even for mi as large as IO GeV. 

FIG. 12.11. One-loop diagrams for Z---+ cu with i = d, s, b. 

Remarks on W and Z production 

(12.154) 

(12.155) 

(1) We will just mention that the cleanest way of producing W and Z is 
through e + e - annihilations. The Z boson will show up as a sharp spike in an 
e+e- collision very much like the JN or Y particles. At the peak of Z 
resonance we have 

a(e+e- --+ z0 --+ all) 
Rz = --- 5000 

a(e+e---+ y*--+ µ+µ-) 
(12.156) 

which corresponds to five events per second if the luminosity is 
1032 cm - 2 s - 1 . We may also note that, reversing the situation encountered in 
the case of the JN and Y particles, the width of the Z boson ( 2-3 Ge V) is 
much larger than the beam resolution ( 100 Me V). So the shape of the 
resonance will allow us to deduce rtot directly. From this one can 'count' the 
number of neutrino flavours Nv using the relation 

(12.157) 

since we know the value of r(Z--+ vfvf) (eqn (12.148)) and rvisible is 
determined by the observable cross-section at the resonance peak which, 
according to the Breit-Wigner resonance formula, should be proportional to 
r(e+e-) X rVJSibJe X 

(2) If the e+e- machine has .js > 2Mw, the Ws will be produced through 
the diagrams of Fig. 12.12. This e+e---+ w+w- reaction is of particular 
interest because it involves the trilinear gauge boson couplings and will 
provide an important test of the non-Abelian nature of the underlying gauge 
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theories (Sushkov, Flambaum, and Khriplovich 1975; Alles, Boyer, and 
Buras 1977). 

(3) In practical terms it is likely that the first production of W and Z will 
be in the proton-antiproton collisions through the Drell-Yan mechanism 
(Fig. 12.13). For a review see Quigg (1977). 

FIG. 12.12. 

p 

ii 
FIG. 12.13. 

12.4 The Higgs particle 

In the standard electroweak theory, we start out with a doublet of complex 
scalars. After spontaneous symmetry breaking three of the original four real 
scalar fields are eaten by the gauge particles and we are left with one neutral 
physical Higgs scalar <1> 0 . (For reviews of Higgs phenomenology see, for 
example, Ellis et al. l976a,b; Li 1980). 

General properties of the Higgs particle 

The Higgs scalar of the minimal Weinberg-Salam model has the following 
basic properties. 

Mw = Mz cos Ow. As we have mentioned before (see, for example, eqns 
(11.82)-(11.84)) this relation follows from the doublet structure of Higgs 
particles and is well satisfied experimentally. Still, one cannot exclude the 
possibility that there can be more than one doublet in the theory. In fact there 
are other Higgs structures which also satisfy this relation (Tsao 1980). For a 
general SU(2) x U(l) multiplet of Higgs particle cl>r, r with weak isospin T 
and weak hypercharge Y, the p parameter is given by (Lee 1972c) 

Ma, r lvr, rl 2 [T(T + 1) - Y 2/4] 
p = (12.158) 

cos2 Ow 2 r lvr, rl 2 Y 2 /4 

where Vr. r = (Olcl>r. rlO) is the VEY of the Higgs particle. The requirement of 
p = 1 for arbitrary Vr. r means 

T(T+l)=iY2 • (12.159) 

Examples of solutions to (12.159) are (T, Y) = (!, 1), (3, 4), CV, 15), .... 
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Higgs couplings to fermions. The Yukawa coupling of the Higgs particle 
<j> 0 conserves parity and fermion flavour, and its strength is proportional to 
the fermion mass. This can be seen as follows. We have the Yukawa coupling 

(12.160) 

where i,j are fermion flavour indices and the prime over the fermion fields 
indicates that they are weak eigenstates. The symmetry-breaking condition 
(eqns (11.63) and (11.90)) 

with 

(12.161) 

generates the fermion mass matrix 

"h v wit mu= .;2fu· (12.162) 

In this case, the fermion mass matrix is proportional to the Yukawa coupling 
matrix. Thus when we diagonalize the mass matrix 

(12.163) 

with I/Ji being the mass eigenstates, we get diagonalized Yukawa couplings of 
the physical Higgs <j> 0 to the fermion fields, 

(12.164) 

which conserves fermion flavour and parity, and the strength of the coupling 
is proportional to the fermion mass. This property that mass and coupling 
matrices are proportional to each other is a consequence of the Higgs 
particles being in a single irreducible representation (Glashow and Weinberg 
1977). 

The experimental consequence of the proportionality of the coupling 
strength to the fermion mass is that the Higgs particle <j> 0 can be produced 
more easily by heavy fermions and will decay predominantly into the heavy 
fermion channels that are allowed by kinematics. The factor .)GF in the 
Yukawa coupling (12.164) makes these coupling to the known fermions very 
small. Also the fact that these couplings conserve fermion flavours means 
that we cannot find their signature in the rare, but distinctive, flavour­
changing processes. 

Higgs couplings to gauge bosons. These couplings, being proportional to 
gMv where ·Mv is the mass of the gauge bosons W or Z, are much larger than 
the Yukawa couplings studied above. 

fi'q,vv = g<J> 0 (Mw w: w-µ + l MzZµzµ) 
2 cos ew 

(12.165) 

The quartic <j> 2VV couplings are listed in the Appendix. 
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Mass of the Higgs particle 

In the standard model the mass of the physical Higgs scalar particle is given 
by eqn (11.72) 

m.p = (2µ 2}t = (2.A.)tv. 

While we know something about v, there is at present no information on the 
quartic coupling A.. This lack of a precise knowledge of the Higgs mass makes 
it very difficult to search for cj>0 experimentally. Theoretically, there are some 
prejudices as to the range of m.p. If we require A. to be less than 1 so that 
perturbation theory remains valid, we get from (12.161) an upper bound 

m.p < 350GeV. (12.166) 

On the other hand, if A. is too small, the symmetry-breaking vacuum will be 
unstable. This produces a lower bound as we will demonstrate below. 

The Linde-Weinberg bound. The basic idea is that, if A. is too small, the 
one-loop contributions (particularly those from the gauge-boson loop) to the 
effective potential in §6.4 become relatively important; they cause V( ( <!>) =F 0) 
to be greater than V((cj>) = 0) and SSB disappears (Linde 1976; Weinberg 
1976a). In order to present the actual calculation we briefly summarize the 
results obtained in §6.4 and their generalization to the present case of SU(2) 
x U(l) gauge theory (Coleman and Weinberg 1973). 

The basic calculation in §6.4 involves summations of an infinite number of 
one-loop diagrams (Fig. 6.12) with scalar, fermion, and gauge bosons 
running in the loops. It is clear that the non-Abelian nature of the theory is 
not particularly relevant as gauge-field trilinear and quartic self-couplings do 
not play a role. So we can simply take over the results of §6.4 (see in 
particular eqn (6.164)). In order to make sure that diffetences in definitions 
and normalizations of couplings and fields are taken into account, let us first 
concentrate on the SU(2) gauge-boson loop. If we decompose the complex 
scalars in terms of the real fields as 

(12.167) 

then 

(12.168) 

with 

(12.169) 

Since the effective potential can depend only on cj> 2 it will be adequate for our 
purpose to explicitly calculate only loop diagrams with external cj> 1s. Since 
the gauge boson-scalar coupling is of the form cj>t(Aµ · Aµ)cj>, three gauge 
bosons will contribute equally. For each one, say A!, we can simply take over 
the scalar QED result of eqn (6.157). Keeping in mind that the <l> 1, 2s in eqn 
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(6.154) are normalized differently from our <!>is and using the Feynman rules 
in Appendix B, we need to replace e2 by g2 /4; we have 

v<<1>n = 6:7t2 (9:)2 <1>1 in <1>i1M2 + ... 

or 

(12.170) 

where we have used Ma,= !g2v2 and eqn (12.168). When the other gauge 
boson loops are included we have 

Vg(<j>2) = 16 32 4 L ln q,2;M2 + .... 
7t v v 

(12.171) 

The index V runs over the w± and Z vector bosons. Including the scalar 
and fermion loops, we finally obtain the one-loop effective potential similar 
to eqn (6.164) 

(12.172) 

with 

C = (3 + m: - 4 mj} (12.173) 

We should recall that the factor of 3 in the vector boson term comes from 
tracing the numerator of the gauge-boson propagator in the Landau gauge; 
the factor of 4 in the fermion term comes from tracing the Dirac matrices and 
the minus sign reflects the Fermi statistics. With 

V(<j>) = V0 (<j>) + V1(<J>) 

= -µ2q,2 + .A.<j>4 + C<j>4 ln (<j>2/M2), (12.174) 

we can determine v by 

avl - o 
O<j> <\>=v/_/2 -

(12.175) 

-µ2 + .A.v2 + Cv2(ln v2/2M2 + = 0. (12.176) 

The mass of the Higgs particle is given by 

m$ = 14>=•N2 = 2v2
[ .A. + +DJ (12.177) 

where we have used eqn (12.176) to eliminate the µ2 term. 
Now consider the case where .A. is very small so that it can be neglected in 

eqns (12.174)-(12.177). The value of the potential at the minimum<!> = v/ ,,.)2 
is 

1 Cv4 

V(v) = -- µ2v2 + -ln(v2/2M2). 
2 4 

(12.178) 
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At cl> = 0, the value of the potential is 

V(O) = 0, (12.179) 

when there is no SSB. Since we want (12.178) to be the absolute minimum, we 
must have 

V(v) < V(O). 

This implies, through eqns (12.176) and (12.178), that 

ln(v2/2M2) + 1 > 0. 

When we substitute condition (12.181) into (12.177) we have 

2 2 1 4 3oc2 (2 + sec4 Ow) 
m<I> > Cv = 16n:2v4 3mv = GF sin4 Ow 

(12.180) 

(12.181) 

(12.182) 

where we have neglected m<I> and m I which are assumed to be small compared 
to mv. For sin2 0.215, this gives 

m<I> > 7.9 GeV. (12.183) 

Otherwise the radiative correction will make the asymmetric vacuum 
unstable. 

The Coleman-Weinberg conjecture. An interesting suggestion is that 
µ 2 = O in the standard model and SSB is driven completely by quantum 
radiative corrections (Coleman and Weinberg 1973; Weinberg 1979b). From 
eqns (12.176) and (12.177) we obtain 

m<I> = (2C}'!v 11 GeV. (12.184) 

Even though this is a precise prediction about m<I>, one must keep in mind that 
at this stage there is no compelling physical ground to have µ 2 = 0 although it 
is an intriguing proposition with its suggestive simplicity. 

Production of the Higgs particle 

It is clear from the discussions on Higgs couplings to fermions and gauge 
bosons above that most of the promising mechanisms for producing the 
Higgs particles make use of their couplings to 

(1) heavy fermions; 
(2) gauge bosons, 

as they are less suppressed. 
In category (1) perhaps the most promising reaction is 

(a) v00 -+ <1> 0 + y 

(Fig. 12.14) where V00 is the 1-QQ bound state of heavy quarks (Wilczek 
1977). Besides having a large fermion-Higgs coupling it has the additional 
advantage that the hadronic decay of quarkonium V00 is suppressed by the 
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Zweig rule. The decay rate has been estimated to give 

r(VQQ -+ q, 0 + y) "' GFMi ( ) 
r(VoQ-+ y--+ e+e-) = 4J2 mx l - Mi 

(12.185) 

where Mv is the mass of VQQ· For Mv 30 GeV and m.p « Mv this ratio is 
about 8 per cent. One important feature of this mechanism is that the 
reaction produces a monochromatic photon and it may be a good 
experimental handle for its detection. 

FIG. 12.14. 

In category (2), there are several interesting processes. 

(b)Zo-+q,o+y 

(see Fig. 12.15), where the fin the second diagram is some heavy fermion 
which has a large coupling to q,0 (Cahn, Chanowitz, and Fleishon 1979). It 
turns out that for mr < Mw, the dominant contribution comes from the W­
loop and the branching ratio is estimated to be 10- 6 for m.p « Mz. The photon 
coming from this decay is also monochromatic 

(c) e+ + e- -+ z0 + q,0 

(Fig. 12.16). At Js 200 GeV even a Higgs particle of mass close to 
100 GeV could be produced with a cross-section larger than 10- 37 cm2 • This 
corresponds to 1 event per day at a luminosity of 1032 cm2 s- 1 (Ellis et al. 
1976a). 

(d) Z-+<!>0 +e+ +e-. 

e- c/>o 

FIG. 12.16. 

This decay has already been discussed in connection with Z decays in §12.3. 
The general feature is that q, 0 will show up as a mass bump in the recoil 
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spectrum against the e+e- pair. The estimate gives B(Z0 - cp 0e+e-);:;; 10- 6 

for mq, < 40 GeV. The related process w- - cp 0ev is also calculated in 
§12.3; however this W-decay mode is rather difficult to detect. 

Charged Higgs particles 

In the standard theory, there is no physical charged Higgs particle. But in 
many of the extensions of the minimal model there are charged Higgs 
particles, hence a richer phenomenology (Donoghue and Li 1979; Golowich 
and Yang 1979). Even though their masses and couplings are not very 
constrained by the theory, if they exist, they can be produced in e+e­
annihilations through photon exchange (Fig. 12.17). For energy well above 

e+ 

c 

FIG. 12.17. 

the threshold, the cross-section O"(e + e - - cj> + cj> - ) is 1/4 of the standard point­
like cross-section O"( e + e - - µ + µ-). Thus if there are several singly charged 
or doubly charged Higgs particles, their contributions to the e + e - total 
cross-section should be significant enough to be observable. 

Also the charged Higgs particles will generate scalar or pseudo-scalar 
charged currents (McWilliams and Li 1981) which might contribute to low­
energy charged-current interactions such asµ - evv, n+ - n°e+v, n - pev, 
7t - ev ... , etc. Future high-precision measurements on these low-energy 
processes could shed some light on the properties of these charged Higgs 
particles. Any significant deviation from a V, A type of structure might 
indicate their existence. 



13 Selected topics in quantum 
flavourdynamics 

By the 'standard model' of strong and electroweak interactions one usually 
means the SU(3) x SU(2) x U(l) gauge theory with the SU(2) x U(l) 
electroweak group spontaneously broken down to U(l}.m by one doublet of 
the elementary Higgs scalar fields. The neutrinos are massless. There are 
three families of fermions and CP violations result from a complex CKM 
mixing matrix in the weak charged-current couplings. 

Several aspects of the standard electroweak theory may be revised and 
extended for various reasons. In §13.1 we discuss one particular realization of 
dynamic symmetry breaking based on an analogue to the QCD gauge theory of 
colour. Such schemes are referred to in the literature as technicolour models or 
hypercolour models and the purpose is to remove the elementary scalar field in 
the theory. In §13 .2 the possibility of massive neutrinos is explored. We discuss 
the likely origin of neutrino mass terms and their phenomenological 
implications. We give details of a calculation (in §13.3) ofµ-+ ey as a higher­
order weak effect when there are massive neutrinos. The purpose is to illustrate 
the use of Feynman rules in one nontrivial case where the unphysical 
'would-be-Goldstone' bosons play an important role in maintaining the gauge 
invariance of the calculation. 

13.1 Dynamical symmetry breaking and technicolour models 

One attempts to replace the elementary Higgs scalars with composite ones 
(see, for example, Weinberg 1976b). A notable class of such models have the 
constituent fermions bound through gauge interactions that are modelled 
after the QCD theory of colour (Susskind 1979; Weinberg 1979a). Here one 
postulates a set of new gauge charges: the technicolours. One's aim is to have 
a spontaneous symmetry-breaking theory with gauge interactions alone: 
there is no elementary scalar with its self-couplings and Yukawa couplings. 
Such a successful theory has by no means yet been constructed. However 
progress has been made towards the realization of such a programme. (For 
reviews see Beg 1980; Farhi and Susskind 1981.) Our purpose here is to 
illustrate the possibility of dynamical models of spontaneous symmetry 
breaking. We follow the presentation by Sikivie (1982). 

The motivation to replace the elementary Higgs scalars 

Higgs scalars are used in gauge theories to cause spontaneous symmetry 
breakdown. In the electroweak theory they generate masses for W and Z 
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gauge bosons. For one doublet of elementary Higgs particles, one gets 
the correct relative strength between neutral and charged currents: 
Mw = Mz cos 8w. In the standard model the leptons and quarks also 
acquire their masses during SSB through Yukawa couplings. The different 
sizes of the fermion masses can easily be accommodated by having different 
sizes of couplings and the complex Yukawa couplings can give rise to CP­
violating charged-current couplings through the diagonalization of the fermion 
mass matrices (see §§11.3 and 12.2). 

This 'versatility' of the elementary Higgs particle is related to the freedom 
one has in choosing the Higgs couplings: the scalar self-couplings and 
Yukawa couplings are quite unconstrained so long as they satisfy the 
requirements of gauge invariance. As a result a gauge theory with elementary 
Higgs scalars has many arbitrary parameters associated with the Higgs fields. 
This translates into the fact that in general masses and mixing angles cannot be 
calculated and must be introduced as parameters into the theory. 

Furthermore as we shall see in Chapter 14 on grand unification that, when the 
standardSU(3) x SU(2) x U(l)modelisembeddedintoasimplegaugegroup, 
the above-mentioned arbitrariness is not much improved. On the other hand we 
have (see §14.2) the acute 'gauge hierarchy problem', which can be described as 
follows. Grand unified theories with group G require at least two stages ofSSB 
corresponding to G SU(3)c x SU(2k x U(l) at energy scale M, and SU(3)c 
x SU(2k x U(l) SU(3)c x U(l)ematscaleµ.Thescaleµisfixedbytheweak 
interaction strength to be 250 GeV (seeeqn (11.90)). The scale Mis expected to 
be of order 1014 Ge V both as a result of the lower bound on the proton lifetime 
and because of the successful prediction of sin2 8w. If these SSBs are due to 
elementary Higgs scalars, the ratio µ 2/M 2 '.'.":::'. 10- 24 has to be introduced by 
hand and readjusted to 24 decimal places in each order of perturbation 
theory (see §14.2). 

This motivates us to investigate the possibility of SSB without having to 
introduce elementary scalar fields. The notion of a composite Higgs scalar is 
really not a new one. We have already mentioned in §8.3 that the idea of the 
Higgs phenomena was first suggested by the theory of superconductivity. 
There the electromagnetic gauge symmetry is spontaneously broken by the 
condensate (i.e. non-vanishing ground-state expectation value) of the 
electron pairs (the Cooper pairs), which acts as an effective composite Higgs 
scalar. Thus SSB is brought on dynamically through the interactions of the 
electrons with the lattice phonons. (For an early work on dynamical 
symmetry breaking see Nambu and Jona-Lasinio 196la,b.) Therefore the 
question one faces here in the electroweak case is that, if Higgs scalars are 
composite, what are their constituents? What interactions are responsible for 
binding them together? How can we have all the desired patterns of SSB 
without introducing many arbitrary parameters? 

The basic technicolour idea 

One naturally wonders whether the QCD strong force which binds the 
coloured quarks can be the interaction responsible for SSB in the electro-
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weak interaction. We shall see that, although it fails to fulful this role, the 
way it fails suggests possible candidate theories. 

Consider the standard SU(3)c x SU(2)L x U(l)y model, but-this time­
without the elementary Higgs scalar. Also, for simplicity, let us restrict 
ourselves to one family of fermions 

(13.1) 

The Lagrangian, for indices ix = 1, ... , 8; i = 1, 2, 3, is then 

(13.2) 

Since there is no Higgs VEV to break the SU(2) x U(l) gauge symmetry, it 
would seem that all fermions and all gauge bosons, including W and Z, will 
remain massless. As we shall presently see, this is actually not the case. 

Let us for the moment turn off the electroweak interaction and remember 
from Chapter IO some of the basic features of the strong interaction as 
described by QCD. The fact that the u and d quarks are massless implies that 
we have the flavour symmetry SU(2)L x SU(2)R. From the discussions in 
Chapter 5 on chiral symmetry and its breaking, all evidence is consistent with 
the picture that this symmetry is realized in the Goldstone mode. The 
symmetry is spontaneously broken with the vacuum being invariant only 
under the diagonal subgroup SU(2)L+R 

<uu)0 = <3d) 0 #- 0 (13.3) 

and there are three (exactly) massless Goldstone bosons n±· 0 . Although this 
result has not been proven rigorously in QCD, all indications are compatible 
with this expectation. 

To express the above in a more suggestive notation we define the effective 
scalar and pseudoscalar fields (u, n) having the quantum numbers of quark 
bilinears 

u "' qq and 7t "' iqTy 5q (13.4) 

where q = Thus we have just the SU(2) x SU(2) u-model considered in 
§5.3. The SSB condition (eqn (5.169)) and a generalization of eqn (5.155) 
immediately imply that the magnitude of SSB in (13.3) is given by the pion 
decay constant ix 

<o-) 0 = v 95 MeV (13.5) 

namely 

1 
2v2 <ifq)0 =ix= 95 MeV. (13.6) 

ix in turn must be related to the QCD scale parameter 200 MeV as it is 
the only scale in our theory. 
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Now we turn on the electroweak interaction. From (13.1) the quark 
bilinears transform as 

(13.7) 

The VEY (o) = fx then breaks the SU(2)L x U(l) symmetry down to 
the electromagnetic U(l) with n being eaten by the three gauge bosons to 
become w± and Z. From eqns (11. 77) and (13.5) we have 

Mw = fgf,, 30 MeV (13.8) 

which is about three orders of magnitude smaller than the value (80 GeV) 
required in the standard model. But this simple mechanism of dynamical 
symmetry breaking does obtain the correct relation between Mw and Mz. 
This is because we have an SU(2)L+R symmetry remaining (i.e. the isospin of 
the strong interaction) which will give Mw = Mz cos Ow (i.e. p = 1) as 
explained in §11.2 (see especially eqn (11.83)). 

To see the above results more explicitly consider the vacuum polarization 
diagrams of Fig. 13.1; they are derivable from the Lagrangian in (13.2). 
From the AA diagram in Fig. 13.1 we have 

= oii (g,,v - k,,kvfk2)k2n(k2). (13.9) 

FIG. 13.1. Weak gauge boson vacuum polarization loops from the quark-gluon states. 

Summing up the bubbles, the propagator of the gauge boson A,, is modified 
from 

to 
ij (g,,v - k,,kv/k2 ) 

o k2[1 - g2n(k2 )/4] 
(13.10) 

Because chiral symmetry must be realized in the Goldstone mode QCD 
interaction implies a massless pole in the vacuum polarization bubble (see Fig. 
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13.2). This means that the vacuum polarization function in (13.9) is given by 

(13.11) 

Namely the contribution of the AA diagram in Fig. 13.1 to eqn (13.10) has a 
pole at 

FIG. 13.2. 

Similarly the AB diagram and the BB diagram in Fig. 13.1 have poles at 

Mio= gg'f;/4 

= g' 2J;/4. 

Comparing this to eqn (11. 78) we immediately obtain eqn (13.8) with p = 1 
in (11.82). We should comment that if we had taken a three-family, six-quark 
flavour theory, the chiral symmetry would become SU(6) x SU(6) and there 
would be 35 Goldstone bosons. Three of them would become the longitu­
dinal modes ofW± and Z; the remaining 32 would acquire very small masses 
in higher orders of electroweak interactions i.e. they are pseudo-Goldstone 
bosons. 

In any case we see that, in the right circumstances, QCD itself breaks down 
the electroweak gauge group in just the right pattern. However it falls short 
of being a realistic possibility because 

(1) the scale is all wrong, we get Mw 30 MeV instead of 80 GeV as 
required; 

(2) fermions remain massless. 

It is relatively straightforward to overcome problem (1): we postulate the 
existence of another QCD-like interaction, called the technicolour interaction 
(TC), which has a scale parameter ATc such that it produces the phenomeno­
logically correct mass for W 

(13.12) 

Thus F" 250 GeV and ATc is of order 1 TeV. In other words the techni­
colour interaction, with a gauge group SU(3) for example, is in every way 
similar to QCD except that it produces condensate (or VEV) at energy three 
orders of magnitude larger than QCD. Thus there are fermions that carry 
technicolours (the techniquarks Q) with SU(2)L x U(l) x SU(3)c x SU(3hc 
transformation properties 

(2, 1/3, 1, 3) 

UR,.., (1, 4/3, 1, 3) 

DR,.., (1, -2/3, 1, 3). 
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The familiar quarks and leptons are TC singlets. These technicolour quarks 
form bound states just like ordinary quarks under ordinary colour inter­
actions. The TC chiral symmetry is also spontaneously broken with a 
magnitude given by the technipion decay constant 

1 -
2V 2 <QQ) 0 =Fn 250 GeV. (13.13) 

Thus we expect a rich spectrum of new particles in the TeV range. 

Extended technicolour 

The picture as developed so far still does not solve problem 
fermions. Quarks and leptons have separate chiral symmetries which remain 
unbroken. This situation is to be compared with that in the standard model 
where Yukawa couplings of elementary Higgs scalar to fermions produces 
fermion 'current masses' (see eqn (11.71)) as soon as<¢ ) 0 #- 0. Thus we must 
find ways to produce effective Yukawa couplings between ordinary fermions 
and technimesons. One possible way to do this is to enlarge the technicolour 
group GTc to an extended technicolour gauge group GETc by placing 
technifermions F (having, say, three technicolours) and ordinary fermions f 
(technicolour singlet) in a single irreducible representation of GETc· 

(F F F I o 
E 

TC 
( 

ETC 
) 

'-----v----' I 

'L--0--1' 

Extended technicolour (ETC) breaks down to technicolour at some energy 
scale µ. The E vector gauge boson being in ETC but not in TC acquires mass 

9ETcµ, and couples to currents of the form Pyµf The effective four­
fermion interactions mediated by E have the form 

By a Fierz transformation we obtain 

1 - - - -
- - 2 [(FF)(ff) - (Fy5 F)(fy 5 f) + ... ] 

2µ 

(13.14) 

where we have used the relation M, gETcµ. The condensation of techni­
fermions <FF) 0 #- 0 then produces a mass for the ordinary fermions, 

1 -
mr = - 2 <FF) 0 • 

2µ 
(13.15) 

Since <FF) (1 TeV)3 , one needs µ 30 TeV to produce mr 1 GeV. 
As E vector bosons are SU(3)c x SU(2)L x U(l) singlets, we need a set of 
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technifermions for each ordinary fermion in order to give latter a mass. For 
one family of fermions, we need eight sets of technifermions, 

U 1 , U2 , U 3 , D 1 , D 2 , D 3 , N, and E, 

where the subscripts are the QCD colour labels. The flavour symmetry of the 
TC interaction is then at least as large as SU(S)L x SU(S)R. When this chiral 
symmetry is spontaneously broken, three of the Goldstone bosons combine 
with w+, w-, and Z and we are left with a large number of relatively 
light (on the TeV mass scale) pseudo-Goldstone bosons. This will allow for a 
possible early test of the TC approach to dynamical symmetry breaking. 

Tumbling 

To give masses to several families of ordinary fermions using one family of 
technifermions, we need to break the ETC gauge group down to TC in 
several successive stages. For example, a three-family model could be 
constructed by having the sequential breakdown 

SU(6)ETC 

with fermions 

SU(5)E'TC 
µ µ' 

SU(4)E"TC 

(F F F f" f' f) 

< TC 

ETC 
) 

transforming as a sextet of ETC. The first family f = { e, v, u, d} would have 
mass m1 (l/2µ 2 )<FF), the second family f' = {µ, v', c, s} mass mr 

(l/2µ' 2 )<FF), etc. 
Can we have such a sequential SSB without an elementary Higgs scalar? 

Does one need to introduce a new TC interaction to perform each successive 
ETC symmetry breakdown? One possible way to avoid this proliferation of 
TC gauge groups is the idea of 'tumbling'. This is a hypothesis as to the 
behaviour of unbroken asymptotically-free gauge groups with non-real 
fermion representation content. We adopt the convention under which all 
fermions are described by left-handed fields. For example QCD with n 
flavours has fermions qu and (qck = (i = 1, 2, .. ., n) and we say its 
fermion content is n(3 + 3*) of SU(3)°, which is real. It will be argued 
below that an asymptotically free gauge group with non-real fermion 
representation content breaks itself when the gauge coupling constants 
become large in the infrared region. Several successive breakings may 
occur before the fermion representation content become real under the 
unbroken subgroup, at which point the 'tumbling' stops. This allows us to 
establish a hierarchy of mass scales in an economical and natural way. 

We illustrate the tumbling scheme by comparing QCD to an example of 
the SU(5) gauge group with fermions in the 5* and 10 representations. In 
the tensor notation a 5* is denoted by l/J; and a 10 by the antisymmetric 
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l/J;i = -l/lii with i,j = l, 2, ... , 5 (for more details, see §§4.3, 14.1, and 14.5). 
Possible scalar bound states composed of such fermion bilinears are 

5* x 5* = 10! + 15s 

10 x 10 = 5* + 45! + 50s 

5* x 10 = 5 + 45. 

This is to be compared to the QCD case 

3 x 3 = 3* + 6 

3* x 3* = 3 + 6* 

3 x 3* = 1+8. 

(13.16) 

(13.17) 

To have a Lorentz scalar the fermion bilinear must be a symmetric product. 
The bound state If! 1 l/1 2 potential in the one-gauge-boson-exchange approxi­
mation is given by 

-rx(µ) 
V(r) = --(C1 + C2 - C) 

2r 
(13.18) 

where C 1 and C 2 are the Casimir operators of the constituents and C is that 
of the bound state. This corresponds to the familiar relation - 2T 1 · T 2 = Tf 
+ - T 2 for T = T1 + T2 in isospin symmetry. We then identify the most 
attractive scalar channel (MASC) for which C1 + C2 - C is maximum. The 
basic proposition of the tumbling scheme states that, when we move from 
high energies to the low energy region where the running coupling becomes 
large, the MASC will condense first when 

rx(µ)(C1 + C2 - C) = 0(1). (13.19) 

This is clearly consistent with QCD where the MASC is the singlet 1 E 3 x 3*. 
For our SU(5) example, the MASC is the 5* contained in 10 x 10. We 
have 

(13.20) 

i.e. the difference is that here the condensate is not a singlet and it must single 
out a direction in the SU(5) space and hence breaks the SU(5) gauge 
symmetry: SU(5) SU(4) at scaleµ. The SU(5) gauge bosons that are not in 
SU(4) will pick up masses of order gµ. The fermion multiplets split up 
according to 

5* = 4* + 1 

10=6+4. 

Just as in QCD, the fermions that participate in the condensate acquire a 
dynamical mass, closely related to 'constituent mass' of §5.5; <Ciq) 0 = µ3 

implies a dynamical mass term - µqq for quarks. For the SU(5) case it is the 
sextet in 10 (l/lab = -l/lba• a= 1, ... ,4) that picks up masses. These 
dynamical masses are sharply energy-dependent and disappear at an energy 
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scale above µ. Below µ the heavy particles decouple (Appelquist and 
Carazzone 1975); we have a theory based on the gauge group SU(4) with 
fermion representation content: 4 + 4* + 1. The gauge coupling constant 
now runs according to the SU(4) /3-function. The new MASC is 4 and 4* 
combining into a singlet. That channel condenses when 

ct.(µ')(C4 + C4 • - Ci)= 0(1). 

The SU(4) gauge group remains unbroken and the tumbling stops because 
the condensate is an SU(4) singlet. The 4 and 4* fermions acquire 
dynamical mass of order µ' which is the mass scale of the condensate of 
the SU(4)singlet. Only two mass scales are produced in this SU(5)example, but 
it is easy to construct examples that yield several more. 

What is envisaged is a theory of low-energy ( s:; 300 Te V) particle physics 
based on the gauge group 

SU(2)L X U(l) X SU(3)c X GETC· 

The ETC fermion representation content is complex. Fromµ ,...,, 300 Te V, ETC 
tumbles down to TC atµ' which is a mass scale of a few TeV. Under TC the 
fermion representation content is real. At µ" 250 GeV, the technifermion 
condensates break-down-SU(2)L x U(l)-> U(l)em· The quarks and leptons 
are TC singlets but are ETC multiplets in common with the techniquarks and 
technileptons. They acquire masses through an effective Yukawa coupling as in 
eqn (13.15). In principle this scheme allows one to determine the quark and 
lepton masses, the Cabibbo angles, thew± and Z0 masses, all in terms of a single 
parameter, the ETC gauge coupling constant at some given mass scale. In 
practice it is not easy to carry out this programme. Particularly one is concerned 
that some of the light pseudo-Goldstone bosons will induce quark (or lepton) 
flavour-changing neutral-current processes at much too large a rate. From our 
discussion it is also clear that in order to achieve the original goal of having a 
theory with very few adjustable parameters we must introduce a large number of 
particles. Thus an economical and elegant theory still eludes us. 

13.2 Neutrino masses, mixings, and oscillations 

We have already mentioned in §11.3 that the reason why there are no 
Cabibbo-like mixing angles in the lepton sector of the standard electroweak 
theory is neutrino mass degeneracy (i.e. all vs have the same mass-zero). 
This degeneracy means that there is no need to diagonalize the neutrino mass 
matrix (in fact no mass matrix to begin with). The absence of physically 
significant mixing angles brings about a set of conservation laws for the 
lepton flavours: the electron number, muon number, and the 't-lepton 
number. Processes such asµ -> ey are forbidden. If neutrinos are not strictly 
massless, what are the phenomenological implications of small neutrino 
masses? Besides a nonzero rate for µ-> ey (see calculation in the next 
section), we have the novel feature of neutrino oscillations. 
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Neutrino oscillations 

This means that a beam of neutrinos (produced through weak interaction 
decays, corresponding to some definite flavour) can spontaneously change, or 
oscillate, into neutrinos of different flavour, e.g. ve +-+ vµ, while travelling in 
vacuum. This property may explain the 'solar neutrino puzzle' (Davis, 
Harmer, and Hoffman 1968; Bahcall et al. 1980). While neutrino masses and 
mixings were discussed earlier by Sakata and his collaborators (see, for 
example, Maki et al. 1962; Nakagawa et al. 1963), these possibilities, 
particularly in connection with neutrino oscillation, have been studied most 
persistently by Pontecorvo (1958; 1968; Gribov and Pontecorvo 1969; 
Bilenky and Pontecorvo 1978). 

If neutrinos are not massless, their mass matrix, just as in the case for 
quarks, will be nondiagonal and complex. One needs to transform it into a 
diagonal form by unitary rotations. Thus the mass eigenstates are different 
from gauge eigenstates 

(13.21) 

whefe va = ve, vµ, v, are weak eigenstates and vi= v1, v2, v3 are mass 
eigenstates with mass eigenvalues m1 , m2 , and m3 . U is a unitary matrix 
which can be parametrized like the KM matrix for quark mixing angles (see 
eqn (12.40)) 

(
Ve ) ( C1 S1C3 S1S3 )( V1-) 
Vµ. = -S1C2 C1C2C3 - S2S3 e:: C1C2S3 + S2C3 e:: V2 (13.22) 

v, - S1 S2 C1 S2S3 + C2S3 e C1 S2S3 - C2C3 e V3 

where ci = cos ei and si = sin ei. Of course there is no reason whatsoever to 
expect that these angles are in anyway similar to the Cabibbo-Kobayashi­
Maskawa angles. 

If at time t = 0, a beam of pure ve states is produced, say by n+ e+ve 
decays-in-flight, it is initially a superposition of mass eigenstates as 

(13.23) 

The time evolution of a state is controlled by its energy eigenvalues. We 
assume that all neutrinos in the beam have a common fixed momentum p; 
then the mass eigenstates have energy eigenvalue 

Ef = p2 + mf (13.24) 
and 

lv.(t)) = c1 e-i£11 lv1) + s1c3 e-i£21 lv2) + s1s3 e-i£31 lv3). (13.25) 

The probability offinding a Va at time tis given by l<valv(t))l2. So for example 
the probability of finding a Ve is 

Pv,-v,(t) = 1 - - cos(E1 - E2 )t] 

- - cos(E1 - E3)t] - - cos(E2 - E3)t]. 
(13.26) 
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For p » m;, we have 

E; = (p 2 + ml)t p + (mf/2p) 
and 

E; - Ei = (mf - mf)/2p. (13.27) 

It is convenient to define the oscillation lengths 

/ .. = 2n ,.,., 4np = 2 5 m [ p (MeV) J 
11 E; - Ei - lmf - mJI · 11m2 (eV)2 

(13.28) 

so that (13.26) may be stated as the probability of observing a v0 at distance x 
from the source, 

4 2 2 [ (2nx)] - 2s 1 s3c3 1 - cos 
123 

· (13.29) 

For x »Iii the harmonics are smoothed off and only the average intensity 
will be observable 

(13.30) 

The smallest average value possible is = 1/3 corresponding to the 
special case si = 2/3, = 1/2. Similarly, 

= + - cfcD + 2sfs2s3c1c2c3 cos - cD 

= + - cisD + 2sfs2 s3c 1c2c3 cos - cD. 
(13.31) 

Thus, one can in principle measure the leptonic CP angle b through the 
transition rates of one neutrino to different neutrino flavours. 

For the more general case 

i = 1, 2, ... , N (13.32) 

lvit)) = L Ua;V; e-iE,r, 

we can easily obtain the probability of finding flavour Ypina va beam 

= L IUail21 Up;J 2 + Ua;Ut;U:ppj COS (2;X) · (13.33) 
l l _,_ J lj 

One can also show that the smallest possible value for the average probability 
= 1/N. 

The magic of this oscillation phenomenon is of course intimately related to 
the quantum mechanical measurement theory. This possibility of one 
neutrino flavour va spontaneously changing into another flavour reflects the 
uncertainty of energy-momentum measurement in these processes. For 
example, if we can pin down precisely which mass eigenstate V; is produced at 
the source, the oscillation pattern is destroyed, as the precision of momentum 
measurements required to do this will precisely prevent locating the source to 
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an accuracy better than the oscillation length. Thus a more proper treatment 
should make use of wave packets, etc., but the same results are recovered 
(Kayser 1981). 

The principal point one should keep in mind is that in order to have 
neutrino oscillation we must have nonzero (and non-degenerate) neutrino 
masses and mixing angles. 

The question is then: can we have massive neutrinos in gauge theories? 
Before discussing the question of neutrino masses in SU(2) x U(l) electro­
weak theory we will first study briefly some of the special properties of 
neutrino mass terms. 

Neutrino mass terms of Dirac and Majorana type 

We adopt the conventions with respect to charge-conjugation (C) and 
helicity-projection operations 

I/Jc= Cyol/J* = iy21/J*, tfl =I/ITC 
I/IL= f(l - Ys)l/J, I/JR= f(l + Ys)l/I. (13.34) 

We also use the notation 

(13.35) 

The fermion mass terms connect left- and right-handed fields. A Dirac-type 
mass connects the L and R components of the same field, 

(13.36) 

Thus, the mass eigenstate is 

(13.37) 

A Majorana-type mass connects the Land R components of conjugate fields. 
In the notation of (13.35), we can have 

2MA = A(•fitl/IL + tfiLl/ID = Aix 

2Me = B(t/i'Rl/IR + tfiRl/l'R) = Brow. 

The mass eigenstates are then self-conjugate fields 

X =I/IL+ I/IL 
(/.)=I/JR+ I/JR., 

These can be inverted to yield 

I/IL= t(l - Ys)x; 

I/JR =to + Ys)w; 

t=x 
(/Jc = (/.). 

to + Ys)x 

I/JR.= to - Ys)w 

when the y5 matrix is applied to the l/J, x. and w fields 

("') ( tj/) (-1/JL + "'R) 
Ys X = X1

1 
= -1/JL + · 

(/.) (/.) +I/JR - I/JR 

(13.38) 

(13.39) 

(13.40) 

(13.41) 

(13.42) 
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Clearly this changes the sign of D, A, and B in eqns (13.36), (13.38), and 
(13.39). The fields If/, x', and w' are interpreted as the correct mass eigenstates 
for the minus values of fermion masses. 

When both Dirac and Majorana mass terms are simultaneously present we 
have 

.!l'oM = DfLl/IR + Aftl/IL + + h.c. 

= tD(xw + rox) + Aix + Bww 

__ (A !D)(X) 
=(x,w) tD B w 

which can be diagonalized to yield two mass eigenvalues 

Mi, 2 = t{(A + B) ±[(A - B)2 + D2 Ji'2 } 

corresponding to the Majorana mass eigenstates 

17i = (cos O)x - (sin O)w 

11 2 = (sin O)x + (cos O)w 
with 

tan 20 = D/(A - B). 

We can easily invert (13.44) and (13.46) and obtain 

D =(Mi - M2 ) sin 20 

A =Mi cos2 (} + M2 sin2 (} 

B =Mi sin2 (} + M2 cos2 0. 

(13.43) 

(13.44) 

(13.45) 

(13.46) 

(13.47) 

Thus the most general mass term (13.43) for a four-component fermion field 
actually describes two Majorana particles with distinctive masses. 

It is interesting to see that the usual four-component Dirac field formalism 
can be recovered in the limit of A = B = 0. When (} = n/4, we have mass 
eigenstates (X ± w)/ corresponding to eigenvalues ±D/2. To flip the sign 
of the negative mass we need to apply a chiral transformation as in (13.42). 
Thus the fields 

and 

- 1-(x' - w') = - 1-(-1/JL +I/ft - I/JR+ := e1 (13.48) 

have the same mass eigenvalue tD. Because of this degeneracy we are free to 
use any new combinations of fields so long they represent a rotation in the 
(ei, e1 ) plane. Thus, 

!l'oM(A = B = 0) = tD(c;iei + c;2e2) 

(13.49) 
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For the particular linear combination (i.e. another 45° rotation) 

, 1 
= .j2 - = l/JL +I/JR 

= + (13.50) 

it is obvious that (13.49) reduces to D-l{il/J with I/I = I/IL + I/JR. 
Thus a Dirac fermion really corresponds to the degenerate limit of A = B 

= 0 in the more general case of two Majorana particles. Since the Majorana 
mass terms A (13.38) and B (13.39) violate the conservation of whatever 
additive quantum number that I/I carries, e.g. electric charge, all elementary 
fermions, except neutrinos, being charged must have A = B = 0. For 
neutrinos, Majorana mass terms violate lepton number by two units. The 
presence of such Majorana neutrino masses leads, for instance, to neutrino­
less double (Z - 1)--+ (Z + 1) + e + e, or kaon decays such as 
K- --+ n+ee. The quark diagram corresponding to these lepton-number 
nonconserving processes is shown in Fig. 13.3. (We do not consider theories 
with V +A charged currents coupled to heavy IVBs, WR, where such an 
amplitude does not have to be proportional to a Majorana v mass term.) 

FIG. 13.3. Quark diagram for neutrinoless double The symbol @ corresponds to a 
Majorana-mass insertion vLvL + h.c. 

Possible neutrino mass sizes 

At present the principal evidence for a possible non-zero neutrino mass 
comes from a single (not yet corroborated) experiment in tritium 
3H--+ 3He + e- + ve. It is found that the shape of the electron spectrum 
near the end-point can be interpreted as giving an mv, ranging from 15 to 
45 eV (Lyubimov et al. 1980). All other laboratory results only yield upper 
bounds on the mvs 

mv, < 60 eV, 

mv" < 510 KeV, 

mv, < 250 MeV. (13.51) 

One can however obtain much more stringent bounds if one invokes 
cosmological theories. We shall give a brief account of this constraint. 
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Cosmological bound on neutrino masses. The standard model of big-bang 
cosmology is now generally accepted as being the correct theory of the 
universe. The principal ingredients are the cosmological principle and 
Einstein's field equations. It describes a universe which is spatially homo­
geneous and isotropic, and is expanding according to Hubble's law 

V=HR (13.52) 

where V =velocity, R =distance, and His the Hubble's constant ( 15 km/s/ 
million light years). Actually the basic features can be readily understood 
from Newtonian mechanics. Much like the notion of 'escape velocity', there 
is a critical mass density Pc corresponding to the precise cancellation of 
kinetic and (gravitational) potential energies 

Pc= 3H2/8nG 5 x 10- 3o g/cm3 (13.53) 

where G is Newton's constant. If the mass density of the universe p < Pc then 
it will continue to expand forever (the 'open universe'); if p >Pc then the 
expansion will slow down, eventually stop, and start contracting (the 'closed 
universe'). The present bound on the total density of the universe, estimated 
from its age and deceleration, is 

(13.54) 

where the superscript zero denotes present time. On the other hand the 
observed galaxies and clusters can only account for a density p0 that is at 
most a tenth of Pc· One can then speculate about the nonluminous masses in 
the universe. 

The standard model of cosmology succeeds in providing a common 
meeting ground for a large variety of observational data. The matter of the 
universe is observed to reside primarily in the form of hydrogen atoms and a 
small portion in helium, and other light elements. If the galaxies are rushing 
apart from each other according to Hubble's law, they should have been 
closer in the past, making up a universe that was smaller and hotter. It is 
argued that such a hot universe would have 'cooked' all the hydrogen into 
heavier elements. However the small amounts of heavy elements observed in 
the universe is consistent with our picture of their being produced later in the 
galaxies. Namely they are not primordial in origin and the cosmological 
evolution should be such that no heavy elements are synthesized in the early 
universe. This can be the case if there was an intense field of radiation which 
would blast apart the heavy elements as soon as they were formed. Such an 
electromagnetic radiation, which was once in thermal equilibrium with 
matter, should still be present today, red-shifted by Hubble expansion to 
become a low-temperature black-body spectrum of background photons. 
This background radiation was indeed discovered and was measured to have 
an equivalent temperature of about 2. 7 K. (This value is just compatible with 
a nucleosynthesis calculation of the above-mentioned cosmological helium 
abundance.) Using the standard black-body radiation formula relating 
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number density n to temperature 

(13.55) 

with 

where g 8 , 9F are the number of boson and fermion degrees of freedom, 
respectively (e.g. g8 = 2 for a photon gas (2 helicities), gF = 2 for massless 
neutrinos, 9F = 4 for electrons, etc.), we have the present photon 
number density for T = 2.7°K 

(13.56) 

Similarly, the standard big-bang model suggests that the universe is 
immersed in a sea of primordial neutrinos. Because the neutrinos went out of 
thermal equilibrium before e + e - annihilation heated up the background 
radiation, the present cosmic black-body neutrinos should have a lower 
temperature (Peebles l 966) 

(13.57) 

or T? 1.9 K. Combining eqns (13.55)-(13.57), we have neutrino number 
density 

n? 110 cm- 3 
4 T1 

corresponding to a neutrino mass density, 

3 p? L ii = 2m;(eV) x 10- 31 g/cm3 

' ' 

(13.58) 

(13.59) 

where the sum is over neutrino mass eigenstates. The bound (13.54) can then 
be converted into a bound on the sum of neutrino masses (Gershtein and 
Zeldovich 1966; Cowsik and McClelland 1972; Szalay and Marx 1976) 

,Lm; < lOOeV. (13.60) 

It is amusing to speculate that the universe is 'flat' with a mass density of 
precisely Pc and that the nonluminous masses all reside in the form of neutrino 
masses (i.e. ignoring all other possibilities such as magnetic monopoles, etc.); 
we then have 

Lm; 25eV. (13.61) 

How can we have small neutrino masses? Fermion masses, whether coming 
from bare mass terms or Yukawa couplings (through Higgs mechanism), are 
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arbitrary parameters in gauge theories due to infinite mass and coupling 
renormalization. Hence they are generally not calculable and have to be 
determined experimentally. 

The neutrino masses, if nonzero, must be small when compared to all other 
mass scales. Theoretically one would like to have some way to understand 
their smallness. There are a few special cases where neutrino masses are not 
arbitrary and can be small. 

(1) The most obvious possibility is that the neutrinos' mass terms are 
absent to the zeroth order and that higher-order radiative corrections give 
rise to masses (Georgi and Glashow 1973; Cheng and Li 1978). Consider the 
Dirac mass terms. If the particle content of the theory is such that there is 
neither the bare mass term \liL\j/R (i.e. \j/L and \j/R transform differently) nor the 
Higgs-generated mass term \[JLP\j/R( </>") 0 (because </>. is absent or ( </>.)0 
= 0), then the diagram in Fig. 13.4 is finite as there are no possible 
counterterms to absorb the infinity. Such an m. in a theory where vR is 
assumed to transform nontrivially under the gauge group (and thus also to 
couple to the W-boson) should be calculable and is of the order g2mr. A 
similar situation is also possible for Majorana-type mass terms. 

w 

) 

FIG. 13.4. 

(2) As we shall discuss in the next chapter, grand unified theories (GUT} 
of the strong and electroweak interactions demand the existence in one 
theory of two vastly different mass-energy scales µ 1 , 2 corresponding to two 
stages of symmetry breaking 

GauT --+ SU(3) x SU(2) x U(l) --+ SU(3)colour x U(l)em· 
µ, µ2 

In certain situations this extremely small ratio µ2 /µ 1 «< I (of order 10- 13 ) 

can be reflected in the fermion spectrum. The neutrino mass matrix of (13.43) 
may naturally have the form (Gell-Mann, Ramond, and Slansky 1979). 

m··=(O m) 
'1 m M 

(13.62) 

with m "'µ 2 , M"' µ1 . The eigenvalues are m1 m2/M and m2 M; 
(mi/m2 ) (µ2 /µ 1 ) 2 <« I. Thus one ends up with one 'superheavy neutrino' 
and one extremely light particle which can be identified with the ordinary 
neutrino. 

Neutrino masses in SU(2) x U(l) models 

In the standard SU(2) x U(l) theory of electroweak interactions, neut­
rinos are massless because the simple Higgs structure of the theory leads to a 
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global symmetry corresponding to lepton-number conservation which 
forbids the Majorana mass term vt vL and there are no vR that could combine 
with vL to form a Dirac mass term. In other words the masslessness of the 
neutrinos is related to the restricted particle content being considered in the 
standard model. When we consider a more complete unification it is 
inevitable that the number of fields will increase, with the consequential 
appearance of neutrino mass terms. (We shall see in §14.5 that the simplest 
grand unification scheme, the minimal SU(5) model, still has a global 
symmetry corresponding to the conservation of baryon number minus the 
lepton number (B - L) which also forbids the Majorana mass terms.) 
However in GUT such as SO(lO) B - Lis broken and neutrinos naturally 
acquire masses. Although recent interest in massive neutrinos is tied to the 
exploration of grand unification we shall study the mv "# 0 extensions of the 
minimal SU(2) x U(l) model directly (Cheng and Li l980a) as all grand 
unified models must contain SU(2) x U(l) as a subtheory anyway and it is 
much simpler to work with the electroweak theory. 

In the standard electroweak model, the lepton fields and Higgs scalar have 
the following SU(2) x U(l) transformation properties 

[L = )L"' (2, -1), [jl "'(1, -2) 

<I>; = ( :: ) "' (2, + 1). (13.63) 

The first entries in parentheses on the right-hand sides of eqns (13.63) are the 
dimensions of SU(2) representations and the second entries are the U(l) 
hypercharge Y = 2(Q - T3 ). Lepton flavour indices are suppressed. Terms 
bilinear in lepton fields are 

T;}R"' (2, 1) X (1, -2) = (2, -1) 

lfA"' (2, -1) x (2, -1) = (1, -2) + (3, -2) 

"'(1, -2) x (1, -2) = (1, -4). (13.64) 

With <I>,..., (2, 1) only the Yukawa couplings lR/L<l> + h.c. are present in the 
standard model and we have a global symmetry corresponding to lepton­
number conservation. 

There are many possible extensions of the standard model to give mv "# O; 
they can be broadly categorized as 

(l) Extension in the Higgs sector only; 
(2) Extension in the lepton sector only; 
(3) Extension in both Higgs and lepton sectors. 

In case (1), other scalars, besides the doublet <I>, that can join the lepton 
bilinear in (13.64) to form SU(2) x U(l) gauge-invariant Yukawa couplings 
are triplet: H"' (3, 2), singly charged singlet: h+ "'(1, 2), and doubly 



13.2 Neutrino masses, mixings, and oscillations 419 

charged singlet: R + + "' (1, 4). For example the triplet H with Y = 2, 

t·H = ( H+ .j2H++) 
.j2 Ho - H+ (13.65) 

gives rise to the additional Yukawa coupling and trilinear scalar coupling 

!IfdjLH(st)ii + µ<l>i<l>iH*(st)ii + h.c. (13.66) 

where s = ir2 , with sii and (st)ii being, respectively, antisymmetric and 
symmetric. When H develops a vacuum expectation value 

(t. H)o = (0 0) 
Vtt 0 

(13.67) 

a Majorana mass term for the neutrino, (vttf) vtvL, results. It should be noted 
that vH also contributes to the W and Z masses with 

_ 2 p = (Mw/Mz cos Bw) = 2 2 
Vq, + 4VH 

(13.68) 

where vq, is the vacuum expectation value of the doublet. The phenomeno­
logical result (12.120), p = 0.998 ± 0.050, restricts (vtt/vq,) < 0.17 if one 
standard deviation is allowed. 

In case (2) the simplest scheme is obviously the addition of a neutral 
singlet, the right-handed neutrino vR. We then have the additional 
Lagrangian terms (for simplicity we first consider a one-flavour theory) 

where D = (1/ .j2)vq,f A Majorana bare-mass term Bis present because vR is 
totally neutral with respect to the SU(2) x U(l) group and we do not impose 
lepton-number conservation on the theory. Thus in this extension we are 
naturally led to consider neutrino mass terms of the Dirac and Majorana 
types (eqn (13.43)). Since the AvtvL term is absent (i.e. we do not introduce 
the triplet Higgs particles) the mass matrix is in fact of the form (13.62). lfwe 
make the plausible assumption that the Dirac mass term D is of the order of 
charge-2/3 quark masses and the Majorana mass term B is of the order of 
the energy scale when the GUT is broken into SU(3) x SU(2) x U(l), hence 
has a very large value. Then the weak eigenstates vL and vR are super­
positions of two Majorana mass eigenstates with vL being predominantly a 
neutrino with a light mass ':::!.iD 2 /B and a tiny admixture (D/B) of a super­
heavy neutrino with a mass '::::!. B; the converse holds for vR. 

One may also entertain the possibility that D and B are of comparable 
magnitude and, for whatever reason, are both small. In this case the mixing 
angle will not be small and the small mass eigenvalues allow for neutrino 
oscillations. But this is a type of oscillation different from those considered 
earlier (13.21) as the diagonalization of (13.43) (eqn (13.45)) means 

(X) = () - sin ())(17 1) 

w sm () cos() 17 2 
(13.70) 
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and the chiral projections of x and w (13.41) are just the usual weak 
eigenstate neutrino 

(13.71) 

Thus we have neutrino-antineutrino oscillations vL (vc)L i.e. vL (vRY· 
Since the vRs interact only through the superweak Yukawa couplings, such 
an oscillation with neutrinos turning into 'sterile particles' would be very 
different from the flavour oscillation discussed before (Barger et al. 1980; 
Cheng and Li 1980a). When the lepton-flavour family structure is taken into 
account, D and B become 3 x 3 matrices (for three lepton flavours). Each 
weak eigenstate neutrino will be a superposition of six Majorana mass 
eigenstates. One will then have both flavour-changing oscillations and 
particle-antiparticle oscillations: v.L +-+ vhL and v.L +-+ (vl',k. 

With the guiding principle that global symmetries should be determined by 
gauge invariance and renormalizability once the particle content is fixed, we 
find in this study of simple m_. i= 0 extension of the minimal SU(2) x U(l) 
model such that, if mv i= 0, the physical neutrinos invariably turn out to be 
Majorana particles. This reflects mainly the point that if both Dirac and 
Majorana mass terms are present the mass eigenstates are still the self­
conjugate Majorana fields. One can conclude that Majorana fields are 
natural representations of neutrino particles. 

13.3 µ - ey, an example of Rcgauge loop calculations 

Renormalizability is the principal feature of gauge theories of weak 
interaction. It will be instructive to go through the details of one non-trivial 
example of a higher-order weak radiative correction calculation. Here we 
study the neutrino-oscillation induced µ ey as an illustration of 
loop calculations. Thus we are working in the framework of the standard 
model (with one doublet of elementary Higgs scalars) modified by the 
presence of neutrino mass terms. We choose this example because, unlike the 
so sd box diagrams of §12.2, the would-be-Goldstone bosons are here not 
negligible in the leading order and must be included to obtain a gauge­
invariant finite result. Also, the basic mechanism in Fig. 13.6 for µ ey 
involves the distinctive non-Abelian features of the theory: the existence of 
trilinear couplings of gauge bosons. Of course it is a GIM-suppressed 
amplitude (by the neutrino mass difference). However, if observable (this 
unfortunately is not likely), its interpretation will not be complicated by the 

y 

µ ;;. e 
p 

FIG. 13.5. 
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strong interaction effects as in the case of strangeness-changing neutral­
current processes. 

The µ--+ ey amplitude Fig. 13.5 can be written 

(13.72) 

where e;.(q) is the photon polarization. T has the Lorentz decomposition 

= ue(P - q)[iqva;.v(A +Bys)+ y;.(C +Dys)+ q;.(E + Fys)]uµ(p) 
(13.73) 

where A, B, ... , Fare the invariant amplitudes. From electromagnetic gauge 
invariance 

(13.74) 

we have the condition 

or 

(13.75) 

when the photon is on-shell q2 = 0. And, since e;.q;. = 0, the on-shell µ --+ ey 
amplitude is a magnetic transition 

(13. 76) 

As (13.76) corresponds to a dimension-five operator, the on-shell µ--+ ey 
amplitude must be represented by a set of loop diagrams. They result in a 
finite amplitude since there can be no counterterm to absorb the infinities­
the same reason why the (g - 2) anomalous magnetic moment of electron 
must be finite and calculable in QED. 

As it is a lepton flavour-changing process it is strictly forbidden in the 
standard theory with mv = 0 and muon number conservation. In this section 
we shall assume that neutrinos are not massless, and their mixings and 
oscillations mediate µ --+ ey (see Fig. 13.6). Initially we choose to work with, 
neutrinos having the more familiar (pure) Dirac mass terms, 

a = e, µ, '; i = I, 2, 3. (13.77) 

Extensions to the more general cases of Majorana neutrinos will be 
presented at the end of the section. The lowest-order diagrams contributing 
to theµ--+ ey amplitude in the are displayed in Fig. 13.6. Since we 
know that the final amplitude must have the form of the magnetic transition 
(13. 76), our strategy is to ignore all terms that cannot be reduced to the 
magnetic moment term. This means that there is no need to calculate the 
diagrams in Fig. 13.6(e) since they are all proportional to uey;.uµ and will be 
cancelled by terms of similar form coming from the diagrams in Fig. l 3.6(a)­
(d). As we shall make the approximation me = 0, the two µ --+ ey invariant 
amplitudes are equal, 

A =B, (13. 78) 
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(a) (b) 

r:-,z 
V; \ 

) I ) 

(c) 

(e) 

FIG. 13.6. One-loop diagrams for theµ---> ey amplitude. The dashed lines represent the would­
be-Goldstone bosons in renormalizable gauges. Thus, only (a) and the two graphs in (e) remain 

in the unitary gauge. 

corresponding to the final-state electron being left-handed (it is eL that 
couples to W and the helicity cannot be flipped in the me= 0 limit). Also, 
using Gordon decomposition (see Appendix A), we have 

T = Aue(p - q)(l + y5 )i0';,vqv1;-'uµ(p) 

= Aue(p- q)(l + y5 )(2p·s - mµy·s)uµ(p). (13.79) 

Thus in our calculation of the invariant amplitude A we need only to 
concentrate on the p · s term. The momentum assignments of diagrams (a) to 
(d) in Fig. 3.6 are shown in Fig. 13.7. 

p 

Diagram (a). 

p+k 

FIG. 13.7. 

k+q 

p-q 

I;(a)= -i 

X Uµ;yv(l - y5)uµ(p)J [if1vP(k)][iNa(k + q)J(-ie)r1.apBY (13.80) 

where ryapBY is the W-boson photon vertex: For ryap(k1, k1, k3) = 
[(k3 - ki)a91·p + (k2 - k3)1.9ap + (k1 - k 2)pg1.a] with all the k;s flowing into 
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the vertex, we have 

423 

i;Yryap(-q, k + q, -k) =' ra/J = [(2k·e)9ap - (k + 2q)pea - (k - q)aep] 
(13.81) 

where /t,._vfi(k) and /t,..µa(k + q) are the W-propagators in the 

/t,..µv(k) = -[gµv - {I - - - M 2) {13.82) 

and M is the mass of W. Ue; and Uµ; are the mixing angles of (13.77). 
When we sum over all the diagrams corresponding to the three intermediate 
mass eigenstate v;s 

" { u:;uµi }- " * { 1 mf } f (p + k)z - mf - 7 Ue;Uµ; (p + k)z + [(p + k)2]2 + ... 

" u:;uµ;mf 
= 7 [(p + k)2] 2 + ... (13.84) 

the leading term vanishes, L; = 0, reflecting the GIM cancellation 
mechanism. We then have 

where 

with 

f d4k R 
T(a) = T;(a) = ic (2n)4 [(p + k)z]z 

2 

g e" U*U. z c = 4 L, ei µ;m; 
I 

Nµv = fl.{p - q )yµ (P + ){)yv(I - Y s )uµ(P). 

The W-boson propagator can be split up as 

Nv(k) =' Mv(k) + /t,..i'(k) 

with Mv(k) = -(gµv - kµkv/M2)/(k2 - M2) 

Mv(k) = -(kµkv/M2)/(k2 -

Substituting (13.89) into (13.87) we note that 

because 
/t,..''/(k)Ma(k + q)rap = 0 

(k + qykPrafi = 0. 

(13.85) 

(13.86) 

(13.87) 

(13.88) 

(13.89) 

(13.90) 

(13.91) 

(13.92) 

(13.93) 
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where 
S1 = pivNµv 

S2 = (k''PfJ(k"NµJ/M 2 

S3 = [(k + + q)"NµJ/M 2 . (13.94) 

Combining the denominators using Feynman parameters and shifting the 
integration variable, we get 

T(a) = i3!c f a1 da1 da2 + (k2 :
2bz)4 

where 

S3 } + (k2 - d2)4 (13.95) 

a2 = (1 - a1)M2 + ... 

b2 = [(I - a1 - + a2 ]M2 + ... 
d 2 =[(I - a1 - a2 ) + +.. .. (13.96) 

Picking out only the p · B terms, 

S1 -> S1 = (p ·c)[11e(l + y5 )uµ]2mµ[2(1 - ai)2 + (2a1 - l)a2] 

- 2 2 S2 -> S2 = -k (p · c)[ueO + y 5 )uµ](mµ/ M ) 

x {(3a2 - 1) + [2af - a 1 + az(2a1 - 1/2)]} 

After momentum integrations 

I d4 k 1 i 
(2n)4 (k2 - a2)4 = 96n2a4 

I d4k k2 -i 1 
(2n)4 (k2 - a 2 ) 4 = 48n2 a2 

(13.98) 

and the integration over Feynman parameters a 1 and a2 , the contribution 
from diagram (a) to the invariant amplitude A is 

A(a) =-- 1----+ -- ---1 . c mµ [ 1 In ( 1 )(On )] 
64n2 M 4 3 - 1 - 1 - 1 

(13.99) 

Diagram (b ). 

T;(b) = -i J [ ue(p - q) C - Ys) P +: _ m; 

( -ig) Vµ; J x .J2M 2 [m;(l - Ys) - mµ(l + Ys)Juµ(p) 

x [ -ili-'"(k + q)] k 2 (ieMBv). (13.100) 
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Splitting the W-propagator as in (13.89) and summing over all vi-diagrams 
using the approximation (13.84) and also 

(13.101) 

we have 

T(b) - . f d4k N;, l 
- IC (2n)4 [(p + k)2]2 k2 - eM2 

x {[1r• - e·k(k + q)A/M2] e·k(k + q)A/M2} 
(k + q)2 - Mi + (k + q)2 - eM2 (13.102) 

where c is the coupling constant of (13.86) and 

N;, = iie(p - q}(l + y5 )Y;,[(p + k)2 - mµ(k + mµ)]uµ(p). (13.103) 

Combining denominators using Feynman parameters and shifting the inte­
gration variable, we have 

. f f d4k [Ni - fi2 N2 J T(b) = 61c ili dlXi dlX2 (2n)4 (k2 _ b2 )4 + (k2 _ a2 )4 (13.104) 

where a and b are given in ( 13.96). Again picking out p · e terms in the 
numerator, 

;, - -Ni= N;,e -+Ni= -2(p·e)[u.(l + y5 )uµ]ll 2mµ (13.105) 

N 2 = N;,(k + q);,k·e/M2 -+ N2 = k 2(p·e)[ii.(l + y5 )uµ] 

x !mµ[(l - 41Xi}(l - ili - 1X2 ) - (l - 31Xi}]. 

After the momentum integrations of (13.98) and Feynman parametric 
integrations we have the invariant amplitude from diagram (b) 

c mµ [ 5 4 In e 7 ( l )(e In e )] A(b) = -- - + --- - - -- -- - l · (13.106) 
64n2 M 4 6e 3 e - l 3 e - l e - l 

Diagram (c). Following steps which are entirely similar to "those followed 
in the calculation of diagram (b) we obtain 

c mµ [ 5 In e 1 ( 1 )(On e )] A(c)=-- ----+- -- ---1 · (13.107) 
64n2 M 4 6e e - 1 3 e - 1 e - 1 

Diagram (d). 

f d4k { ( ig ) U*. T;(d) = -i (2n)4 u.(p - q) .J2M T [mi(l + Ys) - m.(l - Ys)] 

(13.108) 
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Making the approximation me= 0 and using (13.101), we have 

-ic I d4k 
T(d) = Mi (2n)4 [ue(p - q)(l + Ys)kuµ(p)] 

2k·e 1 1 
x <P + k)2 k2 - eM2 <k + q)2 - eM2. (13.109) 

Combining denominators, we perform the momentum integration 

T(d) = -4ic(p·e)[ue(l + y5)uµ] I doc1 doc2 °'1(°'1 + :72 
(13.110) 

where a'2 = (1 - oci)eM2. After integrating over the parameters we have the 
invariant amplitude 

A(d) = :( 
(13.111) 

The contributions of diagrams (a) to (d) are summarized in Fig. 13.8. 

_h_ 
gauge 't Hooft gauge ( e = I) unitary gauge ( e --+ co) 

I 5 
I --f@+2g<e) 

3 

5 4 7 
-+-Jm--nm 0 
6e 3 3 

L 5 I 
--Jm+-nm 0 0 
6e 3 

_?, 5 5 
0 

" ' Je I 

Fm. 13.8. Diagram contributions to the µ-+ ey invariant amplitude A = B in units of 
(eg2/8M 2)(m./32n2) <5, with/@= In - 1), g@ = [U@ - - 1). 

Clearly we have for the total contribution of these diagrams, 

g2 mµ 
A = B = e 8M2 32n2 <>v 

where <>vis the GIM suppression factor 

<>v = 2: /M2 ). 
i 

(13.112) 

(13.113) 

We note that in the final result the dependence on the gauge parameter e has 
been cancelled out. A straightforward calculation of the decay rate yields 

m3 
r(µ--+ ey) = _e_ (IAl2 + IBl2 ) 

8n 
(13.114) 

and using r(µ --+ evv) = this can be converted into the branching 
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ratio (Cheng and Li 1977; Petcov 1977; Marciano and Sandra 1977; Shrock 
and Lee 1977) 

B(µ --+ ey) = r(µ--+ ey)/r(µ--+ evv) 

32n v 

(13.115) 

where°' is the fine structure constant and we have used Gd .J2 = g2/8M2 . 

Even if one takes a neutrino mass that saturates the cosmological bound 
100 eV (eqn (13.60)), we still have a hopelessly small B(µ--+ ey) < 10- 40 . 

We now comment very briefly on the situation when neutrinos are 
Majorana particles (Cheng and Li 1980b). Again we can distinguish two 
broad categories. 

(1) The neutrino mass terms are pure Majorana AvtvL. Each weak 
eigenstate is still a superposition of three (Majorana) mass eigenstates and 
the above µ --+ ey calculation should be carried through without 
modification; 

(2) The neutrino mass terms have both Dirac and Majorana types. In 
particular when we have the situation of (13.69), DvL vR + vR + h.c. with 
B >» D. (Theoretically this is the most attractive possibility.) Each weak 
eigenstate is a superposition of six Majorana mass eigenstates: three are light 
with m - D 2/B; three are very heavy with M - B(»Mw). This µ--+ ey 
calculation without the approximation of small intermediate neutrino masses 
has been carried out. As one would expect, the GIM cancellation is no longer 
complete because of the presence of superheavy neutrinos. However B(µ 
--+ ey) is still unobservably tiny as the admixture of heavy neutrinos in the vLs 
is extremely small being()'.:::::'. D/B or (m/M)±. One concludes that only in the 
case with the most general neutrino mass terms eqn (13.43) (i.e. having both 
Higgs triplet and vRs) and with their magnitude coming out as B » D »A is 
there any possibility of getting a neutrino-oscillation induced B(µ --+ ey) 
which is large enough, hopefully, to be detectable. 



14 Grand unification 

We have some confidence that elementary particle interactions down to 
distances as small as 10- 16 cm are correctly described by SU(3) x SU(2) x 
U ( 1) gauge theory. This is the standard model of particle physics: quantum 
chromodynamics is the strong-interaction theory and the Glashow­
Weinberg-Salam model provides the theory of weak and electromagnetic 
interactions. 

Clearly it is desirable to have a more unified theory which can combine all 
these three interactions as components of a single force; a theory with only 
one gauge coupling. Georgi and Glashow (1974) showed that for the 
standard model, with the presently known quarks and leptons in each family, 
the simplest unification gauge group of colour and flavour is SU(5). How­
ever, because of the large differences in coupling strengths of strong and 
electroweak interactions, this unification would not become apparent until 
the energy scale of 1014 GeV was reached, corresponding to a distance scale 
of 10-zs cm. 

Unification of colour and flavour was discussed earlier by Pati and Salam 
(1973). There are also other attractive models based on the gauge groups 
SO(IO) (Georgi 1974; Fritzsch and Minkowski 1975) and E(6) (Gursey, 
Ramond, and Sikivie 1975). In this chapter we shall concentrate on the 
simplest grand unified model based on SU(5). 

14.1 Introduction to the SU(5) model 

We shall first give the basic structure of the SU(5) model. (For a detailed 
discussion see Buras, Ellis, Gaillard, and Nanopoulos 1978.) The original 
motivation of Georgi and Glashow for using the gauge group SU(5) will be 
presented at the end of this section. 

A general representation under an SU(5) transformation may be expressed 
in tensor notation (see §4.3) . 

. t,ij ... -+ Ui UiU•Ut ,1,mn .. . 
'I' kl... m n k I · · ·'I' st .. . (14.1) 

where all indices run from 1 to 5 and 

is a 5 by 5 unitary matrix. pa}, a= 0, 1, ... , 23, is a set of twenty-four 5 x 5 
generalized Gell-Mann matrices, which are hermitian and traceless (so that 
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the Us are unitary and have unit determinants), with normalization tr(A.0 A.b) 
= 2<5°b. For example, 

0 2 

0 2 

0 

1 

0 1 
A. = v'15 2 (14.:2) 

-3 

-1 -3 

To obtain the SU(3) x SU(2) content of a, representation we identify the first 
three of the SU(5) indices as the colour indices and the remaining two as 
SU(2k indices, 

i = (oc, r) with oc = 1, 2, 3 and r = 4, 5. (14.3) 

Fermion content 

In the standard SU(3) x SU(2) x U(l) model there are 15 left-handed (LH) 
two-component fermion fields in each family (generation). As we shall see, 
grand unification theories in general and the SU(S) model in particular do not 
shed light on the fermion replication problem (see §11.3). Thus for the sake of 
brevity, we shall initially write down the theory for the first (e) fermion family 
only 

(v.,e-)L: (1,2) 

et: (1, 1) 

(u,., d,.)L: (3, 2) 

ul,«: (3*, 1) 

dl,«: (3*, 1) (14.4) 

where the SU(3) x SU(2) transformation properties of the family are 
displayed on the right-hand side of eqns (14.4). The superscript c stands for 
charge conjugate field (see eqns (13.34) and (13.35)) 

I/Jc = Cyoi/J* = iy2i/J* 

(14.5) 

The SU(3) x SU(2) contents of the simplest SU(5) representations are 

The fundamental rep I/Ji 5 = (3, 1) + (1, 2) 

The fundamental conjugate rep I/Ji 5* = (3*, 1) + (1, 2*) 

The antisymmetric 5 x 51/Jii = -I/Iii 10=(3*,1) + (3, 2) + (1, 1). 

(14.6) 

The less obvious points in the above decomposition are e"PYijJ,.p"' (3*, 1) and 
e •• i/I'" "' (1, 1), where we have followed the index-labelling convention of 
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(14.3). A comparison of (14.4) and (14.6) shows that one family of fermions 
can be accommodated snugly in an SU(5) reducible representation of5* + 10 

5*: (t/Ji)L = (dcldc2dc3 e- - Ye)L (14.7) 
or 

5: (t/J;)R = (d1 d2 d3 e+ - (14.8) 

<:1nd 
uc3 0 -uc2 U1 di 

-uc3 0 Uc! U2 d1 
1 uc2 10: (X;)L = ..j2 -Uc! 0 U3 d3 (14.9) 

-U1 -U2 -U3 0 e+ 

_,-d1 -d2 -d3 -e+ 0 L 

It should be noted that in this one-family approximation gauge 
eigenstates are identical to mass eigenstates. We have thus labelled all the 
above gauge eigenstates by fields with definite masses. When the µ and t 

fermion families are introduced (§14.5) they will also be assigned to 5* and 
10 representations. All the gauge eigenstates will then be some linear 
superpositions of mass eigenstates (see §11.3). 

We have chosen the phase convention of having the neutrino field appear 
in 5* (and 5) with a minus sign. This conforms to our previous choice of 
la= (v, e)L as a 2 under SU(2) and as being related to its conjugate la= 
(e, -v)L through the antisymmetric tensor lb= eabla. In the above we have 
only considered the SU(3) x SU(2) assignment. The correctness of the 
particle's U(l) charges will be shown below when we discuss 'charge 
quantization'. 

Charge quantization 

One immediate consequence of the SU(5) scheme is a very simple explanation 
for the experimentally observed charge quantization. In fact, whenever the 
unification gauge group is simple, the charge quantization will follow. This is 
because the eigenvalues of the generators of a simple non-Abelian group are 
discrete while those corresponding to the Abelian U(l) group are continuous. 
For example, in the S0(3) group of rotational symmetry the eigenvalues of 
the third component of the angular momentum can take only integer or half­
integer values, while in the U(l) symmetry of translational invariance in time 
there is no restriction on the (energy) eigenvalues of the corresponding 
generator. Thus in SU(5) theory, since the electric charge Q is one of the 
generators, its eigenvalues are discrete and hence quantized. 

Since the electric charge is an additive quantum number, Q must be some 
linear combination of the diagonal generators in SU ( 5). There are only four 
of these in SU(5) and, since Q commutes with all the SU(3)colour elements, we 
have 

(14.10) 
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where T3 and T0 are the diagonal generators belonging to the SU (2) and U ( 1) 
subgroups, respectively; they are! of eqn (14.2) for the fundamental repre­
sentation. We see from eqn (14.10) that, for the SU(5) group, the 
formula for Q is not enlarged by terms beyond those already present in the 
Glashow-Weinberg-Salam model. The coefficient c which relates the 
operators Y and T0 can be obtained by comparing in the fundamental 
representation the values of T0 as given in (14.2) and the hypercharge values 
of the particles in (14.8), i.e. Y(5) = (-i, -i, -i, 1, 1), 

c = -(5/3)112 . (14.11) 

The presence of the coefficient c signifies that the hypercharge Y is not 
properly normalized to be one of the SU(5) generators which have their scale 
fixed by the non-linear commutation relations 

with 
a,b,c=0,1, ... ,23. 

To check (14.11) we note that for the fundamental representation T0 = A0 /2, 
eqns (14.10), (14.11), (14.2), and (14.8) yield 

-1/3 

-1/3 

Q(t/I;) = -1/3 

0 

It follows that the fundamental conjugate representation 5* has 

Q(t/li) = -Q; bij 

(14.12) 

(14.13) 

From the transformation property shown in (14.1), a general tensor tflW::: 
has the same quantum number as tflit/lit/lk .... Thus, 

Q(t/l;j) = Q; + Qj 

Q(tflj) = Q; - Qj. 

(14.14) 

(14.15) 

These quantities are, in a self-evident notation, the diagonal elements of Q 
for the 10 anc,i 24 multiplets (also see eqn (4.141)). 

The most interesting aspect of charge quantization as shown in (14.12) is 
the relation between colour SU(3) and charge. The traceless condition for the 
charge operator requires, for three colours, 

3Qd + Qe• = 0 (14.16) 

Quarks carry 1/3 of the lepton charge because they have three colours. 
Thus SU(5) theory provides a rational basis for understanding particle 
charges and the weak hypercharge assignment in the standard electroweak 
model is understood. 
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Anomaly cancellation 

We should also check that the LH fermion assignmem is free of anomaly. Of 
course, we already know from eqn (11.52) that each family is anomaly-free 
with respect to the SU(3)c x SU(2)L x U(l) gauge bosons. Now we need to 
make certain that the fermionic couplings to all the remaining SU(5) gauge 
bosons do not introduce anomaly either. 

In general the anomaly of any fermion representation R is proportional to 
the trace (see eqn (6.60); Georgi and Glashow 1972b; Banks and Georgi 1976; 
Okubo 1977) 

tr({T"(R), '.I"(R)}T'(R)) = !A(R)dabc (14.17) 

where Ta(R) is the representation matrix for R and the dabc, are the totally 
symmetric constants appearing in the anticommutators (5.238) 

(14.18) 

We note that A(R) in (14.17) which characterizes the anomaly of a given R is 
independent of the generators and is normalized to one for the fundamental 
representation. Thus we can use some simple generator to calculate A(R) and 
to show that the anomalies cancel between the 5* and 10 representations. 
Take, for example, Ta = Tb = T' = Q; we immediately find 

and 

A(5*) tr Q3(1/!i) 

A(lO) = tr Q3(1/!ii) 

3(1/3)3 +(-1)3 +03 = -1 
3(-2/3)3 + 3(2/3)3 + 3( -1/3)3 + 13 

A(5*) + A(lO) = 0. (14.19) 

Thus the combination 5* and 10 of the fermion representation is anomaly­
free. 

Gauge bosons 

The SU(5) adjoint representation A) has dimension 52 - 1 = 24 and an 
SU(3) x SU(2) decomposition 

24=(8,1) + (1, 3) + (1, 1) + (3, 2) + (3*, 2). (14.20) 

Using the index-labelling convention of (14.3), we interpret this as 

Ap; (8, 1) are the SU(3)c gluons Gp of eqn (10.63) 

(1, 3) are the three SU(2) vector fields W with w± = (W 1 + W2)/ .J2 
of eqns (11.38) and (11. 76) with the notational change of A to 
w. 

- .J lsA: + .J (1, 1) is the U(l) B-field of eqn (11.39) corres­
ponding to the diagonal element of Aj which does not belong to 
either SU(3) or SU(2). 
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The remaining 12 gauge fields have both SU(3) and SU(2) indices 

(3*, 2). 

They are denoted as X, Y gauge bosons 

These vector particles, having non-zero triality with respect to the colour 
SU(3) group, carry fractional charges. According to eqn (14.15) we have 

Qx = -4/3 and Qv = -1/3. (14.21) 

If we put all the SU(5) gauge bosons in a 5 x 5 matrix form, A = 
AaJ..a/2, 

X1 Y1 
[G - 2B/ X2 Y2 

1 X3 Y3 A=fl 
xi x2 x3 W3/ + 3B/ w+ 
y1 yz y3 w- -W3/ + 3B/ 

(14.22) 

Spontaneous symmetry breaking is supposed to take place in two stages, 
characterized by two mass scales as given by the vacuum expectation values 
of two multiplets of Higgs fields v1 » v2 

SU(5) SU(3) x SU(2) x U(l) .'.:! SU(3) x U(l). 

This corresponds to the X, Y masses being superheavy Mx, v » Mw,z· The 
problem of spontaneous symmetry breaking in the SU(5) model will be 
studied in the next section. 

Motivation for the SU(S) group 

In constructing a grand unified theory of strong, weak, and electromagnetic 
interactions with one coupling, we seek a gauge group which is simple, or at 
most a product of identical simple groups (with the same coupling constants 
by some discrete symmetries). It should be large enough to contain the 
SU(3) x SU(2) x U(l) group of the standard model as a subgroup; thus it 
must be at least of rank 4. By this we mean that it must have at least four 
generators that can be simultaneously diagonalized, since it must contain 
the standard model which already has four mutually commuting genera­
tors: two from the colour SU(3) and two, the weak T3 and the hypercharge 
Y, from SU(2) x U(l). 

In fact one can make an exhaustive listing of Lie groups with a given 
rank (l) 

A 1 = SU(/+ 1), B1 = 0(21 + 1), C1 = Sp(2/), D1 = 0(21) 
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as well as (the exceptional groups) E6 , 7 , 8 , F4 , and G2 , the subscript 
indicating the rank. Thus the candidate l = 4 groups are SU(5), 0(9), Sp(8), 
0(8), F4 , SU(3) x SU(3), and SU(2) x SU(2) x SU(2) x SU(2), etc. 

However, all these possibilities, except SU(5) and SU(3) x SU(3), can be 
eliminated since they do not have complex representations. It is obvious from 
eqn (14.4) that we must have complex representations for fermions; in the 
standard model the fermion representations are not equivalent to their 
complex conjugates. The remaining possibility, SU(3) x SU(3), can quickly 
be eliminated since it cannot accommodate both the integrally and 
fractionally charged particles. 

Thus SU(5), being rank-4, is the smallest group that can contain 
SU(3) x SU(2) x U(l) without introducing any new fermions. It has 
complex representations and can accommodate fractional charges. As we 
have seen, its anomaly-free reducible representation 5* + 10 has just the 
right quantum numbers to fit one generation of leptons and quarks. Groups 
larger than SU(5) would necessarily involve particles other than the 15 two­
component fermions with their familiar quantum numbers. In this sense 
SU(5) is the unique theory for the simplest grand unification scheme. 

14.2 Spontaneous symmetry breaking and gauge hierarchy 

The SU(5) model must have two mass scales: the X and W gauge boson 
masses. (For the remaining part of this chapter we shall often refer to the X 
and Y bosons collectively as X, and to the Wand Z bosons collectively as W.) 
They characterize the spontaneous symmetry breakings (SSB) of SU(5) to 
SU(3) x SU(2) x U(l) and to SU(3) x U(l). Furthermore, as we shall see in 
the subsequent sections, we must have Mx larger than Mw by something like 
12 orders of magnitude. Thus, there is a vast hierarchy of gauge symmetries. 

As we discussed in Chapter 8, the Higgs phenomenon can provide masses 
for gauge bosons with elementary scalar fields developing a vacuum 
expectation value (VEV). This mechanism preserves the renormalizability of 
the theory. In order to have in one theory two mass scales, we must have two 
sets of scalars, and they develop vastly different VEVs which give rise to the 
desired gauge hierarchy. For the SU(5) model, this can be achieved with 
scalars in adjoint (H;) and vector (</Jd representations 

SU(5) <!!J SU(3) x SU(2) x U(l) <!; SU(3) x U(l). (14.23) 

The general SU(5)-invariant fourth-order potential is 

with 

V(H, </J) = V(H) + V(</J) + A.4 (tr H 2)(</Jt</J) + A. 5 (</JtH 2</J). (14.24) 

V(H) = -mi(tr H 2 ) + A. 1(tr H 2)2 + A.2(tr H 4 ) 

V(</J) = + A_ 3 (</Jt</J)2. 

(14.25) 

(14.26) 

H is a traceless hermitian matrix. For simplicity we have imposed extra 
discrete symmetries: H - H and </J - </J to get rid of various cubic 
terms. 
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We first seek values of Hi= 0 that minimize the potential with <P = 0. (This 
corresponds to the first stage ofSSB.) Afterwards we look for deeper minima 
at small, but non-vanishing values of <P (the second stage of SSB). 

It can be shown that, for A.2 > 0 and A.1 > - 7 /30 A.2 , V(H) has an 
extremum at H = (H) with 

2 

2 

2 (14.27) 

-3 

-3 
where 

(14.28) 

We will only outline here the derivation given by Li (1974). First H can be 
diagonalized by a unitary transformation so that H) -+ H; 15), with H; = 0. 
The equations o V/oH; = 0 are then cubic equations in the diagonal elements 
H;, which can assume at most three different values. Detailed calculation 
then shows that, for the range of couplings indicated above, the potential V 
takes on its minimum when there are only two different values of H;, which 
can be grouped as in eqn (14.27). 

We shift the field to define a set of new scalars, which, in a matrix notation 
similar to that of (14.22), can be expressed 

H' = H-(H) = 

Scalar fields 

[H8]p 
[H3]; 

Ho 
(Hx •• Hy.) 

(Ht, Hi.) 
</>,. 
</>d. 

I Hx1 HYI 

[H8 ]p - 2H0 / J30 I Hx2 Hv2 
I I H,, H,, 

SU(3) x SU(2) 
quantum numbers [Mass]2 

(8, 1) 20).2vf 
(1, 3) 80).2vf 
(1, 1) 4mf 
(3, 2) 0 
(3*, 2) 0 
(3, 1) + (30).4 + 4A5)vf 
(1, 2) + (30).4 + 9). 5)vf 

f14.29) 
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Since H is in adjoint representation, the covariant derivative may be 
written 

DµH = oµH + ig[Aµ, HJ 
= DµH' + ig[Aµ, (H)] (14.30) 

where Aµ is the matrix gauge field of eqn (14.22). Thus the original 'kinetic 
energy' term IDµHl2 contains a factor of g2l[Aµ, (H)]j2 • This is the mass 
term for gauge bosons. 

From eqn (14.27) it is clear that (H) commutes with the generators of the 
subgroup SU(3) x SU(2) x U(l). Thus the mass terms for the Gp, W,, B 
fields vanish. The X and Y gauge bosons acquire masses by combining with 
the would-be-Goldstone scalars Hx and Hy. We have 

Mx = My = .J(25/2)gv1 • (14.31) 

The fact H develops VEV also affects the <P system through the cross­
couplings A.4 and A.5• The colour triplet ¢1 : (3, 1) and the flavour doublet 
</Jd: (1, 2) components of <jJ = (</J1a, </Jdr) acquire respective mass terms 

m'f = + (30.A.4 + 
(14.32) 

Thus after the first stage of SSB all non-zero values of particle masses are 
expected to be of the order v1' namely Mx, which should be superheavy. 
For the second stage of SSB, SU(3) x SU(2) x U(l)-+ SU(3) x U(l) at 
250 GeV, we need an SU(2) doublet scalars. We assume that 'somehow' 
m1 of this doublet </Jd is vanishingly small (compared to vn. Thus </Jd will 
survive to low energies (-250 GeV) as the superheavy particles (with masses 
of the order vi) decouple. The relevant physics of the light particles is 
described by an SU(3) x SU(2) x U(l) invariant effective potential 

V.tr(</Jd) = + (14.33) 

This is of course nothing but the Higgs potential for the Weinberg-Salam 
model (see Chapter 11). Gauge symmetry hierarchy means that <Pd develops a 
VEV much smaller than v1 , 

(¢d) = 

(14.34) 

We should emphasize that the above discussion has been carried out using 
the approximation of treating the two stages of SSB separately. A proper 
minimization of combined system V(H, </J) would yield a VEV (H) that is 
slightly shifted from eqn (14.27). This would also break some of the mass 
degeneracies shown in Table 14.l but all these corrections should be small, 
on the order of(v2 /v1). Also the X and Y gauge bosons would have an O(v2 ) 

mass difference. 
We shall see that the model requires v1 ;;::-; 1012 v2 • It is challenging to 

understand the presence in a theory of such very different mass scales. A 
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small md, as required by a small v2 through eqn (14.34), appears to be 
unnatural since it receives a contribution from the large v1 in eqn (14.32). 
Furthermore, there is the problem of a consistent implementation of such a 
large gauge hierarchy in the presence of radiative corrections (Gildener 
1976), i.e., can we restrict light scalar particles to small masses to all orders 
in perturbation? The self-mass of an elementary scalar field is quadratically 
divergent; v1 may be looked upon as the cut-off parameter for the low­
energy effective theory of <Pd . One would expect large mass corrections from 
diagrams such as Fig. 14. l with oc g4 vi. With such corrections it 
appears that a small scalar mass can be obtained only by fine tuning of para­
meters at each order of perturbation. This is usually referred to as the gauge­
hierarchy problem. For a review see, for example, Cheng and Li (1980c). The 
issue is whether one can find a model that avoids this unnatural feature. 
Such a model, if it exists, is likely to have additional symmetries. It is 
often suggested that they may be some form of supersymmetry which for­
bids quadratically divergent scalar masses. (Here the supersymmetric fermion 
partners to the gauge bosons and Higgs scalars must be included. The 
leading divergence in diagrams such as Fig. 14.1 is then cancelled by the cor­
responding fermion loops.) No realistic model has yet been constructed and 
the problem of a satisfactory implementation of gauge hierarchy is still an 
open one. 

FIG. 14.1. A self-energy diagram for the</> scalar particle-. 

14.3 Coupling constant unification 

The standard model describes the strong, weak, and electromagnetic 
interactions in the energy range ;:5102 GeV with the three different coupling 
constants: g., g, and g' for the gauge groups SU(3), SU(2), and U(l), 
respectively. Thus there is no real explanation of the different strengths 
displayed by the three interactions. One of the great virtues of GUT (in fact 
its original motivation) is that it provides such an understanding (Georgi, 
Quinn, and Weinberg 1974). 

The grand unified theory, by definition, has only one coupling constant 
associated with the unified gauge group. This same coupling constant should 
apply to the subgroups as well. The possibility of different couplings for the 
various subgroups at low energies arises because of spontaneous symmetry 
breaking; the X, Y gauge bosons (or X bosons for short) of SU(5) acquire 
masses and decouple from coupling-constant renormalizations. This decoup­
ling clearly will have different effects on the radiative corrections of different 
subgroup couplings, giving rise to different effective couplings at low energies 
through the energy dependence determined by the renormalization group 
equation illustrated in Chapter 3. The decoupling of heavy X bosons is 
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reflected in the unequal renormalization group coefficients for subgroup 
couplings. Below the unification scale [Mx in the case of SU(5)] they evolve 
differently, giving rise to the observed disparities of interaction strengths. 

Before proceeding with detailed analysis we shall first make some 
qualitative statements about the coupling constant unification, which is 
represented graphically in Fig. 14.2. 

g 

Mx µ 

FIG. 14.2. Coupling constant unification. For the scaleµ> Mx, where the X boson mass can be 
neglected, the couplings corresponding to different subgroups remain unified. For the scale 

µ < Mx, the couplings evolve in a pattern determined by the size of the gauge group. 

(A) Since the energy dependence of coupling constants is only logarithmic 
and, since, in the energy 102 GeV, g,, g, and g' are quite different, 
the unification scale Mx is expected to be many orders of magnitude larger 
than 102 Ge V. 

(B) From the analysis of the renormalization group equations, we have 
learned the following facts. For the non-Abelian gauge groups the coupling 
constant decreases with increasing energy and the rate of decrease is greater 
for larger groups. For the Abelian group the coupling constant increases with 
energy. Thus at energies less than Mx the ordering of coupling constants has 
to be g, > g > g'. This pattern is in fact compatible with experimental 
observation. 

(C) Furthermore, below Mx the three coupling trajectories in Fig. 14.2 
must have just the correct relative strengths in order to all intersect at one 
point when reaching Mx. This implies a non-trivial consistency condition 
among g,, g, and g'. This relation predicts the Weinberg angle 8w, which 
relates g and g', in terms of the fine structure constant rx and the QCD strong 
interaction coupling constant rx, (see eqn (14.57) below). 

We now proceed with the detailed analysis. First we must study the 
relation between the coupling constants of SU(3) x SU(2) x U(l) and SU(5) 
at the unification scale Mx. Consider the covariant derivatives for these two 
groups; for definiteness we shall display those operating on the fundamental 
representations of the groups 

8 3 

Dµ = Oµ + ig, L + ig L Wµrr/2 + ig'BµY/2 (14.35) 
a= 1 r=l 
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and 
23 

D ;, + · " Aa11 1a/2. /l = U /l 19 5 L_. IL (14.36) 
a=O 

The definition of coupling constants depends on the normalization of the 
generators. For the non-Abelian groups these normalizations are fixed by the 
nonlinear commutation relations of Lie algebra. Thus the Gell-Mann 
matrices {A."}, along with their SU(5) generalized version {A.a}, and the Pauli 
matrices { rr} are all similarly normalized. tr{A.a A_b} = 2bab, etc. And we have 

9s=93=92=9i (14.37) 
with 

g3 = g,, 92 = 9. (14.38) 

The coupling 9i is that of the Abelian U(l) subgroup. Thus 

= i9'YB11 

is identified with the B11 gauge field. One notes that the U(l) algebra 
does not provide any (nonlinear) restriction on its generator, and Y and 
A.0 may be normalized differently. We can determine this difference in nor­
malizations by noting that for the particle assignment of 5 in (14.7) we must 
have weak hypercharge 

-2/3 

-2/3 

-2/3 (14.39) 

Comparing (14.39) to the A.0 of (14.2), we have, as in (14.11), 

Y = -(5/3)tA.0 , 9' = -(3/5)t9i (14.40) 

since g'Y = giA.0 • Eqns (11.80), (14.37), and (14.40) can be translated into the 
statement that 

(14.41) 

This and the equalities in (14.37) are valid in the SU(5) limit; i.e. for the 
energy scale µ > Mx. Now we need to study the regime µ < Mx. The 
evolution of the SU(n) gauge coupling constant is controlled by the 
renormalization group equation (see eqns (I 0. 77)-(l 0. 79)) 

d9n 3 

d(ln µ) = - bngn (14.42) 

where 
bn = (I In - 2NF )/48n2 for n 2 2 (14.43) 

and 
bi = -NF/24n2 . (14.44) 

Thus, 
bn - bi = l ln/48n2 . (14.45) 
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We have ignored the contribution coming from the Higgs scalar. NF 
is the number of quark flavours (NF= 6 for a three-family theory) and 
thus the fermion effects on the relative rate of coupling constant evolution 
cancel out. Considering that only quarks couple to SU(3) gluons and that 
both quarks and leptons couple to SU(2) and U(l) gauge bosons, one may 
find it surprising that the fermion contributions should be equal in all gauge 
coupling renormalizations. We will now digress to explain this situation. 

FIG. 14.3. Coupling-constant renormalization due to the fermion loop. 

The fermions contribute through the loop diagram in Fig. 14.3 which is 
proportional to F. = tr(T;Ti), where Nm is the number of multiplets of 
(two-component) fermions coupled to the gauge bosons and all represen­
tation matrices are similarly normalized with tr(T;Ti) = !<\j· We shall first 
explicitly work out the F. factor for each gauge group. For SU(3), Nm is the 
number of colour triplets. Since both quark and antiquark couple to gluons, 
we have Nm = 2NF and F3 = For SU(2), Nm is the number of 
doublets. Since for each lepton doublet there are three coloured quark 
doublets, we have Nm= !(l + 3)NF and F2 = For U(l), a 
straightforward summation of (squared) weak hypercharges with proper 
rescaling of the normalization according to (14.40) also yields F 1 = NFgI. 
From the SU(5) viewpoint, F3 = F2 = F1 will no longer appear as a 
coincidental fact: all fermions form a complete (reducible) representation of 
the group, (5* + 10), and all representation matrices for each subgroup 
factor are equally normalized; in addition to this, is the requirement that 
all members of this representation obtain comparable masses« Mx. This is 
to be contrasted with the situation for the gauge bosons, which end up with 
two very different mass scales: Mw « Mx even though they form a com­
plete SU(5) representation (the adjoint rep). And this split in the masses pro­
duces the different renormalization effects to the subgroup coupling 
constants. 

We now return to the solutions of eqn (14.42). For 91, 92 , and 9 3 , we have 

912(µ) = 912(µ0) + 2b1 ln(µ/µo) 

92 2 (µ) = 92 2(µ0) + 2b2 ln(µ/µo) 

93 2(µ) = 93 2(µ 0) + 2b3 1n(µ/µ 0). 

(14.46) 

(14.47) 

(14.48) 

We can express the low-energy couplings in terms of more familiar 
parameters by using (11.80) tan ew = 9'/9, (11.93) e = 9 sinew, and (14.40) 

9f(µ)/4n = (5/3)a(µ)/ cos2 ew (14.49) 

= a(µ)/sin 2 ()w (14.50) 
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and 
g;(µ)/4n = rx,(µ). 

We can recast eqns (14.46)--(14.48) in the form 

rx,- 1 (µ) = rx5 1 + 8nb3 ln(µ/Mx) 

rx- 1(µ) sin2 Ow= rx5 1
c + 8nb2 In(µ/Mx) 

(3/5)rx- 1(µ) cos2 Ow = rx5 1 + 8nb 1 In(µ/ Mx) 

where we have used eqn (14.37). 

gl(Mx) = g1(Mx) = g3(Mx) = g5 and = rx 5 • 

441 

(14.51) 

(14.52) 

(14.53) 

(14.54) 

(14.55) 

Taking the linear combination [2 x eqn (14.52) - 3 x eqn (14.53) + eqn 
(14.54)], we have 

2rx,- 1 - 3rx- 1 sin2 Ow+ (3/5)rx- 1 cos2 Ow 

= 8n[2(b3 - b1) - 3(b2 - bi)] In(µ/Mx) = 0. (14.56) 

The right-hand side vanishes because of eqns (14.43)--(14.45). Thus 

sin2 Ow = 1/6 + 5rx(µ)/9rx,(µ). (14.57) 

This is the consistency condition mentioned in Remark (C). The values of the 
coupling constants at µ = Mw where the Weinberg angle is deduced from 
neutral-current experiments are compatible with this prediction. 

Taking the linear combination [(8/3) x eqn (14:52) - eqn (14.53) -
(5/3) x eqn (14.54)] we have from eqns (14.43)--(14.45) 

ln(Mx/µ) = - 3:(µ)} (14.58) 

This determines the unification scale Mx. Also, combining eqns (14.57) and 
(14.58), 

sin2 Ow= 3/8 - (55/24n)rx(µ) In(Mx/µ). (14.59) 

We should note that in calculating bn we have taken the simplest possible 
threshold behaviour: for an intermediate particle with mass m < µ, the mass 
is taken to be zero; form>µ the mass is taken to be-infinite and the particle 
decouples. In particular forµ> Mx, the SU(5)X, Y gauge bosons contribute 
and the coupling-constant equality of eqn (14.37) is maintained to all orders 
of perturbation theory. For µ < Mx they decouple and the bns become 
different for subgroups SU(3), SU(2), and U(l). With more careful treatment 
of thresholds we can actually identify Mx with the mass of the X boson. In 
eqns (14.43)-(14.45) we have also ignored the scalar contribution. By 
including the Higgs scalar of the Weinberg-Salam model and with more 
careful treatment of higher-order effects, one obtains a set of numerical 
results in the neighbourhood of 

Mx 4 x 1014 GeV (14.60) 

sin2 Ow 0.21 (14.61) 
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for a range of inputs of the QCD scale parameter 300 MeV. (For reviews 
see Langacker 1981; Marciano and Sirlin 1981.) 

14.4 Proton decay and baryon asymmetry in the universe 

Proton decay 

A prominent feature ofGUTs is the nonconservation of baryon number. The 
SU(5) model has this property and the leading effective Lagrangian for pro­
ton decay arises from a set of tree-level X-boson exchange diagrams. 

The gauge couplings of the 5* + 10 fermions (t/Ji, Xi) can be worked out, 
as usual, from their covariant derivatives. With gauge bosons in the matrix 
form A of (14.22) we have 

gif/yµA!t/I +Tr giyµ{Aµ, x} = - .Ji gW;(vyµ e + iiaYµ da) 

+ 
+ 1;ab(qabYµ e+ - lbyµ +... (14.62) 

where all the fermions are left-handed and g is the SU(5) gauge coupling 
constant. The SU(2) doublets are given the labels 

Xaa = (Xa, Ya) 

qaa = (Ua, da) 

la = (ve, e) 

(14.63) 

(14.64) 

(14.65) 

and l:aPi· and Dab are the totally antisymmetric tensors. Once again it should be 
remembered that here we are working in the one-family approximation and 
when more families of fermions (all in the 5* + 10 representations) are 
incorporated, the fermion fields of eqns (14.62), (14.64), and (14.65) will all 
be replaced by suitable linear combinations of fermions having the same 
SU(3) x SU(2) x U(l) charges. A more detailed discussion of mixing angles 
and CP-violation phases will be postponed until the next section; for the 
present it suffices to note the expected presence of such mixing angles and 
phases. 

It is important to notice that X-bosons couple to two-fermion channels 
with different baryon numbers (see Fig. 14.4). In one case they couple to 
quarks and leptons (B1 = 1/3)-as such they are referred to as lepto­
quarks; in the other case they transform quarks to antiquarks (B2 = 2/3)­
they are then called diquarks. Consequently, through the mediation of X­
bosons, a B = -1/3 channel can be converted into a B = 2/3 one; i.e. a 

... __ /'< 
FIG. 14.4. X bosons as leptoquarks and diquarks. 
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u d' u' 

FIG. 14.5. Baryon-number violating processes in the lowest-order X- and Y-boson exchange 
diagrams. 

baryon-number changing (liB = 1) process at tree-level occurs (shown in 
Fig. 14.5). 

Since Mx is large (compared to all the fermions), we can write down the 
effective four-fermion local interactions from (14.62) 

OJ _ ( 2/2M2) apy ab(-e µ )(d-e [ + -+ ) 
..Zt.s=I - g x c: c: . UyY qpa aYµ b e yµqab . (14.66) 

We note the following features of this liB = 1 effective Lagrangian density. 

(1) /i(B - L) = 0. Baryon minus lepton number is conserved; thus 
p --+ e + rr0 is allowed, but not n --+ e - 7t +, etc. 

(2) SU(3) x SU(2) x U(l) invariance. All colour and flavour indices are 
contracted and electric charge is conserved in (14.66). This must be the case 
in view of our taking into account only one mass scale (i.e. Mx) and 
effectively treating all other particles including W and Z as massless. 

This suggests that, independently of the validity of the SU(5) model, 
constructing the most general form of the dominant liB = 1 amplitude 
involves listing all the lowest-dimensional SU(3) x SU(2) x U(l) symmetric 
operators (Weinberg 1979d; Wilczek and Zee 1979a). The lowest dimension 
is six as iq (14.66) and a higher dimensional operator will necessarily be 
suppressed by extra powers of Mx in the denominator. Thus the procedure is 
just an extension of that used by Fermi for the effective amplitude 
where only a global U(l) charge conservation needed to be imposed. It turns 
out that, if we restrict ourselves to fermions with the familiar SU(3) x 
SU(2) x U(l) quantum numqers as in (14.4), the complete list of such 
dimension-six operators is rather small. (Many of them are related by Fierz 
rearrangement.) When such a list is examined, one finds that the selection 
rule li(B - L) = 0 is still respected by this general amplitude. In fact, as we 
shall see in the next section, in the minimal version of SU(5) with a Higgs 
multiplet in the 5 + 24 representation, B - L is an exact global symmetry 
of the model; hence it holds to all orders of perturbation. 

We also make the parenthetical remark that the four-fermion effective 
Lagrangian in (14.66) contains a /iS s 0 rule for proton decay. When the 
second of fermions is put in, the final de state in Fig. 14.5 will be 
replaced by Cabibbo-rotated de and sc states. Thus p--+ e+K0 is allowed, 
but not p--+ e+K0 , etc. This selection rule is merely a consequence of the 
simple quark model because the lowest-dimension liB = 1 operator has three 
quark fields and the strange quark has S = - 1. 
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To obtain the proton life-time and branching ratios from 21'!.B=I of(l4.66) 
with the mixing angles of the minimal SU(5) we still need to perform two 
more sets of calculations. 

(A) The effective Lagrangian is written down at the mass scale of Mx and 
it must be renormalized down to the typical hadron scale of 0(1 GeV). The 
leading logarithmic radiative corrections to 21'!.B= 1 due to the exchanges of 
SU(3) x SU(2) x U(l) gauge bosons can be estimated using the standard 
technique of the renormalization group discussed in Chapter 3. (An example 
of such calculations can be found in the next section.) This yields an 
amplitude enhancement factor of about 4 (Buras et al. 1978). 

(B) Proton or bound-neutron decay can be viewed as arising from the 
four-fermion local interaction of (14.66) with the final antiquark combining 
with a spectator quark from the initial nucleon to form the final meson 
system. A variety of phenomenological hadron-physics techniques: SU(6), 
relativistic bag models, etc. have been used to evaluate the matrix element 
21'!.B = 1 between the hadron states. (For a review, see Langacker 1981.) 
Unfortunately there is considerable variation in the results so obtained-by a 
factor of about 5 in the amplitude. However most model calculations 
indicate that the minimal SU(5) would have substantial nucleon decay into 
two- or quasi-two-body channels, which should be relatively easy to detect 

p --+ e + n°, e + m, V7t +, etc. 

n--+ e+7t-, \in°, e+ p-, etc. 

The prediction of proton lifetime i-N is clearly very sensitive to uncertainties 
in our calculations of Mx since i-N oc As Mx is directly related to the 
QCD scale parameter A, the value of which is still controversial, we should 
thus keep in mind that the oft-quoted SU(5) value i-N :::: 1030 years is 
probably uncertain by a multiplicative factor of 10± 2 • 

Baryon number asymmetry in the universe 

In the remainder of this section we shall discuss briefly how a GUT, which 
predicts proton decay, may also explain why the universe does not seem to 
contain a large concentration of antimatter (Yoshimura 1978; Toussaint, 
Treiman, Wilczek, and Zee 1979; Dimopoulos and Susskind 1978; Weinberg 
1979c). This cosmological asymmetry between matter (baryons) and anti­
matter (antibaryons) is a puzzle even at the SU(3) x SU(2) x U(l) level. No 
cosmology model can generate a net baryon number if all underlying physical 
processes conserve baryon number. Until the advent of GUT one had to 
impose on the standard model of cosmology an ad hoc asymmetric initial 
boundary condition (see eqn (14.68) below). This appears to many to be an 
unsatisfactory feature of the theory. 

We have already mentioned in §13.2 in connection with our discussion on 
the cosmological bound on neutrino masses how the standard model of 
cosmology provides us with a very satisfactory picture that can account for a 
variety of observational data. In particular the observed 2.7 K degree of 
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background black-body radiation is compatible with the nucleosynthesis 
calculation of the primordial helium abundance. 

However the standard model with only baryon-number conserving inter­
actions does not fix the ratio of the photon number density ny (corresponding 
to the value at 2. 7 K) to the observed nucleon density nN. We must put in by 
hand, as an initial condition, the value 

(14.67) 
ny 

When the universe was hot enough that baryons (quarks) and antibaryons 
(antiquarks) could be freely pair-created by radiation the above ratio implied 
the baryon-number asymmetry 

n -n 
{J = q qc 10- 9 . (14.68) 

nq + nqc 

where nq and nq, are the quark and anti-quark number densities, respectively. 
Why should there be this asymmetry, with this particular value? It would 

be much more satisfying if starting with a symmetric state (or better, 
independent of initial conditions) such an asymmetry could be generated by 
the underlying physical interactions. To have such a situation we must 
postulate a new particle interaction beyond those given by the SU(3) x 
SU(2) x U(l) model. Besides being a baryon-number changing interaction, 
the new interaction must have the following general properties: (i) it must 
violate C and CP conservation; (ii) it must also have the feature that there 
was a certain period during the cosmological expansion when these B-, C-, 
and CP-violating processes were out of thermal equilibrium (Sakharov 
1967). It is clear that charge conjugation and CP symmetries would 
automatically preclude a nonzero value for (Jin (14.68) since these operations 
interchange nq and nq,. The need for nonequilibrium is perhaps less obvious. 
Heuristically we can understand this by recalling that CPT invariance 
requires particle and antiparticle states to have the same mass, hence to be 
equally weighted in the Boltzmann distribution; thus no CPT-invariant 
interactions can generate a nonzero (J in thermal equilibrium. 

GUTs, such as SU(5) models, have just the required properties to generate 
a nonzero fJ. There is a set of B-, C-, and CP-violating processes, related to 
the X-boson couplings (and also to those to the Higgs particles), that can be 
forced out of equilibrium by the cosmological expansion. 

To see how this can happen, we first need to calculate the various reaction 
rates as a function of energy (i.e. temperature). The criterion of thermal 
equilibrium is that the reaction rate be greater than the expansion rate of the 
universe. It turns out that the two-body collisions of Fig. 14.5 do not have the 
required equilibrium-nonequilibrium transition. However the decays and 
inverse decays of heavy X boson do have this transition because they have a 
threshold. For kT > Mx, the X bosons would exist in thermal equilibrium 
with an abundance comparable to ordinary particles (e.g. Nx N 1). This 
mixture of X and xc undergoes B and CP violating decays. This preferentially 
produces quarks relative to antiquarks (see discussions below). Normally 
such a net baryon number would have eventually been 'washed off' by 
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inverse decays. However as the universe cools below Mx (i.e. kT < Mx) the 
number of X bosons (and the inverse decays) are suppressed by the 
Boltzmann factor exp( - Mx/kT). The baryon number production is essen­
tially shut off and the net baryon number produced in the earlier stage is 
'frozen in'. 

As we have already pointed out, there are two classes of X decay channels 
with different baryon numbers: B1 = -1/3 and B2 = 2/3. Thus we have the 
following four decay rates for X and its antiparticle xc. 

1'1 = r(X -+ [cqc) with B1 = -1/3 (14.69) 

1'2 = r(X -+ qq) with B2 = 2/3 (14.70) 
and 

'l't = nxc -+ lq) with = 1/3 (14.71) 

'l't =: r(Xc -+ qcqc) with = -2/3. (14.72) 

CPT invariance requires that the total rates be the same for particles and 
antiparticles, i.e. 

1'1 + Y2 = 'l't + (14.73) 

However CPT demands that y1 = y! and y2 = only in the Born 
approximation. With C- CP-violation couplings, higher-order inter­
ference terms such as those shown in Fig. 14.6 can lead to 

1'1 - 'l't = - 1'2 "# 0 (14.74) 

Consequently, starting with an equal mixture of X and xc their decay 
products can show a net baryon number in an nonequilibrium situation 

(J oc y1B 1 + y2B2 + + = (y 1 - y!)(B1 - B2 ). (14.75) 

This explicitly displays the B, C, and CP nonconserving nature of o, which 
should be small because (y 1 - YD is necessarily a higher-order term (and 
multiplied possibly by some small CP phases). In fact in the minimal SU(5) 
model (see the next section) y1 - 'l't receives its first nontrivial contribution 
at the 10th-order of perturbation leading to a (J many orders smaller than 
the observed asymmetry of 10- 9 . A number of more complicated models 
have been proposed to remedy this. Further development in this direction is 
perhaps premature, since the quantitative calculation of (J at this stage is still 
uncertain. What is clear is that GUTs such as the SU(5) models have the 
qualitatively correct features that can, in the context of the standard model of 
cosmology, provide a natural explanation for the observed baryon-number 
asymmetry in the universe. 

FIG. 14.6. y1 - may receive a nonzero contribution from this fourth-order interference effect. 
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From our study of the Weinberg-Salam model in §11.3 we have learned that, 
when there are several particles of the same charge, the eigenstates of their 
mass matrix are generally different from those of fields having definite gauge­
interaction quantum numbers. The mass eigenstates are related to the gauge­
interaction eigenstates by some unitary transformation. 

In this section all three 5* + 10 fermion families will be included in the 
theory. The fermion fields used in previous sections of this chapter should be 
replaced by gauge eigenstates, which are vectors in a three-dimensional space 
of the family index A = e, µ, r. 

e---> = i5As es 

V0 ---> = 

u ---> = msPs 

d ---> = Msns 

e8 = (e, µ, r) 

V8 = (v 1 , v2 , v 3 ) 

Ps = (u, c, t) 

n8 = (d, s, b). (14.76) 

We have chosen the basis such that charged lepton-gauge eigenstates are 
the same as their mass eigenstates eA. For massless neutrinos any linear 
combination of the degenerate fields can be taken as their mass eigenstates; 
hence we can set the unitary matrix TAB to be c5 AB also. Since the mass 
matrices are not necessarily symmetric, the unitary transformations UAB and 
VAs may be different for the left-handed (LH) and right-handed (RH) 
fermion fields. With our convention of always working with LH fermions in 
this chapter it means that we should distinguish between transformations for 
particle and antiparticles. Thus to (14.76) we should add 

Uc ---> P'.i° = 

de ---> n'.i" = 

and generally UAB =I= and VAB =I= 

Kinship hypothesis 

= (u°, c°, n 
= (de, Sc, be) 

(14.77) 

(14.78) 

While the 'family' is a well-defined notion in terms of gauge eigenstates, 
historically we also have an intuitively sensible grouping of the fermion mass 
eigenstates 

e - family: (e, v1 , d, u) 

µ - family: (µ, v2 , s, c) 

T - family: (T, V3 , b, t) (14.79) 

with each family ascending on the mass scale. Furthermore this grouping 
scheme is supported by our experience with the weak interaction in the sense 
that charged-current transitions between different families are suppressed by 
small mixing angles (eqn (12.47)). The question naturally arises whether this 
feature can be generalized in a GUT in which there are new flavour-changing 
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currents coupled to the X gauge bosons. Is the family structure (14. 79) 
observed at low energies still valid in the SU(5) models? To focus the issue, 
this generalization is called the 'kinship hypothesis'. Namely, it supposes that 
all interfamily transitions are suppressed by the appropriate small mixing 
angles. For example the kinship hypothesis says that the baryon-number 
changing couplings u t + or be are suppressed relative to u e + or de, etc. 
This of course would have important implications for the analysis of proton 
decay. A strong violation of this hypothesis would severely depress the decay 
rate and sharply alter its branching ratio pattern. 

The SU(5) gauge couplings in eqn (14.62) can be transcribed in terms of 
gauge eigenstates according to eqns (14. 76), (14. 77) and (14. 78) 

+ + + + 

+ + + (14.80) 

We have dropped all extraneous labels except the family index A. Expressing 
these couplings in terms of mass eigenstates we have 

wrv.eA + PA(UVt)Aono] + + niV)ABe; + 

+ + f>iU)Aoe; + 
(14.81) 

The KM rotation matrix of (l l.124) is just the combination (Uvt). It is 
clear that all the six other rotation matrices in the X, Y gauge boson 
couplings are not of this form. Hence in principle we may encounter very 
different mixing angles in these new interaction vertices; the kinship 
hypothesis may not be valid. However we shall display below that in the 
version of SU(5) with the simplest possible Higgs structure, the minimal 
SU(5) model, these new mixings all essentially collapse to the familiar KM 
rotation. 

Given that the fermions are in the 5* + 10 representation, the scalars that 
can form Yukawa couplings must be 

5* x 5* = 10* + 15 

10 x 10 = 5* + 45* + 50 

5* x 10 = 5 + 45. (14.82) 

It is a straightforward exercise to check that only 5 and 45 have 
components transforming as (1, 2) under the subgroup SU(3) x SU(2). 
The minimal SU(5) model has Higgs scalars only in 24 and 5, with 5 
providing the breaking of SU(3) x SU(2) x U(l) SU(3) x U(l) and 
giving masses to fermions. 

We have the following Yukawa couplings 

f (ll( )TC( )"" ijklm +J<2>( )TC,/,i ,1,.jt + h AB XAij XBkl 'l'mf, AB XAij 'I' B'I' .C. (14.83) 

where C is the Dirac charge conjugation matrix. It then follows from the 
auticommutation of the fermion fields and the antisymmetric property of 
C = iy2·v° that the Yukawa coupling matrix JW is symmetric. When 
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the 5 scalar</> develops VEY as in (14.34) 

(</>) = (0, 0, 0, 0, V2), 

the couplings in (14.83) produce terms quadratic in fermion fields 

+ + eAeB). 

The mass matrices for p, n, and e states then have the properties 

vifW = = 
V f <2l - M<nl - M<"l 2 AB - AB - AB· 

(14.84) 

(14.85) 

(14.86) 

The fact that the p-quark mass matrix is symmetric implies that utuc is a 
diagonal unitary matrix (see (11.109)). The equality of Af<"l = M(el is a 
consequence of the SU(4) symmetry ofVEV in (14.84). This implies that the 
same biunitary transformations diagonalize both M<0 > and M(e>. Since we 
have chosen gauge eigenstates and mass eigenstates to be the same for 
charged leptons, it then follows that we can take V and vc to be identity 
transformations also. Thus up to a complex unit matrix all the mixing angle 
matrices in (14.81) are of the form (UVt), which is just the KM rotation of 
weak interactions. For the minimal SU(5) model the kinship hypothesis is 
fully realized. 

Lepton-quark mass relations 

Is there any evidence in support of the minimal version of the SU(5) theory? 
The equality of M<0 > = Af<0> implies not only the equality of the diagonal­

ization matrices but also of their eigenvalues. Hence we have (Georgi and 
Glashow 1974) 

(14.87) 

Again, like the coupling-constant equality of (14.37), there are SU(5) 
symmetric relations, subject to significant renormalization corrections. 

Perturbation calculation of fermion self-energy yields 

m(µ) = m - ln(A/µ). (14.88) 

Thus the renormalization group equation for the effective mass is 

d ln m(µ) = b(n) 2( ) 
d ln µ m 9n µ . (14.89) 

This differential equation can be integrated since we know from eqn (10.80) 
the scale dependence of the coupling constant 

(14.90) 
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which is of course the solution to eqn (14.42) 

d g;(µ) 2b 4( ) 
d In µ = - n9n µ . (14.91) 

We obtain the result 

( ) 
[ 

( ) 
]

- b(O)/bn 
m µ 9n µ "' 

m(µo) = g.(µo) 
(14.92) 

where the b.s are given in eqn (14.43). We now proceed to calculate 
using Fig. 14.7 

(14.93) 

RR 
FIG. 14.7. Self-energy diagram for fermions. 

where the ras are the representation matrices appropriate for the fermions. 
For SU(n) with n ?: 2, 

(14.94) 

and, for the U(l) case (eqn (14.40)), 

3 (y)2 (To)2 = S 2 . (14.95) 

Using the expression for b. in eqns (14.43) and (14.44), we obtain 

(14.96) 

(14.97) 

(14.98) 

where NF is the number of quark flavours. We note that there is no 
contribution from SU(2) gauge bosons because RH fermions are all singlet 
under SU(2) and the diagram in Fig. 14. 7 involves one helicity flip. Dividing 
eqn (14.97) by eqn (14.98) and using eqn (14.87) for (mn(Mx) = m.<Mx)), we 
obtain (with g 3(Mx) = g 1(Mx) = g 5(Mx)) 

mn(µ) = [ g3(µ) 91(µ) J:F 
me(µ) g;(Mx) 9s(Mx) 

(14.99) 
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If we take the effective current quark mass at the qq threshold 

µ=µth= 2 mq(µ1h) 

we then obtain for n3 = b, e3 = 't, 10 GeV 

(14.100) 

(14.101) 

which must be regarded as a successful prediction of the theory (Buras et al. 
1978). 

It is not clear how to properly evaluate the renormalization effects for 
lighter fermions since a smaller value of scale parameter µ must be involved. 
However, if we merely examine the renormalization-group invariant ratio as 
implied by eqn (14.87) 

(14.102) 

we see that the two sides differ by something like a factor of 10, since current­
algebra calculations indicate that m./md 20. Does this 'failure' definitely 
preclude the minimal SU(5) as a viable theory? Such a strong conclusion is 
perhaps unwarranted because, for the very light quark d (md 7 MeV), the 
renormalization group equation perturbative calculation is not expected to hold. 
Thus the correctness of the minimal SU(5) model is still an open question. 

B - L conservation 

We close this section with a remark about another aspect of the minimal 
SU(5) model: it still possesses a global U(l) symmetry, corresponding to the 
conservation of B - L, baryon minus lepton number (Wilczek and Zee 
l 979b ). It is clear that the X, Y gauge bosons conserve B - L if we assign 
them the quantum number of B - L = 2/3. We need to check that the 
Yukawa couplings of (14.83) have this symmetry which is not spoiled by the 
spontaneous symmetry breaking of (14.84). 

We can write (14.83) symbolically as 

p 1>(10,)(10,)(5"').+ p 2>00,)(5j)(5:). (14.103) 

It is easy to check the conservation of a new charge (call it F). The first term 
requires 

F(5<1>) = -2F(101); 

then the second term implies 

F(51 ) = 3F(101 ). 

(14.104) 

(14.105) 

This means that the conserved U(l) charge may be written in terms of 
number operators 

(14.106) 

The normalization factor 1/5 is a convention. It is clear that ( </>) of (14.84) is 
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not invariant under the U(l) generated by the F-charge of (14.106) nor under 
the U(l) generated by the weak hypercharge as neither 

F(5q,) = -2/5 

-2/3 

-2/3 

and -2/3 (14.107) 

annihilate the vector in (14.84). However the linear combination F' = F + 
Y has the property that F'(5q,)(</>) = 0 and is thus still conserved after 

SSB. We note that F' is no other than B - L since 

1/3 

1/3 

1/3 (14.108) 

Just as B and L are accidental global symmetries in the standard SU(3) x 
SU(2) x U(l) model, the minimal SU(5) violates B and L conservation 
but still preserves the combination B - L. 



15 Magnetic monopoles 

The modern theory of magnetic charges was first formulated by Dirac over 
50 years ago. Their existence has been under active experimental investiga­
tion ever since. An intriguing aspect of non-Abelian gauge theory is that it 
has objects with the properties of magnetic monopoles ('t Hooft 1974; 
Polyakov 1974). It is expected that monopoles associated with the spon­
taneous symmetry breakdown of grand unified gauge theories should be 
superheavy ("' 1016 GeV?) and such objects may well have escaped detec­
tion. The recent upsurge of an extensive search for magnetic monopoles has 
been prompted further by the possible evidence reported by Cabrera (1982). 
However, even if this first sighting is not confirmed by other experiments, the 
theoretical studies of monopoles should lead to a better understanding of the 
structure of non-Abelian gauge theories with spontaneous symmetry 
breaking. 

In this chapter we shall present a brief introduction to the gauge theory of 
magnetic monopoles. In §15.1 we review the properties of the monopoles as 
originally proposed by Dirac (1931). We then discuss in §15.2 the general 
features of finite-energy solutions (solitons) to the equation of motion in field 
theory. In §15.3 we will illustrate some aspects of the 't Hooft-Polyakov 
monopole solution in non-Abelian gauge theory, which is a synthesis of the 
Dirac monopole and the soliton solution. It should be emphasized that our 
discussion will be kept at an elementary level and mathematical rigour is 
often sacrificed for simplicity of presentation. For excellent reviews on this 
subject the reader is referred to articles by Goddard and Olive (1978) and by 
Coleman (1975, 1981). 

15.1 Dirac's theory of magnetic poles 

In this section, we will review the properties of the magnetic monopole as 
originally introduced by Dirac. (For a more detailed discussion, see Goddard 
and Olive 1978.) 

Classical electromagnetism and duality transformations 

We start from classical electromagnetism which is well described by 
Maxwell's equations 

V·E=p 

V·B = 0 

V x B- o0 E =j 

v x E +ooB=O. 

(15.l) 

(15.2) 

In terms of the electromagnetic field tensor F'", these equations can be 
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combined into covariant form, 

where 

r = (p,j), 

avpµv= -f 

avpµv = 0 

and the dual field tensor is defined as 

F-µv = 1_ 0 µvpap 
2" pa· 

(15.3) 

(15.4) 

(15.5) 

(15.6) 

In vacuum, where }µ = 0, Maxwell's equations (15.3) and (15.4) are 
symmetric under the duality trans! ormation 

(15. 7) 

which corresponds to the interchange of electricity and magnetism E --+ B, 
B --+ -E. This symmetry is broken by the presence of the electric current}µ in 
eqn (15.3). One can introduce the magnetic current kµ =(a, k) on the right­
hand side of (15.4) so that the modified Maxwell's equations read 

(15.8) 

They will be symmetric under the duality transformation (15. 7), sup­
plemented by the substitution 

(15.9) 

That is (F, F), (E, B) and U, k) are 'duality vectors' and the transformation is 
a rotation (by 90°) in such two-dimensional planes. (These duality rotations 
will be useful in translating the familiar electromagnetic results involving 
electric charges into those involving magnetic charges.) The introduction of 
the magnetic current kµ requires the existence of magnetically charged 
particles, the magnetic monopoles. In analogy to the electric current produced 
by point particles at xi with charge qi 

}µ(x) = f dxf c:5 4(x - xi), (15.lOa) 

the magnetic current due to point magnetic charges with strength 9; is given 
by 

kµ(x) = 9; f dxf c:54(x - X;) (15.lOb) 

where the line integrals in (15.lOa) and (15.lOb) are taken along the particle 
world lines. 

Consistency of the monopole with quantum theory 

On the classical level, the magnetic monopole seems to be on the same 
footing as the electrically charged particle and it is mysterious that 
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monopoles are not seen in the laboratory. It was first pointed out by Dirac 
that on the quantum level the existence of the monopole will lead to the 
condition 

qg 1 
-=-n 
4n 2 

where n is an integer. (15.11) 

This is the famous Dirac quantization condition which implies charge 
quantization, i.e. the possible value of the electric charge carried by any 
particle is an integral multiple of some basic unit (cf. discussion in §14.1). 
This can be seen as follows. Consider the case where particles may carry 
either electric or magnetic charge but not both. The possible values of the 
electric and magnetic charges are denoted by q; and g;, respectively. The 
Dirac quantization condition ( 15.11) implies that 

q;9; 1 
4n = 2nii 

where nii is an integer. Then for any fixed magnetic charge gi, all electric 
charge qi must be an integral multiple of 2n/gi. Similarly, for any fixed 
electric charge q;, all magnetic charge must also be multiple of 2n/qi. If we 
assume that there exists a smallest electric charge q0 and a smallest magnetic 
charge g0 , we have 

qi= niqo, (15.12) 

gi = n'i!Jo, (15.13) 
and 

1 
(15.14) -- =-no 

4n 2 

where ni, n;, and n0 are integers. Condition (15.14) also implies that the 
interaction between two magnetic monopoles which is proportional to 

2 2 n6 (411:)2 2 2 go "' qo - 2 "' (no/2a.) qo 
4 qo 

(15.15) 

is roughly a.- 2 ,.., 104 times stronger than the interactions between the 
electrically charged particles. In other words, the smallness of the electric 
charge coupling q6/4n ,.., a. ,.., 1/137 implies a very strong interaction between 
monopoles, and it will be much more difficult to pair-produce the magnetic 
monopoles than the electrically charged particles. 

Angular momentum and the Dirac quantization condition 

One heuristic way to 'derive' the Dirac quantization condition (15.11) is to 
study the motion of a charged particle in the field of a monopole. The 
magnetic field due to a monopole of strength g fixed at the origin is given by 

(15.16) 
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where r is the unit vector in the radial direction. The motion of a particle with 
mass m and electric charge q in this field is given by 

mr=qtxB (15.17) 

We can calculate the rate of change of its orbital angular momentum, 

d ( ') ., qg (' ) d (qg A) - r x mr = r x mr = --r x r x r = - -r · 
dt 4nr 3 dt 4n 

This suggests that we can define the total angular momentum as 

J • qg A 

=rxmr--r 
4n 

(15.18) 

so that it is conserved. The second term in eqn (15.18) can be interpreted as 
the angular momentum due to the electromagnetic field, because using 
(15.16) we have 

Lem = f d3.xr x (E x B) 

= !!_ f d 3x(V · E)r = qg r. 
4n 4n 

Thus the conservation of the total angular momentum J means that angular 
momentum is passed back and forth between the particle and the field in the 
presence of electric and magnetic charges. When we quantize the theory we 
would expect the components of J to satisfy the usual angular momentum 
commutation relations. This would imply that the eigenvalues of .I; are half­
integers. Since we expect the orbital angular momentum, the first term in 
(15.18), to have integral eigenvalues, we get 

qg 1 . 
4n = 2 (n = mtegers) 

which is just the Dirac quantization condition of eqn (15.11 ). 

The Dirac string 

A rigorous derivation of the Dirac quantization condition comes from 
considering the quantization of the motion of a particle in a given 
electromagnetic field. In the usual quantization of the electromagnetic field in 
the absence of the monopole, we write the electromagnetic field tensor Fµ. in 
terms of the four-vector potential Aµ= (cf>, A) as 

or 
Fµv = oµAv - o,Aµ 

B = V x A, 
oA 

E=-Vc/>-­ot (15.19) 

so that the equation awfµv = 0 is automatically satisfied. Then Schrodinger's 
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equation for a particle moving in the electromagnetic field has the form 

[ 1 2 J . ot/J 
2m (p - eA) + e</J t/J =I-at., 

which is invariant under the gauge transformation 

1 
A(x)-+ A(x) + - Voc(x) 

e 

t/J(x) -+ ei"(x)t/J(x) 

(15.20) 

with oc(x) being an arbitrary function. Thus the four-vector potential Aµ 
plays a crucial role as the basic dynamical variable in the quantization. 
But, if the monopole exists, the vector potential cannot exist everywhere 
because pµv satisfies eqn (15.8) rather than eqn (15.4). Does quantum 
mechanics preclude the existence of magnetic monopole? Dirac overcame 
this difficulty by introducing the concept of a string. To see this, consider 
the magnetic field of the monopole given in eqn (15.16). For any closed 
surface containing the origin, we have 

g = (15.21) 

s 

It is clear that B cannot be written as V x A everywhere; otherwise the 
integral in (15.21) would be zero. However, we can define an A such that Bis 
given by V x A everywhere except on a line joining the origin to infinity. To 
see that this is possible, consider the field due to an infinitely long and thin 
solenoid placed along the negative z-axis with its positive pole (with strength 
g) at the origin. Its magnetic field would be 

B,01 = r + g()( -z) b(x) J(y)z 
4nr 

(15.22) 

where z is a unit vector in the z-direction. This magnetic field differs from the 
field of the magnetic monopole (eqn (15.16)) by the singular magnetic flux 
along the solenoid, the second term in (15.22). Since the magnetic field given 
in (15.22) is source-free (V · B,01 = 0), we can write 

B,01 = V X A. (15.23) 

Then from eqns (15.16), (15.22), and (15.23), the monopole field is given by 

2 

B = _!}__ r = V x A - g()( -z) J(x) J(y)z (15.24) 
4nr2 

with a pictorial representation shown in Fig. 15.1. The line occupied by the 
solenoid is called the Dirac string. It is not difficult to see that the vector 
potential A of the solenoid can be written, with the conventional definitions 
of polar and azimuthal angles, as 

A = _!!_ (1 -. cos ()) ;r. 
4nr sm() "' (l 5·25) 
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which is singular on the negative z-axis. Eqn (15.24) means that the 
monopole field can be represented by a vector potential A together with a 
string. 

+ 

I 
FIG. 15.1. 

It should be emphasized that the Dirac string is not observable. For 
example, the Dirac string does not give rise to the Aharonov-Bohm effect 
(1959), which is the quantum-mechanical interference of charged particles in 
a region with B = 0 but A =I- 0. The condition for the absence of Aharonov­
Bohm effect is that for a charged particle (q) in the two-slit experiment reach­
ing the detector screen via two distinct paths labelled by 1 and 2 around 
the Dirac string is that 

I exp (iq f A· dl)l/1 1 + exp(iq f A· dl)l/1 2 1
2 

= 11/1 1 + 1/1 212 . 

2 

This is precisely the Dirac quantization condition (15.11): 

qg = q f A ·di = 2nn. 

where the closed path consists of path 1 and (the reverse of) path 2. 
Another way to see that the Dirac string is unobservable is to show that it 

can be moved around by a suitable gauge transformation. We demonstrate this 
as follows. The vector potential given in (15.25) is not unique for the solenoid 
field. If one makes a non-singular gauge transformation A ---> A + Vx where 
xis a non-singular, single-valued function of position, then the V x A term 
in eqn (15.24) will remain unchanged and so must the Dirac string term. To 
move the string we need to extend the concept of the gauge transformation. 
Rewrite eqn (15.24) for the magnetic field of the monopole as 

B(r) = V x A+ h('6', r) (15.26) 

where h('6', r) represents the contribution of the Dirac string along some curve 
16' going from the origin to oo and has a flux of strength g, 

h('6', r) = g f dx b3(r - x). (15.27) 

'6 

Consider another string 16'' running from the origin to oo along curve 16''. 
Let r denote the curve - 16'' (16'' taken in the reverse direction) followed by 16'. 
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We may treat this as a closed path, either by making suitable assumptions 
about what happens at infinity or by assuming that <ri' differs from Cfi only 
over a finite range (see Fig. 15.2). Let Q(r) be the solid angle subtended at r by 
some particular surface spanning r. Various choices of the spanning surface 

FIG. 15.2. 

will lead to values of Q differing by multiples of 4n, but will yield the same 
value for VQ. Now consider the extended gauge transformation defined by 

A-+A'=A-_f_VQ. 
4n 

(15.28) 

Note that Q(r) is a multi-valued function and is ill-defined for r on r. Then 
V x A'= V x A= B except on the two strings. Applying Stokes' theorem to 
a small loop encircling any point on r we see that the flux of V x (A' - A) 
along r is 

f V x (A' - A)· da = f (A' - A)· di = :n f VQ ·di = :n f dQ = g 

(15.29) 

where we have used eqn (15.28). From eqn (15.27), we can write eqn (15.29) 
as 

V x (A' - A) = h(<ri, r) - h(<ri'r) 

or 

B = V x A + h(<ri, r) = V x A' + h(<ri', r). (15.30) 

This shows that the gauge transformation (15.28) moves the Dirac string 
around. The arbitrary position of the string shows that it is unphysical or, as 
one says, the Dirac string is a gauge artefact. 

Derivation of the Dirac quantization condition 

Eqn (15.11) follows from the crucial requirement that the generalized gauge 
transformation (15.28) acting on the wavefunction of the particle must be 
given an equivalent quantum-mechanical description. Thus, under the gauge 
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transformation (15.28), the change in the wave function 

IP ---> IP' = exp( - i n )ip (15.31) 

should not produce a multi-valued result. Since there is an ambiguity of 4n in 
Q(r), we must have 

qg = 2nn 

which is just Dirac's quantization condition (l 5.11). 

Comment l To make the above derivation more transparent it will be 
helpful to work out the example of vector potential A and A' for strings C(f and 
C(f' being the negative and positive z-axis respectively. We then have the explicit 
result from eqn (15.25): 

A ·dr = £_ (l - cos fJ) d</> 
4n 

-g 
A' · dr = - (l + cos fJ) d</>. 

4n 

From their difference one can immediately verify the gauge function as 

g g x = -(2</>) = -n. 
4n 4n 

Comment 2 We can also avoid the notion of singular potentials and gauge 
transformations by using different monopole potentials in different regions 
of space, namely A and A' defined over domains with C(f and C(f' (e.g. negative 
and positive z-axis) respectively excluded. The Dirac quantization condition 
then follows from the requirement that in the overlapping region of the two 
domains the potentials A and A' should be connected by a single-valued 
gauge transformation (Wu and Yang 1976). While this is an elegant 
formulation, in most practical calculations it is still more convenient to use 
the singular Dirac string potential. 

15.2 Solitons in field theory 

To prepare for discussion of the monopole in non-Abelian gauge theory, we 
will first present an elementary introduction to the classical finite-energy 
solutions of field theory, generally called solitons. (For further discussion, see 
Coleman 1975; Rajaraman 1975.) We will illustrate this by taking as an 
example A</>4 theory in one space and one time dimension. The Lagrangian is 
given by 

(15.32) 

where 

(l 5.33) 
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and 
a2 = µ2/)... 

The Hamiltonian is given by 

H = f [!(oo</>)2 + !(ox</>)2 + V(</>)] dx. (15.34) 

As we discussed in §5.3, the classical ground-state configuration for the case 
µ2 > 0 is 

Jµ2 
,i. =+a=+ -'I' - - ).. (15.35) 

and the ground-state energy is E = 0. An interesting feature of this model is 
that there exists a static (time-independent) finite-energy solution to the 
equation of motion (solitons). The time-independent solution to the equation 
of motion can be obtained from the Lagrangian L through the variational 
principle, 

-JL = J f dx[!(ox</>)2 + V(</>)] = o (15.36) 

Mathematically, this is equivalent to the problem of motion of a particle of 
unit mass in a potential - V(x), where the equation of motion is derived from 

(J f dt[; = (J f + V(x)] = 0. (15.37) 

Every motion of the particle in the potential - V(x) corresponds to a time­
independent solution of the field equation. However, not all of these 
solutions are of finite energy. To get a finite-energy solution, we must require 
</> to go to a zero of V(</>) as x ± oo, so that the energy integral in eqn 
(15.34) is finite. In the particle problem, this corresponds to the condition 
that the particle must go to the zeros of the potential as t ± oo. Of course, 
the ground states where the particle sits at x = a or - a for all times will 
satisfy this requirement, but there are also non-trivial motions which also 
satisfy this requirement. Finiteness of energy requires the solution to take on 
the vacuum value (±a) at t = ± oo but since we have a system of degenerate 
vacua the solution may take on different minima (+a or - a) at different 
infinity points ( + oo or - oo ). Thus for example there are motions where the 
particle starts on top of one hill and moves to the top of the other and has 
zero energy (Fig. 15.3). We can use this property of zero-energy motion to 

-V(</>) 

FIG. 15.3. 
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find the explicit form of the finite-energy solution to the field-theory case. 
From the energy conservation for the motion of the particle with zero total 
energy we have 

1 (dx)2 - - + [ - V(x)] = 0 
2 dt 

which corresponds to 

1 (d¢)2 
- - = V(</J) 
2 dx 

(15.38) 

for the case of field theory. Eqn (15.38) can be solved easily by integration 
and the result is 

"' 
x = ± I d</J'[2V(</J')]-1f2 (15.39) 

t/Jo 

where ¢ 0 is the value of </J at x = 0 and can be any number between a and 
- a. The presence of this arbitrary parameter ¢ 0 is due to the translational 
invariance of eqn (15.38), i.e., if <P = f(x) is a solution, then <P = f(x - c) is 
also a solution where c is an arbitrary constant. For the case of A.¢4 theory, 
the potential is given in eqn (15.33) and the finite-energy solutions in eqn 
(15.39) can be written as 

<P + (x) = a tanh(µx) 

</J_(x) = -a tanh(µx). 

(15.40) 

(15.41) 

The ¢+ is usually called the kink and <P- the anti-kink. The energy of the 
kink (or anti-kink) can be calculated from eqns (15.40) and (15.34) to give 

E = 4µ 3/3A. (15.42) 

which is indeed finite. It is clear that as x-+ ± oo, <P+ (or </J_) approaches the 
zeros of V( </J ), i.e. 

<P+-+ ±a as x-+ ±oo. (15.43) 

This behaviour is illustrated in Fig. 15.4. 
These solutions can be shown to be stable with respect to small 

perturbations even though they are not the absolute minimum of the 

<f>+ (x) 

x 

FIG. 15.4. 
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potential energy V( ¢) (i.e. ¢ =fa ±a for all x and t). The physical interest in 
these finite-energy solutions to the equation of motion comes from the fact 
that they resemble a particle, with structure, in the following respects. 

(1) Its energy is concentrated in a finite region of space. This is because 
these solutions ¢ ± deviate from the ground-state configuration, ¢ = ±a 
(zero energy) only in a small region around the origin. 

(2) It can be made to move with any velocity less than unity. This is due to 
the fact that the equation of motion is Lorentz-covariant and we can apply a 
Lorentz boost to obtain a solution with non-zero velocity. 

Topological conservation laws 

The finite-energy solutions in A</J4 theory in 1 + I-dimensions have a rather 
interesting topological property which will make these solutions stable. This 
topological property can be easily generalized to a more complicated theory 
in higher dimensions and is very useful in finding stable finite-energy 
solutions. 

The topological property of the kink (or anti-kink) solution in A</J 4 theory 
in two-dimensional space-time can be studied as follows. From the finite­
energy requirement we have at spatial infinities 

¢( oo) - ¢( - oo) = n(2a) (15.44) 

where n = 0 corresponds to the ground state, n = 1 to the kink solution, and 
n = - 1 to the anti-kink solution. Eqn (15.44) can be written as 

+ 00 

J (ax¢) dx = n(2a). (15.45) 

- 00 

Thus, if we define the current}µ as 

}µ(x) = f.µv av¢, 

the current will be automatically conserved because f.µv is antisymmetric. The 
corresponding conserved charge is just eqn (15.45), 

+oo +oo 

Q = f io(x) dx = J ax¢ dx = n(2a). (15.46) 

- 00 - 00 

This implies that the kink number n in (15.44) is a conserved quantum 
number. Thus there is no transition between kink (or anti-kink) solutions 
and ground states and they are stable. This conservation law, usually called 
the topological conservation law (Lubkin 1963), has a different origin from 
the usual Noether conservation laws (such as energy conservation) coming 
from the symmetry of the theory (see §5.1) in that it holds independently 
of the equations of motion. One intuitive way to understand this topological 
conservation law is that in order to convert the kink configuration ( ¢ + or 
</J_) to the ground-state configuration where¢= a or -a for all x, we have 
to change the value of ¢ from - a to a by penetrating the barrier around 
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</J = 0 over an infinite range of x. This clearly will take an infinite amount 
of energy. 

Thus the topological conservation law (eqn (15.46)) divides the finite­
energy solutions into many distinct sectors; n = 0 (vacuum), n = 1 (kink), 
and n = -1 (anti-kink), etc. These different sectors can be characterized by 
their topological properties as follows. In two-dimensional space-time, the 
spatial infinities consist of two discrete points ± oo. Denote this set by S. 
For ).¢4 theory, the set of minima of the potential given in (15.35) also 
consists of two discrete points ±a and will be denoted by M 0 , 

M 0 = {¢: V(</J) = O}. (15.47) 

The condition that the solution to the equation of motion must be of finite 
energy will imply that the asymptotic values of </J(x) must be zeros of V(</J), 
i.e. 

lim </J(x) = </JEM0 . (15.48) 
x-+ ±co 

This condition can be considered as a mapping from points in S to M 0 . For 
example, in the ground-state configuration, both ± oo are mapped to a (or 
-a), while the kink configuration ¢+ maps + oo to +a and - oo to -a. 
These are topologically distinct mappings in the sense that it is impossible to 
continuously deform one mapping to the other. (For further discussion see 
§16.1.) This is the essence of the topological conservation laws. These 
topological properties will be very useful for more complicated theories in 
higher dimensions where explicit solutions are hard to come by. 

To summarize, in ).<jJ4 theory in two dimensions, the finite-energy solutions 
to the equation of motion exist with non-trivial topological properties and 
these solutions are stable with respect to decaying into vacuum. It is clear 
that the existence of this type of topological, stable, finite-energy solution 
requires the theory to have degenerate vacua (spontaneous symmetry 
breaking) and non-trivial topological properties. 

Solitons in four dimensions 

So far we have only discussed the finite-energy solution in two-dimensional 
field theory. In the more realistic four-dimensional field theory we shall see 
that, in order to have topologically stable finite-energy solutions for the 
scalar field, long-range fields of magnetic type must be present. This will lead 
naturally to non-Abelian gauge theories. 

First consider the finite-energy solution to a scalar field theory with some 
symmetry G in four dimensions. Write the Lagrangian density 

!£' = !(o,,¢;)2 - V(</J;) (15.49) 
with 

V(</J;) 0. (15.50) 

Denote by M 0 the set of values of </J; = I'/; which minimize the potential V(</J;), 

M 0 ={¢;=I'/;: V(17;) = O}. (15.51) 
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Note that all the </J;s in M 0 are constant, independent of the space-time 
points x,,. We will assume that these values are related by the symmetry 
group G. For example, the points </J = ±a in the case of J..¢4 theory are 
related by the symmetry </J --+ -</J. The possible directions in which the 
spatial coordinate r can go to infinity are labelled by a unit vector in the 
three-dimensional space, 

s 2 = {r: r2 = 1}. (15.52) 

It is clear that S 2 is a sphere in three-dimensional space. We say S2 is a two­
dimensional sphere, or two-sphere. Unlike the two-dimensional case where it 
consits of two discrete points ( ± oo ), S2 is a connected set. This will make the 
topology of the spatial infinities in four-dimensional field theory very 
different from that of two-dimensional field theory. The energy for a given 
field configuration is given by 

H = J d3x[t(a0¢;)2 + !(V</J;)2 + V(</J;)]. (15.53) 

The condition that the solution to the equation of motion has finite energy 
implies that as r--+ oo, </J; approaches one of the zeros (minima) of V(</J;), i.e. 

</Ji(r) = lim </J(Rr)eM0 • (15.54) 
R-+ oo 

Note that for the ground-state configuration </Ji goes to the same value in all 
directions. S2 being connected, </Ji would have to be constant (as it must be 
continuous) if M 0 is a discrete set (i.e. G is a discrete symmetry group). Then 
</Ji has the same topology as the vacuum configuration and is topologically 
trivial. To get a topologically non-trivial solution, M0 must be a manifold 
with non-zero dimension. This requires the symmetry group G to be 
continuous. From eqn (15.53), the energy is bounded from below by 

H f d3x[!(V</J;)2 + V(</J;)]. (15.55) 

Write the gradient term (V </J )2 as the sum of a radial and a transverse term 

(V</J)2 y + (r x V</J)2 • (15.56) 

Since at infinity, </Ji is a function of direction r only, if </Ji is not a constant, 
the second term in (15.56) is of order r- 2 as r--+ oo. This will make the 
integral in H (15.55) divergent. Hence with scalar fields alone there are no 
topologically stable finite-energy solutions in four dimensions (Derrick 
1964). 

It turns out that this difficulty can be circumvented by adding gauge fields 
to the theory, i.e. by making the symmetry Ga local symmetry. In this case 
the gradient term V;</J is replaced by the covariant derivative 

D;</J = 'il;</J + ig(A; · T)</J. (15.57) 

It is then possible (through subtle cancellation) to have D;</J decrease like r- 2 
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while Ai and V;</J both decrease like r- 1 such that the energy integral is 
convergent and the solution has non-trivial topological properties. Note 
that, for such time-independent solutions, the gauge field Ai decreases as ,- 1 ; 

the field strength will decrease as ,- 2 which will correspond to a long-range 
magnetic field. (Cf. eqn (15.25).) 

15.3 The 't Hooft-Polyakov monopole 

As we mentioned in the last section, it is possible to find topologically non­
trivial, finite-energy solutions in gauge theory with scalar fields. Since the 
electromagnetic interaction is described by an unbroken U(l) gauge 
symmetry and the finite-energy solution requires spontaneous symmetry 
breaking (the degenerate vacuum), we are led naturally to non-Abelian gauge 
theory in which the electromagnetic U(l) symmetry is embedded. Then the 
monopole will come out as a topologically non-trivial finite-energy solution. 
In this section, we will describe such a solution discovered by 't Hooft (1974) 
and Polyakov (1974), which has the properties of the magnetic monopole. 
The simplest example is the S0(3) model due to Georgi and Glashow 
(1972a). Even though this model is ruled out experimentally by the discovery 
of the neutral-current phenomena (see §11.2), it is the simplest example of a 
non-Abelian gauge theory having monopole solutions. And by studying the 
embedding of this S0(3)-+ S0(2) [i.e. SU(2)-+ U(l)] solution, one can also 
obtain monopoles occurring in theories of larger gauge groups-as we shall 
do so for the SU(5) grand unification model. Thus we concentrate first on 
this fundamental S0(3) case. 

Soliton solution in the S0(3} model 

The Georgi-Glashow model is based on the SU(2) gauge group with a 
triplet of Higgs scalars cl> (for the basic monopole solution we shall ignore 
the fermion fields). The Lagrangian density is 

where 
Fa = iJ Aa - iJ Aa - eeabc Ab Ac µv µ v v µ µ v 

(Dµ<PY = iJµ<Pa - eeabcAt<Pc 

A. 2 
V( cl>) = 4 ( cj> · cj> - a ) . 

The equations of motion are 

(D.P•)a = - eeabccPb(Dµ<P )c 

(DµDµ</J)a = -A.</Jicj>·cj> - a2). 

(15.58) 

(15.59) 

(15.60) 

(15.61) 

(15.62a) 

(15.62b) 

In this model, the values of cl> which minimize the potential V(cj>) in eqn 
(15.61) are given by 

(15.63) 
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i.e. M 0 consists of points on a sphere in a three-dimensional internal 
symmetry space, and all points in M 0 are equivalent to each other by S0(3) 
transformations. For convenience, we choose 

<I> = (0, 0, a) (15.64) 

to be the ground-state configuration. The pattern of the spontaneous 
symmetry breaking is as follows (see discussion in §8.3) 

SU(2) S0(3) -4 S0(2) = U(l) 

because <I> given in eqn (15.64) is still invariant under the rotation around the 
3-axis (S0(2) transformation). We will identify the unbroken U(l) sym­
metry as the electromagnetic interaction and the corresponding massless 
gauge bosons as the photon, = Aw The electric and magnetic fields are 
then given by 

(15.65) 

To get the finite-energy solution we require that as r -4 oo, <j>(r) 
approaches values in M 0 . Since the spatial infinities also form a two-sphere 
S2 (see eqn (15.52)) which has the same topology as the set M 0 , we can map 
each point in S 2 to the corresponding point in S 2 of M 0 to get a non-trivial 
topology 

<Pi= 1'/; =al\ (15.66) 

It is not hard to see that this mapping cannot be deformed continuously into 
the mapping for the vacuum configuration where the whole S 2 is mapped to 
a point given in eqn (15.64). Thus, the mapping given in (15.66) is 
topologically stable. (For further discussion on mappings with nontrivial 
topology such as st -4 st and S 3 -4 S 3 see §16.1.) 

Given (15.66) <fib oc rb, the finite energy requirement that Dµ<f;b = 0 up to 
order ,- 2 (see discussion at the end of the last section) implies the gauge field 
asymptotic form of At oc ebi/i. Believing that the lowest energy solutions 
correspond to those with the maximal symmetry, we can make the following 
ansatz for the explicit solution 

. ri 
-ebij-2 [l - K(aer)], 

er 
0 

(15.67) 

where Hand Kare dimensionless functions to be determined by the equation 
of motion. A pictorial comparison of the <I> field configuration for the 
vacuum (15.64) and the monopole (15.67) is given in Fig. 15.5. For the ansatz 
given in eqn (15.67), which is time-independent, the energy of the system is 
given by 

00 

4na I [ 2 (dK)2 1 ( dH ) 2 1 2 2 E=- - - +- +-(K -1) 
e 2 2 

0 

(15.68) 
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FIG. 15.5. it> configurations (a) for the vacuum; (b) for the monopole. 

where ¢ = aer. The conditions for E to be stationary with respect to the 
variations of H and K are 

¢2 = KH2 + K(K2 - 1) (15.69a) 

2 d1H 2 A. 2 2 
¢ d¢2 = 2K H + e2 H(H - ¢ ). (15.69b) 

These equations of motion for H and K can also be obtained from 
substituting the ansatz (15.67) into the equation of motion given in (15.62). 
The asymptotic condition (15.66) will imply that 

nm ¢ as ¢ --+ 00. (15.70a) 

Then in order to have a convergent integral in eqn (15.68), we require 

and 
H s 0(¢), 

K(¢) --+ 0 as ¢ --+ oo 

K( ¢) - l s om as ¢ --+ 0. 

(15.70b) 

(15.70c) 

It turns out that solutions to eqn (15.69) with boundary conditions (15. 70) do 
exist and the functions Hand K have the shapes shown in Fig. 15.6. The total 
energy of the solution, which will be interpreted as the classical mass, can be 
obtained from eqn (15.68) 

4na 
Mass = - f(Aje2 ) 

e 
(15.71) 

where f(A./e 2 ) is the value of the integral in (15.68) and has been calculated 
numerically to be of order unity for a wide range of values of A./ e2 • Thus the 

HI( 

K 

... 
FIG. 15.6. 
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scale for the mass of this classical solution is set by the parameter a, which is 
the vacuum expectation value of the scalar field and is also the scale for the 
spontaneous symmetry breaking S0(3) --+ S0(2). 

The 't Hooft-Polyakov soliton as a magnetic monopole 

From the asymptotic condition (15.70b), we see that at large distances 

. . 1 . 'k 1 . 'k k 
F/ "' - e'1 r r "' -- e'1 r </> 

a er4 a k aer3 a 

which implies that the magnetic field in eqn (15.65) at large distance is 

-1 r 
B---· 

e r 3 
(15.72) 

Comparing this with eqn (15.16), we see that this field is due to a monopole 
which has a magnetic charge 

g = -4n/e. (15.73) 

The constant e in (15.73) is the electromagnetic coupling constant which in 
this simple model is related to the electric charge operator by 

(15.74) 

where T3 is the third component of the weak isospin operators, which are the 
generators of S0(3) gauge symmetry. Since the smallest possible non-zero 
electric charge which might enter the theory is q0 = e/2 corresponding to 
T3 = t, we see that eqn (15.73) gives 

qog -1 
(15.75) 

Thus the magnetic charge g of the monopole takes its lowest value when 
compared to the Dirac condition (15.11 ). This classical finite energy solution 
which is topologically non-trivial is called the 't Hooft-Polyakov monopole. 
Note that the quantization of the electric charge given in (15.74) is a 
consequence of the fact that the electromagnetic U(l) symmetry is embedded 
in the simple non-Abelian gauge group, in this case S0(3), and is independent 
of the existence of the monopole solution. Rather, here one discovers that 
both magnetic monopole and charge quantization are consequences of 
spontaneous symmetry breaking of a non-Abelian simple group down to the 
electromagnetic U(l). 

This 't Hooft-Polyakov monopole differs from the Dirac monopole in two 
important aspects; the 't Hooft-Polyakov monopole has a finite core while 
the Dirac monopole is a point and there is no need for the Dirac string in the 
't Hooft-Polyakov monopole. The finite size of the 't Hooft-Polyakov 
monopole core comes from the fact that for eqn (15.69a,b) becomes 

d 2K d 2h 22 
= K - e2 h = 0 
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where H = h + e. Thus for large e, we have 

H - e,..., e-µr 

whereµ = (2A.)-l:a and M ea are the masses of the scalar and gauge bosons, 
respectively. This implies that the approach to the asymptotic form of each 
field is controlled by the masses of the corresponding particle. Hence we can 
think of the 't Hooft-Polyakov monopole as having a definite size 
determined by these masses. For distances smaller than this size, the massive 
fields play a role in providing a smooth structure and, for distances larger 
than this size, they vanish rapidly to give a field configuration indis­
tinguishable from that of a Dirac monopole. From this one can also have a 
simple understanding of its mass value as given in (15.71). We divide the 
contribution to energy in (15.68) into two parts, coming from fields inside 
and outside the core respectively. Outside the core, Dµ</J = 0 and the electric 
field E = 0, only the magnetic field survives: 

00 

I 3 1 2 1 ( g ) 2 I 2 1 1 4n d x2B =- - 4nr dr-=--M. 
2 4n r 4 2 e2 

1/M 

For the stationary solution the core contribution should be comparable, 
yielding E = O(M/11.). Thus the monopole is heavy because it has a small 
core and the Coulombic magnetic energy diverges as r -+ 0. 

As for the Dirac string, it is replaced in the 't Hooft-Polyakov monopole 
by the scalar field. To see this, write the asymptotic solution as 

.. r­Ai = ea•1_1_, 
a er2 

We can write in eqn (15.76) as 

<Pb= arb. 
r 

and the magnetic field tensor at large distance is given by 

= - oiA - -

Thus the magnetic field tensor has the form 

pi= oiAi - oiAi +(extra term). 

(15.76) 

(15. 77) 

(15.78) 

In the Dirac monopole the extra term is singular and involves the Dirac 
string, while in the 't Hooft-Polyakov monopole the extra term is smooth 
and involves the scalar fields. Thus, in some sense, in the 't Hooft-Polyakov 
monopole the singular Dirac string has been 'smoothed' into a scalar field. 

To summarize, in the S0(3) model where the non-Abelian symmetry is 
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spontaneously broken down to the electromagnetic U{l) symmetry, there 
exists a topologically non-trivial finite-energy solution, the 't Hooft­
Polyakov monopole, with the following features. 

(1) It has the same behaviour as the Dirac monopole at large distance; 
(2) It has a finite core size determined by the masses of the gauge boson or 

scalar particle; 
(3) The classical mass of the monopole is of order of the spontaneous 

symmetry-breaking scale-the vacuum expectation value of the scalar field; 
(4) There is no need for the Dirac string. 

Coupling of the spatial and internal symmetries 

Finally let us take note of an important feature of the monopole in the 
non-Abelian gauge theory with spontaneous symmetry breaking: it mixes the 
spatial and the internal symmetries. In fact the 't Hooft-Polyakov ansatz 
(15.67) has the feature that it is symmetric with respect to rotations 
generated by 

J=L+T (15.79) 

where Lis the spatial angular momentum (including the 'ordinary' spin) and 
Tis the internal symmetry 'isospin' generator. Thus for example the form of 
cl>·T oc r·T in (15.67) shows clearly that it is invariant under J. As a 
consistency check, we shall write out (15.79) more explicitly. The canonical 
momentum being Pi = mvi + e(Ai · T) with the gauge field outside the core 
being given by (15.76) we have 

and 

Comparing to (15.18): 

. 1,. T p=mr+-rx 
r 

J=rxp+T 

= r x mt +r x r x T + T 

= r x mt + (r · T)r. 

J . g Q" = r x mr-- r 
4n 

(15.80) 

(l 5.81) 

(15.82) 

and noting that the magnetic charge of the 't Hooft-Polyakov monopole is 
given by (15.73), we have the consistency condition 

Q = er · T. (l 5.83) 

This is indeed the correct identification because outside the core we have 
cf>= r and the unbroken electromagnetic U(l) symmetry corresponds to 
those SU(2) rotations that leave cl> invariant. For example, if r is in the z­
direction, cf> will be in the 3-direction in the S0(3) space and r · T = T3 is the 
generator for rotation around the 3-axis which will leave cf> invariant. 
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This 'coupling' of the spatial and internal symmetries has some surprising 
consequences. For example, consider scalar particles ( <P +, <P -) transforming 
as a doublet under T: with Q = eT3 we have 

Q<P± = ±!e<P±. 
Equation (15.79) informs us that the combined system of a monopole and 
this isodoublet can have half-interger angular momentum even though no 
fundamental fermion field has been introduced. This phenomenon of 'spin 
from isospin' has been discussed by Jackiw and Rebbi (1976), and by 
Hasenfratz and 't Hooft (1976). That this does not violate the usual 
connection between spin and statistics has been shown by Goldhaber (1976). 

By the same reasoning we can see that the Dirac equation in the back­
ground monopole field A,,(x) can have integral J partial wave solutions. 
In this connection there is another surprising result: fermions are found to 
change their nature when scattering off a monopole in the S-wave. As the 
angular momentum in (15.79) and (15.82) acquires a sign change when the 
fermion passes through the monopole core: r -+ - r' J can be conserved only 
if (i) the charge, or (ii) the helicity of the fermion, make the corresponding 
change. This 'paradox' can be resolved only when one invokes results of the 
quantum monopole theory. (1) For the charge change, one discovers that a 
quantized monopole possesses a tower of excited states which have the 
charges of the gauge bosons coupling to the upper and lower members of an 
isodoublet. Such electrically and magnetically charged states are termed 
dyons. Thus overall charge conservation can be maintained in the fermion­
monopole scattering as monopole turns into a dyon, 

(15.84) 

(2) For the helicity change, this is possible in the presence of monopole fields 
because we have a nonvanishing axial anomaly: F · P = E · B # 0 and the 
possibility of chirality nonconservation (see §6.2), and for the massless 
fermions chirality and helicity changes are correlated. 

Grand unified monopoles 

The SU(2)-+ U(l) 't Hooft-Polyakov monopole solution may be re­
garded as the fundamental pattern when we consider the monopole solutions 
to larger gauge groups. Topological considerations lead to the general result 
that stable monopole solutions occur for any gauge theories in which a simple 
gauge group G is broken down to a smaller group H = h x U(l) containing 
an explicit U(l) factor. For a review of the topological arguments see 
(Coleman 1975, 1981). Clearly this is compatible with our expectation that 
charge quantization and existence of monopole are related and that charge 
quantization follows from the spontaneous symmetry breaking of a simple 
gauge group. Thus in the grand unified theories where the symmetry is 
broken from some large simple group, e.g. SU(5), to SU(3)c x SU(l)em• there 
are also monopole solutions of the 't Hooft-Polyakov type. The monopole 
mass is determined by the mass scale for the symmetry breaking, Mx, and is 
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of order Mx/e2 • In the SU(5) model, we have Mx;;;::; 1014 GeV which implies a 
very heavy monopole mass ,...., 1016 GeV. This means that this type of 
monopole is out of reach for its production by accelerators. But it could be 
relevant for physics in the extreme early universe (see Preskill 1979; Guth and 
Tye 1980). In fact the attempts to suppress the monopole abundance in the 
conventional cosmology led originally to the 'inflationary universe scenario' 
(Guth 1981) and its subsequent refinement (Linde 1982; Albrecht and 
Steinhardt 1982; Hawking and Moss 1982), which has the promise of 
solving several fundamental problems in cosmology. 

It should be noted that the stable grand unified monopole having the 
smallest magnetic charge (hence the smallest mass) is expected to have both 
the 'ordinary' and the colour magnetic charges. (The colour magnetic fields 
are then supposed to be screened by the gluons.) Namely the SU(2) --+ U(l) 
embedding in G--+ SU(3)c x U(l)em is such that the final 'magnetic U(l)' 
factor sits in both U(l)em and SU(3)c. To see this more explicitly consider the 
following SU(2) embedding in the SU(5) group of Chapter 14: 

(15.85) 

where i: are the Pauli matrices. Thus they act both in the colour SU(3) (the 
first three components) and the electroweak SU(2) sectors. (The alternatives 
with the third colour replaced by either the first or the second colour are 
equally possible.) It has been shown that this embedding (15.85) leads to the 
smallest magnetic charges (Dokos and Tomaras 1980). Given the electro­
magnetic charge matrix of (14.12) in SU(5) model, the form of the 
monopole Higgs field <f> ,...., r suggests that the charge matrix can be written in 
the following spherically symmetric form 

(

-1 

Q 
-1 J (15.86) 

which agrees with (14.12) when r = z. The monopole vector potential is then 
given as in (15.76): 

1 A 

Af = -Bai/i 
g5r 

(15.87) 

where g 5 is the SU(5) gauge coupling constant and is related to the 
electromagnetic coupling e by (14.50) and the QCD SU(3)c coupling g 3 by 
(14.47): 

(15.88) 
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Equation (15.87) yields a matrix-valued magnetic field as 

ID Ba..,.,. 1 pa ..,.,. r . T A 

ID>;= ;.I = 2eiik ik.l = --2 r;. 
gsr 

(15.89) 

One can project out the electromagnetic and colour components by taking 
the trace of the product of this magnetic field matrix IIB with the generator 
matrices of the U(l)em and SU(3)c gauge groups. For the normalization 
factors one should keep in mind the relations in (15.88) and the fact that for 
the fundamental representation tr(TaTb) = !liab. Thus (15.89) has the 
electromagnetic component 

J(3) 1 f. 
B; = 2 S tr(IIB;Q) = 2e (15.90) 

corresponding to a magnetic charge of one Dirac unit g = 2n/e. Similarly the 
colour magnetic fields are calculated to be 

na 2 (ID 1a) 1 r; 
D; = tr UJ>;ll. = 13 U - 2 

v g,r 
a= 1, ... , 8. (15.91) 

Clearly (15.90) and (15.91) show that the 'magnetic charge matrix' has two 
components, represented in the unitary gauge as 

(15.92) 

Qc being the colour hypercharge A. 8/ -,/3. 
One can see this need for colour magnetic field more 'physically' by 

considering an Aharonov-Bohm experiment for a fractionally charged 
quark, say d1 (i.e. a down-quark with the first colour). The null-effect 
condition is satisfied because of a cancellation due to the presence of the extra 
phase factor coming from the quark colour charge qc multiplying the colour 
magnetic flux of the monopole 

exp{-i if di. Aem + iqc f di. Ac}= e-i2x/3 ei2ir/3 = 1 

where we have used e = 2n/g, etc. 

Monopole catalysed proton decay. With respect to the SU(2) embedding 
(15.86) the fifteen left-handed members of the first SU(5) fermion family 
(14.7) and (14.9) have the following transformation properties: 

doublets: (ed+) (u'l) 
3 L e L U1 L U2 L 

(15.93) 

With these doublets it is possible to have baryon-number-changing reactions 
such as 

(15.94) 
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This may be regarded as the inverse process of (15.84) with subsequent 'dyon 
decay'. Normally one would expect that such transitions be strongly 
suppressed by the super-heavy mass factor Mx. However studies of the 
fermion-monopole dynamics by Rubakov (1982), Callan (1982), and 
Wilczek (1982a,b) suggest that the fermion-monopole vacuum may be highly 
degenerate and condensates such as (u 1u2d3e-)0 exist in regions of space 
where the magnetic and chromomagnetic fields of the grand unified 
monopole coexist. We expect the colour magnetic field to extend as far as the 
confinement radius of order 1 fermi. Thus it is suggested that the baryon­
number-nonconserving interaction (15.94) may have a typical strong interac­
tion cross-section. This will manifest as proton decays strongly catalysed by 
monopoles. Although the theoretical understanding of this mechanism is still 
under investigation, it is clear that quantum theory of monopole-particle 
interactions will be highly nontrivial and should contain much interesting 
physics. 
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In the previous chapter we encountered particle-like solutions of Yang-Mills 
field theory, the monopoles; they correspond to fields with nontrivial 
topological properties in ordinary three-dimensional space. We now study a 
class of solutions with topological structure in the Euclidean four­
dimensional space-time, the instanton solutions. Like the soliton solutions of 
Chapter 15, they have finite spatial extension-thus the '-on' in its name­
and unlike solitons, they are also structures in time (albeit imaginary time)­
thus the 'instant-'. For the same reason, they are also called 'pseudo particles' 
in the literature. 

Again, as in Chapter 15, the presentation will be given at an elementary 
level. The organization of this chapter is as follows. In § 16.1, after a brief 
introduction to the topological notion of homotopy we show how the 
instanton solution can be obtained in the Euclidean Yang-Mills theory. The 
interpretation of instantons as tunnelling events between vacuum states with 
different topological quantum numbers is presented in §16.2. It shows that 
the vacuum of non-Abelian gauge theory in general, and QCD in particular, 
is not unique. A Yang-Mills Lagrangian actually represents a continuum of 
theories labelled by a parameter 8-just as each value of coupling constant 
describes a different theory. In §16.3 massless fermions are incorporated into 
the theory; their presence suppresses the vacuum tunnelling. One then sees 
how the nontrivial structure of QCD vacuum as revealed by the instanton 
solutions can help us solve the famous axial U(l) problem present in any 
quark theory with chiral symmetry. On the other hand the instantons 
themselves bring about strong P and CP violations. Possible ways out of this 
difficulty are briefly mentioned. 

Throughout this chapter, especially in the first two sections, we work with 
the SU(2) Yang-Mills theory. For applications we consider mostly those for 
QCD which is SU(3). However all results are understood to be valid for the 
SU(2) subgroup of SU(3), or any other non-Abelian groups of higher rank. 

16.1 The topology of gauge transformations 

In Chapter 15 we encountered fields with nontrivial topology. They 
correspond to mappings from S2 to S2 , where S2 is a sphere in three­
dimensional space and is a two-dimensional manifold, i.e. a two-sphere. In 
this chapter we need to consider mappings S 3 --+ S 3 ' where S 3 is a sphere in 
four-dimensional Euclidean space, i.e. a three-sphere. 
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Homotopic classes 

To study the topological properties of continuous functions, one can divide 
them into homotopic classes; each class is made up of functions that can be 
deformed continuously into each other. More precisely, let X and Y be two 
topological spaces and.fo(x),.fi(x) two continuous functions from Xto Y. Let 
I denote the unit interval on the real line 0 s t s 1; fo and Ji are said to be 
homo topic if and only if there is a continuous function F(x, t) which maps the 
direct product of X and I to Y such that F(x, 0) = fo(x) and F(x, 1) =Ji (x). 
The continuous function F (x, t) which deforms the function f 0 (x) con­
tinuously intof1 (x) is called the homotopy. We can then divide all functions 
from X to Y into homotopic classes such that two functions are in the same 
class if they are homotopic. 

To illustrate the notion of homotopic classes, we consider the following 
examples. 

S 1 --. S 1 . Let X be the points on a unit circle labelled by the angle { B}, with 
B and B + 2n identified, and let y be a set of unimodular complex numbers 
u1 = { eia}, which is topologically equivalent to a unit circle, a 'one­
dimensional sphere'. We consider the mapping {B}--. {eia}. The continuous 
functions given by 

f(B) = exp[i(nB +a)] (16. l) 

form a homotopic class for different values of a and a fixed integer n. This is 
because we can construct a homotopy 

F(B, t) = exp{i[nB + (1 - t)B0 + tB 1]} (16.2) 

such that 
fo(B) = exp[i(nB + B0 )] 

and 
.fi(B) = exp[i(nB + B1)] (16.3) 

are homotopic. One can visualize f(B) of (16.1) as a mapping of a circle on to 
another circle. In this mapping, n points of the first circle are mapped into 
one point of the second circle and we can think of this as 'winding around it n 
times'. Thus, each homotopic class is characterized by the winding number n, 
also called the Pontryargin index. From (16.1 ), the winding number n for a 
given mappingf(B) can be written 

27t 

n =I df(l:l)]· 
2n f(l:l) dl:l 

(16.4) 

0 

Of particular interest is the mapping with the lowest nontrivial winding 
number, n = 1, 

(16.5) 

By taking powers of this mapping, we can get mappings of higher winding 
numbers. For instance, the mapping [j< 1>(1:J)]"' will have winding number m. 
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We can also write the mapping in (16.5) in the Cartesian coordinate system as 

f(x,y) = x + iy with x 2 + y 2 = 1. (16.6) 

We can generalize the domain X of this mapping from the unit circle to the 
whole real line - oo :::;; x:::;; oo, by identifying the end-points x = oo and 
x = - oo to be the same point, i.e. the mappings are required to satisfy the 
property f(x = oo) = f(x = - oo ). Clearly this has the same topology as the 
unit circle. Examples of this type of mapping with winding number n = 1 are 

f 1(x) = exp{inx/(x2 + A.2)t} 

= exp{i2 sin- 1[x/(x2 + A.2)!]} = • 
+x 

(16.7) 

(16.8) 

where A. is an arbitrary number. In this case the topological winding number 
for a general mapping can be expressed as 

+co 

n = ___!____ f dx[_=!_ df(x)J 
2n f(x) dx 

(16.9) 

-co 

which yields n = 1 for the functions/1(x) andf'1(x) given in (16.7) and (16.8). 

S3 --+ S3 • We now consider mappings from a three-sphere to SU(2) space, 
i.e. mappings from the points on S 3 ' the sphere in four-dimensional 
Euclidean space labelled by three angles, to the elements of the SU(2) group, 
which are also characterized by three parameters. More explicitly, the 
manifold of the SU(2) group elements is topologically equivalent to a three­
sphere S 3 . This is because, any element in the SU(2) group can be written in 
terms of the Pauli matrices as U = exp{it · T}. From the identities of the Pauli 
matrices, we can write U = u0 + iu · "t with real u0 and u satisfying 

u6 + u2 = 1 

which follows from uut = utu = I. This is clearly the equation for the 
sphere in four-dimensional Euclidean space, S 3 • Mappings in this case are 
also characterized by the topological winding number n and the generaliza­
tion of (16.6) with n = 1 is 

f(x 0 , x) = x 0 + ix·T with x6 + x2 = 1. (16.12) 

It can be shown that the topological winding number n can be expressed as 
(see, for example, Coleman 1977) 

where 
(16.13) 

and 01 , 02 , and 03 are the three angles that parametrize S 3 . 

One can also generalize to the case where the domain Xis the whole three­
dimensional space with all points at infinity identified. Examples of the 
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mappings with n = 1 are 

fi(x) = exp{inx·t/(x2 + A.2 )t} 

f't(x) = (A.t + ix)2/(x2 + A.2 ) 
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(16.14) 

(16.15) 

which are generalizations of the mappings given in (16. 7) and ( 16.8). As for 
the winding number in (16.9), we now have the volume integral 

(16.16) 

As we shall see, SU(2) transformations of the form (16.12), (16.14), or (16.15) 
are very much of physical interest. 

The instanton solution to Euclidean gauge theory 

Here one seeks the (finite-action) solution to classical Yang-Mills theory in 
Euclidean space (x2 = x5 + x 2 ). The SU(2) gauge fields 

ta 
A = -Aa, 

µ 2 µ 

ta 
Fµv = 2 a = 1, 2, 3 

have the Lagrangian 

1 
!l1 = 2g2 tr FµvFµv 

where for notational convenience we have scaled the gauge fields as 

with 

I 
Aµ-+ -Aµ, 

g 

Fµv = oµAv - a.Aµ + [Aµ, A.]. 

Under a gauge transformation U, we now have 

u- 1AµU + u- 1 OµU. 

(16.17) 

(16.18) 

(16.19) 

We require the solution to satisfy the boundary condition that the Lagrange 
density vanishes, i.e. FµvFµv = 0, at infinity so that the Euclidean action, 

I 4 1 
SE = d x 292 tr(Fµ.Fµ.), 

is finite. This means that in Euclidean space 

Fµv(x) ---+ 0. 
lxl-+ oo 

(16.20) 

Normally we take this to mean 

Aµ(x) ---+ 0. 
lxl-+ oo 

(16.21) 
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From the viewpoint of gauge transformations (16.19), this is much too 
restrictive. Condition (16.20) only requires A,, to approach the configuration 

(16.22) 

which is obtained from A,,(x) = 0 by a gauge transformation (16.19) and thus 
also yields (16.20). We say such a A,,(x) field is a 'pure gauge'. One notes that 
points at infinity (lxl oo ); in four-dimensional Euclidean space are three­
spheres and the gauge transformation U in (16.22) represents mappings from 
S 3 to SU(2) space. Thus the Us are just the S 3 S 3 type of functions 
discussed in connection with homotopic classes, with some topological 
winding number. The instanton solution discovered by Belavin, Polyakov, 
Schwartz, and Tyupkin (1975) corresponds to Us with a nontrivial winding 
number, i.e. n = 1 (with n > 1 solutions for instantons far apart in space­
time obtainable by multiplication). 

Let us first express the winding number in terms of the gauge fields. For 
this purpose we introduce an (unobservable) gauge-dependent current 

K,, = 4e,,,;.p tr[A, o;.Ap + iA,A;.Aµ]. (16.23) 

It is straightforward to check that 

(16.24) 

where 
- 1 F,,v = 2B,,,;.pF;.p (16.25) 

is the dual of F,, .. Consider the volume integral 

I d4x tr(F,,,F,,.) = t I d4x o,,K,, = t I da,,K,, (16.26) 

s 

where the surface integral is over the S 3 at infinity. In this region A,, is given 
by (16.22) and using the antisymmetry properties of the indices and utu = I, 
we have 

(16.27) 

Substituting (16.27) into (16.26) and comparing it to the expression for the 
S 3 S 3 winding number in (16.16) we obtain 

I I 4 -n = 16n2 d x tr(F,,,F,,.). (16.28) 

To find A,,(x) satisfying the boundary condition (16.22) on the Euclidean 
three-sphere at infinity, we make use of the important positivity condition in 
Euclidean space 

I - 2 4 tr (F,,, ± F,,.) d x ;;::: 0. (16.29) 

Since 
(16.30) 
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we have the inequality 

tr f FµvFµv d 4x f FµvFµv d4 xl = 16n2 n (16.31) 

where we have used (16.28). Thus, the Euclidean action satisfies the 
inequality 

8n2n 
SE(A) -2-· 

g 
(16.32) 

This implies from (16.29) that the action is minimized (i.e. equality achieved) 
when 

(16.33) 

i.e. the self-dual or antiself-dual fields are the (finite-action) solutions to the 
classical Euclidean Yang-Mills theory. We remark that the usual solution 
Aµ = 0 which has trivial topological quantum number (i.e. n = 0) clearly 
satisfies condition (16.33). 

To find nontrivial self-dual gauge-field solutions, Belavin et al. (1975) 
employed the strategy of first considering Fµv of0(4) gauge theory, which is 
isomorphic to SU(2) x SU(2): one can identify one SU(2) with the SU(2) of 
the internal symmetry and the other SU(2) with the three-sphere at space­
time infinity. Also in 0(4 ), since F µv is really a matrix with four indices 

where (oc, /3) are the internal 0(4) space indices and (µ, v) are the 
Euclidean 0(4) indices, the self-dual condition of (16.33) can be translated 
into simple symmetry conditions on these charge and space-time indices. 
From this it is possible to construct the solution explicitly. We shall not 
provide the details here as the SU(2) gauge transformation has just the form 
discussed in eqn (16.12) 

U(x) = x 0 + ix· t 
p 

where p2 = x6 + x2 . This gives rise to a gauge field 

Aµ(x) = C2 : A. 2 )u- 1 oµU 

(16.34) 

(16.35) 

where A. is some arbitrary scale parameter, often referred to as instanton size. 
For p » A., we have 

(16.36) 

as required by the boundary condition. More explicitly we can write 

-1t·x 
A 0 (x) = 2 2 ' 

p + A. 

-i(tx0 + t x x) 
p2 + A.2 

(16.37) 

One can further check that the corresponding action integral indeed has the 
value 8n2/g 2 • 

In the next section we shall discuss the physical interpretation of these 
nontrivial minima of the Euclidean action. 
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16.2 The instanton and vacuum tunnelling 

The physical interpretation of the instanton solutions as quantum­
mechanical events corresponding to tunnelling between vacuum states of 
different topological numbers was first advanced by 't Hooft (1976), and later 
substantiated in the work of Callan, Dashen, and Gross (1976) and of Jackiw 
and Rebbi (1976). 

In Feynman path-integral formalism the basic vacuum-to-vacuum transi­
tion amplitude is expressed as a sum (a functional integral) over all possible 
paths between the initial and final states, weighted by the exponential of i 
times the action for the particular path. In previous discussions we have 
included in our sum of path history only the condition Aµ(x) --+ 0 on the 
boundary. We shall see that non-Abelian gauge-field theory has a vacuum 
with an unexpectedly rich structure. It corresponds to a superposition of 
vacuum states with different topological winding numbers. The instanton 
field configurations correspond to paths that connect initial and final vacuum 
states with different winding numbers. We shall examine the effect of 
including all such field configurations in our path-integral formalism. 

Multiple vacuum states 

To be more specific let us place our system inside a box. The vacuum 
condition 

(16.38) 

is obtained for the region 

t < -T/2, t > T/2, and lxl > R (16.39) 

with T and R both very large. The 2 + 1 space-time version is depicted in 
Fig. 16.1. One then sums over all paths Aµ(x) that are consistent with 
the boundary condition that the vacuum state (16.38) be maintained outside 
the cylinder. 

FIG. 16.1. 

Throughout this section we shall be working with the gauge-fixing 
condition 

A0 (x) = 0 for all x. (16.40) 

But we are still left with the freedom of time-independent gauge 
transformations 

80 U(x) = 0 (16.41) 
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because 

A 0 (x) A0(x) = u- 1(x)A 0(x)U(x) + u- 1(x) o0 U(x) = 0 

where we have used both (16.40) and (16.41). Thus the vacuum will be 
described by a time-independent potential A;(x) which is a pure gauge 
potential 

(16.42) 

At initial time t = - T/2, we can use this remaining gauge freedom to pick, 
for example, 

A;(x) = 0 

by choosing 

U(x) = 1. 

Then the vacuum state condition (16.38) implies that 

F0 ; = o0 A; = 0. 

(16.43) 

(16.44) 

(16.45) 

Thus (16.43) is maintained throughout the vacuum, i.e. throughout the space 
outside the cylinder in Fig. 16.1. In particular on the top-surface of the box 
(t = T/2) we have the situation of a disc with its edge identified, i.e. all points 
on the edge have the mapping (16.44). In realistic 3 + l space-time 
dimensions, this corresponds to the t = T/2 vacuum being a pure gauge of 
mappings to the SU(2) gauge group manifold from three-dimensional space 
with infinities identified. As we have discussed in the previous section such 
gauge transformations, and hence the corresponding vacuum states (16.42), 
can be divided into inequivalent homotopic classes. An example of (16.42) 
with 

U(x) = exp{in:t ·x/(x2 + (16.46) 

as given by eqn (16.14) is an n = 1 vacuum state. Thus we conclude that there 
is a multiplicity of vacuum states In), each characterized by its topological 
winding number. 

The formal relation between multiple vacua and the instanton solution 

The instanton solution, as we have shown in §16.1, is itself characterized by a 
winding number v. We shall show that such a path in Euclidean space 
connects vacuum states that differ by that winding number 

A;"'1{x, x0 = -oo) = Alx) of vacuum state In) 

A;0' 1{x, x0 = oo) = A;(x) of vacuum state In+ v). (16.47) 

To see this formally let us recall the basic v = 1 instanton solution as given 
by eqns (16.34), (16.35), and (16.37). To cast it in the form of the A0 = 0 
gauge of (16.40) we make a gauge transformation on A,,(x) of (16.37) 

A,,(x) = v- 1(x)A,,(x)V(x) + v- 1(x) o,,V(x). (16.48) 
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The condition = 0 implies that 

a 
- V(x) = -A 0 (x) V(x) ox0 

IX ·t 
= 2 2 A.2 V(x) 

Xo + X + 
(16.49) 

where we have written out the instanton solution (16.37). Eqn (16.49) can be 
integrated to yield 

{ ix· t ( _ 1 Xo )} 
V(x) =exp (x2 + A.2 ) 112 tan (x2 + A. 2 ) 112 +Bo · (16.50) 

We can set the integration constant to be 

B0 = (n + t)n. (16.51) 

The result in (16.49) is obtained by requiring the boundary condition on the 
time-component A0 (x) --+ = 0. If we take the spatial component A;(x) 
to be zero at x 0 = ± oo, then 

(16.52) 
with 

{ x·t } 
V(x0 = -oo) =exp in (x2 + A.2 ) 112 (n) 

and 

{ x·t } 
V(x0 = oo) =exp in (x 2 + A. 2 ) 112 (n + 1) · (16.53) 

Thus the instanton solution of (16.37) indeed connects two vacuum states [cf. 
eqn (16.46)] that differ by one unit of winding number. This suggests that for 
a path-integral representation of the vacuum-to-vacuum transition ampli­
tude, eqn (1.67) should be generalized to 

<nle-iHrlm)1 = f [dAJv=n-m exp{-i f (2 + JA) d 4 x} (16.54) 

where In) and Im) denote vacua with winding numbers n and m, respectively. 
Thus, we should sum over all gauge fields belonging to the same homotopic 
class with winding number v = n - m. 

The instanton as a semi-classical tunnelling amplitude 

The fact that the instanton is the minimum of the Euclidean action, i.e. it is 
the classical path for imaginary time, reminds one of the semi-classical 
(WKB) barrier-penetration amplitudes in non-relativistic quantum 
mechanics. This indeed turns out to be a fruitful analogy and we shall 
present a brief review of the elementary quantum-mechanical example of 
tunnelling between the two ground states of the double-well potential in 
Fig. 16.2(a) 

V(q) = (q2 - q'fi)2 (16.55) 
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V(q) -V(q) 

q 

q 

(a) (b) 

FIG. 16.2. 

where q(t) is some generalized coordinate. The energy of the system is then 

1 (dq)2 
E=l dt + V(q). (16.56) 

The classical ground state for this system is at q = q0 or q = - q0 with E = 0. 
In classical mechanics clearly there is no E = 0 path leading from q0 to -q0 • 

However there can be quantum-mechanical tunnelling, so that the true 
ground state is neither lq0 ) nor l-q0 ) but their superposition 

1 
!ground)= .J2 (lqo) + l-qo)). (16.57) 

The quantum-mechanical tunnelling amplitude can be calculated using the 
classical particle trajectory in the imaginary time system. This is because in 
the imaginary time system where t = -ir and (dq/dt)2 = -(dq/dr)2 , the 
energy of the system is given by 

-E = G(:!Y - V(q)] (16.56a) 

which is equivalent to a particle moving in the potential - V(q) shown in Fig. 
16.2(b ). Thus in imaginary time there will be a path going between - q0 and 
q0 with E = 0. Setting E = 0 in eqn (16.56a) we can solve for this trajectory, 

(16.58) 

The action for this trajectory in the imaginary-time system is finite and can be 
calculated 

+oo +oo 

S, = f drH(:!Y - [-V(q)]} = 2 f drV(q) 
-oo -oo 

+ 00 

=2 f (16.59) 

- 00 

To get the tunnelling amplitude, we will use the path-integral formalism, in 
which the transition amplitude is given by 

<qrle-iH1/l•lq;) = J [dq] eis;r •. (16.60) 
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In imaginary time (or Euclidean space), this becomes 

(qrl e-Ht/hlq;) = f [dq] e-SE/h (16.61) 

where SE= -iS is the Euclidean action. The right-hand side of eqn (16.61) 
can be visualized as the summation over all possible paths going from qi to qr. 
In the semi-classical approximation (expansion in powers of Ii), the integral 
in (16.61) will be dominated by those paths for which SE is stationary. It is 
not hard to see that the tunnelling amplitude for the case we are considering 
here will be of the form 

T'"" e-s,;h[l + O(li)] exp(-4.J2 qU31i). (16.62) 

This can be verified in this simple case by explicit calculations (for detail see 
Coleman 1977). 

This example and eqn (16.53) suggest the interpretation that the instanton 
configuration corresponds to tunnelling between different vacuum states: 
In)--+ In+ 1). When we generalize the transition amplitude in (16.61) to field 
theory, we will find that not all field configuration (paths) give finite action 
because there are infinite degrees of freedom in field theory. But in the semi­
classical approximation a configuration of infinite action will give zero to the 
path integration weighted by e-SE/h. Thus the path integral will be dominated 
by configurations with finite action. Hence the tunnelling amplitude in the 
semi-classical approximation can be calculated in terms of the instanton 
configuration and has the form 

(16.63) 

where we have used eqn (16.32). The form ofeqn (16.63) also shows clearly 
that it is an effect that cannot be seen in ordinary perturbation theory. 

0-vacuum 

As vacuum states In) corresponding to different topological winding 
numbers are separated by finite-energy barriers and there are tunnellings 
between these states, we expect the true vacuum state to be a suitable 
superposition of these In) states. We note that under a gauge transformation 
T1 having a winding number 1 itself, we have 

Tdn) =In+ 1) (16.64) 

and gauge invariance means that it commutes with the Hiimiltonian 

(16.65) 

Thus we have a situation very similar to the familiar quantum-mechanical 
problem of periodic potential: with Tbeing the translation operator and with 
the true ground state being the Bloch wave and there exists a conserved 
pseudomomentum. We can construct the true vacuum, the '0-vacuum' as 

(16.66) 
n 
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which is an eigenstate of the gauge transformation 

T1!8) = ei018). 

487 

(16.67) 

Just like the pseudomomentum in the case of a periodic potential, 8 labels the 
physically inequivalent sectors of the theory and within each sector we may 
study the propagation of gauge-invariant disturbances. Since different 8-
worlds do not communicate with each other, there is no a priori method of 
determining the value of e. 

In terms of the 8-vacuum, the vacuum-to-vacuum transition amplitude in 
path-integral formalism should be 

(16.68) 

Writing the left-hand side in terms of vacuum states with definite winding 
numbers we have 

m,n 

= L e-i(n-m)O eim(0'-0) I[dAJn-m eiJ<-"'+JA)d4x 

m,n 
(16.69) 

where we have substituted in the expression (16.54). We can cast (16.69) in 
the standard form by relabelling n - m --> v; after doing them-summation 

e-ivo I [dAJ. exp[ -i I (2 + JA) d4x J 
[dA]. exp[-i I (!!'err+ JA) d4x J (16.70) 

and using eqn (16.29), we obtain 

8 -
2"etr = !!' + 16n2 tr(FµvP"). (16. 71) 

Thus the rich structure of gauge theory vacuum corresponding to tunnelling 
between states with different topological winding numbers gives rise to an 
effective Lagrangian term which violates P and CP conservation. As we have 
already mentioned in §10.2, such a term is normally discarded because the FF 
term can be expressed as the divergence of current (eqn (16.24)) and hence as 
a surface term in the action (eqn (16.26)). However because there is a 
nontrivial instanton gauge field configuration which does not vanish at 
infinity (eqn (16.22)), such an 'abnormal' term actually survives in non­
Abelian gauge field theories. 

16.3 lnstantons and the U(1) problem 

The U(l) problem 

The ideas of chiral symmetry and quark-gluon interaction as described by 
QCD seem to lead to a contradiction. For simplicity we will illustrate this 
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problem in the case where there are only two quark flavours in the theory, u 
and d quarks. In the limit mu.ct 0, the QCD Lagrangian has the symmetry 
SU(2)L x SU(2)R x U(l)v x U(l)A which is larger than the chiral symmetry 
SU(2k x SU(2)R discussed in Chapter 5. The U(l)v symmetry generated by 
the transformation qi ei"qi gives rise to the current 

This is just the baryon-number current for this two-flavour case and the 
U(l )v symmetry manifests itself in the baryon-number conservation. But the 
U(l)A symmetry generated by the transformation eiPYsqi with the current 
given by 

(16.79) 

does not seem to correspond to any observed symmetry in the hadron 
spectra (e.g. we do not observe a parity doubling of the baryon states). 
Thus we expect this U(l)A to be realized in the Goldstone mode and to give 
rise to an additional massless pseudoscalar besides the pion isotriplet which 
a,re the Goldstone bosons resulting from the spontaneous breakdown of the 
chiral SU(2)L x SU(2)R symmetry. As we turn on the quark mass, this new 
U(l) Goldstone boson is expected to have a mass comparable to that of the 
pion because they all have the same quark composition. (This statement will 
be made more quantitative later on.) Experimentally no such isoscalar 
pseudoscalar meson has been seen. The 11-meson has the right quantum 
number, but is simply too heavy. This is usually referred to as the 'U(l) 
problem' or the '11-mass problem' (Glashow 1967). As we shall see, the 
existence of instantons will solve the problem ('t Hooft 1976). There is 
another related U(l) problem that has to do with the decay 11 3n:. We 
shall comment on that problem and its resolution later on. 

The ri-mass problem. One may think that the presence of the ABJ anomaly 
in (which couples to gluons) will provide an escape from this paradox 
as the divergence of does not vanish in the mu. ct 0 limit 

(16.80) 

where Gµv is the gluon tensor matrix, G its dual, and we have undone the 
scaling of the field normalization of (16.17). (The factor 4 in front of the first 
term on the right-hand side comes from the fact that there are two flavours 
2NF = 4 in this theory.) However the matter is not so simple. We have 
already seen in eqn (16.24) that tr GG itself is the divergence of a current, 

2 

aµKµ = 4 tr Gµv{;µv (16.81) 

with 

(16.82) 
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where A,, = is the gluon field. Thus we can define a new axial vector 
current 

-5 5 
J,, = J,, - K,, (16.83) 

which is conserved in the mu.d ---+ 0 limit, 

(}ll l; = 2imuiiy5u + 2imddy5d. (16.84) 

Of course the current K,,, and hence also l;, is unobservable, because it 
is not gauge-invariant. Nevertheless, because its charge 

- f-s 3 Q5 = lo d x (16.85) 

is conserved, this symmetry when realized in the Goldstone mode would 
demand the existence of an I = 0 pseudoscalar meson with a mass m0 

(Weinberg 1975) 

(16.86) 

To see this we can use the standard current-algebra technique to obtain a 
Ward identity entirely similar to eqn (5.228) 

m6/6 = i k
2 {ikv f d 4x e-ik-x<OIT(ollf;(o)Je(x))IO) 

+ f d4x e-ik x(Oli5(x0 )[oµJ;(o), Jg(x)JIO)} (16.87) 

where fo is the isoscalar meson decay constant. After taking the kv ---+ 0 limit, 
since there is no zero mass pole in the first term on the right-hand side, we 
relate m6/6 to a u-term which is of identical form to that for m;J; 
encountered in §5.5. Thus, 

(16.88) 

This reflects the fact that l; has the same commutator with quark mass terms 
as 1;. To proceed further we can write (16.79) as a sum of an SU(3) octet and 
singlet 

JS = _l_ J(8)5 + 
,, y13 ,, 3 ,, (16.89) 

where 

<B>s 1 - - -lµ = y13 (uy,,y 5u + dyµy 5d - 2sy,,y5s) 

(0)5 J2 - - -J µ = 3 (uyµy 5u + dyµy 5d + sy,,y 5s). 

To the extent that SU(3) is a good symmetry and all pseudoscalar octet decay 
constants are equal, we obtain immediately 

(16.90) 
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and hence the bound in eqn (16.86) especially if we allow for the possibility 
that there may be more than one isoscalar pseudoscalar meson coupled to 
-s 
J µ• 

It was originally pointed out by Kogut and Susskind (1975b) that one way 
to avoid the disastrous conclusion of (16.86) is for J; to be coupled to a 
'particle' which is massless even if mu.d ¥- 0. Then the first term on the right­
hand side of (16.87) does not drop out in the k, -+ 0 limit and the simple 
relation between and the a-term is spoiled and there is no restriction on 
m0 • Since J; is gauge-variant, it is conceivable that this gauge-dependent 
massless pole does not generate poles in physical (gauge-invariant) quan­
tities. As we shall see, in 't Hooft's resolution of the U(l) problem, the 
Kogut-Susskind mechanism is indeed realized in the new instanton 8-
vacuum. The U(l)A symmetry is spontaneously broken without generating 
the I = 0 Goldstone boson. 

The q-+ 3n problem. We should also remark that there is a second U(l) 
problem, related to 11 -+ 3n decay, which can also be solved by the Kogut­
Susskind mechanism. We mentioned at the end of Chapter 5 that virtual 
photon exchange gives a vanishing amplitude for 11 -+ 3n in the chiral limit 
(Sutherland 1966). This decay must therefore be attributed to the isospin­
violating quark-mass difference in the Lagrangiandensity 

(16.91) 

The leading term in chiral perturbation (Bell and Sutherland 1968) is then 

(16.92) 

with 
A = (mtl(muii'l'sU + m<la'l'sd)ITJ) 

1 -s 
= li < 1t1tlaµ J µ (0)111 > (16.93) 

where the two-pion system and 11 have equal momenta and energy. Thus 
even with mu ¥- md we still have a vanishing 11 -+ 31t amplitude because the 
amplitude A in (16.93) is a total divergence between states with the same 
four-momenta. Again we can see a possible resolution of this second U(l) 
problem with the existence of a massless pole coupled in J; giving a nonzero 
A in (16.93). 

The 8-vacuum in the presence of massless fermions 

We now show how the structure of the 8-vacuum implies the spontaneous 
breakdown of the U(l)A symmetry and how the associated massless particle 
decouples from physical quantities. Instead of following the original 't Hooft 
calculation in path-integral formalism, we shall only indicate the physical 
ideas with some heuristic arguments. 

Since Q5 is not gauge-invariant, under a gauge transformation char-
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acterized by topological quantum number n (see eqn (16.64)) it changes (see, 
for example, Callan et al. 1976) as 

(16.94) 

where NF is the number of massless quark flavours. A simple check of (16.94) 
is to take the original Q5 to be zero; then from 

= f (16.95) 

with 

and 
A;= u- 1 o;U 

we then have (16.94) when the above expression is compared with that for the 
winding number in eqn (16.16). Eqn (16.94) means that T" acts like a 'raising 
operator' of chirality-instantons 'eat' massless quark pairs 

(16.96) 

To be more explicit, T" changes the winding number of the vacuum 

TnlO) =In). (16.97) 
But 

(16.98) 

because of (16.96) and Q5 10) = 0. Thus the vacuum state with definite 
topological quantum number also has definite chirality (i.e. it is an eigenstate 
of Q5 ). Since Q5 is conserved 

(16.99) 

the vacuum-to-vacuum transition amplitude vanishes unless the initial and 
final states have the same winding numbers, 

<nle-iH'lm) bnm 

or, more generally for an operator Pv(x) with chirality 2NFv, 

<nle-iHtpv(x)lm) bn-m,v· 

(16.100) 

(16.101) 

Therefore, in the presence of massless fermions (i.e. Q5 is conserved), 
tunnelling between vacua with different winding numbers as discussed in the 
previous section is suppressed. 

Does this mean that the @-vacuum is irrelevant in such a situation? Not so, 
as the In) vacuum violates cluster decomposition. For example, in the 
vacuum state with n = 0, the expectation value for widely separated 
operators will not vanish 

L 
m 

(16.102) 
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because of the presence of 'abnormal vacua' with winding number n =I= 0. 
Eqn (16.102) also indicates spontaneous symmetry breakdown as the VEY of 
operators carrying chirality is nonzero. Thus the 8-vacuum is still relevant. 

What is the chiral property of the 8-vacuum? Under a chiral rotation by an 
angle a, we have 

i.e. the 8-vacuum is changed to another one with 8' = 8 + 2aNF. Thus the 
(gauge-variant) current conservation means that the theory is invariant 
under a rotation which changes its vacuum state 18) --+ 18'). This implies that 
in the presence of massless fermions 8 has no physical meaning: one 8 is as 
good as another! 

Small 8-oscillations-the Kogut-Susskind pole 

The situation described above is very much like that we encountered in the 
simple U(l) ).¢4 theory with SSB ofeqn (5.138). There, under U(l) rotations, 
the vacuum states can be changed into each other as indicated in Fig. 5.3. 
Thus we can interpret the parameter 8 in QCD as the parameter which 
characterizes the direction of symmetry breaking. However there is a crucial 
difference between these two spontaneously broken U(l) theories. In the U(l) 
theory of eqn (5.138) all the vacuum states connected by rotations are 
equivalent. In QCD the parameter 8 is like the coupling constant; different 
values of 8 correspond to different Hilbert spaces. In the U(l) theory of 
(5.138) small oscillations around the true vacuum in the angular direction (n) 
which do not cost any energy (i.e. zero energy excitations) are shown to be 
interpretable as physical massless particles (the Goldstone boson). On the 
other hand changes in the QCD 8-parameter are meaningless just as the 
pseudomomenta cannot be changed in the case of periodic potential. Hence 
small oscillations in the QCD 8 correspond to an unphysical massless 
particle. But this is just the Kogut-Susskind pole which is required to solve 
the U(l) problem. 

The strong CP problem 

While the presence of instantons apparently resolves the U (1) problem, their 
presence also implies a 8-term in the effective Lagrangian (16. 71) which 
violates P and conserves C (hence violates CP). In fact the stringent 
experimental upper limit on neutron dipole moment (see §12.2) can be 
translated into a bound on the QCD 8 parameter, 8 < 10- 9 . This is the 
strong CP problem. How to give a rationale for such a small value, 
considering that it is a strong interaction parameter and a priori we would 
expect it to be 0(1 ). One would think that the only plausible solution is that 8 
is effectively zero. Various ways to achieve this have been suggested; among 
them we list the following three approaches (see, for example, Wilczek 1978). 
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(The first two mechanisms both suggest that there may in fact be an exact 
global U(l) symmetry and the S-matrix, as we have explained above, is 
independent of e so that it can be rotated to zero.) 

(1) Zero mass quark. The exact U(l) symmetry comes about because one 
of the quark masses (presumably m0 ) is zero. However all current-algebra 
calculations indicate that this is an extremely unlikely possibility. 

(2) The axion solution. Increase the number of Higgs mesons so that even 
if mu.ct # 0, QCD together with the standard electroweak theory still has a 
global U(l)PQ symmetry (Peccei and Quinn 1977). However one of the 
scalars (the axion) plays the role of Goldstone boson for this U(l)p0 . It is 
massless at the classical level and picks up a small mass (much like the ri­
meson) only through the axial anomaly and the instanton interaction 
(Weinberg 1978; Wilczek 1978). As the simplest version of this approach, 
constructed within the framework of the SU(2) x U(l) model, is ruled out by 
experiment, one is forced to postulate such a structure at the SU(5) GUT level 
producing an 'invisible axion' with infinitesimally small mass and couplings 
(Kim 1979; Dine, Fischler, and Srednicki 1981). However, this may pose 
problems for the standard theory of cosmology (see, for example, Sikivie 
1982b). 

(3) Soft CP. It has been suggested that perhaps one should set e = 0 as a 
symmetry requirement ('strong interaction conserves CP !'). However this in 
itself is not enough, since higher-order (CP-violating) weak interactions will 
generate y5-dependent quark mass terms. To eliminate them one has to apply 
chiral rotations which in turn induce a B-term. To have a calculable and small 
( < 10- 9 ) Bwb the CP violation in weak interactions must be soft (i.e. by 
operators with dimension less than four). So far no realistic model has been 
constructed. 

Thus we can see that none of the suggested solutions are completely 
satisfactory and the value of e remains a puzzle for QCD. For a recent review 
of QCD including topics such as instantons and the U(l) problem, etc. the 
reader is referred to Llewellyn Smith (1982). 

Finally, we comment very briefly on the role of instantons. For a very 
small coupling constant g, corresponding to very small distances r, tunnelling 
is negligible as indicated by eqn (16.63) and QCD perturbation theory can be 
used in appropriate circumstances as shown in Chapter 10. For some 
intermediate values of gone can continue to use perturbation theory but with 
allowance made for vacuum tunnelling. This produces (Callan, Dashen, and 
Gross 1980) a sudden rapid increase in g as r is increased from zero to a 
distance comparable to the hadron size ( 0.5 fm). This is compatible with 
the phenomenological quark models and with the results of lattice gauge 
theory calculations discussed at the end of §10.5. For large distances there is 
at present no reliable method for calculating the effect of instantons (in fact it 
is not even clear whether they are relevant at all) although they do remind us 
that the QCD vacuum must be very complicated. 
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Notations and conventions 

Metric 

Metric tensor 

Contravariant coordinate 

Covariant coordinate 

Scalar product 

Derivatives 

where 

Four-divergence 

Pauli matrices 

-! j) (A.I) 

xµ = (x0 , x 1, x 2 , x 3 ) = (t, x, y, z) = (t, x). (A.2) 

Xµ = 9µvx" = (t, -x). 

A· B = AµBµ = Aµ9µv B. = A0 Bo - A· B. (A.3) 

aµ = = - v) a = = v) ax,, at µ axµ at 

r,iik: totally antisymmetric 

tr(cr; a) = 2Jii. 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

8 123 = I. (A.9) 

(A.IO) 

Completeness: L (a;)ab(a;)cd = 2(()bc bad - -!- (jab bed). 
i 

(A. I I) 

Dirac matrices 

{ yll, f} = 2gll" 

y,, = (yo, y) Yµ =(yo, -y). 

(A.12) 

(A.13) 

(A.14) 
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Spin matrix 

495 

(A.15) 

(A.16) Charge conjugation 

Identity Y11.YpY;. = U11.pY;;. + Up;;.Y,,_ - Ua.;;.Yp + ieµ,,_p;;.YµYs· 
(A.17) 

Fierz transformation 
Let rs= 1, rv = Yµ• rT =<Iµ., rA = YµYs. rp = Ys· (A.18) 

Then I gi(rJ,,_p(ri)1a = I gi(ri)«a(ri)1p (A.19) 
i j 

where the indices i, j run over the set S, V, T, A, and P and the UiS are 
related to Yi by 

9s 4 12 -4 1 Us 

9v 1 -2 0 -2 -1 Uv 

YT 
1 1 0 -2 0 1 

UT =4 2 2 

YA -1 -2 0 -2 UA 

UP -4 12 4 UP 

Dirac representation 

y0 =G 1=(0 
-a Ys = 

Hermitian conjugate 

(yO)t =YO (yk)t = -yk, (k = 1, 2, 3) ut = uµ• 
µv 

Spin matrix s = t( 
Charge conjugate C = iy2 • 

Plane wave and Dirac spinor 

Incoming plane wave e-ik-x =exp[ -i(wt - k ·x)]. 

Outgoing plane wave eik-x = exp[i(wt - k ·x)] 

where w = (k2 + m2 ) 112 • 

Space-time translation A(x) = eip·x A(O) e-ip·x 

where pµ = (H, p) is the energy-momentum operator. 

Klein-Gordon equation (82 + µ2 )</>(x) = 0. 

Dirac equation (iyµ oµ - m)l/J(x) = 0 

Y1 = Ys· 

In momentum space (JI - m)u(p, s) = 0, (JI+ m)v(p, s) = 0 

where u(p, s), v(p, s) are Dirac spinors. 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 
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Normalization 

u(p, s)u(p, s') = 2m fJ ••. v(p, s)v(p, s') = -2m fJ... (A.3:l) 

Projection operators 

L ua(p, s)up(p, s) = (p + m)ap 
s 

(A.33) 

Gordon decomposition 
I 

u(p, s)yµu(q, s) = 2m u(p, s)[(p + q)µ + i<r(p - q).]u(q, s) (A.34) 

1 
u(p, s)yµy5u(q, s) = 2m u(p, s)[(p - q)µYs + iuµ•(p + q).Ys]u(q, s). 

In the Dirac representation (A.21), Dirac spinors are given by 

u(p, s) (E + m)' ( E•;P m) x, v(p, s) (E + m)' (Ea: pm ) x, (A.JS) 

s = 1, 2 

where Xi= G) X2 = G) 
Normalization of states, cross sections and decay rates 

One-particle states are normalized as 

(p, oclp', oc') = 2E(2n)3 fJ 3(p - p') (Jaa' 

(A.36) 

(A.37) 

where oc, oc' label the spin and/or internal symmetry indices. The projection 
for a one-particle state 

I d3p 
Ip, oc)(p, ocl = (2n)32E oc)(p, ocl 

I d4p 2 2 ""' = (2n)3 b(p - m )(}(po) 7 Ip, oc)(p, ocl. (A.38) 

The transition probability per unit time per unit volume for the process i f 
is 

(A.39) 

where (flTli) is the covariant T-matrix and is related to the S-matrix by 

(A.40) 

Decay rate 

The transition probability per unit time per unit volume to a specific final 
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state f is given by 

dr(i - f) = w(i - f) dNr 
Pi 

where Pi = is the density of the decaying state and 

n d3p. 
dNr = })

1 
is the density of the final state. 

The total decay rate is 

1 f n d3p. ( n ) 
r(i - f) = }I (2n)4 .:54 Pi - Jl Pi l<f1Tli)l2S 
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(A.41) 

(A.42) 

where Sis the statistical factor which is obtained by including a factor 1/m ! 
if there are m identical particles in the final state, 

Scattering cross-sections 

1 
S=fl-· 

i m;! 

The cross-section for a1 + a2 - f is given by 

w(a1 + a2 - f) 
da(a1 + a2 - f) = dNr 

.f; 

where .f; is the flux of the incoming particles and is given by 

.f; = P1P2V 

(A.43) 

(A.44) 

(A.45) 

where p1, p 2 are the densities of the initial state and vis the relative velocity 
between two particles in the initial state. The flux factor .f; can be written in 
the centre-of-mass system as 

.f; = 2E12E2 lh -!!3_1=41p1E2 - P2E1I = 41P1l(E1 + E2) 
E1 E2 

= 4[(p1 ·p2)2 - mimn 112 (A.46) 

Note that .f; in eqn (A.46) is expressed in terms of the Lorentz-invariant 
quantity. Hence it is valid in any other frame. 

The cross-section is given by 

da = (2n)4 + PJ P:/2 l(flTli)l2 TI d3fi S 
4[(P1 ·p2) - m1m2J i;l (2n) 2Ei 

(A.47) 
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Feynman rules 

In field theory, the standard procedure for calculating any physically 
interesting quantities in perturbation theory is summarized in a set of 
Feynman rules. Efficient use of these rules will greatly simplify the 
calculation. The most important parts of the Feynman rules are the 
expressions for the propagators and vertices, which characterize the structure 
of the theory. In this appendix, we will outline a practical method for 
deriving the propagators and vertices for the most general situation. We will 
also summarize the results for the physically interesting cases at the end. 

A practical guide to the derivation of Feynman rule 
propagators and vertices 

The i..cj>4 case 

We will first discuss the simple case of A.¢4 theory for the spin-0 boson and 
then generalize the result to more complicated cases. When the A.¢4 theory 
Lagrangian is divided into the free part !l' 0 and the interaction part .!l'1 

!l' = !l' 0 + !l', 
.!l'o{</J) = t{o,,¢)2 - tµ2q,2 

""' ;., 4 .!l',(.,,) = - 4! <P ' 

(B.l) 

(B.2) 

(B.3) 

the generating functional for the Green's functions is given by 

W[J] =I [d</J] exp{i I [!l'0(</J) + .!l'1(¢) + J(x)</J(x)] d4x} 

= exp{i I [21 ( -i ;1)] d4x} W0 [J] (B.4) 

where 

Wo[JJ = I [d</J] exp{i f d4x[!l'0(x) + J(x)</J(x)] }· (B.5) 

Since the free Lagrangian !l' 0 given in (B.2) is quadratic in the fields, the 
integral in eqn (B.5) can be evaluated as follows. Write (B.5) as 

Wo[JJ =I [d</J] exp{i I [!(o,,¢)2 - !µ2¢2 + J(x)</J(x)] d4x} 

= f [d</J] exp{i f [!</J(x)P(x)</J(x) + J(x)</J(x)] d4x} (B.6) 
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where 
P(x) = -(82 + µ2 - ie) (B.7) 

is a Hermitian operator. In (B.6) we have inserted a factor 
exp{-! J e</>2 d4x}, with e > 0, to make the path integral convergent. Let 
</>c(x) be the solution of the classical free-field equation in the presence of the 
external source J (x) 

P(x)</>c(x) = -J(x). (B.8) 

Using the usual Green's function technique, this equation can be inverted. 
Defining AF(x) by 

we have 
P(x) AF(x - y) = <54(x - y), 

</>c(x) = - f AF(x - y)J(y) d4y. 

It is easy to see that for the P(x) given in (B.7), we have 

A ( ) f d4k -ik·x A (k) 
LlF x = (2n )4 e LlF 

with 

(B.9) 

(B.10) 

(B.11) 

(B.12) 

We now change the integration variable in eqn (B.6) from <f>(x) to </>'(x) 
defined by 

</>(x) = </>c(x) + </>'(x). (B.13) 

Then (B.6) becomes, as in the case of usual Gaussian integrations (see eqns 
(l.49) and (1.81)) 

Wo[J] = N exp{-i f [!J(x) AF(x - y)J(y)] d4x d4y} (B.14) 

where the normalization factor 

N = f [d</>'] exp{i f !</>'(x)P(x)</>'(x) d4x} (B.15) 

is independent of the source function J(x) and is irrelevant for calculating the 
connected Green's function. The generating functional is then given by 

W[J] = Nexp{i J (-i :J)]} d4x1d4x2J(xi) 

x AF(x1 - X2)J(x2)} (B.16) 

and the Green's function can be obtained from 

(B.17) 
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Using the rule for functional differentiation, 

bl(y) b f i:4( ) 4 4 
bJ(x) = bJ(x) u y - x J(x) d x = b (x - y) (B.18) 

it is not difficult to see that the functional differentiation in eqns (B.16) and 
(B.17) will reproduce Wick's theorem. 

The connected Green's functions can be obtained by differentiating the 
ln W[J] functional (eqn (1.76)) 

·n b" ln W[!J I _ (n) _ 
1 b ( ) b ( ) - G {x1 · · · Xn) - (OIT{cp{xi) ... cf>{xn))IO)conn· 

.lix1 ... Jixn J=O 

(B.19) 

The free propagator, a two-point function, zeroth-order in the coupling A., 
can be obtained from ln W0 [ J] as 

. 2 b2 ln W0[J]I . 
(OIT{cf>(x)cf>(y))IO)rr •• = 1 M(x) bJ(y) J=o = 1LlF(x - y). (B.20) 

To get the basic vertex in A.cf>4 theory, we take the four-point function 
G<4>(x1 ... x4) and keep terms lowest order in A.. After some algebra we 
obtain 

a<4>(x1 ... x4) = -iA. f illF(x1 - x)iLlF(x2 - x) 

x iLlF(X3 - x)illF(X4 - x) d4x 

or, in momentum space, 

where 

(2n:)4 b4(k1 + k 2 + k 3 + k4)G<4>(k1 ... k4) 

(B.21) 

(B.22) 

= f 61 d4x; e-ik;X;G(4)(X1 ... X4). 

(B.23) 

After removing the propagators for the external lines, the four-point lPI 
function (the vertex) is 

(B.24) 

To summarize, in A.cf>4 theory, the propagator (B.12) and the vertex (B.24) 
are given by 

k i 
--+--

k 2-µ2+ie (B.25) 

' / ' ,, x -iA. (B.26) 
,," ' 

/ ' 
Note that the propagator in momentum space is just the Fourier transform 
of the inverse of the operator P(x) which appears in the quadratic term of the 
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free Lagrangian (B.6). The vertex is just the coefficient of the interaction term 
multiplied by the factor i and by the number of permutations of identical 
particles in the interaction term. 

Generalization 

To generalize the above result to the case of more complicated interactions, 
consider the Lagrangian 

.P(x) = !</J;(x)Pii</Jix) + xt(x)Vii(x)xix) + i/i;(x)Xii(x)inx) 

+ .P,( </J, x, x*, t/!, if/) (B.27) 

where </J;(X;) denotes a set of real (complex) boson fields that may be scalar or 
vector fields and t/J; the set of fermion fields. The index i stands for any spinor, 
Lorentz, isospin, etc. index. P, V, and X are matrix operators that may 
contain derivatives and must have an inverse. X and V are taken to be 
hermitian operators while P is taken to be a real symmetric operator 

.xt = X, vt = V, and pT = P. (B.28) 

It is understood that they contain the ie factor so that the path integral will be 
convergent. A general term in .P1(x) has the explicit form: 

.P, = I d4x1 d4x2 ... 

°'•' ,· ,· ,· ,· (x;x1,X2 ... Xm ... Xn ... XP"'Xq ... ) 1 • • • Ill••• n • • • p • • • q• • • 

x l{i;,(X1) ... t/!;,,,(Xm) ... </J;,,(Xn) ... ... X;iXq) ... 

(B.29) 

Define the inverses of P, V, X by 

L Pii(x)PJi 1(x - y) = bu b4 (x - y) 
j 

L V;i(x) VJi 1(x - y) = bu b4 (x - y) 
j 

L Xii(x)Xil 1(x - y) = bu b4(x - y) 
j 

and their Fourier transforms 

(B.30) 

(B.31) 
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Then the propagators are given by 

. "' 

x 

j--+-

M(k);i = I d4x eik ·x (01 T(c/>;(x)cf>j(O))JO) = i[.P- 1(k)]ii 

,M(k);j = I d4x eik-x(OI T(xr(x)xj(O))IO) = i[ v- 1(k)]ij 

SF(k)ii = I d4x eik·x(OJT(r]/;(x)t/li(O))IO) = i[X- 1(k)]ii. 

(B.32) 

For the vertex we define 

"'· . (x· x x ) = __ 1 __ 2 e•k1(x-x1)+•k2(x-x2)+ ... Id4k d4k . . 
••w2 ... , 1 • 2 • • • (2n)4 (2n)4 · · · 

x i;1; 2 ••• (ki. k 2 •• • ). (B.33) 

a. contains a factor ikiµ for every derivative o/oxiµ acting on a field with 
argument xi. The vertex is then given by 

1ck1,k2 ... )=i I I I I I 
{l. .. m-1} {m ... n-1} {n ... p-1} {p ... q-1} {q ... } 

x (- l)P&i1,i2(k1, k2 .. . ). (B.34) 

The summations are over all permutations of indices and momenta as 
indicated in Fig. (B. l ). The momenta are taken to flow inward. Any field ill 

FIG. 8.1. 

(or x*) corresponds to a line with an arrow pointing out; a field t/I (or x) has 
an oppositely directed arrow. The <P fields are represented by undirected 
lines. The factor ( - l l is only of importance if several fermion fields occur. 
There is a factor of ( - 1) for every permutation exchanging two fermion 
fields. 

For example, in ;.q,4 theory the interaction term can be written 

). 4 ).f 4 4 4 4 - 4 ! cP (x) = - 4 ! d Xi ••• d X4 <> (x - xi)<> (x - x2 ) 

x f>4 (x - x3) f>4 (x - x4 )c/>(x1)c/>(x2 )c/>(x3)cf>(x4 ) (B.35) 
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Then 

(B.36) 

and 

(B.37) 

The vertex is given by 

1ck1···k4)=i 2: a.(k1,kz,k3,k4) 
{1,2, 3,4) 

= i L (-Jc/4!) = -iA. (B.38) 
{l, ... ,4) 

This agrees with the result (B.24) obtained before. 

General Feynman rules 

Given the propagator and vertices we can now write down the Feynman rule 
for the computation of Green's functions. 

(a) Draw all topologically distinctive, connected diagrams at desired 
order; 

(b) In each diagram, attach a propagator to each internal line 

__ _,,, __ 
k k 2 i 2 . for a spin-0 boson 

- µ +le 

( i . ) for a spin-1/2 fermion 
P \P-m-Ieap 

Spin-1 boson propagators will depend on the theory; 
(c) To each vertex, assign a vertex function given in (B.34), derived from 

the relevant term in the interaction Lagrangian; 
(d) For each internal momentum knot fixed by the momentum conserv-. . . ., I d4k at10n at vertices, give a 1actor -)4 · 

(2n 
(e) Multiply the contribution for each diagram by 

(i) a factor ( -1) for each closed fermion loop: 
(ii) a factor ( -1) between graphs which differ from each other only by an 

interchange of two identical external fermion lines; 
(iii) a symmetry factor s- 1 with 

S = g TI 2P(nW• 
n;2,3 ... 

where an is the number of pairs of vertices connected by n identical self­
conjugate lines, f3 is the number oflines connecting a vertex with itself, and 
g is the number of permutations of vertices which leave the diagram 
unchanged with fixed external lines. 
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For example, 

g = 1,a2 = 1, f3 = 0, and S = 2! 

0 g = 1, a 3 = 1, /3 = 0, and S = 3! 

0 g = l,a. = 0, f3 = 1, and S = 2 

g = 2, a2 = 1, /3 = 0, and S = 4 

(f) The proper (or one-particle irreducible) Green's function r<•>(p 1 ... p.) 
comes from the one-particle irreducible (lPI) diagrams 

(i) For the connected Green's function a<•>(p 1 ... p.), attach propa­
gators for the external lines; 
(ii) For the scattering amplitude T(p 1 ... p.), put all the external lines on 

their mass-shell, i.e. pf = ml and provide external fermion lines with 
spinors: u(p) [or v(p)] for fermions [or antifermions] entering with 
momentum p; ii(p) [or v(p)] for fermions [or antifermions] leaving with 
momentum p. Provide external vector bosons with polarization vectors: 
aµ(k, Jc) [or a!(k, Jc)] for the vector boson entering [or leaving] with 
momentum k. 

Summary of J..<j>4 , Yukawa, QED and OCD propagators and 
vertices 

(a) A.<1>4 and Yukawa theory of scalar-fermion interactions. 

1 2 µ1 2 Jc 4 - -
2=2(8µ</J) -2</J - 41 ¢ +tf;(iy·8-m)tf;+igtf;y 5tf;<jJ 

scalar propagator: ---->----

fermion propagator: fl 

vertices: 

(b) QED. 

Fermion propagator: 
P 

k 

p 
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Photon propagator: = k 2 -
1 

.. [gµv + (e - I)kµkv/k 2 ] 
+ IC 

µ 

Vertex: A -ie(Yµ)ap 

p a 

e = 1 Feynman gauge 
e = 0 Landau gauge 

(c) Scalar QED. 

- 1 2 I 2 
:£ - -4 (oµAv - ovAµ) - 2e (oµAµ) 

+ [(oµ + ieAµ)</>]t[(oµ + ieAµ)</>] - µ2 </Jt<P _ (</Jt</>)2. 
4 

Scalar propagator: --7---
k 

-I 
Photon propagator: iDF(k)µv = -k2 . [gµv + ce - I)kµkv/k 2]. 

k +IC 

Vertices: 

e = I Feynman gauge 
e = 0 Landau gauge 

µ s µ v 

.?.-1e(p+p')µ 1...-i _ _ r-' 2 
,- '·' ie gµv 

/;;f ..,,., .... .... 

p p' p// ............ p' 

-j). 

(d) Non-Abelian gauge theory. 

y = _ (o Aa _ 0 Aa + gCabcAb Ac)(oµAav _ avAaµ + gCadeAdµAev) 
4 µv vµ µv 

- 2le (oµAaµ)2 - fja oµ(oµ (jac - gCabcAbµ)1{ 

+ V/[iyµ(oµ - igAaµra) - m]l/I 

+ [(oµ - igAaµRa)<f;]f[(oµ - igAtRb)</>] - - (</>t<f;)2. 
4 

Vector meson 
propagator: 

b a 

k µ 

j 

· 
. ab -I u k /k2 
IDF (k)µv = -k2 . [gµv + (e - l)kµ v ] 

+IC 

e = I Feynman-'t Hooft gauge 
e = 0 Landau gauge 

. ij lu 
Fermion propagator: ---'>--- 1SF(P)ap = . · 0 ) 

p p a -m+rn ap 
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Scalar propagator: 

Ghost propagator: 

Vertices: 

µ,a 

m---"J>---1 
k 

b·········>-·······a 
k 

-ig2 [C'"bC"d(KµAK,p -gµp g,A) 

+ c••c C'db (KµpKA' -gµ, KAp) 

+c•ad C'bC(gµ,gpA-gµAgp,) 

1 "'"'· q •• .:.\ p 

/;tT •• ••• 
c b 

For QCD we have 

'{/m 
= 

k2 - m2 +ii: 

· ijab 
"Aab(k) -1 
I F = k2 + ie. 

with a, b, c = 1, 2, ... , 8 

and the representation matrices 

(T")ij = (A.a/2)ij 

(Ra)lm = 0 

with i,j = 1, 2, 3. 

Ri; gauge Feynman rules for the standard SU(2) x U(1) 
theory 

Since these rules are slightly more complicated we provide some steps in their 
derivation. 

The gauge-fixing and FP ghost terms in the effective Lagrangian 

After spontaneous symmetry breaking the covariant derivatives of the scalar 
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field give rise to mixing terms between vector bosons and scalar particles 

(D,,</.>l(D"</.>) =[(a,, - - ig' }<t>' + (</.>)o)J 

x [(a" - ig - ig' + (</.>)o)J 

= igA"[-o,,</.>'t (</.>) 0 + (</.>t) 0 o,,<t>'] 

+ ig' [(</.>t) 0 o,,</.>' - o,,</.>'\</.>) 0] +.... (B.39) 

For practical calculations, it is more convenient to cancel such mixing terms. 
For this purpose we choose the gauge functions (9.27) to be 

f; = o,,Af + </.>'t I (</.>) 0 - (</.>t) 0 I</.>') 

f = o,,B" + ig' ( </.>'t(</.>) 0 - (</.>t)0 </.>') 

so that the gauge-fixing term (9.68) is of the form 

for SU(2) 

for U(l) 

Ygr = [o,,A" + </.>'t (</.>) 0 - (</.>t) 0 </.>') J 

(B.40) 

+ (<t>'t(</.>) 0 - (</.>t)o</.>')J· (B.41) 

To calculate the Faddeev-Popov ghost from these gauge conditions, we 
make the infinitesimal SU(2) gauge transformation, with gauge function 
u(x), 

or 

Then 

b</.>(x) = - i · u(x)<f.>(x) 

b</.>' = -i + (</.>)o). 

bf;= o,, [sijkuj - (o,,u;)] + + (</.>t) 0 )i · u (</.> ) 0 

+ (</.>t)0 Ii + (</.>)o)] 

bf= + (</.>t)o)i + (</.>t) 0 i + (</.>) 0 )] 

(B.42) 
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or 

bf;= {- oll[bij all -

-g{ (</})o (cf>)o bii + cf>'t (cf>)o + (cf>t)o ct>']}ui 

bf= -f e[ <cf>t)orj<cf>>o + cf>'t ¥ <ct>>o + <ct>t>o ¥ ct>']uj. (B.43) 

Similarly under the infinitesimal U(l) gauge transformation, with gauge 
function oc(x ), 

we have 

1 
bB = --o oc 

IL g' IL 

bcf>' = (cf>'+ (cf>)o), 

bf;= - e[2(cf>t)or;(c/>)o + cf>'tr;(c/>)o 

+ (cf>t) 0 r;c/>']oc 

(B.44) 

bf= - ;, {a2 + e[2(cf>t>o<cf>>o + cf>'t<cf>>o 

+ (cf>t) 0 c/>'] }oc. (B.45) 

We can combine (B.43) and (B.45) in matrix notation 

b{f;(x)) = f d4y(Mj(x, y)ii M 1(x, y);)(ui(y)/g) (B.46) 
\fix) Mj(x, y)i M 1(x, y) oc(y)/g' 

where 

M ( ) {all[b a Ak] 2;:[l<cf>>ol2 b ,i.1t LjLi (..!.) f X, Y ij = - ij IL - 96ijk IL + g 'o 2 ij + 'f' 4 'f' 0 

+ (cf>'t)o cf>']} b4(x - y) 

M1(X, Y)i = e[ (cf>t)or/cf>)o + cf>'t i (cf>)o + (cf>t)o i cf>'] 

x b4 (x - y) 

M1(x, y) = -{a2 + [21(c/>) 0l2 + cf>'\cf>)o + <cf>t)ocf>'J} b4 (x - y). 

(B.47) 
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The FP ghost-field Lagrangian (9.69) is then given by 

!!' - I d4 d4 ( t( ) \ )) (M1(x, y)ii M J(x, y)i)(w/y)). 
FPG - x y w; x , x x Mi(x, y)j Mi(x, y) x(y) 

Propagators and vertices for bosons and FP ghosts 

Define the physical vector bosons as 

w± = - 1-(A 1 :+ iA 2 ) µ .,/2 µ µ 

Zµ = cos - sin BwBµ 

Aµ = sin +cos BwBµ 

and write the scalar mesons as 

For the ghost fields we can define similar combinations 

+ 1 - . 
w- = .,/2 (w1 +1w2) 

Wz = cos Bww3 - sin Bwx 

wr = sin Bww3 + cos Bwx. 
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(B.48) 

With these definitions, we can easily work out the propagators from the 
quadratic part of the Lagrangian 2 1 + 2 3 +!!'gr+ !EFPG in eqns (11.37), 
(11.59), (B.41), and (B.48) 

W±www 

zwww 

q,± _____ _ 

</>2 ------

c/>1------

w± .................. . 

w ··················· z 

-i 2 2 
2 2 . [g"' + - l)kµk,/(k - z)] 

k-Mz+ie 

k 2 - + ie 

i 

-i 

-j 

Wy ••••••••••••••••••• -i 
k 2+ ie 

where = 1 't Hooft-Feynman gauge, = 0 Landau gauge, and = oo 
unitary gauge. 
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The boson vertices are 

Aigcos Ow[(k1-k2)AKµv +(k2"'"k3)µKvA+(k3-k1),K.1p] 

(k2) w-;_{k3) 

wtxwt 
ig2Sµy,J.p 

w-;. w; 

AµxA• 
-ie2Sµv,.lp 

wt w; 

ZµXZ, 

-ig2 cos2 OwSµ-y,1p 

w-;. wt 
as well as the AZWW vertex -iegcos Bw Sµv,J.p with Sµv,J.p = 2gµvg;.p­
gµ;.gvp-gµpgvJ.· In graphs below all charged boson lines are taken to be entering 
into the vertices. 
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<1>+ 
I 
I 
I 

Aµ w; 

/ 
/ 

/ 

r 

(V'V'Vw' 
/ " / " / " / "' / " / " / " / " / " <1>+ </>- <f>1 <f>1 <f>2 </>2 
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Inclusion of leptons and quarks 

p 
Propagator: 

p-m;+ie 

Vertices for leptons: l = (e, µ, 't), v1 = (v0 , Vµ, v,) 

for quarks q: p = (u, c, t), n = (d, s, b) with the CKM mixing matrix Upn of 
eqn (12.39). 

(µ 

I I 

_•g_ (1-y) Aw;. 

2./2 µ 5 

v I 

Zµ 

s ·4 igO Yµ (1-15) 
COSw 

v v 

Zµ 

S .4 igf} 'Yµ[(-1 +4sin2 8w) +Ys] 

I I 

<1>-
1 -igm1 

(1-Ys) 

v I 

"'· I 
I -igm1 

I I n n 

(µ 

q q 

w-

YµO-rs)UP• 

P n 

Zµ . 8 
_ig_y ((1--3 sin 20w)-Ysl 
4cos Ow µ 

p p 

Zµ 

4 c!:f}w 'Yµ[(l +Ys] 

n n 

r 
I -ig 
I --,- [m0 (1-y5)-mp(l+y5)) Upn 

P n 

t· 
I -jgm 

p p 

</>2 
I I -gmp 

p p 
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A0 = 0 gauge 482 
Abelian group 86, 128-9; see also U(l) 
action 3 

Yang-Mills theory in covariant gauges 259 
lattice field theory 326-31 
self-dual Euclidean gauge field 481 

Adler consistency conditions 155, 161 
Adler current algebra sum rule 137-41, 212-13 
Adler-Bardeen theorem 179 
Adler-Bell-Jackiw (ABJ) anomaly 173-82; see 

also anomaly 
Adler-Weisberger sum rule 158-60 
Aharonov-Bohm effect 458, 474 
algebra 

charge 130 
current 130-4, 136, 139-40 
SU(2) x U(I) 340-1 
SU(5) 431 

Altarelli-Parisi equation 312-14, 319-21 
angular momentum and monopole 455-6, 471-2 
anomaly 173-82; see also axial U(l) problem 

cancellation 
SU(3)c x SU(2)L x U(l)v 347-8 
SU(5) 432 

instantons 488 
non-Abelian cases 179-80 
non-renormalization theorem 179 
and renormalizability 278 
triangle diagram 176-9 

anomalous dimension 74, 77, 84, 307-11, 314, 322 
Appelquist-Carazzone theorem, see decoupling 

of heavy particles 
asymptotic freedom 84, 280-91, 322, 335 

applications 
e+e- 296-8 
IN 298-311, 316-22 

and confinement 322-3, 335 
discovery 280 
in non-Abelian gauge theories 284-7 
in gauge .theories with scalar mesons 289-90 
paramagnetic property of Yang-Mills vacuum 

287-9 
atomic parity experiments 370 
axial gauge 248, 254-7, 271, 317-18 

polarization sum of vector particles 271 
axial U(l) problem 294, 487-92; see also 11-mass, 

'1 -+ 3n, instantons, Kogut-Susskind pole, 
0-vacuum 

axial-vector current Ward identity anomaly 173-
1 82; see also anomaly 

axion 493 

B, see baryon number 
b-quark 122, 356 

B - L 418, 443,451-2 
BPH renormalization 39-45, 56, 67 
BRS transformation 273-6 
baryon masses 119-20, 165-6 
baryon number 

asymmetry in the universe 444-6 
baryon minus lepton number, see B - L 
conservation 

in QCD 292 
in standard electroweak theory 355 

non-conservation in GUT 442-6 
fl-decays 153, 336, 373 
bilocal operators 223-5, 299-300 
biunitary transformation 65, 293, 357-9 
Bjorken scaling, see scaling 
Bloch-Nordsieck theorem 316-17, 321 
bottom, see b-quark 

c-quark, see charm 
CP symmetry 

B-asymmetry in the universe 445-6 
electric dipole moment 385-6, 492 
Kobayashi-Maskawa theory 359-61 
neutral Kaon system 376-8, 383-5 
phases 356, 359-61, 442 
soft v. hard violation 386, 493 
strong CP problem 492-3; see also 0-vacuum 

Cabibbo angle 136, 210, 337, 356, 371, 373; see 
also Kobayashi-Maskawa mixing 

Cabibbo-Kobayashi-Maskawa (CKM) matrix, 
see Kobayashi-Maskawa mixing 

Cabibbo universality 373 
Callan-Gross relation 207-8 
Callan-Symanzik equation 70-7 
canonical commutation relations 4, 248 
canonical dimension 58-9, 61, 77; see also anom-

alous dimension 
canonical quantization formalism 3-11, 255 
Casimir operator 91, 408 
charge conjugation 412, 429, 445-6, 448; see also 

Majorana fermion 
charge quantization 346 

grand unification 430-1 
magnetic monopole 455, 469 

charm 121-2, 337; see also GIM mechanism, 
Zweig rule 

chiral symmetry 125-68, 294, 403, 488-92 
algebra 132, 136 
breaking 125, 151-2, 160-8 

Coleman-Weinberg mechanism, see radiative in­
duced spontaneous symmetry breaking 

collinear singularities 317; see also mass 
singularities 
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colour 123-4, 291, 401 
anomaly cancellation 348 
e + e - hadronic total cross-section 216 
n°-+ 2y 182 
fractional quark charge 431 
magnetic charges of GUT monopole 474 

colour flux tubes 323 
composite field operators 62-6, 73, 221 

mixing under renormalization 65-6, 307-10, 
314 

composite Higgs particle 401-2 
condensate, see vacuum expectation value 
confinement 124, 279, 322-3 

and asymptotic freedom 322-3, 335 
criteria 331-3 
linearly rising potential 323, 333-4 
Wilson loop 331-3 

conserved vector current (CVC) hypothesis 136 
cosmology; see also baryon number asymmetry, 

cosmological bound on neutrino masses 
closed, open, flat universe 415--16 
critical mass density Pc 415-16 
Hubble's law and constant 415 
primodial 

blackbody photon radiation 415-16, 445 
helium abundance 415, 445 
neutrinos 416 

coupling constant; see also asymptotic freedom, 
gauge field coupling, pion-nucleon 
coupling 

definition 36, 52, 59, 81-2 
dependenci: on subtraction point 81-2 
dimension and renormalizability 57 
effective 75-6, 81-5, 295-6, 437-41 
renormalization 36-7, 285 
unification 437-41 

counterterm 
BPH renormalization 40-5, 58-60 
composite operator 64-6 
gauge theory renormalization 267-8 
Goldstone boson mass, absence of 186-7 
minimal subtraction scheme 78-80 
soft symmetry breaking 186-8 

covariant derivative 230, 232, 233 
as connection 236 
SU(2) x U(l) 348 
SU(5) 439 

covariant gauges 257-67; see also Landau gauge, 
Lorentz gauge, R, gauge, 't Hooft­
Feynman gauge, unitary gauge 

currents 
anomaly 480, 488-9 
axial-vector 173-4, 223, 488 
commutator 130, 136, 200-1, 223-5 
physical 

electromagnetic 134, 200, 222, 340 
weak 

charged 135-6, 204, 337, 340, 353 
neutral 336, 342; flavour-conserving 353-

4, 362, 364-71; strangeness changing 
337, 362-3, 371-2, 378-83 

symmetry (Noether) 127-8, 134 
topological 463 

current algebra 125, 180, 279, 488 
Adler's sum rule 137-41 
soft pion theorems 151-67 

Index 

Adler's consistency condition 155, 161 
Adler-Weisberger sum rule 158-60 
'1 -+ 3n problem 167, 490 
Goldberger-Treiman relation 153-5, 160, 

161 
n° -+ 2y 180-2 
nN scattering length 159 
CT-terms 157-9 

nN CT-term 161, 165-6 
pseudoscalar meson masses 119, 164; 

Dashen sum rule 167; 11-mass problem 
488-92 

current commutators 130-2, 136, 201, 223-5; see 
also current algebra 

current conservation 127, 144, 170, 174, 201 
symmetry conservation laws, see Noether 

theorem 
topological conservation laws 463-4 

current--<:urrent interaction 
baryon number nonconserving current 443 
charged weak current, see V-A interaction 
neutral weak current 354, 365 

dabc symbol 163, 432 
Dashen sum rule 167 
decoupling of heavy particles 409, 436, 437-41 
deep Euclidean limit 

asymptotic behaviour of Green's functions 73-
7, 81, 280 

deep inelastic IN scattering 199-214, 218-26 
deep inelastic scattering 84, 199 
dimensional transmutation 196-7 
diagonalization of mass matrices 357-9 
diquark 442; see also leptoquark 
Dirac monopole 453 

quantization condition 455-60, 469 
and angular momentum 455--6 
string 456-60, 470 
and 't Hooft-Polyakov monopole 469-71 
Wu-Yang formulation 460 

Dirac quantization condition 455-60, 469 
Dirac string 456-60, 470 
direct product group 87 
dispersion relation 159-60, 301-2 
divergences 30, 33 

disjoint 45 
index of 57, 59, 188 
linear 34, 176 
logarithmic 33, 34, 176 
nested 45 
overlapping 45 
power counting method 56 
primitive 33, 44 
quadratic 34, 42, 50, 437 
superficial degree of 40-1, 43, 57, 73 

double P-decay, neutrinoless 414 
dual field 454, 480 

self dual field 481 
duality transformation of Maxwell equation 454 
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Yan processes 
quark-parton model 216-18 
perturbative QCD 322 
W and Z production 394 

dynamical fermion masses 168, 408; see also 
constituent v. current quark masses 

dynamical symmetry breaking 401-9; see also 
composite Higgs particles, technicolour 

e+e- annihilation; see also forward-backward 
asymmetry in e + e - --+ µ + µ - , quarkonium 

jets 216 
total hadronic cross-section 

colour 216 
free field singularities 223-4 
QCD corrections 296-8 
quark-parton model 215-16, 291 
ratio R 215-16, 224 

effective potential formalism 189-91 
eightfold way 90, 114, 116-21 
electric charge; see also charge quantization 

as gauge coupling 230 
in electroweak theory 340-2, 346-8, 353 
and Weinberg angle 353 

electric dipole moment 385-6, 492; see also CP 
electromagnetic current, see currents 
electroweak unification 336, 339-40 
r1-mass problem 488-92; see also axial U( l) 

problem 
11--+ 3it 167, 490; see also axial U(l) problem, 

isospin violation by strong interactions 
energy-momentum tensor 309-10 
Euclidean field theories 

fermion 328 
gauge theory 479 
scalar 326 

Euclidean gamma matrices 328 
extended technicolour 406-9 

f"b' symbol 98, 131-2, 163 
factorization of singularities 296, 298, 315-16, 

321; see also operator product expansion 
Faddeev-Popov 

ansatz 254 
determinant 253-4, 257-8 
ghosts 258, 261-3, 269-73 

absence of ghosts in Abelian case 257; in 
axial gauge 255, 273; in lattice gauge 
theory 333 

BRS transformation 274 
loop 263, 270, 285 
and unitarity 273 
Ward identities 272, 277 

Fermi constant 135, 204, 336, 339, 353, 373 
gauge boson mass 353, 355 

Fermi theory of P-decays 336 
Fermion family replication problem 363, 429; see 

also generation 
Fermion masses; see also chiral symmetry, quark 

masses, vacuum tunnelling 
Dirac and Majorana types 412-14 
mass matrix 357-9; see also biunitary trans­

formation, mass eigenstates 
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in theories with spontaneous symmetry break-
ing 151 

in Weinberg-Salam model 351, 357. 395 
in technicolour theories 405-9 
in minimal SU(5) model 449-51 

ferromagnetism 142-3 
Feynman parameters 46 
Feynman rules 3-4, 22, 498-512 

Abelian R, gauge 264-5 
covariant gauges 259-63, 504-6 
fermion loop 23, 29 
A.</J4 10-11, 183, 186, 498, 504 
path integral quantization 498-503 
QED 504-5 
R, gauge Weinberg-Salam theory 506 
scalar QED 505 

Fierz transformation 354, 382, 443, 495 
fine structure constant (at Mw) 388, 438 
fixed point 82-3; see also renormalization group 
form factors 153, 202; see also structure functions 
forward-backward asymmetry in e + e - --+ µ + µ -

368-9 
four-fermion effective Lagrangian, see current­

current interaction 
functional integration 3, 12, 23 

GIM mechanism 337, 262-3, 371-2, 378-83, 420, 
427; see also weak neutral current, charm 

mass insertion 381-2 
power v. logarithmic suppression 382-3 

YA 153, 160 
GUT, see grand unification 
gauge; see also Euclidean gauge theory, Higgs 

phenomenon, lattice gauge theory. pure­
gauge, instantons, solitons 

coupling constant 230, 232, 234-5; see also 
electric charge, coupling constant 
unification 

field 230, 232, 234, 238, 240 
couplings 

fermion 231, 263 
ghost 262 
self 234, 262 

transformation 
gauge 230, 232-4, 479 
singular 457-9 

topological properties, see instantons. 
solitons 

fixing conditions 242, 248, 252, 258-9; see also 
A0 = 0 gauge, axial gauge, covariant 
gauge, renormalizable gauges, unitary 
gauge 

absence in lattice gauge theories 333 
259, 261, 264-7, 274, 285-6, 426, 

505-9 
symmetries (interactions) 

Abelian 229 
non-Abelian (Yang-Mills), 231 
eigenstates 356, 371, 410, 430, 447; see also 

mass eigenstates 
theories, see QCD, QED, QFD, Weinberg­

Salam theory, GUT 
history and origin of name 235-6. 
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Gaussian integral 13, 19, 249, 256-8; see also 
Grassmann algebra 26-9, 258 

Gell-Mann-Nishijima relation 115, 135 
Gell-Mann-Okubo mass formula 119-20, 164, 

166 
generating functional 16-21, 23, 29, 189, 249, 

255-61, 275; see also vacuum-to-vacuum 
transition amplitude 

generation 340, 355-63, 429, 447; see also fermion 
family replication problem, kinship hy­
pothesis, interfamily couplings 

generator (symmetry group) 88-90; see also 
Noether theorem, SU(2), SU(3), SU(n), 
SU(2) x SU(2), SU(3) x SU(3), SU(5) 

geometry of curved space 236-8 
Georgi-Glashow models 

S0(3) 341-2, 466-72 
SU(5) 428-52, 472-5 

Ginzburg-Landau theory 143 
Glashow-Weinberg-Salam theory, see 

Weinberg-Salam theory 
global symmetries 86, 125-8; see also B, B - L, 

chiral symmetry, lepton number, muon 
number 

gluons 124, 208-9, 214, 292, 312-14, 322-3, 331, 
404--5, 432 

Goldberger-Treiman relation 153-4, 160 
Goldstone boson 144--5; see also pseudo­

Goldstone boson, would-be-Goldstone 
boson 

in Abelian case 147-9 
and Higgs phenomenon 243 
Kogut-Susskind pole and axial U(l) problem 

490-2 
in er-model 150 
in strong interactions 151-2 
and technicolour idea 403-5 

Goldstone theorem 144--52, 240 
Abelian symmetry case 147-9 
non-Abelian symmetry case 149-51 

grand unification 428-52, 472-5 
baryon number nonconservation 442-6 
charge quantization 430, 472 
coupling constant unification 437-42 
gauge hierarchy problem 402-436 
lepton-quark mass relation 446-51 
monopole 453, 472-5 

Grassmann algebra 23-9, 274 
Green's function 8-10, 14--20, 189 

amputated 10, 36 
asymptotic behaviour 73-7 
composite operators 62-5, 70, 73 
connected 8-9, 18, 20-1, 36 
Euclidean 16-1 7 
one-particle-irreducible 31, 36 
renormalized v. unrenormalized 39, 171 

Gross-Llewellyn-Smith sum rule 217 
Group theory 86-90 

group parameters 88, 90 
rank 90 

Heisenberg picture 6, 11, 126 
helicity amplitude 205, 208, 343 
Higgs particle 243, 244, 263 

Index 

elementary v. composite Higgs 401-2 
composite Higgs (technicolour models) 402-9 
charged Higgs 400 
triplet Higgs 418-19, 466-7 
in Weinberg-Salam theory 351, 355, 394-400 

couplings to fermions 349-50, 357, 395 
couplings to gauge bosons 390, 395 
mass 351, 396-8 
production 398-400 

Higgs phenomenon 240-7 
Abelian case 241-3 
non-Abelian case 243-7 
in Weinberg-Salam theory 348-52 
in S0(3) model 466-7 
in SU(5) GUT 434--7 

homotopic classes 477 
S 1 ---> S 1 477-8 
s 2 ___, s 2 467, 476 
S 3 ---> S 3 478-9 

hypercolour, see technicolour 
hypercharge 115 

infinite momentum frame 140 
infrared divergences 316-17, 321 
instantons 292, 476-93; see also axial U(l) prob­

lem, axion, anomaly, homotopic classes, e­
vacuum, strong CP problem 

and path integral formalism 484, 487 
size 481 
vacuum tunnelling 482-7 

interaction picture 6 
interfamily couplings, suppression 373-4, 447-8 
intermediate vector boson 

charged (W) 135, 339, 342-4, 351-3, 379, 386-
94 

neutral (Z) 344, 351-5, 364--9, 386-94 
isospin 90, 114--15, 129; see also SU(2) 

and chiral symmetry 125, 167 
structure of 

er-term 157-8 
nN amplitude 159 

violation 
by electromagnetism 115, 167 
by strong interactions 166-7 

J /ijl 122; see also charm 
Jacobi identity 89 
jets 216, 322 

K0-K0 system 374--85; see also GIM, CP vio­
lation, charm 

KL-Ks mass difference 372, 377, 380-1 
CP parameters 376-8, 383-5 

KM-matrix, see Kobayashi-Maskawa matrix 
kink 462 
Kinoshita-Lee-Naunberg theorem 317 
kinship hypothesis 448 
Kobayashi-Maskawa mixing matrix; see also 

Cabibbo angle, quark mixings 



Index 

CP violation theory 361, 378, 383-6 
GIM mechanism 380--3 
GUT (kinship hypothesis) 449 
leptonic mixings 361, 410 
in W-decays 388-90 

Kogut-Susskind pole 492 

ladder diagrams 320 
Landau gauge 196, 263, 505 
Landau singularity 84 
lattice field theory 324-31 

fermion field 328-9 
gauge field 329-35 
link variable 330 
Monte Carlo calculation 325, 335 
plaquette 330, 334 
scalar field 326-8 

lepton flavour number 362, 409; see also lepton 
mixing angles, muon number, µ ---> ey, 
neutrino masses 

lepton nucleon scattering; see also neutrino nu­
cleon scattering 

Bjorken scaling and quark-parton model 199-
214 

Altarelli-Parisi equation 312-13 
light-cone singularities in free field theory 

224-6 
QCD calculations, operator product­

expansion and renormalization group 
equation 298-311; perturbative 316-22 

sum rules, see Adler, Gross-Llewellyn-
Smith, momentum sum rules 

current algebra, testing, see Adler's sum rule 
elastic 201-2 
inelastic 84, 134-41, 199-214, 224, 298--311, 

316-22, 369 
polarized eD asymmetry 370-1 
weak neutral current structure, 369-71 

lepton number 355, 414, 418 
leptonic mixing angles 361, 410; see also neutrino 

masses and oscillations 
leptonic weak charged current 136, 204, 337 
leptoquark 442; see also diquark 
Lie algebra 89, 91, 127 
Lie groups 87-8, 433 
light-cone singularities 218-26, 299-300 
Linde-Weinberg bound on Higgs mass 396-8 
linearly rising potential 323, 333, 334 
loop expansion 191-2 

).<jJ4 193-6 
scalar QED 196-8 
as expansion in Planck's constant 192 

local symmetries, see gauge symmetries 
Lorentz gauge 248, 259 
low energy theorems 

single soft pion 153-5 
two soft pion 156-67 
soft photon 156 

magnetic current 454 
magnetic moment of gauge vector particle 288 
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magnetic monopole 453; see also Dirac 
mo.nopole, grand unification monopole, 
sohtons, 't Hooft-Polyakov, topological 
conservation laws 

and charge quantization 454-5, 469 
and angular momentum 455-6, 471 

Majorana mass 412-14; see also charge conjuga­
tion, neutrino mass, neutrinoless double 

neutrino-antineutrino oscillation 
mass; see also fermion, Higgs, pseudoscalar 

meson, neutrino, quark, vector meson 
masses 

eigenstates 356, 371, 410, 430, 447-9; see also 
gauge interaction eigenstates 

effective (running) 81, 449-51 
insertion 382; see also GIM mechanism 
renormalization 30, 34, 449-51 

Goldstone boson 186-7 
self 32-5 
singularities, see collinear singularities 

Meissner effect 240--1, 323 
minimal gauge coupling 231, 232 
mixings 

composite operators under renormalization 
65-6, 309-10 

lepton couplings 361, 410; see also lepton 
flavour number 

neutral vector bosons in SU(2) x U(l) elec­
troweak theory, see Weinberg angle 
ro-<jJ' 120--1 

quark couplings 359, 371-3; see also quark 
mass matrix, Cabibbo angle, KM mixing 

momentum sum rule 213-14, 308-10 
most attractive scalar channel (MASC) 408 
multiplicatively renormalizable 39, 64-5, 73, 77 
µ ---> ey 362, 409, 420--7 
muon number, 362, 409; see also lepton flavour 

number 

Nambu-Goldstone boson, see Goldstone boson 
neutr!no flavour counting and Z decay 393 
neutrmo mass 361, 409-20; see also lepton flavour 

number, neutrino oscillations, neutrinoless 
double 

cosmological bound 415-16 
Dirac v. Majorana types 412-14 
in GUTs 418 
from radiative correction 417 
in SU(2) x U(l) models 417-19 

neutrino electron scatterings 338, 354, 364-8 
neutrino-nucleon scattering 

Bjorken scaling and quark-parton model 204-
14 

testing current algebra (Adler sum rule) 137-41 
weak neutral current (Weinberg angle) 369-70 

neutrino oscillations; see also neutrino mass 
mass v. gauge interaction eigenstates, sola; 
neutnno problem 

flavour oscillation 410-12 
neutrino-antineutrino oscillation 420 
oscillation length 411 

Noether theorem 126-8 
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non-integrable phase factor 329, 332 
nonexceptional momenta 73 
non-leptonic weak processes 338, 384 
non-perturbative effects 

instanton 476 
lattice field theory 322 
soliton 460 

non-renormalizable interactions 57 
normalization points (mass scale parameter) 

in momentum subtraction schemes 67-70 
in dimensional regularization scheme 77 

0(4) 352, 481; see also SU(2) x SU(2) 
one-particle-irreducible (I Pl) 

diagrams 31, 192 
Green's functions 31, 62, 192 

OJ--<jl mixing 120-1 
ideal mixing 121 

operator product expansion 298-308 
factorization of singularities 298 
light-cone expansion 299 
short distance expansion 298 

PCAC 151-8, 161-2 
paramagnetic property of Yang-Mills vacuum 

287-9; see also asymptotic freedom 
parity nonconservation 336, 338 

in atomic physics 370 
partial wave 338, 343-4 
partially conserved axial-vector current, see 

PCAC 
parton; see also parton model, quarks, gluons 

point-like constituents of hadron 203, 206, 
208-9 

sea 209, 211 
spin 1/2 nature of charged partons 207-8 

part on model; see also deep inelastic scattering, 
parton, QCD-parton picture, scaling 

Drell-Yan process 216-18 
e+e- annihilation 214-16 
impulse approximation 206 
lepton-nucleon scattering 206-14 
parton distribution functions 207-12 

Paschos-Wolfenstein relation 370 
path integral quantization 11-17 

scalar 17-22 
fermion 23-9 
gauge theories 248-67 

perturbation expansion; see also Feynman rules, 
non-perturbative effects, renormalization 

canonical formalism 6-8 
interaction picture 6 
U-matrix 7 

chiral perturbation 161 
path integral formalism 

).<jJ 4 19-22, 498-501 
gauge theories 260 

perturbative QCD 311 
phase transition 325, 335 
n° -> 2y 180-2 

anomaly 181 
colour 182, 291 

Index 

pion nucleon coupling 153 
pion nucleon (rrN) amplitude, see Adler's con­

sistency condition, Adler-Weisberger sum 
rule, isospin, scattering length, u-term 

polarizations of vector particles 271, 342-3 
polarized eD asymmetry 370-1 
Pontryargin number, see topological winding 

number 
propagator functions 499-509; see also Feynman 

rules 
fermion 23, 221, 263 
ghost 261 
Higgs scalar 264 
scalar 5, 9-10, 31-2, 34-5, 68, 170-1, 219-20 
vector 60-2, 261, 264, 339 

R, gauge 265 
would-be-Goldstone boson 265 

proton decay 442-4 
SU(5) amplitude 443 
model-independent approach 443 

pseudo-Goldstone bosons 246 
in technicolour theories 405, 407, 409 

pseudoscalar meson masses, see current algebra 
u-term, Dashen sum rule, 17-mass prob­
lem, Gell-Mann-Okubo formula, Gold­
stone boson, quark masses 

pseudo-particles 476; see also instantons 
pure gauge 480 

QCD 124, 279; see also gluons, quarks 
effective coupling constant 295-6, 312, 438; see 

also asymptotic freedom, confinement 
global symmetries 125, 168, 294; see also chiral 

symmetry, strong CP problem 
Lagrangian 291 
operator product expansion and renormaliza­

tion group calculations 291-311; see also 
e + e- annihilation, lepton nucleon scatter­
ing, Bjorken scaling 

part on picture 208-9, 214, 312; see also 
Altarelli-Parisi equation 

perturbative calculations 311-22; see also 
lepton nucleon scattering 

scale parameter 296, 335, 403, 442 
vacuum 323, 493; see also vacuum in Yang­

Mills theories 
QED 

gauge theory, as prototype 229 
quantization, difficulty of 248 
renormalization group 67 

P-function 283-4 
charge screening 280 

renormalization programme 31 
Ward identities 

axial-vector (anomaly) 173-9 
vector 174, 267-8, 272 

QFD 336-427 
quantization 

canonical formalism 3 
scalar 4-11, 170, 219-20 
fermion 22-3, 221 
lattice field theory 325 
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path integral formalism 3, 498-503 
scalar 11-22 
fermion 23-9 
gauge theories 248-60 
lattice field theories 325, 327-8 

theories with 111agnetic monopole 454-60 
quantum chromodynamics, see QCD 
quantum electrodynamics, see QED 
quantum flavour dynamics, see QFD 
quark 

currents; see also baryon number, colour, GIM 
mechanism 

electromagnetic 134-5, 210, 346; fractional 
charge 117-18, 123, 346-8, 431, 474 

weak; charged 136, 210, 359, 371-4; neutral 
353, 362, 364-5, 371 

masses; see also chiral symmetry 
chiral symmetry breaking 125, 152, 160-8 
constituent v. current masses 168 
SU(5) relations to lepton masses 449-51 
sizes m., md, m, 167-8; m,, mb 122 
strong CP problem 493 

model, simple; see also Gell-Mann-Okubo 
formulae, co-<j> mixing, Zweig rule 

and chiral symmetry 131-4; see also axial 
U(I) problem 

eightfold way SU(3) flavour symmetry 115-
21 

paradoxes 123 
quantum numbers 117-18 

quarkonium 122-3; see also J;ljl. r 

R; gauge 
Abelian 263-7 
non-Abelian case 267 
standard SU(2) x U(I) theory 420, 506-12 

radiation gauge 248 
rank 90, 433-4 
regularization schemes 33. 45 

covariant cutoff (conventional momentum 
cutoff) 45-52 

momentum subtractions 67-9 
dimensional regularization 52-6, 78, 267, 278 

minimal subtraction 78-9 
renormalizable gauge 247. 264; see also R: gauge 
renormalizability 45, 56, 60 

multiplicative 39, 64 
renormalizable interaction 57 

non- 57, 61 
super- 57 

soft symmetry breaking 187-8 
vector field 61-2. 263-4. 340 

renormalization; see also anomaly. perturbation 
expansion, renormalization group. 
renormalizability 

constants 40, 267-8 
coupling constant 37. 285 
vertex Z;. 37 

285 
wavefunction (field) Z,p 35 
ZA 285 

composite operator 62-6 
mass 34 

Goldstone boson 186-7 
A</i4 theory 31-45 
physical picture 30 
programme 

BPH 39-45 
conventional 31-9 

SSB theories 182-8. 189-98 
Yang-Mills theory 284-6 
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renormalization group; see also anomalous di­
mension, effective (running) coupling 

calculations 
SU(5) GUT 

coupling constant unification 439 
lepton-quark mass relations 449-51 
proton decay amplitude 444 

QCD corrections 
e + e- total cross-section 297-8 
IN scaling 303-4 

equations 
p functions 71--2, 77. 80 

i.<fi4 72, 80, 82-3, 281-2 
QED 283-4 
QCD (Yang-Mills) 286-7. 289, 295-6 
Yukawa 282-3 
SU( SJ 439-40 

Callan-Symanzik 70--3 
other forms 75, 304, 307 
asymptotic solutions 74-7, 81, 304, 307 

;· functions 71-2, 77, 80, 83--4 
QCD 307, 311 
moments of Altarelli-Parisi functions 314 

physical basis 67-70 
summation of leading radiative corrections 82. 

316 
representation 87 

adjoint 89. 113. 432, 434 
basis states of 87. 90. 92 
complex 407-8, 434: see also real representa-

tion 
conjugate 89, 102-3. 109. 118. 429 
dimension of 87, 92, IOI. 106-7 
fundamental (defining) 87. 102. 109. 116, 429 
graphic representation of 95-6. 99-102 
irreducible 87. 92. 104 
product 93-6, 108-9 
real 89, 96-7, 434 
vector 103. 109, 434 

µ-parameter 352, 364. 394 
experimental value 387. 419 
for weak isospin of Higgs 

T= 1/2 352 
T= I 419 
general T 394 

right-handed neutrino 418-20 
rotational group 89. 91-2 

S0(2), see U(I) 
S0(3), see SU(2) 
S0(4). see SU(2) x SU(2) 
SSB, see spontaneous symmetry breaking 
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SU(2) 90-7; see also S0(3) 
gauge theories 231 

Georgi-Glashow model 341, 466 
Higgs phenomenon 243 
quantization (covariant gauges) 259-63 
instanton 479 
Slavnov-Taylor identity and BRS trans­

formation 273 
isospin flavour symmetry 114-15 
Noether theorem, 129 

SU(2) x U(l) 87, 340-1 
SU(2) x SU(2); see also 0(4), chiral symmetry 

u-model, SSB and Goldstone theorem 149 
breaking to SU(2) and p = 1 352, 404 

SU(3) 97-102 
colour group 123-4 

QCD Lagrangian 291 
decouplet 116-20 
eightfold way, flavour symmetry 115-23 
octet 116-17, 119-21 
quarks, free field theory of 131 
symmetry breaking 119, 165 
weak current transformation properties 136 

SU(3) x SU(3) 
charge algebra 130 
current algebra 132 

SU(4) 102 
flavour symmetry 122 
lepton-quark mass relations in SU(5) model 

449 
tumbling 408-9 

SU(5) 90 
GUT 428-52 
tumbling 407-9 

SU(n) 90, 102-13 
scaling 199, 203-6, 279, 308, 312 

e+e- 214-16, 223-4 
Drell-Yan process 216-18 
lepton-nucleon (Bjorken) 203-14, 218-19, 

224-6, 308 
functions 204, 205 
variables, x, y 203 

light-cone singularities 218-19 
violations 308, 310-11, 312 

Schrodinger picture 6, 11 
Schwinger terms 133, 157 
self-dual field 481 
self-energy 32, 34-5, 49-50, 68-9, 78, 449-50 
u-model 149-51, 403 
u-term 157, 160-1 

itN 157-60, 161, 165-6 
pseudoscalar meson masses 162, 164, 166-7 

simple group 87, 235, 430, 433, 469, 472 
semi-simple group 87, 346, 433 

singularities in product of 
field 219, 298-9 
currents 221-3, 300, 305 

Slavnov-Taylor identities 267-78 
soft photon theorems 156 
soft-pion theorems 

one soft pion 153-5 
two soft pions 156-60, 162 

soft symmetry breaking 187 
and renormalizability 187-8 
spontaneous symmetry breaking 188 

solar neutrino puzzle 410 
solitons 460-9 

J.cf>4 in 2 dimensions 460-4 
J.cf>4 in 4 dimensions 464-5 

Index 

gauge theories with SSB ('t Hooft-Polyakov 
monopole) 466-9 

spontaneous symmetry breaking (SSB) 125, 141-
51, 240; see also chiral symmetries, 
Goldstone theorem, Higgs phenomenon, 
VEV 

fermion masses 151, 357, 407, 449 
pattern of 245-6 
radiatively induced 195-8, 396-8 
and renormalization 182-8, 264 
and solitons 464 

standard electroweak theory, see Weinberg­
Salam theory 

string, Dirac 456-60, 470 
string model of hadrons 323 

string tension 323, 333, 335 
strong coupling expansion 325, 333-5 
structure function 138, 201, 204, 211-14, 305; see 

also form factor, scaling, parton distri­
bution function 

flavour singlet combination 305, 308-10, 314 
flavour non-singlet combination 305, 310-12, 

314 
helicity 205, 208 
moments 212-14, 300-3, 308, 311, 313-14 

subgroup 86 
invariant subgroup 87 

subtraction 34; see also renormalization, regular­
ization scheme 

point (normalization condition) 68-70, 78, 81, 
82, 281 

schemes 
momentum (conventional) 67-70; 
intermediate renormalization 68-9 
on-shell renormalization 69 
minimal (mass-independent) 78-80 

Sudakov variables 318-19 
summation of leading logarithm 82, 315-16, 322 
supersymmetry 290, 437 
symmetry; see also baryon number, CP, chiral, 

currents, global symmetries, gauge, lepton 
numbers, SSB, Ward identities 

and group theorem 86 
and mass degeneracy 113-14, 125-8, 142 
and renormalization 169 

symmetry factor 9, 11, 32, 187, 193, 269, 503-4; 
see also Feynman rules 

t-quark 122, 356 
tadpole diagrams 182, 183 

and shift in VEV 182-6 
and massless Goldstone bosons 186-7 

tau-leptons 356 
technicolour 401-9; see also extended technicolour 

scale parameter ATc 405 
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tensor representation of SU(n) 102-13, 428 
e-vacuum 486-7, 490-3; see also strong CP 

problem, axial U(l) problem 
't Hooft-Feynman gauge 263, 268, 277, 379, 426 
't Hooft-Polyakov monopole 453, 466-75; see 

also magnetic monopole, solitons 
charge quantization and simple group 469, 472 
coupling of spatial and internal symmetries 471 
as Dirac monopole 469-71 
S0(3) 466-72 
SU(5) 472-5 

chromomagnetic charges 474 
catalyses proton decay 474-5 

(3,3*)EB (3*,3) model 162; see also chiral sym-
metry breaking 

top, see t-quark 
topological conservation law 463-4 
topological winding number 477-9, 480, 483-7 
tumbling 407-9 
twist 299-300, 305, 309 

U(l) 86; see also S0(2) 
axial U(l) problem 294, 487 
gauge symmetry 229-31 
Goldstone theorem 147-9 

at one-loop level 186 
Higgs phenomenon 241-3 
Noether theorem 128-9 
vector Ward identity, radiative correction 170--

3 
unitarity 

Abelian gauge theory 263-4, 266 
and renormalizability in weak interaction 

theory 338, 342-5 
and Ward identities 268-73, 278 

unitary gauge 242, 244, 263, 349-51, 426 
unitary group 86 
universality 

Cabibbo 365, 373 
gauge theory 231, 23 5 

Y 122; see also b-quark 
VEV, see vacuum expection value 
V-A theory 135, 204, 336-8, 353, 364 
vacuum 18 

QCD 323, 493 
degenerate vacua in theories with SSB 143, 464 
multiple vacua with different winding number 

482-6; see also e-vacuum 
vacuum expectation value 

condition for SSB 143 
effective potential formalism 189 
one-loop perturbative shift 182-6 
sizes in electroweak unification 353, 402, 436 

in GUT 436 
vacuum polarization 297, 383, 404 
vacuum saturation approximation 380 
vacuum-to-vacuum amplitude 18, 29, 189, 254, 

259, 275, 484, 487; see also generating 
functional 

vector-axial-vector ambiguity in neutrino re­
actions 367 

vector meson masses 
gauge fields 231, 235 
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hadrons, see Gell-Mann-Okubo formula, w---</J 
mixing 

Higgs phenomena 240-7 
and renormalizability 60-2, 264, 338-9 
W and Z 351-2, 355, 387-8 

vertex renormalization constant 37, 285 

W; see also Z 
in pre-gauge-theory models 338-9, 342-4 
in standard SU(2) x U(l) theory 351-3, 379, 

384-94 
decays, leptonic branching ratio 389 
Higgs 390 
width 389 

mass 387-8 
production in Drell-Yan process 394 

WKB approximation and imaginary time 484-6 
Ward identities 156, 169, 267-8 

vector current in ).<f;i4 170--3 
axial-vector current in QED 173-9 
and unitarity 267, 268-73 
non-Abelian gauge theories (Slavnov-Taylor 

identities) 272-8 
weak 

axial nucleon coupling, see 9A 
charged currents, see currents 
eigenstate, see gauge interaction eigenstate 
hypercharge 346-8, 431, 439 
mixing angles, see Cabibbo angle, KM mixings, 

lepton mixings, Weinberg angle 
neutral currents, see currents 
radiative correction to QCD Lagrangian 294-5 

weak interaction theories 
Fermi 336 
Georgi-Glashow S0(3) 341-2 
IVB 338-9 
standard SU(2) x U(l), see Weinberg-Salam 

theory 
V-A 135, 204, 336-8, 353, 354, 364 

Weinberg angle 
definition 352 
W-Z mass relation 352, 364, 387 
value from neutral current processes 354, 365 

pure leptonic 365-9 
vN scatterings 369-70 

SU(5) prediction 439-41 
Weinberg-Salam theory; see also CP symmetry, 

GIM mechanism, generation, Higgs 
phenomenon, Kobayashi-Maskawa mix­
ing, weak neutral current, Weinberg 
angle 

choice of SU(2) x U(l) group 340-5 
fermions 

anomaly cancellation 347-8 
neutral current couplings 354, 365, 391 
quantum number assignment 345-6 

global symmetries 355-63 
baryon and lepton numbers 355 
CP violation 359-61 
muon number 362 
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Weinberg-Salam theory (cont.) 
Higgs particle 348-50, 394-401 

p = 1 and isodoublet structure 352, 394 
massless neutrinos 361, 417-18 

SSB 348-50 
W and Z gauge bosons 351-4, 386-94 

Weinberg's theorem 
on asymptotic behaviour of Green's functions 

73-4 
on convergence of Feynman integrals 42-3 

Wick rotation 47 
Wick theorem 8-10, 21, 62, 221 
Wilson coefficient 298, 300-2, 303-4 
Wilson loop 331-4 
winding number, see topological winding number 
would-be-Goldstone boson 243, 244, 247, 263-7, 

351, 420-6 

Yang-Mills fields, see non-Abelian gauge fields 
Young tableau 104-9, 117-19; see also tensor 

representation of SU(n) 
conjugate representation 109 
dimension of irreducible representation 106-8 
distance to the first box 107 
fundamental theorem 106 
hook length 107 

lattice permutation 108-9 
product representation 108-9 
standard tableau 105-6 

Yukawa couplings 349-50, 357, 395 
P-function 282-3, 290 
fermion masses in SSB theories 

u-model 151 

Index 

Weinberg-Salam theory 349-50, 357, 395 
extended technicolour theories 406 
neutrino masses 418-19 
SU(5) model 448-51 

global symmetry properties 
CP 386 
B and L in electroweak theory 355 
B - Lin minimal SU(5) 451-2 

Z 351-4, 364; see also W 
decays, branching ratios 392 

counting neutrino flavours 393 
neutrino pair final states 391 
Higgs 392, 399 

mass 387-8; see also p-parameter 
production in Drell-Yan processes 394 

ZWW couplings 393 
Zweig rule 121-2, 165 
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