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Preface

This book is based on a graduate course taught four times, once in French at
the Université de Montréal and then three times in English at the Institut
für Theoretische Physik, in Innsbruck, Austria, at the Center for Quantum
Spacetime, Department of Physics, Sogang University, Seoul, Korea, and most
recently, a part of it at the African Institute for Mathematical Sciences (AIMS),
Cape Town, South Africa.

The course covered the contents of the magnificent Erice lectures of Coleman
[31], “The Uses of Instantons”, in addition to several chapters based on
independent research papers. However, it might be more properly entitled, “The
Uses of Instantons for Dummies”. I met Sidney Coleman a few times, more
than 30 years ago, and although I am sure that he was less impressed with the
meetings than I was and probably relegated them to the dustbin of the memory,
my debt to him is enormous. Without his lecture notes I cannot imagine how I
would ever have been able to understand what the uses of instantons actually
were. However, in his lecture notes, one finds that he also thanks and expresses
gratitude to a multitude of eminent and great theoretical physicists of the era,
indeed thanking them for “patiently explaining large portions of the subject” to
him. Unfortunately, we cannot all be so lucky. Coleman’s lecture notes are a work
of art; it is clear when one reads them that one is enjoying a master impressionist
painter’s review of a subject, a review that transmits, as he says, the “awe and
joy” of the beauty of the “wonderful things brought back from far places”. But
then the hard work begins.

Hence, through diligent, fastidious and brute force work, I have been able, I
hope, to produce what I believe is a well-rounded, detailed monograph, essentially
explaining in a manner accessible to first- and second-year graduate students the
beauty and the depth of what is contained in Coleman’s lectures and in some
elaborations of the whole field itself.

I am indebted to many, but I will thank explicitly Luc Vinet for impelling me to
first give this course when I started out at the Université de Montréal; Gebhard
Grübl for the opportunity to teach the course at the Universität Innsbruck in
Innsbruck, Austria; Bum-Hoon Lee for the same honour at Sogang University
in Seoul, Korea; and Fritz Hahne for the opportunity to give the lectures at
the African Institute for Mathematical Sciences, Cape Town, South Africa. I
thank the many students who took my course and suggested corrections to my
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lectures. I thank Nick Manton, Chris Dobson, and Duncan Dormor, respectively,
Fellow, Master and President of St John’s College, University of Cambridge in
2015, for making available to me the many assets of the College that made it
possible to work uninterrupted and in a pleasant ambiance on this book, during
my stay as an Overseas Visiting Scholar. I also thank my many colleagues and
friends who have helped me through discussions and advice; these include Ian
Affleck, Richard MacKenzie, Éric Dupuis, Jacques Hurtubise, Keshav Dasgupta
and Gordon Semenoff.

I especially thank my wife Suneeti Phadke, who started the typing of my
lectures in TeX and effectively typed more than half the book while caring for
a six-month-old baby. This was no easy feat for someone with a background
in Russian literature, devoid of the intricacies of mathematical typesetting. This
book would not have come to fruition had it not been for her monumental efforts.

I also thank my children Kiran and Meghana, whose very existence makes it
a joy and a wonder to be alive.



1

Introduction

This book covers the methods by which we can use instantons. What is an
instanton? A straightforward definition is the following. Given a quantum system,
an instanton is a solution of the equations of motion of the corresponding classical
system; however, not for ordinary time, but for the analytically continued
classical system in imaginary time. This means that we replace t with −iτ in the
classical equations of motion. Such solutions are alternatively called the solutions
of the Euclidean equations of motion.

This type of classical solution can be important in the semi-classical limit
�→ 0. The Feynman path integral, which we will study in its Euclideanized
form in great detail in this book, gives the matrix element corresponding to the
amplitude for an initial state at t= ti to be found in a final state at t= tf as a
“path integral”

〈final, tf |initial, tf 〉= 〈final, tf |e−
i
�
(tf−ti)ĥ(q̂,p̂)|initial, ti〉

=

∫ final,tf

initial,ti

DpDq e i
�

∫
dt(pq̇−h(p,q)) (1.1)

where ĥ(q̂, p̂) is the quantum Hamiltonian and h(q,p) is the corresponding
classical Hamiltonian of the dynamical system. The “path integral” and
integration measure DpDq defines an integration over all classical “paths” which
satisfy the boundary conditions corresponding to the initial state at ti and to
the final state at tf . It is intuitively evident, or certainly from the approximation
method of stationary phase, that the dominant contribution, as �→ 0, should
come from the neighbourhood of the classical path which corresponds to a
stationary (critical) point of the exponent, since the contributions from non-
stationary points of the exponent become suppressed as the regions around them
cause wild, self-annihilating variations of the exponential.

However, the situation can occur where the particle (or quantum system in
general) is classically forbidden from entering some parts of the configuration
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Unstable

Stable

Figure 1.1. A system trapped in the false vacuum will tunnel through the
barrier to the state of lower energy

space. In this case we are, generally speaking, considering tunnelling through
a barrier, as depicted in Figure 1.1. Classically the particle is not allowed to
enter the space where the potential energy is greater than the total energy of the
particle. Indeed, if the energy of a particle is given by

E = T +V =
q̇2

2
+V (q) (1.2)

then for a classically fixed energy, regions where E<V (q) require that T = q̇2

2 < 0,
which means that the kinetic energy has to be negative, and such regions are
classically forbidden. Then what takes the role of the dominant contribution in
the limit �→ 0, since no classical path can interpolate between the initial and
final states?

Heuristically such a region is attainable if t becomes imaginary. Indeed, if t→

−iτ then
(
dq

dt

)2

→
(
i
dq

dτ

)2

=−
(
dq

dτ

)2

, T becomes negative and then perhaps

such regions are accessible. Hence it could be interesting to see what happens if we
analytically continue to imaginary time, equivalent to continuing from Minkowski
spacetime to Euclidean space, which is exactly what we will do. In fact, we
will be able to obtain many results of the usual semi-classical WKB (Wentzel,
Kramers and Brillouin) approximation [119, 77, 22], using the Euclidean space
path integral. The amplitudes that we can calculate, although valid for the small
� limit, are not normally attainable in any order in perturbation theory; they
behave like ∼Ke−S0/�(1 + o(�)). Such a behaviour actually corresponds to an
essential singularity at �= 0.

The importance of being able to do this is manifold. Indeed, it is interesting
to be able to reproduce the results that can be obtained by the standard
WKB method for quantum mechanics using a technique that seems to have
absolutely no connection with that method. Additionally, the methods that we
will enunciate here can be generalized rather easily to essentially any quantum
system, especially to the case of quantum field theory. Tunnelling phenomena
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in quantum field theory are extremely important. The structure of the quantum
chromodynamics (QCD) vacuum and its low-energy excitations is intimately
connected to tunnelling. Various properties of the phases of quantum field
theories are dramatically altered by the existence of tunelling. The decay of the
false vacuum and the escape from inflation is also a tunnelling effect that is of
paramount importance to cosmology, especially the early universe. The method
of instantons lets us study all of these phenomena in one general framework.

1.1 A Note on Notation

We will use the following notation throughout this book:

metric ημν = (1,−1,−1,−1) (1.3)

Minkowsi time t (1.4)

Euclidean time τ (1.5)

Analytic continuation of time t→−iτ (1.6)
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Quantum Mechanics and the Path Integral

2.1 Schrödinger Equation and Probability

Our starting point will be single-particle quantum mechanics as defined by the
Schrödinger equation

i�
d

dt
Ψ(x,t) = ĥ

(
x,−i� d

dx

)
Ψ(x,t). (2.1)

Here ĥ(x,−i� d
dx ) is a self-adjoint operator, the Hamiltonian on the space of wave-

functions Ψ(x,t), where x stands for any number of spatial degrees of freedom.
The connection to physics of Ψ(x,t) comes from the interpretation of Ψ(x,t) as
the amplitude of the probability to find the particle between x and x+ dx at
time t; hence, the probability density is given by

P[x,x+ dx] = Ψ∗(x,t)Ψ(x,t). (2.2)

Correspondingly, the probability of finding the particle in a volume V is given by

P[V ] =

∫
V

dxΨ∗(x,t)Ψ(x,t). (2.3)

The state of the system is completely described by the wave function Ψ(x,t). It
is the content of a standard course on quantum mechanics to find Ψ(x,t) for a
given ĥ(x,−i� d

dx ).

2.2 Position and Momentum Eigenstates

For our purposes, we introduce the set of (improper) states |x〉 which diagonalize
the position operator X̂, with

X̂|x〉= x|x〉 (2.4)

and ∫
dx|x〉〈x|= I. (2.5)
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We are in principle working in d dimensions, but we suppress the explicit
dependence on the number of coordinates. The states are improper in the sense
that the normalization is

〈x|y〉= δ(x− y), (2.6)

where δ(x−y) is the Dirac delta function. We also introduce the set of (improper)
states |p〉 which diagonalize the momentum operator P̂

P̂ |p〉= p|p〉 (2.7)

with ∫
dp|p〉〈p|= 1 (2.8)

but as with the position eigenstates

〈p|p′〉= δ(p− p′), (2.9)

where δ(p− p′) is the Dirac delta function in momentum space. The improper
states |x〉 and |p〉 are not vectors in the Hilbert space of states, they have infinite
norm. They actually define vector-valued distributions, linear maps from the
space of the square integrable functions of x or p or some suitable set of test
functions usually taken to be of compact support, to actual vectors in the Hilbert
space,

|x〉 : f(x)→ |f〉 ∼
∫
dxf(x)|x〉, (2.10)

where the ∼ should be interpreted as “loosely defined by”. For a more rigorous
definition, see the book by Reed and Simon [107] or Glimm and Jaffe [55].

The operators X̂ and P̂ must satisfy the canonical commutation relation

[X̂, P̂ ] = i�. (2.11)

The algebraic relation Equation (2.11) is not adequate to determine P̂

completely; there are infinitely many representations of the commutator
Equation (2.11) in which X̂ is diagonal. Taking the matrix element of Equation
(2.11) between position eigenstates gives

(x− y)〈x|P̂ |y〉= 〈x|[X̂, P̂ ]|y〉= i�〈x|y〉= i�δ(x− y). (2.12)

For the more mathematically inclined, this expression does not make good sense,
since the position and momentum operators are unbounded, though self-adjoint
operators. They may only act on their respective domains and, correspondingly,
the product of two unbounded operators requires proper analysis of the domains
and ranges of the operators concerned and similar other difficulties can exist. We
leave these subtleties out in what follows, and refer the interested reader to the
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book on functional analysis by Reed and Simon [107]. We find the solution for
〈x|P̂ |y〉 as

〈x|P̂ |y〉=−i� d

dx
δ(x− y)+ cδ(x− y)

=−i� d

dx
〈x|y〉+ cδ(x− y), (2.13)

where c is an arbitrary constant, using the property of the δ function that (x−
y)δ(x−y)≡ 0. We will call the x representation the one in which the momentum
operator is represented by a simple derivative, i.e. c= 0,

〈x|P̂ |y〉=−i� d

dx
〈x|y〉. (2.14)

In this representation,

〈x|P̂ |p〉=
∫
dy〈x|P̂ |y〉〈y|p〉=

∫
dy

(
−i� d

dx
〈x|y〉

)
〈y|p〉

=−i� d

dx
〈x|p〉. (2.15)

Acting to the right directly in the left-hand side of Equation (2.15) gives

〈x|P̂ |p〉= p〈x|p〉=−i� d

dx
〈x|p〉. (2.16)

The appropriately normalized solution of the resulting differential equation is

〈x|p〉= 1

(2π�)
d
2

ei
p·x
� , (2.17)

where d is the number of spatial dimensions.

2.3 Energy Eigenstates and Semi-Classical States

We can write the eigenstate of the Hamiltonian in the form |ΨE〉,

ĥ(X̂, P̂ )|ΨE〉=E|ΨE〉, (2.18)

where ĥ(X̂, P̂ ) is defined such that

〈x|ĥ(X̂, P̂ )|f〉= ĥ

(
x,−i� d

dx

)
〈x|f〉 (2.19)

for any vector |f〉 in the Hilbert space. Then

〈x|ĥ(X̂, P̂ )|ΨE〉= ĥ

(
x,−i� d

dx

)
〈x|ΨE〉=E〈x|ΨE〉, (2.20)

which implies the energy eigenfunctions are given by

ΨE(x) = 〈x|ΨE〉. (2.21)
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Correspondingly,

|ΨE〉=
∫
dx|x〉〈x|ΨE〉=

∫
dxΨE(x)|x〉 (2.22)

and
ĥ(x,−i� d

dx
)ΨE(x) =EΨE(x). (2.23)

A particle described by ΨE(x) is most likely to be found in the region where
ΨE(x) is peaked. The time-dependent solution of the Schrödinger equation for
static Hamiltonians is given by ΨE(x,t) = ΨE(x)e

− i
�
Et, and the most general

state of the system is a linear superposition

Ψ(x,t) =
∑
E

AEΨE(x)e
− i

�
Et (2.24)

with ∑
E

A∗
EAE = 1. (2.25)

Suppose the Hamiltonian can be modified by adjusting the potential, say, such
that ΨE(x) approaches a delta function:

ΨE(x)→ δ(x−x0). (2.26)

We would then say that a particle in the energy level E is localized at the point
x0. But in the limit of Equation (2.26) we clearly have

|ΨE〉→ |x0〉 (2.27)

from Equation (2.22). Thus the states |x〉 describe particles localized at the
spatial point x. This is conceptually important for the semi-classical limit. Semi-
classically we think of particles as localized at points in the configuration space.
Thus the states |x〉 and their generalizations are useful in the description of
quantum systems in the semi-classical limit.

2.4 Time Evolution and Transition Amplitudes

Given a particle in a state |Ψ;0〉 = |Ψ〉 at t = 0, the Schrödinger equation,
Equation (2.1), governs the time evolution of the state. The state at t = T is
given by

|Ψ;T 〉= e−i
T
�
ĥ(X̂,P̂ )|Ψ〉, (2.28)

which satisfies the Schrödinger equation. The exponential of a self-adjoint
operator, which accurs on the right-hand side of Equation (2.28), is rigorously
defined via the spectral representation [107]. The probability amplitude for
finding the particle in a state |Φ〉 at t= T is then given by

〈Φ|Ψ;T 〉= 〈Φ|e−i
Tĥ(X̂,P̂ )

� |Ψ〉. (2.29)
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We could derive an expression for this matrix element in terms of a “path
integral”. Such an integral would be defined as an integral over the space of
all classical paths starting from the initial state and ending at the final state,
and we would find that the function that we would integrate is the exponential
of −i times the classical action for each path. This is the standard Feynman path
integral [45, 46], which was actually suggested by Dirac [40].

2.5 The Euclidean Path Integral

Rather than the matrix element Equation (2.29), we are more interested in a
path-integral representation of the matrix element

〈Φ|e−
βĥ(X̂,P̂ )

� |Ψ〉, (2.30)

where β can be thought of as imaginary time

T →−iβ. (2.31)

The derivation of the path-integral representation of Equation (2.30) is more
rigorous than that for Equation (2.29); however, the derivation which follows can
be almost identically taken over to the case of real time. This can be completed
by the reader. It is the matrix element of Equation (2.30) that will interest us
in future chapters.

First of all, due to the linearity of quantum mechanics, it is sufficient to
consider the matrix element

〈y|e−
β
�
ĥ(X̂,P̂ )|x〉. (2.32)

To obtain Equation (2.30) we just integrate over x and y with appropriate
smearing functions as in Equation (2.10). Now we write

e−
βĥ(X̂,P̂ )

� = e−
εĥ(X̂,P̂ )

� · e−
εĥ(X̂,P̂ )

� · · ·e−
εĥ(X̂,P̂ )

�︸ ︷︷ ︸
N+1 factors

, (2.33)

where we mean N +1 factors on the right-hand side and (N +1)ε= β. Next we
insert complete sets of position eigenstates∫

dzi|zi〉〈zi|= I, (2.34)

where I is the identity operator. Between the evolution operators appearing on
the right-hand side of Equation (2.33), there will be N such insertions, i.e. i :
1→N . Consider one of the matrix elements

〈zi|e−
εĥ(X̂,P̂ )

� |zi−1〉 (2.35)

between position eigenstates |zi〉and |zi−1〉 for Hamiltonians of the form

ĥ(X̂, P̂ ) =
P̂ 2

2
+V (X̂). (2.36)
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Then

〈zi|e−
εĥ(X̂,P̂ )

� |zi−1〉= 〈zi|1−
ε

�

(
P̂ 2/2+V (X̂)

)
|zi−1〉+o(ε2)

=

∫
dpi〈zi|1−

ε

�

(
p2i /2+V (zi−1)

)
|pi〉〈pi|zi−1〉+o(ε2)

=

∫
dpi

(
1− ε

�

(
p2i /2+V (zi−1)

))
〈zi|pi〉〈pi|zi−1〉+o(ε2)

=

∫
dpi

(2π�)d
e
− ε

�

(
p2i
2 +V (zi−1)−ipi

(zi−zi−1)
ε

)
+o(ε2)

=

⎛
⎝∫

dpi
(2π�)d

e
− ε

�

(
p2i
2 −i pi(zi−zi−1)

ε − 1
2

(
zi−zi−1

ε

)2
)⎞
⎠×

×e
− ε

�

(
1
2

(
zi−zi−1

ε

)2

+V (zi−1)

)
+o(ε2)

, (2.37)

where in the second step, we have inserted a complete set of momentum
eigenstates after letting V (X̂) act on the position eigenstate |zi−1〉. The first
factor in the last equality is just a (shifted) Gaussian integral, and can be easily
evaluated to give

Nε =
∫

dpi
(2π�)d

e
−ε
2� (pi−i

(zi−zi−1)
ε )2 =

(
1√
2π�ε

)d
. (2.38)

Now we use Equations (2.37) and (2.38) in Equation (2.33), inserting an
independent complete set of position eigenstates between each of the factors
to yield

〈y|e−
β
�
ĥ(X̂,P̂ )|x〉=

∫
dz1 · · ·dzN
(2π�ε)

Nd
2

N+1∏
i=1

e
− ε

�

(
1
2

(
zi−zi−1

ε

)2

+V (zi−1)

)
+o(ε2)

=

∫
dz1 · · ·dzN
(2π�ε)

Nd
2

e
− ε

�

∑N+1
i=1

(
1
2

(
zi−zi−1

ε

)2

+V (zi−1)

)
+o(ε2)

,

(2.39)

where we define z0 = x and zN+1 = y. Equation (2.39) is actually as far as
one can go rigorously. It expresses the matrix element as a path integral over
piecewise straight (N pieces), continuous paths weighted by the exponential of a
discretized approximation to the negative Euclidean action. In the limit N→∞,
the o(ε2) terms are expected to be negligible. Additionally, in the limit that the
path becomes differentiable, which is actually almost never the case,

ε
N∑
i=1

(
1

2

(
zi− zi−1

ε

)2

+V (zi−1)

)
→

∫
dτ

(
V (z(τ))+

1

2
ż(τ))2

)
, (2.40)

where τ ∈ [0,β] parametrizes the path such that z(0) = x and z(β) = y. Hence
the matrix element Equation (2.32) can be formally written as the integral over
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classical paths,

〈y|e−
β
�
ĥ(X̂,P̂ )|x〉=N

∫
Dz(τ)e− 1

�

∫ β
0 dτ( 1

2 (ż(τ))
2+V (z(τ)))

=N
∫
Dz(τ)e−

SE [z(τ)]
� , (2.41)

where SE [z(τ)] is the classical Euclidean action for each path z(τ), which starts
at x and ends at y. Dz(τ) is the formal integration measure over the space of
all such paths and N is a formally infinite or ill-defined normalization constant,
the limit of 1

(2π�ε)
Nd
2

as N →∞.

There exists a celebrated measure defined on the space of paths, the so-called
Wiener measure [121], which was defined in the rigorous study of Brownian
motion. One can use it to define the Euclidean path integral rigorously and
unambiguously, certainly for quantum mechanics, but also in many instances for
quantum field theory. We are not interested in these mathematical details, and
we will use and manipulate the path integral as if it were an ordinary integral.
We will have to define what we mean by this measure and normalization more
carefully, later. The measure actually only makes sense, in any rigorous way,
for the discretized version Equation (2.39) including the limit N →∞; however,
strictly speaking the path integral for smooth paths, Equation (2.41), is just a
formal expression.

We will record here the corresponding formula in Minkowski time:

〈y|e− iT
�
ĥ(X̂,P̂ )|x〉=N

∫
Dz(t)e i

�

∫ T
0 dt( 1

2 (ż(t))
2−V (z(t)))

=N
∫
Dz(t)e i

�
SM [z(t)]. (2.42)

This formula can be proved formally by following each of the steps that we have
done for the case of the Euclidean path integral; we leave the details to the
reader. However, the Gaussian integral that we encountered at Equation (2.38)
becomes

Nε =
∫

dpi
(2π�)d

e
−iε
2�

(
pi−i

(zi−zi−1)
ε

)2

. (2.43)

This expression is ill-defined, but it only contributes to an irrelevant normaliza-
tion constant. We can make it well-defined by adding a small negative imaginary
part to the Hamiltonian, which then yields

Nε =
(√

i

2π�ε

)d

. (2.44)
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Adding the imaginary part to the Hamiltonian is known in other words as
the “i-epsilon” prescription (note this “epsilon” has nothing to do with the ε

appearing in our formulas above). Such a deformation can be effected in the case
at hand by changing the pi→ (1− iξ)pi in the exponent of Equation (2.43) with
infinitesimal ξ (instead of using the usual “epsilon”). It is tantamount to defining
the Minkowski path integral by starting with the Euclidean path integral and
continuing this back to Minkowski space.

For the remainder of this book, we will be interested in the path-integral
representation, Equation (2.39), of the matrix element Equation (2.32). We will
apply methods that are standard for ordinary integrals to obtain approximations
for the matrix element. We will use the saddle point method for evaluation of the
path integral. This involves finding the critical points of the Euclidean action and
then expanding about the critical point in a (functional) Taylor expansion. The
value of the action at the critical point is a constant as far as the integration is
concerned and just comes out of the integral. This term alone already gives much
novel information about the matrix element. It is usually non-perturbative in the
coupling constant. The first variation of the action vanishes by definition at the
critical point. The first non-trivial term, the second-order term in the Taylor
expansion, yields a Gaussian path integral. The remaining higher-order terms
in the Taylor expansion give perturbative corrections to the Gaussian integral.
The Gaussian integral can sometimes be done explicitly, although this too can
be prohibitively complicated.

We will work with the formal path integral, Equation (2.41), rather than the
exact discretized version, Equation (2.39). First of all it is much easier to find
the critical points of the classical Euclidean action rather than its discretized
analogue. Secondly, in the limit that N →∞, the critical points for the discrete
action should approach those of the classical action. The actual path integral to
be done always remains defined by the discretized version. The critical point of
the classical action is only to be used as a centre point about which to perform
the path integral Equation (2.39) in the Gaussian approximation and in further
perturbative expansion. As stressed by Coleman [31], the set of smooth paths is a
negligible fraction of the set of all paths. However, this does not dissuade us from
using a particular smooth path, that which is a solution of the classical equations
of motion, as a centre point about which to perform the functional integration in a
Gaussian approximation. The Gaussian path integral corresponds to integration
over all paths, especially including those which are arbitrarily non-smooth, but
which are centred on the particular smooth path corresponding to the solution of
the equations of motion, with a quadratic approximation to the action (or what
is called Gaussian since it leads to an (infinite) product of Gaussian integrals).
It actually receives most of its contribution from extremely non-smooth paths.
However, the Gaussian path integral can be evaluated in some cases exactly,
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and in other cases in a perturbative approximation. In this way the exact
definition of the formal path integral, Equation (2.41), is not absolutely essential
for our further considerations. We will, however, continue to frame our analysis
in terms of it, content with the understanding that underlying it a more rigorous
expression always exists.



3

The Symmetric Double Well

In this chapter we will consider in detail a simple quantum mechanical system
where “instantons”, critical points of the classical Euclidean action, can be used
to uncover non-perturbative information about the energy levels and matrix
elements. We will also explicitly see the use of the particular matrix element
(2.27) that we consider. The model we will consider has the classical Euclidean
action

SE [z(τ)] =

∫ β
2

−β
2

dτ

(
1

2
(ż(τ))2+V (z(τ))

)
. (3.1)

We choose for convenience the domain [−β
2 ,

β
2 ] and we will choose the potential

explicitly later. We will always have in mind that β→∞, thus if β is considered
finite, it is to be treated as arbitrarily large. The potential, for now, is simply
required to be a symmetric double well potential, adjusted so that the energy is
equal to zero at the bottom of each well, located at ±a, as depicted in Figure 3.1.

3.1 Classical Critical Points

The critical points of the action, Equation (3.1), are achieved at solutions of the
equations of motion

δSE [z(τ)]

δz(τ ′)

∣∣∣∣
z(τ ′)=z̄(τ ′)

=−¨̄z(τ ′)+V ′(z̄(τ ′)) = 0. (3.2)

We assume z̄(τ) satisfies Equation (3.2). Then writing z(τ) = z̄(τ) + δz(τ) and
expanding in a Taylor series, we find

SE [z(τ)] = SE [z̄(τ)]+
1

2

∫
dτ ′dτ ′′

δ2SE [z(τ)]

δz(τ ′)δz(τ ′′)

∣∣∣∣
z(τ)=z̄(τ)

δz(τ ′)δz(τ ′′)+ · · · ,

(3.3)
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V(z)

–a a

Figure 3.1. A symmetric double well potential with minima at ±a

where we note that the first-order variation is absent as the equations of motion,
Equation (3.2), are satisfied. The second-order variation is given by

δ2SE [z(τ)]

δz(τ ′)δz(τ ′′)

∣∣∣∣
z(τ)=z̄(τ)

=

(
− d2

dτ ′2
+V ′′(z̄(τ ′)

)
δ(τ ′− τ ′′). (3.4)

Then we have

SE [z(τ)] = SE [z̄(τ)]+
1

2

∫ β
2

−β
2

dτδz(τ)

(
− d2

dτ2
+V ′′(z̄(τ))

)
δz(τ)+ · · · . (3.5)

We can expand δz(τ) in terms of the complete orthonormal set of eigenfunctions
zn(τ) of the hermitean operator entering in the second-order term(

− d2

dτ2
+V ′′(z̄(τ))

)
zn(τ) = λnzn(τ), n= 0,1,2,3, · · · ,∞ (3.6)

supplied with the boundary conditions

zn(−
β

2
) = zn(

β

2
) = 0. (3.7)

Completeness implies
∞∑
n=0

zn(τ)zn(τ
′) = δ(τ − τ ′) (3.8)

while orthonormality gives ∫ β
2

−β
2

dτzn(τ)zm(τ) = δnm. (3.9)

Thus expanding

δz(τ) =

∞∑
n=0

cnzn(τ) (3.10)

we find

SE [z(τ)] = SE [z̄(τ)]+
1

2

∞∑
n=0

λnc
2
n+o(c3n) (3.11)
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using the orthonormality Equation (3.9) of the zn(τ)’s.

3.2 Analysis of the Euclidean Path Integral

The original matrix element that we wish to study, Equation (2.32), is given by

〈y|e−
β
�
ĥ(X̂,P̂ )|x〉= 〈z̄(β/2)|e−

β
�
ĥ(X̂,P̂ )|z̄(−β/2)〉, (3.12)

as we have not yet picked the boundary conditions on z̄(±β/2). Then we get

〈z̄(β/2)|e−
β
�
ĥ(X̂,P̂ )|z̄(−β/2)〉=N

∫
Dz(τ)e−

1
�

(
SE [z̄(τ)]+ 1

2

∑∞
n=0λnc

2
n+o(c3n)

)

= e−
SE [z̄(τ)]

� N
∫
Dz(τ)e−

1
�

(∑∞
n=0

1
2
λnc

2
n+o(c3n)

)
.

(3.13)

Now we will begin to define the path integration measure as

Dz(τ)→
∞∏
n=0

dcn√
2π�

, (3.14)

integrating over all possible values of the cn’s as a reasonable way of integrating
over all paths. The factor of

√
2π� in the denominator is purely a convention

and is done for convenience as we shall see; any difference in the normalization
obtained this way can be absorbed into the still undefined normalization
constant, N . Then the expression for the matrix element in Equation (3.13)
becomes

〈z̄(β/2)|e−
β
�
ĥ(X̂,P̂ )|z̄(−β/2)〉= e−

SE [z̄(τ)]
� N

∞∏
n=0

∫
dcn√
2π�

e
− 1

�

(∑∞
n=0

1
2
λnc

2
n+o(c3n)

)
.

(3.15)
Scaling cn = c̃n

√
� gives for the right-hand side

= e−
SE [z̄(τ)]

� N
∞∏
n=0

∫
dc̃n√
2π
e
−
(

1
2
λnc̃

2
n+o(�)

)

= e−
SE [z̄(τ)]

� N
∞∏
n=0

(
1√
λn

(1+o(�))

)
. (3.16)

This infinite product of eigenvalues for the operators which arise typically does
not converge. We will address and resolve this difficulty later and, assuming that
it is so done, we formally write “det” for the product of all the eigenvalues of the
operator. This yields the formula

〈z̄(β/2)|e−
β
�
ĥ(X̂,P̂ )|z̄(−β/2)〉= e−

SE [z̄(τ)]
�

(
Ndet

− 1
2

[
− d2

dτ2
+V ′′(z̄(τ))

]
(1+o(�))

)
.

(3.17)
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Thus we see the matrix element has a non-perturbative contribution in �

coming from the exponential of the value of the classical action at the critical
point divided by �, e−

SE [z̄(τ)]
� , multiplying the yet undefined normalization and

determinant and an expression which has a perturbative expansion in positive
powers of � .

3.3 Tunnelling Amplitudes and the Instanton

To proceed further we have to be more specific. We shall consider the following
matrix elements

〈±a|e−
β
�
ĥ(X̂,P̂ )|a〉= 〈∓a|e−

β
�
ĥ(X̂,P̂ )|−a〉. (3.18)

The equality of these matrix elements is easily obtained here by using the
assumed parity reflection symmetry of the Hamiltonian,

〈x|e−
β
�
ĥ(X̂,P̂ )|y〉= 〈x|PPe−

β
�
ĥ(X̂,P̂ )PP|y〉

= 〈−x|Pe−
β
�
ĥ(X̂,P̂ )P|− y〉

= 〈−x|e−
β
�
ĥ(X̂,P̂ )|− y〉, (3.19)

where P is the parity operator which satisfies P2 = 1, P|x〉 = | − x〉 and
[P, ĥ(X̂, P̂ )] = 0.

The equation which z̄(τ) satisfies is

− ¨̄z(τ)+V ′(z̄(τ)) = 0, (3.20)

which is exactly the equation of motion for a particle in real time moving in the
reversed potential −V (z), as in Figure 3.2. Because of the matrix elements that
we are interested in, Equation (3.18), the corresponding classical solutions are
those which start at and return to either ±a or those that interpolate between

–V(z)
–a a

Figure 3.2. Inverted double well potential for z̄(τ)



3.3 Tunnelling Amplitudes and the Instanton 17

±a and ∓a, and each in time β. The trivial solutions

z̄(τ) =±a (3.21)

satisfy the first condition while the second condition can be obtained by
integrating Equation (3.20). Straightforwardly,

¨̄z(τ) ˙̄z(τ) = V ′(z̄(τ)) ˙̄z(τ), (3.22)

which implies

˙̄z(τ) =
√
2V (z̄(τ))+ c2, (3.23)

where c is an integration constant. Integrating one more time and choosing the
solution that interpolates from −a to a, we get

∫ z̄(τ)

−a

dz̄√
2V (z̄)+ c2

=

∫ τ

−β
2

dτ = τ +
β

2
(3.24)

and c is determined by ∫ a

−a

dz̄√
2V (z̄)+ c2

= β. (3.25)

We note that this last Equation (3.25) does not depend on the details of
the solution, but only on the fact that it must interpolate from −a to a.
Obviously from Equation (3.23), c is the initial velocity. The initial velocity
is not arbitrary, the solution must interpolate from −a to a in Euclidean time
β, and Equation (3.25) implicitly gives c as a function of β. There is no solution
that starts with vanishing initial velocity but interpolates between ±a in finite
time β; vanishing initial velocity requires infinite time.

As β→∞, the only way for the integral in Equation (3.25) to diverge to give
an infinite or very large β is for the denominator to vanish. This only occurs
for V (z̄)→ 0 and for c→ 0. V (z̄)→ 0 occurs as z̄→±a, which is near the start
and end of the trajectory. Also, physically, if the particle is to interpolate from
−a to a in a longer and longer time, β, then it must start out at −a with a
smaller and smaller initial velocity, c. For larger and larger β, c must vanish in
an appropriate fashion. Heuristically, for small c, the solution spends most of its
time near z̄=±a and interpolates from one to the other relatively quickly. Then
the major contribution to the integral comes from the region around z̄ = ±a.
Since the integral diverges logarithmically when c = 0, for a typical potential
V (which must vanish quadratically at z̄ = ±a as V has a double zero at ±a),
the integral must behave as − lnc, i.e. β ∼− lnc which is equivalent to c∼ e−β ,
which means that c must vanish exponentially with large β. For sufficiently large
β we may neglect c altogether.
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Figure 3.3. Interpolating kink instanton for the symmetric double well

The action for the constant solutions, Equation (3.21), is evidently zero. For
the interpolating solution implicitly determined by Equation (3.24), it is

SE [z̄(τ)] =

∫ β
2

−β
2

dτ

(
1

2
˙̄z2(τ)+V (z̄(τ))

)

=

∫ β
2

−β
2

dτ
(
˙̄z2(τ)− c2

)
=

(∫ β
2

−β
2

√
2V (z̄(τ))+ c2

dz̄

dτ
dτ

)
−βc2

=

(∫ a

−a
dz̄

√
2V (z̄)+ c2

)
−βc2. (3.26)

For large β, we neglect c in the integral for SE [z̄(τ)]≡ S0, and the term −βc2,
yielding

S0 =

∫ a

−a
dz̄

√
2V (z̄). (3.27)

This is exactly the action corresponding to the classical solution for β = ∞
depicted in Figure 3.3. Such Euclidean time classical solutions are called
“instantons”.

For large τ the approximate equation satisfied by z̄(τ) is

dz̄

dτ
= ω(a− z̄), (3.28)

obtained by expanding Equation (3.23) as z̄→ a− from below and where ω2 is the
second derivative of the potential at z̄ = a. There is a corresponding, equivalent
analysis for τ →−∞. These have the solution

|z(τ)|= a−Ce−ω|τ |. (3.29)

Thus the instanton is exponentially close to ±a for |τ |> 1
ω . Its size is 1

ω which
is of order 1, compared with � and β. For large |τ | , the solution is essentially
equal to ±a, which is just the trivial solution. The solution is “on” only for an
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“instant”, the relatively short time compared with β, during which it interpolates
between −a and +a. Hence the name instanton. Reversing the time direction
gives another solution which starts at +a and interpolates to −a, aptly called
an anti-instanton. It clearly has the same action as an instanton.

3.4 The Instanton Contribution to the Path Integral

3.4.1 Translational Invariance Zero Mode

As we have seen, for very large β, the instanton corresponding to infinite β

is an arbitrarily close and perfectly good approximation to the true instanton.
Evidently with the infinite β instanton, we may choose the time arbitrarily at
which the solution crosses over from −a to +a. The solution of∫ z̄(τ)

0

dz√
2V (z)

= τ − τ0 (3.30)

corresponds to an instanton which crosses over around τ = τ0 . Thus the position
of the instanton τ0 gives a one-parameter family of solutions, each with the
same classical action. The point is that for large enough β, there exists a one-
parameter family of approximate critical points with action arbitrarily close to
S0. The contribution to the path integral from the vicinity of these approximate
critical points will be of a slightly modified form, since the first variation of
the action about the approximate critical point does not quite vanish. Thus the
contribution will be of the form, the exponential of the negative action at the
approximate critical point, multiplied by a Gaussian integral with a linear shift,
the shift coming from the non-vanishing first variation of the action. The shift
will be proportional to some arbitrarily small function f(β) as β →∞ . The
higher-order terms give perturbative corrections in �, as in Equation (3.16), and
can be dropped. Then, considering a typical Gaussian integral with a small linear
shift, as arises in the integration about an approximate critical point, we have∫ ∞

−∞

dx√
2π
e−

1
�
(α2x2+2f(β)x) = e

f2(β)

�α2
1

α
. (3.31)

We see that to be able to neglect the effects of the shift, f(β) must be so small
that f2(β)

�
� 1, given that α, being independent of � and β, is of order 1.

Typically, f(β) is exponentially small in β, just as earlier c was found to be.
f(β) needs to be determined and depends of the details of the dynamics. In any
case, β must be greater than a certain value determined by the value of �. This
is, however, no strong constraint other than imposing that we must consider
the limit that β is arbitrarily large while all other constants (especially �) are
held fixed. Hence, assuming β is sufficiently large, we can neglect the effect of the
linear shift and we must include the contribution from these approximate critical
points. To do so, we simply integrate over the position of the instanton and
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perform the Gaussian integral over directions in path space which are orthogonal
to the direction corresponding to translations of the instanton.

The easiest way to perform such a constrained Gaussian integral is to use the
following observations. In the infinite β limit, the translated instantons become
exact critical points and correspondingly the fluctuation directions about a given
instanton contain a flat direction. This means that the action does not change
to second order for variations along this direction. Precisely, this means that the
eigenfrequencies, λn, contain a zero mode, λ0 = 0. We can explicitly construct
this zero mode since(

− d2

dτ2
+V ′′(z̄(τ − τ1))

)
dz̄(τ − τ1)

dτ1
=− d

dτ
(−¨̄z(τ − τ1)+V ′(z̄(τ − τ1))) = 0,

(3.32)
the second term vanishing by the equation of motion, Equation (3.20), which is
clearly also valid for z̄(τ − τ1). This mode occurs because of the time translation
invariance when β is infinite. The corresponding normalized zero mode is

z0(τ) =
1√
S0

d

dτ1
z̄(τ − τ1). (3.33)

Clearly∫ ∞

−∞
dτ

(
1√
S0

d

dτ1
z̄(τ − τ1)

)2

=
1

S0

∫ ∞

−∞
dτ

(
1

2
˙̄z2(τ − τ1)+V (z̄(τ − τ1))

)
= 1

(3.34)
using the equation of motion, Equation (3.23), with c= 0 (infinite β).

Integration in the path integral, Equation (3.15), over the coefficient of this
mode yields a divergence as the frequency is zero∫

dc0√
2π�

e−
1
�
λ0c

2
0 =

∫
dc0√
2π�

1 =∞. (3.35)

However, integrating over the position of the instanton is equivalent to
integrating over c0. τ1 is called a collective coordinate of the instanton
corresponding to its position in Euclidean time. Indeed, if z̄(τ−τ1) is an instanton
at position τ1, the change in the path obtained by infinitesimally changing τ1 is

δz(τ) =
d

dτ1
z̄(τ − τ1)dτ1 =

√
S0z0(τ). (3.36)

The change induced by varying c0 is, however,

δz(τ) = z0(τ)dc0. (3.37)

Thus
dc0√
2π�

=

√
S0

2π�
dτ1 (3.38)

and when integrating over the position τ1 we should multiply by the normalizing

factor
√

S0
2π� . Clearly for infinite β the integral over τ1 diverges, reflecting the

equivalent infinity obtained when integrating over c0.
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This divergence is not disturbing, since for a positive definite Hamiltonian the
infinite β limit of the matrix element, Equation (2.32), is strictly zero, and for
large β it is an expression which vanishes exponentially. Thus in the large β

limit, the Gaussian integrals in the directions orthogonal to the flat direction
must combine to give an expression which indeed vanishes exponentially with β,
as we will see. For the time being, for finite β, the integration over the position
then gives a factor that is linear in β√

S0

2π�
β. (3.39)

Thus, so far the path integral has yielded

〈a|e−
β
�
ĥ(X̂,P̂ )|−a〉= e−

S0
�

(
S0

2π�

) 1
2

βN
(
det′

[
− d2

dτ2
+V ′′(z̄(τ)

])− 1
2

, (3.40)

where det′ means the “determinant” excluding the zero eigenvalue. We will leave
the evaluation of the determinant for a little later when will show that

N
(
det′

[
− d2

dτ2
+V ′′(z̄(τ))

])− 1
2

=KN
(
det

[
− d2

dτ2
+ω2

])− 1
2

, (3.41)

where ω was defined at Equation (3.28), and we will evaluate K, which is, most
importantly, independent of � and β.

3.4.2 Multi-instanton Contribution

To proceed further, we must realize that there are also other approximate critical
points which give significant contributions to the path integral. These correspond
to classical configurations which have, for example, an instanton at τ1, an anti-
instanton at τ2 and again an instanton at τ3. If τi are well separated within the
interval β, these configurations are approximately critical, with an error of the
same order as for the approximate critical points previously considered. More
generally we can have a string of n pairs of an instanton followed by an anti-
instanton, plus a final instanton completing the interpolation from −a to a. We
denote such a configuration as z̄2n+1(τ). The positions are arbitrary except that
the order of the instantons and the anti-instantons must be preserved and they
must be well separated. The action for 2n+1 such objects is just (2n+1)S0 to
the same degree of accuracy.

One would, at first sight, conclude that this contribution, including the
Gaussian integral about these approximate critical points, is exponentially
suppressed relative to the contribution from the single instanton sector. Indeed,
we would find that the contribution of the 2n+1-instantons and anti-instantons
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to the matrix element1,

〈a|e−
β
�
ĥ(X̂,P̂ )|−a〉2n+1 = e−

(2n+1)S0
� N

(
det

[
− d2

dτ2
+V ′′(z̄2n+1(τ)

])− 1
2

(3.42)

is suppressed by e−
2nS0

� relative to the one instanton contribution. This is true;
however, we must analyse the effects of zero modes.

For 2n + 1 instantons and anti-instantons there are 2n + 1 zero modes
corresponding to the independent translation of each object. This is actually
only true for infinitely separated objects with β infinite; however, for β large, it
is an arbitrarily good approximation. Thus there exist 2n+ 1 zero frequencies
in the determinant which should not be included in the path integration and,
correspondingly, we should integrate over the positions of the 2n+1 instantons
and anti-instantons. This integration is constrained by the condition that their
order is preserved. Hence we get the factor∫ β

2

−β
2

dτ1

∫ β
2

τ1

dτ2

∫ β
2

τ2

dτ3 · · ·
∫ β

2

τ2n−1

dτ2n

∫ β
2

τ2n

dτ2n+1 =
β2n+1

(2n+1)!
. (3.43)

Furthermore, from exactly the same analysis as the integration over the position
of the single instanton, the integration is normalized correctly only when each

factor is multiplied by
(
S0
2π�

) 1
2 . Thus we find〈

a
∣∣∣e−β

�
ĥ(X̂,P̂ )

∣∣∣−a〉
2n+1

=

(
e−

S0
�

(
S0

2π�

) 1
2

β

)2n+1

N
(2n+1)!

(
det′

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

, (3.44)

where det′ again means the determinant with the 2n+1 zero modes removed.
We will show later that

N
(
det′

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

=K2n+1N
(
det

[
− d2

dτ2
+ω2

])− 1
2

(3.45)

for the same K as in the case of one instanton, as in Equation (3.41).
Now even if e−

S0
� is very small, our whole analysis is done at fixed � with

β→∞; the relevant parameter, as can be seen from Equation (3.44), is

δ =

(
S0

2π�

) 1
2

e−
S0
� Kβ, (3.46)

which is arbitrarily large in this limit. Thus it seems that the contribution from
the strings of instanton and anti-instanton pairs is proportional to δ2n+1 and

1 Here the subscript 2n+1 signifies that we are calculating only the contribution to the
matrix element from 2n+1 instantons and anti-instantons.
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seems to get larger and larger. However, the denominator contains (2n+ 1)!,
which must be taken into account. For large enough n, the denominator always
dominates, δ2n+1 � (2n+1)!, and so renders the contribution small.

We require, however, for the consistency of our approximations that when n

is large enough so that this is true, the average space per instanton or anti-
instanton, β

2n+1 , is still large compared to the size of these objects ∼ 1/ω, which
is independent of both � and β. This is satisfied as β→∞. Hence we require n
large enough such that

δ2n+1

(2n+1)!
� 1; (3.47)

however, with
β

2n+1
� 1

ω
. (3.48)

Taking the logarithm of Equation (3.47) after multiplying by (2n+1)! yields in
the Stirling approximation

(2n+1)lnδ� (2n+1)ln(2n+1)− (2n+1). (3.49)

Neglecting the second term on the right-hand side and combining with
Equation (3.48) yields

δ =

((
S0

2π�

) 1
2

e−
S0
� K

)
β� 2n+1� ωβ. (3.50)

That such an n can exist simply requires
(
S0
2π�

) 1
2 e−

S0
� K≪ ω. We will evaluate

K explicitly and find that it does not depend on � or β. The inequality then is
clearly satisfied for �→ 0, which brings into focus that underneath everything
we are interested in the semi-classical limit.

A tiny parenthetical remark is in order: in integrating over the positions of the
instantons, we should always maintain the constraint that the instantons are well
separated. Thus we should not integrate the position of one instanton exactly
from that of the preceding one to that of the succeeding one, but we should
leave a gap of the order of 1

ω which is the size of the instanton. Such a correction

corresponds to a contribution which behaves to leading order as 1
ω
βn−1

(n−1)! , which

is negligible in comparison to βn

n! if 1
ω � β.

When the density of instantons and anti-instantons becomes large, all of
our approximations break down, and such configurations are no longer even
approximately critical. Thus we do not expect any significant contribution to
the path integral from the regions of the space of paths which include these
configurations. Hence we should actually truncate the series in the number of
instantons for some large enough n; however, this is not necessary. We will
always assume that we work in the limit that β should be sufficiently large and
� sufficiently small so that the contribution from the terms in the series with
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Figure 3.4. A simple function analogous to the action

n greater than some N is already negligible, while there is still a lot of room
per instanton, i.e. β/N is still large. This should still correspond to a dilute
“gas” of instantons and anti-instantons. Then the remaining terms in the series
can be maintained, although they do not represent the contribution from any
part of path space. It is simply easier to sum the series to infinity, knowing that
the contribution added in from n greater than some N makes only a negligible
change. The sum to infinity is straightforward. We find

〈
a
∣∣∣e−β

�
ĥ(X̂,P̂ )

∣∣∣−a〉=

(
N

(
det

[
− d2

dτ2
+ω2

])− 1
2

)
sinh

((
S0

2π�

) 1
2

e−
S0
� Kβ

)
.

(3.51)

3.4.3 Two-dimensional Integral Paradigm

A simple two-dimensional, ordinary integral which serves as a paradigm
exhibiting many of the features of the path integral just considered is given by

I =

∫
dxdye−

1
�
(f(x)+α2

2 y2) (3.52)

where y corresponds to the transverse directions and plays no role. f(x) is a
function of the form depicted in Figure 3.4 and increases sharply in steps of S0,
and the length of each plateau is βn

n! . In the limit that the steps become sharp,
the integral can be done exactly and yields

I =
(2π�)

1
2

α

∞∑
n=0

e−
nS0
�

(
βn

n!

)
=

(2π�)
1
2

α
e

(
βe

−S0
�

)
. (3.53)
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Obviously this is exactly analogous to the path integral just considered for β→∞
and �→ 0 . The plateaux correspond to the critical points. Clearly we cannot
consider just the lowest critical point since the volume associated with the higher
critical points is sufficiently large that their contribution does not damp out until
n becomes large enough. In terms of physically intuitive arguments, the volume
is like the entropy factor associated with n instantons, β

n

n! , while the exponential,

e−
nS0
� , is like the Boltzmann factor. In statistical mechanics, even though the

Boltzmann factor is much smaller for higher energy levels, their contribution to
the partition function can be significant due to a large enough entropy. We can
further model the aspect of approximate critical points by giving the plateaux
in Figure 3.4 a very small slope. Clearly the integral is only negligibly modified
if the slope is taken to be exponentially small in β.

3.5 Evaluation of the Determinant

Finally, we are left with the evaluation of the determinant. We wish to show for
the case of 2n+1 instantons and anti-instantons(
N

(
det′

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

)
=K2n+1

(
N

(
det

[
− d2

dτ2
+ω2

])− 1
2

)
(3.54)

and to evaluate K. Physically this means that the effect of each instanton
and anti-instanton is simply to multiply the free determinant by a factor of
1
K2 . Intuitively this is very reasonable, and we expect that for well-separated
instantons their effect would be independent of each other.

To obtain the det′ we will work in the finite large interval, β, with boundary
conditions that the wave function must vanish at the end points. Consider first
the case of just one instanton. Because of the finite interval, time translation will
not be an exact symmetry and the operator − d2

dτ2
+ V ′′(z̄(τ)) will not have an

exact zero mode. However, as β→∞ one mode will approach zero. The det′ is
then obtained by calculating the full determinant on the finite interval, β, and
then dividing out by the smallest eigenvalue. There should be a rigorous theorem
proving first that the operator in question has a positive definite spectrum on
the finite interval, β, for any potential, V (z), of the type considered and the
corresponding instanton, z̄(τ), and secondly as β→∞, one bound state drops
to exactly zero; this is reasonable and taken as a hypothesis. Thus we will study
the full determinant on the interval β which has the path-integral representation

N
(
det

[
− d2

dτ2
+V ′′(z̄(τ − τ1))

])− 1
2

=N
∫
Dz(τ)e

− 1
�

∫ β
2

−β
2

dτ 1
2
(ż2(τ)+V ′′(z̄(τ−τ1))z2(τ))

(3.55)
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Figure 3.5. The behaviour of V ′′(z) between ±a

with the boundary conditions that z(β2 ) = z(−β
2 ) = 0 in the path integral. The

path integral on the right-hand side is performed in exactly the same manner as
in Equation (3.15). This determinant actually corresponds to the matrix element
of the Euclidean time evolution operator with a time-dependent Hamiltonian,

〈z = 0|T
(
e
− 1

�

∫ β
2

−β
2

dτ

(
1
2
P̂2+

V ′′(z̄(τ−τ1))

2
X̂2
))

|z = 0〉, (3.56)

where T denotes the operation of Euclidean time ordering. This time ordering is
effectively described by the product representation of Equation (2.33), where the
appropriate Hamiltonian is entered into each Euclidean time slice. This can be
shown to give the path integral, Equation (3.55), adapting with minimal changes
the demonstration in Chapter 2. We leave it to the reader to confirm the details.

Consider first the behaviour of V ′′(z) which controls the Euclidean time-
dependent frequency in the path integral Equation (3.55). V ′′(±a) = ω2 is the
parabolic curvature at the bottom of each well. In between, at z = 0, V ′′(0) will
drop to some negative value giving the curvature at the top of the potential hill
separating the two wells. We will have a function as depicted in Figure 3.5. Thus
V ′′(z̄(τ)) will start out at ω2 at τ =−∞, until z̄(τ) starts to cross over from −a
to a, where it will trace out the potential well of Figure 3.5, and again it will
regain the value ω2 for z̄(τ) = a at τ =∞, corresponding to the function of τ as
in Figure 3.6. Thus the path integral in Equation (3.55) is exactly equal to the
matrix element or “Euclidean persistence amplitude” that a particle at position
zero will remain at position zero in Euclidean time β in a quadratic potential
with a time-dependent frequency given by V ′′(z̄(τ)) depicted in Figure 3.6.
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Figure 3.6. The behaviour of V ′′(z(τ) between τ =±∞

We will express the matrix element in terms of a Euclidean time evolution
operator U

(
β
2 ,−

β
2

)
as

N
∫
Dz(τ)e

− 1
�

∫ β
2

−β
2

dτ 1
2
( ˙̄z2(τ)+V ′′(z̄(τ−τ1))z2(τ))

≡
〈
z = 0

∣∣U (
β
2
,−β

2

)∣∣z = 0
〉

(3.57)

with explicitly,

U
(
β
2
,−β

2

)
= T

(
e
− 1

�

∫ β
2

−β
2

dτ

(
1
2
P̂2+

V ′′(z̄(τ−τ1))

2
X̂2
))

. (3.58)

Now

U
(
β
2
,−β

2

)
= U

(
β
2
,τ1+

1
2ω

)
U (τ1+ 1

2ω ,τ1− 1
2ω )U

(
τ1− 1

2ω ,−β
2

)
≈U0

(
β
2
,τ1+

1
2ω

)
U (τ1+ 1

2ω ,τ1− 1
2ω )U0

(
τ1− 1

2ω ,−β
2

)
, (3.59)

where on the intervals
[
τ1+

1
2ω ,

β
2

]
and

[
−β

2 , τ1−
1
2ω

]
we can replace the full

evolution operator with the free evolution operator

U0 (τ,τ ′) = T

(
e
− 1

�

∫ τ
τ ′ dτ

1
2

(
−�

2 d2

dz2
+ω2z2

))
= e−

(τ−τ ′)
�

ĥ0(X̂,P̂ ) (3.60)

as V ′′(z̄(τ) is essentially constant and equal to ω2 on these intervals. Then
inserting complete sets of free eigenstates, which are just simple harmonic
oscillator states |En〉 for an oscillator of frequency ω , we obtain

U
(
β
2
,−β

2

)
=

∑
n,m

e
−
(

β
2
−τ1− 1

2ω

)
En
� |En〉〈En|U (τ1+ 1

2ω ,τ1− 1
2ω ) |Em〉

× 〈Em|e−
(
τ1− 1

2ω+β
2

)
Em
� (3.61)
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Now we use the “ground state saturation approximation”, i.e. when β is huge
and the instanton is not near the boundaries, only the ground state contribution
is important. Using this twice we obtain

U
(
β
2
,−β

2

)
≈ e

(
β
2
−τ1− 1

2ω

)
E0
� |E0〉〈E0|U (τ1+ 1

2ω ,τ1− 1
2ω ) |E0〉〈E0|e−

(
τ1− 1

2ω+β
2

)
E0
�

= U0
(
β
2
,τ1+

1
2ω

)
|E0〉〈E0|U0 (τ1+ 1

2ω ,τ1− 1
2ω ) |E0〉〈E0|U0

(
τ1− 1

2ω ,−β
2

)
×

× 〈E0|U (τ1+ 1
2ω ,τ1− 1

2ω ) |E0〉
〈E0|U0 (τ1+ 1

2ω ,τ1− 1
2ω ) |E0〉

≈
∑
n,m

U0
(
β
2
,τ1+

1
2ω

)
|En〉〈En|U0 (τ1+ 1

2ω ,τ1− 1
2ω ) |Em〉〈Em|U0

(
τ1− 1

2ω ,−β
2

)
×

× 〈E0|U (τ1+ 1
2ω ,τ1− 1

2ω ) |E0〉
〈E0|U0 (τ1+ 1

2ω ,τ1− 1
2ω ) |E0〉

= U0
(
β
2
,−β

2

) 〈E0|U
(
τ1+

1
2ω , τ1−

1
2ω

)
|E0〉

〈E0|U0 (τ1+ 1
2ω ,τ1− 1

2ω ) |E0〉
≡ U0

(
β
2
,−β

2

)
κ, (3.62)

where κ is the ratio of the two amplitudes over the short time period during
which V ′′(z̄(τ) is non-trivially time-dependent. κ is surely independent of the
position τ1 of the instanton. The full evolution operator in fact simply does not
depend on the position, nor does the denominator. Indeed,

U (τ1+ 1
2ω ,τ1− 1

2ω ) = T

⎛
⎝e− 1

�

∫ τ1+
1
2ω

τ1− 1
2ω

dτ 1
2

(
−�

2 d2

dz2
+V ′′(z̄(τ−τ1))z2

)⎞
⎠

= T

⎛
⎝e− 1

�

∫ 1
2ω

− 1
2ω

dτ ′ 1
2

(
−�

2 d2

dz2
+V ′′(z̄(τ ′))z2

)⎞
⎠ , (3.63)

since the integration variable is a dummy, thus exhibiting manifest τ1
independence.

Clearly for n well-separated instantons the result applies also, we simply
apply an appropriately adapted version of the same arguments. We convert
the determinant into a persistence amplitude for the related quadratic quantum
mechanical process, which we then further break up into free evolution in the gaps
between the instantons and full evolution during the instanton, use the ground
state saturation approximation, giving the result, to leading approximation

N
(
det

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

=N
(
det

[
− d2

dτ2
+ω2

])− 1
2

κ2n+1. (3.64)

The relationship of κ to the K fixed by Equation (3.41) is obtained by dividing
out by the lowest energy eigenvalue, call it λ0. We will show that this eigenvalue
is exponentially small for large β. For 2n+ 1 instantons there are 2n+ 1 such
eigenvalues which are all equal, in first approximation, and we must remove them
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all giving

N
(
det′

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

])− 1
2

=N

⎛
⎝det

[
− d2

dτ2
+V ′′(z̄2n+1(τ))

]
λ2n+1
0

⎞
⎠

− 1
2

=N
(
det

[
− d2

dτ2
+ω2

])− 1
2
(
κλ

1
2
0

)2n+1

.(3.65)

Hence

K = κλ
1
2
0 . (3.66)

It only remains to calculate two things, the free determinant and the correction
factor K.

3.5.1 Calculation of the Free Determinant

To calculate the free determinant, we will use the method of Affleck and Coleman
[31, 114, 36]. Consider the more general case

det

[
− d2

dτ2
+W (τ)

]
, (3.67)

where the operator acts on the space of functions which vanish at ±β
2 . Formally

we want to compute the infinite product of the eigenvalues of the eigenvalue
problem (

− d2

dτ2
+W (τ)

)
ψλn(τ) = λnψλn(τ), ψλn

(
±β
2

)
= 0. (3.68)

The eigenvalues generally increase unboundedly, hence the infinite product is
actually ill-defined. Consider, nevertheless, an ancillary problem(

− d2

dτ2
+W (τ)

)
ψλ(τ) = λψλ(τ), ψλ

(
−β
2

)
= 0,

d

dτ
ψλ (τ)

∣∣∣∣
−β

2

= 1. (3.69)

There exists, in general, a solution for each λ; the second boundary condition
can always be satisfied by adjusting the normalization. On the other hand, the
equation in λ

ψλ

(
β

2

)
= 0 (3.70)

has solutions exactly at the eigenvalues λ=λn. Affleck and Coleman [31, 114, 36]
propose to define the ratio of the determinant for two different potentials as

det
[
− d2

dτ2
+W1(τ)−λ

]
det

[
− d2

dτ2
+W2(τ)−λ

] =
ψ1
λ

(
β
2

)
ψ2
λ

(
β
2

) . (3.71)
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The left-hand side is defined as the infinite product

∞∏
n=1

(λ1n−λ)
(λ2n−λ)

, (3.72)

where the potentials and the labelling of the eigenvalues are assumed to be such
that as the eigenvalues become large, they approach each other sufficiently fast,

lim
n→∞(λ1n−λ2n) = 0 (3.73)

so that the infinite product in Equation (3.72) does conceivably converge. To
prove Equation (3.71) we observe that the zeros, λ = λ1n, and poles, λ = λ2n, of
the left-hand side are at the same place as those of the right-hand side, as evinced
by the solutions of Equation (3.70). Thus the ratio of the two sides

∏∞
n=1

(λ1n−λ)
(λ2n−λ)

ψ1
λ

(
β
2

)
/ψ2

λ

(
β
2

) ≡ g(λ) (3.74)

defines an analytic function g(λ) without zeros or poles. Now as |λ| →∞ in all
directions except the real axis, the numerator in Equation (3.74) is equal to 1.
For the denominator, as λ→∞ the potentials W1 and W2 become negligible
perturbations compared to the term on the right-hand side of Equation (3.69),
which we can consider as a potential −λ. Neglecting the potentials, clearly
ψ1
λ

(
β
2

)
and ψ2

λ

(
β
2

)
approach each other, and hence the denominator also

approaches 1 in the same limit. Therefore, g(λ) defines an everywhere-analytic
function of λ which approaches the constant 1 at infinity, and now in all directions
including the real axis, as it does so infinitesimally close to the real axis. By a
theorem of complex analysis, a meromorphic function that approaches 1 in all
directions at infinity must be equal to 1 everywhere

g(λ) = 1 (3.75)

establishing Equation (3.71). Reorganizing the terms in Equation (3.71), formally
we obtain

det
[
− d2

dτ2
+W1(τ)−λ

]
ψ1
λ

(
β
2

) =
det

[
− d2

dτ2
+W2(τ)−λ

]
ψ2
λ

(
β
2

) , (3.76)

where both sides are constants independent of the potentials Wi.
We now finally choose N by defining

det
[
− d2

dτ2
+W (τ)

]
ψ0

(
β
2

) ≡ 2π�N 2 (3.77)
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and we will show that this choice is appropriate. Then

Ndet
− 1

2

[
− d2

dτ2
+ω2

]
=

(
2π�ψ0

0

(
β
2

))− 1
2 , (3.78)

where ψ0
0(τ) is the solution of Equation (3.69) for the free theory. It is easy to

see that this solution is given by

ψ0
0(τ) =

1

ω
sinhω

(
τ +

β

2

)
(3.79)

giving

Ndet
−1
2

[
− d2

dτ2
+ω2

]
=

(
2π�

(
eωβ − e−ωβ

2ω

))− 1
2

≈
( ω

π�

) 1
2 e

−ω β
2 . (3.80)

We can compare this result with the direct calculation of the Euclidean
persistence amplitude of the free harmonic oscillator. We find

Ndet
− 1

2

[
− d2

dτ2
+ω2

]
=

〈
x= 0

∣∣∣∣∣e−
β
�

(
− �

2

2
d2

dx2
+ 1

2
ω2x2

)∣∣∣∣∣x= 0

〉

= e−
βE0
� 〈x= 0| E0〉〈E0| x= 0〉+ · · · , (3.81)

where |E0〉 is the ground state. Clearly the normalized wave function is

〈x |E0〉=
( ω

π�

) 1
4
e−

ω
2�x

2
(3.82)

while
E0 =

1

2
�ω (3.83)

giving

〈x= 0| E0〉=
( ω

π�

) 1
4
. (3.84)

Hence Equation (3.81) yields

Ndet
− 1

2

[
− d2

dτ2
+ω2

]
=

( ω

π�

) 1
2
e
−ω β

2 (3.85)

in agreement with Equation (3.80), and confirming the definition of the
normalization N chosen in Equation (3.77).

3.5.2 Evaluation of K

Finally we must evaluate the factor K. K is given by the ratio

1

K2
=

det′
[
− d2

dτ2
+V ′′(z̄(τ − τ1)

]
det

[
− d2

dτ2
+ω2

] (3.86)
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from Equations (3.64) and (3.66) for n= 0. Thus

1

K2
=

⎛
⎝ψ0

(
β
2

)
/λ0

ψ0
0

(
β
2

)
⎞
⎠, (3.87)

where λ0 is the smallest eigenvalue in the presence of an instanton. To calculate
ψ0

(
β
2

)
and λ0 approximately we describe again the procedure given in Coleman

[31]. First we need to solve(
−∂2τ +V ′′(z̄(τ))

)
ψ0(τ) = 0 (3.88)

with the boundary conditions ψ0(−β/2) = 0 and ∂τψ0(−β/2) = 1. We already
know one solution of Equation (3.88), albeit one that does not satisfy the
boundary conditions: the zero mode of the operator in Equation (3.30) due to
time translation invariance, we will call it here x1(τ):

x1(τ) =
1√
S0

dz̄

dτ
. (3.89)

x1(τ) → Ae−ω|τ | as τ → ±∞. A is determined by the equation of motion,
Equation (3.30), which integrated once corresponds to

˙̄z(τ) =
√
2V (z̄(τ)). (3.90)

Once we have A we can compute ψ(β2 ) and λ0.
We know that there must exist a second independent solution of the differential

Equation (3.88), y1(τ) which we normalize so that the Wronskian

x1
dy1
dτ

− y1
dx1
dτ

= 2A2. (3.91)

We remind the reader that the Wronskian between two linearly independent
solutions of a linear second-order differential equation is non-zero, and with no
first derivative term, as in Equation (3.88), is a constant. Then as τ →±∞ we
have

ẏ1(τ)±ωy1(τ) = 2Aωeω|τ | (3.92)

using the known behaviour of x1(τ). The general solution of Equation (3.92) is
any particular solution plus an arbitrary factor times the homogeneous solution

y1(τ) =±Aeω|τ |+Be∓ω|τ |, (3.93)

where B is an arbitrary constant. Evidently the homogenous solution is a
negligible perturbation on the particular solution, and y1(τ) → ±Aeω|τ | as
τ →±∞. Then we construct ψ0(τ) as

ψ0(τ) =
1

2ωA

(
eωβ/2x1(τ)+ e

−ωβ/2y1(τ)
)
, (3.94)
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verifying

ψ0(−β/2) =
1

2ωA

(
eωβ/2x1 (−β/2)+ e−ωβ/2y1(−β/2)

)
≈ 1

2ωA

(
eωβ/2Ae−ωβ/2+ e−ωβ/2(−A)eωβ/2

)
= 0 (3.95)

while

dψ0(−β/2)
dτ

∣∣∣∣−β
2

≈ 1

2ωA

(
eωβ/2

d

dτ
Aeωτ

∣∣∣∣−β
2

+ e−ωβ/2
d

dτ
(−A)e−ωτ

∣∣∣∣−β
2

)
= 1.

(3.96)
Then it is also easy to see

ψ0(β/2) =
1

ω
, (3.97)

which we will need later.
We also need to calculate the smallest eigenvalue λ0 of Equation (3.69). To

do this we convert the differential equation to an integral equation using the
corresponding Green function. The Green function satisfying the appropriate
boundary conditions is constructed from x1(τ) and y1(τ) using standard
techniques and is given by

G(τ,τ ′) =

{
1

2A2 (−y1(τ ′)x1(τ)+x1(τ ′)y1(τ)) τ > τ ′

0 τ < τ ′
. (3.98)

Then the differential equation is converted to an integral equation

ψλ(τ) = ψ0(τ)+
λ

2A2

∫ τ

−β
2

dτ ′(x1(τ ′)y1(τ)− y1(τ ′)x1(τ))ψλ(τ ′)

≈ ψ0(τ)+
λ

2A2

∫ τ

−β
2

dτ ′(x1(τ ′)y1(τ)− y1(τ ′)x1(τ))ψ0(τ
′). (3.99)

This wave function vanishes for the lowest eigenvalue λ0 (and actually for all
eigenvalues λn) at τ = β/2 by Equation (3.70), thus

ψ0(β/2) +
λ

2A2

∫ β
2

−β
2

dτ ′(x1(τ ′)y1(β/2)− y1(τ ′)x1(β/2))ψ0(τ
′)

≈ 1

ω
− λ

2A2

∫ β
2

−β
2

dτ ′(x1(τ ′)y1(β/2)− y1(τ ′)x1(β/2))

1

2ωA

(
eωβ/2x1(τ

′)+ e−ωβ/2y1(τ ′)
)

≈ 1

ω
− λ

2A2

∫ β
2

−β
2

dτ ′(x1(τ ′)eωβ/2− y1(τ ′)e−ωβ/2)

1

2ω

(
eωβ/2x1(τ

′)+ e−ωβ/2y1(τ ′)
)



34 The Symmetric Double Well

≈ 1

ω
− λ

2A2ω

∫ β
2

−β
2

dτ ′(x21(τ
′)eωβ − y21(τ ′)e−ωβ)

≈ 1

ω
− λ

4A2ω

∫ β
2

−β
2

dτ ′x21(τ
′)eωβ =

1

ω
− λ

4A2ω
eωβ = 0.

(3.100)

In the penultimate equation, we can drop the second term because it behaves at
most as ∼ β, since y1(τ)∼ eβ/2 at the boundaries of the integration domain at
±β/2, while the first term behaves as ∼ eβ since

∫
x21(τ)dτ is normalized to 1.

This gives quite simply
λ0 ≈ 4A2e−ωβ . (3.101)

Then finally we get

K =

(
ψ0
0 (β/2)

ψ0 (β/2)/λ0

) 1
2

=
eωβ/2ω

(1/ω4A2e−ωβ)
= 2A2. (3.102)

Thus we have found that the matrix element

〈a|e−βĥ(X̂,P̂ )/�|−a〉= sinh

((
S0

2π�

) 1
2

e−S0/�2A2β

)( ω

π�

) 1
2 e

−ω β
2 . (3.103)

To see explicitly see how to compute A, we can consider a convenient,
completely integrable example, V (x) = (γ2/2)(x2 − a2)2, which has ω2 =

V ′′(±a) = (2γa)2. Then Equation (3.30) yields∫ z̄(τ−τ1)

0

dz

γ(z2−a2) = τ − τ1 (3.104)

with exact solution
z̄(τ) = atanh(aγ(τ − τ1)). (3.105)

Thus A is determined by

x1(τ) =
˙̄z(τ)√
S0

=
a2γ√

S0 cosh
2(aγ(τ − τ1))

, (3.106)

which behaves as

lim
τ→±∞x1(τ) =

4a2γ√
S0

e−2aγ|τ | =
2aω√
S0

e−ω|τ | =Ae−ω|τ |. (3.107)

√
S0 is calculated from Equation (3.27), giving

S0 =

∫ a

−a
dzγ(z2−a2) = 4

3
γa3 =

2

3
ωa2. (3.108)

Hence A= 2aω√
(2/3)ωa2

=
√

6
ω , for this example.
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3.6 Extracting the Lowest Energy Levels

On the other hand, the matrix element of Equation (3.103) can be evaluated
by inserting a complete set of energy eigenstates between the operator and the
position eigenstates on the left-hand side, yielding

〈a|e−βĥ(X̂,P̂ )/�|−a〉= e−βE0/�〈a|E0〉〈E0|−a〉+ e−βE1/�〈a|E1〉〈E1|−a〉+ · · · ,
(3.109)

where we have explicitly written only the first two terms as we expect that the two
classical states, |±a〉, are reorganized due to tunnelling into the two lowest-lying
states, |E0〉 and |E1〉. Indeed, comparing Equation (3.103) and Equation (3.109)
we find

E0 =
�

2
ω−�

(
S0

2π�

) 1
2

e−S0/�2A2 (3.110)

while

E1 =
�

2
ω+�

(
S0

2π�

) 1
2

e−S0/�2A2. (3.111)

It should be stressed that our calculation is only valid for the energy
difference, not for the corrections to the energies directly. Indeed, there are
ordinary perturbative corrections to the energy levels which are normally far
greater than the non-perturbative, exponentially suppressed correction that
we have calculated. However, none of these perturbative corrections can see
any tunnelling phenomena. Thus our calculation gives the leading term in the
correction due to tunnelling. Thus, the energy splitting which relies on tunnelling
is found only through our calculation, and not through perturbative calculations.

We also find the relations

〈a|E0〉〈E0|−a〉=
( ω

π�

) 1
2 (3.112)

in addition to

〈a|E1〉〈E1|−a〉=−
( ω

π�

) 1
2 (3.113)

while a simple adaptation of our analysis yields

〈a|E0〉〈E0|a〉=
( ω

π�

) 1
2 (3.114)

in addition to

〈a|E1〉〈E1|a〉=
( ω

π�

) 1
2 . (3.115)

These yield 〈E0| − a〉 = 〈E0|a〉 while 〈E1| − a〉 = −〈E1|a〉 which are consistent
with |E0〉 being an even function, i.e. |E0〉 being an even superposition of the
position eigenstates |a〉 and | − a〉 while |E1〉 being an odd function and hence
an odd superposition of these two position eigenstates.
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Figure 3.7. A generic periodic potential with minima occurring at na with
n ∈ Z, where a is the distance between neighbouring minima

3.7 Tunnelling in Periodic Potentials

We will end this chapter with an application of the method to periodic potentials.
Periodic potentials are very important in condensed matter physics, as crystal
lattices are well-approximated by the theory of electrons in a periodic potential
furnished by the atomic nuclei. The idea is easiest to enunciate in a one-
dimensional example. Consider a potential of the form given in Figure 3.7. A
particle in the presence of such a potential with minimal energy will classically,
certainly, be localized in the bottom of the wells of the potential. If there is no
tunnelling, there would be an infinite number of degenerate states corresponding
to the state where the particle is localized in state labelled by integer n∈Z. This
could also be a very large, finite number of minima. However, quantum tunnelling
will completely change the spectrum. Just as in the case of the double well
potential, the states will reorganize so that the most symmetric superposition
will correspond to the true ground state, and various other superpositions will
give rise to excited states, albeit with excitation energies proportional to the
tunnelling amplitude. The tunnelling amplitude is expected to be exponentially
small and non-perturbative in the coupling constant.

As in the case of the double well potential, the instanton trajectories will
correspond to solutions of the analogous dynamical problem in the inverted
potential in Euclidean time (as depicted in Figure 3.8), where the trajectories
commence at the top of a potential hill, stay there for a long time, then quickly
fall through the minimum of the inverted potential, and then arrive at the top of
the adjacent potential hill, and stay there for the remaining positive Euclidean
time.

For the simple, real-time Lagrangian

L=
1

2
ẋ2−V (x), (3.116)
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Figure 3.8. The inverted generic periodic potential with maxima occurring at
na with n ∈ Z

where ẋ= dx(t)
dt , while the Euclidean Lagrangian is simply

L=
1

2
ẋ2+V (x), (3.117)

where ẋ = dx(τ)
dτ . As V (na) = 0 for n ∈ Z, we impose the boundary conditions

x(τ =−∞)=na but x(τ =∞)= (n+1)a for an instanton and x(τ =∞)= (n−1)a

for an anti-instanton and look for solutions of the Euclidean equations of motion

d2x(τ)

dτ2
−V ′(x(τ)) = 0. (3.118)

This immediately affords a first integral; multiplying by ẋ(τ) and integrating
gives

1

2
ẋ2(τ)−V (x(τ)) = 0, (3.119)

where we have fixed the constant with the boundary conditions. This equation
admits a solution in general, the instanton, but it does depend on the explicit
details of the potential. However, we can find the action of the corresponding
instanton, which only depends on an integral of the potential, by first isolating

ẋ=
√
2V (x), (3.120)

and then

S0 =

∫ ∞

−∞
dτ

1

2
ẋ2+V (x) =

∫ ∞

−∞
dτ

(
1

2
ẋ
√
2V (x)+

1

2
ẋ
√
2V (x)

)

=

∫ (n+1a

na

dx
√
2V (x). (3.121)

Although we may naively want to compute the amplitude for tunnelling
between neighbouring vacua, it is actually more informative to compute the
amplitude for a transition from vacuum n to vacuum n+m. Naively we would
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approximate this amplitude by summing over any number of pairs of widely
separated instanton anti-instanton configurations appended by a string of m
instantons. However, this logic would be faulty. There is no reason to restrict the
order of the instantons and anti-instantons except that they should tunnel from
the immediately preceding vacuum to an adjacent vacuum, and finally we should
arrive at the minimum indexed by n+m. Thus, one can choose the instantons
or anti-instantons in any order, as long as they start at n and end at n+m.
This means that if there are N instantons, which must be greater than m, then
there must be N −m anti-instantons. Thus there are as many distinct paths of
instantons as there are ways to order N plus signs and N −m minus signs. This
gives a degeneracy factor of

(2N −m)!

N !(N −m)!
. (3.122)

Furthermore, when we integrate over the Gaussian fluctuations for each instanton
or anti-instanton, we get the usual determinantal factor K for each instanton or
anti-instanton, but we do encounter one zero mode corresponding to each one’s
position, which we omit in the determinant. Then we integrate over the positions
of the instantons and anti-instantons, except that the position of each instanton
or anti-instanton must occur at the position after the preceding one, as the
instantons and anti-instantons correspond to specific tunnelling between specific
vacua. This gives the integral∫ β/2

−β/2
dτ1

∫ β/2

τ1

dτ2 · · ·
∫ β/2

τ2N−1

dτ2N−m =
β2N−m

(2N −m)!
. (3.123)

As usual, the action for any instanton or anti-instanton is the same and equal to
S0. Thus, for N instantons and N −m anti-instantons we get

〈n+m|e−βĥ(X̂,P̂ )/�|n〉=
∞∑

N=m

e−(2N−m)S0/�K2N−m (2N −m)!

N !(N −m)!

β2N−m

(2N −m)!
.

(3.124)
This sum is unclear for identifying the underlying spectrum and the contribution
of each energy eigenstate; however, if we re-write the sum as a double sum
over N instantons and M anti-instantons with a constraint M = N −m we
have

〈n+m|e−βĥ(X̂,P̂ )/�|n〉=
( ω

π�

)1/2

e−βω/2

×
∞∑

N,M=0

e−(N+M)S0/�KN+M βN+M

N !M !
δN−m,M , (3.125)

where ω2 = V ′′(na). Now the Kronecker delta can be expressed via its Fourier
series as

δN−m,M =

∫ 2π

0

dθ

2π
eiθ(N−m−M) (3.126)
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E(θ ) E(θ )

θ

Figure 3.9. The energy band as a function of θ

and so we easily find

〈n+m|e−βĥ(X̂,P̂ )/�|n〉=

=
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π�

)1/2

e−βω/2
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∞∑
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)

=
( ω

π�

)1/2

e−βω/2
∫ 2π

0

dθ

2π
e−imθe

(
Kβe−S0/�(eiθ+e−iθ)

)

=
( ω

π�

)1/2

e−βω/2
∫ 2π

0

dθ

2π
e−imθe

(
2Kβe−S0/� cosθ

)
. (3.127)

But this expression for the matrix element has a clear interpretation in terms of
the spectrum. We see that the spectrum has become a continuum, parametrized
by θ. If we write

〈n+m|e−βĥ(X̂,P̂ )/�|n〉=
∫ 2π

0

dθ

2π
e−βE(θ)/�〈n+m|E(θ)〉〈E(θ)|n〉 (3.128)

we identify
E(θ) = �ω/2− 2�Ke−S0/� cosθ (3.129)

and

〈n+m|E(θ)〉〈E(θ)|n〉=
( ω

π�

)1/2 e−imθ

2π
, (3.130)

which affords the identification

〈n|E(θ)〉=
( ω

π�

)1/4 e−inθ√
2π

. (3.131)
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Thus our infinitely degenerate spectrum of discrete classical vacua has turned
into a continuum of states, what is called a band in condensed matter physics,
with an energy that varies as cosθ, as depicted in Figure 3.9. The states are
now in a continuum, and hence must be normalized in the sense of a Dirac delta
function rather than a Kronecker delta. The amplitude of the band 2�Ke−S0/�

contains the tell-tale factor of the exponential of minus the Euclidean action, the
hallmark of a tunnelling amplitude.

We will see in future chapters that periodic potentials appear commonly and
play an important role in various instanton calculations.



4

Decay of a Meta-stable State

In this chapter we will consider the decays of meta-stable states and calculate
the lifetime for such a state using instanton methods. A meta-stable state arises
due to the existence of a local minimum of the potential, which is not the global
minimum. This corresponds to a potential having the form given in Figure 4.1.
The potential rises steeply to infinity to the left and to the right; after the
potential barrier, it goes down well below the energy of the meta-stable state,
either eventually going to constant or it may even rise to plus infinity again in
order to give an overall stable quantum mechanical problem. However, exactly
what the potential does to the right is considered not to be important; the
behaviour of the potential to the right is assumed to have a negligible effect on
the tunnelling amplitude for a particle initially in the local minimum at z = 0

escaping to the right. We have drawn the potential, in Figure 4.1, so that it simply
drops off to the right and we have normalized the potential by adding a constant
such that the local minimum has V (0) = 0 . Physically we are considering a
potential of the type where a particle is trapped in a local potential well, but
once the particle tunnels out of the well, it is free. The probability that the
initial state is regenerated from the decay products is assumed to be negligible.
This is in contra-distinction to the problem considered in Chapter 3 with two
symmetric wells. Here the tunnelling-back amplitude was sizeable, corresponding
to the anti-instanton, and had to be taken into account.

4.1 Decay Amplitude and Bounce Instantons

In this chapter, we will attempt to calculate the amplitude

< z = 0|e−
β
�
ĥ(X̂,P̂ )|z = 0>=N

∫
Dz(τ)e−

SE [z(τ)]
� = e−

βE0
� |〈E0 |z = 0〉|2+ · · · .

(4.1)
From this amplitude we expect to be able to identify and calculate the energy
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Unstable Vacuum

V(z)

x0

Figure 4.1. A potential with a meta-stable state at z = 0 that will decay via
tunnelling

Unstable Vacuum

–V(z)

x0

Figure 4.2. The flipped potential for instanton Euclidean classical solution

E0 for the ground state. For a stable state, localized at z = 0, we expect E0, in
first approximation, to correspond to the ground-state energy of the harmonic
oscillator appropriate to the well at z =0, and |〈E0 |z = 0〉| to be the magnitude
of the ground-state wave function at z=0. Now because of tunnelling we imagine
that E0 gains an imaginary part, E0 → E0 + iΓ/2. We will directly attempt to
use the path integral, and calculate it in a Gaussian approximation about an
appropriate set of critical points, as in Chapter 3.

The equation of motion corresponds to particle motion in the inverted potential
−V (z), as depicted in Figure 4.2, with boundary condition that z(±β

2 ) = 0.
There are two solutions, the trivial one z(τ) = 0 for all τ , and a non-trivial
true instanton solution z̄(τ). Here the particle begins at τ = −β

2 with a small
positive velocity at z = 0, falls through the potential well and rises again to
height zero at z = x0, at around τ = 0, and then bounces back, reversing its
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x0

–zbounce[τ ]

Figure 4.3. The bounce instanton which mediates tunnelling of a meta-stable
state

steps and arriving at z = 0 again at τ = β
2 . Clearly from symmetry such a

solution exists if β is sufficiently large. We call this instanton, after Coleman, the
bounce, z̄bounce(τ). The action for the bounce essentially comes from the short
time interval during which the particle is significantly away from z = 0. One
can easily show that the bounce is exponentially close to zero except for a region
around τ =0 of size 1

ω , where again ω2 =V ′′(0). We call the action for the bounce
S0 = SE [z̄

bounce(τ)] for the case β =∞. Due to the time translation invariance
in the β =∞ case, again, there exists a one-parameter family of configurations,
approximate bounces, which correspond to the bounce occurring at any time
τ0 ∈ [−β

2 ,
β
2 ]. The action for these configurations is exponentially close to S0 and

hence the degeneracy is β. Furthermore, approximate critical configurations also
exist corresponding to n bounces occurring at widely separated times with action
exponentially close to nS0. The degeneracy of these configurations is βn

n! as they
are exactly analogous to identical particles. Thus we expect the matrix element
to be expressable as

〈z=0|e−
β
�
ĥ(X̂,P̂ )|z=0〉=N

(
det

[
− d2

dτ2
+ω2

])− 1
2

∞∑
n=0

((
S0

2π�

) 1
2

β

)n

e−
nS0
�

n!
×

×

⎛
⎝det′

[
− d2

dτ2
+V ′′(z̄bouncen (τ))

]
det

[
− d2

dτ2
+ω2

]
⎞
⎠

− 1
2

=
( ω

π�

) 1
2 e−ωβ/2eβ

√
S0
2π�

Ke−S0
, (4.2)

where

K =

(
det′

[
− d2

dτ2
+V ′′(z̄bounce(τ))

])− 1
2

(
det

[
− d2

dτ2
+ω2

])− 1
2

. (4.3)
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Here the prime signifies omitting only the zero mode. We will find that the
situation is not that simple, and we must also deal with a negative mode. Then
we would find

E0 = �

(
ω

2
+K

(
S0

2π�

) 1
2

e−
S0
�

)
(4.4)

and we look for an imaginary contribution to K.

4.2 Calculating the Determinant

The situation is actually more complicated than is apparent. K comes from
the determinant corresponding to integration over the fluctuations around the
critical bounce(
det′

[
− d2

dτ2
+V ′′(z̄bounce(τ))

])− 1
2

=

∫ ∏
n

λn �=0

dcn√
2π�

e
− 1

�

1
2

∑
nλnc

2
n =

∏
n

λn �=0

1√
λn
.

(4.5)
The n’s corresponding to vanishing λn’s are excluded, which is the meaning of
the primed determinant. This time, however, the problem is much more serious.
One of the λn’s is actually negative. For this λn the integration over the cn simply
does not exist, and hence the determinant, as we wish to calculate it, does not
exist. It seems our original idea is doomed. But there is a possible solution:
perhaps we can define the integration by analytic continuation. Indeed, analytic
continuations of real-valued functions often gain imaginary parts, exactly what
we desire. This analytic continuation is in fact possible and we will see how we
can perform it appropriately.

4.3 Negative Mode

First we will establish the existence of the negative mode. For β =∞ we have
an exact zero mode due to time translation invariance(

− d2

dτ2
+V ′′(z̄bounce(τ))

)
d

dτ
z̄bounce(τ)

=
d

dτ

(
− d2

dτ2
z̄bounce(τ)+V ′(z̄bounce(τ))

)
= 0, (4.6)

where the second term vanishes as it is the equation of motion. Since z̄bounce(τ)
has the increasing and then decreasing form given in Figure 4.3, this implies
˙̄z
bounce

(τ) has the form given by Figure 4.4. In contra-distinction to the zero
mode of Chapter 3, this zero mode has a node, i.e. it has a zero. This is intuitively
obvious, the velocity of the particle executing the bounce will vanish exactly when
it reverses direction. The analogous quantum mechanical Hamiltonian

− d2

dτ2
+V ′′(z̄bounce(τ)) (4.7)
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–
[τ ]dz

dτ

bounce

Figure 4.4. The derivative of the bounce dz̄bounce(τ)
dτ

–

ω 2

V˝(zbounce[τ ])

Figure 4.5. The form of the potential V ′′(z̄bounce(τ))

has the potential given by Figure 4.5. One expects the spectrum to consist of
a finite number of bound states and then a continuum beginning at ω2. The
ground-state wave function must have no nodes. The next bound energy level, if
it exists, will have one node. We have already found a bound-state wave function
with energy exactly zero, but it has one node. Thus there exists exactly one
bound-state level, the nodeless ground state, with negative energy. The Gaussian
integral in this direction in function space does not exist, and we must only define
it through analytic continuation.
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4.4 Defining the Analytic Continuation

The original idea that the matrix element has an expansion of the form

〈z = 0|e−
βĥ(X̂,P̂ )

� |z = 0〉= e−
(E+iΓ)β

� 〈0|E+ iΓ 〉〈E+ iΓ| 0〉+ · · · (4.8)

was ill-conceived. There is no eigenstate of the Hamiltonian corresponding to the
meta-stable state. The Hamiltonian is a hermitean operator with all eigenvalues
real, an eigenstate with a complex eigenvalue simply does not exist. We can
only obtain the imaginary energy of the meta-stable state through analytic
continuation. We imagine the analytic continuation in a parameter α which starts
at α= 0 with a potential with a stable bound state localized at z = 0, but yields
our original potential at α = 1. The energy of the bound state will also be an
analytic function of the parameter α. As long as a true bound state exists around
z=0, this energy will be a real function of the parameter α. When the parameter
is continued to yield our original potential where the bound state becomes meta-
stable, we expect that this energy as an analytic function of the parameter α
will not remain real and will gain an imaginary part. This imaginary part should
correspond to the width of the meta-stable state. These general considerations
correspond to a sequence of potentials, as shown in Figures 4.6, 4.7 and 4.8.

4.4.1 An Explicit Example

We will confirm these ideas with an explicit demonstration in a specific solvable
potential. The example we consider is

V (α,z) =−
(
α− 1

2

)
z4+ω2z2 (4.9)

Stable Vacuum

V(α=0, z)

Figure 4.6. The potential with a stable state at z = 0 for α= 0
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Stable Vacuum

V(α critical, z)

Figure 4.7. The critical potential with a stable state at z = 0 for αcritical

Unstable Vacuum

V(α=1, z)

Figure 4.8. The potential with a meta-stable state at z = 0 for α= 1

and the integral

I(α,ω) =
∫ ∞

−∞
dze

− 1
�

(
−
(
α− 1

2

)
z4+ω2z2

)
, (4.10)

which is analogous to the integral over the direction corresponding to the negative
mode in the definition of the determinant, when α = 1, as depicted in Figures
4.9 and 4.10. The integral is defined for α≤ 1

2 and, specifically, it is not defined
for α=1. The integral is actually well-defined for complex α, with the condition
Re{α}≤ 1

2 . We can define the analytic function I(α,ω) for Re{α}> 1
2 by analytic

continuation. In this simple case we have no difficulty whatsoever, for Re{α}≤ 1
2 ,

the integral is known in terms of special functions,

I(α,ω) = 1

2

√
ω2(

1
2 −α

)e
(

ω4

8�
(
1
2
−α
)
)
K 1

4

(
ω4

8�
(
1
2 −α

)) , (4.11)
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Stable Vacuum

V(a=0,z)=.5z4+ ω 2z 2

V(α=.5,z)= ω 2z 2

Figure 4.9. The potential with a stable state at z = 0 for α= 0 and α= .5

Unstable Vacuum

V(α  =  .5  +  ∈, z)  =   –∈z4 +  ω 2 z 2

V(α  =  1, z)= –.5 z 4 +  ω 2 z 2

Figure 4.10. The potential with a meta-stable state at z=0 for α= .5+ ε and
for α= 1

where
Kν(z) =

πi

2
e
π
2
νi
(Jν(iz)+Nν(iz)) (4.12)

is the modified Bessel function of imaginary argument. The expression in
Equation (4.11) has a well-defined analytic continuation throughout the complex
α-plane, except on the real α-axis, where starting at α = 1

2 , there is a
branch cut.

But in general, we do not have the luxury of knowing the integral exactly. There
is, however, a method for performing the analytic continuation more implicitly.
Happily, this method allows us to extract the information that we actually seek,
the imaginary part of the energy. We apply the method to the specific, exactly
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R

R′

A

E

E ′

C θ

Integration Contours

Figure 4.11. The original integration contour C, along the real line and the
deformed contour A, a straight line at an angle θ, for the analytic continuation

solvable integral of Equation (4.11) to see in detail how the implicit method
works. Indeed, we can obtain the analytic continuation of a function defined by
a contour integral, by deforming the integration contour. In our example

I(α,ω) =
∫ ∞

−∞
dze

− 1
�

(
−
(
α− 1

2

)
z4+ω2z2

)
for Real(α)≤ 1

2
(4.13)

corresponds to the integration contour C along the real axis, in Figure 4.11.
The integration is defined for

∣∣arg(−(
α− 1

2

))∣∣ < π
2 . We deform the contour to

E +A+E′ as in Figure 4.11, the integral is invariant since there are no poles
in regions R and R′ and if the contributions from the circular arcs E,E′, vanish
for infinite radius, which is assumed to be true, we get

I(α,ω) =
∫
z=reiθ
dze

− 1
�

(
−
(
α− 1

2

)
z4+ω2z2

)
. (4.14)

But now the integration converges for
∣∣arg(−(

α− 1
2

))
+4θ

∣∣ < π
2 since after

replacing z= reiθ we must have that −(α− 1
2 )e

i4θr4 has a positive real part. Thus
a deformation of the contour defines an analytic continuation of the integral in
the parameter α. If we take θ = π

4 then
∣∣arg(−(

α− 1
2

))
+π

∣∣< π
2 . This implies

arg

(
−
(
α− 1

2

))
∈
(
π

2
,
3π

2

)
(4.15)

hence the integral is now defined for Re{−
(
α− 1

2

)
}< 0, which is negative. This

means Re{α} > 1
2 . Thus we define, with A corresponding to the contour with
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θ = π/4,

I(α> 1

2
,ω) =

∫
A

dze
− 1

�

(
−
(
α− 1

2

)
z4+ω2z2

)
. (4.16)

This is an exact expression for the analytic continuation of the original integral
I(α< 1

2 ,ω)→I(α> 1
2 ,ω) , and there is no question as to its existence. However,

we wish to actually evaluate the integral in the approximation as �→ 0 and
extract only the imaginary part.

4.5 Extracting the Imaginary Part

Consider the part of the contour A from 0 to ∞ in the first quadrant. The
other half of the contour clearly gives the same contribution. We will calculate
this integral approximately using the method of steepest descent, which is the
indicated approximation method in the limit � →∞. To do this, we further
deform the contour from its present path between 0 and ∞× eiπ4 to the path of
the steepest descent between these points. As there are no poles in the integrand,
the integral clearly is invariant under this additional deformation.

4.5.1 A Little Complex Analysis

A contour of the steepest descent for the real part of a complex analytic function
keeps the imaginary part constant (and vice versa). We can easily demonstrate
this fact. If we have f(x,y) = R(x,y) + iI(x,y) and a curve parametrized by a
variable t, (x(t),y(t)) with tangent vector

−−−−−−−→
(ẋ(t), ẏ(t)), the curve will correspond

to the steepest descent of the real part R(x,y) if the tangent vector is anti-parallel
to its gradient, as the gradient points in the direction of maximum change.
Therefore,
−−−−−−−−−−−−−−−→
(∂xR(x,y),∂yR(x,y))×

−−−−−−−→
(ẋ(t), ẏ(t)) = ∂xR(x,y)ẏ(t)−∂yR(x,y)ẋ(t) = 0. (4.17)

Due to analyticity, the Cauchy–Riemann equations give

∂xR(x,y) = ∂yI(x,y) and ∂xI(x,y) =−∂yR(x,y) (4.18)

thus Equation (4.17) gives

∂yI(x,y)ẏ(t)− (−∂xI(x,y))ẋ(t)≡
d

dt
I(x,y) = 0. (4.19)

But this means I(t) = constant, demonstrating that the imaginary part of the
complex analytic function remains constant on the paths of steepest descent of
the real part.

In general for an integral of the form

I =

∫ b

a

dzeλf(z) (4.20)
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we can describe the process of the method of steepest descent as follows. For
the application of the method of steepest descent, a should be a critical point
of f(z). We assume Re{f(a)} > Re{f(b)} and Im{f(a)} > Im{f(b)} and we
start from a following the path of steepest descent of the Re{f(z)} to a′ where
Re{f(a′)} = Re{f(b)} and then we append the path of steepest descent of
Im{f(z)} from a′ to b along a path where now only the imaginary part of f(z)
changes. If Im{f(a)}< Im{f(b)}, we obviously ascend the appropriate portion.
In the limit λ→∞ it is only the first contour which is important, since the second
is multiplied by eλRe{f(a

′)}� eλRe{f(a)}. Finally we perform the integration over
the first contour in the Gaussian approximation about z = a.

There are two further points to be made. First, we are actually only interested
in the imaginary part of the integral, as it is only this part that we believe will
have a leading contribution that is non-perturbative in �. Second, and this is
very important to the first, if the path of steepest descent of the real part of f(z)
passes through an ordinary critical point of f(z), it abruptly changes direction
by 90◦. We can demonstrate this easily. An ordinary critical point of f(z), which
requires f ′(z0) = 0 and assumes f ′′(z0) �= 0, implies the behaviour

f(z) = f(z0)+
1

2
f ′′(z0)(z− z0)2+ · · · . (4.21)

Replacing z− z0 = x+ iy we get

f(z0+x+ iy) = f(z0)+
1

2
f ′′(z0)(x2− y2+2ixy)+ · · · . (4.22)

Then paths of steepest descent passing through the critical point are paths of
the constant imaginary part of f(z0 + x+ iy) passing through x = y = 0, i.e.
Im{f(z0+x+ iy)}= Im{f(z0)}. Therefore, to lowest non-trivial order, we need
paths with Im{f ′′(z0)(x2− y2+2ixy)}= 0. If f ′′(z0) = r+ is this gives

s(x2− y2)+2rxy = 0. (4.23)

If s= 0, the solutions are x= 0 or y = 0, which are perpendicular horizontal or
vertical lines, respectively, hence crossing at 90◦. Assuming s �= 0,

x2+2
r

s
xy+

(ry
s

)2

= y2
(
1+

(r
s

)2
)
. (4.24)

This gives (
x+

ry

s

)
=±y

(
1+

(r
s

)2
) 1

2

(4.25)

that is the curves, which are just the straight lines

x=±y
((

1+
(r
s

)2
) 1

2

∓ r

s

)
(4.26)
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with the ± signs correlated. The tangents at x= y=0 are given by the directions(
±
((

1+
(
r
s

)2) 1
2 ∓ r

s

)
,1

)
. These are clearly orthogonal, as their scalar product

vanishes,

−
((

1+
(r
s

)2
) 1

2

− r

s

)((
1+

(r
s

)2
) 1

2

+
r

s

)
+1= 0. (4.27)

Thus in complete generality, the paths of steepest descent turn abruptly by 90◦

as they pass through an ordinary critical point.
The real or imaginary parts of complex analytic functions are called harmonic

functions, which means that they satisfy ∇2R(x,y)=∇2I(x,y)= 0. As should be
well known, all critical points of the real or imaginary parts of complex analytic
functions are saddle points. Then a path of steepest descent, which descends
through an ordinary critical point, must change direction by 90◦, since continuing
in the same direction through the critical point would correspond to ascending
the other side of the saddle. Turning through 90◦ continues the descent through
the saddle point. The above analysis shows that for an ordinary critical point,
f ′(z0) = 0 but f ′′(z0) �= 0, the minimum and maximum directions are at 90◦ to
each other.

For our integral Equation (4.16), the real part of the exponent changes from
0→−∞ as z varies from 0→∞×eiπ4 , while the imaginary part of the exponent
is equal to 0 at z = 0 but becomes arbitrarily large at z =∞× eiπ4 . Thus in this
case, along the path of steepest descent of the real part, the imaginary part of the
exponent will always be equal to 0, since it must remain constant and it vanishes
at the initial point. Such a path will reach a point where Re{f(z0)} = −∞.
Then further following a contour with fixed real part, equal to −∞, but changing
imaginary part will be irrelevant since the factor corresponding to the exponential
of the real part will already be zero.

Our function actually has three critical points. Indeed,
d

dz

((
α− 1

2

)
z4−ω2z2

)
= 4

(
α− 1

2

)
z3− 2ω2z = 0 (4.28)

has the solutions z = 0 and z = ±ω√
2
(
α− 1

2

) for the case at hand, α > 1
2 . Thus the

point z=0 happens also to be a critical point, and it is easy to check that the path
of steepest descent of the real part from z = 0 proceeds along the positive real
axis, instead of the contour A, until it reaches the critical point at z= ω√

2
(
α− 1

2

) ,

and then turns by 90◦ into the complex plane.
The path of steepest descent can be explicitly computed in our special case.

The condition that the imaginary part be constant and equal to zero gives, with
z = x+ iy,

Im

{(
α− 1

2

)
(x2− y2+2ixy)2−ω2(x2− y2+2ixy)

}
= 0. (4.29)
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Path of Steepest Descent

A

A′

A′

θ=π/4 2α – 1
ωx

Figure 4.12. The integration contour along the path of steepest descent

Thus (
4

(
α− 1

2

)
(x2− y2)− 2ω2

)
xy = 0 (4.30)

⇒ x= 0, or y = 0, or (2α− 1)(x2− y2) = ω2 (4.31)

The first two solutions simply describe the x and y axes, the third solution
corresponds to a hyperbola. Note that all of these curves intersect at 90◦ as
we expect. The path of steepest descent, starting at the origin and going out
to infinity at ∞× eiπ4 , corresponds to the curve A′, as depicted in Figure 4.12.
Asymptotically the arcs of the hyperbola converge to the lines y =±x which is
the original contour A. The turn by 90◦ occurs at the critical point at z = x=

ω√
(2α−1)

.

But now, where does the imaginary part to the integral come from? The
integrand is always real, and the imaginary part of the function is always
zero along the contour of steepest descent of the real part. It can only come
from the integration measure dz when the contour follows the hyperbola in
the complex plane. The contribution from z = 0 to z = ω√

(2α−1)
along the real

axis has no imaginary part, thus we are not interested in it. The integration
along the hyperbola we perform in the Gaussian approximation about the
critical point at z = ω√

(2α−1)
. We have x =

√
y2+ ω2

(2α−1) , dx = ydy√
y2+ ω2

(2α−1)

,
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so dz = dx+ idy =

⎛
⎝ y√

y2+ ω2

(2α−1)

+ i

⎞
⎠dy and the integral is

∫ ∞

0

dy

⎛
⎝ y√

y2+ ω2

(2α−1)

+ i

⎞
⎠e

1
�

(
− ω4

(4α−2)
−2ω2y2+o(y4)

)
. (4.32)

Therefore, the imaginary part comes only from the second term, and is given by

i

2

√
2π�

2ω
e
− ω4

�(4α−2) , (4.33)

where the factor of 1/2 in front comes because we are only integrating over half
the Gaussian peak, while the full Gaussian integral gives

√
2π�
2ω . Then for our

original integral we get

Im

{∫ ∞

−∞

dz√
2π�

e
− 1

�

(
−
(
α− 1

2

)
z4+ω2z2

)}
α→1

=
1

2

1

2ω
e−

ω4

2� × 2, (4.34)

where the factor of 2 arrives because we have the integral over the full contour
of Figure 4.11, whereas the analysis above was only for half of the contour, the
part in the first quadrant. We point out that the imaginary part of the integral
simply corresponds to the formal expression of Equation (4.5) with λ−1→|λ−1|.

4.6 Analysis for the General Case

Now, in the general case, we know what we must do. In order to do the
path integral, we parametrize the space of all paths which satisfy the required
boundary conditions for z(α,τ =−β/2) and z(α,τ = β/2) (β can be effectively
taken to be ∞). We do this parametrization with one special, specific contour
z(α,τ) in the space of all paths, and augmented to this contour, we add the
subspace of all paths orthogonal to this contour (which we will label as z⊥(τ)).
To be very clear, a contour is not a path, it is a curve, itself parametrized by α,
in the space of paths, where each point along the contour corresponds to a path
z(α,τ). The specific contour will contain two critical points

z(α= 0, τ) = z̄(τ) = 0, (4.35)

which is the “instanton” corresponding to the particle just sitting on top of the
unstable initial point in Figure 4.2 and never moving, and the point

z(α= 1, τ) = z̄bounce(τ), (4.36)

which corresponds to the instanton that we have called the “bounce”. This
contour is represented pictorially in Figure 4.13 while the corresponding action
is represented in Figure 4.14. We will see that the actual paths that the contour
passes through are unimportant except for the two critical points. We also insist
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z(α ,τ)

α=2

α=1

α=–1

α=–2

α=0

z(0,τ)=0

z (1,τ)=zbounce[τ ]–

Figure 4.13. The path in function space as a function of α and τ

α=0 α=1

SE[z(α,τ)]

Figure 4.14. The Euclidean action as a function of α

that the “tangent” to the contour at α = 1 corresponds to the negative energy
mode

d

dα
z(α,τ)|α→1 = z−1(τ). (4.37)

In this way, the orthogonal directions never contain a negative mode and the
determinant (path integral over Dz⊥) can be done in principle. We then write
the path integral as a nested product of two integrals

N
∫
Dz(τ)e− 1

�
SE [z(τ)] =N

∫
dα√
2π�

Dz⊥(τ)e−
1
�
SE [z(τ)]. (4.38)

It is important to note that the path integral over the transverse directions is
α-dependent. However, we will find that, since we are actually only interested
in finding the imaginary part of the full integral, we will need to evaluate this
transverse integral only at α= 1.
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Contour for α

α – plane

α – real

α – complex

α=1

α=0

Figure 4.15. The contour for α from the origin, along the real axis and then
jutting out into the complex plane at 90◦ at α= 1

Now the integral over α is, however, ill-defined due to the existence of the
negative mode at α=1. As α=0 is a critical point which is a local minimum, the
action increases as we pass from α=0 to α=1 through real values of α. Hence the
path in function space is defined as the path of steepest descent of −SE [z(α,τ ],
the exponent (up to the trivial factor of 1/�) in the integral Equation (4.38). But
then we encounter the second critical point at α= 1, which is a local maximum
of the action, again for real α. The action behaves as depicted in Figure 4.14.
Hence continuing the integral past α= 1 to α=∞, it fails to converge and give
a sensible answer. However, we are actually only trying to find an imaginary
component of the original expression. If in fact we could integrate from α = 1

on to α=∞, the expression would remain completely real. Thus we can only be
content that we must define the integral via analytic continuation, since that is
the only possible way that the integral could obtain an imaginary component.

This analytic continuation is expressed as a deformation of the contour of
integration into the complex α-plane as we saw in the previous section. From
α= 1 we must follow along the contour of steepest descent of −SE [z(α,τ)]. The
important point, as we have seen, is that for an ordinary critical point, which
is generic and that we assume, this corresponds to a 90◦ turn into the complex
plane, as depicted in Figure 4.15. We start at α= 0 and go till α= 1 on the real
α line, then we continue out at 90◦ into the complex α-plane following the line
of steepest descent of −SE [z(α,τ)].
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As before, the imaginary part only comes from the integration measure; the
imaginary part of −SE [z(α,τ)] on the path of steepest descent is constant and
hence always zero. This gives for the imaginary part of the path integral for
the fluctuations about one bounce (using the notation A.C. to mean “analytic
continuation”),

Im

{
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dα√
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=
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(4.39)

where d2

dα2 SE [z(α,τ)]|α=1 = λ−1 is the negative eigenvalue and det′ now means
the determinant is calculated excluding both the zero eigenvalue and the negative
eigenvalue. In the last line of Equation (4.39), each factor separated by the ×
signs correspond, respectively, to: the factor of one-half since we are integrating
over only half of the Gaussian peak, the exponential of minus the action of the
bounce divided by �, the factor corresponding to the Jacobian of the change of
variables and the factor of β when we integrate over the position of the bounce
rather than its translational zero mode, the factor of one over the square root of
the magnitude of the negative eigenvalue which is the upshot of our analysis of
the analytic continuation, and finally the primed determinant over the orthogonal
directions in the space of paths where the negative mode and the zero mode are
removed. Taking into account the contribution from the multi-bounce sector,
the one-bounce contribution, including its imaginary part, just exponentiates as
before.

Thus K, as defined in Equation (4.3), changes as K→Re{K}+ iIm{K} and
we find

Im{K}= 1

2

1√
|λ−1|

⎛
⎝det′

[
− d2

dτ2
+V ′′(z̄bounce(τ))

]
det

[
− d2

dτ2
+ω2

]
⎞
⎠

− 1
2

, (4.40)

where we now understand the factor of 1
2 as coming from integrating, in the

Gaussian approximation, over just half of the saddle point descending into the
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complex α-plane and the primed determinant is now understood to exclude both
the zero mode and the negative mode. Thus the original matrix element that we
wish to calculate, Equation (4.1), is obtained from an analytic continuation

A.C.
{
〈z=0|e−

β
�
ĥ(X̂,P̂ ) |z=0〉

}
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∫
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2 e−
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) 1
2 e

−S0
�

+ · · ·
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,(4.41)

where

K =Re(K)+ i
1

2

1√
|λ−1|

⎛
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dτ2
+V ′′ (z̄bounce(τ)))

det
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. (4.42)

This yields the imaginary part to the energy, iΓ/2, with the width of the state

Γ= �

(
S0

2π�

) 1
2 e−
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⎛
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. (4.43)
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Quantum Field Theory and the Path Integral

5.1 Preliminaries

We will consider the case of a classical scalar field theory and its quantization.
Later in this book we will consider both vector and spinor fields. A classical
scalar field φ(xμ) is a real-valued function of the coordinates of space and time.
The meaning that it is a scalar field is that the value that the function takes is
invariant under Lorentz transformations. All inertial observers measure the same
value for the field at a given spacetime point.

φ(xμ) = φ′(x′μ) (5.1)

where

x′μ =Λμνx
ν (5.2)

with the standard notation x0 = t and xi, i=1,2, · · ·d are the spatial coordinates.
The transformation matrix Λμν satisfies

Λμνη
νσΛτσ = ημτ (5.3)

with diag [ηνσ] = (1,−1,−1, · · ·) the usual Minkowski space metric, which is the
defining condition for a Lorentz transformation. In general, an equation of motion
for a classical scalar field is a non-linear partial differential equation. We will
restrict ourselves to the case of second-order equations, then Lorentz invariance
dictates the form

∂ν∂
νφ(xμ)+V ′ (φ(xμ)) = 0. (5.4)

Written out, this equation is(
d2

dt2
−∇2

)
φ(xμ)+V ′ (φ(xμ)) = 0. (5.5)
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Such an equation comes from the variation of an action, S [φ(xμ)], which is a
functional of the field φ(xμ), i.e.

δS [φ(xμ)] =
S [φ(xμ)+ εδφ(xμ)]−S [φ(xμ)]

ε

∣∣∣∣
ε=0

= 0

∀ δφ(xμ) ⇒ ∂ν∂
νφ(xμ)+V ′ (φ(xμ)) = 0. (5.6)

Then we find the action giving rise to equations of motion, Equation (5.4), is
given by

S [φ(xμ)] =

∫
ddx

(
1

2
∂νφ(x

μ)∂νφ(xμ)−V (φ(xμ))

)
≡

∫
ddxL (5.7)

where L is called the Lagrangian density. The kinetic energy is

T =

∫
dd−1x

(
1

2
∂tφ(x

μ)∂tφ(x
μ)

)
(5.8)

while the potential energy is

V =

∫
dd−1x

(
1

2
�∇φ(xμ) · �∇φ(xμ)+V (φ(xμ))

)
(5.9)

which define the Lagrangian as L= T −V and the action is simply

S [φ(xμ)] =

∫
dt(T −V ) . (5.10)

This defines a dynamical system which is an exact analogy to the particle
mechanical systems we have been considering in the previous chapters. There
are just a few simple conceptual changes. The dynamical variable is a function
of space, which evolves through time. For a mechanical system the variables were
the positions of particles in space and these positions were evolving through time.
Now the spatial coordinates xi are not the positions of any particle. They are
just parameters or labels, and they do not evolve in time. An important point
to observe is that a dynamical variable which is a function of space, rather than
a point in space, comprises an infinite number of degrees of freedom, in contra-
distinction to the case of particle mechanics where we typically consider only a
finite number of particles. This is easy to make explicit by expanding the scalar
field in terms of a fixed orthonormal basis of functions φn(xi), n= 0,1,2, · · · ,

φ(xi, t) =

∞∑
n=0

cn(t)φn(x
i). (5.11)

We can thus exchange the dynamical field φ(xi, t) for an infinite number of
dynamical variables {cn(t)}n=0,1,··· ,∞.

This difference is the cause of almost all the problems that arise in the
quantization of fields. We will proceed with the philosophy that these problems
correspond to the extreme ultraviolet or infrared degrees of freedom, this
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philosophy perhaps to be justified only a posteriori. We plead ignorance as
to what dynamics actually exist at extremely high energies and simply reject
theories where the answers to questions involving processes at only low energies
depend on the dynamics at very high energies! Furthermore, we invoke the
principles of locality and causality, which stated simply means that configurations
at the other end of the universe cannot affect the local dynamics here. In this way
we consider only theories which are unaffected by cutting off the infrared degrees
of freedom. Thus, effectively, we are interested in theories with an enormous but
actually finite number of degrees of freedom, since we can cut the theory off in
both the infrared and the ultraviolet. However, this number of degrees of freedom
is assumed to be so huge that it is well-approximated by ∞, so long as that limit
is sensible.

5.2 Canonical Quantization

5.2.1 Canonical Quantization of Particle Mechanics

The canonical quantization of fields proceeds formally as for particle mechanics.
First we briefly review how it works for particle mechanics. We find the classical
canonical variables pi and qi, pi= ∂L

∂q̇i
and the Hamiltonian H =

∑
i piq̇i−L. The

equations of motion are:

q̇i = {qi,h(qj ,pk)}
ṗi = {pi,h(qj ,pk)} (5.12)

where {·, ·} is the Poisson bracket,

{A,B}=
∑
i

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
. (5.13)

Quantization proceeds with the replacement

{A,B}→− i

�

[
Â, B̂

]
(5.14)

yielding, for example, the canonical commutation relations:

[q̂i, p̂j ] = i�δi,j . (5.15)

All dynamical variables become operators, O → Ô, which act on vectors in a
Hilbert space.

5.2.2 Canonical Quantization of Fields

Applying the above to the case of classical fields, we define the conjugate
momenta in an analogous way,

Π(xi, t) =
δL

δφ̇(xi, t)
. (5.16)
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Then

H =

∫
dd−1x

(
Π(xi, t)φ̇(xi, t)−L

)
=

∫
dd−1x

(
1

2
Π2(xi, t)+

1

2
�∇φ(xi, t) · �∇φ(xi, t)+V (φ(xi, t))

)
. (5.17)

The Poisson bracket is now given by (for local functions of φ(xi),Π(xi), we can
dispense with the functional derivatives and just write partial derivatives, as
they give the same answer)

{A,B}=
∫
dd−1x

∂A

∂φ(xi, t)

∂B

∂Π(xi, t)
− ∂A

∂Π(xi, t)

∂B

∂φ(xi, t)
(5.18)

which includes the fundamental Poisson brackets

{φ(xi, t),Π(xj , t)}= δd−1(xi−xj). (5.19)

We impose the same quantization prescription as in the particle mechanics
case, given by Equation (5.14). This yields the celebrated equal time canonical
commutation relations[

φ̂(xi, t),Π̂(yi, t)
]
= i�δd−1(xi− yi). (5.20)

The (Heisenberg) equations of motion follow from the commutators:

i�
d

dt
φ̂(xi, t) =

[
φ̂(xi, t), Ĥ

]
(5.21)

i�
d

dt
Π̂(xi, t) =

[
Π̂(xi, t), Ĥ

]
(5.22)

There is a lot of mathematical subtlety in the definition of the product of
the quantum field operators of a one-spacetime point which is required in
the definition of the Lagrangian and Hamiltonian. Indeed, the quantum field
operators that satisfy Equation (5.20) cannot be simple operators but in fact
are operator-valued distributions. The operator products required to define
the Lagrangian and the Hamiltonian are not straightforwardly well-defined.
Canonical quantization can be made to work reasonably well for the case of
linear field theories, for example see [107].

So far we have been considering the quantization in the Heisenberg picture.
The variables are dynamical while the states are constant. We can equally well
consider the quantization in the Schrödinger picture, with the transformation

φ̂(xi, t)→ φ̂S(xi) = U(t)φ̂(xi, t)U †(t)
Π̂(xi, t)→ Π̂S(xi) = U(t)Π̂(xi, t)U †(t). (5.23)

Then we find,
∂φ̂S(xi)

∂t
=
∂Π̂S(xi)

∂t
= 0, (5.24)



5.3 Quantization via the Path Integral 63

i.e. the fundamental quantum fields in the Schrödinger picture are time-
independent, if U(t) satisfies

i�
d

dt
U(t) = ĤU(t). (5.25)

The formal solution of this differential equation is U(t) = e−itĤ/�. Evidently
Ĥ commutes with U(t). The corresponding transformation of the Hamiltonian
yields

Ĥ→ ĤS = U(t)ĤU †(t) = Ĥ. (5.26)

This states that the Hamiltonian for time-independent problems does not depend
on the representation. If we have an eigenstate of Ĥ,

Ĥ |Ψ〉 = E |Ψ〉 (5.27)

then
ĤSU(t) |Ψ〉 = U(t)ĤU †(t)U(t) |Ψ〉 = EU(t) |Ψ〉 . (5.28)

Thus

i�
d

dt
(U(t) |Ψ〉 ) = U(t)Ĥ |Ψ〉 = ĤS (U(t) |Ψ〉 ) = E (U(t) |Ψ〉 ) (5.29)

which is just the Schrödinger equation.

5.3 Quantization via the Path Integral

Now the path integral for a quantum particle mechanics amplitude in Minkowski
time, as given by Equation (2.42), yields

〈y|e−
iT ĥ(X.P )

� |x〉 =N
∫ y

x

Dz(t)ei
S[z(t)]

� . (5.30)

This formula was proven assuming nothing of the nature of the space in which x
and y took their values. Typically they were coordinates in IRn, but they could
have been in any configuration space of unconstrained variables (with constraints
additional terms can appear [76]). Actually we have

〈qf |e−
iT Ĥ(q̂.p̂)

� |qi〉 =N
∫ qf

qi

Dq(t)ei
S[q(t)]

� , (5.31)

where q(t) could be any generalized coordinate, for example, an angular variable
of a rotator or the radius of a bubble which changes its size.

Then, for quantum field theory, we simply let q take values in the space of
configurations of a classical field. This gives

〈φf |e−
iT Ĥ(φ̂,Π̂)

� |φi〉 =N
∫ φf

φi

Dφ(xμ)e−i
S[φ(xμ)]

� . (5.32)
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The states |φi〉 and |φf 〉 correspond to a quantum field localized on the
configurations φi(x

μ) and φf (x
μ), respectively. The states |φ〉 are directly

analogous to the states |�x〉 that we considered earlier in particle quantum

mechanics. These were eigenstates of the (Schrödinger) position operator �̂X

�̂X |�x〉 = �x |�x〉 . (5.33)

In that respect, the states |φ〉 are taken to be eigenstates of the field operator

φ̂S(xi) |φ〉 = φ(xi) |φ〉 . (5.34)

The states |φ〉 are also improper vectors, as the states |�x〉 were, and true states
are obtained by smearing with some profile function

|F 〉 =
∫
DφF (φ) |φ〉 (5.35)

where F (φ) is a functionally square integrable functional. The inner product is
defined by

〈F |G〉=
∫
DφF ∗(φ)G(φ). (5.36)

We call the Feynman path integral in this case the functional integral. It is a
rather formal object in Minkowski space, but it can be used to generate the
usual perturbative expansion of matrix elements, in a rather efficient manner.
(Its analogue in Euclidean space, which we will use, can be rigorously defined in
some cases.)

5.3.1 The Gaussian Functional Integral

We can essentially perform only one functional integral and that, too, not
necessarily in closed form. This is the Gaussian functional integral. However,
if we can do the Gaussian functional integral it is sufficient to generate the
perturbative expansion. Consider the functional W [J ] of some external source
field J(xμ) defined by

W [J ] =N
∫
Dφe

i
�

∫
ddx

(
1
2
∂μφ(x

i,t)∂μφ(xi,t)− 1
2
m2φ2(xi,t)−V (φ(xi,t))+J(xi,t)φ(xi,t)

)

≡
∞∑
N=0

iN

�NN !

∫
ddx1 · · ·ddxNJ(x1) · · ·J(xN )GN (x1, · · · ,xN ), (5.37)

where the integrations are done over all of spacetime and we impose the boundary
conditions on the field the φ(xμ)→ 0 as |xμ| →∞. Then the so-called N point
Green functions of the theory are obtained via functional differentiation

GN (x1, · · · ,xN ) =

(
�

i

)N (
δ

δJ(x1)
· · · δ

δJ(xN )

)
W [J ]

∣∣∣∣∣
J=0

. (5.38)
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Correspondingly, W [J ] is called the generating functional since it can be used
to generate all the Green functions of the theory. We will show that the
GN (x1, · · · ,xN ) corresponds in principle to the matrix elements

〈0|T
(
φ̂H(x1) · · · φ̂H(xN )

)
|0〉 (5.39)

where the state |0〉 is the eigenstate of the Schrödinger field operator with
eigenvalue φ(xi) = 0, i.e. φ̂S(xi)|0〉= 0.

For a Hamiltonian that depends on time, ĤS(t), which is the case here with
an arbitrary external source J(xμ),

ĤS(t) = Ĥ0+ Ĥint. (5.40)

with

Ĥ0 =

∫
dd−1x

(
1

2
Π̂(xi)Π̂(xi)+

1

2
�∇φ̂S(xi) · �∇φ̂S(xi)+V

(
φ̂S(xi)

))
(5.41)

and

Ĥint.(t) =

∫
dd−1x

(
J(xi, t)φ̂S(xi)

)
, (5.42)

one can easily prove that the path integral gives rise to

N
∫
Dz(t)e i

�
S[z(t)] = lim

T→∞
〈y|T

(
e
− i

�

∫ T/2
−T/2

dtĤS(t)
)
|x〉 (5.43)

where T(A(t1)B(t2)) = θ(t1 − t2)A(t1)B(t2) + θ(t2 − t1)B(t2)A(t1), the usual
time-ordered product. The time-ordered product here yields the limiting value
of the (infinite) ordered product of infinitesimal unitary time translations over
each of N infinitesimal time elements, ε= T/N between −T/2 and T/2, ordered
so that the latest time occurs to the left

T

⎛
⎝e− i

�

∫ T
2

−T
2

dtĤS(t)

⎞
⎠

= lim
N→∞

e−
i
�
εĤS(T2 )e−

i
�
εĤS(T2 −ε) · · ·e− i

�
εĤS(−T

2 +2ε)e−
i
�
εĤS(−T

2 +ε). (5.44)

The Hamiltonian being time-dependent because of the, in principle, time-
dependent external source J(xi, t). The derivation of the path integral goes
through as before by inserting a complete set of states between the infinitesimal
unitary transformations. (There is a completely analogous expression for the case
of the Euclidean path integral, where the time-ordering is replaced by Euclidean
time-ordering, which is sometimes called path-ordering.) Thus we find with

W [J ] = lim
T→∞

〈0|T
(
e
− i

�

∫ T/2
−T/2

dtĤS(t)
)
|0〉 (5.45)
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then

−i�δ
δJ(x1)

· · · −i�δ
δJ(xN )

W [J ]

∣∣∣∣
J=0

=

=
−i�δ
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· · · −i�δ
δJ(xN )
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e
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�

∫∞
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e
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)
· · ·T

(
e−

i
�

∫ tN−∞ dtĤS(t)

)
|0〉

∣∣∣
J=0

for t1 > t2 > · · ·> tN

= 〈0|T
(
e
− i

�

∫∞
t1
dtĤS(t)

)
φ̂S(xi1)T

(
e
− i

�

∫ t1
t2
dtĤS(t)

)
φ̂S(xi2) · · · φ̂S(xiN )

× T

(
e−

i
�

∫ tN−∞ dtĤS(t)

)
|0〉

∣∣∣∣
J=0

= 〈0|T
(
e−

i
�

∫∞
−∞ dtĤS(t)

)
T

(
e

i
�

∫ t1−∞ dtĤS(t)

)
φ̂S(xi1)T

(
e−

i
�

∫ t1−∞ dtĤS(t)

)
×T

(
e

i
�

∫ t2−∞ dtĤS(t)

)
φ̂S(xi2) · · · φ̂S(xiN )T

(
e−

i
�

∫ tN−∞ dtĤS(t)

)
|0〉

∣∣∣
J=0

= 〈0|T
(
e−

i
�

∫∞
−∞ dtĤS(t)

)
φ̂H(xμ1 )φ̂

H(xμ2 ) · · · φ̂H(xμN ) |0〉
∣∣∣
J=0

→ 〈E = 0|T
(
φ̂H(xμ1 )φ̂

H(xμ2 ) · · · φ̂H(xμN )
)
|E = 0〉

∣∣∣
J=0

, (5.46)

where we have explicitly written the Heisenberg fields as φ̂H(xμ) =

T
(
e

i
�

∫ t
−∞ dt′ĤS(t′)

)
φ̂S(xi)T

(
e−

i
�

∫ t
−∞ dt′ĤS(t′)

)
while the Schrödinger operators

are defined with respect to t=−∞. Here |0〉 still corresponds to the state with
φ(x) = 0 while the state |E = 0〉 corresponds to the true zero-energy vacuum
state. However, the last identification in Equation (5.46) requires explanation
as it is not exactly the same as Equation (5.39). As we will see, once we define
the functional integral more carefully, instead of computing the matrix element
in Equation (5.39), the functional integral projects uniformly onto that which
corresponds to the matrix element in the state of zero energy, the vacuum state.
At the present juncture the definition of the functional integration is extremely
formal, and neither the operator-valued matrix element in Equation (5.39) nor
its functional integral representation exist.

If we nevertheless continue formally, we find

W [J ] =N
∫
Dφe

−i
�

∫
ddxV

(
−i� δ

δJ(x)

)
×

×e
i
�

∫
ddx

(
1
2
∂μφ(x

i,t)∂μφ(xi,t)− 1
2
m2φ2(xi,t)+J(xi,t)φ(xi,t)

)

= e
−i
�

∫
ddxV

(
−i� δ

δJ(x)

)
W 0[J ]. (5.47)

W 0[J ] is a Gaussian functional integral, which we can explicitly perform. We use
the formula, which as written is only formal but becomes valid if defined via an
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appropriate analytic continuation∫ ∞

−∞

dx√
2π
e
i 1
2
(ax2+2bx) =

∫ ∞

−∞

dx√
2π
e
ia
2
(x− b

a )
2

e
−i 1

2
b( 1

a )b

=
1√
−ia

e
−i 1

2
b( 1

a )b (5.48)

which generalizes to∫
dnx

(2π)
n
2

e
i 1
2
((�x,A·�x)+2(�b,�x)) = (det(−iA))−

1
2 e

−i 1
2
((�b,A−1·�b) (5.49)

for finite dimensional matrices. Boldly generalizing to the infinite dimensional
case, for W 0[J ] we find, with A→−

(
∂μ∂

μ+m2
)

and b→ J (and absorbing an
infinite product of i’s into the normalization constant),

W 0[J ] =
N√

det(∂μ∂μ+m2)
e
− i

2

∫
ddxddy(J(x) 〈x| 1

−(∂μ∂μ+m2)
|y〉J(y))

(5.50)

5.3.2 The Propagator

It only remains to calculate

〈x| 1

−(∂μ∂μ+m2)
|y〉 =

∫
ddk

(2π)d
e−ikμ(x−y)

μ 1

kμkμ−m2
. (5.51)

We seem to be on the right path to defining the functional integral; however,
we come up against another problem: this Green function is ambiguous. This
problem is only solved via analytic continuation. In the Fourier representation,

for example, there are poles in the k0 integration at k0 = ±
√
|�k|2+m2. We

cannot integrate through the poles, we must provide a prescription for integrating
around them. Such a prescription translates directly into fixing the asymptotic
boundary condition on the solutions of the problem, for φ(

∂μ∂
μ+m2

)
φ= J. (5.52)

Clearly any solution for φ is ambiguous up to a solution of the homogeneous
equation (

∂μ∂
μ+m2

)
φ0 = 0. (5.53)

Correspondingly, the Green function to Equation (5.52) is also ambiguous by the
addition of an arbitrary solution of the homogeneous equation. The asymptotic
boundary conditions on φ fix the Green function. These boundary conditions are
equivalent to giving the pole prescription.
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5.3.3 Analytic Continuation to Euclidean Time

The existence of homogeneous solutions corresponds to zero modes in the
operator A = −

(
∂μ∂

μ+m2
)
; hence, the original integral was ill-defined. The

problem can be traced back to the matrix element

W [J ] = lim
T→∞

〈0|T
(
e
− i

�

∫ T/2
−T/2

dtĤS(t)
)
|0〉 . (5.54)

The operator in the matrix element can be written, for an arbitrary future time t,

T
(
e
− i

�

∫ t
−T/2 dt

′ĤS(t′)
)
= e

− i
�

∫ t
−T/2 dt

′Ĥ0

e
i
�

∫ t
−T/2 dt

′Ĥ0

T
(
e
− i

�

∫ t
−T/2 dt

′ĤS(t′)
)

≡ e
− i

�

∫ t
−T/2 dt

′Ĥ0

U(t,−T/2). (5.55)

Then U(t,−T/2) satisfies the differential equation

i�
∂U(t,−T/2)

∂t
= e

− i
�

∫ t
−T/2 dt

′Ĥ0

Ĥint.(t)e
i
�

∫ t
−T/2 dt

′Ĥ0

U(t,−T/2)
≡ ĤI(t)U(t,−T/2) (5.56)

where

ĤI(t) =

∫
dd−1xJ(xi, t)e

− i
�

∫ t
−T/2 dt

′Ĥ0

φ̂S(xi)e
i
�

∫ t
−T/2 dt

′Ĥ0

≡
∫
dd−1xJ(xi, t)φ̂I(xi, t) (5.57)

defines the interaction representation Hamiltonian and the interaction represen-
tation field φ̂I(xi, t). The solution of the differential Equation (5.56) is unique
with boundary condition U(−T/2,−T/2) = 1 and given by

U(t,−T/2) =T
(
e
− i

�

∫ t
−T/2 dt

′ĤI (t′)
)
. (5.58)

Thus

W [J ] = lim
T→∞

〈0|e−
i
�

∫ T/2
−T/2

dt′Ĥ0

T

(
e
− i

�

∫ T/2
−T/2

dt′ĤI (t′)
)
|0 〉. (5.59)

The state |0〉 corresponds to an eigenstate of the Schrödinger field operator with
the eigenvalue zero, and is not an energy eigenstate of the Hamiltonian, hence

|0〉 =
∑
E

CE |E〉 (5.60)

where
Ĥ0|E〉=E |E〉 . (5.61)

Then the matrix element in Equation (5.59) is given by

W [J ] = lim
T→∞

∑
E,E′

e−
i
�
TE′

C∗
E′CE〈E′|T

(
e
− i

�

∫ T/2
−T/2

dt′ĤI (t′)
)
|E〉 (5.62)
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This expression is generally not well-defined. The infinite phases give an ever-
oscillatory contribution which does not exist in the limit T →∞. We are in fact
interested in the matrix element and its various moments which give rise to the
Green functions, as J→ 0. Even in this limit, we get that W [J =0] is ill-defined;
if any of the CE �= 0 for any E �= 0, then

W [J = 0]→
∑
E

e−
i
�
(∞)E |CE |2. (5.63)

Thus, somehow we must project onto the ground state, defined to have E = 0.
This would happen if we can add a negative imaginary part to E. Equivalently,
if we rotate

t→ τ =−it ddx→−iddx (5.64)

the action goes to

S→ iSE = i

∫
ddx

(
1

2

(
∂μφ∂μφ+m

2
)
+V (φ)−Jφ

)
, (5.65)

and the matrix element is

〈0|T
(
e−

1
�

∫∞
−∞ dtĤ(t)

)
|0〉 ∼ 〈E = 0|T

(
e−

1
�

∫∞
−∞ dtĤ(t)

)
|E = 0〉 . (5.66)

|E = 0〉 is the zero-energy vacuum state of the theory with J = 0. Then the
functional integral gives

N ′
∫
Dφe−SE

� = 〈E = 0|T
(
e−

1
�

∫∞
−∞ dtĤ(t)

)
|E = 0〉 (5.67)

and the Minkowski space functional integral is defined by the analytic
continuation of this object to real times.

The rotation t→−iτ yields the Euclidean operator
(
−∂μ∂μ+m2

)
φ which has

no zero modes, (
−∂μ∂μ+m2

)
φ= 0⇒ φ= 0. (5.68)

Thus

N ′
∫
Dφe−SE

�

=
N ′√

det(−∂μ∂μ+m2)
e
−∫ ddxV (� δ

δJ(x)

)
e
−∫ ddxddy

(
J(x) 〈x| 1

(−∂μ∂μ+m2)
|y〉J(y)

)
,

(5.69)

where

〈x| 1

(−∂μ∂μ+m2)
|y〉 =

∫
ddk

(2π)d
eikμ(x−y)μ

1

(kμkμ+m2)
(5.70)

which is now well-defined.
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The analytic continuation back to Minkowski space (x0−y0)→ i(x0−y0) gives
the Minkowski Green function with the “correct” Feynman prescription at the
poles

〈x| 1

−(∂μ∂μ+m2)
|y〉 =

∫
ddk

(2π)d
e−ikμ(x−y)

μ 1

(kμkμ−m2+ iε)
. (5.71)

Thus once the Minkowski space functional integral is defined via the analytic
continuation back from Euclidean space, it clearly gives the vacuum expectation
value

W [J ] = 〈E = 0|T
(
e−

i
�

∫∞
−∞ dtĤS(t)

)
|E = 0〉

= e
−i
�

∫
ddxV

(
−i� δ

δJ(x)

)
e
− i

2

∫
ddk

J̃(k)J̃(−k)

(kμkμ−m2+iε) . (5.72)

For example, the Feynman propagator is obtained from

ΔF (x1,x2) = 〈E = 0|T(φ(x1)φ(x2)) |E = 0〉 =
∫

ddk

(2π)d
e−ikμ(x−y)

μ

kμkμ−m2+ iε
. (5.73)



6

Decay of the False Vacuum

In this chapter we give the first example of an application of the methods we
have learned so far. We will apply the methods of instantons to the problem of
vacuum instability in quantum field theory. We consider a scalar field governed
by a Lagrangian of the form

L=

∫
d3x

1

2
∂μφ(x)∂

μφ(x)−V (φ(x)). (6.1)

The potential V (φ(x)) for φ(x) = φ, a constant independent of the spacetime
coordinates, has the form represented by the graph in Figure 6.1. There are two
minima, a global minimum at φ− and a local minimum at φ+. Classically the
configurations φ(x) = φ± are stable. The energy is given by the functional

E =

∫
d3x

1

2
φ̇(x)

2
+

1

2
�∇φ(x) · �∇φ(x)+V (φ(x)). (6.2)

When φ(x) is a constant the first two terms, which are positive semi-definite,
give zero contribution, thus the energy comes solely from the potential term. The
potential is minimized and normally adjusted by adding a constant to make it
vanish at the global minimum φ(x) = φ−, so normally the energy of this classical
configuration is zero. At φ(x) = φ+ the potential is in a local minimum, however,
and then the value of the potential is finite and the total energy is divergent.
The divergence is proportional to the volume. However, the physically important
quantity is not the total energy but the energy density, which is given directly
by the potential. Then the energy density difference between the two classical
ground states is finite. φ+ is the false vacuum while φ− is the true vacuum. The
false vacuum is unstable while the true vacuum is stable.

We will, however, adjust the zero of the potential not in the normal way but
as depicted in Figure 6.1, by adding a constant, so that the energy density of
the false vacuum state is zero. Such a redefinition cannot affect the local physics.
Then we will calculate the decay of the false vacuum to the true vacuum per
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Unstable VacuumStable Vacuum

V(φ)

φ– φ+

Figure 6.1. The potential giving rise to a false vacuum

unit time and per unit volume, Γ
V . We will find an expression of the form

Γ

V
=Ae−

B
� (1+0(�)) (6.3)

in the semi-classical limit. This form is exactly that which we have seen for
decays via tunnelling. B will correspond to the classical action for a critical
configuration while A will come from the quantum considerations. We proceed
in an analogous fashion to the problem we considered in quantum mechanics.
We wish to define the analytic continuation of the matrix element

A.C.{〈φ+|e−
βĤ
� |φ+〉} (6.4)

from a potential for which the vacuum constructed at φ+ is stable to the potential
we are considering. As we have seen, the analytic continuation instructs us on how
to deal with Gaussian integrals over fluctuations about a critical configuration
which correspond to negative frequencies.

6.1 The Bounce Instanton Solution

Otherwise we proceed in the usual way with the semi-classical analysis of the
Euclidean functional integral. We look at

N
∫
Dφe−

SE [φ(x)]
� (6.5)

with the boundary conditions φ
(
τ =±β

2

)
= φ+. Here

SE [φ(x)] =

∫
dtd3x

(
1

2
∂μφ(x)∂μφ(x)+V (φ(x)

)
(6.6)

with the equation of motion corresponding to

δSE [φ(x)]

δφ
=−∂μ∂μφ(x)+V ′(φ(x)) = 0. (6.7)
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Here we use the Euclidean metric. This equation is exactly the equation of motion
for the scalar field in minus the potential. We take the boundary conditions for
the case β =∞

lim
τ→±∞φ(�x,τ) = φ+ (6.8)

and we add the condition
∂τφ(�τ ,τ = 0) = 0, (6.9)

which determines the Euclidean time at the classical turning point. This time of
the classical turning point is completely at our disposal for the case β =∞. The
condition that the classical action should be finite gives

lim
|�x|→∞

φ(�x,τ) = φ+. (6.10)

We assume a form that is O(4)-invariant

φ(�x,τ) = φ
(
(|�x|2+ τ2)

1
2

)
. (6.11)

The equation of motion becomes, with ρ= (|�x|2+ τ2)
1
2

d2

dρ2
φ+

3

ρ

d

dρ
φ−V ′(φ) = 0. (6.12)

The action is

SE [φ] = 2π2

∫ ∞

0

dρρ3

(
1

2

(
dφ

dρ

)2

+V (φ)

)
(6.13)

with the boundary conditions dφ
dρ

∣∣∣
ρ=0

= 0 and limρ→∞φ(ρ) = φ+. The first

condition avoids a singularity at ρ = 0 while the second comprises all of the
asymptotic boundary conditions.

A rigorous proof of the existence of a solution and that it is the minimum action
solution is given by Coleman, Glaser and Martin [34], but we shall be content
with the following argument due to Coleman [31]. The equation of motion (6.12)
can be interpreted as that for a particle with “position” φ moving in “time” ρ.
The particle is subject to a force, −V ′(φ), and a frictional force with a “time”-
dependent Stokes coefficient of friction 3

ρ . The equation of motion for a particle
in a potential with Stokes coefficient of friction μ is

d2

dρ2
φ(ρ)+μ

d

dρ
φ(ρ)+V ′(φ(ρ)) = 0. (6.14)

The solution in the absence of a potential, V ′(φ(ρ))=0, is simply φ(ρ)=a−be−μρ
for arbitrary constants a,b, with a related to the initial position and b related
to the initial velocity. This solution confirms that motion with friction without
external forces will come to rest exponentially fast. In the present case μ depends
on ρ.
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Unstable VacuumStable Vacuum

–V(φ)

–V(0)

φ– φ1 φ+

Figure 6.2. The reversed potential and effective dynamical problem

We can prove the existence of a solution satisfying our boundary conditions by
the following continuity argument. We must show that there exists an initial point
φ0 from which the particle can start at ρ= 0 and achieve φ= φ+ at ρ=∞. The
potential is reversed to give −V (φ) as depicted in Figure 6.2, and φ1 is defined
as the point at which the potential crosses zero. If φ0 > φ1 , φ(ρ) will never
reach φ+ even as ρ→∞ starting with zero velocity. If, however, φ− < φ0 < φ1,
and φ0 is sufficiently close to φ−, φ(ρ) will surpass φ+ at some finite time. We
can understand this intuitively; if φ0 is arbitrarily close to φ−, the particle will
roll off this potential hill arbitrarily slowly. We can make this time so long that
the coefficient of friction, 3

ρ , becomes negligibly small. Then the particle will roll
off and eventually climb the hill at φ+ and even surpass φ+ since it is now a
conservative system. Indeed, for φ(ρ) close to φ− we can linearize the equation
of motion, (

d2

dρ2
φ+

3

ρ

d

dρ
φ−ω2

)
(φ(ρ)−φ−) = 0, (6.15)

which has the solution

(φ(ρ)−φ−) = 2(φ(0)−φ−)
I1(ωρ)

ωρ
(6.16)

where ω2 is V ′′(φ−), and I1(ωρ) is the modified Bessel function of the first
kind. This implies that for (φ(0)−φ−) sufficiently small, (φ(ρ0)−φ−) can be
kept arbitrarily small such that φ(ρ0)<φ1 so that the potential energy remains
positive, where ρ0 is determined by the condition that the subsequent energy
lost to the friction term is negligible. Once the friction term becomes negligible,
the system is conservative and, since at ρ0 the potential energy is positive, the
particle will clearly surpass φ+ at finite ρf . A measure of the energy lost in the
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friction is obtained by the integral∫ ρf

ρ0

dρ
3

ρ

d

dρ
φ <

3

ρ0

∫ ρf

ρ0

dρ
d

dρ
φ≈ 3

ρ0

∫ φ+

φ−
dφ=

3

ρ0
(φ+−φ−). (6.17)

Thus we choose ρ0 large enough so that this energy is negligible in comparison
to the energy scales that drive the dynamics, say V (0):

3

ρ0
(φ+−φ−)� V (0). (6.18)

Then finally we conclude that there must exist some intermediate φ0 from which
φ(ρ) will attain φ+ exactly as ρ→∞. This implies the existence of a solution of
the form we desire.

6.2 The Thin-Wall Approximation

We can go much further with the assumption that the energy density difference
between the two vacua is small.

V (φ) = U(φ)+
ε

2a
(φ−a) (6.19)

with U(φ) = U(−φ), U ′(±a) = 0, U ′′(±a) = ω2 and ε is arbitrarily small, as
depicted in Figure 6.3. We can calculate the action for the bounce to first order
in ε. The reversed potential is given in Figure 6.4. At ρ=0 the field is very close
to −a, it stays there for a very long “time”, and then it rolls relatively quickly
through the minimum of the reversed potential, up to the hill at φ = +a since
now the friction is negligible. It achieves φ=+a only as ρ→∞. The bounce is
like a large four-ball of radius R, in Euclidean space, of true vacuum, separated
by a thin wall, from the false vacuum without.

Unstable VacuumStable Vacuum

a–a
∈

U(φ)+∈(φ –a)/2a

Figure 6.3. The symmetric potential with a small asymmetry
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UnstableVacuumStableVacuum

a–a

–U(φ)–∈(φ –a)/2a

∈

Figure 6.4. The reversed symmetric potential with a small asymmetry

For ρ near R, if we drop the friction term we obtain the equation of motion
(to zero order in ε)

d2

dρ2
φ−U ′(φ) = 0. (6.20)

This is exactly the same equation that we have studied in the double-well problem
of Chapter (3). The instanton solution interpolates from one well to the other as
in Figure 3.3. It is given in this region, which is near the wall, approximately by
the equation

ρ−R=

∫ φ̃(ρ)

0

dφ√
2U(φ(ρ))

. (6.21)

For large |ρ−R|, the solution is given by

φ̃(ρ) =±
(
a−αe−ω|ρ−R|

)
. (6.22)

For example, for the choice of the potential

U(φ) =
λ

4

(
φ2−a2

)2 (6.23)

the solution is

φ̃(ρ) = atanh(ω (ρ−R)) (6.24)

with α= 2a and ω2 = 2λa2.
Thus our bounce is given by

φbounce(ρ) =

⎧⎪⎪⎨
⎪⎪⎩
−a 0< ρ�R

φ̃(ρ) ρ≈R

a ρ�R

. (6.25)
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To find R we do a variational calculation in R.

SE [φbounce] = 2π2

∫ R−Δ

0

dρρ3(−ε) + 2π2

∫ R+Δ

R−Δ

dρρ3

⎛
⎝1

2

(
dφ̃(ρ)

dρ

)2

+U
(
φ̃(ρ)

)⎞⎠+

+ 2π2

∫ ∞

R+Δ

dρρ3 (0)

≈−1

2
π2R4ε+2π2R3S1, for R�Δ, (6.26)

where S1 is the action for the one-dimensional instanton φ̃(ρ) calculated in
Equation (3.27) which is independent of R (we call it S1 here to emphasize
that it is the one-dimensional instanton action),

S1 ≈
∫ ∞

−∞
dx

(
1

2

d2

dx2
φ̃(x)+U

(
φ̃(x)

))
=

∫ a

−a
dφ

√
2U(φ). (6.27)

SE(R) should be stationary under variations of R,

dSE(R)

dR
=−2π2R2ε+6π2R2S1 = 0 (6.28)

hence
R=

3S1

ε
. (6.29)

This confirms our expectation that R→∞ as ε→∞. Finally, the Euclidean
action for the bounce is

SbounceE =
1

2
π2

(
3S1

ε

)4

ε+2π2

(
3S1

ε

)3

S1 =
27π2S4

1

2ε

(
1+ o(ε)3

)
. (6.30)

6.3 The Fluctuation Determinant

The calculation of the coefficient A of Equation (6.3) is not so straightforward,
even approximately. It is given by the determinant of the operator governing
small fluctuations about the bounce.

〈φ+|e−
βĤ
� |φ+ 〉= e−

Sbounce
E

� Ndet
− 1

2

(
− d2

dτ2
−∇2+V ′′ (φbounce)

)
. (6.31)

When we attempt to evaluate the determinant we encounter the same
problems that we have already seen in particle quantum mechanics: non-positive
frequencies for the spectrum of Gaussian fluctuations.

Zero modes come from invariance of the action under translations. We can
translate in space and Euclidean time which gives us four independent zero
modes (we write φbounce as φb for the sake of brevity)

φμ(�x,τ) =N
∂

∂xμ
φb(�x,τ). (6.32)



78 Decay of the False Vacuum

Zero modes correspond to continuous degeneracies of the critical point of the
Euclidean action. Here they correspond to the arbitrariness of the location of
the centre of the bounce in Euclidean R4 which is actually R. We cannot
integrate over these directions in the integrations over fluctuations about the
bounce; however, we can equivalently integrate over the position of the bounce
in R4 which is actually R. This gives a (divergent) factor of βV and a Jacobian
corresponding to the change of integration variable from the fluctuation degree
of freedom to the coordinate giving the position of the bounce. The Jacobian
factor is of the same type as before, indeed,

δφ=
1

N

∂

∂xμ0
φb ((x−x0)ν)dc μ (6.33)

for an infinitesimal change dcμ of the coefficient of the Gaussian fluctuation along
the normalized zero-mode direction, 1

N
∂
∂x

μ
0
φb ((x−x0)ν), while

δφ=
∂

∂xμ0
φb ((x−x0)ν)dxμ0 . (6.34)

Equating the variation in Equations (6.33) and (6.34) gives
dcμ√
2π�

=
N√
2π�

dxμ0 . (6.35)

Now∫
d4x

1

N2

∂

∂xμ0
φb ((x−x0)ν)

∂

∂xν0
φb ((x−x0)ν) =

δμν
4N2

∫
d4x(∂λφb(x)∂λφb(x)) .

(6.36)
We can evaluate this integral by using the fact that the action SE is stationary
at the bounce.

0 =
d

dλ
SE [φb(λx)]

∣∣∣∣
λ=1

=
d

dλ

∫
d4x

(
1

2
(∂μφb(λx)∂μφb(λx))+V (φb(λx))

)∣∣∣∣
λ=1

=
d

dλ

∫
d4x

(
1

λ2
1

2
(∂μφb(x)∂μφb(x))+

1

λ4
V (φb(x))

)∣∣∣∣
λ=1

=

∫
d4x

(
−21

2
(∂μφb(x)∂μφb(x))− 4V (φb(x))

)
=−4SE [φb(x)]+

∫
d4x(∂μφb(x)∂μφb(x)) . (6.37)

Hence ∫
d4x(∂μφb(x)∂μφb(x)) = 4SE [φb(x)] (6.38)

and finally
N =

√
SE [φb(x)] (6.39)

exactly as in the one-dimensional case. The Jacobian factor becomes(√
SE [φb(x)]

2π�

)4

, giving the integration over the position of the bounce

(SE [φb(x)])
2

4π2�2
βV. (6.40)
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We do the same analysis for N well-separated bounces, which are approximate
critical points, which gives us(

(SE [φb(x)])
2

4π2�2

)N
(βV )N

N !
, (6.41)

where the N ! simply indicates that the permutations of the positions of the
bounces do not give new configurations. This gives

〈φ+|e−
βĤ
� |φ+〉 =Ndet

− 1
2 (−∂μ∂μ+V ′′ (φ+))e

−
(
βV

(
e
−SE [φb(x)]

�

)
(SE [φb(x)])

2

4π2�2
K

)
,

(6.42)
where K is now the ratio

K =

(
det′ (−∂μ∂μ+V ′′ (φb))
det(−∂μ∂μ+V ′′ (φ+))

)− 1
2

(6.43)

and the prime indicates that the zero modes are removed. The normalization
constant N is defined to exactly cancel the free determinant that appears

Ndet
− 1

2 (−∂μ∂μ+V ′′ (φ+)) = 1 (6.44)

This is, not the whole story, because the operator

−∂μ∂μ+V ′′ (φb) (6.45)

has a negative mode. Again our analysis of meta-stable states in quantum
mechanics applies directly. Taking into account the factor of 1

2 which comes
from the analytic continuation and deformation of the contour, we find

i
Γ

V
=

(SE [φb(x)])
2

4π2�2

(
e−

SE [φb(x)]
�

)(
det′ (−∂μ∂μ+V ′′ (φb))
det(−∂μ∂μ+V ′′ (φ+))

)− 1
2

. (6.46)

The prime still indicates that only the zero modes are removed, the square root
of the negative eigenvalue reproduces the imaginary nature and the factor of 1

2

is taken into account because the lifetime is 1
2 of the imaginary part. Analysis of

the negative modes is left for Section 6.5.

6.4 The Fate of the False Vacuum Continued

We continue our analysis of the decay of the false vacuum by considering
the evolution of the field after the tunnelling event. We can obtain some
intuition from the WKB analysis of tunnelling in particle quantum mechanics.
Consider the decay of a nucleus by α-particle emission. A reasonably successful
phenomenological potential has the form of a square well of depth extending to
less than zero attached to a short-range drop off potential from the top reaching
to zero, as depicted in Figure 6.5. The negative energy levels in the well are stable,
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tunnelling out point

meta-stable state

bound states

Figure 6.5. A nuclear tunnelling potential

but the positive energy levels are meta-stable and decay by tunnelling. The semi-
classical description of the decay process proceeds as follows. The particle stays
in the well up to a time, the “transition time”, which is a random variable, when
it makes a quantum jump to the other side of the barrier. It appears suddenly
at the other side at a point, which we call the “tunnelling out point”, with the
same energy as the meta-stable state within. Subsequently, it continues like a
free classical particle until it eventually moves off to infinity.

Quantum mechanics only enters in the calculation of the process of barrier
penetration. It allows us to calculate the mean value of the “transition time”.
In the WKB analysis, the tunnelling out point is the point on the other side
of the barrier with equal energy to the energy of the meta-stable state inside,
from which, if the particle were released, it would move off to infinity under
the classical dynamics. This is the turning point in the usual WKB analysis.
We identify this point as the point where all velocities are zero in the bounce
solution. We choose this point by the condition

∂τφ(�x,τ)|τ=0 = 0. (6.47)

This is satisfied by the O(4) symmetric ansatz that we have taken,

∂τφ(ρ)|τ=0 = ∂ρφ(ρ)

(
τ

ρ

)∣∣∣∣
τ=0

= 0. (6.48)

The field appears at τ =0 in the state described by φb(�x,τ =0) and then evolves
classically. The WKB analysis should not be taken too literally. It will not be
accurate for observations made just after the tunnelling event occurs. It is more
correctly an asymptotic description for what happens long after and far away
from the tunnelling event.

6.4.1 Minkowski Evolution After the Tunnelling

We continue nevertheless with the initial condition for after the tunnelling event

φ(�x,t= 0) = φb(�x,τ = 0), ∂τφ(�x,τ)|τ=0 = 0 (6.49)
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and then the field evolves according to the classical, now Minkowskian, equation
of motion, (

d2

dt2
−∇2

)
φ(�x,t)+V ′ (φ(�x,t)) = 0. (6.50)

At t=0, φ(�x,t= 0)=φb(�x,τ =0) is exactly a bubble of radius R of true vacuum,
separated by a thin wall from the false vacuum without. This is because φb(�x,τ)=
φb(

√
|�x|2+ τ2)→ φ(r) for t = 0 with r = |�x|. We can immediately write down

the solution to the classical Minkowskian equation of motion for the subsequent
evolution of the bubble. Simply

φ(�x,t) = φb

(√
|�x|2− t2

)
. (6.51)

In detail for the Minkowskian signature, with ρ̃≡
√
|�x|2− t2 =√−xμxμ,

∂μ∂
μφ(ρ̃) = ∂μ

(
d

dρ̃
φ(ρ̃)∂μρ̃

)
=

d2

dρ̃2
φ(ρ̃)∂μρ̃∂

μρ̃+
d

dρ̃
φ(ρ̃)∂μ∂

μρ̃. (6.52)

Using ∂μρ̃=−xμ
ρ̃ , ∂μρ̃∂μρ̃=−1 and hence ∂μ∂μρ̃=− 3

ρ̃ we get

∂μ∂
μφ(ρ̃) =−

(
d2

dρ̃2
+

3

ρ̃

)
φ(ρ̃). (6.53)

The Euclidean equation satisfied by φb
(√

|�x|2+ τ2
)

is(
d2

dτ2
+∇2

)
φb

(√
|�x|2+ τ2

)
−V ′

(
φb

(√
|�x|2+ τ2

))
= 0. (6.54)

Since

∂μ∂μφ(ρ) =

(
d2

dρ2
+

3

ρ

)
φ(ρ). (6.55)

gives (
d2

dρ2
+

3

ρ

)
φ(ρ)−V ′ (φ(ρ)) = 0. (6.56)

Thus (
d2

dt2
−∇2

)
φb

(√
|�x|2− t2

)
+V ′

(
φb

(√
|�x|2− t2

))
= 0 (6.57)

and it should be noted that this solution is only valid for |�x|2 > t2, i.e. for the
exterior of the bubble.

Then the O(4) invariance of the Euclidean solution is replaced by the O(3,1)

invariance of the Minkowskian regime. This implies that the evolution of the
bubble appears the same to all Lorentz observers. When the bubble is nucleated,
the wall of the bubble is at r ≈ R, and then it follows the hyperbola, ρ̃2 =

r2− t2 = R2. This is because the functional form of φ(ρ̃) describes the wall for
all ρ̃ ≈ R2. This means that the bubble grows with a speed which approaches
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Bubble wall

Bubble growth
t

R r

Figure 6.6. The growth of the bubble wall after tunnelling

First sighting

Collision
Warning

time

Observer

Bubble advance warning

R r

t

Figure 6.7. Collision warning time with the growth of the bubble wall

the speed of light asymptotically, as depicted in Figure 6.6. How quickly the
growth approaches c depends on R. If R is a microscopic number, like 10−10 →
10−30 as we would expect, the bubble grows with the speed of light almost
instantaneously. If a bubble is coming towards us, the warning time we have is
given by the projection of the forward light cone from the creation point to our
world line (vertical), as depicted in Figure 6.7. The time this gives us in warning,
T , is essentially the time it takes light to travel the distance R, as long as the
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observer is far from the creation point relative to R. For R micro-physical, T
is also microphysical. After the bubble hits us, quoting directly from Coleman
[31]: “We are dead. All constants of nature inside the bubble are different. We
cannot function biologically or even chemically”. But, paraphrasing, as further
pointed out by Coleman, this is no cause for concern, since for R∼ 10−15 metres,
T ∼ 3× 10−8 seconds, this is much less time than the time it takes for a single
neuron to fire. If such a bubble is coming towards us, we won’t know what hit us.

6.4.2 Energetics

The energy carried by the wall of the bubble is exactly all the energy gained by
converting a sphere of radius R of false vacuum into true vacuum. The energy
in the wall per unit area is

E =
1

4πR2

∫
|r|≈R
d3x

(
1

2

(
�∇φb

)2

+V (φb)

)

=
1

R2

∫ R+Δ

R−Δ

drr2
(
1

2

(
�∇φb

)2

+V (φb)

)
≈

∫ ∞

−∞
dr

(
1

2

(
�∇φb

)2

+V (φb)

)
= S1. (6.58)

Now, in time, the wall follows the hyperbola r2− t2 = R2, hence the energy in
the wall always stays in the wall. After some time, the element of area will have
a velocity v. Energy per unit area just transforms as the zero component of a
Lorentz vector,

S1 →
S1√
1− v2

. (6.59)

So at such a time the energy in the wall is

E = 4πr2
S1√
1− v2

(6.60)

with

v =
dr

dt
=
d

dt

√
R2+ t2 =

t√
R2+ t2

=

√
r2−R2

r2
=

√
1− R2

r2
. (6.61)

Thus
√
1− v2 =

√
1−

(
1− R2

r2

)
= R

r , and

E = 4πr2S1
r

R
=

4

3
πr3

(
3S1

R

)
=

4

3
πr3ε. (6.62)

(In the thin-wall approximation, we have R = 3S1
ε .) This is exactly the energy

obtained from the conversion of a ball of radius r of false vacuum into true
vacuum. Hence all the energy goes into the wall. Inside the bubble is just the
tranquil, true vacuum. There is no boiling, roiling, hot plasma of excitations.



84 Decay of the False Vacuum

6.5 Technical Details

We complete this chapter with some technical points which we have left
unaddressed.

6.5.1 Exactly One Negative Mode

We have assumed that there was exactly one negative energy mode to the
operator governing small fluctuations

(−∂μ∂μ+V ′′ (φb))φn = λnφn. (6.63)

We can prove this in the thin-wall approximation. O(4) invariance means that
we can expand in the scalar spherical harmonics in four dimensions

φn,j (ρ,Ω) =
1

ρ
3
2

χn,j (ρ)Yj,m,m′ (Ω) , (6.64)

where Yj,m,m′ (Ω) transforms according to the representation Djj of SO(4) =

SO(3)× SO(3), with m and m′ independently going from −j to j. These are
the eigenfunctions of the transverse Laplacian in four dimensions. Then to zero
order in ε,(

− d2

dρ2
+

8j(j+1)+3

4ρ2
+U ′′ (φb(ρ))

)
χn,j (ρ) = λn,jχn,j (ρ) (6.65)

for the resulting radial equation. This is analogous to the Schrödinger equation
for a particle in a radial potential in three dimensions.

The zero modes
1√

SbounceE

∂μφb(ρ) (6.66)

transform according to the j = 1
2 representation. ( 12 + 1

2 = 1+ 0 for the three-
dimensional rotation subgroup.) Since φb(ρ) is an increasing function, it starts
at φ− and increases to φ+ at ρ=∞, the zero modes have no nodes. Hence they
are the modes of lowest “energy” for j = 1

2 . For j > 1
2 the Hamiltonian is simply

greater than for j = 1
2 , hence all modes have energy greater than zero. Thus

the negative modes can only arise in the sector with j = 0. There must be at
least one negative mode since the Hamiltonian is simply smaller for j =0. In the
thin-wall limit, U ′′ (φb(ρ)) has the form given in Figure 6.8 where ω2 =U ′′ (φ±).
This is because φb(ρ) starts at φ− at ρ= 0 and stays so until about ρ=R where
it interpolates relatively quickly to φ+, and then stays essentially constant until
ρ=∞. The zero modes, corresponding to derivatives of φb(ρ), hence have support
localized at the wall. The negative energy modes must also be localized there.
Thus we approximate the equation near ρ ≈ R by replacing in the centrifugal
term ρ→R. This yields the equation(

− d2

dρ2
+

8j(j+1)+3

4R2
+U ′′ (φb(ρ))

)
χn,j (ρ) = λn,jχn,j (ρ) . (6.67)
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R

ρ

ω2

U˝(φb(ρ))

Figure 6.8. The potential for the small fluctuations about a thin-wall bubble

Clearly

λn,j = λn+
8j(j+1)+3

4R2
(6.68)

with λn, ordered to be increasing with n, evidently independent of j. For R→∞,
λn are the eigenvalues of the one-dimensional operator(

− d2

dx2
+U ′′ (f(x))

)
, (6.69)

where f(x) = φb(x) with x ∈ [−∞,∞], i.e. we can neglect the effect of the
boundary at ρ = 0. We already know that for j = 1

2 the minimum eigenvalue
is zero, thus

λ0 → −8j(j+1)+3

4R2

∣∣∣∣
j= 1

2

=−
8 · 12 ·

3
2 +3

4R2
=− 9

4R2
. (6.70)

This gives

λ0,0 =− 9

4R2
+

3

4R2
=− 3

2R2
, (6.71)

which is negative. All other eigenvalues for j = 1
2 are positive, for all R. This

implies that all the other λn are greater than zero, since

lim
R→∞

(
λn+

8 · 12 ·
3
2 +3

4R2

)
= lim
R→∞

(λn)> 0 for n> 0. (6.72)

Thus also for j = 0

λn+
3

4R2
> 0, for n> 0, (6.73)

for R large, hence there are no other negative eigenvalues.
In the limit ε→ 0 we obtain the double-well potential depicted in Figure 6.9.

There are no bounce-type solutions for this potential. Our solution just becomes
a ball of true vacuum of infinite radius, R = 3S1

ε →∞. There exist only the
solutions

φ= φ− or φ= φ+ (6.74)
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U(φ)

φ– φ+

Figure 6.9. The symmetric double-well potential U(φ)

to the Euclidean equation of motion. This is different from the case of particle
quantum mechanics, where there are tunnelling-type solutions between the two
wells. This difference is completely consistent with our understanding of quantum
field theory in a potential with two symmetric wells of the same depth. In such
a theory there is spontaneous symmetry breaking. The two vacua, constructed
above each well, correspond to inequivalent representations of the quantum field.
They cannot exist in the same Hilbert space, and hence there is no tunnelling
between them.

6.5.2 Fluctuation Determinant and Renormalization

The determinant that we must compute is

κ≡ det(−∂μ∂μ+V ′′ (φb)) = eln(det(−∂μ∂μ+V
′′(φb))) = etr ln(−∂μ∂μ+V

′′(φb)).

(6.75)
We expand about φ= φ+, then V ′′ (φ+)≈ ω2, then we have

κ= etr ln(−∂μ∂μ+ω
2+(V ′′(φb)−ω2))

= e
tr ln

(
(−∂μ∂μ+ω2)

(
1+(−∂μ∂μ+ω2)

−1
(V ′′(φb)−ω2)

))

= e
tr ln

(
(−∂μ∂μ+ω2)+trln

(
1+(−∂μ∂μ+ω2)

−1
(V ′′(φb)−ω2)

))

= κ0e
tr

(
(−∂μ∂μ+ω2)

−1
(V ′′(φb)−ω2)− 1

2

(
(−∂μ∂μ+ω2)

−1
(V ′′(φb)−ω2)

)2
+···

)
(6.76)

where κ0 = det
(
−∂μ∂μ+ω2

)
. The free determinant will be absorbed in the

definition of the factor K = (κ/κ0)
− 1

2 of Equation (6.43).
The first two terms in this expansion are infinite; however, all the rest are finite.

V ′′ (φb)−ω2 is exponentially small for ρ�R, so we may Fourier transform it to
obtain

f̃(kμ) =

∫
d4x

(2π)4
e−ikμxμ

(
V ′′ (φb)−ω2

)
. (6.77)
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Figure 6.10. Feynman diagram for the first term in the expansion of
Equation (6.76)

f̃(kμ) its Fourier transform is then also exponentially small for large kμ. Then

tr
((
−∂μ∂μ+ω2

)−1 (
V ′′ (φb)−ω2

))
=

∫
d4xd4y〈x| 1

−∂μ∂μ+ω2
|y〉〈y|V ′′ (φb)−ω2|x〉

=

∫
d4xd4y

∫
d4k

(2π)4
eikμ(xμ−yμ)

k2+ω2

(
V ′′ (φb(x))−ω2

)
δ(x− y)

=

∫
d4k

(2π)4

∫
d4xd4y

∫
d4q

eikμ(xμ−yμ)eiqμxμ

k2+ω2
f̃(qμ)δ(x− y)

=

∫
d4k

(2π)4

∫
d4q

∫
d4x

eiqμxμ f̃(qμ)

k2+ω2

=

∫
d4k

(2π)4
1

k2+ω2

(∫
d4qδ(qμ)f̃(qμ)

)
. (6.78)

The integral over d4k is divergent, and can be represented by the diagram given
in Figure 6.10. The infinity arising here must be absorbed via a non-trivial
renormalization of the theory. The next term is

tr

(
1

2

((
−∂μ∂μ+ω2

)−1 (
V ′′ (φb)−ω2

))2
)

=
1

2

∫
d4xd4y〈x| 1

−∂μ∂μ+ω2
|y〉〈y| 1

−∂μ∂μ+ω2
|x〉×(

V ′′ (φb(y))−ω2
)(
V ′′ (φb(x))−ω2

)
=

1

2

∫
d4xd4y

∫
d4kd4ld4pd4q

(2π)8
eikμ(x−y)μ+ilμ(y−x)μ+iqμyμ+ipμxμ

(k2+ω2)(l2+ω2)
f̃(qμ)f̃(pμ)

=
1

2

∫
d4pd4l

1

((l− p)2+ω2)

1

(l2+ω2)
f̃(pμ)f̃(−pμ), (6.79)

where integrating over x and y obtains two delta functions in momentum, and
then integrating over k and q eliminates these two variables. The integrals can
be represented diagrammatically as depicted in Figure 6.11. The integration over
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Figure 6.11. Feynman diagram for the second term in the expansion of
Equation (6.76)

Figure 6.12. General Feynman diagram of the expansion of Equation (6.76)

l is divergent and also requires a non-trivial renormalization of the theory.
In general we get a diagram of the form given in Figure 6.12. It corresponds

to the integral∫
d4l

∫
d4p1 · · ·d4pN
(2π)4(N−1)

δ(p1+ p2+ · · ·+ pN )f̃(p1μ) · · · f̃(pNμ)
(l2+ω2)((l− pN )2+ω2) · · ·

(
(l−

∑N
i=2 pi)

2+ω2
) .
(6.80)

It is only the integration over l which can cause problems, the f(piμ) are
exponentially decreasing for piμ→∞. For three or more insertions the integral
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is finite∫
d4l

1

(l2+ω2)((l− p1)2+ω2)((l− (p1+ p2))2+ω2)
∼

∫
dl

l2
. (6.81)

The solution of the problem of how to remove the divergences is by adding
a set of (an infinite number of) counter-terms to the action, which will cancel
the infinities arising from the integrations. It is a property of a renormalizable
field theory that all such counter-terms can be reabsorbed into a multiplicative
redefinition of the coupling constants and fields of the original theory. This means
that the counter-terms correspond to terms which are of the same form as those
already present.

Sbare (φ) = SR (φ)+�S1 (φ)+ · · · , (6.82)

where SR (φ) is finite, but S1 (φ) is not and the higher terms are not. This implies
a change in the bounce, which will also be of the form

φb = φRb +�φ1+ · · · , (6.83)

where φRb is the same function as φb but now of the renormalized parameters.
Now

Sbare
(
φRb +�φ1+ · · ·

)
= SR

(
φRb

)
+�S1

(
φRb

)
+
δSR (φ)

δφ
|φR

b
�φ1+ o(�2)

= SR
(
φRb

)
+�S1

(
φRb

)
+ o(�2), (6.84)

where the third term in the first equality vanishes by the equations of motion.
Then

Γ

V
=

(
SR

(
φRb

))2
4π2�2

e−
SR(φRb )+�S1(φRb )+···

�

⎛
⎝det′

(
−∂2+V R′′ (

φRb
))

det
(
−∂2+V R′′ (

φR+
))

⎞
⎠

− 1
2

(6.85)

with the stipulation that

e−
�S1(φRb )+···

�

⎛
⎝det′

(
−∂2+V R′′ (

φRb
))

det
(
−∂2+V R′′ (

φR+
))

⎞
⎠

− 1
2

(6.86)

be finite. We choose S1 (φb) so that we cancel the two divergent terms in the
expansion of the determinant. This can be made even clearer by ensuring that
the bare action to o(�) vanish at the renormalized unstable vacuum value φR+.
This requires

SR
(
φR+

)
+�S1

(
φR+

)
= �S1

(
φR+

)
= 0 (6.87)

since by definition SR
(
φR+

)
=0. We can achieve this by subtracting the constant

�S1
(
φR+

)
from the bare action in Equation (6.82), giving

Sbare (φ) = SR (φ)+�
(
S1 (φ)−S1

(
φR+

))
+ · · · . (6.88)
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This change implies the condition that

e−
�(S1(φRb )−S1(φR+))+···

�

⎛
⎝det′

(
−∂2+V R′′ (

φRb
))

det
(
−∂2+V R′′ (

φR+
))

⎞
⎠

− 1
2

(6.89)

be free of infinities. We see that one factor of counter-terms matches with each
determinant, ensuring the independent renormalizability.

In a renormalizable theory, such as φ4 theory, it is possible to prove that
it can be done keeping S1 (φ) of the same form as Sbare (φ). In the general
case, it is clear that the infinities can be cancelled; however, it is not clear
that it can be done keeping the same functional form of the bare Lagrangian.
Continuing the perturbative expansion of the functional integral beyond the
Gaussian approximation will yield higher loop corrections and infinities, for
which it will be necessary to add further counter-terms, written as �2S2(φ)+ · · · .
These again, for a renormalizable theory will be of the same form as the bare
Lagrangian. We will not belabour the point any further.

One final avenue for controlling the determinant is to decompose it into angular
momentum eigen-sectors using

−∂2j +V ′′ (φb) =
d2

dρ2
+

8j(j+1)+3

4ρ2
+V ′′ (φb (ρ)) (6.90)

in the angular momentum j sector. The multiplicity of the spherical harmonics
of order j is (2j+1)2. Then

det′
(
−∂2+V ′′ (φb)

)
det(−∂2+ω2)

= e

∑′∞
j=0, 1

2
,1,···

⎛
⎜⎝tr ln

(
−∂2j+V ′′(φb)

−∂2
j
+ω2

)(2j+1)2

−counter terms

⎞
⎟⎠
.

(6.91)
Each term is a one-dimensional determinant which we know in principle how to
calculate. It is finite. The infinities reappear after the summation over j.

6.6 Gravitational Corrections: Coleman–De Luccia

In this section we will consider gravitational corrections to vacuum decay. This
is eminently reasonable as the application of these methods will be to situations
where gravity is important, such as the evolution of the universe, where we invoke
Lorentz invariance. The relevance of gravitational effects to vacuum decay in
condensed matter systems may not be so important. However, in cosmological
applications, the consideration of gravitational effects is clearly indicated. This
analysis was first done by Coleman and De Luccia [33], and we will follow their
presentation closely.
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φ– φ+

Figure 6.13. The potential with a small asymmetry

For simplicity, we consider a single scalar field with the Euclidean action

SE [φ] =

∫
d4x

((
1

2
∂μφ

)2

+V (φ)

)
, (6.92)

which is valid with the absence of gravity. The potential V (φ) will be as in
Figure 6.13, with a true minimum at φ− and a false minimum at φ+; however,
we will not assume that the potential is symmetric under reflection φ→ −φ.
We will further assume that the value of the potential at each minimum is very
small, proportional to a parameter ε. Thus

V (φ) = V0(φ)+ o(ε), (6.93)

where V0(φ±) = 0.
Adding gravitational corrections may seem pointless at microscopic scales, but

for other scales they can be very important. Indeed, if a bubble of radius Λ of false
vacuum is converted to a true vacuum, an energy in the amount E = ε4πΛ3/3

will be released, and this energy will gravitate in the usual Newton–Einstein
fashion. The Schwarzschild radius of the gravitating energy will be 2GE. This
radius will be equal to the radius of the bubble when Λ = 2GE = 2Gε4πΛ3/3.
This gives

Λ= (8πGε/3)
−1/2

. (6.94)

For energy densities of the order of ε≈ (1GeV )4 this gives a radius of about 0.8
kilometres. Thus the gravitational effects of vacuum decay occur at scales which
are neither microscopic nor cosmological, but right in the scales of planetary and
terrestrial physics. It might well be that gravitational effects in vacuum decay
are very relevant.
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Adding the gravitational interaction, the action changes to

SE [φ,gμν ] =

∫
d4x

√
gLE =

∫
d4x

√
g

(
1

2
gμν∂μφ∂νφ+V (φ)+

1

16πG
R

)
,

(6.95)
where gμν is the spacetime metric, gμν its inverse, g is the determinant of the
metric and R is the curvature scalar. We note that in Euclidean spacetime,
the determinant of the metric g is positive. Adjusting the zero of the potential
V (φ)→ V (φ)− V0, V0 a constant, corresponds to adding √

gV0 to the action,
which is exactly the same as modifying or adding a cosmological constant.
Thus the gravitational spacetime inside the bubble and outside the bubble will
necessarily be quite different, with different values of the cosmological constant.
This makes perfect sense with our understanding that gravitation is sensitive to
and couples to the total energy in a system, including the vacuum energy density.
Thus we have to specify the cosmological constant of our initial false vacuum,
of which we are going to compute the decay. The cosmological constant being
exceptionally small at the present time, we will consider two cases of potential
interest. First we will consider the possibility that we are living in a false vacuum
with zero cosmological constant and this false vacuum decays to a true vacuum
of negative cosmological constant, i.e. V (φ+) = 0. Second, we will consider that
a false vacuum with a finite, positive cosmological constant decays to the true
vacuum without cosmological constant where we live, i.e. V (φ−) = 0.

6.6.1 Gravitational Bounce

We assume that the bounce in the presence of gravity will have maximal
symmetry, O(4) symmetry. The metric, remember that we are now in Euclidean
spacetime, then must be of the form

ds2 = dξ2+ ρ(ξ)2dΩ2, (6.96)

where dΩ2 is the metric on the three-sphere S3, and ξ is the Euclidean
radial coordinate and corresponds to the proper radial distance along a radial
trajectory. ρ(ξ) is the radius of curvature of each concentric S3 that foliate the
space. dΩ2 can be expressed in a number of coordinates, for example the analogue
of spherical polar coordinates in IR4, or in a more sophisticated manner in terms
of left invariant 1-forms on the group manifold of SU(2) which is exactly S3. But
we will not need this part of the metric explicitly and hence we will not exhibit
it, as we will assume everything is spherically symmetric and hence independent
of the angular degrees of freedom.

We can then compute the Euclidean equations of motion. These for the scalar
field are

∂μ (
√
ggμν∂νφ)−

√
gV ′(φ) = 0. (6.97)
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Using the rather simple form for the metric and the assumption that our field φ
does not depend on the angular coordinates, we find the equation simplifies to

∂ξ
(√
ggξξ∂ξφ

)
−√gV ′(φ) = 0. (6.98)

Furthermore, gξξ = 1 and √
g = ρ3(ξ)

√
gΩ where gΩ is the determinant of the

metric of the angular coordinates, which is just the metric on a unit three-sphere.
gΩ depends explicitly on the angular coordinates but it does not depend on ξ.
Since the only derivative that appears in the equation of motion is with respect
to ξ, gΩ simply factors out of both terms and then can be cancelled. This gives

0 = ∂ξ
(
ρ3(ξ)∂ξφ

)
− ρ3(ξ)V ′(φ)

= ρ3(ξ)∂2ξφ+3ρ2(ξ)∂ξρ∂ξφ− ρ3(ξ)V ′(φ). (6.99)

Dividing through by ρ3 yields

∂2ξφ+
3∂ξρ

ρ
∂ξφ= V ′(φ). (6.100)

This field equation is augmented by the Einstein equation Gμν =−8πGTμν . The
sign in this equation is convention-dependent, corresponding to the definition of
the curvature tensor, the signature of the metric and the definition of the Ricci
tensor. We will use the sign convention in Coleman–De Luccia [33], which is not
our favourite convention, but we will stick with it to be close to the original
paper. The Einstein equation yields only one net equation,

Gξξ =−8πGTξξ. (6.101)

The other components, which are just the diagonal spatial components, are either
trivial identities or equivalent to this equation. The energy momentum tensor of
the scalar field is

Tμν = ∂μφ∂νφ− gμνLE . (6.102)

To obtain the Einstein equation, Equation (6.101), one has to compute the
Ricci curvature through the Christoffel symbols, which is straightforward but
somewhat tedious. We will not spell out the details here; with the use of symbolic
manipulation software, the calculation is actually trivial. We find that there is
only one independent equation,

(∂ξρ)
2
= 1+

1

3
8πGρ2

(
1

2
(∂ξφ)

2−V (φ)

)
. (6.103)

It makes perfect sense that there are only two independent equations of motion,
as there are only two independent fields, ρ and φ. The two equations of motion
can be obtained from an effective one-dimensional Euclidean action

SE [φ,ρ] = 2π2

∫
dξ

(
ρ3

(
1

2
(∂ξφ)

2
+V (φ)

)
+

3

8πG

(
ρ2∂2ξρ+ ρ(∂ξρ)

2− ρ
))

.

(6.104)
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The equation of motion for φ is straightforward, that for ρ appears only after
self-consistently using the derivative of Equation (6.103) to eliminate the second-
order derivative in its usual equation of motion.

We solve Equation (6.100) in the approximation that the first derivative term
is negligible, and the assumption that the potential term can be approximated
by a function V (φ) = V0(φ) + o(ε) with the condition that V ′(φ±) = 0 and
V0(φ+)=V0(φ−). This latter assumption is very reasonable if the actual potential
is obtained from a small perturbation of a degenerate double-well potential. We
do not assume that the double well is symmetric, however, just that the minima
have the same value for the potential. Then Equation (6.100) becomes

∂2ξφ= V ′
0(φ), (6.105)

which admits an immediate first integral

1

2
(∂ξφ)

2
= V0(φ)+C, (6.106)

where C is the integration constant. C is determined by the value of V0 at φ+,
as we are looking for a solution that interpolates from φ− at the initial value of
ξ, which is normally taken to be zero, to φ+ as ξ→∞. Thus

1

2
(∂ξφ)

2
= V0(φ)−V0(φ+). (6.107)

This equation can be easily integrated as∫ φ

(φ++φ−)/2

dφ
√
2(V0−V0(φ+)) =

∫ ξ

ξ̄

dξ = ξ− ξ̄, (6.108)

where ξ̄ is the value at which the field is mid-way between φ+ and φ−, which
can be taken as the position of the wall. In principle, then, we should solve for
φ which is implicitly defined by this equation. This will not be done explicitly
and, continuing implicitly, once we have φ, we can solve Equation (6.103) for
ρ. To solve this first-order differential equation requires the specification of one
integration constant, we choose that as

ρ̄= ρ(ξ̄), (6.109)

which is the radius of curvature of the wall. We do not need to have φ or ρ
explicitly, if all we want is the value of the action for the bounce. This will depend
on ρ̄; however, we can determine ρ̄ by imposing that the action be stationary
with respect to variations of ρ̄.

We start with the Euclidean action, Equation (6.104), and integrate by parts
on the two-derivative term to bring it all in terms of single derivatives. We will
only be calculating the action relative to its value for the false vacuum, thus it is
calculated in a limiting fashion as the difference of two terms which separately
do not make sense and diverge in principle, but the difference is finite. Thus the
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surface term is irrelevant as we will do the same to the action without the bounce
instanton with just the false vacuum. This gives

SE = 4π2

∫
dξ

(
ρ3

(
1

2
φ′2+V

)
− 3

8πG

(
ρρ′2+ ρ

))
(6.110)

and then we eliminate ρ′ with Equation (6.103). This gives the rather compact
expression

SE = 4π2

∫
dξ

(
ρ3V − 3ρ

8πG

)
=−12π2

8πG

∫
dξρ

(
1− 8πG

3
ρ2V

)
. (6.111)

Now we use the thin-wall approximation, i.e. we assume that the bounce
instanton will be much like the same in the absence of gravity, and for ε→ 0, it will
be of the form of a thin-wall bubble. We will justify the thin-wall approximation
after the analysis. Outside the bubble the bounce configuration is entirely in the
false vacuum and we are comparing the bounce action to the action of exactly
the false vacuum, thus the contribution to the action is zero

SE, outside = 0. (6.112)

Within the wall, we can put ρ= ρ̄, and V → V0 up to o(ε) terms, giving

SE, wall = 4π2ρ̄2
∫
dξ (V0(φ)−V0(φ+)) = 2π2ρ̄3S1, (6.113)

where S1 was defined by Equation (6.27) in the absence of gravity. Finally,
for the inside of the bubble, φ = φ± is a constant, for both cases when we are
computing the action for the bounce or for the false vacuum, thus we have from
Equation (6.103)

dξ = dρ

(
1− 8πG

3
ρ2V (φ±)

)−1/2

. (6.114)

Thus choosing φ− for the bounce and φ+ for the false vacuum we have

SE, inside =−12π2

8πG

∫ ρ̄

0

ρdρ

((
1− 8πG

3
ρ2V (φ−)

)1/2

−
(
1− 8πG

3
ρ2V (φ+)

)1/2
)

=
12π2

(8πG)2

(
1

V (φ−)

((
1− 8πG

3
ρ̄2V (φ−)

)3/2

− 1

)

− 1

V (φ+)

((
1− 8πG

3
ρ̄2V (φ+)

)3/2

− 1

))
(6.115)

where,
SE = SE, outside +SE, wall +SE, inside. (6.116)

This yields an unwieldy expression; however, for the cases which interest us, it
is quite simple.
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Firstly, for the case φ+ = ε,φ− =0, the case where we are living in a spacetime
after the formation of a bubble, we have the simple expression (after taking the
limit V (φ−)→ 0 in the action SE, inside)

SE = 2π2ρ̄3S1+
12π2

(8πG)2

(
−4πGρ̄2− 1

ε

((
1− 8πG

3
ρ̄2ε

)3/2

− 1

))
. (6.117)

Then setting the derivative with respect to ρ̄ to vanish, gives

dSE
dρ̄

= 0= 6π2ρ̄2S1+
12π2

8πG
ρ̄

(
−1+

(
1− 8πG

3
ρ̄2ε

)1/2
)
, (6.118)

which is easily solved as

ρ̄=
12S1

4ε+24πGS2
1

≡ ρ̄0

1+ (ρ̄0/2Λ)
2 , (6.119)

where ρ̄0 = 3S1/ε, which is the bubble radius in the absence of gravity, and
Λ =

√
3/(8πGε), the radius at which the Schwarzschild radius of the energy

from converting a false vacuum to a true vacuum is equal to the bubble radius
as defined in Equation (6.94). Evaluating the action at the value of ρ̄ yields

SE =
1(

1+ (ρ̄0/2Λ)
2
)2

27π2S4
1

2ε3
=

S0
E(

1+ (ρ̄0/2Λ)
2
)2 , (6.120)

where S0
E is the action of the bounce in the absence of gravity. We can obtain

this formula by brute force replacement for ρ̄; however, we can minimize the
algebra by noting the Euclidean action, as a function of ρ̄, has the form

SE = αρ̄3−βρ̄2+ γ− δ
(
1− ζρ̄2

)3/2 (6.121)

with α = 2π2S1, β = 3π/4G, γ = 3/16G2ε, δ = 8πGε/3 and ρ̄ = (3S1/ε)/(1 +

(ρ̄0/2Λ)
2) and the above definitions of ρ̄0 and Λ. The action is stationary at ρ̄

hence
3αρ̄2− 2βρ̄− 3δ

(
1− ζρ̄2

)1/2
(−ζρ̄) = 0. (6.122)

Then factoring out by 3, multiplying by ρ̄ and adding and subtracting terms we
can reconstruct SE

3

(
αρ̄3−βρ̄2+ γ− δ

(
1− ζρ̄2

)1/2 (
1− ζρ̄2

)
+ δ

(
1− ζρ̄2

)1/2− γ+ β

3
ρ̄2

)
= 0

(6.123)
so then we get

SE = γ− β

3
ρ̄2− δ

(
1− ζρ̄2

)1/2
. (6.124)

From the derivative, Equation (6.122), we can easily find

δ
(
1− ζρ̄2

)1/2
=

2β

3ζ
− αρ̄

ζ
(6.125)
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and then we have
SE = γ− β

3
ρ̄2− 2β

3ζ
+
αρ̄

ζ
, (6.126)

which now is straightforward to evaluate, yielding Equation (6.120).
For the second case, V (φ+) = 0, V (φ−) = −ε, where we are now living in a

false vacuum that may decay at any moment, we obtain with similar algebra

ρ̄=
ρ̄0

1− (ρ̄/2Λ)
2 (6.127)

while

SE =
S0
E(

1− (ρ̄/2Λ)
2
)2 . (6.128)

For the thin-wall approximation to be valid, we required that the radius of the
bubble was much larger than the length scale over which φ changed significantly.
The friction term, (3/ρ)(dφ/dρ), was neglected in Equation (6.12) as the factor
(3/ρ)∼ (3/ρ̄)≈ 0. Now in the presence of gravitation we have a different friction
term, (3∂ξρ)/ρ), which is given by Equation (6.103)

1

ρ2

(
d2ρ

dξ2

)2

=
1

ρ2
+

8πG

3

(
1

2

(
dφ

dξ

)2

−V
)
. (6.129)

The first term is the same as without gravity and small if ρ̄ is large. The second
term vanishes on one side of the wall, is constant and of o(ε) on the other, and
over the wall it interpolates between these two values. From Equation (6.107)
it is to lowest order a constant, −V0(φ+), which in our two cases is of o(ε)
plus corrections which are also of o(ε). Hence we lose nothing by replacing
it with ε. This turns the second term into 1/Λ2. Hence the two terms which

control the size of 1
ρ2

(
d2ρ
dξ2

)2

are negligible, justifying self-consistently the thin-
wall approximation, if ρ̄ and Λ are large compared to the variation of φ. The
variation of φ is from φ+ to φ−, over the thickness of the wall. This thickness
is determined by the masses and coupling constants that are in V0 which are
not taken to be remarkable, i.e. neither very large nor very small. Thus the wall
thickness will be independent of ε and hence the variation of φ is of o(1). Thus
self-consistently, for small ε, we can impose that ρ̄ and Λ are large compared to
the variation of φ, and the thin-wall approximation is justified. It is important
to note that this puts no constraint on ρ̄0/Λ which governs the difference in the
solutions Equations (6.119), (6.120), (6.127), (6.128) with gravitation and those
without, Equations (6.29), (6.30), for ρ̄ and SE above. Thus ρ̄0/Λ can be taken
as large as we want. Although this may not be phenomenologically relevant, it
is interesting to consider the possibility.

In the first case with φ+ = ε,φ− = 0 we see that the effect of gravitation is to
increase the probability of vacuum decay, as the denominator in Equation (6.120)
is greater than 1 and hence reduces SE . Gravitation also diminishes the bubble
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radius. For the second case, V (φ+) = 0, V (φ−) = −ε, the effects of gravitation
are in the opposite direction, making it harder for the vacuum to decay as
the denominator in Equation (6.128) is less than 1 and can even vanish, hence
increasing SE to arbitrarily large values. In this case, the bubble radius is
increased by gravity, in the limiting case, pushing it to infinite radius at a finite
value of ρ̄0/Λ = S1

√
24πG/ε. Thus for fixed S1 and ε but for increasing G, we

reach a point when the bubble has infinite radius and its action is infinite,
completely suppressing vacuum decay. Thus gravitation totally suppresses
vacuum decay for ρ̄0 = 2Λ, which means

ε= 6πGS2
1 . (6.130)

An explanation of the quenching of vacuum decay is because of energy
conservation. If we calculate the energy of a bubble of radius ρ̄ first in the
absence of gravitation, we have the volume term and the surface term

E =−4π

3
ερ̄2+4πS1ρ̄

2. (6.131)

In this (second) case of interest, V (φ+) = 0, V (φ−) =−ε, thus we are living in
a false vacuum of zero-energy density and the true vacuum has negative energy
density. Then using the expression ρ̄0 = 3S1/ε we have

E =
4π

3
ερ̄2(ρ̄0− ρ̄), (6.132)

thus we see that the energy vanishes for the bubble, which is expected as the
energy before the bubble materialized was zero. Then the effects of gravitation
can be taken into account, imposing energy conservation. If gravitation increases
the total energy of the bubble, then the bubble must grow in size to compensate
and if the gravitation decreases the energy it must shrink. In the case at hand,
evidently the bubble must grow.

The gravitational contribution to the energy has two terms. First, the ordinary
Newtonian potential energy, which is computed by integrating the gravitational
field squared over all space

ENewton =− επρ̄
5
0

15Λ2
. (6.133)

This follows from the straightforward calculation of the Newtonian energy of the
gravitational field inside a sphere with negative mass density −ε. That energy is

ENewton =
1

2

∫
d3x(−ε)Φ(�x), (6.134)

where the gravitational potential satisfies

∇2Φ(�x) = 4πG(−ε). (6.135)

Then the energy is given by

ENewton =
1

2

∫
d3x

∇2Φ

4πG
Φ=− 1

8πG

∫
d3x |�g|2 , (6.136)
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where �g =−�∇Φ is the gravitational field. Applying Gauss’ law to

�∇·�g =−4πG(−ε) (6.137)

yields

�g =
4πG

3
ε�r (6.138)

for the interior of the bubble. The gravitational field vanishes in the exterior. The
integral Equation (6.136) quickly yields the result, Equation (6.133). The second
contribution comes because the existence of the energy distorts the geometry
correcting the volume of the bubble and hence correcting the volume term in the
energy. From Equation (6.114) we can write the volume element of the bubble

4πρ2dξ = 4πρ2dρ

(
1− 1

2

ρ2

Λ2

)
+ o(G2). (6.139)

Then integrating over the bubble, the energy density −ε yields a change

Egeom =
2περ̄50
5Λ2

(6.140)

giving a total change

Egrav =
περ̄50
3Λ2

. (6.141)

Thus the change in energy is positive, which means that, with gravitation,
the radius of the bubble must increase. It appears that for finite values of
the couplings and parameters, when ρ̄0 = 2Λ, the bubble size becomes infinite.
Increasing the gravitational coupling then gives no solution, i.e. the false vacuum
becomes stable.

Once the bubble has materialized through quantum tunnelling, we can
describe its subsequent evolution essentially classically. For Minkowski space-like
separated points with respect to the centre of the bubble, all we have to do is
analytically continue the solution back to Minkowski time. Thus for flat space we
had ρ2 = �x ·�x+ τ2→ �x ·�x− t2. However, we must continue both the solution and
the metric back to Minkowski time. Thus an O(4)-invariant Euclidean manifold
becomes a O(3,1)-invariant Minkowskian manifold. The metric starts as

ds2 =−dξ2− (ρ(ξ))2dΩ2, (6.142)

the negative definite metric being chosen as we wish to continue to a metric
of signature (+,−,−,−) where dΩ2 becomes the metric on a unit hyperboloid
with space-like normal once continued to Minkowski spacetime. For this region
φ=φ(ρ) the solution that we have implicitly assumed to exist (although we have
not been required to find it explicitly) and for a thin wall, the bubble wall is
always at ρ= ρ̄ and lies in this region. If we are outside a materializing bubble,
then this is all we have to know about the manifold. It is possible to describe
further the evolution of the bubble for the two cases that we have considered;
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however, we will not continue the discussion further, it no longer requires the
methods of instantons. We recommend the reader to consult the original article
of Coleman and De Luccia [33].

6.7 Induced Vacuum Decay

We continue our study of the decay of the false vacuum precipitated by the
existence of topological defects in that vacuum [79, 85]; we restrict our attention
to the example of the decay of a “false cosmic string”. Such a topological soliton
corresponds to a topologically stable, non-trivial configuration inside a spacetime
that is in the false vacuum. We will not worry about gravitational corrections.
Topological solitons exist when the vacuum is degenerate and, generically, we
have spontaneous symmetry breaking.

6.7.1 Cosmic String Decay

Cosmic strings occur in a spontaneously broken U(1) gauge theory, a generalized
Abelian Higgs model [61]. This model contains a complex scalar field interacting
with an Abelian gauge field, hence scalar electrodynamics. However, we consider
the inverse from the usual case, the potential for the complex scalar field φ, has a
local minimum at a non-zero value φ2 = a2, where the symmetry is broken, while
the true minimum occurs at vanishing scalar field, φ=0. The scalar field potential
is considered an effective potential, we do not worry about renormalizability.
We assume the energy density splitting between the false vacuum and the
true vacuum is very small. The spontaneously broken vacuum is the false
vacuum.

In a scenario where from a high-temperature, unbroken symmetry phase the
theory passes through an intermediate phase of spontaneous symmetry breaking,
it is generic that there will be topological defects trapped in the symmetry-broken
vacuum. Furthermore, the system could be trapped in the spontaneously broken
phase, even though, as the temperature cools, the true vacuum returns to the
unbroken symmetry phase. For the complex scalar field, its phase eiθ, can wrap
the origin an integer number of times so that Δθ = 2nπ, as we go around a
given line in three-dimensional space. The line can be infinite or form a closed
loop. Corresponding to the given line there must exist a line of zeros of the
scalar field, where the scalar field vanishes and corresponds to the true vacuum.
The corresponding minimum energy configuration (when the roles of the false
vacuum and true vacuum are reversed) is called a cosmic string, alternatively
a Nielsen–Olesen string [96] or a vortex string [3]. In the scenario that we have
described, the true vacuum lies at the regions of vanishing scalar field, thus the
interior of the cosmic string is in the true vacuum while the exterior is in the
false vacuum. It is already interesting that such classically stable configurations
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actually exist. Such strings must be unstable to quantum mechanical tunnelling
decay. In this section we show how to calculate the amplitude for this decay, in
the thin-wall limit.

In [85], the decay of vortices in the strictly two-spatial-dimensional context
was considered. There, the vortex was classically stable at a given radius R0.
Through quantum tunnelling, the vortex could tunnel to a larger vortex of radius
R1, which was no longer classically stable. Dynamically the interior of the vortex
was at the true vacuum, thus energetically lower by the energy density splitting
multiplied by the area of the vortex. The vacuum energy behaves as ∼ −εR2,
while the magnetic field energy behaves like ∼ 1/R2 and the energy in the wall
behaves like ∼R. Thus the energy functional has the form

E = α/R2+βR− εR2. (6.143)

For sufficiently small ε, this energy functional is dominated by the first two
terms. It is infinitely high for a small radius due to the magnetic energy, and
will diminish to a local minimum when the linear wall energy begins to become
important. This occurs at a radius R0, well before the quadratic area energy, due
to the energy splitting between the false vacuum and the true vacuum becoming
important, when ε is sufficiently small. Clearly, though, for large enough radius of
the thin-wall string configuration, the energy splitting will be the most important
term, and a thin-walled vortex configuration of sufficiently large radius will be
unstable to expanding to infinite radius. However, a vortex of radius R0 will
be classically stable and only susceptible to decay via quantum tunnelling. The
amplitude for such tunnelling, in the semi-classical approximation in the strictly
two-dimensional context, has been calculated in [85].

Here we consider the model in a 3+1-dimensional setting. The vortex can be
continued along the third additional dimension as a string, called a cosmic string.
The interior of the string contains a large magnetic flux distributed over a region
of the true vacuum. It is separated by a thin wall from the outside, where the
scalar field is in the false vacuum. The analysis of the decay of two-dimensional
vortices cannot directly apply to the decay of the cosmic string, as the cosmic
string must maintain continuity along its length. Thus the radius of the string at
a given position cannot spontaneously make the quantum tunnelling transition
to the larger iso-energetic radius, called R1, as it is continuously connected to
the rest of the string. The whole string could, in principle, spontaneously tunnel
to the fat string along its whole length, but the probability of such a transition is
strictly zero for an infinite string, and correspondingly small for a closed string
loop. Here we will describe the tunnelling transition to a state that corresponds
to a spontaneously formed bulge in the putatively unstable thin cosmic
string.
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6.7.2 Energetics and Dynamics of the Thin, False String

6.7.2.1 Set-up We consider the Abelian Higgs model (spontaneously broken
scalar electrodynamics) with a modified scalar potential as in [85] but now
generalized to 3+1 dimensions. The Lagrangian density of the model has the
form

L=−1

4
FμνF

μν +(Dμφ)
∗(Dμφ)−V (φ∗φ), (6.144)

where Fμν = ∂μAν−∂νAμ and Dμφ= (∂μ+eAμ)φ. The potential is a sixth-order
polynomial in φ [79, 111], written

V (φ∗φ) = λ(|φ|2− εv2)(|φ|2− v2)2. (6.145)

Note that the Lagrangian is no longer renormalizable in 3+1 dimensions;
however, the understanding is that it is an effective theory obtained from a
well-defined renormalizable fundamental Lagrangian. The fields φ and Aμ, the
vacuum expectation value v have mass dimension 1, the charge e is dimensionless
and λ has mass dimension 2 since it is the coupling constant of the sixth-
order scalar potential. The potential energy density of the false vacuum |φ|= v

vanishes, while that of the true vacuum has V (0) =−λv6ε. We rescale as

φ→ vφ Aμ→ vAμ e→ λ1/2ve x→ x/(v2λ1/2) (6.146)

so that all fields, constants and the spacetime coordinates become dimensionless,
then the Lagrangian density is still given by Equation (6.144) where now the
potential is

V (φ∗φ) = (|φ|2− ε)(|φ|2− 1)2. (6.147)

and there is an overall factor of 1/(λv2) in the action.
Initially, the cosmic string will be independent of z, the coordinate along its

length, and will correspond to a tube of radius R with a trapped magnetic flux in
the true vacuum inside, separated by a thin wall from the false vacuum outside.
R will vary in Euclidean time τ and in z to yield an instanton solution. Thus
we promote R to a field R→ R(z,τ). Hence we will look for axially symmetric
solutions for φ and Aμ in cylindrical coordinates (r, θ, z, τ). We use the following
ansatz for a vortex of winding number n:

φ(r,θ,z,τ) = f(r,R(z,τ))einθ, Ai(r,θ,z,τ) =−n
e

εijrj
r2

a(r,R(z,τ)), (6.148)

where εij is the two-dimensional Levi–Civita symbol. This ansatz is somewhat
simplistic; it is clear that if the radius of the cosmic string swells out at some
range of z, the magnetic flux will dilute and hence through the (Euclidean)
Maxwell’s equations some “electric” fields will be generated. In three-dimensional,
source-free Euclidean electrodynamics, there is no distinct electric field, the
Maxwell equations simply say that the three-dimensional magnetic field is
a divergence-free and rotation-free vector field that satisfies superconductor
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boundary conditions at the location of the wall. It is clear that the correct form
of the electromagnetic fields will not simply be a diluted magnetic field that
always points along the length of the cosmic string as with our ansatz; however,
the correction will not give a major contribution and we will neglect it. Indeed,
the induced fields will always be smaller by a power of 1/c2 when the usual units
are used.

The Euclidean action functional for the cosmic string then has the form

SE [Aμ,φ] =
1

λv2

∫
d4x

⎡
⎣∑

i

(
1

2
F0iF0i+

1

2
Fi3Fi3

)
+

1

2
F03F03+

∑
ij

1

4
FijFij

+ (∂τφ)
∗(∂τφ)+ (∂zφ)

∗(∂zφ)+
∑
i

Di(φ)
∗(Diφ)+V (φ∗φ)

]
(6.149)

where i, j take values just over the two transverse directions and we have already
incorporated that A0 =A3 = 0.

Substituting Equations (6.147) and (6.148) into Equation (6.149), we obtain

SE =
2π

λv2

∫
dzdτ

∫ ∞

0

drr

[
n2ȧ2

2e2r2
+
n2a′2

2e2r2
+
n2(∂ra)

2

2e2r2
+ ḟ2+ f ′2+(∂rf)

2

+
n2

r2
(1−a)2f2+(f2− ε)(f2− 1)2

]
, (6.150)

where the dot and prime denote differentiation with respect to τ and z,
respectively. Then ȧ =

(
∂a(r,R)
∂R

)
Ṙ and a′ =

(
∂a(r,R)
∂R

)
R′, and likewise for f ,

hence the action becomes

SE =
2π

λv2

∫
dzdτ

∫ ∞

0

drr

⎡
⎢⎣n2

((
∂a(r,R)
∂R

)
Ṙ
)2

2e2r2
+
n2

((
∂a(r,R)
∂R

)
R′

)2

2e2r2
+
n2(∂ra)

2

2e2r2

+

(
∂f(r,R)

∂R
Ṙ

)2

+

(
∂f(r,R)

∂R
R′

)2

+(∂rf)
2+

n2

r2
(1−a)2f2+(f2− ε)(f2− 1)2

]

=
2π

λv2

∫
dz

∫ ∞

0

drr

[(
n2

2e2r2

(
∂a(r,R)

∂R

)2

+

(
∂f(r,R)

∂R

)2
)
(Ṙ2+R′2)

+
n2(∂ra)

2

2e2r2
+(∂rf)

2+
n2

r2
(1−a)2f2+(f2− ε)(f2− 1)2

]
. (6.151)

We note the two- (Euclidean) dimensional, rotationally invariant form (Ṙ2+R′2)
which appears in the kinetic term. This allows us to make the O(2) symmetric
ansatz for the instanton, and the easy continuation of the solution to Minkowski
time, to a relativistically invariant O(1,1) solution, once the tunnelling transition
has been completed.
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In the thin-wall limit, the Euclidean action can be evaluated essentially
analytically, up to corrections which are smaller by at least one power of 1/R.
The method of evaluation is identical to that in [85] and we shall not give the
details here; we get

SE =
1

λv2

∫
d2x

1

2
M(R(z,τ))(Ṙ2+R′2)+E(R(z,τ))−E(R0), (6.152)

where

M(R) =

[
2πn2

e2R2
+πR

]
(6.153)

E(R) =
n2Φ2

2πR2
+πR− επR2. (6.154)

Φ is the total magnetic flux and R0 is the classically stable thin tube string
radius.

6.7.3 Instantons and the Bulge

6.7.3.1 Tunnelling Instanton We look for an instanton solution that is O(2)

symmetric. The appropriate ansatz is

R(z,τ) =R(
√
z2+ τ2) =R(ρ) (6.155)

with the imposed boundary condition that R(∞)=R0. It is useful to understand
what this ansatz means. We expect that the solution will be localized in
Euclidean two space, say around the origin. Far from the origin, the solution
will be R = R0. Thus if we go to τ = −∞, the string will be in its dormant,
thin state, all at R=R0. As Euclidean time progresses, at some Euclidean time
τ =−R1 a small bulge, an increase in the radius, will start to form at z=0. This
bulge will then increase dramatically, until at τ = 0 it will be distributed over a
region of the original string of length 2R1, the factor of 2 because the radius of the
O(2) symmetric bubble is R1 in both directions. Then the bubble will “bounce”
back and shrink and the string will return to its original radius. An alternative
description is in terms of the creation of a soliton–anti-soliton pair. The instanton
solution will describe the transition from a string of radius R0 at τ =−∞, to a
point in τ =−R1 at z = 0 when a soliton–anti-soliton pair starts to be created.
The configuration then develops a bulge which forms when the pair separates to
a radius which again has to be R1 because of O(2) invariance and which is the
bounce point of the instanton along the z-axis at τ = 0. Finally the subsequent
Euclidean time evolution continues in a manner which is just the (Euclidean)
time reversal of evolution leading up to the bounce point configuration, until a
simple cosmic string of radius R0 is re-established for τ ≥R1 and all z, i.e. for
ρ≥R1. The action functional is given by

SE =
2π

λv2

∫
dρ ρ

[
1

2
M(R(ρ))

(
∂R(ρ)

∂ρ

)2

+E(R(ρ))−E(R0)

]
. (6.156)
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Figure 6.14. The energy as a function of R, for n= 100, e= .005 and ε= .001

The instanton equation of motion is

d

dρ

(
ρM(R)

dR

dρ

)
− 1

2
ρM ′(R)

(
dR

dρ

)2

− ρE′(R) = 0 (6.157)

with the boundary condition that R(∞) = R0, and we look for a solution
that has R ≈ R1 near ρ = 0, where R1 is the large radius for which the
string is approximately iso-energetic with the string of radius R0. The solution
necessarily “bounces” at τ = 0 since ∂R(ρ)/∂τ |τ=0 = R′(ρ)(τ/ρ)|τ=0 = 0. (The
potential singularity at ρ= 0 is not there since a smooth configuration requires
R′(ρ)|ρ=0 = 0.)

The equation of motion is better cast as an essentially conservative, dynamical
system with a “time”-dependent mass and the potential given by the inversion of
the energy function as pictured in Figure 6.14, but in the presence of a “time”-
dependent friction where ρ plays the role of time:

d

dρ

(
M(R)

dR

dρ

)
− 1

2
M ′(R)

(
dR

dρ

)2

−E′(R) =−1

ρ

(
M(R)

dR

dρ

)
. (6.158)

As the equation is “time”-dependent, there is no analytic trick to evaluating
the bounce configuration and the corresponding action. The solution must be
found numerically, which starts with a given R≈R1 at ρ= 0 and achieves R=

R0 for ρ > ρ0. We can be confident of the existence of a solution by showing
the existence of an initial condition that gives an overshoot and another initial
condition that gives an undershoot, as pioneered by Coleman [32, 23]. If we start
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at the origin at ρ= 0 high enough on the far right side of the (inverted) energy
functional pictured in Figure 6.14, the equation of motion, Equation (6.158), will
cause the radius R to slide down the potential and then roll up the hill towards
R = R0. If we start too far up to the right, we will roll over the maximum
at R = R0, while if we do not start high enough we will never make it to the
top of the hill at R = R0. The right-hand side of Equation (6.158) acts as a
“time”-dependent friction, which becomes negligible as ρ→∞, and once it is
negligible, the motion is effectively conservative. It is not unrealistic to believe
that there will be a correct initial point that will give exactly the solution that
we desire, that as ρ→∞, R(ρ)→R0. We find the solution exists using numerical
integration. For the parameter choice n=100, e= .005 and ε= .001, if we start at
R≈ 11,506.4096, we generate the profile function R(ρ) in Figure 6.15. Actually,
numerically integrating to ρ≈ 80,000 the function falls back to the minimum of
the inverted energy functional Equation (6.14). On the other hand, if we increase
the starting point by .0001, the numerical solution overshoots the maximum
at R = R0. Hence we have numerically implemented the overshoot/undershoot
criterion of [32, 23].

The cosmic string emerges with a bulge described by the function numerically
evaluated and represented in Figure 6.15 which corresponds to R(z,τ = 0). A
three-dimensional depiction of the bounce point is given in Figure 6.16. One
should imagine the radius R(z) along the cosmic string to be R0 to the left,
then bulging out to the the large radius as described by the mirror image of the
function in Figure 6.15 and then returning to R0 according to the function in
Figure 6.15. This radius function has argument ρ=

√
z2+ τ2. Due to the Lorentz

invariance of the original action, the subsequent Minkowski time evolution is
given by R(ρ)→R(

√
z2− t2), which is only valid for z2−t2≥ 0. Fixed ρ2= z2−t2

describes a space-like hyperbola that asymptotes to the light cone. The value of
the function R(ρ) therefore remains constant along this hyperbola. This means
that the point at which the string has attained the large radius moves away
from z ≈ 0 to z →∞ at essentially the speed of light. The other side moves
towards z→−∞. Thus the soliton–anti-soliton pair separates quickly, moving
at essentially the speed of light, leaving behind a fat cosmic string, which is
subsequently classically unstable to expand and fill all space.

The rate at which the classical fat string expands depends on the actual value
of ε. Once the string radius is large enough, its boundary wall is completely
analogous to a domain wall that separates a true vacuum from a false vacuum.
The true vacuum exerts a constant pressure on the wall, and it accelerates
into the region of false vacuum. Obviously, if there is nothing to retard its
expansion, it will accelerate to move at a velocity that eventually approaches
the speed of light. The only effects retarding the velocity increase are the inertia
and possible radiation. Radiation should be negligible as there are no massless
fields in the exterior and there are no accelerating charges. The acceleration,
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Figure 6.15. The radius as a function of ρ

a, is proportional to pressure divided by the mass per unit area. The pressure
is simply the energy density difference, p = ε. The mass per unit area can be
obtained from Equation (6.153). Here the contribution to the mass per unit
length from the wall is simply πR. Thus the mass per unit area, μ, is obtained
from πR×L = μ2πR×L for a given length L, which gives μ = 1/2. Then we
have

a≈ ε/μ= 2ε. (6.159)

Thus it is clear that this acceleration can be arbitrarily small, for small ε, and
it is possible to imagine that once the tunnelling transition has occurred the fat
cosmic string will exist and be identifiable for a long time.

6.7.4 Tunnelling Amplitude

It is difficult to say too much about the tunnelling amplitude or the decay rate per
unit volume analytically in the parameters of the model. The numerical solution
we have obtained for some rather uninspired choices of the parameters gives rise
to the profile of the instanton given in Figure 6.15. This numerical solution could
then be inserted into the Euclidean action to determine its numerical value, call
it S0(ε). It seems difficult to extract any analytical dependence on ε; however,
it is reasonable to expect that as ε→ 0 the tunnelling barrier, as can be seen in
Figure 6.14, will get bigger and bigger and hence the tunnelling amplitude will
vanish. On the other hand, there should exist a limiting value, call it εc, where
the tunnelling barrier disappears at the so-called dissociation point [126, 81, 80],
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Figure 6.16. (a) Cosmic string profile at the bounce point. (b) Cut away of
the cosmic string profile at bounce point

such that as ε→ εc, the action of the instanton will vanish, analogous to what
was found in [85]. In general, the decay rate per unit length of the cosmic string
will be of the form

Γ=Ac.s.

(
S0(ε)

2π

)
e−S0(ε), (6.160)

where Ac.s. is the determinantal factor excluding the zero modes and
(
S0(ε)
2π

)
is

the correction obtained after taking into account the two zero modes of the bulge
instanton. These correspond to invariance under Euclidean time translation and
spatial translation along the cosmic string [32, 23]. In general, there will be a
length L of cosmic string per volume L3. For a second-order phase transition
to the meta-stable vacuum, L is the correlation length at the temperature of
the transition which satisfies L−1 ≈ λv2Tc [70, 69, 130, 129]. For first-order
transitions, it is not clear what the density of cosmic strings will be. We will
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keep L as a parameter, but we expect that it is microscopic. Then in a large
volume Ω, we will have a total length NL of cosmic string, where N = Ω/L3.
Thus the decay rate for the volume Ω will be

Γ× (NL) = Γ

(
Ω

L2

)
=Ac.s.

(
S0(ε)

2π

)
e−S0(ε)

Ω

L2
(6.161)

or the decay rate per unit volume will be

Γ× (NL)

Ω
=

Γ

L2
=
Ac.s.

(
S0(ε)
2π

)
e−S0(ε)

L2
. (6.162)

A comparable calculation with point-like defects [85] would give a decay rate per
unit volume of the form

Γpoint like

L3
=

Apoint like

(
S
point like
0 (ε)

2π

)3/2

e−S
point like
0 (ε)

L3
(6.163)

and the corresponding decay rate from vacuum bubbles (without topological
defects) [32, 23] would be

Γvac.bubble =Avac.bubble

(
Svac.bubble
0 (ε)

2π

)2

e−S
vac.bubble
0 (ε). (6.164)

Since the length scale L is expected to be microscopic, we would then find that
the number of defects in a macroscopic volume (i.e. universe) could be incredibly
large, suggesting that the decay rate from topological defects would dominate
over the decay rate obtained from simple vacuum bubbles [32, 23]. Of course the
details depend on the actual values of the Euclidean action and the determinantal
factor that is obtained in each case.

There are many instances where the vacuum can be meta-stable. The
symmetry-broken vacuum can be meta-stable. Such solutions for the vacuum
can be important for cosmology, and for the case of supersymmetry breaking see
[1, 47] and the many references therein. In string cosmology, the inflationary
scenario that has been obtained in [67] also gives rise to a vacuum that is
meta-stable, and it must necessarily be long-lived to have cosmological relevance.

In a condensed matter context, symmetry-breaking ground states are also of
great importance. For example, there are two types of superconductors [7]. The
cosmic string is called a vortex-line solution in this context, and it is relevant to
type II superconductors. The vortex line contains an unbroken symmetry region
that carries a net magnetic flux, surrounded by a region of broken symmetry.
If the temperature is raised, the true vacuum becomes the unbroken vacuum,
and it is possible that the system exists in a superheated state where the false
vacuum is meta-stable [41]. This technique has actually been used to construct
detectors for particle physics [11, 105]. Our analysis might even describe the
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decay of vortex lines in superfluid liquid Helium III [86]. The decay of all of
these meta-stable states could be described through the tunnelling transition
mediated by instantons in the manner that we have computed. For appropriate
limiting values of the parameters, for example when ε→ εc, the suppression of
tunnelling is absent, and the existence of vortex lines or cosmic strings could
cause the decay of the meta-stable vacuum without bound.
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Large Orders in Perturbation Theory

7.1 Generalities

We can use instanton methods to obtain the size of the terms in large orders of
perturbation theory. We will first consider particle quantum mechanics [21] and
then generalize to quantum field theory. The general idea concerns actions of the
form

S (φ) =

∫
ddx

(
1

2
∂μφ∂μφ+

g

(2N)!
φ2N

)
(7.1)

with N = d
d−2 . With

I(g) =
∫
Dφe−

S(φ)
� =

∑
k

Ikgk (7.2)

we have from Cauchy’s formula

Ik =
1

2πi

∮
dg

(
I(g)
gk+1

)
, (7.3)

where the integral is over a contour containing the origin. For large k we want
to perform this integral by Gaussian approximation about a critical point in φ

and g. The critical point must satisfy the equations of motion, h̄= 1,

0 =
∂

∂g

e−
S(φ,g)

�

gk
⇒ k

g
=− 1

(2N)!

∫
ddxφ2N (7.4)

and the usual equation for φ

∂μ∂
μφ=

g

(2N − 1)!
φ(2N−1). (7.5)

Changing the scale

φ→ (−g)−
1

2N−2 ψ (7.6)
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gives
k

g
=− 1

(2N)!
(−g)−

N
N−1

∫
ddxψ2N , (7.7)

which implies

(2N)!
k∫

ddxψ2N
= (−g)−

N
N−1+1

= (−g)−
1

N−1 , (7.8)

which in turn means
− g ∼ 1

kN−1
. (7.9)

The other equation is simply

(−g)−
1

2N−2 ∂μ∂
μψ = g

ψ2N−1

(2N − 1)!
(−g)−

2N−1
2N−2 , (7.10)

which should have a solution with∫
ddxψ2N <∞. (7.11)

We find such a critical point in various examples, and then perform the integrals
by Gaussian approximation.

7.2 Particle Mechanics

In particle quantum mechanics we consider the Hamiltonian

H =
1

2

n∑
i=1

p2i +
1

2

n∑
i=1

x2i + g

(
n∑
i=1

x2i

)N

, (7.12)

which describes n anharmonic oscillators which interact with each other. Then

lim
β→∞

− 1

β
ln

(
tr
(
e−βH

)
tr(e−βH0)

)
= lim
β→∞

− 1

β
ln

(
e−βE + · · ·
e−βE0 + · · ·

)
= E −E0, (7.13)

where E and E0 are the ground-state energy of the system and the corresponding
free system. The ratio of the traces can be expressed as a path integral

tr
(
e−βH

)
tr(e−βH0)

=N
∫
periodic

D�x(τ)e−
∫ β
0 dτ

(
1
2
�̇x
2
+ 1

2
�x2+g|�x|N

)
. (7.14)

N is chosen so that the ratio is equal to 1 for g = 0. Periodic �x(τ) converts
the path integral into a trace. The term of order k is extracted via the Cauchy
theorem. This integral corresponds to the integral in Equation (7.2).

For particle quantum mechanics, however, we can actually perform the g

integration exactly,

1

2πi

∮
dg
e−g

∫ β
o dτ |�x|2N

gk+1
= (−1)k

(∫ β
0
dτ |�x|2N

)k
k!

(7.15)
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thus we find

tr
(
e−βH

)
tr(e−βH0)

∣∣∣∣∣
k

=
(−1)k

k!
N

∫
periodic

Dx(τ)e−
(∫ β

0 dτ
(

1
2
�̇x
2
+ 1

2
�x2
)
−k ln

(∫ β
0 dτ |�x|2N

))
. (7.16)

To perform the path integral, we look for a critical point in �x, to the equation
of motion

�̈x= �x− 2Nk�x|�x|2(N−1)∫ β
0
dτ |�x|2N

. (7.17)

Changing the scale by �x→
√

2Nk∫ β
0 dτ |�x|2N �x yields the equation

�̈x= �x−�x|�x|2(N−1). (7.18)

The solution is easily found,

�x= �ux0 (τ − τ0) (7.19)

with |�u|2 = 1 and the function x0 given by,

(x0 (τ))
2(N−1)

=
N

cosh2 ((N − 1)τ)
, (7.20)

where x0(τ) satisfies
ẍ0 = x0−x0(x0)2(N−1). (7.21)

This is most easily verified by observing

d

dτ
x
2(N−1)
0 =

−2N(N − 1)sinh(N − 1)τ

cosh3(N − 1)τ
=−2x2(N−1)

0 (N − 1)tanh(N − 1)τ.

(7.22)
But

d

dτ
x
2(N−1)
0 = 2(N − 1)x

2(N−1)−1
0 ẋ0 (7.23)

and therefore
d

dτ
x0 =−x0 tanh(N − 1)τ. (7.24)

Finally

ẍ0 =−ẋ0 tanh(N − 1)τ +x0(N − 1)sech2(N − 1)τ

= x0 tanh
2(N − 1)τ +x0(N − 1)sech2(N − 1)τ

= x0
(
1− sech2(N − 1)τ − (N − 1)sech2(N − 1)τ

)
= x0

(
1− N

cosh2(N − 1)τ

)
= x0−x0(x0)2(N−1) (7.25)

as required. Periodicity is satisfied if we begin at τ = β
2 and end at τ = β

2 . As
β→∞ the action is calculable,

S [�ux0 (τ − τ0)] =Nk−Nk ln(2Nk)+ k(N − 1) ln(J), (7.26)
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where

J =

∫ ∞

−∞
dτx2N0 (τ) =

N
N

N−1 2
N+1
N−1

N − 1

(
Γ
(

N
N−1

))2

Γ
(

2N
N−1

) . (7.27)

It remains to calculate the determinant corresponding to the Gaussian
fluctuations about this critical point. The operator coming from the second
variation of the action is

δ2

δxα (τ1)δxβ (τ2)
S (�x)

∣∣∣∣
�x=�ux0(τ)

=

((
− d2

dτ21
+1− N

cosh2 ((N − 1)τ1)

)
δαβ

− 2(N − 1)Nuαuβ

cosh2 ((N − 1)τ1)

)
δ (τ1− τ2)

+
2N

J
uαuβx

2N−1
0 (τ1)x

2N−1
0 (τ2)

=MLuαuβ +MT (δαβ −uαuβ) (7.28)

with

ML =

(
− d2

dτ21
+1− (2N − 1)N

cosh2 ((N − 1)τ1)

)
δ (τ1− τ2)+

2N

J
x2N−1
0 (τ1)x

2N−1
0 (τ2)

(7.29)
and

MT =

(
− d2

dτ21
+1− N

cosh2 ((N − 1)τ1)

)
δ (τ1− τ2) . (7.30)

For the transverse operator MT , the corresponding “quantum mechanical”
Hamiltonian is

H = p2− λ(λ+1)

cosh2(x)
, (7.31)

which is exactly solvable. The eigenfunctions are the Jacobi functions. The ratio
of the determinants is given by

det(H − z)
det(H0− z)

=
Γ
(
1+

√
−z

)
Γ
(√
−z

)
Γ
(
1+λ+

√
−z

)
Γ
(√
−z−λ

) , (7.32)

which is calculated using the Affleck Coleman method [31, 114, 36], where Γ is
the usual gamma function. For the case at hand, λ= 1

N−1 , z =− 1
(N−1)2

which
gives the transverse operator up to a factor of 1/(N −1)2. We must separate out
the zero modes. These arise because of the invariance of the original Hamiltonian
under global rotations of �x (equivalently of �u). Rotations about a direction
orthogonal to �u should all be in the transverse operator. Thus the zero mode for
MT is simply x0 (τ).

δrot. (�ux0 (τ)) = (δ�u)x0 (τ) , (7.33)
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where (δ�u) counts the number of independent rotations. To find det′(H−z)
det(H0−z) , we

must divide the ratio by the smallest eigenvalue for λ not equal to its critical
value, and then take the limit. Now

H − z =− d2

dx2
− λ(λ+1)

cosh2(x)
− z; (7.34)

however, if we scale x→ (N − 1)t, with λ= 1
N−1 , z =− 1

(N−1)2
, we get

H − z = 1

(N − 1)2

(
− d2

dt2
− N

cosh2((N − 1)t)
+1

)
. (7.35)

Then with z = − 1
(N−1)2

+ ε the zero mode becomes an eigenmode with
eigenvalue ε. Each eigenvalue of H − z is 1

(N−1)2
times the eigenvalue of

− d2

dt2
− N

cosh2((N−1)t)
+1. Thus we must divide by ε(N − 1)2 to get det′. Hence

lim
z→− 1

(N−1)2

2π(
− 1

(N−1)2
− z

)
(N − 1)2

det(H − z)
det(H0− z)

=
2π(N +1)

2(N − 1)

Γ2
(

N
N−1

)
Γ
(

2N
N−1

) (7.36)

The 2π comes from the definition of the measure in the Gaussian integral. There
are n−1-independent transverse directions, for each one we have the same det′,
to the power − 1

2 , giving the total power −n−1
2 . The Jacobian factor coming from

changing the integration variable from the zero mode “Gaussian fluctuation” to
the integration over the position gives a factor of

√∫∞
−∞ dτx20 (τ) = (k(N +1))

1
2 .

Thus the total contribution of the transverse modes is

(2π)
n
2

Γ
(
n
2

) (k(N +1))
n−1
2

⎡
⎣π(N +1)

(N − 1)

Γ2
(

N
N−1

)
Γ
(

2N
N−1

)
⎤
⎦
−n−1

2

. (7.37)

The first factor is the volume from integrating over the directions of �u. The
longitudinal operator can also be treated in a similar fashion. With

ML = M̄L+ |u〉〈u|

M̄L =− d2

dt2
+1− (2N − 1)N

cosh2((N − 1)t)
(7.38)

where |u〉〈u| projects on the mode x2N−1
0 (τ). There is one zero mode coming

from time translation invariance, dx0(τ)dτ . It is orthogonal to x2N−1
0 (τ)

∫ ∞

−∞
dτx2N−1

0 (τ)
dx0 (τ)

dτ
=

∫ ∞

−∞
dτ

d

dτ

x2N0 (τ)

2N
=
x2N0 (τ)

2N

∣∣∣∣∞
−∞

= 0 (7.39)
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Then with |v〉 denoting eigenstates orthogonal to |u〉

det
(
M̄L+ |u〉〈u|

)
= det

(
M̄L

)
det

(
1+ M̄−1

L |u〉〈u|
)

= det
(
M̄L

)
det

(
1+

(
|u〉〈u|+

∑
v

|v〉〈v|
)
M̄−1
L |u〉〈u|

)

= det
(
M̄L

)
det

(
1+ 〈u|M̄−1

L |u〉|u〉〈u|+
∑
v

〈v|M̄−1
L |u〉|v〉〈u|

)
= det

(
M̄L

)(
1+ 〈u|M̄−1

L |u〉
)

(7.40)

where the final equality follows because the second determinant is of a matrix
that is upper triangular. From the equation of motion

M̄L

2(1−N)
x0 = x2N−1

0 . (7.41)

Thus

〈u|M̄−1
L |u〉 =

∫∞
−∞ dτx2N−1

0 M̄−1
L x2N−1

0∫∞
−∞ dτ

(
x2N−1
0

)2
=

1

2(1−N)

∫∞
−∞ dτx2N−1

0 x0∫∞
−∞ dτ

(
x2N−1
0

)2 . (7.42)

The integrals can be done exactly, giving

det(ML) =
−1

(N − 1)
det

(
M̄L

)
(7.43)

M̄L has a negative mode, which cancels the minus sign. This is not an instability,
M̄L is just an auxilliary operator. Now we have an operator of the same form as
the transverse part before

H − z =− d2

dx2
+
λ(λ+1)

cosh2(x)
− z (7.44)

with λ= N
N−1 , and z = −1

(N−1)2
. Then the det′ is,

lim
z→ −1

(N−1)2

det′ (H − z)
det(H0− z)

∣∣∣∣
λ= N

N−1

=−2π 1
2

Γ2
(

N
N−1

)
Γ
(

2N
N−1

) (7.45)

The Jacobian from the usual change of variables in the integration is(∫ ∞

−∞
dτ

(
dx0
dτ

)2
) 1

2

= (k(N − 1))
1
2 , (7.46)

which then gives the total contribution

β

⎛
⎝ 1

N − 1
2π

1

2

Γ2
(

N
N−1

)
Γ
(

2N
N−1

)
⎞
⎠

− 1
2

(k(N − 1))
1
2 , (7.47)
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where the β comes from the integration over the position of the instanton.
Finally, putting all the pieces together, we get the correction to the kth order in
perturbation to the energy splitting

E −E0 = (−1)k+1gk
(
2

π

) 1
2 ((N − 1))

n+1
2 k

n−1
2

Γ
(
n
2

)
2k

⎛
⎝ Γ

(
2N
N−1

)
Γ2

(
N
N−1

)
⎞
⎠
k(N−1)+n

2

× ek(N−1) ln
(

k(N−1)
e

)
(1+ o(g)) . (7.48)

7.3 Generalization to Field Theory

This result can be generalized to the case of quantum field theory; we leave this
for the reader. We should make one point, though. Generally, we do not believe
that the functional integral is an analytic function in an annulus around the
point g = 0 in the g-plane. Indeed, for g negative the Hamiltonian is not self-
adjoint for sufficiently large N . We expect that in reality I(g) is defined in the
complex plane by analytic continuation, and this analytic function has a branch
cut along the negative real axis which terminates at g=0. We must use the once
subtracted dispersion relation

I(g) =− 1

2πi

∫ R

0

dλ
1

λ+ g
(I(−λ+ iε)−I(−λ− iε))+ 1

2πi

∫
|g′|=R

I(g)
(g′− g) ,

(7.49)
which corresponds to the contour in Figure 7.1. If the second integral vanishes
as R→∞ we get

I(g) =− 1

2πi

∫ ∞

0

dλ
1

λ+ g
(discontinuity (I(−λ))) . (7.50)

For
I(g) =

∑
k

Ikgk (7.51)

we have
Ik =−(−1)k 1

2πi

∫ ∞

0

dλ
1

λk+1
(discontinuity (I(−λ))) . (7.52)

The factor 1/λk+1 becomes more and more singular at the end point λ=0; thus,
if we know how the discontinuity of I(−λ) behaves for small λ, we can find the
behaviour of Ik for large k. For an expected asymptotic behaviour

discontinuity (I(−λ))∼ 2iBe−
Sc
λ λ−α

∑
l

alλ
l (7.53)

implies directly

Ik ∼−
1

π
(−1)kB

∑
l

alΓ(k+α− l)S−(k+α−l)
c . (7.54)
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Figure 7.1. Integration contour in the complex g plane for field theory

The discontinuity of discontinuity (I(−λ)) can actually be computed using the
semi-classical methods that we have been learning about. Collins and Soper [35]
show that it has an expansion of exactly the form given in Equation (7.53). Thus
the formal calculations that we have done, not worrying about the cut in the
complex g plane, produce the same results with much less difficulty.

7.4 Instantons and Quantum Spin Tunnelling

We continue this chapter with an application to quantum spin tunnelling. This
calculation starts out as an independent tunnelling calculation that, in principle,
has nothing to do with large orders in perturbation theory. However, it turns
out that the tunnelling calculations are all attainable through large orders in
perturbation theory. We will have to understand what spin-coherent states are
and the corresponding path integral.

7.5 Spin-Coherent States and the Path Integral for Spin Systems

For a spin system, instead of the orthogonal position |x〉 and momentum |p〉
basis we define a basis of spin-coherent states [106, 100, 75, 87]. Let |s,s〉 be
the highest weight vector in a particular representation of the rotation group.
This state is taken to be an eigenstate of the operators Ŝz and Ŝ, two mutually
commuting operators:

Ŝz |s,s〉= s |s,s〉 Ŝ2 |s,s〉= s(s+1) |s,s〉 . (7.55)
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ẑ

n̂

θ

Figure 7.2. The directions of the unit vectors ẑ and n̂ on a two-sphere

The spin operators Ŝi, i= x,y,z satisfy the Lie algebra of SU(2),

[Ŝi, Ŝj ] = iεijkŜk (7.56)

where εijk is the totally antisymmetric tensor symbol and summation over
repeated indices is implied in Equation (7.56).

The coherent state is defined as [100, 87, 75, 127, 49, 48]

|n̂〉= eiθm̂·Ŝ |s,s〉=
s∑

m=−s
Ms(n̂)ms |s,m〉 , (7.57)

where |n̂〉 is an element of the 2s+1-dimensional Hilbert (representation) space
for the spin states, n̂=(cosφsinθ,sinφsinθ,cosθ) is a unit vector, i.e. n̂2 =1 and
m̂= (n̂× ẑ)/|n̂× ẑ| is a unit vector orthogonal to n̂ and ẑ. ẑ is the quantization
axis pointing from the origin to the north pole of a unit sphere and n̂ · ẑ = cosθ

as shown in Figure 7.2. Rotating the unit vector n̂ counterclockwise about the m̂
direction by the angle θ brings it exactly to the unit vector ẑ. |n̂〉 corresponds to
a rotation of an eigenstate of Ŝz, i.e |s,s〉, to an eigenstate with a quantization
axis along n̂ on a two-dimensional sphere S2 = SU(2)/U(1). It turns out that
the matrices Ms(n̂) satisfy a non-trivial relation

Ms(n̂1)Ms(n̂2) =Ms(n̂3)e
iG(n̂1,n̂2,n̂3)Ŝz (7.58)

where G(n̂1, n̂2, n̂3) is the area of a spherical triangle with vertices n̂1, n̂2, n̂3. Note
that Equation (7.58) is not a group multiplication, thus the matrices Ms(n̂) do
not form a group representation and G(n̂1, n̂2, n̂3) is called a co-cycle, which
represents the obstruction that the matrices Ms(n̂) exhibit to forming a true
representation of the rotation group.

Unlike normal position and momentum eigenstates, the inner product of two
coherent states is not orthogonal:

〈n̂|n̂′〉= eisG(n̂,n̂
′,ẑ)[

1

2
(1+ n̂ · n̂′)]s (7.59)
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It has the following property:

n̂ · Ŝ |n̂〉= s |n̂〉⇒ 〈n̂|Ŝ|n̂〉= sn̂ (7.60)

while the resolution of identity is given by

Î =
2s+1

4π

∫
d3n̂δ(n̂2− 1) |n̂〉〈n̂| , (7.61)

where Î is a (2s+1)× (2s+1) identity matrix, and the delta function ensures
that n̂2 = 1. Using the expression in Equations (7.59) and (7.61) we can express
the imaginary time transition amplitude between |n̂i〉 and |n̂f 〉 as a path integral,
which for the spin system is given by [48, 127]

〈n̂f |e−βĤ(Ŝ)|n̂i〉=
∫
Dn̂e−SE [n̂], (7.62)

where
SE [n̂] = isSWZ +

∫
dτU(n̂(τ)), U(n̂(τ)) = 〈n̂|Ĥ|n̂〉 (7.63)

and SWZ arises because of the additional phase eisG(n̂,n̂
′,ẑ) in Equation (7.59).

We have set �= 1 in the path integral.
The Wess–Zumino (WZ) action, SWZ in the coordinate independent formal-

ism, is given by1 [97, 122, 120, 49, 48]

SWZ =

∫
1
2S2

dτdξ n̂(τ,ξ) · [∂τ n̂(τ,ξ)×∂ξn̂(τ,ξ)], (7.64)

where n̂(τ) has been extended over a topological half-sphere 1
2S2 in the variables

τ,ξ. We call this the coordinate independent expression since no system of
coordinates is specified for the unit vector n̂. In the topological half-sphere we
define n̂ with the boundary conditions

n̂(τ,0) = n̂(τ), n̂(τ,1) = ẑ (7.65)

so that the original configuration lies at the equator and the point ξ = 1

is topologically compactified by the boundary condition. This can be easily
obtained by imagining that the original closed loop n̂(τ) at ξ=0 is simply pushed
up along the meridians to n̂(τ) = ẑ at ξ = 1. The WZ term originates from the
non-orthogonality of spin-coherent states in Equation (7.59). Geometrically, it
defines the area of the closed loop on the spin space, defined by the nominally
periodic, original configuration n̂(τ). It is crucial to note that there is an
ambiguity of modulo 4π, since different ways of pushing the original configuration
up to the north pole can give different values for the area enclosed by the closed
loop as we can imagine that the closed loop englobes the whole two sphere any
integer number of times, but this ambiguity has no physical significance since

1 An alternative way of deriving this equation can be found in [16].
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eiN4πs = 1 for integer and half-odd integer s. The action, Equation (7.63), is
valid for a semi-classical spin system whose phase space is S2. It is the starting
point for studying macroscopic quantum spin tunnelling between the minima of
the energy U(n̂).

7.6 Coordinate-Independent Formalism

In the coordinate independent formalism, the spin is represented by a unit vector
n̂(τ) but no parametrization of the unit vector is assumed. It is best to exemplify
the coordinate independent analysis through an explicit system.

We will study the simplest biaxial single-molecule magnet whose spin
Hamiltonian is given by

H =−KzŜ
2
z +KyŜ

2
y , Kz�Ky > 0. (7.66)

The above Hamiltonian possesses an easy-axis in the z-direction and a hard-axis
in the y-direction. When Ky = 0, the spin is localized along the z-axis, which
is usually parameterized by the variable θ = 0,π and possesses two degenerate
minima localized at the north and the south poles of the two-sphere of phase
space. Addition of small Ky �=0 introduces dynamics into the system and causes
tunnelling. The real tunnelling variable is expected to be θ in the easy-axis
direction.

The Hamiltonian defined above has been studied in the presence of a magnetic
field by many authors [28, 27, 53]. However, the quantum-phase interference for
this model has not been computed, due to the subtlety involved in computing the
action for the instanton. Since the relation Ŝ2 = Ŝ2

x+ Ŝ
2
y+ Ŝ

2
z = s(s+1) holds for

any spin system, it is evident that any biaxial single-molecule magnet is related
to any other either by rescaling the anisotropy constant or by rotation of axes.
For instance, the Hamiltonian studied by Enz and Schilling [43]:

H =−AŜ2
x+BŜ

2
z , (h= 0), (7.67)

possesses an easy x-axis and a hard z-axis. This model in the conven-
tional spherical parametrization in terms of the phase space variables, n̂ =

(sinθ cosφ,sinθ sinφ,cosθ) is exactly our Hamiltonian Equation (2.15) in the
unconventional spherical parametrization n̂ = (sinθ sinφ,cosθ,sinθ cosφ) with
Kz =A and Ky =B.

7.6.1 Coordinate-Dependent Analysis

To demonstrate the technique for investigating the quantum-phase interference
in the z-easy-axis model, we will first keep to the conventional, coordinate-
dependent spherical parametrization, n̂ = (sinθ cosφ,sinθ sinφ,cosθ). It was
shown [52] that perturbation theory in the Ky term for integer spin leads
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to an energy-splitting proportional to (Ky)
s while for half-odd integer spin,

the splitting vanishes in accordance with Kramers’ theorem. We will recover
this result using the spin-coherent state path integral, and we will explicitly
demonstrate in all detail that the result can be obtained without recourse to a
coordinate-dependent parametrization.

The transition amplitude in the spin-coherent state path integral, in the
coordinate-dependent formalism, is given by [75]

〈θf ,φf |e−βH |θi,φi〉=
∫
D [cosθ]D [φ]e−SE/� (7.68)

where the Euclidean action is

SE =

∫
dτ

[
isφ̇(1− cosθ)+E(θ,φ)

]
(7.69)

where the first term is the WZ term in the coordinate dependent formalism and
the classical anisotropy energy Equation (2.15) is

E(θ,φ) = (Kz +Ky sin
2φ)sin2 θ. (7.70)

We note that the WZ term, being first-order in time derivatives, remains
imaginary upon analytic continuation to Euclidean time. This has important
ramifications for the putative instanton solutions: they too must have non-trivial
imaginary parts. The classical degenerate ground states correspond to φ = 0,
θ=0,π, that is the spin is pointing in the north or south pole of the two-sphere.
The classical equations of motion obtained by varying the action with respect to
θ and φ, respectively, are

isφ̇sinθ =−∂E (θ,φ)

∂θ
(7.71)

isθ̇ sinθ =
∂E (θ,φ)

∂φ
. (7.72)

It is evident from these two equations, because of the explicit i, that one variable
has to be imaginary for the equations to be consistent. The only appropriate
choice is to take real θ and imaginary φ, since the real tunnelling coordinate
(z-easy-axis) is θ. This comes out naturally from the conservation of energy,
which follows by multiplying Equation (7.72) by φ̇ and Equation (7.71) by θ̇ and
subtracting the two:

dE (θ,φ)

dτ
= 0 i.e, E (θ,φ) = const.= 0, (7.73)

the normalization coming from the value at θ = 0. Thus,

E(θ,φ) = (Kz +Ky sin
2φ)sin2 θ = 0. (7.74)

Since sin2 θ �= 0, as it must vary from 0 to π, it follows that,

sinφ=±i
√
Kz

Ky
, (7.75)
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therefore φ is imaginary and constant. Let φ = φR + iφI , then sinφ =

sinφR coshφI + icosφR sinhφI . We must take φR = nπ so that sinφR = 0 as
the right-hand side of Equation (7.75) is imaginary. Hence

(−1)n sinhφI =±
√
Kz

Ky
, (7.76)

as cosφR = (−1)n. There are four solutions of this equation: n= 0, φ= iφI and
n=1, φ= π− iφI for the positive sign and n=0, φ=−iφI and n=1, φ= π+ iφI
for the negative sign, where φI is the same in both cases. Taking into account
that Kz�Ky > 0, we have φI = arcsinh

(√
Kz
Ky

)
≈ 1

2 ln
(

4Kz
Ky

)
.

The classical equation of motion (7.72) simplifies to

is
θ̇

sinθ
=Ky sin2φ= iKy sinh2φI (7.77)

The solution is easily found as

θ (τ) = 2arctan[exp(ω(τ − τ0))], (7.78)

where ω =
Ky

s sinh2φI . This corresponds to the tunnelling of the state |↑〉 from
θ (τ) = 0 at τ = −∞ to the state |↓〉, θ (τ) = π at τ =∞. The two solutions
φ= iφI and φ= π+ iφI in the upper-half plane of complex φ correspond to the
instanton, (θ̇ > 0) while the solutions φ=−iφI and φ= π− iφI in the lower-half
plane of complex φ correspond to the anti-instanton, (θ̇ < 0).

Since the energy, E(θ,φ), in the action Equation (7.69) is conserved and
therefore always remains zero along this trajectory, the action for this path is
determined only by the WZ term which is given by

SE = SWZ = is

∫ ∞

−∞
dτ φ̇(1− cosθ) = is

∫ φf

φi

dφ(1− cosθ). (7.79)

Naively, one can use the fact that φ is constant and hence φ̇ = 0, which seems
to give SWZ = 0; however, care must be taken when computing the action. A
non-zero Euclidean action is found by realizing, as in [99], that we must take into
account the fact that φ must be translated from φ = 0 to φ = nπ+ iφI before
the instanton can occur and then back to φ=0 after the instanton has occurred.
Since the action is linear in time derivative of φ, the actual path taken does
not matter, only the boundary values matter. In the present problem, we have
two solutions for φ, i.e. φ= iφI and φ= π+ iφI corresponding to two instanton
paths, call them I and II. The full action is then

SIE = is

∫ π+iφI

0

dφ(1− cosθ)|θ=0+ is

∫ 0

π+iφI

dφ(1− cosθ)|θ=π

=−2πis+2sφI (7.80)
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and

SIIE = is

∫ iφI

0

dφ(1− cosθ)|θ=0 (7.81)

+is

∫ 0

iφI

dφ(1− cosθ)|θ=π = 2sφI ,

where it is clear that the total derivative term dφ contributes nothing as the two
contributions cancel in the round trip, while the dφcosθ gives all the answer,
since cosθ=1 initially, before the instanton has occurred, while cosθ=−1 after.
The action for the corresponding anti-instantons is identical. The amplitude for
the transition from θ = 0 to θ = π, as usual, is calculated by summing over a
sequence of one instanton followed by an anti-instanton with an odd total number
of instantons and anti-instantons [31], but we must add the two exponentials of
the actions SIE and SIIE for both instanton and anti-instanton. We note

eS
I
E + eS

II
E = e−2sφI

(
1+ e2πis

)
= e−2sφI (1+cos2πs) , (7.82)

where the last factor vanishes for half-odd integer spin. Then we get that the
expression for the amplitude is given by

〈π|e−βĤ |0〉=N sinh
(
κβ(1+cos(2πs))e−2sφI

)
(7.83)

where κ is the properly normalized square root of the determinant of the operator
governing the second-order fluctuations without the zero mode, which we have
not computed, and N is the usual normalization factor. The energy splitting can
be read off from this expression

ΔE = κ(1+cos(2πs))e−2sφI . (7.84)

For half-odd integer spin the splitting vanishes, while for integer spin we have

ΔE = 4κ

(
Ky

4Kz

)s
(7.85)

which agrees with the result found by perturbation theory [52].

7.6.2 Coordinate-Independent Analysis

Now we wish to see that the spherical-polar coordinate-dependent parametriza-
tion of the unit vector n̂ is not at all necessary. Then the action for the
Hamiltonian in Equation (7.66) can be written as

SE =

∫
dτLE =

∫
dτ

[
−Kz(n̂ · ẑ)2+Ky(n̂ · ŷ)2

]
+is

∫
dτdξ [n̂ · (∂τ n̂×∂ξn̂)] . (7.86)
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The first term is the anisotropy energy while the second term is the WZ term
written in a coordinate-independent form. The WZ term is integrated over a two
manifold whose boundary is physical, Euclidean time τ . Thus the configuration
in τ is extended into a second dimension with coordinate ξ. The equations of
motion arise from variation with respect to n̂. However, n̂ is a unit vector, hence
its variation is not arbitrary, indeed, n̂ · δn̂= 0. Thus, to obtain the equations of
motion, we vary n̂ as if it is not constrained, but then we must project on to the
transverse part of the variation:

δn̂SE = 0 ⇒
∫
dτ(δn̂LE) · δn̂= 0 ⇒ n̂× (δn̂LE) = 0. (7.87)

Taking the cross-product of the resulting equation one more time with n̂ does
no harm, and this process yields the equations of motion

is∂τ n̂− 2Kz(n̂ · ẑ)(n̂× ẑ)+2Ky(n̂ · ŷ)(n̂× ŷ) = 0. (7.88)

Taking the cross-product of this equation with ∂τ n̂, the first term vanishes as
the vectors are parallel, yielding

− 2Kz(n̂ · ẑ)∂τ n̂× (n̂× ẑ)+2Ky(n̂ · ŷ)∂τ n̂× (n̂× ŷ) = 0. (7.89)

Simplifying the triple vector product, using ∂τ n̂ · n̂=0, and then taking the scalar
product of the subsequent equation with n̂ gives

∂τ
(
−Kz(n̂ · ẑ)2+Ky(n̂ · ŷ)2

)
= 0, (7.90)

which is the conservation of energy. The initial value of n̂= ẑ says that the energy
must equal (

−Kz(n̂ · ẑ)2+Ky(n̂ · ŷ)2
)
=−Kz. (7.91)

From this equation and because n̂ is a unit vector we find

n̂ · ŷ =±
√
Kz

Ky
((n̂ · ẑ)2− 1) =±i

√
Kz

Ky
(1− (n̂ · ẑ)2)

n̂ · x̂=±
√
Ky+Kz

Ky
(1− (n̂ · ẑ)2), (7.92)

where the ± signs are not correlated. Then

n̂ · ŷ
n̂ · x̂ =±i

√
Kz

Ky+Kz
= tanφ; (7.93)

hence, we recover the result immediately that φ is a complex constant, just as
before. Taking the scalar product of Equation (7.88) with ẑ yields

is∂τ (n̂ · ẑ)+2Ky(n̂ · ŷ)(n̂ · x̂) = 0 (7.94)
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and replacing from Equation (7.92) gives

is∂τ (n̂ · ẑ)± 2i
√
Kz(Ky+Kz)(1− (n̂ · ẑ)2) = 0 (7.95)

Notice that the i’s neatly cancel leaving a trivial, real differential equation for
n̂ · ẑ, which we can write as

∂τ (n̂ · ẑ)
1− (n̂ · ẑ) +

∂τ (n̂ · ẑ)
1+ (n̂ · ẑ) =±4

s

√
Kz(Ky+Kz). (7.96)

This integrates as

ln
1+ (n̂ · ẑ)
1− (n̂ · ẑ) =±4

s

√
Kz(Ky+Kz)(τ − τ0). (7.97)

Exponentiating and solving for n̂ · ẑ gives

n̂ · ẑ =±tanh

(
2

s

√
Kz(Ky+Kz)(τ − τ0)

)
, (7.98)

which is exactly the same as the solution found for θ in Equation (7.78). The
instanton (upper sign) interpolates from nz = 1 to nz =−1 as τ →±∞.

Thus it is important to know that the equations of motion can be solved
without recourse to a specific choice for the coordinates. We will now evaluate
the tunnelling amplitude and the quantum interference directly in terms of the
coordinate-independent variables. Since the energy remains constant along the
instanton trajectory, the action is determined entirely from the WZ term

SWZ = is

∫
dτ

∫ 1

0

dξ [n̂ · (∂τ n̂×∂ξn̂)] . (7.99)

The integration over ξ can be done explicitly by writing the unit vector as

n̂(τ,ξ) = f(τ,ξ)nz(τ)ẑ+ g(τ,ξ)[nx(τ)x̂+ny(τ)ŷ] (7.100)

with the boundary conditions n̂(τ,ξ = 0) = n̂(τ) and n̂(τ,ξ = 1) = ẑ, where we
write nz for n̂(τ) · ẑ, etc. Using the expression in Equations (7.100) and the
condition that n̂ · n̂= 1, one obtains

g2 =
1− f2n2z
1−n2z

(7.101)

These functions obey the boundary conditions

f(τ,ξ = 0) = 1,f(τ,ξ = 1) =
1

nz(τ)
,

g(τ,ξ = 0) = 1,g(τ,ξ = 1) = 0 (7.102)

The integrand of Equation (7.99) can now be written in terms of the
functions defined in Equation (7.100). After a straightforward, but rather tedious,
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calculation we obtain

n̂ · (∂τ n̂×∂ξn̂) = nz(g
2f ′− fgg′)(nxṅy−nyṅx)

=
nzf

′

1−n2z
(nxṅy−nyṅx), (7.103)

where f ′≡∂ξf , ṅx,y≡∂τnx,y. The second equality follows from Equation (7.101).
Replacing Equation (7.103) into the WZ term, the ξ integration in
Equation (7.99) can be done explicitly which yields

SWZ = is

∫
dτ

(nxṅy−nyṅx)
1+nz

. (7.104)

This expression defines the WZ term in the coordinate-independent form as a
function of time alone. We can always make recourse to any specific coordinates,
taking the z-easy-axis system, with the spherical parameterization we recover the
usual form of the WZ term in condensed matter physics, i.e. Equation (7.79).
Multiplying the top and the bottom of the integrand in Equation (7.104) by
(1−nz), the resulting integrand simplifies to

SWZ = is

∫
d(ny/nx)

1+ (ny/nx)2
(1−nz)

= is

∫
d[arctan(ny/nx)](1−nz)

= is

∫
dφ(1−nz), (7.105)

which is rather analogous to the coordinate-dependent expression in
Equation (7.79).

It was already noted from Equation (7.93) that φ has to be imaginary.
To recover the quantum-phase interference in the coordinate-independent
formalism, φ must be translated from the initial point, say φ = 0, to the final
point, φ= nπ+ iφI , n= 0,1 before and after the instanton occurs [99]. The two
contributions to the action from these paths are given by

SIWZ = is

∫ π+iφI

0

dφ(1−nz)|nz=1+ is

∫ 0

π+iφI

dφ(1−nz)|nz=−1

=−2πis+2sφI (7.106)

and

SIIWZ = is

∫ iφI

0

dφ(1−nz)|nz=1 (7.107)

+is

∫ 0

iφI

dφ(1−nz)|nz=−1 = 2sφI

which are exactly the expressions as before. Then the previous evaluation
quantum interference goes through unchanged.
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7.7 Instantons in the Spin Exchange Model

We will study a second example where instantons give rise to quantum tunnelling
in spin systems and breaks the degeneracy, the case of two large, coupled,
quantum spins in the presence of a large, simple, easy-axis anisotropy, interacting
with each other through a standard spin–spin exchange coupling, corresponding
to the Hamiltonian

H =−K(S2
1z +S

2
2z)+λ

�S1 · �S2. (7.108)

We will take K > 0 and the case of equal spins �S1 = �S2 = �S. λ> 0 gives an anti-
ferromagnetic coupling while λ < 0 sign corresponds to ferromagnetic coupling.
The first term gives rise to the anisotropy, favouring an easy-axis, the z-axis,
the first term’s contribution to the energy is obviously minimized if the spin
is pointing along the z-direction and is as large as possible. The second term is
called the Heisenberg exchange energy interaction. The spins �Si could correspond
to quantum spins of macroscopic multi-atomic molecules [113, 116, 90], or the
quantum spins of macroscopic ferromagnetic grains [28, 27], or the average spin
of each of the two staggered Neél sub-lattices in a quantum anti-ferromagnet
[116, 91, 92].

A Néel lattice is simply a spin system where adjacent spins are maximal and
point in opposite directions. It is the epitome of anti-ferromagnetic order. We
will be exclusively looking at one dimension, thus what are called spin chains.
As the spins on a lattice are distinguishable, one choice starting at a given spin
of up, down, up, down, · · · is a different configuration from down, up, down, up,
· · · , starting from the same spin. This twofold degeneracy is akin to the two-
fold degeneracy of a ferromagnetic system, where all spins could point up or all
spins could point down. The direction of the up and down is determined by the
anisotropy, which picks out a favoured direction for the spins. In this section, we
will only consider two spins, but in the next section we will generalize our results
to a spin chain.

The non-interacting system of our Hamiltonian is defined by λ= 0, here the
spin eigenstates of Siz, notationally |s,s1z〉 ⊗ |s,s2z〉 ≡ |s1z,s2z〉, are obviously
exact eigenstates. The ground state is fourfold degenerate, corresponding to the
states |s,s〉, |− s,−s〉, |s,−s〉 and |− s,s〉, which we will write as |↑,↑〉, |↓,↓〉, |↑,↓
〉, |↓,↑〉, each with energy E =−2Ks2. The first excited state, which is eightfold
degenerate, is split from the ground state by energy ΔE =K(2s− 1).

In the weak coupling limit, λ/K→ 0, an interesting question to ask is what is
the ground state and the first few excited states of the system for large spin �S.
For spin 1/2, the exact eigenstates are trivially found; for spin 1, the problem
is a 9× 9 matrix, which again can be diagonalized, but for the general case we
must diagonalize a (2s+1)2× (2s+1)2 matrix, although that is rather sparse.
For weak coupling the anisotropic potential continues to align or anti-align the
spins along the z-axis in the ground state.
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As the non-interacting ground state is fourfold degenerate, in first-order
degenerate perturbation theory, we should diagonalize the exchange interaction
in the degenerate subspace. However, it turns out to be already diagonal in that
subspace. The full Hamiltonian can be alternatively written as

H =−K(S2
1z +S

2
2z)+λ

(
S1zS2z +

1

2
(S+

1 S
−
2 +S−

1 S
+
2 )

)
, (7.109)

where S±
i = Six ± iSiy for i = 1,2. S±

i act as raising and lowering operators
for Siz, and hence they must annihilate the states |↑,↑〉, |↓,↓〉. Thus the two
states |↑,↑〉, |↓,↓〉 are actually exact eigenstates of the full Hamiltonian with
exact energy eigenvalue (−2K+λ)s2. These two states do not mix with the two
states |↑,↓〉, |↓,↑〉 as the eigenvalue of S1z+S2z, which is conserved, is +2s, −2s
for the two ferromagnetic states and 0 for the two anti-ferromagnetic states. The
perturbation, apart from the diagonal term λS1zS2z, acting on the two states |↑,↓
〉, |↓,↑〉 takes them out of the degenerate subspace, thus this part does not give any
correction to the energy. The action of the diagonal term on either of these states
is equal to−λs2. Thus the perturbation corresponds to the identity matrix within
the degenerate subspace of the two states |↑,↑〉, |↓,↓〉, with eigenvalue −λs2 for the
two anti-ferromagnetic states. This yields, in first-order degenerate perturbation
theory, the perturbed energy eigenvalue of (−2K − λ)s2 for the two states |↑
,↓〉, |↓,↑〉. Thus the following picture emerges of the first four levels in first-
order degenerate perturbation theory. For the λ < 0 (ferromagnetic coupling),
the states |↑,↑〉, |↓,↓〉 are the exact, degenerate ground states of the theory, with
energy eigenvalue (−2K+λ)s2 = (−2K−|λ|)s2. The first excited states are also
degenerate, but only within first-order degenerate perturbation theory. They are
given by |↑,↓〉, |↓,↑〉, with energy eigenvalue (−2K − λ)s2 = (−2K + |λ|)s2. For
the λ> 0 (anti-ferromagnetic coupling), the roles are exactly reversed. The states
|↑,↓〉, |↓,↑〉 give the degenerate ground state with energy (−2K−λ)s2 in first-order
degenerate perturbation, while the states |↑,↑〉, |↓,↓〉 give the exact, first (doubly
degenerate) excited level with energy (−2K + λ)s2. Thus the Hamiltonian in
first-order degenerate perturbation theory is simply diagonal

〈H〉=

⎛
⎜⎜⎜⎝

−2K+λ 0 0 0

0 −2K+λ 0 0

0 0 −2K−λ 0

0 0 0 −2K−λ

⎞
⎟⎟⎟⎠s2 (7.110)

in the ordered basis {|↑,↑〉, |↓,↓〉, |↑,↓〉, |↓,↑〉}. The two ferromagnetic states are
the exact degenerate ground states for λ < 0, while the two anti-ferromagnetic
states are the approximate ground states for λ > 0.

However, we do not expect this result to stand in higher orders. We will
show that, in fact, the states |±〉 = 1√

2
(|↑,↓〉 ± |↓↑〉) are the appropriate linear

combinations implied by higher orders in degenerate perturbation theory, for the
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ground state in the anti-ferromagnetic case, and they are the second and third
excited states in the ferromagnetic case. We will also show that the states |±〉
are no longer degenerate. The perturbing Hamiltonian links the state | ± s,∓s〉
only to the state | ± s∓ 1,∓s± 1〉. To reach the state | ∓ s,±s〉 from the state
| ± s,∓s〉 requires one to go to 2sth order in perturbation, and s is assumed to
be large. Indeed, we find our results via macroscopic quantum tunnelling using
the spin-coherent state path integral. Using the path integral to determine large
orders in perturbation theory has already been studied in field theory [35, 128].

Our two-spin system, in Minkowski time, is governed by an action S =
∫
dtL

where,

L=

∫
dxsn̂1 · (∂xn̂1×∂tn̂1)−V1(n̂1)

+

∫
dxsn̂2 · (∂xn̂2×∂tn̂2)−V2(n̂2)−λn̂1 · n̂2, (7.111)

where now n̂i= (sinθi cosφi,sinθi sinφi,cosθi) , i=1,2 are two different 3-vectors
of unit norm, representing semi-classically the quantum spin [28, 27] and s is the
value of each spin. We use the coordinate-dependent spherical-polar coordinate
to describe the spins and the Lagrangian takes the form

L=−sφ̇1(1− cosθ1)−V1(θ1,φ1)
−sφ̇2(1− cosθ2)−V2(θ2,φ2)
−λ(sinθ1 sinθ2 cos(φ1−φ2)+ cosθ1 cosθ2) . (7.112)

Our analysis is valid if we restrict our attention to any external potential with
easy-axis, azimuthal symmetry, with a reflection symmetry (along the azimuthal
axis), as in [68], Vi(θi,φi) ≡ V (θi) = V (π− θi), i = 1,2. The potential is further
assumed to have a minimum at the north pole and the south pole, at θi =0, and
π. We will treat the special simple case of the potential given by

V (n̂i)≡ V (θi,φi) =K sin2 θi. (7.113)

corresponding exactly to our Hamiltonian Equation (7.108). It was shown in
[68], for uncoupled spins, that quantum tunnelling between the spin up and
down states of each spin separately is actually absent because of conservation
of the z-component of each spin. With the exchange interaction, only the
total z-component is conserved, allowing transitions |↑,↓〉 ←→ |↓,↑〉. In general,
tunnelling exists if there is an equipotential path that links the beginning and end
points. We will see that such an equipotential path exists, but through complex
values of the phase space variables.

We must find the critical points of the Euclidean action with t→−iτ , which
gives

LE = isφ̇1(1− cosθ1)+V (θ1)+ isφ̇2(1− cosθ2)+V (θ2)

+λ(sinθ1 sinθ2 cos(φ1−φ2)+ cosθ1 cosθ2) . (7.114)
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The solutions must start at (θ1,φ1) = (0,0) and (θ2,φ2) = (π,0), say, and evolve
to (θ1,φ1) = (π,0) and (θ2,φ2) = (0,0). In Euclidean time, the WZ term has
become imaginary and the equations of motion in general only have solutions
for complexified field configurations. Varying with respect to φi gives equations
that correspond to the conservation of angular momentum:

is
d

dτ
(1− cosθ1)+λsinθ1 sinθ2 sin(φ1−φ2) = 0 (7.115)

is
d

dτ
(1− cosθ2)−λsinθ1 sinθ2 sin(φ1−φ2) = 0 (7.116)

Varying with respect to θi gives the equations:

isφ̇1 sinθ1+2K sinθ1 cosθ1+λ(cosθ1 sinθ2 cos(φ1−φ2)− sinθ1 cosθ2) = 0

(7.117)

isφ̇2 sinθ2+2K sinθ2 cosθ2+λ(cosθ2 sinθ1 cos(φ1−φ2)− sinθ2 cosθ1) = 0.

(7.118)

Adding Equations (7.115) and (7.116) we simply get

d

dτ
(cosθ1+cosθ2) = 0. (7.119)

Hence cosθ1+cosθ2 = l= 0, where the constant l is chosen to be zero using the
initial condition θ1 =0,θ2 = π and therefore we can take θ2 = π−θ1. We can now
eliminate θ2 from the equations of motion, and writing θ = θ1, φ= φ1−φ2 and
Φ= φ1+φ2 we get the effective Lagrangian:

L= isΦ̇− isφ̇cosθ+U(θ,φ), (7.120)

where U (θ,φ) = 2K sin2 θ+ λ
(
sin2 θ cosφ− cos2 θ

)
+ λ is the effective potential

energy. We have added a constant λ so that the potential is normalized to zero
at θ = 0. The first term in the Lagrangian is a total derivative and drops out.
The equations of motion become:

isφ̇sinθ =−∂U (θ,φ)

∂θ
(7.121)

isθ̇ sinθ =
∂U (θ,φ)

∂φ
. (7.122)

These equations have no solutions on the space of real functions θ(τ),φ(τ) due
to the explicit i on the left-hand side. The analogue of conservation of energy
follows immediately from these equations, multiplying (7.121) by θ̇ and (7.122)
by φ̇ and subtracting, gives:

dU (θ,φ)

dτ
= 0, i.e. U (θ,φ) = const.= 0. (7.123)
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The constant has been set to 0 again using the initial condition θ = 0. Thus we
have, specializing to our case, Equation (7.113)

U (θ,φ) = (2K+λ(cosφ+1))sin2 θ = 0 (7.124)

implying (2K+λ(cosφ+1)) = 0, since sin2 θ �= 0, as is required for a non-trivial
solution. Thus

cosφ=−
(
2K

λ
+1

)
(7.125)

and we see that φ must be a constant. This is not valid in general, it is due
to the specific choice of the external potential Equation (7.113). Since K > |λ|
we get |cosφ| > 1, which of course has no solution for real φ. We take φ =

φR + iφI which gives cosφ = cosφR coshφI − isinφR sinhφI . As the right-hand
side of Equation (7.125) is real, we must have either φI = 0 or φR = nπ or both.
Clearly the φI = 0 cannot yield a solution for Equation (7.125), hence we must
take φR = nπ. As we must impose 2π periodicity on φR, only n = 0 or 1 exist.
Then we get

cosφ= (−1)n coshφI =

⎧⎨
⎩−

(
2K
λ +1

)
if λ > 0

+
(

2K
|λ| − 1

)
if λ < 0

. (7.126)

Thus n= 1 for λ > 0 and n= 0 for λ < 0 allowing for the unified expression

coshφI =
2K+λ

|λ| . (7.127)

Equation (7.122) simplifies to

is
θ̇

sinθ
=−λsinφ=−iλ(−1)n sinhφI = i|λ|sinhφI (7.128)

as λ(−1)n=−|λ|. Equation (7.127) has two solutions: positive φI corresponds to
the instanton, (θ̇ > 0), and negative φI corresponds to the anti-instanton, (θ̇ < 0).
The equation is trivially integrated with solution

θ (τ) = 2arctan
(
eω(τ−τ0)

)
, (7.129)

where ω= (|λ|/s)sinhφI and at τ = τ0 we have θ(τ) = π/2, which has exactly the
same form as the solution in the previous section, Equation (7.78). Thus θ(τ)
interpolates from 0 to π as τ interpolates from −∞ to ∞ for an instanton and
from π to 0 for an anti-instanton.

Using φ̇ = 0 and Equation (7.123) that the effective energy is zero, we see
that the action for this instanton trajectory, let us call it S0, simply vanishes
S0 =

∫∞
−∞ dτL= 0. So where does the amplitude come from? As in the previous

section, we have not taken into account the fact that φ must be translated from
φ= 0 (any initial point will do, as long as it is consistently used to compute the
full amplitude) to φ= nπ+ iφI before the instanton can occur and then back to
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φ=0 after the instanton has occurred. Normally such a translation has no effect;
either the contribution at the beginning cancels that at the end or, if the action
is second-order in time derivative, moving adiabatically gives no contribution.
But in the present case, for an instanton, before the instanton occurs, θ = 0,
while after it has occurred, θ = π, and vice versa for an anti-instanton. As φ̇ is
multiplied by cosθ in the action, the two contributions actually add, and there
is a net contribution to the action. Indeed, the full action for the combination of
the instanton and the changes in φ is given by

ΔS =

∫ nπ+iφI

0

−isdφcosθ|θ=0+S0+

∫ 0

nπ+iφI

−isdφcosθ|θ=π

=−is2nπ+2sφI (7.130)

we call it ΔS since it arises because of a change in φ, and where we have put
S0 = 0.

We will use this information to compute the following matrix element, using
the spin-coherent states |θ,φ〉 and the two lowest energy eigenstates |E0〉 and
|E1〉:

〈θf ,φf |e−βH |θi,φi〉= e−βE0〈θf ,φf |E0〉〈E0|θi,φi〉
+e−βE1〈θf ,φf |E1〉〈E1|θi,φi〉+ · · · (7.131)

On the other hand, the matrix element is given by the spin-coherent state path
integral

〈θf ,φf |e−βH |θi,φi〉=N
∫ θf ,φf

θi,φi

DθDφ e−SE . (7.132)

The integration is done in the saddle point approximation. With (θi,φi) = (0,0)

corresponding to the state |↑,↓〉 and (θf ,φf ) = (π,0) corresponding to the state
| ↓,↑〉, we get

〈↓,↑ |e−βH |↑,↓〉=N e−ΔSκβ(1+ · · ·), (7.133)

where κ is the ratio of the square root of the determinant of the operator
governing the second-order fluctuations about the instanton excluding the time
translation zero mode, and that of the free determinant. It can, in principle, be
calculated, but we will not do this here. The zero mode is taken into account by
integrating over the position of the occurrence of the instanton giving rise to the
factor of β. N is the overall normalization including the square root of the free
determinant which is given by Ne−E0β , where E0 is the unperturbed ground-
state energy and N is a constant that depends on the form of the perturbative
ground-state wave function. The result exponentiates, but since we must sum
over all sequences of one instanton followed by any number of anti-instanton–
instanton pairs, the total number of instantons and anti-instantons is odd, and
we get

e−ΔSκβ→ sinh
(
e−ΔSκβ

)
. (7.134)
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Given ΔS =−is2nπ+2sφI and solving Equation (7.127) for φI for K� |λ|

φI = arccosh

(
2K+λ

|λ|

)
≈ ln

(
4K

|λ|

)
(7.135)

gives:

e−ΔS =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
eis2π−2sφI if λ > 0 =

⎧⎪⎨
⎪⎩
(

|λ|
4K

)2s

if s ∈Z

−
(

|λ|
4K

)2s

if s ∈Z+1/2(
|λ|
4K

)2s

if λ < 0

. (7.136)

Then we get

〈↓,↑ |e−βH |↑,↓〉=±
(
1

2
e

( |λ|
4K

)2s
κβ − 1

2
e
−
( |λ|

4K

)2s
κβ

)
Ne−βE0 , (7.137)

where the − sign only applies for the case of anti-ferromagnetic coupling with
half odd integer spin, i.e. λ > 0,s = Z+ 1/2. An essentially identical analysis
yields, for the persistence amplitudes

〈↓,↑ |e−βH |↓,↑〉= 〈↑,↓ |e−βH |↑,↓〉

=

(
1

2
e

( |λ|
4K

)2s
κβ

+
1

2
e
−
( |λ|

4K

)2s
κβ

)
Ne−βE0 . (7.138)

These calculated matrix elements can now be compared with what is expected
for the exact theory:

〈↓,↑ |e−βH |↑,↓〉= e−β(E0− 1
2ΔE)〈↓,↑ |E0〉〈E0|↑,↓〉

+e−β(E0+
1
2ΔE)〈↓,↑ |E1〉〈E1|↑,↓〉

(7.139)

and

〈↓,↑ |e−βH |↓,↑〉= e−β(E0− 1
2ΔE)〈↓,↑ |E0〉〈E0|↓,↑〉

+e−β(E0+
1
2ΔE)〈↓,↑ |E1〉〈E1|↓,↑〉

(7.140)

The energy splitting can be read off from this result

ΔE =E1−E2 = 2

(
|λ|
4K

)2s

κ (7.141)

for all cases; however, the wave functions are different. The low-energy eigenstates
are given by

|E0〉=
1√
2
(|↓,↑〉+ |↑,↓〉) |E1〉=

1√
2
(|↓,↑〉− |↑,↓〉) (7.142)
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for the case λ > 0 for s ∈ Z, where they are the actual ground and first excited
state as well as for the case λ< 0 (although here these energy eigenstates should
be labelled |E3〉 and |E4〉 as the actual ground states are the ferromagnetic
states |↑,↑〉, |↓,↓〉). For the fermionic spin, anti-ferromagnetic case with λ> 0 and
s ∈Z+1/2 we get the reversal of the states

|E0〉=
1√
2
(|↓,↑〉− |↑,↓〉) |E1〉=

1√
2
(|↓,↑〉+ |↑,↓〉), (7.143)

but the energy splitting remains the same.
This understanding of the ground state in the anti-ferromagnetic case is the

main result. This difference in the ground states for integer and half-odd integer
spins is understood in terms of the Berry phase [88, 38] (computed by the change
in the WZ term) for the evolution corresponding to the instanton. It can also
be understood by looking at perturbation theory to order 2s; the details cannot
be given here. Briefly, the action of the perturbation Equation (7.109) will lower
one spin and raise the other. This can be done 2s times when we achieve a
complete flip of both spins. We find that the effective 2× 2 Hamiltonian for the
degenerate subspace is proportional to the identity plus off-diagonal terms that
are symmetric. For the integer spin case the off-diagonal terms are negative and
for the half-odd integer case they are positive. Diagonalizing this 2× 2 matrix
gives the solutions for the ground states, exactly as we have found.

7.8 The Haldane-like Spin Chain and Instantons

The study of quantum spin chains has been a very important physical problem in
condensed matter and mathematical physics over the past 100 years. They play
an exemplary role in the study of strongly correlated quantum systems. In both
experimental and theoretical physics, models of quantum spin chains are one
of the most fundamental systems endowed with interesting phenomenon. The
classic work on spin chains was that of Bethe [14] and Hulthén [63] for the one-
dimensional (D=1), isotropic Heisenberg spin- 12 anti-ferromagnetic chain. They
computed the exact anti-ferromagnetic ground state and its energy for an infinite
chain. Anderson [6] worked out the ground-state energies and the spectrum for
D = 1,2,3 by means of spin wave theory. The inclusion of an anisotropy term
introduces much interesting physics ranging from quantum computing [90] to
optical physics [110]. The resulting Hamiltonian is what we will study in this
section. It now possesses two coupling constants which can compete against each
other to lower the energy

Ĥ =−K
N∑
i=1

S2
i,z +λ

N∑
i=1

�Si · �Si+1 (7.144)
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and we consider the chain with periodic boundary conditions and consider λ> 0

so that we are in the anti-ferromagnetic regime, which is the more interesting
regime.

This model is the generalization to a spin chain of the two-spin model that we
studied in the previous section. Here each nearest-neighbour pair corresponds to
the two-spin system that we have just studied. Each spin has magnitude |�Si|= s

and we will consider the large s limit. The two limiting cases are weak anisotropy
λ�K and weak exchange coupling λ�K, where λ is the Heisenberg exchange
interaction coupling constant and K is the anisotropy coupling constant. The
limit of weak anisotropy was studied in a celebrated paper by Haldane [59] in a
closely related model, hence we call our model a Haldane-like spin chain. Haldane
demonstrated that in the large spin limit, s� 1, the system can be mapped to a
non-linear sigma model in field theory with distinguishing effects between integer
and half-odd integer spins. The full rotational symmetry is broken explicitly into
rotational symmetry about the z-axis with the total z-component Si,z =

∑
iSi,z

conserved. The Hamiltonian also possesses a discrete reflection symmetry about
the z-axis Si,z→−Si,z. We will also study the model in the large spin limit, but
we will take the limit of strong anisotropy, K� λ, the opposite limit to Haldane.

With λ=0, the ground state is 2N -fold degenerate, corresponding to each spin
in the state Sz =±s. Then s2z = s2 and the energy is −Ks22N , which is minimal.
For an even number of sites, the model is called bi-partite and the two fully anti-
aligned Neél states are good starting points for investigating the ground state.
For an odd number of sites, the Neél states are frustrated; they must contain
at least one defect, which are called domain wall solitons [115, 39, 93, 20, 95].
There is a high level of degeneracy as the soliton can be placed anywhere along
the cyclic, periodic chain and this degenerate system is the starting point for
investigating the ground state for the case of an odd number of sites. Frustrated
systems are of great importance in condensed matter physics as they lead to
exotic phases of matter such as spin liquid [9], spin glasses [15] and topological
orders [73]. Solitons will also occur on the periodic chain with even number of
sites, but they must occur in soliton–anti-soliton pairs.

Many physical magnetic systems such as CsNiF3 and Co++ have been
modelled with Hamiltonians of the form of Equation (7.144). Models of this
form have been of research interest over the years since the work of Haldane [59].
To mention but a few, quite recently, the ground-state phase diagrams of the
spin-2 XXZ anisotropic Heisenberg chain has been carefully investigated by the
infinite system density-matrix-renormalization group (iDMRG) algorithm [74]
and other numerical methods [58]. For the spin-1 XXZ anisotropic Heisenberg
chain, the numerical exact diagonalization has been extensively investigated
for finite size systems [25]. For an arbitrary spin, the phase diagrams and
correlation exponents of an XXZ anisotropic Heisenberg chain has also been
studied by representing the spins as a product of 2s spin 1

2 operators [108]. This
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research has been focussed on ground-state phase diagrams and the existence of
Haldane phase (conjecture). In this section, we will study the spin chain with
Hamiltonian given by the simple form given in Equation (7.144) with periodic
boundary condition �SN+1 = �S1, and we consider K� λ> 0, i.e. strong easy-axis
anisotropy and perturbative Heisenberg anti-ferromagnetic coupling. In the first
subsection, we will study macroscopic quantum tunnelling of the Hamiltonian-
defined Equation (7.144) for the case of an even spin chain. This analysis is
based on spin-coherent state path integral formalism, which is appropriate for
large spin systems. In the second subsection, which we include for completeness,
we will deal with the case of an odd spin chain. Here, spin-coherent state path
integral formalism fails to give a definitive result. Thus, our analysis is based on
perturbation theory.

7.8.1 Even Number of Sites and Spin-Coherent State Path Integral

Let us consider our model, Equation (7.144), for N even. The ground state of
the free theory (K term) is 2N -fold degenerate corresponding to each spin in the
highest (lowest) weight states m=±s. In the degenerate subspace, there are two
fully aligned states |↑,↑,↑,↑, · · · ,↑,↑〉 and |↓,↓,↓,↓, · · · ,↓,↓〉 and two fully anti-
aligned Neél states |p〉 = |↑,↓,↑,↓, · · · ,↑,↓〉 and |−p〉 = |↓,↑,↓,↑, · · · ,↓,↑〉, where
the arrow denotes the highest (lowest) weight states, i.e. m= s≡↑(m=−s≡↓)
for each individual spin and the remaining degenerate states are produced by
flipping individual spins relative to these extremal states. These two Neél states
|±p〉 have the lowest energy at first-order in perturbation theory; however, they
are not exact eigenstates of the quantum Hamiltonian in Equation (7.144),
thus we expect ground-state quantum tunnelling coherence between them. Such
tunnelling is usually mediated by an instanton trajectory, and the exponential of
the instanton action (multiplied by a prefactor) yields the energy splitting. We
will obtain this instanton trajectory via the spin-coherent state path integral
formalism [5, 76, 75, 99], which is the appropriate formalism for large spin
systems. In this formalism, the spin operators become unit vectors parameterized
by spherical coordinates. The corresponding Euclidean Lagrangian in this
formalism is given by

LE = is

N∑
i=1

φ̇i(1− cosθi)+K

N∑
i=1

sin2 θi

+λ

N∑
i=1

(sinθi sinθi+1 cos(φi−φi+1)+ cosθi cosθi+1) , (7.145)

where the periodicity condition i =N +1 = 1 is imposed. The first term is the
usual WZ [120] term which arises from the non-orthogonality of spin-coherent
states while the other two terms correspond to the anisotropy energy and the
Heisenberg exchange energy. Quantum amplitudes are obtained via the path
integral and the saddle point approximation. Solutions of the Euclidean classical
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equations of motion give information about quantum tunnelling amplitudes. The
Euclidean classical equation of motion for φi is

is
d(1− cosθi)

dτ
= sinθi−1 sinθi sin(φi−1−φi)

− sinθi sinθi+1 sin(φi−φi+1) (7.146)

while the equation of motion for θi is

0isφ̇i sinθi+2K sinθi cosθi

λ(cosθi(sinθi+1 cos(φi−φi+1))+ sinθi−1 cos(φi−1−φi))
= λ(sinθi(cosθi+1+cosθi−1)) = 0. (7.147)

Summing both sides of Equation (7.146) gives

is
∑
i

d(1− cosθi)

dτ
= 0⇒

∑
i

cosθi = l= 0, (7.148)

which corresponds to the conservation of the z-component of the total spin∑
iS

z
i , as the full Hamiltonian, Equation (7.144), is invariant under rotations

about the z-axis.
We will solve these equations using simplifying, physically motivated ansatze.

A particular solution of Equation (7.148) is θ2k−1 ≡ θ, and θ2k = π − θ,
k = 1,2 · · · ,N/2. Making the further simplifying ansatz φi − φi+1 = (−1)i+1φ

effectively reducing the system to a single spin problem, we get the effective
Lagrangian (adding an irrelevant constant)

LeffE = is

N∑
k=1

φ̇k− iscosθ
N/2∑
k=1

(φ̇2k−1− φ̇2k)

+

N∑
i=1

[
K+λ[1+ cos(φi−φi+1)]

]
sin2 θ (7.149)

= isN Φ̇− isN

2
φ̇cosθ+Ueff , (7.150)

where Ueff =N [K+λ(1+ cosφ)] sin2 θ. The spin chain problem has reduced to
essentially the same problem we studied in the previous section with just two
spins. The instanton that we will find must go from θ=0 to θ= π. Conservation
of energy implies ∂τUeff = 0, which then must vanish, Ueff = 0, since it is so at
θ = 0. This implies

cosφ=−
(
K

λ
+1

)
�−1 (7.151)

since sinθ(τ) �=0 along the whole trajectory. Thus φ is a complex constant which
can be written as φ = π + iφI identical to that of the two-spin case [99]. The
classical equation of motion for φ gives

isθ̇ =−2λsinθ sinφ= i2λsinθ sinhφI (7.152)
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which integrates as
θ (τ) = 2arctan

(
eω(τ−τ0)

)
, (7.153)

where ω = (2λ/s)sinhφI . The instanton is independent of the number of spins
and only depends on the initial and the final points. As found in [99], the
instanton contributes to the action only through the WZ term, as Ueff = 0

all along the trajectory. The action is given by [99]

Sc = S0−
isN

2

∫ π+iφI

0

dφcosθ|θ=0−
isN

2

∫ 0

π+iφI

dφcosθ|θ=π

= 0− isNπ+NsφI =−isNπ+NsφI . (7.154)

The two Neél states reorganize into the symmetric and anti-symmetric linear
superpositions, |+〉 and the |−〉 as in [99]. The energy splitting is then

ΔE = 2De−Sc = 2D
(
λ

2K

)Ns
cos(sNπ) (7.155)

where D is a determinantal pre-factor which contains no λ dependence. The
factor of λNs signifies that this energy splitting arises from 2s

(
N
2

)
order in

degenerate perturbation theory in the interaction term. The energy splitting,
Equation (7.155), is the general formula for any even spin chain N . For N = 2,
we recover the results obtained previously [29, 30, 71, 72, 99]. The factor sN can
be even or odd, depending on the value of the spin. For half-odd integer spin
(2l+1)/2 and for N = 2(2k+1), the argument of the cosine in Equation (7.155)
is sNπ = (2l+1)(2k+1)π and hence we find ΔE is negative, which means that
|−〉 is the ground state and |+〉 is the first excited state. In all other cases, for any
value of the spin s and N =2(2k) the argument of the cosine is sNπ= (2s)(2k)π,
which is an even integer multiple of π and hence we find ΔE is positive and then
|+〉 is the ground state, |−〉 is the first excited state.

7.8.2 Odd Spin Chain, Frustration and Solitons

We include the analysis of the spin chain with an odd number of sites for
the sake of completeness. This system can, in principle, be analysed using the
spin-coherent state path integral. However, the tunnelling transitions are quite
different, and no explicit, analytic expressions for the instantons that are required
are known. In this situation, we revert back to the calculation using perturbative
methods, which is actually quite interesting.

When we consider a periodic chain with an odd number of sites, a soliton-
like defect arises due to the spin frustration. The fully anti-aligned Neél-like
state cannot complete periodically, as it requires an even total number of spins.
Thus there has to be at least one pair of spins that is aligned. This can come
in the form up–up or down–down while all other pairs of neighbouring spins
are in the up–down or down–up combination. As the total z-component of the
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spin is conserved, these states lie in orthogonal super-selection sectors and never
transform into each other. The position of the soliton is arbitrary thus each
sector is N -fold degenerate. In the first case the total z-component of the spin is
s while in the second case it is −s. We will, without loss of generality, consider
the s sector. These degenerate states are denoted by |k〉, k = 1, · · · ,N , where

|k〉= |↑,↓,↑,↓,↑, · · · , ↑,↑,︸︷︷︸
k,k+1thplace

, · · · ,↑,↓〉 (7.156)

in obvious notation. These states are not exact eigenstates of the quantum spin
Hamiltonian in Equation (7.144), thus we also expect ground-state quantum
tunnelling amongst these states, just as in the case of a particle in a periodic
potential, which would lift the degeneracy and reorganize the soliton states into a
band. The explicit form of the required instanton, which from the spin-coherent
state path integral would give rise to the appropriate tunnelling, is not known.
However, from Equation (7.155) we can see for the case of even spins that energy
splitting actually arises at the 2s

(
N
2

)
order in (degenerate) perturbation theory.

The path integral and instanton method only gives the result which must also
be available at this high order in degenerate perturbation theory. This indicates
that the appropriate formalism for the odd quantum spin chain would simply be
(degenerate) perturbation theory at high order.

It is convenient to write the Hamiltonian as

Ĥ = Ĥ0+ V̂ (7.157)

where Ĥ0 represents the K (free) term and V̂ represents the λ (perturbative)
term. The states in Equation (7.156) all have the same energy Es=−KNs2 from
Ĥ0 and in first-order degenerate perturbation theory Es=−KNs2−λ(N−1)s2+

λs2=(−K−λ)Ns2+2λs2 and are split from the first excited level, which requires
the introduction of a soliton/anti-soliton pair, by an energy of 4λ. As we take
the limit K� λ, we assume that the action of lowering or raising the value of Ŝz
incurs an energy cost proportion to K which is much more energy than creating
a soliton/anti-soliton pair, which has an energy cost proportional to λ. Although
the soliton/anti-soliton states are the next states in the spectrum, they cannot be
attained perturbatively, except at order 2s in perturbation theory. In each order
of perturbation theory less than 2s, the degenerate multiplet of states mixes
with the states of much higher energy, but due to invariance under translation,
the corrections brought to each state are identical and their degeneracy cannot
be split. However, at order 2s, the degenerate multiplet is mapped to itself.
Although the state of an additional soliton/anti-soliton pair is also reached at
this order, since it is not degenerate in energy with the original multiplet of N
states, its correction will be perturbatively small.

Reaching the degenerate multiplet at order 2s causes the multiplet to split in
energy and the states to reorganize into a band. Indeed, V̂ 2s contains the term



7.8 The Haldane-like Spin Chain and Instantons 141

(S−
k+1S

+
k+2)

2s and (S+
k−1S

−
k )

2s. These operators represent quantum fluctuations
close to the position of the soliton, which when acting on the ket |k〉, flips the
anti-aligned pair of spins at positions k+1,k+2 and at k−1,k, respectively. It is
easy to see that flipping this pair of spins has the effect of translating the soliton
|k〉→ |k+2〉 and |k〉→ |k− 2〉, respectively. All other terms in V̂ 2s are quantum
fluctuations away from the position of the soliton. They map to states out of the
degenerate subspace, either inserting a soliton/anti-soliton pair or changing the
value of Sz to non-extremal values, and hence do not contribute to breaking
the degeneracy.

To compute the splitting and the corresponding eigenstates, we follow [30].
We have to diagonalize the N ×N matrix with components bμ,ν given by

bμ,ν = 〈μ|V̂A2s−1|ν〉 , μ,ν = 1,2, · · · ,N (7.158)

where A2s−1 =
(

Q
Es−Ĥ0

V̂
)2s−1

, and Q = 1 −
∑
|μ〉〈μ|. These matrices are a

generalization of the 2× 2 matrix in [30]. The calculation of the components is
straightforward, for example, looking at bμ,1 we find

bμ,1 =

(
λ

2

)2s

〈μ|S−
2 S

+
3

(
Q

Es− Ĥ0

S−
2 S

+
3

)2s−1

|1〉

+

(
λ

2

)2s

〈μ|S+
NS

−
1

(
Q

Es− Ĥ0

S+
NS

−
1

)2s−1

|1〉 . (7.159)

Applying the operators 2s times on the right-hand side we obtain

bμ,1 = C[〈μ|3〉+ 〈μ|N − 1〉], (7.160)

where C is given by

C =±
(
λ

2

)2s 2s∏
m=1

m(2s−m+1)

2s−1∏
m=1

1

Km(2s−m)

=±K
(
λ

2K

)2s [
(2s)!

(2s− 1)!

]2
=±4Ks2

(
λ

2K

)2s

. (7.161)

The first product in Equation (7.161) comes from the two square roots that
accompany the action of the raising and lowering operators, and the second
product is a consequence of the energy denominators. The plus or minus sign
arises because we have 2s − 1 products of negative energy denominators in
Equation (7.159), so if s is integer, 2s− 1 is odd and we get a minus sign, while
for half-odd integer s, 2s− 1 is even and we get a plus sign. Similarly, we can
show that bμ,ν = C[〈μ|ν+2〉+ 〈μ|ν− 2〉], defined periodically of course. Thus we
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find that the matrix, [bμ,ν ], that we must diagonalize is a circulant matrix [37]

[bμ,ν ] = C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1

1 0 0 0 1 · · · 0
... 1 0

. . . · · · . . .

1 · · · . . . · · · 0 0 0

0 1 · · · 1 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.162)

In this matrix each row element is moved one step to the right, periodically,
relative to the preceding row. The eigenvalues and eigenvectors are well known.
The jth eigenvalue is given by

εj = b1,1+ b1,2ωj + b1,3ω
2
j + · · ·+ b1,NωN−1

j , (7.163)

where ωj = ei
2πj
N is the jth , N th root of unity with corresponding eigen-

vector | 2πjN 〉 = (1,ωj ,ω
2
j , · · · ,ωN−1

j )T , for j = 0,1,2, · · · ,N − 1. For our matrix,
Equation (7.162), the only non-zero coefficients are b1,3 and b1,N−1, thus the
one-soliton energy bands are

εj = C(ω2
j +ω

N−2
j ) = C(ω2

j +ω
−2
j )

= 2C cos
(
4πj

N

)
. (7.164)

Introducing the Brillouin zone momentum q = jπ/N , the energy bands
Equation (7.164) can be written as

εq = 2C cos(4q) (7.165)

which is gapless but is doubly degenerate as the cosine passes through two periods
in the Brillouin zone. The exact spectrum is symmetric about the value N/2.
With [x] the greatest integer not greater than x, the states for j = [N/2]−k and
j= [N/2]+k+1 for k=0,1,2, · · · , [N/2]−1 are degenerate as cos

(
4π([N/2]−k)

N

)
=

cos
(

4π([N/2]+k+1)
N

)
since [N/2] =N/2− 1/2. However, the state with k = [N/2]

is not paired, only j = 0 is allowed. When s is an integer, C is negative and the
unpaired state j =0 is the ground state which is then non-degenerate, but for s a
half-odd integer, C is positive, and the ground states are the degenerate pair with
j = [N/2], [N/2]+ 1 in accordance with Kramers’ theorem [78]. However, in the
thermodynamic limit, N →∞, the spectrum simply becomes doubly degenerate
for all values of the spin and gapless.
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Quantum Electrodynamics in 1+1 Dimensions

8.1 The Abelian Higgs Model

Instantons imply drastic changes in the spectrum of theories with essentially
Abelian gauge invariance in 1 + 1 and 2 + 1 dimensions. We say essentially
Abelian, since we include in this class theories which are spontaneously broken
to a residual U(1) invariance. In 1+1 dimensions we consider the theory defined
by the Lagrangian density [61],

L= (Dμφ)
∗
(Dμφ)− λ

4
(φ∗φ)2− μ2

2
φ∗φ− 1

4e2
FμνF

μν , (8.1)

where

Dμφ= ∂μφ+ iAμφ

Fμν = ∂μAν −∂νAμ. (8.2)

We take Dμφ= ∂μφ+ieAμφ, but we have replaced Aμ→ 1
eAμ. The Lagrangian is

invariant under a local gauge transformation which has a natural multiplication
law corresponding to the group U(1)

φ→ eiΛ(x,t)φ= g(x,t)φ g(x,t) ∈ U(1)

Aμ→ eiΛ(x,t) (Aμ− i∂μ)e−iΛ(x,t) =Aμ−∂μΛ. (8.3)

Then

Dμφ→ ∂μ

(
eiΛ(x,t)φ

)
+ i(Aμ−∂μΛ(x,t))eiΛ(x,t)φ

= eiΛ(x,t)∂μφ+ e
iΛ(x,t)i∂μΛ(x,t)φ+ e

iΛ(x,t)iAμφ− eiΛ(x,t)i∂μΛ(x,t)φ

= eiΛ(x,t)Dμφ. (8.4)

We impose that lim|x|→∞ g(x,t) = 1. This gives an effective topological
compactification of the space since the gauge transformation at spatial infinity
must be the same in all directions.
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Figure 8.1. The symmetric breaking potential U(|φ|)

There are two cases to consider depending on the sign of μ2. For μ2 > 0 the
quadratic part of the Lagrangian is

L= (∂μφ)
∗
(∂μφ)− μ2

2
φ∗φ− 1

4e2
FμνF

μν (8.5)

with corresponding equations of motion

∂μ∂
μφ+μ2φ= 0

∂μF
μν = 0, (8.6)

which describe a free, massive, scalar particle and a massless vector field, the free,
electromagnetic field. The conserved current corresponding to gauge invariance is

jμ = φ∗∂μφ− (∂μφ∗)φ. (8.7)

External charges that are well separated experience the usual Coulomb force.
This is true in any dimension except in 1+ 1 dimensions, the case that we are
considering first. Here, the Coulomb force is independent of the separation and
it costs an infinite amount of energy to separate two charges to infinity. We
say that charges are confined. Furthermore, there is no photon. There is no
transverse direction for the polarization states of the photon. The spectrum
consists of bound states of particle–anti-particle pairs, which are stable. They
cannot disintegrate since there is no photon.

For the other case with μ2 < 0, the potential (as depicted in Figure 8.1) is of
the symmetry breaking type

U(|φ|) = λ

4
|φ|4− |μ2|

2
|φ|2+C, (8.8)

where the C is adjusted so that the potential vanishes at the minimum. The
minimum is at |φ|2 = |μ2|

λ . We fix the gauge so that Im(φ) = 0, and we write

φ=
|μ|√
λ
+ η (8.9)
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with η ∈ IR. Then we get the Lagrangian density

L= (∂μ− iAμ)
(
|μ|√
λ
+ η

)
(∂μ+ iAμ)

(
|μ|√
λ
+ η

)

−λ
4

(
|μ|√
λ
+ η

)4

− μ2

2

(
|μ|√
λ
+ η

)2

− 1

4e2
FμνF

μν , (8.10)

which yields the quadratic part

L0 = ∂μη∂
μη+

μ2

λ
AμA

μ+μ2η2− 1

4e2
FμνF

μν . (8.11)

This now corresponds to a scalar particle with a mass of μ√
2

and a vector particle
of mass μ√

λ
e. Then the expectation is that the potential between particles should

drop off exponentially with the usual Yukawa factor

e−
r
M (8.12)

with M = |μ|√
2

or M = |μ|√
λ
e. We will find, surprisingly, that this is again not true in

1+1 dimensions. Instantons change the force between the particles and actually
imply confinement. The only difference between the cases μ2 > 0 and μ2 < 0 is
that the force is exponentially smaller (in �) for the case μ2 < 0; however, it is
still independent of separation.

8.2 The Euclidean Theory and Finite Action

To see this result, we must analyse the Euclidean theory. Here the Lagrangian
density is

L=
1

4e2
FμνF

μν +(Dμφ)
∗
(Dμφ)+

λ

4

(
φ∗φ−a2

)2 (8.13)

adding a constant, where a = |μ|√
λ
. These are three positive terms. For a

configuration of finite Euclidean action, each term must give a finite contribution
when integrated over IR2. This implies that φ∗φ→ a2, Dμφ→ 0 and Fμν → 0

faster than 1
r .

φ∗φ→ a2 ⇒ lim
r→∞φ= g(θ)a

Fμν → 0⇒ iAμ→ g̃∂μ (g̃)
−1

+ o

(
1

r2

)
= i∂μΛ

for g̃ = eiΛ

Dμφ→ 0⇒ ∂μg(θ)a+ g̃∂μ (g̃)
−1
g(θ)a

=
(
−g(θ)∂μg−1(θ)+ g̃∂μ (g̃)

−1
)
g(θ)a= 0. (8.14)

This is satisfied if g(θ) = g̃. Thus the configurations with finite Euclidean
action are characterized by g(θ). g(θ) defines a mapping of the circle at infinity
parametrized by θ into the group U(1), which is just the unit circle as in
Figure 8.2.
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Circle at ∞ Circle in U(1)

Figure 8.2. Mapping the spatial circle at ∞ to the circle in U(1)

8.2.1 Topological Homotopy Classes

The space of such maps separates into homotopically inequivalent classes. These
classes are characterized by the winding number of the map. A map from one
class cannot be continuously deformed to any other map from another class. It is
intuitively obvious that there are an infinite number of classes each corresponding
to a winding number. We can take

g0(θ) = 1 n= 0

g1(θ) = eiθ n= 1

·
·
·

gν(θ) = eiνθ n= ν. (8.15)

Given g(θ) we can extract ν by the formula

ν =
i

2π

∫ 2π

0

dθg(θ)
d

dθ
g−1(θ). (8.16)

If g(θ) = eiνθ, d
dθg

−1(θ) =−iνg−1(θ) thus

ν =
i

2π

∫ 2π

0

g(θ)(−iν)g−1(θ) =
ν

2π
2π = ν. (8.17)

If we make an arbitrary, infinitesimal change in g(θ),

g(θ)→ eiεΛ(θ)g(θ) = g(θ)+ iεΛ(θ)g(θ) (8.18)

with Λ(θ) of compact support in [0,2π),

δg(θ) = iΛ(θ)g(θ)

δ

(
g(θ)

d

dθ
g−1(θ)

)
= iΛ(θ)g(θ)

d

dθ
g−1(θ)+ g(θ)

d

dθ

(
−iΛ(θ)g−1(θ)

)
= iΛ(θ)g(θ)

d

dθ
g−1(θ)− iΛ(θ)g(θ) d

dθ
g−1(θ)− i d

dθ
Λ(θ)

=−i d
dθ

Λ(θ). (8.19)
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Thus

δν =
i

2π

∫ 2π

0

dθδ

(
g(θ)

d

dθ
g−1(θ)

)
=

i

2π
(−i)

∫ 2π

0

dθ
d

dθ
Λ(θ)

=
1

2π
(Λ(2π)−Λ(0)) = 0. (8.20)

Thus for each class, ν is an invariant under arbitrary continuous deformation.
Furthermore, if g(θ) = gν1(θ)gν2(θ), then

ν =
i

2π

∫ 2π

0

dθgν1(θ)gν2(θ)
d

dθ

(
g−1
ν2

(θ)g−1
ν1

(θ)
)

=
i

2π

∫ 2π

0

dθgν1(θ)

(
gν2(θ)

d

dθ
g−1
ν2

(θ)

)
g−1
ν1

(θ)+ gν1(θ)
d

dθ
g−1
ν1

(θ)

= ν1+ ν2. (8.21)

Finally, using iAμ = g∂μg
−1+ o

(
1
r2

)
ν =

i

2π

∫ 2π

0

dθg(θ)
d

dθ
g−1(θ) =

i

2π

∫ 2π

0

dθrir̂μεμνAν =− 1

2π

∮
r=∞

dxμAμ

=− 1

2π

∫
d2x∂μεμνAν =− 1

4π

∫
d2xεμνFμν =−

(
Φ

2π

)
, (8.22)

giving that the flux is quantized in units of 2π. In each homotopy class, the
configuration of minimum action must be stationary and hence satisfy the
Euclidean equations of motion. Because the solutions with different ν cannot
be obtained from each other by continuous deformation, there should be an
infinite action barrier between each class.

8.2.2 Nielsen–Olesen Vortices

The solutions for each ν are known to exist and are called the Nielsen–Olesen
vortices [96]. They are described by two radial functions, for ν = 1

Aμ = εμνrν
Φ(r)

2πr2

φ(r) = eiθf(r). (8.23)

This form implies the equations

− 1

r

d

dr

(
r
d

dr
f(r)

)
+

1

r2

(
1− Φ(r)

2π

)2

f(r)−μ2f(r)+λf3(r) = 0 (8.24)

and

− 1

e2
d

dr

(
1

r

d

dr

Φ(r)

2π

)
+
f2(r)

r

(
Φ(r)

2π
− 1

)
= 0. (8.25)

A solution exists, as depicted in Figure 8.3, with the behaviour for the magnetic
field B(r)

B(r) =
1

2πr

d

dr

Φ(r)

2π
→Ce−erf(r)
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B(r)

f(r)

Figure 8.3. The form of the function f(r) and the magnetic field B(r)

f(r)→ a

Φ(r)→Φ, (8.26)

where Φ(r) has the interpretation of being equal to the magnetic flux inside the
radius r while Φ is the total magnetic flux in the soliton, which is quantized in
units of 2π. The magnetic field is concentrated around the origin and both fields
approach the vacuum configuration exponentially fast with a non-trivial winding
number.

This solution mediates tunnelling between inequivalent classical vacua, which
correspond to classical configurations with zero energy. The energy is given by
(for A0 = 0)

E =

∫
dx

1

2e2
(∂0A1)

2
+(∂0φ)

∗
(∂0φ)+ (D1φ)

∗
(D1φ)+λ

(
φ∗φ−a2

)2
. (8.27)

The simplest zero-energy configuration is φ= a, Aμ = 0. There exists, however,
the freedom to transform this solution by a local gauge transformation that
depends only on space, which keeps the gauge condition A0 = 0 invariant,

φ→ g(x)a A1 →−ig(x)∂1g−1(x). (8.28)

We impose the additional condition, the limx→∞ g(x)→ 1, which is consistent
with our desire to consider a theory with arbitrary local excitations but
asymptotically no excitations. Then we get the effective compactification of the
spatial hypersurface. Topologically it is now just a circle and g(x) again maps
the circle that is space onto the circle in U(1). These maps are characterized by
winding numbers. Thus the classical vacua

φ= gν(x)a

A1 =−igν(x)
d

dx
g−1
ν (x) (8.29)

indexed by ν ∈ Z are homotopically inequivalent. We cannot deform one into
another while staying at E = 0. However, the energy barrier between them is
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4
π

4
3πθ 

θ–2π 

Figure 8.4. The form of the gauge transformation Λ(θ)

not infinite. The Nielsen–Olesen vortices interpolate between these vacua. To
see this we must transform the Nielsen–Olesen vortex into a form suitable for
the description in terms of many vacua, i.e. to the gauge A0 = 0.

We first perform a gauge transformation g(θ) = e−iΛ(θ), which has the limit at
spacetime infinity given by

Λ(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ for θ ∈ (0,π/4)

π/4→ 0 for θ ∈ (π/4,π/4+ ε)

0 for θ ∈ (π/4+ ε,3π/4− ε)
0→−5π/4 for θ ∈ (3π/4− ε,3π/4)
(θ− 2π) for θ ∈ (3π/4,2π)

(8.30)

as drawn in Figure 8.4. The corresponding g(θ) is topologically trivial; we can
simply deform the two saw-tooth humps to zero (non-trivial winding number
requires a Λ(θ) discontinuous by 2nπ between its value at θ = 0 and θ =

2π). Therefore, the gauge transformation can be continued everywhere inside
the spacetime and define a gauge transformation at all points. This gauge
transformation (note this is an inverse transformation, Λ→−Λ) takes

Aμ→ Ãμ =Aμ+∂μΛ(θ) (8.31)

and it is easy to see that this vanishes asymptotically, except where Λ(θ) = 0, i.e.
for θ ∈ (π/4+ ε,3π/4− ε). Thus Ãμ→ 0 for t ∈ [−∞,T ], T finite, exponentially
fast as |x| →∞, as depicted in Figure 8.5.

Now we further perform the gauge transformation to put Ã0 = 0 everywhere;
this is easily implemented by the choice

Λ(x,t) =

∫ t

−∞
dt′Ã0(x,t

′)
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t

x

θ = –∈
4
3π θ = +∈

4
π

Ãμ=0 Ãμ=0

Ãμ=0Ãμ=0

Figure 8.5. The regions of spacetime where the gauge field vanishes

A1(x,t)→ ˜̃A1(x,t) = Ã1(x,t)−∂xΛ(x,t) = Ã1(x,t)−∂x
∫ t

−∞
dt′Ã0(x,t

′).

(8.32)

This makes ˜̃A0 = 0 everywhere, but maintains ˜̃A1 → 0 for t ∈ [−∞,T ], T finite,
exponentially fast as |x| →∞, since both Ã1→ 0 and Ã0→ 0 exponentially fast
at spatial infinity in the region t∈ [−∞,T ], due to the first gauge transformation.
Thus as t→−∞, ˜̃A1 = 0, but as t→+∞ we have,

˜̃A1 → g(x)∂xg
−1(x) (8.33)

with
g(x) = ei

∫∞
−∞ dt′Ã0(x,t

′)g(θ)eiθ, (8.34)

where g(θ) = e−iΛ(θ) is our first gauge transformation and ei
∫∞
−∞ dt′Ã0(x,t

′) is
the second gauge transformation that put ˜̃A0 = 0. The final factor eiθ is the
asymptotic gauge transformation of the Nielsen–Olesen vortex. The first two
factors are topologically trivial gauge transformations: in each case the exponent
can be continuously switched to zero, thus the winding number of the gauge
transformation eiθ, which is 1, is unchanged. However, the two trivial factors
manage to bunch all of the non-trivial winding of eiθ into the spatial line x at
t=∞.

Thus we have put the Nielsen–Olesen vortex in a gauge where it interpolates
from the vacuum configuration g(x) = 1 at t = −∞ to the non-trivially
transformed vacuum configuration g(x) = ei

∫∞
−∞ dt′Ã0(x,t

′)g(θ)eiθ. The situation
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is exactly analogous to the problem of a periodic potential on a line. The
classical vacua form a denumerable infinity of local minima indexed by the
winding number n. There is a finite energy barrier between each one, and the
Nielsen–Olesen vortex is the instanton that mediates the tunnelling between
them.

8.3 Tunnelling Transitions

We can calculate the matrix element

〈ν = n|e−ĤT
� |ν = 0〉 =N

∫ ν[φf ]=n

ν[φin]=0

D (A1,φ
∗,φ)e−

SE
φ
� (8.35)

in the semi-classical approximation. The functional integral is simply identified
with the integral over all finite action field configurations with ν = n. The
continuation from Euclidean space automatically projects on the vacuum in this
sector. The critical point of the action contains the vortex with ν = n; however,
this is not the most important configuration. The most important configurations
correspond to n+ vortices with ν = 1 and n− vortices with ν = −1, widely
separated, such that n+ − n− = n. The action for such a configuration is very
close to (n++n−)SE(ν =1). The entropy factor, counting the degeneracy of the
configuration, is

(TL)
n++n−

n+!n−!
. (8.36)

In comparison, for a single vortex with ν = n, the action is presumably smaller,
but the entropy factor is just TL, since there is only one object. Thus the dilute
multi-instanton configurations are arbitrarily more important as TL→∞. Then

〈ν = n|e−ĤT
� |ν = 0〉 =Ndet

− 1
2

0

n+=∞∑
n+=0

n−=∞∑
n−=0

1

n+!n−!

(
TLe−

SE
0
� K

)n++n−

× δn+−n−,n, (8.37)

where K−2 (so that it appears in the formula as just K) is given by the ratio of
the determinant prime corresponding to the quadratic part of the Lagrangian in
the presence of one vortex, divided by the determinant of the free quadratic part
(written as det0), and the Jacobian factors from the usual change of variables
that take into account zero modes. The prefactor is set equal to one by choosing
the normalization N . Now using the formula

δa,b =
1

2π

∫ 2π

0

dθeiθ(a−b) (8.38)

we get

〈ν = n|e−ĤT
� |ν = 0〉 = 1

2π

∫ 2π

0

dθeiθn
∞∑

n+,n−=0

ein+θe−in−θ

n+!n−!

(
TLe−

SE
0
� K

)n++n−
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T ′R

Figure 8.6. Creation of a pair of charges at the origin, separation by R, held
for time T ′ and then annihilated

=
1

2π

∫ 2π

0

dθeiθne

⎛
⎝TLe−SE

0
� K(eiθ+e−iθ)

⎞
⎠

=
1

2π

∫ 2π

0

dθeiθne

⎛
⎝2TLe

−SE
0
� K cosθ

⎞
⎠

=

∫ 2π

0

dθe
−E(θ)T

� 〈ν = n|θ〉〈θ |ν = 0〉 . (8.39)

Thus we find the infinite set of classical vacua rearrange themselves to form a
band of states parametrized by θ with energy density

E(θ)
L

=−2Ke−
SE
0
� cosθ (8.40)

and the matrix element

〈ν = n|θ〉= einθ√
2π
. (8.41)

8.4 The Wilson Loop

This rearrangement of the vacua has important consequences for the force
between charges. Consider the creation of an external charged particle and anti-
particle pair. We create them at the origin, separate them by a large distance
R, hold them at this separation for a long time T ′, and then we let them come
together and annihilate, as depicted in Figure 8.6. A particle of charge q, in an
electromagnetic field, experiences an additional change to its wave function by
the factor

e−i
q
e

∫
dxμAμ . (8.42)
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Consider external charges governed by a dynamics with a Lagrangian

L=
1

2
ẋ2i + qẋiAi− qA0−V (xi). (8.43)

The equation of motion is

ẍi+ q �Ai(xl)− qẋj∂i �Aj(xl)+ q∂iA0(xl)+∂iV (xl) = 0, (8.44)

which can be rewritten

ẍi− qẋjεjikBk(xl) =−∂iV (xl)+ q �Ei(xl), (8.45)

where Ei(xl) = ∂t �Ai(xl)+∂iA0(xl) is the electric field and Bi(xl) = εjik∂j �Ak(xl)

is the magnetic field. Thus the action in the functional integral for the particle
is augmented by the term

e−i
S0

� → e−i
S0

� e−i
q
e

∫
dt(ẋi �Ai(xl)−qA0(xl))

= e−i
S0

� e−i
q
e

∫
dxμAμ . (8.46)

For an anti-particle the additional factor is, of course,

ei
q
e

∫
dxμAμ . (8.47)

Thus for our trajectory, the additional factor becomes a closed integral in the
exponent,

e−i
q
e

∮
dxμAμ . (8.48)

We perform the functional integral over the gauge and scalar fields treating our
particles as external, with their dynamics controlled by V (xl). However, the wave
functions of the particles will change by this additional factor, which we must
take into account. When we integrate over Aμ,φ,φ∗ we obtain the matrix element
of the operator (in Euclidean space)

W = e−
q
e

∮
dxμAμ . (8.49)

This is called the Wilson loop operator. The matrix element of the operator
behaves approximately as

W ∼ e−E(R)T ′( q
e ). (8.50)

If E(R)∼CR for some constant C, the interaction between the charges is said to
be confining, and the expectation value of the Wilson loop operator will behave
like

〈W 〉 ∼ e−CA(
q
e ), (8.51)

where A is the area of the loop. This is the celebrated criterion of area law
behaviour of the Wilson loop for confining interactions. If, on the other hand,
the E(R)∼D for some constant D, we get

〈W 〉 ∼ e−DP(
q
e ), (8.52)

where P is the perimeter of the loop. Such behaviour of the Wilson loop does
not imply confining interactions.
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T ′R

Figure 8.7. A dilute gas of instantons and anti-instantons surround the Wilson
loop

8.4.1 Expectation Value of the Wilson Loop Operator

Thus we wish to evaluate

〈θ|W |θ〉 =
∫
D (Aμ,φ,φ

∗)e−
SE

� eiνθW∫
D (Aμ,φ,φ∗)e−

SE
� eiνθ

(8.53)

in the semi-classical approximation. For the numerator we divide the summation
over the positions of the vortices (instantons) and the anti-vortices (anti-
instantons) into those inside the loop and those outside the loop, as depicted
in Figure 8.7. We drop the contribution from vortices situated on or near the
boundary; these form a negligible part of the set of all configurations, if the size
of the loop is much larger than the size of the vortices.

The integrand splits neatly into a part from outside and a part from inside
the Wilson loop

S = Soutside+Sinside

ν = νoutside+ νinside (8.54)

however,
W = e2πi

q
e ν

inside
. (8.55)

Inside the volume available is RT ′, while outside the volume available is LT −
RT ′, for each vortex. We sum independently over the vortices and the anti-
vortices, inside and outside the loop, with no constraint on their numbers. The
contribution inside has θ→ θ+ 2πq

e , thus we get

〈θ|W |θ〉 = e

⎛
⎝2Ke

−SE
0
� ((LT−RT ′)cosθ+RT ′ cos(θ+ 2πq

e )−LT cosθ)

⎞
⎠

= e

⎛
⎝2Ke

−SE
0
� RT ′(−cosθ+cos(θ+ 2πq

e ))

⎞
⎠
. (8.56)
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Then comparing with Equation (8.50) we get

E(R) = 2R

(
cos(θ)− cos

(
θ+

2πq

e

))
Ke−

SE
0
� (8.57)

and hence
E(R)∼R (8.58)

implying confinement.
We can also calculate

〈θ| 1
2
εμνFμν |θ〉 =

1

2LT

∫
d2x 〈θ|εμνFμν |θ〉

=− 4π

2LT

∫
D (Aμ,φ,φ

∗)νe−
SE
0
� eiνθ∫

D (Aμ,φ,φ∗)e−
SE
0
� eiνθ

=
4π

2LT
i
d

dθ
ln

(∫
D (Aμ,φ,φ

∗)e−
SE
0
� eiνθ

)
=

4π

2LT
i
d

dθ

(
2Ke−

SE
0
� LT cos(θ)

)
=−i4πKe−

SE
0
� sin(θ). (8.59)

For small θ from Equation (8.40), removing a constant, we have

E(θ)
L

=Ke−
SE
0
� θ2. (8.60)

Also,

〈θ|F12 |θ〉 =−i4πKe−
SE
0
� θ

E(R) = 2R

(
θ2−

(
θ+

2πq

e

)2
)
Ke−

SE
0
� . (8.61)

This lends itself to the following interpretation. In the θ vacuum, there exists
an electric field that is proportional to θ with a corresponding energy density
proportional to θ2. The external charges induce an electric field between them,
proportional to their charges. The energy changes by the separation of the
charges multiplied by the energy density, which in this case is clearly(

θ+
2πq

e

)2

. (8.62)

There exist non-linear effects that convert these to periodic functions in q
e . This

is because the theory contains particles of charge e. For q > e, a charged particle–
anti-particle pair can be created, which then can migrate to the oppositely
charged external charges, lowering their charge and hence the induced electric
field. Thus q’s are equivalent modulo e.
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Our analysis, although encouraging, cannot work in higher dimensions. In 1+1

dimensions, the flux of each instanton inside the loop must totally pass through
the loop, independent of its position inside the loop. In 3 + 1 dimensions the
instantons are not like flux tubes, they are O(4)-symmetric objects. Instead of
the Wilson loop, we would require some analogous “Wilson three-dimensional
hypersurface” to reach the same conclusion. Confinement must, however, imply
the area law for the usual Wilson loop, in any dimensions. Thus we do not
expect instantons to be responsible for confinement in higher dimensions. We
can, as we shall see in Chapter 9, circumvent this problem in 2+ 1 dimensions
by introducing a mild non-Abelian nature.



9

The Polyakov Proof of Confinement

In a totally surprising result, Polyakov demonstrated that instantons could
provide the key to confinement in a particular model in 2+1 dimensions [103]. In
this chapter, we will study in detail the Polyakov proof of confinement. We will
see that it requires a mild non-Abelian aspect to the theory, but the confinement
occurs essentially because of the existence of magnetic monopole solitons in the
theory. Purely Abelian gauge theory also contains magnetic monopoles, but they
are singular configurations of infinite energy, and hence of no import. The minor
non-Abelian excursion simply allows for the existence of finite action (or energy)
magnetic monopoles.

9.1 Georgi–Glashow model

We continue our study of quantum electrodynamics in 2+1 dimensions; however,
now we shall consider a theory that is Abelian at low energy but non-Abelian at
high energy. This occurs due to spontaneous symmetry breaking. We consider a
non-Abelian gauge theory with gauge group O(3)∼SU(2) spontaneously broken
to U(1). The model is the 2+1-dimensional version of the Georgi–Glashow model
[54]. The fields correspond to an iso-triplet of scalar fields interacting via non-
Abelian gauge fields and self-interactions, the Lagrangian density is given by

L=− 1

4e2
F aμνF

aμν + |Dμφ|2−
1

4
λ
(
|φ|2−a2

)2

, (9.1)

where

F aμν = ∂μA
a
ν −∂νAaμ+ εabcAbμAcν

φ=

⎛
⎜⎝φ

1

φ2

φ3

⎞
⎟⎠ , (Dμφ)

a
= ∂μφ

a+ εabcAbμφ
c

|φ|2 = φaφa. (9.2)
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The theory is invariant under local redefinition of the fields by

φa→Rab(xν)φb

Aaμ→Rab(xν)Abμ+ ε
abcRbd(xν)∂μR

cd(xν), (9.3)

where Rab(xν) is a smooth, O(3)-valued gauge transformation.
We may sometimes wish to use the matrix notation, hence we record the

corresponding formulae here. The Higgs field is written as φ, which is a three-
real entry column. The gauge field is a 3× 3 real, anti-symmetric matrix Aμ
for each spacetime index μ. There are exactly three independent anti-symmetric
3×3 matrices where a basis can be denoted as T a with components numerically
given by T abc = εabc (here the placement of the index as upper or lower is of no
import). Then Aμ =AaμT

a. Then the gauge transformation is written as

φ→R(xν)φ

Aμ→R(xν)Aμ+R(x
ν)∂μR

T (xν), (9.4)

where R(xν) is a 3 × 3 orthogonal matrix (hence its inverse is given by its
transpose).

We can easily see the perturbative, physical particle spectrum of the theory
by making a choice of gauge

φ1 = φ2 = 0. (9.5)

To be honest, this is an incomplete gauge-fixing condition: it does not fix the
gauge degree of freedom if φ is already in the three-direction and it does not fix
the gauge transformations which leave φ3 invariant. However, it is sufficient for
us to extract the particle spectrum. Then, replacing φ3 = a+ η we have:

(Dμφ)
1
= ∂μφ

1+ ε1bcAbμφ
c = ε123A2

μφ
3 =A2

μ(a+ η)

(Dμφ)
2
= ∂μφ

2+ ε2bcAbμφ
c = ε213A1

μφ
3 =−A1

μ(a+ η)

(Dμφ)
3
= ∂μφ

3+ ε3bcAbμφ
c = ∂μ(a+ η) = ∂μη. (9.6)

Hence
|Dμφ|2 = ∂μη∂

μη+
(
A1
μA

1μ+A2
μA

2μ
)(
a2+2aη+ η2

)
, (9.7)

giving the Lagrangian density

L=− 1

4e2
F aμνF

aμν +∂μη∂
μη+∂μη∂

μη

+
(
A1
μA

1μ+A2
μA

2μ
)(
a2+2aη+ η2

)
− 1

4
λ
(
2aη+ η2

)2
. (9.8)

This yields the quadratic part

L=
−1
2e2

(
∂μA

a
ν −∂νAaμ

)
(∂μAaν)+∂νη∂

μη+
(
A1
μA

1μ+A2
μA

2μ
)
a2−λaη2. (9.9)

The physical particle spectrum can now be read off from this equation; it
corresponds to a massless vector field A3

μ, two massive vector fields A1
μ and A2

μ
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of mass M2 = 4e2a2, and a neutral massive scalar field η (neutral with respect
to the gauge field A3

μ) with mass m2 = λa. η is neutral since it does not couple
to A3

μ, while the massive vector fields A1
μ and A2

μ are charged as they do. The
two fields φ1 and φ2 are, of course, absent. We might say this is due to our
gauge choice; however, the fact that the corresponding physical excitations do
not exist is independent of the gauge choice. What we are describing is the classic
Higgs mechanism [61], where the putative massless Goldstone bosons associated
with spontaneous symmetry-breaking are swallowed by the gauge bosons that
correspond to the broken symmetry directions. These gauge bosons consequently
become massive. Hence the Goldstone bosons are absent, but their degrees of
freedom show up in the additional degrees of freedom of the massive vector
bosons (as opposed to massless ones).

We will see in this chapter that, as in the case of the Abelian Higgs model
in 1+1 dimensions in Chapter 8, the actual spectrum of the theory does not
correspond to this naive spectrum. We will find that the theory in fact confines
charged states due to the effects of instantons and that there are no massless
states, especially there is no massless photon. The validity of the argument that
the Wilson loop is able to subtend an appreciable amount of flux from the
instantons, which was used in Chapter 8, becomes critical in 2+ 1 dimensions.
As the size of the Wilson loop becomes large, it can subtend an arbitrary amount
of flux from nearby instantons, and hence the effect of instantons is significant.
In 3+1 dimensions we will see that the argument fails.

9.2 Euclidean Theory

Analytically continuing our action to three-dimensional Euclidean space
(although much of what we say is trivially generalized to d Euclidean dimensions)
gives

SE =

∫
d3x

(
1

4e2
F aμνF

a
μν +

1

2
(Dμφ)

a(Dμφ)
a+

1

4
(φaφa−a2)2

)
, (9.10)

which is again composed of three positive semi-definite terms. We look for
finite action configurations: these would correspond to instantons and should
be relevant for tunnelling. Finite action requires that the fields behave in such
a way that each term in the action goes to zero sufficiently fast at infinity, as
each term is positive semi-definite. Sufficiently fast can include ∼ 1/r fall off of
particular fields or their derivatives, the only condition is that the Euclidean
action be finite, and hence each term vanishes sufficiently fast. This then implies
that at infinity

φa→Rabφ (Ω)φa0 φa0φ
a
0 = a2 (9.11)

(Dμφ)
a→ 0 (9.12)

F aμν → 0, (9.13)
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where Ω are the angular coordinates parametrizing the sphere at infinity.
Equation (9.13) requires that the gauge fields approach a configuration that
corresponds to a pure gauge transformation of the vacuum, sufficiently fast. We
can write the gauge field in a matrix notation

Aμ =AaμT
a, (9.14)

where T a are 3× 3 matrices with components numerically given by T abc = εabc.
Then Equation (9.13) implies, in this matrix notation, that the gauge field
corresponds to a gauge transformation of zero,

Aμ→RAμ(Ω)∂μR
†
Aμ

(Ω). (9.15)

Then automatically for the covariant derivative of the scalar field we get
(suppressing the Ω dependence and its index a)

Dμφ→ (∂μ+RAμ∂μR
†
Aμ

)Rφφ0

= Rφ

(
R†
φ∂μRφ+R

†
φRAμ(∂μR

†
Aμ

)Rφ

)
φ0

= Rφ

(
R†
φRAμ∂μ(R

†
Aμ
Rφ)

)
φ0 = 0. (9.16)

This requires that R†
φRAμ∂μ(R

†
Aμ
Rφ), which is a Lie algebra element, be in the

direction that annihilates φ0 or correspondingly R†
Aμ
Rφ leaves φ0 invariant, that

is R†
Aμ
Rφ =H where Hφ0 = φ0. H may not be globally defined on the sphere at

infinity; however, locally it is, and that is all we need. This defines the invariant
subgroup or stabilizer of φ0. But now we may redefine Rφ → R̃φ = RφH

−1 as
Rφ is only defined up to an element of the stabilizer of φ0, as is obvious from
Equation (9.11) (we will drop the tilde from now on). Thus we get R†

Aμ
Rφ = 1

at least locally on the sphere at infinity. Although we started with different,
independent gauge transformations, Rφ and RAμ , in Equations (9.11) and (9.15),
respectively, we see that Equation (9.12) forces the gauge transformations to be
the same. We will now call this gauge transformation R(Ω). We underline that
R(Ω) may not be globally defined, and may actually be singular at some place
on the sphere at infinity. In fact, for a non-trivial mapping it must be singular
somewhere. However, its action on φ0, which defines the values of the Higgs field
at infinity, must be globally defined.

The condition of finite action is actually a little more subtle. Indeed, the gauge
field must become pure gauge only as fast as ∼ 1/r for the F aμνF aμν to give a finite
contribution. Thus we should modify Equation (9.15) to

Aμ→R(Ω)∂μR
†(Ω)+ Ãμ, (9.17)

where Ãμ ∼ o(1/r) (keeping in mind that the pure gauge terms also behave as
∼ 1/r). However, such a modification could cause trouble in Equation (9.12),
as the covariant derivative of the scalar field must vanish faster than 1/r2 for
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finite action. But this can again be solved if these additional possible terms in
the gauge field are in the direction of the stabilizer of the Higgs field. Thus we
can tolerate additional non-pure gauge terms in the gauge field as long as

ÃμRφ0 = 0. (9.18)

9.2.1 Topological Homotopy Classes

Thus finite action configurations are characterized by R(Ω) defined at |�x| →∞.
This defines a map of the sphere at infinity Sd−1 (generalizing temporarily to d
dimensions) into the space of “vacuum” configurations, {φa : φaφa = a2} ≡M=

S2. The equivalence classes under homotopy of these maps form the homotopy
groups

Πd−1 (M) . (9.19)

There is a fascinating and complex set of corresponding homotopy groups [51]:

Πd−1 (M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 d=2

Z d=3

Z d=4

Z2 d=5

Z2 d=6

Z12 d=7

Z2 d=8

Z2 d=9

Z3 d=10

Z15 d=11

Z2 d=12

Z2×Z2 d=13

Z12×Z2 d=14

Z84×Z2×Z2 d=15

Z2×Z2 d=16

.

.

.

(9.20)

Thus there exist topologically non-trivial configurations in each dimension and
the possibility of non-trivial finite Euclidean action configurations. In d= 3, the
corresponding instantons are actually the ’t Hooft–Polyakov magnetic monopole
solitons of the 3+1-dimensional theory.
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Figure 9.1. Mapping the whole S2 at ∞ to a point

Figure 9.2. Mapping the S2 at ∞ on to the vacuum manifold S2

9.2.2 Magnetic Monopole Solutions

For d= 3, we have the maps

R(Ω)φ0 : S
2 → S2, (9.21)

where the first S2 is defined by the set of all Ω’s, i.e. the sphere at ∞, while the
second S2 is defined by the set of Higgs field values φ2 = φaφa = a2. These fall
into homotopically inequivalent classes, characterized by the winding number of
the map, much like the previous case of maps of S1 → S1 in the Abelian Higgs
model. Pictured in Figures 9.1 and 9.2 are the trivial map to a point and the
onto map, where each point in the first S2 is mapped to the analogous point on
the second S2. We cannot continuously deform one configuration into another if
they have different winding numbers, that is the definition of homotopy classes,
and typically this implies that there exists an infinite action barrier between
configurations in different classes. We will see that the topological winding
number turns out to be associated with the magnetic charge of each sector. The
minimum action configuration in each class must solve the equations of motion.
The action must be stationary at the minimum action configuration since, if the
first-order variation does not vanish, one can find a variation which lowers the
action. The equations of motion are therefore satisfied. What is not necessary
is that the minimum action configuration is non-trivial; it could, for example,
collapse and shrink to a point or, conversely, spread out and dilute infinitely. We
will show that it must be non-trivial.

The homotopy class with topological winding number n = 1 defines the
standard instanton. We can prove that the action is bounded from below in
each sector using a method first shown by Bogomolny [17]. We assume that the
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potential V (φ) is positive semi-definite. Defining the non-Abelian magnetic field
as Bai =

1
2εijkF

a
jk we have

SE =

∫
d3x

(
1

2

Bai
e

Bai
e

+
1

2
(Diφ)

a(Diφ)
a+V (φ)

)
≥

∫
d3x

1

2

(
Bai
e
∓ (Diφ)

a

)2

± Bai
e
(Diφ)

a

≥±
∫
d3x

Bai
e
(Diφ)

a

=±1

e

∫
d3xBai ∂iφ

a+Bai ε
abcAbiφ

c

=±1

e

∫
d3x∂i(B

a
i φ

a)−
(
(∂iB

a
i )φ

a−Bai εabcAbiφc
)

=±1

e

(∮
dSi(Bai φ

a)−
∫
d3x

(
∂iB

a
i + ε

abcAbiB
c
i

)
φa

)
≡±ga, (9.22)

where in the second line we have simply completed the square and dropped
the potential, in the third line we have dropped the positive semi-definite first
term and in the penultimate equation the last term vanishes because of the
Jacobi identity. The Jacobi identity is εijk[Di, [Dj ,Dk]] = 0 which is simply,
trivially, algebraically valid (just spell out all of the terms and they cancel
pairwise). This gives DiB

a
i = ∂iB

a
i +ε

abcAbiB
c
i =0 as [Da

j ,D
b
k] = εjklε

abcBcl which
is the non-Abelian analogue of Maxwell’s equation ∇ · �B = 0. Normally, in the
purely Abelian theory, this equation denies the existence of magnetic monopoles.
Here the magnetic monopoles do exist, since the non-Abelian divergence of the
magnetic field contains inhomogeneous terms. The magnetic monopoles exist
as instantons in the Euclideanized 2+1-dimensional theory or as actual static
solitons in the 3+1-dimensional theory. g is the magnetic charge

g =
1

ae

∮
dSiBai φ

a (9.23)

and a is the vacuum expectation value of the scalar field. Clearly, if g is positive
we take the plus sign in Equation (9.22), and if g is negative we take the minus
sign. This implies that the Euclidean action has a positive definite lower bound
in each topological sector. We will show g �= 0 except in the topologically trivial
sector. Indeed, for the ansatz

φa =H(aer)
xa

er2

Aai =−εaij x
j

r2
(1−K(aer)) (9.24)
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finite action requires

H(aer)→ aer , r→∞
K(aer)→ 0 , r→∞
H(aer) < o(aer) , r→ 0

K(aer) < o(aer) , r→ 0. (9.25)

Thus for large r

φa ≈ a
xa

r
= (Rφ0)

a

Aai ≈−εaij
xj

r2
=R∂iR

†+ Ãai (9.26)

giving

F aij ≈ εijk
xkxa

r4
. (9.27)

Defining the Abelian magnetic field as

Bi =
1

2
εijkF

a
jk

φa

a
≈ xi

r3
(9.28)

we have

g =
1

e

∮
dSiBi =

4π

e
�= 0. (9.29)

This is in fact the Dirac quantization condition on magnetic charge, gq=2π, for
the minimal electric charge q = e/2. Not surprisingly, the theory knows that it
can, in principle, have fields in the spinor representation of the iso-spin group
(SO(3)) that do carry charge e/2.

For the Higgs field satisfying the conditions of the “Higgs” vacuum

φaφa = a2

(Dμφ)
a
= 0 (9.30)

we can write the explicit solution, using the iso-vector notation �φ for the Higgs
field

Aaμ =
1

a2

(
�φ×∂μ�φ

)a
+

1

a
φaAμ

F aμν =
1

a
φaFμν , (9.31)

where
Fμν =

1

a3
φa

(
∂μ�φ×∂ν �φ

)a
+∂μAν −∂νAμ. (9.32)

Aμ generates only a source-free magnetic field, but

Bi =
1

2
εijkFjk (9.33)
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can have non-zero magnetic charge due to the first term in Equation (9.32). The
magnetic charge in any region is

g =
1

e

∮
Σ

�B ·d�S =
1

2ea3

∮
Σ

dSiεabcε
ijkφa∂jφ

b∂kφ
c. (9.34)

We will show that this integral is actually a topological invariant and equal to
the result 4π/e that we found for the configuration in Equation (9.29) above. It
counts the winding number of the map from the surface Σ which is topologically
S2 into the S2 defined by φaφa = a2. Indeed, consider a variation δφ which is of
compact support, then �φ→ �φ+ δ�φ but since

(
�φ · �φ

)
= 1 we get

δ
(
�φ · �φ

)
= 2�φ · δ�φ= 0. (9.35)

Then

δ
(
�φ · (∂j�φ×∂k�φ)

)
= δ�φ ·

(
∂j�φ×∂k�φ

)
+ �φ ·

(
∂jδ�φ×∂k�φ

)
+ �φ ·

(
∂j�φ×∂kδ�φ

)
= δ�φ ·

(
∂j�φ×∂k�φ

)
+∂j

(
�φ · (δ�φ×∂k�φ)

)
−∂j�φ ·

(
δ�φ×∂k�φ

)
�φ ·

(
δ�φ×∂j∂k�φ

)
+∂k

(
�φ · (∂j�φ× δ�φ)

)
∂j�φ ·

(
δ�φ×∂k�φ

)
− �φ ·

(
∂j∂k�φ× δ�φ

)
= 3 δ�φ ·

(
∂j�φ×∂k�φ

)
+2∂j

(
�φ · (δ�φ×∂k�φ)

)
, (9.36)

where, in the last step, we use that the expression is contracted with εijk. The
total derivative terms give no contribution to any integral since δφ is of compact
support. Now ∂jφ and ∂kφ are both orthogonal to φ, thus ∂j�φ× ∂k�φ is parallel
to φ, giving

δ�φ ·
(
∂j�φ×∂k�φ

)
= 0 (9.37)

hence
δ
(
�φ · (∂j�φ×∂k�φ)

)
= 2∂j

(
�φ · (δ�φ×∂k�φ)

)
. (9.38)

Therefore the integral, Equation (9.34), is invariant under arbitrary continuous
deformation of φ, since these are built up from a sequence of infinitesimal
deformations of compact support. A continuous deformation of the surface over
which the field is defined can also be interpreted as a continuous deformation
of the φ field, thus g is also invariant under continuous deformations of the
integration surface (remember that we are only in the Higgs vacuum).

Finally we can calculate g for

φa = ax̂a = a
xa

r
, (9.39)

asymptotically, which corresponds to the winding number equal to one map.
Then

∂iφa = a

(
δai

r
− xaxi

r3

)
=
a

r

(
δai− x̂ax̂i

)
, (9.40)
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which gives

εijkεabcφ
a∂jφ

b∂kφ
c = a3εijkεabc

xa

r3
(
δjb− x̂j x̂b

)(
δkc− x̂kx̂c

)
=

2a3

r2
x̂i. (9.41)

Hence

g =
1

2ea3

∮
Σ

dSi
2a3

r2
x̂i =

1

2ea3
8πa3 =

4π

e
. (9.42)

This answer is robust, in that it does not change for any infinitesimal changes
and hence for any continuous change in the Higgs field. If we use the winding
number 2 map, the answer for the integral will be 2×4π/e, and so on. If we write
φ=Rφ0, then the winding number N map is obtained by taking φ=RNφ0.

If we transform φa → φ̃a = δa3a, we cannot define the gauge transformation
globally over any surface containing the core. We get the usual Dirac string
singularity,

Aai = δa3
1

er

(1− cosθ)

sinθ
ϕ̂i, (9.43)

where ϕ̂ is the unit vector in the azimuthal direction.

9.3 Monopole Ansatz with Maximal Symmetry

The solution follows from the most general ansatz

φa =H(aer)
xa

er2

Aai =−εaij xj

e2r2
(1−K(aer))+

r2δai−xixa
e2r3

B(aer)+
xixa

e2r3
C(aer), (9.44)

which is symmetric under the diagonal subgroup of the group SO(3)rot. ×
SO(3)iso−rot. of rotations and iso-rotations. If we had imposed invariance only
under the SO(3)rot., the rotation subgroup alone, we would have to impose that
φa is a constant on each spatial sphere, giving trivial asymptotic topology. On
the other hand, the configuration that is invariant only under SO(3)iso−rot.,
the iso-rotational group, has the only possibility φa = 0, which also has trivial
topology. However, we can impose invariance under the next subgroup available,
SO(3)diagonal, the diagonal subgroup of rotations and iso-rotations, which the
fields in Equation (9.44) satisfy.

Parity corresponds to the transformation

P : φa(xj , t)→ φa(−xj , t), Aai (x
j , t)→−Aai (−xj , t) (9.45)

and there is also the discrete transformation

Z : φa(xj , t)→−φa(xj , t), Aai (x
j , t)→Aai (x

j , t). (9.46)

P and Z individually reverse the magnetic charge, thus we cannot impose
invariance under each separately. However, their product leaves the magnetic
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H(aer)/aer, K(aer)

H(aer)/aer

K(aer)

1

Figure 9.3. The curves of H(aer)/aer and K(aer)

charge invariant. Hence, in the spirit of imposing the maximum symmetry on
the solution without making it trivial, we impose that the ansatz be invariant
under PZ. This implies B(aer) =C(aer) = 0.

9.3.1 Monopole Equations

We find, then, that H(aer) and K(aer) satisfy the system of equations

r2
d2

dr2
K(r) =K(r)H2(r)+K(r)(K2(r)− 1)

r2
d2

dr2
H(r) = 2K(r)2H(r)+

λ

e2
H(r)(H2(r)−a2r2). (9.47)

They have numerical solutions as depicted in Figure 9.3. In the Prasad–
Sommerfield limit [104], λ→ 0, we know the exact solution

H(aer) = aer coth(aer)− 1

K(aer) =
aer

sinh(aer)
. (9.48)

This solution corresponds to the famous ’t Hooft–Polyakov magnetic monopole.
In 3+1 dimensions it is a static, stable, finite-energy solution to the equations
of motion. In 2 + 1 dimensions, but Euclideanized, it serves equally well as a
finite-action, Euclidean space instanton, where it mediates tunnelling between
different classical vacua, as we will see below.

9.4 Non-Abelian Gauge Field Theories

We must examine in some more detail what it means to have a quantum non-
Abelian gauge theory.
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9.4.1 Classical Non-Abelian Gauge Invariance

First we will consider non-Abelian gauge invariance more generally, and then
apply it to our specific case. A non-Abelian gauge theory admits fields which
transform according to given representations of a non-Abelian group,

φ→U(g)φ U(g) ∈G, (9.49)

where U(g)U†(g) = U†(g)U(g) = 1. If g does not depend on the spacetime
point, we call the gauge transformation global, otherwise it is a local gauge
transformation. However, the allowed variation of the gauge transformation is
restricted to a region of compact support. It is easy to write a Lagrangian that
is invariant under global gauge transformations, we simply construct it out of
invariant polynomials of the fields. Spacetime derivatives commute with the
gauge-transforming field U(g) and hence cause no problems. Now if we want
to generalize the invariance to include local gauge transformations, we must
introduce new fields. For our case

φa→ (U(g)φ)a

(∂μφ)
a→ ∂μ (U(g)φ)a

= (U(g)∂μφ)a+((∂μU(g))φ)a . (9.50)

That is, if U(g) depends on the spacetime point, the derivative does not
commute with it. We must introduce a new field, the gauge field Aaμ, with an
inhomogeneous transformation property which will exactly cancel the extra term
generated by the derivative. We replace all derivatives by

∂μ→ ∂μ+Aμ, (9.51)

where Aμ is a vector field with values in the Lie algebra of the representation
under which φ transforms. In our case

Aμ =Abμ
(
−εbac

)
, (9.52)

thus

(Dμφ)
a
= ∂μφ

a−Abμεbacφc
= ∂μφ

a+ εabcAbμφ
c. (9.53)

Aμ is given the transformation property such that the covariant derivative
transform covariantly:

Dμφ→U(g)Dμφ. (9.54)

This is satisfied if

Aμ→U(g)(Aμ+∂μ)U†(g). (9.55)
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Evidently

Dμφ= (∂μ+Aμ)φ→
(
∂μ+U(g)(Aμ+∂μ)U†(g)

)
U(g)φ

= (∂μU(g))φ+U(g)∂μφ+U(g)Aμφ+U(g)
(
∂μU†(g)

)
U(g)φ

= U(g)(∂μ+Aμ)φ+
(
∂μU(g)+U(g)

(
∂μU†(g)

)
U(g)

)
φ

= U(g)(∂μ+Aμ)φ
= U(g)Dμφ. (9.56)

The covariant derivative has the geometrical interpretation as the parallel
transport in a fibre bundle with connection Aμ. For each infinitesimal path,
xμ→ xμ+dxμ, we introduce the gauge field Aμ(xν) and an element of the group,

g(x+ dx,Aμ) = 1+ dxμAμ. (9.57)

Then for a finite path C we integrate this as

g(C,A) = P

(
exp

{∫
C
dxμAμ

})
, (9.58)

where the P symbol means the path-ordered integral. Intuitively this corresponds
to the limit taken by multiplying the group elements of the form (9.57) for a
finitely discretized approximation to the finite curve C, in the order corresponding
to the direction of the curve, and taking the limit that the discretization becomes
infinitely fine. The other definition, which yields the same result, is to expand the
exponential and then perform the multiple integral at each order, after applying
the path-ordering to the integrand. A field is considered to have been transported
in parallel in the connection Aμ if

φ(x+ dx) = φg(x+dx,Aμ)(x) = U(g(x+ dx,Aμ))φ
= φ(x)+ dxμAμφ(x). (9.59)

Then, in general,

φ(x+ dx)−φg(x+dx,Aμ)(x) = dxμ (∂μ+Aμ(x))φ(x)

= dxμDμφ(x) (9.60)

defines the covariant derivative in the connection Aμ. Here Aμ = Aaμt
a, where

ta are the generators of the group in the representation that φ(x) transforms
under.

9.4.2 The Field Strength

To construct the non-Abelian field strength we must consider a generalization of
the Abelian version,

Fμν = ∂μAν −∂νAμ. (9.61)

This is invariant under Abelian gauge transformations

Aμ→Aμ+ i∂μΛ
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(x,y+dy)

(x,y)

(x+dx,y+dy)

(x+dx,y)

Figure 9.4. An infinitesimal closed loop C

δFμν = (∂μ∂ν −∂ν∂μ)Λ = 0. (9.62)

We can write this as
Fμν → e−iΛFμνeiΛ = Fμν . (9.63)

For Abelian phases, Fμν is invariant, but if we generalize this formula to non-
Abelian groups, Fμν does transform, but homogeneously. We construct Fμν via
parallel transport. The same construction works as in the abelian case. Consider
a closed loop C drawn in Figure 9.4, and

g(C,x,A) = P

(
exp

{
−
∮
dxμAμ

})
= 1−

∮
dxμAμ+

∮
dx1

∮
x2>x1

dxμ2Aμ(x2)
νAν(x1)+ · · · . (9.64)

This group element transforms covariantly. Infinitesimally for each segment of
the curve C, we find

g(x+ dx,Ag) = 1− dxμAgμ
= 1− dxμU(g)(Aμ+∂μ)U†(g)
= U(g)

(
1− dxμ(Aμ+

(
∂μU†(g)

)
U(g))

)
U†(g).

(9.65)

Now,

U(g(x))
(
1− dxμ

(
∂μU†(g(x))

)
U(g(x))

)
= U(g(x))− dxμU(g(x))∂μU†(g(x))U(g(x))
= U(g(x))+ dxμ∂μU(g(x)) = U(g(x+ dx)) (9.66)

hence

g(x+ dx,Ag) = U(g(x+ dx))(1− dxμAμ)U†(g(x))
= U(g(x+ dx))g(x+ dx,A)U†(g(x)). (9.67)

Thus for the infinitesimal closed loop, as in Figure 9.4, starting and ending at x

g(C,x,Ag) = U(g(x))g(C,x,A)U†(g(x)), (9.68)
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which is exactly the covariant transformation property. Considering the second-
order term in the expansion in Equation (9.64), we have for each straight line
path part of the contour of direction lμ

∫
dxμAμ =

∫ 1

0

dtlμAμ(x
ν + lνt) =

∫ 1

0

dtlμ (Aμ(x
ν)+ lσt∂σAμ(x

ν))+ o(l3)

= lμAμ(x
ν)+

1

2
lμlσ∂σAμ(x

ν)+ · · · . (9.69)

Thus for the closed path we get to second-order contribution

∮
dxμAμ(x

ν) =

{(
dxμAμ(x

ν)+
1

2
dxμdxσ∂σAμ(x

ν)

)
+

(
dyμAμ(x

ν + dxν)+
1

2
dyμdyσ∂σAμ(x

ν)

)
+

(
−dxμAμ(xν + dxν + dyν)+

1

2
dxμdxσ∂σAμ(x

ν)

)
+

(
−dyμAμ(xν + dyν)+

1

2
dyμdyσ∂σAμ(x

ν)

)}
=

{(
dxμAμ(x

ν)+
1

2
dxμdxσ∂σAμ(x

ν)

)
+

(
dyμ [Aμ(x

ν)+ dxσ∂σAμ(x
ν)]+

1

2
dyμdyσ∂σAμ(x

ν)

)
+(−dxμ [Aμ(xν) + dxσ∂σAμ(x

ν)+ dyσ∂σAμ(x
ν)]+

1

2
dxμdxσ∂σAμ(x

ν)

)
+

(
−dyμ [Aμ(xν)+ dyσ∂σAμ(xν)]+

1

2
dyμdyσ∂σAμ(x

ν)

)}
= dxσdyμ (∂σAμ(x

ν)−∂μAσ(xν)) .
(9.70)

Notice that this term contributes with a minus sign in Equation (9.64). When
integrating along one side in Equation (9.64), the second-order term gives directly

∫ x+dx

x

dxμ2

∫ x2

x

dxμ1Aμ(x
ν
2)Aμ(x

ν
1) =

∫ 1

0

dt

(
lμAμ(x

ν + lνt)

∫ t

0

dslσAσ(x
ν + lνs)

)
=

∫ 1

0

dt

(
lμAμ(x

ν)

∫ t

0

dslσAσ(x
ν)

)
=

∫ 1

0

dt(lμAμ(x
ν)t lσAσ(x

ν))

=
1

2
lμlσAμ(x

ν)Aσ(x
ν). (9.71)

The two integrals simply factorize when the integrations are on two different
segments and no factor of one half is generated. Hence adding up the



172 The Polyakov Proof of Confinement

contributions around the loop, substituting for lμ with dxμ or dyμ gives∮
dxν1

∮
x2>x1

dxμ2Aμ(x2)Aν(x1) =

{
− dyμAμ(xν + dyν)

×
[
1

2
(−dyσ)Aσ(xν + dyν)− dxσAσ(xν + dxν + dyν)

+dyσAσ(x
ν + dxν)+ dxσAσ(x

ν)
]

−dxμAμ(xν + dxν + dyν)
[
1

2
(−dxσ)Aσ(xν + dxν + dyν)

+dyσAσ(x
ν + dxν)+ dxσAσ(x

ν)]

+dyμAμ(x
ν + dxν)

[
1

2
dyσAσ(x

ν + dxν)+ dxσAσ(x
ν)

]
+dxμAμ(x

ν)

[
1

2
dxσAσ(x

ν)

]}
+

{
−1

2
dyμAμ(x

ν)dyσAσ(x
ν) − 1

2
dxμAμ(x

ν)dxσAσ(x
ν)

−dxμAμ(xν)dyσAσ(xν)

+
1

2
dyμAμ(x

ν)dyσAσ(x
ν)+ dyμAμ(x

ν)dxσAσ(x
ν) +

1

2
dxμAμ(x

ν)dxσAσ(x
ν)

}
=−dxσdyμ [Aσ(xν)Aμ(xν)−Aμ(xν)Aσ(xν)] . (9.72)

Adding up the two contributions, Equations (9.72) and (9.70), simply gives

P exp{dxμAμ(xν)}=−dxσdyμ (∂σAμ(xν)−∂μAσ(xν)
+ [Aσ(x

ν),Aμ(x
ν)])+ o(dx)3

≡−dxσdyμFσμ+ o(dx)3, (9.73)

which must transform covariantly. Actually we can write Fμν as the commutator
of two covariant derivatives,

Fμν = [Dμ,Dν ] = [∂μ+Aμ,∂ν +Aν ]

= [∂μ,Aν ]+ [Aμ,∂ν ]+ [Aμ,Aν ]

= ∂μAν −∂νAμ+[Aμ,Aν ] . (9.74)

Then, due to the algebraic structure of Fμν , we immediately know that the Jacobi
identity will be satisfied,

[Dμ, [Dν ,Dσ]]+ [Dσ, [Dμ,Dν ]]+ [Dν , [Dσ,Dμ]] = 0

⇒ [Dμ,Fνσ]+ [Dσ,Fμν ]+ [Dν ,Fσμ] = 0, (9.75)

which in four dimensions is exactly the Bianchi identity,

∂με
μνστFστ +[Aμ, ε

μνστFστ ] = 0. (9.76)

Thus Fμν is the appropriate covariant generalization of the usual Abelian
definition of the field strength.
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9.5 Quantizing Gauge Field Configurations

The physical (non-gauge) zero modes of the action come from translations of the
positions of the monopoles and rotations of the monopoles in iso-space. This gives
simply the volume of spacetime and the volume of the gauge group as a Jacobian
factor. However, things are not so simple, since in a gauge theory there are lots
of unphysical zero modes associated with gauge-equivalent configurations. The
naive functional integral for a gauge theory is not well-defined, even in Euclidean
space.

The Lagrangian of a gauge theory is called a singular Lagrangian, the equations
of motion do not give rise to a well-defined initial value problem for the gauge
fields. Obviously, if we fix the initial data, and find a solution of the equations
of motion, there actually exist an infinite number of solutions of the equations
of motion that satisfy the initial conditions, which are simply gauge transforms
of the original solutions. The gauge transformations, of course, must be time-
dependent, so that they do nothing to the gauge fields on the initial hyper-
surface, but they do modify the gauge fields afterwards. The freedom to do
time-dependent gauge transformations allow for this, and the solution of the
initial value problem is not unique. Thus fixing the gauge becomes essential to
define even the classical dynamics. Correspondingly, the quantum dynamics also
requires gauge fixing in order to be well-defined. The important point is that,
because of the gauge invariance, the actual physical content of the theory does
not depend on the choice of gauge fixing.

The action is invariant under the infinite dimensional group of gauge
transformations, G. Thus

N
∫
D (A,φ)e

−SE
� = (volume(G))

(
N

∫
gauge

inequivalent

D (A,φ)e
−SE

�

)
, (9.77)

as geometrically drawn in Figure 9.5. The volume G is, of course, infinite, it is
not just a few zero modes which arise as in the propagator, but an infinity of zero
modes due to arbitrary local gauge transformations. This infinite volume should
cancel between numerator and denominator; however, we must realize how to
define

N
∫

gauge
inequivalent

D (A,φ)e
−SE

� (9.78)

properly, i.e. in a gauge-invariant manner. The method for defining this integral
is to begin in a canonical gauge, where the quantization is understood and
well-defined, and then transform to any other gauge in an invariant way. This
procedure was first spelled out by Faddeev and Popov [44].
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Figure 9.5. The space of all gauge fields, corresponding to the space A/G with
leaves, foliated by the group of gauge transformation G

9.5.1 The Faddeev–Popov Determinant

We will start with the gauge choice

A3 = 0. (9.79)

This gauge condition is complete, which means that we may not make any further
gauge transformations whose derivatives are of compact support. These are the
so-called local gauge transformations, those that go sufficiently fast (often taken
to be of compact support), to a constant at infinity. This constant is usually
taken to be the identity. We insist on the gauge choice, that is, A3 = 0, then any
gauge transformation must satisfy

A3 → g−1∂3g = 0 ⇒ ∂3g = 0. (9.80)

But then g must be a global constant, everywhere equal to its value at
infinity, chosen to be the identity. It is easy to convince ourselves that no local
gauge transformation can be non-trivial and still be independent of x3. Hence
Equation (9.79) is a complete gauge-fixing condition as far as the group of local
gauge transformations is concerned. We define

I =N
∫
D (A,φ)δ (A3)e

−SE(A,φ)
� . (9.81)

For any other gauge choice such that F (Ai) = 0 there must exist a gauge
transformation g0(A) such that

(A3)
g0(A)

= 0, (9.82)

since it is understood that the set of gauge orbits of a given gauge slice must
span the entire space of gauge fields at least locally.1

We define Δ(A) by

1 =Δ(A)

∫
Dgδ (F (Agi )) , (9.83)

1 The Gribov ambiguity maintains that this is not exactly true. There do exist multiple
gauge field configurations that respect the same gauge condition. However, these
configurations are typically a finite distance away from each other. Thus the configurations
that satisfy the gauge-fixing condition and their gauge orbits certainly give a complete
foliation of the local neighbourhood of the space of gauge fields.
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where Dg corresponds to the integration measure for integration over the full
group of local gauge transformations. This measure is defined in an invariant
way, formally, the metric on the space of gauge transformations is defined as (in
d dimensions)

(δg)
2
=−

∫
ddxtr

(
(g−1δg)(g−1δg)

)
. (9.84)

Here δg corresponds to an element of the tangent space of the group of
gauge transformations, this is called its Lie algebra. If h is an arbitrary fixed
element of the group of gauge transformations, then the left multiplication
by h in the group gives left multiplication of the algebra, δ(hg) = hδg and
the 1-form g−1δg is left-invariant, as is the metric Equation (9.84). The
metric is actually also invariant under right multiplication, since δ(gh) =

(δg)h, but then tr((gh)−1δ(gh)(gh)−1δ(gh)) = tr((h−1g−1(δg)hh−1g−1(δg)h) =

tr
(
(g−1δg)(g−1δg)

)
. Dg is then formally the corresponding volume form. We

will mostly need to integrate over an infinitesimal neighbourhood of the identity.
Here, with g = 1+α, where α is an infinitesimal element of the Lie algebra, we
have, since g−1δg=α to first order, and the analogue of the Euclidean geometry
in the space of all α’s

|α|2 =
∫
ddxtr

(
α2

)
. (9.85)

This then allows for the replacement Dg → Dα with free, linear integration
over α.

Notice that Δ(A) is gauge-invariant, for an arbitrary gauge transformation h,

Δ(Ah) =Δ(A). (9.86)

This is because the integration measure over the group of gauge transformations
is expected to be and can be defined to be gauge-invariant, that is,

1

Δ(Ah)
=

∫
Dg δ

(
F (

(
Ahi

)g
)
)
=

∫
D(g) δ

(
F (Aghi )

)
=

∫
D(gh) δ

(
F (Aghi )

)
=

∫
Dg δ (F (Agi ))

=
1

Δ(A)
. (9.87)

Δ(A) is called the Faddeev–Popov factor. (We call to your attention that
(
Ahi

)g
=

Aghi as the group action works by left multiplication.) Then

I =N
∫
D (A,φ)δ(A3)e

−SE
�

(
Δ(A)

∫
Dgδ (F (Agi ))

)
=N

∫
Dg

∫
D (A,φ)δ(A3)e

−SE
� Δ(A)δ (F (Agi ))

=N
∫
Dg

∫
D (A,φ)δ(Ag

−1

3 )e
−SE

� Δ(Ag
−1

)δ (F (Ai))

=N
∫
D (A,φ)δ (F (Ai))e

−SE
� Δ(A)

(∫
Dgδ(Ag

−1

3 )

)
. (9.88)
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Now let
g−1 = g′−1

g0(A) (9.89)

such that
(A3)

g0(A) = 0. (9.90)

For a given g, g′−1 will depend on A; however, the integration over all g′ will
not, as the integration measure is invariant under left or right multiplication, as
explained in the discussion after Equation (9.84). That is∫

Dgδ
(
Ag

−1

3

)
=

∫
Dg′δ

(
(Ag03 )

g′−1
)
=

∫
Dg′δ

(
(0)

g′−1
)

(9.91)

is a constant, independent of A, and so we can absorb it into the normalization.
Thus we get

I =N ′
∫
D(A,φ)δ (F (Ai))Δ(A)e

−SE
� . (9.92)

We see how to change the gauge from the choice A3 = 0 to an arbitrary gauge
choice F (Ai) = 0, the integration measure must be appended with the Faddeev–
Popov factor. The Faddeev–Popov factor,

Δ−1(A) =

∫
Dg δ (F (Ag)) (9.93)

will only get contributions from the infinitesimal neighbourhood of A around the
point where F (A) = 0. Thus for A satisfying the gauge condition, we have, with
g = 1+α, where α is an infinitesimal element of the the Lie algebra,

F
(
A1+α

)
= F (A)+

∫
d3y

δF

δAi(y)
Diα(y)+ o(α

2), (9.94)

since the change in the gauge field is exactly δAi(y)=Diα(y) and the integration
is over α with measure Dg→Dα. Then generalizing the standard property of
the integration over a delta function

∫
dnxδ(M ·x) = (detM)−1, we get

Δ−1(A) =

∫
Dαδ

(∫
d3y

(
−Di

δF

δAi(y)

)
α(y)

)
= det−1

(
−Di

δF

δAi(y)

)(∫
Dαδ(α(y))

)
. (9.95)

The last factor is 1, thus

Δ(A) = det

(
−Di

δF

δAi(y)

)
. (9.96)

This expression is usually re-expressed as a fermionic functional integral over
the so-called Faddeev–Popov ghost fields, which formally gives the determinant;
however, for our analysis, we will not require or implement this step.
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9.6 Monopoles in the Functional Integral

We want to calculate the functional integral

〈0|e−TĤ
� |0〉 =N

∫
D (A,φ)e−

SE(A,φ)
� . (9.97)

We will calculate it in Gaussian approximation about the critical points
of SE(A,φ). This corresponds to integrating over the space of fields in
the infinitesimal neighbourhood of the classical critical points, the monopole
solutions. The usual understanding is that the contribution from the fields that
are not in the infinitesimal neighbourhood of the monopole solutions will be
suppressed by the exponential of the action. Knowing monopole solutions exist
and are the critical points, we will get a result of the form

〈0|e−TĤ
� |0〉 =N

∞∑
n=−∞

e−
SE(n monopoles)

� det
− 1

2

[(
δ2SE
δφ2i

)∣∣∣∣
crit.

]
. (9.98)

To make this expression quantitative, we must do three further calculations:

1. Find the action for N instantons (n1 monopoles and n2 anti-monopoles with
n1+n2 =N).

2. Identify and separate the zero modes in the spectrum of Gaussian fluctuations.
3. Define the measure of functional integration to make the determinant in

Equation (9.98) well-defined.

9.6.1 The Classical Action

As usual

N
(
δ2SE
δφ2i

)∣∣∣∣
crit.

=

⎛
⎜⎝

(
δ2SE
δφ2i

)∣∣∣
crit.(

δ2SE
δφ2i

)∣∣∣
vac.

⎞
⎟⎠N

(
δ2SE
δφ2i

)∣∣∣∣
vac.

=Kn · 1, (9.99)

where “crit.” stands for the critical point of n instantons, and “vac.” stands for
the vacuum configuration. The last factor is equal to 1 which serves to define N

N
(
δ2SE
δφ2i

)∣∣∣∣
vac.

≡ 1. (9.100)

The action for n widely separated instantons is n times that of one instanton.
The number of such configurations behaves like

∼ (V β)n

n!
. (9.101)

This “entropy” factor is, as usual, much larger than the corresponding factor when
any subset of these n instantons are constrained to be close together, i.e. multi-
monopole configurations. Even though the contribution of n widely separated
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instantons is suppressed by the exponential of its action e−nS
0
E , the “entropy”

factor can be big for a large finite spacetime volume (V β)n, until eventually the
1/n! takes over as it will always eventually dominate.

The action for a single monopole is defined by a function ε
(
λ
e2

)
:

S0
E =

mW

e2
ε

(
λ

e2

)
. (9.102)

mW ∼ a and the function ε can, in general, only be calculated numerically;
however, in the Prasad–Sommerfield limit, ε(0) = 4π, S0

E comes almost entirely
from the integration over the core region∫

|�x|<R
d3xLE =

mW

e2
ε

(
λ

e2

)(
1+ o

(
1

mWR

))
. (9.103)

The correction to the action from fields outside the core behaves like 1
R , exactly

the classical Coulomb self-energy of a magnetic charge.
For n well-separated monopoles of charge 4πqa

e , in addition to the Coulomb self-
energy of each monopole, there is also a Coulomb interaction energy, a correction
that is additive

SE |Coulomb =
π

2e2

∑
a 
=b

qaqb
|�xa−�xb|

, (9.104)

with qa =±1. Then

SE(n monopoles) =
mW

e2
ε

(
λ

e2

)∑
a

q2a+
π

2e2

∑
a 
=b

qaqb
|�xa−�xb|

+ o

(
1

mWR

)
,

(9.105)
where the small corrections exist because the monopoles are not point charges
but spread out over regions of size 1

mWR . The additional Coulomb interaction
energy term is non-negligible and has profound consequences.

9.6.2 Monopole Contribution: Zero Modes

Now we are in a position to analyse the zero-mode spectrum. If we write

Ai =Acl
i +ai φ= φcl+ϕ, (9.106)

where ai and ϕ are quantum fluctuations about the classical values, we have the
expansion of the action to second order in the fluctuations,

SE = (SE)cl+(SE)2+ · · · . (9.107)
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The first-order term vanishes because the equations of motion are satisfied for
the classical fields, and (SE)2 is given by

(SE)2 =

∫
d3xtr

[
1

4e2
(
Dcl
i aj −Dcl

j ai
)2

+
1

2e2
(
[ai,aj ]F

cl
ij

)
+

1

2

[
ai,φ

cl
]2

+
1

2

(
Dcl
i ϕ

)2
+

1

2
ϕμ2

(
φcl

)
ϕ+φcl

[
Dcl
i ϕ,ai

]
+Dcl

i φ
cl [ai,ϕ]

]
(9.108)

with
Dcl
i = ∂i+

[
Acl
i , . (9.109)

This is a bilinear expression in ai and ϕ, thus integration over these fields will
give det

− 1
2 (O), where the operator O is the hermitean, linear, second-order

differential operator appearing between these fields in Equation (9.108). We
expect O to have eigenfunctions as (although they generally will be a continuous
set)

O
(
Acl,φcl

)(ani
φn

)
=Ω2

n

(
ani
φn

)
. (9.110)

We expect the eigenvalues to be positive or zero, since the classical solution about
which we expand the action is a minimum of the action. It is important to see
that for any n such that Ω2

n > 0 the corresponding eigenfunctions satisfy

Dcl
i a

n
i +

[
φcl,φn

]
= 0. (9.111)

We will prove this from the hermiticity of the operator O, and the evident fact
that

a0i =Dcl
i α(x), φ0 =

[
φcl,α(x)

]
(9.112)

is a zero mode of O for every choice of α(x). a0i and φ0 are simply the changes
induced by a gauge transformation, hence SE

(
Acl
i +a0i ,φ

cl+φ0
)
= SE

(
Acl
i ,φ

cl
)
,

which is valid order by order. This implies

SE2 =

∫
dx(a0i ,φ

0)O
(
a0i
φ0

)
= 0. (9.113)

Since O is hermitean, the modes for Ω2
n > 0 are orthogonal to the zero modes

hence

0 =

∫
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(
ani a

0
i +φ

nφ0
)

=
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ani D
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])
α(x)

)
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i a
n
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[
φcl,φn

]
= 0. (9.114)
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The conclusion in the last equation is reached since the integral must vanish for
any choice of α(x). The α(x) zero modes in Equation (9.112) are not physical
zero modes, they arise from the gauge invariance. If we impose the gauge choice

Dcl
i Ai+

[
φcl,φ

]
= 0 (9.115)

with the understanding that the classical fields are assumed to satisfy this gauge
condition, we can show that the unphysical gauge zero modes simply do not
exist. Indeed, the gauge condition implies

0 =Dcl
i Ai+

[
φcl,φ

]
=Dcl

i (A
cl
i +ai)+

[
φcl,φcl+ϕ

]
=Dcl

i A
cl
i +

[
φcl,φcl

]
+Dcl

i ai+
[
φcl,ϕ

]
=Dcl

i ai+
[
φcl,ϕ

]
. (9.116)

Then we see that the norm of the putative zero mode that satisfies the gauge
condition Equation (9.115), that is Dcl

i a
0
i +

[
φcl,φ0

]
= 0, simply vanishes:∫

d3xtr
(
a0i a

0
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0φ0
)
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)
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This requires a0i = φ0 = 0, that is, the pure gauge zero mode that satisfies the
gauge condition simply does not exist.

The Faddeev–Popov factor comes from the gauge-fixing condition

F (A,φ) =Dcl
i (Ai)+

[
φcl,φ

]
= 0. (9.118)

Then following Equation (9.95) we have

F (A1+α,φ1+α) =Dcl
i (Ai+D

A
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]
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i D
A
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φcl, [φ,α(x)]

]
. (9.119)

Thus from Equation (9.96)

Δ(A,φ) = det
(
Dcl
i D

A
i +

[
φcl, [φ,

)
= det

(
Dcl
i D

cl
i +

[
φcl,

[
φcl,

)
(1+ o(ai,ϕ)) . (9.120)

9.6.3 Defining the Integration Measure

We can go further by defining the metric and integration measure on function
space. We will integrate over an infinitesimal neighbourhood of the classical fields.
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With δAi ≡ ai = Ai−Acl
i and δφ ≡ ϕ= φ−φcl to emphasize that we are in an

infinitesimal neighbourhood of the classical fields, we can write the metric as

(δl)
2
=−

∫
d3xtr

(
(δAi)

2
+(δφ)

2
)
. (9.121)

The minus sign is to take into account the anti-hermitean generators of the Lie
algebra of the gauge group taken in the definition of the gauge fields and scalar
fields. This metric is gauge-invariant since the infinitesimal change in the fields
transform homogeneously under gauge transformations, and hence the gauge
transformation cancels out due to the cyclicity of the trace. We parametrize the
space of all gauge fields as a sub-manifold which corresponds to those gauge fields
that satisfy the gauge condition, which is called the gauge slice, and orthogonal
directions which correspond to gauge transformations. These lead to those gauge
fields that do not satisfy the gauge condition but lie along the gauge orbit of the
gauge fields on the gauge slice. We can expand the variations δAi and δφ in terms
of an arbitrary, linear combination of the eigenmodes of the operator O, which
respect the gauge condition, plus an arbitrary linearized gauge transformation.
The eigenmodes translate us along the gauge slice while an arbitrary deformation
off the gauge slice corresponds to a gauge transformation. Hence expanding to
first order in ξn and α(x) gives

Ai =Acl
i +

∑
n

ξnani +D
cl
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∑
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hence
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Thus the measure is given by
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∏
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using a direct generalization of the corresponding volume measure for a finite
dimensional system, if ds2 =

∑
ij gijdx

idxj then the volume measure is dV =

dnx
√
g, where g = det[gij ]. Then the integration giving rise to the Euclidean
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generating functional Equation (9.92) is given by

I =N ′
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But δ (F (Ai,φ)) = δ
(
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and then using the expansion

Equation (9.122) gives∫
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We notice that this factor will actually neatly cancel out the Faddeev–Popov
determinant. Indeed, we get
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where in the first line we have retained the full Faddeev–Popov factor multiplied
by the factor coming from the measure and the integration over the gauge-fixing
delta function.

There are still the physical zero modes corresponding to translation and
internal rotational symmetries. The rotations give a finite constant volume factor
which eventually cancels. Naively these are for translations

ã
(k,0)
i =N

− 1
2 ∂kA

cl
i

φ̃(k,0) =N
− 1

2 ∂kφ
cl (9.128)

however, these expressions do not satisfy the gauge condition. Augmenting by a
gauge transformation gives (with αk =−Acl

k )
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with N =−
∫
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F cl
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Dcl
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)2). The gauge condition
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is just the equation of motion. Under a translation

δAi =Acl
i (x+ δR)−Dcl

i (δRjAj) = δRkFki =N
1
2 δRka

(k,0)
i (9.131)
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thus
dξk0 =N

1
2 dRk (9.132)

and
d3ξk0 =N

3
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So finally the integration measure is
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For one monopole we have
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from dimensional analysis and α is a function that can, in principle, be calculated.
For N (not to be confused with the normalization above) instantons, n1
monopoles and n2 anti-monopoles,
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where
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9.7 Coulomb Gas and Debye Screening

This is exactly the partition function of a Coulomb gas. We know that such a
gas has the property of screening. This is the same as confinement. Any electric
fields will be cancelled exactly by a complete rearrangement of the particles in
the gas.

If we re-express Z as a functional integral
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Indeed,∫
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where we absorb a harmless divergence at a= b into the constant.2 Thus (using
e→ e/2π in Equation (9.139)) we have
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with M2 = 16πζ
e2

.
There are no massless modes. The coupling constant, nominally taken as ζ,

satisfies ζ ∝ e−
(

mW
e2

)
ε
(

λ
e2

)
<< 1 as e→ 0. This means that there are no massless

gauge bosons, the low-energy Abelian theory is confined due to the effects of
instantons. This is an incredible result; the theory is confining. Unfortunately,
the result will not go over to four dimensions. However, in three dimensions,
where the general arguments concerning the flux subtended by a large Wilson
loop are critical, we find that the theory nevertheless favours confinement.

2 We have a slight discrepancy with respect to Polyakov’s paper [103]. We find that in
Equation (9.139) we should replace e→ e/2π. This does not change the behaviour of the
theory. We implement the change from now on.
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Monopole Pair Production

In this chapter we will study the analysis by Affleck and Manton [4] of the
decay of constant, external magnetic fields due to the production of magnetic
monopole–anti-monopole pairs. The calculation is analogous to a calculation of
the decay of external electric fields by Schwinger [109] due to the production
of electron–positron pairs. In both cases the effect is due to non-perturbative
tunnelling transitions.

10.1 ’t Hooft–Polyakov Magnetic Monopoles

In Chapter 9, we saw the solutions that correspond to magnetic monopoles,
in the Georgi–Glashow model [54]; however, as we were in 2+1 dimensions
these solutions were instantons in Euclidean three dimensions. Clearly the same
solutions in 3+1 dimensions correspond to static soliton solutions and correspond
to particle states of the 3+1-dimensional theory. There is a perturbative spectrum
of particles corresponding to quantization of the small oscillations about the
trivial vacuum. These particles correspond to a massless photon, a charged
massive vector boson, and a neutral scalar from the Higgs field. We will consider
the limit that the Higgs field mass and the vector gauge boson masses are very
heavy while the photon remains massless. In this limit the monopoles are heavy,
essentially point particles. We will see that in the presence of a constant external
magnetic field, the Euclidean equations of motion admit instanton solutions
that describe the production of monopole–anti-monopole pairs. The form of the
instanton is surprisingly simple.

10.2 The Euclidean Equations of Motion

The solutions to the Euclidean equations of motion for a ’t Hooft–Polyakov
magnetic monopole in a constant external magnetic field must exist in general,
as the initial value problem for the corresponding set of non-linear differential
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equations is well-defined. The solutions must be well-approximated by the
solutions to the equations for point-like monopoles, certainly in the limit that the
masses of the Higgs field and the massive vector bosons are taken to be very large.
Then, apart from the self-action of each monopole being very large, the additional
contribution to the action from the Euclidean trajectories of the monopoles will
not diverge. The state of the system in the presence of a constant magnetic
field should correspond to a meta-stable state, similar in principle to a false
vacuum. There will be a finite probability for the creation of a monopole–anti-
monopole pair. Creation of the pair of course costs energy; however, separating
the monopoles in an external magnetic field gives back energy. After a separation
to a critical radius, it is energetically favourable for the monopoles to separate
to infinity. Thus the analogy to the decay of a meta-stable state is quite apt.
The result is an exact analogy to the Schwinger calculation [109] of the decay of
a constant electric field due to the creation of charged boson–anti-boson pairs.
Schwinger found the amplitude

Γ=
e2E2

8π3

∞∑
n=1

(−1)n+1e−nπm
2/eE

n2
(1+ o(e2)), (10.1)

where E is the amplitude of the external electric field and m is the boson mass.
Manton and Affleck [4] found the result

Γ=
g2B2

8π3
e−(πM

2/gB+g2/4)
(
1+ o

(
g3B

M2

)
+ o(e2)

)
(10.2)

with g the magnetic charge, B the amplitude of the magnetic field, and M the
mass of the monopole, which corresponds to the first term in the expansion found
by Schwinger, interchanging electric charge and field with magnetic charge and
field.

To find this amplitude, we will look for a solution to the classical Euclidean
equations of motion that interpolate between the false vacuum in the presence
of the constant background magnetic field, and the configuration containing a
monopole–anti-monopole pair which are separating to infinity in the background
magnetic field. The Euclidean solution will actually be a bounce-type instanton,
thus we expect the pair will move apart up to a critical separation and then
bounce back and return to each other and annihilate. The bounce point will
correspond to the point at which the tunnelling occurs in Minkowski spacetime,
and after the appearance of the physical monopoles in Minkowski spacetime,
the magnetic field will pull them apart to infinite separation. The bounce should
have one negative mode and all the rest positive. The negative mode will give rise
to the imaginary part of the functional integral, with the appropriate analytical
continuation. Effectively, the imaginary part of the functional integral is given by

Im
(
TV Ke−SE

)
, (10.3)
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where
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det−1/2
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0
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There are also some zero modes that give the usual complications, which we
will deal with using the Faddeev–Popov method. Our conventions will be the
following for an SU(2) gauge field Aμ = AaμT

a and a scalar field in the triplet
representation, φ= φaT a, where T abc = εabc are the anti-symmetric 3× 3 matrix
representation of SU(2),

L=
1

e2

(
1

4
F aμνF

a
μν +

1

2
(Dμφ)

a(Dμφ)
a+

λ

4e2
(
|φ|2−M2

W

)2)
, (10.5)

where [T a,T b] = εabcT c, |φ|2 = φaφa, Fμν = ∂μAν − ∂νAμ− [Aμ,Aν ] and Dμφ=

∂μφ− [Aμ,φ], and MW provides the mass scale. The equations of motion are

DμFμν = [Dνφ,φ]

DμDμφ=
λ

e2
(
|φ|2−M2

W

)
φ. (10.6)

If we take A4 =0 and all fields independent of x4, the equations of motion reduce
to the static, Euclidean three-dimensional equations that we have already studied
in Chapter 9, and there is a finite energy, stable, static non-trivial solution of the
equations corresponding to the magnetic monopole. The action of the monopole
is, of course, not finite as the solution is independent of x4. The mass is

M =
4πMW

e2
k
(
λ/e2

)
where k ≈ 1 for λ/e2 ≤ 1 (10.7)

and the magnetic charge is g = 4π/e, the core radius is rcl = g2/M and the
“Abelian” field strength can be defined as fμν = F aμνφ

a/eMW . The Abelian field
strength satisfies the Maxwell equation if |φ|2 =M2

W and Dμφ= 0. In the limit
of λ→∞, e2→∞ but λ/e2 remaining finite, the monopole core size goes to zero
and it looks very much like a point monopole.

10.3 The Point Monopole Approximation

Then in an external, constant magnetic field, the monopole solution cannot
remain static. In Euclidean time, it must respect the Euclideanized magnetic
“Lorentz” force law

M
d2zμ
ds2

=−gf̃μν
dzν
ds

, (10.8)

where zμ is the position of the magnetic charge, s is a world line parameter
normalized so that dzν

ds
dzν
ds =1 and f̃μν = 1

2εμνστfστ . This equation is simply the
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dual of the usual Euclidean “Lorentz” force for a charged particle in electric and
magnetic fields

M
d2zμ
ds2

=−efμν
dzν
ds

. (10.9)

For the magnetic field with constant magnitude B in the three-direction, f12 =B

which means f̃34 =B. Then a solution of the equation of motion (10.8) is simply
z1 = z2 = 0 and

z3 =
M

gB
cos

(
gB

M
s

)
z4 =

M

gB
sin

(
gB

M
s

)
. (10.10)

The solution is obviously a circle. This is the analytic continuation of the
corresponding Minkowski space solution, which would be a hyperbola.

10.4 The Euclidean Action

The point monopole equations of motion are, of course, approximative, but we
can derive them in the limit of a weak external magnetic field [4]. This circular
Euclidean solution is exactly the bounce solution that we are looking for. We
can equally well think of the solution in the (x3,x4) plane as the creation of
a monopole–anti-monopole pair, the two separating to a finite critical distance
and then bouncing back together and annihilating. The diameter of the circle is
the critical separation and corresponds to the point to which the pair separates
in the Euclidean solution, but also the separation at which the pair appears in
the tunnelling process, in Minkowski space. The circular solution neglects the
Coulomb attraction between the monopole–anti-monopole pair. We will see that
the Coulomb interaction does not greatly affect the instanton. To analyse the
corrections, we consider the following decomposition of the action

SE =

∫
d4x

(
L− 1

4
f̃μν f̃μν

)
+

∫
d4x

1

4

(
f̃μν f̃μν − fext.μν fext.μν

)
, (10.11)

where we have separated the Lagrangian into the first term that governs the
dynamics above the Abelian gauge field and subtracted the action of the
external gauge field. We define the dual Abelian gauge field into the core of
the monopole as

∂μf̃μν = j̃ν

∂μfμν = 0 (10.12)

where j̃ν is an appropriate, conserved, Abelian definition of the dual current into
the core. Outside the core, jν = 0 and the source-free Maxwell equations are
perfectly valid. Equation (10.12) are just the Euclidean, dual, Abelian Maxwell
equations with magnetic sources. As these are just the dual Maxwell equations,
there exists a gauge potential ãμ such that

f̃μν = ∂μãν −∂ν ãμ. (10.13)
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x4

x3

z=0

z=–R

θ

Figure 10.1. Circularly symmetric monopole–anti-monopole instanton

Exploiting the circular symmetry of the point-like solution we write

ãμ = (0,0,−sinθ,cosθ)ψ(x,y.z)

j̃μ = (0,0,−sinθ,cosθ)ρ(x,y.z), (10.14)

where x,y are the normal cartesian coordinates, but z,θ are polar coordinates in
the x3,x4 plane, with the radius shifted so that z = 0 corresponds to the radius
of the circular point-like monopole instanton, i.e. the usual radial coordinate
is r = z +R, as shown in Figure 10.1. Thus z = −R is the origin, and we will
expand the action about z = 0. Then for the first term of the decomposition in
Equation (10.11) we write

S1
E = 2π

∫
dxdydz(R+ z)(L−LAbelian) , (10.15)

where LAbelian = 1
4 f̃μν f̃μν which can be evaluated from Equation (10.14)

LAbelian =
(
1

2
(∂iψ∂iψ+

1

R+ z
ψ∂zψ+

1

2(R+ z)2
ψ2

)
, (10.16)

where the index i goes over x,y,z and L is of course the full Lagrange density
given in Equation (10.5). Away from z = 0, we expect that the solution is
exponentially zero, Diφ ≈ V (φ) ≈ e−MW |�x| and F aijF

a
ij → fijfij , exponentially

fast, and consequently (L−LAbelian) also vanishes exponentially.
We make no great error by changing the range of z from −R ≤ z ≤ ∞ to

−∞ ≤ z ≤ ∞, as long as all fields and densities are exponentially small away
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from z = 0, thus we get

S1
E = 2πR

∫
d3x(L−LAbelian)+

z

R
(L−LAbelian) , (10.17)

where now the integral is over an entire three-dimensional Euclidean space. We
expect that we can perform an expansion in powers of 1/R. The Maxwell equation
for the Abelian fields is

∂i∂iψ+
1

R+ z
∂zψ−

1

(R+ z)2
ψ = ρ (10.18)

then if

ψ(�x) =

∞∑
n=0

ψn(�x)
1

Rn
(10.19)

the density ρ(�x) must also admit a similar expansion

ρ(�x) =

∞∑
n=0

ρn(�x)
1

Rn
(10.20)

as well as the Lagrange density L. The terms in the expansion must be of
alternating parity as z → −z. The second term in Equation (10.17) vanishes
to lowest order. The limit, as R →∞, i.e. B → 0, which is the order n = 0

term, the solution is simply a static monopole at rest, the circle has infinite
radius and thus becomes effectively a straight, world line. Then the first term of
Equation (10.17) just gives

S1
E = 2πR(M −MAbelian), (10.21)

where M is the mass of the monopole and MAbelian is just the contribution to
the Coulomb energy from the zeroth order part of the current density ρ0(�x),
while the second term must give vanishing contribution due to parity. Thus, due
to parity, the next correction only comes at o

(
1/R2

)
.

10.5 The Coulomb Energy

The second term in the action, Equation (10.11), contains simply the energy in
the Euclidean Abelian gauge fields, f̃μν = f̃ loopμν + f̃ext.μν , where f̃ loopμν comes from
the monopole loop, and f̃ext.μν comes from the fields outside of the loop. Then

S2
E =

1

4

(
f̃μν f̃μν − fext.μν fext.μν

)
=

1

4
f̃ loopμν f̃ loopμν +

1

2
f loopμν fext.μν ≡ S2,loop

E +S2,int.
E .

(10.22)
We will find

S2,loop
E =

∫
d4x

1

4
f̃ loopμν f̃ loopμν =

∫
d4xd4x′

1

8π2

j̃μ(x)j̃μ(x
′)

|x−x′|2 . (10.23)
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This can be shown by first observing that in the gauge ∂μãμ=0, we can solve the
dual Maxwell field equation (10.12) for the dual gauge field simply as ãμ = 1

� j̃μ
where the Green’s function is

1

� =− 1

4π2

1

|x−x′|2 (10.24)

and the dual field strength is as usual

f̃μν = ∂μ
1

� j̃ν −∂ν
1

� j̃μ. (10.25)

Then it is straightforward to evaluate the contribution to the action

S2,loop
E =

1

2

∫
d4x

(
∂μ

1

� j̃ν
)(

∂μ
1

� j̃ν
)
−
(
∂μ

1

� j̃ν
)(

∂ν
1

� j̃μ
)

=
1

2

∫
d4x−

(
1

� j̃ν
)(

j̃ν
)
+

(
1

� j̃ν
)(

∂μ∂ν
1

� j̃μ
)
. (10.26)

The second term in the first line vanishes after integration by parts, the second
term in the last line vanishes since ∂μ commutes with 1/� and ∂μj̃μ = 0 by
current conservation, which is necessary for the consistency of the dual Maxwell
equations and is assumed to be verified by the current. Then

S2,loop
E =

1

2

∫
d4x−

(
1

� j̃ν
)(

j̃ν
)
=

1

8π2

∫
d4xd4x′

j̃μ(x)j̃μ(x
′)

|x−x′|2 (10.27)

as desired. To calculate it explicitly is not too difficult. First of all, j̃μ(x)j̃μ(x′) =
(sinθ sinθ′ + cosθ cosθ′)ρ(x)ρ(x′) = cos(θ − θ′)ρ(x)ρ(x′), thus we get, writing
d2x= dx1dx2 and d2x′ = dx′1dx

′
2

S2,loop
E =

1

8π2

∫
d2xd2x

(
rr′ cos(θ− θ′)ρ(x)ρ(x′)drdθdr′dθ′

(x1−x′1)2+(x1−x′1)2+ r2+ r′2− 2rr′ cos(θ− θ′)

)
.

(10.28)
The integral over θ and θ′ can be done explicitly, we leave the reader to work it
out or find it in tables, giving

S2,loop
E =

∫
d2xd2xdrdr′

1

4
ρ(x)ρ(x′)

(
W√
W 2− 1

− 1

)
, (10.29)

where, writing (x1−x′1)2+(x1−x′1)2+(z− z′)2 = |�x−�x′|2

W =
(x1−x′1)2+(x1−x′1)2+ r2+ r′2

2rr′

=
(x1−x′1)2+(x1−x′1)2+(R+ z)2+(R+ z′)2

2(R+ z)(R+ z′)

= 1+
|�x−�x′|2
2R2

− |�x−�x′|2(z+ z′)
2R3

+ o

(
1

R4

)
(10.30)

and intriguingly the terms 1/R exactly cancel. Then expanding carefully

W√
W 2− 1

− 1 =
R

|�x−�x′| − 1+
z+ z′

2|�x−�x′| + o
(
|�x|, z,z′
R

)
(10.31)
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and we note that actually the numerator only contributes to the the terms that
have been neglected. Then in the evaluation of the contribution of this term to
the action, the third term in Equation (10.31) vanishes because of parity when
the lowest-order, spherically symmetric monopole charge density is put in for ρ,
and the net remaining is simply

S2,loop
E =

∫
d2xd2xdrdr′

1

4
ρ0(x)ρ0(x

′)
(

R

|�x−�x′| − 1

)
+ o

(
1

R

)
. (10.32)

The first term is exactly the Coulomb energy in the magnetic field while the
second is proportion to the magnetic charge squared,

S2,loop
E = 2πRMAbelian−

1

4
g2+ o

(
1

R

)
, (10.33)

where g is the magnetic charge. The first term exactly cancels against the
identical term found in S1

E , which is expected, since it arises solely because
of the somewhat artificial Abelian magnetic charge density that was invented to
extend the Abelian integration into the core. No physical phenomenon should
depend on it. Thus

S1
E +S2,loop

E =−1

4
g2+2πRM. (10.34)

The interaction part of S2
E , which we will call S2,int.

E , is, integrating by parts
and using the equation of motion,

S2,int.
E =

∫
d4x

1

2
f̃ loopμν f̃ext.μν =−

∫
d4xj̃μã

ext.
μ . (10.35)

The external gauge potential can be taken with circular symmetry as

aext.μ = (0,0,−1

2
B(R+ z)sinθ,

1

2
B(R+ z)cosθ) (10.36)

and the current is
jμ = (0,0,−sinθ,cosθ)ρ(�x). (10.37)

Then using d4x = dx1dx2drdθr = dx1dx2dzdθ(R + z) = d3x(R + z)dθ and
integrating over θ gives a factor of 2π so that we get

S2,int.
E =−

∫
d3xπB(R+ z)2ρ(�x) =−gπBR2+ · · · . (10.38)

Thus the total action is

SE = 2πM − gBπR2− 1

4
g2+ o

(
1

R2

)
. (10.39)

We vary the action with respect to R and demand that it be stationary to find
the radius of the loop,

0 =
δSE
δR

= 2πM − 2gπBR, (10.40)
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which gives R =M/gB. This is exactly the same value as in the case of the
point-like monopoles, therefore we see that the inclusion of the Coulomb energy
does not affect the radius of the loop. Inserting the value of R back into the
action yields

SE =
πM2

g2B
− 1

4
g2, (10.41)

and we observe that the Coulomb energy is ∼ 1/R integrated over a circle of
circumference 2πR, which yields g2/4 which is independent of R. Finally, if we
take the second variation we find

δ2SE
δR2

=−2gBπ < 0, (10.42)

which means that the action has at least one negative mode and hence is at a
saddle point. The negative mode is expected and gives rise to the decay width
of the magnetic field.

10.6 The Fluctuation Determinant

We must now take into account the Gaussian integration over the fluctuations
around the instanton

K =
1

2

∣∣∣∣det
(
δ2SE
δφ2i

∣∣∣
inst.

)∣∣∣∣−1/2

(
det

(
δ2SE
δφ2i

∣∣∣
0

))−1/2
. (10.43)

The factor of one-half occurs since we integrate over only half the Gaussian
peak for the negative mode and any Faddeev–Popov factors are assumed to be
included in the determinant. We have put the numerator in absolute value signs
so that the negative mode does not give an imaginary value when we take the
square root, as we explicitly put the i in by hand, in that the energy obtains an
imaginary part E = E + iΓ with

Γ= V Ke−SE/�(1+ o(�)). (10.44)

We must separate the zero modes, there are five, coming from four translations
and one from internal rotation. The translation modes will give a familiar factor
of the square root of the normalization

K→ 1

2

4∏
μ=1

(
Nμ
2πe2

)1/2

∣∣∣∣det′
(
δ2SE
δφ2i

∣∣∣
inst.

)∣∣∣∣−1/2

(
det

(
δ2SE
δφ2i

∣∣∣
0

))−1/2
. (10.45)

The internal rotation actually corresponds to the dyonic degree of freedom,
internal rotation at a given angular frequency gives rise to a magnetically and
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electrically charged state, called the dyon. The full rate of pair production and
consequent decay of the magnetic field must include the production of pairs of
dyons. But for the lowest order, we can restrict ourselves to the case of a simple
monopole pair production. The internal rotation is intimately connected with
gauge fixing and the Faddev–Popov factor.

The translation zero modes naively are not gauge-invariant and must be made
so by an accompanying gauge transformation, we find

(δAμ)ν = ∂νAμ−DμAν =−Fμν
(δφ)ν = ∂νφ− [Aν ,φ] =Dνφ (10.46)

and the normalization is (no sum on ν, sum on a assumed)

Nν =

∫
d4x

(∑
μ

F aμνF
a
μν +(Dν)

a(Dν)
a

)
. (10.47)

The calculation of the determinant is possible in the limit R →∞ (B → 0).
In this limit, the fluctuations separate into those that change the shape of the
monopole and those that change the shape of the loop.

Using the circular symmetry and the gauge Aθ = 0, we have

δ2SE
δφ2i

∣∣∣∣
inst.

=
δ2SE
δφ2i

∣∣∣∣
3,inst.

− 1

r2
∂2

∂θ2
, (10.48)

where the first term depends on x,y,r and is essentially a three-dimensional
operator, while the second term comes from the kinetic energy, for example,

DμDμ =D1D1+D2D2+DrDr+
1

r
Dr+

1

r2
∂2

∂θ2
. (10.49)

Eigenfunctions admit a separation of variables as

Ψ(x1,x2, r,θ) = ψ(x1,x2, r)

{
cos(nθ) n= 0,1,2, · · ·
sin(nθ) n= 1,2,3, · · ·

(10.50)

and then in the sector of angular momentum n we get

δ2SE
δφ2i

∣∣∣∣
inst.

=
δ2SE
δφ2i

∣∣∣∣
3,inst.

+
n2

r2
. (10.51)

Now we make an expansion in 1/R, with z = r−R, then, for example,

(DμDμ)3 =Dx1Dx1 +Dx2Dx2 +DzDz +
1

R+ z
Dz

=DiDi+

(
1

R
− z

R2
+ · · ·

)
Dz. (10.52)

To lowest order (1/R)
0 we just get the operator corresponding to the second

variation of the Hamiltonian with a static monopole at �x= 0

δ2SE
δφ2i

∣∣∣∣
3,inst.

=
δ2H

δφ2i

∣∣∣∣
3,mono.

+ o

(
1

R

)
. (10.53)
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The angular momentum term also admits an expansion

n2

r2
=
n2

R2

(
1− 2z

R
+ · · ·

)
(10.54)

so that to lowest order we have(
δ2H

δφ2i

∣∣∣∣
3,mono.

+ o

(
1

R

)
+
n2

R2
+ o

(
1

R

3))
ψ
(n)
i = λ

(n)
i ψ

(n)
i (10.55)

and we note that the angular momentum term is a constant. The eigenvalues are
then simply

λ
(n)
i = ω2

i +
n2

R2
, (10.56)

where ω2
i are the eigenvalues of δ2H

δφ2i

∣∣∣
3,mono.

. The λ(n)i admit an expansion in

1/R as

λ
(n)
i = ω2

i +
n2

R2
+
ai
R2

+
bin

2+ ci
R4

+ · · · , (10.57)

where the odd powers vanish as the order zero eigenfunctions have definite parity
under z→−z. The correction ai is difficult to compute, but it is expected to give
a small correction for the non-zero eigenmodes. To calculate them in principle, we
must find the correction to the instanton to order o(1/R2) and then compute the
correction to the eigenvalues to second order in perturbation theory. However,
for the zero modes the correction is important, but easily calculable.

There are three translational zero modes; first, consider the modes for
translation in the x1 and x2 directions. These are out of the plane of the loop
and correspond to ω2

x1
= 0 and ω2

x2
= 0. For these n = 0 and λ

(0)
x1 = 0 = λ

(0)
x2 .

Thus for these to remain zero modes to order 1/R we must have ax1 = ax2 = 0.
For translation in the z direction, we see these are translational zero modes
of the monopole in the plane of the loop. These must come with multiplicity
two as there are two independent directions for the translation. Furthermore,
they must deform the loop, hence they must correspond to n �= 0. Indeed, the
first deformation of the loop occurs for n= 1 and the two independent angular
eigenmodes give the two independent directions of the deformation. Thus we
require that λ(1)z ≡ λ

(1)
x3 = λ

(1)
x4 = 0. For the zero-order Hamiltonian, we already

have ω2
x3

= 0 and ω2
x4

= 0, hence to order 1/R we must have

λ(1)z = 0= 0+
n2

R2

∣∣∣∣
n=1

+
az
R2

+ · · ·= 1

R2
+
az
R2

⇒ az =−1. (10.58)

We perform exactly the same separation of variables and analysis for the
denominator in Equation (10.45)

δ2SE
δφ2i

∣∣∣∣
3,0

=
δ2H0

δφ2i

∣∣∣∣
3

+ o

(
1

R

)
, (10.59)
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which gives

λ
(n)
i,0 = ω2

i,0+
n2

R2
+
ai,0
R2

+ · · · . (10.60)

The determinant corresponds to the product of the eigenvalues, thus the angular
momentum family corresponding to eigenmode i contributes as

lnKi =−1

2

(
lnλ

(0)
i − lnλ

(0)
i,0 +2

∞∑
n=1

(
lnλ

(n)
i − lnλ

(n)
i,0

))
, (10.61)

where the factor of 2 is because all the n �= 0 modes come with multiplicity
two while the mode n = 0 is solitary. To perform the summation we use the
Euler–Maclaurin formula [2]

f(0)+2

N∑
n=1

f(n) = 2

(∫ N

0

dxf(x)

)
+ f(N)+B1(f

′(N)− f ′(0))

− 1

12
B2(f

′′′(N)− f ′′′(0))+ · · · , (10.62)

where the Bis are the Bernoulli numbers and f(n) = ln(ω2
i +

n2

R2 + ai
R2 + · · ·)−

ln(ω2
i,0 + n2

R2 +
ai,0
R2 + · · ·). For large n, we expect that λ

(n)
i → λ

(n)
i,0 , hence

f(N),f ′(N),f ′′′(N), · · · all vanish. Also since λ(n)i is actually a function of n2

the odd derivatives vanish at n= 0, and only the first term contributes, giving
(letting Ry = x)

lnKi =−R
∫ ∞

0

dy
(
ln(ω2

i + y
2+

ai
R2

+ · · ·)− ln(ω2
i,0+ y

2+
ai,0
R2

+ · · ·)
)

=−R
∫ ∞

0

dy

(
ln

(
ω2
i + y

2

ω2
i,0+ y

2

)
+ o

(
1

R2

))

=−Rπ(ω2
i −ω2

i,0)+ o

(
1

R

)
. (10.63)

This follows from using the integral,

=R

∫ N/R

0

dy ln(ω2+ y2) Ry ln(ω2+ y2)− 2Ry+2Rωarctan
y

ω

∣∣∣N/R
0

=N ln

(
ω2+

N2

R2

)
− 2N +2Rωarctan

(
N

ωR

)

=N ln

(
ω2+

N2

R2

)
− 2N +Rπω (10.64)

taking N→∞. This approximation is fine for all the angular momentum families
that do not have exact zero modes. For n= 0,1 we would get a vanishing result
and singularities in the amplitude.
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We can, of course, still apply the method to the comparison theory of the true
vacuum without the monopole. Here we get

=
1

2
lnλ

(0)
i,0 +

N∑
n=1

lnλ
(n)
i,0

1

2
lnω2

i,0+

N∑
n=1

(
ω2
i,0+

n2

R2

)

=R

∫ N/R

0

dy ln(ω2
i,0+ y

2)+
1

2
ln

(
ω2
i,0+

N2

R2

)
+ o

(
1

N

)

=Rπωi,0+(2N +1)ln

(
N

R

)
− 2N + o

(
1

N

)
. (10.65)

This follows from the integral Equation (10.64) after adding 1
2 ln

(
ω2
i,0+

N2

R2

)
and

expanding for large N .
For the three zero modes, the sum over λ(n)a for a= x1,x2, z is done explicitly

excluding λ
(0)
x1 , λ(0)x2 and λ

(1)
z (with multiplicity two). We will use the Stirling

approximation lnN ! ≈ N lnN −N + 1
2 ln(2πN). For a = x1,x2 we get, noting

ω2
a = 0

−
N∑
n=1

lnλ(n)a =−
N∑
n=1

ln

((
n2

R2

)
+ o

(
1

R

))

≈−2ln
(

1

RN

N∏
n=1

n

)
=−2ln

(
N !

RN

)

=−2
(
N lnN −N +

1

2
ln(2πN)

)
+2N lnR

=−2N ln

(
N

R

)
+2N − ln(2πN)+ o

(
1

N

)
. (10.66)

Then subtracting the true vacuum result, Equation (10.65), from the result in
the presence of the instanton, Equation (10.66), we get

lnKx1 =−Rπ(ωx1−ωx1.0)−ln(2πR) and lnKx2 =−Rπ(ωx2−ωx1.0)−ln(2πR)

(10.67)
keeping in mind that ω2

x1
= ω2

x1
= 0. For a = z we have λ(1)z = 0, thus we must

perform the sum

− 1

2
ln |λ(0)z |−

N∑
n=2

lnλ(n)z , (10.68)

where we have put absolute value signs around λ
(0)
z as it is negative (and the

i is taken out explicitly in the Equations (10.43) and (10.44)). As ω2
z = 0 and

a1 =−1, we get λ(0)z =−1/R. Furthermore, putting λ(n)z = (n2− 1)/R, we get

− 1

2
ln |λ(0)z |−

N∑
n=2

lnλ(n)z =−1

2
ln

∣∣∣∣−1R2

∣∣∣∣− N∑
n=2

ln

(
n2− 1

R2

)
. (10.69)
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We evaluate the sum as follows

=
N∑
n=2

ln

(
n2− 1

R2

) N∑
n=2

ln

(
n2

R2

(
1− 1

n2

))
=

N∑
n=2

ln
n2

R2
+

N∑
n=2

ln

(
1− 1

n2

)

= ln
N∏
n=2

n2

R2
+ln

N∏
n=2

(
1− 1

n2

)
= 2lnN !+ ln

N∏
n=2

(
(n+1)(n− 1)

n2

)

= 2lnN !− 2(N − 1) lnR+
N∑
n=2

(
ln

(
n+1

n

)
− ln

(
n

n− 1

))

= 2N ln

(
N

R

)
− 2N +ln2πN +2lnR− ln(2) (10.70)

as the final sum is telescopic and gives the − ln2. Adding the − 1
2 ln

(
|−1|
R2

)
= lnR

gives

−1

2
ln |λ(0)z |−

N∑
n=2

lnλ(n)z = lnR−
(
2N ln

(
N

R

)
− 2N +ln2πN +2lnR− ln(2)

)

=−2N ln

(
N

R

)
+2N − ln(πNR).

(10.71)

Then subtracting the vacuum result, Equation (10.65), we get

lnKz =−Rπ(ωz −ωz,0)− lnπR2, (10.72)

where of course ωz = 0. Thus finally adding all the three contributions together
we get∑

i

lnKi=−Rπ(ωi−ωi,0)−2ln2πR−lnπR2=Rπ(ωi−ωi,0)−ln4π3R4 (10.73)

or equally well

K =
1

4π3R4
e−Rπ

∑
i(ωi−ωi,0). (10.74)

The sum 1
2

∑
i(ωi−ωi,0) has a perfect physical interpretation as the renormalized

energy of the magnetic monopole due to vacuum fluctuations about the monopole
configuration. This energy is properly subtracted with the energy of the vacuum
fluctuations about the true vacuum. Thus we write

1

2

∑
i

(ωi−ωi,0) =ΔM. (10.75)

The Faddeev–Popov factors, which we have not explicitly dealt with, will
also contribute; however, their contribution also simply contributes to the
renormalization of the mass of the monopole.
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The final thing we must calculate are the normalization factors of the translation
zero modes using the explicit expressions for the zero modes given by
Equation (10.46). We use the coordinates x1,x2, r,θ, but will rather use r= z+R.
First for the directions i=x1,x2, circular symmetry gives a factor of 2π. The field
strength and covariant derivatives of the scalar field are independent of the θ
direction, i.e. Fθ,μ = 0,Dθφ = 0. The dominant contribution comes from the
regions near z = R. We can use spherical symmetry in the three independent
coordinates x1,x2, z. Then the normalization is given by,

=Ni 2π

∫
dx1dx2drr

(∑
μ

F aμiF
a
μi+(Diφ)

a
(Diφ)

a

)

≈ 2πR

∫
dx1dx2dr

(∑
μ

F aμiF
a
μi+(Diφ)

a
(Diφ)

a

)

=
2πR

3

∫
d3x

⎛
⎝∑

ij

F aijF
a
ij +(Diφ)

a
(Diφ)

a

⎞
⎠ (10.76)

as, for example, F 2
21+F

2
31 = (2/3)(F 2

21+F
2
31+F

2
32) = (1/3)

∑
jkF

2
jk.

For the mode i = 3,4 we get a similar expression, but there is angular
dependence. Then, for example, D3 = cosθDz and we get

=N3 2π

∫
dx1dx2drr

(∑
μ

F aμ3F
a
μ3+(D3φ)

a
(D3φ)

a

)

=R

∫
d3x

∫
dθ

⎛
⎝ ∑
i=1,2

F aizF
a
iz +(Dzφ)

z
(Dzφ)

a

⎞
⎠cos2 θ

=Ni
1

2π

∫ 2π

0

dθ cos2 θ=
1

2
Ni. (10.77)

Thus we only have to evaluate the integral
∫
d3x

(∑
ij F

a
ijF

a
ij +(Diφ)

a
(Diφ)

a
)
,

which can be related easily to the monopole mass. The monopole mass is given by

M =
1

e2

∫
d3x

(
1

4
F ajkF

a
jk+

1

2
(Djφ)

a
(Djφ)

a
+V (φ)

)
. (10.78)

However, the expression for mass, which is the energy of the monopole, must
be stationary with respect to arbitrary variations for the fields. Making a scale
transformation φ(x)→ φ(αx) and A(x)→ aA(αx) and demanding the mass be
stationary at α= 1 gives∫

d3x

((
1

4
F ajkF

a
jk

)
− 1

2
(Djφ)

a
(Djφ)

a− 3V (φ)

)
= 0. (10.79)
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Thus ∫
d3xV (φ(x)) =

1

3

∫
d3x

1

4
f2− 1

3
(Dφ)

2
, (10.80)

which gives

M =
1

e2

∫
d3x

(
1

3
F ajkF

a
jk+

1

3
(Djφ)

a
(Djφ)

a

)
=

1

e2
Ni
2πR

. (10.81)

So Ni = 2πRe2M and N3 =N4 = πRe2M . Thus(
Ni
2πe2

)1/2

= (RM)1/2 i= 1,2,

(
Ni
2πe2

)1/2

= (RM/2)1/2 i= 3,4 (10.82)

and

K =
1

2

4∏
i=1

(
Ni
2πe2

)1/2

K ′=RM×RM

2

1

4π3R4
e−Rπ2ΔM =

M2

8π3
e−Rπ2ΔM (10.83)

Then putting in the factor for the classical instanton action we get the final
expression for the amplitude of the decay of the magnetic field

Γ=
M2

8π3R2
e−Rπ2ΔMe−(πM

2/g2B−g2/4). (10.84)

Using M/R= gB, writing Mren. =M +ΔM and assuming ΔM �M

Γ=
g2B2

8π3
e−(πM

2
ren./g

2B−g2/4). (10.85)

We have not taken into account the zero mode corresponding to internal
rotations. As we have mentioned, this mode corresponds to the dyonic excitation.
Without the creation of dyonic pairs, the zero mode will give a factor of(

J

Re2

)1/2

, (10.86)

where J/R is defined to be the normalization of this zero mode. J is calculable
from the exact solutions for the dyons as is the mass of the dyon [66]. There is
a whole family of dyon solutions with all possible charges, all of which can be
produced in pairs. We will not treat the calculation in detail here and refer the
reader to the original article [4]. We simply quote the final result, writing ΓM
for the pure monopole result Equation (10.85)

Γ= ΓM

(
J

Re2

)1/2 ∞∑
−∞

e−(πJ/Re2)n2 =ΓM

∞∑
−∞

e−(πM/gB)(e2n2/J) (10.87)

using the Poisson summation formula∑
m

f(m) =
∑
m

(∫
dxe2πimxf(x)

)
(10.88)

and performing the ensuing Gaussian integral and that M/R= gB.
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Quantum Chromodynamics (QCD)

11.1 Definition of QCD

Quantum Chromodynamics is the theory of strong interactions. It is a non-
Abelian gauge theory based on the gauge group SU(3), which is called the
colour gauge group. The gauge symmetry is preserved in this theory and,
specifically, it is not spontaneously broken. The gauge bosons that carry the
strong interaction are called gluons. The matter content of the theory consists
of quarks, which are spin one-half fermions that transform according to the
fundamental representation of SU(3), that is a three-component, complex triplet.
The quark model was proposed in the 1960s and 1970s and elaborated in its
incorporation into the “standard model” of particle physics corresponding to a
gauge-theoretic description of the strong, weak and electromagnetic interactions.
This model is now at the level of a confirmed theory. An untold number of
experimental data have shown the existence of quarks and gluons, in addition to
the matter content corresponding to the non-strongly interacting particles, the
leptons, and the corresponding gauge bosons of the weak and electromagnetic
interactions, which are known as the W and Z gauge bosons, and the photon.

The strong interactions govern the interactions that give rise to nuclear forces.
The matter that experiences these forces is generally called hadronic matter. The
hadrons split into two categories: baryons, which correspond to the neutron,
proton and atomic nuclei, which seem to be stable; and mesons, such as the
pions, kaons and others, which all seem to be unstable. The fundamental building
blocks of the hadrons are the quarks. The quarks interact directly with the gauge
bosons of the colour SU(3) gauge group, which are the gluons. The quarks have
colour charges and couple directly to the gluons, which themselves have colour
charges. However, it is believed that the QCD vacuum is such that colour charges
are confined, that free colour charges correspond to states of infinite energy.
Therefore, the observable hadrons must all be colour singlet states. The baryons
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correspond to the bound states of three quarks, and a colour singlet in the three-
fold tensor product of the fundamental representation 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1.
The mesons correspond to bound states of quarks and anti-quarks, 3⊗ 3̄ = 8⊕1.
There are many other possibilities for obtaining singlets, but these have not been
experimentally observed.

11.1.1 The Quark Model and Chiral Symmetry

In the 1960s the quark model of hadrons was invented, with contributions from
many different authors coming independently. It was understood that quarks
come in many flavours, and these were named up, down, charm, strange, top,
bottom, and more, if necessary. In our daily experience, we only encounter the up
and down quarks. During the 1960s and 1970s, it was discovered how the quarks
fit together to give rise to the observable hadrons, and also their interactions
with the non-hadronic particles called generically leptons, the electron, muon,
and taon, their neutrinos. The quark model seemed to indicate the existence
of families of elementary particles, which bring together the strong, weak
and electromagnetic interaction with gauge group SUc(3)× SU(2)×U(1), the
gauge group of the standard model. Models of grand unification correspond to
the inclusion of this group inside a single, semi-simple group, with symmetry
breaking giving rise to the observed symmetry group of the standard model. The
SUc(3) is the colour gauge group of QCD. The weak interactions are mediated by
the SU(2), while the U(1) corresponds to what is called weak hypercharge. The
weak SU(2) is spontaneously broken to a U(1) subgroup, the by now celebrated
Higgs field and Higgs mechanism, and the actual electromagnetic U(1) gauge
group corresponds to a linear combination of this unbroken remnant of the weak
SU(2) and the U(1) hypercharge gauge symmetry. We will not elaborate the
full standard model here, it is out of our interest and there are many very good
references that describe the standard model in all its detail. For us it will suffice to
know that the left-handed quark fields and the leptons feel the weak interaction,
which only acts on left-handed fields, and transform according to the doublet
representation of the weak interaction gauge symmetry. All right-handed fields,
quark or lepton, do not feel the weak interaction, and only feel the strong and
electromagnetic interaction.

The first family comprises left-handed up and down quarks forming a doublet
of the weak interactions based on the group SU(2) and transforming individually
according to a U(1) charge called weak hypercharge, along with the left-handed
electron and its neutrino, which also form a weak doublet with their respective
weak hypercharges. The family is completed with the right-handed partners of
the up and down quarks and the right-handed partner of the electron. The
neutrino was not supposed to have a right-handed partner; however, this is no
longer certain as it has been observed that the neutrinos must have mass. For the
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purposes of this book, we will not add a right-handed neutrino. The right-handed
partners of all the particles did not experience the weak interaction but did
experience the weak hypercharge, and each member had a corresponding value
for the weak hypercharge. The second family comprises the charm and strange
quarks and the muon and its neutrino; and the third family comprises the top
and bottom quarks and the taon and its neutrino. Chiral symmetry corresponds
to the notion that there is a complete symmetry under unitary rotation of the
quarks amongst themselves. In principle, this would correspond to a “flavour”
symmetry group of SUf (6).

Chiral symmetry is, explicitly, badly broken by the mass spectrum of
the quarks. The best preserved subgroup is chiral SU(2) (which is also,
coincidentally, the weak interaction symmetry) corresponding to iso-rotations
of the up and down quarks amongst themselves as these quarks have masses
in the range of a few MeV , which is almost negligible at the scale of the
strong interactions. Including the next lightest quark, the strange quarks gives
rise to chiral SU(3) symmetry, which is broken at a 10% level as the strange
quark mass is around 100 MeV . This symmetry was named SUf (3), the three-
dimensional unitary symmetry of flavour. Identification of this symmetry led to a
great advance in the organization of the hadronic particle spectrum. This meant
that the Lagrangian of the quarks was made up of three fermionic fields and it
is invariant under the unitary rotation of the three fields into each other. The
energy eigenstates then must form representations of this group of symmetry,
much like the energy levels of the hydrogen atom form representations of the
group of spatial rotations, SO(3). Even though the SUf (3) is broken at the 10%
level, the physical hadrons, which are the energy eigenstates of the theory, are
easily identifiable as being members of various representations of this symmetry
group. The baryons form the representations 8 and 10 of SUf (3), while the
mesons fall into the 8, as shown in Figures 11.1, 11.2 and 11.3, which were
created by [84, 83, 82].
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K –

K 0

π–
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q = –1
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q = 1

Figure 11.1. QCD flavour diagram of the meson octet
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SUf (3), being a symmetry of the theory, cannot be responsible for the strong
force between the hadrons. The strong force must be independent of the flavour
symmetry, for the flavour symmetry to manifest itself as a symmetry of the mass
spectrum. The charm quark mass is about 1.2 GeV and the top and bottom
masses are over 150 GeV , hence invoking chiral symmetry including these quarks
is quite unrealistic. But what was holding the quarks together?

11.1.2 Problems with Chiral Symmetry

1. Chiral SU(3) symmetry implies the existence of multiplets of hadronic particle
states, which have all been observed, and brings order to the chaos of the zoo of
observed hadronic particles. However, there is a problem, as chiral symmetry
predicts hadronic states such as the Δ++ which is made of three up quarks or
the Δ− the corresponding states of three down quarks or the Ω− that of three
strange quarks, each of them in a spin 3/2 state. The problem has to do with
their wave functions. The three quarks should be in a spatially symmetric
state as there is no additional angular momentum, a spin-symmetric state
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s = –1

s = –2
Ξ– Ξ0

n
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Figure 11.2. QCD flavour diagram of the baryon octet
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Figure 11.3. QCD flavour diagram of the baryon decouplet
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giving rise to the spin 3/2 of the state and an iso-spin symmetric state as the
iso-spin of each quark is identical. Such a state is not permitted for fermions
by the Pauli exclusion principle, which requires that the wave function of
identical fermions must be anti-symmetric under the exchange of any two.
Therefore the quarks must have another, hidden quantum number, and the
wave function of the state must be anti-symmetric under this hidden degree
of freedom.

2. There exists a second experimental reason why the quarks should come in
three colours. The ratio

R=
σ(e+e− → qq̄)

σ(e+e− → μ+μ−)
=

∑
i

Q2
i (11.1)

is simply predicted by perturbation theory, where Qi is the electrical charge of
the quark. This ratio is measured experimentally and gives a rising function of
the incoming energy, with a few isolated peaks corresponding to resonances at
the positions of particles. However, it reaches a first plateau with a numerical
value of 2 when it crosses the threshold for production of the strange quark.
Now the sum over the charges of the lightest quarks, up, down and strange,
which are, respectively, 2

3 ,−
1
3 , −

1
3 , is given by

∑
lightest quarks

Q2
i =

(
2

3

)2

+

(
−1

3

)2

+

(
−1

3

)2

=
2

3
. (11.2)

Clearly if each quark came three times with three colours we get the required
value 2. Increasing the energy of the scattering, once we pass the charm
threshold at about 1.2 GeV , the value of R increases to a second plateau
at 3 1

3 . This corresponds exactly to the addition of the charge of the charm
quark squared,

(
2
3

)2×3. Finally after crossing the bottom quark threshold at
an energy of about 4.2 GeV , the value of R again increases to a plateau at
3 2
3 corresponding to the charge of the bottom quark, appropriately

(
1
3

)2× 3.
3. Another experimental reason for three colours has to do with the decay rate

of the neutral pion to two photons, π0 → 2γ. This decay is mediated by the
so-called anomaly diagram. The amplitude for the decay predicted if only one
quark is circulating in the triangle is exactly three times too small from the
observed amplitude.

4. “Anomaly cancellation” gives another reason to believe that there must
be three colours. As mentioned, part of the flavour symmetry group
is actually also gauged and gives rise to the weak and electromagnetic
interaction. Sometimes gauge symmetries are broken by quantization of chiral
fermions. A gauged symmetry must be respected at the quantum level; it
is necessary to prove the renormalizability of the theory. Invariance under
gauge transformations for the quantum theory is used in an essential manner
to prove renormalizability. Therefore, it is imperative that the weak and
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electromagnetic gauge symmetries are anomaly-free. The anomalies of the
corresponding gauge group all potentially reside in the weak hypercharge U(1)

symmetry. The weak hypercharge of the left-handed up and down quarks is
1
3 while that of the right-handed up quark is 4

3 and that of the right-handed
down quark is − 2

3 . The left-handed leptons, the electron and its neutrino, have
weak hypercharge −1 while the right-handed electron has weak hypercharge
−2, and we are assuming that the right-handed neutrino does not exist.
The anomaly is proportional to the sum of the cubes of all the left-handed
hypercharges minus the same for the right-handed charges. We must not forget
that the quarks each come in three colours, giving an additional factor of three,
and then this gives

3×
(
1

3

)3

+3×
(
1

3

)3

+(−1)3+(−1)3−
(
3×

(
4

3

)3

+3×
(
−2

3

)3

+(−2)3
)

=

(
1

9

)
+

(
1

9

)
− 2−

(
64

9

)
+

(
8

9

)
+8= 0. (11.3)

5. Finally, there has to be some mechanism by which the colour degree of
freedom is not seen in hadronic states, and has to be confined. There is a
good theoretical indication why a non-Abelian gauge theory could supply
the correct interaction. First of all, the colour degree of freedom is flavour-
blind, it is identical for each flavour. However, QCD being a renormalizable
theory, we can perturbatively calculate the renormalization of the coupling
constant. Non-trivial renormalization means that naive calculations of, say,
the perturbative corrections to the coupling constant give infinite answers.
However, by scaling the bare coupling constants of the theory appropriately,
all the infinities can be absorbed into these inobservable, infinite, bare
coupling constants, while the physically observed coupling constants are finite
and defined at a chosen energy scale. However, then the value of the coupling
constant at different energy scales is predicted by finite scaling, which is
called the renormalization group. Perturbative calculations indicate that as
the energy scale is increased the value of the coupling constant decreases
(rendering, in fact, the perturbative calculations, which are valid for a small
coupling constant, more and more precise). Evidently for lower and lower
energies the coupling constant must increase. These properties are called
asymptotic freedom at high energies and infrared slavery at low energies.
Of course, the perturbative calculation becomes less and less reliable as the
coupling constant increases, and hence actually only indications of infrared
slavery are predictable via the perturbation theory. Nevertheless, the picture
for quarks emerges, that when they are close together, at short distances which
correspond to high energies, they are essentially free and non-interacting.
However, as they try to separate from one another, at long distances, the force
between them increases and, in principle, it would require infinite energy to
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separate them infinitely far. The theoretical prediction of asymptotic freedom
has been observed experimentally. When very high electrons impinge on
a hadronic target and suffer deep inelastic scattering, they scatter off the
individual quarks, which, because of the high energy of the electrons, are
being probed at very short distances. The quarks then should behave as
free particles. This is exactly what is observed. The deep inelastic scattering
cross-section for electrons on hadrons exhibits the property of scaling, that
the cross-section is simply that of an electron scattering from a free quark
of momentum x× pH , where pH is the total momentum of the hadron and
x is the fraction of that momentum carried by the quark, multiplied by a
factor that corresponds to the probability of finding a quark with momentum
fraction x.

Thus the colour degree of freedom arose, and making it a local gauge degree of
freedom gave the added bonus that it provided a means for obtaining interactions
between the quarks that would in principle bind them together.

11.1.3 The Lagrangian of QCD

The Lagrangian density of N flavours of free quarks is given by

L=
N∑
a=1

ψ̄aα (iγ
μ∂μ−ma)ψaα. (11.4)

The label a corresponds to the different flavours, while the label α corresponds to
the colour and the summation over repeated colour, flavour and Lorentz indices
is assumed.1 Interaction terms involving just the fields ψα themselves, such as(
ψ̄aαψ

a
α

)2 or
(
ψ̄aαγ

μψaα
)(
ψ̄bβγμψ

b
β

)
and any others, are not renormalizable. To

have interactions between the quarks, we must add other fields such as gauge
fields or scalar fields with which the quarks interact, and then with each other
through the exchange of the additional particles. We will consider the idea of
gauging the added SU(3) colour symmetry, the symmetry in any case seems to
be required for the existence of fermionic statistics of the quarks in some of the
hadronic states.

The colour degree of freedom corresponds to the index α, which goes from
1 to 3, and we will now add gauge fields corresponding to making the gauge
symmetry SU(3) local,

L=
N∑
i=a

ψ̄aα (iγ
μ(∂μ+Aμ)−ma)ψaα. (11.5)

1 The colour metric or the flavour metric are both simply the identity matrix so we will write
the indices above or below depending on convenience. The Lorentz indices are summed
with the Minkowski metric, thus for these we will rigorously only sum a raised index with a
repeated lowered index.
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The covariant derivative Dμ= ∂μ+Aμ now appears with Aμ= iAiμλi, i=1, · · · ,8,
and the λi correspond to the 3× 3 Gell-Mann matrices

λ1 =

⎛
⎜⎝ 0 1 0

1 0 0

0 0 0

⎞
⎟⎠ , λ2 =

⎛
⎜⎝ 0 −i 0

i 0 0

0 0 0

⎞
⎟⎠ , λ3 =

⎛
⎜⎝ 1 0 0

0 −1 0

0 0 0

⎞
⎟⎠ ,

λ4 =

⎛
⎜⎝ 0 0 1

0 0 0

1 0 0

⎞
⎟⎠ , λ5 =

⎛
⎜⎝ 0 0 −i

0 0 0

i 0 0

⎞
⎟⎠ , λ6 =

⎛
⎜⎝ 0 0 0

0 0 1

0 1 0

⎞
⎟⎠ ,

λ7 =

⎛
⎜⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎟⎠ , λ8 =

1√
3

⎛
⎜⎝ 1 0 0

0 1 0

0 0 −2

⎞
⎟⎠ . (11.6)

The Gell-Mann matrices satisfy the Lie algebra of SU(3),

[λi,λj ] = if ijkλk, (11.7)

where f ijk are the structure constants of SU(3). The structure constants are
completely anti-symmetric, f ijk =−f jik =−f ikj with f123 = 1,f147 =−f156 =
f246 = f257 = f345 =−f367 =1/2,f458 = f678 =

√
3/2. To this action, we add the

Lagrangian for the gauge fields

Lgauge =− 1

4g2
F iμνF

iμν , (11.8)

where, as previously defined, F iμν is obtained from

[Dμ,Dν ] = iF iμνλi, (11.9)

explicitly

F iμν = ∂μA
i
ν −∂μAiν − f ijkAjμAkν . (11.10)

Our aim in this book is to consider the importance of the classical solutions
to the Euclidean equations of motion, the instantons. Thus we will write the
Euclidean Lagrangian density as

LE =
1

4
F iμνF

i
μν =−1

2
Tr (FμνFμν) , (11.11)

where now the Lorentz index becomes a Euclidean vectorial index and the metric
in Euclidean space is just the identity, hence we change the sign in the first
equality, and

Fμν = ∂μAν −∂νAμ+[Aμ,Aν ], (11.12)

which is an anti-hermitean matrix-valued field.
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11.2 Topology of the Gauge Fields

We shall look for configurations of finite Euclidean action

SE =

∫
d4xLE . (11.13)

We assume that for large radius r in four-dimensional Euclidean space, the gauge
fields can be expanded in powers of 1/r. For finite action then, Fμν must decrease
as o(1/r2), where o(1/r2) means faster than 1/r2. This implies that the gauge
field must decrease at least as o(1/r) up to pure gauge terms

Aμ = o

(
1

r

)
+ g(Ω)∂μg

−1(Ω), (11.14)

where g(Ω) is a function only of the angular variables Ω at infinity. Then
g(Ω)∂μg

−1(Ω)∼ 1/r, and this yields the required behaviour for Fμν .
But g(Ω) is defined essentially at infinity of Euclidean spacetime, IR4, which

is topologically the three-sphere S3. Thus g(Ω) defines a mapping of the three-
sphere at infinity into the gauge group SU(3),

g(Ω) : S3 → SU(3). (11.15)

These fall into the homotopy classes of mappings which define the homotopy
group Π3(SU(3)). Gauge group configurations g1(Ω) and g2(Ω) can be
continuously deformed one into the other only if they fall into the same homotopy
class. We write g1(Ω) ∼ g2(Ω) if they are in the same homotopy class. The
homotopy group is well known,

Π3(SU(3)) = Z, (11.16)

where Z corresponds to the integers, and an integer corresponding to a
homotopy class is called the winding number. This means that each configuration
can be associated with a class of homotopically equivalent configurations,
which have the same winding number. Configurations with different winding
numbers cannot be continuously deformed one into another, since the winding
number can only change discretely. Continuous changes cannot change the
winding number. Consequently, different gauge field configurations of finite
Euclidean action must also fall into topologically distinct homotopy classes.
A gauge field configuration A1(x) with a limiting value defined by the
asymptotic gauge group configuration g1(Ω) cannot be continuously deformed
into another gauge field configuration A2(x) with a limiting value defined by
the asymptotic gauge group configuration g2(Ω) unless g1(Ω) ∼ g2(Ω). If the
asymptotic gauge group configurations are in different homotopy classes, the
existence of a deformation of the gauge fields into each other continuously keeping
the Euclidean action finite would be a contradiction, as it would provide a
deformation of one asymptotic gauge group configuration into the other.
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We might imagine that as the theory is invariant under local gauge
transformations, we might be able to remove the asymptotic gauge dependence.
Suppose we make a gauge transformation at infinity,

g→ hg (11.17)

for some group element h. Then the gauge field transforms as

Aμ→ h(Aμ+∂μ)h
−1

= h
(
g∂μg

−1+ o(1/r)+∂μ
)
h−1

= hg(∂μg
−1)h−1+h∂μh

−1+ o(1/r)

= hg(∂μ(hg)
−1)+ o(1/r). (11.18)

Thus if we chose h= g−1, we could eliminate g. But this is impossible because the
gauge transformation h should be a differentiable function defined over the whole
space IR4. At least h should be a continuous function over all of IR4. Thus if we
define h= g−1 at infinity, we must be capable of continuing the definition of h
throughout space, including the origin. This is clearly impossible since the origin
is a degenerate sphere on which the mapping must be trivial. This implies that
the gauge transformation h must be in a class of gauge transformations that
can be continuously deformed to the trivial mapping. Hence h cannot satisfy
h= g−1 at infinity, as g is not in the class of trivial mappings. Thus any gauge
transformation h can modify g at infinity, but only within its homotopy class,
g→ hg ∼ g. The integer invariant corresponding to the homotopy class of g is
seen to be exactly the Chern number of the gauge field configuration.

We can explicitly construct the gauge transformations that give rise to the
different classes of gauge fields

g(0)(x) = 1

g(1)(x) =
x4+ i�x ·�σ

(x4+ |�x|2)1/2
·
·
·

g(ν)(x) =
(
g(1)

)ν
·
·
· (11.19)

defined over each S3 that contains the origin. The gauge transformations are
singular at the origin (except g(0)).
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11.2.1 Topological Winding Number

We can explicitly calculate the winding number of the gauge field configuration
through the following analysis. Consider the integral

ν =
−1
24π2

∫
d3θεijkTr

(
(g∂ig

−1)(g∂jg
−1)(g∂kg

−1)
)
, (11.20)

where the integral is over a three-sphere with local coordinates θi. For any local,
infinitesimal transformation of g, g→ g(1+ δT ) and g−1 → (1− δT )g−1 so that
gg−1 = 1 is unchanged. This means that with δg = gδT and δg−1 =−δTg−1 we
will show that ν is unchanged. We then find

δ(g∂kg
−1) = gδT∂kg

−1− g∂k(δTg−1)

= gδT∂kg
−1− g(∂kδT )g−1− gδT∂kg−1

=−g(∂kδT )g−1. (11.21)

Thus the change in ν is

δν =
1

24π2

∫
d3xεijkTr

(
g∂iδT )g

−1(g∂jg
−1)(g∂kg

−1)
)
× 3

=
1

8π2

∫
d3θεijkTr

(
∂iδT )(∂jg

−1)g(∂kg
−1)g

)
=
−1
8π2

∫
d3θεijkTr

(
∂iδT )(∂jg

−1)(∂kg)
)

=
−1
8π2

∫
d3θεijk∂iTr

(
δT )(∂jg

−1)(∂kg)
)
= 0, (11.22)

where in the first line the factor of 3 comes because the contribution from each
of the three factors is the same, in the third line we use g(∂kg−1)g =−∂kg and
the last line vanishes as the integral is of a total derivate over a three-sphere that
has no boundary.

We can evaluate ν explicitly for g(1). At the “north pole”, x4 = 1,xi ≈ 0 then
we can take θi = xi

g(1)∂i

(
g(1)

)−1
∣∣∣∣
north pole

=

(
x4+ i�x ·�σ

(x4+ |�x|2)1/2

)
∂i

(
x4− i�x ·�σ

(x4+ |�x|2)1/2

)∣∣∣∣
x4=1,xi=0

=−iσi−
(
(x4− i�x ·�σ)xi
(x4+ |�x|2)3/2

)∣∣∣∣
x4=1,xi=0

=−iσi.(11.23)

However, the symmetry of the configuration means that the integrand is the
same at all points on the sphere. Hence,

εijkTr
(
(g∂ig

−1)(g∂jg
−1)(g∂kg

−1)
)
= iεijkTr (σiσjσk)

= iεijkTr (iεijlσlσk)

=−εijkεijl2δlk =−2 · 6 =−12 (11.24)
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using σiσj = iεijkσk+ δij . Thus

ν =− 1

24π2
(−12)

∫
d3θ =

1

2π2

∫
d3θ = 1, (11.25)

since the volume of the unit three-sphere is exactly 2π2. This is obtainable by
integrating over the angular variables in IR4 in the generalization of spherical
coordinates. It is easy to see the ν(g1g2) = ν(g1) + ν(g2), indeed, using form
notation

ν(g1g2) =
−1
24π2

∫
Tr

(
g1g2d(g1g2)

−1
)3

=
−1
24π2

∫
Tr

(
g1g2(dg

−1
2 )g−1

1 + g1dg
−1
1

)3
= ν(g1)+ ν(g2)+3

−1
24π2

×
∫
Tr

(
g1g2(dg

−1
2 )g−1

1 g1(dg
−1
1 )(g1g2(dg

−1
2 )g−1

1 + g1dg
−1
1 )

)
= ν(g1)+ ν(g2)+

−1
8π2

×
∫
Tr

(
g2(dg

−1
2 )(dg−1

1 )g1g2(dg
−1
2 )+ g2(dg

−1
2 )(dg−1

1 )g1(dg
−1
1 )g1)

)
= ν(g1)+ ν(g2)+

−1
8π2

∫
d
(
Tr

(
g2(dg

−1
2 )(dg−1

1 )g1
))

= ν(g1)+ ν(g2)

(11.26)

where we have used d(gd(g−1)) =−gd(g−1)gd(g−1).
We can define

Gμ = 4εμνλσTr

(
Aν∂λAσ+

2

3
AνAλAσ

)
(11.27)

then

∂μGμ = 4εμνλσTr

(
∂μAν∂λAσ+

2

3
(∂μAνAλAσ+Aν∂μAλAσ+AνAλ∂μAσ)

)
= 4εμνλσTr (∂μAν∂λAσ+2(∂μAνAλAσ))

= 4εμνλσTr ((∂μAν +AμAν)(∂λAσ+AλAσ))

= εμνλσTr ((∂μAν −∂νAμ+[Aμ,Aν ])(∂λAσ−∂σAλ+[Aλ,Aσ]))

= εμνλσTr (FμνFλσ) . (11.28)

But∫
d4x∂μGμ =

∮
r→∞

dSμGμ =

∮
r→∞

dSμ4εμνλσTr

(
AνFλσ−

1

3
AνAλAσ

)
(11.29)
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and since

Fλσ = o

(
1

r2

)
⇒Aν = g∂ν(g

−1)+ o

(
1

r

)
, (11.30)

then the first term in Equation (11.29) falls off too fast to contribute while the
second term gives exactly the expression for ν in Equation (11.20). Hence

ν =
1

32π2

∫
d4xTr (εμνλσFμνFλσ)

=
1

16π2

∫
d4xTr

(
Fμν F̃μν

)
(11.31)

where the dual field strength is defined as F̃μν = 1
2εμνλσFλσ.

We can summarize our findings as follows.

1. Each gauge field configuration of finite Euclidean action is associated with an
integer, called its Pontryagin number.

2. It is impossible to continuously deform one gauge field configuration into
another with different Pontryagin numbers, keeping the Euclidean action
finite.

For any other gauge group, SU(3) in particular, there is a theorem by Bott
[18] that says that any mapping of S3 into a semi-simple Lie group G can
be continuously deformed to a mapping into a SU(2) subgroup of G. Hence
everything that we have shown for SU(2) is actually valid for any semi-simple
Lie group G. The only thing that changes is the normalization in the formulae for
the winding number. However, if we use the notion of the Cartan scalar product
on the Lie algebra of G, defining

〈T aT b〉= δab = αTr
(
T aT b

)
(11.32)

then α depends on the representation of the T a, but the formula for the
Pontryagin number is universal

ν =
1

32π2

∫
d4x〈Fμν F̃μν〉. (11.33)

Now with the possibility of many inequivalent classical sectors in the space
of field configurations, we expect the existence of the many different vacuum
configurations, and of course the possibility of quantum tunnelling between
them.

11.3 The Yang–Mills Functional Integral

We begin with the functional integral

I =N
∫
DAe

∫
d4x 1

4g2
〈FμνFμν〉

. (11.34)
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We must fix the gauge, we will choose A3 = 0. We then have the following
observations:

1. It is easy to see that all gauge field configurations may be put into this gauge,
simply take

h=P
(
exp

∫ x3

−∞
dx′3A3(x

1,x2,x′3,x4)
)
. (11.35)

Then
h∂3h

−1 =−hA3h
−1 (11.36)

hence
A′

3 = h(A3+∂3)h
−1 = hA3h

−1−hA3h
−1 = 0. (11.37)

2. The Faddeev–Popov factor is just a constant.

11.3.1 Finite Action Gauge Fields in a Box

We will consider the theory in a finite spatial volume V , but always have in mind
that V →∞ at the end. The same for the Euclidean time T . We must choose
boundary conditions on the walls. We will choose the boundary conditions such
that the bulk equations of motion are not modified because of them. The general
variation of the action is

δS =

∫
d4x

∂L
∂Aμ

δAμ+
∂L

∂∂νAμ
δ∂νAμ

=

∫
d4x

(
∂L
∂Aμ

− ∂L
∂∂νAμ

)
δAμ+∂μ

(
∂L

∂∂νAμ
δAμ

)

=

∫
d3s n̂ν

∂L
∂∂νAμ

δAμ+

∫
d4x

(
∂L
∂Aμ

− ∂L
∂∂νAμ

)
δAμ

=

∫
d3s n̂νFνμδAμ+

∫
d4x

(
∂L
∂Aμ

− ∂L
∂∂νAμ

)
δAμ. (11.38)

Therefore, to not have any contribution from the boundary we must impose

n̂νFνμδAμ = 0 (11.39)

on the boundary. We can decompose δAμ into its normal and tangential
components, δAμ = (δAnorm.)n̂μ + δAtang.μ , where n̂μδA

tang.
μ = 0. Then the

boundary condition Equation (11.39) becomes

n̂νFνμ
(
(δAnorm.)n̂μ+ δA

tang.
μ

)
= n̂νFνμδA

tang.
μ = 0, (11.40)

since Fνμ =−Fμν . Thus we are required to fix the tangential components of the
gauge field on the boundary and, consequently, we impose that the tangential
components may not be varied on the boundary, so that δAtang.μ = 0. We must
also respect the gauge-fixing condition, A3 =0, and we are only interested in field
configurations whose action remains finite as the box size is taken to infinity. We



11.3 The Yang–Mills Functional Integral 215

x3

Figure 11.4. Paths over the boundary defining the gauge group element

will see that these conditions mean that the winding number inside the box
must be a definite integer. We will show that the only vestige of the boundary
conditions is that the winding number inside the box is a definite integer.

Indeed, inside a large box of dimensions (L1,L2,L3,T ), gauge fields that
remain of finite action when the box is taken to infinite size must have the
behaviour

Aμ = g∂μg
−1+ o

(
1

r

)
(11.41)

on the boundary. g∂μg−1 is obtained from the limiting values of the gauge field
configuration, and hence must be continuously defined over the entire boundary.
g is extracted by performing the path-ordered exponential integral, as shown
in Figure 11.4, along a nest of paths that start at an initial point xμ0 on the
boundary at x3 = −L3/2 and move along and cover the boundary to all other
points on the boundary xμ

g(xμ) =P exp

(
−
∫ xμ

x
μ
0

Aν(x
′μ)dx′ν

)
. (11.42)

The integrability condition that the gauge group element obtained from the
path-ordered exponential integral from two different paths is the same, and is
exactly that the field strength vanishes on a surface whose boundary comprises
the two paths. This condition can be easily verified for an infinitesimal loop.
The field strength does indeed vanish for Aμ = g∂μg

−1. Thus g is continuously
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defined over the entire boundary. g is the unique solution of the linear, first-
order differential equation ∂μg

−1 = g−1Aμ (or equivalently ∂μg =−Aμg), up to
an irrelevant, multiplicative, constant gauge group element. Equivalently, the
actual gauge group element defined by Equation (11.41) is also ambiguously
defined up to a constant gauge group element g0; we can simply take g→ gg0
as then the gauge field Aμ = g∂μg

−1 is invariant. The constant gauge group
element is irrelevant, it does not contribute to the action or any winding number.
The integration paths are perpendicular to the x3 direction on the two faces at
x3 =±L3/2, hence g is necessarily independent of x3. Along the other surfaces,
we integrate along lines parallel to the x3 direction, but since A3 = 0 the gauge
group element is unchanged. On the two surfaces at x3 = ±L3/2, the gauge
transformation is not necessarily the same.

Specifying g on the boundary fixes only the tangential components of Aμ since
g only varies along the boundary that corresponds to the directions tangential to
the boundary. The normal component of Aμ must also be given by the form given
in Equation (11.41). However, these then depend on how g varies as we move away
from the boundary into the bulk. The normal components of Aμ do not need to
be specified, since all we insist on is that the boundary values do not contribute
to the equations of motion. Thus we do not have to specify the variation of g as
we move away from the boundary into the bulk. One thing is important, since
the surface of the box is topologically S3, the gauge group element g defined on
the boundary can perfectly well be in a non-trivial homotopy class of Π3(G),
and hence may not necessarily be continuously defined throughout the entire
box. Indeed, g is only defined by the asymptotic behaviour of the gauge field on
and near the boundary.

On the surfaces at x3 =±L3/2, the gauge group element depends, in principle,
non-trivially on the three coordinates (x1,x2,x4) and g(x1,x2,−L3/2,x

4) �=
g(x1,x2,+L3/2,x

4) as in Figure 11.5. But on the surfaces that connect the
boundaries of these two ends, since A3 = g∂3g

−1 =0 from the gauge condition, we
must have that g is independent of x3. Thus the values of g on the boundaries
of the two end surfaces at x3 = ±L3/2, i.e. for at least one of: x1 = ±L1/2,
x2 =±L2/2 or x4 =±T/2, and x3 =±L3/2, are the same. Now we will perform a
gauge transformation by h(x1,x2,x3,x4), which is actually independent of x3 and
defined by the value of the gauge group element at the surface x3 =−L3/2, i.e.

h(x1,x2,x3,x4) = g−1(x1,x2,−L3/2,x
4). (11.43)

Then

Aμ→ h(Aμ+∂μ)h
−1 = g−1(x1,x2,−L3/2,x

4)(Aμ+∂μ)g(x
1,x2,−L3/2,x

4).

(11.44)
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g(x1,x2,+L3/2,x4)

g(x1,x2,–L3/2,x4)

g(x1,x2,x4)

x3

Figure 11.5. Boundary with the gauge group element

But since Aμ = g∂μg
−1+ o

(
1
r

)
for large r, we get

Aμ→
(
g−1

∣∣
x3=−L3/2

)(
g∂μg

−1+ o

(
1

r

)
+∂μ

)(
g|x3=−L3/2

)
. (11.45)

We emphasize that the g appearing inside the middle bracket depends on x3 while
that on the outside is independent of x3 and is equal to its value at x3 =−L3/2.
Evidently we can then write

Aμ = g1∂μg
−1
1 + o

(
1

r

)
, (11.46)

where
g1(x

μ) =
(
g−1

∣∣
x3=−L3/2

)
g(xμ). (11.47)

Evidently, g1 is equal to the identity on the surface at x3 =−L3/2 and also on
the surfaces where x3 changes, −L3/2→ L3/2. On the surface at x3 = L3/2, g1
must then be the identity on the boundary of this surface (for x1 =±L1/2 and
so on), but for interior values of x1,x2 and x4 generally g|x3=L3/2

(x1,x2,x4),
need not be equal to g|x3=−L3/2

(x1,x2,x4). Indeed, if the instanton number of
the gauge field configuration is non-trivial, then g1|x3=L3/2

�= I since the gauge
transformation h of Equation (11.43) cannot change the instanton number. The
instanton number given by the integral Equation (11.31) is gauge-invariant. The
surface at x3 =L3/2 with its boundary identified is also topologically S3, and g1
defined on this surface goes to the identity at its boundary. This means that g1
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is also defined on this surface with its boundary identified as topologically S3.
Thus g1 defines a map from S3→G, which contains all the topological winding
number information of the gauge field defined in the entire box. We want to see
what happens under a change of the boundary conditions. We will implement
this by fractionally changing the size of the box.

We imagine placing the original box in a larger box that is extended along the
x3 direction by Δ with the gauge field configuration also extended into the larger
box. In the larger box, after the corresponding gauge transformation, there will
also be a gauge group element, g2, defined on the surface at x3 =L3/2+Δ, which
is identity on its boundary (and identity on all the other surfaces of the box),
just like g1 on its respective boundary. We will extend the box in such a way
that the fractional change in the volume is negligible. If we choose Δ= (L3)

1/2,
the fractional change in the volume is negligible,

δV

V
=
L1L2L4Δ

L1L2L3L4
=

Δ

L3
= (L3)

−1/2 → 0. (11.48)

Alternatively, the volume of the larger box is

V + δV =L1L2L3L4

(
1+

1

Δ

)
= V

(
1+

1

L
1/2
3

)
→ V when L3→∞. (11.49)

If g1 and g2 are in the same homotopy class, we will show that all gauge
field configurations defined in the smaller box can be extended to gauge field
configurations in the larger box, with negligible change in the action. If g1 and
g2 are not in the same homotopy class, this is not the case: there has to be at
least one more instanton outside the smaller box which implies an increase the
action by at least 8π2/g2, which is the minimum action of one instanton, as
we will see in the next section2. This increase in the action is independent of
the amount of the extension of volume of the box, even if the volume is only
extended fractionally, negligibly. Thus for g1 and g2 in the same homotopy class,
the action changing negligibly means that extending the box is simply equivalent
to a changing boundary condition g1→ g2. The action is invariant, but the only
vestige of the boundary condition is the topological winding number encoded in
g1 or any other homotopically equivalent boundary gauge group element and the
corresponding boundary condition.

Let g(x1,x2,s,x4) with s ∈ [0,1] be a homotopy from g1 to g2:

g(s= 0) = g1, g(s= 1) = g2. (11.50)

Then for

h= h(x1,x2,x3,x4) = g(x1,x2,(x3−L3/2)/Δ,x
4) (11.51)

2 See Equation (11.71).
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for x3 ∈ [+L3/2,L3/2+Δ], and with the gauge field extended as Aμ = h∂μh
−1,

evidently the action does not change. However, the gauge condition A3 = 0 is
not respected. The choice

Aμ =

{
h∂μh

−1 μ �= 3

0 μ= 3
(11.52)

does satisfy the gauge condition, but the action is slightly changed. The increase
in the action is easily calculated, using gauge invariance. We transform the gauge
field of Equation (11.52) by h−1, which gives

Aμ =

{
0 μ �= 3

h−1∂3h μ= 3
. (11.53)

Then, integrating only over the extension,

SE =−
∫
d4x

1

4g2
〈FμνFμν〉=−

∫
d4x

1

4g2
〈Fμ3Fμ3〉. (11.54)

Then A3 = g−1∂sg∂3

(
x3−L3/2

Δ

)
=

(
g−1∂sg

)
1
Δ ∼ 1

Δ , and consequently

Fμ3 = ∂μA3−∂3Aμ = ∂μA3 ∼
1

Δ
(11.55)

as the commutator term vanishes. Thus 〈FμνFμν〉 ∼ 1
Δ2 . But the integral∫ L3/2+Δ

L3/2

d4x∼Δ, (11.56)

which implies that the action also changes by a negligible amount

δSE ∼
1

Δ
= (L3)

−1/2 → 0. (11.57)

Hence a change in the boundary conditions that preserves the winding number
is just a surface effect, not a volume effect. The action is invariant. Therefore,
only the winding number remains, which is defined by the gauge group element
g(x1,x2,L3/2,x

4) which defines a map S3 →G.
Now suppose we decided to choose a different boundary condition, not the one

that fixes the tangential components of the gauge field on the boundary but some
arbitrary, other boundary condition. We will still work with the gauge condition
A3 = 0. The condition that the action be finite still imposes that

Aμ = g∂μg
−1+ o

(
1

r

)
(11.58)

and nothing obstructs from performing the x3 independent gauge transformation
that gives g̃(x1,x2,x4) on the end surface at x2 = L3/2, in the same way
as before. We will compare gauge field configurations in this gauge. But
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now g̃ will not correspond to any such gauge group element obtained when
the boundary conditions fixed the tangential components of the gauge field,
although the homotopy class of g̃ is fixed by the winding number. Thus gauge
field configurations giving rise to g̃ would not be included in the subset of
configurations that satisfy the boundary conditions on the tangential components
of the gauge field that we have considered. However, the arguments given above
show that, although we do not get the exact gauge field configurations with
different boundary conditions, we do get configurations that are arbitrarily close,
by small deformations near the end at x3 = L3/2. Indeed, any given g̃ can be
obtained by making changes to the gauge field configuration only in the extended
part of the box, as we did when defining the homotopy from g1 to g2, now we will
simply consider the homotopy from g1 to g̃. Thus all gauge field configurations
apart from a small difference in the extended portion of the box are permitted by
our boundary conditions, and this difference gives negligible change for a large
enough box.

11.3.2 The Theta Vacua

Therefore, for a large enough box, we can simply forget the boundary conditions,
but impose that all configurations in the functional integration correspond to
those of a fixed winding number n.

F (V,T,n)≡N
∫
DAe−SEδνn, (11.59)

where DA=D(A1,A2,A4). F (V,T,n) is a matrix element between an initial state
and a final state that are determined by the boundary conditions. For T1 and T2
taken very large,

F (V,T1+T2,n) =
∑

n1+n2=n

F (V,T1,n1)F (V,T2,n2). (11.60)

This is because the winding number

ν =
1

32π2

∫
d4x〈Fμν F̃μν〉 (11.61)

is an integral of a local density 〈Fμν F̃μν〉. This means that one way to put a
configuration of winding number n into the box with Euclidean time length
given by T1+T2 is to put ν =n1 into the first part of the box and ν =n2 into the
second part. Such configurations neglect configurations with significant action
on the border between the two parts; however, we expect that this contribution
is negligible for large T1 and T2. Normally a matrix element for T = T1+T2 that
gets a contribution from only one energy state follows a multiplicative law. The
convolutive law of combination of the matrix elements above, Equation (11.61),
can be simply disentangled into the more familiar multiplicative law by a simple
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Fourier transformation. Defining

F (V,T,θ) =
∑
n

einθF (V,T,n)≡N
∫
DAe−SEeiνθ (11.62)

implies
F (V,T1+T2,θ) = F (V,T1,θ)F (V,T2,θ). (11.63)

This implies the existence of states such that

F (V,T,θ) =N ′〈θ|e−HT |θ〉, (11.64)

where the states |θ〉 are eigenstates of the Hamiltonian. Our field theory is now
surprisingly separated into a family of sectors enumerated by θ. In each sector we
use the same action except we add an extra term proportional to ν = θ〈Fμν F̃μν〉.

We can obtain all of these results from the functional integral and from the
possible instanton solutions to the Euclidean equations of motion. If there is
a solution for ν = 1, all the results follow. Suppose such a solution exists with
action S0. Then translation invariance gives at least four zero modes, and

〈θ|e−HT |θ〉=N ′
∫
DAe−SEeiνθ

=
∑
n,n̄

((
Ke−S0

)n+n̄
(V T )n+n̄ei(n−n̄)θ

)
/n!n̄!

= e2KV Te
−S0 cosθ (11.65)

where K is the usual determinantal factor and a sum has been done over n
instantons and n̄ anti-instantons. Then we can read off the energy of the |θ〉
states,

E(θ) =−2V K cosθe−S0 . (11.66)

We can also compute the expectation value

〈θ|〈Fμν F̃μν〉|θ〉=
1

V T

∫
d4x〈θ|〈Fμν F̃μν〉|θ〉

=
32π2

∫
DA νe−SEeiνθ

V T
∫
DAe−SEeiνθ

=
−32π2i

V T

d

dθ
ln

(∫
DAe−SEeiνθ

)

=
−32π2i

V T

(
−2K cosθe−S0

)
V T

=−64π2iKe−S0 sinθ. (11.67)

The answer is imaginary, but this is correct. Since 〈Fμν F̃μν〉= 〈F12F34+perm.〉
in Euclidean space, analytic continuation to Minkowski space yields, for example,
Fj4 → iFj0. Hence the imaginary result in Euclidean space corresponds to the
correct, real result in Minkowski space. Everything depends on θ, it is a physical
parameter.



222 Quantum Chromodynamics (QCD)

11.3.3 The Yang–Mills Instantons

The instantons do actually exist as solutions of the Euclidean equations of
motion. We can prove that the action in the single instanton sector is bounded
from below, and when the bound is saturated, the configuration must satisfy the
equations of motion. Consider the inequality which is evidently satisfied

−
∫
d4x〈(Fμν ± F̃μν)(Fμν ± F̃μν)〉 ≥ 0, (11.68)

note that the minus sign is there because our gauge fields and field strengths are
anti-hermitean. This implies

−
∫
d4x

(
〈FμνFμν〉+ 〈F̃μν F̃μν〉± 2〈Fμν F̃μν〉

)
≥ 0. (11.69)

But the first two terms are equal, hence choosing the ± sign appropriately, we
have

−
∫
d4x〈FμνFμν〉 ≥

∣∣∣∣
∫
d4x〈Fμν F̃μν〉

∣∣∣∣ . (11.70)

But the right-hand side is just the instanton number while the left-hand side is
proportional to the action, thus we find

SE ≥
8π2

g2
|ν| (11.71)

as we had promised to show earlier. The equality is attained for

Fμν =±F̃μν , (11.72)

where we get the + sign for ν ≥ 0 and the minus sign for ν ≤ 0. If we can find the
solutions of Equation (11.72), we automatically get solutions of the full equations
of motion, as the action is minimal for such configurations and hence, must be
stationary. A bonus is that Equation (11.72) as a differential equation is now
a first-order equation, instead of a second-order equation, and is consequently
easier to solve.

For ν = 1 we will look for a solution that asymptotically behaves as

Aμ = g(1)∂μ

(
g(1)

)−1

+ o

(
1

r

)
, (11.73)

where g(1) is the gauge group element defined in Equation (11.19). g(1) is
spherically symmetric, hence we make the ansatz

Aμ = f(r)r2g(1)∂μ

(
g(1)

)−1

=−iAiμσi. (11.74)

Using a double index notation, for the gauge group SU(2) seen as the diagonal
subgroup of SO(4), we can write

Aiμ =
1

2

(
A0i
μ +

1

2
εijkAjkμ

)
(11.75)
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for anti-symmetric SO(4)-valued gauge fields Aαβμ =−Aβαμ . An easy calculation
with g given in Equation (11.19) gives

Aαβμ = f(r)(xαδμβ −xβδμα). (11.76)

Then a straightforward calculation gives

Fαβμν = (2f − r2f2)(δμαδνβ − δμβδνα)+
(
f ′

r
+ f2

)
× (xαxμδνβ −xαxνδμβ +xβxνδμα−xβxμδνα). (11.77)

The condition of self duality, Fμν = F̃μν , is automatically satisfied for the first
term (δμαδνβ − δμβδνα) = εμνστ εσταβ

1

2
ελρμν(δμαδνβ − δμβδνα) =

1

2
ελρμνεμνστ εσταβ = ελρστ εσταβ (11.78)

but not so for the second term
1

2
ελρμν(xαxμδνβ −xαxνδμβ +xβxνδμα−xβxμδνα) = ελρμβxαxμ− ελρμαxβxμ.

(11.79)
Thus we obtain a self dual field strength by imposing

f ′

r
+ f2 = 0. (11.80)

This integrates trivially as

f(r) =
1

r2+λ2
, (11.81)

where λ is an arbitrary integration constant. Thus

Aμ =
r2

r2+λ2
g(1)∂μ

(
g(1)

)−1

. (11.82)

We will find that there exist eight parameters corresponding to symmetries of
the action that are broken by the solution. These correspond in principle to scale
transformations, rotations, translations, special conformal transformations and
global gauge transformations. Scale transformations correspond to changing λ.
Note that the global gauge transformations preserve the gauge-fixing conditions
A3 = 0. Rotations and global gauge transformations are tied together, the
solution is invariant under the diagonal subgroup of simultaneous rotations
and global gauge transformations by the same amount. Note that the rotation
group SO(3) and the global gauge group SU(2) are essentially the same
group. Special conformal transformations can be obtained by translations and
gauge transformations and hence do not give rise to new solutions. This in
the end leaves eight parameters, coming from one scale transformation, four
translations and three rotations (or equivalently global gauge transformations).
For a configuration on n instantons and n̄ anti-instantons, the number of
parameters is simply 8(n+ n̄).
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11.4 Theta Vacua in QCD

The existence of the instanton solutions means that there exist different,
inequivalent classical ground states, between which the instantons mediate
quantum tunnelling. We have not explicitly seen these vacuum configurations;
to uncover them, it is more convenient to use the temporal gauge, i.e. A0 = 0.
As, in principle, everything we do does not depend on the gauge choice, we are
free to take any gauge that we want. The dynamical variables in this gauge are
just the spatial components of the gauge field Ai.

In Minkowski space, the Hamiltonian is given by

H=

∫
d3x

1

2

(
(Eai )

2
+(Bai )

2
)
, (11.83)

where the electric and magnetic fields are given by

Eai = Ȧai

Bai =
1

2
εijk

(
∂jA

a
k−∂kAaj + fabcAbjAck

)
. (11.84)

In this gauge, since there is no field A0, the equation of motion that usually
comes from varying with respect to it is missing. This is the Gauss law

Ga = ∂iȦ
a
i + f

abcAbi Ȧ
c
i ≡ (DiEi)

a
= 0. (11.85)

However, in this gauge the Hamiltonian is invariant under time-independent,
spatial gauge transformations. The corresponding conserved charge is actually a
local expression, exactly the Gauss law operator, Ġa = 0, i.e.

[H,Ga] = 0. (11.86)

Thus we must impose this constraint on the initial values of the fields, then
since the time evolution preserves the constraint, the Gauss law operator will be
preserved for all time.

Now in the quantum theory, eigenstates of the field operator Aai (x) correspond
to the states |Aai (x)〉 and the amplitude for a transition between two such states
is given by the functional integral

〈Ãai (x)|e−iHT |Aai (x)〉=
∫ Ãa

i (x)

Aa
i (x)

D (Aai (�x(t)))e
−i
2g2

∫ T
0 dtd3x

(
(Ea

i )
2
+(Ba

i )
2
)
,

(11.87)
where the functional integral is over all time histories Aai (�x(t) that interpolate
between the initial and final configurations. In the quantum theory, however, the
Gauss law constraint is imposed as a constraint on the Hilbert space, a physical
state in the Hilbert space of all states is one that is annihilated by the Gauss
law operator

Ga(x)|Ψ〉= (DiEi)
a|Ψ〉= 0, (11.88)
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the states |Aai (x)〉 do not satisfy this constraint. We wish to characterize the
states that do satisfy the Gauss constraint.

Under a gauge transformation

Ai→UλAiU−1
λ + iUλ∂iU−1

λ (11.89)

with Uλ = eiλ
aTa

where λ(�x) is independent of t. Defining the corresponding
conserved charge

Qλ =

∫
d3xȦai

(
∂iλ

a+F abcAbiλ
c
)

=−
∫
d3xλa(�x)(DiEi)

a (11.90)

integrating by parts and assuming λa → 0 for |�x| → ∞. Then the gauge
transformation can be effected by Qλ as

Ai�x,t)→A′
i�x,t) = e−iQλAi�x,t)e

iQλ

=Ai�x,t)− i[Qλ,Ai�x,t)] for infinitesimal λ

=Ai�x,t)− i
∫
d3y

×
[
Ȧai (�y,t)

(
∂iλ

a(�y,t)+ fabcAbi (�y,t)λ
c(�y,t)

)
,Ai(�x,t)

]
=Ai�x,t)− (Diλ)

a�x,t)T a (11.91)

using the equal time canonical commutator [Ȧai (�y,t)),A
b
j(�x,t))] = δabδ3(�x− �y)

and that the time variable in the integral expression for Qλ can be chosen
arbitrarily since it is in fact time-independent and here conveniently chosen
equal to the time variable t in Ai(�x,t). Thus Qλ generates the infinitesimal gauge
transformation corresponding to λ, and physical states should be invariant under
the action of this gauge transformation, i.e.

eiQλ |Ψ〉= |Ψ〉 (11.92)

for λ falling off sufficiently fast as |�x| →∞. But

eiQλ |Aai (x)〉= |Uλ(Ai+ i∂i)U−1
λ 〉, (11.93)

where Uλ = eiλ
a(�x)Ta

. Therefore, a physical state will be obtained if we sum over
all states that are related by a gauge transformation

|Ai(�x)〉physical =
∫
Dλ′a(�x)eiQλ′ |Aai (x)〉 (11.94)

integrating over a dummy field variable λ′. This is obvious since the integration
measure is invariant under translation, hence

eiQλ |Ai(�x)〉physical = eiQλ

∫
Dλ′a(�x)eiQλ′ |Aai (x)〉=

∫
Dλ′a(�x)eiQλ+λ′ |Aai (x)〉

=

∫
Dλ′a(�x)eiQλ′ |Aai (x)〉= |Ai(�x)〉physical. (11.95)
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Now what are the possible classical ground-state configurations? Such
configurations must have H= 0. This requires Eai = 0 and Bai = 0. A vanishing
magnetic field means that the gauge field is pure gauge Ai = g∂ig

−1 and a
vanishing electric field means Ȧi = 0, which implies ġ = 0. Thus for a classical
vacuum the gauge field must be Ai = g(�x)∂i(g(�x))

−1, and then we must
implement gauge invariance as in Equation (11.94). Writing a corresponding
state as |g(�x)〉, for a gauge transformation

|g(�x)〉→ eiQλ |g(�x)〉= |Uλg(�x)〉= |g̃(�x)〉. (11.96)

Since λ→ 0 for |�x| →∞, g̃ and g must be homotopically equivalent, i.e. Uλ is
homotopically trivial (evidently, just switch λ→ 0). Hence a potential vacuum
state |0〉 is given by

|0〉=
∑

g∈one homotopy class

|g(�x)〉. (11.97)

Without loss of generality, for the state |0〉 we choose the equivalence class
corresponding to all gauge group elements that are homotopically trivial, i.e.
in the same homotopy class as the constant, identity gauge transformation g= I

and are generated by multiplication by Uλ.

|0〉=
∑

g∈trivial homotopy class

|g(�x)〉. (11.98)

But what if we define a different vacuum, obtained from |ḡ(�x)〉

|0〉=
∑

g∈ homotopy class of ḡ

|g(�x)〉 (11.99)

for some other gauge group element ḡ which is not in the trivial homotopy
class. ḡ must go to identity at infinity. If ḡ does not go to identity at infinity,
and instead goes to some other constant gauge group element, g0, then such
a state is irrelevant. The matrix element between the state so defined and the
state |0〉 must necessarily vanish since we must integrate over configurations, in
Equation (11.87), which are spatially constant at infinity but change in time from
I to g0. Such configurations will have a non-zero Ȧi over an infinite spatial volume
(at infinity), for which the action is infinite and consequently the transition
amplitude vanishes. Thus ḡ defines an element of the homotopy classes that
need not be the trivial class. Evidently the state |0〉 is also a vacuum state; the
corresponding classical field configurations that we integrate over Ai= g∂ig

−1 in
Equation (11.94), are all of zero energy.

All gauge group elements that we are considering here satisfy lim|�x|→∞ g(�x)→
I. Thus, topologically, all gauge group elements are defined on IR3 with the point
at infinity identified, topologically S3. Each g(�x) defines a mapping from S3→G,
which fall into the homotopy classes of Π3(G) = Z. We can index the homotopy
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classes by an integer n,

g(0) = I

g(1) = e
iπ 
x·
σ

(|
x|2+λ2)1/2

g(n) =
(
g(1)

)n
. (11.100)

Correspondingly, we can enumerate the classical vacua with the integer n

|n〉=
∑

gof winding numbern

|g〉 (11.101)

and the winding number is given by the formula

n=− 1

24π2

∫
d3xεijkTr

(
g∂ig

−1g∂jg
−1g∂kg

−1
)
. (11.102)

If we denote by R, the operator that implements the gauge transformation g(1),
then

R|n〉= |n+1〉. (11.103)

Note that g(1) �= eiλ
aTa

with lim|�x|→∞λa→ 0, hence gauge invariance does not
impose that the vacuum state be invariant under action of R. But physically we
would imagine that gauge invariance would require at least that

R|Ψ〉= eiθ|Ψ〉, (11.104)

since we cannot physically measure an overall phase factor. A vacuum state that
satisfies Equation (11.104) is called a theta vacuum, and is denoted by |θ〉.

There is no physical principle that can predict θ. However, θ must be time-
independent since [H,R] = 0. θ must also be gauge-invariant. We say that θ labels
the superselection sectors of the Hilbert space and the Hamiltonian is diagonal,
block by block, for each superselection sector indexed by θ. We can explicitly
construct the state labelled by θ by a simple Fourier sum

|θ〉=
∞∑

n=−∞
einθ|n〉. (11.105)

These are the physical vacua of QCD, gauge invariant under trivial gauge
transformations, and invariant up to an overall phase under topologically non-
trivial gauge transformations. In the next section we will see how instantons give
rise to these theta vacua.

11.4.1 Instantons: Specifics

In this section we will complete the specifics of the instanton solutions, some of
which we have already used. The solution from Equation (11.75) is given by the



228 Quantum Chromodynamics (QCD)

gauge field configuration for gauge group SU(2) (we will put all indices down for
convenience)

Aαβμ =
1

r2+λ2
(xαδμβ −xβδμα). (11.106)

The corresponding field strength is

Fαβμν =
r2+2λ2

(r2+λ2)2
(δμαδνβ − δμβδνα). (11.107)

Equivalently in matrix form

Aμ =
r2

r2+λ2
g(1)∂μ

(
g(1)

)−1

. (11.108)

Obviously, as r → ∞, the field strength vanishes quadratically as ∼ 1/r2.
Thus the action of the instanton is located in an essentially compact region of
Euclidean spacetime. This was the reason for the name “instanton”; if we scan up
through Euclidean time, there is nothing at the beginning, then, for an instant,
the instantons turn on and off in a localized spatial region, and then, again, there
is nothing.

The instanton solution is rotationally invariant when compensated by a global
gauge transformation. This is evident for the field strength Fαβμν . For the gauge
field we must have the same. A rotation is defined by

xμ→ x′μ =Rμνxν (11.109)

with
RμνRμσ = δνσ, (11.110)

since xμxμ→RμνxνRμσxσ =RμνRμσxνxσ. For infinitesimal transformations, we
have Rμν = δμν +Λμν , where Λμν is infinitesimal. Then

xμ→ x′μ = xμ+Λμνxν (11.111)

and
(δμν +Λμν)(δμσ+Λμσ) = δνσ+Λσν +Λνσ = δνσ, (11.112)

which requires
Λσν +Λνσ = 0 (11.113)

or equivalently, Λσν =−Λνσ. Then the gauge field transforms as

Aμ(x)→A′
μ(x

′) =Aμ(x)+ (Λμν + δμνΛστxσ∂τ )Aν(x) (11.114)

thus the gauge field Aμ(x) = r2

r2+λ2
g∂μg

−1 will transform as

Aμ(x)→A′
μ(x

′) =Aμ(x)+
r2

r2+λ2
(
Λμνg∂νg

−1+(Λστxσ∂τg)∂μg
−1

+g∂μ(Λστxσ∂τg
−1)− gΛμτ∂τg−1

)
=

r2

r2+λ2
(
g(x′)∂μg−1(x′)

)
(11.115)
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using that r is invariant and g(x′) = g(x) + Λστxσ∂τg to first order. Then
explicitly with g(x) = g1(x) = 1

r (x
4+ ixiσi)

g(x′) =
1

r
(x4+ ixiσi)+

1

r
Λστxσ∂τ (x

4+ ixiσi). (11.116)

Then with Λi4 = λi and Λij = εijkαk we get

g(x′) = g(x)+
1

r
λi(xi∂4−x4∂i)(x4+ ixjσj)

+
1

r
εijkαkxi∂jixlσl

= g(x)+
1

r
λi(xi− ix4σi)+

i

r
εijkαkxiσj

= g(x)+
1

r
(x4(−iλiσi)+xi(λi+ iεijkσjαk))

=
1

r
(x4(1− iλiσi)+xi(iσi+λi+ iεijkσjαk))

=
1

r
(1− iγiσi)(x4+ ixjσj)(1+ iβkσk)

(11.117)

where λi = γi− βi and αi = γi+ βi, since, continuing the algebra to first order
we get

g(x′) = =
1

r
(x4(1− i(γi−βi)σi)+xi(iσi+ γjσjσi−βjσiσj))

=
1

r
(x4(1− i(γi−βi)σi)+xi(iσi+(γi−βi)+ iεijk(γj +βj)σk) (11.118)

confirming
g(x′) = (1− iγiσi)g(x)(1+ iβiσi) = a−1g(x)b, (11.119)

where a = (1 + γiσi) while b = (1 + iβiσi) to first order. Then from
Equation (11.115)

A′
μ(x

′) =
r2

r2+λ2
a−1gb∂μ(b

−1g−1a) = a−1Aμ(x)a. (11.120)

Thus the solution is clearly invariant under an arbitrary choice of b. Thus the
instanton is invariant under an arbitrary choice of b, but it is not invariant
under a.

This should give rise to three zero modes, it does, but in a slightly more
complicated way. The important point is that rotations can be compensated by
global gauge transformations. The rotation group SO(4) = SOa(3)×SOb(3) is
explicitly broken to the SOa(3) subgroup. The instanton is invariant under the
SOb(3) subgroup and it does not give rise to new solutions or equivalently to zero
modes. In principle, this subgroup can be used to characterize the representations
under which the physical states of the theory transform, exactly as, for example,
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the invariance of a physical system under spatial rotations tells us that the
physical states of the system must transform according to representations of the
rotation group. The broken subgroup is SOa(3), which should give rise to new
solutions and zero modes, but its transformation can be exactly compensated by
a transformation of the group of global gauge transformation SOgl.(r), which is
also SU(2) = SOgl.(3). Under a global gauge transformation

A′
μ(x

′)→ hA′
μ(x

′) h−1 = ha−1Aμ(x) ah
−1 (11.121)

hence h = a is a symmetry of the solution. Therefore, the symmetry group
SOgl.(3) × SOa(3) is in fact broken to the diagonal subgroup SOd(3),
corresponding to h = a, which remains a symmetry of the instantons. The
anti-diagonal subgroup SOad(3), with h = a−1, is broken by the instanton
configuration, and gives rise to exactly three zero modes. Thus the rotation
group is broken to SOa(3)

SO(4) = SOa(3)×SOb(3)→ SOa(3), (11.122)

while the group of global gauge transformations SU(2) = SOgl.(3) is mixed with
the rotation group

SOgl.(3)×SOa(3) = SOd(3)×SOad(3) (11.123)

and the diagonal subgroup remains an symmetry of the solution, while the anti-
diagonal subgroup gives rise to three zero modes.

11.4.2 Transitions Between Vacua

The instantons are perfectly suited to describing quantum tunnelling transitions
between the |n〉 vacua. The solution can be put into the gauge A4 = 0 by the
straightforward gauge transformation Aμ→ h(Aμ+∂μ)h

−1 with

h=P
(
ei
∫ x4−∞ dx′4A4(x

′
4)
)
. (11.124)

Then at τ =−∞ the gauge field is

Ai|τ=−∞ = 0 (11.125)

but at τ =∞ we have
Ai|τ=∞ = g∂ig

−1, (11.126)

where

g = e
−iπ 
x·
σ

(x2+λ2)1/2 . (11.127)

The gauge field is given in slightly different notation by ’t Hooft [112],

Aaμ = 2
xν

x2+λ2
ηaμν , (11.128)
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where ηaμν is the ’t Hooft tensor

ηaμν = ε4aμν +
1

2
εabcεbcμν (11.129)

with corresponding field strength

F aμν = 4
λ2

(x2+λ2)2
ηaμν . (11.130)

This configuration corresponds to a change in the winding number between τ =
−∞ and τ =∞

Δn=
−1
24π2

∫
d3xεijkTr

(
g∂ig

−1g∂jg
−1g∂kg

−1
)∣∣∣∣τ=∞

τ=−∞

=
1

32π2

∫
d3xG4

∣∣∣∣τ=∞

τ=−∞

=
1

32π2

∫
d4x∂τG4

=
1

32π2

∫
d4x(∂μGμ−∂iGi) (11.131)

where Gμ was defined in Equation (11.27). The spatial components Gi are, using
A4 = 0,

Gi ∼ εiμ0λ(Aμ∂νAλ+
2

3
AμAνAλ) = εiμ0λAμȦλ = εijkAjȦk, (11.132)

which vanish as |�x| → ∞ since the electric field Ȧk = Ek → 0 so that the
subtracted spatial divergence gives no contribution from the surface at infinity.
Thus we find

Δn=
1

32π2

∫
d4x∂μGμ =

1

32π2

∫
d4x〈Fμν F̃μν〉= 1. (11.133)

Thus the instanton mediates transitions with the vacua |0〉→ |1〉.

11.5 Instantons and Confinement

We will now consider quantum corrections that come from the Gaussian
functional integral that should be performed about the instanton configuration.
We must first extract the zero modes. For the single instanton, there exist, in
fact, eight. In principle the amplitude 〈1|e−HT |0〉 is given by

〈1|e−HT |0〉 ≡ Z(T ) = e−S0
∫
D(Qaμ)e

− 1
2

∫
d4xQ·

(
δ2

δQ2 L(Aa
μ)

)
·Q
, (11.134)

where Qaμ is the fluctuation that gives rise to the quantum corrections. The zero
modes coming from translations and scale transformations can be eliminated by
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using a Faddeev–Popov method. We insert one into the integral

1 = S5
0

∫
d4Rδ4

(∫
d4x (L(Aaν(x))(xμ−Rμ))

)∫ ∞

0

d(λ2)

δ

(∫
d4x(L(Aaν(x))((x−R)2−λ2))

)
. (11.135)

The delta functions choose the values of R and λ as

δ4
(∫

d4x (L(Aaν(x))(xμ−Rμ))
)
= δ4

((∫
d4xL(Aaν(x))

)
(R̄μ−Rμ)+ · · ·

)

=
δ4(Rμ− R̄μ)(∫
d4xL(Aaν(x))

)4 =
δ4(Rμ− R̄μ)

S4
0

(11.136)

with the obvious definition

R̄μ =

∫
d4x (L(Aaν(x))xμ)∫

d4xL(x) . (11.137)

Furthermore,

δ

(∫
d4x(L(Aaν(x))((x−R)2−λ2))

)
=
δ(λ2− λ̄2)∫
d4xL(x) =

δ(λ2− λ̄2)
S0

(11.138)

with

λ̄2 =

∫
d4xL(Aaν(x))(x−R)2∫

d4xL(x) (11.139)

and here Rμ could be replaced with R̄μ because of the first delta function.
Evidently, R̄ depends on what gauge field Aaν(x) is chosen: it should correspond
to an instanton, and it contains the data on where the instanton is and its scale,
λ. Then starting with Z(T ) slightly differently

Z(T ) = S5
0

∫
d(λ2)

∫
d4R

∫
D(Qaμ)e

−SE ×

×δ4
(∫

d4x
(
L(Qaμ(x))(xμ−Rμ)

))
δ

(∫
d4x(L(Qaμ(x))((x−R)2−λ2))

)
.

(11.140)

First we perform a translation and a conformal scaling

xμ→ x′μ = λxμ+Rμ

Qaμ(xν)→ λQaμ(x
′
ν). (11.141)

The action is invariant under a translation and conformal scaling (actually under
all special conformal transformations) with

L(x) =− 1

4g2
Tr (∂μQν(x)−∂νQμ(x)+ [Qμ(x),Qν(x)])

2 (11.142)
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we have

d4xL(λQ(λx−R)) =−λ−4d4x′Tr
(
λ∂′μλQν(x

′)−λ∂′νλQμ(x′)

+λ2[Qμ(x
′),Qν(x′)]

)2
/4g2

=−d4x′Tr
(
∂′μQν(x

′)−∂′νQμ(x′)+ [Qμ(x
′),Qν(x′)]

)2
/4g2

= d4x′L(x′) (11.143)

and we will simply rename x′→x. Then we will change the functional integration
variable

Qaμ→ (Aaμ+Q
a
μ)(xν), (11.144)

where Aaμ is a classical field, an instanton solution. Expanding the action to
second order in Qaμ (the first-order variation vanishes after one integration by
parts, as Aaμ satisfies the equations of motion), we get

Z(T ) = S5
0

∫
d(λ2)

∫
d4R

∫
D(Qaμ)e

−∫ d4xL(Aa
μ(x))+

1
2
Q· δ

2

δQ2 L(Aa
μ(x))·Q×

×δ4
(∫

d4x (L(Aμ+Qμ)(λxμ))
)
δ

(∫
d4x(L(Aμ+Qμ)(λ2x2−λ2))

)

= S5
0

∫
d(λ2)

λ2

∫
d4R

λ4

∫
D(Qaμ)e

−∫ d4xL(Aa
μ(x))+

1
2
Q· δ

2

δQ2 L(Aa
μ(x))·Q×

×δ4
(∫

d4x (L(Aμ+Qμ)(xμ))
)
δ

(∫
d4x(L(Aμ+Qμ)(x2− 1))

)
.

(11.145)

Now we choose the instanton configuration to be centred on the origin and of
unit scale size, i.e. ∫

d4xL(Aν)xμ =
∫
d4xL(Aν)(x2− 1) = 0. (11.146)

Then expanding in the first-order Taylor expansion of the action in Qν , and using
the notation DA

σ to be the covariant derivative with respect to the classical field
Aμ, DA

σ ·= ∂σ ·+[Aσ, ·] and the corresponding field strength FAστ , we have

L(Aν +Qν) = L(Aν)−
1

g2
Tr

(
FAστD

A
σQτ

)
(11.147)

we get in the delta functions

δ4
(∫

d4x
1

g2
Tr

(
FAστD

A
σQτxμ

))
= δ4

(∫
d4x

1

g2
Tr

(
FAμτQτ

))
(11.148)

and

δ

(∫
d4x

1

g2
Tr

(
FAστD

A
σQτ (x

2− 1)
))

= δ

(
−2

∫
d4x

1

g2
Tr

(
FAστQτxσ

))
.

(11.149)
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Thus the delta functions impose the conditions∫
d4xTr

(
FAμτQτ

)
= 0∫

d4xTr
(
xσF

A
στQτ

)
= 0. (11.150)

But these conditions are exactly the conditions that the quantum fluctuation
Qν be orthogonal to the zero modes corresponding to translations and scale
transformations, respectively. Indeed, for translations we simply transform the
classical solution Aτ by the broken symmetry, translation in the xσ direction
generated by a simple partial derivative in that direction. However, this is
not gauge-invariant, hence we also perform a gauge transformation, δσAτ =

−DA
τ (Aσ), for an infinitesimal gauge transformation, to give

ψtr.στ = ∂σAτ −DA
τ (Aσ) = FAστ . (11.151)

The normalized zero mode is ψ̂tr.στ =
1√
Ntr.

ψtr.στ , with N tr. defined by

N tr. =−
∫
d4xTr(ψtr.στ )

2 =−
∫
d4x

∑
τ

σ fixed

Tr
(
FAστF

A
στ

)

=−1

4

∫
d4x

∑
σ,τ

Tr
(
FAστF

A
στ

)
= g2S0. (11.152)

We wish to keep track of powers of g and hence we note that the normalization
factor does not have any powers of g since S0∼ 1/g2. For the scale transformation,
the infinitesimal generator is (1+ xσ∂σ)Aτ and then the infinitesimal variation
of the gauge field, made gauge-invariant, gives the zero mode

ψsc.τ = (1+xσ∂σ)Aτ −DA
τ (xσAσ) = xσF

A
στ . (11.153)

A simple analysis also shows that the normalized zero mode, ψ̂sc.τ =ψsc.τ /
√
Nsc.,

will not have have any net powers of g.
The delta functions impose that the integration over Q should be restricted to

the function space that is orthogonal to these zero modes. But in writing Q in a
sum over normal modes there is a subtlety involved. We should add a factor of
g in the expansion

Qτ =Ctr.σ g
FAστ√
N tr.

+Csc.g
xσF

A
στ√

Nsc.
+
∑
ξ

Cξgψ̂ξτ , (11.154)

where ψ̂ξτ are the non-zero modes. The integration measure is the usual infinite
product

D(Q) =
∏
σ

dCtr.σ√
2π

dCsc.√
2π

∏
ξ

dCξ√
2π

(11.155)
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as long as the same conventions are followed in the numerator and the
denominator for the functional integral. The reason for the extra factor of g comes
from the exponent in the integrand. We examine the exponent more carefully,∫
d4x

1

2
Q· δ

2

δQ2
L(Aaμ(x))·Q=− 1

g2
1

2

∫
d4xTr

(
Qμ

(
DA
ν D

A
μ −DA

σD
A
σ δμν −FAμν

)
Qν

)
.

(11.156)
The using the expansion in Equation (11.154) with its extra factor of g, and
where ψ̂ξμ explicitly are the normalized non-zero eigenfunctions of the operator
of the second-order variation

(
DA
ν D

A
μ −DA

σD
A
σ δμν −FAμν

)
with eigenvalues εξ,

we get ∫
d4x

1

2
Q · δ

2

δQ2
L(Aaμ(x)) ·Q=

1

2

∑
ξ

εξ
(
Cξ

)2
. (11.157)

Notice that εξ contains no powers of g, nor does the determinant that ensues
after integrating over the Cξ and the zero modes simply drop out in the exponent
and the delta functions control the integration over their coefficients. Then the
delta function for translations gives

δ4
(

1

g2

∫
d4xFAστg

FAστ√
N tr.

Ctr.σ

)
= δ4

(√
N tr.

g
Ctr.σ

)
=

(
g√
N tr.

)4

δ4(Ctr.σ ).

(11.158)
The delta function for scale transformation also gives a factor of g√

Nsc. , giving
an overall factor of g5. Thus writing a prime as usual to indicate the restriction,
we get

Z(T ) = e−S0S5
0g

5 1

(
√
N tr.)4

1

(
√
Nsc.)

∫
d(λ2)

λ2

∫
d4R

λ4

∫

D′(Qaμ)e
−∫ d4x 1

2
Q· δ2

δQ2 L(Aa
μ(x))·Q (11.159)

with

S0 =
8π2

g2
. (11.160)

The overall power of g is then g−5 due to the five zero modes that we have
treated. There are in fact more zero modes associated with the global gauge
transformations and the rotation group [112, 98, 24, 12, 65]. As we have seen for
SU(2), the diagonal subgroup of these two is unbroken, but the anti-diagonal
subgroup is broken with three broken generators. We will not analyse these
explicitly, it will suffice to say that they give exactly another power of g−3,
for the gauge group SU(2) giving the total, overall factor of g to be g−8. In
the case of interest, QCD, the gauge group is SU(3) with eight generators. We
imagine putting the instanton solution in an SU(2) subgroup of SU(3), but
then one generator always commutes with the SU(2) subgroup. For example, if
we generate the subgroup with λ1,λ2,λ3, then λ8 commutes with these three



236 Quantum Chromodynamics (QCD)

matrices. Thus we find there are only seven broken generators. The SU(2)

subgroup mixes in an identical way with the rotation group as in the case when
the entire group was SU(2). Thus the upshot is there are seven additional zero
modes, which give a factor of g−7 and an overall factor of g−12.

We have computed the contribution of a single instanton to the transition
between the two vacua |0〉 and |1〉. As usual, multi-instanton configurations are
negligible except for those corresponding to well-separated single instantons.

Z(|0〉→ |1〉) =
∞∑

n,n̄=−∞
δn−n̄,1

1

n!n̄!

(∫
d4R

∫ ∞

0

dλ

λ5
g−12e

− 8π2

g2 K

)n+n̄

=
∞∑

n,n̄=−∞
δn−n̄,1

1

n!n̄!

(
V T

∫ ∞

0

dλ

λ5
g−12e

− 8π2

g2 K

)n+n̄
(11.161)

whereK is the determinantal factor including various other normalization factors
and constants independent of g. This result directly generalizes to the amplitude

Z(|m〉→ |m̃〉) =
∞∑

n,n̄=−∞
δn−n̄,m−m̃

1

n!n̄!

(
V T

∫ ∞

0

dλ

λ5
g−12e

− 8π2

g2 K

)n+n̄
(11.162)

and finally to

Z(θ) = 〈θ|e−HT |θ〉

=

∞∑
m,m̃=−∞

eiθ(m−m̃)〈m̃|e−HT |m〉

=
∞∑

m,m̃−∞
eiθ(m−m̃)Z(|m〉→ |m̃〉)

=

( ∞∑
m̃=−∞

)
exp

(
2cosθV T

∫ ∞

0

dλ

λ5
g−12e

− 8π2

g2 K

)
. (11.163)

The infinite, constant prefactor is simply a consequence of the plane wave
normalization of the theta vacuum states.

Then from Equation (11.65) and Equation (11.66) we get the energy of the
ground state

E(θ)/V =−cosθ

∫ ∞

0

dλ

λ5
g−12e

− 8π2

g2 K. (11.164)

We have purposely left the g-dependent factors inside the integration over
λ for a reason, and we have absorbed all constant factors into K. This is
because evaluation of the determinants requires renormalization of the coupling
constant, and renormalization inserts a scale dependence into g and K. The
infinite product of eigenvalues of the operator corresponding to the second
variation of the action in the presence of the instanton, Equation (11.156),
is not rendered finite when divided by the same infinite product but in the
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absence of the instanton. We have to add counterterms with infinite coefficients
so that the divergences are absorbed. Adding the counterterm proportional to
∼ FμνFμν exactly renormalizes the value of the coupling constant g. However,
the renormalization inserts a dimensionful mass scale, M , into the theory, which
fixes the physical, finite, observed value of the coupling constant at that scale.
The coupling constant obeys the equation

1

g2(λ)
=

1

g2(M)
− 11

8π2
ln(λM)+ o(g2), (11.165)

where the λ dependence comes from the simple fact that g is a dimensionless
coupling constant, since the only dimensionful parameter that exists, apart from
the renormalization scale M , is the instantons scale λ, the two must come
together in the dimensionless combination λM . The factor − 11

8π2
is the famous

result of asymptotic freedom for the beta function of QCD, which is a long,
hard calculation in perturbation theory [57, 102], which we will not describe
here. Asymptotic freedom means that as the scale λ gets smaller λ� 1/M , and
the instanton size goes to zero, the coupling constant g2(λ) becomes smaller as
lnλM is negative and the right-hand side becomes larger. Indeed, replacing the
solution Equation (11.165) in the expression for the energy gives

E(θ)/V

=−cosθ

∫ ∞

0

dλ

λ5

(
1

g2(M)
− 11

8π2
ln(λM)

)6

e
−8π2

(
1

g2(M)
− 11

8π2 ln(λM)

)
K(λM)

=−cosθ

∫ ∞

0

dλ

λ5
g−12(M)e

− 8π2

g2(M)
(
1+ o

(
g2(M) ln(λM)

))
e11ln(λM)K(λM)

=−cosθ

∫ ∞

0

dλλ6M11g−12(M)e
− 8π2

g2(M)
(
1+ o

(
g2(M) ln(λM)

))
K(λM).

(11.166)

Thus for small λ, in the ultraviolet, the integral is perfectly convergent; however,
in the infrared, as λ→∞ the integral is obviously divergent. Thus the integral is
well-behaved in the region where we trust our calculations, when g→ 0, but does
not make sense in the regions where g� 1, where we do not trust our calculations.
Indeed, we expect new, non-perturbative (not instanton effects, which are also
non-perturbative but only valid for small g) strong coupling effects to kick in as
g becomes large, effects which we have made no pretence to be able to compute.
Thus we stop the calculation at this point, content with the expectation that
large coupling, confinement-related effects cure the behaviour of this integral.

11.6 Quarks in QCD

We will next consider the question of quarks in QCD. The quarks come in the
fundamental representation of SU(3), which is generated exactly by the 3× 3



238 Quantum Chromodynamics (QCD)

Gell-Mann matrices of Equation (11.6) and in six flavours, up, down, strange,
charm, top and bottom, which we will denote by a label a, and correspond to
Dirac fields ψa(x). The colour index is suppressed but takes on three values,
1,2 and 3, thus the Dirac field is a three-component column for each flavour
index. The Lagrangian density in Minkowski spacetime is then given by

L=
1

4g2
Tr[Fμν(x)F

μν(x)]+
∑
a

(
ψ̄a(x)iγμ(∂μ+Aμ)ψ

a(x)−maψ̄a(x)ψa(x)
)
,

(11.167)
where the gauge field is a 3×3 anti-hermitean matrix, Aμ= iAaμλa Fμν = ∂μAν−
∂νAμ+[Aμ,Aν ] is also anti-hermitean. The γμ are the usual Dirac matrices. The
masses mα are quite small for the up and down quarks, less than 10 MeV .
Thus the massless limit is a reasonably good approximation when considering
processes that largely imply only the up and down quarks. This limit has a
higher symmetry, called chiral symmetry which is spontaneously broken, and
can be treated with chiral perturbation theory. The strange quark mass is a
little more, around 95 MeV , but still within the purview chiral symmetry and
chiral perturbation theory. The charm mass is about 1.3 GeV , the bottom mass
is 4.2 GeV , and the top mass is 173 GeV . Neglecting these masses is not a good
approximation. In what follows, we will restrict our considerations to the up and
down quarks and neglect their masses, which is a rather good approximation.
Then the fermionic part of the Lagrangian density is

L=
∑

a=up,down

ψ̄a(x)iγμ(∂μ+Aμ)ψ
a(x). (11.168)

The Lagrangian in this case has a symmetry SUL(2) × SUR(2), called
chiral symmetry. The subscripts L and R correspond to independent SU(2)

transformations on the left-handed and right-handed components of the Dirac
spinor. If we write the spinor fields as

ψ =

(
ψu
ψd

)
(11.169)

then the chiral transformation corresponds to

ψ→ e
i
(

1−γ5
2

)
�αL·�σ

e
i
(

1+γ5
2

)
�αR·�σ

ψ, (11.170)

where �αL,R are independent parameters of the two SU(2) transformations and
the �σ are the Pauli matrices. The chiral projection operators, 1±γ5

2 , project onto
the left-handed and right-handed components of the Dirac spinor

ψ = ψL+ψR =

(
1− γ5

2

)
ψ+

(
1+ γ5

2

)
ψ. (11.171)
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In the chiral representation of the Dirac matrices,

γ5 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ (11.172)

so that

1− γ5
2

=

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

1+ γ5
2

=

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ (11.173)

The Lagrangian Equation (11.169) is also invariant under two U(1) symmetries,
UV (1)×UA(1),

ψ→ eiθeiγ5θ
′
ψ (11.174)

for independent parameters θ and θ′. The corresponding conserved currents, via
Noether’s theorem, are denoted

jμ = ψ̄γμψ and jμ5 = ψ̄γμγ5ψ. (11.175)

The chiral symmetry group SUL(2)×SUR(2) is spontaneously broken to the
diagonal subgroup SUD(2), which is identified as the isospin group, in this
case with just two flavours, up and down. Due to this spontaneous symmetry-
breaking, the Goldstone theorem [56] implies the existence of three Goldstone
bosons, massless scalar fields, which are then identified with the pions. The
pions are not massless, however; the mass terms for the up and down quarks
softly but explictly break the chiral symmetry. The consequence of this explict
breaking is to give the putative Goldstone bosons, the pions, a small mass.
This analysis is called chiral perturbation theory [117]. The UV (1) symmetry
corresponds to the baryonic charge and is presumed to be conserved. The one
question that remains is what happens to the UA(1), how does this symmetry
manifest itself? If it is not broken, spontaneously or explicitly, then it should be
associated with a conserved quantum number. We do not see any such additional
conserved quantum number. If it is spontaneously broken, then we should see
another corresponding massless Goldstone boson. It can be shown that this does
not correspond to the η, Weinberg has shown [118] that the mass of such a
putative Goldstone bosons must satisfy the inequality mG.B. ≤

√
mπ. This lack

of understanding of how the UA(1) symmetry manifests itself is called the U(1)

problem.
The U(1) problem is related to instantons, the theta vacua and the chiral

anomaly, which we will explain in this section and the next. The upshot is that
the UA(1) symmetry is actually explicitly broken, due to a quantum effect, called
the chiral anomaly. To understand the chiral anomaly it is easiest to work in a
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function integral formulation for the fermionic fields, the subject to which we
will now turn.

11.6.1 Quantum Fermi Fields

Canonical quantization of fermionic fields demands that the fermions satisfy
equal time anti-commutation relations{

ψ(�x,t), iψ†(�y,t)
}
=−i�δ3(�x−�y), (11.176)

where {A,B}=AB+BA. Why does the anti-commutator arise? For a free field
with equation of motion

(iγμ∂μ−m)ψ = 0 (11.177)

we can construct the solution by simple Fourier transformation

ψ =

∫
d3k

(2π)3
m

(�k2+m2)1/2

∑
α=1,2

(
bα(k)u

α(k)e−ik·x+ d†α(k)v
α(k)eik·x

)
, (11.178)

where k ≡ ((�k2 + m2)1/2,�k), uα(k) and vα(k) are specific, orthonormalized
spinor solutions of the Dirac equation (11.177) of positive and negative energy,
respectively, while bα(k) and d†(k) are arbitrary, operator valued coefficients.
The expression for the Hamiltonian (energy) then becomes

H=

∫
d3k

(2π)3
(�k2+m2)1/2

∑
α

(
b†α(k)bα(k)− dα(k)d†α(k)

)
, (11.179)

where we have not changed the order of the operators in the expression for the
Hamiltonian. The order of the dα and the d†α occurs because we expanded ψ

with d†α rather than dα but the minus sign occurs because the vαs correspond
to negative energy solutions of the Dirac equation. If we had used dα in the
expansion of ψ we would have arrived at the expression in Equation (11.179)
with the dα and the d†α interchanged; however, the minus sign would still be
there. Now if we want to have H≥ 0, up to a constant, we need

dα(k)d
†
α(k) =−d†α(k)dα(k)+1, (11.180)

where we have chosen the constant to be 1 for the case of discrete k. For a
continuum of k’s we get

{dα(k),d†α(k′)}= δ4(k− k′) (11.181)

and the Hamiltonian, up to a constant (which can very well be an infinite
constant!) is

H=

∫
d3k

(2π)3
(�k2+m2)1/2

∑
α

(
b†α(k)bα(k)+ d

†
α(k)dα(k)

)
, (11.182)

a positive semi-definite form. As the bαs and the dαs are equivalent, we must
choose anti-commutation relations for both.
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11.6.2 Fermionic Functional Integral

The limit �→ 0 in the canonical anti-commutation relations Equation (11.176)
does not yield ordinary, commuting c-number fields in the classical limit. The
fields become anti-commuting fields, so-called Grassmann number-valued fields
whose anti-commutator, rather than commutator, vanishes

{ψ(�x,t),ψ†(�y,t)}= 0. (11.183)

Thus the classical limit gives fields that are elements of an infinite dimensional
Grassmann algebra from an infinite dimensional Clifford algebra in the quantum
domain. Then, if there is to be a Feynman path-integral description of fermions,
the integral should be defined over the classical space of fields, fields that
are Grassmann algebra-valued. Such an integral can be formally defined. For
free theories, perhaps all such formalism is rather unnecessary. However, for
interacting theories of fermions, the functional integral description must at least
be able to generate the perturbative expansion. In fact, we can almost think that
the fermionic functional integral representation for the amplitudes of a quantum
field theory with fermions is simply a very compact and efficient notation that
can and does serve as a means of generating the perturbative expansion.

Abstractly, an integral is a linear map that takes a space of functions to the
real numbers. We will define the functional integral over a Grassmann number
in this way, first for a finite set of Grassmann numbers, and then generalize to
the infinite limit. A Grassmann number θ satisfies

{θ,θ}= θθ+ θθ = 2θθ = 2θ2 = 0. (11.184)

We define a differential operator d
dθ by the very reasonable rules for any other

anti-commuting number β and for a c-number a,

d

dθ
θ = 1,

d

dθ
β =

d

dθ
a= 0. (11.185)

The derivative operator should be thought of as a Grassmann-valued operator;
it should anti-commute with other Grassmann numbers. A general function of
f(θ), i.e. a commutative function, can be expanded in two terms

f(θ) = a+βθ, (11.186)

where a is real while β is Grassmannian. Then

d

dθ
f(θ) =

d

dθ
a+

d

dθ
βθ =− d

dθ
θβ =−β. (11.187)

The idea that f is a commutative function means that it is composed of an even
number of Grassmann numbers, 0 and 2 in this case. β is a Grassmann number,
hence

β2 = 0, {β,θ}= 0 (11.188)
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then it is easy to verify
[f,β] = [f,θ] = 0. (11.189)

Then clearly
d

dθ

d

dθ
=

d2

dθ2
= 0. (11.190)

This means that the integral can in no way be the inverse of differentiation, the
derivative is a nilpotent operator. However, we will define it, following Berezin
[13] to be a linear map from the space of Grassmann numbers to the real numbers,
we define ∫

dθ1 = 0

∫
dθθ= 1, (11.191)

which implies∫
dθf(θ) =

∫
dθ (a+βθ) = 0+

∫
dθβθ =−

∫
dθθβ =−β. (11.192)

For N Grassmann numbers we have the algebra

{θi,θj}= 0{
d

dθi
,θj

}
= δij{

d

dθi
,
d

dθj

}
= 0, (11.193)

for i, j = 1, · · ·N . Then a general, commutative function is expanded as

f(θi) = a+ ciθi+ cijθiθj + · · ·+ cθ1θ2 · · ·θN (11.194)

and we notice it has a finite number of terms. cijkl··· is Grassmannian if the
number of indices is odd but a real number if the number of indices is even. The
integration rules generalize as∫

dθi 1 = 0,

∫
dθi θj = δij (11.195)

and by convention and consistency∫
dθ1dθ2 θ1θ2 ≡

∫
dθ1

(∫
dθ2(−θ2)

)
θ1 =−

∫
dθ1 θ1 =−1. (11.196)

Then it is easy to see for an anti-symmetric matrix M (clearly any symmetric
part of M will not contribute)

IN (M) =

∫
dθ1 · · ·dθNe−

∑
ij θiMijθj =

{
2N/2

√
det(M), for N even

0 for N odd
.

(11.197)
For an invertible, anti-symmetric M and a set of Grassmann parameters χi, i=
1 · · ·N and {χi,χj}= {χi,θj}= 0, we can compute

IN (M ;χ) =

∫
dθ1 · · ·dθNe−

∑
ij θiMijθj+

∑
j χjθj (11.198)
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as follows. Translating the integration variable θi = θ′i− 1
2M

−1
ij χj , we get, using

matrix notation

θTMθ−χT θ =
(
θ′− 1

2
M−1χ

)T
M

(
θ′− 1

2
M−1χ

)
−χT

(
θ′− 1

2
M−1χ

)
= θ′TMθ′− 1

2
(χTM−1TMθ′+ θ′Tχ)+

1

4
χTM−1Tχ

−χT θ′+ 1

2
χTM−1χ

= θ′TMθ′− 1

2
(−χT θ′−χT θ′)− 1

4
χTM−1χ

−χT θ′+ 1

2
χTM−1χ

= θ′TMθ′+
1

4
χTM−1χ (11.199)

using M−1TM = (MTM−1)T = (−MM−1)T = −IT = −I since M is anti-
symmetric and the fact that the χ is also anti-commuting. Then

IN (M ;χ) =

∫
dθ′1 · · ·dθ′Ne−

∑
ij(θ

′
iMijθ

′
j− 1

4χiM
−1χj)

=

{
2N/2

√
detM e−

∑
ij

1
4χiM

−1χj , for N even
0 for N odd

. (11.200)

For complex fields, we have the equivalent of complex Grassmann numbers

η =
θ1+ iθ2√

2
, η∗ =

θ1− iθ2√
2

. (11.201)

Considering the 2×2 case, we impose −
∑
i,j θiMijθj = iη∗M̃η which gives M̃ =

2M12 and we have ∫
dη∗dηeiη

∗M̃η = det(M̃), (11.202)

where the integration is done by treating η and η∗ as completely independent
Grassmann variables. Dropping the tilde, the integration formula generalizes as∫ ∏

i,j

dη∗i dηje
i
∑

i,j η
∗
iMijηj = det(M) (11.203)

and with sources, suppressing the indices and summation signs,∫ ∏
dη∗dηeiη

∗Mη+iξ∗η+iη∗ξ = det(M)e−iξ
∗M−1ξ. (11.204)

Then boldly generalizing to infinite dimensional integrals we get for the fermionic
field ∫

D(ψ,ψ̄)ei
∫
d4xψ̄(iγμ∂μ−m)ψ = det(iγμ∂μ−m) (11.205)
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and including sources∫
D(ψ,ψ̄)ei

∫
d4xψ̄(iγμ∂μ−m)ψ+ψ̄ζ+ζ̄ψ = det(iγμ∂μ−m)e−i

∫
d4xζ̄(iγμ∂μ−m)−1ζ

=N ′e−i
∫
d4pζ̄(p) 1

/p−m ζ(p)
. (11.206)

Then for a general gauge interaction the usual perturbative expansion ensues
from the coupling (where we have expressly put the coupling constant e)

L′ = ieψ̄γμAμψ (11.207)

then

Z(ζ,A) =

∫
D(ψ,ψ̄)ei

∫
d4xL+ζ̄ψ+ψ̄ζ+ieψ̄γμAμψ

=N ′e
i
∫
d4x

(
δ

δζ(x)
ieγμAμ

δ
δζ̄(x)

)
e
−i∫ d4pζ̄(p) 1

/p−m ζ(p)
. (11.208)

The derivatives with respect to ζ(x) and ζ̄(x) can be trivially converted into
derivatives with respect to ζ(p) and ζ̄(p) by Fourier transformation. This gives
rise to the usual perturbation expansion expressed in Feynman diagrams [101].

Reverting back to Euclidean space, the action is

SE =−
∫
d4xψ̄(iγμ∂μ− im)ψ, (11.209)

where the γμ matrices satisfy the Clifford algebra

{γμ,γν}= 2δμν . (11.210)

The fields ψ̄ and ψ are no longer related to each other, but are in fact completely
independent Grassmann-valued fields. We can infer this from many points of
view. First, and most importantly, if the formula Equation (11.203) is to work,
the integration variables η and η∗ are completely independent. First of all, η and
η∗ satisfy

{ηi,ηj}= {η∗i ,η∗j }= {η∗i ,ηj}= 0. (11.211)

Then if η∗ were the adjoint of η, i.e. η∗ = η†C, where C is a fixed matrix akin
to a charge conjugation matrix, then the last relation would imply (multiplying
by C−1) and contracting together∑

i

(ηiη
†
i + η

†
i ηi) = 0. (11.212)

This says that the sum of two positive operators vanishes, requiring the operators
to be zero. Additionally, the Euclidean Dirac fields transform according to the
( 12 ,0)⊕ (0, 12 ) representation of the four-dimensional Euclidean rotation group
SO(4) = SU(2)× SU(2). The two SU(2) subgroups are totally independent of
one another, hermitean conjugation does not take one into the other, as is the
case in Minkowski spacetime.
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We decompose ψ and ψ̄ with a complete set of orthonormal spinor solutions
of the Dirac equation

ψ =
∑
r

arψr ψ̄ =
∑
r

ārψ̄r, (11.213)

where the coefficients ar and ār are independent Grassmann numbers and∫
d4xψ†

rψs =

∫
d4xψ̄rψ̄

†
s = δrs. (11.214)

Then we define the functional integration measure as

D(ψ,ψ̄) =
∏
r

dardār. (11.215)

Then
SE =−

∫
d4xψ̄(iγμ∂μ)ψ =−

∑
r

λrārar, (11.216)

where
(iγμ∂μ)ψr = λrψr. (11.217)

Then the integral∫
D(ψ,ψ̄)e−SE =

∫ ∏
s

dasdāse
∑

r λr ārar =
∏
r

λr = det(iγμ∂μ). (11.218)

In the massless limit, m→ 0, the action Equation (11.209) is invariant under
global chiral transformations, decomposed as vector and axial transformations

ψ→ ei(α+βγ5)ψ ψ̄→ ψ̄ei(α+βγ5). (11.219)

The chiral anomaly corresponds to the fact that it is impossible to define the
functional integral while simultaneously keeping the axial gauge symmetry and
the vector gauge symmetry. The full chiral symmetry of two-flavour QCD is

SUV (2)×SUA(2)×SUV (1)×UA(1), (11.220)

but the SUA(2) is spontaneously broken, giving rise to three massless Goldstone
bosons, the pions,

SUV (2)×SUA(2)×UV (1)×UA(1)→ SUV (2)×UV (1)×UA(1). (11.221)

The anomaly results from the impossibility to preserve the remaining chiral
symmetry in the quantum theory. Fundamentally, the anomaly results because
of divergences in the naive, original theory. Then to make sense of the theory
these divergences must be removed; this is done in a rather brutal fashion and
is called regularization. The brutality of the regularization means that it seems
necessary to explicitly break at least some of the chiral symmetry of the original
Lagrangian. Indeed, there is no known regularization that can preserve all of
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the chiral symmetry and it is understood that no such regularization exists. The
hope and expectation was that once the regularization is removed, the full chiral
symmetry of the theory would return. The anomaly corresponds to the fact that
this is not the case. In fact, upon removing the regularization it is not possible
to preserve both the UV (1) and the UA(1) symmetries.

11.6.3 The Axial Anomaly

Conceptually, the clearest method for seeing this was discovered by Fujikawa
[50]3. He considered the fermionic functional integral

I =

∫
D(ψ,ψ̄)e

∫
d4xψ̄(iγμDμ)ψ (11.222)

and realized that the anomaly comes from the inability to define the functional
integration measure in a manner that is invariant under all the chiral
transformations. Here we generalize further, allowing the covariant derivative to
include gauge fields, in principle, for all the global symmetries. However, we will
find that some global symmetries are not preserved in the quantum theory, and
then adding the gauge fields corresponding to those symmetries is inopportune.
Their quantization makes no sense as renormalizability requires gauge-invariance.
Thus we imagine adding gauge fields for all symmetries that can be preserved
at the quantum level. For the case of QCD, this corresponds to gauge fields for
the colour gauge symmetry SUc(3) and the UV (1) symmetry. Gauging the chiral
SUV (2)×SUA(2) actually corresponds to part of the gauge group of the weak
interactions, but we shall not develop this theory here. We will expand the fields
slightly differently from Equation (11.213) as

ψ =
∑
r

arϕr ψ̄ =
∑
r

ϕ†
rār (11.223)

with
i /Dϕr = λrϕr

∫
d4xϕ†

rϕs = δrs (11.224)

and
D(ψ,ψ̄) =

∏
r

dārdar. (11.225)

For a local axial transformation ψ(x)→ eiβ(x)γ5ψ(x)≈ ψ(x)+ iβ(x)γ5ψ(x) and
ψ̄(x)→ ψ̄(x)eiβ(x)γ5 ≈ ψ̄(x)+ iβ(x)ψ̄(x)γ5 the Lagrangian is not invariant

L(x)→L(x)− (∂μβ(x))ψ̄(x)γμγ5ψ(x). (11.226)

However,

ψ(x)→ ψ′(x) =
∑
r

a′rϕr(x) =
∑
r

are
iβ(x)γ5ϕr(x). (11.227)

3 We note that Fujikawa used anti-hermitean Euclidean Dirac matrices. We stick with
hermitean Euclidean Dirac matrices.
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Then
a′r =

∑
s

∫
d4xϕ†

re
iβ(x)γ5ϕs(x)as ≡

∑
s

Crsas (11.228)

and ∏
r

da′r = (detC)−1
∏
s

das. (11.229)

Interestingly, the power of the determinant is −1. This is because the Grassmann
integration actually behaves a lot like differentiation. Indeed,

1 =

∫
d(λa)(λa) =

∫
daJ(λa) = Jλ

∫
daa= Jλ, (11.230)

thus J = 1/λ and d(λa) = da/λ. The determinant of the matrix Crs for an
infinitesimal transformation is

= det(Crs)
−1 det

(
δrs+ i

∫
d4xβ(x)ϕ†

r(x)γ5ϕs(x)

)−1

= exp

(
−Tr ln

(
δrs+

∫
d4xβϕ†

rγ5ϕs

))

= exp

(
−i

∫
d4xβ(x)

∑
r

ϕ†
rγ5ϕr

)
(11.231)

using the expansion of ln(1 + ε) ≈ ε. We must not forget that an equal
contribution will come from the variation of

∏
r dār. We wish to evaluate

A(x) =
∑
rϕ

†
r(x)γ5ϕr(x); however, the sum is surely hopelessly divergent. We

regularize it with the eigenvalues of the Dirac operator, taking

A(x)≡ lim
M→∞

∑
r

ϕ†
r(x)γ5e

−(λr/M)2ϕr(x). (11.232)

It is this choice of regulator that puts the anomaly in the axial symmetry,
preserving the vector symmetry in the quantum theory. Another choice can
preserve the axial symmetry but not the vector. We can choose which symmetry
we wish to preserve; however, we cannot preserve both. Writing ϕr(x) = 〈x|r〉,
(note the ket |r〉 must span the matrix indices of the coordinate wave function
ϕ(x)) we have

A(x) = lim
M→∞

∑
r

〈r|x〉γ5e−(λr/M)2〈x|r〉= lim
M→∞

∑
r

Tr
(
γ5〈x|e−(λr/M)2 |r〉〈r|x〉

)
= lim
M→∞

∑
r

Tr
(
γ5〈x|e−(i /D/M)2 |r〉〈r|x〉

)
= lim
M→∞

lim
x→y

Tr
(
γ5〈x|e−(i /D/M)2 |y〉

)

= lim
M→∞

lim
x→y

Tr

(
γ5〈x|e−(i /D/M)2

∫
d4k

(2π)4
|k〉〈k|y〉

)

= lim
M→∞

lim
x→y

Tr

(
γ5e

−(i /D(x)/M)2〈x|
∫

d4k

(2π)4
|k〉〈k|y〉

)

= lim
M→∞

lim
x→y

Tr

(
γ5

∫
d4k

(2π)4
e−(i /D(x)/M)2eik·xe−ik·y

)
(11.233)
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and we should be aware that the Tr is over Dirac and internal indices. Now
i /D(x)eik·x = eik·x(−/k+ i /D(x)), thus

A(x) = lim
M→∞

lim
x→y

Tr

(
γ5

∫
d4k

(2π)4
e−ik·yeik·xe−((−/k+i /D(x))/M)2

)

= lim
M→∞

Tr

(
γ5

∫
d4k

(2π)4
e−((−/k+i /D(x))/M)2

)

= lim
M→∞

Tr

(
γ5

∫
d4k

(2π)4
e
−(

{γμ,γν}
2

+
[γμ,γν ]

2
)(−kμ+iDμ(x))(−kν+iDν(x))/M

2
)

= lim
M→∞

Tr

(
γ5

∫
d4k

(2π)4
e
−(δμν+

[γμ,γν ]

2
)(−kμ+iDμ(x))(−kν+iDν(x))/M

2
)

= lim
M→∞

Tr

(
γ5

∫
d4k

(2π)4
e
−
(
(−k+iD(x))2− [γμ,γν ]

2

Fμν
2

)
/M2

)

= lim
M→∞

Tr

(
γ5

∫
d4k

(2π)4
e−k

2/M2
e(2ik·D(x)+D2(x)+ 1

4 [γμ,γν ]Fμν)/M
2
)

= lim
M→∞

Tr

(
γ5

∫
d4k

(2π)4
e−k

2/M2

(
1+ · · ·+ 1

2

(
1

4
[γμ,γν ]Fμν

)2

/M4+ · · ·
))

.

(11.234)

The first term in the expansion of the exponential that survives the Dirac trace
is shown and, although there will be other terms in the higher orders that survive
this trace, they will have higher powers of M in the denominator. The Gaussian
integral only gives a factor of M4, hence in the limit M →∞ this is the only
term that survives. Thus we get

A(x) = lim
M→∞

∫
d4k

(2π)4
Tr

(
1

2

1

M4

(
γ5

1

4
[γμ,γν ]

1

4
[γσ,γτ ]

)
FμνFστ

)
e−k

2/M2
.

(11.235)
Using that Tr(γ5γμγνγσγτ ) = 4εμνστ and that the Gaussian integral is

∫
d4k

(2π)4
e−k

2/M2
=

M4

16π2
(11.236)

gives

A(x) =
1

32π2
εμνστTr (FμνFστ ) . (11.237)

Therefore, the fermionic functional integration measure is not invariant under
axial transformations and transforms as

D(ψ,ψ̄)→D(ψ,ψ̄)e
−i 1

16π2

∫
d4xβ(x)εμνστTr(FμνFστ ), (11.238)

where we get twice the variation since both ψ and ψ̄ contribute to the measure.
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11.6.4 The U(1) Problem

With the chiral anomaly, we understand that, at the quantum level, we cannot
preserve all of the classical symmetry of the action. Only the subgroup UA(1)

is explicitly broken by the chiral anomaly and the remaining subgroup is
spontaneously broken SUV (2)×SUA(2)×UV (1)×SUc(3)→ SUV (2)×UV (1)×
SUc(3). Under a local axial UA(1) transformation, −SE , minus the action (that
appears in the exponent) transforms as, keeping only terms to first order,∫

d4xψ̄ (iγμDμ)ψ→
∫
d4xψ̄(1+ iβ(x)γ5)(iγμDμ)(1+ iβ(x)γ5)ψ

=

∫
d4xψ̄ (iγμDμ)ψ− (∂μβ(x))ψ̄γμγ5ψ. (11.239)

The functional integral under a change of variables must be invariant. If we
transform to the field ψ′ = (1+ iβ(x)γ5)ψ, we get

I =

∫
D(ψ,ψ̄)e

∫
d4xψ̄i /Dψ =

∫
D(ψ′, ψ̄′)e

∫
d4xψ̄i /Dψ−(∂μβ(x))ψ̄γμγ5ψ

=

∫
D(ψ,ψ̄)e

−i∫ d4xβ(x)( 1
16π2 εμνστTr(FμνFστ )+i∂μψ̄γμγ5ψ

)
e
∫
d4xψ̄i /Dψ.

(11.240)

Then invariance requires

∂μ〈ψ̄γμγ5ψ〉A = i
1

16π2
εμνστTr (FμνFστ ) = i

C

8π2
〈Fμν F̃μν〉, (11.241)

where the matrix element on the left-hand side signifies the fermionic expectation
value of the axial current operator ψ̄γμγ5ψ in the presence of the background
gauge fields. The latter equality is easily obtained for an arbitrary multiplet of
fermions in a representation with hermitean generators T a of SU(n), and then
C is the constant in Tr

(
T aT b

)
=Cδab. The i on the right-hand side is expected

and disappears upon Wick rotation back to Minkowski space.
We can demonstrate the so-called chiral Ward–Takahashi identities, which

have to do with symmetries, and will be useful in our analysis later. Consider
the m point function

〈φ1(x1) · · ·φm(xm)〉A ≡
∫
D(ψ,ψ̄)e−SE(A)φ1(x1) · · ·φm(xm)∫

D(ψ,ψ̄)e−SE(A)
, (11.242)

where the φi(xi) are local, multi-linear functions of the fermionic fields where SE
is given in Equation (11.209). With the variations (taken in the opposite sense
to Fujikawa as in Equation (11.239), to stay with the conventions of Coleman)

δψ =−iγ5ψδα(x) δψ̄ =−iψ̄γ5δα(x) (11.243)

we have

δφi =
∂φi

∂α
δα(x). (11.244)
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For example,
δ(ψ̄ψ) =−2iψ̄γ5ψδα(x). (11.245)

But changing the variables in the functional integral must not make a difference,
it must be invariant. Thus we get

0 = δ〈φ1(x1) · · ·φm(xm)〉A = 〈−δSEφ1(x1) · · ·φm(xm)〉

+

〈∑
r

φ1(x1) · · ·δφr(xr) · · ·φm(xm)

〉
. (11.246)

Then, since

− δSE =

∫
d4xψ̄iγμ(−i∂μδα)γ5ψ =

∫
d4x(∂μδα)j5μ =−

∫
d4xδα∂μj5μ

(11.247)
we get

0 = 〈(−∂μj5μ(x))φ1(x1) · · ·φm(xm)〉+
∑
r

δ(x−xr)〈φ1(x1) · · ·
∂δφr(xr)

∂α
· · ·φm(xm)〉

−2M〈ψ̄(x)γ5ψ(x)φ1(x1) · · ·φm(xm)〉, (11.248)

where the last term is there if we add a mass term that breaks the chiral symme-
try explicitly and we will write j5(x)= ψ̄(x)γ5ψ(x). Then using Equation (11.241)
and integrating over x, we get

2M

〈∫
d4xj5(x)φ

1(x1) · · ·φm(xm)

〉A
=

∂

∂α
〈φ1(x1) · · ·φm(xm)〉A

−i C
8π2

∫
d4x〈Fμν F̃μν〉〈φ1(x1) · · ·φm(xm)〉A

=
∂

∂α
〈φ1(x1) · · ·φm(xm)〉A− 4iCν〈φ1(x1) · · ·φm(xm)〉A. (11.249)

But what is the effect of the fermions on the instanton? The instantons must
still be solutions of the equations of motion

DμFμν = jν with Dνjν = 0 and iγμDμψ = 0. (11.250)

These equations have a perfectly good solution, ψ=0 and DμFμν =0. The latter
equation is satisfied by the instantons’ and hence the instatons’ configuration is
unchanged by the fermions. All the previously found formulae must still be valid,

E(θ)/V =−2K cosθe−S0 (11.251)

and
〈θ|FF̃ |θ〉=−64π2iK e−S0 sinθ. (11.252)
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The only change that occurs is that the Gaussian integral about the instanton
configuration over the gauge fields is appended with a functional integral over
the fermion fields (which is in a sense also Gaussian as the fermion fields only
enter quadratically) in the presence of the instanton background

K→K
det(iγμ (∂μ+Aμ))

det(iγμ (∂μ))
. (11.253)

The consequences of this change are profound. The fermionic determinant in the
presence of the instanton vanishes exactly, giving

E(θ)/V = 0 〈θ|FF̃ |θ〉= 0. (11.254)

This means that all the theta vacua become degenerate in energy, that the
UA(1) symmetry is spontaneously broken. The U(1) problem corresponds to the
question, “Why is there no corresponding massless Goldstone boson?” What we
will find is that the massless boson never contributes to gauge-invariant matrix
elements and therefore is not physically manifested.

Why does the fermion determinant vanish? It is because in the presence of
an instanton, there is necessarily a zero energy mode to the Dirac equation.
Evidently ∫

dθdθ̄ e0×θ̄θ =
∫
dθdθ̄1 = 0, (11.255)

which is quite unlike the bosonic case∫
dϕe−0×ϕ2

=

∫
dϕ1 =∞(=

1

0
). (11.256)

The zero mode follows from a deep theorem, the Atiyah–Singer index theorem
[8]. However, we can quite easily establish the existence of the zero mode directly
using the simplest chiral Ward–Takahashi relation. We will work with an SU(2)

gauge group with one doublet of fermions for simplicity. The Dirac equation for
eigenmode of energy λr is

i /Dψr = λrψr (11.257)

but then
i /Dγ5ψr =−γ5i /Dψr =−λrγ5ψr. (11.258)

Thus for each mode ψr of energy λr there is a matching eigenmode γ5ψr of
energy −λr. But what happens if λr = 0? Let ψ0

r be a zero mode, i /Dψ0
r = 0, but

then obviously i /Dγ5ψ0
r =0. We can choose the zero mode to be an eigenmode of

γ5: with ψ0±
r = 1±γ5

2 ψ0
r we have γ5ψ0±

r =±ψ0±
r with i /Dψ0±

r = 0 and 1±γ5
2 ψ0∓

r =

0. The eigenvalue of γ5 of the zero mode is called its chirality, which we will
call χr for zero mode ψ0

r . We do not know if ψ0+
r = 0 or perhaps ψ0−

r = 0, or
possibly neither vanishes (in which case there are two zero modes, of chirality
±1, respectively); however, both cannot vanish if ψ0+

r +ψ0−
r = ψ0

r �= 0.
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Let n+ be the number of zero modes with positive chirality and n− be the
number of zero modes with negative chirality. The Atiyah–Singer index theorem
states that n+ − n− = ν. We can prove this theorem using the chiral Ward–
Takahashi identities. Consider the simplest identity, without any fields φr, for a
single doublet of fermions in SU(2), C = 1/2, we have,

− 2iν = 2M

∫
d4x〈ψ̄γ5ψ〉A = 2M

∫
D(ψ,ψ̄)e−SE

∫
d4xψ̄γ5ψ∫

D(ψ,ψ̄)e−SE
(11.259)

with SE =
∫
d4xψ̄

(
i /D− iM

)
ψ and the solutions of the Dirac equation are

unchanged from the massless case, only the energy eigenvalues are shifted

i( /D−M)ψr = (λr− iM)ψr. (11.260)

Clearly,
i( /D−M)γ5ψr = (−λr− iM)γ5ψr, (11.261)

but the eigenmodes ψr and γ5ψr must be orthogonal if λr �=0 as they are actually
eigenmodes of the hermitean operator i /D. We observe∫

d4xψ̄sγ5ψs = 0 if λs �= 0, (11.262)

but for the zero modes ∫
d4xψ̄0

sγ5ψ
0
s = χs, (11.263)

thus ∫
d4xψ̄γ5ψ =

∑
s,λs=0

χsb̄sas. (11.264)

The ψr are a complete and orthonormal basis of the space of fermion fields, hence
we can write

ψ =
∑
r

arψr ψ̄ =
∑
r

ψ†
r b̄r (11.265)

with Grassmann coefficients ar and b̄r. Then the functional integral is given by

−2iν = 2M

∫ ∏
r dardb̄r e

∑
r(λr−iM)b̄rar

∫
d4xψ̄γ5ψ∏

r(λr− iM)

= 2M

∫ ∑
s,λs=0

∏
r 
=s (λr− iM)χs∏

r(λr− iM)
(11.266)

as the fermionic integral gives (λr− iM) for all the non-zero modes but a factor
of 1 for the zero mode in the sum

∑
s,λs=0χsb̄sas. The infinite product cancels

between numerator and denominator for all the non-zero modes, and therefore
the chiral Ward identity gives

− 2iν = 2i
∑
s

χs = 2i(n+−n−). (11.267)
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Thus ν = n− − n+, which cannot be satisfied unless there are at least ν zero
modes.

For the case ν =1 we can easily show that there is one zero mode with negative
chirality and no zero modes of positive chirality. We note that the instanton
configuration is self dual, Fμν = F̃μν . We assume that there is a positive chirality
zero mode /Dψ0+ = 0 and γ5ψ0+ = ψ0+. Then

0 = ( /D)2ψ0+ =

(
1

2
{γμ,γν}+

1

2
[γμ,γν ]

)
DμDνψ

0+

=DμDμψ
0++

1

4
[γμ,γν ]Fμνψ

0+

=D2ψ0++
1

4
[γμ,γν ]Fμνψ

0+. (11.268)

However,

Fμν
1

2
[γμ,γν ]ψ

0+Fμν
1

2
[γμ,γν ]γ5ψ

0+ = Fμν

(
−1

2
εμνστγσγτ

)
ψ0+

=−F̃μνγμγνψ0+ =−Fμν
1

2
[γμ,γν ]ψ

0+.

(11.269)

Therefore, Fμν 1
2 [γμ,γν ]ψ

0+ = 0 and consequently D2ψ0+ = 0. Then

0 =

∫
d4x(ψ0+)†(−D2ψ0+) =

∫
d4x(Dμψ

0+)†(Dμψ
0+), (11.270)

which is positive unless Dμψ
0+ = 0 identically. Then, in the gauge A3 = 0, this

requires ∂3ψ0+=0. However, this is inconsistent for a normalizable wave function
except if ψ0+ = 0. Therefore, in fact no positive chirality zero mode can exist.
Of course the analysis fails for a negative chirality solution, we cannot conclude
Fμν

1
2 [γμ,γν ]ψ

0+ = 0 for a negative chirality zero mode, and there has to be
exactly one negative chirality zero mode so that ν = n−−n+ is satisfied.

Therefore, the fermionic functional integral simply makes the contribution
from all non-zero instanton sectors vanish. Thus the theta vacua are all
degenerate in energy, and the chiral symmetry is certainly spontaneously broken.

11.6.5 Why is there no Goldstone Boson?

To see the non-existence of a Goldstone boson we must modify our chiral Ward
identities. The following matrix element no longer makes sense in the non-zero
instanton sector as the denominator vanishes,

〈φ1(x1) · · ·φm(xm)〉A =

∫
D(ψ,ψ̄)e−SE(ψ,ψ̄)φ1(x1) · · ·φm(xm)∫

D(ψ,ψ̄)e−SE(ψ,ψ̄)
; (11.271)

however, if we consider just the numerator

〈〈φ1(x1) · · ·φm(xm)〉〉A ≡
∫
D(ψ,ψ̄)e−SE(ψ,ψ̄)φ1(x1) · · ·φm(xm) (11.272)



254 Quantum Chromodynamics (QCD)

then formally the symmetry properties are identical, and we find(
∂

∂α
− 2iν

)
〈〈φ1(x1) · · ·φm(xm)〉〉A = 0. (11.273)

Now the matrix element in a theta vacuum is given by

〈θ|φ1(x1) · · ·φm(xm)|θ〉A

=

∫
D(A)e−SE(A)eiνθ

∫
D(ψ,ψ̄)e−SE(ψ,ψ̄)φ1(x1) · · ·φm(xm)∫

D(A)e−SE(A)eiνθ
∫
D(ψ,ψ̄)e−SE(ψ,ψ̄)

=

∫
D(A)e−SE(A)eiνθ〈〈φ1(x1) · · ·φm(xm)〉〉A∫

D(A)e−SE(A)eiνθ〈〈1〉〉A (11.274)

and now the denominator does not vanish for
∫
D(ψ,ψ̄)e−SE(ψ,ψ̄)1 �= 0 for the

sector ν = 0. Thus clearly(
∂

∂α
− 2

∂

∂θ

)
〈θ|φ1(x1) · · ·φm(xm)|θ〉= 0. (11.275)

This is quite interesting. It means that the UA(1) transformation corresponds
equivalently to a change in θ, i.e. a UA(1) transformation changes one theta
vacuum into another. The chiral symmetry is therefore spontaneously broken,
and the degenerate set of vacua are exactly the theta vacua.

In summary, we have first found the degenerate, classical vacua and their
quantum counterparts, |n〉. Then instantons have the effect of breaking the
degeneracy obtained by quantum tunnelling between the different |n〉 vacua,
and the new combinations |θ〉=

∑
n e

inθ|n〉 are the new energy eigenstates with
spectrum

E(θ)/V =−2K cosθe−S0 , (11.276)

where S0 is the classical Euclidean action of one instanton. The parameter θ
has nothing to do with chiral symmetry; indeed, there are no fermions yet.
But once massless fermions are added to the theory, all the effects of the
instantons disappear, due to the appearance of a fermionic zero mode. The
|θ〉 states suddenly become degenerate, and a chiral transformation corresponds
exactly to a transformation of θ. The chiral symmetry is spontaneously broken
as there exist infinitely many vacua which are transformed into each other
by the action of a chiral transformation. There is one possible way that
the system could escape these conclusions, if ∂/∂α〈θ|φ1(x1) · · ·φm(xm)|θ〉 =
∂/∂θ〈θ|φ1(x1) · · ·φm(xm)|θ〉 = 0, i.e. nothing depends on α or θ. This would
mean that chiral symmetry is manifest and not spontaneously broken, and the
vacua |θ〉 are just copies of a single, unique vacuum state. It is easy to dispose
of this possibility. If we calculate

〈θ|σ±|θ〉, (11.277)
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where σ± = ψ̄
(
1±γ5

2

)
ψ then

∂

∂α
σ± =±2iσ±. (11.278)

Then if 〈θ|σ±|θ〉 �= 0 we have ∂
∂ασ± �= 0, which then requires that the symmetry

is spontaneously broken. We will calculate 〈θ|σ±|θ〉 next and show that it cannot
vanish.

We have already done the Gaussian functional integral about the classical
critical point, the instanton solution, up to a final integral over the scale size

K =
2

g8

∫ ∞

o

dλ

λ5
f(λM), (11.279)

where M is a renormalization point scale (represented by a mass), but now we
should append this result with a fermionic functional integral. For a fermion
in a background of a configuration of n well-separated instantons and anti-
instantons, there are n fermionic zero modes to the operator i /D. Then the
corresponding fermionic functional integral over the corresponding Grassmann
coefficients vanishes, ∫

dārdare
0×ārarφ(x) = 0, (11.280)

unless φ contains exactly the bilinear ārar, for each zero mode. This requires
2n fermionic fields. We are interested in the bilinear σ±, which contains two
fermionic fields. Hence the fermionic functional integral vanishes in all sectors
of the gauge field except for the sector with n = 1. Indeed, we must have only
exactly one instanton or one anti-instanton so that there is exactly one zero
mode. We cannot have a configuration of n+ instantons and n− anti-instantons
with n+−n− =±1, since this configuration will have n= n++n− > 1 fermionic
zero modes and the fermionic functional integral will vanish.

Then in the sector with just one anti-instanton with n− = 1, n+ = 0 and self
dual instanton fields, Fμν = F̃μν the fermionic functional integral will have just
one term∫

dārdare
∑

r,λr �=0λr ārar (ψ0−)†
(
1− γ5

2

)
ψ0− = (ψ0−)†

(
1− γ5

2

)
ψ0− ∏

λr 
=0

λr

= (ψ0−)†ψ0− (
det′i /D

)
(11.281)

as the zero mode is a chirality −1,
(
1−γ5

2

)
ψ0− =ψ0−. The fermionic zero modes

satisfy i /Dψ0−(x) = iγμ(∂μ +Aμ(x))ψ
0−(x) = 0. If we move the position of the

anti-instanton, we change Aμ(x)→Aμ(x+X), then evidently ψ0−(x)→ψ0−(x+
X) and iγμ(∂μ+Aμ(x+X))ψ0−(x+X) = 0. For the case of an instanton, ν = 1

with n+ = 1,n− = 0, which can in principle also contribute, we immediately get
a vanishing contribution since (ψ0+)†(x)

(
1−γ5

2

)
ψ0+(x) = 0 as the zero mode has

chirality +1 as
(
1−γ5

2

)
ψ0+(x) = 0. In the denominator only ν =0 can contribute,

and the Gaussian integral is done around the configuration Aμ = 0.
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We perform the fermionic functional integral first as a functional of the gauge
fields. In the sector ν=1 we must integrate over the position of the anti-instanton
since nothing depends on the position of the anti-instanton, which gives a factor
of TV . For σ+ only the sector ν =−1 contributes. The action remains the same
and eνθ = e±θ for the two sectors ν =±1. Hence finally we get

〈θ|σ±|θ〉=
∫ ∞

0

dλ

λ5
e
−8π2

g2 e∓iθg−8f(λM)
det′(i /D)

det(i/∂)
. (11.282)

Dimensional analysis gives

det′(i /D)

det(i/∂)
= λh(λM) (11.283)

for some dimensionless function h(λM), thus

〈θ|σ±|θ〉=
∫ ∞

0

dλ

λ4
e
−8π2

g2 e∓iθg−8f(λM)h(λM) �= 0. (11.284)

This amplitude also satisfies the chiral Ward identity

∂

∂α
〈θ|σ±|θ〉= 〈θ|± 2iσ±|θ〉=−2 ∂

∂θ
e∓iθ

∫ ∞

0

dλ

λ4
e
−8π2

g2 e∓iθg−8f(λM)h(λM)

(11.285)(
∂

∂α
+2

∂

∂θ

)
〈θ|σ±|θ〉= 0. (11.286)

Thus the symmetry transformation, corresponding to a change in α,

∂

∂α
〈θ|σ±|θ〉 �= 0 (11.287)

and the symmetry is spontaneously broken. But there is no Goldstone boson.
Such a boson must be a pseudoscalar and should give a pole at p2 = 0 in any
matrix element (now continued back to Minkowski space) such as

〈θ|σ+(x)σ−(x)|θ〉=
∑
n

〈θ|σ+(x)|n〉〈n|σ−(0)|θ〉

=

∫
d3p

(2π)3
〈θ|σ+(x)|GB�p〉〈GB�p|σ−(0)|θ〉 · · ·

=

∫
d3p

(2π)3
〈θ|eiP̂μ·xμσ+(0)e−iP̂μ·xμ |GB�p〉〈GB�p|σ−(0)|θ〉 · · ·

=

∫
d3p

(2π)3
e−ipμ·x

μ〈θ|σ+(0)|GB�p〉〈GB�p|σ−(0)|θ〉 · · ·

=

∫
d4p

(2π)4
e−ipμ·x

μ
δ(p2)〈θ|σ+(0)|GB�p〉〈GB�p|σ−(0)|θ〉 · · ·

(11.288)
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where p0 = |�p| and |GB�p〉 is a state with one Goldstone boson of momentum pμ.
Then using (note pμpμ ≡ p2)

δ(pμpμ) =
1

π
Im

(
1

p2+ iε

)
(11.289)

we get

〈θ|σ+(x)σ−(x)|θ〉= Im

∫
d4p

(2π)4
e−ipμ·x

μ
(

1

p2+ iε

)
〈θ|σ+(0)|GB�p〉〈GB�p|σ−(0)|θ〉 · · · (11.290)

and the singularity appears because of the existence of a massless particle.
However, in the calculation, there is only a contribution from the sector
n++n− = 2, which can be from ν = 0,ν =±2. Because there is one σ+ operator
and one σ−, the sectors with ν =±2 corresponding to two instantons or to two
anti-instantons simply vanish. Only the sector ν = 0 remains. Here there are
two possible contributions, one is the normal, perturbative contribution without
any instantons. It is straightforward to verify that there is no massless pole in
the perturbative calculation. The only non-trivial configurations come in the
sector ν = 0 that correspond to a well-separated pair of one instanton and one
anti-instanton. This contribution will simply be a constant

〈θ|σ+(x)σ−(0)|θ〉= 〈θ|σ+(x)|θ〉〈θ|σ−(0)|θ〉

=

(∫ ∞

0

dλ

λ4
e
−8π2

g2 e∓iθg−8f(λM)h(λM)

)2

(11.291)

and certainly will not contain a massless pole. Indeed, if we check any matrix
element of a set of gauge-invariant operators, we will find no massless pole.

However, if we consider a gauge-variant operator, for example

Gμ = 4εμνλσTr

(
Aν∂λAσ+

2

3
AνAλAσ

)
(11.292)

then matrix elements with Gμ inserted will contain a massless pole. This is
because ∂μGμ = εμνλσTr (FμνFλσ). Hence any matrix element with Gμ inserted
must have no pole when contracted with pμ. This implies that the original gauge-
variant matrix element must have a structure of the form

pμ
p2+ iε

, i.e. exactly a

massless pole. For example, consider

〈θ|Gμ(x)σ−(0)|θ〉=
∫
d4peipμxμpμΣ−(p) (11.293)

from Lorentz invariance. Then the divergence∫
d4x〈θ|∂μGμ(x)σ−(0)|θ〉=

∫
d4xd4peipμxμip2Σ−(p) (11.294)
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must have a pole at p2 = 0 if it does not vanish. This would then require

Σ−(p) =
C

p2− iε + · · · . (11.295)

However,
∫
d4x∂μGμ = 32π2ν, thus∫
d4x〈θ|∂μGμ(x)σ−(0)|θ〉= 32π2〈θ|σ−(0)|θ〉 �= 0, (11.296)

where the contribution to the matrix element of σ− is only from the sector with
ν = 1. Thus Σ−(p) must have a pole at zero momentum.
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Instantons, Supersymmetry and Morse Theory

As a final application of instanton methods, we will present an exposition of
instantons in supersymmetric theories. The great simplification that occurs
because of supersymmetry is the exact pairing of fermionic states with bosonic
states, which makes the calculation of the fluctuation determinant very simple.
The fermionic determinant exactly cancels the bosonic one.

Morse theory and the Morse inequalities concern the critical points of a
function defined on a compact, Riemannian manifold, and the global topological
aspects of the manifold. It was the genius of Witten [125, 123, 124] to point
out that there is a deep connection between Morse theory and supersymmetric
quantum mechanics defined on a manifold. This is what we hope to recount in
this chapter.

We will require some familiarity with certain concepts from differential
geometry which we will review here, but the reader should refer to more detailed
texts [42, 60, 26] for a more complete picture.

12.1 A Little Differential Geometry

12.1.1 Riemannian Manifolds

We consider a compact, n-dimensional Riemannian manifold. A manifold is a
point set with a topology (the definition of the open sets in M) that is locally
homeomorphic to IRn. This means that each point in the manifold is contained
in an open subset Ui of the manifold which can be mapped to IRn by a
homeomorphism φi � φi(Ui) ⊆ IRn. Homeomorphism means the mapping takes
open sets in Ui to open sets in IRn. The set of the Uis cover the manifold, i.e.
∪iUi =M. Any such set of Uis is called an atlas and each individual Ui provides
a coordinate chart. If two different coordinate charts Ui and Uj have a non-
empty intersection, Ui ∩Uj �= ∅, then the function φi ◦ φ−1

j which maps points
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in φj(Ui ∩ Uj)→ φi(Ui ∩ Uj), i.e. defines a function from IRn → IRn must be
k times differentiable. This defines a C

k manifold. We will always simply take
C

∞ manifolds. The (local) coordinates of each point in a given Ui are just the
coordinates of the point to which it is mapped in IRn.

12.1.2 The Tangent Space, Cotangent Space and Tensors

The manifold has a tangent space at each point P , TP (M), which is defined as
the space of linear mappings of real-valued functions defined on the manifold
to the real numbers which satisfy the Liebniz rule, �v(fg) = (�vf)g+ f(�vg). The
dimension of the tangent space is also n. The elements of the tangent space are
called vectors. A basis of the tangent space can be trivially given in terms of a
system of local coordinates. If xi are a set of coordinates at a point P of the
manifold, then any linear mapping that satisfies the Liebniz rule, on the space
of functions defined on the manifold at the point P can be defined by

�v : f(x)→ IR � �v(f) = vi∂if(x)|P . (12.1)

Thus a vector is equivalent to a set of n components �v ≡ (v1,v2, · · · ,vn). If the
components of the vector are smoothly varying functions of the coordinates vi(x),
then we define a vector field. The cotangent space T ∗

P (M) at the point P is simply
defined as the dual vector space of the tangent space at the point P . The dual
vector space of a given vector space is simply the space of linear mappings of the
vector space to the real numbers, thus T ∗

P (M) :TP (M)→ IR. The dimensionality
of T ∗

P (M) is also n. If we have an arbitrary basis Ei of Tp(M), then the dual
basis of T ∗

P (M) is defined by the condition

〈Ei, ej〉= δji . (12.2)

We name the dual basis to the coordinate basis ∂i using the notation dxj so that

〈∂i,dxj〉= δji . (12.3)

A general dual vector or “co-vector” can be written as �u∗ = ujdx
j and then for

a general vector �v = vi∂i we have

〈�v,�u∗〉= viuj〈∂i,dxj〉= viujδ
j
i = viui. (12.4)

If we change our system of coordinates of the coordinate chart at the point p,
xi→ x

′j , then the coordinate basis vectors of the tangent space transform simply
as ∂i = ∂x′j

∂xi
∂′j or equivalently ∂′j =

∂xi

∂x′j ∂i. But then the new dual basis vectors

must be given by dx′j = ∂x′j
∂xi

dxi or equivalently dxi = ∂xi

∂x′j dx
′j so that the inner

product between ∂i and dxj is preserved, i.e.

〈∂i,dxj〉=
〈
∂x′k

∂xi
∂′k,

∂xj

∂x′l
dx′l

〉
=
∂x′k

∂xi
∂xj

∂x′l
〈∂′k,dx′l〉

=
∂x′k

∂xi
∂xj

∂x′l
δlk =

∂x′k

∂xi
∂xj

∂x′k
= δji . (12.5)
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This then gives the transformation properties of the covariant and contravariant
components of of vectors and co-vectors, indeed, �v = v′j∂′j = v′j ∂x

i

∂x′j ∂i = vi∂i

and �u∗ = u′jdx
′j = u′j

∂x′j
∂xi

dxi = uidx
i. Hence vi = v′j ∂x

i

∂x′j and ui = u′j
∂x′j
∂xi

or

equivalently v′i = vj ∂x
′i

∂xj
and u′i = uj

∂xj

∂x′i . Then the inner product between
arbitrary vectors and co-vectors is invariant

〈�v,�u∗〉= viui = v′iu′i. (12.6)

We note the possibly confusing nomenclature: the components of vectors are
said to transform contravariantly while the components of co-vectors are said to
transform covariantly.

We can also take tensor products of the tangent space k times and the
cotangent space l times,

TP ⊗·· ·⊗TP︸ ︷︷ ︸
k

⊗ T ∗
P ⊗·· ·⊗T ∗

P︸ ︷︷ ︸
l

(12.7)

to define tensors (and tensor fields)

t= t
i1···ik
j1···jl ∂i1 ⊗·· ·⊗∂ik ⊗ dx

j1 ⊗·· ·⊗ dxjl . (12.8)

We should stress that at this point there is no relationship between the tangent
spaces, the cotangent spaces and their tensor products over distinct points. The
construction is independently done over each point. To use a leading terminology,
there is, at the moment, no connection between tangent spaces at neighbouring
points. The ensemble of the tangent spaces over all the points in the manifold
defines a larger manifold called the tangent bundle, a fibre bundle over the
manifold M. The base manifold is M and the fibre is TP over the point P in
M. There is also the corresponding cotangent bundle constructed with the co-
tangent space. The complete spaces are fibre bundles, spaces that locally permit
a decomposition into a Cartesian product of a patch of the base manifold M
cross the fibre, which would be the tangent space in the case of the tangent
bundle, etc.

12.2 The de Rham Cohomology

12.2.1 The Exterior Algebra

The de Rham cohomology concerns the ensemble of the set of spaces of the
completely anti-symmetric tensor products of the dual tangent space. We start
with the cotangent space, T ∗

P . Any two basis elements dx and dy can form an
anti-symmetric two-co-tensor defined as

dx∧ dy = 1

2
(dx⊗ dy− dy⊗ dx). (12.9)
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The product ∧ is called the Cartan wedge product or the exterior product. Then
an arbitrary anti-symmetric two-co-tensor is given by

t= tijdx
i ∧ dxj . (12.10)

This construction obviously generalizes to the notion of anti-symmetric p co-
tensors constructed over each point x of the manifold. The set of anti-symmetric
p co-tensors forms a sub-space of the p-fold tensor product of the co-tangent space
which we will call Λp(x). The set of Λp(x)s for all the points of the manifold forms
a fibre bundle over M. The elements of Λp(x) are called differential forms, or
more precisely p-forms. The dimensionality of Λp(x) is obviously

(
n
p

)
the number

of ways of choosing p basis vectors from the total set of n basis vectors. We add
in Λ0(x) = IR, simply the real line, and then we have n+1 spaces of differential
forms, Λ0(x) to Λn(x), since for Λn+1(x) or higher, it is no longer possible to
anti-symmetrize n+1 or more co-vectors and these spaces are just empty. The
space of smooth p-forms corresponds to the choice of the anti-symmetric tensor
component fields fi1···ip(x), the corresponding tensor field being fi1···ip(x)dx

i1 ∧
·· · ∧ dxip , which we write as C∞(Λp) which is a space of dimension

(
n
p

)
. It is

obvious that C∞(Λp) and C∞(Λn−p) have the same dimensionality. The wedge
product serves as a product on the full space of the direct sum of all possible
anti-symmetric tensor fields

Λ∗ =Λ0⊕Λ1⊕·· ·⊕Λn, (12.11)

which then defines an algebra called Cartan’s exterior algebra.

12.2.2 Exterior Derivative

We can define the exterior derivative of a p-form, an operation d, which takes p
forms to p+1 forms

d : C∞(Λp)→C∞(Λp+1) �

d(fi1···ip(x)dx
i1 ∧ ·· · ∧ dxip) =

(
∂

∂xj
fi1···ip(x)

)
dxj ∧ dxi1 ∧ ·· · ∧dxip .

(12.12)

Note the placement of the additional dxj by convention to the left of all the
other differential forms. Obviously

ddωp = 0 (12.13)

for any p-form ωp. The chain rule also simply follows, for ωp a p-form and χq a
q-form

d(ωp ∧χq) = (dωp)∧χq+(−1)pωp ∧ (dχq). (12.14)
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As C∞(Λp) and C∞(Λn−p) have the same dimensionality, we can define a
duality mapping between these spaces, called the Hodge ∗ duality transformation.
We define

∗ : C∞(Λp)→C∞(Λn−p) �

∗(dxi1 ∧ ·· · ∧ dxip) = 1

(n− p)! ε
i1···ip
ip+1···indx

ip+1 ∧ ·· · ∧dxin

(12.15)

where εi1···ipip+1···in is the completely anti-symmetric tensor in n dimensions. We have
been careful about keeping indices up or down; however, it is important to point
out that nothing we are doing requires the definition of a metric on the manifold.
The exterior algebra and exterior differentiation does not depend on a metric.
We note that

∗ ∗ωp = (−1)p(n−p)ωp. (12.16)

12.2.3 Integration

The space C∞(Λn) is one-dimensional, there is only one n-form, dx1∧ ·· ·∧dxn,
thus it is easy to see that dxi1 ∧ ·· · ∧ dxin = εi1···indx1 ∧ ·· · ∧ dxn. This form
can be identified with the volume form on the manifold and we can define the
integration over the manifold with this volume form; one simply integrates in IRn

in the charts of any given atlas, making sure not to double count the contributions
from regions where the charts intersect. The integration is independent of the
coordinate system, since the volume form transforms exactly by the Jacobian of
the coordinate transformation, dx1 ∧ ·· · ∧dxn = det

(
∂xi

∂x′j

)
dx′1 ∧ ·· · ∧dx′n. This

integration generalizes trivially to integration over sub-manifolds of M of a given
dimensionality p of a p-form defined over the sub-manifold. With the notion of
integration, we can define an inner product on the space of p-forms

(ωp,χp) =

∫
M
ωp ∧∗χp. (12.17)

In terms of the coefficients, ωp = ωi1···ipdx
i1 ∧ ·· · ∧ dxip and χp = χj1···jpdx

j1 ∧
·· · ∧dxjp then

(ωp,χp) =

∫
M
ωi1···ipdx

i1 ∧ ·· · ∧ dxip ∧∗(χj1···jpdxj1 ∧ ·· · ∧dxjp)

=

∫
M
ωi1···ipχj1···jpdx

i1 ∧ ·· · ∧ dxip ∧ 1

(n− p)! ε
j1···jp
jp+1···jndx

jp+1 ∧ ·· · ∧dxjn

=

∫
M
ωi1···ipχj1···jp

1

(n− p)! ε
j1···jp
jp+1···jnε

i1···ipjp+1···jndx1 ∧ ·· · ∧dxn

= p!

∫
M
ωi1···ipχj1···jpδ

i1j1 · · ·δipjpdx1 ∧ ·· · ∧dxn, (12.18)
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The inner product is symmetric, (ωp,χp) = (χp,ωp).
The next structure we will define is the adjoint of the exterior derivative, which

we call δ. The inner product

(ωp,dχp−1) =

∫
M
ωp ∧∗dχp−1 =

∫
M
(dχp−1)∧∗ωp

=

∫
M
d(χp−1 ∧∗ωp)− (−1)p−1χp−1 ∧ d ∗ωp

=

∫
M
−(−1)p−1χp−1 ∧ (−1)(n−p+1)(n−n+p−1) ∗ ∗d ∗ωp

=

∫
M
((−1)np+n+1 ∗d ∗ωp)∧∗χp−1

≡ (δωp,χp−1), (12.19)

where we have used trivial identities such as (−1)2n = 1. Thus δ = (−1)np+n+1 ∗
d∗, and note for n even the sign is always −1 and δ =−∗d∗, while for n odd we
get δ = (−1)p ∗d∗. It is also easy to see δδωp = 0.

The exterior algebra naturally gives rise to a Stokes theorem for manifolds
with boundaries. If ∂M is the boundary of a p-dimensional manifold M and
ωp−1 is an arbitrary (p− 1)-form, then Stokes theorem states∫

M
dωp−1 =

∫
∂M

ωp−1. (12.20)

This theorem contains and generalizes all three of the usual Green, Gauss and
Stokes theorems that are taught in an elementary course on vector calculus.

12.2.4 The Laplacian and the Hodge Decomposition

The Laplacian is now defined as

∇2 = (d+ δ)2 = dδ+ δd. (12.21)

The Laplacian does not change the degree of the form. The Laplacian is a positive
operator as

(ωp,∇2ωp) = (ωp,dδωp+ δdωp) = (δωp, δωp)+ (dωp,dωp)≥ 0, (12.22)

assuming there are no boundaries. Therefore, ∇2ωp = 0, and then ω is called a
harmonic p-form, if and only if both dωp = 0 (we say ωp is closed) and δωp = 0

(we say ωp is co-closed).
A p-form that can be globally written as the exterior derivative of a p−1-form,

i.e.
ωp = dζp−1 (12.23)

is called an exact p-form while if ω can be globally written as

ωp = δξp+1 (12.24)
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then it is called a co-exact p-form. The Hodge theorem states that on a compact
manifold without boundary any p-form ωp can be uniquely decomposed as the
sum of an exact form, a co-exact form and a harmonic form

ωp = dζp−1+ δξp+1+ ρp, (12.25)

where ρp is a harmonic form, meaning that ∇2ρp = 0.

12.2.5 Homology

The homology of a manifold is the set of equivalence classes of sub-manifolds
called cycles, boundaryless collections of sub-manifolds of dimension p, which
differ only by boundaries. We start with our initial n-dimensional manifold M.
Then we define a p-chain as a formal sum of p-dimensional, smooth, oriented, sub-
manifolds,N p

i , the formal, finite sum being written as αp=
∑
i ciN

p
i , where ci are

real, complex or integer, or even in the group Z2, giving rise to the corresponding
p-chain. We continue to use the symbol ∂ as the operator that corresponds to
taking the boundary, ∂αp =

∑
i ci∂N

p
i , which is evidently a (p− 1)-chain. Let

Zp be the set of boundaryless p-chains, which are called p-cycles. This means
αp ∈ Zp ⇒ ∂αp = ∅. Let Xp be the set of p-chains that are boundaries, i.e.
αp ∈ Xp ⇒ αp = ∂αp+1. Since the boundary of a boundary is always empty,
Xp ⊆Zp. Then the simplicial homology of M is defined as the set of equivalence
classes Hp

Hp = Zp/Xp, (12.26)

i.e. the set of p-cycles that only differ from each other by boundaries are
considered equivalent, αp∼α′

p⇒αp=α′
p+∂αp+1. Hp is obviously a group under

the formal addition. The formal sum of two p-cycles commutes with the process
of making equivalence classes with respect to p-cycles which are boundaries. The
integral homology groups are the most fundamental, we can get the real, complex
or Z2 homologies from them. We will write the homology groups as Hp(M,G),
where G=C, IR,Z,Z2. Hp(M,G) =∅ for p > n.
H0(M,G) =G if M is connected, since 0-cycles are just collections of points,

the boundary of a point is empty. We can reduce any finite collection of points
with arbitrary coefficients to a 0-cycle consisting of single point, P ∈M. Any 0-
cycle, α0 =

∑
i ciPi, can be reduced to single point P with a coefficient

∑
i ci ∈G,

using

α0 =
∑
i

ciPi =
∑
i

(ciPi− ciP + ciP )∼
(∑

i

ci

)
P (12.27)

as every pair of points with alternating coefficient, as appears above ciPi− ciP ,
is the boundary of a 1-cycle corresponding to any curve joining the two points.
However, cP is not equivalent to c̃P for c �= c̃∈G, thus the elements of H0(M,G)

are in a one-to-one correspondence with G. Obviously Hn(M,G) =G also, since
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there is only one sub-manifold of dimension n, M itself, in M, and we see that
H0(M,G)=Hn(M,G). This generalizes to what is called Poincaré duality, when
G= IR,C or Z2 (all fields) we have Hp(M,G) =Hn−p(M,G).

Finally, for G= IR,C or Z2 the homology group Hp(M,G) is clearly a vector
space over G. We define the cohomology group Hp(M,G) simply as the dual
vector space to Hp(M,G).

12.2.6 De Rham Cohomology

We define the de Rham cohomology group with respect to differential forms for
G= IR,C. With the definitions Zp as the set of closed p-forms and Xp as the set
of exact p-forms, the de Rham cohomolgy group is defined as

Hp
dR(M,G) = Zp/Xp, (12.28)

i.e. the equivalence classes of closed modulo exact p-forms, ωp ∼ ω′
p ⇒ ωp =

ω′
p + dαp−1. For the special case of H0

dR(M,G) we define this as the space of
constant functions, as their exterior derivative vanishes. A zero-form cannot be
the exterior derivative of any “−1” form, as these do not exist. The spectacular
conclusion of the de Rham theorem asserts that these cohomology groups are in
fact identical to the simplicial cohomology groups and hence dual to the simplicial
homology groups.

We define the inner product of a p-cycle αp ∈Zp with a closed p-form ωp ∈Zp
through the integral

π(αp,ωp) =

∫
αp

ωp. (12.29)

It is easy to see that this inner product only depends on the equivalence class of
αp and of ωp. Indeed,∫

αp

(ωp+ dχp−1) =

∫
αp

ωp+

∫
αp

dχp−1 =

∫
αp

ωp+

∫
∂αp

χp−1 =

∫
αp

ωp (12.30)

and ∫
αp+∂βp+1

ωp =

∫
αp

ωp+

∫
∂βp+1

ωp =

∫
αp

ωp+

∫
βp+1

dωp =

∫
αp

ωp (12.31)

as ∂αp =∅ and dωp = 0. Thus π gives a mapping

π :Hp(M,G)⊗Hp
dR(M,G)→G. (12.32)

De Rham proved the following theorems. Let {ci}, i = 1, · · · ,dim(Hp(M,R),
be a set of independent p-cycles that form a basis of Hp(M,R). Then

1. For any given set of periods νi, i= 1, · · · ,dim(Hp(M,R) there exists a closed
p-form ωp such that

νi = π(ci,ωp) =

∫
ci

ωp. (12.33)
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2. If all the periods vanish for a give p-form ωp, then ωp is exact, i.e. ωp= dχp−1.

This means that if {ωj} is a basis of p-forms of Hp
dR(M, IR) then the period

matrix πij = π(ci,ωj) is invertible. This is equivalent to saying that Hp
dR(M, IR)

is dual to Hp(M, IR). Consequently, the de Rham cohomology and the simplicial
cohomology are naturally isomorphic and can be identified.

The Hodge theorem asserts that for each de Rham cohomology class there is
an essentially unique harmonic form that can be taken as the representative of
the class. Indeed, we have from the Hodge decomposition

ωp = dζp−1+ δξp+1+ ρp. (12.34)

Then evidently, the exact form dζp−1 is irrelevant in determining the equivalence
class. ωp being closed and ρp being harmonic, thus dωp = dρp = 0 which implies
that dδξp+1 = 0, but then 0 = (ξp+1,dδξp+1) = (δξp+1, δξp+1) requires δξp+1 = 0.
Thus ωp = dζp−1 + ρp and the de Rham cohomology class of ωp is determined
by the unique harmonic form ρp in its Hodge decomposition. This fact will be
very important in the supersymmetric quantum mechanics that we will analyse
in the later sections.

We define the Betti numbers as the dimension of the homology groups and
consequently also the cohomology groups

Bp = dim(Hp(M, IR)) = dim(Hp
dR(M, IR)) = dim(Hp(M, IR)), (12.35)

where Bp is the pth Betti number. The alternating sum of the Betti number is
the Euler characteristic

χ(M) =
n∑
p=0

(−1)pBp (12.36)

and we will see it is a topological invariant of the manifold. Morse theory relates
the critical points of functions defined on a manifold to its Betti numbers.

12.3 Supersymmetric Quantum Mechanics

After this brief, condensed exposition of manifolds, structures defined on
them and of the de Rham cohomology we can now move on to show how
supersymmetry and instantons can be used to prove the global topological results
framed in the Morse inequalities [62].

12.3.1 The Supersymmetry Algebra

In any quantum theory we can separate the Hilbert space H into H=H
+⊕H

−,
where H+ and H

− are the subspaces of bosonic and fermionic states, respectively.
A supersymmetry corresponds to a transformation generated by conserved
hermitean operators Qi, i=1, · · · ,N that maps H+ to H

− and vice versa. We also
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define the operator (−1)F , where F is the fermion number. Then (−1)F |ψ〉= |ψ〉
for |ψ〉 ∈H

+ while (−1)F |ψ〉=−|ψ〉 for |ψ〉 ∈H
−. The supersymmetry generators

must anti-commute with (−1)F , {Qi,(−1)F } = 0, which means that they are
fermionic operators. On the other hand, they commute with the Hamiltonian
H, [Qi,H] = 0, which means that they are conserved. Finally, to define a
supersymmetric theory we also impose Q2

i = H for any i and {Qi.Qj} = 0 for
i �= j, together giving

{Qi.Qj}= 2δijH. (12.37)

This definition of supersymmetry does not allow for Lorentz-invariant theories.
This is because Lorentz transformations combine the Hamiltonian to the
momentum generators. In 1 + 1 dimensions we have only one momentum
generator, P . The simplest algebra preserving Lorentz symmetry requires two
supersymmetry operators, Q1 and Q2 and the algebra

Q2
1 =H+P, Q2

2 =H−P, {Q1,Q2}= 0. (12.38)

This is compatible with the idea that (H,P ) transform as a vector and (Q1,Q2)

transform as a spinor. There is just one generator of Lorentz transformation M ,
taken hermitean, and

[M,H] = iP, [M,P ] = iH, [M,Q1] = i
1

2
Q1, [M,Q2] =−i1

2
Q2. (12.39)

Then, for example, [M,H+P ] = i(H+P ), which is compatible with

[M,Q2
1] = [M,Q1]Q1+Q1[M,Q1] = i

1

2
Q1Q1+Q1i

1

2
Q1 = iQ2

1 = i(H+P ).

(12.40)
From Equation (12.38) we easily find

H=
1

2
(Q2

1+Q
2
2) (12.41)

and therefore the Hamiltonian is positive semi-definite. Also, [H,(−1)F ] =
[P,(−1)F ] = 0 as they are quadratic in the supercharges, hence the Hamiltonian
and the momentum generator are bosonic operators.

If there exists a single state |0〉 in the Hilbert space that is annihilated by the
supercharges

Qi|0〉= 0 i= 1,2, (12.42)

then the supersymmetry is unbroken. Such a state obviously has zero energy
and, since the Hamiltonian is positive semi-definite, |0〉 is the vaccum state.
If there are many solutions to Equation (12.42), then the supersymmetry is
also unbroken, but presumably the Hilbert space separates into superselection
sectors of states constructed over each vacuum. If there are no states that
satisfy Equation (12.42), then the supersymmetry is spontaneously broken.
It is generally quite difficult to directly prove the existence of solutions to
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Equation (12.42), or the lack thereof. However, the following indirect method
sheds light on the question: one computes the index of one of the supersymmetry
generators.

We are looking for states that are annihilated by both supersymmetry
generators,Qi|0〉=0. Then with the algebra (12.38) it is easy to see that P |0〉=0,
thus we can restrict to the subspace HP=0, which is all states annihilated by
P . This subspace also splits into a bosonic and a fermionic subspace, HP=0 =

H
+
P=0⊕H

−
P=0. Within this subspace, Q2

1 =Q2
2 =H, restricted to HP=0, we can

look for states that are annihilated by one of the supercharges, call it Q̃, where Q̃
could be Q1 or Q2 or a linear combination of the two. Q̃ necessarily can only take
a state in H

+
P=0 →H

−
P=0 and a state in H

−
P=0 →H

+
P=0. Q̃ has no other action.

This fact then allows for the decomposition Q̃=Q+ +Q−, where Q+ acts only
on and maps H

+
P=0 → H

−
P=0 while Q− acts only on and maps H

−
P=0 → H

+
P=0.

Q− is the adjoint of Q+. The index of Q̃ restricted to HP=0 is then defined as

index(Q̃) = dim(Ker(Q+))− dim(Ker(Q−)), (12.43)

where Ker(Q±) is the subspace of H±
P=0 that is annihilated by Q±. If the index

is non-zero then we know for sure that there are states that are annihilated by
Q̃ and hence supersymmetry is unbroken. The index(Q̃) can be written as

index(Q̃) = Tr(−1)F = nB(E = 0)−nF (E = 0) (12.44)

as the bosonic zero modes in H
+
P=0 count as +1 for each mode and the fermionic

zero modes in H
−
P=0 count as −1 for each mode. The non-zero energy modes

are necessarily paired because of the supersymmetry, and hence cancel pairwise
in their contribution to the trace. The index being non-zero requires necessarily
that there exists at least one zero energy state and hence we can conclude that in
this case the supersymmetry is unbroken. In the sequel we will drop the subscript
P = 0 and take as given that we are working in the subspace with P = 0.

12.3.2 Supersymmetric Cohomology

The Hamiltonian is given by

H=QQ†+Q†Q (12.45)

with the superalgebra
Q2 =Q†2 = 0, (12.46)

with consequently
[H,Q] = [H,Q†] = 0. (12.47)

There also exists the operator (−1)F and usually the fermion number operator
F , which both commute with the Hamiltonian. The states in the Hilbert spaces
are graded by the eigenvalue of (−1)F . Bosonic states, a subspace denoted by
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H
+, take eigenvalue +1 while fermionic states, a subspace denoted by H

−, take
the eigenvalue −1. The fermion number operator is integer-valued, with bosonic
states having an even number of fermions and fermionic states having an odd
number. The Hamiltonian maps bosonic states to bosonic states and fermionic
states to fermionic states, while the supercharges switch the two, mapping
bosonic states to fermionic states and fermionic states to bosonic states.

H :H+ →H
+, H

− →H
−

Q,Q† :H+ →H
−, H

− →H
+. (12.48)

If we write the energy levels in an ordered list E0<E1< · · · then the Hamiltonian
preserves the energy-level subspace and the Hilbert space can be decomposed in
terms of subspaces Hm of fixed energy levels

H=
⊕
m

Hm (12.49)

with the action of the Hamiltonian, the supercharges and (−1)F satisfying

H|
Hm

=Em, Q,Q†,(−1)F :Hm→Hm. (12.50)

The energy-level subspace further decomposes into bosonic and fermionic
subspaces Hm = H

+
m ⊕ H

−
m and while the Hamiltonian preserves the bosonic

and fermionic subspaces (they are indeed eigensubspaces of the Hamiltonian)
the supercharges exchange the two

Q,Q† :H+
m→H

−
m, H

−
m→H

+
m. (12.51)

The action of the operator Q twice, vanishes, Q2 = 0. Thus we have the exact
sequence:

H
−

H
+

H
−

H
+Q Q Q

(12.52)

An exact sequence means that the image of a given map in the sequence is the
kernel of the subsequent map. This is called a Z2-graded complex of vector spaces
as the fermionic and bosonic Hilbert spaces are graded with the Z2 charge with
respect to the operator (−1)F . This gives rise to the cohomology groups:

H+(Q) =Kernel
{
Q :H+ →H

−}/Image{Q :H− →H
+
}

H−(Q) =Kernel
{
Q :H− →H

+
}
/Image

{
Q :H+ →H

−} . (12.53)

We can further refine this complex by noting that at energy level Em �= 0, the
action of Q does not take you out of the energy sector, since Q commutes with
the Hamiltonian. If a vector |Em〉 is Q closed, Q|Em〉 = 0, i.e. in the kernel of
Q, then it is necessarily exact, i.e. in the image of the previous map, since

|Em〉=H|Em〉/Em =
(
QQ†+Q†Q

)
|Em〉/Em =Q

(
Q†|Em〉/Em

)
. (12.54)
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Hence all states that are closed are also exact for all the non-zero energy levels,
and thus cohomology groups are just determined by the states in the zero energy
sector. For a state of zero energy |E0〉 we have

0 = 〈E0|H|E0〉= 〈E0|
(
QQ†+Q†Q

)
|E0〉=

∣∣Q†|E0〉
∣∣2+ |Q|E0〉|2 , (12.55)

which is only possible if both Q|E0〉= 0 and Q†|E0〉= 0. Thus the zero energy
states are annihilated by Q and hence closed. But none of them are exact, |E0〉 �=
Q|α〉, since, if this were true, Q†|E0〉= 0=Q†Q|α〉, which implies 〈α|Q†Q|α〉=
|Q|α〉|2 = 0, which is only possible if Q|α〉= 0. Thus the cohomology groups can
be identified with the set of zero energy states:

H+(Q) =H+
0

H−(Q) =H−
0 (12.56)

where H±
0 are the states of zero energy.

Q takes states of p fermions to states of p+ 1 fermions. It is reasonable to
assign vanishing fermion number to states without fermions, and the action of
Q an even number of times always gives back a bosonic subspace, while an odd
number of times give us a fermionic subspace, hence with the notation that H

p

is the subspace of states of p fermions, we have:

H
+ =⊕p evenH

p

H
− =⊕p oddH

p. (12.57)

Then the Z2-graded exact sequence in Equation (12.52) becomes a Z-graded
exact sequence

· · · H
p−1

H
p

H
p+1 · · ·Q Q Q Q

(12.58)

and we can define the cohomology group at each p:

Hp(Q) =Kernel
{
Q :Hp→H

p+1
}
/Image

{
Q :Hp−1 →H

p
}
. (12.59)

The Witten index then becomes the “Euler” characteristic of the complex

Tr (−1)F =
∑

p=0,1,···
(−1)pdim(Hp(Q)) . (12.60)

12.3.3 1-d Supersymmetric Quantum Mechanics

Consider the action

S =

∫
dtL(t) =

∫
dt

(
1

2
ẋ2− 1

2
(h′(x))2+

i

2

(
ψ†ψ̇− ψ̇†ψ

)
−h′′(x)ψ†ψ

)
.

(12.61)
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The variables ψ and ψ† are anti-commuting variables which will eventually be
realized by the exterior derivative or some deformation of the exterior derivative.
For the moment we just impose {

ψ,ψ†}= 0. (12.62)

The supersymmetric transformation is

δx= εψ†− ε†ψ
δψ = ε(iẋ+h′(x))

δψ† = ε† (−iẋ+h′(x)) , (12.63)

where ε = ε1 + iε2 is a complex fermionic parameter. It is reasonably easy to
see that the action is invariant under the supersymmetry transformation. The
conserved supercharges can be obtained by Noether’s theorem

Q= ψ† (iẋ+h′(x))

Q† = ψ (−iẋ+h′(x)) . (12.64)

Quantizing the system corresponds to imposing the canonical commutation and
anti-commutation relations

[x,p] = i{
ψ,ψ†}= 1 (12.65)

as the canonically conjugate momenta are p = ∂L/∂ẋ and πψ = ∂L/∂ψ̇ = iψ†,
with {ψ,πψ} = i. (The convention taken with Grassmann derivatives is action
from the left, ∂ψ1ψ2/∂ψ1 = −ψ2, in the final analysis, it is just the algebra of
the operators that counts.) The Hamiltonian is given by

H=
1

2
p2+

1

2
(h′(x))2+

1

2
h′′(x)

(
ψ†ψ−ψψ†) . (12.66)

The fermion number operator is F =ψ†ψ and satisfies the commutation relations

[F,ψ] =−ψ, [F,ψ†] = ψ†. (12.67)

As {ψ,ψ} = 0 =
{
ψ†,ψ†} the fermionic fields satisfy the algebra of fermionic

annihilation and creation operators and, if there exists the state |0〉 that is
annihilated by ψ, which we assume ψ|0〉 = 0, then the state ψ†|0〉 is the only
other independent state in the theory. Evidently ψψ†|0〉= |0〉 and ψ†ψ†|0〉= 0.
Thus we can write the fermionic operators as

ψ =

(
0 1

0 0

)
, ψ† =

(
0 0

1 0

)
. (12.68)

The full Hilbert space of the theory will be the Hilbert space of the bosonic
variable x, which is the space of complex-valued square-integrable functions of
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the variable x denoted by L2( IR,C), multiplying (tensored with the states |0〉
and the state ψ†|0〉),

H= L2( IR,C)|0〉⊕L2( IR,C)ψ†|0〉 (12.69)

the first component is identified with the bosonic subspace and the second
with the fermionic subspace. The supercharges remain form-invariant from their
classical expressions

Q= ψ† (ip+h′(x))

Q† = ψ (−ip+h′(x)) , (12.70)

and commute with the Hamiltonian. We can compute, with a little straightfor-
ward algebra, that indeed {

Q,Q†}= 2H, (12.71)

hence the supersymmetry algebra is satisfied.
The supersymmetric ground states are determined by the two conditions:

Q|E0〉=
(

0 0

d/dx+h′(x) 0

)
|E0〉= 0

Q†|E0〉=
(

0 −d/dx+h′(x)
0 0

)
|E0〉= 0. (12.72)

Expanding |E0〉= ξ1(x)|0〉+ ξ2(x)ψ†|0〉 gives(
d

dx
+h′(x)

)
ξ1(x) = 0(

− d

dx
+h′(x)

)
ξ2(x) = 0, (12.73)

which are trivially solved as

ξ1(x) = c1e
−h(x)

ξ2(x) = c2e
h(x). (12.74)

Obviously these solutions cannot both be square-integrable and the square-
integrability depends on the behaviour of h(x) as x → ±∞. The four cases
are limx→±∞h(x) = ±∞, limx→±∞h(x) = ∓∞, limx→±∞h(x) = +∞ and
limx→±∞h(x) =−∞, the first case being equivalent to the second. The first two
cases yield no square-integrable solution and hence there are no supersymmetric
ground states and Tr(−1)F =0. The latter two yield a solution with either c2 =0

or c1 =0; in each case there is one supersymmetric ground state, bosonic if c2 =0

yielding Tr(−1)F = 1 and fermionic if c1 = 0 yielding Tr(−1)F = −1. Thus we
know exactly that in the first two cases there are no supersymmetric ground
states, while in the latter two cases there is exactly one, which is bosonic if the
potential rises to +∞ as x→±∞ and fermionic if the potential falls to −∞ as
x→±∞ . We underline that these are exact results.
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12.3.3.1 Supersymmetric harmonic oscillator The example of a harmonic
oscillator is particularly simple; here we take h(x) = ω

2 x
2. Then the potential in

our Hamiltonian is 1
2 (h

′(x))2 = ω2

2 x
2 while the coefficient of the fermionic term

is h′′(x) = ω. Thus the Hamiltonian is given by

H=
1

2
p2+

ω2

2
x2+

1

2
ω
(
ψ†ψ−ψψ†) . (12.75)

The harmonic oscillator has spectrum

En =
(
n+

1

2

)
ω n= 0,1,2, · · · (12.76)

for eigenstate φn(x), which are known to be Hermite polynomials multiplied by
a Gaussian. The fermionic part yields the matrix

ω

2

(
−1 0

0 1

)
, (12.77)

which commutes with the harmonic oscillator and has the spectrum Ẽ =
(
−ω

2 ,
ω
2

)
.

Thus the spectrum of the Hamiltonian is for ω > 0,

En =

{
nω for φn(x)|0〉
(n+1)ω for φn(x)ψ†|0〉 n= 0,1,2, · · · (12.78)

and for ω < 0

En =

{
(n+1)|ω| for φn(x)|0〉
n|ω| for φn(x)ψ†|0〉 n= 0,1,2, · · · . (12.79)

We notice that for positive ω we have a bosonic zero mode but for negative ω
the supersymmetric zero mode is fermionic.

12.3.4 A Useful Deformation

We will next consider a deformation where the supersymmetric harmonic
oscillator corresponds to the lowest-level approximation. Consider the theory
with h(x) replaced with th(x), where t is just a parameter (in no sense the
time).

h(x)→ th(x). (12.80)

Then the Hamiltonian becomes

Ht =
1

2
p2+

t2

2
(h′(x))2+

t

2
h′′(x)

(
ψ†ψ−ψψ†) (12.81)

and we are interested in what happens as t→∞. In this limit, the potential
t2

2 (h′(x))2 becomes very large for most values of x, and the wave function is
pushed into regions where the potential is small. The potential is small only at
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the places xi where h′(xi) = 0, i.e. critical points of the function h(x). Around
critical points, the potential can be approximated in the lowest approximation
as a quadratic polynomial ∼ (x− xi)

2, which brings us back to the harmonic
oscillator that we have just analysed. The frequency of the harmonic oscillator
becomes tω, where ω = h′′(xi) at the critical point, and then the energy levels
are linear in t. The fermionic term now has coefficient th′′(xi) = tω, and thus
also gives a linear contribution in t to the energy, which exactly cancels the
oscillator ground-state zero-point energy for the bosonic case if ω > 0 and for
the fermionic case if ω < 0, just as we have seen explicitly above for the exact
harmonic oscillator.

Thus we are left with exactly one energy level at each critical point whose
energy does not scale linearly with t. The energy of the state is zero in the
approximation that we have employed. It may well be exactly zero, but this is
not yet determined. However, we do know that without any approximations there
is only one or no exact supersymmetric ground state in the theory, depending on
the asymptotic behaviour of h(x). Thus all or all but one of the zero-energy levels
that we have found approximately must in fact have non-zero energy. What will
be clear is that the exact energy levels of the corresponding exact eigenstates,
which are concentrated about the critical points of h(x) (as we have found to
be approximately the case), will not scale linearly with t. To first order in the
approximation, they are zero-energy modes. Perturbatively, they will actually
remain zero-energy modes to all orders. Their energy can only become non-
zero through non-perturbative corrections. These non-perturbative corrections
are just instanton corrections, corresponding to tunnelling transitions between
the perturbative zero-energy modes.

Expanding the function h(x) about a critical point xi where h′(xi) = 0,
and assuming h′′(xi) �= 0, which simply means that the critical points are
non-degenerate, we have

h(x) = h(xi)+
1

2
h′′(xi)(x−xi)2+

1

6
h′′′(xi)(x−xi)3+ · · · (12.82)

and evidently

h′(x) = h′′(xi)(x−xi)+
1

2
h′′′(xi)(x−xi)2+ · · · . (12.83)

Scaling x−xi→ x̃− x̃i = (x−xi)/
√
t and correspondingly p→ p̃=

√
tp gives

h(x) = h(xi)+
1

2t
h′′(xi)(x̃− x̃i)2+

1

6t3/2
h′′′(xi)(x̃− x̃i)3+ o

(
1

t2

)
(12.84)

and for the Hamiltonian

Ht = t

(
1

2
p̃2+

1

2
(h′′(xi))

2
(x̃− x̃i)2+

1

2
h′′(xi)

(
ψ†ψ−ψψ†))

+o(
√
t)+ o(1)+ o

(
1√
t

)
+ · · · . (12.85)
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Thus we can imagine computing perturbatively in 1/
√
t where the leading term

is given by

Hlocal = t

(
1

2
p̃2+

1

2
(h′′(xi))

2
(x̃− x̃i)2+

1

2
h′′(xi)

(
ψ†ψ−ψψ†))

=
1

2
p2+ t2

1

2
(h′(xi))

2
+ t

1

2
h′′(xi)

(
ψ†ψ−ψψ†) (12.86)

where in the last equality we have put back x̃→ x=
√
tx̃ after shifting so that

the critical point occurs at x=0. Obviously this is the supersymmetric harmonic
oscillator that we have just treated and completely understand. There will be,
in this approximation, one bosonic supersymmetric ground state of zero energy,
as in Equation (12.78), for each critical point with h′′(xi)> 0 and one fermionic
supersymmetric ground state of zero energy, as in Equation (12.79), for each
critical point with h′′(xi)< 0. The eigenstate, say if bosonic, will be of the form
(unnormalized)

|E0〉 ≈ e
− t

2
h′′(xi)(x−xi)2 |0〉, (12.87)

which is the first approximation to the exact zero-energy state (unnormalized)
which in this case is

|E0〉= e−th(x)|0〉 (12.88)

but with h(x) expanded about xi with the constant value of h(xi) absorbed into
the normalization. Evidently, if we compute the perturbative corrections to the
energy state in Equation (12.87), using the perturbatively (in 1/

√
t) expanded

Hamiltonian (12.85), we will simply rebuild the exact zero-energy state given in
Equation (12.88) from a Taylor expansion of h(x). However, at each stage of the
perturbative calculation the wave function will be concentrated around x= xi, a
Gaussian multiplied by polynomial corrections corresponding to the higher levels
of the harmonic oscillator. The energy admits an expansion in even powers of
1/
√
t since the contribution from odd powers vanishes due to parity. However,

the energy must actually remain zero at all stages of the perturbation, since we
know that the energy of the exact wave function is exactly zero. Perturbative
contributions at a higher order cannot correct a non-zero contribution to the
energy at a lower order, hence the correction to the energy must be absent at
each order. We can do this calculation around each critical point and, hence,
perturbatively we will construct as many zero-energy modes as there are critical
points.

Since we know that in fact there is at most only one exact zero-energy mode,
all but one combination of these perturbatively found zero modes must be non-
perturbatively corrected to finite energy. The Witten index will be given as

Tr(−1)F =

N∑
i=1

sign(h′′(xi)) (12.89)
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as each bosonic zero mode for h′′(xi)> 0 contributes +1 and each fermionic zero
mode for h′′(xi)< 0 contributes−1. Evidently, this sum must equal±1 or 0, as we
have found, dependent on the asymptotic behaviour of h(x). This makes perfect
sense as the number of concave and convex critical points can only change in equal
numbers if we deform h(x) locally, as long as the asymptotic behaviour of h(x)
is kept invariant. As we have said, these perturbatively found zero modes must
not be exact zero modes, thus they must lift away from zero energy due to non-
perturbative corrections. But then supersymmetry imposes that for each bosonic
mode lifting away from zero energy there must be a corresponding fermionic
one that is exactly degenerate in (non-zero) energy. Thus the non-perturbative
corrections must simultaneously lift the bosonic and fermionic perturbatively
found zero modes away from zero energy in pairs.

The generalization of this theory to n dimensions and on a Riemannian
manifold will bring us to Morse theory in the next section.

12.4 Morse Theory

There is a connection between the Betti numbers and critical points of real-valued
functions defined on a manifold [94, 10, 89, 125, 62, 19, 64]. We do not consider
arbitrary real-valued functions, but an essentially generic class of functions that
are called Morse functions. Morse functions, for which we will use the notation
h(x), are defined to be those real-valued functions that have a finite number
of non-degenerate, isolated critical points. A critical point is where the first
derivative of the function vanishes, which evidently is independent of the system
of coordinates that are used. Thus the critical points of a Morse function occur
at a finite number of discrete points, Pa, and the condition that they be non-
degenerate means that the determinant of the matrix of second derivatives in
any system of local coordinates containing Pa, the so-called Hessian matrix, has
a non-zero determinant. This means the eigenvalues of the Hessian are non-
zero. We can diagonalize the Hessian, a real symmetric matrix, by an orthogonal
transformation of the coordinates, and shift the coordinates so that the critical
point occurs at the origin of the coordinates. We can also rescale the resulting
coordinates so that the positive eigenvalues are +1 and the negative eigenvalues
are −1. Then around a critical point Pa with p negative directions, there exists
a coordinate system in which a Morse function appears as

h(x) = ca−
p∑
i=1

x2i +
n∑

i=p+1

x2i , (12.90)

where ca is the value of the Morse function at the critical point. This rather
reasonable fact corresponds to the Morse Lemma. It is clear that with an
infinitesimal deformation of the Morse function, all values of the function ca
at the critical points can be taken to be distinct. Furthermore, we can assume
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that the values of the Morse function at the critical points are labelled in a
monotone, ascending order, cl < cl+1, l= 0, · · · ,N . p is called the Morse index of
a critical point, and the number of critical points with Morse index p is called
the Mp.

A surprising fact corresponds to the understanding that the manifold can be
reconstructed out of any Morse function that is defined on it. One considers the
inverse map defining the submanifold (not including its boundary)

Mc = {x ∈M� h(x)< c} . (12.91)

Clearly for c<c0, where c0 is the global minimum of the Morse function,Mc<c0 =

∅. The global minimum must exist as the manifold is assumed to be compact. As
we increase c, when we pass c0, but stay below the next critical point where the
value of the Morse function is c1, the manifold Mc1>c>c0 is topologically always
the same and what is called a 0-cell. The nomenclature, 0-cell, corresponds to the
fact that the critical point which is the global minimum has 0 negative directions.
A 0-cell is in fact topologically an n-dimensional ball, without its boundary. It
is evident that the topology of Mc>c0 does not change as we increase c, until
we come to the value of c1, the next critical point of the Morse function. At the
critical point c1, there are p negative directions and n−p positive directions. The
manifold must attach a p-cell to the 0-cell that rises from the global minimum
and the topology of the manifold must change as c passes from below c1 to above
c1 by the attachment of a p-cell. A p-cell corresponds to a topological manifold
that has p negative directions and n− p positive directions, such a manifold is
sometimes called a p-handle.

This construction will continue at each critical point of the Morse function.
The topology of the set Mc will be invariant for cl < c < cl+1, the topology
change occurring exactly and only at the critical points of the Morse function
with values cl. At each critical point of the Morse index p we will have to attach a
p-cell. Finally, for c> cN , where cN is the global maximum of the Morse function,

Mc>cN =M (12.92)

and at this point we will have reconstructed the entire manifold. As we approach
the final critical point, we must attach an n-cell, as the global maximum has n
negative directions. An n-cell is also, topologically, an n-dimensional ball, as was
the 0-cell at the global minimum, except that it now has n negative directions.
Nothing precludes the attachment of n-cells, 0-cells or in general any number
of p-cells at intermediate critical points; if there are local critical points with p

negative directions, that is what is required. Indeed, in principle, for a critical
point of the Morse index p, we must add a p-cell. The detailed description of
this attachment of p-cells, or p-handles as they are sometimes called, is rather
straightforward and unremarkable. We will not describe it in any more detail.
The reader can consult the literature cited above for the full details.
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Obviously, the reconstruction of the manifold based on a given Morse function
must obey some constraints imposed on it due to the actual global topology of the
manifold. The actual global topology of the manifold cannot arbitrarily change
by its reconstruction based on a given Morse function. The actual topology of the
manifold specifically constrains how many p-cells exist in the manifold. Hence
the reconstruction based on a Morse function must be in some sense redundant.
This gives the first hint that the number of critical points with Morse index p

must be restricted by the global topology of the manifold.
The crudest example of such a restriction is, for example, the condition that

there must exist only one global maximum and one global minimum for the Morse
function. The topology of the manifold, that it is compact, imposes this condition.
As any Morse function on the manifold can be interpreted as a height function,
with a corresponding topology preserving deformation of the manifold, we can
easily see that it is possible to eliminate pairwise, for example, a local maximum
and a local minimum by simply deforming the Morse function or equivalently
the manifold. Indeed, we will be able to show that the number of critical points,
Mp, of the Morse index p is bounded below by exactly the topological properties
of the manifold expressed in the Betti number Bp,

Mp ≥Bp. (12.93)

These correspond to the weak Morse inequalities. There are also strong Morse
inequalities, which we will introduce when appropriate in the sequel.

12.4.1 Supersymmetry and the Exterior Algebra

The realization of supersymmetry that we will use corresponds to the following
identification in the exterior algebra of a Riemannian manifold, M, of dimension,
n, where we will further assume that it is equipped with a smooth metric gij .
Let Q= d, Q† = δ, and

Q1 = d+ δ Q2 = i(d− δ), H= dδ+ δd. (12.94)

Then
H=Q2

1 =Q2
2 and {Q1,Q2}= 0, (12.95)

i.e. the supersymmetry algebra is satisfied. p-forms are bosonic or fermionic
depending on whether p is even (bosonic) or odd (fermionic). TheQi map bosonic
states to fermionic states.

What are the supersymmetric ground states for this quantum-mechanical
theory? Evidently they are the zero modes of the Laplacian, those p-forms that
are annihilated by the Laplacian, H = dδ + δd = ∇2. But these are just the
harmonic forms. The harmonic forms satisfy exactly

∇2ρp = 0. (12.96)
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The number of harmonic p-forms is exactly the dimension of the pth homology
group, dimHp(M, IR). Hence the number of supersymmetric ground states,
dimHp(Q), of a supersymmetric quantum mechanics defined on a Riemannian
manifold, M, is exactly equal to the Betti numbers, Bp, of the manifold.
Interestingly, supersymmetry has some relation to the global topology of the
manifold as defined by the Betti numbers.

The Witten index is obviously a topological invariant, the number of
supersymmetric ground states can only change by pairs of bosonic–fermionic
states lifting away from zero energy or coming down to zero energy. Therefore,
we see that the Euler characteristic

χ(M) =

n∑
p=0

(−1)pBp =
n∑
p=0

(−1)pdimHp(Q) = Tr (−1)F (12.97)

is in fact a topological invariant of the manifold.

12.4.2 The Witten Deformation

We deform the exterior algebra with an additional real parameter, t, and an
arbitrary smooth real-valued function, h(x), defined on M, which will be the
appropriate Morse function, and then we let

dt = e−htdeht δt = ehtδe−ht. (12.98)

These operators continue to satisfy d2t = 0= δ2t , and so we define

Q1t = dt+ δt, Q2t = i(dt− δt), Ht = dtδt+ δtdt (12.99)

and the supersymmetry algebra is satisfied for each t

Q2
1t =Q2

2t =Ht, {Q1t,Q2,t}= 0. (12.100)

Then with Qt = (Q1t− iQ2t)/2, deformed supercharges are given by

Qt = d+ tdh∧ Q†
t = δ+ t(dh∧)†. (12.101)

As before, the exact supersymmetric ground states are those that are exactly
annihilated by Qt and by Q†

t . These would be the analogue of the harmonic
forms. In the local coordinate system these are easily determined; for example,
for states annihilated by Qt we need to find p-forms that satisfy

Qtωp = (d+ tdh)ωp = 0. (12.102)

Writing ωp = ωi1···ipdx
i1 ∧ ·· · ∧ dxip we get

(∂iωi1···ip + t∂ihωi1···ip)dx
i ∧ dxi1 ∧ ·· · ∧dxip = 0. (12.103)

This has an evident solution

ωi1···ip = e−thci1···ip , (12.104)
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where ci1···ip is constant, and similarly for Q†
t . However, this does not mean that

we have actually found a harmonic form, the coordinate system is in principle
only a patch on the manifold. To find the set of harmonic forms is, in general, a
complicated exercise. The set of exact supersymmetric ground states does exist
and their numbers are given by the corresponding Betti numbers.

We define the Betti numbers, Bp, analogous to the definition of the de Rham
cohomology, as the number of linearly independent p-forms that satisfy dtωp =
0, i.e. closed with respect to dt, but which cannot be written as the exterior
derivative of a p−1-form, i.e. ωp �= dtχp−1, i.e. that are not exact with respect to
dt. The point is that this definition of the Betti numbers is actually independent
of the parameter t, the Betti numbers so defined must be equal to their usual
values at t= 0. dt differs from d by conjugation with an invertible operator eht,
thus the mapping ωp→ e−htωp is an invertible mapping of closed but not exact
p-forms in the sense of d, mapped to closed but not exact p-forms in the sense
of dt. The dimensions of these spaces are independent of t.

At each point, P , of the manifold, M, choose a basis, {ak}, of the tangent
space, TP . We will also consider the dual basis {a∗k} of the cotangent space T ∗

P .
The tangent space basis vectors and the dual space basis vectors can be thought
of as operators on the exterior algebra, acting through what is called interior
product for the {ak} and through the usual exterior product for the {a∗k}. Thus
explicitly we have

a∗i = dxi ∧
ai = ι∂/∂i , (12.105)

where the interior product ιV is defined as

ιV (ωp) = χp−1 � χp−1(V1, · · · ,Vp−1) = ωp(V,V1, · · · ,Vp−1). (12.106)

This is just a fancy way of saying that we contract the vector index on the
first index of the differential form. Thus for the present case V = δikai = ak and
ωp = ωi1···ipa

∗i1 ∧ ·· · ∧ a∗ip then ιak(ωp) = ωk,i2···ipa
∗i2 ∧ ·· · ∧ a∗ip . Even more

explicitly

ak(a
∗i1 ∧ ·· · ∧a∗ip) =

p∑
l=1

(−1)l−1δ
il
k a

∗i1 ∧ ·· · ∧a∗il−1 ∧a∗il+1 ∧ ·· ·a∗ip . (12.107)

The operators {a∗k} are dual to the {ak}, and their action on the exterior algebra
corresponds simply to exterior multiplication. Explicitly, the action on a given
p-form is simply given by a∗k(ωp) = a∗k ∧ ωp. These operators play the role of
fermion creation and annihilation operators. The supercharges can be written in
this notation as

Qt = d+ t∂iha
∗i ∧ and Q†

t = δ+ tgij∂ihaj . (12.108)
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The function h(x) can be differentiated in the coordinate system, then one can
calculate in a straightforward, but somewhat tedious, manner,

Ht = dδ+ δd+ t2gij∂ih∂jh+ tg
jkDiDjh

[
a∗i,ak

]
, (12.109)

where gij is the assumed Riemannian metric on the manifold M and
Di is the covariant derivative with respect to the Levi–Civita connection
associated to the metric, explicitly, DiDjh = Di∂jh = ∂i∂jh − Γlij∂lh with
Γijk =

1
2g
il (∂iglj +∂jgli−∂lgij). For large t, the potential t2gij∂ih∂jh dominates,

and the wave function concentrates about the minima (critical points) of this
potential. Corrections can be computed as an expansion in powers of 1/

√
t,

exactly as in the one-dimensional case.

12.4.3 The Weak Morse Inequalities

h(x) will be called the Morse function, and we will assume it is non-degenerate,
meaning that it only has isolated critical points at coordinates xa, at which
∂jh(x

a) = 0. Therefore, at each critical point the matrix of second derivatives,
DiDjh, must be non-singular, i.e. it does not have any vanishing eigenvalues.
We define Mp to be the number of critical points with p negative eigenvalues.
The first Morse inequality states that Mp ≥Bp, which we will be able to prove
with our supersymmetric quantum mechanical model.

Let λ(n)p (t) be the nth smallest eigenvalue of Ht acting on p-forms. We will see
that

λ(n)p (t) = tA(n)
p + o(1)+ o(1/t), (12.110)

which admits an expansion in powers of 1/t due to parity. The Betti number,
Bp, is equal to the number of exactly zero eigenvalues. For large t, the number
of the eigenvalues that vanish can be no larger than the number of A(n)

p that
vanish, simply because a vanishing eigenvalue requires A(n)

p = 0. We will show
that the number of A(n)

p that vanish is equal to the number of critical points of
the Morse function with p negative eigenvalues, which means that Mp ≥Bp.

At each critical point we can use Gaussian normal coordinates xi, coordinates
in which the metric is simply δij and shift the origin so that they are chosen to
vanish at the position of the critical point. The Morse function can be expanded
in a Taylor series; in general, this gives

h(x) = h(0)+
1

2

n∑
i,j=0

(
∂2

∂i∂j
h(0)

)
xixj + · · · . (12.111)

A further orthogonal rotation of the coordinates keeps the metric δij ; however,
the real symmetric matrix of second partial derivatives can be diagonalized, with
eigenvalues λi = ∂i∂ih(0) in the new coordinates. Then we get

h(x) = h(0)+
1

2

∑
i

λi(x
i)2+ · · · (12.112)
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and
∂ih(x) = λix

i+ · · · . (12.113)

The Hamiltonian then also admits a local expansion about each critical point,
using the general expression Equation (12.109) and noting that the metric is δij ,
the Levi–Civita connection vanishes so that covariant derivatives are ordinary
derivatives and ∂ih(xi) = λix

i+ · · · using Equation (12.112)

Ht =

n∑
i=1

(
− ∂2

∂xi∂xi
+ t2λ2i (x

i)2+ tλi[a
∗i,ai]

)
+ · · · . (12.114)

The explicitly written term, although an approximation to the full Hamiltonian,
is sufficient to compute the A(n)

p . To compute the expansion of the eigenvalues
in powers of 1/t requires calculating the higher-order terms in the Hamiltonian
and continuing the perturbative expansion.

As the operators ai and a∗i are also simply linear operators on the exterior
algebra by exterior or interior multiplication, they commute with the simple
harmonic oscillator part and hence the local Hamiltonian in lowest approximation
can be written as two commuting terms

Hlocal =

n∑
i=1

Hi+ tλiKi (12.115)

with

Hi =− ∂2

∂xi∂xi
+ t2λ2i (x

i)2 (12.116)

while
Ki = [a∗i,ai]. (12.117)

Hi is the Hamiltonian of the simple harmonic oscillator, with the well-known
spectrum Ei(Ni) = t|λi|(1+2Ni), where Ni=0,1,2, · · · , taking into account that
the λi are not necessarily positive. The corresponding eigenfunctions are Hermite
polynomials multiplied by Gaussians centred at the origin, and hence rapidly fall
off for |λixi| � 1/

√
t.

The eigenvalues of Ki are simply ±1. The action of Ki on a p-form ω is
Kiω = [a∗i,ai]ω = a∗iaiω − aia

∗iω = 2a∗iaiω − {ai,a∗i}ω = (2a∗iai − 1)ω. The
first operator is simply the fermionic Hamiltonian for one degree of freedom for
each i, which has eigenspectrum 0 or 2, acting on the fermionic vacuum state or
the one fermion state, which yields the eigenspectrum ±1 for Ki. Another way to
see this is to realize that the action of Ki on a p-form ω = ωi1···ipa

∗i1 ∧ ·· · ∧a∗ip
obviously gives back ω if i ∈ (i1 · · · ip) but gives back −ω if i /∈ (i1 · · · ip).

As Ki and Hi commute, the eigenvalues simply add; thus, the spectrum of
Hlocal is

Et(Ni,ni) = t

n∑
i=1

(|λi|(1+2Ni)+niλi), Ni = 0,1,2, · · · ,ni =±1. (12.118)
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If we restrict the action of Hlocal to p-forms, then the sum over Ki in the
Hamiltonian contains p terms for which the eigenvalue of Ki is +1; thus, the
number of ni that equal +1 must be equal to p. The remaining Ki will have
eigenvalue −1, thus the number of these will be n−p, where n is the dimension
of M.

The only way it is possible for the energy Et(Ni,ni) to vanish is if all Ni = 0,
ni = 1 for each negative λi and ni =−1 for each positive λi. We can solve this
constraint if we choose the p-form to consist of the p-fold exterior product of
coordinate differentials of exactly those coordinate directions which correspond
to the negative eigenvalues. Thus the energy eigenvalue is (allowing for a minor
relabelling of the independent directions in the manifold)

Et(Ni,ni) = t

p∑
i=1

(|λi|(1)+λi)+ t
n∑

i=p+1

(|λi|(1)−λi) = 0 (12.119)

as ni = +1 for the first p directions with negative eigenvalues and ni = −1 for
the n− p remaining directions for which the eigenvalues are positive.

Thus for a critical point with Morse index equal to p, i.e. with p negative
directions at the critical point of the Morse function h, it is possible to satisfy
these conditions. We choose a p-form with a coefficient function given by the
ground state of the harmonic oscillator (which puts all the Ni = 0), and which
consists of exactly those coordinate differentials which correspond to the p

negative directions, λi, which gives the desired ni = +1. Thus at a critical
point of Morse index p, we can construct exactly one eigenfunction which could
have a zero eigenvalue. These are zero-energy eigenfunctions of the approximate
Hamiltonian given in Equation (12.115). We could, in principle, compute the
corrections that are brought to these approximate zero-energy levels, but we can
be assured that they will remain low-lying levels even as t→∞, the key point
being that A(n)

p vanishes for all of these levels. The dimension of the subspace
spanned by these levels is Mp, the number of critical points with Morse index p.

For an actual vanishing eigenvalue of the full Hamiltonian (12.109), all
higher perturbative and non-perturbative corrections must also vanish. This
will happen for the exact supersymmetric ground states. The number of exact
supersymmetric ground states is given by the Betti number, Bp, which is equal
to the number of p-forms with zero eigenvalues of the Laplacian, dδ + δd, or
the deformed Laplacian, dtδt + δtdt. For each actual zero eigenvalue, we know
that the A(n)

p must also vanish, as the computation of A(n)
p is the first step of

computing the exact eigenvalue in perturbation. We have determined that the
number of approximate states corresponding to A(n)

p = 0 is Mp, the number of
critical points of Morse index p. Hence the number of actual zero eigenvalue
states must be less than or equal to Mp. Thus we obtain the result

Mp ≥Bp. (12.120)
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These are called the weak Morse inequalities.

12.4.4 Polynomial Morse Inequalities

We actually wish to prove something stronger, that the Morse numbers always
dominate the Betti numbers as encapsulated in the polynomial Morse inequality
which states that there exists a set of non-negative integers Qp such that

n∑
p=0

Mpt
p−

n∑
p=0

Bpt
p = (1+ t)

n−1∑
p=0

Qpt
p. (12.121)

This is an inequality in the sense that Qp ≥ 0. As the weak Morse inequalities
give us that Mp ≥ Bp, it is clear that the coefficient of tp on the left-hand side
is necessarily positive semi-definite. The right-hand side has the coefficient Qp+
Qp−1 (with Qn =Q−1 = 0) for tp, which then must be positive semi-definite.

The polynomial Morse inequality is equivalent to the following two assertions,
called the strong Morse inequalities (as originally proven by Morse):

m∑
p=0

(−1)p+mMp ≥
m∑
p=0

(−1)p+mBp for m= 0,1, · · · ,n (12.122)

n∑
p=0

(−1)pMp =

n∑
p=0

(−1)pBp. (12.123)

We can prove the equivalence as follows. If we take the second equality,
Equation (12.123), we have(

n∑
p=0

Mpt
p−

n∑
p=0

Bpt
p

)∣∣∣∣∣
t=−1

= 0, (12.124)

i.e. t=−1 is a root of the polynomial
∑n
p=0Mpt

p−
∑n
p=0Bpt

p and hence it is
divisible by 1+ t. Thus we have immediately and trivially

n∑
p=0

Mpt
p−

n∑
p=0

Bpt
p = (1+ t)

n−1∑
p=0

Qpt
p. (12.125)

Since the coefficients are integers on the left-hand side, the Qn must also be
integers. It remains to show that Qn ≥ 0. To see this we analyse the identity
power by power in t. We start with the t0 term. This term gives

M0−B0 =Q0, (12.126)

which the first inequality, Equation (12.122), for m = 0 requires Q0 ≥ 0. Next,
for the t term we have

M1−B1 =Q1+Q0 (12.127)

or replacing for Q0 from above

M1−M0− (B1−B0) =Q1, (12.128)
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which the first inequality, Equation (12.122), for m = 1 then requires Q1 ≥ 0.
Doing one more step, before concluding the general relation, we have for the
coefficient of t2

M2−B2 =Q2+Q1 (12.129)

replacing for Q1 from above

M2−M1+M0− (B2−B1+B0) =Q2. (12.130)

Again from the first inequality, Equation (12.122), form=2 then requires Q2≥ 0.
We see then that in general

m∑
p=0

(−1)p+mMp−
m∑
p=0

(−1)p+mBp =Qm for m= 0,1, · · · ,n− 1 (12.131)

and hence we can conclude that Qm ≥ 0 for all m= 0,1,2, · · ·n− 1.
To prove the converse, the polynomial Morse inequality, Equation (12.121), by

comparing powers of t, as we have just seen, implies
n∑
p=0

(−1)p+mMp−
n∑
p=0

(−1)p+mBp =Qm for m= 0,1, · · · ,n− 1 (12.132)

but now we assume that the Qm ≥ 0. Hence we recover the first inequalities in
Equation (12.122) trivially. To recover the second equality, Equation (12.123),
we simply put t=−1 in Equation (12.121).

The second equality, Equation (12.123), is related to the Euler characteristic
of the manifold. This is defined as the alternating sum of the Betti numbers

χ(M) =

n∑
p=0

(−1)pBp =
n∑
p=0

(−1)pMp. (12.133)

From the weak Morse inequalities, we know that Mp ≥Bp. Thus the number of
critical points of Morse index, p, could be greater than the Betti number, Bp,
but then there must be exactly the same surplus of critical points with opposite
value of (−1)p, i.e. each additional critical point of Morse index, p, must pair
with another critical point of Morse index of opposite parity. As p determines if
the state is fermionic or bosonic, we identify these pairs of critical points with the
approximate, supersymmetric, bosonic and fermionic zero energy pairs of states
associated with each critical point, but those which must actually lift away from
exact zero energy when non-perturbative corrections are taken into account, as
the actual number of supersymmetric zero energy states is strictly given by the
Betti numbers.

It is straightforward [64] to prove the strong Morse inequalities using the simple
ideas of supersymmetry and what we have understood about the spectrum. We
know that the eigenvalues and corresponding eigenstates of Ht separate into
two subsets as t→∞; those whose energies diverge linearly as t gets large and
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a finite number whose energies do not. There are Mp states for each p whose
energies do not diverge with t. These further split into two subsets, the first
Bp states whose energies are exactly zero and the remaining Mp −Bp states
whose energies are of o(1). We will call these latter Mp −Bp states the low-
lying states. But now we recall that, since the low-lying states have non-zero
energy, supersymmetry requires that they come in bosonic–fermionic pairs. The
fermionic states correspond to odd p and the bosonic states correspond to even
p, hence we must have ∑

p odd

(Mp−Bp) =
∑
p even

(Mp−Bp). (12.134)

This immediately implies the second of the strong Morse inequalities,
Equation (12.123)

n∑
p=0

(−1)pMp =
n∑
p=0

(−1)pBp. (12.135)

To obtain the first strong Morse inequality we consider the mapping that Q1t

induces on the fermionic and bosonic subspaces of low-lying levels. As Q2
1t =

Ht and evidently Q1t commutes with the Hamiltonian, it must preserve the
eigensubspaces of Ht. Q1t, being a fermionic operator, maps the eigensubspace
of p-forms to the eigensubspace of p+1-forms and p−1 forms. Let Λpt denote the
subspace of low-lying eigenstates of p-forms, clearly of dimension Mp−Bp. For
any state |ψ〉 in this subspace Q1t|ψ〉 �= 0 and HtQ1t|ψ〉=Q3

1t|ψ〉=Q1tHt|ψ〉=
EQ1t|ψ〉, where Ht|ψ〉=E|ψ〉. If Q1t maps two distinct states to the same state,
then it must annihilate their difference, which is not possible as this does not
preserve the eigenspace. Thus the mapping Q1t : Λ

p
t → Λp−1

t ⊕ Λp+1
t must be

one-to-one, into (injective). Hence we can conclude

Q1t :

2j−1⊕
p odd p=1

Λpt →
2j⊕

p even p=0

Λpt

Q1t :

2j⊕
p even p=0

Λpt →
2j+1⊕

p odd p=1

Λpt (12.136)

for each j � 0≤ 2j < n and 0≤ 2j+1<n. But since the mappings are injective,
the dimension of the domain must be less than or equal to the dimension of the
image. This yields:

(M1−B1)+ · · ·+(M2j−1−B2j−1)≤ (M0−B0)+ · · ·+(M2j −B2j)

(M0−B0)+ · · ·+(M2j −B2j)≤ (M1−B1)+ · · ·+(M2j+1−B2j+1).

(12.137)

These inequalities are identical to the first strong Morse inequality,
Equation (12.122), if we bring the Ms and Bs to opposite sides.
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12.4.5 Witten’s Coboundary Operator

The polynomial Morse inequality is equivalent to the understanding that the
critical points of a Morse function form a model for the cohomology of the
manifold M. We define Xp to be a vector space of dimension Mp for each p ∈
0,1,2, · · · ,n. Xp can be thought of as a vector space spanned by the critical points
of Morse index p. The polynomial Morse inequality, Equation (12.121), means
that there exists a coboundary operator δW : Xp → Xp+1 (we add a subscript
W to honour Witten), where δ2W = 0 and the corresponding Betti numbers,
the dimension of the cohomology groups associated to δW , are identical to the
Betti numbers of the manifold M. The homotopy classes in this cohomology
are elements of Xp, which are closed under the action of δW , but differ only by
elements which are obtained by the action of δW on some element of Xp−1, the
analogue of the standard notion of closed modulo exact forms, or cycles, etc. The
explicit expression for δW is not given in the original work of Morse or others;
however, Witten found an appropriate expression for it.

Witten proposed the following construction. First, consider possible zero
modes of the Laplacian. The number of independent such p-forms gives the
Betti numbers, Bp. We have an upper bound on the Betti numbers, Mp ≥ Bp
in the Morse inequalities. However, although perturbation theory might suggest
a given mode is a zero mode, tunnelling effects can lift the degeneracy. Exact
instanton effects can give energies of the order of ∼ e−tS where S is the action of
the instanton, which for large t is smaller than any perturbative correction. Thus
Witten was led to consider instanton configurations that tunnel from one zero
mode to another. In fact, tunnelling from putative zero modes which are p-forms
to putative zero modes which are p+1-forms are exactly the instanton modes
that are required. However, as we have seen, the p+1-form chosen at a given
critical point of Morse index, p+1, requires a choice of the exterior product of
all the coordinate differentials that correspond to the p+1 negative directions.
The orientation or order of the differentials remains arbitrary. Thus a tunnelling
transition from a state at a critical point of Morse index, p, to a state at a critical
point of Morse index, p+1, must also fix a sign. We determine the sign with the
following construction.

Consider instanton paths, Γ, that pass from a critical point, B, of Morse
index, p+1, to a critical point, A, of Morse index, p. The instanton path has
initial tangent vector v within VB , the p+1-dimensional vector space of negative
directions at B. Let |b〉, a p+1-form, be the state of zero energy at the critical
point B. Then |b〉 chooses an orientation of VB, and we can choose an orientation
of the p-dimensional subspace, ṼB , corresponding to the orthogonal complement
of v within |b〉, as we can generate a p-form from |b〉 by contracting it (by interior
multiplication) with v. Then the instanton path from B to A gives a mapping
of ṼB to VA, the p-dimensional vector space of negative directions at A. This
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mapping induces an orientation of VA. However, the state |a〉 corresponding to
the perturbative zero mode at A already gave an orientation of VA. We define

nΓ =

{
+1 if the induced orientation agrees with that fixed by |a〉
−1 if the induced orientation disagrees with that fixed by |a〉

(12.138)
and

n(a,b) =
∑
Γ

nΓ, (12.139)

where the sum runs over all instantons paths (paths of steepest descent) from B

to A. Then we can define the coboundary operator, for any basis element |a〉 of
Xp at A

δW |a〉=
∑
b

n(a,b)|b〉, (12.140)

where the sum runs over all basis elements of Xp+1 (in other words, this is a
set of perturbative zero modes that are p+ 1-forms that are concentrated at
the critical points of Morse index p+1 of the Morse function). The effect of the
instantons is to non-perturbatively correct the energy of some of the perturbative
zero modes, their energy behaves as ∼ e−tS , for large t. Thus all states in Xp are
not annihilated by the Laplacian δW δ∗W + δ∗W δW .

Denoting Yp as the number of actual zero eigenvalues of δW δ∗W +δ∗W δW acting
on Xp, then Yp also give upper bounds on the Betti numbers, and the strong
Morse inequality, Equation (12.121), remains valid with Mp replaced with Yp.
Witten conjectures that, in fact, Yp =Bp.

12.4.6 Supersymmetric Sigma Model

To demonstrate that δW as defined in Equation (12.140) provides the
appropriate coboundary operator, Witten considered the Lagrangian version of
the supersymmetric quantum-mechanical model that we have been considering,
that for which the supercharge is given explicitly by dt. Canonical quantization
of the model defined by the action, in Minkowski time∫

dτL=
1

2

∫
dτ

(
gij

(
dxi

dτ

dxj

dτ
+ ψ̄ii

Dψj

Dτ

)
+

1

4
Rijklψ̄

iψkψ̄jψl

− t2gij
dh

dxi
dh

dxj
− t D2h

DxiDxj
ψ̄iψj

)
(12.141)

where a sum over all repeated indices is understood, gives the required algebraic
symmetries and explicitly the supercharge. This is the Lagrangian of the 1+1-
dimensional supersymmetric sigma model restricted to 0+1 dimensions. Here the
ψ and ψ̄ (the complex conjugate field to ψ) are anti-commuting fermionic fields,
xi are local coordinates, gij is the metric tensor and Rijkl is the corresponding
Riemann curvature tensor on M, and D/Dxi is the covariant derivative with
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the Levi–Civita connection of the metric while D/Dτ is the covariant derivative
along the direction tangent to the time trajectory. Specifically, acting on the
fermions we have

D

Dτ
ψi = ∂τψ

i+Γijk∂τx
jψk. (12.142)

Under the supersymmetry transformations

δxi = εψ̄i− ε̄ψi

δψi = ε
(
iẋi−Γijkψ̄

jψk+ tgij∂jh
)

δψ̄i = ε̄
(
−iẋi−Γijkψ̄

jψk+ tgij∂jh
)

(12.143)

for infinitesimal anti-commuting parameters ε and ε̄, the action is invariant,
δ
∫
dτL= 0. The corresponding supercharges are as required

Qt = ψ̄i(igij ẋ
j + t∂ih)

Q̄t = ψi(−igij ẋj + t∂ih). (12.144)

There is also a symmetry-conserving fermion number, ψi→ e−iθψi, ψ̄i→ eiθψ̄i,
which gives the conserved charge, the fermion number

F = gijψ̄
iψj . (12.145)

In quantizing the system we will first consider the system at t = 0 (all the
supersymmetry and other symmetries are equally valid at t= 0). We impose the
canonical commutation and anti-commutation relations[

xi,pj
]
= iδij{

ψi, ψ̄j
}
= gij , (12.146)

then the conserved supercharges are simply Q = iψ̄ipi and Q̄ = −iψipi. The
supercharges have the opposite fermion number

[F,Q] =Q,
[
F,Q̄

]
=−Q̄. (12.147)

We impose that the Hamiltonian is given by the supersymmetry algebra{
Q,Q̄

}
= 2H0 (12.148)

and consequently the fermion number is conserved, [F,H0] = 0. The natural
realization of this algebra is, as we have been using, provided by the exterior
algebra of differential forms, Λ∗(M) ⊗ C equipped with its hermitian inner
product from Equation (12.17)

(ω,χ) =

∫
M
ω̄∧∗χ (12.149)
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for two p-forms, ω and χ. Then the observables in this realization of the algebra
on this Hilbert space, when acting explicitly on a p-form ω, are:

xi : xiω

pi :−i∂iω
ψ̄ : dxi ∧ω
ψi : gijι∂/∂xjω (12.150)

(ιV is the interior multiplication defined in Equation (12.106)). Then with the
state |0〉 denoting the form annihilated by all of the ψi we have the schema:

|0〉 = 1

ψ̄i|0〉 = dxi

ψ̄iψ̄j |0〉 = dxi ∧ dxj

· · ·
ψ̄1 · · · ψ̄n|0〉 = dx1 ∧ ·· · ∧dxn. (12.151)

The fermion number of a state that is a p-form is simply equal to p, thus
the Hilbert space separates into bosonic and fermionic subspaces depending on
whether p is even or odd, respectively. Thus the canonically quantized system
reproduced with complete fidelity the supersymmetric system of the exterior
algebra that we studied in subsection (12.4.1).

Recall then that the supersymmetric states are just the zero-energy states,
those annihilated by the Laplacian, the so-called harmonic forms. We underline
that the set of harmonic forms of the manifold characterize the de Rham
cohomology of the manifold. Equally well, the space of supersymmetric ground
states characterize the cohomology of the Q-operator. As there is the conserved
fermion number which satisfies [F,Q] = Q, the Q-cohomology is graded by the
fermion number and equal to the degree p of the form. As Q is identified with the
exterior derivative d, the graded Q-cohomology and the de Rham cohomology
must be equal

Hp(Q) =Hp
dR(M). (12.152)

The Witten index, (−1)F , can be evaluated and we find

Tr
(
(−1)F

)
=

n∑
p=0

(−1)pdim(Hp(Q) =
n∑
p=0

(−1)pdim(Hp
dR(M) =χ(M), (12.153)

where χ(M) is the Euler characteristic of the manifold. The Witten index
only receives contributions from the supersymmetric ground states; as we have
seen, the non-zero energy modes are all paired in fermionic–bosonic pairs and
their contributions cancel. Thus the calculation of the topological invariant, the
Euler characteristic, can be done by studying the zero-energy modes of this
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supersymmetric quantum mechanical system. Witten’s magical trick was to add
an external field to this system, which causes a separation of the zero- and low-
energy modes from the finite-energy modes, and in the limiting case makes the
calculation of the zero mode sector very simple.

Now adding in the deformation by th, the supercharges are then given by

Qt = ψ̄i(igij ẋ
j + t∂ih) = dxi∧ (

∂

∂xi
+ t∂ih) = d+ tdh∧= e−thdeth = dt (12.154)

and
Q†
t = δ+ t(dh∧)∗ = ethδe−th = δt, (12.155)

where ∗ denotes the adjoint. The Hamiltonian then is as before

H=
1

2

{
Qt, Q̄t

}
=

1

2
(dtd

∗
t + d

∗
t dt), (12.156)

chosen to satisfy the supersymmetry algebra. The supersymmetric ground states
again define the Qt-cohomology. However, since the th deformation is obtained
by a similarity transformation

Qt = e−thQeth (12.157)

the cohomology is isomorphic to the undeformed case. As the cohomology of the
undeformed Q is isomorphic to the de Rham cohomology, we can compute the
de Rham cohomology with the deformed operator Qt.

The perturbative approximation to the Hamiltonian around a critical point is
given by

Ht =

n∑
i=1

(
− ∂2

∂xi∂xi
+ t2λ2i (x

i)2+ tλi[a
∗i,ai]

)
(12.158)

with exact, zero-energy ground-state wave functions, which we will label |φω〉,
corresponding to the harmonic oscillator ground state, φ, multiplied by an
appropriate p-form, ω, where p is the Morse index of the critical point, as
discussed previously. Indeed, perturbative corrections to the energy of these wave
functions must vanish to all orders: the energy remains exactly zero to all orders
in perturbation theory. One can find the modification of the wave function, order
by order, so that its energy remains zero in each order in perturbation theory.
This is because the corrections are calculated in terms of local data at the critical
point. From local data it is not possible to know which critical points are actually
necessary because of the global topology of the manifold and which critical points
are removable by deformations. States that have zero energy to lowest order
have zero energy to all orders. The same reasoning applies to the calculation of
tunnelling in the double-well potential. In perturbation theory we can never get
a non-zero tunnelling amplitude, these amplitudes are non-perturbative in the
coupling and are not seen at any order in perturbation theory.

However, the wave functions, |φiωi〉, are not necessarily exact ground states,
where we have added a label i to denote different critical points. The perturbative
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zero-energy states are not necessarily exact ground states. Hence the number of
exact, supersymmetric actual ground states are clearly less than or equal to the
number of critical points. An exact supersymmetric ground state is annihilated
by the supercharge. For the case of the perturbative ground states, although we
will find, if calculated perturbatively,

Ht|φiωi〉= (QtQ
†
t +Q

†
tQt)|φiωi〉= 0, (12.159)

which also requires
Qt|φiωi〉= 0 (12.160)

to all orders in perturbation theory, we can in fact have non-perturbative
corrections

Qt|φiωi〉=
N∑
j=1

|φjωj〉〈φjωj |Qt|φiωi〉+ · · · , (12.161)

where the + · · · corresponds to amplitudes to non-zero-energy states (which are
suppressed by large energy denominators as t→∞). The explicit mixing that
can be important is between the perturbative zero-energy states. Thus we want
to compute

〈φjωj |Qt|φiωi〉=
∫
M
φjωj ∧∗(d+ tdh∧)φjωi. (12.162)

But such an amplitude is exactly what we are looking for with the coboundary
operator δW between zero modes localized at different critical points. If ωj is a
q-form and ωi is a p-form, this matrix element can only be non-zero if q = p+1,
i.e. transitions between perturbative zero-energy modes correspond to critical
points of Morse indices that differ by one negative direction. This can also be
seen from fermion number conservation, the action of Qt on the state |φiωi〉
changes its fermion number by one unit. It also should not be surprising that the
eventual δW that we will be able to define will satisfy δ2W =0, since it is obtained
from the action of Qt = dt. Clearly Q2

t = 0, hence we can expect δ2W = 0.
We will return below to the notation of subsection 12.4.5 with |a〉 for |φiωi〉

and 〈b| for 〈φjωj | and the understanding that if |a〉 corresponds to a p-form then
〈b| corresponds to a p+1-form. It is also clear that the action of Qt on the low-
lying states annihilates any exact, supersymmetric ground state that is a p-form
as these are harmonic with respect to Qt. Thus only the Mp−Bp low-lying but
not exact supersymmetric ground states will be mixed with low-lying p+1-forms.
But additionally, none of these states can be the exact supersymmetric ground
states that are p+1-forms, since the inner product

〈b|Qt|a〉= (Qt|b〉)† |a〉= 0 (12.163)

if |b〉 corresponds to an exact supersymmetric ground state, as these are also
harmonic with respect to Qt. Thus the action of Qt on the set of states |a〉 only
mixes the Mp−Bp not exact ground states but low-lying states with the Mp+1−
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Bp+1 corresponding low-lying states |b〉. This is as it should be; since mixing
causes the energies to go up, this cannot happen to any exact supersymmetric
ground state.

12.4.7 The Instanton Calculation

We will use the path integral to compute this amplitude, since we know that it
is exactly through the path integral that we can uncover tunnelling amplitudes
through the path integral, and from the amplitude we will extract the coboundary
operator, δW . The bosonic sector of the model is governed by the Lagrangian,
in Euclidean time∫

dτLb =
1

2

∫
dτ

(
gij
dxi

dτ

dxj

dτ
+ t2gij

dh

dxi
dh

dxj

)
. (12.164)

We can show that the stationary points of the corresponding action are the paths
of steepest descent using a Bogomolny-type identity [17]. Indeed,∫

dτLb =
1

2

∫
dτgij

(
dxi

dτ
± tgik dh

dxk

)(
dxj

dτ
± tgjl dh

dxl

)
∓ t

∫
dτ
dh

dτ
. (12.165)

The first integral is positive semi-definite, while the second integral is equal to
tΔh. Therefore, if tΔh ≥ 0, we choose the plus (lower) sign, while if tΔh ≤ 0,
we choose the minus (upper) sign. Then the second term is always positive, and
thus ∫

dτLb ≥ t |Δh| (12.166)

with equality for (assuming Δh is positive)

dxi

dτ
− tgij dh

dxj
= 0. (12.167)

This is exactly the equation of steepest descent, physically stating that the
tangent vector to the curve is parallel to the gradient, up to reparametrization.
Also it should be noted that this equation is not the same as the usual instanton
equation which we have seen can be interpreted as ordinary, conservative,
Newtonian cinematic motion of a particle in the reversed potential. Such a
motion would never follow a path of steepest descent and stop at a lower value
of the potential. Here the equation of steepest descent is first order in the “time”
coordinate, and thus allows such motion. The solution to Equation (12.167)
obviously exists, which then implies SE =

∫
dτLb = t |Δh|. Then for the operator

dt whose matrix elements we want to compute, they will then be proportional
to e−t|Δh|. If we want to compute matrix elements of the Hamiltonian dd∗+d∗d
then we get two factors of SE and hence the amplitude is proportional to e−2t|Δh|.

The next step in the calculation is to compute the determinant of the
fluctuations in Gaussian approximation about the instanton configuration. It is
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in this stage that the calculation dramatically simplifies due to supersymmetry.
The non-zero eigenvalues are all paired in bosonic and fermionic multiplets. The
fermionic determinant is exactly cancelled by the bosonic square root of the
determinant. The bosonic zero mode corresponding to Euclidean time translation
invariance, which would normally give rise to a diverging factor of β, is also
exactly cancelled by a corresponding fermionic zero mode which would normally
give rise to a vanishing determinant. These zero modes can be explicitly obtained
first for the bosonic case in the usual way, the bosonic zero mode corresponds
to the Euclidean time derivative of the instanton. Then the fermionic zero mode
is obtained by a supersymmetry transformation of the bosonic zero mode. To
show the cancellation of the contribution of the zero modes requires some care,
we refer the reader to the detailed calculation in [62]. Finally the amplitude is
given by the factor

〈b|dt|a〉= e−t|Δh|. (12.168)

However, we still have not determined the sign of the amplitude; the functional
integral always gives rise to an ambiguous sign due to the fermions. To determine
the sign, we go back to the calculation of the amplitude in the usual WKB
method of Schrödinger quantum mechanics. Here we know that the states |a〉 at
the critical point A and |b〉 at the critical point B rapidly die off, away from their
respective critical points. Any overlap is greatest along the paths that connect
the two critical points that are the semi-classical solutions to the equations of
motion, the paths that keep the Euclidean action stationary. These paths are the
instantons, the paths of steepest descent or ascent between the critical points.
Thus the behaviour of the states along the paths of steepest descent are enough
to determine the sign of the matrix element 〈b|dt|a〉. The quantum mechanical
problem becomes effectively one-dimensional along the path of steepest descent,
and we find that the state |a〉 drops off as e−th along the instanton that ascends
from A to B. It must ascend, as |a〉 was a p-form, hence A was a critical point of
p negative directions while |b〉 was a p+1-form, hence B was a critical point of
p+1 negative directions. If we descend from A we can only reach other critical
points with fewer negative directions, we can never reach B.

To determine the sign, we start at |b〉 at B and the orientation of the space
of negative directions at |b〉, which we called VB. Calculating |b〉 along the path
of steepest descent in the WKB approximation we find the wave function of the
state |b〉 at A, but it is still a p+1-form. However, with the limiting direction
of the tangent vector as we arrive at A, we can induce an orientation of VA, the
space of negative directions at A. Then the sign of the matrix element 〈b|dt|a〉
is +1 if this induced orientation of VA matches that furnished by the state |a〉,
otherwise it is −1. This is exactly the construction of the sign n(a,b) that was
described in section 12.4.5, but appended with the explicit transport afforded by
the WKB calculation of the wave function along the path of steepest descent.
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Hence the Witten coboundary operator is given by

δW |a〉=
∑
b

e−t(h(B)−h(A))n(a,b)|b〉. (12.169)

Since the path descends from B to A, the exponent has the right sign. This factor
can be removed by rescaling the wave functions by

|a〉→ eth(A)|a〉, (12.170)

which corresponds to undoing the conjugation by eth which transformed d to dt.
Hence the Witten coboundary operator is given by

δW |a〉=
∑
b

n(a,b)|b〉 (12.171)

and the notion that the set of critical points of a Morse function form a model
of the cohomology of the manifold M is verified.
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An Aside on O(4)

O(4) is the group defined by the multiplication properties of the set of orthogonal
matrices which keep the quadratic form

4∑
i=1

x2i (A.1)

invariant. If
�x′ =O�x (A.2)

then

�x′ ·�x′ = �x ·OTO ·�x= �x ·�x
⇒OTO = 1 (A.3)

where �x is a four-dimensional vector. Looking in the neighbourhood of the
identity, we find, with O = 1+ δ, then

OTO =
(
1+ δT

)
(1+ δ) = 1+ δ+ δT+ o(δ2) = 1

⇒ δ+ δT = 0. (A.4)

This means that δ must be an anti-symmetric, 4×4 matrix. This defines the Lie
algebra of O(4). The complete set of anti-symmetric 4× 4 matrices is given by

(Mμν)στ = δμσδντ − δμτδνσ
=

1

2
εμνλρελρστ . (A.5)

It is easy to calculate

[Mμν ,Mστ ] =
1

4
(εμνλρελργδεστδβεσταβ − εαβστ εστγδεμνλρελρδω) . (A.6)

We can expand this further; it is easy to do some of the sums over dummy
indices, but it is more illuminating to define

Ji =
1

2
εijk (Mjk)lm =

1

2
εijk (δjlδkm− δjmδkl) = εilm (A.7)



298 Appendices

and
Ki = (M0i)lm . (A.8)

Then the commutators

[Ji,Jj ] = εijkJk
[Ji,Kj ] = εijkKk (A.9)

follow directly, with J1 =M23, J2 =M31 and J3 =M12. To calculate [Ki,Kj ] we
consider the generators

J̃1 =M12, J̃2 =M20, J̃3 =M01, (A.10)

which generate the subgroup that leaves the form x20 + x21 + x22 invariant. Then
because of rotational symmetry we must have[

J̃i, J̃j

]
= εijkJ̃k. (A.11)

(We can check this, for example, with
[
J̃1, J̃2

]
= [M12,M20] = [M12,M20] =

[J3,−K2] =−ε321K1 =K1 =M01 = J̃3.) Thus[
J̃2, J̃3

]
= [M20,M01] = [−K2,K1] = J̃1 =M12 = J3 (A.12)

thus
[K1,K2] = J3 (A.13)

hence rotational covariance dictates the general relation

[Ki,Kj ] = εijkJk. (A.14)

The combinations
M±
i =

1

2
(Ji±Ki) (A.15)

satisfy the commutators [
M±
i ,M

±
j

]
= εijkM

±
k (A.16)

while [
M+
i ,M

−
j

]
= 0. (A.17)
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Asymptotic Analysis

Asymptotic analysis concerns the notion of the behaviour of functions, f(x),
as certain parameters go to their limiting values, usually zero or infinity. For
convenience and without loss of generality, we will consider functions as their
arguments go to infinity. Obviously the limit to any finite value x0 can be
obtained by taking y = 1

(x−x0) to infinity.
We define

f(x)∼ g(x) (B.1)

if and only if

lim
n→∞

f(n)

g(n)
→ 1. (B.2)

The binary relation of equivalence satisfies many obvious properties: for any
smooth function F (y), if f(x)∼ g(x) then

F (f(x))∼ F (g(x)). (B.3)

This specifically is useful when applied to powers, f ∼ g implies

fr ∼ gr (B.4)

for any real number r. If f(x)∼ g(x) and a(x)∼ b(x) then

a(x)f ∼ b(x)g(x). (B.5)

Asymptotic analysis is most useful in the application of asymptotic expansions
of functions. An asymptotic expansion of a function f(x) is a series representation
of a function that does not necessarily converge, and hence must be truncated
at the expense of adding a remainder term. A very famous example of an
asymptotic expansion is the Stirling approximation for the factorial, N !. The
Stirling approximation is given by

ln(Γ(z)) = z lnz− z− 1

2
lnz+ln2π+

N−1∑
n=1

B2n

2n(2n− 1)x2n−1
+RN (z), (B.6)
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where Bn are the Bernoulli numbers with

RN ≤
|B2N |

2N(2N − 1)|z|2N−1
(B.7)

for real z. The Bernoulli numbers behave as

B2N = (−1)N+1 2(2N)!

(2π)2N
ζ(2N). (B.8)

The zeta function being bounded, we see that the Stirling approximation
diverges.

A series expansion can be obtained for the factorial of a positive integer N by
expanding the Γ function. Typically, the series expansion gives a very accurate
approximation for the function that becomes maximally accurate after a certain
number of terms in the expansion. At any finite truncation of the series, the
remainder can be understood to be smaller than the subsequent term that has
been dropped. Thus if we have a function f(x) and its asymptotic series g1(x)+
g2(x)+ · · · then

f(x)− (g1(x)+ g2(x)+ · · ·+ gk−1(x))∼ gk(x) (B.9)

for each k up to a maximum kmax which depends on x. For larger values of x, kmax

increases. But after this term, the expansion starts to diverge, and it is not a good
approximation to the original function. Thus for the Stirling approximation, for a
given N , we should sum a finite number of terms to obtain a good approximation
to N !, that number fixed by the value of N . However, if we look at the subsequent
terms in the expansion, we find that they start to increase, and eventually they
increase so much that the series fails to converge. Truncating the series at a given
term kmax gives an approximation that is as small as the first term neglected,
which can be very good approximation even though the asymptotic series does
not converge.

We use the notation

f(x)− (g1(x)+ g2(x)+ · · ·+ gk−1(x)) = o(gk(x)), (B.10)

which generally in physics is translated as the difference

f(x)− (g1(x)+ g2(x)+ · · ·+ gk−1(x)) (B.11)

is of the order of gk(x). However, there is a precise mathematical sense to this
relation, it means that for every positive ε there exists a positive real number X
such that, for x≥X,

f(x)− (g1(x)+ g2(x)+ · · ·+ gk−1(x))≤ εgk(x). (B.12)

If f(x) = o(g(x)) and g(x) �= 0, then

lim
x→∞

f(x)

g(x)
= 0. (B.13)



Bibliography

[1] S. A. Abel, C.-S. Chu, J. Jaeckel and V. V. Khoze. “SUSY breaking
by a metastable ground state: Why the early universe preferred the non-
supersymmetric vacuum”. JHEP, 01 (2007), p. 089. doi: 10.1088/1126-6708/
2007/01/089. arXiv: hep-th/0610334 [hep-th].

[2] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables (Dover, 1965).

[3] A. A. Abrikosov. “On the magnetic properties of superconductors of the second
group”. Sov. Phys. JETP, 5 (1957). [Zh. Eksp. Teor. Fiz.32,1442(1957)], pp. 1174–
1182.

[4] I. K. Affleck and N. S. Manton. “Monopole pair production in a magnetic field”.
Nucl. Phys., B194 (1982), pp. 38–64. doi: 10.1016/0550-3213(82)90511-9.

[5] A. Altland and B. D. Simons. Condensed Matter Field Theory (Cambridge
University Press, 2010).

[6] P. W. Anderson. “An approximate quantum theory of the antiferromagnetic
ground state”. Phys. Rev., 86 (5 June 1952), pp. 694–701. doi: 10.1103/PhysRev.
86.694. url: 10.1103/PhysRev.86.694.

[7] N. W. Ashcroft and N. D. Mermin. Solid State Physics. HRW International
Editions (Holt, Rinehart and Winston, 1976).

[8] M. F. Atiyah and I. M. Singer. “The index of elliptic operators on compact
manifolds”. Bull. Am. Math. Soc., 69 (1969), pp. 422–433. doi: 10.1090/S0002-
9904-1963-10957-X.

[9] L. Balents. “Spin liquids in frustrated magnets”. Nature, 464.7286 (Mar. 2010),
pp. 199–208. doi: 10.1038/nature08917.

[10] A. Banyaga and D. Hurtubise. Lectures on Morse Homology. Texts in the
Mathematical Sciences (Springer, 2013).

[11] A. Barone. Superconductive Particle Detectors: Advances in the Physics of
Condensed Matter (World Scientific Pub. Co. Inc., 1987).

[12] A. A. Belavin and A. M. Polyakov. “Quantum fluctuations of pseudoparticles”.
Nucl. Phys. B123 (1977), pp. 429–444. doi: 10.1016/0550-3213(77)90175-4.

[13] F. A. Berezin. “The method of second quantization”. Pure Appl. Phys., 24 (1966),
pp. 1–228.

[14] H. Bethe. “On the theory of metals. 1. Eigenvalues and eigenfunctions for the
linear atomic chain”. Z. Phys., 71 (1931), pp. 205–226. doi: 10.1007/BF01341708.

[15] K. Binder and A. P. Young. “Spin glasses: Experimental facts, theoretical
concepts, and open questions”. Rev. Mod. Phys., 58 (4 Oct. 1986), pp. 801– 976.
doi: 10.1103/RevModPhys.58.801.

[16] M. Blasone and P. Jizba. “Nambu–Goldstone dynamics and generalized coherent-
state functional integrals”. Journal of Physics A: Mathematical and Theoretical,
45.24 (2012), p. 244009.



302 Bibliography

[17] E. B. Bogomolny. “Stability of classical solutions”. Sov. J. Nucl. Phys., 24 (1976)
[Yad. Fiz.24,861(1976)], p. 449.

[18] R. Bott. “An application of the Morse theory to the topology of Liegroups.”
English. Bull. Soc. Math. Fr., 84 (1956), pp. 251–281. issn: 0037–9484.

[19] R. Bott. “Morse theory indomitable”. English. Publications Mathématiques de
l’IHÉS, 68 (1988), pp. 99–114. url: http://eudml.org/doc/104046.

[20] H.-B. Braun and D. Loss. “Chiral quantum spin solitons”. Journal of Applied
Physics, 79.8 (1996), pp. 6107–6109. doi: 10.1063/1.362102.

[21] E. Brézin, J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. D15 (1977), 1544.
[22] L. Brillouin. “La mécanique ondulatoire de Schrödinger: une méthode générale de

resolution par approximations successives”. Comptes Rendus de líAcadémie des
Sciences, 183 (Oct. 1926), pp. 24–26.

[23] C. G. Callan Jr. and S. R. Coleman. “The fate of the false vacuum. 2. First
quantum corrections”. Phys. Rev., D16 (1977), pp. 1762–1768. doi: 10.1103/
PhysRevD.16.1762.

[24] S. Chadha and P. Di Vecchia “Zeta function regularization of the quantum
fluctuations around the Yang–Mills pseudoparticle”. Phys. Lett., B72 (1977),
pp. 103–108. doi: 10.1016/0370-2693(77)90073-9.

[25] W. Chen, K. Hida and B. C. Sanctuary. “Ground-state phase diagram of S = 1
XXZ chains with uniaxial single-ion-type anisotropy”. Phys. Rev. B, 67 (10 Mar.
2003), p. 104401. doi: 10.1103/PhysRevB.67.104401.

[26] Y. Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick. Analysis, Man-
ifolds, and Physics. Analysis, Manifolds, and Physics pt. 1 (North-Holland
Publishing Company, 1982).

[27] E. M. Chudnovsky and L. Gunther. “Quantum theory of nucleation in
ferromagnets”. Phys. Rev. B, 37 (16 June 1988), pp. 9455–9459. doi: 10.1103/
PhysRevB.37.9455.

[28] E. M. Chudnovsky and L. Gunther. “Quantum tunneling of magnetization in small
ferromagnetic particles”. Phys. Rev. Lett., 60 (8 Feb. 1988), pp. 661– 664. doi:
10.1103/PhysRevLett.60.661.

[29] E. M. Chudnovsky and J. Tejada. Lectures on Magnetism. Lectures on Magnetism:
With 128 Problems (Rinton Press, 2006).

[30] E. M. Chudnovsky, J. Tejada, C. Calero and F. Macia. Problem Solutions to
Lectures on Magnetism by Chudnovsky and Tejada (Rinton Press, 2007).

[31] S. Coleman. Aspects of Symmetry: Selected Erice Lectures (Cambridge University
Press, 1988).

[32] S. R. Coleman. “The fate of the false vacuum. 1. Semiclassical theory”. Phys. Rev.,
D15 (1977). [Erratum: Phys. Rev.D16,1248(1977)], pp. 2929–2936. doi: 10.1103/
PhysRevD.15.2929, doi: 10.1103/PhysRevD.16.1248.

[33] S. R. Coleman and F. De Luccia. “Gravitational effects on and of vacuum decay”.
Phys. Rev., D21 (1980), p. 3305. doi: 10.1103/PhysRevD.21.3305.

[34] S. R. Coleman, V. Glaser and A. Martin. “Action minima among solutions to
a class of Euclidean scalar field equations”. Commun. Math. Phys., 58 (1978),
p. 211. doi: 10.1007/BF01609421.

[35] J. C. Collins and D. E. Soper. “Large order expansion in perturbation theory”.
Annals Phys., 112 (1978), pp. 209–234. doi: 10.1016/0003-4916(78)90084-2.

[36] R. F. Dashen, B. Hasslacher and A. Neveu. “Nonperturbative methods and
extended hadron models in field theory. 1. Semiclassical functional methods”.
Phys. Rev., D10 (1974), p. 4114. doi: 10.1103/PhysRevD.10.4114.

[37] P. J. Davis. Circulant Matrices. Pure and Applied Mathematics (Wiley, 1979).

http://eudml.org/doc/104046


Bibliography 303

[38] J. von Delft and C. L. Henley. “Destructive quantum interference in spin tunnelling
problems”. Phys. Rev. Lett., 69 (22 Nov. 1992), pp. 3236– 3239. doi: 10.1103/
PhysRevLett.69.3236.

[39] F. Devreux and J. P. Boucher. “Solitons in Ising-like quantum spin chains in a
magnetic field: a second quantization approach”. J. Phys. France, 48.10 (1987),
pp. 1663–1670. doi: 10.1051/jphys:0198700480100166300.

[40] P. A. M. Dirac. “The Lagrangian in quantum mechanics”. Phys. Z. Sowjetunion,
3 (1933), pp. 64–72.

[41] A. J. Dolgert, S. J. Di Bartolo and A. T. Dorsey. “Superheating fields of
superconductors: Asymptotic analysis and numerical results”. Phys. Rev. B, 53
(9 Mar. 1996), pp. 5650–5660. doi: 10.1103/PhysRevB.53.5650.

[42] T. Eguchi, P. B. Gilkey and A. J. Hanson. “Gravitation, gauge theories and
differential geometry”. Phys. Rept., 66 (1980), p. 213. doi: 10.1016/0370-
1573(80)90130-1.

[43] M. Enz and R. Schilling. “Magnetic field dependence of the tunnelling
splitting of quantum spins”. Journal of Physics C: Solid State Physics, 19.30
(1986), p. L711.

[44] L. D. Faddeev and V. N. Popov. “Feynman diagrams for the Yang–Mills field”.
Phys. Lett., 25B (1967), pp. 29–30. doi: 10.1016/0370-2693(67)90067-6.

[45] R. P. Feynman. “Space-time approach to nonrelativistic quantum mechanics”. Rev.
Mod. Phys., 20 (1948), pp. 367–387. doi: 10.1103/RevModPhys.20.367.

[46] R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals.
International Series in Pure and Applied Physics (McGraw-Hill, 1965).

[47] W. Fischler, V. Kaplunovsky, C. Krishnan, L. Mannelli and M. Torres. “Meta-
stable supersymmetry breaking in a cooling universe”. JHEP, 03 (2007), p. 107.
doi: 10.1088/1126-6708/2007/03/107. arXiv: hep-th/0611018 [hep-th].

[48] E. Fradkin. Field Theories of Condensed Matter Physics (Cambridge University
Press, 2013).

[49] E. Fradkin and M. Stone. “Topological terms in one- and twodimensional quantum
Heisenberg antiferromagnets”. Phys. Rev. B, 38 (10 Oct. 1988), pp. 7215–7218.
doi: 10.1103/PhysRevB.38.7215.

[50] K. Fujikawa. “Path integral measure for gauge invariant fermion theories”. Phys.
Rev. Lett., 42 (1979), pp. 1195–1198. doi: 10.1103/PhysRevLett.42.1195.

[51] D. B. Fuks. “Spheres, homotopy groups of the”. In Encyclopedia of Mathematics
(2001).

[52] D. A. Garanin. “Spin tunnelling: a perturbative approach”. J. Phys. A-Math. Gen.,
24.2 (1991), p. L61.

[53] A. Garg and G.-H. Kim. “Macroscopic magnetization tunneling and coherence:
Calculation of tunneling-rate prefactors”. Phys. Rev. B, 45 (22 June 1992),
pp. 12921–12929. doi: 10.1103/PhysRevB.45.12921.

[54] H. Georgi and S. L. Glashow. “Unified weak and electromagnetic interactions
without neutral currents”. Phys. Rev. Lett., 28 (1972), p. 1494. doi: 10.1103/
PhysRevLett.28.1494.

[55] J. Glimm and A. Jaffe. Quantum Physics: A Functional Integral Point of View
(Springer 2012). doi: 10.1007/BF02812722.

[56] J. Goldstone. “Field theories with superconductor solutions”. Nuovo Cim., 19
(1961), pp. 154–164. doi: 10.1007/BF02812722.

[57] D. J. Gross and F. Wilczek. “Ultraviolet behavior of nonabelian gauge theories”.
Phys. Rev. Lett., 30 (1973), pp. 1343–1346. doi: 10.1103/PhysRevLett.30.1343.



304 Bibliography

[58] D. Haldane. “Large-D, and intermediate-D states in an S =2 quantum spin chain
with on-site and XXZ anisotropies”. Phys. Soc. Jn., 80.4 (2011), p. 043001. doi:
10.1143/JPSJ.80.043001.

[59] F. D. M. Haldane. “Nonlinear field theory of large-spin Heisenberg antifer-
romagnets: semiclassically quantized solitons of the one-dimensional easy-axis
Néel state”. Phys. Rev. Lett., 50 (15 Apr. 1983), pp. 1153–1156. doi: 10.1103/
PhysRevLett.50.1153.

[60] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time.
(Cambridge University Press, 2011). doi: 10.1017/CBO9780511524646.

[61] P. W. Higgs. “Broken symmetries and the masses of gauge bosons”. Phys. Rev.
Lett., 13 (1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508.

[62] K. Hori, S. Katz, A. Klemm et al. Mirror Symmetry. Vol. 1. Clay Mathe-
matics Monographs (AMS, 2003). url: www.claymath.org/library/monographs/
cmim01.pdf.

[63] L. Hulthén. “Uber has Austauschproblem eines Kristalls”. Arkiv Mat. Astron.
Fysik, 26A (1938), pp. 1–10.

[64] K. Jain Rohit. Supersymmetric Schrodinger operators with applications to Morse
theory. 2017. arXiv: 1703.06943v2.

[65] A. Jevicki. “Treatment of zero frequency modes in perturbation expansion about
classical field configurations”. Nucl. Phys., B117 (1976), pp. 365–376. doi:
10.1016/0550-3213(76)90403-X.

[66] B. Julia and A. Zee. “Poles with both magnetic and electric charges in nonabelian
gauge theory”. Phys. Rev., D11 (1975), pp. 2227–2232. doi: 10.1103/PhysRevD.
11.2227.

[67] S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi. “De Sitter vacua in string
theory”. Phys. Rev., D68 (2003), p. 046005. doi: 10.1103/PhysRevD.68.046005.
arXiv: hep-th/0301240[hep-th].

[68] A. Khare and M. B. Paranjape. “Suppression of quantum tunneling for all spins
for easy-axis systems”. Phys. Rev. B, 83 (17 May 2011), p. 172401. doi: 10.1103/
PhysRevB.83.172401.

[69] T. W. B. Kibble. “Some implications of a cosmological phase transition”. Phys.
Rept., 67 (1980), p. 183. doi: 10.1016/0370-1573(80)90091-5.

[70] T. W. B. Kibble. “Topology of cosmic domains and strings”. J. Phys., A9 (1976),
pp. 1387–1398. doi: 10.1088/0305-4470/9/8/029.

[71] G.-H. Kim. “Level splittings in exchange-biased spin tunneling”. Phys. Rev. B, 67
(2 Jan. 2003), p. 024421. doi: 10.1103/PhysRevB.67.024421.

[72] G.-H. Kim. “Tunneling in a single-molecule magnet via anisotropic exchange
interactions”. Phys. Rev. B, 68 (14 Oct. 2003), p. 144423. doi: 10.1103/PhysRevB.
68.144423.

[73] A. Kitaev. “Anyons in an exactly solved model and beyond”. Ann. Phys., 321.1
(2006), pp. 2–111. doi: 10.1016/j.aop.2005.10.005.

[74] J. A. Kjäll, M. Zalatel, R. Mong, J. Bardarson and F. Pollmann. “Phase diagram of
the anisotropic spin-2 XXZ model: infinite-system density matrix renormalization
group study”. Phys. Rev. B, 87 (23 June 2013), p. 235106. doi: 10.1103/
PhysRevB.87.235106.

[75] J. R. Klauder. “Path integrals and stationary-phase approximations”. Phys. Rev.
D, 19 (8 Apr. 1979), pp. 2349–2356. doi: 10.1103/PhysRevD.19.2349.

[76] H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics,
and Financial Markets, 5th Edition (World Scientific Publishing Co., 2009). doi:
10.1142/7305.

http://www.claymath.org/library/monographs/


Bibliography 305

[77] H. A. Kramers. “Wellenmechanik und halbzahlige Quantisierung”. Z. Phys., 39
(Oct. 1926), pp. 828–840. doi: 10.1007/BF01451751.

[78] H. A. Kramers, “Théorie générale de la rotation paramagnétique dans les
cristaux”. Proc. Acad. Sci. Amsterdam, 33 (1930), p. 959.

[79] B. Kumar, M. B. Paranjape and U. A. Yajnik. “Fate of the false monopoles:
induced vacuum decay”. Phys. Rev., D82 (2010), p. 025022. doi: 10.1103/Phys-
RevD.82.025022. arXiv: 1006.0693[hep-th].

[80] B. Kumar and U. Yajnik. “Graceful exit via monopoles in a theory with
OíRaifeartaigh type supersymmetry breaking”. Nucl. Phys., B831 (2010),
pp. 162–177. doi: 10.1016/j.nuclphysb.2010.01.011. arXiv: 0908.3949[hep-th].

[81] B. Kumar and U. A. Yajnik. “Stability of false vacuum in supersymmetric theories
with cosmic strings”. Phys. Rev., D79 (2009), p. 065001. doi: 10.1103/PhysRevD.
79.065001. arXiv: 0807.3254[hep-th].

[82] Laurascudder. Baryon Decuplet ó Wikipedia, The Free Encyclopedia. 2007.
[83] Laurascudder. Baryon Octet ó Wikipedia, The Free Encyclopedia. 2007.
[84] Laurascudder. Meson Octet ó Wikipedia, The Free Encyclopedia. 2007.
[85] B.-H. Lee, W. Lee, R. MacKenzie et al. “Tunneling decay of false vortices”. Phys.

Rev., D88 (2013), p. 085031. doi: 10.1103/PhysRevD.88.085031. arXiv: 1308.
3501[hep-th].

[86] A. J. Leggett. “A theoretical description of the new phases of liquid 3He”. Rev.
Mod. Phys., 47 (2 Apr. 1975), pp. 331–414. doi: 10.1103/RevModPhys.47.331.

[87] E. H. Lieb. “The classical limit of quantum spin systems”. Comm. Math. Phys.,
31.4 (1973), pp. 327–340. url: http://projecteuclid.org/euclid.cmp/1103859040.

[88] D. Loss, D. P. DiVincenzo and G. Grinstein. “Suppression of tunneling by
interference in half-integer-spin particles”. Phys. Rev. Lett., 69 (22 Nov. 1992),
pp. 3232–3235. doi: 10.1103/PhysRevLett.69.3232.

[89] Y. Matsumoto. An Introduction to Morse Theory. Trans. Kiki Hudson and
Masahico Saito (American Mathematical Society, 2002).

[90] F. Meier, J. Levy and D. Loss. “Quantum computing with antiferromagnetic spin
clusters”. Phys. Rev. B, 68 (13 Oct. 2003), p. 134417. doi: 10.1103/PhysRevB.
68.134417.

[91] F. Meier and D. Loss. “Electron and nuclear spin dynamics in antiferromagnetic
molecular rings”. Phys. Rev. Lett., 86 (23 June 2001), pp. 5373–5376. doi: 10.
1103/PhysRevLett.86.5373.

[92] F. Meier and D. Loss. “Thermodynamics and spin-tunneling dynamics in ferric
wheels with excess spin”. Phys. Rev. B, 64 (22 Nov. 2001), p. 224411. doi: 10.
1103/PhysRevB.64.224411.

[93] H.-J. Mikeska and M. Steiner. “Solitary excitations in one-dimensional magnets”.
Adv. Phys., 40.3 (1991), pp. 191–356. doi: 10.1080/00018739100101492.

[94] J. Milnor. Morse Theory (AM-51). Annals of Mathematics Studies (Princeton
University Press, 2016).

[95] S. E. Nagler, W. J. L. Buyers, R. L. Armstrong and B. Briat. “Propagating domain
walls in CsCoBr3”. Phys. Rev. Lett., 49 (8 Aug. 1982), pp. 590–592. doi: 10.1103/
PhysRevLett.49.590.

[96] H. B. Nielsen and P. Olesen. “Vortex line models for dual strings”. Nucl. Phys. B,
61 (1973), pp. 45–61. doi: 10.1016/0550-3213(73)90350-7.

[97] S. P. Novikov. “The Hamiltonian formalism and a many valued analog of Morse
theory”. Usp. Mat. Nauk, 37N5.5 (1982). [Russ. Math. Surveys(1982),37(5):1],
pp. 3–49. doi: 10.1070/RM1982v037n05ABEH004020.

[98] F. R. Ore Jr. “Quantum field theory about a Yang–Mills pseudoparticle”. Phys.
Rev. D, 15 (1977), p. 470. doi: 10.1103/PhysRevD.15.470.

http://projecteuclid.org/euclid.cmp/1103859040


306 Bibliography

[99] S. A. Owerre and M. B. Paranjape. “Macroscopic quantum spin tunneling with
two interacting spins”. Phys. Rev. B, 88 (22 Dec. 2013), p. 220403. doi: 10.1103/
PhysRevB.88.220403.

[100] A. Perelomov. Generalized Coherent States and their Applications (Springer-
Verlag New York Inc., Jan. 1986).

[101] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory
(Addison-Wesley, 1995).

[102] H. D. Politzer. “Reliable perturbative results for strong interactions?” Phys. Rev.
Lett., 30 (26 June 1973), pp. 1346–1349. doi: 10.1103/PhysRevLett.30.1346.

[103] A. M. Polyakov. “Quark confinement and topology of gauge groups”. Nucl. Phys.
B, 120 (1977), pp. 429–458. doi: 10.1016/0550-3213(77)90086-4.

[104] M. K. Prasad and C. M. Sommerfield. “An exact classical solution for the ít Hooft
monopole and the Julia-Zee dyon”. Phys. Rev. Lett., 35 (1975), pp. 760–762. doi:
10.1103/PhysRevLett.35.760.

[105] K. Pretzl. “Superconducting granule detectors”. J. Low Temp. Phys., 93.3 (1993),
pp. 439–448. issn: 1573–7357. doi: 10.1007/BF00693458.

[106] J. M. Radcliffe. “Some properties of coherent spin states”. J. Phys. A: General
Physics, 4.3 (1971), p. 313. doi: 10.1088/0305-4470/4/3/009.

[107] M. Reed and B. Simon. I: Functional Analysis. Methods of Modern Mathematical
Physics (Elsevier Science, 1981).

[108] H. J. Schulz. “Phase diagrams and correlation exponents for quantum spin chains
of arbitrary spin quantum number”. Phys. Rev. B, 34 (9 Nov. 1986), pp. 6372–
6385. doi: 10.1103/PhysRevB.34.6372.

[109] J. Schwinger. “On gauge invariance and vacuum polarization”. Phys. Rev., 82 (5
June 1951), pp. 664–679. doi: 10.1103/PhysRev.82.664.

[110] J. Simon, W. Bakr and R. Ma. “Quantum simulation of antiferromagnetic spin
chains in an optical lattice”. Nature, 472.7343 (Apr. 2011), pp. 307–312. doi: 10.
1038/nature09994.

[111] P. J. Steinhardt. “Monopole dissociation in the early universe”. Phys. Rev. D, 24
(1981), p. 842. doi: 10.1103/PhysRevD.24.842.

[112] G. ’t Hooft. “Computation of the quantum effects due to a four-dimensional
psuedoparticle”. Phys. Rev. D, 14 (12 Dec. 1976), pp. 3432–3450. doi: 10.1103/
PhysRevD.14.3432.

[113] J. Ummethum, J. Nehrkorn, S. Mukherjee et al. “Discrete antiferromagnetic spin-
wave excitations in the giant ferric wheel Fe18”. Phys. Rev. B, 86 (10 Sept. 2012),
p. 104403. doi: 10.1103/PhysRevB.86.104403.

[114] J. H. Van Vleck. “On sigma-type doubling and electron spin in the spectra of
diatomic molecules”. Phys. Rev., 33 (1929), pp. 467–506. doi: 10.1103/PhysRev.
33.467.

[115] J. Villain. “Propagative spin relaxation in the Ising-like antiferromagnetic linear
chain”. Physica B+C, 79.1 (1975), pp. 1–12. issn: 0378-4363. doi: 10.1016/0378-
4363(75)90101-1.

[116] O. Waldmann, C. Dobe, H. Güdel and H. Mutka. “Quantum dynamics of the Néel
vector in the antiferromagnetic molecular wheel CsFe8”. Phys. Rev. B, 74 (5 Aug.
2006), p. 054429. doi: 10.1103/PhysRevB.74.054429.

[117] S. Weinberg. “Dynamical approach to current algebra”. Phys. Rev. Lett., 18
(1967), pp. 188–191. doi: 10.1103/PhysRevLett.18.188.

[118] S. Weinberg. “The U(1) problem”. Phys. Rev. D, 11 (1975), pp. 3583–3593. doi:
10.1103/PhysRevD.11.3583.



Bibliography 307

[119] G. Wentzel. “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke
der Wellenmechanik”. Z. Phys., 38 (June 1926), pp. 518–529. doi: 10.1007/
BF01397171.

[120] J. Wess and B. Zumino. “Consequences of anomalous Ward identities”. Phys. Lett.
B, 37 (1971), pp. 95–97. doi: 10.1016/0370-2693(71)90582-X.

[121] N. Wiener. “Differential space”. J. Math. and Phys., 2 (1923), pp. 132–174.
[122] E. Witten. “Baryons in the 1/n Expansion”. Nucl. Phys. B, 160 (1979), pp. 57–

115. doi: 10.1016/0550-3213(79)90232-3.
[123] E. Witten. “Constraints on supersymmetry breaking”. Nucl. Phys. B, 202 (1982),

p. 253. doi: 10.1016/0550-3213(82)90071-2.
[124] E. Witten. “Dynamical breaking of supersymmetry”. Nucl. Phys. B, 188 (1981),

p. 513. doi: 10.1016/0550-3213(81)90006-7.
[125] E. Witten. “Supersymmetry and Morse theory”. J. Diff. Geom., 17.4 (1982),

pp. 661–692.
[126] U. A. Yajnik. “Phase transitions induced by cosmic strings”. Phys. Rev. D, 34

(1986), pp. 1237–1240. doi: 10.1103/PhysRevD.34.1237.
[127] W.-M. Zhang, D. H. Feng and R. Gilmore. “Coherent states: Theory and some

applications”. Rev. Mod. Phys., 62 (4 Oct. 1990), pp. 867–927. doi: 10.1103/
RevModPhys.62.867.

[128] J. Zinn-Justin. “Perturbation series at large orders in quantum mechanics and
field theories: Application to the problem of resummation”. Physics Reports, 70.2
(1981), pp. 109–167. issn: 0370-1573. doi: 10.1016/0370-1573(81)90016-8.

[129] W. H. Zurek. “Cosmic strings in laboratory superfluids and the topological
remnants of other phase transitions”. Acta Phys. Pol. B, 24 (1993), pp. 1301–1311.

[130] W. H. Zurek. “Cosmological experiments in superfluid helium?” Nature 317
(1985), pp. 505–508. doi: 10.1038/317505a0.



Index

Abelian Higgs model, 143
adjoint of d, 264
analytic continuation, 46, 50
asymptotic freedom, 237
Atiyah–Singer index theorem, 251
axial anomaly, 246

band spectrum, 39
baryon decuplet, 203
baryon octet, 203
Betti number, 267
Bogomolny bound, 163
Bott periodicity theorem, 213
bounce instanton, 41

chiral Dirac matrices, 239
chiral Ward–Takahashi identities, 249
circulant matrix, 142
collective coordinate, 20
confinement, 155, 184
contour deformation, 53
cosmic string, 102
cotangent space, 260
coulomb gas, 183
covariant derivative, 168

de Rham cohomology, 266
Debye screening, 183
deformation of supersymmetric quantum

mechanics, 274
determinant, 25
determinant calculation method, 29
dilute gas approximation, 23
dilute gas of instantons, 154

eigenvalue λ0, 33
energy splitting, 34
Euclidean Dirac action, 244
Euclidean path integral, 8
Euler characteristic, 267
exterior algebra, 261
exterior derivative, 262

Faddeev–Popov determinant, 176
Faddeev–Popov method, 174
fermion zero mode, 251
frustration, 139
Fujikawa method, 246
functional integral, 64

gauge fields in a box, 214
gauge fixing, 173
gauge theory integration measure, 180
Gell-Mann matrices, 208
Georgi–Glashow model, 157
Grassmann gaussian integral, 242
Grassmann integral, 242
Grassmann numbers, 241
gravitational bounce, 92
gravitational bounce action, 96
gravitational corrections, 90
Gribov ambiguity, 174

Haldane-like spin chain, 135
Hodge decomposition, 264
Hodge duality, 263
Hodge theorem, 267
homology groups, 265
homotopy classes, 146
homotopy groups, 161
homotopy representatives of gauge

transformations, 210

induced vacuum decay, 100
inner product on p-forms, 263
instanton, 1
instanton-mediated transitions, 231
instanton rotation zero-modes, 230
instantons and confinement, 231
integration on manifolds, 263

kink instanton, 18

Laplacian, 264
large orders in perturbation, 111
localized state, 7



Index 309

magnetic charge, 165
magnetic monopole solutions, 162
meson octet, 203
meta-stable state decay, 41
Minkowski path integral, 10
momentum eigenstates, 5
monopole ansatz, 166
monopole contribution to functional

integral, 177
monopole decay width, 186
monopole pair production, 185
monopole zero modes, 178
Morse lemma, 277
Morse reconstruction, 278
Morse theory, 277
Morse theory and supersymmetry, 259
multi-instanton contribution, 21

negative mode, 44
Nielsen–Olesen vortices, 147
non-Abelian field strength, 169
non-Abelian gauge invariance, 168
non-Abelian gauge theory, 167

p-chain, 265
path integral, 4
path integration measure, 15
periodic potentials, 35
point monopole instanton, 188
Poisson summation formula, 200
Polyakov confinement, 157
polynomial Morse inequalities, 285
Pontryagin number, 213
position eigenstates, 4
Prasad–Sommerfield solution, 167
problems with chiral symmetry, 204

QCD, 201
QCD theta vacua, 224
QCD vacuum transition amplitude, 231
quantum fermi fields, 240
quantum field theory, 59
quantum mechanics, 4
quantum spin tunnelling, 118
quark model, 202
quarks in QCD, 237

renormalization, 86
renormalized QCD coupling, 237
Riemannian manifolds, 259

Schwinger decay width, 186
space of gauge fields, 174
specific instanton configurations, 228
spin coherent states, 118
spin exchange model, 128
Stokes theorem, 264
strong Morse inequalities, 285
SU(3) structure constants, 208
supersymmetric 1-d quantum mechanics, 271
supersymmetric cohomology, 269
supersymmetric ground states, 273
supersymmetric harmonic oscillator, 274
supersymmetric index, 269
supersymmetric instantons, 294
supersymmetric quantum mechanics, 267
supersymmetric sigma model, 289
supersymmetry algebra, 267
supersymmetry realized by the exterior

algebra, 279
symmetric double well, 13

tangent space, 260
tensors, 260
theta vacua, 220
thin-wall approximation, 75
topological winding number, 211
topology of the gauge fields, 209
translation zero mode, 19
tunnelling, 2

U(1) problem, 249

vacuum decay, 71

weak Morse inequalities, 279, 285
Wess–Zumino action, 120
width of meta-stable state, 58
Wilson loop, 152
winding number in a box, 219
Witten deformation, 280
Witten’s coboundary operator, 288

Yang–Mills functional integral, 213
Yang–Mills instantons, 222

zero modes, 77




