
u
3) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d
dx

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]

u
3) j

=
[(
Δx)

2]
ε =

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=

u
3) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d
dx

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]

u
3) j

=
[(
Δx)

2]
ε =

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=

u
3) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d
dx

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]

u
3) j

=
[(
Δx)

2]
ε =

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=

u
3) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d
dx

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]

u
3) j

=
[(
Δx)

2]
ε =

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=

u
3) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d
dx

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]

u
3) j

=
[(
Δx)

2]
ε =

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=

u
3) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d
dx

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]

u
3) j

=
[(
Δx)

2]
ε =

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=

u
3) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d
dx

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]

u
3) j

=
[(
Δx)

2]
ε =

ε =
1

6
(Δ

x)
2 (

d3 u

dx3
) j

=

u
3) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d3 u

dx3
) j

=
[(
Δx)

2]
ε =

1
6
(Δ

x)
2 (

d
dx

(

3)

(

3)

(

3)

(

3)

u
3) j

=
[(
Δx)

2]
ε =

(

3)

 Döös | Lundberg | Cam
pino

Basic Num
erical M

ethods in
M

eteorology and Oceanography

The purpose of this book is to provide an introduction to numerical
modelling of the ocean and the atmosphere. The content originates
from courses at Stockholm University, and the book is intended to serve
as a textbook for meteorology and oceanography students with a mat-
hematics and physics background.

The focus is on numerical schemes for the most commonly used equa-
tions in oceanography and meteorology, as well as on these schemes’
stability, precision and other properties. In addition, simple equations
capturing the properties of the primitive equations employed in ocean
and atmosphere models will be used. These model equations are solved
numerically on a grid by discretisation, and finite-difference approxima-
tions replace the derivatives of the differential equations.

The basic numerical methods used for oceanographic and atmospheric
modelling is the focal point of this book. These metods are based on the
Navier-Stokes equations (including the Coriolis effect), a tracer equa-
tion for heat in the atmosphere and ocean as well as for humidity and
salt in the atmosphere and ocean, respectively. A coupled atmospheric
and oceanic general circulation model represents the core part of an
Earth System climate model.

Kristofer Döös, Peter Lundberg,
Aitor Aldama Campino

Basic Numerical Methods
in Meteorology and
Oceanography

Basic Numerical Methods in
Meteorology and Oceanography

Kristofer Döös, Peter Lundberg & Aitor Aldama Campino

Published by
Stockholm University Press
Stockholm University
SE-106 91 Stockholm
Sweden
https://www.stockholmuniversitypress.se/

Text c⃝The Author(s) 2022
License CC BY 4.0.

ORCiD:
Kristofer Döös: 0000-0002-1309-5921
Peter Lundberg: 0000-0002-6832-9836
Aitor Aldama Campino: 0000-0001-8453-4322

First published 2022
Cover designed by Sofie Wennström, Stockholm University Press

ISBN (Paperback): 978-91-7635-175-8
ISBN (PDF): 978-91-7635-172-7
ISBN (EPUB): 978-91-7635-173-4
ISBN (Mobi): 978-91-7635-174-1

DOI: https://doi.org/10.16993/bbs

This work is licensed under the Creative Commons Attribution 4.0 Unported
License. To view a copy of this license, visit creativecommons.org/licenses/by/4.0/
or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. This license allows for copying any part of the work for per-
sonal and commercial use, providing author attribution is clearly stated.

Suggested citation:
Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods

in Meteorology and Oceanography. Stockholm: Stockholm University Press. DOI:
https://doi.org/10.16993/bbs. License: CC BY 4.0.

To read the free, open access version of this book online,
visit https://doi.org/10.16993/bbs or scan this QR code
with your mobile device.

https://www.stockholmuniversitypress.se/
https://doi.org/10.16993/bbs
https://doi.org/10.16993/bbs
https://doi.org/10.16993/bbs

Editorial Board for the book Basic
Numerical Methods in Meteorology and
Oceanography

The role of an Editorial Board working with book projects at Stockholm

University Press is to be directly involved with the editorial quality

assurance process, meaning that they read and comment on the book

in all stages as well as suggest reviewers to invite. Their role is to

ensure that the peer-review process is to be trusted and that the author

receives constructive feedback in order to improve the academic quality

of the book.

The book Basic Numerical Methods in Meteorology and Oceanogra-

phy is not included in any of the book series produced by Stockholm

University Press, and the Editorial Board is, therefore, specially invited

to contribute with their expertise to this particular project.

The responsibilities of an Editorial Board at Stockholm University

Press include:

• Making academic assessments of incoming book proposals and

engaging with the peer-review process for book proposals and

book manuscripts.

• Aiming to improve the academic quality of the material sent

for evaluation through a peer-review process and adhering to

good editorial practices according standards defined by the

Committee of Publication Ethics (COPE, https://

publicationethics.org).

• Championing the freedom of expression.

• Maintaining the integrity of the academic record.

• Ensuring that the intellectual and ethical standards are

precluding any business or institutional needs.

• Ensuring that the published books maintain high standards for

the refereeing and acceptance of the final version.

https://publicationethics.org
https://publicationethics.org

iv Basic Numerical Methods in Meteorology and Oceanography

The Editorial Board consisted of the following researchers:

Erland Källén, Professor, Department of Meteorology, Stockholm

University

ORCiD: https://orcid.org/0000-0002-3603-9121

Jonas Nycander, Professor, Department of Meteorology, Stockholm

University

ORCiD: https://orcid.org/0000-0002-4414-6859

Mikael Tjärnström, Professor, Department of Meteorology, & Bolin

Centre for Climate Research, Stockholm University

ORCiD: https://orcid.org/0000-0002-6908-7410

https://orcid.org/0000-0002-3603-9121
https://orcid.org/0000-0002-4414-6859
https://orcid.org/0000-0002-6908-7410

Peer Review Policy

Stockholm University Press ensures that all book publications are peer-

reviewed. Each proposal submitted to the Press will be sent to a dedi-

cated Editorial Board of experts in the subject area for evaluation. The

full manuscript will be reviewed by chapter or as a whole by at least

two external and independent experts.

A complete description of Stockholm University Press’ peer-

review policies can be found on the website: https://www.

stockholmuniversitypress.se/site/peer-review-policies/

The Editorial Board of Basic Numerical Methods in Meteorology

and Oceanography used an external anonymized peer-review procedure

while evaluating the book proposal as well as the final book manuscript

was. The Editorial Board and Stockholm University Press expresses its

sincere gratitude towards all researchers involved in this project.

Recognition for reviewers

The Publisher and the Editorial Board would like to extend a special

thanks to the reviewers who contributed to the process of editing this

book.

Both the book proposal and the final manuscript was reviewed by

the following external experts:

Heikki Järvinen, Professor, Institute for Atmospheric and Earth System

Research, Helsinki University, Finland

ORCiD: https://orcid.org/0000-0003-1879-6804

Eigil Kaas, Professor, Physics of Ice, Climate and Earth, University of

Copenhagen, Denmark

ORCiD: https://orcid.org/0000-0001-6970-2404

https://www.stockholmuniversitypress.se/site/peer-review-policies/
https://www.stockholmuniversitypress.se/site/peer-review-policies/
https://orcid.org/0000-0003-1879-6804
https://orcid.org/0000-0001-6970-2404

Contents

Preface xiii

1. Introduction 1

1.1 What is a numerical model of the circulation of the atmosphere

or the ocean? 1

1.2 Brief historical background 1

2. Partial Differential Equations 7

2.1 Elliptic equations 9

2.2 Parabolic equations 10

2.3 Hyperbolic equations 10

2.4 Overview 11

3. Finite Differences 13

3.1 The grid-point method 13

3.2 Finite-difference schemes 13

3.2.1 Forward-difference scheme 15

3.2.2 Centred-difference scheme 16

3.2.3 Centred fourth-order difference scheme 16

3.2.4 Centred-difference scheme on a staggered grid 17

3.3 Time-difference schemes 18

3.3.1 Two-level schemes 19

3.3.2 Three-level schemes 23

4. Numerical Stability 25

4.1 The advection equation 25

4.2 Initial and boundary conditions 27

4.3 Stability analysis of the leap-frog scheme 28

viii Basic Numerical Methods in Meteorology and Oceanography

4.4 Euler-forward scheme in time 33

4.5 The upstream scheme 33

4.6 Stability analysis of the fourth-order scheme 37

5. The Computational Mode 41

5.1 The three-level scheme 41

5.1.1 The computational initial condition 43

5.2 Suppression of the computational mode 43

5.2.1 Euler-forward or -backward schemes at regular

intervals 43

5.2.2 The Robert-Asselin filter 44

5.2.3 The Robert-Asselin-Williams filter 48

6. The Computational Phase Speed 49

6.1 Dispersion due to the spatial discretisation 49

6.2 Dispersion due to the time discretisation 50

6.3 Dispersion due to spatial and temporal resolution 51

7. The Shallow-Water Equations 57

7.1 The one-dimensional shallow-water equations 57

7.1.1 Spatial discretisation but continuous time

derivatives 58

7.1.2 Spatial and temporal discretisation 60

7.2 Two-dimensional shallow-water equations 64

7.3 Gravity waves with centred spatial differencing 65

7.4 The shallow-water equations with leap-frog 69

7.5 Boundary conditions 71

7.5.1 Closed boundary conditions 71

7.5.2 Open boundary conditions 73

7.6 Conservation of mass, energy and enstrophy 75

7.6.1 The shallow-water equations with non-linear advection

terms 75

7.6.2 Discretisation 76

7.7 A shallow-water model 80

8. Diffusion and Friction Terms 83

8.1 Rayleigh friction 83

8.2 Laplacian friction 86

8.3 The advection-diffusion equation 90

Contents ix

9. The Poisson and Laplace Equations 95

9.1 Jacobi iteration 96

9.2 Gauss-Seidel iteration 97

9.3 Successive Over Relaxation (SOR) 97

9.4 Helmholtz Decomposition 99

10. Implicit and Semi-Implicit Schemes 101

10.1 Implicit versus explicit schemes, a simple example 101

10.2 Semi-implicit schemes 103

10.2.1 The one-dimensional (1D) diffusion equation 103

10.2.2 Two-dimensional (2D) pure gravity waves 104

10.3 The semi-implicit method of Kwizak and Robert 105

11. The Semi-Lagrangian Technique 109

11.1 The 1D linear advection equation 109

11.2 Stability analysis 112

11.3 The advection equation with variable velocity 112

12. Model Coordinates 117

12.1 Oceanic vertical coordinates 117

12.1.1 Fixed-depth coordinates 117

12.1.2 Variable-depth coordinates 120

12.2 Atmospheric vertical coordinates 121

12.2.1 Generalised vertical coordinates 121

12.2.2 Pressure coordinates 123

12.2.3 Atmospheric sigma coordinates 125

12.2.4 Hybrid coordinates 126

12.2.5 Isentropic coordinates 127

12.3 Structured and unstructured grids 128

12.3.1 Finite element method 129

12.3.2 Finite volume method 132

13. 3D Modelling 135

13.1 Approximations 135

13.2 A simple hydrostatic model 138

13.3 The tracer equation 142

13.3.1 Discretisation on a Cartesian grid 144

13.3.2 Discretisation on an orthogonal curvilinear grid 144

13.4 Non-hydrostatic modelling 145

x Basic Numerical Methods in Meteorology and Oceanography

14. Spectral Methods 149

14.1 Spherical harmonics 150

14.2 The spectral transform method 153

14.3 The shallow-water equations on a sphere 154

15. Theoretical Exercises 157

15.1 Exercises given in the main body of the text 157

15.1.1 Finite differences 157

15.1.2 Stability Analysis 159

15.1.3 Accuracy of the numerical phase speed 162

15.1.4 Diffusion and friction terms 163

15.2 Additional theoretical exercises 165

15.2.1 Leap-frog scheme 166

15.2.2 Upwind scheme 166

15.2.3 Euler-forward scheme 166

15.2.4 Staggered vs. unstaggered grid 166

15.2.5 Order of accuracy 167

15.2.6 Nonrotating 2D shallow-water equations 167

15.2.7 Laplace equation 168

15.2.8 Semi-implicit scheme 168

16. GFD Computer Exercises 169

16.1 Advection and diffusion equations 169

16.1.1 Advection equation 170

16.1.2 Diffusion equation 170

16.2 1D shallow-water model 171

16.3 2D shallow-water model 173

16.4 Geostrophic adjustment 177

16.4.1 Geostrophic adjustment for a step-function

disturbance 178

16.4.2 Geostrophic adjustment for a Gaussian disturbance 178

16.5 Kelvin wave 179

16.5.1 Gaussian disturbance 180

16.5.2 Equatorial β-plane 180

16.6 Oceanic Rossby waves 181

16.6.1 Rossby waves on a β-plane 181

16.6.2 Phase and group velocities 182

16.6.3 β − α compensation 182

16.7 Atmospheric Rossby waves 182

16.7.1 β−plane 183

Contents xi

16.7.2 Phase and group velocities 183

16.7.3 The effect of the zonal mean 183

16.8 Gyre Circulations 184

16.8.1 Sverdrup solution 184

16.8.2 Stommel solution 184

16.8.3 Munk solution 185

Bibliography 187

Preface

The purpose of this book is to provide an introduction to and an

overview of numerical modelling of the ocean and the atmosphere. It

has evolved from a course given at Stockholm University since 1997

and is intended to serve as a textbook for students in meteorology

and oceanography at the master level. A prerequisite is a background

in mathematics, physics, some geophysical fluid dynamics and pro-

gramming. Focus will be on numerical schemes for the most common

equations in oceanography and meteorology as well as on the stability,

precision and other basic numerical properties of these schemes. We

will use as simple equations as possible that still capture the properties

of the primitive equations used in the general circulation models. For

simplicity, the equations will often be referred to as the hydrodynamic

equations since the numerical methods to be described here are valid

for modelling both the ocean and the atmosphere. Due to the non-

linearity of these equations, it is not possible to find analytical solu-

tions. The equations are therefore instead solved numerically on a grid

by discretisation, and the derivatives of the differential equations are

replaced by finite-difference approximations. This is what constitutes

a numerical model, which often is referred to as a general circulation

model when it represents the three-dimensional (3D) global circulation

of the atmosphere or the ocean. These models are based on the Navier-

Stokes equations (including the Coriolis effect) and a tracer equation

for heat in both the atmosphere and ocean and tracer equations for

humidity and salt in the atmosphere and ocean, respectively. A cou-

pled atmospheric and oceanic general circulation model represents the

core part of an Earth System climate model.

The focus here will be on the basic numerical methods used for

oceanographic and atmospheric modelling. For more detailed and com-

prehensive books see e.g. Durran (2010) for the numerical methods

and e.g. Kalnay (2003) for data assimilation and numerical weather

prediction.

xiv Basic Numerical Methods in Meteorology and Oceanography

The book starts with a short summary of the historical background

of the numerical modelling of the ocean and atmosphere. In Chapter 2,

we present the most common types of Partial Differential Equations

(PDEs) that occur in meteorology and oceanography and how they can

be classified. Chapter 3 introduces some of the most commonly used

finite differences in both time and space and how accurate they are

compared to the derivative. In Chapter 4, we show how to undertake a

stability analysis using, for simplicity, the advection equation. The sta-

bility is shown to depend both on which finite-difference schemes that

are used and on the advection speed, time step and grid size. Some

schemes turn out to be unconditionally unstable, but can still be used

as a first time step. In Chapter 5 we show how, in addition to the phys-

ical mode, a numerical mode arises and how this mode can be damped

or suppressed. The accuracy of the numerical phase speed is examined

in Chapter 6 and how this depends on the wave number and grid reso-

lution. The shallow-water equations are discretised in Chapter 7 using

three different spatial grids. Many limitations, which previously have

been studied for the advection equation, are here examined again, but

for the shallow-water equations. In Chapter 8 we investigate the dis-

cretisation of the friction and the diffusion terms and how this affects

the stability of the solution. Iterative methods for the Poisson and

Laplace equations are demonstrated in Chapter 9. Implicit and semi-

implicit schemes are shown in Chapter 10. Chapter 11 deals with the

semi-Lagrangian technique for the advection equation. Different model

coordinates for atmospheric as well as oceanic models are presented in

Chapter 12. Using a highly simplified approach, 3D-modelling is intro-

duced in Chapter 13. Chapter 14 gives a brief description of how some

atmospheric general circulation models use spectral methods as “hor-

izontal coordinates”. Some “pen-and-paper” theoretical exercises are

given in Chapter 15 and Chapter 16 is devoted to a number of GFD

computer exercises.

We wish to thank Laurent Brodeau, Bror Jönsson, Joakim Kjellsson,

Gurvan Madec as well as our students for valuable input during all these

years.

Kristofer Döös, professor of climate modelling,

Peter Lundberg, professor emeritus of physical oceanography

and Dr. Aitor Aldama Campino, all at the Department of

Meteorology, Stockholm University

1. Introduction

1.1 What is a numerical model of the circulation of the
atmosphere or the ocean?

A numerical model of the circulation of the atmosphere and/or the

ocean is basically constituted by

• A grid covering the spatial domain under consideration.

• Discretised equations describing the conservation of

momentum, mass, energy and salt/moisture.

• Open and/or solid boundaries.

• A specified initial state of the system.

The schematic cartoon shown in Figure 1.1 illustrates a system of this

type pertaining to a coupled ocean-atmosphere model with correspond-

ing forcing and the exchange between the two components of the model.

1.2 Brief historical background

A short summary is here given of the historical background to the

numerical modelling of the ocean and atmosphere.

Bjerknes (1904) was the first to discuss the possibility of predicting

and modelling the circulation of the atmosphere. For this purpose he

proposed seven equations with seven unknown variables:

• Three equations of conservation of momentum for the three

velocity components based on Newton’s second law.

• The continuity equation, i.e. the conservation of mass.

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 1–5. Stockholm: Stockholm University Press.
DOI: https://doi.org/10.16993/bbs.a. License: CC BY 4.0

https://doi.org/10.16993/bbs.a

2 Basic Numerical Methods in Meteorology and Oceanography

Figure 1.1. Schematic illustration of a numerical ocean-atmosphere

circulation model

Introduction 3

• The equation of state for ideal gases.

• The equation of conservation of energy based on the first law of

thermodynamics.

• A conservation equation for water mass in the atmosphere.

These equations have become known as the “primitive equations” since

they do not deal with a filtered quasi-geostrophic equation but go back

to Bjerknes’ original formulation of the problem. These equations also

require boundary conditions at the top and bottom of the atmosphere

as well as the initial state of the atmosphere. The problem is that

although we have an equal number of equations and variables, as well

as appropriate boundary and initial conditions, these equations cannot

be solved analytically.

The first attempt to solve the equations numerically was made by

Lewis Fry Richardson in his spare time when serving as an ambulance

driver during the First World War. Richardson (1922) applied finite-

differencing techniques to the equations suggested by Bjerknes.

A decade earlier Richardson (1911) had been the first to propose

the use of finite differences when approximating partial differential

equations, insights he put to use when attempting numerical weather

prediction. His first numerical weather prediction (NWP) failed, how-

ever, due to two reasons. First, no computers were available and

Richardson estimated that it would require a staff of 64,000 persons

to compute a 24-hour forecast in 24 hours. The second reason, which

was revealed by Lynch (2006), was due to a failure to apply smoothing

techniques to the data, which led to his calculations yielding erroneous

results.

These numerical instabilities were independently investigated

by Courant, Friedrichs and Lewy (Courant et al., 1928), pure

mathematicians who examined techniques of solving general partial

differential equations using finite differencing. They found certain con-

ditions regarding the choice of time step and grid size that must

be respected for the numerical solution to be stable. These results

were later further developed by Charney, Fjørtoft and von Neumann

(Charney et al., 1950), the trio that in the late 1940s made the first

successful numerical weather forecast, based on integration of the con-

servation equation for the absolute vorticity.

4 Basic Numerical Methods in Meteorology and Oceanography

This single-equation approach of following the motion of an air col-

umn instead of using the seven-equation set proposed by Bjerknes

(1904) was suggested by Carl-Gustaf Rossby, who was also the driv-

ing force behind the first real-time numerical weather prediction made

in two runs 23-24 March 1954 in Stockholm by Harold Bedient and

Bo Döös (Döös and Eaton, 1957; Wiin-Nielsen, 1991; Persson, 2005a).

The rationale underlying the need of numerical weather predic-

tion is immediately obvious; less so when ocean forecasting is con-

cerned, where two severe inundations of the northwestern European

coast served as the driving agent. In the Netherlands, severe flooding

in 1916 with around 300 fatalities led the government to entrust the

physicist and Nobel Laureate Hendrik Lorentz with the task of devel-

oping predictive techniques. This ultimately led to Lorentz formulat-

ing a method for storm-surge forecasting in the 1920s. An even worse

instance of North-Sea coastal flooding took place in 1953, with around

2000 deaths, which led to the Hamburg oceanographer Hansen (1956)

developing a numerical storm-surge model based on finite differenc-

ing of the shallow-water equations including the non-linear advection

terms. Hansen focused on the fast barotropic gravity waves instead of

filtering them out as was done in numerical weather-prediction mod-

els. Subsequently another German oceanographer (Fischer, 1959) con-

structed a numerical shallow-water model for the North Sea with the

finite-difference schemes described in detail.

The return to the full primitive equations for NWP models, which

Richardson (1922) had used in the very beginning, was inevitable since

the quasi-geostrophic equations, although very useful for understand-

ing the large-scale extratropical dynamics of the atmosphere, were not

accurate enough to allow continued progress in NWP. A complete

Atmospheric General Circulation Model (AGCM) based on the primi-

tive equations was developed by Smagorinsky (1963) at the Geophys-

ical Fluid Dynamics Laboratory (GFDL) in Princeton. Here also a

large part of the subsequent model development took place, including

the first Ocean General Circulation Model (OGCM), developed only a

few years later by Bryan and Cox (1967). Syukuro Manabe and Kirk

Bryan combined their models to yield the first coupled Atmosphere-

Ocean General Circulation Model (AOGCM), cf. Manabe and Bryan

(1969), which they used for climate studies.

Ocean and atmosphere GCMs have since then increased in number

all over the world and have improved in many aspects; higher reso-

lution using more powerful computers, better parameterisations, more

Introduction 5

observations to feed the models with. The basic numerics have also

improved, but the fundamental properties of the finite differences and

the numerical methods remain. This is why focus in this book will be

on the limitations of the numerical schemes that to a large extent were

discovered during the 20th century.

For a more comprehensive view of the historical background, there

are number of studies focusing on the evolution of NWP, e.g. Persson

(2005a,b,c) and Wiin-Nielsen (1991).

2. Partial Differential Equations

Before going into the details of numerical procedures, we first classify

the most usual types of Partial Differential Equations (PDEs) that

occur in meteorology and oceanography. Partial differential equations

are of vast importance in applied mathematics and engineering since so

many real physical processess can be modelled by them. Second-order

linear PDEs of the type needed for modelling the ocean and atmosphere

circulation can be classified into three categories: elliptic, parabolic and

hyperbolic. These partial differential equations in two dimensions are

general linear equations of second order:

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu+ g = 0. (2.1)

This equation has two independent variables (x and y) and one depen-

dent (u) as well as two unspecified functions (f and g). We will show

here that by transforming x, y and u into new variables, it is possible to

apply Equation 2.1 to any second-order linear PDE and to classify it.

As the reader may note, this expression bears somewhat of a

resemblance to the equation for a conic section:

ax2 + bxy + cy2 + dx+ ey + f = 0, (2.2)

where a, b, c, d, e and f are constants. As illustrated by Figure 2.1,

this algebraic equation represents an ellipse, parabola or a hyperbola

depending on whether b2 − 4ac is negative, equal to zero or positive,

respectively.

This indicates that one analogously can classify the PDE according

to Table 2.1.

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 7–12. Stockholm: Stockholm University Press.
DOI: https://doi.org/10.16993/bbs.b. License: CC BY 4.0

https://doi.org/10.16993/bbs.b

8 Basic Numerical Methods in Meteorology and Oceanography

Figure 2.1. A diagram showing conic sections, viz. an ellipse, a parabola

and a hyperbola. Note that these geometrical representations of Equation

(2.2) are not solutions to the general PDE given by Equation (2.1).

Table 2.1. Classification of the three PDE types and their different kinds of

boundary conditions. A Dirichlet boundary condition specifies the function

on the boundary of the domain. A Neumann boundary condition specifies

the value of the normal derivative of the function on the boundary of the

domain. A Cauchy boundary condition specifies the values of the function

and its normal derivative on the boundary of the domain.

PDE b2 − 4ac Boundary & initial conditions Examples

Elliptic b2 − 4ac < 0 Dirichlet/Neumann/Cauchy Laplace Eq.

Parabolic b2 − 4ac = 0 One initial + two boundary
conditions

Diffusion Eq.

Hyperbolic b2 − 4ac > 0 Two initial + two boundary
conditions

Wave Eq.

Each type of system is associated with significantly different char-

acteristic behaviour, and the solution scheme for each type of equation

can also differ. All three classes of PDEs are represented among the

most common equations in hydrodynamics and require the specification

Partial Differential Equations 9

of different kinds of boundary conditions. We will now provide some

examples of these equations.

2.1 Elliptic equations

The two-dimensional (2D) versions of the Laplace and Poisson

equations are classical examples of elliptic equations, representing e.g.

the relationship between the stream function and vorticity or the

steady-state temperature in a plate:

∂2u

∂x2
+
∂2u

∂y2
= 0 (or g (u, x, y)). (2.3)

In conformity with Equation (2.1) it is recognised that a = 1, b = 0,

c = 1 and d = e = f = 0, which leads to b2 − 4ac = −4 < 0, and hence

the PDE must be elliptic.

Another example of an elliptic equation in hydrodynamics can be

found from the simplest equations of motion in the atmosphere and

the ocean, viz. the linearised shallow-water equations without friction.

These equations can be both hyperbolic (as shown in Section 2.3) and

elliptic when in steady state as will be shown here.

∂u

∂t
− fv = −g ∂η

∂x
, (2.4a)

∂v

∂t
+ fu = −g∂η

∂y
, (2.4b)

∂h

∂t
+H

(︃

∂u

∂x
+
∂v

∂y

)︃

= 0. (2.4c)

Here u and v are the velocity components in the x and y direction,

respectively, η is the surface-height perturbation from the undisturbed

depth H of the fluid, g is the acceleration of gravity and t represents

the time. Above f ≡ 2Ω sinφ is the Coriolis acceleration, where Ω is

the angular frequency of the Earth’s rotation and φ the latitude. In

what follows f is set to be a constant.

Note that the variables x and y in Equation (2.1) have been desig-

nated in an arbitrary fashion and do not have anything to do with the

independent variables x and y in Equations (2.4). From these equations

it can be deduced that

∂

∂t

[︃

∂2

∂t2
+ f 2 − gH

(︃

∂2

∂x2
+

∂2

∂y2

)︃]︃

η = 0. (2.5)

10 Basic Numerical Methods in Meteorology and Oceanography

If we integrate this equation in time we obtain

∂2η

∂t2
+ f 2η − gH

(︃

∂2

∂x2
+

∂2

∂y2

)︃

η = ξ (x, y), (2.6)

where ξ(x, y) is an integration constant independent of t. When the

problem is stationary, the geostrophic relationship is obtained:

f 2η − gH

(︃

∂2

∂x2
+

∂2

∂y2

)︃

η = ξ (x, y). (2.7)

In analogy with Equation (2.1), we find that a = −gH, b = 0 and

c = −gH, which leads to b2 − 4ac = −4g2H2 < 0, and hence this PDE

must be elliptic.

There are three different types of possible boundary conditions for

this class of PDEs:

• u specified on the boundary (Dirichlet),

• ∂u/∂n⃗, where n⃗ is the normal vector, specified on the boundary

(Neumann),

• au+ ∂u/∂n⃗ specified on the boundary (Cauchy).

2.2 Parabolic equations

An example of a parabolic PDE is the diffusion equation for the depen-

dent variable T corresponding to e.g. temperature, salinity, humidity

or any passive tracer:

∂T

∂t
= K

∂2T

∂x2
; K > 0. (2.8)

Based on Equation (2.1), a = K, b = 0 and c = 0, leading to b2−4ac =

0, and hence the PDE is parabolic.

Assume that T (x, t) is the temperature distribution along the x-axis

of a conducting rod as a function of time. To solve the equation over

the interval 0 ≤ x ≤ L one must prescribe an initial condition T (x, 0)

on 0 ≤ x ≤ L. The boundary conditions T (0, t) and T (L, t) must also

be specified during the whole time period under consideration.

2.3 Hyperbolic equations

This class of PDEs describes wave motion. A typical example is the

equation governing the vibrating string or the gravity waves in the

Partial Differential Equations 11

ocean or atmosphere. In Section 2.1, we found that the shallow-water

equations were elliptic in their steady state form. Here we will show

that they can be hyperbolic in their time-dependent form. The wave

equation can be derived from the simplest possible set-up of the

shallow-water equations:

∂u

∂t
= −g ∂η

∂x
, (2.9a)

∂η

∂t
= −H∂u

∂x
. (2.9b)

By eliminating u between the two equations we obtain the wave

equation:

∂2η

∂t2
= gH

∂2η

∂x2
. (2.10)

In analogy with Equation (2.1) it is found that b2 − 4ac = 4gH > 0

and hence this equation is a hyperbolic PDE.

The following first-order PDE, known as the advection equation,

can also be classified as hyperbolic, since its solutions satisfy the wave

equation:

∂u

∂t
= −c0

∂u

∂x
, (2.11)

where c0 ≡
√
gH is the speed of gravity waves. By first differentiating

the advection equation with respect to t and then a second time with

respect to x, it is possible to eliminate ∂2u/∂t∂x between the resulting

two equations and we obtain the wave equation.

In order to obtain unique solutions of Equation (2.10) for 0 ≤ x ≤
L we need boundary conditions at x = 0 and x = L, viz. the ends

of the spatial domain, and two initial conditions. Possible boundary

conditions are u (0, t), u (L, t), ∂u (0, t) /∂x or ∂u (L, t) /∂x specified

at x = 0 and x = L. Necessary initial conditions are u (x, 0) and

∂u (x, 0) /∂t specified over 0 ≤ x ≤ L.

2.4 Overview

Having introduced these three types of PDEs, it is important to under-

line that the behaviour of the solutions, the proper initial and/or

boundary conditions, and the numerical methods that can be used

to find the solutions depend essentially on the type of PDE dealt

with. Although non-linear multidimensional PDEs in general cannot

be reduced to these canonical forms, we need to study these prototypes

12 Basic Numerical Methods in Meteorology and Oceanography

in order to develop an understanding of their properties, and then

apply similar methods to the more complicated equations governing

the motion of the ocean and atmosphere.

Exercises:

1. Solve the following equation by separation of variables:

∂u

∂t
= −c∂u

∂x
, (2.12)

with the initial condition

u (x, 0) = −Aeikx. (2.13)

2. Show that the advection equation

∂u

∂t
= −c∂u

∂x
(2.14)

has the general d’Alembert solution u = f(x− ct), where f is

an arbitrary continuously differentiable function. Interpret the

equation geometrically in the xt-plane. Solve the equation with

the following initial condition: u (x, 0) = g(x).

3. Derive the wave equation from the shallow-water equation

system

∂V⃗

∂t
= −g∇η, (2.15a)

∂η

∂t
= −H∇ · V⃗ , (2.15b)

where g is the gravitational acceleration, η the free-surface

deviation from the equilibrium depth H, V⃗ the horizontal

velocity vector (u, v) and ∇ ≡ (∂/∂x, ∂/∂y).

3. Finite Differences

3.1 The grid-point method

Let us study a function u with one independent variable x:

u = u (x).

Suppose we have an interval L, which is partitioned by N + 1 equally

spaced grid points (including the two at the limits of the interval).

The grid length is then ∆x = L/N and the grid points are located at

xj = j∆x, where j = 0, 1, 2, ...N are integers. Let the value of u at xj
be represented by uj.

3.2 Finite-difference schemes

The formal mathematical definition of the derivative of a function

u(x) is

du

dx
= lim

∆x→0

u (x+∆x)− u (x)

∆x
, (3.1)

which is illustrated in Figure 3.1. A derivative and its finite-difference

approximation differ in that in the latter case ∆x remains finite and will

not tend to zero. Note that in what follows, the term “finite difference”

will be taken as synonymous with finite-difference approximations of

derivatives.

We will now derive expressions which can be used to give an approx-

imate value of a derivative at a grid point in terms of grid-point values.

The finite-difference schemes can be constructed between values of uj
over the grid length ∆x. As illustrated in Figure 3.2, the first derivative

of u (x) can be approximated in three ways:

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 13–24. Stockholm: Stockholm University Press.
DOI: https://doi.org/10.16993/bbs.c. License: CC BY 4.0

https://doi.org/10.16993/bbs.c

14 Basic Numerical Methods in Meteorology and Oceanography

Figure 3.1. As ∆x decreases, the red secant approaches the blue tangent,

which is the derivative of the function u (green) at the point x when

∆x→ 0. A finite difference is when ∆x ̸= 0.

Figure 3.2. The Euler-backward, -forward and centred finite-difference

approximations of the derivative of a function u (x) at the point j∆x. The

function is defined at the grid points x = j∆x so that uj = u (x) = u (j∆x),

where ∆x is the grid length and j = 0, 1, 2, ... are integers. Note that we

have chosen an exceptionally difficult point around which to approximate

the derivative, this to highlight potential difficulties with the method.

forward-difference scheme:
(︃

du

dx

)︃

j

≈ uj+1 − uj
∆x

,

Finite Differences 15

centred-difference scheme:
(︃

du

dx

)︃

j

≈ uj+1 − uj−1

2∆x
,

backward-difference scheme:
(︃

du

dx

)︃

j

≈ uj − uj−1

∆x
.

These various schemes introduce errors that can estimated by deriv-

ing the finite-difference schemes in a more rigorous way using Taylor

expansions. The Taylor series for f (y) around y = a is

f (y) = f (a)+(y − a) f ′ (a)+
1

2
(y − a)

2
f ′′ (a)+ ...+

1

n!
(y − a)

n
f (n) (a).

(3.2)

Note that a Taylor series is an expansion around a specific point, which

yields a function that can be evaluated at another point.

3.2.1 Forward-difference scheme

Using the Taylor expansion given by Equation (3.2) and substituting

f(y) by u(x), a by xj and y by xj+1, it is found that

uj+1 = uj +∆x

(︃

du

dx

)︃

j

+
1

2
(∆x)

2

(︃

d2u

dx2

)︃

j

+
1

6
(∆x)

3

(︃

d3u

dx3

)︃

j

+
1

24
(∆x)

4

(︃

d4u

dx4

)︃

j

+
1

120
(∆x)

5

(︃

d5u

dx5

)︃

j

+ (3.3)

The forward difference can now be expressed as

uj+1 − uj
∆x

=

(︃

du

dx

)︃

j

+
1

2
(∆x)

(︃

d2u

dx2

)︃

j

+
1

6
(∆x)

2

(︃

d3u

dx3

)︃

j

+
1

24
(∆x)

3

(︃

d4u

dx4

)︃

j

+
1

120
(∆x)

4

(︃

d5u

dx5

)︃

j

+ (3.4)

The difference between this expression and the real derivative

(du/dx)j is

ε =
1

2
(∆x)

(︃

d2u

dx2

)︃

j

+
1

6
(∆x)

2

(︃

d3u

dx3

)︃

j

+
1

24
(∆x)

3

(︃

d4u

dx4

)︃

j

+
1

120
(∆x)

4

(︃

d5u

dx5

)︃

j

+ ... , (3.5)

16 Basic Numerical Methods in Meteorology and Oceanography

which is denoted the truncation error associated with the approxima-

tion of the derivative. The terms that have been truncated, i.e. “cut

off”, are represented by ε. Hence we have an accuracy of first order

with

ε = O (∆x), (3.6)

which is the lowest order of accuracy that is acceptable. Note that

we have assumed that ∆x is small so that (∆x)m << (∆x)n where

m is greater than n. The higher-order terms in ∆x can therefore be

neglected.

3.2.2 Centred-difference scheme

The accuracy of the centred-difference scheme can be determined from

Equation (3.3) and the analogous representation of uj−1:

uj−1 = uj −∆x

(︃

du

dx

)︃

j

+
1

2
(∆x)

2

(︃

d2u

dx2

)︃

j

− 1

6
(∆x)

3

(︃

d3u

dx3

)︃

j

+
1

24
(∆x)

4

(︃

d4u

dx4

)︃

j

− 1

120
(∆x)

5

(︃

d5u

dx5

)︃

j

+ ... , (3.7)

so that

uj+1 − uj−1

2∆x
=

(︃

du

dx

)︃

j

+
1

6
(∆x)

2

(︃

d3u

dx3

)︃

j

+
1

120
(∆x)

4

(︃

d5u

dx5

)︃

j

+

Here the truncation error is of second order:

ε =
1

6
(∆x)

2

(︃

d3u

dx3

)︃

j

+ ... = O
[︁

(∆x)
2
]︁

. (3.8)

3.2.3 Centred fourth-order difference scheme

A scheme with fourth-order accuracy can be obtained if we undertake

the Taylor expansion given by Equation (3.2) and substitute f(y) by

u(x), a by xj and y by xj+2:

uj+2 = uj + 2∆x

(︃

du

dx

)︃

j

+
1

2
(2∆x)

2

(︃

d2u

dx2

)︃

j

+
1

6
(2∆x)

3

(︃

d3u

dx3

)︃

j

+
1

24
(2∆x)

4

(︃

d4u

dx4

)︃

j

+
1

120
(2∆x)

5

(︃

d5u

dx5

)︃

j

+ ... (3.9)

Finite Differences 17

and analogously,

uj−2 = uj − 2∆x

(︃

du

dx

)︃

j

+
1

2
(2∆x)

2

(︃

d2u

dx2

)︃

j

− 1

6
(2∆x)

3

(︃

d3u

dx3

)︃

j

+
1

24
(2∆x)

4

(︃

d4u

dx4

)︃

j

− 1

120
(2∆x)

5

(︃

d5u

dx5

)︃

j

+ ... , (3.10)

so that

uj+2 − uj−2

4∆x
=

(︃

du

dx

)︃

j

+
4

6
(∆x)

2

(︃

d3u

dx3

)︃

j

+
16

120
(∆x)

4

(︃

d5u

dx5

)︃

j

+

This scheme is, as the previous centred scheme, accurate to second

order, and if we combine the two centred schemes so that

4

3

uj+1 − uj−1

2∆x
− 1

3

uj+2 − uj−2

4∆x
=

(︃

du

dx

)︃

j

− 1

30
(∆x)

4

(︃

d5u

dx5

)︃

j

+ ... ,

(3.11)

we find an accuracy of fourth order, i.e. ε = O
[︁

(∆x)
4
]︁

.

3.2.4 Centred-difference scheme on a staggered grid

Finite differences on staggered grids (cf. Chapter 7) often require that

the approximations be located between two contiguous grid points:

(︃

du

dx

)︃

j+1/2

≈ uj+1 − uj
∆x

. (3.12)

The accuracy of this scheme is obtained by first making a Taylor expan-

sion around xj+1/2 and then taking into account the point xj+1, which

leads to

uj+1 = uj+1/2 +
∆x

2

(︃

du

dx

)︃

j+1/2

+
1

2

(︃

∆x

2

)︃2(︃

d2u

dx2

)︃

j+1/2

+
1

6

(︃

∆x

2

)︃3(︃

d3u

dx3

)︃

j+1/2

+ ... , (3.13)

and then using the same Taylor expansion but with regard to the point

xj so that

18 Basic Numerical Methods in Meteorology and Oceanography

uj = uj+1/2 −
∆x

2

(︃

du

dx

)︃

j+1/2

+
1

2

(︃

∆x

2

)︃2(︃

d2u

dx2

)︃

j+1/2

− 1

6

(︃

∆x

2

)︃3(︃

d3u

dx3

)︃

j+1/2

+ (3.14)

Subtracting the latter equation from the former and dividing by ∆x

leads to

uj+1 − uj
∆x

=

(︃

du

dx

)︃

j+1/2

+
1

6

(︃

∆x

2

)︃2(︃

d3u

dx3

)︃

j+1/2

+ (3.15)

Hence the truncation error is of second order:

ε =
1

6

(︃

∆x

2

)︃2(︃

d3u

dx3

)︃

j+1/2

+ ... = O
[︁

(∆x)
2
]︁

. (3.16)

Note that the only difference between this truncation error and the one

for the previous centred finite difference given by Equation (3.8) is that

this one is reduced, which is simply due to that the distance between

the points is ∆x instead of 2∆x.

3.3 Time-difference schemes

The time-derivative schemes that are used for PDEs are often rel-

atively simple, usually of second-order and sometimes even only of

first-order accuracy. There are several reasons for this. First, it is a

general experience that schemes constructed to have a high order of

accuracy in time are mostly not very useful when solving PDEs. This

is in contrast to the experience with ordinary differential equations,

where very accurate methods, such as the Runge-Kutta scheme, are

extremely successful. There is a basic reason for this discrepancy. With

an ordinary differential equation of first order, the equation and a single

initial condition is all that is required for an exact solution. Thus, the

numerical-solution error is entirely due the degree of inadequacy of the

scheme. With a PDE, the error associated with the numerical solution

arises from both the shortcomings of the scheme and the insufficient

information about the initial conditions, which only are known at dis-

crete grid points. Thus, an increase in accuracy of the applied scheme

improves only one of these two components, and the result is not too

impressive.

Finite Differences 19

Another reason for not using a finite-difference scheme of high

accuracy of the time derivatives is that, in order to meet a stability

requirement of the type to be discussed in the next chapter, it is usu-

ally necessary to choose a time step significantly smaller than that

required for adequate accuracy. Once a time step has been specified,

other errors, e.g. from the spatial differencing, are much greater that

those due to the time differencing. Thus, computational effort is better

spent in reducing these errors, and not in increasing the accuracy of

the time-differencing schemes. This, of course, does not mean that it

is not necessary to carefully consider the properties of various possible

time-differencing schemes. Accuracy is only one important considera-

tion when choosing a scheme.

To define some schemes, we consider a general first-order differential

equation:

∂u

∂t
= f (u, t), (3.17)

where typically u = u (x, t). The independent variables x and t are

space and time. f is thus a function of u, x and t, corresponding e.g.

to the advection equation where f = −c ∂u/∂x.
In order to discretise the equation we divide the time axis into seg-

ments of equal length ∆t. The approximated value of u (t) at time

t = n∆t is denoted un. In order to compute un+1 we need to know at

least un and often also un−1. A number of time-difference schemes are

available.

3.3.1 Two-level schemes

These are schemes that use two different time levels, n and n + 1, so

that the time integration yields

un+1 = un +

∫︂ (n+1)∆t

n∆t

f (u, t) dt. (3.18)

The problem now is that f only exists as discrete values fn and fn+1

at times n∆t and (n+ 1)∆t, respectively.

Euler-forward scheme

This is defined as

un+1 = un +∆t fn. (3.19)

20 Basic Numerical Methods in Meteorology and Oceanography

Figure 3.3. Time integration with the Euler-forward scheme.

Here the truncation error is O (∆t), i.e. the scheme is accurate to first

order. It is said to be uncentred, since the “time derivative” pertains to

time level n+ 1/2 and the function to time level n. As in the previous

section this Euler-forward scheme is of first-order accuracy (Figure 3.3).

Euler-backward scheme

This is defined as

un+1 = un +∆t fn+1. (3.20)

The Euler-backward scheme is uncentred in time and is accurate to

O (∆t). If, as here, a value of f is taken at time level n+1 and f depends

on u, i.e. un+1, the scheme is said to be implicit. For an ordinary

differential equation, it may be a straightforward matter to solve for

un+1.

For a PDE it will, however, require solving a set of simultane-

ous equations, with one equation for each of the grid points of the

computation region. If no value of f depends on un+1 on the right-

hand side of the equation above, the scheme is said to be explicit.

Finite Differences 21

In the very simple cases when f only depends on t, such as

e.g. du/dt = −γu, the discretised equation becomes un+1 = un +

∆t (−γun+1), which can be rearranged as un+1 = un/(1 + γ∆t) so that

there are no terms at time level n + 1 on the right-hand side. In this

case the discretised equation can be integrated despite being implicit.

Crank-Nicolson scheme

The Crank-Nicolson scheme is based on the trapezoidal rule. If we

approximate f by its average between time levels n and n+1 we obtain

un+1 = un +
1

2
∆t (fn + fn+1). (3.21)

This scheme is implicit, since it requires information from the future

time level n + 1. Note here that the finite-difference approximation is

centred at n+ 1/2 between the two time steps n and n+ 1, viz.

(︃

du

dt

)︃n+1/2

=
un+1 − un

∆t
+ ε. (3.22)

The truncation error ε can be found from the Taylor series in Equation

(3.2). Substituting f(y) by u(t), a by tn+1/2 and y by tn+1, we obtain

the following expression:

un+1 = un+1/2 +
∆t

2

(︃

du

dt

)︃n+1/2

+
1

2

(︃

∆t

2

)︃2(︃

d2u

dt2

)︃n+1/2

+
1

6

(︃

∆t

2

)︃3(︃

d3u

dt3

)︃n+1/2

+ (3.23)

Substituting f(y) by u(t), a by tn+1/2 and y by tn, we obtain the Taylor

expansion of the function u (t) at time level n+ 1/2:

un = un+1/2 − ∆t

2

(︃

du

dt

)︃n+1/2

+
1

2

(︃

∆t

2

)︃2(︃

d2u

dt2

)︃n+1/2

− 1

6

(︃

∆t

2

)︃3(︃

d3u

dt3

)︃n+1/2

+ (3.24)

Subtracting Equation (3.24) from Equation (3.23) and dividing by ∆t

we obtain

un+1 − un

∆t
=

(︃

du

dt

)︃n+1/2

+
1

24
(∆t)

2

(︃

d3u

dt3

)︃n+1/2

+ ... , (3.25)

22 Basic Numerical Methods in Meteorology and Oceanography

which can also be expressed as :

(︃

du

dt

)︃n+1/2

=
un+1 − un

∆t
+ ε, (3.26)

where

ε = − 1

24
(∆t)

2

(︃

d3u

dt3

)︃n+1/2

+ ... = O
[︁

(∆t)
2
]︁

. (3.27)

The truncation error ε is therefore of second order for the Crank-

Nicolson scheme.

Matsuno’s forward-backward scheme

To increase the accuracy compared to the Euler-forward and -backward

schemes we can construct iterative schemes such as the Matsuno

scheme, which is initiated by an Euler-forward time step:

un+1
∗ = un +∆t fn. (3.28)

In this case the value of the obtained un+1
∗ serves as an approximation

of fn+1, which hereafter is used to make a backward step to yield a

final un+1 :

un+1 = un +∆t fn+1
∗ , (3.29)

where

fn+1
∗ = f (un+1

∗ , (n+ 1)∆t). (3.30)

This scheme is explicit and of accuracy O (∆t).

Heun scheme

This is similar to the Matsuno scheme and is explicit but of second-

order accuracy, since the second step is made using the Crank-Nicolson

scheme:

un+1
∗ = un +∆t fn, (3.31)

un+1 = un +
∆t

2
(fn + fn+1

∗). (3.32)

The mid-point scheme

The mid-point scheme, also known as a second-order Runge-Kutta

method, is like the Matsuno and Heun schemes a multi-stage scheme,

which uses an intermediate estimate of the solution throughout the

Finite Differences 23

time-step. The scheme consists of first taking an Euler-forward scheme

one half time step:

un+1/2 = un +
∆t

2
fn (3.33)

and then using the solution at the mid-point time level n + 1/2 to

integrate with a centred scheme:

un+1 = un +∆t fn+1/2. (3.34)

The fourth-order Runge-Kutta scheme

The fourth-order Runge-Kutta scheme is similar to the previous scheme

but integrates the solution with four steps instead of two. The scheme

consists of first applying an Euler-forward scheme one half time step:

un+1/2
∗ = un +

∆t

2
fn, (3.35)

and hereafter recomputing the solution at time level n + 1/2 with an

Euler-backward scheme making use of un+1/2
∗ :

un+1/2 = un +
∆t

2
fn+1/2
∗ . (3.36)

Subsequently a centred scheme is used to arrive at time level n + 1

making use of un+1/2:

un+1
∗ = un +∆t fn+1/2. (3.37)

The final solution is obtained by making use of Simpson’s rule with the

four values un, un+1/2
∗ , un+1/2 and un+1

∗ , resulting in

un+1 = un +
∆t

6

(︁

fn + 2fn+1/2
∗ + 2fn+1/2 + fn+1

∗

)︁

. (3.38)

This fourth-order Runge-Kutta method is stable, and as its name

indicates, accurate to fourth order. It is seldom used except in e.g.

some regional high-resolution NWP models. Runge-Kutta methods of

even higher order exist, but are rarely used in ocean or atmosphere

circulation models.

3.3.2 Three-level schemes

These schemes use the time at three levels and the time integration

becomes

un+1 = un−1 +

∫︂ (n+1)∆t

(n−1)∆t

f (u, t) dt. (3.39)

24 Basic Numerical Methods in Meteorology and Oceanography

The simplest three-level scheme is to assign f a constant value equal

to that at the middle of the time interval of length 2∆t, which yields

the leap-frog scheme

un+1 = un−1 + 2∆t fn (3.40)

of accuracy order (∆t)
2
. This has been a widely used scheme in both

atmospheric and oceanic models. Many of today’s atmospheric cir-

culation models use, however, Lagrangian time-stepping, which will

be introduced in Chapter 11. Fourth-order schemes are, as mentioned

above, sometimes also used. In some models such as the ROMS ocean

model, there are several different time-schemes that can be used.

Exercise:

Determine the order of accuracy of the centred discretisations of the

advection equation

un+1
j − un−1

j

2∆t
+ c

unj+1 − unj−1

2∆x
= 0.

4. Numerical Stability

Here we will study partial differential equations (PDEs) with one

dependent and two independent variables. Intuitively one often thinks

of the advection equation as describing the evolution of a tracer drifting

passively with the flow. However, we shall here consider various sim-

plified forms of the advection equation describing the advection of a

dependent variable. In practice, this has proved to be the most impor-

tant part of the hydrodynamic equations for the atmosphere and the

ocean.

We will use the advection equation to investigate what is required

of the numerical schemes to yield stable solutions to the PDE, i.e.

solutions such that small perturbations do not grow in time, but rather

decrease.

4.1 The advection equation

This hyperbolic advection equation (cf. Section 2.3) is

∂u

∂t
+ c

∂u

∂x
= 0,

where u = u (x, t) and c is the prescribed phase speed. Analytical

solutions are of the form u(x, t) = u0e
ik(x−ct), where c ≡ ω/k, ω being

the frequency and k the wave number.

Let us now consider one among many possible discretisations of this

equation by using a centred difference scheme in both time and space:

un+1
j − un−1

j

2∆t
+ c

unj+1 − unj−1

2∆x
= 0. (4.1)

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 25–39. Stockholm: Stockholm University Press.
DOI: https://doi.org/10.16993/bbs.d. License: CC BY 4.0

https://doi.org/10.16993/bbs.d

26 Basic Numerical Methods in Meteorology and Oceanography

Figure 4.1. A finite-difference grid in time and space. The grid points used

by the centred schemes in both time and space are shown as green dots. The

red dots are the necessary initial-condition points and the blue dots

illustrate the two boundaries, at which conditions must be prescribed. The

brown dot shows the “here and now” point j, n.

Note that all the grid points for this scheme, which are shown by the

green dots in Figure 4.1, are located around the “here and now” point

j, n shown as the brown dot in the graph. When used in model appli-

cations, this needs to be reformulated in order to integrate values to

the “future” time step n+ 1:

un+1
j = un−1

j − µ
(︁

unj+1 − unj−1

)︁

, (4.2)

where

µ ≡ c∆t

∆x
(4.3)

is known as the Courant number, sometimes denoted the CFL-number

(Courant et al., 1928). Figure 4.2 shows how a cosine “hump” propa-

gates, when integrated 25 time steps using Equation (4.2).

Numerical Stability 27

4.2 Initial and boundary conditions

We also need initial and boundary conditions in order to integrate

Equation (4.2) forward in time on a grid such as that shown in

Figure 4.1. The initial condition is that all the u0
j values (red dots)

have to be prescribed, i.e. the variable u must have specified values

at time step n = 0. Furthermore we need to be able to integrate a

first time step, which is not possible with a three-level time scheme.

We therefore use an Euler-forward scheme for the first time step and

hereafter proceed using the leap-frog scheme for the rest of the time

integration.

The boundary conditions imply that values for all the un0 and unJX
(blue dots in Figure 4.1) have to be prescribed, i.e. the variable u must

have values at all time steps on the two boundaries located at j = 0

and j = JX, where JX is the total number of grid cells.

When we have a periodic domain, where e.g. the values on the

eastern boundary equal those on the western boundary, which is the

case for global models of the Earth, we can use periodic boundary

conditions. For practical purposes this boundary can e.g. be located

at the Greenwich meridian where the longitude can be expressed

as 0◦ or 360◦. When u is computed in e.g. a Fortran code, at

the eastern (j= 0) and western (j=JX) boundaries one will need

u-values for “j=-1” and “j=JX+1”. This can easily be accomplished

in the j-loops of the model code by introducing jm=j-1 and when

jm=-1, replacing it by JX-1. The same procedure is used for the

eastern boundary with jp=j+1 and when jp=JX+1, it is replaced

by jp=1.

A segment of a Fortran code of the numerical time integration of the

discretised advection equation (4.2) could look like this:

mu=1. ! Courant number

u(:,0)=1. ! initialise the field to something , e.g. 1

! time loop

do n=1,NT -1

do j=0,JX

jp=j+1

if(jp==JX+1) jp=1

jm=j-1

if(jm==-1) jm=JX -1

u(j,n+1) = u(j,n-1) - mu * (u(jp ,n)-u(jm ,n))

enddo

enddo

28 Basic Numerical Methods in Meteorology and Oceanography

Figure 4.2. The advection equation integrated numerically with centred

schemes in both time and space using Equation (4.1). The first time step

has been integrated with an Euler-forward scheme. The initial value is

un=0
j = cos [π(j − 50)/20] for 40 ≤ j ≤ 60 and un=0

j = 0 for the remaining

grid points. The Courant number for this scheme is µ ≡ c∆t/∆x = 1.

Solutions are graphed for time steps n=0, 5, 10, 15, 20, 25. Note the

“numerical noise” propagating in the “wrong” direction in the form of

small-amplitude jagged waves, a topic to be further considered in

Chapter 6.

4.3 Stability analysis of the leap-frog scheme

In order to study the stability we will use what is known as the von

Neumann method, which in fact was first briefly introduced by Crank

and Nicolson (1947) and later more rigorously by Charney et al. (1950),

in which latter study von Neumann actually was the last author. This

method is generally not possible to use for non-linear equations and one

is therefore limited to apply it to linearised versions of the equations

in a numerical model. In general a solution of a linear equation can be

expressed as a Fourier series, where each Fourier component is a solu-

tion. We can thus test the stability using solely one Fourier component

of the form

unj = u0e
ik(j∆x−CDn∆t),

Numerical Stability 29

where k is the wave number. Note that the phase speed CD, with the

index D pertaining to finite differencing, is an approximation of the

phase speed c occurring in the differential equation. It is this CD, result-

ing from solving Equation (4.1), which here will be investigated. We

note that

un+1
j = u0e

ik[j∆x−CD(n+1)∆t] = unj e
−ikCD∆t = unj λ,

where λ ≡ e−ikCD∆t is the amplification factor. Similarly, for n− 1 we

find that

un−1
j = unj λ

−1. (4.4)

These results can be generalised as

un+mj = unj λ
m (4.5)

and

unj = λnu0e
ikj∆x. (4.6)

From this we can deduce that if |u| is not going to “blow up” when

integrating in time, it is required that

|λ| =
⃓

⃓e−ikCD∆t
⃓

⃓ ≤ 1 (4.7)

and reversely, if |λ| > 1 the solution is unstable and “blows up”. For

the stability condition to be fulfilled, CD must be real. This technique

for determining stability, based on examining the amplification factor

λ, is known as the von Neumann method. We also need expressions for

the Fourier components of the spatial derivatives:

unj+1 = u0e
ik[(j+1)∆x−CDn∆t] = eik∆xunj , (4.8)

unj−1 = u0e
ik[(j−1)∆x−CDn∆t] = e−ik∆xunj . (4.9)

Let us now return to Equation (4.1) and introduce λ:

λunj − λ−1unj
2∆t

+ c
eik∆xunj − e−ik∆xunj

2∆x
= 0, (4.10)

which, since eiα − e−iα = 2i sinα, can be simplified to the quadratic

equation

λ2 + 2iµ sin (k∆x)λ− 1 = 0. (4.11)

30 Basic Numerical Methods in Meteorology and Oceanography

Furthermore x2+αx+ β = 0 yields that x = −α/2±
√︁

α2/4− β, and

hence Equation (4.11) has the solution

λ = −iµ sin (k∆x)±
√︂

− (µ sin (k∆x))
2
+ 1. (4.12)

Keeping in mind that the absolute value of a complex number a+ ib is√
a2 + b2, we find that if

[µ sin (k∆x)]
2 ≤ 1, (4.13)

then

|λ|2 = [µ sin (k∆x)]
2
+

{︃

√︂

− [µ sin (k∆x)]
2
+ 1

}︃2

= 1, (4.14)

i.e. the scheme we are presently examining is stable if Equation (4.13)

holds true, a condition which also can be formulated as

|µ sin (k∆x)| ≤ 1. (4.15)

Since |sin (k∆x)| ≤ 1, we have conditional stability if

|µ| ≤ 1 or |c| ≤ ∆x

∆t
, (4.16)

this since we require stability for all wave numbers k and have hence

chosen the “worst” case, i.e. when sin (k∆x) = 1 . The reverse case is

when

[µ sin (k∆x)]
2
> 1. (4.17)

For simplicity we define

a ≡ µ sin (k∆x) , (4.18)

so that Equation (4.17) is reduced to

a2 > 1. (4.19)

It is then preferable to rewrite Equation (4.12) as

λ = −ia± i
√
a2 − 1 = i

(︂

−a±
√
a2 − 1

)︂

, (4.20)

or equivalently

|λ|2 =
(︂

−a±
√
a2 − 1

)︂2

= 2a2 ± 2a
√
a2 − 1− 1, (4.21)

Numerical Stability 31

which has at least one root larger than one. Consequently when µ > 1

(c > ∆x/∆t), then |λ| > 1 for at least some wave numbers k and thus

the solution is unstable and hence of limited practical use.

The leap-frog scheme is thus conditionally stable. Given a spatial

resolution ∆x we require a time step ∆t not exceeding ∆x/c for

Equation (4.16) to be valid for the fastest possible phase speed in the

system as illustrated by Figure 4.3. This is known as the Courant-

Friedrichs-Lewy (CFL) criterion (Courant et al., 1928). In this par-

ticular case of the advection equation with centred finite differences

both in time and space, the Courant number should not exceed 1

(µ ≡ c∆t/∆x ≤ 1) in order for the CFL condition to be satisfied.

This criterion will, as we shall see later, change depending on which

equation and finite difference scheme we are dealing with.

Figure 4.3. The Courant-Friedrichs-Lewy (CFL) stability criterion for

schemes centred in both time and space.

32 Basic Numerical Methods in Meteorology and Oceanography

An example of a successful integration of the advection equation

with centred finite differences in space as well as in time has previously

been given in Figure 4.2, where we see how the initially prescribed

trigonometric “hump” with an amplitude equal to 1 progresses right-

wards along the x-axis. This representation of a time-dependent process

is, however, somewhat unwieldy and in practice what is known as a

Hovmöller (1949) diagram is most frequently used, cf. Figure 4.4.

This highly compact visualisation is based on graphing the the spatio-

temporal evolution of the process in a coordinate system with the

ordinate representing time and the abscissa pertaining to the spatial

evolution of the process. The left-hand panel of Figure 4.4 thus shows

precisely the same results as those given in Figure 4.2, where the grad-

ually weakening coloration of the fringes of the “diagonal bands” do

perfect justice to the spatial structure of the trigonometric “hump” in

Figure 4.2. The right-hand panel of Figure 4.4 shows how for a Courant

number larger than 1 instability sets in after less than 10 time steps

and subsequently grows to encompass the entire spatial range under

consideration.

Figure 4.4. Hovmöller diagrams of the advection equation integrated

numerically with a leap-frog scheme in time and a centred scheme in space,

viz. Equation (4.1). The first time step has been integrated with an

Euler-forward scheme. The initial value is un=0
j = cos [π(j − 50)/20] for

40 ≤ j ≤ 60 and un=0
j = 0 for the remaining grid points. The Courant

number is µ ≡ c∆t/∆x = 1 in the left panel, which yields a stable solution,

but in the right panel the solution is seen to “blow up” for µ = 1.1. Note

that periodic boundary conditions have been applied.

Numerical Stability 33

Here it may finally be noted that if the advection equation dealt with

here using centred finite differencing is applied to the ocean, then we,

for a given spatial resolution ∆x, must adjust the time step ∆t to satisfy

µ ≤ 1. Here the relevant phase speed is the one for long gravity waves

c =
√
gH, where H is the depth of the ocean. In order to guarantee

numerical stability we need to determine the maximum depth HMAX

and set the the time step to satisfy ∆t ≤ ∆x/c = ∆x/
√
gHMAX .

4.4 Euler-forward scheme in time

Let us now apply an ad hoc numerical scheme to the advection

equation, so that instead of Equation (4.1) we have

un+1
j − unj
∆t

+ c
unj+1 − unj−1

2∆x
= 0, (4.22)

which yields

λ = 1− iµ sin (k∆x) . (4.23)

As before the stability criterion is that |λ| ≤ 1, and since the absolute

value of λ satisfies

|λ|2 = 1 + [µ sin (k∆x)]
2
, (4.24)

it is recognised that |λ| > 1. The solution consequently grows with

time, independently of how we choose the time step. This scheme is

thus unconditionally unstable, which is simply referred to as unstable.

4.5 The upstream scheme

This scheme is denoted upstream or upwind since it looks for infor-

mation from where the wind or current comes by using two different

spatial schemes depending on the direction of the velocity.

un+1
j − unj
∆t

+ c
unj − unj−1

∆x
= 0 if c > 0, (4.25a)

un+1
j − unj
∆t

+ c
unj+1 − unj

∆x
= 0 if c < 0. (4.25b)

If c > 0 one should use the backward scheme in space from Equation

(4.25a) in order to use information from where the flow comes.

Reversely if c < 0 then one should use the forward scheme in

space given by Equation (4.25b). Figures 4.6 and 4.7 show the time

34 Basic Numerical Methods in Meteorology and Oceanography

Figure 4.5. The advection equation integrated with an Euler-forward

scheme in time and a centred scheme in space. In the left panel the Courant

number is µ = 0.9 and in the right panel 0.4 . Irrespective of the choice of

Courant number, the solution will sooner or later “blow up”.

evolution when Equation (4.25) is integrated with different Courant

numbers µ.

A von Neumann stability analysis yields

λ = 1− µ [1− cos (k∆x) + i sin (k∆x)] ,

resulting in

|λ|2 = {1− µ [1− cos (k∆x)]}2
+ [µ sin (k∆x)]

2

= 1+2µ [1− cos (k∆x)] (µ− 1) . (4.26)

It is unfortunately not straightforward to see directly from this equation

the corresponding stability criterion. For this we need to graph its

amplification factor λ as a function of both resolution k∆x and Courant

number µ as in Figure 4.8. This shows that |λ|2 ≤ 1 for 0 ≤ µ ≤ 1,

which also implies that c must be positive to ensure stability. The

scheme is hence conditionally stable. This is similar to the leap-frog

scheme but with the major difference that the amplification factor λ

will be reduced when µ < 1, which leads to a decrease of the amplitude

at every new time step. This deamplification is clearly visible in the

upper right panel of Figure 4.6 as well as in the right panel of Figure 4.7,

where the upstream scheme has been integrated with µ = 0.5. The

Numerical Stability 35

Figure 4.6. The advection equation integrated numerically with the

upstream scheme given by Equation (4.25a). Stable solutions are shown in

the upper panels, where to the left µ = 1 and to the right µ = 0.5, the latter

solution being clearly dissipative. The lower panels show unstable solutions

with to the left µ = 1.1, and to the right µ = −1, where in the latter case

the spatial forward-difference scheme given by Equation (4.25b) should

instead have been used.

decrease in amplitude is stronger for the short waves as illustrated

by Figure 4.8. The upwind scheme should hence be integrated with

a large Courant number µ, i.e. as close to one as possible. In this

very simple case of the advection equation it is possible to use µ = 1,

but in a more comprehensive model, such as a GCM, this will not be

possible and hence the scheme will lead to dissipation. The upwind

36 Basic Numerical Methods in Meteorology and Oceanography

Figure 4.7. The amplitude unj for different time steps n, computed with the

upstream scheme given by Equation (4.25a), with µ = 1 to the left and with

µ = 0.5 to the right. Note the rapid deamplification when integrated with

µ = 0.5.

Figure 4.8. The squared amplification factor of Equation (4.26) as a

function of the Courant number µ for different wavelengths measured in the

number of grid lengths ∆x. Note that there is a minimum at µ = 0.5, which

leads to a deamplification of, in particular, the short waves.

advection scheme was proposed by Courant et al. (1952) and used in

early numerical weather-prediction models due to its good stability

properties. It still finds use in idealised oceanic box models as well as

in some general circulation models. The finite-volume model developed

at ECMWF is e.g. using the upwind scheme in its advection-transport

algorithm making use of an iterative approach (Smolarkiewicz et al.,

2016). When using an upwind scheme one should, however, realise

Numerical Stability 37

that it is highly diffusive. It uses backward spatial differencing if the

velocity is in the positive x-direction, and forward spatial differencing

for negative velocities. The term upwind denotes the use of upwind,

or upstream, information when determining the form of the finite

difference scheme; downstream information is ignored.

4.6 Stability analysis of the fourth-order scheme

Let us now study an advection scheme that uses the spatial scheme

accurate to fourth order given by Equation (3.11):

un+1
j − un−1

j

2∆t
+ c

(︃

4

3

unj+1 − unj−1

2∆x
− 1

3

unj+2 − unj−2

4∆x

)︃

= 0. (4.27)

A von Neumann stability analysis yields

λ2 + i
µ

3
[8 sin (k∆x)− sin (2k∆x)]λ− 1 = 0, (4.28a)

which has the solution

λ =− i
µ

6
[8 sin (k∆x)− sin (2k∆x)]

±
√︃

−
[︂µ

6
[8 sin (k∆x)− sin (2k∆x)]

]︂2

+ 1. (4.28b)

If
[︂µ

6
[8 sin (k∆x)− sin (2k∆x)]

]︂2

< 1, (4.29)

then

|λ|2 =
[︂µ

6
[8 sin (k∆x)− sin (2k∆x)]

]︂2

+

{︄

√︃

−
[︂µ

6
[8 sin (k∆x)− sin (2k∆x)]

]︂2

+ 1

}︄2

= 1, (4.30)

i.e. this scheme is stable if Equation (4.29) is fulfilled. This condition

can also be expressed as
⃓

⃓

⃓

µ

6
[8 sin (k∆x)− sin (2k∆x)]

⃓

⃓

⃓
< 1

or

µ <
6

8 sin (k∆x)− sin (2k∆x)
. (4.31)

38 Basic Numerical Methods in Meteorology and Oceanography

Figure 4.9. The right-hand side of Equation (4.31) as a function of k∆x/π.

The minimum value in red, which is the stability criterion with a Courant

number µ ≡ c∆t/∆x ≈ 0.729.

Figure 4.10. The advection equation integrated with the fourth-order

spatial numerical scheme given by Equation (4.27). The solution is stable in

the left panel where µ = 0.728, but unstable in the right panel when

µ = 0.730.

Numerical Stability 39

The exact stability criterion is found by determining the k∆x for which

the right-hand side of Equation (4.31) attains its minimum as illus-

trated by Figure 4.9. This turns out to be for k∆x/π ≈ 0.57, which

leads to the scheme being stable for the Courant number µ ≲ 0.729.

Figure 4.10 shows how the integration with the fourth-order scheme

evolves in time with a Courant number just above and below its criti-

cal value.

Exercises:

1. Consider the leap-frog scheme for the advection equation:

un+1
j − un−1

j

2∆t
+ c

unj+1 − unj−1

2∆x
= 0. (4.32)

Use

unj = λnu0e
ikj∆x (4.33)

and show that the amplification factor is

λ = −iµ sin (k∆x)±
√︂

1− (µ sin (k∆x))
2
. (4.34)

2. Show that for µ > 1 in the previous exercise, we will have one

of the solutions to the differential equation “blowing up”, at

least for some wavelengths.

3. Discretise the advection equation with Euler-forward schemes

in both time and space. Show that for c > 0 (backward

scheme), the amplitude of the solutions will grow in time (these

thus being unstable). But for c < 0 (forward scheme) the

amplitude will decrease in time, i.e. the solution is stable.

4. Undertake a stability analysis of the following discretisation of

the advection equation:

un+1
j − 1

2

(︁

unj+1 + unj−1

)︁

∆t
+ c

unj+1 − unj−1

2∆x
= 0. (4.35)

Is it centred or uncentred?

5. The Computational Mode

Here we shall examine some of the consequences of partial differential

equations having been approximated with finite-difference schemes.

5.1 The three-level scheme

One problem with a three-level scheme such as the leap-frog one is that

it requires more than one initial condition to start the numerical inte-

gration. From a purely physical standpoint a single initial condition for

un=0 should suffice. However, in addition to this physical initial condi-

tion, for computational purposes three-level schemes require an initial

condition also for un=1 (in what follows the index j will be omitted

since there is no spatial dependence in the equations to be dealt with).

This value cannot be calculated using a three-level scheme, and will

generally have to be determined using some type of two-level scheme.

Consider the oscillation equation:

du

dt
= iωu, (5.1)

where u = u (t). The analytical solution is

u = u0e
iωt. (5.2)

Equation (5.1) can be integrated numerically with a leap-frog scheme:

un+1 = un−1 + 2iω∆tun. (5.3)

If we now examine the amplification factor (cf. Chapter 4) we find

λ2 − 2iω∆tλ− 1 = 0,

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 41–48. Stockholm: Stockholm University Press.
DOI: https://doi.org/10.16993/bbs.e. License: CC BY 4.0

https://doi.org/10.16993/bbs.e

42 Basic Numerical Methods in Meteorology and Oceanography

which has the solution

λ1,2 = iω∆t±
√︂

− (ω∆t)
2
+ 1.

Thus there are two solutions of the form un+1 = λun. Since we are

dealing with a linear equation, its solution will be a linear combination

of these two:

un1 = λn1u
0
1 ; un2 = λn2u

0
2,

so that

un = aλn1u
0
1 + bλn2u

0
2, (5.4)

where a and b are constants. If un+1 = λun should represent the approx-

imation of the true solution, then λ→ 1 when ∆t→ 0. This condition

is satisfied by λ1, but also for λ2 → −1. The solution involving λ1

is denoted the physical mode and that with λ2 the computational or

numerical mode induced by the numerical scheme. This latter mode

changes sign for each even and odd n.

A straightforward way to illustrate the computational mode is to

study the simple case when ω = 0, viz.

du

dt
= 0,

which has the exact solution

u(t) = constant.

Discretisation using the leap-frog scheme yields

un+1 = un−1. (5.5)

For a given physical initial condition un=0 = C1, we consider two

special choices of un=1:

1. If calculating un=1 happens to yield the true value C1, then for

all n

un+1 = un (5.6)

or

un+1 = λ1u
n.

In this case we have obtained a numerical solution identical to

the true solution and which consists solely of the physical mode.

The Computational Mode 43

2. Suppose now instead that when calculating un=1 we obtain

un=1 = −un=0. Then for all n

un+1 = −un (5.7)

or

un+1 = λ2u
n.

The numerical solution now consists entirely of the

computational mode.

5.1.1 The computational initial condition

A suitable choice of the computational initial condition is of vital

importance for obtaining a satisfactory numerical solution for short

simulations, where the initial condition is crucial (as is the case for

weather forecasts but less so for long climate simulations). The com-

putational initial condition (un=1), which is one time step ahead of the

physical condition (un=0), can be calculated with a single Euler-forward

time step. Although this scheme is computationally unstable, it can be

used for a single time step since a considerable number of steps are

required before the solution finally “blows up”.

The computational initial condition for our academic oscillation-

equation case is then, with an Euler-forward time step:

un=1 = un=0 + iω∆tun=0. (5.8)

An alternative computational initial condition, useful when the solu-

tion is less sensitive to the initial condition, is to assign the same value

to both time steps (un=1 = un=0), but, as shown above, this can imme-

diately trigger a computational mode.

5.2 Suppression of the computational mode

The computational mode induced by the leap-frog scheme can be sup-

pressed in two different ways:

5.2.1 Euler-forward or -backward schemes at regular intervals

The computational-mode problem can be solved by integrating with an

Euler-forward or -backward scheme at regular intervals constituted by

a certain number of time steps (50 or so are often used). For Equation

(5.5) from the previous example this would imply that un+1 = un is

44 Basic Numerical Methods in Meteorology and Oceanography

Figure 5.1. Illustration of the physical mode in blue from Equation (5.6)

and the computational mode in red from Equation (5.7). The initial

physical condition is set to un=0 = 1 and the computational initial condition

is set to un=1 = −1. The resulting solution in black will thus change sign

every time step since the two modes are uncoupled.

taken every 50 time steps, which eliminates the computational mode

so that in Equation (5.4) a = 1 and b = 0.

5.2.2 The Robert-Asselin filter

Another way of suppressing the computational mode, which is the most

common one used in atmospheric models, is to employ a Robert-Asselin

filter (Robert, 1966; Asselin, 1972). First one applies a leap-frog inte-

gration to

∂u

∂t
= g (u) , (5.9)

this in order to obtain the solution at time level n+ 1:

un+1 = un−1
f + 2∆t g (un) , (5.10)

whereafter the filter is applied as a smoothing between the three time

levels n− 1, n and n+ 1 so that

unf = un + γ
(︁

un−1
f − 2un + un+1

)︁

, (5.11)

where the index f indicates the filtered values and γ is the Asselin

coefficient, usually chosen to range between 0.01 and 0.2. The next

“frog jump” will be

un+2 = unf + 2∆t g (un+1) . (5.12)

The Computational Mode 45

A segment of a Fortran code of the numerical time integration of the

discretised advection equation (4.2) employing a Robert-Asselin filter

could look like this:

gamma = 0.01 ! Robert -Asselin filter coefficient

mu = 1. - gamma ! Courant number

! time loop

do n=1,NT -1

! Leap -frog scheme of the advection equation

do i=1,JX -1

u(i,n+1) = u(i,n-1) - mu * (u(i+1,n)-u(i-1,n))

enddo

! Robert -Asselin filter

do i=1,JX -1

u(i,n) = u(i,n)+gamma *(u(i,n-1) -2.*u(i,n)+u(i,n+1))

enddo

enddo

Note that the added term resembles smoothing in time; an approx-

imation of an ideally time-centred smoother is

unf = un + γ (un−1 − 2un + un+1) . (5.13)

In our particular case of the discretised oscillation given by Equation

(5.3) we can estimate the damping effect of the Robert-Asselin filter by

introducing the discretised solution un = u0e
iωn∆t into the smoother

(Equation (5.13)), with the exception that un−1 is taken as an unfiltered

value. This results in

unf = un [1− 4γsin2 (ω∆t/2)] . (5.14)

The computational mode, the period of which is 2∆t, is hence reduced

by (1 − 4γ) every time step. Since the field at n − 1 is replaced by

an already filtered field, the Robert-Asselin filter introduces a slight

difference compared to this simplified filter.

Another drawback of the Robert-Asselin filter is that it affects the

stability of the schemes. A stability analysis can be performed in the

case of the advection equation discretised with centred schemes (same

as Equation 4.2):

un+1
j = un−1

j f − µ
(︁

unj+1 − unj−1

)︁

, (5.15)

with the filter of Equation (5.11). The amplification factor then

becomes

λ = −ia+ γ ±
√︁

(1− γ)2 − a2, (5.16)

46 Basic Numerical Methods in Meteorology and Oceanography

where a ≡ µ sin (k∆x). For stability we require as usual that |λ| ≤ 0,

which is obtained when µ ≤ 1−γ or µ+γ ≤ 1. The adding of a Robert-

Asselin filter results hence in a stricter stability condition and requires

a shorter time step for a given spatial resolution than without filter.

Figure 5.2. Hovmöller diagrams of the advection equation, integrated with

the leap-frog scheme and a Robert-Asselin filter. The solution at the first

time step has been set to equal the initial condition instead of integrating

with an Euler-forward in order to generate a computational mode. Top left

panel with no filter and an oscillating solution due to the computational

mode. Top right panel with an unstable condition (µ+ γ ≤ 1). Lower left

panel with too much filtering but stable. Lower right panel with just enough

Robert-Asselin filter to smooth the solution and a Courant number to

match γ for stability.

The Computational Mode 47

In Figure 5.2, we have illustrated the Robert-Asselin filter for 4

different cases, where the advection equation has been integrated with

the leap-frog scheme of Equation (5.15). The initial condition is a cosine

wave. The first time step has not been integrated as usual with an

Euler-forward scheme but set to be constant in time. This in order to

immediately generate a computational mode, which we then try to filter

out. The first case is with no filter and a persistent computational mode.

The second case is with a filter but without respecting the stricter

stability criterion, which makes the solution unstable and the wave

“blows up”. The third case is with a too strong filter, which dampens

the wave too much although it filters out the computational mode. The

fourth case is with just enough filter to eliminate the computational

mode without too much damping.

Another test case is illustrated in Figure 5.3, where a shallow-water

model has been integrated with different coefficients of the Robert-

Asselin filter.

Figure 5.3. Time evolution of a shallow-water model integrated without a

Robert-Asselin filter in black, with a Robert-Asselin filter γ = 0.1 in red and

with γ = 0.01 in blue. Note that the computational mode vanishes

completely when the stronger filter is applied, but the amplitude of the

solution is at the same time damped.

48 Basic Numerical Methods in Meteorology and Oceanography

5.2.3 The Robert-Asselin-Williams filter

It was recognised that when used with the leap-frog scheme, the fea-

ture of the Robert-Asselin filter of not conserving the mean degrades

the numerical accuracy. Williams (2009) tackled this problem by intro-

ducing an extra step in the filtering process in order to include the

possibility of conserving the mean value. The resulting filter is imple-

mented in leap-frog integrations as follows:

un+1 = un−1
ff + 2∆t g

(︁

unf
)︁

, (5.17)

unff = unf +
γα

2

(︁

un+1 − 2unf + un−1
ff

)︁

, (5.18)

un+1
f = un+1 − γ(1− α)

2

(︁

un+1 − 2unf + un−1
ff

)︁

. (5.19)

This Robert-Asselin-Williams filter introduces an extra operation that

is straightforward to implement and does not represent a significant

computational expense compared to the Robert-Asselin filter. It also

introduces a new parameter, α, such that 0 < α < 1, where α = 1

corresponds to the traditional Robert-Asselin filter. Williams (2009)

showed that a value of α = 0.53 minimises spurious numerical impacts

on the physical solution and yields the closest match to the exact solu-

tion of the equation under consideration over a broad frequency range.

6. The Computational Phase Speed

We shall now investigate the accuracy of the computational phase speed

associated with using discretisations in space as well as in time.

6.1 Dispersion due to the spatial discretisation

Let us first examine the advection equation with a centred scheme in

space:

∂u

∂t
+ c

unj+1 − unj−1

2∆x
= 0.

By inserting a wave solution

uj (t) = u0e
ik(j∆x−CDt),

we find

CD = c
sin (k∆x)

k∆x
,

where CD is the computational phase speed and c the prescribed ana-

lytical phase speed. Their ratio should ideally be as close as possible

to one, but is

CD
c

=
sin (k∆x)

k∆x
.

The computational group velocity is

CDg =
d (ωD)

dk
=
d (kCD)

dk
= c cos (k∆x) ,

which is dispersive since it depends on the wave number k, cf.

Figure 6.1.

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 49–55. Stockholm: Stockholm University Press.
DOI: https://doi.org/10.16993/bbs.f. License: CC BY 4.0

https://doi.org/10.16993/bbs.f

50 Basic Numerical Methods in Meteorology and Oceanography

Figure 6.1. The computational phase speed associated with centred finite

differencing in space compared to the analytical phase speed. The black line

represnts the solution of the continuous equations which pertains the

nondispersive analytical case, i.e. the phase speed is the same as the group

velocity c = cg. The blue curve is the computational phase speed normalised

by dividing with c. Note that when the wave number increases (i.e. the

wavelength decreases) the computational phase speed deviates from the

analytical phase speed. The phase speed is clearly dispersive since the waves

propagate at different speeds depending on their wavelengths. The red curve

shows the analogously normalised computational group velocity CDg which

at wavelengths shorter than 4 grid cells (k∆x < π/2) is in the opposite

direction of cg.

6.2 Dispersion due to the time discretisation

The effects of the centred scheme in time will be analysed in the same

way as done for the effects of the centred scheme in space:

un+1
j − un−1

j

2∆t
+ c

∂u

∂x
= 0.

Inserting the wave solutions

un (x) = u0e
ik(x−CDn∆t),

The Computational Phase Speed 51

we obtain

CD =
arcsin (ω∆t)

k∆t
,

where CD is the computational phase speed and c the analytical phase

speed. Their ratio should ideally be as close as possible to one, but is

CD
c

=
arcsin (ω∆t)

ω∆t
.

The computational and analytical group velocities also differ, so that

CDg
cg

=
d (ωD)

cgdk
=
d (kCD)

cgdk
=

1
√︁

−(ω∆t)2 + 1
.

The computational phase speed and group velocity (both normalised

with c) are presented in Figure 6.2, graphed as functions of ω∆t.

6.3 Dispersion due to spatial and temporal resolution

Let us now investigate the effects of the leap-frog scheme on the phase

speed and group velocities using the advection equation with centred

schemes in both time and space:

un+1
j − un−1

j

2∆t
+ c

unj+1 − unj−1

2∆x
= 0.

By inserting a wave solution

unj = u0e
ik(j∆x−CDn∆t),

we obtain

CD =
1

k∆t
arcsin

[︃

c∆t

∆x
sin (k∆x)

]︃

,

where CD is the computational phase speed and c the analytical phase

speed. Their ratio should ideally be as close as possible to one, but is

CD
c

=
1

µk∆x
arcsin [µ sin (k∆x)] , (6.1)

where the Courant number is, as previously defined, µ ≡ c∆t/∆x.

This computational phase speed CD is a function of the wave number

k and the resolution ∆x. The finite differencing in space thus causes

a computational dispersion. As k∆x increases, CD decreases from c to

52 Basic Numerical Methods in Meteorology and Oceanography

Figure 6.2. The computational phase speed associated with centred finite

differencing in time compared to the analytical phase speed. The black line

represents the solution of the continuous equations which is the

nondispersive analytical case, i.e. the phase speed is the same as the group

velocity, viz. c = cg. The blue curve is the computational phase speed

normalised by dividing with c. Note that when the time step increases

relative to the wave frequency ω, the computational phase speed increases

and deviates from the analytical phase speed. The red curve shows the

computational group velocity CDg.

zero when k∆x = π, which corresponds to the shortest possible wave

with a wavelength of two grid cells (λ = 2∆x). Thus, all waves propa-

gate at a slower speed than the analytical phase speed c, with this decel-

erating effect increasing as the wavelength decreases. The two-grid-cell

wave is stationary. Note that if µ = 1, which is the Courant-number

limit of stability for the advection equation, the computational phase

speed is the same as the analytical one, viz. CD = c.

The reason for the two-grid-cell wave being stationary is obvious

when looking at the wave illustrated in Figure 6.3. For this wave we

have uj+1 = uj−1 at all grid points, corresponding to ∂uj/∂t = 0 in the

advection equation.

The Computational Phase Speed 53

The computational group velocity is here

CDg =
dωD
dk

=
d (kCD)

dk
=

d

dk

{︃

1

∆t
arcsin [µ sin (k∆x)]

}︃

. (6.2)

Figure 6.3. The two, four, six and eight grid-interval wave with a

wavelength of λ = 2, 4, 6 and 8∆x.

Noting that the derivative of the inverse sine function is

d

dx
arcsin [f (x)] =

1√
1− f 2

df

dx
, (6.3)

we obtain

CDg =
1

∆t

⎛

⎝

1
√︂

1− [µ sin (k∆x)]
2

⎞

⎠

d

dk
[µ sin (k∆x)]

=
c cos (k∆x)

√︂

1− [µ sin (k∆x)]
2
. (6.4)

Both computational speeds are functions of the wave number, and thus

we recognise that the spatial differencing again results in computational

dispersion. Since the analytical group velocity is cg = c it makes sense

54 Basic Numerical Methods in Meteorology and Oceanography

Figure 6.4. Computational dispersion of the leap-frog scheme. The curves

show the ratio CD/c as a function of the normalised wave number k∆x/π to

the left and as a function of the number of grid lengths ∆x per wave length

L to the right. The different curves correspond to the Courant numbers

(µ ≡ c∆t/∆x) indicated on the them. The ideal solution (black line) is

CD/c = 1. Note that when the wave number increases (i.e. the wavelength

decreases), the computational phase speed deviates from the analytical

phase speed. The phase speed is clearly dispersive since the waves propagate

at different speeds depending on their wavelengths.

to study the ratio between the analytical and computational group

velocities:

CDg
cg

=
cos (k∆x)

√︂

1− [µ sin (k∆x)]
2

(6.5)

This ratio is shown in Figure 6.5.

We have encountered two effects in this chapter. The computational

phase speed was found to be slower than the analytical phase speed

Figure 6.5. As in Figure 6.4 but for the group velocity.

The Computational Phase Speed 55

and changes with the wave number; the wave is hence dispersive. The

same holds true for the computational group velocity.

Exercise:

Derive the computational phase speed

CD =
1

k∆t
arcsin

[︃

c∆t

∆x
sin (k∆x)

]︃

.

7. The Shallow-Water Equations

In this chapter we will consider the equations describing the horizontal

propagation of gravity and inertia-gravity waves. These equations are

often referred to as the linearised shallow-water equations. We will be

dealing with a system of two or three partial differential equations

of first order and have two or three dependent variables (one or two

velocities and pressure/free-surface height). The system of equations

will always be equivalent to a single differential equation, but one of a

higher order (which can be obtained from the system by elimination of

dependent variables).

7.1 The one-dimensional shallow-water equations

We start with the simplest possible set-up of the shallow-water

equations for a flat bottom, viz. that associated with gravity waves:

∂u

∂t
= −g∂h

∂x
, (7.1a)

∂h

∂t
= −H∂u

∂x
, (7.1b)

where g is the gravity, h is the thickness of the fluid and H its unper-

turbed value, i.e. when u=0. We seek wave solutions of the form

u (x, t) = u0e
i(kx−ωt), (7.2a)

h (x, t) = h0e
i(kx−ωt), (7.2b)

which yield the frequency equation

ω2 = gHk2,

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 57–82. Stockholm: Stockholm University Press.
DOI: https://doi.org/10.16993/bbs.g. License: CC BY 4.0

https://doi.org/10.16993/bbs.g

58 Basic Numerical Methods in Meteorology and Oceanography

Figure 7.1. Schematic illustration of the 1D shallow-water equations for a

flat bottom.

and hence the phase speed is

c =
ω

k
= ±

√︁

gH.

This shows that the gravity waves can propagate along the x-axis in

both directions with the speed
√
gH, which is not a function of the

wave number, and consequently the waves are non-dispersive.

7.1.1 Spatial discretisation but continuous time derivatives

As illustrated by Figure 7.2, there are two types of possible grids for

these shallow-water equations. We can take the two dependent variables

at the same points:

∂uj
∂t

= −ghj+1 − hj−1

2∆x
, (7.3a)

∂hj
∂t

= −Huj+1 − uj−1

2∆x
. (7.3b)

This is known as a unstaggered grid. It is also possible to alternate the

grid points in space:

∂uj
∂t

= −ghj+1 − hj
∆x

, (7.4a)

∂hj
∂t

= −Huj − uj−1

∆x
. (7.4b)

This is known as a staggered grid and already at this stage we can see

that one advantage is that it reduces the number of grid points for a

fixed truncation error.

The Shallow-Water Equations 59

Figure 7.2. Top: unstaggered grid with two dependent variables, both at

every grid point. Bottom: staggered grid with two dependent variables at

alternate grid points.

The computational phase speeds and group velocities associated

with these two schemes can be obtained by inserting wave solutions

of the form

uj = u0e
i(jk∆x−ωDt),

hj = h0e
i(jk∆x−ωDt).

The computational phase speed derived from the unstaggered-grid

equations (7.3) becomes

cD =
ωD
k

= ±
√︁

gH
sin (k∆x)

k∆x
(7.6)

and the group velocity is

CDg =
d (ωD)

dk
=
d (kCD)

dk
= ±

√︁

gH cos (k∆x) . (7.7)

These are hence the same as for the spatially discretised advection

equation in the previous chapter. The corresponding results from the

staggered-grid equations (7.4) become

cD =
ωD
k

= ±
√︁

gH
sin (k∆x/2)

(k∆x/2)
(7.8)

and

CDg =
d (ωD)

dk
=
d (kCD)

dk
= ±

√︁

gH cos

(︃

k∆x

2

)︃

. (7.9)

60 Basic Numerical Methods in Meteorology and Oceanography

Figure 7.3. The computational phase speed CD associated with the centred

finite-difference scheme in space compared to the analytical phase speed c

for the one-dimensional shallow-water equations as a function of the

normalised wave number k∆x/π to the left and as a function of the number

of grid lengths ∆x per wavelength L to the right. The black line represents

the solution of the continuous equations which is the nondispersive

analytical case, i.e. the phase speed is the same as the group velocity c = cg.

The blue curve is the computational phase speed normalised by dividing

with c. The red curve shows the computational group velocity CDg which at

wavelengths shorter than 4 grid lengths (k∆x < π/2) propagates in the

wrong direction. The green and orange curves are from the staggered grid.

These phase speeds and group velocities are shown and inter-compared

in Figure 7.3. Note that when the wave number increases (i.e. the

wavelength decreases), the computational phase speed deviates from

the analytical phase speed. The phase speed is clearly dispersive since

the waves propagate at different speeds depending on their wavelengths.

Apart from this the staggered grid has the advantage of reducing the

number of grid points, and we observe that the waves with k∆x > π/2,

which are those shorter than 4 grid lengths and have the largest phase-

speed error, are eliminated.

7.1.2 Spatial and temporal discretisation

Equations (7.4) and (7.3) also need to be discretised in time in order

to be amenable to a numerical solution. The most straightforward type

of time differencing is the three-level leap-frog scheme.

Unstaggered-grid case

Discretisation of the 1D shallow-water equations using centred schemes

in both time and space on an unstaggered grid yields

un+1
j − un−1

j

2∆t
= −g

hnj+1 − hnj−1

2∆x
, (7.10a)

hn+1
j − hn−1

j

2∆t
= −H

unj+1 − unj−1

2∆x
. (7.10b)

The Shallow-Water Equations 61

We seek solutions of the form

unj = u0e
i(jk∆x−ωDn∆t),

hnj = h0e
i(jk∆x−ωDn∆t),

which after insertion in Equations (7.10) yields the computational

phase speed

CD =
ωD
k

= ± 1

k∆t
arcsin [µ sin (k∆x)] , (7.12)

where µ ≡ √
gH∆t/∆x is the Courant number. The ratio between the

computational and analytical phase speeds should ideally be as close

as possible to one, but is

CD
c

= ± CD√
gH

= ± 1

kµ∆x
arcsin [µ sin (k∆x)] , (7.13)

which is identical to Equation (6.1) found for the advection equation.

The computational group velocity is also the same as for the advec-

tion equation with the following ratio between the computational and

analytical group velocities:

CDg√
gH

=
cos (k∆x)

√︂

1− [µ sin (k∆x)]
2
. (7.14)

Both computational speeds are functions of the wave number, and thus

we recognise that the spatial differencing again results in computational

dispersion, viz. the same result as obtained for the advection equation

with centred schemes.

Staggered-grid case

The same procedure as used above, but on a staggred grid, results in

un+1
j − un−1

j

2∆t
= −g

hnj+1 − hnj
∆x

, (7.15a)

hn+1
j − hn−1

j

2∆t
= −H

unj − unj−1

∆x
, (7.15b)

which after inserting wave solutions yield the computational phase

speed

CD =
ωD
k

= ± 1

k∆t
arcsin [2µ sin (k∆x/2)] . (7.16)

62 Basic Numerical Methods in Meteorology and Oceanography

The ratio between the computational and analytical phase speeds

should ideally be as close as possible to one, but is

CD
c

= ± CD√
gH

= ± 1

kµ∆x
arcsin [2µ sin (k∆x/2)] , (7.17)

which is shown in the two lower panels of Figure 7.4 together with the

results from the unstaggered-grid case in the upper panels.

The ratio between the computational and analytical group velocities

for the staggered-grid case becomes

CDg√
gH

=
cos (k∆x/2)

√︂

1− [2µ sin (k∆x/2)]
2
, (7.18)

which clearly differs from that obtained in the unstaggered-grid case.

Figure 7.4. The computational phase speed of the 1D shallow-water

equations discretised with centred differences in time. The two upper panels

represent the unstaggered-grid case and the lower panels the staggered-grid

one. The curves show the ratio CD/c as functions of the normalised wave

number k∆x/π to the left and as functions of the number of grid lengths

∆x per wavelength L to the right. The different curves correspond to the

Courant numbers µ indicated on them.

The Shallow-Water Equations 63

Figure 7.5. As in Figure 7.4 but representing the ratio of the group

velocities from Equations (7.14) and (7.18). The two upper panels represent

the unstaggered-grid case and the lower the staggered one. The curves show

the ratio CDg/c as a function of the normalised wave number k∆x/π to the

left and as a function of the number of grid lengths ∆x per wavelength L to

the right. The different curves correspond to the Courant numbers µ

indicated on them.

Stability analysis

The stability of the staggered-grid set of equations above can be deter-

mined by applying a von Neumann stability analysis, which yields

λ− λ−1

2∆t
u0 = −g e

ik∆x − 1

∆x
h0, (7.19a)

λ− λ−1

2∆t
h0 = −H 1− e−ik∆x

∆x
u0. (7.19b)

We eliminate u0 and h0 between these two equations and find that

(︃

λ− λ−1

2∆t

)︃2

=
gH

(∆x)2
(︁

eik∆x − 1
)︁ (︁

1− e−ik∆x
)︁

, (7.20)

which results in two quadratic equations:

λ2 ± 2iαλ− 1 = 0, (7.21)

64 Basic Numerical Methods in Meteorology and Oceanography

where α ≡ 2∆t
√
gH/∆x sin (k∆x/2). The corresponding four roots

are:

λ1,2,3,4 = ±iα±
√
1− α2. (7.22)

The requirement for stability is that |λ| ≤ 1, which is satisfied if α < 1,

corresponding to

∆t
√
gH

∆x
sin

(︃

k∆x

2

)︃

≤ 1

2
. (7.23)

To satisfy the stability criterion for all wavelengths, we require the

Courant number µ to fulfill

µ =

√
gH∆t

∆x
≤ 1

2
. (7.24)

Exercise:

Show that the stability criterion for the unstaggered-grid case is that

the Courant number must satisfy µ ≤ 1.

7.2 Two-dimensional shallow-water equations

Let us now consider one of the simplest possible subsets of the equations

of motion in the atmosphere or the ocean, viz. the linearised shallow-

water equations (frequently denoted the inertia-gravity wave equations)

in two dimensions:

∂u

∂t
− fv = −g∂h

∂x
, (7.25a)

∂v

∂t
+ fu = −g∂h

∂y
, (7.25b)

∂h

∂t
= −H

(︃

∂u

∂x
+
∂v

∂y

)︃

. (7.25c)

Here f ≡ 2Ω sinφ is the Coriolis acceleration, where Ω is the angular

frequency of the Earth’s rotation and φ the latitude. In what follows f

is set to be a constant. As before, we seek wave-type solutions:

(u, v, h) = (u0, v0, h0) e
i(kx+ly−ωt). (7.26)

Insertion into Equations (7.25) yields the following result for the

frequency:

ω2 = f 2 + gH (k2 + l2) , (7.27)

which describes the dispersion relationship for Poincaré waves (inertia-

gravity waves).

The Shallow-Water Equations 65

7.3 Gravity waves with centred spatial differencing

There are several grids known as “Arakawa grids”, which are usually

identified by the letters A to E (Mesinger and Arakawa, 1976). The

three most commonly used are illustrated in Figure 7.6.

Figure 7.6. The three most common Arakawa grids: A, B and C.

66 Basic Numerical Methods in Meteorology and Oceanography

For each of these three grids we use the simplest possible centred

approximations for the spatial derivatives, and when necessary for the

Coriolis terms. We do not need to study the time differencing since this

has previously been examined and remains unchanged.

A-grid:

∂ui,j
∂t

= −ghi+1,j − hi−1,j

2∆x
+ fvi,j, (7.28a)

∂vi,j
∂t

= −ghi,j+1 − hi,j−1

2∆y
− fui,j, (7.28b)

∂hi,j
∂t

= −H
(︃

ui+1,j − ui−1,j

2∆x
+
vi,j+1 − vi,j−1

2∆y

)︃

. (7.28c)

B-grid:

∂ui,j
∂t

= −ghi+1,j + hi+1,j+1 − hi,j − hi,j+1

2∆x
+ fvi,j, (7.29a)

∂vi,j
∂t

= −ghi,j+1 + hi+1,j+1 − hi,j − hi+1,j

2∆y
− fui,j, (7.29b)

∂hi,j
∂t

= −H
(︁ui,j + ui,j−1 − ui−1,j − ui−1,j−1

2∆x
(7.29c)

+
vi,j + vi−1,j − vi,j−1 − vi−1,j−1

2∆y

)︁

.

C-grid:

∂ui,j
∂t

= −ghi+1,j − hi,j
∆x

+
f

4
(vi,j + vi+1,j + vi+1,j−1 + vi,j−1), (7.30a)

∂vi,j
∂t

= −ghi,j+1 − hi,j
∆y

− f

4
(ui,j + ui,j+1 + ui−1,j+1 + ui−1,j), (7.30b)

∂hi,j
∂t

= −H
(︃

ui,j − ui−1,j

∆x
+
vi,j − vi,j−1

∆y

)︃

. (7.30c)

For simplicity we shall first study the quasi-one-dimensional case

where u, v and h do not depend on y so that Equations (7.25) reduce to

∂u

∂t
− fv = −g∂h

∂x
, (7.31a)

∂v

∂t
+ fu = 0, (7.31b)

∂h

∂t
+H

∂u

∂x
= 0. (7.31c)

The Shallow-Water Equations 67

Inserting the wave solutions from Equation (7.26) into Equations (7.31)

results in the frequency equation

(︃

ω

f

)︃2

= 1 +
gH

f 2
k2. (7.32)

Let us now look at the effect of the finite differencing in space

for this case. As the variables are assumed not to depend on y,

Equations (7.28) for the A-grid reduce to

∂ui,j
∂t

= −ghi+1,j − hi−1,j

2∆x
+ fvi,j, (7.33a)

∂vi,j
∂t

= −fui,j, (7.33b)

∂hi,j
∂t

= − H

2∆x
(ui+1,j − ui−1,j) , (7.33c)

and for the B-grid:

∂ui,j
∂t

= −ghi+1,j + hi+1,j+1 − hi,j − hi,j+1

2∆x
+ fvi,j, (7.34a)

∂vi,j
∂t

= −fui,j, (7.34b)

∂hi,j
∂t

= − H

2∆x
(ui,j + ui,j−1 − ui−1,j − ui−1,j−1) , (7.34c)

and for the C-grid:

∂ui,j
∂t

= −ghi+1,j − hi,j
∆x

+
f

4
(vi,j + vi+1,j + vi+1,j−1 + vi,j−1) , (7.35a)

∂vi,j
∂t

= −f
4
(ui,j + ui,j+1 + ui−1,j+1 + ui−1,j) , (7.35b)

∂hi,j
∂t

= − H

∆x
(ui,j − ui−1,j) . (7.35c)

Inserting wave solutions with no j-dependence

(ui, vi, hi) = (u0, v0, h0)e
I(ik∆x−ωDt)

68 Basic Numerical Methods in Meteorology and Oceanography

Figure 7.7. The function ω/f from Equation (7.32), where in the left panel

gH/ (f∆x)
2
= 4, i.e. the Rossby radius is set to two grid lengths

(︁√
gH/f = 2∆x

)︁

and in the right panel gH/ (f∆x)
2
= 1/9, i.e. the Rossby

radius is set to a third of a grid length
(︁√
gH/f = ∆x/3

)︁

. The black curve

corresponds to the analytical solution, the blue curve to the results from the

A-grid, the red curve to those from the B-grid and the green curve to those

from the C-grid. NB: The B- and C-grids yield similar results when the

Rossby radius R is well resolved, but the C-grid results degenerate when the

grid resolution is coarse.

(where the imaginary unit is denoted I to distinguish it from the spa-

tial index i) into Equations (7.33-7.35) yields the following frequency

equations for the three grids:

A grid :

(︃

ωD
f

)︃2

= 1 +
gH

f 2

sin2 (k∆x)

(∆x)
2 , (7.36a)

B grid :

(︃

ωD
f

)︃2

= 1 +
gH

f 2

sin2 (k∆x/2)

(∆x/2)
2 , (7.36b)

C grid :

(︃

ωD
f

)︃2

= cos2
(︃

k∆x

2

)︃

+
gH

f 2

sin2 (k∆x/2)

(∆x/2)
2 . (7.36c)

The non-dimensional frequencies ωD/f are now seen to depend on the

two parameters k∆x and gH/f 2, viz. the Rossby radius R squared, and

are graphed in Figure 7.7, where they can be validated against results

from the non-discretised solution of Equation (7.32).

The pros and cons of the three grids can be summarised as follows:

• A-grid: The frequency reaches a maximum at k∆x = π/2, i.e. a

wave-length of 4 grid intervals. The group velocity is thus zero

for this wavelength. If inertia-gravity waves of approximately

The Shallow-Water Equations 69

this wave number are excited near a point inside the

computational region, e.g. by non-linear effects or by forcing

through heating or topography, the wave energy remains near

that point. Beyond this maximum value, for π/2 < k∆x < π,

the frequency decreases as the wave number increases. For

these waves the group velocity thus has the wrong sign. Finally,

the two-grid-length wave with k∆x = π behaves like a pure

inertial oscillation, and its group velocity is again zero.

• B-grid: The frequency increases monotonically over the range

0 < k∆x < π. It, however, assumes a local maximum at the

end of the range, and hence the group velocity is zero for the

two-grid-length wave with k∆x = π.

• C-grid: If gH/ (f∆x)
2
> 1/4, the frequency increases

monotonically in a similar way as in the B-grid case, i.e. when

the Rossby radius is larger than half a grid length
(︁√
gH/f > ∆x/2

)︁

. If, however, the Rossby radius is exactly

half a grid length
(︁√
gH/f = ∆x/2

)︁

, the group velocity is zero

and for smaller Rossby radii the frequency will decrease in an

unrealistic way with increasing wave number over 0 < k∆x < π.

The advantage of the C-grid lies in that the velocities are

normal to the grid-box faces, which makes the differencing of

the continuity equation as well as of the scalar transport in the

tracer equation a straightforward matter (cf. Section 13.3).

7.4 The shallow-water equations with leap-frog

The discretised linearised inviscid shallow-water equations can now be

written with centred finite differences in both time and space on a

C-grid as

un+1
i,j − un−1

i,j

2∆t
= −g

hni+1,j − hni,j
∆x

+
f

4

(︁

vni,j + vni+1,j + vni+1,j−1 + vni,j−1

)︁

,

(7.37a)

vn+1
i,j − vn−1

i,j

2∆t
= −g

hni,j+1 − hni,j
∆y

− f

4

(︁

uni,j + uni,j+1 + uni−1,j+1 + uni−1,j

)︁

,

(7.37b)

hn+1
i,j − hn−1

i,j

2∆t
= −H

(︃

uni,j − uni−1,j

∆x
+
vni,j − vni,j−1

∆y

)︃

. (7.37c)

70 Basic Numerical Methods in Meteorology and Oceanography

A von Neumann stability analysis can be applied to the non-rotating

case, whereby Equations (7.37) become

λ− λ−1

2∆t
u0 = −g e

Ik∆x − 1

∆x
h0, (7.38a)

λ− λ−1

2∆t
v0 = −g e

Il∆y − 1

∆y
h0, (7.38b)

λ− λ−1

2∆t
h0 = −H

(︃

1− e−Ik∆x

∆x
u0 +

1− e−Il∆y

∆y
v0

)︃

. (7.38c)

Note that the imaginary unit here is denoted capital “I” in order to

distinguish it from the index “i”. Equations (7.38a) and (7.38b) can be

rewritten as

u0 = −2g∆t (eIk∆x − 1)

∆x (λ− λ−1)
h0, (7.39a)

v0 = −2g∆t (eIl∆y − 1)

∆y (λ− λ−1)
h0, (7.39b)

which we insert into Equation (7.38c), resulting in

(λ− λ−1)
2
= (7.40)

= 4gH

[︄

(︃

∆t

∆x

)︃2
(︁

eIk∆x − 1
)︁ (︁

1− e−Ik∆x
)︁

+

(︃

∆t

∆y

)︃2
(︁

eIl∆y − 1
)︁ (︁

1− e−Il∆y
)︁

]︄

= 4gH

[︄

(︃

∆t

∆x

)︃2
(︁

eIk∆x/2 − e−Ik∆x/2
)︁2

+

(︃

∆t

∆y

)︃2
(︁

eIl∆y/2 − e−Il∆y/2
)︁2

]︄

= −16gH(∆t)2
[︃

sin2(k∆x/2)

(∆x)2
+

sin2(l∆y/2)

(∆y)2

]︃

= −16B2,

where

B2 ≡ gH(∆t)2
[︃

sin2(k∆x/2)

(∆x)2
+

sin2(l∆y/2)

(∆y)2

]︃

.

Taking the square root of Equation (7.40) results in

λ− λ−1 = ±4IB, (7.41)

The Shallow-Water Equations 71

which is then transformed into a quadratic equation and has

the solution

λ = ±2IB ±
√
−4B2 + 1. (7.42)

The requirement for stability is that |λ| ≤ 1, which is satisfied if

B ≤ 1/2. If we assume that ∆x = ∆y, then to satisfy the stability

criterion for all wavelengths we require

µ ≡
√
gH∆t

∆x
≤ 1√

8
≈ 0.35. (7.43)

The dispersion relationship can be found by considering the one-

dimensional case, viz. assuming that the waves propagate along the

x-axis (l ≡ 0), and substituting

λ = e−IωD∆t

in Equation (7.40) so that

ωD =
1

∆t
arcsin

[︃√
gH∆t

∆x/2
sin (k∆x/2)

]︃

. (7.44)

The computational phase speed is once again

CD =
ωD
k

= ± 1

k∆t
arcsin [2µ sin (k∆x/2)] , (7.45)

which is identical to Equation (7.16), which was the computational

phase speed derived directly from the 1D non-rotating shallow-water

equations on the staggered grid.

7.5 Boundary conditions

There are several types of boundary conditions: Closed boundary con-

ditions, applied at the border points delimiting land/seafloor from the

ocean and solid ground from the atmosphere. Open boundary condi-

tions, taken where the model grid covering the domain under consid-

eration ends but the real ocean/atmosphere continues. A model can

also have periodic boundary conditions as previously described for the

advection equation in Section 4.2.

7.5.1 Closed boundary conditions

The staggered B-grid is well adapted to no-slip boundary conditions,

since the velocity points are located at the corners of the computational

72 Basic Numerical Methods in Meteorology and Oceanography

grid cell. Unlike the C-grid, there are no ambiguities in the way the

dynamical boundary condition is imposed at the “corners” of adjacent

land masses as shown in Figure 7.8. The drawback is, however, that for

a narrow strait in an ocean model, the B-grid requires at least two grid

lengths to have a non-zero velocity point as illustrated in Figure 7.8.

The B-grid yields, however, a more satisfactory dispersion relationship

than the C-grid since it is better at resolving the Rossby radius at

coarse resolutions (Batteen and Han, 1981), a feature that makes this

staggering technique suitable for coarsely-resolved models.

Figure 7.8. Illustration of how a narrow strait is resolved with a B-grid

(upper left panel) and with a C-grid (upper right panel). Land cells in

yellow, ocean cells in white with corresponding u, v and h points in colour.

The only way to permit velocity points in this B-grid strait would be to “dig

out” the two cells in green so the strait is at least two grid lengths wide as

shown in the lower panel.

The Shallow-Water Equations 73

Figure 7.9. Schematic illustration of a sponge zone between the open

boundary located at i = 0 and i = IS .

7.5.2 Open boundary conditions

An open boundary condition has two main purposes: It should permit

waves to propagate out from the model domain without being reflected

back. It should also be possible to force the inner solution with external

fields, which e.g. can be obtained from observations or models covering

a larger domain. Open boundary conditions also need to conserve mass

so that the average of the sea-surface elevation h remains constant. The

energy budget should also be treated accurately, allowing the correct

energy flux through the open boundaries to balance the energy flux

through the sea surface due to the wind stress.

There are many different types of sophisticated radiative open-

boundary conditions based on the wave equation. We will here,

however, only present the simplest, which is the “sponge” boundary

condition. Here all field variables are first updated using the standard

interior leap-frog schemes. The field values in the sponge zone are then

relaxed to the externally given values hE according to

hn+1 = (1− γ)hn+1
∗ + γhE, (7.46)

where hn+1
∗ is obtained from the model equations, in the present case

the shallow-water equations. The non-uniformity of hE in the sponge

zone is taken into account by letting the solution decay as we leave the

boundary. This decay can e.g. be of an e-folding character or have a

cosine-shaped relaxation factor such as

γ = 0.5

[︃

1 + cos

(︃

π
i

IS

)︃]︃

(7.47)

for the interval 0 ≤ i ≤ IS, where IS is the number of grid points in

the sponge zone, typically 10 to 30.

74 Basic Numerical Methods in Meteorology and Oceanography

The externally given values hE can originate from observations or

from another model, which often has a coarser grid. This is the case for

regional climate models as well as for most local numerical weather-

prediction models, which are forced at their open boundaries by a

global circulation model covering the the entire Earth. Figure 7.10

shows schematically such a nested grid, where the light blue border

can be treated as an open boundary for the finer interior grid, driven

by the values obtained from the coarser-grid model The nesting is hence

a way to “zoom” in on a particular region by increasing the spatial res-

olution here. The nesting can be one-way, where only the interior values

are influenced by the exterior values from the coarser surrounding grid

or two-way, where also the coarser grid values are affected by the data

from the fine grid.

Figure 7.10. A nested C-grid with a 3:1 ratio between the grid sizes. The

solid lines denote the coarse grid and the dashed lines represent the fine

grid. The light blue lines denote the boundary between the fine and coarse

grids, which can be treated as an open boundary for the fine grid.

The Shallow-Water Equations 75

Radiative boundary conditions, based on the classical Sommerfeld

condition (Sommerfeld, 1949), were adapted to oceanic and atmo-

spheric modelling by Orlanski (1976) and followed up by a number of

other investigators e.g. Higdon (1987) and Flather (1994). These open-

boundary conditions have the advantage of letting the waves leave the

domain without reflection and at the same time independently impos-

ing the open boundary values hE. Tests of different radiative boundary

conditions can be found in e.g. Nycander and Döös (2003).

7.6 Conservation of mass, energy and enstrophy

There are several reasons why numerical schemes for models are often

formulated so as to respect conservation properties of the governing

equations. An important practical consideration is that satisfying con-

servation properties helps to ensure the computational stability of a

model. Apart from this, the direct physical realism of a conservation

property may be a desirable feature. For example, ensuring conserva-

tion of mass prevents the surface pressure from drifting to unrealis-

tic values in long-term integrations of atmospheric models. Advection

schemes which satisfy an appropriate dynamical conservation property

may help to ensure the realism of the simulated energy spectrum. There

are, however, considerations other than conservation that might influ-

ence the choice of numerical scheme. Shape-preservation (avoidance of

the generation of spurious maxima or minima) may be considered as an

important feature of an advection scheme, and the economy of a method

(especially the ability to accommodate long time steps) may be a crit-

ical factor. Indeed, semi-Lagrangian advection schemes (cf. Chapter

11), originally without formal conservation properties, are increasingly

being developed for numerical weather prediction.

7.6.1 The shallow-water equations with non-linear advection terms

The shallow-water equations with non-linear advection terms will, fol-

lowing Sadourny (1975), now be presented The momentum equations

in vector form can in this case be written as

∂V⃗

∂t
+ V⃗ · ∇V⃗ + fk⃗ × V⃗ = −g∇h, (7.48)

which can also be expressed as

∂V⃗

∂t
+ ξk⃗ ×

(︂

hV⃗
)︂

= −∇
(︃

gh+
1

2
V⃗ · V⃗

)︃

, (7.49)

76 Basic Numerical Methods in Meteorology and Oceanography

where V⃗ is the horizontal velocity vector, f the Coriolis parameter, k⃗

the unit vector normal to the domain S, ξ ≡ (f + ∂v/∂x− ∂u/∂y) /h

the potential vorticity, and h the total water- or air-column height. The

continuity equation with non-linear terms is

∂h

∂t
+∇ ·

(︂

hV⃗
)︂

= 0. (7.50)

These equations can also be written in scalar form:

∂u

∂t
− ξhv = −∂B

∂x
, (7.51a)

∂v

∂t
+ ξhu = −∂B

∂y
, (7.51b)

∂h

∂t
+
∂ (hu)

∂x
+
∂ (hv)

∂y
= 0, (7.51c)

where the Bernoulli function is B ≡ gh+ 1

2
(u2 + v2) = gh+ 1

2
V⃗ · V⃗ .

It can be verified that these equations are such that the following prop-

erties are conserved:

Total mass: M =
∫︁

S
hdS,

Total Energy: E =
∫︁

S

1

2

(︂

gh+ V⃗ · V⃗
)︂

hdS,

Absolute potential enstrophy: Z =
∫︁

S

1

2
ξ2hdS.

Here
∫︁

S
dS represents the surface integral over the domain. Enstrophy

is the integral of the vorticity squared and can be interpreted as a

quantity directly related to the dissipated kinetic energy. By conserving

the enstrophy, the model will tend to yield better simulations of eddies.

7.6.2 Discretisation

The discretisation on a C-grid is illustrated in Figure 7.11. The spatial

differencing operators δx and δy acting on u, v and h are

δxu =
ui,j − ui−1,j

∆x
; δyv =

vi,j − vi,j−1

∆y
, (7.52)

δxh =
hi+1,j − hi,j

∆x
; δyh =

hi,j+1 − hi,j
∆y

. (7.53)

The Shallow-Water Equations 77

Figure 7.11. C-grid with points for the zonal velocity u, meridional velocity

v, water- or air-column height h and vorticity ξ.

Note that all these differences are centred at different points, which is

best seen from Figure. 7.11. The spatial averages are similarly

ux =
1

2
(ui,j + ui−1,j) ; v

y =
1

2
(vi,j + vi,j−1) , (7.54)

h
x
=

1

2
(hi,j + hi+1,j) ; h

y
=

1

2
(hi,j + hi,j+1) . (7.55)

It is often simpler to use these differencing and averaging operators

than to employ index notation. We will use both representations to

give the reader an opportunity of suffering the agony of choice.

The mass fluxes U and V are defined at the same points as the

velocities u and v:

Ui,j ≡ h
x
u = ui,j

1

2
(hi,j + hi+1,j) ,

Vi,j ≡ h
y
v = vi,j

1

2
(hi,j + hi,j+1) .

78 Basic Numerical Methods in Meteorology and Oceanography

The gradient operator will act on the Bernoulli function B defined at

the locations where h is defined:

Bi,j ≡ gh+
1

2

(︁

u2
x
+ v2

y)︁

= ghi,j +
1

2

[︃

1

2

(︁

u2
i,j + u2

i−1,j

)︁

+
1

2

(︁

v2i,j + v2i,j−1

)︁

]︃

.

The potential vorticity is redefined at the corners of the C-grid:

ξi,j =
f + δxv − δyu

h
xy

=
f + (vi+1,j − vi,j) /∆x− (ui,j+1 − ui,j) /∆y

(hi,j + hi+1,j + hi,j+1 + hi+1,j+1)/4
.

Simple expressions are chosen for a model domain with NX × NY

grid-box faces.

Total mass: M =
NX
∑︁

i=1

NY
∑︁

j=1

hi,j∆x∆y .

Total energy: E = 1

2

∑︁
(︁

gh2 + hu2
x
+ hv2

y)︁

∆x∆y

= 1

2

NX
∑︁

i=1

NY
∑︁

j=1

{︂

gh2
i,j +

hi,j

2

[︁(︁

u2
i,j + u2

i−1,j

)︁

+
(︁

v2i,j + v2i,j−1

)︁]︁

}︂

∆x∆y .

Absolute potential enstrophy: Z = 1

2

∑︁

ξ2h
xy

∆x∆y

= 1

2

NX
∑︁

i=1

NY
∑︁

j=1

ξ2i,j
1

4
(hi,j + hi+1,j + hi,j+1 + hi+1,j+1)∆x∆y .

Below the symbol
∑︁

refers to a summation of the same species over

all grid points. Note that due to symmetry

∑︂

ab
x
=
∑︂

bax,

and that due to skew-symmetry

∑︂

aδxb = −
∑︂

bδxa.

The time derivative of the total energy is

dE

dt
=
∑︂

(︃

U
∂u

∂t
+ V

∂v

∂t
+B

∂h

∂t

)︃

. (7.56)

The Shallow-Water Equations 79

A simple energy-conserving model can be defined as

∂u

∂t
− ξV

xy

+ δxB = 0,

∂v

∂t
+ ξU

yx

+ δyB = 0,

∂h

∂t
+ δxU + δyV = 0.

This can also be formulated in a more detailed way using index

notation:

∂ui,j
∂t

=
1

2

[︃

ξi,j
1

2
(Vi,j + Vi+1,j) + ξi,j−1

1

2
(Vi,j−1 + Vi+1,j−1)

]︃

− Bi+1,j −Bi,j
∆x

, (7.58a)

∂vi,j
∂t

=
1

2

[︃

ξi,j
1

2
(Ui,j + Ui,j+1) + ξi−1,j

1

2
(Ui−1,j + Ui−1,j+1)

]︃

− Bi,j+1 −Bi,j
∆y

, (7.58b)

∂hi,j
∂t

= −Ui,j − Ui−1,j

∆x
− Vi,j − Vi,j−1

∆y
. (7.58c)

Energy conservation can be obtained from Equation (7.56):

dE

dt
=
∑︂

(︂

UξV
xy − V ξU

yx
)︂

+
∑︂

(−UδxB −BδxU)

+
∑︂

(−V δyB −BδyV) = 0,

where each of the three summations cancel out due to the symmetry

or skew-symmetry of the operators.

An absolute-potential-enstrophy model can be defined as

∂u

∂t
− ξ

y
V
xy

+ δxB = 0, (7.59a)

∂v

∂t
+ ξ

x
U
yx

+ δyB = 0, (7.59b)

∂h

∂t
+ δxU + δyV = 0. (7.59c)

In the corresponding vorticity equation, the discretised gradients

vanish, viz. δxδy = δyδx, so that

∂

∂t

(︂

ξh
xy
)︂

+ δx

(︂

ξ
x
U
yx
)︂

+ δy

(︂

ξ
y
V
xy
)︂

= 0,

80 Basic Numerical Methods in Meteorology and Oceanography

which when combined with the averaged continuity equation

∂

∂t

(︂

h
xy
)︂

+ δx

(︂

U
yx
)︂

+ δy

(︂

V
xy
)︂

= 0

yields the equation for conservation of the potential enstrophy:

∂

∂t

(︂

ξ2h
xy
)︂

+ δx

(︂

ξ2
x
U
yx
)︂

+ δy

(︂

ξ2
y
V
xy
)︂

= 0.

7.7 A shallow-water model

We will here summarise the results above by formulating a model based

on the discretised shallow-water equations on a C-grid. This will be

done in the way it is programmed in computer code, and will hence be

close to how e.g. a Fortran code is structured. The following steps are

to be taken:

1. Set the initial condition of the fields for n = 0 over the entire

model grid indices i and j so that

un=0
i,j , vn=0

i,j , hn=0
i,j

are known.

2. Integrate the shallow-water equations a first time step with an

Euler-forward scheme and “loop” over all the model grid indices

i and j:

u1
i,j = u0

i,j +∆t

[︃

−g
h0
i+1,j − h0

i,j

∆x
+
f

4

(︁

v0i,j + v0i+1,j

+v0i+1,j−1 + v0i,j−1

)︁

]︃

,

v1i,j = v0i,j +∆t

[︃

−g
h0
i,j+1 − h0

i,j

∆y
− f

4

(︁

u0
i,j + u0

i,j+1 + u0
i−1,j+1

+u0
i−1,j

)︁

]︃

,

h1
i,j = h0

i,j −∆tH

(︃

u0
i,j − u0

i−1,j

∆x
+
v0i,j − v0i,j−1

∆y

)︃

.

The Shallow-Water Equations 81

3. Time-integrate the model from n = 1 to n = Nt, where Nt is

the total number of time steps to be computed so that the total

time integration will be Nt∆t. “Leap-frog” the time step with

loops over i and j:

un+1
i,j = un−1

i,j + 2∆t

[︃

−g
hni+1,j − hni,j

∆x
+
f

4

(︁

vni,j + vni+1,j

+vni+1,j−1 + vni,j−1

)︁

]︃

,

vn+1
i,j = vn−1

i,j + 2∆t

[︃

−g
hni,j+1 − hni,j

∆y
− f

4

(︁

uni,j + uni,j+1

+uni−1,j+1 + uni−1,j

)︁

]︃

,

hn+1
i,j = hn−1

i,j − 2∆tH

(︃

uni,j − uni−1,j

∆x
+
vni,j − vni,j−1

∆y

)︃

.

4. Apply a Robert-Asselin filter in order to suppress the

computational mode:

uni,j = uni,j + γ
(︁

un−1
i,j − 2uni,j + un+1

i,j

)︁

,

vni,j = vni,j + γ
(︁

vn−1
i,j − 2vni,j + vn+1

i,j

)︁

,

hni,j = hni,j + γ
(︁

hn−1
i,j − 2hni,j + hn+1

i,j

)︁

.

5. Store the resulting fields at regular time intervals and compute

some statistics, e.g. the total volume V , the kinetic energy EP ,

and available potential energy EK :

V =

NX
∑︂

i=1

NY
∑︂

j=1

hni,j∆x∆y,

EP =
g

2

NX
∑︂

i=1

NY
∑︂

j=1

(︁

hni,j
)︁2

∆x∆y,

EK =
H

2

NX
∑︂

i=1

NY
∑︂

j=1

[︂

(︁

uni,j
)︁2

+
(︁

vni,j
)︁2
]︂

∆x∆y.

82 Basic Numerical Methods in Meteorology and Oceanography

6. To economise disk space we switch the time-step results (since

we only store three of these) before returning to the beginning

of the time loop so that n→ n− 1 and n+ 1 → n and

un−1
i,j = uni,j, vn−1

i,j = vni,j, hn−1
i,j = hni,j,

uni,j = un+1
i,j , vni,j = vn+1

i,j , hni,j = hn+1
i,j .

7. End the time loop of the model and the entire model code.

This shallow-water model can be extended to include terms repre-

senting non-linear advection and friction/viscosity, the latter to be

introduced in next chapter.

8. Diffusion and Friction Terms

In this chapter we will investigate the discretisation of friction and

diffusion terms and how this affects the stability of the solution. These

terms are included in most models from very simple ones based on the

shallow-water equations to highly complex ocean-atmosphere general

circulation models.

8.1 Rayleigh friction

We start by studying the simplest type of friction parameterisation,

Rayleigh friction, where the retarding acceleration is directly propor-

tional to the velocity. A straightforward example is given by

∂u

∂t
= −γu ; γ > 0 (8.1)

with the solution

u (t) = u0e
−γt. (8.2)

Using a centred time difference (i.e. a leap-frog scheme), which is the

most common technique employed for equations with advection terms,

the discretisation of Equation (8.1) is

un+1
j − un−1

j

2∆t
= −γuj. (8.3)

When a stability analysis is undertaken (in analogy with the one the

advection equation was subjected to in the previous chapter) with

un+mj = unj λ
m one finds that

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 83–93. Stockholm: Stockholm University Press.
DOI: https://doi.org/10.16993/bbs.h. License: CC BY 4.0

https://doi.org/10.16993/bbs.h

84 Basic Numerical Methods in Meteorology and Oceanography

1. If the right-hand side of Equation (8.3) is taken at time step n,

i.e. −γunj , then λ1,2 = −γ∆t±
√︂

1 + (γ∆t)
2
, which has at least

one root that is always greater than one for any γ∆t > 0. The

scheme is hence unconditionally unstable.

2. If the right-hand side of Equation (8.3) is taken at time step

n− 1, i.e. −γun−1
j , then λ2 = 1− 2γ∆t. The scheme is

conditionally stable since λ2 ⩽ 1 if γ∆t ⩽ 1. But since λ2 < 0

for 1/2 < γ∆t < 1, the roots of λ will be purely imaginary and

the solution u will oscillate and change sign for every second

time step. If e.g. γ∆t = 1, then λ1,2 = ±i and
un = in = 1, 0,−1, 0, 1, ...

For the more restrictive condition γ∆t < 1/2, λ will be real and

u will have a more realistic evolution in time with no numerical

oscillations.

3. If the right-hand side of Equation (8.3) is taken as an average

over the time levels n− 1 and n+ 1, the following

finite-difference equation is obtained:

un+1
j − un−1

j

2∆t
= −γ

2

(︁

un+1
j + un−1

j

)︁

.

This, as discussed in Chapter 3, is known as the Crank-Nicolson

scheme and is said to be implicit because it includes a term at

time level n+ 1 on its right-hand side. It yields the best

approximation of Equation (8.2), and the stability analysis

results in λ2 = (1− γ∆t)/(1 + γ∆t) < 1. The scheme is hence

unconditionally stable. For the same reasons as above one

requires γ∆t < 1 in order for a realistic evolution in time.

Implicit schemes are often complicated to solve since they

include values on both sides of the equation that need to be

determined simultaneously. This is, however, not so in this

particular case, since the right-hand side is evaluated at the

same spatial grid point j as the left-hand side and the equation

can be rearranged so that

un+1
j =

1− γ∆t

1 + γ∆t
un−1
j .

When, as in this case, employing the Crank-Nicolson scheme for

only a time integration, one should use a two-time-step

Diffusion and Friction Terms 85

Figure 8.1. The Rayleigh friction equation (8.1) integrated analytically

(top left) and numerically with the right-hand side of Equation (8.3) at time

step n (top right), which clearly gives an unstable solution. When integrated

with the right-hand side at time step n− 1, the solution is stable and smooth

with γ∆t = 0.22 (middle left) but oscillating with γ∆t = 0.8 (middle right).

Bottom panels show the results of integration with the Crank-Nicolson

scheme giving stable solutions, but oscillating when γ∆t = 1.5.

integration with an Euler-forward scheme so that only two time

steps are used and the equation becomes

un+1
j =

1− γ∆t/2

1 + γ∆t/2
unj .

86 Basic Numerical Methods in Meteorology and Oceanography

The stability analysis above is only strictly valid for these discretisa-

tions of the very simple Rayleigh-friction example given by Equation

(8.1). However, it turns out that one obtains approximately the same

stability criterion when a Rayleigh-friction term is included in the

momentum equations or in the tracer equations in a GCM. It is, how-

ever, not possible in these cases to undertake a stability analysis of

these more comprehensive equations.

8.2 Laplacian friction

A somewhat more realistic friction parameterisation is based on the

Laplace operator:

∂u

∂t
= A

∂2u

∂x2
, (8.4)

where A is the viscosity coefficient with the unit m2/s. The letter A

originates from the German word Austausch, which means “exchange”,

referring to the exchange of water “parcels”. It replaces the molecular

viscosity with a much larger eddy viscosity in order to parameterise

the sub-grid scales in the momentum equations. Note that often the

letter K is used in Equation (8.4), known as the heat equation, when

it represents the diffusion of a tracer. This equation is known as the

diffusion equation and is a parabolic PDE.

For a single wave number k Equation (8.4) has the solution

u(x, t) = u0e
±ikx−Ak2t. (8.5)

The simplest way to construct a finite-difference approximation of a

second-order derivative is to apply finite differencing to a finite differ-

ence. This is achieved by first postulating two finite differences centred

on the intermediate positions j + 1/2 and j − 1/2 as illustrated by

Figure 8.2:

(︃

du

dx

)︃

j−1/2

≈ uj − uj−1

∆x
, (8.6)

(︃

du

dx

)︃

j+1/2

≈ uj+1 − uj
∆x

. (8.7)

Since the second-order derivative is defined as the derivative of the

derivative, we can similarly construct a further finite difference:

Diffusion and Friction Terms 87

Figure 8.2. The second derivative is the derivative of the derivative. By

first estimating the finite differences at j + 1/2 and j − 1/2 and then the

finite difference of those two, one obtains the second finite difference at j.

Figure 8.3. The heat equation integrated numerically using Equation (8.12)

with the right-hand side at time step n and with ν = 0.01 (left panel) and in

the right panel with the right-hand side at time step at n− 1 and ν = 0.125.

(︃

d2u

dx2

)︃

j

≡
[︃

d

dx

(︃

du

dx

)︃]︃

j

≈
uj+1−uj

∆x
− uj−uj−1

∆x

∆x
=
uj+1 − 2uj + uj−1

(∆x)
2 .

(8.8)

The advantage of this formulation is that it is straightforward and

intuitively evident. The disadvantage is that it does not provide an

estimate of the accuracy of the scheme. To obtain this we use the

Taylor-series method previously employed in Section 3.2. A centred

88 Basic Numerical Methods in Meteorology and Oceanography

finite difference of the Laplace operator corresponding to the second-

order derivative can hence be obtained by combining two Taylor series:

uj+1 = uj +∆x

(︃

du

dx

)︃

j

+
(∆x)

2

2

(︃

d2u

dx2

)︃

j

+
(∆x)

3

6

(︃

d3u

dx3

)︃

j

+
(∆x)

4

24

(︃

d4u

dx4

)︃

j

+ ... ,

(8.9)

uj−1 = uj −∆x

(︃

du

dx

)︃

j

+
(∆x)

2

2

(︃

d2u

dx2

)︃

j

− (∆x)
3

6

(︃

d3u

dx3

)︃

j

+
(∆x)

4

24

(︃

d4u

dx4

)︃

j

−

(8.10)

Adding these two equations and dividing by (∆x)2 we obtain

uj+1 − 2uj + uj−1

(∆x)
2 =

(︃

d2u

dx2

)︃

j

+
1

12
(∆x)

2

(︃

d4u

dx4

)︃

j

+ (8.11)

This finite-difference approximation of the second-order derivative is

hence accurate to order (∆x)
2
, which is the same as saying it has a

second-order truncation error.

The analytical heat equation (8.4) can now be approximated by

integrating in time with a leap-frog scheme:

un+1
j − un−1

j

2∆t
= A

uj+1 − 2uj + uj−1

(∆x)
2 (8.12)

or

un+1
j = un−1

j + 2ν (uj+1 − 2uj + uj−1) , (8.13)

where ν ≡ A∆t/ (∆x)
2
is the non-dimensional von Neumann number,

sometimes also called the diffusion number. The von Neumann number

is, as we will see, now a number that should sometimes not be exceeded

in order to have numerical stability when integrating an equation with

Laplacian diffusion.

A stability analysis using the von Neumann method is undertaken

by inserting unj = u0λ
neikj∆x into this equation. Different numerical

results are obtained depending on at which time step the right-hand

side is chosen. Let us examine the same three cases as we did in the

Rayleigh-friction example above:

Diffusion and Friction Terms 89

1. If the right-hand side of Equation (8.12) is taken at time step n,

the equation for the amplification factor becomes

λ2 + 8ν sin2

(︃

k∆x

2

)︃

λ− 1 = 0,

which has the roots λ1,2 = −a±
√
a2 + 1, where

a ≡ 4ν sin2
(︁

k∆x

2

)︁

. For the second root it is recognised that

λ2 < −1 for any ν > 0, implying that the scheme is

unconditionally unstable.

2. If the right-hand side of Equation (8.12) is taken at time step

n− 1, the amplification-factor equation becomes

λ2 = 1− 8ν sin2

(︃

k∆x

2

)︃

.

The scheme is stable when −1 ⩽ λ2 ⩽ 1, which is the case when

ν < 1/4, and thus the scheme is conditionally stable. However,

for the same reasons as for the Rayleigh-friction equation, we

recommend the stricter condition ν < 1/8, this in order to have

λ2 > 0 and hereby avoiding oscillations in time of the solution.

3. If the right-hand side of Equation (8.12) is taken as an average

of time levels n− 1 and n+ 1 (the Crank-Nicolson scheme) we

have

un+1
j − un−1

j

2∆t
=
A

2

(︃

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)
2 +

un−1
j+1 − 2un−1

j + un−1
j−1

(∆x)
2

)︃

.

(8.14)

This scheme is implicit as it includes terms at time step n+ 1

on the right-hand side of the equation, which, however, can not

be solved as easily as in the Rayleigh-friction case, this since

the n+ 1 terms on the right-hand side occur at the spatial grid

points j − 1, j, j + 1. It is, however, possible to use Gaussian

elimination to deal with these terms. We can nevertheless

undertake a stability analysis and calculate the amplification

factor, which is found to be

λ2 =
1− 4ν sin2 (k∆x/2)

1 + 4ν sin2 (k∆x/2)
. (8.15)

90 Basic Numerical Methods in Meteorology and Oceanography

Here the right-hand side is always smaller than one and the

scheme is hence uncondionally stable. In order to avoid

imaginary roots that lead to oscillating solutions one should,

however, use ν < 1/4.

In most cases when modelling the atmosphere or the ocean, γ and A are

of such magnitudes that the stability criterion derived in the present

chapter permits ∆t to be much larger than the value conforming to

the CFL criterion, which requires a restriction of the Courant number

µ ≡ c∆x/∆t. A common mistake when writing a simple model code is,

however, to use the unconditionally unstable scheme with the friction

taken at time step n.

Note that the schemes in the two last cases discussed above are in

fact two-level schemes, since we do not use any values at time step n,

but only at n− 1 and n+ 1. There is consequently no reason to use a

leap-frog scheme here, and we can instead use an Euler-forward scheme

in time and replace all time levels n − 1 by n. The stability analysis

remains unaltered, but, since the time step is halved, we should replace

∆t by ∆t/2. It is nevertheless easier to demonstrate the differences

between the three cases by using leap-frog schemes for all of them.

In Section 4.3 we saw that wave propagation with the discre-

tised advection equation required restrictions on the Courant num-

ber µ. Here, we have seen that similar stability conditions arise when

Rayleigh and Laplacian friction are used. This leads to restrictions

on the non-dimensional number γ∆t and the von Neumann number

ν ≡ A∆t/ (∆x)
2
. The discretised momentum equation will need to

satisfy all these stability criteria when friction parameterisations are

included and the CFL criterion is satisfied. The next section will exam-

ine how the stability criteria associated with advection and diffusion

are interrelated.

8.3 The advection-diffusion equation

Let us now examine an equation with both advection and diffusion

terms:

∂u

∂t
+ c

∂u

∂x
= A

∂2u

∂x2
, (8.16)

which in this form combines both the parabolic and hyperbolic prop-

erties of a partial differential equation. It has the analytical solution

u (x, t) = u0e
±ik(x−ct)−Ak2t. (8.17)

Diffusion and Friction Terms 91

We have previously seen that a discretisation of the advection equation

with a scheme centred in time as well as in space is stable, while for the

diffusion equation the discretised Laplace operator must be taken at

time step n− 1 in order to ensure stability. Let us now combine these

schemes:

un+1
j − un−1

j

2∆t
+ c

unj+1 − unj−1

2∆x
= A

un−1
j+1 − 2un−1

j + un−1
j−1

(∆x)
2 (8.18)

or

un+1
j = un−1

j − µ
(︁

unj+1 − unj−1

)︁

+ 2ν
(︁

un−1
j+1 − 2un−1

j + un−1
j−1

)︁

. (8.19)

We now undertake a stability analysis by inserting unj = λneikj∆x into

this equation, which after some calculations yields

λ2 + 2iaλ+ 8b− 1 = 0, (8.20)

with the coefficients a ≡ µ sin (k∆x) and b ≡ ν sin2 (k∆x/2).

The solution of Equation (8.20) is

λ = −ia±
√
−a2 + 1− 8b.

If 1 − 8b − a2 > 0 then |λ|2 = a2 + 1 − 8b − a2 = 1 − 8b < 1, viz. the

scheme is stable for this root.

If 1 − 8b − a2 < 0 then λ = −i
(︁

a∓
√
a2 + 8b− 1

)︁

⇒ λ2= −
(︁

2a2 + 8b− 1∓ 2a
√
a2 + 8b− 1

)︁

.

It is not immediately evident when the second root of this expression

for λ2 yields a stable solution, and thus we have graphed λ2 as a function

of a and b in Figure 8.4.

The stability analysis above can be tested by reformulating Equation

(8.19) as

un+1
j = un−1

j − µ
(︁

unj+1 − unj−1

)︁

+ 2ν
(︁

un−1
j+1 − 2un−1

j + un−1
j−1

)︁

, (8.21)

which we then integrate numerically for 100 time steps with the same

initial condition as for the Rayleigh and diffusion equations in the pre-

vious sections. The choice of both the Courant and von Neumann num-

bers will determine the stability of the integration. From Figure 8.4 we

can see that a stable and non-oscillating solution will require a Courant

number µ below 1. If we choose e.g. ν = 1/16, we recognise from Figure

8.4 that |λ|2 < 1 for µ up to approximately 0.70. To test this we have

integrated Equation (8.21) with a Courant number µ just above and

92 Basic Numerical Methods in Meteorology and Oceanography

Figure 8.4. The squared amplification factor λ2 as a function of the

Courant number µ and the von Neumann number ν. The purple region,

where λ2 < −1, corresponds to where the solutions are unstable. The blue

region, where −1 < |λ|2 < 0, represents stable but oscillating solutions. The

red region is for 0 < λ2 < 1, which corresponds to stable solutions with no

oscillations. The two yellow dots indicate ν = 1/16 with µ = 0.70 and

µ = 0.76, which are the two test cases illustrated in Figure 8.5.

below this critical value. Figure 8.5 shows the results of these two inte-

grations, with a stable solution obtained for µ = 0.70 and an unstable

one for µ = 0.76.

Exercises

1. Undertake a stability analysis for the Rayleigh-friction equation

with the right-hand side of Equation (8.3) taken at time step n.

2. Same as in 1) but for the right-hand side taken at time step

n− 1.

3. Same as in 1) but for the right-hand side taken at time step

n+ 1.

4. Calculate the stability criterion for

∂u

∂t
= A

∂2u

∂x2
; A > 0,

Diffusion and Friction Terms 93

Figure 8.5. The heat-diffusion equation integrated numerically using

Equation (8.21) with ν = 1/16 and µ = 0.70 in the left panel and µ = 0.76

in the right panel. Note the visibly growing instabilities in the right panel

after 60 time steps.

using the following scheme:

un+1
j − unj
2∆t

= A
unj+1 − 2unj + unj−1

(∆x)
2 .

Estimate an upper limit for ∆t when

i) A = 106m2/s, ∆x = 400 km (large-scale horizontal

diffusion),

ii) A = 1m2/s, ∆x = 10m (vertical diffusion in a boundary

layer).

5. The diffusion equation can be integrated using the

Crank-Nicolson scheme:

T n+1
j − T nj

∆t
=
A

2

[︃

T nj+1 − 2T nj + T nj−1

(∆x)
2 +

T n+1
j+1 − 2T n+1

j + T n+1
j−1

(∆x)
2

]︃

.

Examine the stability of this scheme!

9. The Poisson and Laplace Equations

Consider the elliptic Poisson equation in two dimensions:

∇2u =

(︃

∂2

∂x2
+

∂2

∂y2

)︃

u = f (x, y). (9.1)

If f (x, y) = 0 this is known as the Laplace equation. As shown by

Figure 9.1, Equation (9.1) can be discretised on a grid:

ui−1,j − 2ui,j + ui+1,j

(∆x)
2 +

ui,j−1 − 2ui,j + ui,j+1

(∆y)
2 = fi,j, (9.2)

which can also be written as

ui,j =
(∆y)

2
(ui−1,j + ui+1,j) + (∆x)

2
(ui,j−1 + ui,j+1)− (∆x∆y)

2
fi,j

2
[︁

(∆x)
2
+ (∆y)

2
]︁ .

(9.3)

If we consider a square grid such that ∆x = ∆y, Equation (9.3) sim-

plifies to

ui,j =
1

4

[︁

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − (∆x)
2
fi,j
]︁

. (9.4)

When the boundary values for the domain are known, it is possible to

solve this finite-difference equation by iteration.

In iterative methods we need initial values at iteration level umi,j
(m = 0 initially) and the purpose is to calculate um+1

i,j . This procedure

is repeated until the difference between the results from two successive

iterations decrease below a prescribed value at each grid point.

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 95–100. Stockholm: Stockholm University
Press. DOI: https://doi.org/10.16993/bbs.i. License: CC BY 4.0

https://doi.org/10.16993/bbs.i

96 Basic Numerical Methods in Meteorology and Oceanography

Figure 9.1. Grid for the Poisson and Laplace equations. Boundary values

required for the four walls at the blue points. The green points illustrate

which points are needed to compute the red point. The solution is obtained

by calculating iteratively starting from the orange arrow.

9.1 Jacobi iteration

Values from the previous iteration level are used, which results in

um+1
i,j =

1

4

[︁

umi−1,j + umi+1,j + umi,j−1 + umi,j+1 − (∆x)
2
fi,j
]︁

. (9.5)

The method works but is somewhat inefficient and is not used for solv-

ing practical problems.

A Fortran-code segment of this iterative computation could look like

this:

u=0. ! initialise the field to zero

f=0. ! Set the function f to something

omega =1.5 ! relaxation factor

! Set the boundary conditions to something

u(1,:,:) =10. ; u(IX ,:,:) =10.

u(:,1,:) =10. ; u(:,JY ,:) =10.

do m=1,500 ! number of iterations

do j=2,JY -1

do i=2,IX -1

! Jacobi iteration

! u(i,j,m+1) =0.25*(u(i-1,j,m)+u(i+1,j,m) &

! & +u(i,j-1,m)+u(i,j+1,m)-dx**2*f(i,j))

! Gauss -Seidel iteration

! u(i,j,m+1) =0.25*(u(i-1,j,m+1)+u(i+1,j,m) &

! & +u(i,j-1,m+1)+u(i,j+1,m)-dx**2*f(i,j))

The Poisson and Laplace Equations 97

! Successive Over Relaxation (SOR)

u(i,j,m+1)=(1.- omega)*u(i,j,m)+ &

& omega *0.25*(u(i-1,j,m+1)+u(i+1,j,m) + &

& u(i, j-1,m+1)+u(i,j+1,m)-dx**2*f(i,j))

res(m)=res(m)+(u(i,j,m+1)-u(i,j,m))**2

enddo

enddo

print *,m,res(m)

enddo

9.2 Gauss-Seidel iteration

A clear improvement in efficiency of iterative methods is obtained if

we use the newly computed values in the iteration formula: iteration

level m+ 1 values are available for nodes (i− 1, j) and (i, j − 1) when

calculating u for node (i, j). Thus the Gauss-Seidel formula is:

um+1
i,j =

1

4

[︁

um+1
i−1,j + umi+1,j + um+1

i,j−1 + umi,j+1 − (∆x)
2
fi,j
]︁

. (9.6)

The inclusion of the two newly computed values makes Gauss-Seidel

iteration more efficient than Jacobi iteration. Note that the Fortran

code above for the Jacobi method can easily be “upgraded” to the

Gauss-Seidel method by simply removing the iteration index m.

9.3 Successive Over Relaxation (SOR)

The Gauss-Seidel iteration method can be further improved by

increasing the convergence rate using the method of Successive Over

Relaxation (SOR). The change between two successive Gauss-Seidel

iterations is denoted the residual c, which is defined as

c = um+1
i,j − umi,j. (9.7)

In the method of SOR, the Gauss-Seidel residual is multiplied by a

relaxation factor ω and a new iteration value is obtained from

um+1
i,j = umi,j+ωc = umi,j+ω

(︁

ûm+1
i,j − umi,j

)︁

= (1− ω)umi,j+ωû
m+1
i,j , (9.8)

where ûm+1
i,j denotes the new iteration value obtained from the

Gauss-Seidel method using Equation (9.6). It can easily be seen

that if ω = 1, SOR reduces to the Gauss-Seidel iteration method.

98 Basic Numerical Methods in Meteorology and Oceanography

Figure 9.2. Numerical solution of the Laplace equation using the supplied

Fortran code. Iterated 500 times using the Jacobi method (upper left), the

Gauss-Seidel method (upper right), the SOR method with ω = 1.5 (lower

left) and with ω = 2 (lower right). Note that this last case does not converge

because of too large a relaxation factor. The end solution should converge

towards 10, since that is the value of all the boundary conditions and f = 0.

By substituting Equation (9.6) of the Gauss-Seidel iteration method in

Equation (9.8), we obtain the equation used in the SOR method:

um+1
i,j = (1− ω)umi,j +

ω

4

[︁

um+1
i−1,j + umi+1,j + um+1

i,j−1 + umi,j+1 − (∆x)
2
fi,j
]︁

.

(9.9)

The Poisson and Laplace Equations 99

Usually the numerical value of the relaxation factor ω can be obtained

by trial and error and the optimum value is generally around 1.5. In

the case that 0 < ω < 1 , the method is said to be “under-relaxed”.

According to the choice of the parameter ω, we either extrapolate for

ω > 1 or for 0 < ω < 1 interpolate between the old iteration value at

level m and the Gauss-Seidel value at level m + 1. If we extrapolate

too much, i.e. ω is taken too large, the iteration starts to oscillate and

probably collapses. The iterative methods described above are often

referred to as relaxation methods as an initially guessed solution is

allowed to slowly relax, reducing the errors, towards the true solution.

Finally, it also deserves mention that multi-grid methods can also

be employed, where sequences of coarser grids are used so as to provide

initial guesses for the finer grids. This is done in order to speed up the

convergence of the iterative procedure. See e.g. Hackbusch (1985) for

a comprehensive overview of multi-grid methods and applications.

9.4 Helmholtz Decomposition

An example of Poisson equations, where one uses the iterative meth-

ods above in order to solve the equation, is when computing stream

functions and velocity potentials. The Helmholtz theorem states that

a velocity field can be decomposed into rotational and divergent parts:

u = uχ + uψ, (9.10a)

v = vχ + vψ, (9.10b)

where the subscript χ denotes the divergent irrotational part and ψ the

non-divergent rotational part. The stream function is defined as

∂ψ

∂x
= vψ ,

∂ψ

∂y
= −uψ. (9.11)

The velocity potential is defined as

∂χ

∂x
= uχ ,

∂χ

∂y
= vχ. (9.12)

100 Basic Numerical Methods in Meteorology and Oceanography

An equation for the stream function ψ can be derived by

∂9.10b

∂x
− ∂9.10a

∂y
:

∂v

∂x
− ∂u

∂y
=
∂vχ
∂x

+
∂vψ
∂x

− ∂uχ
∂y

− ∂uψ
∂y

=

∂2ψ

∂x2
+

∂2χ

∂x∂y
+
∂2ψ

∂y2
− ∂2χ

∂y∂x
= ∇2ψ = ξ(x, y),

(9.13)

where ξ is the relative vorticity.

An equation for the velocity potential can similarly be obtained by

∂9.10a

∂x
+
∂9.10b

∂y
:

∇2ψ = ∇ · V⃗ .
(9.14)

These two Poisson equations may be solved iteratively as explained

previously in this chapter.

Exercise:

Set up a numerical model of the Laplace equation with a grid of 10 x

10 points. Start with u = 0 in the interior and with u = 1 as boundary

conditions. Test the convergence of the 3 different iteration schemes

from this chapter.

10. Implicit and Semi-Implicit Schemes

The time step permitted by the economical explicit schemes, twice

that satisfying the CFL criterion, is still considerably shorter than that

required for accurate integration of the quasi-geostrophic equations,

which do not permit fast oscillating waves. Thus we will here consider

implicit schemes, which have the pleasing property of being stable for

any choice of time step.

10.1 Implicit versus explicit schemes, a simple example

For implicit schemes, the spatial terms are evaluated, at least partially,

at the unknown time level. Let us consider one of the simplest possible

examples by examining the one-dimensional diffusion equation, also

known as the heat equation (8.4):

∂u

∂t
= A

∂2u

∂x2
. (10.1)

A formal solution of this parabolic differential equation requires an

initial condition as well as two boundary conditions, the latter, in order

not to complicate our problem unnecessarily, here taken to be Dirichlet

conditions (cf. Section 2.1)

This equation is discretised with centred spatial finite differences

and integrated in time with an Euler-forward scheme. In traditional

explicit form we obtain

un+1
i = uni +A

∆t

(∆x)2
(︁

uni−1 − 2uni + uni+1

)︁

, (10.2)

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 101–107. Stockholm: Stockholm University
Press. DOI: https://doi.org/10.16993/bbs.j. License: CC BY 4.0

https://doi.org/10.16993/bbs.j

102 Basic Numerical Methods in Meteorology and Oceanography

which can be rewritten as

un+1
i = νuni−1 + (1− 2ν)uni + νuni+1, (10.3)

where ν ≡ A∆t/ (∆x)
2
is as previously the von Neumann number. This

equation is explicit in terms of un+1
i , which is the value at the unknown

time level n+1, and is hence possible to solve. A stability analysis can

be performed and shows that it is conditionally stable (−1 ≤ λ ≤ 1)

for ν ≤ 1/2. A stricter condition with only a positive root (0 ≤ λ ≤ 1)

for the non oscillating solution is obtained for ν ≤ 1/4.

A similar approach, but evaluating the spatial term at the unknown

time level n+ 1, yields the fully implicit discretisation

un+1
i = uni + ν

[︁

un+1
i−1 − 2un+1

i + un+1
i+1

]︁

, (10.4)

which can be rewritten with all terms at time step n+1 on the left-hand

side as

− νun+1
i−1 + (1 + 2ν)un+1

i − νun+1
i+1 = uni . (10.5)

This implicit discretisation is unconditionally stable. To solve the

equation one needs to consider all grid points i. In the present case,

when we are dealing with the linearised heat equation, the problem can

be expressed as a linear system of equations AX⃗ = B⃗, where A is a

matrix, X⃗ a vector given by the unknown values of u at time n + 1,

and B⃗ a vector given by the known values of u:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(1 + 2ν) −ν
−ν (1 + 2ν) −ν
...

...

−ν (1 + 2ν) −ν
...

... ...

−ν (1 + 2ν)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

un+1
2

un+1
3

...

...

un+1
i

...

...

un+1
I−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

un2 + νun+1
1

un3
...

...

uni
...

...

unI−1 + νun+1
I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(10.6)

For didactic reasons we take un+1
1 and un+1

I to be known from Dirich-

let boundary conditions. Neumann and Cauchy conditions can equally

well be applied, but are somewhat more complicated to implement.

The solution at time level n+ 1 is determined by solving this system

of equations. The implicit method is consequently very computationally

Implicit and Semi-Implicit Schemes 103

demanding compared to the explicit method, but since it is

unconditionally stable it is possible to use larger time steps. In the

present case, the matrix is tridiagonal, which is advantageous from a

computational standpoint, since the problem can be solved using e.g.

the Thomas algorithm, a simplified version of Gaussian elimination.

10.2 Semi-implicit schemes

Semi-implicit schemes evaluate the spatial derivative at an average of

the time levels n and n + 1 instead of only at n + 1 as in the fully-

implicit case. If F (x, y, t) is a term comprising spatial derivatives of

a given scalar T (x, y, t), we can consider the general expression for a

discretised version of the equation for the time evolution of ui,j:

du

dt
= F (x, y) ⇒

un+1
i,j − uni,j

∆t
= (1− β)F n

i,j + βF n+1
i,j , (10.7)

where β = 0 yields an explicit scheme, β = 1 a fully implicit scheme

and 0 < β < 1 a semi-implicit scheme.

A commonly used semi-implicit method is given by the Crank-

Nicolson scheme, in which β = 0.5 and the time derivative is expressed

with the usual Euler-forward scheme. The term comprising spatial

derivatives is therefore centred at time level n + 1/2, which in fact

turns this scheme into a trapezoidal implicit scheme in time. By car-

rying out a Taylor expansion around (i, n + 1/2), one can verify that

this scheme is characterised by a second-order accuracy in time, which

represents an appreciable improvement with regard to the first-order

accuracy of the Euler-forward explicit scheme.

10.2.1 The one-dimensional (1D) diffusion equation

The heat equation (8.4) is usually associated with centred differencing

in space. When using a semi-implicit time scheme it becomes

un+1
i − uni
∆t

= (1− β)A
uni+1 − 2uni + uni−1

(∆x)
2 + βA

un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)
2 .

(10.8)

The semi-implicit Crank-Nicolson scheme (β = 0.5) results in a numer-

ical precision of second order both in time and space and hence the

truncation error is of O
[︁

(∆t)
2
, (∆x)

2
]︁

.

104 Basic Numerical Methods in Meteorology and Oceanography

10.2.2 Two-dimensional (2D) pure gravity waves

Let us now discretise the equations for two-dimensional shallow-water

gravity waves, viz. Equations (7.25) without the Coriolis terms, using

the Crank-Nicolson scheme on a C-grid and an Euler-forward time

integration:

un+1
i,j = uni,j −

g∆t

2∆x

(︁

hn+1
i+1,j − hn+1

i,j + hni+1,j − hni,j
)︁

, (10.9a)

vn+1
i,j = vni,j −

g∆t

2∆y

(︁

hn+1
i,j+1 − hn+1

i,j + hni,j+1 − hni,j
)︁

, (10.9b)

hn+1
i,j = hni,j− (10.9c)

H∆t

(︃

un+1
i,j − un+1

i−1,j + uni,j − uni−1,j

2∆x
+
vn+1
i,j − vn+1

i,j−1 + vni,j − vni,j−1

2∆y

)︃

.

(10.9d)

A stability analysis of these equations can be undertaken by inserting

the wave solutions

(un, vn, hn) = (u0, v0, h0)λ
neI(ki∆x+lj∆y), (10.10)

and we find

u0 (1− λ) =
g∆t

2∆x
(1 + λ)

(︁

eIk∆x − 1
)︁

h0, (10.11a)

v0 (1− λ) =
g∆t

2∆y
(1 + λ)

(︁

eIl∆y − 1
)︁

h0, (10.11b)

h0 (1− λ) = H∆t (1 + λ)

(︃

1− e−Ik∆x

∆x
u0 +

1− e−Il∆y

∆y
v0

)︃

. (10.11c)

By eliminating u0, v0 and h0, we obtain the following quadratic

equation for λ:

λ2 − 2λ
1−B

1 +B
+ 1 = 0,

B ≡ 2gH∆t2
[︃

sin2 (k∆x/2)

∆x2
+

sin2 (l∆y/2)

∆y2

]︃

,

(10.12)

with the two roots

λ1,2 =
1−B ± 2i

√
B

1 +B
. (10.13)

Implicit and Semi-Implicit Schemes 105

These two amplification factors have the absolute value

|λ1,2|2 =
(︃

1−B

1 +B

)︃2

+

(︄

2
√
B

1 +B

)︄2

= 1,

and thus the scheme is unconditionally stable. The scheme is also said

to be “neutrally stable” since |λ| = 1 is just at the edge of stability.

This example of an application of the Crank-Nicolson scheme shows

the power of semi-implicit methods as these both decrease the tem-

poral truncation error from O(∆t) to O
[︁

(∆t)
2
]︁

and make the scheme

unconditionally stable.

To solve the system constituted by Equations (10.9), as will be done

in next section, the quantities δxu
n+1 and δyv

n+1 can be eliminated

from the third of these equations by applying the operators δx and δy
to the first and second, respectively, and substituting the results into

the third equation. This yields a set of equations for the height h in the

form of a linear matrix system involving each grid point of the domain.

This problem can be solved using e.g. an iterative procedure similar to

those further discussed in the previous chapter:

1. Make a first guess hn+1 which is usually hn.

2. At each of the grid points the value of hn+1 has to satisfy the

equation.

3. The preceding step is repeated as many times as needed to

make the change at every point less than some pre-assigned

small value.

10.3 The semi-implicit method of Kwizak and Robert

When considering the shallow water equations Kwizak and Robert

(1971) chose to use the leap-frog scheme and a semi-implicit differ-

ence system for variables at time level n+ 1. The governing equations

can be written in a compact form:

∂u

∂t
= −g∂h

∂x
+Au, (10.14a)

∂v

∂t
= −g∂h

∂y
+Av, (10.14b)

∂h

∂t
= −H

(︃

∂u

∂x
+
∂v

∂y

)︃

+Ah, (10.14c)

106 Basic Numerical Methods in Meteorology and Oceanography

where Au, Av and Ah represent terms that were omitted in Equations

(7.25) describing the propagation of pure gravity waves. This time we

apply implicit differencing over a time interval 2∆t centred around time

n for the terms containing spatial derivatives by using β = 0.5 with

time steps n−1 and n+1 rather than n and n+1 as previously. Second-

order centred schemes are used for spatial derivatives and the leap-frog

scheme for the time derivative, and hence the discretised system is

un+1 = un−1 − g∆t (δxh
n−1 + δxh

n+1) + 2∆tAnu, (10.15a)

vn+1 = vn−1 − g∆t (δyh
n−1 + δyh

n+1) + 2∆tAnv , (10.15b)

hn+1 = hn−1 −H∆t (δxu
n−1 + δyv

n−1 + δxu
n+1 + δyv

n+1) + 2∆tAnh.

(10.15c)

We now apply the operator δx to the first and δy to the second of these

equations, and add the results. By introducing the notation

δxxh = δx (δxh) and δyyh = δy (δyh), (10.16)

we obtain

(δxu+ δyv)
n+1

=(δxu+ δyv)
n−1

− g∆t [(δxx + δyy)h
n−1 + (δxx + δyy)h

n+1]

+ 2∆t (δxAu + δyAv)
n
.

Substituting the right-hand side into Equation (10.15c), and defining

the finite-difference Laplacian by

∇2
∗ ≡ δxx + δyy, (10.17)

we find that

hn+1 = hn−1 − 2H∆t (δxu+ δyv)
n−1

+ gH∆t2 (∇2
∗h

n−1 +∇2
∗h

n+1)

+ 2∆t [Ah −H∆t (δxAu + δyAv)]
n
. (10.18)

By, in addition, introducing the definitions

F n−1 ≡ hn−1 − 2H∆t (δxu+ δyv)
n−1

+ gH∆t2∇2
∗h

n−1, (10.19)

Gn ≡ 2∆t [Ah −H∆t (δxAu + δyAv)]
n
, (10.20)

this result can be formulated as

hn+1 − gH∆t2∇2
∗h

n+1 = F n−1 +Gn, (10.21)

Implicit and Semi-Implicit Schemes 107

where the terms have been arranged to show that at time level n, the

right-hand side of this equation is known at all grid points. This is an

elliptic PDE reminiscent of the Helmholtz equation

∇2h+ ah+ b (x, y) = 0. (10.22)

Several methods are available for resolving this standard problem. Once

it has been solved for hn+1, then un+1 and vn+1 can be obtained directly

from Equations (10.15).

11. The Semi-Lagrangian Technique

In an Eulerian advection scheme an observer at a fixed point in point in

space watches the surroundings. Such schemes work well on structured

grids of the type to be discussed in Chapter 12, but often lead to unnec-

essarily restrictive time steps imposed by the requirement of computa-

tional stability. In a Lagrangian advection scheme the observer watches

the ambient world evolve while travelling “on board” a fluid particle.

An advantage with a Lagrangian scheme is that one can use much

larger time steps than in the Eulerian case. A disadvantage is, however,

that a regularly spaced set of particles will in most cases subsequently

evolve into one which is highly irregularly spaced and important char-

acteristics of the flow may consequently be lost. The advantage with

the semi-Lagrangian advection schemes is that they combine the reg-

ular resolution of the Eulerian schemes with the enhanced stability of

the Lagrangian ones. Robert (1981) proposed using a semi-Lagrangian

scheme for the treatment of the advective part of the equations (see

e.g. Staniforth and Côté (1991) for a general review).

11.1 The 1D linear advection equation

To present the basic idea underlying the semi-Lagrangian method in

its simplest context let us first examine the one-dimensional advection

equation formulated within an Eulerian framework:

∂F

∂t
+ c

∂F

∂x
= 0, (11.1)

where c is a given constant velocity and F the passively advected tracer

such as e.g. the temperature or moisture. The most straightforward

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 109–116. Stockholm: Stockholm University
Press. DOI: https://doi.org/10.16993/bbs.k. License: CC BY 4.0

https://doi.org/10.16993/bbs.k

110 Basic Numerical Methods in Meteorology and Oceanography

Figure 11.1. The green stable region for the advection equation discretised

with centred finite differences in both time and space. The maximum

distance you may travel during one time step ∆t is one grid length ∆x. The

red dotted line illustrates how advection with a speed c = 4∆x/3∆t takes

place in the red unstable region, which can, however, be solved numerically

with a semi-Lagrangian scheme.

discretisation of this equation, as presented in Chapter 4, is centred

differencing in both time and space:

F n+1
j − F n−1

j

2∆t
+ c

F n
j+1 − F n

j−1

2∆x
= 0. (11.2)

This scheme will only yield a stable solution when integrated with a

Courant number µ ≤ 1 as shown by the green area in Figure 11.1.

Equation (11.1) can be formulated in a Lagrangian framework

instead of an Eulerian one, resulting in

DF

Dt
= 0, (11.3)

where the Lagrangian derivative is defined as D/Dt ≡ ∂/∂t + c∂/∂x.

Equation (11.3) simply shows how the value of F is constant along the

corresponding trajectory.

In discretised space this implies that F n+1
j must be equal to the value

of F at time step n, which can be expressed as

F n+1
j = F n

∗ , (11.4)

where ∗ symbolises the spatial position at time level n, which is nor-

mally not a grid point and in our case is where the red dotted line

The Semi-Lagrangian Technique 111

in Figure 11.1 crosses time level n (shown as the red circle located

between j − 2 and j − 1). The value of F n
∗ can hence be obtained by

interpolation between these grid points:

F n
∗ = αF n

j−2 + (1− α)F n
j−1. (11.5)

Here α = frac (µ), where 0 ≤ α < 1, is the fractional part of the

Courant number. Making use of the integer part of the Courant num-

ber, p ≡ int (µ), viz. µ = p+α, this relationship can be expressed in a

more general way as

F n
∗ = αF n

j−p−1 + (1− α)F n
j−p. (11.6)

In our example p = 1 and α = 1/3, as shown in blue in Figure 11.1. The

discrete expression can be obtained from Equations (11.4) and (11.6),

resulting in

F n+1
j = αF n

j−p−1 + (1− α)F n
j−p. (11.7)

Figure 11.2 shows how this semi-Lagrangian discretisation of the linear

1D advection equation can be used with µ = 4/3 (left panel) but is

clearly unstable (right panel) for the centred scheme in time and space,

which was presented in Chapter 4 and Figure 4.4.

Figure 11.2. Hovmöller diagrams of the linear advection equation

integrated numerically with µ = 4/3. A semi-Lagrangian scheme has been

used for the left panel and a centred scheme in both time and space for the

right panel. Note that the integration with the centred scheme blows up

after just a few time steps, cf. Figure 4.4.

112 Basic Numerical Methods in Meteorology and Oceanography

11.2 Stability analysis

A von Neumann stability analysis is undertaken of the semi-Lagrangian

discretisation of the 1D linear advection equation discussed above. We

search for a solution of the form F n
j = λnF0e

ikj∆x that we substitute

in Equation (11.7), which results in the amplification factor

λ = αe−ik(p+1)∆x+(1−α)e−ikp∆x = e−ikp∆x
(︁

1− α+ αe−ik∆x
)︁

. (11.8)

The scheme is stable for |λ| ≤ 1, which is why we consider

|λ|2 =
⃓

⃓e−ikp∆x
⃓

⃓

2 ⃓
⃓

(︁

1− α+ αe−ik∆x
)︁⃓

⃓

2
. (11.9)

We use Euler’s formula, eiβ = cosβ+i sinβ and the associated absolute-

value result |cosβ + i sinβ| = 1, which leads to

|λ|2 = 1− 2α(1− α) [1− cos(k∆x)] . (11.10)

The minimum value of this expression is obtained when cos(k∆x) =

−1, which yields

|λ|2 = (1− 2α)2 ≤ 1. (11.11)

The maximum is obtained for cos(k∆x) = 1:

|λ|2 = 1. (11.12)

The scheme is hence unconditionally stable. The time step can thus be

much larger than in the case of e.g. the leap-frog scheme. A larger time

step will, however, decrease the numerical accuracy in a GCM, a fact

that must be taken into account. In a GCM employed for numerical

weather prediction this will nevertheless make it possible to use a time

step approximately six times larger than in the leap-frog case. The

absolute stability of the semi-Lagrangian scheme can be understood in

the sense that taking one single step along the flow in both time and

space is a way to adjust the spatial resolution. This is like prescribing

the spatial resolution coarser when possible, “as if the Courant number

had been equal to one”.

11.3 The advection equation with variable velocity

The derivations in the previous section can be extended to the 1D non-

linear advection equation for a tracer, where we replace the constant

phase speed c with a velocity, which varies in time and space.

DF

Dt
=
∂F

∂t
+ u

∂F

∂x
= 0, (11.13)

The Semi-Lagrangian Technique 113

where u = u(x, t) is a given velocity and F the passively advected

tracer such as e.g. the temperature or moisture. It can also, as in the

momentum equations, be the velocity itself so that F (x, t) = u(x, t)

We consider the case where the velocity unj is known at all grid points

in space and time. The centred scheme in both time and space in the

Eulerian framework is then

F n+1
j − F n−1

j

2∆t
+ unj

F n
j+1 − F n

j−1

2∆x
= 0. (11.14)

The Courant number is now µ = unj∆t/∆x and hence variable in time

and space but should never exceed 1 anywhere and anytime for this

centred case. Figure 11.3 shows an example of this, where the velocity

has been prescribed as varying in both time and space, and where the

maximum velocity was just at the limit of stability (µ = 1).

The semi-Lagrangian scheme for a variable prescribed velocity is,

just like in the linear case, based on that one can compute the value

F n+1
j by following a trajectory backwards from its upwind position at

a previous time step. The “exact” backward trajectory from the point

where F n+1
j is illustrated by the blue curve AC in Figure 11.4. For

our calculations it will be approximated by the red straight line A′C.

Equation (11.13) states that the scalar F remains constant along a fluid

path or trajectory. The integration along the approximated trajectory

of Equation (11.13) is thus

F n+1
j = F n−1

∗ , (11.15)

where F n−1
∗ is located at A′, which subsequently is to be determined.

The particle displacement in the x-direction over the two time steps

from point A′ to C is 2un∗∆t. Here u
n
∗ is the interpolated velocity at

point B:

un∗ = αunj−p−1 + (1− α)unj−p, (11.16)

where p = int(µ) and α = µ − p. This is the same interpolation as

for the case with a constant velocity but with the difference that the

Courant number now depends on a variable velocity un∗ :

µ =
un∗∆t

∆x
. (11.17)

Since both α and un∗ depend on each other we need to iterate in order

find the point B with the corresponding velocity un∗ . Once this is found

114 Basic Numerical Methods in Meteorology and Oceanography

Figure 11.3. Hovmöller diagrams. The prescribed time- and

space-dependent velocity unj (upper left panel). The non-linear advection

equation integrated numerically with a leap-frog scheme (upper right panel)

and with the semi-Lagrangian scheme (lower panel). The Courant number

varies over the interval −1.75 ≤ µ ≤ 2.25, which results in a clearly unstable

solution in the leap-frog case but a nice and smooth solution using the

semi-Lagrangian framework.

we can determine the point A′ and compute the interpolated value of

F in this position:

F n−1
∗ = βF n−1

j−q−1 + (1− β)F n−1
j−q , (11.18)

where q ≡ int(2µ) and β = 2µ − q. Here the factor “2” is due to the

two time steps separating F n−1
∗ from F n+1

j .

The Semi-Lagrangian Technique 115

Figure 11.4. Schematic representing the semi-Lagrangian scheme with

variable-velocity advection. The “real” (blue curve) and approximate (red

line) trajectories that arrive at grid point j at time level n+ 1. Here α and p

are the interpolation coefficients used to calculate un
∗
, β and q, the

quantities used for the interpolation of Fn−1
∗

.

The semi-Lagrangian calculation will thus go through the following

stages:

1. A first guess of un∗ , which could be un∗ = unj .

2. Compute µ, α and p with this u∗.

3. Compute a new u∗ = αunj−p−1 + (1− α)unj−p .

4. Iterate over stages 2 and 3 until no significant improvement is

obtained.

5. Compute q ≡ int(2µ) and β = 2µ− q.

6. Finally use F n+1
j = F n−1

∗ = βF n−1
j−q−1 + (1− β)F n−1

j−q .

The semi-Lagrangian formulation above is only valid for one-

dimensional problems on a regular grids but can easily be extended

to curvilinear grids as well as two- and three-dimensional flows. The

interpolations presented here have all been linear for didactic reasons.

The disadvantage is, however, that the linear interpolation creates too

much diffusion of the tracers. The semi-Lagrangian formulations, which

are employed in circulation models today, for this reason use higher-

order schemes such as cubic interpolations. The clear advantage of

the semi-Lagrangian scheme over the Eulerian ones is that one can

use much larger time steps ∆t. The accuracy of the semi-Lagrangian

116 Basic Numerical Methods in Meteorology and Oceanography

scheme discusssed in the present chapter is only of first order and will

decrease with longer time steps. The time step ∆t is often chosen to

be 5 to 10 times larger for a semi-Lagrangian scheme than for an Eule-

rian one. A drawback with the semi-Lagrangian schemes has been that

they were not as mass conserving as the Eulerian ones, which has been

rectified in the more recent formulations. When applying the semi-

Lagrangian method to the shallow water equations with forcing, dissi-

pation and bottom topography some additional difficulties will arise.

12. Model Coordinates

In order to present some 3D modelling in the next chapter we will here

show the different types of vertical coordinates that are used for oceanic

and atmospheric circulation models.

12.1 Oceanic vertical coordinates

The most common vertical coordinate systems used in ocean circula-

tion models are presented in Figure 12.3. They are of basically three

types: z-coordinates (constant depth), terrain-following sigma coordi-

nates and isopycnic coordinates with density layers. The first oceanic

general circulation model, developed by Bryan and Cox (1967), used

fixed z-coordinates with a rigid lid as illustrated by the top right panel

of Figure 12.1. The rigid-lid approximation was replaced (Killworth

et al., 1991) by treating the fast barotropic mode separately, viz. intro-

ducing a free surface. Another improvement of the fixed z-coordinates

was achieved by Pacanowski and Gnanadesikan (1998) by adjusting

the thickness of the deepest layer in order to match the total depth

as illustrated by the middle left panel of Figure 12.3. Adcroft and

Campin (2004) introduced a time dependence in what is known as

z∗-coordinates, where all layers were adjusted to the free-surface ele-

vation variations like an accordion (middle right panel of Figure 12.3).

Terrain-following vertical coordinates were suggested by Phillips (1957)

for atmospheric forecasting models

12.1.1 Fixed-depth coordinates

A simple example of a vertical discretisation is the one of the continuity

equation, which is used in many Ocean General Circulation Models

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 117–134. Stockholm: Stockholm University
Press. DOI: https://doi.org/10.16993/bbs.l. License: CC BY 4.0

https://doi.org/10.16993/bbs.l

118 Basic Numerical Methods in Meteorology and Oceanography

Figure 12.1. Different ocean-model vertical coordinates.

(OGCMs), based on the B-grid with fixed-depth levels as shown in

Figure 12.2. The continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (12.1)

Model Coordinates 119

Figure 12.2. Finite-difference boxes for the B-grid and the C-grid with

fixed-depth level coordinates.

can be discretised on a B-grid as

wi,j,k = wi,j,k−1 −∆z

[︄

(ui,j,k + ui,j−1,k)− (ui−1,j,k + ui−1,j−1,k)

2∆x

+
(vi,j,k + vi−1,j,k)− (vi,j−1,k + vi−1,j−1,k)

2∆y

]︄

,

(12.2)

or on a C-grid as

wi,j,k = wi,j,k−1 −∆z

(︄

ui,j,k − ui−1,j,k

∆x
+
vi,j,k − vi,j−1,k

∆y

)︄

. (12.3)

Equation (12.2) is integrated from the bottom upwards with the bound-

ary condition wi,j,k=0 = 0 at the bottom of the ocean. The interpreta-

tion of this equation is that the sum of all the volume fluxes in or out of

the grid box is zero. An alternative way to derive the vertical velocity

is therefore to consider that the sum of the volume transport through

the six grid-box walls must be zero due to the incompressibility. This

sum for the C-grid box is hence

(ui,j,k − ui−1,j,k)∆y∆z + (vi,j,k − vi,j−1,k)∆x∆z

+ (wi,j,k − wi,j,k−1)∆x∆y = 0,
(12.4)

which becomes identical to Equation (12.3) by a reformulation. Note

that we have for simplicity used a k that decreases with depth in order

120 Basic Numerical Methods in Meteorology and Oceanography

to have the upward positive direction as k increases. In most OGCMs,

however, k will decrease with depth, with the surface layer counting as

k = 1.

12.1.2 Variable-depth coordinates

The layer thickness is in most of today’s OGCMs a function of both

space and time as shown in Figure 12.1. On a C-grid the mass trans-

ports through the eastern, northern and upper faces, respectively, of

the i, j, k grid box at time step n are given by

Un
i,j,k = ρni,j,ku

n
i,j,k∆yi,j∆z

n
i,j,k, (12.5)

V n
i,j,k = ρni,j,kv

n
i,j,k∆xi,j∆z

n
i,j,k, (12.6)

W n
i,j,k = ρi,j,kw

n
i,j,k∆xi,j∆yi,j, (12.7)

where the unit is kg/s. The continuity equation, which expresses con-

servation of mass, states that

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0. (12.8)

Integrating Equation (12.8) over a finite grid box of volume ∆x∆y∆z

we obtain

∂Mi,j,k

∂t
+Ui,j,k−Ui−1,j,k+Vi,j,k−Vi,j−1,k+Wi,j,k−Wi,j,k−1 = 0, (12.9)

whereMi,j,k is the mass of the grid box. The rate of mass change of the

grid box ∂Mi,j,k/∂t can be either due to compression in a compressible

GCM or to grid-box volume change, which in a GCM is generally due

to the time dependence of the vertical resolution so that the thicknesses

of model layers vary in time.

The mass of the grid box is

Mn
i,j,k = ρni,j,k∆xi,j∆yi,j∆z

n
i,j,k. (12.10)

The vertical mass transport through the top of the grid box is obtained

by discretising Equation (12.9) between two stored time levels:

W n
i,j,k =W n

i,j,k−1 −
(︄

Un
i,j,k − Un

i−1,j,k + V n
i,j,k − V n

i,j−1,k

+
ρn+1
i,j,k∆z

n+1
i,j,k − ρn−1

i,j,k∆z
n−1
i,j,k

2∆t
∆xi,j∆yi,j

)︄

,

(12.11)

Model Coordinates 121

which is computed by integration from the bottom and upwards with

the bottom boundary condition Wi,j,0 = 0. The vertical velocity w can

then be deduced from Equation 12.7.

In many OGCMs, the fluid is considered to be incompressible and

thus the density is taken to be constant in the equation above. The

vertical volume transport through the top of the grid box then becomes

Wn
i,j,k = Wn

i,j,k−1 −
(︄

Un
i,j,k − Un

i−1,j,k + Vni,j,k − Vni,j−1,k

+
∆zn+1

i,j,k −∆zn−1
i,j,k

2∆t
∆xi,j∆yi,j

)︄

,

(12.12)

where U ,V and W are the volume transports in the unit m3/s.

12.2 Atmospheric vertical coordinates

Instead of depth/height as vertical coordinate in our system of

equations it is possible to use other quantities. The density varies with

latitude and height/depth which makes the equations sometimes less

easy to use than an alternative system which employs other quantities,

such as pressure, sigma or potential temperature for the atmosphere

and density or sigma for the ocean, as the vertical coordinate. These

coordinates may facilitate solving the complete equations of motion.

12.2.1 Generalised vertical coordinates

We can derive a system of equations for a generalised vertical coor-

dinate ζ, which is assumed to be related to the height/depth by a

single-valued monotonic function. When we transform the vertical coor-

dinate a variable u(x, y, z, t) becomes a(x, y, ζ(x, y, z, t), t). The hori-

zontal coordinates remain the same. Let s represent x, y or t. From

Figure 12.3 we see that

C −A

∆s
=
B −A

∆s
+
C −B

∆z

∆z

∆s
, (12.13)

so that
(︃

∂a

∂s

)︃

ζ

=

(︃

∂a

∂s

)︃

z

+

(︃

∂a

∂z

)︃

s

(︃

∂z

∂s

)︃

ζ

, (12.14)

where
∂a

∂ζ
=
∂a

∂z

∂z

∂ζ
, (12.15)

122 Basic Numerical Methods in Meteorology and Oceanography

Figure 12.3. Schematic showing the vertical coordinate transformation.

or

∂a

∂z
=
∂a

∂ζ

∂ζ

∂z
. (12.16)

Substituting Equation (12.16) in Equation (12.14), we obtain

(︃

∂a

∂s

)︃

ζ

=

(︃

∂a

∂s

)︃

z

+
∂a

∂ζ

∂ζ

∂z

(︃

∂z

∂s

)︃

ζ

. (12.17)

From this relationship, we can obtain an equation for a horizontal

gradient of the scalar a in ζ coordinates:

∇ζa = ∇za+
∂a

∂ζ

∂ζ

∂z
∇ζz (12.18)

and for the horizontal divergence of a vector V⃗ :

∇ζ · V⃗ = ∇z · V⃗ +
∂V⃗

∂ζ
· ∂ζ
∂z

∇ζz. (12.19)

The total derivative of a(x, y, ζ, t) becomes

Da

Dt
=

(︃

∂a

∂t

)︃

ζ

+ V⃗ · ∇ζa+ ζ̇
∂a

∂ζ
. (12.20)

Model Coordinates 123

Figure 12.4. Illustration of pressure, sigma and hybrid vertical coordinates

in an atmospheric model including terrain. The three types of coordinates

are superimposed on each other in the lower right panel.

The three basic (pressure, sigma and hybrid) atmospheric verti-

cal model coordinates will now be examined and are shown in

Figure 12.4.

12.2.2 Pressure coordinates

Pressure or isobaric coordinates can be used in the atmosphere when

the hydrostatic approximation (cf. Section 13.1) is applied. In pressure

coordinates, where ∂p/∂ζ ≡ 1, the total derivative, Equation (12.20),

is given by

da

dt
=
∂a

∂t
+ V⃗ · ∇a+ ω

∂a

∂p
, (12.21)

124 Basic Numerical Methods in Meteorology and Oceanography

where the vertical velocity in pressure coordinates is ω ≡ dp/dt. The

continuity equation (12.1) can now be written as

∇p · V⃗ +
∂ω

∂p
= 0. (12.22)

From this expression ω can be computed by integrating from the top

of the atmosphere, where ω = 0, downwards over the pressure layers k,

which on a C-grid yields

ωi,j,k = ωi,j,k−1 −∆pk

(︄

ui,j,k − ui−1,j,k

∆x
+
vi,j,k − vi,j−1,k

∆y

)︄

. (12.23)

This is known as the “the kinematic method” to compute the verti-

cal motion in the atmosphere. This is basically the same method as is

used in ocean models expressed by Equation (12.3) and has the clear

advantage of being mass conserving. The drawback is, however, that

this motion tends to be very “noisy” since it depends on the diver-

gence of the wind and hence on its weak ageostrophic component. In

particular, this becomes a problem when the horizontal velocity field is

based on observations, as is the case in numerical weather predictions.

The “adiabatic method” may then be employed instead by using the

thermodynamic energy equation based on the the first law of thermo-

dynamics, see e.g. Holton and Hakim (2013). This law, if expressed in

the isobaric system in the absence of diabatic heating or cooling, is

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ ω

∂T

∂p
− ω

ρCp
= 0. (12.24)

By defining the the static stability parameter for the isobaric system

as

σ ≡ 1

ρCp
− ∂T

∂p
, (12.25)

where Cp is the specific heat at constant pressure, we can deduce an

expression for the vertical motion:

ωi,j,k =
1

σ

(︃

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)︃

. (12.26)

There are other methods to calculate the vertical atmospheric motion

such as the “vorticity method” (Sawyer, 1949), which as the names indi-

cates, is based on a vorticity equation. Most atmospheric GCMs today,

however, use terrain-following vertical coordinates, described below.

Model Coordinates 125

Figure 12.5. Two different vertical resolutions of the hybrid-coordinate

model used at the European Centre for Medium-Range Weather Forecasts

(ECMWF).

12.2.3 Atmospheric sigma coordinates

The sigma-coordinate system defines the origin at the ground level

of the model. The surfaces in the sigma-coordinate system follow the

model terrain and are steeply sloped in the regions where terrain itself

is strongly inclined. The sigma-coordinate system defines the vertical

position in the atmosphere as a ratio of the pressure difference between

the location in question and the top of the domain to that of the pres-

sure difference between the origin and the top of the domain. Because

it is pressure-based and normalised, it is mathematically easy to cast

the governing equations of the atmosphere in a relatively simple form.

The sigma coordinate is hence σ = p/pS, where pS(x, y, z, t) is the

126 Basic Numerical Methods in Meteorology and Oceanography

pressure at the surface of the Earth. The boundary values are conse-

quently σ = 0 at the top of the atmosphere where p = 0 and σ = 1

at the surface of the Earth. An illustration of the difference between

pressure and sigma coordinates is presented in the upper right panel of

Figure 12.4.

12.2.4 Hybrid coordinates

The hybrid coordinate system has the properties of sigma coordinates

in the lower atmosphere and those of pressure coordinates in the strato-

sphere. Following Simmons and Burridge (1981) the atmosphere is

divided into Nlev layers, which are defined by the pressures at the inter-

faces between them, these pressures given by

pk+1/2 = ak+1/2 + bk+1/2 pS (12.27)

for k = 0, 1, .., Nlev, with k = 0 at the top of the atmosphere and k =

Nlev at the surface of the Earth. The ak+1/2 and bk+1/2 are constants,

the values of which effectively define the vertical coordinate and pS is

the surface pressure. The values ak and bk for a 60-layer model are

shown in Figure 12.6.

Figure 12.6. Model levels for the 60 layers shown in Figure 12.5, with

corresponding ak and bk. The middle of each layer in red and the interfaces

in black.

Model Coordinates 127

The dependent variables, viz. the zonal wind u, the meridional wind

v, the temperature T and the specific humidity q, are defined in the

middle of the layers, where the pressure is defined as

pk =
1

2
(pk−1/2 + pk+1/2) (12.28)

for k = 1, 2, .., Nlev. The vertical coordinate is η = η(p, pS) and

has the boundary value η(0, pS) = 0 at the top of the atmosphere

and η(pS, pS) = 1 at the surface of the Earth. Two different vertical

resolutions with hybrid coordinates are shown in Figure 12.5.

The vertical mass transport between the layers in a hydrostatic

AGCM can be deduced from Equation (12.11) so that

W n
i,j,k =W n

i,j,k−1 −
(︄

Un
i,j,k − Un

i−1,j,k + V n
i,j,k − V n

i,j−1,k

+
∆pn+1

i,j,k −∆pn−1
i,j,k

2g∆t
∆xi,j∆yi,j

)︄

,

(12.29)

where the hydrostatic approximation has been used.

12.2.5 Isentropic coordinates

Isentropic vertical coordinates use the potential temperature, which is

defined as

θ ≡ T

(︃

p0
p

)︃(Rg/Cp)

, (12.30)

where Rg is the specific gas constant, Cp the specific heat at constant

pressure and p0 the reference pressure, where θ = T .

Isentropic vertical coordinates are convenient when the motion is

adiabatic since the potential temperature θ of an air parcel is then con-

served. In the absence of diabatic processes and mixing, air flows along

the θ surfaces, which then act as “material” surfaces. A Lagrangian or

quasi-Lagrangian vertical coordinate is one that moves with the fluid.

The isentropic coordinate system therefore qualifies as such. This is its

main advantage since that “vertical” motion is very weak if the flow

is quasi-adiabatic, which reduces finite-difference errors in areas such

as fronts. There are, however, two main disadvantages with isentropic

coordinates: isentropic surfaces intersect with the ground in contrast

to sigma coordinates and only statically stable solutions are allowed,

since the vertical coordinate has to vary monotonically with height.

128 Basic Numerical Methods in Meteorology and Oceanography

12.3 Structured and unstructured grids

The finite difference schemes mainly dealt with in this book are applied

on structured grids such as those illustrated in Figure 12.7. The draw-

back of the Cartesian grids is that they do not change in space. Oceanic

and atmospheric circulation models do not have Cartesian grids apart

from some academic ones with pedagogical aims, cf. the present book.

A typical grid used for practical purposes will at least have a latitude

dependence of ∆x, taking into account that the distances between lon-

gitudes decrease with increasing latitude. These grids are known as

curvilinear, but are still orthogonal, i.e. preserve right angles between

the two coordinates at every point of the grid. Figure 12.8 provides

an example of this. The region bounded by two adjacent segments

of one of the curvilinear coordinates and two adjacent segments of

the other curvilinear coordinate will be transformable to a rectangle.

An orthogonal curvilinear coordinate system permits the design of a

grid system with the “north pole(s)” of the coordinate system shifted

to a terrestrial location. Figure 12.8 shows a tri-polar grid, with the

two “north poles” shifted to Siberia and the wastelands of northern

Canada.

Unstructured grids, in contrast to the structured grids used with

finite differences, do not require regular connectivity between the grid

cells. The resolution can hence vary in space, with e.g higher reso-

lution in coastal regions or narrow straits. Here, we will present a

brief description of the general principles underlying the finite ele-

ment and finite volume methods, which both employ unstructured

grids.

Figure 12.7. Three examples of structured grids. From left to right: 3D

Cartesian, 3D rectilinear, 2D curvilinear. Note the “pole problem” of the

curvilinear grid.

Model Coordinates 129

Figure 12.8. The orthogonal curvilinear ORCA12 ocean grid for the NEMO

model, which is tripolar with two “north poles” in order to avoid the north

pole being an ocean point. The colour scale indicates the grid size in km.

Figure 12.9. Finite elements for an ocean general circulation model

12.3.1 Finite element method

The main advantage of the finite element method is that one can locally

increase the horizontal resolution, which is particularly important for

coastal regions, cf. Figure 12.9. Disadvantages are, however, that the

130 Basic Numerical Methods in Meteorology and Oceanography

CFL-criterion will be set by the smallest element, hereby imposing a

severe limitation on the time step to be used in the integration. Fur-

thermore data on an unstructured grid can be somewhat problematic

to analyse.

The essence of the finite element method (FEM) is recognised by

considering various ways of representing a function u(x, t) on an interval

0 ≤ x ≤ L. In the finite-difference method the function is defined only

on a set of grid points; i.e. uj(t) ≡ u(xj, t) is defined for a set of

xj, denoted nodes, but there is no explicit information about how the

function behaves between these grid points.

In the finite element method, the function is defined in terms of

a finite set of piecewise linear basis functions ej(x) as illustrated in

Figure 12.10. The variable u(x, t) is assumed to vary linearly between

the nodes with a piecewise linear fit. The function u(x, t) is then rep-

resented by the sum

u(x, t) =
N
∑︂

j=0

uj(t)ej(x), (12.31)

where the grid is defined as xj = j∆x and ∆x = L/N . The basis func-

tions ej (x) are local, i.e. they are non-zero only on a small-sub-interval.

Here the uj are the coefficients of the basis functions and u(x) is defined

everywhere. The 1D linear advection equation employed in Chapter 4

to illustrate the use of finite differencing, will here be used to describe

the idea underlying FEM:

∂u

∂t
+ c

∂u

∂x
= 0. (12.32)

Figure 12.10. Illustration of how the variable u is built up with a

combination of the piecewise linear basis functions ej .

Model Coordinates 131

By inserting the piecewise linear representation of Equation (12.31) we

obtain
∑︂

j

∂uj
∂t

ej + c
∑︂

j

uj
∂ej
∂x

= r, (12.33)

where r is the residual. Point collocation, viz. setting r = 0, does

not prove to be useful, but employing the Galerkin technique we may

impose that
∫︂ L

0

reidx = 0 (12.34)

for i = 0, 1, 2, . . . N . Here r can be replaced using Equation (12.33),

which yields

∑︂

j

∂uj
∂t

∫︂ L

0

eiejdx+ c
∑︂

j

uj

∫︂ L

0

∂ej
∂x

eidx = 0. (12.35)

The following results concerning the basis functions may be derived:

∫︂

(ej+1ej)dx =
∆x

6
;

∫︂

(ej±pej)dx = 0 ;

∫︂

e2jdx =
2∆x

3
; (12.36a)

∫︂

dej
dx

ejdx = 0 ;

∫︂

dej±1

dx
ejdx = ±1

2
;

∫︂

dej±p
dx

ejdx = 0 , (12.36b)

where p is any integer except −1, 0, 1. These relationships can now be

used in order to reformulate Equation (12.35) as

1

6

(︃

duj+1

dt
+ 4

duj
dt

+
duj−1

dt

)︃

+ c

(︃

uj+1 − uj−1

2∆x

)︃

= 0. (12.37)

The time derivative of u at the location xj and time tn is, for conve-

nience, given by

Gn
j ≡ duj

dt
, (12.38)

which, after substitution into Equation (12.37), yields

1

6

(︁

Gn
j+1 + 4Gn

j +Gn
j−1

)︁

= −c
(︃

uj+1 − uj−1

2∆x

)︃

. (12.39)

The right-hand side of this equation is known and consequently it is

possible to solve this system of simultaneous linear equations for all Gn
j

132 Basic Numerical Methods in Meteorology and Oceanography

using the methods outlined in Chapter 10. Hereafter Equation (12.38)

can be integrated in time using e.g. a leap-frog scheme:

un+1
j = un−1

j + 2∆tGn
j . (12.40)

The stability of this scheme can be analysed using the von Neumann

method in the same manner as for the finite-difference schemes.

A comprehensive overview of oceanic finite element modelling can

be found in Danilov et al. (2004) and a more fundamental one in Duben

et al. (2012).

12.3.2 Finite volume method

Since the 1980s considerable scientific interest has increasingly been

directed towards the finite volume method (FVM). Here, instead of

dealing with variables at specific grid points (as in the case of finite

differences), we consider their averages over given volumes. The philos-

ophy behind FVM is that a volume integration of a PDE comprising a

divergence term converts the latter to a surface integral of fluxes using

the Gauss theorem. The finite volume method can be applied to both

structured and unstructured grids. An advantage of FVM over FEM is

that it conserves the variables better on a coarse grid.

As in the FEM case, we will use the 1D linear advection equation,

here reformulated in “flux terms”, to describe the general idea behind

FVM:

∂u

∂t
+
∂(cu)

∂x
= 0. (12.41)

FVM uses averaged values of the variables over the given cells, rather

than the values at specific grid points as in the finite-difference method.

The cell V
n+1

2
i describes the spatial region between xi− 1

2
and xi+1

2

and the temporal region between tn and tn+1 (cf. Figure 12.11). The

spatially averaged value of u over this cell between xi− 1
2
and xi+1

2
is

uni =
1

∆x

∫︂ x
i+1

2

x
i− 1

2

u(x, tn) dx. (12.42)

The temporally averaged value of cu over this cell between tn and tn+1

is

cu
n+1

2
i =

1

∆t

∫︂ tn+1

tn

cu(xi, t) dt. (12.43)

Model Coordinates 133

Figure 12.11. Spatiotemporal grid for a 1D finite volume model. The

shaded cell V
n+ 1

2

i is the spatial region between xi− 1

2

and xi+ 1

2

and the

temporal region between tn and tn+1. The “fluxes” in and out of this cell

are indicated in red.

Integrating Equation (12.41) over a spatiotemporal cell and dividing

by ∆x∆t we obtain

1

∆x∆t

∫︂ tn+1

tn

∫︂ x
i+1

2

x
i− 1

2

∂u

∂t
dx dt+

1

∆x∆t

∫︂ tn+1

tn

∫︂ x
i+1

2

x
i− 1

2

∂(cu)

∂x
dx dt = 0.

(12.44)

After integration this becomes

1

∆x∆t

∫︂ x
i+1

2

x
i− 1

2

(un+1 − un) dx+
1

∆x∆t

∫︂ tn+1

tn

(︂

cui+1
2
− cui− 1

2

)︂

dt = 0.

(12.45)

This can be reformulated using Equations (12.42) and (12.43):

un+1
i − uni
∆t

+
cun+1/2

i+1/2 − cun+1/2

i−1/2

∆x
= 0. (12.46)

134 Basic Numerical Methods in Meteorology and Oceanography

Once the 1D edge “fluxes” have been calculated using either inter-

polation or extrapolation of the cell averages, this equation can be

integrated forward in time:

un+1
i = uni +

c∆t

∆x

(︂

un+1/2

i+1/2 − un+1/2

i−1/2

)︂

. (12.47)

Although this equation is superficially similar to what may be obtained

using finite differences, it is important to underline that when physi-

cal space is multidimensional, the cells can be unstructured and the

numerical integration clearly differs from that used when applying

finite-difference methods. An overview of the use of the finite volume

method in meteorology can be found in Machenhauer et al. (2009).

13. 3D Modelling

Ocean General Circulation Models are denoted OGCMs and

Atmospheric General Circulation Models AGCMs. When coupled to

each other they are often referred to as atmosphere-ocean coupled gen-

eral circulation models (AOGCMs). Today’s coupled climate models

include not only circulation models but also other components such

as land-surface, aerosols, chemistry, etc. and they are known as Earth

System Models (ESMs). The core part is still the GCMs of the ocean

and the atmosphere, which are increasing in complexity as modellers

improve them. The numerical improvements can be such as higher-

order numerical schemes, advanced model grids, etc. The improvement

of the physics can be to replace the hydrostatic equations by the non-

hydrostatic ones, to change the mixing parameterisations of the unre-

solved scales, etc. All these improvements are necessary in order to

continue to undertake more realistic model integrations.

13.1 Approximations

A number of approximations and hypotheses are always necessary to

make in order to simplify the full Navier-Stokes equations.

The spherical-Earth approximation

The geopotential surfaces are assumed to be spheres so that gravity,

coinciding with the local vertical, is a constant. This approximation,

instead of using the more accurate oblate spheroid, where the Earth

“flattens” at the poles and “widens” at the Equator as a result of the

centrifugal force. This approximation is made in all circulation models.

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 135–147. Stockholm: Stockholm University
Press. DOI: https://doi.org/10.16993/bbs.m. License: CC BY 4.0

https://doi.org/10.16993/bbs.m

136 Basic Numerical Methods in Meteorology and Oceanography

The thin-layer approximation

The thickness of the atmosphere or the ocean is neglected compared to

the radius of the Earth. This is also sometimes referred to as the shal-

low atmosphere/ocean approximation, which should not be confused

with the approximations leading to the “shallow-water equations”. The

equations without the thin-layer approximation are known as the “deep

equations” or the “non-hydrostatic deep equations”.

The vertical Coriolis approximation

This approximation is sometimes confused with the thin-layer approx-

imation or the hydrostatic approximation, but is in fact an approxi-

mation in itself. The 2Ωw cosϕ term in the zonal momentum equation

and the 2Ωu cosϕ term in the vertical momentum equation are always

omitted in hydrostatic models, but can be included in non-hydrostatic

models, which will also be the case for the simple non-hydrostatic model

presented later in this chapter.

The incompressibility approximation

The incompressibility approximation states that Dρ/Dt = 0. The mass

conservation equation expressed by the continuity equation Dρ/Dt +

ρ∇ · V⃗ = 0 leads to ∇ · V⃗ = 0. The 3D divergence of the velocity

is hence approximated to be zero and the volume is also conserved.

An accurate expression for density computed by the equation of state

may, however, be used when computing the pressure if the hydrostatic

approximation is used. The fluid is therefore often referred to as pseudo-

incompressible. This approximation is used in many OGCMs but never

in AGCMs since air is highly compressible.

The Boussinesq approximation

Density variations are neglected except when they contribute to the

buoyancy force, which explains the use of ρ0 instead of ρ in the hori-

zontal momentum equations (13.1a) and (13.1b). Since the density is

still permitted to vary in the vertical momentum equation the approxi-

mation is therefore more accurately sometimes referred to as the “quasi-

non-Boussinesq approximation”. “Quasi” since the equation filters out

the acoustic waves. The Boussinesq approximation is only good if the

vertical variation of density is small relative to the mean density and

that the horizontal and temporal variations are small relative to those

3D Modelling 137

in the vertical. This is consequently a good approximation for the ocean

where ρ ≈ 1000 kg/m3.

It is important to note that this approximation and the incompress-

ibility approximation both are consequences of the condition that the

density variations be small compared to the mean density.

Non-Boussinesq approximations

The Boussinesq approximation can not be used for a realistic atmo-

spheric model since the density decreases from 1.2 kg/m3 at sea level

to 0 kg/m3 at the top of the atmosphere. It is instead possible to use

other approximations such the anelastic or the pseudo-incompressible

approximations in order to filter out acoustic waves.

The anelastic approximations are similar to the Boussinesq approx-

imation but permit a vertical variation of the mean density so that

ρ = ρ0(z)+ρ
′(x, y, z, t), where ρ0(z) is the density satisfying the hydros-

tic balance and ρ′(x, y, z, t) is a small perturbation around this balance.

This eliminates sound waves by assuming that the flow has velocities

much smaller than the speed of sound and permits a decreasing den-

sity with height. The anelastic approximations have, however, some

important limitations since they deform the Rossby modes.

A more realistic approximation is the pseudo-incompressible approx-

imation, which accounts for density fluctuations that arise from the

the equation of state. Density fluctuations associated with perturba-

tions in the pressure field are neglected. The pseudo-incompressible

equation is the same as the anelastic continuity equation when the

mean stratification is adiabatic. When the stability increases, how-

ever, the pseudo-incompressible approximation gives a more accurate

result. The pseudo-incompressible approximation is, however, more

exact when the stratification is stronger and the air more stable.

The pseudo-incompressible approximation includes the effects of tem-

perature changes on the density in the mass-conservation equation,

which is not included in the anelastic approximation.

The hydrostatic approximation

The vertical momentum equation is reduced to a balance between

the vertical pressure gradient and the buoyancy force, which removes

convective processes from the equations. Convection is instead

parameterised with an increased vertical diffusion. This approximation

138 Basic Numerical Methods in Meteorology and Oceanography

is suitable for the large-scale circulation of the ocean and the

atmosphere. But when the horizontal scale is shorter or on the same

order as the depth scale this is not accurate anymore. We will, there-

fore, present a simple hydrostatic model as well as a non-hydrostatic

model in this chapter. Note that use of pressure coordinates requires

the hydrostatic approximation, cf. Section 12.2.2.

The turbulent-closure hypothesis

The urbulent-closure hypothesis is that the turbulent fluxes (repre-

senting the effect of small-scale processes on those of larger scales) are

expressed in terms of large-scale features. In the present book this

is most often expressed in terms of simple Laplacian diffusion and

viscosity but can be parameterised in other ways. It is important to

understand here that a model with higher resolution will not “need” as

much sub-grid parameterisation as one of lower resolution since the for-

mer instead will resolve the scales better and “use” the hydrodynamic

equations.

13.2 A simple hydrostatic model

In the present section, we will present a 3D circulation model formu-

lated as simple as possible, using all the approximations above. A Carte-

sian grid will therefore be used, which is suitable for the ocean since

depth is used as a vertical coordinate, this in contrast to atmospheric

models employing pressure-dependent vertical coordinates. The numer-

ical core of our 3D model will be close to that of a GCM. It should,

however, be emphasised here that we do not recommend coding exactly

these equations since their use would be very limited. The model is here

discretised only for didactic reasons. Nearly all OGCMs are based on

some type of curvilinear coordinates and depth-dependent layer thick-

nesses, which makes the discretised equations less transparent. We have

therefore discretised the equations for a rectangular Cartesian C-grid

as illustrated by Figures 13.1, 13.2 and 13.3.

Our simplified 3D-model is thus on a rectangular ocean domain

with a flat bottom and furthermore makes use of the hydrostatic

and Boussinesq approximations: The equations of motion that will be

used are

3D Modelling 139

Figure 13.1. Horizontal view (longitude-latitude) of a possible rectangular

model grid with land represented as yellow grid boxes. Only the non-zero

variables are shown. I and J are the total number of grid boxes in the zonal

and meridional direction, respectively.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = − 1

ρ0

∂p

∂x
+AH∇2

Hu+AV
∂2u

∂z2
+ F x,

(13.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = − 1

ρ0

∂p

∂y
+AH∇2

Hv +AV
∂2v

∂z2
+ F y,

(13.1b)

0 = −∂p
∂z

+ ρg, (13.1c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (13.1d)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= KH∇2

HT +KV

∂2T

∂z2
+Q, (13.1e)

∂S

∂t
+ u

∂S

∂x
+ v

∂S

∂y
+ w

∂S

∂z
= KH∇2

HS +KV

∂2S

∂z2
, (13.1f)

ρ = ρ(S, T, p). (13.1g)

140 Basic Numerical Methods in Meteorology and Oceanography

Figure 13.2. Zonal-vertical view of the model grid with land/sea floor

represnted as yellow grid boxes. Only the non-zero variables are shown. K is

the total number of vertical depth layers. Note that the vertical index k is

increasing with depth and is hence in the of opposite direction of that of the

z-coordinate.

Figure 13.3. C-grid with points for the zonal velocity u, meridional velocity

v, water or air column height h and vorticity ξ.

3D Modelling 141

Here A and K are the viscosity and diffusion coefficients, respec-

tively. The subscripts H and V pertain to horizontal and vertical

processes, respectively. F x and F y represent the wind forcing, Q the

thermal forcing at the sea surface. These seven equations for the ocean

circulation correspond those established by Bjerknes (1904) for the

atmosphere. The major differences are that the equation for humid-

ity has been replaced by one for salinity and that air is compressible,

whereas water has been taken to be incompressible. To prepare for

discretisation it is convenient to rewrite the equations as

∂u

∂t
= ξv − w

∂u

∂z
− ∂E

∂x
+AH∇2

Hu+AV
∂2u

∂z2
+ F x, (13.2a)

∂v

∂t
=− ξu− w

∂v

∂z
− ∂E

∂y
+AH∇2

Hv +AV
∂2v

∂z2
+ F y, (13.2b)

∂p

∂z
= ρg, (13.2c)

∂w

∂z
=− ∂u

∂x
− ∂v

∂y
, (13.2d)

∂T

∂t
=− ∂(uT)

∂x
− ∂(vT)

∂y
− ∂(wT)

∂z
+KH∇2

HT +KV

∂2T

∂z2
+Q,

(13.2e)
∂S

∂t
=− ∂(uS)

∂x
− ∂(vS)

∂y
− ∂(wS)

∂z
+KH∇2

HS +KV

∂2S

∂z2
, (13.2f)

ρ = ρ(S, T, p), (13.2g)

where the absolute vorticity has been defined as

ξ ≡ ∂v

∂x
− ∂u

∂y
+ f (13.3)

and the energy function as

E ≡ p

ρ0
+

1

2
(u2 + v2) . (13.4)

A possible discretisation of these equations with centred finite

difference is

un+1
i,j,k = un−1

i,j,k + 2∆t

×
{︃

1

4

[︁

ξni,j,k
(︁

vni,j,k + vni+1,j,k

)︁

+ ξni,j−1,k

(︁

vni,j−1,k + vni+1,j−1,k

)︁]︁

−
(︁

wni,j,k + wni+1,j,k + wni,j,k−1 + wni+1,j,k−1

)︁ uni,j,k−1 − uni,j,k+1

8∆z

−
En
i+1,j,k − En

i,j,k

∆x

}︃

,

(13.5a)

142 Basic Numerical Methods in Meteorology and Oceanography

vn+1
i,j,k = vn−1

i,j,k + 2∆t

×
{︃

− 1

4

[︁

ξni,j,k
(︁

uni,j,k + uni,j+1,k

)︁

+ ξni−1,j,k

(︁

uni−1,j,k + uni−1,j+1,k

)︁]︁

−
(︁

wni,j,k + wni,j+1,k + wni,j,k−1 + wni,j+1,k−1

)︁ vni,j,k−1 − vni,j,k+1

8∆z

−
En
i,j+1,k − En

i,j,k

∆y

}︃

,

(13.5b)

pi,j,k =
k−1
∑︂

k′=1

gρi,j,k′∆z + gρi,j,k∆z/2 + gρi,j,1ηi,j, (13.5c)

wi,j,k−1 = wi,j,k −
Ui,j − Ui−1,j

∆x
− Vi,j − Vi,j−1

∆y
, (13.5d)

where the absolute vorticity is located between the corners of the

T-boxes as illustrated by Figures 13.1 and 13.3:

ξi,j,k ≡ f +
vi+1,j,k − vi,j,k

∆x
− ui,j+1,k − ui,j,k

∆y
. (13.6)

The fluxes U and V are defined at the same points as the velocity

components u and v:

Ui,j,k ≡ ui,j,k
1

2
(hi,j,k + hi+1,j,k) , (13.7)

Vi,j,k ≡ vi,j,k
1

2
(hi,j,k + hi,j+1,k) . (13.8)

The grid-cell thickness is constant at all depths except at the surface,

where the sea-surface elevation h is taken into account:

hi,j,k = ∆z + ηi,j for k = 1, (13.9)

hi,j,k = ∆z for k ̸= 1. (13.10)

The gradient operator will act on the quantity E defined at the same

locations as h:

Ei,j,k ≡
pi,j,k
ρ0

+
1

2

[︃

1

2

(︁

u2
i,j,k + u2

i−1,j,k

)︁

+
1

2

(︁

v2i,j,k + v2i,j−1,k

)︁

]︃

. (13.11)

13.3 The tracer equation

The tracer equation describes the rate of change of a tracer such as

e.g. potential temperature or salt in the ocean, water vapour in the

3D Modelling 143

Figure 13.4. Horizontal (left) and vertical (right) views of the tracer

equation applied on a C-grid. The blue arrows illustrate the tracer flux

Ui,j,k = ui,j,k
1

2
(Ti,j,k + Ti+1,j,k)∆y∆z and Wi,j,k ≡ wi,j,k

1

2
(Ti,j,k + Ti,j,k+1)

∆x∆y.

atmosphere or any tracer that is advected and diffused in the ocean or

atmosphere. With a simple parameterisation of the diffusion the tracer

equation can be expressed as

∂T

∂t
+ V⃗ ·∇T = KH∇2

HT +KV

∂2T

∂z2
+Q, (13.12)

where KH and KV are the horizontal and vertical diffusion coefficients

and Q a possible source term such as the heat flux between the atmo-

sphere and the ocean. In the case of incompressibility, as postulated

for our ocean model, the continuity equation is

∇·V⃗ =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (13.13)

The tracer equation (13.12) can now be rewritten by incorporating the

continuity equation (13.13):

∂T

∂t
+∇·

(︂

V⃗ T
)︂

= KH∇2
HT +KV

∂2T

∂z2
+Q. (13.14)

144 Basic Numerical Methods in Meteorology and Oceanography

13.3.1 Discretisation on a Cartesian grid

This tracer equation will now be discretised on the C-grid illustrated in

Figure 13.4. Let us start with the term ∇·
(︂

V⃗ T
)︂

in Equation (13.14),

which expresses the divergence of the tracer flux. The discretised ver-

sion of this term is the sum of all the tracer transports in and out of a

grid box divided by the volume of the grid box. The tracer flux across

the grid wall where ui,j,k is located becomes

Un
i,j,k ≡ uni,j,k

1

2

(︁

T ni,j,k + T ni+1,j,k

)︁

∆y∆z,

V n
i,j,k ≡ vni,j,k

1

2

(︁

T ni,j,k + T ni,j+1,k

)︁

∆x∆z,

W n
i,j,k ≡ wni,j,k

1

2

(︁

T ni,j,k + T ni,j,k+1

)︁

∆x∆y,

(13.15)

which leads to

∇·
(︂

V⃗ T
)︂

≈ (Ui,j,k − Ui−1,j,k + Vi,j,k − Vi,j−1,k +Wi,j,k−1 −Wi,j,k)

∆x∆y∆z
.

(13.16)

With a centred leap-frog time scheme and the diffusion terms evaluated

at time step n− 1 as required to ensure stability, the discretised tracer

equation becomes

T n+1
i,j,k = T n−1

i,j,k+

+ 2∆t

[︄

−
Un
i,j,k − Un

i−1,j,k + V n
i,j,k − V n

i,j−1,k +W n
i,j,k−1 −W n

i,j,k

∆x∆y∆z

+KH

T n−1
i−1,j,k − 2T n−1

i,j,k + T n−1
i+1,j,k

(∆x)
2 +

T n−1
i,j−1,k − 2T n−1

i,j,k + T n−1
i,j+1,k

(∆y)
2

+KV

T n−1
i,j,k−1 − 2T n−1

i,j,k + T n−1
i,j,k+1

(∆z)
2) +Qn

i,j,k

]︄

.

(13.17)

13.3.2 Discretisation on an orthogonal curvilinear grid

A drawback of the discretised tracer equation above is that it requires

Cartesian grids, which do not change in space. Oceanic and atmo-

spheric circulation models do not have grids of this type apart from

some academic ones used in courses on numerical methods.

3D Modelling 145

It is therefore advantageous to apply finite differentiation directly to

the diffusive tracer fluxes. Let U, V,W now instead be the sum of the

advective and diffusive fluxes so that

Un
i,j,k ≡

[︃

uni,j,k
1

2

(︁

T ni,j,k + T ni+1,j,k

)︁

−KH

T n−1
i+1,j,k − T n−1

i,j,k

∆x

]︃

∆yi,j∆zk,

V n
i,j,k ≡

[︃

vni,j,k
1

2

(︁

T ni,j,k + T ni,j+1,k

)︁

−KH

T n−1
i,j+1,k − T n−1

i,j,k

∆y

]︃

∆xi,j∆zk,

W n
i,j,k ≡

[︃

wni,j,k+1

1

2

(︁

T ni,j,k + T ni,j,k+1

)︁

−KV k

T n−1
i,j,k − T n−1

i,j,k+1

∆zk

]︃

∆xi,j∆yi,j.

(13.18)

Note that we have written KV k with an added index k, which indicates

that we can permit the vertical diffusion coefficient to vary with depth.

It can be assumed to be either constant, or a function of the local

Richardson number

Ri ≡
g

ρ

∂ρ

∂z

/︃(︃

∂u

∂z

)︃2

(13.19)

or computed from a turbulent closure model using either the TKE or

KPP formulation.

The discretised tracer equation now becomes

T n+1
i,j,k = T n−1

i,j,k−

2∆t

(︃

Un
i,j,k − Un

i−1,j,k + V n
i,j,k − V n

i,j−1,k +W n
i,j,k−1 −W n

i,j,k

∆xi,j∆yi,j∆zk
−Qi,j,k

)︃

.

(13.20)

Note the additional horizontal indices on the grid lengths ∆xi,j and

∆yi,j, this in order to conform to a curvilinear grid such as the one in

Figure 12.8. The vertical grid thickness ∆zk will, however, only have

a single vertical index since it solely varies in the vertical with the

exception of the bottom grid boxes that might vary horizontally in

order to fit an exact depth of the ocean.

13.4 Non-hydrostatic modelling

In a similar way as in the previous simple hydrostatic model we will here

present an example of a simple non-hydrostatic model. This is based

on the incompressible Boussinesq approximation of the equations of

146 Basic Numerical Methods in Meteorology and Oceanography

motion in z-coordinates. We still have the same seven variables (u, v,

w, p, ρ, S, T), which are computed with the same set of seven equations

but without the hydrostatic approximation and with the vertical

Coriolis terms included.

∂u

∂t
= − 1

ρ0

∂p

∂x
+Gx, (13.21a)

∂v

∂t
= − 1

ρ0

∂p

∂y
+Gy, (13.21b)

∂w

∂t
= − 1

ρ0

∂p

∂z
+Gz, (13.21c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (13.21d)

∂T

∂t
= QT , (13.21e)

∂S

∂t
= QS, (13.21f)

ρ = ρ(S, T, p), (13.21g)

where

Gx =− u
∂u

∂x
− v

∂u

∂y
− w

∂u

∂z
+ 2Ω(v sinϕ− w cosϕ) + F x, (13.22a)

Gy =− u
∂v

∂x
− v

∂v

∂y
− w

∂v

∂z
− 2Ωu sinϕ+ F y, (13.22b)

Gz =− u
∂w

∂x
− v

∂w

∂y
− w

∂w

∂z
+ 2Ωu cosϕ+

ρg

ρ0
+ F z, (13.22c)

QT =− u
∂T

∂x
− v

∂T

∂y
− w

∂T

∂z
+KH∇2

HT +KV

∂2T

∂z2
+QA, (13.22d)

QS =− u
∂S

∂x
− v

∂S

∂y
− w

∂S

∂z
+KH∇2

HS +KV

∂2S

∂z2
. (13.22e)

By taking

∂

∂x
(13.21a) +

∂

∂y
(13.21b) +

∂

∂z
(13.21c) (13.23)

and by using the continuity equation we obtain

∇2p = ρ0∇ · G⃗, (13.24)

where G⃗ ≡ (Gx, Gy, Gz). This elliptic equation for pressure replaces

the vertical integration of the hydrostatic equation (13.1b).

3D Modelling 147

A difference when solving the governing equations with the

non-hydrostatic terms included are that the vertical velocity is solved

directly from the vertical momentum equation instead of integrating

the continuity equation vertically. Furthermore the pressure is obtained

by using an equation derived from the continuity equation together with

the three momentum equations.

The fundamental difference between an oceanic non-hydrostatic

model as the one presented here and an atmospheric one is that in

the atmosphere one does not apply the Boussinesq approximation and

that the fluid is compressible. The acoustic waves are therefore included

since they are slow enough to be resolvable explicitly in the horizon-

tal directions, whereas an implicit treatment in the vertical direction

is sufficient to make the solution stable. Non-hydrostatic atmospheric

models are essentially hyperbolic in pressure in contrast to the oceanic

ones that are elliptic.

14. Spectral Methods

In some atmospheric general circulation models (AGCMs), the

horizontal spatial representation of scalar dynamic and thermodynamic

fields is based on truncated series of spherical harmonic functions. The

nature of the underlying two-dimensional horizontal physical grid, also

known as a transform grid, is tightly coupled to the parameters of the

spherical harmonic expansion itself.

The numerical integration methods discussed so far are based on

a discrete representation of the data on a grid of points encompass-

ing the space over which a prediction of the variables is desired. Local

time derivatives of the quantities to be predicted are determined by

expressing the horizontal and vertical advection terms, sources etc.

in finite-difference form. Finally, the time extrapolation is achieved

by one of many possible algorithms, e.g. the leap-frog scheme. The

finite-difference technique has a number of associated problems, such as

truncation errors and linear as well as non-linear instabilities. Despite

these difficulties, the finite-difference method has been the most prac-

tical method of generating forecasts numerically from the dynamical

equations. As mentioned above there is another approach known as the

spectral method which avoids some of the difficulties cited previously,

in particular non-linear instability; however, this method is less versa-

tile and the required computations are comparatively time-consuming.

In a general sense, the mode of representation of data depends on their

nature and the shape of the region over which the representation is

desired. An alternative to depiction on a grid of discrete points is a rep-

resentation in the form of a series of orthogonal functions. This requires

the determination of the expansion coefficients of these functions,

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 149–155. Stockholm: Stockholm University
Press. DOI: https://doi.org/10.16993/bbs.n. License: CC BY 4.0

https://doi.org/10.16993/bbs.n

150 Basic Numerical Methods in Meteorology and Oceanography

and is said to be a spectral representation, or a series expansion,

in wave-number space. When such functions are used, the spatial

derivatives can be evaluated analytically, eliminating the need for

approximating them using finite differences.

Many AGCMs employ spectral techniques for their horizontal dis-

cretisations. This method has become the one most widely used for inte-

grating the governing equations over hemispheric or global domains.

The spectral method is, however, also used in some regional NWP

models such as HARMONIE-AROME (Bengtsson et al., 2017).

One of the main virtues of the spectral technique is the combination

with semi-implicit methods. Grid-point models have to use expensive

methods to solve the elliptic balance equation required at every time

step in a semi-implicit model. In spectral models this is instead inex-

pensive and accurate. Furthermore, semi-Lagrangian techniques avoid

the calculation of nonlinear advection terms which is expensive in pure

spectral models. Spectral transform models can compute advection

terms less expensively. Finally the representation of positive definite

quantities like moisture is an issue in spectral models.

Associated Legendre polynomials

The associated Legendre polynomials are the canonical solutions of the

general Legendre equation

d

dx

[︃

(1− x2)
d

dx
Pm
n (x)

]︃

= −n(n+ 1)Pm
n , (14.1)

where the indices n and m are referred to as the degree and order

of the associated Legendre polynomial, respectively. The independent

variable can be reparameterised in terms of angles, letting x = cosθ,

where θ = π/2−φ is the colatitude. These polynomials to a low degree

n and order m are presented in Table 14.1 and in Figure 14.1.

14.1 Spherical harmonics

As basis functions global atmospheric models use spherical harmonics

(Tallqvist, 1905), which are the eigenfunctions of the Laplace equation

on the sphere:

∇2Y m
n =

1

a2

[︃

1

cos2φ

∂2Y m
n

∂λ2
+

1

cosφ

∂

∂φ

(︃

cosφ
∂Y m

n

∂φ

)︃]︃

= −n(n+ 1)

a2
Y m
n .

(14.2)

Spectral Methods 151

Table 14.1. The associated Legendre polynomials Pm
n in x = cosθ, where

θ = π/2− φ is the colatitude.

m = 0 m = 1 m = 2 m = 3

n = 0 1

n = 1 cos θ − sin θ

n = 2 1

2
(3 cos2 θ − 1) −3 cos θ sin θ −3 sin2 θ

n = 3 1

2
(5 cos3 θ − 3 cos θ) − 3

2
(5 cos2 θ − 1) sin θ 15 cos θ sin2 θ −15 sin3 θ

·
·

The spherical harmonics are products of Fourier series in longitude λ

and associated Legendre polynomials in latitude φ:

Y m
n (λ, φ) = Pm

n (µ) eimλ, (14.3)

where µ = sinφ, m is the zonal wavenumber and n is the “total”

wavenumber in spherical coordinates (as suggested by the Laplace

equation).

In the usual application of the method, the basic prognostic variables

are vorticity, divergence, temperature, a humidity variable, and the log-

arithm of surface pressure. Their horizontal representation is in terms

of truncated series of spherical harmonic functions, whose variations

are described by sines and cosines in the east-west direction and by

associated Legendre polynomials from north to south. The horizontal

variation of a variable U is thus given by

U (λ, φ, t) =
N
∑︂

n=0

n
∑︂

m=−n

Um
n (t)Y m

n (λ, φ) , (14.4)

where the spatial resolution is uniform over the sphere. This has a major

advantage over finite differences based on a latitude-longitude grid,

where the convergence of the meridians at the poles requires very small

time steps. Although there are solutions for this “pole problem” for

finite differences, the natural approach when solving the pole problem

for global models is by using spherical harmonics.

It is becoming increasingly common to use what is known as the

“triangular” truncation of this expansion (Figure 14.2). This is defined

by M = N = constant , and yields a uniform resolution over the

sphere. The symbol “TN” is the usual way of defining the resolution of

152 Basic Numerical Methods in Meteorology and Oceanography

Figure 14.1. The first 15 associated Legendre polynomials Pm
n . The first

number on the curves indicates the order of the polynomial and the second

the degree. The upper panel shows these polynomials with m = 1, 2 for

n = 1, 2, 3, 4. The lower panel shows the polynomials with m = 1, 2, 3, 4 for

n = 1, 2, 3, 4. Each colour corresponds to a separate order m of the

polynomial Pm
n .

Spectral Methods 153

Figure 14.2. The triangular truncation in the (m,n) wavenumber space

delimits a three-cornered region of spherical harmonic modes indicated by

blue dots. Modes outside of this triangle are indicated with red dots.

such a truncation; N being the smallest “total” wave number retained in

the expansion. Given that the Earth’s radius is a, the smallest resolved

half-wavelength in any particular direction is πa/N (320 km for T63,

190 km for T106), although the corresponding lateral variation is of

larger scale.

Derivatives of a spectrally represented variable U are given

analytically:

∂U

∂λ
=

N
∑︂

n=0

n
∑︂

m=−n

imUm
n Y

m
n

and

∂U

∂φ
=

N
∑︂

n=0

n
∑︂

m=−n

Um
n

∂Pm
n

∂φ
eimλ.

14.2 The spectral transform method

In a spectral model a variable, ξ(λ, φ) is represented by a truncated

series of spherical harmonic functions. This can be expressed as

ξmn =

J
∑︂

j=1

ξm(φj)P
m
n (φj), (14.5)

154 Basic Numerical Methods in Meteorology and Oceanography

where j is the latitudinal index, Pm
n (φj) the associated Legendre

polynomials and the expansion coefficients ξm(φj) are obtained by a

Fourier transform of ξ(λ, φ).

The grid-point values are obtained by the inverse transform

ξm(φ) =

N(m)
∑︂

n=|m|

ξmn P
m
n (φ), (14.6)

followed by an inverse Fourier transform to obtain ξ(λ, φ).

In a spectral model, the explicit time steps and evaluation of the

horizontal gradients are undertaken in spectral space. The tendencies

of the equations are, however, evaluated in grid-point space. One ben-

efit when representing the variables in spectral space is that horizontal

derivatives are represented in a continuous fashion, i.e. no finite dif-

ferencing is needed to evaluate gradients. The methods used for the

spherical harmonic transforms are, however, beyond the scope of this

book. It is therefore suggested to use an already existing library to

carry out the spectral transforms.

14.3 The shallow-water equations on a sphere

The momentum and mass continuity equations governing the motion

of a rotating, homogenous, incompressible and hydrostatic fluid can be

written in vector form as

dV⃗

dt
= −fk× V⃗ −∇Φ+ ν∇2V⃗ , (14.7)

dΦ

dt
= −Φ∇ · V⃗ , (14.8)

where V⃗ = (u, v) is the horizontal velocity vector, Φ is the geopotential

height, f is the Coriolis parameter and ν is the horizontal diffusion

coefficient. Furthermore,

d

dt
=

∂

∂t
+ V⃗ · ∇, (14.9)

and the ∇ operator is defined in spherical coordinates as

∇ =
1

a cosφ

∂

∂λ
+

1

a

∂

∂φ
, (14.10)

where a is the Earth’s radius, λ is the longitude coordinate and φ is

the latitude coordinate.

Spectral Methods 155

The equations above describe the shallow-water equations in the

u, v,Φ system. In the model, we use another form of these equations.

By introducing the relative vorticity ζ and horizontal divergence δ,

the equations can be transformed into the the ζ, δ,Φ system. We

do not derive these equations here since this procedure is relatively

straightforward.

By introducing

ξ = k · (∇× V⃗), (14.11)

and

δ = ∇ · V⃗ , (14.12)

one can obtain the following set of equations (with µ = sinφ)

∂η

∂t
= − 1

a(1− µ2)

∂

∂λ
Uη +

1

a

∂

∂µ
V η, (14.13)

∂δ

∂t
=

1

a(1− µ2)

∂

∂λ
Uη − 1

a

∂

∂µ
V η +∇2

(︃

Φ+
U 2 + V 2

2(1− µ2)

)︃

, (14.14)

∂Φ

∂t
= − 1

a(1− µ2)

∂

∂λ
UΦ+

1

a

∂

∂µ
V Φ, (14.15)

where η = ξ + f is the absolute vorticity, which includes the Earth’s

rotation and (U, V) = (u, v) cosφ.

15. Theoretical Exercises

The aim here is to apply the theory given in this book and to hereby

provide a better understanding of basic numerical methods.

15.1 Exercises given in the main body of the text

These exercises are mainly found at the end of each pertinent chapter.

15.1.1 Finite differences

Determine the order of accuracy of the centred discretisations of the

advection scheme

un+1
j − un−1

j

2∆t
+ c

unj+1 − unj−1

2∆x
= 0. (15.1)

Solution:

The Taylor series of f(x) that is infinitely differentiable at x0 is a power

series:

f(x) = f(x0)+ (x−x0)
∂f

∂x

⃓

⃓

⃓

⃓

x=x0

+
1

2
(x−x0)

2 ∂
2f

∂x2

⃓

⃓

⃓

⃓

x=x0

+O[(x−x0)
3].

By defining u(x0, t0) ≡ unj , the following Taylor series is obtained:

un
j+−1

≡ u(x0
+−∆x, t0) =

u(x0, t0) + (✟✟x0
+−∆x−✟✟x0)

∂u

∂x

⃓

⃓

x0
+ 1

2
(✟✟x0

+−∆x−✟✟x0)
2 ∂2u

∂x2

⃓

⃓

⃓

x0

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 157–168. Stockholm: Stockholm University
Press. DOI: https://doi.org/10.16993/bbs.o. License: CC BY 4.0

https://doi.org/10.16993/bbs.o

158 Basic Numerical Methods in Meteorology and Oceanography

+ 1

6
(✟✟x0

+−∆x−✟✟x0)
3 ∂3u

∂x3

⃓

⃓

⃓

x0

+O[(✟✟x0
+−∆x−✟✟x0)

4]

= u(x0, t0) +−∆x ∂u

∂x

⃓

⃓

x0
+ 1

2
(∆x)2 ∂2u

∂x2

⃓

⃓

⃓

x0

+− 1

6
(∆x)3 ∂3u

∂x3

⃓

⃓

⃓

x0

+O[(∆x)4]

and analogously

u
n+−1

j ≡ u(x0, t0 +−∆t) = (15.2)

u(x0, t0) + (��t0 +−∆t−��t0)
∂u

∂t

⃓

⃓

t0
+ 1

2
(��t0 +−∆t−��t0)

2 ∂2u

∂t2

⃓

⃓

⃓

t0

+ 1

6
(��t0 +−∆t−��t0)

3 ∂3u

∂t3

⃓

⃓

⃓

t0

+O[(��t0 +−∆t−��t0)
4]

= u(x0, t0) +−∆t ∂u
∂t

⃓

⃓

t0
+ 1

2
(∆t)2 ∂2u

∂t2

⃓

⃓

⃓

t0

+− 1

6
(∆t)3 ∂3u

∂t3

⃓

⃓

⃓

t0

+O[(∆t)4]. (15.3)

The temporal derivative is

un+1
j − un−1

j

2∆t
=

1

✟✟✟2∆t

(︄

✟✟✟2∆t
∂u

∂t

⃓

⃓

⃓

⃓

t0

+
◁2

6
(∆t)▷3

2 ∂3u

∂t3

⃓

⃓

⃓

⃓

t0

+O[(∆t)▷5
4
]

)︄

=

(︄

∂u

∂t

⃓

⃓

⃓

⃓

t0

+O[(∆t)2]

)︄

and the spatial derivative is

c
unj+1 − unj−1

2∆x
= c

1

✘✘✘2∆x

(︄

✘✘✘2∆x
∂u

∂x

⃓

⃓

⃓

⃓

x0

+
◁2

6
(∆x)▷3

2 ∂3u

∂x3

⃓

⃓

⃓

⃓

x0

+O[(∆x)▷5
4
]

)︄

= c

(︄

∂u

∂x

⃓

⃓

⃓

⃓

x0

+O[(∆x)2]

)︄

.

Theoretical Exercises 159

Adding both of these expressions, the discretised advection equation is

recovered:

un+1
j − un−1

j

2∆t
+ c

unj+1 − unj−1

2∆x
=
∂u

∂t

⃓

⃓

⃓

⃓

t0

+ c
∂u

∂x

⃓

⃓

⃓

⃓

x0

+O[(∆x)2, (∆t)2].

From the analytical solution it is known that ∂u/∂t + c ∂u/∂x = 0 .

Therefore, the centred scheme in both time and space applied to the

advection equation has an accuracy of O[(∆x)2, (∆t)2].

15.1.2 Stability Analysis

1. Consider the leap-frog scheme for the advection equation:

un+1
j − un−1

j

2∆t
+ c

unj+1 − unj−1

2∆x
= 0. (15.4)

Use

unj = λneikj∆xu0, (15.5)

and show that the amplification factor is

λ = −ic∆t
∆x

sin(k∆x)±
√︄

1−
[︃

c∆t

∆x
sin(k∆x)

]︃2

. (15.6)

2. Show that for µ > 1 in the exercise above, one of the solutions

of the differential equation will “blow up”, at least for some

wave lengths.

Solution:

Introducing a wave solution into the discretised advection equation

(15.4), the following expression obtained:
(︃

λ− λ−1

2∆t
+ c

eik∆x − e−ik∆x

2∆x

)︃

unj = 0. (15.7)

Rearranging the terms and looking for the non-trivial solution unj ̸= 0,

it is found that,

λ2 + 2ic∆t

∆x
sin(k∆x)λ− 1 = 0 →

λ = −iµ sin(k∆x)±
√︂

1− (µ sin(k∆x))
2
,

where µ ≡ c∆t/∆x is the Courant number.

160 Basic Numerical Methods in Meteorology and Oceanography

We will compute the norm of λ; there are two cases depending on the

magnitude of µ:

if |µ| ≤ 1, |λ|2 = λλ∗=
(︁

−ia±
√
1− a2

)︁

·
(︁

ia±
√
1− a2

)︁

= 1,

if |µ| > 1, λ is purely imaginary. Therefore,

|λ|2 = 2µ2 sin2(k∆x) (15.8)

− 1∓ 2µ sin(k∆x)

√︂

(µ sin(k∆x))
2 − 1.

In the “worst” case k∆x = π

2
, |λ|2 = 2µ2 − 1∓ 2µ

√
µ2 − 1 and

since |µ| > 1, one of the roots is larger than one, and the

solution will blow up.

3. Discretise the advection equation with Euler-forward schemes

in both time and space. Show that for c > 0 (backward scheme),

the amplitude of the solutions will grow in time (these thus

being unstable). But for c < 0 (forward scheme) the amplitude

will decrease in time, i.e. the solution is stable.

Solution:

The discretised advection equation using Euler-forward schemes in both

time and space:

un+1
j − unj
∆t

+ c
unj+1 − unj

∆x
= 0. (15.9)

Introducing a wave solution into the discretised equation yields

(︃

λ− 1

∆t
+ c

eik∆x − 1

∆x

)︃

unj = 0. (15.10)

Rearranging terms, an expression for λ is obtained:

λ = 1− c
∆t

∆x

(︁

eik∆x − 1
)︁

. (15.11)

Theoretical Exercises 161

In order to analyse the stability of the scheme, the squared norm of λ

is calculated:

|λ|2 =
[︁

1− c∆t

∆x
(eik∆x − 1)

]︁

·
[︁

1− c∆t

∆x
(e−ik∆x − 1)

]︁

= 1− µ (eik∆x − 1)− µ (e−ik∆x − 1) + µ2 (1 + 1− eik∆x − e−ik∆x)

= 1− µ [2 cos(k∆x)− 2] + µ2 [2− 2 cos(k∆x)]

= 1− [2 cos(k∆x)− 2] (µ+ µ2)

= 1 + 4 sin2
(︁

k∆x

2

)︁

(µ+ µ2) = |λ|2.

The stability of the scheme is determined partly by the sign of the

Courant number µ:

if µ > 0, then |λ|2 > 1 and the solution is unstable,

if µ < 0, then we have two different cases. If µ ≥ −1 the

solution is stable. However, if µ < −1 the scheme becomes

unstable. The stability criterion in this case becomes

−1 ≤ c
∆t

∆x
≤ 0. (15.12)

4. Undertake a stability analysis of the following discretisation of

the advection equation:

un+1
j − 1

2
(unj+1 + unj−1)

∆t
+ c

unj+1 − unj−1

2∆x
= 0. (15.13)

Solution:

Introducing the wave solution into the discretised advection equation

yields
[︃

λ− 1

2
(eik∆x + e−ik∆x)

∆t
+ c

eik∆x − e−ik∆x

2∆x

]︃

unj = 0. (15.14)

Rearranging the terms and looking for the nontrivial solution unj ̸= 0,

it is found that,

λ = cos(k∆x)− ic
∆t

∆x
sin(k∆x). (15.15)

162 Basic Numerical Methods in Meteorology and Oceanography

15.1.3 Accuracy of the numerical phase speed

Derive the numerical phase speed

CD =
1

k∆t
arcsin

[︃

c∆t

∆x
sin(k∆x)

]︃

. (15.16)

Solution:

Start by considering the advection equation with centred schemes in

both time and space:

un+1
j − un−1

j

2∆t
+ c

unj+1 − unj−1

2∆x
= 0. (15.17)

A wave solution of the form unj = u0e
ik(j∆x−CDn∆t) is introduced into

Equation (15.17).

The following relationships are to be employed:

un+1
j = u0e

ik(j∆x−CD(n+1)∆t) = u0e
−ikCD∆teik(j∆x−CDn∆t) = e−ikCD∆tunj ,

un−1
j = u0e

ik(j∆x−CD(n+1)∆t) = u0e
ikCD∆teik(j∆x−CDn∆t) = eikCD∆tunj ,

unj+1 = u0e
ik((j+1)∆x−CDn∆t) = u0e

ik∆xeik(j∆x−CDn∆t) = eik∆xunj ,

unj−1 = u0e
ik((j−1)∆x−CDn∆t) = u0e

−ik∆xeik(j∆x−CDn∆t) = e−ik∆xunj .

We obtain the following expression:

(︃

e−ikCD∆t − eikCD∆t

2∆t
+ c

eik∆x − e−ik∆x

2∆x

)︃

unj = 0. (15.18)

The nontrivial solution is considered. Applying the trigonometrical

identity eia − e−ia = 2i sin(a) yields

−✚✚2i sin(kCD∆t)
◁2∆t

+ c
✚✚2i sin(k∆x)

◁2∆x
= 0. (15.19)

Rearranging terms,

sin(kCD∆t) =
c∆t

∆x
sin(k∆x), (15.20)

and applying the arcsin function to both sides of this equality, the final

solution is obtained:

kCD∆t = arcsin

[︃

c∆t

∆x
sin(k∆x)

]︃

. (15.21)

Theoretical Exercises 163

15.1.4 Diffusion and friction terms

1. Undertake a stability analysis for the finite-difference version of

the Rayleigh-friction equation with the right-hand side of

Equation (8.3) taken at time step n.

2. Same as in step 1 but the right-hand side taken at time step

n-1.

3. Same as in step 1 but the right-hand side taken at time step

n+1.

Solution:

Consider the following equation:

un+1
j − un−1

j

2∆t
= −γun+aj , (15.22)

where a can be either 0, −1 or 1. Insertion of a wave solution yields

(︃

λ− λ−1

2∆t
+ γλa

)︃

unj = 0. (15.23)

After taking into account the nontrivial solution and rearranging terms,

it is found that

λ2 + 2∆tγλa+1 − 1 = 0. (15.24)

Three cases are considered:

Case 1: a = 0

λ2 + 2∆tγλ− 1 = 0, (15.25)

with the roots

λ1,2 = −∆tγ ±
√︁

(∆tγ)2 + 1. (15.26)

One of these roots is characterised by |λ| > 1. The scheme is hence

unconditionally unstable.

Case 2: a = −1

λ2 + 2∆tγ − 1 = 0, (15.27)

which has the roots

λ1,2 = ±
√︁

1− 2∆tγ. (15.28)

164 Basic Numerical Methods in Meteorology and Oceanography

The scheme is stable for 0 ≤ ∆tγ ≤ 1. However, for 1/2 ≤ ∆tγ ≤ 1

the roots become purely imaginary and the solution will be oscillatory,

which is unphysical. The scheme is hence conditionally stable.

Case 3: a = 1

λ2 + 2∆tγλ2 − 1 = 0, (15.29)

where the roots satisfy

λ2 =
1

1 + 2∆tγ
. (15.30)

Both ∆t and γ are positive, and hence 0 ≤ λ2 ≤ 1, and the scheme

is thus unconditionally stable.

4. Calculate the stability criterion for

∂u

∂t
= A

∂2u

∂x2
, (15.31)

using the following finite-difference scheme:

un+1
j − unj
∆t

= A
unj+1 − 2unj + unj−1

(∆x)2
. (15.32)

Estimate an upper limit for ∆t when

A = 106m2/s, ∆x = 400 km (large-scale horizontal diffusion),

A = 1m2/s, ∆x = 10m (vertical diffusion in a boundary layer).

Solution:

A wave solution is introduced into Equation (15.32), yielding

[︃

λ− 1

∆t
−A

eik∆x − 2 + e−ik∆x

(∆x)2

]︃

unj = 0. (15.33)

The nontrivial solution is considered. Applying the trigonometrical

identity eia + e−ia = 2 cos(a) yields

λ = 1 +A
∆t

(∆x)2
[2 cos(k∆x)− 2] = 1− 4A

∆t

(∆x)2
sin2

(︃

k∆x

2

)︃

.

(15.34)

Theoretical Exercises 165

In the “worst” case sin2 (k∆x/2) = 1. The stable non-oscillatory

solution is given by the following condition:

0 ≤ ∆t ≤ (∆x)2

4A
. (15.35)

The results for the two cases are

A = 106m2/s, ∆x = 400 km → ∆tmax = 11h.

A = 1m2/s, ∆x = 10m → ∆tmax = 25 s.

5. The diffusion equation can be integrated using the

Crank-Nicholson scheme:

T n+1
j − T nj

∆t
=
A

2

[︃

T nj+1 − 2T nj + T nj−1

(∆x)2
+
T n+1
j+1 − 2T n+1

j + T n+1
j−1

(∆x)2

]︃

.

Examine the stability of this scheme!

Solution:

Introducing wave solutions into equation (15.36) yields
{︃

λ− 1

∆t
− A

2

[︃

eik∆x − 2 + e−ik∆x

(∆x)2
+ λ

eik∆x − 2 + e−ik∆x

(∆x)2

]︃}︃

T nj = 0.

The nontrivial solution is considered by applying the trigonometrical

identity eia + e−ia = 2 cos(a), and it is found that

λ

[︃

1 + 2∆tA sin2

(︃

k∆x

2

)︃]︃

= 1− 2∆tA sin2

(︃

k∆x

2

)︃

. (15.36)

In simplified form:

λ =
1− 2∆tA sin2 (k∆x/2)

1 + 2∆tA sin2 (k∆x/2)
≤ 1. (15.37)

Even in the “worst” case sin2 (k∆x/2) = 1, λ is always smaller than

one. The scheme is thus unconditionally stable. However, the scheme

is implicit.

15.2 Additional theoretical exercises

In contrast to the previous exercises, the students will need solve the

following exercises by themselves.

166 Basic Numerical Methods in Meteorology and Oceanography

15.2.1 Leap-frog scheme

Study the leap-frog scheme for the advection equation

1. Apply the leap-frog scheme (centered scheme with 2nd order

accuracy in space and time).

2. Derive the stability criterion.

3. Discuss the computational mode and how it can be avoided.

15.2.2 Upwind scheme

Examine the upwind scheme for the advection equation.

1. Apply the upwind scheme (uncentered with 1st order accuracy

in space and time).

2. Derive the stability condition.

15.2.3 Euler-forward scheme

Examine the Euler-forward scheme for the diffusion equation.

1. Derive the stability criterion for the Euler-forward scheme

applied to the diffusion equation:

un+1
j − unj
∆t

= A
unj+1 − 2unj + unj−1

(∆x)2
.

2. Discuss how the time step should be chosen. Why is it good to

choose a smaller time step than that given by the stability

criterion? Hint: Study how the amplification factor depends on

the wavelengths, especially those of highest wavenumbers.

3. Do the oscillations that may appear, due to this scheme,

represent a numerical mode?

15.2.4 Staggered vs. unstaggered grid

The following code lines are taken from a larger Fortran code that

interpolates the temperature at a given position (described by a real

pseudo-index xu). The original code works for an Arakawa C-grid.

For simplicity we will consider the 1D case where this Arakawa grid

is reduced to a 1D staggered grid. The xu is defined using u-points

as a reference while the temperature is defined at an h-point. The

square brackets enclosing dashed lines should be filled in with pertinent

instructions!

Theoretical Exercises 167

SUBROUTINE interp(xu,T)

! computes temperature at the position

! given by xu by interpolation

IMPLICIT NONE

INTEGER :: ip , im

REAL :: xu, ax, Tint

REAL , DIMENSION (:), INTENT(IN) :: T

[---]

ip = NINT(xu) + 1

im = NINT(xu)

ax = REAL(ip) - xu

Tint = T(im)*ax + T(ip)*(1-ax)

[---]

RETURN

END SUBROUTINE

Consider the case xu = 10.4 and the temperature values: T(9) = 5,

T(10) = 10, T(11) = 20.

1. Compute the interpolated temperature Tint at xu using the

code above.

2. The result obtained for the interpolated temperature Tint is

wrong, why? “Fix” the code (explain the changes) and

recalculate Tint.

3. Would the original interpolation scheme work correctly (for any

xu value) if an unstaggered grid was used instead?

15.2.5 Order of accuracy

Consider the continuity equation of the 1D shallow-water equations:

∂h

∂t
= −H∂u

∂x
. (15.38)

1. Discretise this equation with centred finite differences on an

unstaggered grid.

2. Derive the order of accuracy of the two finite-difference schemes.

3. Repeat the previous tasks using instead a staggered grid.

15.2.6 Nonrotating 2D shallow-water equations

Consider the nonrotating 2D shallow-water equations.

1. Discretise these equation on an Arakawa B-grid and apply the

leap-frog scheme in time.

168 Basic Numerical Methods in Meteorology and Oceanography

2. Compute the stability criterion for these discretisations. For

simplicity consider the case ∆x = ∆y.

3. Repeat steps 1 and 2 for the Arakawa C-grid.

15.2.7 Laplace equation

Consider the Laplace equation ∇2Φ = 0

1. Discretise this equation in space.

2. Set ∆x = ∆y and write the simplest iterative scheme (Jacobi

iteration).

3. Set up a 4× 4 grid, with Φ = 1 at the boundaries and iterate 3

times with a starting state of Φ = 0.

4. Repeat the exercise using the faster Gauss-Seidel scheme.

5. Repeat the exercise using the even faster SOR scheme.

15.2.8 Semi-implicit scheme

Consider the nonrotating and y-independent shallow-water equations:

∂u

∂t
= −g∂h

∂x
, (15.39)

∂v

∂t
= 0, (15.40)

∂h

∂t
= −H∂u

∂x
, (15.41)

1. Discretise these equations on a C-grid using a semi-implicit

scheme centred at time level n. Terms containing spatial partial

derivatives must be evaluated as the average at time levels

(n− 1) and (n+ 1).

2. Undertake a stability analysis of these discretised equations.

16. GFD Computer Exercises

The aim of this chapter is to apply our previously gained skills in

numerical methods to some fundamental problems in geophysical fluid

dynamics (GFD).

16.1 Advection and diffusion equations

The leap-frog, the Euler-forward and the upwind schemes will be stud-

ied and applied to the advection and diffusion equations. The advection

equation is

∂u

∂t
+ c

∂u

∂x
= 0, (16.1)

and the diffusion equation is

∂u

∂t
−A

∂2u

∂x2
= 0. (16.2)

The solution interval will in all cases be taken as 0 ≤ x ≤ 1, with the

periodic boundary condition u(0, t) = u(1, t).

Relative error

The relative error En as a function of time level n is defined as

En =

(︄

∑︁I

i=1
(uni − ûni)

2

∑︁I

i=1
(ûni)

2

)︄1/2

, (16.3)

where ûni is the discretised form of the analytical solution and I is the

number of grid points in the spatial domain.

How to cite this book chapter:

Döös, K., Lundberg, P., and Campino, A. A. 2022. Basic Numerical Methods in

Meteorology and Oceanography, pp. 169–185. Stockholm: Stockholm University
Press. DOI: https://doi.org/10.16993/bbs.p. License: CC BY 4.0

https://doi.org/10.16993/bbs.p

170 Basic Numerical Methods in Meteorology and Oceanography

16.1.1 Advection equation

Examine the the advection equation using a simple numerical model.

Write a program that can solve the advection equation (set c = 1) with

two different schemes: the leap-frog scheme and the upwind scheme.

a) Cosine wave:

i) Model set-up: Run the program with the resolution

∆x = 0.02 and the Courant numbers 0.9, 1.0 and 1.1. Use a

cosine wave as initial condition:

u(x, t = 0) = cos(2πx).

ii) Solve the problem using the leap-frog scheme as well as the

upwind schemes separately. Initialise the leap-frog scheme

with a single Euler-forward step.

iii) Plot the results obtained with both schemes and the

analytic solution in the same figure.

iv) Analyse the phase error and the amplitude error for both

schemes. Do the results agree with the theory? (Note: CD
can be calculated analytically as the system has a single

known value for k).

v) Show how the relative error develops in time (consider

running the code for as long times as t ≈ 104).

b) Cosine pulse:

i) Model set-up: Run the program with the resolution

∆x = 0.01 and the Courant number 0.9. Use a cosine pulse

as initial condition:

u(x, t = 0) =

{︄

1

2
+ 1

2
cos (10π(x− 0.5)) for 0.4 ≤ x ≤ 0.6,

0 elsewhere.

ii) Solve the problem using a) the leap-frog scheme and b) the

upwind scheme. Initialise the leap-frog scheme with a single

Euler-forward step.

iii) Try to identify the computational mode.

16.1.2 Diffusion equation

Examine the diffusion equation using a simple numerical model. Write a

program that can solve the diffusion equation using the Euler-forward

scheme. Set ∆x = 0.05, AH = 1, and try with three different time

GFD Computer Exercises 171

steps: on determined by the critical value of the von Neumann number

ν ≡ A∆t/ (∆x)
2
permitted by the stability criterion, one slightly larger

and one half of the maximum possible value.

Run the program with two different initial conditions:

i) Rectangular pulse:

u1
i =

{︄

1 for 0 ≤ x ≤ 0.5,

0 for 0.5 < x < 1.

ii) Spike: u = 1 at the single grid point x = 0.5 and u = 0 at all

other grid points.

16.2 1D shallow-water model

Here we will examine the difference between implementing a staggered

and an unstaggered grid applied to the 1D shallow-water equations as

well as how to incorporate open boundary conditions in the model.

The shallow-water equations in the one-dimensional case are

∂u

∂t
= −g∂h

∂x
, (16.4)

∂h

∂t
= −H∂u

∂x
. (16.5)

These equations can be combined into a single expression for u and h:

∂2u

∂t2
− gH

∂2u

∂x2
=
∂2h

∂t2
− gH

∂2h

∂x2
= 0. (16.6)

The general d’Alembert solution to the wave equation is given by two

functions travelling in opposite directions:

u(x, t) = u1(x− ct) + u2(x+ ct), (16.7)

h(x, t) = h1(x− ct) + h2(x+ ct), (16.8)

where c =
√
gH is the propagation speed of the waves. The solution

interval to be analysed here is 0 ≤ x ≤ 1, with the periodic boundary

condition u(0, t) = u(1, t).

Examine one-dimensional gravity waves, which can be described

by the shallow-water equations. Write a program that solves the 1D

shallow-water equations given above.

172 Basic Numerical Methods in Meteorology and Oceanography

a) Unstaggered grid:

i) Model set-up: Discretise using the leap-frog scheme on an

unstaggered grid. Set H = g = 1 (thus c =
√
gH = 1) to

simplify the system. Run the program with ∆x = 0.025 and

the Courant number 0.9.

ii) Initialise the leap-frog scheme with a single Euler-forward

step, and use the following initial conditions:

h(x, t = 0) =

{︄

1

2
+ 1

2
cos (10π(x− 0.5)) for 0.4 ≤ x ≤ 0.6,

0 elsewhere.

u(x, t = 0) = 0.

iii) Do the results agree with the analytical solution of the

problem?

b) Staggered grid:

i) Model set-up: Rewrite the program using a staggered grid,

with h and u defined at different points.

ii) Run the program and try to find the stability limit setting

the time step. Then choose a time step 10 % smaller than

that in the stability limit, and employ the same initial

condition as in case a).

iii) Run three different simulations: one with the resolution

given in case a), a second one with half that resolution

(finer grid) and a third one with double the case-a)

resolution (coarser grid).

iv) Select one of the variables (either h or u) and compare the

accuracy of the solution with the previous solution obtained

on an A-grid. Discuss the difference between the three

results and the result from case a). Note that ∆x is the

distance between two h-points (and also two u-points).

c) Open boundary conditions:

In order to gain an understanding of how to deal with open

boundary conditions requiring a “sponge” (relaxation) zone we

will start by examining the 1D case. Consider a relaxation zone

defined in the region 0 ≤ x ≤ Lr. The relaxation function γ has

the following values at the boundaries of the sponge zone:

γ(Lr) = 0, (16.9)

γ(0) = 1. (16.10)

GFD Computer Exercises 173

Here we shall consider two types of relaxation functions:

Linear function:

γ(x) = 1− x

Lr
. (16.11)

Trigonometric function:

γ(x) =
1

2

[︃

1 + cos

(︃

πx

Lr

)︃]︃

(16.12)

i) Model set-up: Consider the 1D shallow-water model on a

domain −L ≤ x ≤ L on a staggered grid. Set c = L = 1 and

∆x = 0.025. Consider as initial condition a centrally located

cosine-shaped “bump”:

(h(x, 0), u(x, 0)) = (h0, u0)

{︄

1

2
+ 1

2
cos
(︁

10πx

L

)︁

for− L

10
≤ x ≤ L

10

0 elsewhere

Here h0 = u0 = 1. Impose a solid boundary at x = L and an

open boundary at x = −L by adding a relaxation zone

adjacent to the western boundary. The relaxation can be

parameterised in the following way:

ud(x) =

[︃

1− γ(x)
∆t

τ

]︃

u(x) for − Lr ≤ x ≤ −L (16.13)

where τ is a relaxation time-scale (s−1) and ud is the

damping value. Construct the function so that γ = 0 in the

interior of the system, and γ → 1 as you approach the

boundary. The function may be either trigonometric or

linear. Here it is sufficient to set τ = ∆t for simplicity.

ii) Analyse the effects of the length of the relaxation zone Lr,

choose values within the interval 0 ≤ Lr ≤ L. Select a

proper magnitude to study the effect of the open boundary.

iii) Discuss the results and the differences you observe when

you impose the trigonometric and the linear relaxation

function.

16.3 2D shallow-water model

Here the aim is to solve the linearised 2D shallow-water equations

using some standard numerical methods and to study atmospheric

174 Basic Numerical Methods in Meteorology and Oceanography

and oceanic processes. These equations, including rotation and physical

parameterisations, are

∂u

∂t
= fv − g

∂h

∂x
+ F x, (16.14)

∂v

∂t
= −fu− g

∂h

∂y
+ F y, (16.15)

∂h

∂t
= −H

(︃

∂u

∂x
+
∂v

∂y

)︃

. (16.16)

Here the physical parameterisations F x and F y may for instance be of

the horizontal viscosity and/or the drag forcing.

Below you will find the general structure of a Fortran-coded shallow-

water model. The dashed lines should be filled in with relevant Fortran

instructions!

PROGRAM structure_of_code

!--

! General structure of a shallow -water model in

! Fortran with staggered grid , rotation , diffusion

! & relaxation schemes.

! It is good and common practice to always write a

! few lines about what the code does and how.

!--

IMPLICIT NONE

!--

! Think about:

! Explain each parameter in words and units.

! Use common notation.

! Do not write too much in one line.

! Physical constants:

REAL*4, PARAMETER :: f = ? ! Coriolis parameter [s-1]

REAL*4, PARAMETER :: g = ? ! Gravity [m s-2]

! Model parameters:

REAL*4, PARAMETER :: H = ? ! Mean depth [m]

REAL*4, PARAMETER :: mu = ? ! Diffusion coeff. [m2 s

-1]

! Grid

INTEGER*4, PARAMETER :: NX = ? ! Number of i-

points

INTEGER*4, PARAMETER :: NY = ? ! Number of j-

points

INTEGER*4, PARAMETER :: NT = ? ! Number of time

steps

REAL*4, PARAMETER :: dx = ? ! Zonal grid spacing [m]

GFD Computer Exercises 175

REAL*4, PARAMETER :: dy = ? ! Merid. grid spacing [m

]

REAL*4, PARAMETER :: dt = ? ! Time step [s]

! Save data to file

CHARACTER *200 :: outFile = ? ! Name of output file

! Work variables

INTEGER *4 :: ic , ip , im , jc , jp , jm , nc , nm , np

REAL*4 :: du, dv, dh

! Data matrices

REAL*4, DIMENSION(NX ,NY ,NT) :: u, v, h

!--

! Initial condition

!--

! Main loop

! You might want to indent the code inside the loop

to

! make it easier to see where the loop starts and

ends.

DO nc=------

np = nc+1

nm = nc -1

DO jc=-------

jp = jc+1

jm = jc -1

DO ic=-------

ip = ic+1

im = ic -1

! Reset

du = 0.

dv = 0.

dh = 0.

! Coriolis

du = du + -------------------

dv = dv + -------------------

! Sea surface height gradient

du = du + -------------------

dv = dv + -------------------

! Continuity

dh = dh + -------------------

! Diffusion

du = du + -------------------

dv = dv + -------------------

! Relaxation

du = du + -------------------

dv = dv + -------------------

! New time step

176 Basic Numerical Methods in Meteorology and Oceanography

u(ic ,jc ,nt) = --------------------------

v(ic ,jc ,nt) = --------------------------

h(ic ,jc ,nt) = --------------------------

! Asselin filtering

u(ic ,jc ,nc) = --------------------------

v(ic ,jc ,nc) = --------------------------

h(ic ,jc ,nc) = --------------------------

! Update time index

ENDDO

! Don ’t forget to take care of boundary

conditions ,

! zonally periodic , no -slip , or other.

ENDDO

ENDDO

!--

! Save the data to file

!---

END PROGRAM

The following tasks should be undertaken:

i) Model set-up: Here we develop a 2D shallow-water model that

includes rotation on an Arakawa C-grid. Set F x and F y to

zero. For simplicity prescribe your domain as −1 ≤ x, y ≤ 1

where ∆x = ∆y = 0.025, g = 1, and H = 1. Choose a proper

Courant number and introduce an Asselin filter. Integrate the

first time step using an Euler-forward scheme and the

subsequent time steps with a leap-frog scheme and keep in

mind that periodic boundaries will affect the computation of

the Coriolis terms.

ii) Consider as initial conditions:

u(x, y, 0) = 0, (16.17)

v(x, y, 0) = 0, (16.18)

h(x, y, 0) = h0e
−(x/LW)2−(y/LW)2 , (16.19)

where L = 1, LW = L/7 and h0 = 1. Impose solid boundaries
everywhere.

iii) Run the model and analyse the results for the non-rotating

case (f = 0).

iv) Calculate the potential and kinetic energies of the system.

Study the time evolution of both their magnitudes and check

GFD Computer Exercises 177

to what extent the total energy is preserved. Does the Asselin

filtering affect this result?

v) Repeat the same tasks for the case of constant rotation,

f = 10−4s−1. Interpret the results physically.

Note that for each of the subsequent tasks given in this chapter you

will need to programme new parts in the model code to deal with

different physical processes such as waves and circulation in the ocean

and atmosphere.

16.4 Geostrophic adjustment

The purpose here is to understand what controls the evolution of a

disturbance initially at rest on a rotating plane, a process commonly

known as geostrophic adjustment. To study this phenomenon, you will

use the 2D shallow-water model developed in the previous section.

∂u

∂t
− f0v = −g∂h

∂x
, (16.20)

∂v

∂t
+ f0u = −g∂h

∂y
, (16.21)

∂h

∂t
+D0

(︃

∂u

∂x
+
∂v

∂y

)︃

= 0. (16.22)

Realistic values of g, D0 and f should be used in order to gain under-

standing of real atmospheric and oceanographic processes. The follow-

ing should be programmed in the code:

i) Use parameters that are appropriate to the mid-latitude North

Atlantic when running the experiments, if nothing else is given,

viz. L = 5 · 106 m, D0 = 4000 m, g = 9.81 ms−2, f0 = 10−4 s−1.

ii) Prescribe the number of grid cells NX and NY in the x- and

y-directions respectively.

iii) Let ∆x, ∆y be determined by L and NX , NY .

iv) Let ∆t be determined by a Courant number, phase speed and

max(∆x,∆y).

v) Let NT be determined by Tmax, which is the simulation period.

vi) Construct the main time loop so that the model does not store

the fields every time step.

vii) Analyse the effect of the boundary condition by prescribing

different widths of the sponge zone.

178 Basic Numerical Methods in Meteorology and Oceanography

16.4.1 Geostrophic adjustment for a step-function disturbance

Here you will study the geostrophic adjustment for an initial distur-

bance consisting of a discontinuity in h that is symmetric in y.

Model set-up:

i) Implement a disturbance in h, which is described by a step

function in the zonal direction. A good practice is to

programme in Fortran the initial condition as a CASE or

LOGICAL to be able to turn it on or off for other exercises.

ii) The code already describes a Gaussian disturbance of the

sea-surface height as an initial condition, do not remove this,

instead make this as one of the options for the initial condition.

iii) Use periodic boundaries by attaching the northern boundary

to the southern.

iv) Use open boundaries in east and west. Make sure that the

sponge zone is wide enough.

Exercises:

i) Derive the final steady state of the sea-surface height and the

velocities starting from the linearised shallow-water equations.

ii) Run the model until the system only varies very little in time

(steady state).

iii) Verify your model results with the results you obtained

analytically.

iv) Tweak the parameters. Which parameters are most important?

v) Discuss the results obtained by tweaking the parameters.

16.4.2 Geostrophic adjustment for a Gaussian disturbance

Here you will study the geostrophic adjustment of an initial disturbance

described by a Gaussian perturbation of the sea-surface height. You are

supposed to study the various energetics of the system.

Model set-up:

i) Use a Gaussian disturbance instead of the step function

employed in the previous subsection. The disturbance should

GFD Computer Exercises 179

be smaller than the domain, but make sure it is larger than the

resolution.

ii) Programme the potential, kinetic and total energies of the

system. Use the Fortran command LOGICAL to be able to turn

the computation on or off. Remember that you have to save

these fields to be able to study them.

iii) Use open boundaries (sponge) everywhere.

Exercise 1:

i) Write down the analytical expression for the total kinetic and

potential energies.

ii) Run the model with two different depths; one shallow

D0 ∼ 500 m and the other deep D0 ∼ 10000 m.

iii) Study how the energies of the system (kinetic, potential and

total) vary in time for the two cases with different depths.

iv) Give a physical explanation of the results.

Exercise 2:

The system can be considered to be in steady state when the energy

of the system changes very little with time.

i) Run the model long enough so that the system reaches to a

steady state for the depths used in Exercise 1.

ii) Run the model again using different depths and sizes of the

disturbance.

iii) How do the results change? Try to explain the changes and

compare with theory.

16.5 Kelvin wave

The aim of this assignment is to gain an understanding of the influence

solid boundaries exert on geophysical flows. Although applicable to

some situations in the atmosphere, the influence of lateral boundaries

is more important in the world oceans. In this assignment you will use

a simple shallow-water model with solid boundaries, and look at how

an initial disturbance evolves, and how a system initially at rest evolves

as you add forcing.

180 Basic Numerical Methods in Meteorology and Oceanography

16.5.1 Gaussian disturbance

Model set-up:

i) Programme an infinite coast by setting an open boundary on

the north side of the domain and a solid boundary on the

south side.

ii) Impose periodic boundary conditions in the x-direction.

iii) Programme a new initial condition that describes a

reasonably-sized Gaussian disturbance of the h-field centered

in the middle of the coast, so that the partitioned disturbance

has its maximum value at the wall.

iv) Introduce a reduced gravity in the system.

Experiment:

i) Run the model for two different cases; the North Atlantic

(L = 1 · 107 m , H = 1000 m) and the Baltic Sea (L = 1 · 106

m , H = 30 m).

ii) Do any particular kind of waves show up?

iii) How can you identify these waves? (phase speed, shape, ...).

iv) Connect your results to the theory.

v) Run the model again for both cases (North Atlantic and the

Baltic Sea) using different settings, e.g. changing the

resolution.

vi) Look at a cross-section of the wave, and estimate its phase

speed.

vii) Compare your results with the theory.

16.5.2 Equatorial β-plane

In this part of the assignment you are supposed to study waves that

appear on an equatorial β-plane. Model set-up:

i) Change the initial condition to a Gaussian disturbance centred

in the middle of the domain.

ii) Programme a new Coriolis parameter so that it corresponds to

an equatorial β-plane (f = βy). Try to take advantage of the

Fortran command LOGICAL here so that you easily can change

between a β-plane or an f -plane. Place the equator (y = 0)

centrally in the domain. Remember to introduce reduced

gravity in the code!

GFD Computer Exercises 181

Experiment:

i) Run the model using values corresponding to the Pacific Ocean

(L = 2 · 107 m , H = 1000 m)

ii) Why do you need a reduced gravity for this simulation?

iii) Identify the waves in the model.

iv) Do the waves correspond to theory?

v) Can these waves be observed in the real ocean?

16.6 Oceanic Rossby waves

The aim of this assignment is to study and understand the kind of waves

that are generated whenD(y) or f(y) are “sloping”, viz.D = D0+αy or

f = f0 +βy. For this assignment you should use a model with periodic

and open (sponge) boundary conditions. The initial disturbance should

be in geostrophic balance to avoid gravity waves.

Model set-up:

i) Use an initial disturbance in geostrophic balance. (Hint: you

have already programmed the initial condition for h in a

previous exercise. But you need to programme u and v so that

they are in geostrophic balance.)

ii) Use periodic boundaries in x by attaching the eastern

boundary to the western.

iii) Use open boundaries (sponge) on the southern and northern

boundaries.

iv) Programme a sloping α-plane D = D0 + αy using LOGICAL (or

CASE) so that you can choose to have it on or off in the

simulation.

v) Programme a new Coriolis parameter f = f0 + βy. Use the

Fortran command LOGICAL (or CASE) so that you can choose

to turn it on or off.

16.6.1 Rossby waves on a β-plane

i) Consider a rectangular basin with L = 7 · 106 m and

D0 = 4000 m in the mid latitudes (e.g. the North Pacific).

Run the model for at least 30 days.

ii) Start by deriving the phase speed and group velocity for

Rossby waves in this linear system. (The derivation should not

be included in the report, only the final solution).

182 Basic Numerical Methods in Meteorology and Oceanography

iii) Run the model with a β-plane and a constant topography D0.

iv) Describe and explain the evolution of the system.

v) Connect the results to theory.

vi) What kind of waves develop?

vii) Do they have any distinguishing properties?

16.6.2 Phase and group velocities

i) Rerun the model but with different wave numbers. (Hint: To

change the wavenumber, change the width of the disturbance).

ii) Compare the obtained phase speed and group velocity to the

theoretical values.

iii) Repeat this exercise but keep f constant and vary the

topography using an α-plane. Discuss the differences between

the results.

16.6.3 β − α compensation

i) Run the model using a varying topography and f -field

(D = D0 + αy and f = f0 + βy).

ii) Calculate the value of α that cancels the β effect. What

happens to the initial disturbance under these circumstances?

16.7 Atmospheric Rossby waves

The aim of this assignment is to study and understand the kind of

waves that are generated when f(y) is “sloping”, viz. f = f0 +βy. The

effect of including a zonal mean flow will also be discussed. For this

assignment you should use a model with periodic and open (sponge)

boundary conditions. The initial disturbance should be in geostrophic

balance to avoid gravity waves.

Model set-up:

i) Use an initial disturbance in geostrophic balance. (Hint: you

have already programmed the initial condition for h in a

previous exercise. But you need to programme u and v so that

they are in geostrophic balance.)

ii) Use periodic boundaries in x by attaching the eastern

boundary to the western.

GFD Computer Exercises 183

iii) Use open boundaries (sponge) on the southern and northern

boundaries.

iv) Introduce a zonal mean flow U0 in the system using LOGICAL

(or CASE) so that you can choose to have it on or off in the

simulation.

v) Programme a new Coriolis parameter describing f = f0 + βy.

Use LOGICAL (or CASE) so that you can choose to turn it on or

off.

16.7.1 β−plane

i) Consider a rectangular basin with L = 7 · 106 m and H = 4000

m in the mid latitudes. Run the model for at least 30 days.

ii) Start by deriving the phase speed and group velocity for

Rossby waves in this linear system. (The derivation should not

be included in the report, only the final solution).

iii) Run the model with a β-plane and without a mean flow

(U0 = 0 m/s).

iv) Describe and explain the evolution of the system.

v) Connect the results to theory.

vi) What kind of waves develop?

vii) Do they have any distinguishing properties?

16.7.2 Phase and group velocities

i) Run the model as above, but with different wave numbers.

(Hint: To change the wavenumber, change the width of the

disturbance).

ii) Compare the obtained phase speed and group velocity to the

theoretical values.

16.7.3 The effect of the zonal mean

i) Increase the zonal length of the domain to Lx = 28 · 106 m

while using the same ∆x as in the previous experiments.

ii) Run the model using a β plane and four different zonal mean

flows (choose zonal flows in the range 0 < U0 ≤ 15 m/s).

Calculate the group velocity for each case.

iii) Using the results from ii) and try to find the value of the zonal

mean flow at which the Rossby wave becomes stationary. Is

the initial condition preserved? If not, explain why.

184 Basic Numerical Methods in Meteorology and Oceanography

16.8 Gyre Circulations

The aim of this assignment is to study the Sverdrup, Stommel and

Munk theories for barotropic large-scale ocean circulation. To study

this phenomenon, you will use the 2D shallow-water model including

friction:

∂u

∂t
= fv − g

∂h

∂x
+AH∇2u+ Γu, (16.23)

∂v

∂t
= −fu− g

∂h

∂y
+AH∇2v + Γv, (16.24)

∂h

∂t
= −H

(︃

∂u

∂x
+
∂v

∂y

)︃

, (16.25)

where AH is the horizontal viscosity coefficient and Γ the Rayleigh-

friction coefficient.

Model set-up:

i) Let the system initially be at rest.

ii) Use solid boundaries.

iii) Programme a wind forcing that is constant in x and sinusoidal

in y.

iv) Use a β-plane

Do not forget to compute the barotropic stream function in order to

compare your results with the analytical solution.

16.8.1 Sverdrup solution

i) Run the model without any friction and use parameters that

are appropriate for the North Atlantic.

ii) What effect does β = ∂f/∂y have on the system?

iii) What effect does the wind forcing have?

iv) Do the results resemble theory? Why/Why not?

v) Do the results improve if the size of the domain is increased?

(e.g. rerun the experiment for the North Pacific)

vi) What are the limitations of the Sverdrup theory?

16.8.2 Stommel solution

i) Now run the model using the same ocean basin (either the

North Atlantic or the North Pacific) with the Rayleigh linear

friction applied SOLELY to v.

GFD Computer Exercises 185

ii) Give a physical explanation of this kind of friction.

iii) Describe and explain the modelled circulation using the

Stommel theory.

iv) Rerun the model using a different value of the

Rayleigh-friction coefficient Γ.

v) Describe how the results have changed.

16.8.3 Munk solution

i) Now run the model using the same ocean basin (either the

North Atlantic or the North Pacific) with Laplacian friction.

ii) Give a physical explanation of this kind of friction.

iii) Describe and explain the modelled circulation using the Munk

theory.

iv) Rerun the model using different values of the horizontal

viscosity coefficient AH .

v) Describe how the results have changed.

vi) Compare the Stommel and Munk solutions!

Bibliography

Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate
representation of free-surface flows in ocean circulation models, Ocean
Modelling, doi:10.1016/j.ocemod.2003.09.003, 2004.

Asselin, R.: Frequency filter for time integrations, Monthly Weather Review,
100, 487–490, 1972.

Batteen, M. L. and Han, Y.-J.: On the computational noise of
finite-difference schemes used in ocean models, Tellus, 33, 387–396, 1981.

Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,
Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., et al.: The
HARMONIE–AROME model configuration in the ALADIN–HIRLAM
NWP system, Monthly Weather Review, 145, 1919–1935, doi:10.1175/:
MWR-D-16-0417.1, 2017.

Bjerknes, V.: Das Problem der Wettervorhersage, betrachtet vom
Standpunkte der Mechanik und der Physik, vol. 21, Meteorologische
Zeitschrift, 1904.

Bryan, K. and Cox, M. D.: A numerical investigation of the oceanic general
circulation, Tellus A, 19, 1967.

Charney, J. G., Fjørtoft, R., and von Neumann, J.: Numerical integration of
the barotropic vorticity equation, Tellus, 2, 237–254, 1950.

Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen
Differenzengleichungen der mathematischen Physik, Mathematische
Annalen, 100, 32–74, 1928.

Courant, R., Isaacson, E., and Rees, M.: On the solution of nonlinear
hyperbolic differential equations by finite differences, Communications on
Pure and Applied Mathematics, 5, 243–255, doi:10.1002/cpa.3160050303,
1952.

Crank, J. and Nicolson, P.: A practical method for numerical evaluation of
solutions of partial differential equations of the heat-conduction type, in:
Mathematical Proceedings of the Cambridge Philosophical Society,
vol. 43, pp. 50–67, Cambridge University Press, 1947.

Danilov, S., Kivman, G., and Schröter, J.: A finite-element ocean model:
Principles and evaluation, Ocean Modelling, 6, 125–150, doi:10.1016/
S1463-5003(02)00063-X, 2004.

https://doi.org/10.1016/j.ocemod.2003.09.003
https://doi.org/10.1175/:MWR-D-16-0417.1
https://doi.org/10.1175/:MWR-D-16-0417.1
https://doi.org/10.1002/cpa.3160050303
https://doi.org/10.1016/S1463-5003(02)00063-X
https://doi.org/10.1016/S1463-5003(02)00063-X

188 Basic Numerical Methods in Meteorology and Oceanography

Döös, B. R. and Eaton, M. A.: Upper-Air Analysis over Ocean Areas, Tellus,
9, 184–194, 1957.

Duben, P. D., Korn, P., and Aizinger, V.: A discontinuous/continuous low
order finite element shallow water model on the sphere, Journal of
Computational Physics, 231, 2396–2413, doi:https://doi.org/10.1016/
j.jcp.2011.11.018, 2012.

Durran, D.: Numerical Methods for Fluid Dynamics - With Applications to
Geophysics, Texts in Applied Mathematics, Springer New York, 2010.

Fischer, G.: Ein numerisches Verfahren zur Errechnung von Windstau und
Gezeiten in Randmeeren, Tellus, 11, 60–76, 1959.

Flather, R. A.: A Storm Surge Prediction Model for the Northern Bay of
Bengal with Application to the Cyclone Disaster in April 1991, Journal of
Physical Oceanography, 24, 172–190, doi:10.1175/1520-0485(1994)024
<0172:ASSPMF>2.0.CO;2, 1994.

Hackbusch, W.: Multi-Grid Methods and Applications, vol. 4, doi:10.1007/
978-3-662-02427-0, 1985.

Hansen, W.: Theorie zur Errechnung des Wasserstandes und der Strömungen
in Randmeeren nebst Anwendungen, Tellus, 8, 287–300, 1956.

Higdon, R. L.: Numerical Absorbing Boundary Conditions for the Wave
Equation, Mathematics of Computation, 49, 65–90, URL http://www.
jstor.org/stable/2008250, 1987.

Holton, J. and Hakim, G.: An Introduction to Dynamic Meteorology,
Academic Press, Elsevier Science, 2013.

Hovmöller, E.: The trough-and-ridge diagram, Tellus, 1, 62–66, 1949.

Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge University Press, 2003.

Killworth, P. D., Webb, D. J., Stainforth, D., and Paterson, S. M.: The
development of a free-surface Bryan–Cox–Semtner ocean model, Journal
of Physical Oceanography, 21, 1333–1348, 1991.

Kwizak, M. and Robert, A. J.: A semi-implicit scheme for grid point
atmospheric models of the primitive equations, Monthly Weather Review,
99, 32–36, 1971.

Lynch, P.: The Emergence of Numerical Weather Prediction: Richardson’s
Dream, Cambridge University Press, 2006.

Machenhauer, B., Kaas, E., and Lauritzen, P. H.: Finite-Volume Methods in
Meteorology, in: Special Volume: Computational Methods for the
Atmosphere and the Oceans, edited by Temam, R. M. and Tribbia, J. J.,
vol. 14 of Handbook of Numerical Analysis , Elsevier, 2009.

https://doi.org/10.1016/j.jcp.2011.11.018
https://doi.org/10.1016/j.jcp.2011.11.018
https://doi.org/10.1175/1520-0485(1994)024<0172:ASSPMF>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<0172:ASSPMF>2.0.CO;2
https://doi.org/10.1007/978-3-662-02427-0
https://doi.org/10.1007/978-3-662-02427-0
http://www.jstor.org/stable/2008250
http://www.jstor.org/stable/2008250

Bibliography 189

Manabe, S. and Bryan, K.: Climate calculations with a combined
ocean-atmosphere model, Journal of the Atmospheric Sciences, 26,
786–789, 1969.

Mesinger, F. and Arakawa, A.: Numerical methods used in atmospheric
models, GARP technical report 17, WMO/ICSU. Geneva, Switzerland, 1,
1976.

Nycander, J. and Döös, K.: Open boundary conditions for barotropic waves,
Journal of Geophysical Research: Oceans, 108, 2003.

Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows,
Journal of Computational Physics, 21, 251–269, 1976.

Pacanowski, R. C. and Gnanadesikan, A.: Transient response in a z-level
ocean model that resolves topography with partial cells, Monthly
Weather Review, 126, 3248–3270, 1998.

Persson, A.: Early operational Numerical Weather Prediction outside the
USA: an historical Introduction. Part I: Internationalism and engineering
NWP in Sweden, 1952–69, Meteorological Applications, 12, 135–159,
2005a.

Persson, A.: Early operational Numerical Weather Prediction outside the
USA: an historical introduction: Part II: Twenty countries around the
world, Meteorological Applications, 12, 269–289, 2005b.

Persson, A.: Early operational Numerical Weather Prediction outside the
USA: an historical introduction Part III: Endurance and
mathematics–British NWP, 1948–1965, Meteorological Applications, 12,
381–413, 2005c.

Phillips, N. A.: A coordinate system having some special advantages for
numerical forecasting, Journal of Meteorology, 14, 184–185, 1957.

Richardson, L. F.: The Approximate Arithmetical Solution by Finite
Differences of Physical Problems Involving Differential Equations, with
an Application to the Stresses in a Masonry Dam, Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 210, 307–357, doi:10.1098/rsta.1911.0009, 1911.

Richardson, L. F.: Weather prediction by numerical process, Cambridge
University Press, 1922.

Robert, A.: A stable numerical integration scheme for the primitive
meteorological equations, Atmosphere-Ocean, 19, 35–46, 1981.

Robert, A. J.: The integration of a low order spectral form of the primitive
meteorological equations(Spherical harmonics integration of low order
spectral form of primitive meteorological equations), Journal of the
Meteorological Society of Japan, 44, 237–245, 1966.

Sadourny, R.: The dynamics of finite-difference models of the shallow-water
equations, Journal of the Atmospheric Sciences, 32, 680–689, 1975.

https://doi.org/10.1098/rsta.1911.0009

190 Basic Numerical Methods in Meteorology and Oceanography

Sawyer, J.: Large scale vertical motion in the atmosphere, Quart. J. Roy.
Meteor. Soc, 75, 185–188, 1949.

Simmons, A. J. and Burridge, D. M.: An Energy and Angular-Momentum
Conserving Vertical Finite-Difference Scheme and Hybrid Vertical
Coordinates, Monthly Weather Review, 109, 758–766, 1981.

Smagorinsky, J.: General circulation experiments with the primitive
equations: I. the basic experiment*, Monthly Weather Review, 91,
99–164, 1963.

Smolarkiewicz, P. K., Deconinck, W., Hamrud, M., Kühnlein, C.,
Mozdzynski, G., Szmelter, J., and Wedi, N. P.: A finite-volume module
for simulating global all-scale atmospheric flows, Journal of
Computational Physics, 314, 287–304, 2016.

Sommerfeld, A.: Partial differential equations in physics, Academic press,
1949.

Staniforth, A. and Côté, J.: Semi-Lagrangian integration schemes for
atmospheric models - A review, Monthly Weather Review, 119,
2206–2223, 1991.

Tallqvist, H.: Grunderna af teorin för sferiska funktioner jämte
användningar inom fysiken, Helios, Helsingfors, 1905.

Wiin-Nielsen, A.: The birth of numerical weather prediction, Tellus A, 43,
36–52, 1991.

Williams, P. D.: A proposed modification to the Robert-Asselin time filter,
Monthly Weather Review, 137, 2538–2546, 2009.

	Cover
	Title Page
	Copyright Page

	Editorial Board for the book Basic Numerical Methods in Meteorology and Oceanography
	Peer Review Policy
	Preface
	1. Introduction
	1.1 What is a numerical model of the circulation of the atmosphere or the ocean?
	1.2 Brief historical background

	2. Partial Differential Equations
	2.1 Elliptic equations
	2.2 Parabolic equations
	2.3 Hyperbolic equations
	2.4 Overview

	3. Finite Differences
	3.1 The grid-point method
	3.2 Finite-difference schemes
	3.2.1 Forward-difference scheme
	3.2.2 Centred-difference scheme
	3.2.3 Centred fourth-order difference scheme
	3.2.4 Centred-difference scheme on a staggered grid

	3.3 Time-difference schemes
	3.3.1 Two-level schemes
	3.3.2 Three-level schemes

	4. Numerical Stability
	4.1 The advection equation
	4.2 Initial and boundary conditions
	4.3 Stability analysis of the leap-frog scheme
	4.4 Euler-forward scheme in time
	4.5 The upstream scheme
	4.6 Stability analysis of the fourth-order scheme

	5. The Computational Mode
	5.1 The three-level scheme
	5.1.1 The computational initial condition

	5.2 Suppression of the computational mode
	5.2.1 Euler-forward or -backward schemes at regular intervals
	5.2.2 The Robert-Asselin filter
	5.2.3 The Robert-Asselin-Williams filter

	6. The Computational Phase Speed
	6.1 Dispersion due to the spatial discretisation
	6.2 Dispersion due to the time discretisation
	6.3 Dispersion due to spatial and temporal resolution

	7. The Shallow-Water Equations
	7.1 The one-dimensional shallow-water equations
	7.1.1 Spatial discretisation but continuous time derivatives
	7.1.2 Spatial and temporal discretisation

	7.2 Two-dimensional shallow-water equations
	7.3 Gravity waves with centred spatial differencing
	7.4 The shallow-water equations with leap-frog
	7.5 Boundary conditions
	7.5.1 Closed boundary conditions
	7.5.2 Open boundary conditions

	7.6 Conservation of mass, energy and enstrophy
	7.6.1 The shallow-water equations with non-linear advection terms
	7.6.2 Discretisation

	7.7 A shallow-water model

	8. Diffusion and Friction Terms
	8.1 Rayleigh friction
	8.2 Laplacian friction
	8.3 The advection-diffusion equation

	9. The Poisson and Laplace Equations
	9.1 Jacobi iteration
	9.2 Gauss-Seidel iteration
	9.3 Successive Over Relaxation (SOR)
	9.4 Helmholtz Decomposition

	10. Implicit and Semi-Implicit Schemes
	10.1 Implicit versus explicit schemes, a simple example
	10.2 Semi-implicit schemes
	10.2.1 The one-dimensional (1D) diffusion equation
	10.2.2 Two-dimensional (2D) pure gravity waves

	10.3 The semi-implicit method of Kwizak and Robert

	11. The Semi-Lagrangian Technique
	11.1 The 1D linear advection equation
	11.2 Stability analysis
	11.3 The advection equation with variable velocity

	12. Model Coordinates
	12.1 Oceanic vertical coordinates
	12.1.1 Fixed-depth coordinates
	12.1.2 Variable-depth coordinates

	12.2 Atmospheric vertical coordinates
	12.2.1 Generalised vertical coordinates
	12.2.2 Pressure coordinates
	12.2.3 Atmospheric sigma coordinates
	12.2.4 Hybrid coordinates
	12.2.5 Isentropic coordinates

	12.3 Structured and unstructured grids
	12.3.1 Finite element method
	12.3.2 Finite volume method

	13. 3D Modelling
	13.1 Approximations
	13.2 A simple hydrostatic model
	13.3 The tracer equation
	13.3.1 Discretisation on a Cartesian grid
	13.3.2 Discretisation on an orthogonal curvilinear grid

	13.4 Non-hydrostatic modelling

	14. Spectral Methods
	14.1 Spherical harmonics
	14.2 The spectral transform method
	14.3 The shallow-water equations on a sphere

	15. Theoretical Exercises
	15.1 Exercises given in the main body of the text
	15.1.1 Finite differences
	15.1.2 Stability Analysis
	15.1.3 Accuracy of the numerical phase speed
	15.1.4 Diffusion and friction terms

	15.2 Additional theoretical exercises
	15.2.1 Leap-frog scheme
	15.2.2 Upwind scheme
	15.2.3 Euler-forward scheme
	15.2.4 Staggered vs. unstaggered grid
	15.2.5 Order of accuracy
	15.2.6 Nonrotating 2D shallow-water equations
	15.2.7 Laplace equation
	15.2.8 Semi-implicit scheme

	16. GFD Computer Exercises
	16.1 Advection and diffusion equations
	16.1.1 Advection equation
	16.1.2 Diffusion equation

	16.2 1D shallow-water model
	16.3 2D shallow-water model
	16.4 Geostrophic adjustment
	16.4.1 Geostrophic adjustment for a step-function disturbance
	16.4.2 Geostrophic adjustment for a Gaussian disturbance

	16.5 Kelvin wave
	16.5.1 Gaussian disturbance
	16.5.2 Equatorial β-plane

	16.6 Oceanic Rossby waves
	16.6.1 Rossby waves on a β-plane
	16.6.2 Phase and group velocities
	16.6.3 β − α compensation

	16.7 Atmospheric Rossby waves
	16.7.1 β-plane
	16.7.2 Phase and group velocities
	16.7.3 The effect of the zonal mean

	16.8 Gyre Circulations
	16.8.1 Sverdrup solution
	16.8.2 Stommel solution
	16.8.3 Munk solution

	Bibliography

