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PACIFIC SYMPOSIUM ON BIOCOMPUTING 2023 
 
2023 marks the 28th Pacific Symposium on Biocomputing (PSB). We once again expect to be 
on the Big Island in person with a recognizably “normal” PSB.  Our community depends on  
annual face-to-face interactions to revitalize our work and catalyze progress in the field.  As we 
turn our attention to the ongoing challenges to biology, the environment and health, we continue 
to see exploding opportunities for computation.  In the US, the President has established an 
ambitious and well-funded Advanced Research Project Administration for Health (ARPA-H) with 
a mission of speeding progress in research related to health. Other efforts are emerging in synthetic 
biology, neuroscience, sustained efforts against cancer (e.g. the Cancer Moonshot program), the 
federation of biobanks, future pandemic preparedness, and many other areas.  Computation is 
central to the success of all these efforts—sometimes this is obvious to their leadership, but at 
other times our community must demonstrate the power and impact of our technologies and 
capabilities.  PSB is one wonderful forum for assessing the ability of our field to respond to the 
major challenges facing our society.  
 
In addition to being published by World Scientific and indexed in PubMed, the proceedings 
from all PSB meetings are available online at http://psb.stanford.edu/psb-online/. PSB has 
1298 papers listed in PubMed (as of today). These papers are routinely cited in archival  
journal articles and of ten  represent important early contributions in new subfields—many 
times before there is an established literature in more traditional journals; for this reason, many 
papers have garnered hundreds of citations.  
 
The Twitter handle f o r  PSB is @PacSymBiocomp and the hashtag for PSB 2023 is #PSB23. 
 
The efforts of a dedicated group of session organizers have produced an outstanding program. 
The sessions of PSB 2023 and their hard-working organizers are as follows: 
 
Digital health technology data in biocomputing: Research efforts and considerations 
for expanding access 
Organizers: Michelle Holko, Chris Lunt, Jessilyn Dunn 
 
Graph Representations and Algorithms in Biomedicine 
Organizers: Brianna Chrisman, Cliff Joslyn, Maya Varma, Sepideh Maleki, Maria Brbic, 
Marinka Zitnik  
 
Overcoming health disparities in precision medicine 
Organizers: Kathleen Barnes, Carlos Bustamente, Francisco De La Vega, Chris Gignoux, Eimear 
Kenny, Rasika Mathias, Bogdan Pasaniuc 
 
Precision Medicine: Using computation and artificial intelligence to improve healthcare 
and public health 
Organizers: Steven E. Brenner, Jonathan Chen, Dana C. Crawford, Roxana Daneshjou, Łukasz 
Kidziński, David Ouyang, Michelle Whirl-Carrillo 
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SALUD: Scalable Applications of cLinical risk Utility and prediction 
Organizers: Shefali S. Verma, Rachel L. Kember, Renae Judy, Marijana Vujkovic, Olivia J. 
Veatch, Yoson Park, Pankhuri Singhal, Yogasudha Veturi 
 
Towards Ethical Biomedical Informatics 
Organizers: Peter Y. Washington, Dennis P. Wall, Steven E. Brenner, Gamze Gürsoy, Nicholas 
P. Tatonetti 
 
We are also pleased to present five workshops in which investigators with a common interest 
come together to exchange results and new ideas in a format that is more informal than the 
peer-reviewed sessions. For this year, the workshops and their organizers are: 
 
Biomedical research in the Cloud: Options and factors for researchers and organizations 
considering moving to (or adding) cloud computing resources 
Organizers: Michelle Holko, Nick Weber, Chris Lunt, Steven E. Brenner 
 
Accessing clinical-grade genomic classification data through the ClinGen Data Platform 
Organizers: Karen P. Dalton, Heidi L. Rehm, Matt W. Wright, Mark E. Mandell, Kilannin 
Krysiak, Lawrence Babb, Kevin Riehle, Tristan Nelson, Alex H. Wagner 
 
High-Performance Computing Meets High-Performance Medicine 
Organizers: Anurag Verma, Jennifer Huffman, Ali Torkamani, Ravi Madduri 
 
Risk prediction: Methods, Challenges, and Opportunities 
Organizers: Rui Duan, Lifang He, Ruowang Li, Jason H. Moore 
 
Single Cell Spatial Biology for Precision Cancer Medicine 
Organizers: Aaron Newman, Andrew Gentles 
 
The PSB 2023 keynote speakers are Heidi Rehm (Science keynote) and Keolu Fox (Ethical, 
Legal and Social Implications keynote). 
 
Tiffany Murray has managed the peer review process and assembly of the proceedings since 
2001 and plays a key role in many aspects of the meeting. We are grateful for the support of 
the National Institutes of Health1, ISCB, Cleveland Institute for Computational Biology, and 
Galatea Bio Inc. The Research Parasite Awards benefit from support from GigaScience, Jeff 
Stibel, Mr. and Mrs. Stephen Canon, and Drs. Casey and Anna Greene. The Research Symbiont 
Awards benefit from support from the Wellcome Trust and the DragonMaster Foundation. 
 
We are particularly grateful to the PSB staff Al Conde, Paul Murray, Ryan Whaley, Mark 
Woon, BJ Morrison McKay, Cynthia Paulazzo, Kasey Miller, Michael Arsenault, Jackson 
Miller, Heather Miller, and Nicholas Murray for their assistance. We also acknowledge the 
many busy researchers who reviewed the submitted manuscripts on a very tight schedule. The 
partial list following this preface does not include many who wished to remain anonymous, 
and of course we apologize to any who may have been left out by mistake. 
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We look forward to a great meeting and to seeing you on the Big Island. Aloha! 
 
Pacific Symposium on Biocomputing Co-Chairs, 
October 13, 2022 
 
Russ B. Altman 
Departments of Bioengineering, Genetics, Medicine & Biomedical Data Science, Stanford 
University 
 
Lawrence Hunter 
Department of Pharmacology, University of Colorado Health Sciences Center 
 
Marylyn D. Ritchie 
Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania 
 
Teri E. Klein 
Departments of Biomedical Data Science & Medicine, Stanford University 
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Digital health technology data in biocomputing:
Research efforts and considerations for expanding access

Michelle Holko
Google, Google Public Sector
Washington, DC 20001, USA

Email: michelleholko@google.com

Chris Lunt
National Institutes of Health
Bethesda, MD 20892, USA
Email: chris.lunt@nih.gov

Jessilyn Dunn
Biomedical Engineering, Duke University

Durham, NC 27708, USA
Email: jessilyn.dunn@duke.edu

Data from digital health technologies (DHT), including wearable sensors like Apple Watch,
Whoop, Oura Ring, and Fitbit, are increasingly being used in biomedical research. Research and
development of DHT-related devices, platforms, and applications is happening rapidly and with
significant private-sector involvement with new biotech companies and large tech companies (e.g.
Google, Apple, Amazon, Uber) investing heavily in technologies to improve human health. Many
academic institutions are building capabilities related to DHT research, often in cross-sector
collaboration with technology companies and other organizations with the goal of generating
clinically meaningful evidence to improve patient care, to identify users at an earlier stage of
disease presentation, and to support health preservation and disease prevention. Large research
consortia, cross-sector partnerships, and individual research labs are all represented in the current
corpus of published studies. Some of the large research studies, like NIH’s All of Us Research
Program, make data sets from wearable sensors available to the research community, while the vast
majority of data from wearable sensors and other DHTs are held by private sector organizations and
are not readily available to the research community. As data are unlocked from the private sector
and made available to the academic research community, there is an opportunity to develop
innovative analytics and methods through expanded access. This Session solicited research results
leveraging digital health technologies, including wearable sensor data, describing novel analytical
methods, and issues related to diversity, equity, inclusion (DEI) of both the underlying research
data sets and the community of researchers working in this area. We particularly encouraged
submissions describing opportunities for expanding and democratizing academic research using
data from wearable sensors and related digital health technologies.

Keywords: digital health technologies; wearables; sensors; waveform data; time-series data;
algorithms.

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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1. Background

Use of digital health devices has grown; in 2016, only 12% of Americans were estimated to
regularly use a wearable digital health device, but by 2020, the estimation jumped to 21% [1].
Digital Health Technologies (DHTs), including wearable sensors like smart watches, have the
potential to inform us about our health. But there are gaps in who has access to data and devices,
who is performing the research, and therefore who the new technologies are poised to help.
Reviews of the current landscape of DHT research studies in the National Center for
Biotechnology Information (NCBI)’s Clinical Trials database (clinicaltrials.gov), and of studies
published by the top-20 funded private sector DHT companies, highlight several patterns and
limitations:

1. Small sample size: Aside from a few large studies, most of the published clinical trials
utilizing DHT have been relatively small, and are largely under-powered. “Nearly half the
studies - 829, or 46.5% - had less than 100 enrollees. Only 8% had more than 1,000 [2].”

2. Narrow Health Focus: The majority of published DHT studies focus on cardiometabolic
health and mental health/wellness, while relatively little published research examines critical
healthcare burden diseases like stroke, chronic obstructive pulmonary disease (COPD), and
diabetes [2].

3. Narrow Population Focus: Of studies published by the top 20 funded DHT private-sector
companies, the majority (72%) include only healthy volunteers, rather than high-risk
populations with comorbid conditions [3]. The breadth and diversity of the study
population(s), including socioeconomic, healthcare status, and racial diversity, may be the
most critical component of building AI-based DHT algorithms. This diversity is lacking in
current published research, likely leading to biased results [4]. The “bring your own device”
model has been used by many research studies, but this design may result in biased selection
of participants, and therefore biased results [5].

4. Limited Outcome Assessments: Only 15% of published DHT studies measured clinical
effectiveness, and only in relation to the patient outcomes and did not evaluate healthcare cost
or access to care [6]. As healthcare cost and access are two of the most pressing needs in
healthcare, it is important to expand research to examine these outcomes.

5. Insufficient Reporting and Data Publishing: Importantly, not only is reporting in
clinicaltrials.gov not required for observational DHT trials, there is also no public database for
DHT data and algorithms. This complicates the ability to understand the full range of DHT
“real world evidence” (RWE)-based research, and undermines research reproducibility and
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validation. The lack of a consensus DHT database also means that DHT data curation, feature
(e.g., digital biomarker) discovery, and algorithm development is limited to those who have
data, which is largely the private sector DHT companies. One attempt to develop standardized
pipelines and data repositories for digital health data, the Digital Health Data Repository as
part of the Digital Biomarker Discovery Pipeline [7], developed by co-organizer Jessilyn
Dunn’s lab, is still not fully funded.

6. Bridging the Regulatory Gap and Moving to Clinical Implementation: Despite
tremendous progress in DHT research and development, there is still a lot of work to be done
along the research → regulatory → clinical implementation continuum. The All of Us
Research Program is uniquely situated within NIH to interact with FDA colleagues and assist
in developing regulatory standards for this new and uncharted territory. There is also a
relatively new FDA Center for Digital Health Excellence, led by Bakul Patel. The Digital
Medicine Society is a professional organization that has been working across sectors with the
community to support innovation and standardization, in part via the Digital Health
Measurement Collaborative Community (DATAcc) [8] and the Digital Health Playbook [9].
There is also a Digital Health Consortium, housed within the Office of the National
Coordinator, for senior leaders within the federal government to convene across the digital
health continuum.

The above limitations don’t begin to address potential bias in algorithm development due to a
limited pool of researchers interacting with these data. The purpose of this Session is to provide a
forum for current research, address issues related to Diversity, Equity and Inclusion (DEI) in terms
of the types of research and the researchers engaged, and ultimately to energize non-commercial
research in the area. Our motivating question is how can this community work together to create
more equitable research in the digital health tech space to benefit the research community and
resulting impact?

2. Relevance to biocomputing

Digital health technologies, including wearable sensors, lend themselves well to biomedical
and computational biology research since they generate continuous or near-continuous data
streams ripe for machine learning and artificial intelligence (ML/AI) research. Algorithms
developed for detecting anomalies and other biomedically-related phenomena in wearable sensor
data are increasingly being incorporated into research and moving into clinical practice and other
health adjacent applications. In past years of this conference, there has been good representation of
a variety of data types, including genomics, imaging and clinical data sets; there has been limited
coverage of wearable sensors and digital health technologies research.
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The topic is timely for PSB 2023 since not only is there a growing use of wearable sensors in
research, but also because there are potential DEI issues for both research data sets and researchers
working with these data. Searching PubMed for the keyword “wearable” (Figure 1) shows
exponential growth in the number of publications, with 701 in 2021. “Digital health” shows a
similar trend (graph not shown) with 1,306 publications in 2021. Some of the journals and
conferences that generally cover DHT research include Nature Digital Medicine, Lancet Digital
Health, AMIA, and IEEE Biomedical and Health Informatics (BHI). Many of the conferences are
more focused on the clinical aspects and clinical trials, and not as much on the computational
biology or biomedical research aspects of DHT data analysis and algorithm development. There
have also been a few cross-sector seminars recently to explore regulatory and other issues related
to digital health technologies research, including this one in early 2020:
https://fnih.org/our-programs/biomarkers-consortium/digitalmonitoring

Fig. 1.  Number of publications with “wearable” in PubMed from 1988-2021

This Session showcases recent research on digital health tech, DEI issues related to these data
and research, and a discussion about what is needed to bridge these DEI gaps. The goal of this
information sharing and discussion opportunity for participants and the community is to expand
awareness and access to these data and tools, to enrich computational biology research, and bridge
DEI gaps. The session also includes a range of voices from academia, government, and private
sector. It’s important to represent private sector voices in this discussion since much of the
research is currently happening in tech companies developing digital health devices. Creating a
forum for dialogue across sectors is important for bridging gaps in awareness and understanding,
and encouraging more researchers to participate in developing computational methods and
analysis of data from digital health tech.

The discussion will focus on key challenges facing the field, and participants are encouraged to
contribute ideas to potential solutions and initiate lasting collaborations with researchers and
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communities in this area (e.g., the Digital Medicine Society). Further, participants will be exposed
to cutting edge tools in this space with brief demos on how to use them, including the Digital
Biomarker Discovery Pipeline (DBDP.org) [10], the Digital Health Data Repository, the All of Us
Researcher Workbench, and others. The Session will also provide an opportunity to discuss as a
community what is needed to truly enable cross-sector and expanded research for digital health
technologies.

3. Session overview

The organizers will introduce the session, followed by a keynote from Eric Perakslis, the Chief
Science and Digital Officer at the Duke Clinical Research Institute. He brings to the discussion his
wide range of experience working on collaborative efforts in data science that spanned medicine,
policy, engineering, computer science, information technology, and security, all from positions in
academia, private sector, and the government.

There will then be a series of brief talks from the authors of the papers that were accepted for
inclusion in the proceedings, and a panel discussion to include voices from industry and
government. A moderated Q&A discussion will conclude the session. The talks are original
research for publication, are widely varied, and include 1) comparing two wearable devices to
augmenting prediction of mild cognitive decline using not only MRI but also language markers
from speech, 2) a computational method for image segmentation of medical images, and 3) how
fitbit data in the All of Us cohort can be used to improve upon current methods of predicting
quality of life post-surgery.

The panel discussion will feature speakers from industry, including Ed Ramos and Julia Moore
Vogel from Scripps Digital Trials Center and Care Evolution, Aaron Coleman, founder and CEO
of Fitabase, Bakul Patel, currently at Google Health but the founding director of the FDA’s Center
for Digital Health Excellence, and Joshua Stein, Founder and Chief Growth Officer at Fitbit.

For the moderated Q&A discussion session all speakers, session organizers, and session
attendees are welcomed to participate. The speakers and organizers represent a diverse set of
perspectives across research efforts and related DEI issues. For both the talks and the panel,
diversity and inclusion across gender, race and other factors are incorporated into the Session
organization.
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Mild cognitive impairment is the prodromal stage of Alzheimer’s disease. Its detection has
been a critical task for establishing cohort studies and developing therapeutic interventions
for Alzheimer’s. Various types of markers have been developed for detection. For example,
imaging markers from neuroimaging have shown great sensitivity, while its cost is still pro-
hibitive for large-scale screening of early dementia. Recent advances from digital biomark-
ers, such as language markers, have provided an accessible and affordable alternative. While
imaging markers give anatomical descriptions of the brain, language markers capture the
behavior characteristics of early dementia subjects. Such differences suggest the benefits of
auxiliary information from the imaging modality to improve the predictive power of uni-
modal predictive models based on language markers alone. However, one significant barrier
to the joint analysis is that in typical cohorts, there are only very limited subjects that have
both imaging and language modalities. To tackle this challenge, in this paper, we develop a
novel crossmodal augmentation tool, which leverages auxiliary imaging information to im-
prove the feature space of language markers so that a subject with only language markers
can benefit from imaging information through the augmentation. Our experimental results
show that the multi-modal predictive model trained with language markers and auxiliary
imaging information significantly outperforms unimodal predictive models.

Keywords: Mild Cognitive Impairment; Multi-modality Analysis; Crossmodal Augmentation

1. Introduction

Alzheimer’s disease is the fifth-leading cause of death among individuals at age 65 and older.1

A person with Alzheimer’s will live through years of morbidity during the disease progression.
Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer’s disease and serves

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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as an important stage for early intervention and subject recruitment of cohort studies for
understanding the disease and developing novel treatments.

There are extensive efforts on the identification of MCI and the associated markers. Because
the progression of the disease is associated with structural changes in the brain,2 the potential
of detection from brain imaging of various types has been widely studied. Especially, magnetic
resonance imaging (MRI) has provided a non-invasive way of examining the structure of the
brain and tracking its changes. Studies have associated measurements from MRI with early-
stage dementia.3,4 The availability of a large amount of MRI data from Alzheimer’s Disease
Neuroimaging Initiative5 largely facilitated the development of machine learning algorithms
for detection.6–8 Even though imaging markers from MRI are considered to be sensitive to
early-stage MCI, the cost of MRI scans prevents them from being widely used for large-
scale screening. The recent development of digital biomarkers, especially language markers,
has shown promising sensitivity to detection of MCI.9–14 For example, language markers can
be used in conversational agents deployed on mobile devices or smart speakers to obtain a
risk assessment of MCI.9 However, the investigation of language markers is still in the early
phase, where a critical issue is that the cohort sizes for studying language markers remain
very limited,15 demanding more data to unleash their power.

While imaging markers give anatomical descriptions of the brain, language markers capture
the behavior characteristics of early dementia subjects. Such differences suggest the benefits of
multi-modality analysis, where auxiliary information from the imaging modality can improve
the power of accessible language markers further. However, one significant barrier to the multi-
modality joint analysis is that in typical cohorts, there are only very limited subjects that have
both imaging and language modalities. For example, in a cohort study from the I-CONECT
clinical trial,15 there are 40 subjects randomized for the experimental group for whom language
makers (semi-structured conversations) are available. Yet among these subjects, there are
only 16 subjects who have MRI scans available in the National Alzheimer’s Coordinating
Center (NACC) medical records. Typical multi-modality analysis approaches often require a
substantial amount of data points that are shared or “aligned” across modalities to calibrate
across different modalities and seek a common subspace,16 and yet very few subjects in these
cohorts can be used for existing multi-modality analysis. This results in a huge waste of
collected data and often sub-optimal model performance due to insufficient sample size.

To tackle this challenge, in this paper, we developed a novel crossmodal augmentation tool,
which leverages auxiliary imaging data to improve predictive modeling of language markers.
Specifically, based on the language markers of a subject, the augmentation model constructs
a feature embedding from the imaging domain by gauging its similarity with respect to other
subjects and relating to the interconnection between two modalities. To achieve this, we
introduced a model that learns to measure the consistency between any pair of language fea-
tures and imaging features. The design of our model gives high sample efficiency, so that
the learning can be done even when there are only a few subjects that have both modali-
ties. During inference, the model assigns weights of existing imaging embedding for a given
language embedding to construct the augmented features. We show in our empirical study
that the proposed early MCI detection model, by augmenting language modality with con-
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structed features from imaging information, significantly outperforms unimodal models and
straightforward multi-modality models using aligned multi-modal data alone.

2. Related Works

Early Detection of MCI. Early detection of MCI is of great clinical importance and
predictive models are built from a variety of data types, such as clinical information,16 neu-
roimaging,4,17 and, more recently, digital biomarkers.12 Neuroimaging captures the structural
information of the brain, and therefore imaging markers, especially from structural MRI,17

have shown great sensitivity. Besides being non-intrusive, the cost of imaging markers is still
prohibitive for large-scale screening of early dementia. Recent advances in digital biomark-
ers,18 such as language markers, have provided an accessible and affordable alternative.12

From the spontaneous speech, we can extract linguistic features (e.g., word preference, syn-
tactic features, semantic features, data-driven word embedding) and acoustic information (e.g.,
MFCC).11,12 It has been recently shown that combining acoustic features and linguistic fea-
tures delivers an improved prediction performance.12,13 The development of language markers
is still in the very early phase, with limited data available for modeling. The analysis can
benefit from more data from different data sources to deliver high predictive performance.
Multi-modality Learning. Multi-modality learning aims to characterize a concept (such as
MCI) from different perspectives by using the complementary features from different modal-
ities.19 The paradigm has been widely used in biomedical and bioinformatics studies due to
the ubiquitous need for joint analysis on multiple data modalities. Early fusion approaches
fuse the features in the data/feature space and train a machine learning model based on the
fused features. Late fusion approaches build independent models associated with an individ-
ual modality and produce the final classification score by combining the outcomes from each
model. Most existing multi-modality approaches require the majority of data to be aligned
across different modalities to learn the underlying connections among the modalities, which
is the motivation of this work.
Feature Synthesis. Linear combination has been widely used in data analysis for synthesiz-
ing samples. SMOTE-based methods20,21 alleviate the class imbalance problem by manually
synthesizing new samples with linear combination in data space or feature space. Linear combi-
nation with Gaussian weights22 is used to generate samples for biometrics tasks. More recently,
MixUp-based methods23,24 augment the training data using synthesized samples generated by
linear combination, increasing performance and enhancing robustness.25 Linearly synthesized
T1 MRI features are shown to facilitate accurate attenuation correction maps.26 We adopt
linear combinations to construct features due to performance and computational efficiency.

3. Methods

3.1. Data

We use conversational data and imaging data from an ongoing clinical trial I-CONECT (Clin-
icaltrials.gov: NCT02871921)a. Briefly, this trial examines whether frequent conversational

aThe data is available upon request at https://www.i-conect.org/.
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engagement through video chats with standardized interviewers improves cognitive functions.
Only the experimental group engages in frequent semi-structured conversations while the con-
trol group receives only 10 minutes of phone check-ins weekly. The recorded semi-structured
conversation used among the experimental group (N=40) was utilized in the current analyses.
Among these 40 subjects with available language markers, half of them are MCI, and the
rest are cognitively normal (NL). For each subject, we randomly sample 15 individual conver-
sational recordings and employ automatic speech recognition (ASR) to generate transcripts.
Only the subjects’ responses are used for analysis, the linguistic features are extracted over a
whole transcript. Therefore there are 120 linguistic feature vectors as elaborated in the next
subsection. For imaging data, we use the structural MRI data of 43 subjects from I-CONECT,
where 26 of them are MCI, and 17 of them are cognitively normal. We extract variables from
the T1-weighted (T1w) MRI data and diffusion MRI (dMRI) of each subject, and follow our
previous work17 to extract corresponding imaging features. Specifically, from T1w MRI we
used the cortical volume and thickness measurements for 74 brain region-of-interests (ROIs)
extracted by FreeSurfer. From dMRI we derived brain connectome network over 85 ROIs using
Probtrackx tractography, following the protocol in Ref. 17. For each subject, we extracted the
fiber counting feature among 85 ROIs. 16 subjects have both conversational recordings and
MRI data, the others only have either imaging data or conversational data. And all subjects
have clinical diagnoses (MCI or NL), which are determined according to the agreement of
neurologists and neuropsychologists by referring to publicly available diagnostic criteria.27

3.2. Language and Imaging Markers for Early Detection of MCI

From raw speech data, we first translate the subjects’ responses into text using Google ASR.
From the text, we extract a comprehensive set of linguistic features from various levels of
lexicon, syntax, and semantics. All features are extracted over the whole transcript. One
example of lexical features is the average word length which measures the average number of
letters to form a word. Syntactic features indicate how complex the syntactic structure of a
sentence is. For example, the depth of syntactic tree counts the depth of a constituent syntax
tree.28 In terms of semantic features, we considered two kinds of features: local coherence and
global coherence. Local coherence measures how the semantics of sentences change within the
subject’s responses to a question. We employ fasttext29 to get the embedding representation
of a sentence and calculate the cosine similarity between any two connective sentences. For the
imaging data, we consider both T1w features and brain network features.30 Mean/varaince
statistics is available for all features, except those of LIWC word category and dMRI fiber
count, are available. Because that the number of features is much larger than the sample size,
which may easily lead to overfitting. We select features by stability selection,17 56 imaging
features and 112 language features are reserved.

3.3. Leverage Auxiliary Imaging Information in MCI Detection from
Language Markers

The goal of this paper is to augment the feature space of language markers utilizing complimen-
tary information from the auxiliary imaging modality, and ultimately improve the predictive
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performance. In this way, all subjects with only accessible language markers in the future can
benefit from performance improvements.

The early MCI detection from language data is formulated as a classification problem,12

using language markers from a subject to predict the subject’s clinical label. The proposed
solution leverages the entire data available for training. The training data Dtrain includes a set
of subjects that have language markers Dlang and another set of subjects that have imaging
markers Dimg. There are overlapped subjects that have both modalities, denoted by Dalign,
i.e., Dtrain = {Dlang ∪ Dimg ∪ Dalign}. A sample (Xlang, Ximg, Y ) ∈ Dalign has language markers
Xlang and imaging markers Ximg, and Y ∈ {0, 1} is the clinical label such that 1 is MCI and 0 is
cognitive normal (NL). We use the multi-modality training data Dtrain to learn a crossmodal
augmentation model gω, parameterized by ω. Given any set of language markers xlang ∈ R112,
the model generates an augmented feature vector xaug that has the same dimension as the
imaging markers (56 in our study). We then train a classifier f , parameterized by θ, that takes
the augmented features [xlang, xaug] to predict the clinical label.

3.4. Crossmodal Augmentation Model

The key idea of the crossmodal augmentation model is to build a prediction model gω: given
two modality vectors for a subject, one from imaging and one from language, the model gω
predicts whether the two modality vectors are from the same subject. The foundation of the
augmentation model has the same spirit as other multi-modality models, that is to capture the
underlying connection between the pair modalities. During the inference, when the subject has
only language modality (xlang, y), the model gω is then used to assign weights to all available
imaging feature vectors (from other subjects) to construct an augmented feature vector from
k−highest predicted imaging features. The proposed crossmodal augmentation model can be
extended to more than two modalities, and we leave the methodology extensions and their
theoretical analysis to an extended version of this work.

The paired design allows us to construct a training dataset D
′

learning for crossmodal aug-
mentation model, which is the key to our sample efficiency. For each sample with both
imaging and language features (xlang, ximg, y) in Dalign, we randomly sample an image fea-
ture dimg = (x

′

img, y
′
) ∈ Dimg with the constraint that the label of Dimg is different from that

of dalign, to ensure that data modalities in manually created samples are not aligned. On the
contrary, we create the aligned samples by randomly sampling imaging features with the same
label to xlang. The procedure creates two new samples (xlang, ximg, 1) and (xlang, x

′

img, 0), where
label 1 means aligned and 0 otherwise, to train the crossmodal augmentation model gω. Then
a augmented training dataset D

′

aug for classification model fθ can be constructed by gω. Al-
gorithm 1 summarizes the training procedure including the training the proposed crossmodal
augmentation model gω and MCI detection model fθ.

4. Experimental Results and Analysis

4.1. Experimental settings

In the experiment, we use the data of 83 subjects, where 40 of them have conversational
recordings, 43 of them have imaging data, and only 16 subjects have both conversational
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Algorithm 1 Learning of the Proposed Crossmodal Augmentation Model and MCI Detection
Model
Input:Input:Input:
Dalign - The training dataset for overlapped subjects that have both imaging data and language
data; Dimg - The training dataset for subjects that have imaging data; Dlang - The training
dataset for subjects that have language data; k - The number of candidates considered for
imaging feature synthesis.
Initialize:Initialize:Initialize:
D

′

learning = ∅ - The training dataset for learning the crossmodal augmentation model; D
′

aug = ∅
- The training dataset for learning the MCI detection model; gω - crossmodal augmentation
model; fθ - MCI detection model.
Procedure:Procedure:Procedure:
//Construct D

′

learning

for (xlang, ximg, y) ∈ Dalign do
randomly sample (x

′

img, y
′
) from Dimg where y

′
= 1− y

append (xlang, ximg, 1) and (xlang, x
′

img, 0) to D
′

learning

//Learning ω
train gω with D

′

learning

//Construct D
′

aug

for (xlang, y) ∈ Dlang ∪Dalign do
initialize imaging feature synthesis dictionary Dsyn = ∅
for (x

′

img, y
′
) ∈ Dimg do

if p(y = 1|gω(xlang, x
′

img)) > 0.5 do
update Dsyn with {x′

img, p(y = 1|gω(xlang, x
′

img))}
pick up samples with k largest values from Dsyn as Dk

get xaug by weighted linear interpolation over Dk

append (xlang, xaug, y) to D
′

aug

//Learning θ
train fθ on D

′

aug

Output:Output:Output: fθ.

recordings and imaging data. For each subject with conversational recordings, there are 15
transcripts used for data efficiency. For each experiment, we randomly sample 4 MCI subjects
and 4 NL subjects from the 16 subjects with both data modalities as test data. We consider
100 different random train-test splits for each model and report the mean Area under the ROC
curve (AUC), Accuracy, and F1 score on the test data. We adopt the elastic net regularized
logistic regression31 as our MCI detection model and employ a gradient-boosting decision
tree as the crossmodal alignment model, with both implemented by the Python library scikit-
learn.32 To mitigate the influence of incorrect prediction from the crossmodal alignment model,
we pick up a large number of subjects, e.g. 15, for imaging feature synthesis.

Our main goal is to augment language markers using imaging information and therefore
evaluate the predictive performance of models learned with the augmented marker space
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Table 1. MCI detection performance. Our method employs both data modalities and out-
performs baseline models trained with only one data modality.

Models Train Data Size AUC Accuracy F1

MCI-Lang 32 subjects 0.80± 0.01 0.73± 0.07 0.71± 0.01
MCI-Img 35 subjects 0.969± 1e−6 0.846± 1e−11 0.872± 1e−11

Ours-Lang-AugImg 32 subjects 0.973± 0.001 0.848± 0.008 0.873± 0.004

Ours-Img-AugLang 35 subjects 0.98± 0.002 0.87± 0.005 0.89± 0.005

(Ours-Lang-AugImg). We also investigate a less practical setting, i.e., augmenting imaging
markers using language information (Ours-Img-AugLang). We implement baseline models
trained with only one data modality, the MCI-Lang model adopts language data and the
MCI-Img model is learned with imaging data. The source code and experiment scripts are
available at https://github.com/illidanlab/XModalAug.

4.2. MCI Detection using Crossmodal Augmentation

The MCI detection performance of baseline unimodality approaches and two crossmodal aug-
mentation approaches is shown in Table 1. a) We see that for unimodality prediction settings,
MCI-Img delivered an exceptional performance of 0.97 AUC. This confirms the power of
neuroimaging. b) MCI-Lang yields an average of 0.8 AUC, showing the promise of the acces-
sible digital biomarker. c) With the augmented variables from auxiliary imaging information,
Ours-Lang-AugImg receives a striking performance gain to an AUC of 0.97, significantly out-
performing the MCI-Lang and slightly outperforming MCI-Img. d) The best performer is
Ours-Img-AugLang which uses the imaging markers as the main predictor, treats language
markers are auxiliary information, and uses them to create augmented variables. The model
has less practical usage due to the lack of accessibility of imaging markers, but the results
confirm the benefits of joint analysis of imaging and language markers.

4.3. Straightforward Multi-modal Model using Aligned Multi-modal Data

In this section, we validate straightforward multi-modal prediction methods based on the small
amount of aligned multi-modal dataset to show that our crossmodal augmentation method can
effectively utilize large-sized partially-aligned multi-modal data. To fully explore the predictive
power of multi-modal data, we implemented various multi-modal fusion methods: ConFusion
concatenates imaging feature vector and language feature vectors, then feed the concatenated
feature vector to the MCI detection model. VotingAvgFusion generates the mean prediction
score of two individual classification models trained with language data and imaging data,
respectively. InterFusion implements outer product operations on the language feature vector
and the imaging feature vector. InterConFusion is a mix of ConFusion and InterFusion by
concatenating the outer product of two feature vectors and the original feature vectors.
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Table 2. The straightforward multi-modal MCI prediction with different multi-
modality fusion methods based on linguistic features and imaging features. The 
ConFusion method that does not apply any fusion strategy outperforms other 
multi-modal fusion methods.

Models Train Data Size AUC Accuracy F1

VotingAvgFusion 8 subjects 0.51± 0.17 0.52± 0.15 0.63± 0.07
InterFusion 8 subjects 0.62± 0.05 0.56± 0.09 0.64± 0.07
InterConFusion 8 subjects 0.82± 0.08 0.71± 0.09 0.74± 0.08
ConFusion 8 subjects 0.84± 0.015 0.77± 0.009 0.78± 0.005

The performance of multi-modality fusion methods is shown in Table 2. ConFusion is the
best performer. A possible hypothesis behind the results is that, since language markers are
weaker predictors than imaging markers, and non-linear fusion methods (VotingAvgFusion,
InterFusion and InterConFusion) may introduce noise to the imaging markers.

4.4. Top Language Markers and Imaging Markers in Predictive Models

We investigate important language and imaging markers identified by the predictive model,
and also how the augmentation impacts these top markers in the model. On the language
marker side, we extract the coefficients of our best MCI detection model trained with language
data and calculate the feature importance by the absolute value of coefficients. The top 10
important language markers are listed in the first sub-table of Table 3. MCI subjects prefer
personal pronouns like “we”, “you”, “I”, but NL subjects take words related to space. An
interesting finding is that MCI subjects tend to use long phrases, but NL subjects often
prefer long verb phrases. The syntactic feature “coexistence of adverb phrase, verb phrase,
and noun phrase” has the highest importance, which means a single sentence contains at least
one adverbial phrase, one verb phrase, and one noun phrase. Constructing a sentence with a
complex syntactic structure can be more challenging for MCI subjects, which is also shown by
previous study.33 Moreover, the word length is effective in detecting MCI since MCI subjects
are more likely to use words containing fewer letters. Also, MCI subjects’ expressions are not
as coherent as those of NL subjects. The middle section of Table 3 shows top imaging markers
extracted from the MCI detection model trained with imaging data. The feature name column
represents a particular attribute of a given brain region, and the function column highlights the
specific function of that brain region. We see that top-ranked feature variables are exclusively
from T1-weighted MRI.

After applying crossmodal augmentation, we now have a set of auxiliary variables avail-
able, in addition to the original language markers we input to the augmentation model. Note
that the augmented variables have one-one correspondence to imaging markers, and yet they
do not necessarily possess the meaning. In this section, we show how top-ranked feature vari-
ables changed in the predictive models after using the augmented feature space. The bottom
section of Table 3 shows the top markers in the model using augmented language markers. We
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Table 3. High-impact feature variables in predictive models. Note that the prefix AUG
means augmented feature variables from the Ours-Lang-AugImg model, the names after
AUG show the correspondent feature names in imaging marker but they are not actual
imaging features. coeff represents the logistic regression coefficients, higher absolute value
of coeff indicates the associated feature is more important.

Top-ranked features from predictive model using only language markers
Feature name coeff
coexistence of adverb phrase, verb phrase and noun phrase -2.04
word length in letters -1.05
LIWC word category of nonfluencies -0.91
LIWC word category of we 0.85
LIWC word category of anger -0.68
LIWC word category of space -0.66
verb phrase span ratio -0.64
average phrase span 0.59
LIWC word category of sexual -0.55
global coherence 0.53

Top-ranked features from predictive model using only imaging markers
Feature name Function —coeff—
thickness of left lateral orbito frontal Emotion 0.50
cortical volume of left pars orbitailis Language 0.42
thickness of left posterior cingulate cortex Neural Communication 0.42
cortical volume of left inferior temporal Vision 0.41
cortical volume of left supramarginal gyrus Language 0.33
thickness of right peri calcarine Vision 0.30
thickness of right cauda lmiddle frontal Memory 0.29
thickness of left posterior cingulate cortex Neural Communication 0.28
cortical volume of right inferior temporal Vision 0.27
thickness of left fusiform Neural Communication 0.26

Top-ranked features from Ours-Language-AugImg
Feature name Function —coeff—
AUG: cortical volume of left pars orbitalis Language 1.1
AUG: cortical volume of right supramarginal Language 1.07
AUG: thickness of left lateral orbito frontal Emotion 1.05
AUG: thickness of left posterior cingulate Neural Communication 0.97
AUG: cortical volume of left inferior temporal Vision 0.82
AUG: thickness of left posterior cingulate Vision 0.78
AUG: thickness of left caudal middle frontal Memory 0.68
AUG: dMRI: fiber count right bankssts Language/Biological perception 0.68
AUG: dMRI: fiber count left caudal middle frontal Memory 0.65
AUG: cortical volume of left isthmus cingulate Emotion 0.62

see that 1) the top-ranked features are dominated by auxiliary variables from our crossmodal
augmentation model, demonstrating the importance and effectiveness of the proposed aug-
mentation scheme, even though these markers are in fact generated according to the guidance
of language markers. 2) the top-ranked augmented features and top-ranked imaging markers
in the middle section of Table 3 are not consistent. Since the augmentation tries to synthe-
size imaging markers from language markers, the inconsistency in ranking means that not all
imaging markers can be well synthesized through the linear combination, under the guidance
of language markers. Some of the imaging variables may be better augmented by language
markers due to their implicit connections to language functionalities.34 3) there are two dMRI
features in top-ranked augmented features, whereas the corresponding actual imaging markers
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do not stand out in the imaging unimodal learning. This directly shows the importance of
diffusion MRI variables in the crossmodal analysis and their differential benefits in modeling
MCI, as also suggested in our previous work.17

5. Discussion

In this study, we propose a crossmodal augmentation method to augment language markers
with synthesized variables guided by auxiliary imaging data, for improved performance on MCI
detection. Our augmentation model learns to efficiently associate language information and
imaging information with only a limited number of subjects having both data modalities. The
learned model will then use the language markers of a subject to construct auxiliary variables
by a linear combination of imaging markers from those that possess imaging information. The
augmented language markers significantly improve the AUC score of MCI prediction from 0.8
to 0.973. We also validate the generalization of our method by augmenting imaging markers
with language features, which contributes to an AUC score of 0.98. Our method tackles the
problem of joint analysis to multi-modal data with limited crossmodal alignment supervision.

Though the proposed crossmodal augmentation approach has shown exceptional perfor-
mance improvements, there are future studies and further improvements remain. 1) First of
all, the augmented variables are constructed by a linear combination of a set of given imag-
ing markers or “anchor” imaging markers. Such dependency has motivated us to study the
impact of the anchor makers later on, with the possibility of using refined anchor markers. 2)
Second, due to the small sample size available for training, we used the restricted assumption
that the feature space of imaging data is linear, which may be further improved by non-linear
assumptions. 3) Our analysis has shown a deeply convoluted relationship between language
markers and imaging markers, as suggested by the top-ranked features. Such a relationship
and its implications need further analysis, the understanding of which can further guide our
improvements on the augmentation. 4) Last but not least, we only validate the crossmodal
augmentation over two modalities. With the high sample-efficiency design, we can directly
extend the approach to more than two modalities, and we will investigate these scenarios in
our future work.

The proposed method can be directly extended to various clinical applications. One exam-
ple is to improve MCI detection performance given only dialogue data. Assume that only the
easily acquired dialogue data and public MRI data5 are available in the institution A. One
can learn a crossmodal alignment model with a private and labeled dataset from the institu-
tion B, and this dataset includes aligned dialogue and MRI data. Then apply the crossmodal
alignment model to the dataset of A through considering the domain shift between two MRI
datasets. Since the private MRI data from B is not released, we can achieve privacy-preserving
prediction in the condition of missing modality. We leave this discussion to our future work.
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The National Institutes of Health’s (NIH) All of Us Research Program aims to enroll at
least one million US participants from diverse backgrounds; collect electronic health
record (EHR) data, survey data, physical measurements, biospecimens for genomics and
other assays, and digital health data; and create a researcher database and tools to enable
precision medicine research [1]. Since inception, digital health technologies (DHT) have
been envisioned as essential to achieving the goals of the program [2]. A “bring your own
device” (BYOD) study for collecting Fitbit data from participants’ devices was developed
with integration of additional DHTs planned in the future [3]. Here we describe how
participants can consent to share their digital health technology data, how the data are
collected, how the data set is parsed, and how researchers can access the data.

Keywords: Wearables, Digital health technologies, Precision medicine

1. Introduction

In 2016, the U.S. Congress, via the 21st Century Cures Act, authorized a total of $1.5 billion over
ten years to fund the All of Us Research Program at the National Institutes of Health (NIH). This
program is publicly funded, with resources appropriated each year by the U.S. Congress. The
program was borne out of the Precision Medicine Initiative, and strives to nurture relationships
with participants, build a robust ecosystem of communities and researchers, and strives to deliver
the largest and most diverse biomedical dataset.  The program is accumulating multiple streams of
health-related information such as electronic health records (EHRs), genomics, physical measures,
participant surveys and wearables (such as Fitbit) from 1,000,000 or more Americans, with a focus

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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on populations usually under-represented in biomedical research to date [1, 2].

In addition to EHR, genomics, physical measures and surveys, the program has an interest in
incorporating digital health data, e.g., data from wearable devices like fitness trackers, to promote
research in this space by diverse academic researchers on a diverse data set.  The program
currently invites participants to donate Fitbit and Apple HealthKit data in a “bring your own
device” (BYOD) model [3, 4]. As of June 2022, Fitbit data for 12,844 All of Us Research Program
participants were provided to registered researchers on the secure, cloud-basedResearcher
Workbench platform. This report is focused on the back-end process by which participants can link
their own Fitbit device,  and what happens to this Fitbit data once they are shared with the
program. We will discuss the current processes that are being employed to provide these data to the
research community, and how researchers can access these data via All of Us Researcher
Workbench platform.

In this report, we provide a high-level overview of the Fitbit data process from data ingestion to
delivery. This report also provides a high-level overview on demographic characteristics, such as
ethnicity, race, sex at birth, age, income, and employment of participants who contributed any
Fitbit data in the All of Us Research Program. Additional digital health technology data streams are
planned for the longer term of this study. Lastly, the report also highlights some unique
opportunities on how digital health data from All of Us Research Program can be leveraged by
registered researchers to advance healthcare for all.

2. Methods

2.1.   How are participants consented to be part of AoU and share Fitbit data?

Participants may log on to the All of Us participant portal at https://participant.joinallofus.org to
participate in the program. Participants need to provide primary consent to be part of the All of Us
program, which aims to collect at least 10 years of data from participants. Given it is a long-term
research program, participants remain in touch with the program via phone, email, and/or app.
They may also connect their family members, in case participants cannot be reached. They might
also use social media or public databases to help keep participant’s contact information up to date.
If participants have a fitness tracker, they may be asked to share data from it. Figure 1 shows the
All of Us Research Program participant facing portal where participants can elect to share Fitbit
data with the program. Participants can withdraw from All of Us any time. Consent to share
electronic health record (EHR) data is mandatory before participants can start sharing digital data.
Once the consent to EHR is completed, participants can share their digital health data.

Data sharing process on participant portal (https://participant.joinallofus.org) lists the steps for
deciding whether or not to share or not share data from their own Fitbit devices:
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1. First, participants are provided with the program’s working definitions for wearables.
“Mobile apps and wearable devices can collect data outside of a hospital or clinic.”

2. Participants are then shown the steps for securely sharing digital health data.
3. After confirming that they would like to share their data, participants are prompted to log

into their Fitbit account to pair their device with their All of Us account.
4. Once a participant selects “approved'', they are then redirected to the participant portal and

are shown a success message.

Donation of digital health data is optional for participants. Participants may withdraw from
participation or stop contributing data via the Connector at any time by revoking access for each
individual data record type, or all data record types related to All of Us Research Program as a data
sharing endpoint via the appropriate application. Participants may choose to re-enable their data
sharing at any time, for each individual data record type, or all data record types. Data previously
contributed by participants will remain with the All of Us Research Program after a participant’s
program withdrawal and will not be retroactively scrubbed.

2.2.  What happens to participants' data?

The Participant Technology Systems Center (PTSC) securely stores all the Fitbit data on the cloud
platform. Files are delivered by the PTSC to the Data and Research Center (DRC) at Vanderbilt
University Medical Center. Specifically, files are uploaded in the Raw Data Repository (RDR)
daily. Figure 2 shows the flow of participant digital health data from the PTSC to the DRC. These
data are structured as json files. These data then undergo curation in BigQuery, and are made
available to researchers on the All of Us Researcher Workbench, a cloud-based platform.

3. Results

3.1.  How are Fitbit data parsed (Schema development)?

The DRC uses a hands-off approach to data processing and delivery to support a wide range of
scientific research investigations. Specifically, Fitbit data are available in json format, which is
considered raw data. The contents of the filename are mapped to a single field and contents within
each file are mapped into another field. These file contents  are then parsed into a series of tables
for data types, including:

● Heart Rate (By Zone Summary)
● Heart Rate (Minute-Level)
● Activity (Daily Summary)
● Activity Intraday Steps (Minute-Level)
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Files are then mapped from the bucket to a Postgres database in a secure FISMA VM. The final
output is mapped on the BigQuery database, which undergoes curation pipeline. During this
process, the data are de-identified and are then being made available on Researcher Workbench as
supplemental (non-OMOP) tables.

3.2.  How can Fitbit data be accessed by researchers?

The program’s goal is to share data widely but wisely to ensure rigorous measures are taken to
protect participants’ privacy. Therefore, the Fitbit data is delivered to researchers in a tiered
approach. Specifically, the summary level information regarding the data can be accessed publicly
via the website (https://www.researchallofus.org/). Researchers can access row-level de-identified
data via the All of Us Researcher workbench, which is a secured cloud-based platform. On
Researcher Workbench, researchers can access de-identified Fitbit data in Registered and
Controlled tiers. In the registered tier, Fitbit data are date-shifted by random number between 1 to
365 to ensure participant’s privacy. No date-shifting is performed in the controlled tier.

In order to access the de-identified data on the secured, cloud based platform, researchers need to
create a Researcher Workbench account. The researcher must be a part of an institution that has a
data use agreement. Currently, the list of institutions that have agreements in place can be viewed
publicly on the website (https://www.researchallofus.org/institutional-agreements/). If the
researcher’s organization does not currently have a data use agreement in place, they can initiate
this process by submitting a form online. Upon submission of request, the contracting officer from
Vanderbilt University Medical Center reaches out to contacting contact from the requestor’s
institution within a couple of business days. Timeline to complete this process and obtain
agreement varies based on workflows around the contracting processes at the requestor’s
institution. Once the institutional agreement is in place, the individual researcher can create an
account and go through the relevant questionnaires and ethics training to validate their account. At
present, any US-based academic, nonprofit, or health care institution can obtain data use
agreement and there is no process for researchers outside the United States, or for researchers in
the private sector to access the Workbench. However, expanding access to these groups is a
priority for the program and a goal for future development.

3.3.  What Fitbit data are currently being made available on the Researcher Workbench?

Currently, 12,844 All of Us Research Program participants provide any Fitbit data, which can be
accessed via Researcher Workbench (Table 1). Nearly 13% of participants who provided Fitbit
data resided in California state at the time of enrollment in the program (Figure 3). Of the
participants who provide any Fitbit data, 80% are white, 88% are Non-Hispanic or Latino, 67% are
Female at birth and 52% report being employed for wages (Figure  4). The detailed cohort
characterization report is now publicly available on User Support Hub article [5].
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4. Discussion

4.1.  Research Utility

Digital health data on Researcher Workbench represent the data that are parsed from json files to
structured tables. Specifically, this Fitbit data is longitudinal in nature. Thus, these
device-generated summary and high-resolution intraday data are robust in nature and allow a
wide-range of research, including method development and longitudinal study design. Currently,
registered users can subset their analytical sample by presence of any Fitbit data by using graphical
interface tools (e.g. cohort and dataset builder). However, there is an opportunity to develop
various tools that would further wearable research. For instance, researchers on the platform can
work on innovative projects and share their work with other registered users on Researcher
Workbench. A couple examples of tools and methods that would be helpful to incorporate into the
platform are for feature detection, e.g. periods of exercise and user behavior for wearing a Fitbit
device). Time-series based tools, and methods to deal with data missingness over time (e.g. when
charging or generally when the device is not worn or not functioning) will also be useful. Thus,
these data support the program’s overarching mission of accelerating health research and medical
breakthroughs by enabling researchers to conduct various types of studies, including
cross-sectional and longitudinal research designs.

4.2.  Lessons Learned

Our initial work has provided insight and lessons that may be generalizable and applicable for
other programs aiming to collect and share BYOD digital health data. These include establishing
the system to integrate digital health data in cloud platforms and making decisions on how to
deliver this large digital health data in sustainable and accessible fashion. Currently, we provide the
digital health data as separate structured data tables on the cloud platform. Since the digital health
data is collected from participant’s own devices, the data is collected right from the time their
Fitbit account was created, which gives opportunity for researchers to conduct longitudinal study
design research projects.

4.3.  Limitations of dataset

The characterization for digital health data is limited to specific data types such as activity and
heart rate. Today, the standardized fashion of managing digital health data is in its infancy state,
therefore, these data are being made available as separate datatables on Researcher Workbench. We
acknowledge that the majority of participants whose Fitbit data is being made available on
Researcher Workbench is biased, i.e., majority of participants who provided Fitbit data reported
being White and employed for wages. However, these data represent participants who had their
own Fitbit devices and consented to share EHR data. The program is currently expanding the
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efforts by providing Fitbit devices to All of Us Research Program participants who do not own
Fitbit devices so they can participate and share their data [6]. Lastly, we acknowledge that access
to row-level deidentified data is currently available to researchers who are part of an institution in
the United States that has an institutional data use agreement in place. However, the program has
initiated efforts to expand access globally and foster public-private relationships, ensuring
programs' goals and mission are met.

4.4.  Future plans

We plan to expand the digital technology data offerings not only in terms of providing more
participant’s data but also adding more data types and includes data from devices (e.g., Apple
HealthKit, Garmin, etc.) in addition to Fitbit. For instance, in future, we plan to provide sleep and
device information from Fitbit, which will expand the research use cases.

5. Conclusion

Digital Health Technologies are increasingly being used for health-related applications. The All of
Us Research Program has a unique opportunity to continue to drive research using these devices,
to understand how these data can be used to support individuals in their health journeys.
Integrating additional devices, and collecting and making additional data available to researchers,
will help contribute to a robust ecosystem for researchers. In addition, tools to help researchers
analyze these data are needed. These can be developed both by the program and by the researcher
community. Finally, promoting diversity, not only in the data set but also in the researchers
analyzing the data, is important for reducing bias and inequity of results.

5.1.  Table

Fitbit data type Count of participant ids

Any Fitbit data type 12,844

Activity summary 12,794

Heart summary 11,575

Step intraday 12,790

Heart rate intraday 11,575

Table 1.  Counts of participants who provide Fitbit by data type as of data, which is available on
Researcher Workbench, starting June 22, 2022 (N Fitbit Pid = 12,844)

5.2.  Figures/Illustrations

Pacific Symposium on Biocomputing 2023

24



Fig. 1.  All of Us Research Program participant facing portal where participants can share Fitbit
data

Fig. 2.  Flow of Fitbit data from the participant portal to the Data and Resource Center’s raw data
repository and curated data repository.

Pacific Symposium on Biocomputing 2023

25



Fig. 3. State-wise distribution of participants who provided Fitbit data in the All of Us Research Program (N
Fitbit Pid = 12,844).
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Fig. 4.  Self-reported a) ethnicity, b) race, c) sex at birth, d) age e) income, and f) employment of
participants with Fitbit data in June 2022 curated data repository, which can be accessed by registered users
on Researcher Workbench (N Fitbit Pid = 12,844).
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Risk for Poor Post-Operative Quality of Life Among Wearable Use Subgroups in an All of 
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The objective of this research was to build and assess the performance of a prediction model for post-
operative recovery status measured by quality of life among individuals experiencing a variety of 
surgery types. In addition, we assessed the performance of the model for two subgroups (high and 
moderately consistent wearable device users). Study variables were derived from the electronic 
health records, questionnaires, and wearable devices of a cohort of individuals with one of 8 surgery 
types and that were part of the NIH All of Us research program. Through multivariable analysis, high 
frailty index (OR 1.69, 95% 1.05-7.22, p<0.006), and older age (OR 1.76, 95% 1.55-4.08, p<0.024) 
were found to be the driving risk factors of poor recovery post-surgery. Our logistic regression model 
included 15 variables, 5 of which included wearable device data. In wearable use subgroups, the 
model had better accuracy for high wearable users (81%). Findings demonstrate the potential for 
models that use wearable measures to assess frailty to inform clinicians of patients at risk for poor 
surgical outcomes. Our model performed with high accuracy across multiple surgery types and were 
robust to variable consistency in wearable use. 

Keywords: digital health technologies, wearables, predictive modeling, risk factors 
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Introduction 

Surgical procedures are becoming more common over the world, with one out of every 10 
individuals getting one each year in high-income nations. After discharge, patients have the main 
responsibility for their recovery, and variance in adherence to this can result in varying outcomes 
[1].More than 10% of patients over the age of 45 encounter a significant postoperative 
complication, which is apparent in a variety of surgical groups [1]. Thus, there is a need to better 
identify patients that are at risk for such poor surgical outcomes with applicability to multiple 
surgical types. 
    Methods for accurately predicting the probability of post-surgical complications have been 
studied widely in the past. For predicting surgical morbidity, Copeland proposed the POSSUM 
(Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity) model 
in 1991. [2]. Since then, various post-operative morbidity prediction models have been suggested, 
including the E-POSSUM, Estimation of Physiologic Ability and Surgical Stress (E-PASS) [3], and 
Barwon Health (BH) 2009 models [4]. However, the predictive capacity of these models beyond the 
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population used to create the model may be limited. Given there are no published models to predict 
poor post-surgical recovery for different types of surgeries, this work aimed to build a prediction 
model that uses data types that are accessible across a broad range of surgical patients. 
    One data type of particular interest was physical activity data from wearables. Recent studies have 
shown that utilizing the data from wearables to construct predictive models can help identify 
surgical complications earlier, improve recovery, and provide safe follow-up. Furthermore, 
wearables can help patients engage, assist, and care for themselves by bridging the gap between 
clinical services and their homes [5]. Despite the emergence of numerous digital initiatives in 
surgery, there has been little or no discussion of wearable use factors on the performance of the 
prediction models.  
   To build a model that predicts post-operative outcomes based on the preoperative wearable data, 
we used candidate risk factors taken from electronic health records (EHR) and a commercial 
wearable device (Fitbit). In addition, we assessed the impact of wearable usage on model 
performance. To do this, we assessed the accuracy of the model in cohort stratified by wearable use 
(high vs moderate/low pre-operative wearable use). We hypothesized that model performance is 
better for high users when compared to patients with moderate/low wearable usage. 

Method 

This is a retrospective cohort study based on data collected by the All of Us Research Program 
Dataset v5 (Registered & Controlled Tier) from May 6, 2018, to April 1, 2021 [6]. The cohort 
includes patients who had gone through one of eight surgeries: general, gynecology, orthopedics, 
plastic, neuro, vascular, urology, thoracic surgery, shared Fitbit data and completed the survey 
within 5 weeks since the surgery. Figure 1 (a) shows the flowchart for inclusion and exclusion 
criteria. 247 participants fulfilled the study criteria. The time range of data (Figure 1 (b)) was defined 
for a period of 5 weeks, all the variables were averaged for this period before the surgery date. For 
the study, we required EQ-5D score for Quality of Life (QoL), a self-reported outcome measure for 
recovery taken within 5 weeks after surgery. For the patients who did not meet this criterion, we 
adjusted their QoL values by adding the difference of the average QoL post and pre-surgery (0.02) 
to the pre indices and obtained the post QoL indices for all 247 patients. 

a b 

Figure 1. a) Inclusion and exclusion criteria flow chart. b) Timeline of the study. 

*The pre surgery QoL was converted to post surgery QoL by adjusting
the values with the difference of average of post QoL and pre QoL 
values
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Data Source and Preprocessing 

Primary Outcome 
The EuroQOL instrument (EQ-5D-5L) was utilized to evaluate QoL. EQ-5D index has been used 
in several studies to assess the effect of surgery and the difference in the QoL pre- and post-surgery 
[7][8][9][10]. This is a standardized, proven QoL measurement tool. Mobility, Self-Care, Usual 
Activities, Pain/Discomfort, and Anxiety/Depression are the five dimensions included in the EQ-
5D survey. We included two questions from each category. The responses to the questions were 
divided into 5 levels, 1 denotes an excellent state of health, and 5 is worse. The 5L profile, the 5-
digit number, is generated based on the average of two questions in the five categories, for instance, 
if you have an excellent state of health your profile would be “11111”.  To estimate a single index 
value depending on the response to this categorization, a broad population-based algorithm was used 
for US population [11]. The index value is normally distributed and reflects how good or bad the 
health state is according to the preferences of the general population of a country. The index value 
for our dataset lies in the range of 0 (worse) to 1(good) [12]. Since we had patients who underwent 
different kinds of surgeries, we converted the continuous QoL to a status of good and poor recovery 
using the average QoL of the population as a threshold [9][10][13]. 

Variables 
Fifteen clinicopathological and demographic variables that might affect the postoperative outcome 
were included. The demographic covariates were age, gender, race, and ethnicity. The clinical 
covariates included average hemoglobin level in blood (g/dL), average albumin level in blood 
(g/dL), and average BMI ratio. The values of all variables were observed in the time frame of 5 
weeks before the surgery. The behavioral covariates included smoking habits and alcohol 
consumption habits prior to the surgery. The Fitbit activity data was available in a longitudinal form 
for each patient. The data from the Fitbit device was in a summarized format for a day and had 
variables like average calories burned, mean light active minutes, mean of very active minutes, mean 
of sedentary minutes, and mean of steps count in a day. The characteristics description of the entire 
cohort is summarized in Table 1. 
   Frailty is a well-validated predictor of poor postoperative outcomes [14]. We created a frailty 
index using a standard procedure described by Samuel at el. to assess the impact of frailty on the 
recovery status post-surgery [15]. The frailty index is frequently stated as a percentage of actual 
deficits to all deficits considered [15]. For instance, if a person had 10 of the 30 deficiencies that 
were considered, their frailty index would be 10/30, or 0.33. To create this index, we included 19 
variables measured within 5 weeks before the surgery. Function, cognition, co-morbidity, health 
attitudes and behaviors, and physical performance metrics were all included in the database. The 
variables included activity data from Fitbit, clinical data, and various comorbid conditions chosen 
from Charles Comorbid Index’s ICD9 and ICD10 codes for dementia, heart attack, malignancy, and 
diabetes. Health attitude variables included survey questions that assessed the person's general 
health like disability in walking/climbing, disability in dressing/bathing, and difficulty in 
reading/writing. For binary variables "0" denoted the absence of the deficit and "1" the presence of 
the deficit. To grade survey questions, we used Excellent as 0, Very Good as 0.25, Good as 0.5, Fair 
as 0.75, and Poor as 1. Similarly, for continuous variables, such as Fitbit activity data [19][20], 
hemoglobin level [22], known cut-points were applied. An individual’s deficit scores were 
aggregated to create an index, with 0 denoting no deficit and 1 denoting the presence of all 19 
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deficits. To assess and validate the variable the slope of a best-fit log of the frailty index in 
proportion to age was plotted and the association between age and frailty was analyzed. 

Quantifying Wearable Usage 
To quantify wearable use, we calculated the consistency of using the Fitbit device. During the period 
of 5 weeks prior to the surgery, usage of the Fitbit device varied among the patients and was 
calculated using equation 1. Consistency and duration of Fitbit usage were used to divide the entire 
cohort into two subgroups (low/moderate wearable users and high wearable users). 

 Consistency =
 Number of days the patient data was logged

Number of days between first date and last date of use (duration)
 (1) 

Patients with 100% consistency and duration of usage of 5 weeks were classified as high wearable 
users. The patients with a consistency of less than 1 and a duration of Fitbit usage of fewer than 5 
weeks were considered moderate/low users of a wearable device.  

Statistical Analysis 
Univariate Analysis 
To determine the effect of individual risk factors on the binary outcome (good or poor recovery), 
we applied univariate analysis by chi-square test for categorical variables. For the risk factors like 
race, ethnicity, and alcohol consumption the small proportion categories were combined to make it 
a binary variable. Age was divided into three categories 18-49 years, 50-64 years, and 65 years and 
above. The frailty index was also divided into two categories based on the mean value of the 
population as non-frail (0-0.54) and frail (0.55-1). A P value of less than 0.05 was considered 
significant. The statistical approach was applied separately to each risk factor to obtain the odds, 
odds ratio (OR), and significance of predicting the poor outcome post-surgery. We also implemented 
these analyses for wearable device use subgroups (see “Quantifying Wearable Usage”). 

Multivariable Analysis 
To obtain the driving risk factors of poor outcome post recovery, we implemented a multivariable 
logistic regression model on the entire cohort, on high wearable users, on moderate/low wearable 
user’s dataset individually. All 15 variables were initially used for the analysis in this model. For 
collinearity diagnostics, variables with Variance Inflation Factor (VIF) above 5 were regarded as 
multicollinear. To exclude variables with multi-collinearity, multiple stepwise regression was used 
to iteratively build regression models that automatically chose independent variables. After 
removing three collinear variables, the stats model library’s logistic regression model was applied 
to the remaining twelve independent variables and the binary outcome, recovery status. The 
statsmodel gives the OR, 95% confidence interval (CI), and p values for each risk factor.  

Predictive Modeling 
To build a predictive model of post-operative recovery status, we used a supervised machine 
learning algorithm. The logistic regression model was implemented individually for moderate/low 
wearable users, high wearable users, and the total population (baseline) datasets with 12 features 
that were identified non-collinear in multivariable analysis. To improve the model performance, we 
hyper-tuned the model using the grid search cross-validation technique. Since the outcome, poor 
recovery, and good recovery classes were imbalanced, we used the stratified K fold cross validation 
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technique in the grid search cross-validation splitting strategy. After preprocessing, we divided the 
data into train and test sets, fitted the model on the train set, and then assessed the performance of 
the model for three separate test datasets (baseline, moderate/low wearable users, high wearable 
users). 

Assessment of Model Performance 
To compare the performance of the three models, we used AUC (area under the curve) score, 
accuracy, sensitivity, and ROC plot. The model with the highest AUC score was considered a better-
performing model. The AUC score of the two subgroups was also tested for significance using their 
confidence intervals (CI). AUC CI calculated using bootstrap sampling method was used to compare 
the AUCs of models. The comparison of AUC was done using DeLong method [16]. If there was a 
difference in the two CIs, we concluded that the AUCs were different, and result was significant 
[17][18]. 

RESULTS 

Study Population 
Among a cohort of 247 people, most were female (77%, n=190), White (84%, n=208), and non-
Hispanic or Latino (92%, n=228). Ages ranged from 26 to 86 years with an average of 60 years. 
Before the surgery, 45 % of the cohort had consumed alcohol and the smoking history was largely 
unknown (95%, n=235). The Fitbit data obtained 5 weeks before the surgery suggested that this was 
a physically active cohort as per the physical activity standards defined by WHO and CDC [19][20]. 
The daily average for “light active minutes” in the cohort was 180 minutes which is considered a 
“healthy lifestyle” according to the WHO [16]. However, the cohort also had average sedentary 
minutes that was higher than suggested for a healthy lifestyle (948 minutes compared to the 
suggested 540 minutes) [19][20]. The clinical covariates for the cohort lie in the normal range 
[21][22]. The average hemoglobin level in blood was 13.03 g/dL and the albumin level in blood was 
4.12 g/dL. However, the cohort had an average BMI ratio slightly higher than the normal range [23] 
with the maximum BMI ratio being 78.3, indicating the presence of highly obese individuals. The 
smoking habit variable was not included in the study because of its disproportionate division of 
unknown versus the other categories. The validity of the frailty index was accessed by calculating 
the slope of the best fit log of the frailty index in proportion to age, the rate of accumulation of 
deficits was found to be 0.06, prior estimate is 0.03 per year [15]. The pre-surgery QoL adjustment 
was done for 115 (47%) patients. Characteristics of the cohort are summarized in Table 1. 
    When the entire cohort was divided into moderate/low (n=109) and high users (n=138) the 
distribution of the population changed and is summarized in Table 1.  The proportion of individuals 
represented in different demographic and social factor groups were similar among subgroups. The 
clinical covariates for the two cohorts were also similar and lie within the normal range of albumin 
and hemoglobin level in the blood for a healthy adult [21][22]. The average frailty index appears to 
be higher for moderate/low wearable users (0.570) with respect to the entire cohort (0.549). The 
average frailty index for high users (0.541) was slightly lower than the average of the entire cohort. 
The Fitbit activity data for the two populations suggests that people who used the device consistently 
were more active as compared to those who used the device moderately. The patients using the 
device regularly on average had 35 minutes more light active minutes than the population using the 
device irregularly, and on an average burned 150 calories more than the moderate wearable users. 
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Table 1: Characteristics of study participants 

*Created using 19 variables including 5 wearable device variables.

Univariate Analysis 
The primary risk factors of poor recovery from the univariate analysis for the entire population of 
247 were gender, age, and frailty index. Findings from the univariate analysis of the entire cohort 
are summarized in Table 2.  Females are at twice as high risk for having poor recovery post-surgery 
as compared to males (OR=2.22, p<0.025). People 65 years and over are at a threefold greater risk 
of having poor recovery after surgery (OR=3.11, p<0.001) as compared to people 18-49 years old. 
The frail population above an average frailty index (0.54) had a higher risk of having poor recovery 
as compared to the non-frail population (OR=2.72, p<0.001). Whites (OR= 1.68) and non-Hispanic 
or Latino (OR= 1.06) were not statistically significant.  
   On performing the univariate analysis (Table 2) for people who used the Fitbit device regularly, 
the significant risk factors were age and frailty index. High wearable users of Fitbit devices who are 
in the age range of 50-64 were associated with an increased risk for poor recovery post-surgery (OR 
1.98, p<0.048) compared to young population (18-49 years). However, most of the elderly people 
(65 years and over) are in the category of good recovery post-surgery and have a lower risk of having 
poor recovery (OR 0.74, p<0.048). 

N % N % N %
247 109 138

Gender Female 190 77% 83 76% 108 78%
Male 57 23% 26 24% 30 22%

Race White 208 84% 90 83% 117 85%

Black or African American 13
5%

6 6% 7 5%

Asian 5 2% 1 1% 5 4%
None of these 21 9% 8 7% 9 7%

Ethnicity Not Hispanic or Latino 228 92% 99 91% 129 93%
Hispanic or Latino 14 6% 8 7% 6 4%
None Of These 5 2% 2 2% 3 2%

Smoking Habit Unknown 235 95% 105 96% 130 94%
Past or Current Smoker 5 2% 3 3% 4 3%
Never Smoked 7 3% 1 1% 4 3%

Alcohol consumer Yes 112 45% 49 45% 61 44%
No 3 1% 2 2% 3 2%
Unknown 117 47% 58 53% 74 54%

Recovery (measured by QoL) Good 153 62% 67 62% 94 68%
Poor 94 38% 42 38% 43 32%

Continuous Variables Mean [SD] Min Max Mean [SD] Mean [SD]

Age (years) 60 [13.45] 26 86 57 [13.23] 62 [13.3]
Frailty index* 0.5493 [0.082] 0.29 0.86 0.571 [0.07] 0.541 [0.08]
Mean calories burnt in a day 802.19 [403.05] 573.87 2608.29  715.35 [389.80]  869.8[406.04]
Mean light active minutes in a day 180.31 [73.59] 143.76 379.71 159.24 [77.62] 195.66 [67.41]
Mean sedentary minutes in a day 947.97 [241.28] 329.29 1440  1044.08[249.9]  874.14[210.24]
Mean very active minutes in a day 14.49 [17.96] 2.08 125.86 11.44 [13.92] 16.85 [20.29]
Mean steps count in a day  6440 [3360.60] 4230 17543 5624 [3298] 7066 [3288]
Albumin level 4.12 [0.361] 9.91 78.3 4.13 [0.45] 4.11 [0.26]
Hemoglobin level 13.03 [1.280] 8.51 15.9 13.02[1.32] 13.04 [1.23]
BMI ratio 32.4 [8.546] 9.91 78.3 33.8 [8.69] 31.3 [8.34]

Moderate/Low users High users

Categorical Variables

Total

Number of patients
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Table 2: Univariate analysis of association between recovery status and risk factors. 

*The division for good or poor recovery was done based on the average QoL of the population, for the entire cohort mean QoL is 0.663, for high
wearable users the mean QoL is 0.67, for moderate/low wearable users the mean QoL is 0.65
#Combined all small proportion categories as other. 

Odds OR P value Odds OR P value  Odds  OR P value

N
 Rates per 

100 
patients 

N
 Rates per 

100 
patients 

N
 Rates per 

100 
patients 

N
 Rates per 

100 
patients 

N
 Rates per 

100 
patients 

N
 Rates per 

100 
patients 

Characteristics 153 94 95 43 70 39

Gender Female 110 57.9   80 42.1   0.73   2.22   72 67 36 33 0.50  1.62   49 59 34 41   0.70   2.92 
Male 43 75.4   14 24.6   0.33   1.00   23 77 7 23 0.31  1.00   21 81 5 19   0.24   1.00 

Race # White 125 60.1   83 39.9   0.67   1.68   77 66 40 34 0.52  3.06   59 66 31 34   0.53   0.73 
Non-White 28 71.8   11 28.2   0.40   1.00   18 86 3 14 0.17  1.00   11 58 8 42   0.73   1.00 

Ethnicity# Not Hispanic or Latino 141 61.8   87 38.2   0.62   1.06   88 68 41 32 0.47  1.63   65 66 34 34   0.53   0.53 
Other 12 63.2   7 36.8   0.59   1.00   7 78 2 22 0.29  1.00   5 50 5 50   1.00   1.00 

Alcohol 
consumer# Yes 73 65.2   39 34.8   0.54   1.08   43 69 19 31 0.45  0.96   32 65 17 35   0.54   0.94 

Other 80 66.7   40 33.3   0.50   1.00   52 68 24 32 0.47  1.00   38 63 22 37   0.58   1.00 
Age 18-49 31 57.0   23 43.0   0.75   1.00   16 73 6 27 0.38  1.00   20 63 12 38   0.60   1.00 

50-64 42 53.0   38 48.0   0.91   1.22   24 57 18 43 0.75  1.98   24 62 15 38   0.63   1.05 
65 years and over 34 30.0   79 70.0   2.33   3.11   58 78 16 22 0.28  0.74   12 32 26 68   2.17   3.62 

Frailty 0-0.54 90 71.0   36 29.0   0.40   1.00   58 78 16 22 0.28  1.00   30 75 10 25   0.34   1.00 
0.55-1 58 48.0   63 52.0   1.09   2.72   37 58 27 42 0.73  2.61   40 58 29 42   0.73   2.15 

0.711

0.523

0.989

0.010

0.114

High usage of wearable* Moderate/Low usage of wearable*

Poor RecoveryGood Recovery 

0.0740.410 

Poor RecoveryGood Recovery 

1.000  

0.092  

0.001  

0.001  

0.114

0.821

0.990

0.048

0.015

Total*

Good Recovery Poor Recovery

0.025 

0.229  
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   In moderate/low users of Fitbit, age was the only significant risk factor (Table 2). People who are 
65 years and over are threefold higher risk of poor recovery post-surgery (OR 3.62, p<0.010) 
compared to young people (18-49 years).  

Multivariable Analysis 
Findings from the multivariable analysis of the entire cohort are summarized in Table 3. Among 
247 patients, three covariates were observed to be significant risk factors of poor recovery status. 
Among sociodemographic variables, age and race were significant risk factors. The elderly 
population is more likely to have a poor recovery as compared to the population below that age 
group (OR 1.76, 95% 1.55-4.08, p<0.024). The frailty index was also a statistically significant risk 
factor. Population with a higher frailty index was at increased risk of poor recovery as compared to 
individuals whose frailty index was lower than 0.54 (OR 1.69, 95% 1.05-7.22, p<0.006).  
   The multivariable analysis on high wearable users shows that people with frailty index over 0.54 
(frail) have higher risk of having poor recovery (OR 1.73, 95%CI 1.08-9.62, p<0.007). In moderate 
wearable users’ frailty index is not a statistically significant risk factor (Table 3). 

Table 3: Multivariable analysis for quality of life (QoL). 

Risk Factors All users (N=247) 
Moderate/Low 

wearable users (N=109) 

High wearable users 

(N=138) 

OR (95% CI) P 
value OR (95% CI) P 

value OR (95% CI) P 
value 

Gender (Female, ref. Male) 2.67 (0.98-6.08) 0.055 3.05 (1.66-7.89) 0.012 1.31(0.26-5.43) 0.680 

Race (White, ref. Non-
White) 1.65 (1.25-4.05) 0.024 0.89 (0.27-6.99) 0.702 2.32 (0.26-8.09) 0.191 

Ethnicity (Non-Hispanics, 
ref. others) 1.06 (0.27-8.88) 0.477 0.16 (0.36-2.58) 0.103 1.28(0.50-17.77) 0.660 

Alcohol Consumer (Yes, 
ref. others) 0.68 (0.55-4.97) 0.838 0.08 (0.01-1.10) 0.056 0.98(0.15-5.39) 0.984 

Age (over 65, ref. less than 
65) 1.76 (1.55-4.08) 0.024 1.98 (0.29-2.24) 0.783 1.09(0.12-5.67) 0.089 

Frailty Index (over 0.54, 
ref. less than 0.54)  1.69 (1.05-7.22) 0.006 2.08 (0.01-7.75) 0.071 1.73(1.08-9.62) 0.007 

Mean light active minutes 
in a day 1.00 (0.99-1.05) 0.923 1.00 (1.00-1.01) 0.410 1.00(0.99-1.87) 0.560 

Mean sedentary minutes in 
a day 1.00 (0.99-1.00) 0.691 0.99 (0.98-1.01) 0.078 1.00(1.00-1.02) 0.056 

Mean very active minutes in 
a day 1.02 (0.99-1.03) 0.166 1.00(0.99-1.04) 0.720 1.08(0.89-1.09) 0.895 
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Albumin level 1.96 (0.95-5.56) 0.310 2.12 (1.96-6.98) 0.003 1.44(0.44-1.47) 0.542 
BMI ratio 0.94 (0.92-.1.00) 0.051 0.98 (0.90-1.05) 0.520 0.95(0.89-1.20) 0.172 
Hemoglobin level 0.89 (0.67-1.35) 0.507 0.82 (0.54-1.44) 0.224 0.96(0.61-1.69) 0.870 

Model evaluation metrics 
Accuracy 0.79 0.73 0.81 
Misclassification 0.21 0.27 0.19 
Sensitivity 0.92 0.93 0.95 
Specificity 0.77 0.5 0.62 
AUC score (95%CI) 0.759 (0.652-0.772) 0.721 (0.610-0.733) 0.792 (0.741-0.879) 

Logistic Regression Model performance and wearable usage 
The comparison of the Logistic Regression model performance on three datasets is summarized in 
Table 3. The model performance for all the participants in the baseline dataset (247) was 
intermediate between the subgroup datasets with high wearable and moderate wearable users. When 
we focused on the participants with consistent wearable usage, the accuracy of the model increased 
by 2% from the baseline dataset. The misclassification rate also reduced. The AUC score was 
highest for high wearable users (0.792, 95%CI 0.741-0.879) as compared to the other two datasets. 
The model performance decreased when we focused on a population that was moderate in using the 
device prior to surgery, the accuracy of the model dropped to 0.73 from the baseline 0.79, and the 
AUC score (0.721, 95%CI 0.610-0.733) was also reduced by 3 units. The ROC (Receiver Operating 
Characteristics) curve for the comparison between the models for the two-subgroup population is 
shown in Figure 2. The CI for the AUC score for high wearable users is different from the CI of 
moderate/low wearable users AUC score which suggests the difference between the scores obtained 
from the two datasets is significant. 

Discussion 

In this retrospective study of AoU study participants who underwent 1 of 8 types of surgeries, we 
created a logistic regression model to predict poor QoL after surgery. We identified 15 risk factors 

Figure 2. ROC curve for high vs moderate users of wearable device. 
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to predict the recovery status post-surgery in terms of QoL. Out of which 5 risk factors were obtained 
from a wearable device. We examined the association between individual risk factors and QoL post-
surgery using the chi-square test and multivariable logistic regression. In addition to analyzing the 
full cohort, we also conducted a separate analysis for the patients who were consistent in using the 
wearable device and patients who were moderately consistent in using the device. The model built 
with high wearable usage dataset had the best performance, outperforming the model implemented 
on the baseline dataset (see Table 3).  
   The findings from univariate and multivariable analyses of the entire cohort suggests that high 
frailty index, older age, and female gender are the driving risk factors of poor recovery post-surgery. 
The frailty index was the most significant risk factor which is a composition of data obtained from 
wearable device, survey questions and clinicopathological measures. Numerous studies have 
suggested that measurements from wearable sensors are related to clinical outcomes, such as 
complications, length of hospital stay, and readmission [24]. Adding to this evidence, we found that 
frailty (a measure created using the activity data obtained from the wearable device) was the most 
significant risk factor of poor recovery post-surgery across different datasets. Previous research also 
showed that patients with frailty had worse postoperative results across surgical specialties, 
including a greater incidence of morbidity, death, and ICU admission [25][26][27][28]. In our study, 
we also found a significant difference between the non-frail and frail patients in their risk associated 
with poor post-operative recovery. However, for the subgroup that used the device inconsistently 
and for a lower duration, there was no significant difference between frail and non-frail patients 
(Table 2 and 3). We believe that this could be because frailty is associated with older age and the 
population distribution in the moderate wearable users was uniform hence there is no difference in 
the frail and non-frail groups (Table 2). However, we did not find the 5 physical activity variables 
measured from wearable device to be a significant risk factor when considered independently in the 
univariate or multivariate analysis. 
   The logistic regression model with 12 features used to classify patients into poor or good recovery 
status gives the highest accuracy on high wearable use subgroup (provided Fitbit data continuously 
for 5 weeks prior to surgery) (Table 3). The good performance could be associated with the 
completeness, correctness, and homogeneity of the activity data obtained from the Fitbit device. 
Since we had observations for each day the average values of the variables for 5 weeks were non-
null. The wearable usage measure defines the adherence to the device and our findings suggest that 
if the patient used the device more frequently to monitor themselves before the surgery, then it is 
more likely to accurately predict their recovery status post-surgery and readiness for the surgery.    
   Our findings from the logistic regression model comply with the findings of others that suggest 
that people at higher risk of poor recovery post-surgery could benefit the most from continuous 
preoperative monitoring using a wearable device [29]. In our study, the performance of the model 
is best on the high user dataset that includes more than half elderly population (over 65 years) and 
have a lower risk of poor postoperative recovery (Table 2) which could be associated with good pre-
operative monitoring done through the wearable device.   
   The prospect of using wearable device technology for postoperative monitoring in both the 
hospital and the home will increase patient safety and promote continuity of care. Wearable 
technologies may ease early discharge and thereby minimize the length of hospital stay by 
continuously monitoring several health parameters [29]. Postoperative monitoring using wearable 
devices can also be extended before surgery to give baselines for comparison and as part of a 
prehabilitation approach, improving perioperative care holistically. From our findings, there is an 
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opportunity for better guidance on wearable use to improve perioperative care. Additionally, there 
could be potential to integrate wearable activity data with other EHR measures. Frailty index was a 
good example and was one of most important risk factors for poor post operative recovery status 
that we identified. Another way to improve perioperative care could be to promote proper use of 
wearable device to monitor the patient including their vitals, and then using that data to predict the 
recovery status. If the patient is at high risk of poor recovery, then the surgery might be postponed, 
or the physician could take preventive measures to ensure better outcomes.    
   The major shortcoming of our work is the small sample size and QoL as the single post-operative 
outcome to study across multiple surgery types. Even so, the accuracy and other metrics of our 
model performance were good.  Future work seeks to validate findings in larger datasets derived 
from a variety of hospital settings. 
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Consumer-grade heart rate (HR) sensors including chest straps, wrist-worn watches and
rings have become very popular in recent years for tracking individual physiological state,
training for sports and even measuring stress levels and emotional changes. While the ma-
jority of these consumer sensors are not medical devices, they can still offer insights for
consumers and researchers if used correctly taking into account their limitations. Multi-
ple previous studies have been done using a large variety of consumer sensors including
Polar® devices, Apple® watches, and Fitbit® wrist bands. The vast majority of prior
studies have been done in laboratory settings where collecting data is relatively straight-
forward. However, using consumer sensors in naturalistic settings that present significant
challenges, including noise artefacts and missing data, has not been as extensively investi-
gated. Additionally, the majority of prior studies focused on wrist-worn optical HR sensors.
Arm-worn sensors have not been extensively investigated either. In the present study, we
validate HR measurements obtained with an arm-worn optical sensor (Polar OH1) against
those obtained with a chest-strap electrical sensor (Polar H10) from 16 participants over
a 2-week study period in naturalistic settings. We also investigated the impact of physical
activity measured with 3-D accelerometers embedded in the H10 chest strap and OH1 arm-
band sensors on the agreement between the two sensors. Overall, we find that the arm-worn
optical Polar OH1 sensor provides a good estimate of HR (Pearson r = 0.90, p <0.01).
Filtering the signal that corresponds to physical activity further improves the HR estimates
but only slightly (Pearson r = 0.91, p <0.01). Based on these preliminary findings, we con-
clude that the arm-worn Polar OH1 sensor provides usable HR measurements in daily living
conditions, with some caveats discussed in the paper.

Keywords: Heart Rate, Photoplethysmography, Electrocardiography, Wearable Sensors

1. Introduction

Consumer wearable sensors can help people monitor their overall health and provide valuable
information for prevention of severe diseases and injuries.1–3 Cardiovascular parameters such as
heart rate (HR) and heart rate variability (HRV) are among the most common physiological
measures that people track with their wearable sensors. The HR and HRV measurements
captured by the sensors not only provide information about physical health, they can also
help track mental stress which has secondary deleterious effects on health, including mental
health.4–7 The most commonly used sensors for cardiovascular measurements are wrist-worn

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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smart watches; however, chest strap sensors are also widely used, especially in the context
of sports. More recently, a class of devices that are designed to be worn on the upper arm
or the forearm have become commercially available. The wrist-worn and arm-worn sensors
rely on photoplethysmography (PPG: optical sensing) and chest strap sensors rely on electro-
cardiography (ECG). The latter tend to be more accurate than the former.3,4,8–11 While there
has been extensive prior work validating wrist-worn heart rate sensors, most of this work has
been done in laboratory conditions.1,4,12 Less work has been done to examine the validity of
optical HR sensors in completely unconstrained and uncontrolled naturalistic settings. For
example, a recent meta-review of 44 studies that reported on validity of wrist-worn optical
sensors found only 7 studies that included daily living activities outside of a lab setting.13

Furthermore, the results of this work have been mixed with respect to the ability of optical
sensors to accurately measure heart rate in these unconstrained conditions.2,14–17 Even fewer
studies have examined arm-worn devices as an alternative to wrist-worn sensors.18–21 These
studies focused mainly on the use of these devices in the context of sports activities and
demonstrated that armband devices are robust to even very strenuous physical activity. For
this reason, we selected the Polar OH1 armband as an alternative to wrist-worn devices. Our
current study aims to add to this prior literature a preliminary investigation of an armband
optical heart activity sensor worn for an extended period of time in everyday life settings.
We use the Polar OH1 armband sensor together with the Polar H10 chest strap sensor as
a reference device to collect PPG, ECG and accelerometer data and explore the feasibility
and accuracy of using Polar OH1 armband’s PPG measurements obtained in the naturalistic
environment with Polar H10 chest strap’s ECG measurements as the reference standard.
Additionally, we aimed to examine the impact of motion on the accuracy of HR estimates.

2. Study Design

This preliminary study is part of a larger study of cigarette smokers. The larger study is
ongoing and is aimed at predicting smoking events in order to develop or use therapeutic
interventions (e.g., nicotine lozenge) that can be administered just-in-time. In this study,
participants are asked to wear several sensors including the Polar H10 and OH1 for approxi-
mately 14 consecutive days (2 weeks). During both weeks, the participants are asked to use a
smartphone app specifically designed for this study (PhysiAware®) that uses Bluetooth Low
Energy (BLE) interface to connect to the study devices, collect the real-time measurements
and transmit them to a study server several times a day. The participants are also asked to use
the app to indicate when they smoke each cigarette and the reasons for smoking the cigarette.
The current analysis includes only Polar H10 and OH1 heart activity trace and accelerometer
data from the first 16 participants from the larger study.

3. Data Collection and Processing

This study was approved by the University of Minnesota Institutional Review Board and is
currently ongoing.

Pacific Symposium on Biocomputing 2023

44



3.1. Data Collection

The data collected from the armband and chest strap sensors are temporarily stored by the
PhysiAware® app on the smartphone of each participant until the participants upload the
data to a University of Minnesota server. The PhysiAware® app was developed specifically for
this project as a native app on iOS and Android platforms. Figure 1 illustrates both versions
and shows the main screen that the participants would see after logging in with their study
credentials (a randomly generated study ID).

(a) (b)

Fig. 1: The iOS and Android versions of the PhysiAware app. a) iOS. b) Android.
∗ MM Ring is a ring sensor (MoodMetric® ) used in the study for monitoring electrodermal

activity - not relevant to the current analysis.

The iOS and Android apps implemented the standard Polar BLE application programming
interface for collecting raw data from the sensors. Both the H10 chest strap and the OH1
armband sensors are capable of storing limited data in their onboard memory; however, this
capability is not open to third-party developers when the OH1 armband sensor is operated
in the ”PPI” mode (i.e., the mode that calculates and reports inter-beat interval durations
needed for heart rate variability measurements). For our study, we wanted to leverage the
”PPI” mode specifically along with collecting raw blood volume pulse data. Thus, all sensor
data were streamed ”live” over the BLE interface rather than stored locally and transferred
in batches. The streaming data were aggregated on the smartphone and the participants were
prompted every 3-4 hours to upload their data to the study server. The motivation for not
doing automated uploads stems from the fact that some of the participants may have limited
or costly cellular data plans. Therefore, we designed the app to detect the presence of Wi-
Fi connectivity and alert the participants only when a Wi-Fi network (vs. a cellular data
network) was available to upload the data. We also wanted to provide the participants with
the ability to manually control the uploads as they take a significant amount of bandwidth
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and can be disruptive to the participant’s other activities on their smartphone. These design
considerations were adopted in order to make the app as accessible as possible to a broad
range of participants from a variety of socioeconomic backgrounds.

Due to the remote and naturalistic nature of the study, we encountered several other
challenging issues that affected data collection. For example, Polar OH1 arm sensor battery
life is approximately only 8 hours, which precludes continuous monitoring. To compensate
for this challenge, each participant was provided with two OH1 sensors that they could use
interchangeably while the other sensor was being charged. While all participants participated
in a remote training session via Zoom with the study coordinator on how to wear and use
the study devices, situations arose where participants unintentionally corrupted the data. This
included wearing the sensors incorrectly, or forgetting to wear them at all. These challenges are
inherent to remote naturalistic settings and result in lower volume of usable data than what
can be obtained in laboratory conditions or with extensive hands-on training. The collected
data still may present further challenges due to noise from the variability of the environments
and participants’ daily life activities.22

3.2. Data Processing

For the current study, we selected the signals available simultaneously from both the H10
chest strap and OH1 armband to time-align the two signals as illustrated in Figure 2. Some of
the more frequent noise artifacts included short gaps with missing samples. The majority of
these gaps were under 60 seconds in duration and were likely attributable to interruptions in
BLE connectivity between the smartphone and the sensors. The missing data corresponding
to these short gaps that are under 60 seconds comprises on average 0.52% of the total data
volume for ECG and 0.94% for PPG. Our current approach for dealing with these short gaps
is to back- and forward-fill them by taking half of the values needed to fill the gap from the
preceding signal, and the other half from the subsequent signal. This approach is motivated by
the thought that the HR signal does not typically change dramatically over a short period of
time; however, if such a change does occur during the 60 second gap (e.g. the participant begins
strenuous activity during the gap) by forward-filling the first half of the gap and back-filling
the second half we expect to represent the start time of the increase in HR more accurately.
Less frequent gaps longer than 60 seconds were left as missing data and excluded from analysis.

We collected the high frequency time indexed ECG data and 3-D acceleration data from
Polar H10 chest strap sensor at a sampling rate of 130Hz and 200Hz, respectively. The time
indexed PPG and 3-D acceleration data from the Polar OH1 armband were sampled at 135Hz
and 50Hz, respectively. To detect peaks in the ECG and PPG signals and calculate instanta-
neous HR we used Kubios23 software package (version 3.5.0) which also performs additional
noise filtering and generates HR estimates in the output. Other computational approaches
were considered such as band pass filtering, detrending methods for removing noise, and man-
ually calculating HR with code. However, we opted to use the Kubios for preprocessing so that
our results are more easily reproducible and applicable to a wider research audience. Kubios
processes ECG and PPG data by using an automatic beat detection algorithm and HR cal-
culation from inter-beat intervals. Additionally, Kubios applied a detrending approach on the
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ECG and PPG data based on smoothness priors regularization. The detrending method re-
moves the slow non-stationary component of the signals.24 Peak detection and time-alignment
between PPG and ECG signals are shown in Figure 2. Less frequent gaps longer than 60s
were filled with zeros prior to Kubios processing to maintain the time-alignment between the
ECG and PPG data. Kubios generates ’NaN’ values for heart rate variability features for the
zero-filled sections resulting in excluding these sections from analysis.

After handling missing data as described above, we imported the data into Kubios to
generate HR estimates over 1-minute frames overlapping by 10 seconds. The resulting time
series were used to calculate the Pearson correlation coefficients between ECG and PPG HR
estimates. Due to the large size of the high frequency time series ECG and PPG data (e.g.,
up to 120 million rows for 11 days of ECG data per participant), we segmented the data into
smaller chunks ranging from a few hours to one day (24 hours) before importing into Kubios.

Fig. 2: Illustration of peak alignment between ECG (lower) and PPG (upper) signals.

3.3. Filtering

To investigate the impact of noise introduced by physical activity in daily life, we experimented
with several physical activity filters based on 3-D accelerometer data from accelerometers
embedded in the H10 chest-strap and OH1 armband devices. Since the H10 is attached to the
person’s torso and OH1 is attached to the upper forearm, we expect that these sensors will
capture different and potentially complementary types of activity. All physical activity filters
use the magnitude of acceleration along the x, y, z axes from a given 3-D accelerometer. The
calculation of the magnitude of overall acceleration is as follows:

G = sqrt(x2 + y2 + z2) (1)

where G represents the magnitude of acceleration and x, y, z represents acceleration along
each of the 3 axes. In the rest of the paper we refer to this overall magnitude of acceleration as
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Fig. 3: Bland-Altman Plot of the differences in PPG and ECG estimates of HR without any
filtering physical activity.

G-value. This measure is used to filter out the data that contain high levels of physical activity
defined as above the 75th percentile of all G-values for a given sensor. We then defined three
filters based on the G-values calculated from a) H10 chest strap, b) OH1 armband, and c) from
the union of both H10 and OH1 G-values (i.e., when either the chest-strap or the armband
device indicated excessive motion). Each of the three filters also removes samples that result
in HR greater than 200 beats per minute (based on maximum heart rate calculated as 211
- (0.64*age)25) or lower than the empirically determined 3rd percentile. Activity filters were
used in this study to assess if the correlation between the measures reported by the PPG and
ECG sensors are adversely impacted by including periods of physical activity so as to assess
the quality of the data collected by the arm-band sensor during times of physical activity.
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Table 1: Participant Characteristics

ID Age Sex Race Arm HR (OH1) HR (H10) G-val (OH1) G-val (H10)
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

1 <40 m non-white left 83.56 (10.0) 85.29 (11.0) 1007 (23) 973 (14)
2 <40 f white left 76.28 (9.0) 77.11 (9.0) 1021 (12) 1007 (17)
3 40-50 f white left 77.43 (6.0) 77.27 (6.0) 968 (137) 1015 (7)
4 <40 m non-white left 69.17 (8.0) 69.92 (9.0) 999 (15) 994 (11)
5 40-50 f white left 96.73 (7.0) 96.84 (7.0) 1002 (9) 988 (29)
6 >50 f white left 74.55 (7.0) 75.38 (7.0) 1001 (12) 995 (13)
7 <40 m white left 106.9 (8.0) 107.88 (8.0) 1023 (11) 999 (28)
8 <40 f white left 103.45 (5.0) 103.85 (5.0) 1012 (13) 993 (10)
9 <40 m white left 94.02 (10.0) 96.14 (10.0) 1002 (18) 1019 (11)
10 40-50 f white left 79.88 (9.0) 80.73 (9.0) 1017 (6) 979 (17)
11 <40 m white left 94.22 (14.0) 94.85 (14.0) 1024 (22) 1019 (11)
12 40-50 m white left 84.0 (8.0) 85.09 (8.0) 1008 (12) 1006 (12)
13 >50 m white right 86.65 (8.0) 88.02 (9.0) 1019 (66) 1009 (10)
14 <40 f white left 78.8 (9.0) 79.71 (9.0) 1024 (14) 976 (16)
15 <40 f white left 76.19 (9.0) 76.75 (9.0) 1017 (16) 997 (20)
16 40-50 f white left 96.56 (6.0) 97.02 (6.0) 1013 (8) 991 (10)

Mean 42 – – – 86.14 (8.3) 87.0 (8.5) 1009.8(25) 997.5 (15)

4. Results

The basic demographic and physiological characteristics of participants are presented in Table
1. The participant characteristics presented in Table 1 demonstrate the variability present in
HR measurements across study participants.

4.1. Agreement between PPG and ECG HR Estimates

We used the HR values generated by Kubios for both PPG and ECG signals and calculated
Pearson correlation of the two sets of HR values. The Pearson correlation measures the strength
of the linear relationship between two variables. As shown in Table 2, the HR calculated from
PPG data is positively correlated with the HR calculated from ECG data with correlation
coefficients higher than 0.80 except for one participant’s data likely due to excessive motion
or the chest strap not being tight enough. The results summarized in Table 2 show that the
majority of participants’ correlation coefficients increased only modestly after using physical
activity filters. All correlations in Table 2 are statistically significant (p-value <0.01).

The average HR correlation before any physical activity filtering is 0.90. Using either or
both the OH1 armband or H10 chest strap physical activity filter to remove data with high G-
values increases the average HR correlation to 0.91. Since different participants have different
numbers of samples, we also report correlations weighted by the number of samples resulting
in slightly lower estimates but still remaining above 0.80 (see Table 2).

Correlations between PPG and ECG heart rate estimates by age and sex of the partic-
ipants are illustrated in Figure 4 and suggest that these participant characteristics did not
substantially affect the results.
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Fig. 4: Differences in correlations between PPG and ECG HR by age & sex of the participants.

5. Discussion

The results of our preliminary study indicate that it is feasible to obtain HR estimates from
the Polar OH1 armband that are in agreement with reference ECG estimates. These findings
are encouraging for studies that involve observation of cardiac activity in naturalistic settings.

Several previous studies26–28 that examined the agreement between PPG and ECG signals
reported correlations between 0.91 and 0.98 which is comparable to the correlations we found
in the present study; however, some previous studies noted somewhat variable performance
of wrist-worn PPG sensors with some devices having correlation with ECG in the 0.83-0.84
range16 or even lower.17 Furthermore, while the ecological study by Nelson et al.26 demon-
strated overall low error rates for wrist-worn (Apple Watch 3 and Fitbit Charge 2) devices
under sleeping, sitting, walking, and running conditions over a 24 hour period, they also found
relatively high error rates during activities of daily living and as movement became more er-
ratic during various conditions. These decreases in accuracy are likely due to the fact that
wrist-worn devices by design tend to fit relatively loosely around the wrist. An overly tight
fit would make the device uncomfortable to wear for long periods of time. The Polar OH1
armband used in our study seeks to overcome this problem by placing the sensor higher up the
forearm which tends to experience lower amplitude motion than the wrist during activity and
allows for tighter fit with an elastic strap that also minimizes the amount of motion. Another

Pacific Symposium on Biocomputing 2023

50



key difference in our study is the length of the observation period. In our study, participants
wore the sensors as continuously as they were comfortable with over an approximately two-
week period. We are not aware of other studies in which participants wore a chest strap and an
armband for such an extended period of time. The extended nature of the observation period
enables us to examine the performance of the armband sensor in a greater variety of natural-
istic conditions and activities of daily living. The fact that we find the armband to provide
accuracy on par with other devices used in laboratory conditions is particularly encouraging
as they show that this type of PPG sensor can be comfortably worn over a long period of time
and provides reliable measurements.

Table 2: Correlation between ECG and PPG estimates of HR and number of samples remaining
after applying various physical activity filters based on accelerometers embedded in devices.

Physical Activity Filters
ID No filter OH1 armband H10 chest strap OH1+H10

Corr. N∗ Corr. N Corr. N Corr. N

1 0.82 4021 0.82 3146 0.85 3274 0.86 2600
2 0.95 2195 0.95 1950 0.94 1649 0.94 1466
3 0.97 124 0.97 101 0.98 92 0.98 79
4 0.95 280 0.94 216 0.98 245 0.98 198
5 0.96 326 0.96 291 0.96 275 0.96 252
6 0.83 2025 0.84 1762 0.85 1768 0.86 1544
7 0.95 64 0.96 60 0.77 44 0.76 42
8 0.93 177 0.93 148 0.92 139 0.92 120
9 0.53 2312 0.55 2026 0.58 1506 0.58 1298
10 0.98 26 0.98 25 0.97 25 0.98 24
11 0.96 114 0.99 80 0.99 76 0.99 63
12 0.93 3219 0.93 2395 0.92 2813 0.92 2102
13 0.92 569 0.94 536 0.95 292 0.95 269
14 0.96 613 0.97 514 0.96 559 0.97 479
15 0.93 677 0.93 615 0.95 530 0.95 489
16 0.90 1455 0.93 1264 0.90 1378 0.94 1196

Unweighted Mean 0.90 1137.3 0.91 945.5 0.90 916.6 0.91 763.8
Weighted Mean 0.85 1137.3 0.85 945.5 0.87 916.6 0.87 763.8

∗ number of samples (HR estimates) used to calculate the correlations. Each sample corresponds to
HR calculated over a 1-minute frame and, thus, N also approximates the number of minutes of data
included in the correlation analysis, not counting the overlaps between frames.

We also find some individual variation across participants as illustrated by the correla-
tions reported in Table 2. Additionally, the Bland-Altman plots in Figure 3 show there’s also
some variability in the distribution of the differences between ECG and PPG HR estimates
across the participants. However, the mean differences of all participants are close to zero and
majority of the data is within the 95% confidence intervals of limits of agreement. The distri-
bution of the points outside of the 95% confidence intervals does not suggest a clear pattern
of association between the differences and the magnitude of the heart rate measurements.
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Visual examination of the differences between groups by age and sex, shown in Figure 4,
suggests no substantial differences between these groups. Due to the small number of partici-
pants, we did not perform a formal statistical subgroup analysis. The data shown in Figure 4
suggests that the male subgroup contains a possible outlier (participant 9 in Table 2).

Several prior studies examined the impact of skin tone on optical green wavelength heart
rate sensor accuracy and found that these sensors were reasonably accurate across various skin
tones but slightly less accurate for darker skin tones varying by devices and conditions.13,29,30

While our study so far included only 2 participants with non-white skin tone, our results are
consistent with this prior work in that we found that the optical OH1 armband was only
slightly less in agreement with the ECG estimates of heart rate than the group average for
one of the two non-white participants (r = 0.82 vs r = 0.90 - see Table 2, participant 1 in ”No
filter” column) and slightly higher than the group average for the other non-white participant
(r = 0.95 vs r = 0.90 - see Table 2, participant 4 in ”No filter” column). Clearly, we cannot
draw any definitive conclusions from these results due to the small number of participants
overall and non-white participants in particular.

Another important finding is that removing heart data that corresponds to physical activity
based on the accelerometer values did not have a major impact on the agreement between
ECG and PPG estimates of heart rate. This is an encouraging finding because it indicates that
the armband sensor provides robust heart rate estimates in the presence of physical activity.

6. Limitations and Challenges

The results should be interpreted in light of several limitations. First, our sample size is small
as this is a preliminary pilot study. Second, we use only the standard accelerometer-based
filtering techniques. More advanced filtering techniques exist that may be able to further
reduce noise, potentially increasing the correlation. Finally, the participants included in this
study are smokers, whose physiological characteristics may differ from the general population.

In addition to the limitations listed above, we also want to highlight several valuable lessons
that we learned in the process of doing this study that can be applied in our future work or
by others who intend to perform similar studies. On the technical side, we found that some
of the participants had some trouble with maintaining the connectivity between the wearable
sensors and the smartphone. The Bluetooth devices used in this study have a relatively short
range (10-30 meters); therefore, the ”live” streaming mode for data transfer is vulnerable to
the participants walking away from their smartphones beyond the Bluetooth range. Clearly,
this results in undesirable data loss which may be prevented by recording data locally on the
sensor devices in addition to streaming.

We also found significant differences in terms of the technical challenges in app development
for the two platforms: iOS and Android. While developing for the Android platform was
logistically easier than for iOS mostly due to complicated security controls on iOS apps, it
was also much more challenging to use Android apps in the study due to large variability
in how various Android smartphone manufacturers handle battery management. In order to
maintain the streaming of data from devices to the smartphones, the battery management
mode had to be manually turned off by the participants and was achieved with variable
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success depending on which smartphone the participant owned. This issue is more difficult to
resolve without resorting to recruiting only participants who own Apple smartphones, which
would make recruitment more difficult and may introduce unintended selection bias into the
study. In the current study, we addressed this issue by monitoring incoming data on a regular
basis for signs of significant data loss and had the study coordinator follow up with those
participants that were identified this way.
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1. Introduction

Connectivity is a fundamental property of biological systems: on the cellular level, proteins 
interact with each other to form protein-protein interaction networks (PPIs); on the organism 
level, neurons are arranged in a network; and on a community-level, species can have complex 
relationships with one another that drive the development and balance of an ecosystem. 
Graphs, representations of systems consisting of entities as vertices and their connections as 
edges, are a useful structure to characterize many such systems. Such models can be used to 
understand biological systems that naturally have a network structure, including PPIs, 
biological neurons, and ecosystems. In today's information age, graph representations and 
algorithms (often in combination with machine learning techniques) are used to organize 
massive amounts of related data, much of which may be heterogeneous or unstructured, and 
identify patterns that represent novel biological insights. PSB's 2023 session ``Graph 
Representations and Algorithms in Biomedicine,'' encompasses modern developments in graph 
theory and its applications to various fields of biomedicine. This session includes a wide range 
of research - knowledge graphs built from text-mined health data, heterogeneous networks 
using multi-omic databases, and graphs refined to represent uncertainty or improve memory 
usage. 

Recent developments around graphs in biomedicine have primarily revolved around methods 
of constructing, comparing, and making predictions from graphs using massive datasets that 
have become commonplace in biomedical computation. Even more challenging, or perhaps 
more opportune, is that many problems in biomedicine involve multiple different data types. A 
specific challenge is how to integrate heterogeneous, sometimes unstructured data, to make 
network-based insights. The proceedings for this session tackle several different challenges: 
understanding and predicting protein networks (Eyuboglu et al., Ayati et al.), improving 
feature representations of various types of graphs (Chen et al., Soman et al., Luo et al.), 
making use of family structure via graph approaches (Shemirani et al., Mossel et al.), 
creatively applying traditional algorithms to novel tasks (Magnano et al.), and representing 
uncertainty in network structures (Liu et al., Krishnan et al.). 
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2. Understanding and Predicting Molecular Networks

Predicting the structure, function, and associated phenotypes of molecular networks has 
emerged as a grand challenge that is very amenable to graph-based approaches.  One past 
related strategy for protein-protein interaction network prediction has been to quantify protein 
similarly in terms of protein sequence similarity, or their distance to one another in the 
network. However, Eyuboglu et al., Ayati et al., illustrate that there are other factors we can 
consider when trying to predict protein or molecule similarities, phenotypes, and networks. In 
their paper, "Mutual Interactors as a Principle for the Discovery of Phenotypes in Molecular 
Networks", Eyuboglu et al. suggest that molecular similarity is not dictated by molecule-
molecule distances in graph space, but is better described using representations of a molecule's 
mutual interactors. They show that this principle - that molecules with similar sets of mutual 
interactors have similar phenotypes - holds for protein-protein, signaling, and genetic 
networks. To further showcase the application of this theory in practice, they build a machine 
learning model using a simple mutual interactor feature space, and illustrate that they can 
predict drug targets, disease proteins, and molecular functions better than complex algorithms 
and feature spaces.  

Interestingly, Ayati et al. take a comparatively opposite approach. They argue that while many 
past strategies to predict kinase-substrate associations have used sequences alone, there is a 
wealth of publically available information on protein structure and function that could vastly 
improve kinase-substrate predictions. The authors use sequence similarity, shared molecular 
pathways, and co-evolution, co-occurrence, and co-phosphorylation patterns to construct a 
phosphosite-phosphosite association network, and protein-protein interactions, mutual 
biological pathways, and kinase family membership to construct kinase-kinase networks. 
Using these networks to represent kinase and substrates' node embeddings, they train a 
machine learning model that outperforms the state-of-the-art methods for predicting kinase-
substrate interactions. Ayati et al.'s complex node embeddings using heterogenous information 
sources, and Eyuboglu et al.'s simple and interpretable representations of molecular similarities 
illustrate two different and creative approaches for improving the feature space that we use to 
understand and make predictions on molecular networks.  

3. Understanding and Predicting Molecular Networks

Key contributions in both Ayati et al and Eyuboglu et al were improved representations of the 
feature space of molecular networks. Improving network feature representations - reducing 
memory or runtime requirements, boosting interpretability, or increasing accuracy in 
downstream machine learning pipelines - is a general goal of research in biomedical networks. 
"Contrastive learning of protein representations with graph neural networks for structural and 
functional annotations" by Luo et al., “A Graph Coarsening Algorithm for Compressing 
Representations of Single-Cell Data with Clinical or Experimental Attributes" by Chen et al., 
and "Time-aware Embeddings of Clinical Data using a Knowledge Graph" by Soman et al. all 
tackle this challenge in various ways.  
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In "Contrastive learning of protein representations with graph neural networks for structural 
and functional annotations", like Ayati et al and Eyuboglu et al, Luo et al.  focus their efforts 
on the protein space. Rather than trying to use functional and structural information to predict 
protein-protein interactions, they use the ladder to predict functional and structural 
annotations. Their algorithm, "PenLight" uses a graph neural network (GNN) that integrates 
three dimensional protein structure, and sequence representation using a language model. They 
use contrastive earning to train the GNN to learn protein representations that reflect 
similarities encompassing not only similarities in the linear sequence space, but semantic 
similarities and similarities in the function or sequence space. They benchmark their algorithm 
on predicting EC (Enzyme Commission) numbers and CATH (class, architecture, topology, 
homologous superfamily) classifications, functional and structural annotations respectively 
available on the Protein Databank, demonstrating its superior performance. 

In "A Graph Coarsening Algorithm for Compressing Representations of Single-Cell Data with 
Clinical or Experimental Attributes", Chen et al. introduce a novel approaching for 
compressing graphs of single-cell data. In single-cell experiments, measurements from tens or 
hundreds of thousands of cells are often visualized and analyzed by looking at a 
dimensionality-reduced representation of the cells. This dimensionality reduced representation 
of the cells can also be described in a graph, where cells or groups of cells with similar 
features in the latent space are connected to each other on the graph. Chen et al. develop a 
method for performing graph coarsening on this network, which can save memory, remove 
noise, and help distinguish biologically relevant patterns in downstream pipelines. Importantly, 
their algorithm “cytocoarsening”} not only uses not only cell-cell similarity in the single-cell 
measurements (in their case they were using mass cytometry data), but also clinical, 
experimental, and phenotypical attributes of the cells. Using single cell mass cytometry 
datasets from cohorts from studies of preeclampsia, COVID-19, and cytomegalovirus, the 
authors demonstrate that their algorithm has comparable runtime to state-of-the-art graph 
coarsening packages, and improved performance when it comes building coarsened graphs that 
depict biologically relevant patterns. 

Finally, in "Time-aware Embeddings of Clinical Data using a Knowledge Graph", Soman et al. 
construct biomedical knowledge graphs from electronic health records to create machine 
readable representations of patient health data.  They map a patient EHR data onto nodes of a 
popular biomedical knowledge network and use a random walk to create node embeddings 
with features corresponding to nodes in the knowledge network graph. To capture to temporal 
dynamics of the EHR data, they build embedding vectors unique to each yearly interval time 
frame. Such embeddings yield a highly interpretable two-dimensional array, with rows 
representing time and columns representing SPOKE nodes. Using these embeddings as feature 
representations for patients from a group of Parkinson's and non-Parkinson's phenotypes, they 
build a machine learning model that can predict Parkinson's using data from one year or earlier 
before a patient's diagnosis. Feature representations without the temporal representation were 
not as predictive, illustrating that the dynamic nature of electronic health records is an 
important aspect to capture when creating feature representations of EHR data.  
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4. Making Use of Family Structure

While molecular networks are an obvious candidate for graph representations and algorithms, 
another candidate is genetic data from related individuals. A classic family tree is a graph, and 
graphs can also depict more complicated genetic relationships from individuals.  In "Selecting 
clustering algorithms for Identity-by-descent mapping" by Shemirani et al. and "Efficient 
Reconstruction of Stochastic Pedigrees: Some Steps from Theory to Practice" by Mossel et al., 
both authors use graphs to understand and quantify the genetic relatedness of individuals. 

In "Selecting clustering algorithms for Identity-by-descent mapping" Shemirani et al.  develop 
a metric for benchmarking identity-by-descent clustering algorithms. They introduce a novel 
approach for finding groups of individuals that share short segments of their genome inherited 
from a recent common ancestor (a concept known as "identical-by-descent"). They designed a 
clustering benchmark and used it to compare the performance of several popular IBD 
clustering algorithms. They found that Infomap and Markov clustering community detection 
methods had the highest statistical power in finding communities with shared IBD. Notably, 
they show that traditional clustering metrics, such as modularity and purity, do not necessarily 
provide the highest statistical power to IBD clustering applications, necessitating the 
development of improved IBD clustering benchmarking strategies. 

In "Efficient Reconstruction of Stochastic Pedigrees: Some Steps from Theory to Practice", 
Mossel et al. build on their previous work where they reconstructed a pedigree from genetic 
data under a number of simplifying assumptions. In this newer work, the authors walk us 
through the process by which they made simplifications to improve the runtime of their 
algorithm, observe scenarios in which the faster algorithm has decreased performance, 
identified the theoretical issues and limiting cases with their new approach, and correct 
accordingly.  Specifically, they found that the faster version of their algorithm performs with 
pedigrees that are beyond 2 generations. They claim that this is due to inbreeding nearly 
always present in large pedigrees, and show that the algorithm improves when inbreeding is 
limited in their simulation. Finally, they introduce a belief propagation heuristic that helps 
account for possible inbreeding, allowing for both fast and accurate pedigree reconstruction. 

5. Applying Traditional Graph Algorithms to Novel Tasks

Molecular networks and pedigrees are natural structures by which graph strategies can be 
applies, but Magnano et al. show that traditional graph-based approaches can show promise for 
novel tasks.  In "Graph algorithms for predicting subcellular localization at the pathway level", 
Magnano et al predict subcellular protein localization using an edge labeling task. Using 
biological pathway networks, the authors develop graph algorithms in order to predict the 
location within a cell that an interaction is taking place. They pose this challenge as an edge-
labeling task and compare the performance of a variety of several models including GNNs, 
probabilistic models, and discriminative classifiers. Notably they found that directly using data 
from protein localization databases was not sufficient to accurately predict pathway level 
localization and topology or some other form of structural information is needed to predict 
localization in context. Finally, they use their findings to predict interaction localizations in a 
human cytomegalovirus infection. 
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6. Representing Uncertainty in Networks

A major weak point that often goes unaddressed in biomedical graph-related networks is that 
networks derived from publicly available data have noise and potential inaccuracies in their 
structures and topologies. Often this goes unaddressed, but accounting for such inaccuracies or 
better understanding their effects may allow us to build more graph-based feature 
representation and models of biological phenomenon. In "Improving target-disease association 
prediction through a graph neural network with credibility information", by Liu et al. and 
"Integrated Graph Propagation and Optimization with Biological Applications" by Krishnan et 
al., the authors tackle the challenge of representing uncertainty in such biological networks.  

"Improving target-disease association prediction through a graph neural network with 
credibility information" Liu et al., hope to improve target-disease association (TDA) 
predictions using biological networks and text mined data from the literature. They develop 
creatTDA - a deep learning based framework that learned latent feature representations of 
targets and diseases. Uniquely, they propose a new way to encode credibility information 
obtained from literature in their mode. They do this by learning credibility encodings for 
different known target-disease associations, using their co-occurrences in the literature as a 
label. CreaTDA was able to predict known TDAs with higher sensitivity and specificity, as 
well as novel TDAs including an association between bronchiolitis and the epidermal growth 
factor receptor and viral diseases and vascular endothelial growth factor. 

In "Integrated Graph Propagation and Optimization with Biological Applications," Krishnan et 
al. seek to understand how uncertainty effects graphs representing biological network 
dynamics. In mathematical models of biological systems, rate constants are often unknown 
and network propagation has emerged as a suitable method for understanding how changes in 
nodes effect one another, without the need for parameter estimation. Krishnan et al extend 
some of the ideas in network propagation theory to develop a system of identifying which 
specific perturbation patterns may drive networks into desired states. Their method Integrated 
Graph Propagation and Optimization (IGPON) embeds propagation into an objective function 
and uses optimization strategies to minimize the difference between a target and observed 
state. They illustrate the value of their algorithm on predicting gene expression patterns using 
various sets of knockout data. 

7. Conclusion

This session of papers addresses a wide variety of biological challenges: predicting molecular 
interactions, deriving insights from unstructured EHR data, quantifying genetic relationships 
between related individuals, and understanding the relationships between drug, disease, and 
phenotype. Excitingly, these works tackle these challenges using a diverse collection of graph-
based approaches. We hope the common language of graphs will make apparent the 
intersections and differences in the problems addressed and the strategies taken, and readers 
and authors alike will be able to take additional inspiration from the ideas posed in this 
session.  
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Biological networks are powerful representations for the discovery of molecular phenotypes. Fun-
damental to network analysis is the principle—rooted in social networks—that nodes that interact in
the network tend to have similar properties. While this long-standing principle underlies powerful
methods in biology that associate molecules with phenotypes on the basis of network proximity,
interacting molecules are not necessarily similar, and molecules with similar properties do not nec-
essarily interact. Here, we show that molecules are more likely to have similar phenotypes, not if
they directly interact in a molecular network, but if they interact with the same molecules. We call
this the mutual interactor principle and show that it holds for several kinds of molecular networks,
including protein-protein interaction, genetic interaction, and signaling networks. We then develop a
machine learning framework for predicting molecular phenotypes on the basis of mutual interactors.
Strikingly, the framework can predict drug targets, disease proteins, and protein functions in differ-
ent species, and it performs better than much more complex algorithms. The framework is robust
to incomplete biological data and is capable of generalizing to phenotypes it has not seen during
training. Our work represents a network-based predictive platform for phenotypic characterization
of biological molecules.

Keywords: Network medicine, Molecular phenotypes, Protein Interactions, Graph neural networks

1. Introduction

Molecules in and across living cells are constantly interacting, giving rise to complex biological
networks. These networks serve as a powerful resource for the study of human disease, molecular
function and drug-target interactions.1,2 For instance, evidence from multiple sources suggests that
causative genes from the same or similar diseases tend to reside in the same neighborhood of protein-
protein interaction networks.3–6 Similarly, proteins associated with the same molecular functions
form highly-connected modules within protein-protein interaction networks.7

These observations have motivated the development of bioinformatics methods that use molec-
ular networks to infer associations between proteins and molecular phenotypes, including diseases,
molecular functions, and drug targets.8–11 Many of these methods assume that molecular networks
obey the organizing principle of homophily: the idea that similarity breeds connection (see Figure
1b).12 However, while this principle has been well-documented in social networks of many types

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed
under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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(e.g. friendship, work, co-membership), it is unclear whether it captures the dynamics of biological
networks. If not, existing bioinformatics methods that assume homophily may not realize the full
potential of biological networks for scientific discovery.

To better understand the place for homophily in bioinformatics, we consider groups of pheno-
typically similar molecules (e.g. molecules associated with the same disease, involved in the same
function, or targeted by the same drug) and study their interactions in large-scale biological net-
works. We find that most molecules associated with similar phenotypes do not interact directly in
molecular networks, a result which puts into question the assumption of homophily, an assumption
that is taken for granted by so many bioinformatics methods.

In fact, a different principle better explains how phenotypic similarity relates to network struc-
ture in biology. On average, two molecules that interact directly with one another will have less in
common than two molecules that share many mutual interactors, just as people in a social network
may share mutual friends. We call this the mutual interactor principle and validate it empirically on
a diverse set of biological networks (see Figure 1c).

Motivated by our findings, we develop a machine learning framework, Mutual Interactors, that
can predict a molecule’s phenotype based on the mutual interactors it shares with other molecules.
We demonstrate the power, robustness, and scalability of Mutual Interactors on three key prediction
tasks: disease protein prediction, drug target identification, and protein function prediction. With ex-
periments across three different kinds of molecular networks (protein-protein interaction, signaling
and genetic interaction) and four species (H. sapiens, S. cerevisiae, A. thaliana, M. musculus), we
find that Mutual Interactors substantially outperforms existing methods, with gains in recall up to
61%. Additionally, we show that the weights learned by our method provide insight into the func-
tional properties and druggability of mutual interactors.

Mutual Interactors is an approach based on a different network principle than existing bioinfor-
matics methods. That it can outperform state-of-the-art approaches suggests a need to rethink the
fundamental assumptions underlying machine learning methods for network biology.

2. Network connectivity of molecular phenotypes

One way we measure phenotypic similarity between two molecules is by comparing the set of pheno-
types (e.g., diseases or functions) associated with each molecule and quantifying their similarity with
the Jaccard index. We find that the average Jaccard index of the 62,084 molecule pairs that interact
in the human reference interactome (HuRI) is significantly smaller than the average Jaccard index
of the 62,084 molecule pairs with most degree-normalized mutual interactors (p = 2.00 ⇥ 10�59,
dependent t-test).13 We replicate this finding on three other large-scale interactomes: a PPI net-
work derived from the BioGRID database14 (p = 3.56 ⇥ 10�26) another derived from the STRING
database15 (p = 1.29⇥ 10�10) and the PPI network compiled by Menche et al. (p = 1.02⇥ 10�4).16

To further evaluate these two principles (i.e., homophily and Mutual Interactor), we collect
75,744 disease-protein associations17 and analyze their interactions in the protein-protein interac-
tion network (see Figure 1d-f and Figure D4). For each disease-protein association we compute the
fraction of the protein’s direct interactors that are also associated with the disease. In only 17.8%
of disease-protein associations is this fraction statistically significant (P < 0.05, permutation test).
Moreover, in 46.5% of disease-protein associations, the protein does not interact directly with any
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Fig. 1: The mutual interactor principle. (a) The human protein-protein interaction (PPI) network with proteins associated with ketonemia highlighted (in red). (b)

Schematic illustration of the friendship principle (i.e., network homophily12) in a social network of five individuals. (c) Schematic illustration of the mutual interactor
principle in a PPI network. According to the mutual interactor principle, the grey protein is likely associated with ketonemia because it interacts with the same proteins as
a known ketonemia protein (in red); the two proteins share four mutual interactors (in blue). (d) Comparison of mutual interactors and direct interactors as principles of
disease protein connectivity in a human PPI network. For 75,744 disease-protein associations, the statistical significance (p-value) of the mutual interactor score (in blue)
and the direct interactor score (in red) is computed and plotted for comparison (see Section B.3). We calculate the average mutual interactor score of proteins associated
with (e) insulin resistant diabetes and (f) myeloid leukemia (see Section B.3). (e-f) The observed mutual interactor scores (in blue) are significantly larger than random
expectation (in grey).

other proteins associated with the same disease. For each disease-protein association, we also com-
pute the degree-normalized count of mutual interactors between the protein and other proteins as-
sociated with the disease. We call this the association’s mutual interactor score (see Section B.3).
In 31.0% of disease-protein associations, this score is significant (permutation test, P < 0.05). For
other molecular phenotypes, we get similar results: proteins targeted by the same drug have a sig-
nificant direct interactor score 35.1% of the time and a significant mutual interactor score 67.5% of
the time (see Figure 3b).18 In only 31.0% of the protein-function associations in the Gene Ontology
is the direct interactor score significant, compared with 56.7% for the mutual interactor score (see
Figure D1a).19 For biological processes in the Gene Ontology, these fractions are 26.7% and 46.3%
for the direct and mutual interactor scores, respectively (see Figure D1b). These results suggest that,
in biological networks, there is more empirical evidence for the Mutual Interactor principle than
there is for the principle of homophily.
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3. Mutual Interactors as a machine learning method for predicting molecular phenotypes

Based on the mutual interactor principle, we develop a machine learning method for inferring as-
sociations between molecules and phenotypes. Below, we describe how our method can predict
disease-protein associations using the protein-protein interaction network.

In network-based disease protein prediction, the objective is to discover new disease-protein as-
sociations by leveraging the network properties of proteins we already know to be involved in the
disease. Our method, Mutual Interactors, scores candidate disease-protein associations by evaluat-
ing the mutual interactors between the candidate protein and other proteins already known to be
associated with the disease. Rather than score candidate disease-protein associations according to
the raw count of these mutual interactors, our method learns to weight each mutual interactor differ-
ently. Intuitively, this makes sense: the significance of a mutual interactor depends on it’s profile. For
example, that two proteins both interact with the same hub-protein is probably less significant than
two proteins both interacting with a low-degree signalling receptor. Rather than hard-code which
mutual interactors we deem significant, through training on a large set of disease pathways, Mutual
Interactors learns which proteins often interact with multiple proteins in the same disease pathway.
Mutual Interactors maintains a weight wz for every protein z in the interactome. This allows Mutual
Interactors to down-weight spurious mutual interactors when evaluating a candidate association.

To further ground our method, we consider its application to a specific disease pathway. Ketone-
mia is a condition wherein the concentration of ketone bodies in the blood is abnormally high.20,21

In Figure 1a, we show the Ketonemia pathway in the human protein-protein interaction network. In
red are the proteins known to be associated with Ketonemia, including MLYCD and BCKDHA.22,23

We see that Ketonemia-associated proteins rarely interact with one another. In Figure 1g, we show
the same network and disease pathway, but now we’ve highlighted in blue the mutual interactors
between Ketonemia-associated proteins. Of all 21,557 proteins in the human protein-protein inter-
action network, Mutual Interactors predicts that PCCA, shown in orange, is the most likely to be
associated with Ketonemia. PCCA is a protein involved in the breakdown of fatty acids, a process
which produces ketone bodies as a byproduct. PCCA shares mutual interactors with four proteins
known to be associated with Ketonemia: BCKDHA, DBT, FBP1, and MLCYD. Further, two of
these mutual interactors, MCEE and PCCB, are of very low degree (with 7 and 21 interactions
respectively) and are weighted highly by Mutual Interactors.

3.1. Problem Formulation
Though Mutual Interactors was motivated by the molecular phenotype prediction problem, it is a
general model that can be applied in any setting where we’d like to group nodes on a graph. Suppose
we have a graph G = {V,E} and a set of node sets S = {S1, S2, ..., Sk} where each set Si is a subset
of the full node set Si ✓ V . Note that the node sets need not be disjoint. For example, G could be
a PPI network and each Si could be the set of proteins associated with a different phenotype. We
can split each node set Si into a set of training nodes S̃i ⇢ Si and a set of test nodes Si � S̃i. Given
S̃i and the network G, we’re interested in uncovering the full set of nodes Si. Formally, this means
computing a probability Pr(u 2 S|S̃) for each node u 2 V .
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3.2. The Mutual Interactors model
The mutual interactors of two nodes u and v are given by the set Mu,v = N(u) \N(v), where N(u)

is the set of u’s one-hop neighbors. For each node z 2 V , Mutual Interactors maintains a weight
wz. As we discussed above, these weights are meant to capture the degree to which each node in the
graph acts as a mutual interactor in the node sets of S. With a weight wz for every possible mutual
interactor in the network, we model the probability that a query node u is in a full node set S given
the training set S̃ ✓ S as

Pr(u 2 S|S̃) = �

✓
a

✓X

v2S̃

1p
dvdu

X

z2Mv,u

wzp
dz

◆
+ b

◆
(1)

where du is the degree of node u, �(x) = 1
1+e�x is the sigmoid function, a is a scale parameter, b

is a bias parameter, and wz is a learned weight for node z. With sparse matrix multiplication we
can efficiently compute the probability for every node in the network with respect to a batch of
k training sets {S̃1, ..., S̃k}. Let’s encode training sets with a binary matrix X 2 {0, 1}k⇥n, where
xij = 1 if and only if j 2 S̃i. With X, we can efficiently compute the probability matrix P where
Pij = Pr(j 2 Si|S̃i) with

P = �(a(XD
� 1

2AWD
� 1

2AD
� 1

2 ) + b) (2)

where A is the adjacency matrix, D is the diagonal degree matrix and W is a diagonal matrix with
the weights wz on the diagonal. Note this formulation ignores any edge weights in the graph, future
work should explore simple extensions of this formulation that incorporate edge weights.

3.3. Training the Mutual Interactors model
Given a meta-training set of k node sets S = {S1, ..., Sk}, we can learn the model’s weights W,
a, and b that maximize the likelihood of observing the node sets in the meta-training set. During
meta-training we simulate node set expansion by splitting each set Si into a training set S̃i encoded
by X 2 {0, 1}m⇥n and a target set Si � S̃i encoded by Y 2 {0, 1}m⇥n. For each epoch, we randomly
sample 90% of associations for the training set and use the remaining 10% for the test set. The input
associations X are fed through our model to produce association probabilities P. We update model
weights by minimizing weighted binary cross-entropy loss

`(X,Y) =
mX

i=1

nX

j=1

�[↵pYij logPij + (1� Yij) log(1� Pij)] (3)

where ↵p is the weight given to positive examples. Since there are far more positive examples than
negative examples, we set ↵p =

# negative examples
# positive examples .

We can minimize the loss using a gradient-based optimizer. First, we compute the gradient of
the loss with respect to model parameters via backpropagation. Then, we use ADAM with a learning
rate of 1.0. We train Mutual Interactors with weight decay 10�5 and a batch size of 200.24 We train
for five epochs and use 1

9 of the training labels as a validation set for early stopping.

4. Predicting disease-associated proteins with Mutual Interactors
We systematically evaluate our method by simulating disease protein discovery on 1,811 different
disease pathways. In ten-fold cross-validation, we find that Mutual Interactors recovers a larger frac-
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Fig. 2: Uncovering disease proteins with the mutual interactor principle. (a) Overall performance evaluation. The plot shows the fraction of disease proteins recovered
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(f) Comparison of the degree-normalized Mutual Interactor weights of drug targets and non-targets. Shown
is the distribution of degree-normalized Mutual Interactor weights for 2,212 drug targets18 (in blue), and, for comparison, the distribution of degree-normalized Mutual
interactor weights for 2,212 random proteins that are not targets of any drug (in grey). (g) Mutual Interactor neighborhood for Arnold-Chiari (AC) malformation. The
neighborhood includes known disease proteins (red squares), Mutual Interactors’ top predictions (orange squares), and the mutual interactors between them (blue circles).
Mutual interactors are sized proportional to their learned Mutual Interactor weight, wz .

tion of held-out proteins than do existing disease protein discovery methods. Specifically, for 10.2%
of disease-protein associations our method ranks the held-out protein within the first 25 proteins in
the network (recall-at-25 = 0.102). Mutual Interactors’s performance represents an improvement of
60.9% in recall-at-25 over the next best performing method, random walks. Other network-based
methods of disease protein discovery including DIAMOnD10 (recall-at-25= 0.059), random walks26

(recall-at-25 = 0.063), and graph convolutional neural networks25 (recall-at-25 = 0.057) recover con-
siderably fewer disease-protein associations (see Figure 2a,c-d). Moreover, Mutual Interactors main-
tains its advantage over existing methods across disease categories: in all seventeen that we consid-
ered Mutual Interactors’s mean recall-at-100 exceeds random walks’ (see Section C.3 and Figure
C3). We also study whether Mutual Interactors can generalize to a new disease that is unrelated to
the diseases it was trained on. To do so, we train Mutual Interactors in the more challenging setting
where similar diseases are kept from straddling the train-test divide (see Section C.2 and Figure
C2). In this setting, Mutual Interactors achieves a recall-at-25 of 0.096, a 50.7% increase in perfor-
mance over the next best method, random walks. Mutual Interactors can naturally be extended to
incorporate other sources of protein data.27 In Section C.4, we describe a parametric Mutual Inter-
actors model that incorporates functional profiles from the Gene Ontology when evaluating mutual
interactors. Instead of learning a weight wz for every protein z, this model learns one scalar-valued
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function mapping gene ontology embeddings to mutual interactor weights. We show that paramet-
ric Mutual Interactors performs on par with the original Mutual Interactors model, outperforming
baseline methods by 45.5% in recall-at-25 (see Figure C4).

The experimental data we use to construct molecular interaction networks is often incomplete
or noisy: it is estimated that state-of-the-art interactomes are missing 80% of all the interactions in
human cells.16 In light of this, we test if our method is tolerant of data incomplete networks. We
find that Mutual Interactors exhibits stable performance up to the removal of 50% of known PPI
interactions. Mutual Interactors’s performance with only half of all known interactions exceeds the
performance of existing methods that use all known interactions (Figure 2b).

We perform an ablation study to assess the benefits of meta-learning mutual interactor weights
wz (see Figure D8 ). In the study, we compare our model with Constant Mutual Interactors where
wz = 1 8z. On tasks for which we have a large dataset of phenotypes (i.e. disease protein prediction
and molecular function prediction in humans), meta-learning wz improves performance by up to
16.6% in recall-at-25. However, on tasks for which data is scarce (i.e. drug-target prediction and
non-human molecular function prediction) learning wz does not provide a significant benefit. For
these tasks, we report performance on constant Mutual Interactors where wz = 1 8z.

Learned weights provide insight into the function and druggability of mutual interactors. Next
we analyze the mutual interactor weights learned by our method. Recall that Mutual Interactors
learns a weight wz for every protein z in the interactome. This allows Mutual Interactors to down-
weight spurious mutual interactors when evaluating a candidate disease-protein association. Here,
we study what insights into biological mechanisms these weights reveal. We find that normalized
Mutual Interactors weight wzp

dz
is correlated with neither degree (r = 0.0359) nor triangle clustering

coefficient (r = 0.0127) (see Figure D9). However, we do find that proteins with high weight are
often involved in cell-cell signaling. We perform a functional enrichment analysis on the 75 proteins
with the highest normalized weight wzp

dz
. Of the fifteen functional classes most enriched in these

proteins, ten including signaling receptor activity and cell surface receptor signaling pathway are
directly related to transmembrane signaling and the other five including plasma membrane part are
tangentially related to signaling (see Figure D6). Further, we find that highly-weighted proteins are
often targeted by drugs. Among the 500 proteins with the highest degree-normalized weight, 33.6%
are targeted by a drug in the DrugBank database.18 By contrast only 10.9% of proteins in the wider
protein-protein interaction network are targeted by those drugs. This represents a significant increase
(p  6.43 ⇥ 10�24, Kolmogorov-Smirnov test). Although no drug-target interaction data was used,
training our method to predict disease proteins gives us insights into which proteins are druggable.

5. Identifying drug targets with Mutual Interactors
The development of methods that can identify drug targets is an important area of research,30–33 in
this section we show how our method can also be used for this task. Recall that mutual interactors
between proteins targeted by the same drug are statistically overrepresented in the protein-protein
interaction network (see Figure 3a). Like with disease-protein associations, Mutual Interactors can
score candidate drug-target interactions by evaluating the mutual interactors between the candidate
target protein and other proteins already known to be targeted by the drug (see Section 3.1 for a tech-
nical description of the approach). When we simulate drug-target identification with ten-fold cross
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Fig. 3: Identifying drug targets using the principle of mutual interactors. Comparison of Mutual Interactors (in blue) and direct interactors (in red) as principles of
drug-target connectivity in a human PPI network. For 4,403 drug-target associations,28 the statistical significance (p-value) of the mutual interactor score (in blue) and
the direct interactor score (in red) is computed and plotted for comparison (see Section B.3). (a) (b) Drug target identification. Shown is mean recall-at-25 across 190
drugs. (c) The side-effect similarity of drugs29 (y-axis) is linearly related to the similarity of Mutual Interactors’ predictions for those drugs (x-axis). (d) Mutual Interactors
neighborhood for proteins targeted by Caffeine. The neighborhood includes caffeine-targeted proteins (red triangles), Mutual Interactors’ top predictions for novel caffeine
targets (orange triangles), and the mutual interactors between them (blue circles). Mutual interactors are sized proportional to their learned Mutual Interactors weight, wz

(see 3.1). (e) The fraction of a drug’s targets recovered within the top 25 predictions (recall-at-25) vs. the maximum Jaccard similarity between the drug’s targets and targets
of other drugs in the training set used for machine learning. Bars indicate average recall-at-25 in each bucket.

validation on the drugs and targets in the DrugBank database,18 we find that our method outperforms
existing network-based methods of drug-target identification (recall-at-25=0.374), including graph
neural networks (recall-at-25=0.329) and random walks (recall-at-25=0.166). We also compare Mu-
tual Interactors with probabilistic non-negative matrix factorization (NMF).30–32 On aggregate, our
method’s performance is comparable to NMF’s. However, on the hardest examples, drugs that share
few targets with the drugs in the training set, our method (recall-at-25=0.381) significantly out-
performs NMF (recall-at-25=0.006) (see Figure 3e). Further, our method provides insight into the
side-effects caused by off-target binding. For each drug in DrugBank, we use Mutual Interactors to
identify potential protein targets that are not already known targets of the drug. Pairs of drugs for
which our method makes similar target predictions tend to have similar side effects34–37 (Figure 3c).
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6. Predicting molecular function across species and molecular networks

Molecules associated with the same molecular function (e.g., RNA polymerase I activity) or involved
in the same biological process (e.g., nucleosome mobilization) tend to share mutual interactors in
molecular networks of various type and species (see Figure D1a-b). For example, the eleven proteins
involved in the formation of the secondary messenger cAMP (cyclase activity, GO:0009975) do
not interact directly with one another in the protein-protein interaction network, but almost all of
them interact with the same group of twenty-five mutual interactors (see Figure D3). Using the
Mutual Interactor principle, we can predict the molecular functions and biological processes of
molecules. Via ten-fold cross validation, we compare Mutual Interactors to existing methods of
molecular function prediction, including Graph Neural Networks40 and Random Walks.26 Across all
four species and in three different molecular networks (protein-protein interaction, signaling, and
genetic interaction), we find that Mutual Interactors is the strongest predictor of both molecular
function (see Figure 4) and biological process (see Figure D2).

7. Conclusion

This work demonstrates the importance of rooting biomedical network science methods in princi-
ples that are empirically validated in biological data, rather than borrowed from other domains. This
need for more domain-specific methodology in biomedical network science is also demonstrated
by Kovács et al., who find that social network principles do not apply for link prediction in PPI
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networks.41 This study complements these findings: with experiments across three different kinds of
molecular networks (protein-protein interaction, signaling and genetic interaction), and four species
(H. sapiens, S. cerevisiae, A. thaliana, M. musculus) we show that a method designed specifically for
biological data can better predict disease-protein associations, drug-target interactions and molecular
function than can general methods of greater complexity. The power of Mutual Interactors to pre-
dict molecular phenotypes lies not in it’s algorithmic complexity—it outperforms far more involved
methods—but rather in the simple, yet fundamental, principle that underpins it. Motivated by our
findings that molecules with similar phenotypes tend to share mutual interactors, we formalize the
Mutual Interactor principle mathematically with machine learning. Mutual Interactors is fast, easy
to implement, and robust to incomplete network data—its foundational formulation makes it ripe
for extension to new domains and problems.

Supplementary Material and Code. Supplementary materials are available online at: https:
//cs.stanford.edu/people/sabrieyuboglu/psb-mi.pdf. Code is available online
at: https://github.com/seyuboglu/milieu.
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Protein phosphorylation is a key post-translational modification that plays a central role
in many cellular processes. With recent advances in biotechnology, thousands of phospho-
rylated sites can be identified and quantified in a given sample, enabling proteome-wide
screening of cellular signaling. However, for most (> 90%) of the phosphorylation sites
that are identified in these experiments, the kinase(s) that target these sites are unknown.
To broadly utilize available structural, functional, evolutionary, and contextual information
in predicting kinase-substrate associations (KSAs), we develop a network-based machine
learning framework. Our framework integrates a multitude of data sources to characterize
the landscape of functional relationships and associations among phosphosites and kinases.
To construct a phosphosite-phosphosite association network, we use sequence similarity,
shared biological pathways, co-evolution, co-occurrence, and co-phosphorylation of phos-
phosites across different biological states. To construct a kinase-kinase association network,
we integrate protein-protein interactions, shared biological pathways, and membership in
common kinase families. We use node embeddings computed from these heterogeneous net-
works to train machine learning models for predicting kinase-substrate associations. Our
systematic computational experiments using the PhosphositePLUS database shows that
the resulting algorithm, NetKSA, outperforms two state-of-the-art algorithms, including
KinomeXplorer and LinkPhinder, in overall KSA prediction. By stratifying the ranking of
kinases, NetKSA also enables annotation of phosphosites that are targeted by relatively
less-studied kinases.
Availability: The code and data are available at compbio.case.edu/NetKSA/.

Keywords: Phosphoproteomics, Kinase-substrate association, Network embedding

1. Introduction

Protein phosphorylation is one of the most important post-translational modifications that
play an important role in cellular signaling. Phosphorylation involves phospho-proteins whose
activity can be altered by the phosphorylation of their specific sites (a.k.a substrate), kinases
that phosphorylate the phospho-proteins at specific sites, and phosphatases that dephospho-

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Fig. 1. Workflow of NetKSA. We first construct two networks to represent the functional rela-
tionships and associations among phosphosites and kinases. After construction of networks, we use
node embedding algorithms on each network to compute a low-dimensional representation for each
node. We then use the kinase-substrate associations (KSAs) obtained from PhosphoSitePLUS to
train machine learning models for predicting KSAs.

rylate these proteins. Dysregulation of the kinase-substrate associations are regularly observed
in complex diseases, including cancer. Therefore, kinases have emerged as an important class
of drug targets for many diseases.1

Recent advances in mass spectrometry (MS) based technologies drastically enhanced the
accuracy and coverage of phosphosite identification and quantification. However, most iden-
tified phosphosites do not have kinase annotations, and large scale and reliable prediction of
which kinase can phosphorylate which phosphosites remains challenging. In the last decade,
several computational methods are developed to predict kinase-substrate associations (KSAs).
The earlier KSA prediction methods focus mainly on sequence motifs recognized by the ac-
tive sites of kinases..2–4 Later methods integrate other contextual information such as protein
structure and physical interactions to improve the accuracy of prediction methods.5–8 Re-
cently, we developed CophosK,9 the first kinase-substrate prediction algorithm that utilizes
large-scale mass spectrometry based phospho-proteomic data to incorporate contextual infor-
mation. While these tools improve the kinase-substrate associations prediction, the knowledge
about the substrates of kinases is still unequally distributed, where 87% of phosphosites are
assigned to 20% of well-studied kinases.10

In parallel, machine learning algorithms that utilize network models gain significant trac-
tion in computational biology.11,12 Inspired by these developments, we here develop a com-
prehensive framework for integrating broad functional information on kinases and phospho-
proteins to build machine learning models for predicting kinase-substrate associations. Our
framework uses heterogeneous network models to represent the functional relationships be-
tween phosphorylation sites, as well as kinases. Namely, we integrate structural, evolutionary,
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functional, and contextual information to characterize the landscape of functional relationships
and associations among phosphosites and kinases. Since MS-based phosphoproteomic data can
present a relatively unbiased view of signaling states, we also incorporate co-occurrence and
co-phosphorylation across multiple MS-based phosphoproteomic studies into network con-
struction. After constructing phosphosite association and kinase association networks, we use
node embedding algorithms to derive low-dimensional vector representations for phosphosites
and kinases, which are in turn used to train machine learning models.

We systematically investigate the predictive performance of reliability of the proposed
framework, NetKSA, using established kinase-substrate associations from PhosphositePLUS.
Using a cross-validation framework in two problem settings (link prediction and prioritiza-
tion), we investigate the effect of the network embedding algorithms, the contribution of
different types of networks, the value added by network topology, and compare the perfor-
mance of NetKSA against state-of-the-art algorithms. In order to mitigate the bias toward
well-studied kinases in the KSA prediction,13 we propose a kinase stratification strategy based
on the number of known substrates. Our results show that NetKSA, outperforms state-of-
the-art methods in overall prediction performance. Finally, we observe that the performance
of NetKSA is robust to the choice of network embedding algorithms, while each type of
network contributes valuable information that is complementary to the information provided
by other networks.

2. Materials and Methods

The workflow of the proposed framework for kinase-substrate association prediction is shown
in Figure 1. As seen in the figure, we first construct two networks, one to model the functional
relationship between phosphorylation sites and the other to model the functional relation-
ship between kinases. Subsequently, for each phosphosite and for each kinase, we compute
low-dimensional embeddings using a node embedding algorithm on the respective network.
Finally, we use these embedding as feature vectors and kinase-substrate associations obtained
from PhosphoSitePLUS as training examples to train models for predicting kinase-substrate
associations.

2.1. PhosphoSite Association Network

We define a PhosphoSite Association Network as a network Gs(Vs, Es)that represents potential
functional relationships between pairs of phosphosites. In this network, Vs denotes the set of
nodes in the network, each of which represents a phosphorylation site. The edge set Es denotes
the set of pairwise functional relationships between phosphosites, where an edge sisj ∈ E

between phosphosites si, sj ∈ V may represent one of the following relationships:

• Functional, Evolutionary, and Structural Association. PTMCode is a database
of known and predicted functional associations between phosphorylation and other
post-translational modification sites.14 The associations included in PTMCode are
curated from the literature, inferred from residue co-evolution, or are based on the
structural distances between phosphosites. We utilize PTMcode as a direct source of
functional, evolutionary, and structural associations between phosphorylation sites.
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• Sequence Similarity. We download the sequences within ±7 residues around each
site in the protein sequence from PhosphositePLUS, and perform sequence alignment
using BLOSUM62 scoring method. There is an edge between two sites si and sj if their
distance is less than 3 standard deviation below average across all pairs of sites.

• Shared Pathways. We use PTMsigDB as a reference database of site-specific phos-
phorylation signatures of kinases, perturbations, and signaling pathways.15 While
PTMSigDB provides data on all post-translational modifications, we here use the subset
that corresponds to phosphorylation. There are 2398 phosphosites that are associated
with 388 different perturbations and signaling pathways. We represent these associ-
ations as a binary network of signaling-pathway associations among phosphosites, in
which an edge between two phosphosites indicates that the phosphorylation of the two
sites is involved in the same pathway.

• Co-Occurrence. Li et al.16 show that phosphorylation sites that are modified together
tend to participate in similar biological process. Based on this observation, they con-
struct a binary occurrence profile for each phosphosite, where a 1 indicates that the
site is identified in a given study, They then assess the co-occurrence of pairs of sites in
terms of the mutual information between the respective occurrence profiles. Here, fol-
lowing Li et al.,16 we use high-throughput MS analyses across 88 different studies from
phosphoSitePLUS17 to assess the co-occurrence of phosphorylation site. These studies
include data from 16 human tissue as well as 28 cultural cell lines and 44 disease cells.
We include an edge between two sites si and sj if the p-value of their co-occurrence is
less than 0.005.

• Co-Phosphorylation. Co-phosphorylation (Co-P) refers to correlated phosphoryla-
tion of two phosphosites across samples withing a given study.18 While co-occurrence
captures the relationship between pairs of sites that tend to appear in similar contexts
at a broader scale, Co-P captures finer-scale correlations between the dynamic ranges
of the phosphorylation levels of site pairs. To incorporate Co-P in the site association
network, we use data from 9 mass spectrometry-based phosphoproteomic studied that
represent a broad range of biological states and provide sufficient number of samples
to enable reliable assessment of Co-P.9 These datasets include data from three breast
cancer studies,19–21 two ovarian cancer studies,20,22 one colorectal cancer,23 one lung
cancer,24 one Alzheimer’s disease25 and one retinal pigmented eputhelium data.26

Using each pair of sites that are identified in each dataset, we compute as cD(i, j)

the co-P between site i and site j as measured by Biweight-midcorrelation of their
phosphorylation profiles in dataset D. We then compute R2 values for each pair of sites
in each dataset by adjusting for the number of samples nD in dataset D:

R2
D(i, j) = 1− nD − 1

nD − 2
(1− cD(i, j)2) (1)

Finally, we integrate these individual co-P scores as follows:

cintegrated(i, j) = 1−
∏

D∈Dij

(1−R2
D(i, j)) (2)

where Dij denotes the set of datasets in which sites i and j are both identified. In
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Fig. 2. Kinase-kinase and phosphosite-phosphosite association networks used in this
study. Plots show the edge overlap between different types of networks. Kinase networks are shown
on the left, phosphosite networks are shown on the right. The number of edges in each network
are given in the diagonals. In each subplot, the pie charts in the top right side indicate the overlap
coefficients (size of intersection divided by the smaller of the size of two sets) between any two
networks.

the integrated Co-P network, we include an edge between two sites si and sj if the
absolute value of their co-phosphorylation is larger than 2 standard deviation of the
average across all pairs of sites.

Note that the integrated phosphosite association network is a heterogeneous multiplex
network, where the nodes are from a common space (phosphorylation sites) and edges in
each network have different semantics. In recent years, many algorithms have been developed
for computing embeddings for multiplex networks, which also account for the heterogeneity
of the edges.27–29 However, these algorithms are usually based on the inherent assumption
that the overlap between the nodes of the networks is considerably large,30 which is not the
case in our application. For this reason, we here focus on assessing the value of the overall
network model, as opposed to the algorithm used for integrating the networks or computing
multiplex embeddings. With this motivation, we represent each network as a binary network
by applying conservative edge inclusion criteria separately for each network, as described
above. Subsequently, we integrate these networks into a single network by including an edge
between two sites if there is an edge between them in at least one of the networks.

2.2. Kinase Association Network

We define a Kinase Association Network as a network Gk(Vk, Ek) that represents functional
relationship between pairs of kinases. In this network, Vk denotes the set of nodes each of
which represents a kinase. The edge set Ek denotes the set of pairwise functional relationships
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between kinases. There is an edge k`kr ∈ Ek between kinases k`, kr ∈ Vk if the two kinases have
one of the following relationships:

• Protein-Protein Interaction (PPI). If two kinases k` and kr physically interact,
then there is an edge between k` and kr. In our experiments, we use the PPIs that are
annotated as ”physical” in the BIOGRID PPI database31 to infer the PPI edges in the
network.

• Biological Pathways. If two kinases k` and kr are reported to have a role in the same
pathway, then there is an edge between k` and kr. In our experiments, we use mSigDB,
which provides a collection of canonical pathways and experimental signatures.32

• Kinase Families. If two kinases k` and kr belong to the same family according to the
Human Kinome database,33 then there is an edge between them.

2.3. Computing Network Profiles for Sites and Kinases

To obtain a network profile for each phosphosite and each kinase, we use node embedding.
Given a graph G, a node embedding is a mapping f : vi → yi ∈ Rd such that d � |V | and
the function f preserves some proximity measure defined on graph G.34 In other words, a
node embedding maps each node to a low-dimensional feature vector, aiming to preserve the
network proximity between nodes. Many node embedding algorithms have been developed in
recent years, and the performance of these algorithms depends on the application, the nature
of the learning problem, and the topology of the network. For this reason, in our experiments,
we use four different node embedding algorithms34–37 to comprehensively evaluate the value
of the information provided by the networks we utilize, independent of the node embedding
algorithm that is used. For each site si in Gs, we compute node embedding xi ∈ Rd and for each
kinase k` in Gk we compute node embedding y` ∈ Rd. We do this separately for each network
embedding algorithm, using the default parameters in each algorithm, and using different
values of d.

2.4. Predicting Kinase-Substrate Associations

We use the sets of known KSAs obtained from PhosphoSitePLUS (PSP)17 as a positive refer-
ence for training and testing our models. We generate negative training sets of equal size by
selecting, uniformly at random, kinase-substrate pairs that are not reported to be associated
in PSP. To train the models, we concatenate the network profiles of site-kinase pairs to obtain
a 2d-dimensional feature vector for the pair: f(si, k`) = xi ‖ y` = (x

(1)
i , . . . , x

(d)
i , y

(1)
` , . . . , y

(d)
` ). We

consider two variants of KSA prediction:
(I) Link Prediction. We formulate the KSA prediction problem as a binary classification
problem for a given kinase-site pair, i.e., given a list of established kinase-site associations,
site-site association and kinase-kinase association networks Gs and Gk, and a kinase-site pair
(si, kl), our objective is to assess the likelihood that si is a target site for kl. For this purpose,
we train a Random Forest model by using the concatenated embeddings as features. Using
5-fold cross validation, we assess the overall performance of the method using area of the ROC
curve (AUC).
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(II) Prioritization of Kinases for Phosphosites. In practice, the kinase-substrate asso-
ciation prediction often manifests itself as a prioritization problem. The scientist discovers a
new phosphorylation site that is associated with a certain process and phenotype and would
like to know which kinase is responsible for the phosphorylation of that site. This problem is
formulated as follows: Given a list of established kinase-site associations, site-site association
and kinase-kinase association networks Gs and Gk, and a site si, rank kinases based on their
likelihood of being associated with si. For this task, we use a Random Forest model using
concatenated embeddings as well, but we use leave-one-out cross-validation to assess the per-
formance of the resulting models. In this case, we use hit@k accuracy as the performance
criterion. Namely, using each site as a test site, we report the fraction of times in which the
actual kinase responsible for phosphorylating the site is ranked in the top k for that site,
where k ∈ {1, 5, 10, 20}.

2.5. Elucidating and Mitigating Bias in KSA Prediction

In order to study the bias in the KSA predictions toward the more well-studied kinases,13

we stratify the kinases based on the number of their known substrates which are in the
phosphosite association network. Letting δ` denote the number of known substrates of kinase
k`, we partition the kinases into three categories: (i) The poor kinases where δ` < 5, (ii)
the average kinases, where 5 ≤ δ` < 20, and (iii) The rich kinases where δ` ≥ 20. We then
train separate models for each kinase category, by using kinases that belong to a specific
category while training the respective model. Subsequently, when prioritizing the kinases for
each phosphosite, we rank the kinases within their own category.

The premise of this approach is that the kinases in each category should compete with
the kinases in the same category as themselves, and scientists should be able to separately
investigate the rankings in each category. This will potentially enable discovery and exper-
imental validation of relatively less-studied kinases. We evaluate the performance of the all
the methods by considering this stratified analysis, as well as by ranking all kinases. This ap-
proach provides insights into the bias associated with each approach, i.e., how much a method
improves its chances of making an accurate prediction by preferring well-studied kinases.

3. Results and Discussion

We use PhosphoSitePLUS as a reference dataset for kinase-substrate associations (KSAs).17

Considering the phosphosites and kinases in our networks, we use 2083 KSAs from Phos-
phositePLUS in our computational experiments. To evaluate the performance of the kinase-
substrate association prediction method, we limit the site network to the known substrates
obtained from PhosphoSitePLUS. We remove the individual nodes that are not connected
to any other nodes from both of the networks. The number of sites and edges in the final
kinase-kinase and phosphosite-phosphosite association networks and their types are shown
in Figure 2(a). The overlaps between different types of association networks are shown in
Figure 2(b). The low overlap between different phosphosite-phosphosite association networks
suggests that all different types of networks provide information that are potentially comple-
mentary with each other.
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3.1. Kinase-Substrate Association as Link Prediction

We first use different embedding methods, and 5-fold cross validation to evaluate the perfor-
mance of NetKSA in predicting KSAs formulated as link prediction. In our computational
experiments, we consider different numbers of embedding dimensions and its effect on the per-
formance. We find out that d = 16 is optimal for all algorithms considered, thus we perform
all remaining experiments using 16 dimensions for the embedding vectors.

The link prediction performance of NetKSA using different embedding algorithms is
presented in Figure 3(a). We evaluate the performance for all the KSAs, as well as KSAs that
its kinase belongs to different category (i.e. poor, average, rich) separately. In this analysis,
there are 103 kinases in the poor category (δ < 5), 64 kinases in the average category (5 ≤
δ < 20), and 21 kinases in the rich category (δ ≥ 20) (the rest of kinases in the kinase-kinase
association network do not have any target sites that are present in the site-site association
network). These kinases corresponds to 218 KSAs in poor category, 613 KSAs in the average
category and 1252 KSAs in the rich category. The negative set for the training of the model is
randomly generated while keeping the proportion of KSA categories. The bar plots show the
average across 10 runs. As seen in the figure, the prediction performance highly depends on the
the kinase category and the AUC observed by considering all kinases together closely follows
the prediction performance for rich kinases. This observation demonstrates the importance of
performing stratified analyses to accurately characterize the performance of KSA prediction as
a function of what is already known about the kinase and characterize the bias in algorithms.

As seen in Figure 3(a), the prediction performance of NetKSA is robust to the choice of
network embedding algorithms. We select DNGR for further analyses due to its slightly better
overall performance that is also most balanced across different kinase categories.

To evaluate the value added by the network to the prediction, we randomly permute site
association and kinase association networks while preserving the degree distribution and apply
NetKSA by using the permuted networks in place of the actual networks. The results of this
analysis are presented in Figure 3(b). As seen in the figure, the prediction performance using
original networks is one or more standard deviation(d) above the prediction performance of the
method when using permuted networks. This result shows the networks contribute valuable
information for KSA prediction. Importantly, randomization of the prediction performance
declines more when the phosphosite network is permuted, suggesting that the functional in-
formation on the phosphosites provides significant and specific information on the kinase(s)
that target(s) the phosphosites.

It is also interesting that the poor kinase category benefits the most in comparison with
other categories when the original networks are used. This shows that the information provided
by functional associations among sites and kinases reduce the gap between under-studied and
well-studied kinases. Note that the models that are based on permuted networks perform better
than what would be expected at random, suggesting that these models can learn bias in the
benchmarking data to appear as if they are learning what they are designed to learn. However,
the performance of the model that is trained on both permuted networks is equal to what
would be expected at random for poor kinases, demonstrating that the validation strategy we
employ here (stratification of kinases and comparison against permuted networks) provides
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Fig. 3. The contribution of embedding algorithms and functional networks on KSA
prediction performance. (a) The AUC of the predictions of NetKSA using four different node
embedding algorithms. For each embedding algorithm, the AUC is shown for all KSAs (blue bar),
the KSAs where the kinase belongs to the poor category (red), the average category (gold), and rich
category (purple). (b) The prediction performance of NetKSA using DNGR for node embedding
using real vs. randomized networks. AUC on the real kinase-kinase and phosphosite-phosphosite
association networks (green bar), when only the kinase association network is randomly permuted
by preserving node degrees (dark grey), when only the site association network is permuted by
preserving node degrees (light grey), when both networks are permuted (white). Each bar shows the
average AUC across 10 runs and the error bar shows standard deviation.

significant insights into what these models actually learn.

3.2. Contribution of Different Networks on Prediction Performance

In order to evaluate the contribution of different types of networks in capturing the landscape
of functional association among phosphosites and kinases, we evaluate the performance of KSA
predictions using different networks. For this analysis, we perform KSA prediction using 5-fold
cross validation, by adding one network at a time to the integrated network of kinase-kinase
and phosphosite-phosphosite associations, while keeping the other network fully integrated.
The results of this analysis are shown in Figure 4. As seen in the figure, as we add different
types of functional information for the sites and kinases, the prediction performance improves.
We also evaluate the KSA coverage as the proportion of existing KSAs for which prediction can
be made. The new networks add information about the the individual sites and kinases and
connect them to other nodes, and consequently increase the KSA coverage. Finally, we observe
that the information contributed by different phosphosite networks is more complementary to
each other as compared to the kinase networks, which is not surprising as the overlap between
these networks is also considerably low.

3.3. Prioritization of Kinases for Phosphorylation Sites

To test the effectiveness of our method, we use leave-one-out cross validation. Namely, for
each phosphosite, we hide the association between phosphosite and its known kinase (called
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Fig. 4. Contribution of different types of networks on the prediction of KSAs. The cumu-
lative effect of each (a) phosphosite-phosphosite association network and (b) kinase-kinase association
network on the AUC of predictions (left y axis; blue), and the coverage of kinase-substrate associa-
tions (right y axis; red) - the fraction of KSAs for which both the kinase and the site are present in
the integrated network so that a prediction can be made.

the target kinase), and we use other reported KSAs to rank the likely kinases for that phos-
phosite. For this analysis, we use dngr as the embedding method and random forest with 100
classification trees as the score prediction model. For each phosphosite, we rank all kinases
based on the calculated score and determine the rank of the target kinase across all kinases.
If the target kinase is within the top k ∈ {1, 5, 10, 20}, it is considered a the true positive.
We compare our method with two other state-of-the-art methods, KinomeXplorer and
LinkPhinder, that also use the network for KSA prediction. KinomeXplorer5 utilizes the se-
quences match scoring and network proximity of kinases and substrates to predict KSAs.
It is an improved version of NetworKIN4 and NetPhorest.38 LinkPhinder39 is also another
predictive model that utilizes the motif characteristics to create a knowledge graph and uses
statistical relational learning and node embedding to predict KSAs. The result of this analysis
is presented in Figure 5. As seen in the figure, the proposed method with kinase stratification
outperform all methods in overall prediction performance, and also average and rich categories.
For the poor kinases, the LinkPhinder presents a better result for top 1 and top 5 ranking.
We believe integration of different data sources in NetKSA help extracting the relationship
among sites and kinases which leads to a better overall performance.

3.3.1. Kinase Stratification

In the kinase prioritization, we rank the kinases in each category (i.e poor, average, rich)
separately, and determine if the target kinase is ranked in top k of its category. The premise
of this approach is that the kinase that are understudied does not to compete with the well-
studies kinases. Using kinase stratification, the hypothesis is that it is more likely that the
target kinase wins the competition in ranking compare to the kinases in its own category.
We apply this strategy on NetKSAand also KinomeXplorer and LinkPhinder. The result
of this analysis is presented in Figure 5. For each bar in the figure, the dark section is the
performance without kinase stratification, and the light-color section is the improvement of
the performance using the kinase stratification.
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Fig. 5. Performance of NetKSA, KinomeXplorer and LinkPhinder in prioritizing ki-
nases for a given phosphosite. For each phosphosite, we perform leave-one-out cross validation
by hiding the association between the phosphosite and one of its associated kinases (target kinase) to
rank the likely kinases for the phosphosite using KinomeXplorer(blue), LinkPhinder(red), and pro-
posed method using constructed networks (gold). We report the fraction of phosphosites for which
the target kinase is ranked in the top 1, top 5, top 10 and top 20 predicted kinases by each method.
For each bar, the dark section presents the result when all the kinases are ranked together, and the
light section presents the improvement of performance when the target kinase is ranked within its
category (with stratification). Each panel presents the performance on each category of kinases: poor
(δ < 5), average(5 ≤ δ < 20), and rich (δ ≥ 20) kinases (as indicated in each panel).

4. Conclusion

In this paper, we integrated a multitude of data sources to characterize the landscape of
functional relationships and associations among phosphosites and kinases. As a result, we
construct two heterogeneous networks presenting functional association among phosphosites
and kinases. These networks incorporating static and dynamic data and present an extraordi-
nary value in prediction of kinase-substrate association, and have great potential for analysis
of phosphoproteomics data and identification of drug targets. Generalizing the method to in-
clude all the identified phosphosites is a challenging task which may point to an interesting
research avenue to be addressed by future studies. Moreover, the kinase stratification approach
to mitigate the bias toward well-studied kinases provides a great opportunity to researchers
to investigate and study kinases in different categories separately.
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Graph-based algorithms have become essential in the analysis of single-cell data for nu-
merous tasks, such as automated cell-phenotyping and identifying cellular correlates of ex-
perimental perturbations or disease states. In large multi-patient, multi-sample single-cell
datasets, the analysis of cell-cell similarity graphs representations of these data becomes
computationally prohibitive. Here, we introduce cytocoarsening, a novel graph-coarsening
algorithm that significantly reduces the size of single-cell graph representations, which can
then be used as input to downstream bioinformatics algorithms for improved computational
efficiency. Uniquely, cytocoarsening considers both phenotypical similarity of cells and simi-
larity of cells’ associated clinical or experimental attributes in order to more readily identify
condition-specific cell populations. The resulting coarse graph representations were evalu-
ated based on both their structural correctness and the capacity of downstream algorithms
to uncover the same biological conclusions as if the full graph had been used. Cytocoarsening
is provided as open source code at https://github.com/ChenCookie/cytocoarsening.

Keywords: Graph Coarsening; Single-Cell Bioinformatics; Cytometry

1. Introduction

Advancements in a range of single-cell technologies, such as flow and mass cytometry and
single-cell RNA sequencing, have become essential in uncovering and understanding cellular
heterogeneity in a range of translational applications.1–3 These immune profiling techniques
have proven to be particularly essential in unraveling immunological heterogeneity through
the simultaneous measurement of 20-45 protein markers in each cell.4 This simultaneous mea-
surement enables both phenotypic (e.g. cellular identity) and functional characterization of
cells.5 Despite effective identification and characterization of immune cell-types, a current
challenge is to accurately link these immune cells to external attributes of interest, such as
clinical labels or experimental perturbations.6–9 For example, it is common in translational
applications to profile blood samples from patients across clinical phenotypes or disease states
in order to identify the driving, stratifying cell-types.6,10 Blood samples are also often per-
turbed through stimulation,11 and cellular correlates are identified by observing functional
responses to the stimulation. Moreover, to efficiently link cellular heterogeneity to clinical or
experimental attributes, automated bioinformatics methods have become critical in analysis.

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 2023

85



Many of the bioinformatics algorithms for such tasks operate on a graph representation of 
the single-cell data.7–9 In these graphs, nodes are cells, and edges between a pair of cells imply 
that they are sufficiently similar ac ross measured fe atures (f or ex ample, th e aforementioned 
protein markers). The task at hand is to use the graph structure to identify cells that are 
prototypical of particular external attributes, such as clinical or experimental labels. MELD7 

accomplishes this by modeling the external attributes as a signal on the graph and computing 
a score for each cell reflecting its probability of association with each condition. To exemplify 
another approach, Milo8 and CNA9 seek to identify critical cellular neighborhoods, or groups 
of phenotypically-similar cells enriched across attributes.

Practically, it is challenging to apply these bioinformatics algorithms to the extremely large 
graph representations of multi-patient, multi-sample cohorts with millions of cells. Although 
the large graph size would make computations on it prohibitive, the graph inherently involves 
redundant information, since we have multiple cellular instances from a single population 
encoding the same biological information. To reduce the graph size, then, we merge redundant 
cells into coarse nodes or super nodes, leveraging existing graph-coarsening strategies12,13 and 
adapting them to consider biologically relevant external attributes. The rich literature of 
existing graph-coarsening methods13–18 tend to optimize for merges of nodes that maintain 
critical structural and spectral properties for the original graph, but do not consider these 
node attributes.

Baselines. As an example of a graph-coarsening approach, Loukas et al. proposed a fam-
ily of local variation algorithms to simplify and reduce the size of the original graph.14 These 
algorithms begin with a family of coarsening candidate sets : subsets of nodes that are known 
to be highly related based on the graph structure. The two main approaches discussed are 
edge-based variation (LV-E) or node-based variation (LV-N). Using LV-E, the candidate sets 
are exactly the edge pairs of the graph. In contrast, the candidate sets in LV-N are formed by 
grouping each node with its immediate neighborhood. In Ref.14, Loukas et al. compared these 
variation-based methods to other graph coarsening methods, including heavy-edge matching 
(HEM),15 algebraic distance (AD),16 and affinity (AFF).17 The local variation methods outper-
formed these methods in spectral approximation, and all of the methods (with the exception 
of AFF, which is slower) scale quasi-linearly in the number of edges in the graph. Briefly, 
HEM seeks to coarsen the graph such that the principal eigenvalues and eigenspaces of the 
coarsened graph Laplacian are close to those of the original graph Laplacian. Instead of con-
sidering spectral properties, the AD and AFF methods identify nodes to merge by considering 
the connectedness of both individual nodes and node neighborhoods.

With existing coarsening approaches focusing primarily on preserving overall graph struc-
ture or underlying spectral properties, we seek to adapt the methods to additionally take 
into account external attributes of the cells, such as clinical state or experimental perturba-
tion status. Our method will therefore merge individual nodes (representing cells) into coarse 
nodes according to both cellular phenotype and associated attributes (see overview figure, 
Fig 1). This gives us a graph of reduced size to use as input for downstream bioinformatics 
algorithms, and it facilitates simpler identification of cells that are related both in phenotype 
and in clinical or experimental attribute.
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2. Methods

Notation and problem formulation. We consider a multi-sample single-cell dataset with
p profiled samples, denoted as {Xi}pi=1. Here, each Xi ∈ Rni×d represents the d protein or
gene expression measurements for each of the ni cells measured in sample i. We also assume
that each cell has an attribute label (such as experimental label or disease state), encoded in
the vector x. A graph representation of all of these cells would render further computation
expensive and time-consuming. Thus, we seek a graph representation of the N =

∑p
i=1 ni

cells that has N ′ << N nodes while still representing the biologically relevant information
that would be present in the full graph. To accomplish this, we introduce the cytocoarsening
algorithm. In this section, we outline the general steps of the algorithm; pseudocode is provided
in Algorithm 1.

Fig. 1. Overview. Given a multi-sample single-cell dataset with clinical attributes (a), the cyto-
coarsening algorithm creates a coarse graph representation of all cells (b). The coarse graph repre-
sentation takes into account phenotypic similarity of cells (edges) and the clinical attributes (colors).
(c) Quantitative evaluation metrics were developed to assess the quality of the coarse graph repre-
sentation and its effectiveness as input to downstream graph-based bioinformatics algorithms.

Graph representation of single-cell data. The algorithm begins by constructing a joint
graph representation G of all profiled cells across samples. Given a data matrix of cells ×
measured features defined as X = [X1|X2| · · · |Xp] (where | denotes vertical concatenation),
each cell is connected to its K nearest neighbors according to Euclidean distance in the
measured feature space via scikit-learn’s kneighbors graph function19 (KNN() in Algorithm
1). To actually carry out computations with this graph, we will use the adjacency matrix A,
which has all the edge weights of the graph encoded in its off-diagonal entries and zeros on
the diagonal. We will also use the graph Laplacian L, which is exactly the negative of this
matrix but with a diagonal instead defined as Li,i =

∑N
j=1Ai,j.
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Algorithm 1 Cytocoarsening

1: Inputs: feature matrix X, attribute vector x, number of passes P , number of KNN neigh-
bors K, cutoff parameter α

2: Output: coarsened graph G′

3: for 1 : P do ▷ P coarsening passes
4: G=KNN(X,K) ▷ Creates K-nearest neighbor graph from feature matrix
5: C =Get.K.Neighborhoods(G) ▷ Identifies coarsening candidates
6: IC = Get.Index.Sets(C) ▷ Gets indices of nodes in each candidate set
7: T = |C|/4 ▷ Defines max number of coarse nodes
8: for Cj ∈ C do
9: cdj = maxj,k∈IC

i
{||Xj,: −Xk,:||2} ▷ Calculates distance cost

10: cqj = xCi

′ TLCi
xCi

′ ▷ Calculates attribute cost
11: end for
12: {T q, T d} = Set.Thresholds(cq, cd, α) ▷ Finds αth percentile of each cost vector
13: CL =Nodes.To.Coarsen(C,cq,cd) ▷ Finds lowest-cost coarsening candidates
14: {S, IS} = Form.Super.Nodes(CL, V (G)) ▷ Creates coarse graph node list
15: for i = 1, . . . , |CL| do
16: S̃i = Find.Representative(CL

i ) ▷ Locates optimal super node representative
17: end for
18: G′ = Make.Graph(S) ▷ Creates coarse graph with node set S

19: {X,x} = Update.Xs(X,x, IS) ▷ Updates for next pass
20: end for

Establishing and ranking coarsening candidates. The KNN graph is used to define the
coarsening candidate node sets as each node and its K nearest neighbors; the candidate sets
are stored in the list C with corresponding index set list IC , i.e. ICj = {i|vi ∈ Cj} (KNN
enumeration → get.K.Neighborhoods(), indices of nodes within coarsening candidate →
get.Index.Sets() in Algorithm 1). To decide which candidate sets to coarsen, we define two
different cost functions: distance in feature space (cd) and graph-level attribute variation (cq).

Distance cost (cd). The distance cost reflects the overall phenotypical similarity between
cells in a coarsening candidate to ensure that highly similar nodes are likely to be aggregated.
We define cdi , the distance cost of the ith coarsening candidate, as the maximum euclidean
distance of all cells within a coarsening candidate:

cdi = max
j,k∈IC

i

{||Xj,: −Xk,:||2} . (1)

Attribute cost (cq). The attribute cost measures the overall variation of the attributes of
cells within a coarsening candidate, so that we can prioritize merges of cells with similar
attributes. Given a coarsening candidate, Ci, we can extract its sub-adjacency matrix, ACi

via ACi
= A(ICi , ICi ) and compute its corresponding Laplacian matrix, LCi

. We further let
xCi

= x(ICi ) be the corresponding subvector of attributes for the coarsening candidate set.
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Then the attribute cost cqi for coarsening candidate Ci is computed as

cqi = xT
Ci
LCi

xCi
(2)

Joint cost (r). We use a joint ranking criteria to rank coarsening candidates according to
their phenotypic between-cell similarity (cd) and attribute consistency (cq) by simply taking
the log of their geometric mean:

ri = 1/2(log2 c
q
i + log2 c

d
i ). (3)

The 30 coarsening candidates with the lowest joint cost are then considered for further eval-
uation.

Evaluating coarsening candidates. A coarsening candidate C will be added to the coars-
ening list CL (i.e. selected to be aggregated) if all of the following are true: 1) less than T

coarsening candidates have been chosen, 2) both costs cq and cd are below some percentile
thresholds T q and T d (see Set.Thresholds() in Algorithm 1) to make sure both two costs
are sufficiently low, 3) none of the nodes in C are already represented in the coarsening list.
Our method will stop trying to find more coarsening candidates to merge if all coarsening
candidates remaining have a cost larger than cmax, a global constant. If some nodes in the
candidate are already present in CL, then those nodes are removed from the set and the costs
are recomputed for this smaller candidate set. In the cases where only one node remains or
there are no edges between the remaining candidate nodes, we assign both costs the value
of cmax in order to remove that set from consideration (see function Nodes.To.Coarsen() in
Algorithm 1). Once the coarse node sets have been decided, we form the node set for the
coarse graph S (with corresponding index set IS) by taking the union of the coarse nodes
with all the individual nodes from the original graph (see function Form.Super.Nodes() in
Algorithm 1).

Defining super node representatives. Once we know which sets of nodes to merge, we
find the original node in each set that is most representative of the group by considering two
factors: phenotypical similarity and attribute similarity. Consider the ith super node in the
following discussion. For phenotypical similarity, we find the mean point of the nodes in feature
space µi =

1
|Si|
∑

j∈IS
i
Xj,:, and then we calculate the euclidean distance from µi to each node in

the set. Weights are assigned so that nodes closer to µi are more highly weighted. For attribute
similarity, we sort the attribute labels by the number of their occurrences in Si and weight
the nodes so that nodes with frequently-occurring attribute values are more highly weighted.
To combine these two weights, we normalize them individually and add them together. The
representative node is then chosen as the one with the maximum aggregate weight. We will
denote the representative node for the ith super node as S̃i, with original graph index I S̃i (see
function Find.Representative() in Algorithm 1).

Updating edge list. An edge is defined between a pair of nodes Si and Sj in the coarse
graph if, in the original graph, there was at least one edge between any of the nodes in Si and
Sj. (Make.Graph() function in Algorithm 1).
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The above outlines one pass of the algorithm. To coarsen further, we update the feature 
matrix Xnew = X(I S̃ , I S̃) and the attribute vector xnew = x(I S̃) (see function Update.Xs() in 
Algorithm 1).

3. Results

To explore the effects of graph coarsening on biological information, we applied our cytocoars-
ening algorithm to three publicly available mass cytometry (e.g. CyTOF) datasets. First, 
the preeclampsia dataset20 profiles b lood s amples collected 9 .7 millions c ells f rom 45 women 
throughout their pregnancies (33 features measured per cell). The clinical attribute of interest 
for this dataset was cell gestational age, which ranged from 8 to 28 weeks. Next, the covid 
dataset21 contains 6.5 million cells collected from 49 total patients (23 features measured per 
cell). The patients ranged in severity with 6 healthy patients, 23 patients having mild cases 
of COVID, and 20 experiencing severe responses and were under ICU care. Due to the imbal-
ance in the number of patients for each severity level, we only considered cells from 22 mild 
patients (one sample had less than 1,000 cells and was thus not considered) and 20 patients 
that had severe (ICU) COVID. The attribute of interest was disease severity (mild or severe). 
Finally, the NK-cell dataset22 contains 261 thousand cells collected from 20 total patients (29 
measured features per cell). Cytomegalovirus (CMV) status was the attribute of interest, with 
nine patients being positive for Cytomegalovirus (CMV) and 11 being negative for CMV.

We performed several experiments (Fig. 1c, additional experiments in Supplementary In-
formation a) on cytocoarsening and existing coarsening methods (LV-E, LV-N, HEM, AD, 
and AFF14) to quantify their effectiveness in preserving structural and attribute information 
and in acting as input to downstream graph-based bioinformatics tasks. All experiments were 
repeated 30 times, sampling a new subset of cells from each sample. Cytocoarsening was run 
on all datasets with P = 10 passes, thresholds T d = 26 and T q = 26, and the max number of 
coarse nodes as T = 1 |C|, where |C| denotes the number of elements (coarsening candidates)
of C.

Accuracy and error of attributes in coarse nodes We defined accuracy and error metrics
(Fig. 2a and 2b) to evaluate the consistency of attribute values for cells assigned to a coarse
node. For all of the ”non super node” cells within a coarse node (e.g. those cells that were
not chosen to be the representative), we predicted their attributes to be the same as that of
the super node representative. The error and accuracy metrics between the true and inferred
attribute labels of cells are defined as

Error =
1

N

 N ′∑
i=1

∑
j∈IS

i

|xj − x′i|

 (4)

Accuracy =
1

N

 N ′∑
i=1

∑
j∈IS

i

ρ(xj , x
′
i)

 (5)

ahttps://github.com/ChenCookie/cytocoarsening/blob/main/Supplemental_Material.pdf
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where ρ(x, y) returns 1 if x and y are equal and 0 otherwise.
Across datasets and coarsening ratios, Cytocoarsening exhibited superior performance,

followed most closely by the variation neighborhood method. We note that the continuous
attribute labels of cells in the preeclampsia dataset make the task more challenging than
predicting binary attributes.

Fig. 2. Attribute Consistency of Coarse Nodes. Accuracy (a) and error (b) metrics were
used to evaluate the similarity of attributes within each coarse node. Cytocoarsening (blue) excels
in accuracy and error at maintaining consistent attributes within coarse nodes across datasets. For
details about baselines, refer to “Baselines” in the introduction.

Quantifying attribute and original feature variation across the coarse graph Given
the graph Laplacian L′ = L(I S̃ , I S̃) corresponding to the coarse graph G′ and the coarse at-
tribute vector x′ = x(I S̃), the normalized Laplacian quadratic form 1

N ′x′ TL′x′ (where N ′ is the
number of coarse graph nodes) summarizes the alignment between structure and attributes.
Since the Laplacian quadratic form is small for vectors where neighboring nodes have similar
vector entries, the quadratic form will be small if alignment is good (Fig. 3a). Similarly, we
can quantify the overall variation in the features over G′ (Fig. 3b) as 1

N ′ trace(X′ TL′X′), where

X′ = X(:, I S̃) is the coarsened feature matrix.
A good coarsening strategy would produce low values for the Laplacian quadratic forms for

both attributes and in the features used to construct the original graph, implying those vary
smoothly over the graph. Results across the three datasets in Fig. 3 reveals cytocoarsening
produces the lowest values for both attributes (a) and original features (b) for all coarsening
ratios, suggesting the cytocoarsening faithfully encodes such information.
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Fig. 3. Evaluating Variation of Attributes and Original Features on G′. We used the
Laplacian quadratic form on the coarse graph G′ to quantify the variation of the attributes (a) and
the original features (b) over G′ as a function of the extent of graph coarsening (horizontal axis).
Cytocoarsening (blue) achieves by far the lowest values for both attributes (a) and original features
(b) across coarsening ratios.

Coarse graphs can be used as input to MELD. To see that we would reach the same
biological conclusions by analyzing G and G′, we used both of these graphs as inputs to MELD7

and compared the results. Given binary attribute values {0, 1}, MELD returns a list M , where
Mj is the probability that node vj has an attribute value of 1. We therefore binarized the
returned MELD score for a node as 1 if the for node j, Mj > 0.5 and assigned it a 0 otherwise.
Let mcoarse denote the vector of coarse graph MELD scores. We assigned all nodes within a
super node Sj to have the same MELD score as the super node representative. Notationally,
then, we have mcoarse

i = Mj whenever node vi is in the jth super node. Let morig denote
the vector of MELD scores of the original graph. We then defined two measures to quantify
the similarity and correctness of the MELD results obtained for G and G′: first, AccMELD for
accuracy. The accuracy metric quantifies the correctness of the MELD score in the coarse
graph, defined as

AccMELD =
1

N

(
N∑
i=1

ρ(morig
i ,mcoarse

i )

)
. (6)

Here, ρ(x, y) returns 1 if x and y are equal and 0 otherwise. The results shown in Fig. 4b show
that cytocoarsening has the highest MELD score correctness in the coarse graph when setting
the smoothness parameter to the default of β = 1. We note that the attributes for preeclampsia
dataset were dichotimized into early and late pregnancy. Although the other methods achieved
accuracies above 0.9, cytocoarsening consistently achieved the highest results across datasets
with both discrete and continuous attributes. Next, we computed CorrMELD, which is the
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Pearson correlation b between MELD scores of the coarsened graph and those of the original
graph (Fig. 4a).

A high correlation implies high concordance between the MELD scores using G′ as input
and those obtained using G, i.e. no critical biologically-meaningful information was lost by
reducing the size of the graph. All coarsening methods achieved a reasonable CorrMELD in all
three datasets (Fig. 4a), with cytocoarsening excelling and followed most closely by LV-N.

Fig. 4. Quality of MELD Using G′ as Input. We computed metrics to evaluate the correlation
(a) and the overall accuracy (b) between MELD results obtained on G and G′ for six different
coarsening methods and three datasets. Results suggest that cytocoarsening, followed by LV-N,
produce coarse graph representations that are adequate inputs to MELD.

Sensitivity of MELD parameters in coarse graph representations. MELD has a crit-
ical parameter, β, which controls the smoothness or consistency of MELD scores across the
graph. To study performance as a function of β, we varied β when computing MELD scores
on both the original graph G and the coarse graph G′ (we denote the parameter in each case
as denoted β and β′, respectively). We note that due to MELD’s expensive runtime, all ex-
periments used only 200 cells per sample. The resulting CorrMELD scores (averaged over 30
trials) are visualized in the heatmap in Fig. 5. Cytocoarsening achieved the highest scores
(denoted by stars) across datasets and combinations of β and β′ in 29 of the 48 comparisons
(e.g. heatmap grids). The LV-N and LV-E methods are second and third in performance with
a total of 12 and 11 best scores, respectively, and they perform more optimally for high values
of β and β′.

bhttps://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html
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Fig. 5. Sensitivity of MELD Results to β Parameter. We evaluated the effect of various
combinations for values of MELD’s smoothing parameter, β across datasets coarsening methods.
Each heatmap grid reflects the CorrMELD obtained using G (horizontal axis) and G′ (vertical axis)
for a particular dataset, coarsening algorithm and combination of β parameters. A starred grid entry
implies that, for that particular combination of β, β′, and dataset, the starred algorithm achieved
the highest CorrMELD score; this is frequently achieved by cytocoarsening.

Runtime and scalability. We compared the scalability of cytocoarsening to all other coars-
ening methodsc using 1000 subselected cells from each sample. (Fig. 6). To objectively compare
our multipass cytocoarsening method to existing coarsening methods, which are only one pass,
we also ran cytocoarsening with a single pass. Our results show that AFF has by far the longest
runtime across three datasets. Although cytocoarsening is not the fastest method, the runtime
only differs slightly from the other four methods. The preeclampsia dataset is the largest in
terms of patient samples and measured features and hence took the most time. In contrast,
the NK cell dataset is significantly smaller and took half the time (Fig. 6).

4. Discussion

The cytocoarsening algorithm compresses graphs of single-cells by adapting standard graph
coarsening approaches to accommodate the associated clinical or experimental cellular at-
tributes. While existing graph coarsening approaches are optimized to create a compressed
graph representation with strong structural similarity to the original graph, our approach
uses new cost functions and a joint ranking strategy to incorporate biologically meaningful
cellular information into the coarsening process. We defined several quantitative evaluation
strategies to evaluate cytocoarsening and the other existing coarsening approaches on their
capacity to preserve more than just structural properties of the original graph. Using three

chttps://github.com/loukasa/graph-coarsening
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CyTOF datasets, we showed that, in comparison to other methods, the cytocoarsening method
excels in grouping together cells that are both related in phenotype and in disease state or
experimental condition.

Fig. 6. Run-Time Evaluations. Evaluating run-time of all coarsening approaches across datasets,
using 1000 cells per profiled sample. Cytocoarsening has similar run-times to the other coarsening
strategies, while offering increased performance in encoding attribute information.

Cytocoarsening is a methodological innovation towards adapting primarily structure-
preserving coarsening algorithms to single-cell data with associated clinical or experimental
attributes, with the aim to compress the input graph for downstream graph-based bioinformat-
ics algorithms. However, to further increase the utility of cytocoarsening in analyzing modern
multi-sample flow and mass cytometry datasets, we can modify the initial graph-construction
phase for improved scalability. An area of future work is to build coarse graph representations
for each sample in parallel, and then merge there graphs in a principled manner. Further,
additional work can explore how to optimize the coarsening ratio for a particular graph. In
summary, Cytocoarsening facilitates more rapid identification of phenotypically-similar cells
that are likely associated with a clinical or experimental condition.
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Meaningful representations of clinical data using embedding vectors is a pivotal step to invoke any 
machine learning (ML) algorithm for data inference. In this article, we propose a time-aware 
embedding approach of electronic health records onto a biomedical knowledge graph for creating 
machine readable patient representations. This approach not only captures the temporal dynamics of 
patient clinical trajectories, but also enriches it with additional biological information from the 
knowledge graph. To gauge the predictivity of this approach, we propose an ML pipeline called 
TANDEM (Temporal and Non-temporal Dynamics Embedded Model) and apply it on the early 
detection of Parkinson’s disease. TANDEM results in a classification AUC score of 0.85 on unseen 
test dataset. These predictions are further explained by providing a biological insight using the 
knowledge graph. Taken together, we show that temporal embeddings of clinical data could be a 
meaningful predictive representation for downstream ML pipelines in clinical decision-making.     

Keywords: temporal embedding; knowledge graph; electronic health record; machine learning. 

1. Introduction

Clinical data comes from multiple modalities and encompasses heterogeneous information related 
to patient health. Electronic health records (EHR), a structured clinical data, encompasses different 
health variables of a patient such as diagnosis, medications, lab tests, clinical visit encounters, etc. 
Machine learning (ML) algorithms, owing to their ability to decipher patterns in large scale 
heterogeneous data, could be used to tap the invaluable information embedded in the EHR data for 
insightful clinical predictions1. There have been previous efforts along this line such as clinical 
concept embeddings, disease phenotyping/diagnosis and EHR de-identification2,3. 

Patient representation learning is an important aspect for running ML pipelines. Such 
representations are generally lower-dimensional latent vectors with predictive value for patient’s 
health status3. This predictive value is further capitalized for downstream clinical predictive 
modeling. There have been predictive analyses that utilized the longitudinal aspect of EHR data 
such as measurements of lab tests4, temporal history of diagnosis, medication and procedure codes5 
and long term temporal dependencies in patient medical records6. These modeling approaches 
utilized sequence models like Recurrent Neural Network (RNN) to capture the temporal dynamics 
in the longitudinal EHR data and embed patients’ health state trajectories as internal latent 
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representation2. Although such approaches have proven to be useful in predictive medicine, the 
abstract nature of patient representation affects their clinical interpretability.  

There have been interpretable modeling approaches using knowledge networks for clinically 
relevant problems7–9. The major aspect of such an approach is the existence of biologically relevant 
edges in a knowledge network that could connect entities from molecular to phenotypic level10. 
Such a network level approach helps to understand the relationship between disease and underlying 
molecular/genetic pathways, thereby providing an insightful knowledge that transcends multiple 
levels of biology. There have been recent efforts to integrate EHR data with knowledge networks 
for a network level concept embedding and disease prediction11,12, but without considering the 
longitudinal aspect of clinical data.  

In this paper, we try to achieve the best of both worlds, i.e. embedding longitudinal EHR data 
on a biomedical knowledge graph to capture the temporal dynamics of patient clinical trajectory at 
a network level. We hypothesize that such an embedding approach could represent the health status 
of a patient with enriched biological information at a higher temporal resolution which could 
ultimately improve the predictability of disease diagnosis. With this objective, we introduce the 
concept of knowledge graph based temporal embeddings, and use them in an explainable modeling 
approach called TANDEM for the diagnosis of chronic diseases, in this study - Parkinson’s Disease 
(PD).   

2.   Methods 

2.1.   Scalable Precision medicine Open Knowledge Engine (SPOKE) 

SPOKE is a heterogeneous biomedical knowledge network with  more than 3 million nodes of 16 
types (such as genes, proteins, disease, symptoms etc.) and more than 16 million edges of 32 types 
between those nodes11. SPOKE integrates over 40 publicly available databases that are biologically 
relevant (such as GWAS, DOID, Uniprot, ChEMBL, DrugBank, SIDER, MESH). Graphical user 
interface of SPOKE network is made publicly available (https://spoke.rbvi.ucsf.edu/). In this study, 
we utilized the biological associations present in this large scale network to create meaningful 
patient representations for downstream ML analysis.   

2.2.   Creating temporal embeddings of patients 

In the previous study11, SPOKE knowledge graph was connected to EHR data using Observational 
Medical Outcomes Partnership (OMOP) common data model and Unified Medical Language 
System’s (UMLS) Metathesaurus mappings. Then an embedding vector, called Propagate SPOKE 
Entry Vectors (PSEVs), for a clinical concept was created by using a modified version of topic-
sensitive PageRank11,13. PSEVs can be created for any code in the EHR that has been recorded for 
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a cohort of patients (e.g. Parkinson’s Disease). A PSEV vector of a clinical concept stores how 
important each node in SPOKE is for that particular concept, which hence gives a network level 
representation of an EHR concept.  

In this study, to produce temporal embeddings for an individual patient, PSEVs corresponding 
to the EHR codes (taken from the de-identified EHR database of UCSF medical center) from a 
specified time range (frame width = 1 year) in a patient’s timeline were aggregated and normalized 
to create a patient specific embedding vector (Figure 1A). Stacking such embedding vectors from 
each time frame gave rise to a two-dimensional array whose rows represented time and columns 
represented SPOKE nodes (Figure 1A). We named this as temporal SPOKEsig since it holds the 
temporal dynamics of SPOKE nodes as a function of a patient’s clinical data. We also created non-
temporal SPOKEsig i.e. patient embedding without considering the temporal order of EHR 
concepts, hence generating a one-dimensional array of vector (i.e. no time axis, Figure 1A).   

In this study we created embeddings for two patient cohorts (i.e. PD and non-PD). Patients were 
included in the PD cohorts if a PD diagnosis code was present in their EHR diagnosis table. We 
selected only those patients with enough temporal history (i.e. having clinical data in more than one 
year of time frame in their timeline). In the interest of analyzing disease dynamics and  classifying 
patients into PD or non-PD classes before the clinical diagnosis, we created embeddings starting 
from one year before their actual clinical diagnosis and going further back in time (i.e. early 
detection of PD, Figure 1A). We created two sets of such embedding vectors for each cohort where 
one set was used for feature selection and training the downstream ML model and the other set was 
used to evaluate the performance of the model.  

Considering M number of nodes in SPOKE, a patient cohort with N patients can be represented 
by a two-dimensional array of size NxM using the non-temporal approach (Figure 1B). The same 
patient cohort can be represented by a three-dimensional array of size NxTxM using the temporal 
approach, where T denotes the time axis of the embedding vector (Figure 1B). T corresponds to the 
largest visiting time of a patient in the cohort of interest, in this study the PD cohort.    
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Fig. 1. (A) shows the schematic for the generation of temporal and non-temporal patient embeddings. The 
middle arrow shows the patient timeline where 0 represents the time when the diagnosis was made for the 
first time. -1 represents one year before the clinical diagnosis and a similar explanation holds for other tick 
labels shown on the timeline. (B) shows the way in which a patient cohort can be represented using non-
temporal and temporal SPOKEsig approaches. (C) Schematic for the computation of the average time series 
of a SPOKE node. Starting from the left, it shows the time series of a SPOKE node as a strip in the three-
dimensional array of temporal SPOKEsig. Averaging that strip across the depth (i.e. number of patient 
samples N) gives the average time series of that SPOKE node. 
 
2.3.   Knowledge graph time series and feature selection 

For any useful data inference using an ML algorithm, the first step is to select predictive features 
from the embedding vectors that are used as training data for downstream ML pipeline. In a three-
dimensional temporal SPOKEsig, each feature is a time series corresponding to nodes in the SPOKE 
knowledge graph. To evaluate how these nodes evolve in time with respect to disease progression, 
we first computed the average time series of each SPOKE node across all patients in the training 
data of each cohort (Figure 1C). 

We then applied a non-parametric statistical test (Mann-Kendall Trend Test, MKTT 14 ) on each 
average time series to identify a trend15. Trend can be treated as a feature that gives a measure of 
how time series evolve. MKTT only tests for linear monotonic trends in a time series15. Hence, a 
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time-series can be classified as an increasing, decreasing or no trend. In addition to the trend type, 
the test also returns a trend value (slope) present in the time series and a p-value associated with it. 
Since we are looking at a classification problem, we wanted to retain predictive temporal features 
that show disparate temporal dynamics between the cohorts. Hence, we selected those features that 
satisfied at least one of the following three criteria:    
1.   A node has a trend in one cohort and no trend in the other cohort 
2.   A node has opposite trends in two cohorts 
3.  A node has the same trend in two cohorts, then select only if its slope in one cohort is more than 
double than in the other.   
 
2.4.   Transformation of temporal embeddings of a patient cohort 
After feature selection, the next step is to train an ML classifier to identify if a patient has PD or not 
(two-class problem). Since temporal embeddings are sequential data (because of the time 
dimension), state-of-the-art models to learn such data are recurrent neural networks (RNN) like 
Long short-term memory (LSTM) networks16, Gated recurrent unit (GRU) networks17. However, 
the patient cohort size used in this study was not large enough to train such deep neural networks 
with trainable parameters in the order of millions. This situation (less data and more parameters) 
could lead to data overfitting and that could affect the generalizability of the trained model. In such 
situations, previous studies have chosen models like random forest (RF) owing to their ensemble 
architecture 18–20 and we chose the same in our case.   

To train a RF classifier, we transformed the temporal SPOKEsig from a three-dimensional array 
(NxTxM’) to a two-dimensional array (NxM’) where N corresponds to total number of patients in a 
cohort, T represents time and M’ represents the selected features from an initial M features (after 
feature selection, M’ < M). To retain the embedded temporal information in the transformed two-
dimensional representation, we performed a linear approximation of temporal SPOKEsig by 
computing the trend value present in each time series of SPOKE nodes across all patients. Figure 2 
shows the steps involved in this transformation process. 
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Fig. 2. Steps involved in the linear approximation of three-dimensional temporal SPOKEsig. Following the 
direction of arrows, it starts with selecting a temporal SPOKEsig of a patient, followed by selecting a time 
series of a SPOKE node. To prevent any false trend value estimates (because of the zero elements in the 
series coming from the sporadic hospital visits made by the patient), the raw time series was smoothened 
using Savitzky-Golay filter (window size = 21 and polynomial order = 3). We then applied Kendall trend test 
on the smoothed time series to get the trend (slope) and p-value. Final trend value was considered as the 
estimated slope multiplied by the probability for the presence of trend in that time series (which is 1-p-value). 
These steps were iterated for all SPOKE nodes across all patients in a cohort to get the approximated temporal 
SPOKEsig of a patient cohort which is a two-dimensional array. 
 

To compensate for this linear approximation transformation, a second feature selection was done 
on the transformed two-dimensional array (of training data) such that we selected only those features 
whose absolute difference in their average slope values between PD and non-PD cohort is greater 
than a threshold value of 406 (chosen empirically).       
 
2.5.   Temporal and non-temporal dynamics embedded model (TANDEM) for disease 
classification 

TANDEM includes both temporal and non-temporal embeddings of patients for disease 
classification. Specifically, we trained two separate RF models, one using approximated temporal 
SPOKEsig and the other one using non-temporal SPOKEsig. One model evaluated the linear trend 
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and the other model evaluated the area swept by the time series of SPOKE nodes. Hence, both 
classifiers looked at two fundamentally different aspects of the time series data. Each model was 
trained using their respective training data. Since there existed less PD samples than non-PD samples 
in the data, training data was imbalanced. Hence, while training the classifiers, proper weights were 
assigned to patient samples in the training data based on their class distribution (hence more 
weightage was given to PD samples while training). Individual prediction scores of these two 
models were further normalized by their percentile scores. Finally, a logistic classifier was trained 
(using binary cross-entropy as the loss function) using the normalized prediction scores from 
temporal and non-temporal RF models to compute the final disease prediction score.  

Classification performance was evaluated using an unseen test dataset. Model performance was 
quantified by computing the Area Under the Curve (AUC) of Receiver Operator Characteristic 
(ROC) curve. Bootstrap analysis was done by randomly sampling prediction scores (corresponding 
to both classes) with replacement and then computing AUC score for that sample. This process was 
repeated for 1000 times which generated a distribution of AUC scores for the model. In addition to 
AUC, we also computed F1 score and Average Precision score of each model for comparison.   

3.   Results 

3.1. Patient temporal embedding 
We selected a total of 283 PD and 74,059 non-PD patients respectively as training dataset. We had 
a separate test dataset (for model evaluation) with 1994 patients (17 PD and 1977 non-PD). EHR 
history of both cohorts spanned a maximum of 21 years from one year prior to the clinical diagnosis. 
There were a total of 389,297 SPOKE nodes in the embedding vector (i.e. dimension of the vector). 
 
3.2. Feature selection and PCA visualization 
Following the feature selection method using the MKT test (mentioned in the Methods section), we 
were able to reduce the features of temporal SPOKEsig from 389,297 to 109,256 (28.1% of initial 
features). Next, temporal dynamics of the selected and non-selected features were visualized by 
projecting them onto the first three principal components (Figure 3). A second feature selection on 
the linear approximated temporal SPOKEsigs (see Methods) reduced features from 109256 to 42012 
(38.5% of initial features).  
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Fig. 3. (A) shows the steps in applying PCA on feature selected temporal SPOKEsig. The insight shows six 
examples of SPOKE node time series corresponding to PD cohort (averaged across patient samples). Upper 
row corresponds to SPOKE nodes that are closely related to PD and lower row corresponds to nodes that are 
less related to PD. (B) Temporal trajectory of selected features in PCA space. Two distinct trajectories are 
evident in the PCA space and the color code is shown in the legend.  (C) Temporal trajectory of non-selected 
features in PCA space. For the sake of visual comparison, we included only those non-selected features that 
showed no trend in both PD and non-PD cohorts and had a p value > 0.5.    
  
3.3. Disease classification using TANDEM architecture 
AUC bootstrap analysis on the test data showed that temporal model showed higher performance 
than the non-temporal model (Figure 4A, Table 1, p-value=4.5*10-52, N=1000, Mann Whitney U 
test). However, TANDEM architecture outperformed these two models significantly (Figure 4A, 
Table 1). We also compared these models using their F1-score and average precision score on the 
test data and it showed that in both cases TANDEM model held the highest score (Figure 4B-C).  

For the explainability of TANDEM predictions from a biological perspective, we estimated the 
temporal slope (rate of growth) of PD related gene nodes’ time series (i.e. gene nodes connected to 
PD node in SPOKE) for all patients that were correctly predicted by the TANDEM model. 13 PD 
(out of 17) and 1659 non-PD (out of 1977) test patients were correctly predicted by the TANDEM 
model. PD genes showed higher rate of temporal evolution in these PD patient group than the non-
PD group (p-value = 1.4*10-06, N = 141, Mann Whitney U test, Figure 4D). We also showed the 
temporal evolution of PD-gene network for a single patient across three discrete time points in a 
patient’s timeline (Figure 4E for PD patient and Figure 4F for non-PD patient). 
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Fig. 4. (A) AUC distributions of three models in PD classification. (B)-(C) F1-score and Average Precision 
score of three models respectively (D) Distribution of temporal slope of PD related genes averaged across 
test patients correctly predicted by TANDEM. Insight shows the average time series of 9 PD related genes 
for PD (red) and non-PD (green) cohorts from the above distribution. (E)-(F) show the temporal evolution of 
PD-gene network for a PD patient (E) and a non-PD patient (F) across -15 (top), -4 (middle) and -1 year 
(bottom) before their clinical diagnosis. Green color nodes represent genes and the orange color node 
represents disease (PD). Size of a node at a specific time is proportional to the relevance of that node for an 
individual patient in that time.  
 
 

Table 1. Comparison of model performances 
Model AUC 

(µ±σ) 
95% CI Comparison 

with TANDEM  
(p-value, Mann 
Whitney U test,  

N = 1000) 
Temporal 0.8± 0.06 (0.67, 0.91) 3.1*10-64 

Non-temporal 0.73±0.1 (0.52, 0.92) 4.5*10-145 
TANDEM 0.85±0.06 (0.71, 0.96) - 
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4.   Discussion 

If we consider clinical events of a patient in the order in which they occurred, they naturally form a 
time series. By embedding this longitudinal EHR data on a knowledge network, we tried to achieve 
a network level interpretation of the temporal dynamics of disease (in this case PD). This approach 
could possibly bridge the two EHR modeling approaches i.e. knowledge network approach10 and 
longitudinal data approach2. 

TANDEM model underlines the complementary nature of temporal and non-temporal features 
of clinical data in disease diagnosis. These two aspects of TANDEM worked in tandem and 
enhanced the overall prediction performance. Since the temporal SPOKEsig enriches a patient’s 
clinical trajectory with additional biological information, this approach could give a biological 
perspective to the model predictions and thereby making it an explainable approach. For example, 
there was an increased temporal slope associated with the gene LRRK2 among PD patients correctly 
predicted by the model. There have been previous studies that pointed out the criticality of mutations 
in the LRRK2 gene and PD pathogenesis, thus making it a predominant genetic risk factor for 
PD21,22. This followed by the visualization of temporal evolution of PD-gene network at individual 
patient level brings an intuitive biological insight into the model's prediction. As a future work, we 
plan to apply this modeling architecture to other complex diseases to test its generalizability.   

A major challenge in this study was the mapping of clinical data to SPOKE graph for creating 
embedding vectors. Not all EHR variables map to SPOKE nodes and hence that transformation was 
lossy. However, additional biological information from SPOKE knowledge graph could be 
considered as a compensatory factor for this loss. Another challenge is the limitation of patient data. 
Since this study relied on the temporal history of EHR data, we had to drop patients with fewer 
temporal information to analyze (~20% patients were dropped). This could be a bottleneck for a 
data driven pipeline. Lastly, linear approximation of temporal SPOKEsig could have compromised 
its predictive power. Hence, as a future work, we plan to use the three-dimensional temporal 
SPOKEsig in its entirety for disease prediction using deep learning sequence models.  

 
Availability of Code and Data 
We have made available patient graph representations and the python code for TANDEM in the 
github repository (https://github.com/BaranziniLab/TANDEM).  
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Although protein sequence data is growing at an ever-increasing rate, the protein uni-
verse is still sparsely annotated with functional and structural annotations. Computational
approaches have become efficient solutions to infer annotations for unlabeled proteins by
transferring knowledge from proteins with experimental annotations. Despite the increas-
ing availability of protein structure data and the high coverage of high-quality predicted
structures, e.g., by AlphaFold, many existing computational tools still only rely on sequence
data to predict structural or functional annotations, including alignment algorithms such
as BLAST and several sequence-based deep learning models. Here, we develop PenLight,
a general deep learning framework for protein structural and functional annotations. Pen-
Light uses a graph neural network (GNN) to integrate 3D protein structure data and protein
language model representations. In addition, PenLight applies a contrastive learning strat-
egy to train the GNN for learning protein representations that reflect similarities beyond
sequence identity, such as semantic similarities in the function or structure space. We bench-
marked PenLight on a structural classification task and a functional annotation task, where
PenLight achieved higher prediction accuracy and coverage than state-of-the-art methods.

Keywords: Protein annotation; Protein structure and function; Deep learning; Graph neural
network; Contrastive learning; Representation learning

1. Introduction

With the decrease in the cost of sequencing technology, protein sequence data have been
accumulated to an ever-increasing amount. How to characterize those amino acid sequences
with structural and functional annotations is a long-standing and challenging problem in
bioinformatics. The community has long been interested in developing computational tools
to infer protein functions from their sequences, ranging from BLAST,1 profile hidden Markov
models (pHMM),2 and several other popular methods.3–6 Despite the success of these tools in
inferring protein functional annotations, such as the Gene Ontology (GO) terms and Enzyme
Commission (EC) numbers, the whole protein universe is still sparsely annotated. For example,
in Pfam, a popular protein family database, it was reported that one-third of bacterial proteins
cannot be annotated by alignment approaches.7

Recently, deep learning (DL) has emerged as a promising approach to complement tradi-
tional tools to expand protein annotations and has gained impressive success. For instance,

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Bileschi et al. develop a deep neural network to predict protein functional labels, which was
adopted by the Pfam database to expand its coverage by > 9.5%.8 Other successful applica-
tions of DL in protein annotation include structure fold recognition,9 GO term prediction10

and EC number predictions.11 Another notable trend along this line is protein language mod-
els (PLMs), which learn rich representations that encode intrinsic biophysical, evolutionary,
and structural properties of proteins from large-scale unlabeled protein sequence data. PLMs
have been found to substantially improve prediction accuracy for many protein structure and
function prediction problems.12

It is believed that protein sequence determines protein structure, which dictates function.
Knowing the three-dimensional (3D) information of protein structures can be useful for protein
function prediction because structures are more conserved than sequences and more directly
related to functions such as protein binding. However, due to the limited availability of solved
protein structure data, most existing methods for functional annotations are trying to directly
predict functions from sequences, assuming that proteins sharing high sequence similarity will
have the same set of functions. This assumption may not always hold, as it has been found
that proteins with similar structures can have seemly random sequence similarity. Fortunately,
with advances in biotechnology such as cryo-EM,13 the number of solved protein structures is
constantly increasing.14 The structure coverage is further improved by the high-quality struc-
tures predicted by DL models such as AlphaFold.15 Remarkably, in August 2022, DeepMind
released 200M AlphaFold’s predicted structures, covering nearly every known protein on the
planet. In parallel, the machine learning community has made great advancements in develop-
ing graph neural networks (GNNs) for modeling graph data, which have resulted in successful
applications such as AlphaFold.15 Despite the new opportunity offered by the largely available
solved and predicted structures and the advancements in GNNs, integrating structure data
and graph DL has not been widely exploited for protein functional and structural annotations.

The supervised learning paradigm has been a popular choice in previous deep learning
methods for predicting protein functions, in which the protein sequence is directly mapped
to the class output. This paradigm faces the challenge of class imbalance. For example, many
Pfam families contain relatively few sequences, which makes it difficult for supervised models
to predict because the training objective is dominated by the major Pfam classes. Another
paradigm called contrastive learning has recently gained interest in the machine learning com-
munity.16 Instead of directly mapping sequences to functions, contrastive learning optimizes a
latent embedding space where sequences with similar functions are pulled together, while se-
quences of different functions are pushed away. The ProtTucker model developed by Heinzinger
et al.17 was among the first attempts of using contrastive learning for protein annotation, but
the model only predicts protein structural annotations from protein sequence information.
Extending contrastive learning to integrate structure data has not been explored for protein
structural and functional annotations.

Here, we present PenLight (Protein contrastive learning with graph neural network for
annotation), a contrastive deep learning model for protein structural and functional annota-
tions. PenLight models protein 3D structure as a graph and uses a GNN to learn structure-
aware representations for the input protein. A major innovation of our work is using con-
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trastive learning for refining the learned protein representations so that the semantic simi-
larity of protein structures or functions can be reflected in the embedding space. We demon-
strate PenLight’s applicability using a structure classification task (fold classification) and a
functional annotation task (EC number prediction). On both tasks, PenLight outperformed
existing methods, including alignment algorithms such as BLAST and previous deep learning
approaches. We observed that PenLight was able to achieve high prediction accuracy as well
as high coverage. We expect PenLight to be used as a general deep learning framework for
protein annotations.

2. Materials and Methods

Fig. 1. Schematic illustration of PenLight.

Overview of PenLight. In this work, we develop PenLight, a graph neural network
trained with contrastive learning, for predicting protein structural and functional annotations.
As an overview (Fig. 1), PenLight receives the three-dimensional structure of a protein as
input and represents it as a graph, where the graph’s nodes are protein residues, and the
edges encode the spatial proximity of residues. Protein language model embeddings and a
set of geometric features (e.g., distance and orientation) derived from the input structure are
used to initialize the node and edge features. PenLight then employs a contrastive learning
scheme to learn a vector representation for each protein, such that the representations of
structurally/functional similar proteins are pulled together while dissimilar proteins are pushed
apart. PenLight then transfers the known annotations of a protein to an unlabeled protein if
their representation distance is below a threshold. The source code of PenLight is available at
https://github.com/luo-group/PenLight.

2.1. Tasks and Datasets

We showcase the applicability of PenLight using a structure classification task and a func-
tional annotation task. Specifically, we train separate PenLight models to predict the structure
classification code in the CATH database and the enzyme class (EC number) of a protein. Both
CATH codes and EC numbers are four-level classification systems that characterize different
levels of similarities of proteins, as described below.

Structure classification. We utilize the CATH dataset,18 an expert-curated database
that classifies 3D protein structures from the Protein Data Bank (PDB) database14 into a
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hierarchical classification system. We downloaded and processed the structures from CATH
following Heinzinger et al..17 Each protein structure is assigned with a label (CATH code)
at the Class (C), Architecture (A), Topology (T), and Homologous superfamily (H) levels,
respectively. Intuitively, higher levels (H>T>A>C) contain proteins that are more similar in
their 3D structure.

Functional annotation. We choose the Enzyme Commission number (EC number) pre-
diction as an example of functional annotation tasks. Similar to CATH, EC number is also a
four-level numerical classification scheme for enzymes, which assigns each enzyme with a label
based on the chemical reactions it catalyzes. We downloaded structures annotated with EC
numbers in the PDB database following a previous study.19 While there exist promiscuous
enzymes that are labeled with more than one EC number, most enzymes are labeled with
only a single EC number. Therefore, we only consider the top-1 predictions when evaluating
different prediction methods in this work.

2.2. Protein Structure Representations

The structure data of a protein contains the three-dimensional (3D) coordinates of atoms
of the protein structure. Here, we focus on the Cα atoms of the backbone and use them to
represent the residues of a protein. We denote the coordinates of those Cα atoms as C = {ci ∈
R3}Ni=1, where N is the number of residues. We represent the structure as a graph G = {V, E},
where the node set V contains the residues and the edger set E indicates the residue contacts,
which is defined by a distance cutoff of 8Å between pairwise Cα atoms.

To improve the expressiveness of the structure representation, we also associated features to
each node and edge in the graph G. We built a series of features that are invariant to rotations
and translations following a previous study.20 For the node feature vi of residue i, we used the
per-residue embeddings generated by ESM-1b12 or ProtT5,21 protein language models (PLM)
that are trained on millions of protein sequences using unsupervised representation learning. It
has been shown that PLM can boost the prediction accuracy for protein function and structure
predictions.12,22 We used ProtT5 embeddings for the structure classification task following
Heinzinger et al.17 and ESM-1b for the functional annotation task, as we found in nested
cross-validation that this resulted in a better performance. For the edge between residues i and
j, we concatenated multiple features eij = [(cj − ci)/∥cj − ci∥2;RBF(∥cj − ci∥2);Epos(cj − ci)],
where the first term is the unit direction vector, the second term is the pairwise distance lifted
into radial basis functions (RBFs), and the third term is the sinusoidal encoding of the relative
distance and direction between the two residues.

2.3. Graph Neural Network

Now we introduced the GNN architecture used in PenLight. We used a modified version
of graph attention network (GAT)23,24 as our backbone model. Given the structure graph
G = {V, E} of the input protein, GAT applies L layers of graph convolution operations that
transform G to an embedding z ∈ Rd. The ℓ-th layer transforms residue i’s embedding h

(ℓ)
i to

an updated embedding h
(ℓ+1)
i by aggregating the information from residue i and its neighbor

residues: h(ℓ+1)
i = αi,iW

(ℓ)h
(ℓ)
i +

∑
j∈N (i) αi,jW

(ℓ)h
(ℓ)
j , where N (i) is the set of neighbor nodes of
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node i, W are learnable weights of the GNN, and αij’s are attention weights used to adaptively
aggregate embeddings from node i’s neighbors. The embedding h

(ℓ)
i is initialized using the node

feature vi for ℓ = 0. The attention weights are computed as (the superscript of layer index ℓ

is omitted for simplicity):

αi,j =
exp

(
a⊤σ (Θ[hi ∥hj ∥ ei,j ])

)∑
k∈N (i)∪{i} exp (a

⊤σ (Θ[hi ∥hk ∥ ei,k]))
, (1)

where a and Θ are learnable weights, ∥ is vector concatenation, and σ(·) is the Leaky ReLU
activation function. PenLight used two stacked GAT layers with ReLU activation to transform
the initial node features into 512-dimensional vectors hL

i for each amino acid. A global mean
pooling layer was used after the GNN to aggregate the embeddings of all amino acids into
embeddings into a single embedding z ∈ R128, representing the input protein.

2.4. Contrastive Learning

We applied contrastive learning to optimize the GNN model in PenLight, which directly
optimizes an embedding space such that proteins with the same structural or functional cat-
egory are located together in the embedding space. The GNN model receives a triplet of
proteins (represented as graphs) as input each time, i.e., an anchor protein xa, a positive
protein xp that is structurally/functionally similar to xa, and a negative protein xn that is
structurally/functionally dissimilar to xa. The objective of contrastive learning is to learn an
embedding function (parameterized by the GNN) f : G 7→ Rd such that the distance between
the positive pair is smaller than that of the negative pair: d(f(xa), f(xp)) < d(f(xa), f(xn)),
where d(·, ·) is a distance function (e.g., Euclidean distance) defined on the embedding space.

Triplet sampling. How to sample the triplets is the key to learning a well-organized
embedding space. Since both CATH codes and EC numbers are organized in hierarchical tree
structures with four levels, and each label is represented as a four-digit number from coarse to
fine (e.g., EC: 3.2.1.2), we adopted a hierarchical sampling strategy17 to randomly sample the
triplets (xa, xp, xn) for both tasks. More specifically, during training, we sampled each protein
in the training set as the anchor protein xa. For each anchor protein we first randomly chose
a similarity level γ ∈ {1, 2, 3, 4}. Then a different protein with the same label up to the γ-th
digit was sampled as the positive protein xp, and another protein with a different digit at the
γ-th level but the same digit at the (γ−1)-th level was sampled as the negative protein xn. For
example, if we sampled an anchor protein with CATH label 2.20.25.20 and we randomly chose
the similarity level γ = 2 (the Architecture level), the positive protein should be randomly
sampled from proteins with CATH label of type 2.20.*.* (i.e., having the same first two digits)
and the negative should be randomly sampled from those with CATH label 2.a.*.* where a is
not 20 (share the same Class code but different Architecture code).

Hard negatives/positives mining. Previous studies25 have shown that another key
to successful contrastive learning is the balance between the triviality and the hardness of
the sampled triplets. Here, we further enhance the triplet samples by mining hard negatives
and positives to improve the performance of contrastive learning, as did in Heinzinger et
al..17 During training, we utilized the batch-hard25 technique inside each mini-batch. After
getting a mini-batch of hierarchical sampled triplets, we shuffled all the anchor, positive and
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negative proteins in the mini-batch and applied hierarchical sampling in these proteins but
with one more criterion that the positive had the maximum Euclidean embedding distance
with the anchor among all the positive candidates selected under hierarchical sampling while
the negative had the minimum distance with the anchor.

Training. During the model training, PenLight receives the sampled triplet as input and
uses the GAT model to transform them into d-dimensional embeddings (the three GATs
for anchor, positive and negative shared the same set of parameters). Based on inner-loop
cross-validation results, the embedding size was set to 128 in the CATH classification task
and 256 in the EC number prediction task. We used the soft margin loss as the objective
to train PenLight: L(x(i)a , x

(i)
p , x

(i)
n ) = 1

m

∑m
i=1 log

(
1 + exp(d(x

(i)
a , x

(i)
p )− d(x

(i)
a , x

(i)
n ))

)
, where m is

the dimension of the output embeddings, d(·, ·) is the Euclidean distance between embeddings.
Adam with an initial learning rate 1e-4 and a weight decay of 1e-4 was used as the optimizer.
Early stopping was also applied to avoid overfitting. We set the batch size to 256.

2.5. Inference and Evaluation

Since contrastive learning yielded a vector embedding instead of a direct label for each
input protein, the final inference would be performed in a query-lookup manner. Given a
lookup set O, which contains proteins with known (structural or functional) labels, and a query
(unlabeled) protein q that we would like to infer labels for, PenLight projects all proteins in
O and q into the same embedding space. We call a protein t ∈ O a “hit” for the query
protein q if their Euclidean embedding distance is below some threshold δ. We can then
infer the annotations for the query q by transferring the annotations of all hit proteins, i.e.,
{t ∈ O : d(f(t), f(q)) < δ}, to the query q. The inference for individual query protein is very
efficient since it only requires a single forward pass of the graph neural network and a distance
comparison, both of which are matrix or vector operations that can be accelerated on GPUs.
In practice, we found that the average inference time per protein was 0.68 seconds for CATH
classification and 0.04 seconds for EC number prediction. We also observed that the prediction
accuracy can be improved by an ensemble approach, i.e., two replicas of PenLight were trained
on the same data, and the average distance given by them was used to find the hit proteins.

To evaluate the performance of PenLight and other baseline methods, we computed the
accuracy, precision, recall, and F1 scores for each class (CATH code and EC number) and then
average the metrics over all classes (i.e., macro-averaged metrics). Some baseline methods use
a confidence threshold to decide whether to predict the annotations for a query protein (e.g,
the E-value in BLAST). For those methods, we count it as a wrong prediction if the model
does not predict any annotation for a query protein, unless otherwise specified.

3. Results

3.1. Performance on Structure Classification

We downloaded the CATH-S100 dataset (123k proteins, clustered based on identity 100%)
from the CATH database (v4.3),18 including both the structure data and their CATH code
labels. We followed the study by Heinzinger et al.17 to split the dataset into four splits, namely,
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the training set (∼71k proteins), validation set (196 proteins), lookup set (∼74k proteins), and
test set (208 proteins). The median number of samples per CATH class is 2. The splits were
created using the clusters generated by MMseqs26 such that any sequence in the training set
does not share > 20% sequence identity to any protein in the validation or test set. To directly
test PenLight’s ability to transfer structural annotations from labeled proteins to unlabeled
proteins, an independent lookup set that contains ∼74k proteins was also created. Redundant
sequences shared by the test set and lookup set were also removed. We compared PenLight with
different types of baseline methods for structure classification, including sequence alignment
algorithm (BLASTp1), unsupervised PLMs (ESM-1b12 and ProtT521), and the state-of-the-
art contrastive learning method for structural annotation (ProtTucker17). For PLM baselines,
we predicted the annotations for test proteins by applying an unsupervised k-nearest neighbor
classifier with k = 1 or a supervised multi-class classifier (ProtT5-sup) on PLM representations.

Table 1. Performance on CATH structure classification.

Method Supervised? Type Input Accuracy Precision Recall F1
BLASTp unsupervised Aln seq 0.236 0.148 0.152 0.149
ESM-1b unsupervised PLM seq 0.389 0.247 0.253 0.249
ProtT5 unsupervised PLM seq 0.442 0.288 0.304 0.293

ProtTucker supervised CL seq 0.514 0.354 0.365 0.358
ProtT5-sup supervised no CL seq 0.486 0.326 0.351 0.333
PenLight supervised CL struct+seq 0.524 0.363 0.377 0.367

Performance shown for the finest level (superfamily) of CATH classification. The high-
est value of each metric was shown in bold. For supervised methods, the mean met-
ric score of three independent runs was reported; standard deviations were < 0.01
but not listed in the table due to limited space. CL: contrastive learning; no CL: di-
rect predict labels using a multi-class output layer, instead of using CL; PLM: pro-
tein language model; Aln: alignment; Struct: structure; Seq: sequence; sup: supervised.

We observed that PenLight consistently outperformed other methods when evaluated using
several metrics (Table 1). First, we noticed that the information-rich features used in PenLight
are extremely useful for predicting the CATH code. For example, PenLight achieved substan-
tial improvements (+120% in accuracy and +146% in F1) compared to BLASTp, which only
uses the raw amino acid sequences to perform sequence comparison. Second, our results also
suggested the benefits of contrastive learning (CL) in PenLight. The PLM embeddings, used
as the initial features in PenLight, were trained purely on sequence data and may not explic-
itly capture structure properties. However, the contrastive learning used in PenLight is able to
refine the PLM embeddings to be discriminative and structure-aware by utilizing the CATH
hierarchy. This is demonstrated in the clear distribution separation of structurally similar and
dissimilar proteins in the embedding space (Fig. 2a). The well organized embedding space
also translated into performance improvement, where PenLight boosted PLM’s F1 score from
0.25+ (for ESM1-1b and ProtT5) to 0.37 (Table 1). These improvements suggested that con-
trastive learning is effective in learning representations that reflect the semantic similarities in
the label space (e.g., the CATH classification here). Finally, we observed that PenLight also
outperformed the state-of-the-art method ProtTucker that only considered sequence data as
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input, suggesting that incorporating the 3D structure information as input is useful for pre-
dicting the CATH classification of proteins. Overall, these results demonstrated PenLight’s
improved prediction performance in predicting the structural annotations of proteins.

Fig. 2. PenLight separated structural or functional similar proteins from dissimilar ones
in the embedding space. We consider two proteins are structurally similar if they are assigned with
the same third-level but different fourth-level CATH codes, and two proteins are functionally similar
if they are assigned with the same second-level but different fourth-level EC numbers. Euclidean
embedding distances learned by PenLight and two PLMs were visualized for similar and dissimilar
proteins in the training sequences of (a) the CATH dataset and (b) the EC number dataset.

3.2. Performance on Functional Annotations

After benchmarking PenLight on structure classification, we proceeded to evaluate Pen-
Light’s ability to predict functional annotations. We used the structure dataset collected in
Gligorijevic et al.,19 which contains 10,245 chains from the PDB database that have EC num-
ber annotations. The most specific (4th) level of EC numbers was used as the functional
annotations to train and evaluate the models. The median number of samples per EC number
is 12. The dataset was split into train, validation, and test sets with an approximate ratio 8:1:1,
and the test set has no sequence sharing > 40% sequence identity to the training sequences.

Similar to the results of CATH classification, we also found that PenLight has learned
embeddings that are discriminative between EC numbers (Fig. 2b). We compared PenLight
with four state-of-the-art deep learning methods and found that PenLight achieved substan-
tially higher performance (Table 2). PenLight first outperformed ProteInfer,26 DeepEC,11 and
ProtTucker, three models that only take the amino acid sequence as input. PenLight also
outperformed DeepFRI19 by a large margin, which is a GNN model that considers both the
sequence and structure of the input protein but was trained using a supervised multi-class
scheme. An ablation evaluation of PenLight showed that contrastive learning has led to better
performance than the multi-class classification paradigm (PenLight(-) in Table 2).

Notably, ProteInfer, DeepEC, and DeepFRI all have a coverage (defined as the fraction
of test proteins for which the method made predictions) lower than PenLight because they
only predict EC numbers for a query protein when the predicted score passes a predefined
confidence threshold (we say it is a “called protein” hereafter). In contrast, PenLight always
predicts for the query protein by transferring the known EC numbers from the top-1 closet
lookup protein, thus having a prediction coverage of 1.0. To make a fair comparison, we also
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Table 2. Performance on EC number prediction.

Method Type Input Cov Accuracy Precision Recall F1 F1@Called
DeepEC CNN seq 0.34 0.287 0.466 0.326 0.361 0.737
DeepFRI GNN str+seq 0.60 0.442 0.451 0.353 0.380 0.432
ProteInfer CNN seq 0.42 0.367 0.538 0.414 0.448 0.758
ProtTucker CL seq 1.00 0.768 0.709 0.719 0.695 0.695
PenLight(-) no CL str+seq 1.00 0.676 0.604 0.609 0.585 0.585
PenLight CL str+seq 1.00 0.777 0.720 0.736 0.711 0.711

Performance shown for level 4 (most specific level) of EC number. The highest value of each
metric was shown in bold. Coverage (Cov) is the fraction of test proteins for which a method
makes a prediction. Proteins for which a method did not make a prediction (not called) will
be counted as an incorrect prediction for metrics accuracy, precision, recall, and F1, but not
for the F1@Called metric, which was calculated on called proteins of a method. The mean
metric score of three independent runs was reported. Standard deviations were < 0.01 but
not listed in the table due to limited space. CL: contrastive learning; Str: structure; Seq:
sequence. no CL: direct predict labels using a multi-class output layer, instead of using CL.

restricted the evaluation on called proteins for those baselines, i.e., not counting non-called
proteins as wrong predictions. We found that in this case PenLight still had a higher F1 score
than DeepFRI (‘F1@Called’ column in Table 2). DeepEC and ProteInfer achieved a slightly
higher F1 than PenLight but at an expense of much lower (< 0.5) coverage. Despite PenLight
always predicting for every protein by transferring from the top-1 closest lookup protein, it is
also possible to introduce a confidence threshold for PenLight, similar to those in our baseline
methods, which will be demonstrated in the next section. Overall, the performance improve-
ments achieved by PenLight in this task again demonstrated the advantages of integrating
structure data and contrastive learning for protein function prediction.

3.3. Analyses of PenLight’s high coverage and high accurate predictions

Here, we further dissect the relationship between PenLight’s prediction accuracy and cov-
erage. We first performed a detailed stratified comparison of prediction accuracy on the EC
number prediction task. Specifically, we plotted the proportion of correct, incorrect and not
called predictions of PenLight, ProteInfer, and DeepFRI at each EC number level (Figures 3a-
c). ProteInfer had quite stable prediction accuracies (∼0.4) across the four levels but failed to
predict the EC numbers for approximately 57% of proteins. For DeepFRI, as the EC number
levels become more specific (from level 1 to 4), both its prediction accuracy and coverage
dropped, likely due to proteins being more similar in sequence at higher EC number levels,
and it is more challenging to distinguish their differences in function. In contrast, PenLight
had an accuracy > 0.75 for all four levels while maintaining a 100% coverage. The major reason
for the high accuracy and high coverage of PenLight is the contrastive learning and the lookup
strategy for making predictions. Methods like ProteInfer formulated the CATH code or EC
number classification as a supervised multi-class classification problem and predict the class
probabilities for thousands of classes using the single final layer in the neural network. This
strategy inevitably suffers from the class size imbalance in the training data, and the ambi-
guity in the output layer is easily scaled up with the number of classes (e.g., thousands of EC
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Fig. 3. PenLight achieved prediction coverage and accuracy. (a-c) Stacked bar plots of
DeepFRI, ProteInfer and PenLight that visualized the fractions of correct, incorrect, and not called
predictions at the four levels of EC numbers. (d-e) PenLight’s prediction coverage and precision as
a function of the embedding distance threshold. Here PenLight predicts the CATH code (d) or EC
number (e) for a protein if its closest embedding distance to the lookup set protein is below a given
threshold (called a hit). Coverage is defined as the fraction of hit in all test proteins, and precision
is defined as the fraction of correct predictions for the hit proteins.

numbers or CATH codes). On the contrary, PenLight first applied contrastive learning to learn
discriminative embeddings with respect to the functional or structural annotations, reducing
the ambiguity between positive and negative data points (Fig. 2). PenLight then enumerated
all proteins in the lookup set and identified the protein with the closest distance to the query
protein. This similarity search process treats the distance to every lookup protein equally,
without down-weighting any under-represented classes. Therefore, PenLight was able to accu-
rately predict the labels even for under-represented EC numbers, where supervised-learning
approaches often have large uncertainties. In our tests, we observed that when predicting for
EC numbers that have only < 10 proteins in the training set, PenLight achieved an accuracy
of 0.8 while ProteInfer, DeepEC, and DeepFRI only had an accuracy of ∼ 0.6.

We next explore the possibility of introducing a confidence threshold into PenLight, similar
to the E-value cutoff used in BLAST. A natural choice is to impose a cutoff on the Euclidean
embedding distance, i.e., making predictions only when the query protein’s closest distance to
lookup proteins is below the cutoff. We thus varied the distance cutoff and evaluated how the
prediction precision and coverage would change as the cutoff was changing. As expected, we
observed that PenLight had a high prediction precision for the CATH task when the cutoff
was very stringent (smaller values) since the model was confident in this regime of cutoff
values (Fig. 3d). On the other hand, when the cutoff became more tolerant (larger values),
the precision started to drop but the prediction coverage gradually increase. Similar trends
were observed for EC task as well (Fig. 3e). Overall, this analysis validated that PenLight’s
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embedding distance was correlated with prediction accuracy, and a cutoff can be used to
tradeoff the prediction precision and coverage, depending on the practical use case (e.g.,
accurate annotations or data explorations).

Finally, we performed a t-SNE visualization to see whether PenLight has learned mean-
ingful representations in terms of structural and functional similarity. We observed that, on
the CATH task, the embedding space learned by PenLight was a more consistent with the
CATH hierarchy, where the ProtT5’s embeddings did not capture the structural similarities of
CATH classes (Figs. 4a) while PenLight’s embeddings showed separated grouping structures
consistent with the first level of CATH classification (Fig. 4b). Similarly, on the EC number
task, we found that PenLight’s embedding space showed clustering patterns more consistent
with six major enzyme groups than the ESM-1b model (Figs. 4c-d).

Fig. 4. t-SNE visualizations. Embedding space learned by PLMs and PenLight on (a) the CATH
dataset and (b) the EC number dataset. Two PLMs (ProtT5 for CATH and ESM-1b for EC) were
shown for comparison. One point represents a protein. Points were colored according to their assigned
label at the first level of CATH class or EC number.

4. Conclusions

We described PenLight, a general deep learning framework that predicts protein structural
and functional annotations. PenLight integrates 3D protein structures and protein language
model embeddings with a structure-aware graph neural network (GNN). To learn protein
representations that capture meaningful structural or functional similarities, PenLight used a
contrastive learning strategy to train the GNN. We showcase PenLight’s applicability using
both structural and functional annotation tasks, and the experiment results suggested that
PenLight outperformed several state-of-the-art methods in predicting the CATH structure
hierarchy and enzyme class of proteins. As a general framework, PenLight can be extended to
other protein annotation tasks as well, such as gene ontology classification. Recent progress
in the graph deep learning community, including equivariant graph neural network,27 can also
be integrated with PenLight to enable better structure-based protein annotation.
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Groups of distantly related individuals who share a short segment of their genome identical-
by-descent (IBD) can provide insights about rare traits and diseases in massive biobanks
using IBD mapping. Clustering algorithms play an important role in finding these groups
accurately and at scale. We set out to analyze the fitness of commonly used, fast and scalable
clustering algorithms for IBD mapping applications. We designed a realistic benchmark for
local IBD graphs and utilized it to compare the statistical power of clustering algorithms
via simulating 2.3 million clusters across 850 experiments. We found Infomap and Markov
Clustering (MCL) community detection methods to have high statistical power in most
of the scenarios. They yield a 30% increase in power compared to the current state-of-
art approach, with a 3 orders of magnitude lower runtime. We also found that standard
clustering metrics, such as modularity, cannot predict statistical power of algorithms in IBD
mapping applications. We extend our findings to real datasets by analyzing the Population
Architecture using Genomics and Epidemiology (PAGE) Study dataset with 51,000 samples
and 2 million shared segments on Chromosome 1, resulting in the extraction of 39 million
local IBD clusters. We demonstrate the power of our approach by recovering signals of
rare genetic variation in the Whole-Exome Sequence data of 200,000 individuals in the
UK Biobank. We provide an efficient implementation to enable clustering at scale for IBD
mapping for various populations and scenarios.
Supplementary Information: The code, along with supplementary methods and figures
are available at https://github.com/roohy/localIBDClustering

Keywords: Clustering; Community Detection; Identity-By-Descent; Comparative Analysis;
Genome-wide Association Studies; Benchmark; Clustering Metrics.

1. Background

Finding structure in networks, known as community detection, or clustering, has a wide range
of biomedical applications.1–3 Recently, clustering algorithms have been applied in the context
of Identity-By-Descent (IBD) mapping4,5 as an alternative approach for rare variant associ-
ation testing that leverages genotype data in the absence of directly observed variation for
genomic discovery. This method relies on shared haplotypes along the genome co-inherited
identically from a recent common ancestor and utilizes them as the basis for association test-
ing, under the assumption that the haplotypes may co-harbour recently arisen rare variation

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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not directly captured on genotyping arrays. In this process, as illustrated in Figure 1, the chro-
mosome is first divided into consecutive windows. For each window, a graph of IBD sharing is
generated, which we refer to as a local IBD graph. In these graphs, samples are represented as
nodes and IBD sharing is represented by edges connecting the respective nodes carrying the
shared haplotype. False-positive and false-negative edges, artifacts of errors in genotyping,
phasing, and IBD estimation, add noise to these graphs. Clustering algorithm are used to
refine them and consecutively the IBD information they represent. IBD sharing groups can
then be tested for phenotype enrichment. In a study of individuals from the United Kingdom,
Gusev et al.4 found that, empirically, IBD mapping can yield up to forty times more statis-
tical power than standard genome-wide association analyses (GWAS) in tagging rare genetic
variation through recovering known and novel associations with binary phenotypes, especially
in founder populations. Browning et al.6 also replicated the results of a GWAS study via IBD
mapping. Kenny et al.7 used IBD mapping to fine-map known associations with plasma plant
sterol levels in an isolated founder island population in Kosrae. Finally, Belbin et al.8 identified
the source of a common collagen disease in the Puerto Rican population of BioMe biobank.

Fig. 1. A general schema of the IBD mapping process that can help identify shared haplotypes
carrying rare causal variants. Haplotypes of the same color are inherited from the same ancestor.

There has been a plethora of innovations in clustering techniques, due to their increased
importance.9–13 New clustering methods have been proposed to address the size of social net-
works and internet hosts, which have grown to many millions of nodes in the past decade;14–16

or to find new community structures that reflect the underlying data more accurately.17,18 The
emergence of large biobanks necessitates the employment of such new clustering techniques
in the context of IBD-mapping. Yet, it remains unclear how advancements in community
detection methods translate to this process, where the unique structural properties of local
IBD graphs does not resemble that of common graphs analyzed in other fields of study. In
this manuscript, we address this problem in three main aspects. First, we conduct a thorough
analysis of the characteristics of local IBD graphs, and design a novel benchmark that realis-
tically represents them. Second, we conduct a translational study of clustering metrics to IBD
mapping related metrics to investigate their efficacy. Third, and most importantly, we evaluate
both the power and scalability of common clustering algorithms in large datasets using both
our benchmark and real data. By combining these aspects, we propose a methodical approach
to find the most powerful algorithm for any datasets.
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2. Methods

2.1. Characterization of the Local IBD Graphs

Common benchmark graphs such as those introduced by Lancichinetti et al.,19 and Girvan
and Newman,18 are used to evaluate clustering methods in a variety of fields.20 However,
they should not be used to simulate local IBD graphs, mainly due to the properties of the
local IBD relationships that generates these graphs. The topology of a graph that represents
a relation between entities of a set is dictated by the properties of the relation. Local IBD
relation is transitive. Thus, under ideal conditions, the local IBD relation can be represented
as disjointed sets or cliques. In practice, false-positive and false-negative edges obfuscate these
cliques, necessitating a graph representation. The goal in the clustering of local IBD graphs
is to recover these well-defined cliques.

Noisy transitivity of local IBD relations results in uncommon graph properties. We look
at the “small-world” property as an example.21,22 This property cannot be calculated for
local IBD graphs since, even before clustering, they are highly disconnected. For example,
the local IBD graphs of chromosome 1 in the ”Population Architecture using Genomics and
Epidemiology” (PAGE) dataset23 each have 13,961 connected components on average across
7952 local IBD graphs tested on chromosome 1, with an average of 3.74 nodes per connected
component. In contrast, common benchmarking algorithms often generate a single connected
component.19

Cluster size distribution is another area of difference between local IBD graphs and others.
The LFR benchmark19 only supports cluster size distributions that follow the power law.
Estimating the local IBD cluster sizes using power law results in unrealistically low numbers
of small clusters. A fitted power law distribution24 underestimated the number of cluster
sizes for clusters with less than thirteen members in PAGE dataset by a factor of ten (χ2

p-value = 3 × 10−14). Cluster size distribution affects the statistical power of Louvain and
Leiden clustering algorithms.25 Thus, using power law distributions (as is common in graph
benchmarking19) for our simulations would result in an erroneous evaluation of the fitness of
clustering algorithms to recover local IBD communities.In the supplementary methods section
2.1, we describe our clique-centric benchmark that takes the specific properties of local IBD
clusters into account and simulates phenotype for power analysis.

2.2. Metrics

Clustering metrics help analyze various properties of the recovered clusters that are either
related to the inherent features of the clusters, such as the density of connections in the
clusters, or their concordance with the true structure of the graph, such as the number of
nodes that are in the same clusters as they are in the ground truth. We call the first group
feature-based metrics in this manuscript to distinguish them from metrics that are based on
ground truth. For local IBD clustering, it is important to calculate how much the results
reflect the true structure of the cliques underneath the noise and errors. We studied 4 metrics
based on ground truth, along with 6 feature-based metrics, since ground truth is often not
available for real datasets. A full list and description of metrics is available in supplementary
methods section 2.2.
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2.3. Clustering Methods

We analyze five algorithms in three categories based on their methodology: Highly Connected
Subgraphs(HCS)–the clustering algorithm used by DASH,4 Louvain,26 Leiden,27 Infomap,28

and Markov Clustering Algorithm (MCL).29 Detailed description of these algorithms is avail-
able in supplementary method section 2.3. Every tested algorithm, except for HCS, is scalable
to large datasets,30 and can analyze our largest simulated dataset with 11,000 clusters in less
than 5 minutes on average on our workstation running CentOS Linux release 7.4.1708 with
128 GB of memory and Intel® Xeon® Processors E5-2695 v2 (2.4 GHz) on a single thread.

3. Results

3.1. Performance on Simulated Data

Using our benchmark algorithm, we generated 750 graphs with a range of cluster counts,
false-positive, false-negative rates, and phenotype prevalences, described in Supplementary
Methods section 2.1.1, that added up to a total of 2,274,500 clusters with more than 6 million
nodes across all simulated experiments. Our results show that this benchmark simulates the
disjointedness of local IBD graphs, unlike the LFR algorithm (Supplementary Figure 2).

3.1.1. Clustering Metrics

We ran the clustering algorithms on the simulated datasets. We then calculated the scores
achieved by every method for each metric. We calculated the Pearson correlation coefficients
and R2 scores31 between metrics to see whether, and to what degree, each clustering metric
is associated with statistical power. The results are displayed in Figure 2 and Supplementary
Figure 1.

Fig. 2. R2 scores among clustering metrics across all simulations.

Among all metrics, AMI has the highest concordance with statistical power, explaining 79%
of the variation of the power score. Among the feature-based metrics, missing intra-cluster edge
rate has the highest R2 score of 29% with statistical power, while highly connected rate had the
lowest score. While generating denser subgraphs with less missing edges is important to gain
power, focusing solely on the density and ignoring coverage will counter those effects, resulting
in lower power. Modularity showed a weak association with statistical power (R2 = 0.14)
compared to missing intra-cluster edge rate. This suggest that partitioning a graph into highly
modular subgraphs (through optimizing modularity) does not necessarily result in clusters
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that represent the true IBD communities in the underlying population. While optimizing
modularity is advantageous in finding large non-clique-like communities,32 local IBD graphs
are both clique-like and often smaller in scale. This high percentage of small cliques results
in a discordance between modularity and power scores. If instead of a realistic cluster size
distribution, we use a uniform distribution (resulting in a higher number of large clusters),
the R2 score for modularity and statistical power rises to 0.34 (from 0.15) and the gap between
modularity/power and AMI/power R2 scores decreases from 0.63 with realistic distribution,
to 0.49 with the uniform distribution. At the same time AMI/power R2 score increases only
slightly to 0.83, compared to the 100% increase in modularity/power R2 score.

The observed discordance between modularity and power in our experiments can also be
explained through the concept of ”resolution-limit” in modularity optimization, i.e., the in-
ability of modularity optimizing methods in detecting fine-grained clusters. Fortunato and
Barthelemy found that the modularity score for a clustering is not only dependant on the
structure of the graph, but also on the expected maximum possible modularity of any random
graph with the same number of edges, as modularity optimization fails to capture clusters that
have an order of magnitude fewer edges compared to the total number of edges in the graph.25

This results in smaller clusters getting collapsed into other clusters via the optimization pro-
cess. Small, clique-like structure of local IBD graphs intensifies the effects of this phenomenon
on the performance of modularity metrics and methods optimizing it.

Fig. 3. The effects of number of simulated clusters, false-positives, and false-negatives edges on the
performance of algorithms in terms of (A) power, (B) AMI, and (C) modularity.

Our results show that purity is unfit for our IBD clustering purposes. Regardless of the true
underlying structure, a more granular clustering always yields a higher purity score. MCL5,
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a clustering approach that has the fifth best performance in statistical power (Figure 3A)
repeatedly gains the highest purity score, due to over-clustering, suggesting that purity score
in the absence of others can be misleading and uninformative.

While AMI score is the best indicator of statistical power among the metrics we tested,
due to the effects of smaller clusters (with less than 10 nodes), its concordance with statistical
power is imperfect. As further demonstrated by the performances of MCL2 and MCL3 in Fig-
ure 3, compared to statistical power (Figure 3A), the gap between MCL3 and top performing
methods is less pronounced for the AMI scores (Figure 3B). Moreover, MCL2 performance
increases and surpasses the performance of Infomap and MCL1.5 in terms of AMI score com-
pared to the statistical power. The same issue, together with a high baseline, severely affects
the performance of NMI as well. Compared to AMI scores, the gap in the NMI scores of MCL
algorithms and Infomap is even less pronounced (Supplementary Figure 6).

Another disadvantage of the AMI metric is its reliance on the existence of ground truth
data. However, in the absence of the true clustering information, our experiments show that
none of feature-based metrics can be used to accurately predict statistical power. We look at
missing intra-cluster edge rate as an example due to its higher R2 score. Methods that yield
the highest and lowest score in this metric (Leiden and MCL5) both perform poorly in terms
of statistical power, suggesting a lack of rank preservation in these metrics.

3.1.2. Clustering Algorithms

Table 1 shows the average score of clustering algorithms for every metric across all of the
simulated datasets. Infomap received the highest average statistical power score, followed
closely by MCL, while Louvain and Leiden got the lowest score (See Supplementary Figures
3,4, and 5).

As expected, Louvain and Leiden algorithms yield the most modular clustering results; fol-
lowed by Infomap. In terms of conforming to the ground truth (purity, power, and AMI/NMI
scores), however, Louvain and Leiden achieve a much lower score than MCL and Infomap;
further corroborating our analysis of resolution limit in the previous section. As a result of res-
olution limit, Louvain and Leiden were unable to find smaller communities in our simulations.
Greedy modularity optimization tends to merge lightly connected subgraphs into clusters.
Although clusters of any size can be affected, those with fewer internal edges than

√
2E, with

E as the total number of edges in the graph get merged frequently.25 For example, the average
number of edges for a graph with 2,000 clusters in our experiments is 62,007, which means
any pairs of clusters that have a combined edge count smaller than

√
2× 62, 007 = 352 have a

high chance of being merged by Louvain and Leiden if they are connected by a single edge,
as it increases the modularity score. The vast majority of IBD clusters have less than 352
individuals.

This threshold for resolution limit grows at a faster rate compared to the number of large
clusters (Supplementary Figure 9A). In other words, the average number of subgraphs that are
larger than this threshold decreases as the total number of clusters increases. The approximate
threshold for resolution limit grew from 227 to 744 as cluster count was increased from 1,000
to 10,000 clusters. At the same time, the percentage of clusters larger than the resolution limit
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threshold decreased from 23.4% to 0.8%. This effect also causes the modularity optimizing
algorithms to have an improved modularity score as the number of clusters grows while their
statistical power decreases.

We further analyze the distribution of connectivity scores achieved by the algorithms across
all of our simulations in Supplementary Figure 7. The average percentage of nodes that were
connected to at least half of the other members of their cluster, extracted by Louvain and
Leiden, was 13% and 12%, respectively. The same average for MCL2 was 78%, indicating that
Louvain and Leiden merge more cliques together compared to other methods.

Resolution limit has another disadvantage; the dependence of accuracy on the overall edge
count and not on the individual clusters25 causes implications for local IBD clustering; where
a variety of cluster size distributions exist for the same total edge count. For example, in
the PAGE study dataset, the average number of edges per cluster for local IBD graphs that
only include samples from Puerto Rican and African American populations is 96.8±12.7 and
1.6±0.1 respectively. Thus, the statistical power of Louvain and Leiden is subject to change
between the two populations, even in the same dataset. The average number of nodes per
cluster in the ground truth was 3.6 (std=0.2), the average number of nodes per clusters
found by Louvain and MCL5 were 197.7 (std=212.5) and 3.0 (std=1.7), respectively (See
Supplementart Figure 10).

The Effects Of False-Positive Edges

Our experiments show that the supremacy of the Infomap, MCL1.5, and MCL2 performances
over other methods is stable for false-positive rates ranging from 5% to 50% of the total num-

Table 1. Average scores (with standard error) of clustering algo-
rithms across our experiments. Overall, MCL2, Infomap, and MCL1.5

yielded the best performances. Modularity optimizing methods had a
much lower power.

Methods
Metrics Infomap Louvain Leiden MCL1.5 MCL2 MCL3 MCL5

Connectivity
Mean 41.52% 13.03% 12.28% 49.34% 78.78% 90.58% 94.03%
Error 14.20 8.79 9.07 15.63 13.31 8.31 5.32

AMI
Mean 61.77% 24.81% 25.18% 63.05% 75.60% 61.36% 37.26%
Error 8.62 12.04 11.65 9.51 12.69 22.12 26.02

Purity
Mean 63.24% 23.58% 23.03% 67.58% 86.85% 92.57% 94.41%
Error 7.62 11.84 12.12 8.77 6.76 6.51 6.01

Modularity
Mean 75.52% 78.64% 78.48% 75.02% 71.76% 57.98% 29.07%
Error 13.52 11.99 12.17 13.19 14.32 21.14 24.39

Power
Mean 95.49% 21.54% 17.98% 95.47% 92.61% 62.85% 29.05%
Error 5.84 10.36 10.98 3.69 12.19 31.64 30.97

ICE∗ Mean 14.26% 8.70% 9.10% 14.64% 17.91% 32.66% 66.35%
Error 10.61 6.77 7.45 9.80 11.66 21.84 27.19

HCR∗∗ Mean 27.40% 19.53% 15.95% 33.80% 82.50% 95.15% 91.67%
Error 12.27 19.35 16.42 17.11 19.47 9.56 23.31

MICER∗∗∗ Mean 37.92% 94.33% 94.09% 36.44% 25.51% 22.17% 14.65%
Error 13.93 6.24 6.12 14.64 16.20 13.84 8.04

Coverage
Mean 85.74% 91.30% 90.90% 85.36% 82.09% 67.34% 33.65%
Error 10.61 6.77 7.45 9.80 11.66 21.84 27.19

NMI
Mean 91.72% 58.89% 59.65% 92.02% 95.26% 94.10% 91.70%
Error 3.58 19.47 19.19 2.90 2.89 3.36 3.58

*: Inter-Cluster Edges **:Highly Connected Rate ***: Missing Intra-
Cluster Edges Rate
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ber of edges. Figure 3 illustrates the effects of false-positives on the performance of algorithms
in three metrics. High rates of false-positive edges were simulated to simplify detection and
comparison of performance patterns. They do not happen in our real data experiments regu-
larly since iLASH, our IBD estimation algorithm, has a low false-positive rate.33 The statistical
power of Infomap and MCL1.5 stays stable as the number of false-positives grows (Figure 3
D). The power of MCL2 slightly decreases as the rate of false-positives is increased above 30%.
However, it stays above 0.9. This suggests that these methods do not: (1) break the clusters
into smaller ones, and (2) mix them together as a results of their false-positive connections to
each other. This is not true for other clustering methods as their power seemingly converges to
a minimum value that is determined by the large clusters that are less structurally affected by
the higher rates of false-positive edges. In case of modularity optimizing methods, the lower
bound is also affected by the resolution limit. Increasing the number of edges in the graph (by
adding false-positive edges), thus has a twofold effect on Louvain and Leiden merging pairs of
loosely connected clusters.

AMI score trends slightly differ from power, primarily due to a more pronounced effect of
smaller clusters. MCL1.5 and Infomap yield less stable results. While MCL3 and MCL5 have
a similar performance to the top performing methods with a false-positive rate of 5%, their
performance declines with higher intensity, resulting in the same pattern as their power score.

False-Negatives Edges

As shown in Figure 3G, the effects of false-negative edges on the power of the algorithms
is less pronounced than that of the false-positives edges. While false-negative edges have an
adverse effect on the power of MCL and Infomap, they do not affect the power of Louvain
and Leiden significantly. Resolution limit works slightly in favor of Louvain and Leiden here.
Still, even the lowest power scores of MCL1.5, MCL2, and Infomap, at a false-negative rate
of 50%, is 70% higher than the scores of Louvain and Leiden. The effects of false-negative
edges on modularity of the graph are also eviden in the modularity score. While their power
score decreased, the top performing algorithms gained higher modularity scores. This is the
opposite of what happened when the number of false-positives edges grew; causing modularity
to have a higher correlation with power and AMI.

Runtimes

Supplementary Figure 11 displays the average amount of time (in seconds) each method took
in our experiments to analyze a dataset as the number of clusters in the dataset grew. The
runtime for all methods seem to grow quadratically with respect to the number of simulated
clusters. Louvain and Leiden were the fastest methods, analyzing datasets with 5,000 clusters
in 0.9 and 0.6 of a second, respectively. Infomap, took 191 seconds on average for the same
number of clusters, while MCL1.5 and MCL2, took 30 and 15 seconds on average, respectively.

Highly Connected Subgraphs

The DASH algorithm has been a standard tool for IBD mapping in recent years.4 DASH
requires the fine-tunning of two parameters based on the IBD inference performance. This
raises a challenge as we do not always have such information a priori. Moreover, as the oldest
clustering method that we analyzed, it does not scale to the size of our experiments. We ran

Pacific Symposium on Biocomputing 2023

128



HCS, and the other four algorithms, on a set of 750 small graphs, with cluster counts ranging
from 100 to 500. While other algorithms took less than half a second on average to analyze
graphs with 100 clusters, HCS took 81.6. This number grew quadratically to 5595 seconds to
analyze graphs with 500 clusters (Supplementary Figure 11). For the same number of clusters,
MCL2 analysis took only 1 second on average. Our simulations of smaller datasets showed
that HCS has a lower statistical power compared to that of Infomap and MCL. The average
statistical power of HCS algorithm in these experiments was 0.23 while the top performing
algorithm, Infomap had an average score of 0.92.

Performance on Real Data

We next used the PAGE study dataset to compare the algorithms wth real data. First, we
ran iLASH over the chromosome 1 genotype data to estimate IBD and generated local IBD
graphs using the output. Out of the resulting 8,447 local IBD graphs, we randomly chose 800
(∼ 10%) to cluster using every algorithm. We then calculated the feature-based metric scores
of the results. The real dataset results further demonstrate the effects of the resolution limit on
Louvain and Leiden. In every population, the two algorithms returned the lowest percentages
of node connectivity and highly-connected subgraphs, not able to detect false-positive edges.
An inflated percentage of missing intra-cluster edges further proves this. Their total clustering
of the PAGE data on chromosome 1 requires 43% additional edges in order to turn all the
clusters to cliques, compared to MCL1.5 (top performing method in the simulations) which
requires 10% less edges. MCL5 requires only 19.7% additional edges to achieve the same task,
24% less than Louvain and Leiden.

The score gap between Infomap, MCL1.5, and MCL2 on feature-based clustering metrics
decreases in the real datasets compared to the simulated ones. This can be partly explained
by a lower false-positive rate demonstrated in the high coverage scores achieved by all the
methods. To verify this, we trained a linear regressor based on the feature-based metric scores
in our simulations to predict false-positive and false-negative rates of the graphs. The linear
regressor could predict false-positive and false-negative rates in our simulated graphs with an
average error of 2% (std=1%) and 1%(std=2%), respectively. We employed cross validation
leaving 20% of the data for testing each round. Using the linear regression model, we estimated
that, in our PAGE dataset, the false-positive rate is 2% (std< 1%), and the false-negative rate
is 24% (std=3%). Focusing exclusively on the simulated graphs with false-positive and false-
negative rates close to the ones estimated for the PAGE study dataset shows a clear superiority
for MCL2 in terms of statistical power. We simulated 100 graphs, each containing 11,000
clusters (the average number of clusters in a PAGE study dataset local IBD graph) and with
realistic false-positive/false-negative rates we estimated. In these simulations, MCL2 yielded
the highest average statistical power score of 98.8%, followed by MCL1.5 (98.6%), MCL3

(97.6%) and Infomap (95.5%). Louvain and Leiden had the lowest score at 35%, considerably
lower than the MCL methods (See Supplementary Figure 8).

We also calculated the ability of local IBD clusters in recovering rare variants in the Whole-
Exome Sequence data obtained from 200,000 participants of UK Biobank and compared it to
a set of randomly generated clusters of the same sizes. After extracting local IBD clusters in
UK Biobank using our approach, for every rare variant, we tried to find a cluster covering
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its region that includes the highest number of the carriers of that variant and looked at
the fractions of the number of carriers per allele counts. The results are shown in Figure 4.
Local IBD clusters outperformed the random clusters by fully recovering 35% of doubletons
and tripletons, while randomized clusters fully recovered only 0.01%. For variants with minor
allele frequencies between 10-20, real clusters had an average recovery rate of 42% against 7%
for the randomized clusters.

Fig. 4. The recovery rate of local IBD graphs when tagging rare genetic variants captured by whole-
exome sequencing data in the UK Biobank compared to a null model with randomized clusters.

Discussion

We proposed a realistic approach to simulate local IBD graphs that addresses distinctive
properties of such graphs. It provided us with a ground truth for analyzing a group of scalable
clustering algorithms and common clustering metrics for the purpose of local IBD clustering
for the first time. We demonstrated that available analyses on clustering algorithms and
clustering metrics do not apply to local IBD graphs, further stressing the importance of our
analysis. Common clustering metrics cannot be considered sufficient substitutes for power in
IBD mapping.

As suggested by Emmons et al,20 the definition and structure of communities under study
should derive the decision on what clustering methods to use. Our real dataset analysis shows
various populations may require specific clustering approaches. MCL2 generally performed
better than the other methods in our realistic experiments. However, various datasets and
IBD estimation algorithms necessitate dataset specific simulations in order to find the fittest
clustering algorithm. We found novel utility for feature-based clustering metrics by using them
to enable realistic dataset-specific simulations of local IBD graphs. The simulations determine
the fittest clustering algorithm in terms of statistical power.

We showed that both the cluster size distribution of IBD graphs, which is heavily skewed
towards smaller clusters, and the size of the dataset could lead some clustering algorithms
to aggregate groups of small clusters, specially methods that are based on greedy modularity
optimization. Moreover, we found further evidence that the performance of greedy modularity
optimizing methods is dependent on the size of the graph being analyzed, making them un-
predictable. While IBD mapping can help us understand the genetic origins of some traits, its
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potential is bound by the capabilities of its clustering approach. Even slight clustering errors
can negatively affect the accuracy due to the small size of the local IBD communities.

We plan to utilize our approach to conduct a large IBD mapping analysis in the UK
Biobank dataset. We believe distinctive properties of UK Biobank, such as its size, and health
record availability, together with power of IBD mapping will help us find novel genetic as-
sociations. We plan to add two functionalities to our benchmark algorithm. First, we aim
to design a realistic approach to simulate edges weights for the graphs that represent IBD
segments length, augmenting local IBD graphs with segment lengths as edge weights can help
clustering methods (that support weights) detect false-positives more accurately. The longer
the segment, the lower the probability of it being a false-positive edge. Second, we plan to
simulate overlapping local IBD graphs, where a group of IBD graphs are merged and pro-
cessed together to save computing resources. In order to reduce the number local IBD graphs
to process, we can aggregate them in groups via dividing the chromosome into windows of
static length (for example 0.5 cM). We aim to evaluate clustering algorithms’ power in detect-
ing overlapping communities in our benchmark. Simulating these two phenomena requires a
genetic coalescence simulation that was outside the scope of the current manuscript.
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In an extant population, how much information do extant individuals provide on the pedi-
gree of their ancestors? Recent work by Kim, Mossel, Ramnarayan and Turner (2020) stud-
ied this question under a number of simplifying assumptions, including random mating,
fixed length inheritance blocks and sufficiently large founding population. They showed
that under these conditions if the average number of offspring is a sufficiently large con-
stant, then it is possible to recover a large fraction of the pedigree structure and genetic
content by an algorithm they named REC-GEN.

We are interested in studying the performance of REC-GEN on simulated data generated
according to the model. As a first step, we improve the running time of the algorithm.
However, we observe that even the faster version of the algorithm does not do well in any
simulations in recovering the pedigree beyond 2 generations. We claim that this is due to
the inbreeding present in any setting where the algorithm can be run, even on simulated
data. To support the claim we show that a main step of the algorithm, called ancestral
reconstruction, performs accurately in an idealized setting with no inbreeding but performs
poorly in random mating populations.

To overcome the poor behavior of REC-GEN we introduce a Belief-Propagation based
heuristic that accounts for the inbreeding and performs much better in our simulations.

1. Introduction

We follow up on a recent work by Kim et al.,1 the main motivation of which is to understand
how much kinship information can be learned from DNA. More concretely, Kim et al. study
the inference problem of recovering ancestral kinship relationships of a population of extant
(present-day) individuals using only their genetic data for a mathematical generative model
of pedigrees and DNA sequences on them based on the combinatorial framework of Steel
and Hein2 and Thatte and Steel,3 who also proved a rigorous statement about recovery of
idealized pedigree models. The goal is to use this extant genetic data to recover the pedigree
of the extant population under this model.

To study this question, Ref. 1 introduces an idealized model for generating pedigree data.
The population model they use is a standard random mating model, but the genetic inheri-
tance model assumes that inheritance blocks are of fixed length. This removes the additional
difficulty of “phasing” which allows for a rigorous analysis.

The main contribution of Ref. 1 is to show that under certain conditions, the algorithm

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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proposed in the paper, named Rec-Gen, approximately recovers the true, unknown pedigree
as well as its genetic content. There is a huge body of work on pedigree reconstruction, see
e.g. Ref. 4–11. In contrast to Ref. 1, most of this work does not provide theoretical guarantees.
In this paper we take the theoretical analysis in Ref. 1 and study to what extent it can be
applied in more realistic settings.

There is a tension between different aspects of the assumptions in Ref. 1. On one hand, they
require a very big pedigree to avoid inbreeding. On the other, the algorithm Rec-Gen has cubic
running time. While in the limit as the pedigree size goes to infinity, this tension disappears,
we find that applying the algorithm on simulated data results either in poor accuracy or an
infeasible running time.

Our main contributions in this paper are:

• We improve the algorithm runtime to essentially quadratic for model-generated data.
• We then observe that even the faster version of the algorithm does not do well in any

simulations in recovering the pedigree beyond 2 generations.
• We claim that this is due to the inbreeding present in any setting where the algorithm

can be run, even on simulated data.
• To support the claim we show that a main step of the algorithm, called ancestral

reconstruction, performs accurately in a setting with no inbreeding but performs poorly
in random mating populations.

• Finally, to overcome the poor behavior of REC-GEN we introduce a Belief-Propagation
based heuristic that accounts for the inbreeding and performs much better in our
simulations.

2. Model Description

We model populations as in Ref. 1. Here, we briefly restate the definition of a coupled pedigree,
the structure manipulated by the Rec-Gen algorithm and introduce notation relevant to the
description of our modified algorithm.

A (N,B, T, ξ)-uncoupled pedigree U is a directed acyclic graph (V,E) in which vertices v ∈ V
represent individuals and edges e = (u, v) ∈ E represent the relationship that u is a parent of
v. The set of vertices V can be partitioned into T + 1 subsets V0, . . . , VT so that each v ∈ Vi,
0 ≤ i < T has exactly two in-edges, both of which are from vertices in Vi+1. The sets Vi
represent generations, where V0 is the extant population and VT is the founding population.
The size of the founding population |VT | equals N . The vertices V also satisfy monogamy —
within each generation Vi, i > 0, the vertices Vi can be partitioned into pairs (v1, v2) such that
if u is a child of v1 if and only if u is a child of v2; such pairs are called couples. The number
of children of each couple is randomly drawn from the distribution ξ.

Each vertex v has associated genetic information in the form of B blocks, each of which
contains a symbol sampled from some alphabet Σ. The symbol at block b of the genome of
vertex v is denoted sv(b).

The (N,B, T, ξ)-coupled pedigree P induced by an uncoupled pedigree U is formed by merg-
ing each couple into a single vertex — the resulting vertices are called coupled nodes. Now each
v in a generation other than the extant represents a pair of individuals, and an edge from a
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coupled node u to a coupled node v represents that u is the parent of one of the individuals in
couple u. All vertices in P have in-degree two, except vertices in the extant population, which
remain uncoupled and have in-degree 1. The genetic information sv(b) of a coupled node v is
the set of all symbols that are in block b for some individual in the couple represented by v.

When we say that some graph is a pedigree in this paper without specifying whether the
pedigree is coupled or uncoupled, we are referencing coupled pedigrees.

3. Rec-Gen

The Rec-Gen reconstruction algorithm presented in Ref. 1 proceeds in three main phases.
In each generation, siblinghood detection reconstructs relationships in the current generation,
outputting a siblinghood hypergraph in which triple u, v, w forms a hyperedge if they are likely
to be siblings. Parent construction processes maximal cliques in the outputted hypergraph,
populating the parent generation. Symbol collection reconstructs the genetic information of
the parent generation.

3.1. Runtime Analysis

Näıve implementations of siblinghood detection and symbol collection both run in Ω(BN3
0 )

time. The siblinghood test counts the number of shared blocks in all triples, which can require
Ω(BN3

0 ) in the worst case.
To näıvely find a triple of extant vertices sharing a gene in block b with u as their joint-

LCA for some u in generation t of the pedigree for symbol collection it may be necessary to
inspect all triples of extant descendants of u in each block b, which is also Ω(BN3

0 ).
We wish to improve both of these processes to O(BN2

0 ), as described in Sections 3.2 and 3.3.

3.2. Faster Siblinghood Detection

The greatest bottleneck in the runtime of Rec-Gen is the siblinghood detection step, which
for each generation t is cubic in the size of that generation Nt. To reduce the runtime from
O
(
N3
t B
)

to O
(
N2
t B
)
, we begin by processing all pairs of vertices, marking pairs that share some

threshold θ = 0.4 of their blocks as sibling candidates. We then only consider triples of vertices
formed from sibling candidates when generating the siblinghood hypergraph. Pseudocode of
the alternate algorithm Fast-Test-Siblinghood follows:

3.3. Faster Symbol Collection

To decrease the complexity of executing the Rec-Gen symbol-collection phase on v, we avoid
explicitly searching for extant triples that have v as their joint-LCA. Instead, we make the
simplifying assumption that any three extant vertices x, y, z descended from distinct children
of v have v as a joint-LCA. Now, we can use the following modified algorithm to achieve an
effect equivalent to the original symbol collection of Ref. 1:

• Let Ĝu(b) for a child u of v and block b be the set of genes g such that there exists an
extant descendant x of u such that ŝu(b) = {g}.
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Algorithm 1 Perform statistical tests to detect siblinghood

1: procedure Fast-Test-Siblinghood(depth (k − 1) pedigree P̂)
2: C ← ∅
3: V ← vertices of P̂ at level k − 1

4: for all distinct pairs {u, v} ∈ 2V do
5: if ≥ 0.4|B| blocks b such that ŝu(b) ∩ ŝv(b) 6= ∅ then
6: C ← C ∪ {u, v}
7: E ← ∅
8: for all pairs {u, v} ∈ C do
9: for all w ∈ V at level k − 1 such that w 6= u ∧ w 6= v do

10: if ≥ 0.21|B| blocks b such that ŝu(b) ∩ ŝv(b) ∩ ŝw(b) 6= ∅ then
11: E ← E ∪ {u, v, w}
12: Ĝ← (V,E)

13: return Ĝ

• Compute Ĝu(b) for all children u of v.
• Let ŝv(b) be the two genes that are present in the greatest number of computed sets
Ĝu(b).

Pseudocode of this modified process can be seen in Algorithm Fast Collect-Symbols.
Ref. 1 prove that, conditioned on the nonoccurence of undesirable inbreeding events, the

existence of a joint-LCA v for three nodes x, y, z entails that v is their unique LCA. Therefore,
if most extant nodes have a joint-LCA, then the algorithm described above is equivalent to
the initial description of symbol-collection. Empirically, very few (< 1% of) extant triples in
simulated pedigrees are descended from unique children of a vertex that is not their joint-LCA.

Generating Ĝu requires time that is linear in the number of nodes in the descendants
pedigree of u. Since α > 2, this is on expectation bounded above by a linear function of
the number of extant descendants of u. Each extant individual v has at most 2t ancestors
in generation t. Therefore, the sum of the number of extant descendants of u over all u in
generation t is at most 2tN0, where N0 is the size of the extant population, so that the runtime
of invoking Algorithm Fast Collect-Symbols for all u at generation t is O(B ·(2tN0+ |G|)).
Since α > 2, 2t ⊆ O(αt) ⊆ O(E[Nt]/NT ), so that the total runtime of Algorithm Fast Collect-

Symbols is O(B · E[Nt]N0/NT ) ⊆ O(BN2
0 ).

4. Simulations

We assess the empirical accuracy of Rec-Gen and other algorithms presented later in this
work by running them on simulated pedigrees. We generate pedigrees satisfying the stochastic
model, as described in section 4.1. The extant populations of the pedigrees can be used as input
for our implementations of the reconstructive algorithms, and a grader program evaluates the
accuracy of the result as described in section 4.2.
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Algorithm 2 Empirically reconstruct the symbols of top-level node v in P.

1: procedure Fast Collect-Symbols(v, P̂)
2: for all blocks b ∈ [B] do
3: cg ← 0 ∀ g
4: for all children u of v do
5: Ĝu(b)← ∅
6: for all extant x descended from u do
7: Ĝu(b)← Ĝu(b) ∪ ŝx(b)

8: for all g ∈ Ĝu(b) do
9: cg ← cg + 1

10: σ1 ← g with highest cg
11: σ2 ← g with second-highest cg
12: Record the symbols σ1, σ2 for block b in v.

4.1. Generating Pedigrees

For a given α, our pedigree generator program creates (N,B, T, ξ)-coupled pedigrees according
to the breeding and inheritance behaviors described in Section 2, where ξ is either Poisson-
distributed with parameter α or a constant distribution, ξ = α.

4.2. Assessing Reconstruction Accuracy

Our grader program takes as input a parameter α ∈ [0, 1) and two pedigrees with identical
extant populations and the same numbers of generations — an original pedigree P and its
reconstruction P ′. It outputs a partial mapping between the coupled nodes of P and P ′,
where a coupled node v ∈ P of the original pedigree is mapped to a coupled node v′ ∈ P ′

of the reconstructed pedigree only if v′ is an α-successful reconstruction of v. α-successful
reconstructions are defined recursively in the following manner:

• In generation 0 (the extant population) a vertex v′ ∈ P ′ is an α-successful reconstruction
of v ∈ P if and only if v and v′ are the same coupled node.

• In generation t > 0, let c(v, v′) for v ∈ P, v′ ∈ P ′ denote the number of pairs u and u′

from generation t−1 of P and P ′, respectively, for which u is a child of v, u′ is a child of
v′, and u′ is an α-successful reconstruction of u. Also, let f be the number of children
of v and f ′ be the number of children of v′. Then v′ is an α-successful reconstruction
of v if and only if c(v, v′) > αf and c(v, v′) > αf ′.

In the case that multiple vertices v′ ∈ P ′ are an α-successful reconstruction of some v ∈ P, the
grader program maps v to the one that maximizes c(v, v′). If the program maps some v′ to v,
we consider v successfully reconstructed.

The grader also outputs the following statistics for each generation t:

• The number and percent of successfully reconstructed vertices
• The number and percent of successfully reconstructed edges (these are the sum of
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c(v, v′) over reconstructed v and the ratio of that sum to the sum of f over all v in t)
• The number of reconstructed blocks, where a block g in position b of v is considered

reconstructed if v′ also has g in position ba, as well as the percent of blocks reconstructed
out of all blocks in generation t and out of blocks belonging to reconstructed nodes in
generation t.

When using the grader to study the behavior of the reconstruction of symbols, we typ-
ically apply a generous α = 0.5 threshold, so as not to exclude information about weakly
reconstructed vertices. For the accuracy metrics presented throughout this paper, we usually
use α = 0.75 or α = 0.99.

5. Simulation Results for Rec-Gen

5.1. Results for T = 3

Experiments using simulated data as described in Section 4.1 indicate that, even in pedigrees
with relatively small founding populations (N = 50) and fertility rates (α = 6), Rec-Gen
reliably reconstructs two generations above the extant (the ‘parent’ and ‘grandparent’ genera-
tions) in pedigrees with T = 3. However, performance at the third generation declines sharply,
and in individual simulations with T = 4 (not included in the batched results in this section;
see Section 5.2), Rec-Gen fails to recover even a single vertex of the founding population.
Figures 1 and 2 graph the average vertices and blocks reconstructed over α for three generation
pedigrees with N = 50 and B = 5000 for two values of the reconstruction accuracy threshold:
0.75 and 0.99.

As one would expect, reconstruction accuracy generally improves as α increases (an excep-
tion is for the high accuracy threshold 0.99 in the case of constant fertilities — when there is
a larger number of children, even an algorithm that reconstructs each with higher probability
may reconstruct all of them with lower probability). Additionally, Rec-Gen performs better
for the case of constant fertilities than for the case of Poisson-distributed fertilities. Since
Rec-Gen performs poorly for vertices with low fertility (and is incapable of reconstructing
vertices with fertility less than 3), we attribute the relatively poor performance of Rec-Gen

for the Poisson case as compared to the deterministic case to the incidence of low-fertility
nodes.

5.2. Decline at T = 4

As demonstrated in Figure 3 (a), Rec-Gen appears to encounter major difficulties by the
fourth generation, failing to recover even a single founding node in our simulations. This failure
seems to be precipitated by a rapid decline in accuracy of reconstructed blocks, as shown in
Figure 4. Recall that symbol collection requires that triples share at least 21% of their blocks
to be identified as siblings. In generations 0 and 1, the distribution of shared reconstructed

aIn case that v has two identical genes in some position, they are both considered reconstructed only
if v′ also has two copies of that gene; otherwise, only one is considered reconstructed. Note, however,
that this should not happen regularly, as it is an indication of inbreeding.
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Fig. 1: Average percent vertices and blocks 0.99-successfully reconstructed in each generation
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(a) Constant threshold (b) Adjusted threshold

Fig. 3: Vertices 0.5-reconstructed by Rec-Gen for a T = 4 pedigree, with both the default
21% siblinghood threshold (a) and a manually optimized siblinghood threshold (b). Note that
0 nodes are reconstructed in generation 4 in (a).

blocks for sibling triples lies entirely above the 21% threshold. By generation 2, it shifts slightly
to the left so that some siblings are not recognized (and, as a result, not all of the generation
3 is reconstructed). In generation 3, there are two clusters in the distribution of shared triples:
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one at 0% and one around 10%. The cluster at 0% is the result of the members of generation 3
who were not reconstructed at all; the rest of the distribution consists of the remaining triples,
which still share distinctly more blocks than non-sibling triples, but fewer than 21%.

When we manually set the siblinghood threshold to decay with each generation to match
the accumulation of errors, we can extend the number of generations for which Rec-Gen
accurately reconstructs the topology. Figure 3 (b) demonstrates the improvements when using
the siblinghood thresholds 21%, 21%, 17%, 4% for generations 0, 1, 2, and 3 respectively.

This experiment implies that the step that introduces the most error into Rec-Gen is the
symbol-collection step. In reality, we cannot easily manually adjust the siblinghood threshold,
because the optimal threshold varies from pedigree to pedigree and may be difficult to deter-
mine without knowledge of the true pedigree topology. We can further assume that these errors
are largely the result of failure of the combinatorial Rec-Gen algorithm to correctly handle
inbreeding. We confirm this assumption by running Rec-Gen on a large pedigree constructed
as though it were a section sampled from an infinitely wide pedigree — indeed, Rec-Gen
has almost perfect accuracy in this case, as expected (the only errors were the result of blocks
that were not passed down to any descendants, which can happen with frequency 1/2α). We
therefore wish to improve the robustness of the symbol-collection step against inbreeding.
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Fig. 4: Distribution of percent reconstructed blocks shared in all triples for a T = 4 pedigree.

6. Belief Propagation

To improve the empirical accuracy of the symbol collection step, we replace the original combi-
natorial symbol collection algorithm with a single pass of a Belief-Propagation (BP) algorithm
for recovering the genetic information of pedigrees. BP is a message-passing algorithm for in-
ference that is most successful in locally tree-like models. Mezard and Montanari12 give the
BP equations in the following setting:

• x is a tuple of N variables (x1, . . . , xN ) assuming values from the finite alphabet X .
• There are M constraints in the form of the marginals ψ1, . . . , ψM governing the distri-

bution of values assumed by x, so that the probability distribution of x satisfies

p(x) ∼=
M∏
a=1

ψa (x∂a)

where x∂a = {xi : i ∈ ∂a} and ∂a ⊆ [N ] is the set of variable indices constrained by ψa
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(here, the notation x ∼= y denotes that the two functions x, y : X → R are equal down
to a constant factor).

In this context, the relationships between variables can be modelled by a bipartite graph in
which each vertex representing a variable xi has an edge to each ‘factor vertex’ representing
a constraint ψa : i ∈ ∂a; this graph is called the factor graph. The BP equations that permit
approximation of the marginal distribution of each variable govern ‘messages’ sent over the
edges of the factor graph at each time step t+ 1:

• Message from the jth variable to the ath factor:

ν
(t+1)
j→a (xj) ∼=

∏
b∈δj\a

ν̂
(t)
b→j (xj)

• Message from the ath constraint to the jth variable:

ν̂
(t)
a→j(xj)

∼=
∑
x∂a\j

ψa (x∂a)
∏

k∈∂a\j

ν
(t)
k→a (xk)

The estimate for the marginal distribution of variable i at time t is

ν
(t)
i (xi) ∼=

∏
a∈∂i

ν̂
(t−1)
a→i (xi)

If the factor graph is a tree, then BP is known to be exact — that is, the values νi converge, and
they converge precisely to the true marginals of the variables. Moreover, the exact marginals
can be computed with BP in linear time in the tree case, as νi assume the values of the
marginals of xi after two passes through the tree, as described in Ref. 12.

For our modified symbol-collection step, we effectively complete one BP sweep (half of the
tree algorithm) independently for each position in the genome. Let G be the set of all genes,
ch (v) be the tuple of children of vertex v, 0 < ε < 1 be some constant that represents the
probability of an error in the topology of the reconstruction, gv be the variable the value of
which is the pair of genes in a given block of vertex v, and νv be a function from unordered
pairs from G to the unit interval, the BP estimate of the marginal distribution of gv.

For each extant vertex v with gene g, we introduce a constraint

ψ ∼= Igv=(g,g)

For each nonextant vertex v, we introduce a constraint indicating that a child of v is an
anomaly in the topology (shares no genes with v) with probability ε:

ψ ∼= ε|{u ∈ ch (v) : gv ∩ gu = ∅}|

Then the computed values of νv are as follows. For extant couples v with gene g, we have

νv(g1, g2) ∼= Ig1=g2=g

And for nonextant couples v

νv(g1, g2) ∼=
∑

g∈(G2)|ch(v)|

ε|{i ∈ [1, |ch (v) |] : {g1, g2} ∩ gi = ∅}|
∏

i∈[1,|ch(v)|]

νch(v)
i
(gu)

We record the gene pair with the highest probability according to νv as the genes reconstructed
for couple v.
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Computing νv directly would be computationally inefficient — worse than O
(
|G|2α

)
on ex-

pectation, as |ch (v) | is Poisson-distributed with parameter α. We can substantially improve
this runtime by computing the probability distribution by summing over the number of chil-
dren indicating topology errors, rather than over all possible assignments of genes. To do this,
we construct a DP table DP(g1, g2)i,j that stores, for the first i children, the probability that
j of them indicate topology errors. The recursive definition follows:

DP(g1, g2)i,j =



Ij=0 i = 0

DP(g1, g2)i−1,j−1
∑

(h1,h2)∈G2

I{h1,h2}∩{g1,g2}=∅νch(v)i(h1, h2) +

+ DP(g1, g2)i−1,j
∑

(h1,h2)∈G2

I{h1,h2}∩{g1,g2}6=∅νch(v)i(h1, h2) i > 0

Once we have computed the values of this table for i = |ch (v) |, we can compute νv:

νv(g1, g2) ∼=
|ch(v)|∑
j=0

εj ·DP(g1, g2)|ch(v)|,j

Constructing the DP table takes O
(
α|G|4

)
time per block, which dominates the runtime of

computing the marginals by this method. We can further reduce the runtime by directly
maintaining the marginal probability that some single gene appears in each node (in addition
to the probability estimate over pairs of genes νv):

Sv(g) =
∑
g′∈G

νv(g, g
′)

Then we can compute the DP as below:

DP(g1, g2)i,j =


Ij=0 i = 0

DP(g1, g2)i−1,j

(
Sv(g1) + Ig1 6=g2(Sv(g2)− νch(v)i(g1, g2))

)
+

+ DP(g1, g2)i−1,j−1

(
1− (Sv(g1) + Ig1 6=g2(Sv(g2)− νch(v)i(g1, g2)))

)
i > 0

Computing the DP table in this manner requires only O
(
α|G|2

)
time.

However, as presented, the BP sweep for symbol collection has a memory complexity of
O
(
|G|2

)
per block per node, which in practice is prohibitive even for pedigrees with relatively

small founding populations. To reduce the memory complexity by a factor of |G|, we make the
simplifying assumption that the probability that some vertex v has at least one of a pair of
genes g1, g2 approximately equals Sv (g1) + Sv (g2); this permits us to store only the marginal
probabilities over single genes, rather than the entire distribution over pairs of genes.

The DP values are then calculated as follows:

DP(g1, g2)i,j =


Ij=0 i = 0

DP(g1, g2)i−1,j (Sv(g1) + Ig1 6=g2Sv(g2)) +

+ DP(g1, g2)i−1,j−1 (1− (Sv(g1) + Ig1 6=g2Sv(g2)) i > 0

On small pedigrees, this assumption does not produce a decrease in reconstruction accu-
racy. We also show that simulations on large pedigrees, which are impractical with the O

(
|G|2

)
per-block memory complexity, perform well.
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We also implement a relatively simple parsimony-based symbol collection step, which
greedily takes the genes that entail the fewest topology errors.

7. Simulation Results for BP

Experiments using simulated data generated as described in Section 4.1 indicate that using BP
or Parsimony instead of the combinatorial symbol-collection step of Rec-Gen significantly
improves accuracy and permits substantial recovery of the founding populations of T = 4

pedigrees without manual intervention in the siblinghood threshold. Figures 5 and 6 show
the reconstruction accuracy of BP with two values of ε (0.01 and 0.001), parsimony, and the
original Rec-Gen symbol-collection step. Parsimony and both instances of BP have similar
accuracy, which past the grandparent generation is significantly better than that of the original
Rec-Gen. BP with ε = 0.01 tends to slightly outperform BP with ε = 0.001 and parsimony.
These results indicate that BP is more robust against inbreeding than the combinatorial
Rec-Gen. While parsimony is a simple approximation of BP, its reliability decreases when
the distribution of fertilities is non-constant.
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Fig. 5: Average percent vertices and blocks 0.75-successfully reconstructed using each of four
different procedures for symbol collection in each generation of T = 4 pedigrees
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Fig. 6: Average percent vertices and blocks 0.50-successfully reconstructed using each of four
different procedures for symbol collection in each generation of T = 4 pedigrees
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8. Discussion

The changes to the Rec-Gen algorithm of Ref. 1 presented in this paper contribute signif-
icant improvements in practical efficiency and accuracy on simulated pedigree data without
sacrificing many of the original algorithm’s theoretical guarantees. We show how to reduce the
complexity of the sibling-identification step from cubic in the size of the extant population
to essentially quadratic while continuing to use triples as the basis for reconstructing sibling
relations and replace the combinatorial genome reconstruction step with a significantly faster
and more accurate Belief Propagation procedure; this Belief Propagation procedure is also
more accurate than parsimony when the distribution of fertilities is not constant.

Adaptation of our ideas to real-world data is beyond the scope of this work as our model
assumes well-defined generations, high fertilities, and no phasing. However, we believe that
the presented contributions can be used in practical tools for reconstruction.

Source code and simulation data are available at https://github.com/dvulakh/RecGen
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Graph algorithms for predicting subcellular localization at the pathway level
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Protein subcellular localization is an important factor in normal cellular processes and dis-
ease. While many protein localization resources treat it as static, protein localization is
dynamic and heavily influenced by biological context. Biological pathways are graphs that
represent a specific biological context and can be inferred from large-scale data. We develop
graph algorithms to predict the localization of all interactions in a biological pathway as
an edge-labeling task. We compare a variety of models including graph neural networks,
probabilistic graphical models, and discriminative classifiers for predicting localization an-
notations from curated pathway databases. We also perform a case study where we con-
struct biological pathways and predict localizations of human fibroblasts undergoing viral
infection. Pathway localization prediction is a promising approach for integrating publicly
available localization data into the analysis of large-scale biological data.

Keywords: Probabilistic graphical model, graph neural network, spatial proteomics

1. Introduction

Cellular state is dictated by a wide range of factors from chromatin accessibility to protein
abundance to the physical location of proteins within the cell. Cells are compartmentalized
into subcellular locations that provide the chemical environment around proteins. That local
environment informs proteins’ structure and available interaction partners. Protein localization
not only dictates protein interactions in normal biological processes,1 but also is an important
factor that can contribute to abnormal cellular behavior. Alzheimer’s disease, amyotrophic
lateral sclerosis, Wilson disease, and multiple cancers involve abnormal protein localizations.2

Although protein localization is dynamic and context-specific,3 many localization resources
present a fixed, static view. Localization databases such as MatrixDB,4 Organelle DB,5 Com-
partments,6 and ComPPI7 track primary experimental data, computational predictions, or
combinations of multiple information sources. Up to 50% of proteins localize to multiple cellu-
lar compartments.8,9 Databases typically provide multiple possible localizations per protein,
but that does not determine the conditions under which subsets of each protein’s localiziations
are relevant. Many tools can predict possible locations of a protein based on its sequence10–12

using machine learning methods such as logistic regression13 or deep neural networks.14 Some

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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methods incorporate additional information, such as gene expression,15 Gene Ontology an-
notations,16 and network information.17–20 Methods using network information consider the
localizations of neighboring proteins in protein-protein interaction databases to aid in local-
ization prediction and do not attempt to represent any particular biological context. Some
predictive methods consider tissue context,21 but proteins vary in their subcellular localiza-
tion even between single cells of the same tissue type.1

We present graph algorithms for estimating context-specific protein localizations by model-
ing them in biological pathwaysa. Biological pathways, graphs of biological entities such as pro-
teins, can represent a particular biological process or context. Although traditionally thought
of in terms of curated pathway databases, pathway reconstruction graph algorithms22–24 can
generate custom pathway representations of a specific process given a background protein
interaction network and condition-specific data such as proteomic measurements as input.
However, there is no straightforward way to contextualize and apply available protein local-
ization data to this type of predicted biological pathway. In order to provide context-specific
localization information for a particular biological dataset, we develop graph algorithms for
the simultaneous prediction of a subcellular localization for all interactions in a reconstructed
biological pathway. Computationally, this can be seen as an edge labeling task on an existing
graph. This predictive step can be added to existing pathway reconstruction workflows. Es-
timating localization information at the pathway level enables examining where proteins or
other biological entities are when they perform a biological function. Pathway-specific localiza-
tion annotation can help interpret the predicted pathway and potentially provide additional
information to guide followup experiments.

Our strategy to understand context-specific protein localization through graph-based anno-
tations of reconstructed pathways offers advantages over alternative approaches. Some curated
pathway databases provide localization information at the interaction level and include infor-
mation about non-protein biological entities.25,26 However, many pathway databases contain
incomplete or no localization information. For instance, of the 8 pathway databases included
in Pathway Commons,27 2 are fully labeled with localization information, 5 are partially la-
beled with localization information, and 1 contains no programmatically available localization
information. Additionally, curated pathways often do not line up with experimental data28–31

and a curated pathway may not be available for a particular biological condition of interest.
While condition-specific localization information can be experimentally derived1 using mass
spectrometry or cellular imaging, these methods can be expensive, require experimental exper-
tise, and have incomplete coverage. Predicting localization based on pathways is less precise
than acquiring localization data experimentally, but the predictions provide an initial coarse
estimate of all proteins’ localizations without requiring new specialized data.

We develop and compare three categories of methods for predicting localization for interac-
tions within the context of a biological pathway: graph neural networks, probabilistic graphical
models, and classifiers that do not use graph topology. First, we quantitatively evaluate these
strategies for pathway-based localization prediction by holding out annotated localizations

aSupplementary Information and code can be found at https://github.com/gitter-lab/

pathway-localization and archived at https://doi.org/10.5281/zenodo.7140733.
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from pathway databases. Then, we demonstrate how our approach can be used in practice with
a case study involving human cytomegalovirus (HCMV) infection over time.32 While there are
disparities between localization information in pathway databases and experimentally-derived
localization data, pathway-level localization prediction is a promising approach for combining
publicly available localization data with the analysis of large-scale biological data.

2. Methods

2.1. Pathway Localization Prediction Problem Definition

Protein Cytoplasm Extracelllular Plasma 
Membrane

Mitochondrion Nucleus Secretory-
Pathway

MFAP1 0.09 0.31 0.27 0.01 0.31 0.01

SF3A3 0.43 0.01 0.01 0.01 0.54 0.01

TEKT4 0.39 0.01 0.28 0.01 0.32 0.01

WNT3A 0.09 0.31 0.30 0.01 0.01 0.29

… … … … … … …

MFAP1

SF3A3

TEKT4

WNT3A

ACAT2

GCAT
NSDHL

GGPS1LIPA
Cytoplasm

Extracellular

Membrane

Mitochondrion

Nucleus

Secretory-PW

MFAP1

SF3A3

TEKT4

WNT3A

ACAT2

GCAT
NSDHL

GGPS1LIPA

Inputs:

Pathway Structure Protein localization database

Outputs:

Labeled pathway interactions

Fig. 1. Overview of the pathway localization prediction experimental workflow.

Given a biological pathway represented as a graph, the goal is to predict one subcellular lo-
calization for each edge. The pathway represents some cellular function and can be constructed
from large-scale biological datasets using pathway reconstruction.33 We predict a localization
for each edge in the pathway, which can be viewed as a class label assignment for each edge
in the graph. Protein-level localization information is used as input to the prediction task as
node features. Thus, the pathway-specific subcellular localization task can be defined as:

Input: (1) A context-specific pathway graph consisting of nodes and edges G = (N,E),
and (2) a distribution over possible localizations for each node in the graph. Output: A single
localization assignment for each interaction e ∈ E. See Figure 1.

We chose to assign localizations to edges as opposed to nodes and to assign each interaction
a single localization. Pathway databases such as Reactome25 and popular pathway file formats
such as BioPax34,35 only allow proteins to be in a single subcellular location, creating multiple
protein entries if they occur in multiple localizations and assigning them to interactions. While
many proteins have multiple localizations, among all Reactome and PathBank pathways less
than 5% of total interactions have multiple localizations within the same pathway.

2.2. Experimental Setup

2.2.1. Pathway Database Localization Prediction

We investigated how well protein localization databases can be used to predict context-specific
localizations in pathway databases, both to examine the feasibility of pathway-specific local-
ization prediction and to elucidate the relationship between node labels in protein localization
databases and edge labels in pathway databases. Pathways with interaction localization labels
from the Reactome25 and PathBank26 databases were each used as ground truth datasets.
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The original pathways in both Reactome and PathBank are represented as hypergraphs,
where reaction edges can contain more than two nodes. Pathway Commons converts these
hypergraphs to graphs using a set of rulesb. To represent a protein-complex that contains
n proteins, the hypergraph conversions create an edge between every possible pair of nodes,
resulting in n2 edges. For instance, the 4 hyperedges that make up the PathBank pathway
Protein Synthesis: Serine are converted to 3,318 edges, of which 3,315 are of type “in-complex-
with”. We collapsed protein complexes into single nodes where possible in all pathways. This
was done by removing any nodes if all of its edges were redundant with the protein-complex’s
edges, leaving a single node for each complex. Though this loses some node information, col-
lapsing protein complexes resulted in pathways that more more closely resembled the original
hypergraph in edge distribution, topology, and class balance.

Three different node feature sets were used: the ComPPI database,7 the Compartments
database,6 and UniProt keyword36 features. ComPPI and Compartments contain localization
scores for each protein, which are used directly as input features. We created a dimensionality
reduction-based vectorization of UniProt keyword assignments for all proteins (Section S1.3.3).
All 8 predictive models (Section 2.3) were tested on all feature sets with the exception of
the NaivePGM model, which could not use the UniProt keyword features as it interprets
input features directly as conditional probabilities. All pathways in the 2 pathway databases
Reactome and PathBank, which contain interaction-level localization labels, were tested on
resulting in a total of 46 runs. Models were trained using 5-fold cross validation, and model
selection and hyperparameter selection were performed on a tuning set of the 53 Reactome
pathways categorized as developmental and a randomly chosen 10% of all PathBank pathways.
Tuning pathways were excluded from cross validation.

2.2.2. Human Cytomegalovirus Case Study

To examine how predicting context-specific localization at the pathway level could be used
in a realistic setting, we performed a case study with bulk spatial mass spectrometry (MS)
data from multi-organelle profiling on primary fibroblasts during HCMV infection.32 In multi-
organelle profiling, gradient centrifugation is used on a bulk sample to partially separate
organelles. Protein levels in each subcellular fraction are then measured using tandem mass
tags MS, and localization labels are determined by clustering proteins with similar fraction
profiles. We investigated whether a predictive model can infer localizations in the context of
viral infection, potentially bypassing the need to collect spatial proteomic data.

We performed pathway reconstruction33 by combining a background protein-protein inter-
action network28,37,38 with label-free MS data, which measured protein abundance across the
entire fibroblast at 120 hours post infection (hpi) without regards to localization. Measured
protein levels were used to create biological networks representing the cell state following in-
fection. The combined top pathways chosen (Section S1.1) contained a total of 386 edges with
localization information at 120hpi.

We then trained one of the best performing models from the pathway database prediction

bhttp://www.pathwaycommons.org/pc2/formats
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task, the graph attention network, in three different scenarios. First, we trained a model using
data from the PathBank database as described in Section 2.1. Second, we trained a model using
a separate dataset that measured protein localization using a similar method on a different
cell type and under a different biological condition, HeLa cells undergoing EGF stimulation.39

Third, we trained a model on the same HCMV experiment at the 24hpi timepoint. This third
scenario is unlikely to occur, as it would require a dataset to already exist for an identical cell
type and condition, but gives a useful benchmark for best case predictive performance.

2.3. Pathway Localization Prediction Models

We evaluated three general categories of models (Section S1.2): general classifiers,40 proba-
bilistic graphical models, and graph neural networks (Figure 2). The fully-connected neural
network (FullyConnectedNN), random forest (RF), and logisitic regression (Logit) served as
baseline classifiers because they use no topological information from the pathway graph (Fig-
ure S1). These models instead concatenate the node features of each interaction’s endpoints as
their input. All other models use topological information from the pathway graph to encourage
interactions near each other to have similar localizations.

Graph convolutional network (GCN): Graph convolutional networks41 incorporate a
series of message-passing convolutional layers before the final fully connected layers. The con-
volutional layers allow for information to be shared across the topology of the input network,
providing a first-order approximation of spectral graph convolutions.42 All neural network
models were implemented using PyTorch Geometric.43

Graph attention network (GAT): Graph attention networks extend graph convolu-
tional networks by allowing each node to choose which neighbors to pay attention to. As
opposed to taking the average of its neighbors, each node computes a weighted average of its
neighbors in graph convolutional layers.44,45 The GAT is multi-headed, where multiple atten-
tion weights are computed in parallel for each node. The number of heads is a hyperparameter.

Graph isomorphism network (GIN): Graph isomorphism networks46 take advantage
of the similarity between neighbor aggregation in graph neural networks and the Weisfeiler-
Lehman (WL) graph isomorphism test.47 The WL graph isomorphism test is a heuristic algo-
rithm for determining graph isomorphisms. The neighbor aggregation in each graph layer of a
graph isomorphism network is formulated to be at least as powerful as the WL isomorphism
test; the lth layer is guaranteed to generate different embeddings of two graphs if those graphs
would be found to be non-isomorphic via the WL isomorphism test in l iterations.

Probabilistic graphical models: Given the nature of the label propagation inherent in
the pathway level localization prediction task, and that many localization databases provide
scores or even probabilities, probabilistic graphical models are a natural choice. However,
these models only provide predictions on the nodes of the graph, while we are interested in
localization labels on the edges. To convert the input pathway into an appropriate graphical
model, each pathway is converted into a bipartite graph, where an additional node is added
to that graph for each edge (Figure S2).

Probabilistic graphical models represent a set of N random variables y as nodes and de-
pendencies between them as a set of edges E. We created two pairwise undirected probabilistic
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Fig. 2. Overview of neural network architecture for graph neural networks. The number of graph
layers (convolutional depth) and number of fully connected layers (linear depth) are hyperparameters.
|N | is the number of nodes in the input pathway. |F | is the number of input features for each node.

graphical models,48 which we call NaivePGM and TrainedPGM. In these probabilistic graphi-
cal models the random variables obey a local Markov property, such that each random variable
is conditionally independent of all others given its neighbors in the graph.

The NaivePGM is a Markov random field, where protein localization database data is used
to create conditional probability tables. In the TrainedPGM, input features are treated as
observations of additional variables to train potential functions on each node. These potential
functions are represented by discriminative classifiers,49 here random forests. This type of
model is referred to as a discriminative random field.50 This was chosen over a more traditional
log linear parameterization due to better performance on the tuning data.

We performed 30 iterations of hyperparameter selection via Bayesian optimization51 using
Ax for neural network models and Scikit-optimize for classifier modelsc (Tables S1 and S2).

3. Results

3.1. Comparing Pathway and Localization Databases

To better understand the feasibility of predicting interaction localizations from protein-level
localization data, we compared the edge localizations present in biological pathway databases
to node localizations in protein localization databases. The Reactome and PathBank pathway
databases significantly disagree with both protein localization databases. For instance, among
all proteins with an edge localized to the membrane in Reactome, ComPPI scores more as
being in the cytosol than in the membrane. In all cases there is a wide distribution when
stratifying the ComPPI node scores used as features by the Reactome or PathBank edge
localizations used as labels (Figures S3 and S4). Therefore, for any individual protein and
interaction there is a significant chance that protein’s most likely localization according to
ComPPI or Compartments is not the localization Reactome or PathBank assigned it to.

Directly using data from protein localization databases is not sufficient to accurately pre-

chttps://ax.dev/ and https://scikit-optimize.github.io/stable/
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dict pathway level localization. Many interactions have at least one contradictory interaction
with an identical featurization but a different localization label, over 40% when using ComPPI
and over 20% when using Compartments. In addition, many interaction localizations would
be considered impossible when using a protein localization database alone. Almost 14% of
interactions in Reactome are between proteins that have no protein localizations in common
in ComPPI. Even without featurization, for 9.5% and 11.5% of total interactions in Reactome
and PathBank, respectively, there exists another interaction between the same unique proteins
in another pathway that has a different localization. This indicates that pathway topology or
some other form of additional information beyond that of individual proteins is needed to
correctly predict localization in context.

3.2. Pathway Database Localization Prediction

We used cross-validation to train our models on protein information and some labeled database
pathways and evaluate their edge localization predictions for other database pathways given
only protein information and graph structure as input. Overall, models were able to achieve
better interaction localization prediction performance on PathBank pathways (Figure 3) than
Reactome pathways (Figure 4). Generally, models’ performance in predicting PathBank in-
teraction localizations was more consistent across pathways. However, on both datasets all
models’ performance had high variance across pathways. Except for logistic regression, all
models got at least some pathways completely correct and some pathways completely wrong
across all databases and feature sets. The graph neural network models, GCN, GAT, and GIN,
generally outperformed other models in all conditions. However, in Reactome no model was
able to achieve a median multiclass F1 score (hereafter called ‘F1 score’) of over 0.5

Fig. 3. Multiclass F1 score of predictive performance on PathBank localizations across all 427
considered PathBank pathways. Scores are calculated per pathway; the distribution of scores is
shown for each model.

Probabilistic graphical models and models that used no pathway topology had generally
comparable performance. The FullyConnectedNN model was able to outperform other models
when predicting PathBank localizations using Compartments or UniProt keyword features.
It should be noted, however, that when calculating performance by pathway as done in this
setting, the size of each pathway is not taken into account. This means that edges in very
small pathways can have an outsized effect on total performance.
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Fig. 4. Multiclass F1 score of predictive performance on Reactome localizations across all 918
considered Reactome pathways. Scores are calculated per pathway; the distribution of scores is
shown for each model.

Alternatively, Figures S5 and S6 show F1 scores for each model aggregated from all path-
ways, where all edges are used for a single performance calculation. When aggregated in this
way, all non-neural network models perform comparably. The probabilistic graphical models,
and the TrainedPGM model in particular, struggled with small pathways.

The number of real and predicted unique localizations in each pathway also had a large
effect on model performance. This can be thought of as the smoothness of the real or predicted
localizations in a pathway, or how strong the tendency is for edges nearby in a pathway to have
the same localization. Ideally, a model would be able to detect that a pathway exists entirely
in a single localization and aggressively smooth its localization predictions over the pathway.
Pathways with a single localization had the widest range of performance within each model.
More extreme performances, at or nearly at 1.0 or 0.0 for these pathways, indicate that the
model correctly predicted that the pathway had only a single localization. Figure S7 shows
the distributions of the number of predicted unique localizations by the different models.

3.3. HCMV Infection Spatial Proteomics Case Study

We considered three scenarios for evaluating localization prediction in an experimental set-
ting. Here, we examine if localizations can be inferred in the context of a HCMV infection
(Section S1.1). We simulate an exploratory workflow by first constructing HCMV infection-
specific biological pathways using pathway reconstruction23 (example pathway topologies can
be viewed in Figures S8 and S9). We then use the context provided by these pathways’ topolo-
gies to predict interaction localizations with the best performing model from pathway database
prediction, GAT, using node features from the Compartments database.

In all scenarios, we predict localizations for each interaction of pathways created from
protein abundance measurements at 120hpi. Localization data from spatial MS taken at the
same timepoint was used as ground truth. Each scenario differs in the labeled training data
used: pathways from a pathway database, a different experiment using a different context and
cell type, or data from the same experiment at a different timepoint. In all scenarios, all data
from the 120hpi timepoint was held out until the final evaluation. We also consider a baseline
model that always predicts the most frequent localization among all training set interactions.

While in all scenarios the model substantially outperformed the baseline, there was a large
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gap in performance between the model trained using pathway databases versus those trained
on a different experiment (Figure 5). Both scenarios using experimental data achieved an F1
score of over 0.8. Although the GAT model predictions do not perfectly recapitulate the spatial
proteomics localizations, it is encouraging that the GAT model trained in a plausible setting
with data from an unrelated biological context is almost as accurate as the unrealistic, best
case GAT model trained on another timepoint from the same HCMV infection experiment.

Fig. 5. Multiclass F1 score of the GAT model on spatial MS data of viral infection at 120hpi.
Performance is shown in each scenario for the 50 top pathways created from a parameter sweep. The
baseline model always predicts the most common localization in the training dataset.

4. Conclusions and Future Work

Although there is some correspondence between protein localization databases and localization
data in pathway databases, these two types of localization data generally disagree. Graph
neural network models were required to achieve high predictive performance on PathBank
localizations, and all models performed poorly in predicting Reactome localizations.

There are a number of possible reasons for this misalignment between localization infor-
mation in pathway databases and protein localization databases. While the best-performing
models include topological information, implying that topology is needed to bring context to
protein localization, it is possible that other types of data are needed. Protein features derived
from UniProt keywords only slightly improved performance, and tissue- or cell-specific local-
ization may be necessary to fully realize context-specific localization. That type of information
may not be available for pathway databases, which are often provided independent of tissue
type, but could be for reconstructed pathways. The protein localization databases may also
be too noisy and general for context-specific localization prediction. While some signal does
exist, the wide range of distributions for ComPPI and Compartments scores across different
pathway localizations highlights the imprecise nature of the prediction problem.

While graph neural networks outperformed other methods in predicting pathway localiza-
tions, it is unclear how large a role pathway topology played in these methods’ performance.
It is possible that increased performance over other models comes solely from how graph con-
volutions share information between nodes, as opposed to the biological information inherent
in each pathway’s topology aiding localization prediction.

The conversion of pathways from hypergraphs to graphs greatly impacted the class distri-
bution and topology of Reactome and PathBank pathways. Treatment of protein complexes
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can lead to orders of magnitude difference in the number of edges in the resultant pathways.
We created protein complex nodes to represent complexes, which removes node information
but better preserves the edge structure and balance in the pathway. An analysis task focused
specifically on nodes may want a conversion that better preserves node information at the pos-
sible cost of edge information. Important future work would be to consider these conversions
in a more systemic way and quantify the hypergraph properties they alter or keep invariant.

Pathway reconstruction has already proven to be a powerful strategy for interpreting
transcriptomic, proteomic, or other data in a network context, and the ability to coarsely
approximate interaction localizations could further increase its value. We observed the GAT
model may have sufficient accuracy to roughly estimate such pathway localizations as long as
it is trained on experimental data instead of pathway databases. Predictions using the model
trained on HeLa cells still had an error rate of approximately 17% but could plausibly be used
to obtain an estimate of context-specific localization predictions in the absence of other data.
Further testing is required to assess how similar the training conditions and assay types must
be to the test conditions and assays and what types of pathway reconstruction algorithms are
compatible with our GAT localization prediction model.

There are additional biological contexts where localization prediction could prove valuable.
Single-cell spatial proteomics experiments have previously found proteins to vary by as much
as 16% in either expression or spatial distribution between cells undergoing the same process in
the same tissues.8 Predicted protein localizations for individual cells could add an additional
layer of information in single-cell analyses. Additionally, targeted identification of abnormal
protein localizations could provide insight in diseases where protein localization is known to
play a role.52 The current predictive method could be expanded to attempt to quantify a
localization being unexpected given a constructed pathway representing some cellular state.
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Identifying effective target-disease associations (TDAs) can alleviate the tremendous cost
incurred by clinical failures of drug development. Although many machine learning models
have been proposed to predict potential novel TDAs rapidly, their credibility is not guaran-
teed, thus requiring extensive experimental validation. In addition, it is generally challeng-
ing for current models to predict meaningful associations for entities with less information,
hence limiting the application potential of these models in guiding future research. Based on
recent advances in utilizing graph neural networks to extract features from heterogeneous
biological data, we develop CreaTDA, an end-to-end deep learning-based framework that
effectively learns latent feature representations of targets and diseases to facilitate TDA
prediction. We also propose a novel way of encoding credibility information obtained from
literature to enhance the performance of TDA prediction and predict more novel TDAs
with real evidence support from previous studies. Compared with state-of-the-art baseline
methods, CreaTDA achieves substantially better prediction performance on the whole TDA
network and its sparse sub-networks containing the proteins associated with few known dis-
eases. Our results demonstrate that CreaTDA can provide a powerful and helpful tool for
identifying novel target-disease associations, thereby facilitating drug discovery.

Keywords: target-disease association, graph neural network, credibility information, drug
discovery.

1. Introduction

The development of a drug generally takes more than five years and costs more than $4.5

billion,27 with most of the resources sunk into clinical failures that happen at later stages
of drug development.11 To alleviate the massive cost of drug development, it is crucial to
determine credible (i.e., to identify plausible drug targets for a specific disease) at the beginning
of the drug development process.

Based on the latent feature representations and similarities between targets and diseases

† These authors contributed equally.
© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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learned from sufficient data, machine learning (ML) models can “predict” potential target-
disease associations (TDAs) useful for future studies. For example, a range of ML classifiers
trained based on TDA data from the Open Targets platform have been used to predict novel
TDAs.12 A tensor factorization method has also been proposed to reconstruct a drug-target-
disease network by integrating drug-drug, target-target, and disease-disease similarity matrices
as multi-view auxiliary networks.4 However, the underlying Tucker tensor model generally
suffers from linearity and data sparsity,5 thus undermining its prediction capacity.

Graph neural networks (GNNs) are nonlinear ML models that generalize convolutional
neural networks (CNNs) to graph/network data,10 combined with information passing and
aggregation techniques.13 Moreover, recent advances in generalizing GNNs to heterogeneous
network (HN) data have brought considerable performance improvement.15,28,32 Since the re-
lation prediction tasks such as target-disease association (TDA) prediction can be viewed as
link prediction on networks of biological data, GNNs can theoretically be utilized as high-
capacity models for these tasks. Indeed, NeoDTI, a GNN that predicts DTIs from an HN,
outperformed state-of-the-art DTI prediction models under several challenging and realistic
scenarios.30

Nevertheless, these machine learning methods still have the following two shortcomings:
First, human labor is generally needed to verify the prediction results by searching for

supporting evidence from literature or conducting wet-lab experiments. Without a gauge of
the credibility of these predictions, the amount of human effort needed in these analyses would
be daunting, undermining the level of autonomy of the prediction pipeline and thus failing to
address the lengthiness and costliness problem of drug development.

Second, exposure bias may heavily influence model performance. Exposure bias is a phe-
nomenon in recommendation systems where users are only exposed to a part of specific items
so that the unobserved interactions do not always represent the negative preferences.6 In such
a scenario, models are inclined to predict more relations between entities with more avail-
able information. However, the failure to produce meaningful predictions for entities with less
information restricts the application potential of the models in guiding future research. More-
over, it is generally more difficult for the models to learn the latent feature representations of
entities with less information, hence undermining their overall prediction performance.

In this paper, we propose CreaTDA (CRedibility-Encoding grAph neural network for TDA
prediction), an end-to-end deep learning-based framework, to perform TDA prediction. In
addition to exploiting the structured heterogeneous data in the form of biological networks,
CreaTDA fully takes advantage of unstructured data in the form of entity co-occurrence in the
literature, which encodes the credibility of the interactions/associations between entities. We
showed that CreaTDA (i) achieved superior performance over baseline models on the TDA
prediction task and (ii) generated novel predictions with higher credibility and more literature
support, and (iii) exhibited robustness to the effect of exposure bias. These results suggested
that CreaTDA can provide a helpful tool for drug target identification and benefit the whole
drug development process.
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2. Methods 

2.1. The heteroneneous network data 
CreaTDA uses heterogeneous network (HN) data as input. We first give a formal definition of 
anHN: 
Definition 1 (Heterogeneous Network) An HN is a directed/undirected graph G = (V, E), 
where each node v E Vis of a node type from a node type set 0, and each edge e E E, E c 
V x V x R is of an edge type from an edge type set R. 

The HN used in our framework is an undirected graph with the node type set 0 ={drug, 
taryet (protein}, side effect, disease} and the edge type set R ={drug-drug-structure-similarity, 
protein-protein-sequence-similarity, drug-drug-intemction, drug-side-effect-association, drug
protein-intemction, drug-disease-association, protein-disease-association, protein-protein
intemction }. Note that we will use the terms "protein" and "target" interchangeably in the 
remaining parts of this paper. 

Here, our individual networks (defined by specific edge types) are adopted from Luo et 
al.,20 including: 

• A drug-protein interaction network and a drug-drug interaction network, derived from 
Drugbank Version 3.0;17 

• A protein-protein interaction network, extracted from the HPRD database Release 9; 16 

• A drug-disease association network and a protein-disease association (TDA) network, 
derived from the Comparative Toxicogenomics Database;8 

• A drug-side-effect association network, derived from the SIDER database Version 2; 18 

• A drug-drug-structure-similarity network, computed using RDKit (rdkit. org) accord
ing to the Dice similarity of the Morgan fingerprints with radius 2; 24 

• A protein-protein-sequence-similarity network, computed according to the Smith
Waterman scores.29 

The association and intemction networks have 0/1 binary edge weights. The 1 values 
indicate that the entailed associations/interactions exist in the corresponding database. The 
0 values indicate either (i) the entailed associations/interactions are established not to exist 
or (ii) evidence supporting the associations/interactions is lacking. The edges of the similarity 
networks are weighted with real values. With all the networks stored as adjacency matrices, 
the final HN hosts 12015 nodes, including 1512 targets, 5603 diseases, 708 drugs, and 4102 side 
effects. 

2.2. The CreaTDA pipeline 

CreaTDA first computes node embeddings that encode the topology of the HN, then uses these 
em beddings to reconstruct individual networks that encode credibility (Fig. 1), imputing the 
original 0 values. We describe these two components of CreaTDA below. 

2.2.1. Obtaining node embeddings 

In our framework (Fig. 1), node embeddings are computed via a GNN through two steps: (i) 
passing and aggregating information for each node through edge-type-specific neighbors and 
(ii) updating node embeddings. These steps are formally defined as follows: 
Definition 2 (Neighborhood information passing and aggregation) Given an HN G, an initial 



Fig. 1. Overview of CreaTDA. CreaTDA uses a graph neural network to (a) obtain node em-
beddings from individual biological networks that encode the network topology. CreaTDA further
encodes credibility by (b) computing entity co-occurrence counts in the PubMed database and then
transforming these raw counts into co-occurrence-dependent (c) soft labels (Eq. 3) and (d) penalty
weights (Eq. 4). (e) CreaTDA reconstructs the credibility-encoding networks containing the soft
labels by minimizing a weighted square-error loss derived based on the penalty weights (Eq. 5).

node embedding function f0 : V → Rd maps each node to an initial node embedding, and an
edge embedding function m : E → R maps each edge e ∈ E to a corresponding value in the
network, which can be represented as an adjacency matrix. The information av of node v ∈ V
is then aggregated from its neighborhood as follows:

av =
∑

r∈R,u∈Nr(v)
e=(u,v,r)∈E

m(e)

Zv,r
(Wrf

0(u) + br), (1)

where Nr(v) = {u|u ∈ V, u 6= v, (u, v, r) ∈ E} denotes the nodes connected to v ∈ V via an edge
of type r ∈ R, which are also defined as the “r-neighbors of v.” Wr ∈ Rd×d, br ∈ Rd denote the
model parameters depending only on the edge type, and Zv,r =

∑
u∈Nr(v),e=(u,v,r)m(e) denotes

a normalization term. In CreaTDA, f0 is initialized as a truncated normal sampler with mean
0, standard deviation 0.1, minimum cutoff value −0.2, and maximum cutoff value 0.2.

In other words, for each edge-type r, the embeddings of the r−neighbors of v are passed
through a linear transformation and then weighed by the normalized edge weights m(e)

Zv,r
. After

that, the results over all edge types are summed.
Definition 3 (Node embedding updating) Using av obtained from Eq. 1, the initial embed-
dings f0(v) are updated as follows:

f1(v) = g(ReLU(W 1(f0(v)‖av) + b1)), (2)

where “‖” denotes the concatenation operation, ReLU(x) = max{0, x}, g(·) denotes the `2
normalization operation, and W 1 ∈ Rd×(2d) and b1 ∈ Rd denote global parameters shared by
all nodes.

For each node v, its neighborhood information and initial embedding both contribute to
its updated embedding, thus allowing the network topology information to be encoded.
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2.2.2. Reconstructing the credibility-encoding networks

We seek to improve the credibility of the predicted TDAs, i.e., the reproducibility of the results
indicating the TDAs, by encoding credibility information into the CreaTDA framework, such
that credibility can be learned as part of the latent feature representations of nodes. While
the credibility of an interaction/association is elusive to quantify, it can be reflected by the
abundance of literature documenting this interaction/association, which can be approximated
by the quantity of literature in which the two interacting/associated entities both appear.

We curated about three million papers in the PubMed database maintained by the
United States National Library of Medicine (NLM).23 The number of papers that a drug-
protein, protein-disease, or drug-disease pair co-occurs in was computed by sub-string
matching using the Trie hashing algorithm (see Supplementary Information for more de-
tails). These co-occurrence counts were then organized into co-occurrence matrices Cr, r ∈
Rc = {drug-protein, protein-disease, drug-disease}, where Cr[i, j] represents the number of co-
occurring papers for entities i and j associated with edge-type r. We assumed that Cr[i, j] is
positively correlated with the credibility of the interaction/association between entities i and
j. Hence, by incorporating Cr into CreaTDA, the notion of credibility can be introduced.

Here, we formally describe a method of integrating Cr into the CreaTDA framework. We
first give mathematical definitions of the key terms used:
Definition 4 (Co-occurrence-dependent soft label) For an edge e = (i, j, r) of edge-type r ∈ Rc

between entities i and j, its soft label is defined as:

l(e) = σ(Cr[i, j] + α) ·m(e) (3)

where α stands for a hyperparameter, σ(x) = 1
1+e−x , and m(e) represents the edge embedding

function defined in Eq. 1.
Definition 5 (Co-occurrence-dependent penalty weight) For an edge e = (i, j, r) of edge-type
r ∈ Rc between entities i and j, the penalty weight of the reconstruction loss of e is defined as:

w(e) = σ(Cr[i, j] + β) ·m(e) + (1−m(e)) (4)

where β stands for a hyperparameter and m(e), σ(x) are the same as defined in Eq. 3.
In the implementation of CreaTDA, α and β are set to ln 3 and 0, respectively, as they

yielded the best performance according to the cross-validation results (Section 3.1).
The information in Cr is then incorporated in the network reconstruction step to encode

the credibility information of TDAs:
Definition 6 (Credibility-encoding network reconstruction) For the parameter set Θ =

{f0,Wr, br, Gr, Hr,W
1, b1}, the optimization objective of CreaTDA is:

min
Θ

∑
r∈R\Rc

∑
u,v∈V

e=(u,v,r)∈E

(m(e)− f1(u)TGrH
T
r f

1(v))2 (5)

+
∑
r∈Rc

∑
u,v∈V

e=(u,v,r)∈E

w(e)(l(e)− f1(u)TGrH
T
r f

1(v))2,

where m(e) denotes the edge embedding function (Eq. 1), w(e) denotes the co-occurrence-
dependent penalty weight (Eq. 4), l(e) denotes the co-occurrence-dependent soft label (Eq.
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3), and Gr, Hr ∈ Rd×k denote the edge-type specific projection matrices. In the implemen-
tation of CreaTDA, the `2-regularization terms on f0,Wr, Gr, Hr, and W 1 are also summed.
In addition, if r ∈ {drug-drug-structure-similarity, protein-protein-sequence-similarity, drug-
drug-interaction, protein-protein-interaction}, where the corresponding adjacency matrix is
symmetric, the constraint Gr = Hr is imposed to enforce such a symmetry.

The network reconstruction step projects the node embeddings f1(·) onto the edge-type-
specific vector spaces such that the matrix products of the projected vectors best match the
corresponding individual networks. Notably, the credibility information is not introduced for
the negative interactions/associations in the HN, that is, when m(e) = 0, l(e) and w(e) are set
to 0 and 1 (Eqs. 3 and 4), respectively, thus preventing the potential data leakage problem
during the cross-validation process.

2.3. Ablation studies

To show that the integration of Cr into the CreaTDA framework is necessary for achieving
better performance, we developed four models as the control in our ablation studies to nullify
the credibility information encoded in the labels and/or weights: CreaTDA og (no credibility
encoded), CreaTDA rl (random soft labels), CreaTDA rw (random penalty weights), and
CreaTDA rlrw (both random soft labels and random penalty weights). More details about
the mathematical definitions of these control models can be found in the Supplementary
Information.

3. Results
3.1. CreaTDA yields superior performance in predicting target-disease

associations

While the objective of CreaTDA is to reconstruct the HN, TDA prediction can be considered
a binary classification task (i.e., whether an association exists or not). Though we used the
modified labels for the optimization objective (Eq. 5), we still measured the prediction per-
formance in terms of the area under the precision-recall curve (AUPR) and the area under
the receiver operating characteristic curve (AUROC), using the original binary TDA labels
as ground truth. We observed that the ratio between the numbers of “1”- and “0”-entries in
the network is 0.232, suggesting data imbalance. As stated in previous works, AUPR gener-
ally presents a more informative metric than AUROC on the performance of models on those
imbalanced datasets.9,26

Table 1. Cross-validation results, measured in terms of AUROC and AUPR, 
in the form of “mean ± standard deviation” over ten rounds of entry-wise 
cross-validation and cluster-wise cross-validation (Section 3.1), respectively. 
The results where CreaTDA outperformed all baseline methods are presented 
in boldface.

GTN RGCN HGT DTINet CreaTDA
Entry-wise cross-validation

AUROC 0.953± 0.002 0.974± 0.001 0.950± 0.002 0.859± 2e-5 0.986± 2e-4
AUPR 0.822± 0.017 0.915± 0.004 0.846± 0.006 0.658± 1e-5 0.967± 5e-4

Cluster-wise cross-validation
AUROC 0.725± 0.003 0.738± 0.014 0.569± 0.012 0.815± 0.007 0.814± 0.007
AUPR 0.397± 0.004 0.332± 0.013 0.211± 0.006 0.503± 0.018 0.516± 0.016

We performed five-fold cross-validation, during which we conducted a random stratified
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splitting on the entries of the TDA matrix, which were divided into five folds, preserving the
global positive-to-negative ratio as much as possible in each fold. For each of the five iterations,
we sequentially chose one fold as test data and sampled 10% of the remaining four folds as
validation data for hyperparameter tuning (the remaining 90% formed the training set). We
refer to this cross-validation scheme as entry-wise cross-validation.

We computed the average AUROC and AUPR scores on the test sets of the five iterations
as the performance statistics for one round of cross-validation. To account for the randomness
effect, we performed ten rounds of five-fold cross-validation (with different random states) and
recorded the means and standard deviations of the performance statistics (Table 1).

We compared the performance of CreaTDA to those of several baseline methods that
have reached state-of-the-art performance on heterogeneous graph prediction tasks, including
GTN,32 RGCN,28 HGT,15 and DTINet20 (see Supplementary Information for more details). We
found that CreaTDA significantly outperformed all the baseline methods (Table 1), suggesting
that CreaTDA can better learn the latent feature representations of the underlying network
topology of the given HN.

However, with CreaTDA yielding near-perfect performance, the prediction task may be
trivial. Indeed, “similar” TDAs may appear in both training and test sets, thus constituting
“easy” predictions that inflated the performance of the models. To more accurately gauge
the performance and generalization capacity of the models, we conducted additional tests by
reducing the similarity between training and test data. Specifically, we first performed agglom-
erative clustering on the disease entities according to the Jaccard similarities between their
association profiles, i.e., the corresponding columns in the protein-disease-association adja-
cency matrix. We then developed a new cross-validation scheme by partitioning the resulting
clusters of columns into training, validation, and test sets. The ratios between the sizes of
the three datasets and the ratio between positive and negative samples in each dataset were
roughly the same as those in the previous entry-wise cross-validation procedure. We refer to
this new cross-validation scheme as cluster-wise cross-validation.

Table 1 shows that all models had a significant drop in performance when switching
from entry-wise to cluster-wise cross-validation. However, CreaTDA still took the lead in
performance (though DTINet yielded a comparable AUROC score with CreaTDA, the former
achieved a poorer AUPR score), further verifying the superior predictive power of CreaTDA.

We also found that all control models yielded performance inferior to CreaTDA on the
cluster-wise cross-validation (Supplementary Table 1), suggesting that the encoded credibility
information in both the designed labels and weights can effectively advance CreaTDA to
accurately capture the latent feature representations of the underlying network topology.

3.2. CreaTDA improves the credibility of TDA predictions

To evaluate the credibility of the novel predictions of CreaTDA, we investigated their corre-
sponding Cr values, which approximate the abundance of literature documenting the entailed
TDAs (Section 2.2.2). Here, the “novel” predictions were obtained through the following pro-
cess: (i) training CreaTDA on the whole HN using the hyperparameters that yielded the
best performance in the cluster-wise cross-validation scheme (Section 3.1); (ii) selecting those
“significant” predictions whose output values in the reconstructed TDA matrix were greater
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(a) (b) (c)

(d) (e)

Fig. 2. Examining the credibility of model predictions. (a), (b), and (c) document the num-
bers of predictions among the top-200 novel predictions with Cr > 0, 5, 25, respectively.
(d) and (e) plot the Spearman correlations between the output values of the top-k (k =
200, 500, 1000, 1500, 2000, 2500, 3000) predictions and their corresponding Cr values, with (d) com-
paring CreaTDA with the baseline models and (e) comparing CreaTDA with the four control models
developed in our ablation study. The P-values of the correlations, calculated using the sklearn pack-
age,22 can be found in Supplementary Table 2.
than µ + 2σ, where µ and σ stand for the mean and the standard deviation of the predicted
values of elements in each row, respectively; and (iii) choosing the “novel” predictions, which
were assigned with the label “0” in the original TDA matrix (i.e., m(e) = 0), from the above
“significant” predictions. Since these novel predictions had edge weights equal to 0, their
corresponding Cr values were not encoded (Eqs. 3 and 4), hence precluding data leakage.

We first examined the Cr values of the novel predictions with the top-200 output values.
We found that compared with all baseline and control models, among their corresponding
top-200 novel predictions, CreaTDA predicted more novel TDAs with Cr values greater than
0, 5, and 25, respectively (Fig. 2a-2c). Such results showed that CreaTDA could produce
novel predictions with more evidence support from PubMed, even though their credibility
information was not encoded in CreaTDA during the prediction process.

We next examined the Spearman correlation between the output and the corresponding
Cr values of the top-k predictions. We found that CreaTDA yielded a stronger correlation
than all baseline (Fig. 2d) and control models (Fig. 2e). We also conducted a hypothesis test
(two-sided t-test), in which the null hypothesis meant that the output and Cr values were
uncorrelated. We found that CreaTDA yielded overall lower P-values than all baseline and
control models (Supplementary Table 2). Here, a stronger correlation (with a lower P-value)
indicated that the model predicted TDAs with higher credibility (i.e., larger Cr values). Such
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results illustrated that the novel TDAs predicted by CreaTDA were more likely to be valid.

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 3. Examining the robustness against the effect of exposure bias for different models. (a)-
(e) plot the row-wise maximum values over the 0-labeled entries of the reconstructed TDA matrix
(y-axis) against the row-wise sums of the original TDA matrix (x-axis) for the baseline models and
CreaTDA. The Spearman correlations between these two vectors and their P-values, calculated using
the sklearn package, are also reported. (f)-(h) present the AUPR scores on the sparse sub-networks
of the whole TDA network containing proteins associated with few known TDAs.

3.3. CreaTDA is robust to the effect of exposure bias
In this section, we showed that CreaTDA was robust to the effect of exposure bias, a common
phenomenon in recommendation systems where the unobserved interactions are often misrep-
resented as negative preferences.6 This phenomenon also arises in our TDA prediction task,
where those TDAs with 0-labels in the input data are not necessarily “negative” associations.
Due to exposure bias, the models generally produce fewer meaningful TDA predictions for
those proteins/diseases with few known TDAs and often have difficulty learning their latent
feature representations. To investigate the robustness of the models against the effect of ex-
posure bias, we computed the Spearman correlation between the row-wise maximum values
over the 0-labeled entries of the reconstructed TDA matrix and the row-wise sums of the
original TDA matrix (i.e., the number of diseases associated with the corresponding protein)
for the baseline models and CreaTDA. We found that CreaTDA yielded a significantly lower
correlation than GTN, RGCN, and HGT, only slightly exceeding the correlation yielded by
DTINet (Fig. 3a-3e). Here, a strong correlation indicates two possible drawbacks: (i) the pre-
dicted values of TDAs depend heavily on the amount of known information, i.e., the number
of diseases known to be associated with the involved protein; and (ii) the top predictions of
the model are likely to leave out biologically significant TDAs for those proteins with less
available information. Therefore, the above results indicated that with a significantly weaker
correlation, CreaTDA suffered less from these two drawbacks.

We then examined the prediction performance (AUPR scores) on the sparse sub-networks
of the original TDA network for different models trained on the whole HN. More specifically,
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we selected those rows of the original TDA matrix with a sum less than 100, 300, and 500,
respectively, to simulate three sparse sub-networks. We found that CreaTDA consistently
achieved higher AUPR scores than the baseline methods on these sparse sub-networks (Fig.
3f-3h). Here, a higher AUPR score indicated that for proteins with few known TDAs, CreaTDA
could generate more accurate predictions and better learn their latent feature representations.
These results suggested that CreaTDA is robust to the effect of exposure bias and thus can
provide a helpful tool to predict novel TDAs, especially for those proteins with less information.

3.4. CreaTDA is able to predict novel TDAs with literature support
To show that CreaTDA can help scientists find reliable TDAs, we validated the top-200 novel
predictions of CreaTDA by searching for literature support and presented several representa-
tive cases (see the complete list of the top-200 predictions in Supplementary Table 3).

3.4.1. CreaTDA reveals potential targets with literature support
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract illness in
children, including bronchiolitis. CreaTDA predicted an association between bronchiolitis and
the epidermal growth factor receptor (EGFR). Previous studies showed that EGFR interacts
with the RSV 2-20 F protein in a strain-specific manner and is thus a potential target for
RSV diseases,7 which exactly supported our prediction result. We also extended to a general
category of virus diseases as an example. CreaTDA predicted an association between virus
diseases and vascular endothelial growth factor-A (VEGF-A, also known as VEGF), a principal
pro-angiogenic factor. This association can also be supported by previous research,1 which
illustrated that viruses, e.g., the human papillomavirus19 and herpes simplex virus-131 exploit
cell signaling mechanisms to upregulate VEGF expression and thus benefit their pathogenesis.
In addition, recent research on COVID-19 has shown that anti-VEGF medication may be a
potential treatment for those critically ill patients.25 These validation results showed that
CreaTDA could successfully identify novel targets critically involved in specific diseases.

3.4.2. CreaTDA provides new perspectives for understanding diseases
CreaTDA predicted an association between the fragile X syndrome (FXS) and the glucocor-
ticoid receptor gene NR3C1. This prediction can be supported by previous research, which
showed that the G allele in the BclI polymorphism of NR3C1 has a protective effect among
female individuals against FXS and is associated with altered patterns of the anxiety/fear
network of the brain.2 Hence, our prediction about NR3C1 may help understand the diverse
clinical outcomes associated with FXS and thus inspire effective therapies for individuals with
specific polymorphisms.

3.4.3. CreaTDA discovers new biomarkers for disease studies
CreaTDA detected an association between sleep apnea syndromes and the intercellular adhe-
sion molecule 1 (ICAM-1). ICAM-1 has been known as a marker widely used in studies on
obstructive sleep apnea syndrome (OSAS) to investigate inflammation.3 In a previous study,
scientists found that OSAS patients displayed a significant decrease in ICAM-1 level after
nasal continuous positive airway pressure (nCPAP) therapy, suggesting that OSAS-induced
hypoxia activates ICAM-1.21 CreaTDA also predicted an association between retinopathy of
prematurity (ROP) and myeloperoxidase (MPO). This finding was consistent with a previous
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result that MPO is one of the nine proteins with the potential to increase the ROP risk.14

All these findings verified that CreaTDA could provide an effective tool to identify novel
biomarkers useful in clinical studies.

4. Conclusion
In this paper, we presented CreaTDA, an end-to-end deep learning-based framework to predict
novel TDAs. CreaTDA first learns the node embeddings that encode features of the network
topology and then reconstructs the modified biological networks with the encoded credibility
information of TDAs. We showed that compared with state-of-the-art baseline methods, Cre-
aTDA achieved superior performance on both the standard TDA prediction task and a more
challenging task with a low similarity between training and test data. Moreover, comprehen-
sive tests demonstrated that CreaTDA could predict novel TDAs with improved credibility
and more literature support. In addition, we discovered that CreaTDA was robust to the effect
of exposure bias and maintained decent performance for those entities with less information.
All these results suggest CreaTDA can provide a powerful and helpful tool to advance the
drug discovery process.

Acknowledgements
This work was supported in part by the National Key Research and Development Program
of China (2021YFF1201300), the National Natural Science Foundation of China (61872216,
T2125007 to JZ, 31900862 to DZ), the Turing AI Institute of Nanjing, the Tsinghua-Toyota
Joint Research Fund, the Senior and Junior Technological Innovation Team (20210509055RQ),
and the Jilin Provincial Key Laboratory of Big Data Intelligent Computing (20180622002JC).
The authors thank Dr. Fangping Wan for helpful discussions.

Availablility
The source code, data, and supplementary information of this study can be accessed at https:
//github.com/Dr-Patient/CreaTDA.

References

1. Alkharsah KR. Vegf upregulation in viral infections and its possible therapeutic implications.
International journal of molecular sciences, 19(6):1642, 2018.

2. Bruno JL, et al. Glucocorticoid regulation and neuroanatomy in fragile x syndrome. Journal of
Psychiatric Research, 134:81, 2021.

3. Carpagnano GE, et al. Systemic and airway inflammation in sleep apnea and obesity: the role
of icam-1 and il-8. Translational Research, 155(1):35, 2010.

4. Chen H, et al. Modeling relational drug-target-disease interactions via tensor factorization with
multiple web sources. In The World Wide Web Conference, 218–227. 2019.

5. —. Learning data-driven drug-target-disease interaction via neural tensor network. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). 2020.

6. Chen J, et al. Bias and debias in recommender system: A survey and future directions. arXiv
preprint arXiv:201003240, 2020.

7. Currier MG, et al. Egfr interacts with the fusion protein of respiratory syncytial virus strain
2-20 and mediates infection and mucin expression. PLoS pathogens, 12(5):e1005622, 2016.

8. Davis AP, et al. The comparative toxicogenomics database: update 2017. Nucleic acids research,
45(D1):D972, 2017.

9. Davis J, et al. The relationship between precision-recall and roc curves. In Proceedings of the
23rd international conference on Machine learning, 233–240. 2006.

Pacific Symposium on Biocomputing 2023

167



10. Defferrard M, et al. Convolutional neural networks on graphs with fast localized spectral filtering.
Advances in neural information processing systems, 29, 2016.

11. Failli M, et al. Prioritizing target-disease associations with novel safety and efficacy scoring
methods. Scientific reports, 9(1):1, 2019.

12. Ferrero E, et al. In silico prediction of novel therapeutic targets using gene–disease association
data. Journal of translational medicine, 15(1):1, 2017.

13. Hamilton W, et al. Inductive representation learning on large graphs. Advances in neural infor-
mation processing systems, 30, 2017.

14. Holm M, et al. Systemic inflammation-associated proteins and retinopathy of prematurity in
infants born before the 28th week of gestation. Investigative ophthalmology & visual science,
58(14):6419, 2017.

15. Hu Z, et al. Heterogeneous graph transformer. In Proceedings of The Web Conference 2020,
2704–2710. 2020.

16. Keshava Prasad T, et al. Human protein reference database—2009 update. Nucleic acids re-
search, 37(suppl 1):D767, 2009.

17. Knox C, et al. Drugbank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic
acids research, 39(suppl 1):D1035, 2010.

18. Kuhn M, et al. A side effect resource to capture phenotypic effects of drugs. Molecular systems
biology, 6(1):343, 2010.

19. Li G, et al. Overexpression of human papillomavirus (hpv) type 16 oncoproteins promotes an-
giogenesis via enhancing hif-1α and vegf expression in non-small cell lung cancer cells. Cancer
letters, 311(2):160, 2011.

20. Luo Y, et al. A network integration approach for drug-target interaction prediction and com-
putational drug repositioning from heterogeneous information. Nature communications, 8(1):1,
2017.

21. Ohga E, et al. Effects of obstructive sleep apnea on circulating icam-1, il-8, and mcp-1. Journal
of applied physiology, 94(1):179, 2003.

22. Pedregosa F, et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Re-
search, 12:2825, 2011.

23. Roberts RJ. Pubmed central: The genbank of the published literature, 2001.
24. Rogers D, et al. Extended-connectivity fingerprints. Journal of chemical information and mod-

eling, 50(5):742, 2010.
25. Sahebnasagh A, et al. Anti-vegf agents: As appealing targets in the setting of covid-19 treatment

in critically ill patients. International Immunopharmacology, 101:108257, 2021.
26. Saito T, et al. The precision-recall plot is more informative than the roc plot when evaluating

binary classifiers on imbalanced datasets. PloS one, 10(3):e0118432, 2015.
27. Schlander M, et al. How much does it cost to research and develop a new drug? a systematic

review and assessment. PharmacoEconomics, 39(11):1243, 2021.
28. Schlichtkrull M, et al. Modeling relational data with graph convolutional networks. In European

semantic web conference, 593–607. Springer, 2018.
29. Smith TF, et al. Identification of common molecular subsequences. Journal of molecular biology,

147(1):195, 1981.
30. Wan F, et al. Neodti: neural integration of neighbor information from a heterogeneous network

for discovering new drug–target interactions. Bioinformatics, 35(1):104, 2019.
31. Wuest TR, et al. Vegf-a expression by hsv-1–infected cells drives corneal lymphangiogenesis.

Journal of Experimental Medicine, 207(1):101, 2010.
32. Yun S, et al. Graph transformer networks. Advances in neural information processing systems,

32, 2019.

Pacific Symposium on Biocomputing 2023

168



Integrated Graph Propagation and Optimization with Biological Applications

Krithika Krishnan1, Tiange Shi2

1Institute of Artificial Intelligence and Data Science
2Department of Biostatistics

University at Buffalo
Buffalo, NY 14214, USA

Han Yu3

Department of Biostatistics and Bioinformatics
Roswell Park Comprehensive Cancer Center

Buffalo, NY 14263, USA

Rachael Hageman Blair1,2,
∗

∗Corresponding Author
1Institute of Artificial Intelligence and Data Science

2Department of Biostatistics
University at Buffalo

Buffalo, NY 14224, USA
E-mail: hageman@buffalo.edu

Mathematical models that utilize network representations have proven to be valuable tools
for investigating biological systems. Often dynamic models are not feasible due to their com-
plex functional forms that rely on unknown rate parameters. Network propagation has been
shown to accurately capture the sensitivity of nodes to changes in other nodes; without the
need for dynamic systems and parameter estimation. Node sensitivity measures rely solely
on network structure and encode a sensitivity matrix that serves as a good approximation
to the Jacobian matrix. The use of a propagation-based sensitivity matrix as a Jacobian
has important implications for network optimization. This work develops Integrated Graph
Propagation and OptimizatioN (IGPON), which aims to identify optimal perturbation pat-
terns that can drive networks to desired target states. IGPON embeds propagation into an
objective function that aims to minimize the distance between a current observed state and
a target state. Optimization is performed using Broyden’s method with the propagation-
based sensitivity matrix as the Jacobian. IGPON is applied to simulated random networks,
DREAM4 in silico networks, and over-represented pathways from STAT6 knockout data and
YBX1 knockdown data. Results demonstrate that IGPON is an effective way to optimize
directed and undirected networks that are robust to uncertainty in the network structure.
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1. Introduction

Network analysis remains a cornerstone of systems biology that has been widely used to
examine gene regulation, protein-protein interaction and metabolic systems. Mathematical
representations of biological systems often depend on complex nonlinear functions that are
not fully understood and lack the dynamic data to fully parameterize. These systems can
be examined at steady-state, which reduces the model to a linear system. In applications, a
common objective is the inference of a network structure that captures the complex biolog-
ical relationship between variables. Although structure provides insights into the direct and
indirect relationships in a network, it represents a premature endpoint in an analysis.

Network propagation describes the process of absorbing information into a network and
propagating it through the network to update node states. Propagation can be used to initiate
information flow through a graph, and thus has the potential for prediction. In the field of
systems biology, this can be viewed as an in silico experiment within a biological network.
Although propagation has been broadly used in other fields, applications in systems biology
are limited. The PRIoritizatioN and Complex Elucidation (PRINCE) algorithm1 was one of
the first studies to associate network modules with disease through network propagation. The
PRINCE algorithm has been used to connect nodes in a graph representing biological variables,
such as proteins or genes, with disease.1 The iterative procedure generates prioritization scores
for vertices related to various diseases of interest obtained through graph propagation.

Recently, DYNamics-Agnostic Network MOdels (DYNAMO)2 was developed to connect
the ideas of propagation to the problem of characterizing perturbation patterns in a biological
system. The major finding was that a sensitivity matrix derived from propagation solely on
the structure of the network effectively captured the Jacobian matrix of partial derivatives
for biological systems. In other words, the sensitivity matrix captures the effects of small per-
turbations on individual nodes in the network. In most biological applications and databases,
only the network structure is known, without analytical forms of the biochemical reactions or
kinetic rate parameters. Thus, in practice, the Jacobian is difficult or impossible to obtain. The
performance of DYNAMO was benchmarked on a database of 120 BioModels representing dif-
ferent biochemical networks and model organisms. Propagation also outperformed alternative
approximations based on network measures such as distance and neighborhoods.

The ability to estimate a sensitivity matrix from propagation on the structure has im-
portant implications for network optimization, which to the authors’ knowledge has not been
explored. Coupling network optimization with a sensitivity matrix enables the identification
of optimal perturbations that will drive a system to the desired state, providing insight into
Biological Engineering and identifying optimal targets for drug therapy and interventions.
This work develops the first optimization framework that leverages the sensitivity matrix to
identify optimal perturbation patterns to drive a network to a target steady-state. A novel
approach, Integrated Graph Propagation and OptimizatioN (IGPON), is developed, which
casts the problem as an unconstrained optimization that minimizes the difference between a
current network state and a desired target network state.

A distinguishing feature of this method is that the optimization relies on using two pri-
mary ingredients: a parameterized network structure and target node states. Thus, IGPON
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bypasses the need for complex forms of biochemical reactions and derivatives. In contrast,
node states are defined iteratively through the PRINCE algorithm.1 Optimization utilizes
Broyden’s method,3 a quasi-Newton method that does not require functional forms of the ob-
jective function. It leverages a network-derived sensitivity matrix to represent the Jacobian.
The output of IGPON is the prediction of an optimal perturbation that will drive the network
to the desired state. IGPON is applied to simulated networks, DREAM44 in silico networks
and over-represented pathways from STAT6 knockdown data and YBX1 knockdown data5.
Results demonstrate IGPON as an effective way to optimize directed and undirected networks
that are also robust to noise in the sensitivity matrix that reflects potential misspecification
in the structure.

2. Methods

2.1. Graph propagation

A network (graph), G, is defined by a set of nodes (vertices), V , and edges, E, that connect
them. Mathematically, undirected graphs can be represented by a symmetric binary adjacency
matrix with entries gi,j = 1 when there is an edge between vertices vi and vj. Directed graphs
are binary matrices with gi,j = 1 if there is a directed edge between vi and vj. This work
utilizes propagation through graphs using the PRINCE algorithm,2 which is used to obtain
influence scores for each node.

Let, F t ∈ IRn, be the updated vector of n node scores at iteration t. Let D ∈ IRn×n be a
diagonal matrix with entries, d(i, i), that correspond to the sum of the absolute values of the ith

row of G. The normalized propagation weights are given as G′ = D−1/2GD−1/2. The influence
score at iteration t is given as F t := αG′F t−1 + (1−α) · Y , where α is a diffusion constant that
score enforces smoothness over the network, and Y is an initial set of scores, F 0. We define the
sensitivity matrix, S ∈ IRn×n, which captures a node’s influence on other nodes in the network.
The rows of the sensitivity matrix are computed by systematically setting each node to 1, and
the other nodes to 0, and propagating through the network. Notably, this iterative approach
to estimating the sensitivity matrix through propagation has been shown to converge to the
closed form.6 However, it has the added advantage of scalability to large networks. Whereas
the closed form sensitivity calculation requires large matrix inversions, which can be infeasible
or unstable.2

2.2. Unconstrained optimization

We define F (x) as a system of m non-linear algebraic equations, {f1(x), f2(x), . . . , fm(x)}, in n

variables, x = {x1, x2, . . . xn}. The objective is to solve the linear system: F (x) = Ax − b = 0,
where A is the Jacobian matrix of F (x). Broyden’s method is an iterative quasi-Newton method
for solving a nonlinear equation that can be used as an alternative to Newton’s method when
the Jacobian is expensive to compute, or unavailable.3,7 In our case, quasi-Newton methods
are required because both the Jacobian and the functional form of the system of nonlinear
equations are not known. In contrast to a graph modeled by a well-defined system of nonlinear
equations, our system is defined through graph structure and propagation. Let the initial
Jacobian, A0 ∈ IRn×n, be defined as the sensitivity matrix defined in Section 2.1. Let Ak be
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the Jacobian approximation at iteration k and let sk = xk+1−xk. Then, the updated Jacobian
approximation Ak+1 must satisfy the secant equation: Ak+1sk = F (xk+1) − F (xk). Broyden’s
method generates subsequent matrices using the update formula:3

Ak+1 = Ak +
(yk −Aksk)sTk

skT sk
,

where yk = F (xk+1)− F (xk). Broyden’s method is described in Algorithm 2.2.

Initialize: F : IRn → IRn, x0 ∈ IRn, A0 ∈ IRn×n

for k = 1, 2, . . .max do
Solve Aksk = −F (xk) for sk
xk+1 := xk + sk
yk := F (xk+1)− F (xk)

Ak+1 := Ak +
(yk−Aksk)sTk

skT sk

end for

Output: xk

2.3. Integrated Graph Propagation and Optimization

Integrated Graph Propagation and OptimizatioN (IGPON) is our approach to integrating
propagation (Section 2.1) into optimization (Section 2.2) for the purpose of driving a graph to
an optimal target state. A schematic describing IGPON is shown in Figure 1 for a simple ten
node graph. The network structure, G, can be directed or undirected and contains n nodes.
The structure is assumed to be known a priori as either inferred from data or specified by
an expert or database (Figure 1A). We define the propagation function, Φ (·), as the iterative
PRINCE algorithm. The sensitivity matrix2 plays the role of the initial Jacobian, A0, and is
estimated directly using graph propagation, Φ(G), as described in Section 2.1 (Figure 1B). Let
F 0 ∈ Rn×1 denote an observed network that we want to drive to a target state, F T ∈ Rn×1.
The observed steady-state of the nodes F 0 is assumed to result from the propagation of an
unobserved underlying state, x0, through the network (Figure 1C). Our objective is to identify
the underlying perturbation to this initial state, F 0+∆ = xT , such that Φ

(
F 0 + ∆

)
= Φ

(
xT

)
=

F T (Figure 1C). The unconstrained minimization problem is defined as:

min
x
‖Φ(x)− F T ‖2.

This objective can be embedded into an unconstrained optimization problem and solved with
Broyden’s method (Algorithm 1). However, in this setting, the objective function is not defined
in functional form, but rather defines a set of states approximated at every iteration through
propagation. Specifically, we define the state of the network through Φ(x) = F . The details of
IGPON are outlined in Algorithm 1.

2.4. Applications to simulations and biological pathways

Simulation: IGPON was applied to both simulated random graphs and data from the
DREAM4 in silico challenge.4 Random graphs were generated with 50 and 150 nodes us-
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Fig. 1. A schematic of the integrated graph propagation and optimization with biological applica-
tions (IGPON) method. (A) The structure of the network (graph), G, is assumed to be given. (B)
The sensitivity matrix derived through graph propagation, Φ(G), on the network structure, serves
as the initial Jacobian, A0. (C) IGPON drives an observed initial steady-state of the network, F 0,
to a target steady-state, F T , through the identification of an optimal perturbation, ∆, such that
Φ(F 0 + ∆) = F T .

Algorithm 1 Integrated Graph Propagation and Optimization (IGPON)

Initialize: A0 ∈ IRn×n, x0 = F 0 ∈ IRn, F T ∈ IRn

for k = 1, 2, . . .max do
Solve Aksk = −Φ(xk) for sk
xk+1 := xk + sk
Propagate Fk+1 = Φ(xk+1)

yk := Fk+1 − Fk

Ak+1 := Ak +
(yk−Aksk)sTk

skT sk

end for

Output: x̂T = xk, F̂ T = Fk

ing the Barabasi-Albert model8 implemented in the igraph package.9 The probability of an
edge between two arbitrary vertices was set at p = 0.10. The DREAM4 data are derived from
biological networks and are used as a benchmark in the community.4 DREAM networks that
are 10 nodes and 98 nodes were considered. The 98 node graph was derived from the DREAM4
100 node graph after the removal of two unconnected nodes.

The experimental setup was identical for simulated random graphs and the DREAM4
networks. For each graph, the values of target variable were drawn from a uniform distribution
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xT ∼ U [0, 1]. This variable was propagated through the graph to obtain the target state,
Φ(xT ) = F T . The values xT and F T are what we are seeking to estimate using IGPON (Figure
1). Initial estimates of the sensitivity matrix, A0, were obtained as described in Section 2.1.
A random initialization was generated, x0 ∼ U [0, 1], and propagated to obtain Φ(x0) = F0.
IGPON was applied until convergence ‖F T − F̂k‖2 < 10−6 and ‖xT − x̂k‖2 < 10−6. Convergence
of individual nodes, xi, was also assessed using relative error: Ferr(i) = |FT (i)−Fk(i)|

FT (i) . In order to
examine how robust IGPON is to misspecification in the network structure, we systematically
added white noise (10% – 50%) to the initial sensitivity matrix. A total of 100 graphs were
generated for each experimental condition.

Biological Pathways: Gene expression data was utilized from the knockTF database for
two different sets of experimental conditions.5 Knockout data for transcription factor sig-
nal transducer and activator of transcription 6 (STAT6) was extracted from the database.10

The knockout was reported to significantly alter pathways related to IL4/interleukin-4- and
IL3/interleukin-3-mediated signaling, and apoptotic activity. The gene expression data con-
tained wild-type controls (N = 27) and STAT6 knockout (N = 27).10 The mean gene expression
data used in this study was taken from the Gene Expression Omnibus10,11 accession GSE17851,
and our focus was the downstream IL-17 signaling pathway in KEGG,12 which was reported as
significant in the pathway enrichment analysis. Data related to the pro-oncogenic transcription
factor YBX1 was also extracted from the database. Briefly, YBX1 is an RNA-binding protein
involved in many important signaling pathways and associated with the occurrence and devel-
opment of numerous cancers. Our focus was restricted to the Hedgehog (HH) pathway and P53
pathway from the KEGG database,12 which were two downstream pathways over-represented
in pathway enrichment analysis reported in the database. The HH signaling pathway is shown
to be closely related to the development of tumor cells.13 The P53 signaling pathway plays an
important role in tumor suppression.14 The data included several different breast cancer cell
lines with both normal cell types (N = 24) and YBX1 knockdown (N = 24).15

KEGG identifiers from these pathways were mapped to the data and KEGGgraph16 was
used to construct the graphs in the R programming environment. The nodes that were uncon-
nected were eliminated. The HH pathway contained 52 genes and 162 edges, the P53 signaling
pathway contained 62 edges and 75 edges and the IL-17 pathway contained 53 genes and 147

edges. These subgraphs were used in connection with the IGPON algorithm. Both directed
and undirected versions of the graph were utilized. The undirected graphs were derived using
igraph9 conversion tools.

Each of the subgraphs was parameterized with the gene expression data to create two
graphs with the same structure, one for the treated (knockout/ knockdown), and one for the
controls. The objective was to use the IGPON algorithm to drive the states of the graph, F 0,
to the states of the target graph, F T . Without loss of generality, we assume the target graph
states correspond to the knockout or knockdown data, and the initially observed graph is
parameterized by the controls. Note that the selection of initial and target was arbitrary and
either set of states could play the role of the target. Sets of minimum driver node set (MDS)17

were also estimated from the graph structures as one of the following; critical (if that node
must always be controlled to control the system), redundant (never required for control), or
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intermittent (if it is a driver node in some control configurations, but not in others).

3. Results

IGPON was tested on simulations of random graphs, DREAM4 networks4 and using data
from a knockout database.5 In each simulation, the objective was to use IGPON to drive
the network to a target state. The number of iterations for the optimization varied according
to graph size, noise and complexity, but the number of iterations needed for the network
propagation required for the objective function was kept constant at 500, which was sufficient
for all cases considered. Overall, the results were found to be rather insensitive to the parameter
α, which controls the relative importance of prior information in the graph, which supports
previous findings.1

In the simulations of scale-free graphs and the DREAM4 networks, IGPON was able to
drive all simulations to their target states (Figure 2). Note that since, F̂ T = Φ(x̂T ) = Φ(F 0+∆̂),
we expect these error profiles to be correlated, which indeed they are for all simulations.
IGPON was also observed to be robust to up to 50% noise in the initial Jacobian (Figure
2). With no noise applied to the Jacobian, the graphs converge within only a few iterations
(Figure 2 A-D) in Figure 2. On the other hand, as the percentage of white noise is increased
from 10%, 25% to 50%, the iterations needed to bring the graph to the target state naturally
increases. In addition to noise levels, convergence is also clearly a function of graph size (Figure
2). For example, nearly three times the number of iterations are needed to push a larger graph,
such as the simulated N = 150 nodes, to its target state when the noise level was increased
from 25% (Figure 2H) to 50% (Figure 2L).

Individual node convergence profiles were also examined. Figure 3 shows the relative dif-
ference between the target for a node F T (i) and its estimated state F̂ T (i) for our simulation
with 50 nodes. The random initialization is relatively close to the target state by nature of
the parameters used for the uniform distribution (Figure 3A). However, as IGPON proceeds,
the nodes move further away from their targets (Figure 3B). Some nodes more actively move
around and take longer to settle (Figure 3B-D). In fact, many nodes begin to converge to their
target (Figure 3C) before again moving further away from the target (Figure 3D), and finally
converging (Figure 3B-D). This demonstrates the push and pull of node state values gained
through the propagation that are ultimately required to drive the graph to the target. There
does not appear to be any clear association between the node trends and graph properties
such as degree, and clustering coefficients (data not shown). Similar patterns and trends were
observed for graphs of various sizes in the simulations.

IGPON was also used to drive expression profiles to targets in the HH, IL-17, and p53
pathways. In both directed and undirected representations, convergence was achieved across
all noise levels (Table 1). As noise levels increased, more iterations were required to achieve
convergence. It is also clear that the directed graphs achieve faster convergence across the
board. Upon further investigation, there are substantial differences in the MDS node charac-
terizations17 in the directed and undirected representations. In the IL-17 directed pathway, 18
of the nodes were identified as critical, 10 were intermittent, and the remaining were redun-
dant. In the undirected representation of the IL-17 pathway, only two nodes were identified
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Fig. 2. Convergence profiles of the log(error) for F (coral) and x (blue). Simulated graphs are
ordered according to size (columns): columns 1 (N = 10), column 2 (N = 50), column 3 (N = 98),
and column 4 (N = 150). The rows represent the noise level added to the sensitivity matrix in the
optimization. (A-D) No noise is added (E-H) 10%, (I-L) 25% and (M-P) 50%.

as critical, 31 were intermittent, and the remaining were redundant. This trend was observed
for the other two pathways as well. In the HH pathway, in the directed representation 10 of
the nodes were identified as critical (1 in the undirected) and 12 were intermittent (19 in the
undirected). In the P53 pathway, in the directed representation 10 of the nodes were identified
as critical (3 in the undirected) and 6 were intermittent (13 in the undirected). Taken to-
gether, there is a migration of nodes from critical to intermittent classifications when moving
from directed to undirected representations. This may also influence the slower convergence
observed in the undirected representations. These observations regarding the diffuse structure
and weaker control in the undirected graphs are further supported by an examination of the
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Fig. 3. Node convergence profiles for the simulated 50 network with 25% noise added to the Jacobian

at select IGPON iterations k. The coloring of a node i corresponds to the relative error, |F
T−Fk(i)|
FT

at iteration (A) k = 1, (B) k = 50, (C) k = 100, (D) k = 150, (E) k = 200 and (F) k = 250.

sensitivity matrices. Overall, sensitivity matrices for the undirected graphs were found to be
of lower magnitude and exhibit weaker co-regulation patterns. In contrast, the sensitivity ma-
trices for the directed graphs had a larger range of magnitudes and patterns of co-regulation.
Sensitivity matrices for the IL-17 pathway directed and undirected representations are shown
in Figure 4. The HH and p53 exhibited similar trends (data not shown).

4. Discussion

IGPON embeds propagation into an optimization that can be used to drive an undirected/ a
directed graph to a desired steady-state. To the authors knowledge, this is the first approach of
this type that aims to drive a network to the desired state by optimizing node perturbations.
This novel approach harnesses connectivity patterns in the graph, and information propagation
through the graph to guide the optimization. We demonstrate this approach to be successful in
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Table1: Convergence of Biological Pathways to Target States

Pathway KEGG Nodes (genes) Graph Number of iterations

Name Identifier × Edges Type 0% noise 10% noise 25% noise 50% noise

HH 04340 52 × 162 Directed 2 69 154 278
Undirected 2 85 178 338

IL-17 04657 53 × 147 Directed 2 72 162 335
Undirected 2 87 202 388

p53 04115 62 × 75 Directed 2 79 199 383
Undirected 2 90 230 390
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Fig. 4. Sensitivity matrices for the IL-17 pathway (A) directed and (B) undirected representations.
The matrices are clustered to show patterns of co-regulation. Critical nodes (red), intermittent (blue)
and redundant nods are indicated by text color.

real and simulated networks with different sizes, different architectures, and with knockdown
and knockout data. IGPON is able to drive both directed and undirected graphs with up to
a 0.5 signal-to-noise ratio that expresses the uncertainty in the structure of the network.

In the area of biological networks, examples of analysis of steady-state biological systems
often center on flux estimation methods.18 In these methods, the objective is flux rate esti-
mation through the optimization of an objective function subject to physiological constraints.
Flux rates are represented as the edges in the graph, which depict biochemical reaction rates
or biochemical species uptake and release. IGPON can also be viewed as an optimization of
a steady-state model. However, in contrast with flux analysis, the quantity of interest are the
node values, not the flux rates.

This approach has many strengths. IGPON works with an assumed graph structure, but
makes no parametric assumptions, and does not require parameter inference. Our experiments
examine the addition of noise to the sensitivity matrix to demonstrate the robustness of our
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approach to structural uncertainty and misspecification in the edges. Even in severe cases,
with noise levels as high as 50%, IGPON converged to the target state. This notion of mis-
specification is an important one because in many applications, e.g., in the biological or social
sciences, the network structure may not be known exactly, or is assumed to have some struc-
tural uncertainty. A future direction of this work will be to extend this algorithm to address
problems with structural uncertainty through summarizations over ensembles of graphs. There
are also some limitations to our approach. The unconstrained optimization occurs over the full
set of nodes in the network. However, it may not be desirable, or even feasible to fully perturb
the entire network. A future direction of this work will be to couple IGPON with a feature
selection method. Extensions of IGPON into a constrained optimization framework would
enable feature selection and enable the use of bounds to enforce feasible values of nodes. This
extension will broaden the applications of this approach to drug discovery and intervention
predictions.

The Jacobian of a biological system conveys the sensitivity of individual nodes (e.g., bio-
chemical species) to changes in parameters. However, when the functional form of the system
is unknown, the specification of the Jacobian is not possible. This work builds from an impor-
tant result from Santolini et al.,2 which shows that the sensitivity matrix obtained through
systematic propagation within the network is a good approximation of the true Jacobian of
the underlying system. Although the Jacobian is updated at every iteration, the updated
sensitivity matrix in Broyden’s method was not considered an output of interest, although
also found to converge. Results suggest that both propagation through the structure and the
sensitivity matrix provide good approximations to the functional form of the system and its
partial derivatives, respectively. Taken together, we conclude that optimization frameworks
can be effectively bridged with propagation methodologies.

Network propagation is also used in connection with Probabilistic Graphical Models
(PGMs).19 In the PGM setting, evidence is incorporated into the graph and propagated
through derived clique graphs to make queries of interest regarding changes in joint, con-
ditional, and marginal probabilities. There are fundamental differences between PGM propa-
gation19 and the propagation described in PRINCE.1 PGMs require parametric assumptions
and parameter learning, whereas PRINCE relies on network structure only, but cannot be
interpreted probabilistically. Moreover, in PGMs exact probabilistic reasoning can only be
performed in directed acyclic graphs known as Bayesian Networks. PGMs that are directed or
undirected graphs with cycles are not guaranteed to converge to exact posterior probabilities,
making reasoning with them challenging. On the other hand, PRINCE can work with both
directed and undirected network structures, with no restriction on cycles.

In conclusion, the use of graph structure and the integrated propagation to optimize has
enabled us to drive any graph from an initial steady-state to another. IGPON works directly
with a network structure and does not rely on any complex parameterizations. Predicting
optimal perturbations to drive biological systems to a desired state is a promising area of
research in biological and genetic engineering. This approach is implemented in the igpon

package on GitHub and will be made available on CRAN upon publication.
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1. Overview

Precision medicine and precision public health rely on the premise that determinants of disease 
incidence and differences in response to interventions can be identified and their biology understood 
well enough that applications to reduce risk of disease and improve treatment can be 
developed. However, there are well-documented racial and ethnic disparities throughout health care 
at the patient, provider, and healthcare system levels. These disparities are driven by a complex 
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interplay among social, psychosocial, lifestyle, environmental, health system, and biological 
determinants of health (Freedman, et al. 2021).  

Inequities in genome-informed precision medicine are driven by a Eurocentric bias in genetic 
studies: the vast majority (86%) of genomics studies have been conducted in individuals of 
European descent. Eurocentric biases in genetics studies are not only inequitable, but also result in 
major missed scientific opportunities (Fatumo et al. 2022). As underrepresented minority 
populations within the United States grow to record numbers, and precision medicine is beginning 
to be deployed worldwide, it is increasingly important to invest in efforts to characterize, understand, 
and end racial and ethnic disparities in healthcare. 

2. Equitable risk prediction

Despite the significant advances in disease risk prediction derived from the analysis of the large-
scale data available in the UK Biobank, the underrepresentation of participants from minority and 
disadvantaged groups has limited the use of this data in the development of prediction models that 
can be generalized to diverse populations. The paper of Gu et al. (2023) proposes a transfer learning 
framework based on random forest models (TransRF) that can incorporate risk prediction models 
trained in a source population to improve the prediction performance in a target underrepresented 
population with limited sample size.  

Polygenic risk scores (PRS) are numerical indicators of risk based on multiple genetic markers 
associated with a disease or trait and are derived from data from genome-wide association studies 
(GWAS). Research in this field has recently accelerated, and scores are available for a wide array 
of traits and conditions, including for conditions such as coronary artery disease, type 2 diabetes, 
and common cancers. However, research has shown that their performance is lower and somewhat 
unpredictable in non-European populations. In this volume, Machado Reyes et al. (2023) present a 
method called FairPRS, which is based on domain-adaptation problems in machine learning such 
as Invariant Risk Minimization (IRM) to obtain an ancestry-invariant PRS estimates from pre-
computed PRS or GWAS summary statistics. FairPRS provides risk estimates with negligible 
effect of ancestral groups of the subjects, while increasing phenotype prediction accuracy, in both 
simulated and real data sets and showcases how machine learning methods can be applied to 
improve the portability of PRS. 

Regarding disparities in outcome prediction, Chu et al. (2023) employ association rule mining, 
a technique that infers probabilistic implications from data in transactional databases, to identify the 
most significant risk categories for adverse pregnancy outcomes (APOs) in a dataset of over 10,000 
nulliparous women, that is representative of the US population. Using this method, they find that 
the effects of age and body mass index have major yet differential effects on the risk of APOs and 
the observed racial/ethnic disparities. This work shows that association rule mining could be a 
powerful method to explore inequities in clinical datasets. 
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3. Pharmacoequity

While the growing body of pharmacogenomics research has significant potential for guiding 
treatment decisions, the persistent heterogeneity of observed treatment responses in many clinical 
situations suggests that additional genetic and other biologic factors may contribute to the success 
or failure of a given treatment approach in individuals of different racial and ethnic 
backgrounds. Pharmacogenomic studies have long neglected to collect data from African 
Americans, Hispanics/Latinos and other ethnicities, preventing an understanding of the role of 
ancestry in pharmacoequity. Yang et al. (2023) make some progress in this subject by analyzing the 
role of both global and local ancestry on measures of response to clopidogrel therapy in a cohort of 
167 African American patients. They find that local ancestry at the transcription start site of three 
relevant genes as well as ancestry-adjusted association with variants in another gene help to explain 
the variability in drug response seen in African Americans. 

The widespread availability of antiretroviral therapies (ART) for HIV-1 have generated 
considerable interest in understanding the pharmacogenomics of ART. In some individuals, ART 
has been associated with excessive weight gain, which disproportionately affects women of African 
ancestry. The paper of Keat et al. (2023) explored whether a multi-ancestry PRS for body mass 
index (BMI) can achieve high cross-ancestry performance for predicting baseline BMI in diverse, 
prospective ART clinical trials. They show that the BMI PRS explained ~5%-7% of variability in 
baseline BMI, with high performance in both European and African genetic ancestry groups, but 
that this score was not associated with the change in BMI on ART. This study thus argues against a 
shared genetic predisposition for baseline BMI and ART-associated weight gain. 

4. Race, genetic ancestry, and population structure

A challenge in precision medicine is the continued use of “race”— a categorization based on
common physical characteristics — and “ethnicity” — a categorization based on shared cultural 
traits — in medicine, which has become a matter of intense debate. A key element of genome-
informed precision medicine is the accurate assessment and utilization of ancestry to understand its 
impact on disease susceptibility and the outcomes of therapies. Genomics can capture ancestry in a 
more precise way, allowing genetic influences to be teased apart from the impact of social and 
environmental factors. Understanding shared genetic ancestry and defining genetically related 
subpopulations can help us better understand disease susceptibilities and health disparities. Along 
this topic, the work of Chaichoompu et al. (2023) presents improvements in an unsupervised 
method, IPCAPS, to identify population substructure guided by genetic similarity. This method 
could be particularly useful for populations in geographically confined regions, where IPCAPS was 
shown to detect meaningful subgroups, which are otherwise hard to detect with classic methods 
such as PCA or ADMIXTURE. These subgroups can be carried downstream in population or disease 
association analysis instead of race/ethnicity and could prove useful in precision medicine. 
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5. Conclusion

The heightened impact of COVID-19 on medically underserved populations and enhanced focus on 
social justice issues has highlighted the need to better address health disparities in a meaningful 
way. New computational and statistical methods are needed to assess, counteract, and overcome 
health disparities in healthcare. While there is much more work to be done, we believe the work 
presented in this session showcases advances that will be helpful to the goal of overcoming health 
disparities in precision medicine. 
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Despite the high-quality, data-rich samples collected by recent large-scale biobanks, the
underrepresentation of participants from minority and disadvantaged groups has limited the
use of biobank data for developing disease risk prediction models that can be generalized to
diverse populations, which may exacerbate existing health disparities. This study addresses
this critical challenge by proposing a transfer learning framework based on random forest
models (TransRF). TransRF can incorporate risk prediction models trained in a source
population to improve the prediction performance in a target underrepresented population
with limited sample size. TransRF is based on an ensemble of multiple transfer learning
approaches, each covering a particular type of similarity between the source and the target
populations, which is shown to be robust and applicable in a broad spectrum of scenarios.
Using extensive simulation studies, we demonstrate the superior performance of TransRF
compared with several benchmark approaches across different data generating mechanisms.
We illustrate the feasibility of TransRF by applying it to build breast cancer risk assessment
models for African-ancestry women and South Asian women, respectively, with UK biobank
data.

Keywords : Transfer Learning; Random Forest; Underrepresented Population; Breast Cancer.

1. Introduction

Risk prediction tools can guide disease prevention, early detection, and intervention. Some
well-known examples include the Gail model for assessing breast cancer risks,1 and the Bach
model for lung cancer risk prediction,2 which are helpful for both risk stratification and
cancer screening recommendations. Over the past few decades, genome-wide association
studies (GWAS) have identified significant genetic loci associated with many complex diseases,
suggesting the great potential for combining genetic information with epidemiological, clinical,
and other risk factors to further improve the performance of risk prediction models.3 With
the development of large-scale biobanks, such as the UK biobank (UKB),4 the Mass General
Brigham (MGB) biobank,5 and the Million Veteran Program (MVP) mega-biobank,6 clinical
information obtained from electronic health records is linked with participants’ genomic data,
health survey data, and other health-related measures, providing unique opportunities to

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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develop enhanced risk prediction tools that integrate different types of risk factors.7

However, a long-standing problem is the lack of participants from minority and disadvan-
taged groups in biomedical studies, which may lead to underperformance of risk prediction
models in these underrepresented populations, and might exacerbate health disparities.8,9 For
example, most breast cancer risk prediction models have been developed based on data from
White women, resulting in underestimated risk in Black women and inaccurate estimation for
other racial groups such as American Indian or Alaska Native.10 Many large-scale biobanks also
have disproportionately fewer participants from non-European ancestry than the European
ancestry populations. There are less than 6% participants of non-European ancestry in UKB,
while the MGB biobank only contains 6% African Americans, 5% Hispanics, and 4% Asians.
Such lack of representation has raised significant challenges for developing and evaluating risk
assessment tools for underrepresented populations. More inclusive data collection strategies
are needed to tackle these challenges, while methodological advancements are also essential to
improve the use of existing resources.

Transfer learning methods have been successfully applied in many areas, including text
recognition and imaging classification,11 due to their capability of leveraging shared information
from source populations with relatively sufficient data to build prediction models in a target
population with limited data. Unlike many transfer learning methods that require individual-
level data from both the source and target populations,12,13 we consider the situation where
we can only obtain fitted models from a source population instead of their individual-level
data. This is a common situation in biomedical studies, where data are often protected by
various regularities or rules to be made publicly available, while trained models can be shared
through open-source platforms such as GitHub, or more protected environments such as the
Phenotype Knowledgebase website (PheKB).14 As increasing efforts have been devoted to
building collaborative environments for evaluating and validating machine learning algorithms
across different health care datasets, sharing fitted models is expected to become increasingly
feasible.15 Consequently, model-based transfer learning methods that can leverage existing
fitted models are needed.

Existing model-based transfer learning methods mainly involve parametric models such
as regression,16,17 which may have limited predictive power when the model is misspecified.
Network-based deep transfer learning methods mostly follow the idea of fine-tuning a pre-
trained neural network,18 which often lacks clear model interpretation, practical guidance, and
theoretical justification.19 Among many risk prediction models, tree-based methods such as
random forest (RF) have been widely used in biomedical research, including risk prediction,20,21

disease diagnosis,22,23 and digital phenotyping.24 Tree-based methods enjoy several advantages,
including the ability to handle non-linear relationships, the property to learn feature importance,
and good interpretability. Importantly, recent studies have laid the theoretical foundation of
RF models,25 which further helps researchers to understand how well these methods work
under different scenarios.

The development of model-based transfer learning methods built upon RF models is still
an open area due to the non-parametric nature of RF. Recently, a few strategies have been
proposed based on using target data to either refine each source tree’s structure or adjust
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the numeric threshold of each split.26,27 Such structure-based transfer learning methods may
not perform well in cases where the optimal tree structures in the two populations are highly
different and each source tree performs relatively poorly in the target population. In addition,
pruning and adjusting a large number of trees with limited target data may be inefficient. The
lack of performance of the structure-based transfer learning methods are demonstrated in our
data application.

In this paper, we propose a RF-based transfer learning framework termed TransRF. Our
method is based on an ensemble of multiple transfer learning approaches covering various
types of similarity between the source and target models. Unlike existing work that relies on
tree structural similarities, our method is more robust and applicable to different scenarios.
More importantly, with slight modifications, our approach can be extended to adapt a broader
range of prediction models beyond RF. We evaluate our method using extensive simulation
studies and apply it to predict breast cancer patients in African-ancestry (AFR) women and
South Asian (SAS) women, respectively, using UKB data.

Fig. 1. The schematic illustration of TransRF, an ensemble of a forest trained using only the target
data (scenario 0) and multiple forests that transferred information from a source forest (described by
scenarios 1-3).

2. Method

2.1. Overview and notation

We start with an overview of the proposed framework. TransRF aims to improve the prediction
performance in an underrepresented population with limited data by incorporating a RF model
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trained in a source population with relatively more sufficient data. To leverage the information
contained in the source model, we develop transfer learning models that cover several practical
scenarios, in which the source model shares certain similarities with the target population. An
ensemble learning strategy is used to combine multiple transfer learning models to improve
the method’s robustness. A schematic illustration is presented in Fig. 1.

We denote (Y,X) as the target data, where Y ∈ Rn is the outcome variable and X ∈ Rn×p is
the p-dimensional feature variables. Correspondingly, we denote data from the source population
as (Ys, Xs). To improve the applicability of the method, we consider the case where only a fitted
source model m̂s(x) is available, which is an estimator of the true conditional mean function
ms(x) = E(Ys|Xs = x). The distribution of the target data can be different from the source
data, i.e., either the feature distribution or the conditional distribution mt(x) = E(Y |X = x)

could be different from the source. Our goal is to estimate mt(x), using target data (Y,X) and
the fitted source model m̂s(x).

2.2. Three ways to incorporate the source model

Leveraging feature importance. One potential similarity between the source and the target
models is that they may have similar feature importance rankings (see Scenario 1 in Fig. 1).
When training a RF model with limited target data, we can use the variable importance scores
obtained from the source model, which we denoted by S = (s1, . . . , sp). This is especially useful
when the number of features is large. The importance scores can be normalized to weights
to determine the probabilities of selecting the features in each tree.28 We denote the fitted
model as m̂(1)

t (x), and refer it to Model 1. Intuitively, Model 1 is expected to perform well if the
source and target share similar feature importance rankings, even if the underlying mt(x) and
ms(x) are highly different. When ms(x) and mt(x) are close, Model 1 might be less effective as
it does not directly use the predicted values from the source model. Thus, we introduce the
following two scenarios.

Calibration of the source model by learning the discrepancy. Due to population
heterogeneity, the predicted values m̂s(X) may not be accurate when directly applying the
source model to the target data. We propose to use the target data to calibrate the source model.
Denote the discrepancy between the two underlying true models as δ(X) = mt(X)−ms(X). One
possible situation is that δ(X) is independent or weakly correlated with ms(X) (see Scenario
2 in Fig. 1), meaning that the discrepancy term captures complementary information of the
source model. In such a case, instead of fitting a model using the original outcome Y , we
propose to obtain the residual term, defined as Y − m̂s(X), which is the difference between the
observed outcomes and the predicted values. Treating the source model as an anchor, we fit
a RF model using the residual term as the outcome and X as the features. When δ(X) has
some sparse or low-dimensional structure, we can benefit from such sparsity by targeting the
discrepancy term.29 Finally, we obtain m̂

(2)
t (X) = δ̂(X) + m̂s(X), which we refer to as Model 2

hereafter.

Calibration of the source model by adding a new feature. We now consider the case
where the discrepancy term δ(X) is correlated with the source model m̂s(X) so that the above
Model 2 might not be able to learn δ(X) accurately. In other words, m̂s(X) could be an
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important feature for predicting the discrepancy so as to predict Y . In this case, we propose to
add m̂s(X) as an additional feature for predicting Y (see Scenario 3 in Fig. 1). Since m̂s(X)

is likely an important feature, we propose using weighted RF and assigning it a large weight.
We can assign equal or different weights for other features, X, according to prior knowledge of
whether certain features have different effects in two populations. We denote the fitted model
as m

(3)
t (x), and refer it to Model 3.

2.3. Ensemble learning to boost the robustness and prevent negative transfer

Each of the models described above relies on certain assumptions about the true underlying
functions mt(x) and ms(x), where the validity of the assumptions is unverifiable in practice.
As we will later show in the simulation studies, the performance of Models 1-3 varies under
different settings. In addition, when the source population is highly different from the target
population, the source model could not provide any useful information to the training of the
target model, and the above models may even have lower performance compared to a RF
model trained by using the target data alone (the target-only model, or Model 0 shown in Fig.1,
denoted as m̂

(0)
t ). To prevent such “negative transfer” and to leverage the strength of each

model, we propose to obtain an ensemble model which is a linear combination of m̂(0)
t , m̂

(1)
t , m̂

(2)
t

and m̂
(3)
t . We denote the TransRF model as

m̂t(x) =

3∑
i=0

wim̂
(i)
t (x)

where wi is the weight of the i-th model. Many existing methods can be used to obtain the
ensemble weights. For example, with a small validation dataset (X̃, Ỹ ), we can obtain the
ensemble model by fitting a linear regression model treating m̂

(0)
t (X̃), m̂

(1)
t (X̃), m̂

(2)
t (X̃) and

m̂
(3)
t (X̃) as features. Alternatively, we can use methods such as Q-aggregation30 to learn the

weights. The sample size of the validation dataset can be relatively small compared to the
training data, and a cross-fitting strategy can be used to potentially achieve better accuracy.

As illustrated in Fig. 1, TransRF requires only the fitted RF model and the corresponding
feature importance scores from the source population, especially preferable in settings where
individual-level data is not shareable across sites. Our framework can be modified to incorporate
other possible transfer learning models that might work better in scenarios not described above,
such as the structure-based transfer learning models.26

3. Simulation studies

We conduct Monte Carlo simulations to assess TransRF and several comparisons under three
settings. Due to space limitations, we outline the data generating procedures in this section
and leave the detailed choices of parameters, transformation, and distribution functions in the
online Supplementary Materials. In each setting, we generate X and Xs from a multivariate
truncated normal distribution with different means to mimic the potential shifts in feature
distributions. The dimension of features is set to p = 20. The mean function ms(x) and mt(x)

are set to be some non-linear functions of X, which are different across settings. We then add
random noise to the mean functions ms(x) and mt(x) to obtain the outcomes in the source and
the target populations. For each simulated dataset, we generate target data of size n = 200 for
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the training purpose and an independent testing set with ntest = 100. A source sample of size
nsrc = 1000 is generated to fit the source model. We evaluate the model performance using the
mean squared prediction error (MSE) of the testing set over 200 simulation replications. We
now describe the three simulation settings:

(i) In Setting 1, we consider that the source and the target populations share a similar variable
importance ranking, where the similarity between the two populations is measured by the
correlation of their variable importance rankings. To generate ms(x) and mt(x), we apply
some non-linear transformations on each feature in X and obtain the transformed features
Z. We then combine the transformed features through a linear combination to obtain ms(x)

and mt(x), i.e., ms(x) = Zβs and mt(x) = Zβt, where βs and βt are p-dimensional vectors
whose magnitude determines the feature importance. By changing the correlation between
βt and βs, we vary the similarity degree of their feature importance.

(ii) In Setting 2, we consider that the discrepancy between ms(X) and mt(X) is independent
or weakly correlated with ms(X). To achieve this, we first generate ms(x) in the same
way described in Setting 1. We then generate δ(x), the function of a random subset of all
the features, on which we apply different feature transformations and linear combinations
compared to ms(x). We obtain mt(x) = ms(x) + δ(x). We vary the variance explained by the
source model ms(x) to control the similarity between the source and the target populations.

(iii) In Setting 3, we consider that the discrepancy term is correlated with ms(X). We generate
Ys following the same data generating mechanism in Setting 2 except that we set mt(X) =

Cms(X)+δ(X), where C is a constant. In this case, the true discrepancy is mt(X)−ms(X) =

(C − 1) ∗ms(X) + δ(X). With C ≠ 1, ms(X) is correlated with the discrepancy, and we vary
C to alter the strength of the correlation.

Fig. 2. MSE ratio compared to Model 0 (the target-only model) in simulation settings 1 (left), 2
(middle), and 3 (right).

In each setting, we use Model 0, i.e., the target-only model, as the reference and compare the
performance of six models with it: (1) Source-only: m̂s(x); (2) Weighted: a weighted average of
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predictions from source-only model and target-only model, using inverse MSE of validation data
as weights; (3) Model 1: m̂(1)

t (x); (4) Model 2: m̂(2)
t (x); (5) Model 3: m̂(3)

t (x); and (6) TransRF:
the proposed method, combining Models 0-3. Note that for methods (2) and (6), a validation
dataset is needed to train the weights, where we randomly split nval = 50 samples from the
training data. For each method (k), k ∈ {1, . . . , 6} described above, we report its MSE ratio
compared to the reference, denoted as MSEk/MSE0, where a ratio larger than 1 represents
worse performance than the reference. In contrast, a ratio smaller than 1 represents improved
prediction compared to the reference. We build TransRF algorithm in R software31 on the
basis of viRandomForests package. Code to implement TransRF along with the example data,
and Supplementary Materials are available at https://github.com/gutian-tiangu/TransRF.

3.1. Simulation results

Results of Setting 1 (the left panel of Fig. 2) show that the performance of Model 1 improves
over the increasing correlation of feature importance. When the correlation is large, Model
1 outperforms most of the compared methods, while it performs slightly worse than Model
0 when the correlation is low. Interestingly, Model 2 performs well across all settings, which
might be due to the discrepancy term mt(x)−ms(x) under this setting is weakly correlated
with the source mean structure when we alter the correlations between the feature importance.
TransRF has the best performance over different correlation levels and the MSE ratios to
Model 0 range from 0.66 to 0.76.

In Setting 2 (the middle panel of Fig. 2), we observe that when the performance of the
source model increases, Model 2 outperforms all the compared methods. Since Model 2 has
much better performance than Models 0, 1, and 3, TransRF has nearly identical performance
as Model 2, with a MSE of 0.78 times that of Model 0.

In Setting 3 (the right panel of Fig. 2), we alter the parameter C in mt(X) = Cms(X)+ δ(X)

from 10 to 1 corresponding to three levels shown in the x-axis. When C is getting closer to
1, the variance explained by the source model increases (from low to high), and so as the
performance of the source-only model. When C is larger than 1, Model 3 performs better
than other methods and similarly to TransRF. When C = 1, the performance of all the other
methods improves, and therefore TransRF has better performance, where its MSE ratios to
Model 0 range between 0.08 and 0.30.

In summary, the performance of each transfer learning model varies in different settings,
where each model has the best performance in a specific scenario. TransRF that combines
Models 0-3 often outperforms its underlying constituents and is robust against negative transfer.

4. Application using UKB data

We apply TransRF to UKB breast cancer data, treating European (EUR) women as the source
population, and AFR women SAS women as the target population, respectively.

4.1. Defining breast cancer case and control, ancestry, and other variables

We identify breast cancer cases using the ICD-10 code (C50) following a recently released
UKB disease phenotyping definition.32 When using retrospective data like UKB to build risk
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prediction models, one should exclude the prevalent cases where observations already had
breast cancer diagnosed before they entered the study, and only keep incident cases who
developed breast cancer after entering the study. In our example, as the target sample size
is minimal, we want to keep as many target samples as possible. We decide to include both
incident and prevalent cases and only use time-invariant predictors (excluding variables that
can potentially happen after the diagnosis). When selecting candidate controls, we identify
women who have not been diagnosed with breast cancer or ovarian cancer (ICD-10 code, C56)
as these cancers are closely related.33 We select a subset of subjects to obtain controls with a
case-control ratio approximately equal to 1:2.

To define the ancestry population for EUR, AFR and SAS, we use a mutual set of self-
reported ancestry through UKB survey data and the principal component-based ancestry
prediction proposed by Zhang, Dey, and Lee.34 Only those whose self-claimed ancestry matched
the ancestry prediction are included. We define the following clinical variables that are commonly
known as breast cancer risk factors: ever smoking (yes or no), age at the start of menstruation
in years, had a college degree (yes or no), ever had a live birth (yes or no).35,36 For a small
percentage of participants who had missing age at the start of menstruation (<3%), we impute
the missingness with a mean age of 13. We identify 479 SAS samples (173 cases and 306
controls), 440 AFR samples (126 cases and 314 controls), and 43,576 EUR samples (14,240
cases and 29,336 controls) that contain complete data of outcomes and clinical variables. For
each target population, we randomly split a validation set of size 50 (20 cases and 30 controls)
and a testing set of size 90 (30 cases and 60 controls), whereas the remaining samples are used
as training data (339 samples including 123 cases and 216 controls when using SAS as the
target; and 300 samples including 76 cases and 224 controls when using AFR as the target).

4.2. Genotyping, quality control and imputation

Details on genotype calling and quality control for UKB data are described elsewhere.4 We
include 330 novel breast cancer susceptibility single-nucleotide polymorphisms (SNPs) identified
in a GWAS study.37 We perform standard quality control, including removing participants
who have mismatched self-reported sex versus biological sex, those who failed UKB official
genotype quality control, and all pairs of participants who are estimated to be genetically
related. A total of 272 SNPs are found in the UKB data, used as genetic predictors, among
which 151 contain a small percent of missingness (over 90% SNPs with missingness have a
missing rate < 5%). For each SNP with missingness, we impute the missingness using the value
with the largest frequency.

4.3. Results

Fig. 3 shows the area under the operating characteristic curve (AUC) of different transfer
learning methods after incorporating source model information for SAS as the target model in
the left panel and AFR as the target model in the right panel. When using AFR as the target
population, compared with Model 0 (dashed vertical line, AUC=0.61), Model 1 by directly
sharing the variable importance score has the highest AUC, equal to 0.70. Model 2 that learns
the discrepancy term has an AUC of 0.69, while Model 3 by including source predicted values
as the most important feature does not show improved performance with AUC equal to 0.60.
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TransRF by aggregating Models 0-3 shows an AUC of 0.70, a 10% improvement compared
to the target-only model and a 5% improvement compared to the weighted model by naively
aggregating Model 0 and the source-only predictions. On the contrary, the SER model by using
the target data to fine-tune the source tree structure26 shows the worst performance among
others. This may result from insu�cient target data to refine the tree or dissimilarity between
the source and the target tree structure.

When comparing the results that each uses SAS and AFR as the target population, we
observe that each transfer learning model performs di↵erently, e.g., Model 3 has the worst
performance in transferring EUR information to AFR while it has the best performance when
leveraging EUR information to SAS. This might be due to di↵erent similarities of genetic
architectures between EUR and AFR versus EUR and SAS.38

Fig. 3. AUC of transfer learning methods compared to Model 0 (the
target-only model) for SAS (left) and AFR (right).

In Table 1, we present
the top 20 important
variables from the source
and each target-only
model, along with the
corresponding variable
importance scores. Age
at the start of menar-
che is found in all three
models, and it is the
most important variable
in both the EUR model
and AFR Model 0. Two predictors, rs16886165 and “Ever had a college degree”, overlap in
EUR model and AFR Model 0, while the top one feature of SAS Model 0, rs4784227, is also
found important in the EUR model. In addition, rs9315973 is identified with high importance
in both AFR and SAS Model 0’s, an intron variant belongs to gene EPSTI1 that is known to
be associated with many traits and diseases, including breast cancer in European and East
Asian.39

It is worth noting that rs16886165 is an intergenic variant identified as associated with
breast cancer in European populations.40,41 The known risk e↵ect of rs4784227, an intron variant
mapped to gene CASC16, associated with breast cancer has been validated in European42,43

and East Asian ancestries.44–46 Other than these two SNPs, the ranking of the rest of the top
SNPs between the target and the source populations is not consistent, which might suggest
underlying di↵erences in genetic architectures across populations.38 However, with a limited
sample size in the target population, the estimated feature importance scores may have large
variability.

5. Discussion

In this study, we propose TransRF, a RF-based transfer learning framework targeting risk
prediction in underrepresented populations. By incorporating fitted models from a large source
population, TransRF combines the strengths of several novel transfer learning models motivated
by various practical situations. Our simulation studies reveal that the e↵ectiveness of di↵erent
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Table 1. Top 20 variables (importance score) from the fitted EUR model, Model 0 treating
South Asian (SAS) as the target population, and Model 0 treating African Ancestry (AFR)
as the target population. Variables identified from all three populations indicated in bold text.
Variables shared by the EUR and SAS populations are indicated in blue. Variables shared by
the EUR and AFR populations are indicated in red. Variables shared by the SAS and AFR
populations are indicated in orange.

Rank Fitted EUR model (score) SAS Model 0 (score) AFR Model 0 (score)

1 Menarche age (0.056) rs4784227 (0.043) Menarche age (0.148)
2 rs4442975 (0.021) rs7848334 (0.04) Had a college degree (0.048)
3 rs630965 (0.02) rs12472404 (0.031) rs2454399 (0.045)
4 rs10941679 (0.017) rs12422552 (0.031) rs144767203 (0.031)
5 rs16886165 (0.016) rs332529 (0.03) rs2181965 (0.028)
6 rs910416 (0.016) Menarche age (0.029) rs2403907 (0.02)
7 rs6913578 (0.016) rs4866496 (0.028) rs9693444 (0.019)
8 rs10096351 (0.015) rs78540526 (0.027) rs56387622 (0.018)
9 rs7072776 (0.014) rs4868701 (0.026) rs35542655 (0.018)
10 Had a college degree (0.014) rs719338 (0.02) rs7924772 (0.018)
11 rs9931038 (0.014) rs7842619 (0.02) rs16886165 (0.018)
12 rs35668161 (0.014) rs3010266 (0.019) rs3819405 (0.017)
13 rs552647 (0.014) rs10832963 (0.019) rs2356656 (0.016)
14 rs661204 (0.012) rs9315973 (0.018) rs9364472 (0.016)
15 rs4784227 (0.012) rs55872725 (0.018) rs9315973 (0.016)
16 rs17343002 (0.012) rs7830152 (0.018) rs11693806 (0.015)
17 rs11249433 (0.012) rs28539243 (0.016) rs7800548 (0.014)
18 rs10164323 (0.011) rs335160 (0.015) rs665889 (0.013)
19 rs10197246 (0.011) rs9712235 (0.015) rs889310 (0.012)
20 rs4602255 (0.011) rs7121616 (0.014) Ever had a live birth (0.012)

transfer learning models varies with the underlying relationship between the source and the
target models. TransRF reaches comparable performance to the transfer learning method with
the best performance across different scenarios, demonstrated by both simulation studies and
the application to UKB data.

Our paper considers the practical situation where we can only obtain a fitted model from
the source population, whereas the individual-level data are unavailable. A relevant problem is
transfer learning in a federated setting, where summary-level statistics (not necessarily the
trained model) can be shared across populations. In such a setting, Li et al.47 proposed a
federated transfer learning algorithm based on penalized generalized linear regression models,
which requires sharing the gradients of likelihood functions iteratively across populations, and
we refer to the relevant works discussed therein. This type of method is more applicable to
research networks with specific infrastructures to facilitate timely information sharing and
model updating. In contrast, the model-based transfer learning framework proposed in this
paper can be helpful in a broader range of applications.

There are several limitations to this study. In the breast cancer example, both instant and
prevalent cases are included. Due to the limited sample size in the target population, only
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including the breast cancer incidents will result in too few target samples. Although we only
use time-invariant features or features that are most likely to happen before breast cancer
diagnosis, such as education level and menarche age, there is still uncertainty in terms of
their actual temporal relationships. We aim to use this data example to show the feasibility
of TransRF. As a future direction, we will explore the potential of TransRF for disease
risk prediction by incorporating more precise temporal information based on codified and
unstructured information in biobank data.
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Polygenic risk scores (PRS) are increasingly used to estimate the personal risk of a trait
based on genetics. However, most genomic cohorts are of European populations, with a
strong under-representation of non-European groups. Given that PRS poorly transport
across racial groups, this has the potential to exacerbate health disparities if used in clinical
care. Hence there is a need to generate PRS that perform comparably across ethnic groups.
Borrowing from recent advancements in the domain adaption field of machine learning, we
propose FairPRS - an Invariant Risk Minimization (IRM) approach for estimating fair PRS
or debiasing a pre-computed PRS. We test our method on both a diverse set of synthetic
data and real data from the UK Biobank. We show our method can create ancestry-invariant
PRS distributions that are both racially unbiased and largely improve phenotype prediction.
We hope that FairPRS will contribute to a fairer characterization of patients by genetics
rather than by race.

Keywords: Polygenic Risk Scores; Fairness; Racial Disparity; Invariant Risk Minimization;
Machine Learning; Precision medicine

1. Introduction

Genome wide association studies (GWAS) were developed for finding statistical associations
between single nucleic polymorphisms (SNPs) and phenotype traits. Later, these associations
were then aggregated into a score – a polygenic (risk, for diseases) score (PRS) – for predicting
traits.1 PRS became extremely popular due to its promise of harnessing one’s genome to act
as a biomarker for personalizing medical risk estimation. This capacity for personalization
can also translate to heterogeneity on the population level with PRS helping to identify
subpopulations that are at higher risk of disease.2

Unfortunately, PRSs are plagued by many issues. Primarily GWAS cohorts strongly suffer
from a lack of sample diversity. For example, 79% of all participants in the NHGRI-EBI
GWAS catalog3 are of European descent despite being only 16% of the global population.4

The under-representation of minority groups in cohorts leads to inferior PRS because PRS

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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derived from European ancestry tend to perform poorly in genetically diverse populations
and even within other admixed European populations.5 As a simple example, polygenic scores
for height predict all Africans to be shorter than Europeans, contrary to empirical evidence.6

Thus, using PRS for precision medicine in its current form may exacerbate health disparities
until the lack of representation is solved.4

Reducing racial bias in genomic prediction may contribute to more equitable healthcare
for all. But to establish health equity in precision medicine we require better genetic cohorts
whose multi-ethnic representation matches real life. This solution, however, is resource heavy
and is long-term. Meanwhile, we can apply advances in machine intelligence to mitigate bias
in trait prediction from PRS.

There is prior work on using computational frameworks for making PRS generalize bet-
ter across subgroups. These include deconvoluting ancestry and partial PRS computation,7

computing ancestry-specific PRS to showcase their utility as predictors across different popu-
lations,8 or enabling more accurate effect size estimation by leveraging linkage disequilibrium
diversity with GWAS summary statistics.9 Advances in machine learning such as using transfer
learning-based methods10 and deep learning based methods have been applied to make PRS
more portable across ancestries.11 However, either some of these methods assume part of the
background genome is still of European origin7,10 or consider pre-computed associated markers
as input to reduce search space which can contain significant bias or spurious associations.

In this work, we apply a domain-adaptation-based paradigm called Invariant Risk Mini-
mization (IRM)12 in the context of PRS. We consider the problem of generalizability of PRS
as an out of distribution generalization problem, a common machine learning problem where
models are developed in one domain but are deployed in another.13 IRM’s goal is to generate
invariant predictors given multiple training domains. In our context, these different domains
are adapted to be the different ancestry groups, therefore allowing for race-invariant pheno-
type prediction from PRS. Our goal is then to learn a generalizable PRS that contains as little
ancestry information as possible, while still accurately predicting the phenotype of interest.

We present FairPRS, a framework for finding and mitigating bias in PRS which improves
generalizability across populations and make it portable while increasing the prediction accu-
racy of the phenotype of interest. FairPRS is robust across both rigorous simulation studies
involving arbitrary population structure and pre-computed PRS obtained from UK Biobank
(UKB).14

2. Methods

FairPRS offers an entire pipeline from genetic data to trait prediction. It has three possible
access points for input: genotypes, genotypes with summary statistics, or a pre-computed
PRS. We will explain the FairPRS framework herein, followed by the autoencoder architecture,
training, and evaluation phases of the pipeline. Thereafter, we will discuss the simulation and
real data used in the study for evaluating FairPRS including computational details.
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Fig. 1. Pipeline of FairPRS outlining the input variables: pre-computed PRS and genetic structure
as represented by PCs from test data, the autoencoder used with IRM loss for learning the fair PRS
output estimates with negligible ancestry influence.

2.1. FairPRS framework

The FairPRS pipeline is designed for ease and customization with multiple access points
based on the user needs. Moreover, the pipeline can be run for a user-determined number of
iterations for all or specific portions. The first stage focuses on processing the genotype data
towards PRS computation. It allows to calculate the summary statistics, from GWAS, and
principal components (PCs) of the genotype data. The PCs can be used as covariates for the
GWAS and as input to the FairPRS model. The summary statistics are computed using PLINK
v2.015 and the PCs are efficiently calculated for large scale data using TeraPCA.16 Next, the
pipeline allows starting at the PRS computation step if the user has previously calculated the
summary statistics. The betas are extracted from the summary statistics and used for PRS
computation through PRSice217 in the validation cohort.

Lastly, the third stage is the FairPRS model which uses the pipeline-computed or user-
provided PRS and PCs as input, while the phenotype and the PRS will be used for the training
supervision. The model is implemented as a dual task autoencoder and MLP as shown in
Figure 1. Briefly, first, the data is encoded into a shared latent representation. The latent
representation is then fed into two tasks in parallel: decoding the PRS input and predicting
the phenotype. The losses are then combined with the ancestry information to obtain the
IRM loss. The fair PRS estimates are obtained from the PRS decoder output. A key point in
this step is the automatic multi-thread hyperparameter tuning per iteration with allows the
pipeline to train high-performing models in an efficient manner. After the model training and
evaluation, the average performance over the iterations is reported and a dictionary with all
the results per iteration is saved for further analysis and reproducibility purposes.

2.1.1. Implementation and Evaluation

Detailed architecture The encoder is a single layer with ReLU activation, and latent space
size determined as a hyperparameter. Both the PRS decoder and the phenotype prediction
head perform a 10% dropout and then apply a single linear layer. The ERM loss is obtained
by adding the two MSE losses with equal weight. The final loss is a weighted sum of the
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ERM and IRM losses, with the weight being a hyperparameter. Adam method was used for
optimization.18 The framework is implemented using PyTorch 1.11.19

Training The proposed model allows using regression losses for the double task network and
employs multiple environments corresponding to the number of populations present in the
PRS data. An automatic hyper-parameter search with parallel trials is used while training
to fine-tune the model in a more efficient manner. The random search of hyperparameters
was done for the learning rate (log-uniform [10−5, 0.1]), the dimension of the latent space
(uniform from 2i : i ∈ [2, 9]), and the relative weight of the IRM loss (uniform [0.5, 1.5]). The
search space was defined based on preliminary experiments allowing for a wide search without
a prohibitively computationally expensive search space. Tuning was done using Ray Tune.20

UK Biobank data was also randomly split to train (70%), validation (20%), and test (10%)
sets. The best hyperparameter configuration was selected based on a validation set and was
subsequently used for evaluation.

Evaluation To test the model against a baseline in a fair way, both the original PRS and
those resulting from the model were regressed separately against the outcome using ordinary
least squares. The covariate-adjusted coefficients of determination (adjustedR2 scores) for both
models are reported. Regression was done in Python using statsmodels.21 Results per iteration
are computed to finally report the mean performance across all iterations.

2.2. Data

FairPRS was evaluated on multiple simulated and real datasets. The simulated datasets in-
cluded a wide array of configurations and were generated using the data simulator in a previous
work.22 Additionally, UK Biobank enhanced PRS (ePRS-UKB) for multiple phenotypes were
used to further evaluate the model in real-world scenarios across different disease outcomes.

Simulated data Three models for simulating genetic datasets with arbitrary popula-
tion structure: Balding-Nichols (BN), Prichard-Stephens-Donelly (PSD), and 1000 Genomes
Project (TGP) with 3 variance proportion configurations for genetic, environment and noise,
{vgen, venv, vnoise}, totaling in 9 different simulation scenarios were used to evaluate FairPRS.
We used three populations for BN and PSD and ten populations for TGP. For each, model
we generated 10 iterations resulting in 90 different datasets. The 3 proportions configurations
used were {vgen : venv : vnoise} = {5 : 5 : 90, 10 : 20 : 70, 20 : 40 : 40}. The number of causal
SNPs was set at 5% for all simulated datasets. Moreover, for all configurations the simulated
datasets included 100,000 SNPs, 10,000 samples for GWAS, 1000 for PRS training and 400
for PRS testing.

Real data PRS and ancestry data were obtained from the UKB for further model valida-
tion.23 ePRS-UKB for 6 different conditions across 104,231 multi-ethnic individuals were used
in our analysis, these are height, body mass index (BMI), glycated hemoglobin (HBA1C),
high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL).
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3. Results

3.1. Simulated data

FairPRS consistently achieved higher or comparable phenotype prediction accuracy with re-
spect to the original PRS computed by PRSice2,17 measured in terms of adjusted R2 af-
ter correcting for top eight principal components (PCs) computed by TeraPCA16 (Supple-
mentary Figure 1). FairPRS achieved better results on all models across all simulation sce-
narios (Figure 2), each run with 10 iteration for reproducibility. Kolmogorov-Smirnov (KS)

Fig. 2. Simulation study results for three simulation models, BN, PSD and TGP. A. Distributions
of ancestry-specific PRS computed by (i) PRSice2 and (ii) FairPRS. B. Box-and-whisker plot of
adjusted R2 between the phenotype and PRS computed by PRSice2 and FairPRS across the variance
proportions for {vgen : venv : vnoise}.

two-sample tests, a goodness of fit test of equality of the original vs. observed PRS distri-
butions were done to test the null hypothesis of whether the two distributions were sam-
pled from the same unknown distribution. This resulted in very low p-values (p < 10−160)
across all simulation scenarios which rejected the null hypothesis that the FairPRS dis-
tributions and the original PRS distribution were sampled from the same distribution
(see Supplementary Table 1). The KS tests were done using SciPy package in python.
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Fig. 3. Box-and-whisker plot of NRI (%) between the phenotype
and PRS after using FairPRS from pre-computed PRS, across the
variance proportions for {vgen : venv : vnoise}.

The Net Reclassification In-
dex (NRI), a percentage
score reflecting the direc-
tional change and the dif-
ference in adjusted R2 by
using FairPRS on top of
pre-computed PRS using
PRSice2 shows that as the
genetic variance (vgen) in-
creases in contribution to
the phenotype, the NRI also
increases (Figure 3). Hence,
when a pre-computed PRS
is augmented with FairPRS

not only do we observe a
higher R2 across all the sim-

ulation scenarios, but we also obtain a relatively unbiased PRS estimate with negligible an-
cestry influence.

3.2. Real data

To demonstrate how FairPRS estimates real-world traits, we applied it on UKB-ePRS across
six traits as mentioned above. FairPRS achieves considerably higher R2 compared to the pre-
computed ePRS-UKB for all traits analyzed (Figure 4).

Fig. 4. Applying FairPRS on UKB-ePRS estimates. A. Box-and-whisker plot of adjusted R2 be-
tween the UKB traits and PRS computed by PRSice2 and FairPRS. B. Box-and-whisker plot of NRI
(%) of adjusted R2 between the phenotype and PRS after using FairPRS from pre-computed PRS.

We compared FairPRS with another recent transfer learning approach, TL-PRS10 and
found that on the demo data set made available by TL-PRS, FairPRS performed similarly in
predicting the phenotype after correcting for covariates.
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We further examined the variance explained within each ancestry group. Figure 5 shows
that, for all traits, FairPRS achieves increased performances among white, mixed, black ances-
try groups while performing marginally better in the Asian ancestry group. HDL cholesterol
is decreased in black with marginal increase in other populations as it is known to have a
protective effect on Black British.24

Fig. 5. Applying FairPRS on UKB-ePRS estimates. Box-
and-whisker plot of NRI (%) of adjusted R2 between the
phenotype and PRS after using FairPRS from pre-computed
PRS per ancestry group.

FairPRS was run 10 times
for each ePRS-UKB trait ana-
lyzed for reproducibility and hy-
perparameter tuning. The NRI
was computed by the percent-
age difference in R2 when us-
ing FairPRS vs. pre-computed
PRS. Maximum NRI was ob-
served in glycated hemoglobin
(HbA1c) which is a biomarker for
Type 2 Diabetes and has been
shown to have high predictive ac-
curacy for PRS. This was fol-
lowed by BMI and Height, re-
spectively which are very well-
studied in terms of phenotypic
variance explained by PRS.25 KS
test for the two PRS distribu-
tions, FairPRS and pre-computed
ePRS-UKB also resulted in the

rejection of the null hypothesis (see Supplementary Table 2) and demonstrated that FairPRS
learns a domain invariant distribution different from its input. This shows how FairPRS can
result in better predictive accuracy in large biobanks such as UKB and can be integrated into
precision medicine efforts.

4. Discussion

In this work, we combined notions from classical genetics: the polygenic risk scores (PRS), with
notions from machine learning and domain adaptation. We developed a model that applies an
Invariant Risk Minimization (IRM) approach to estimating PRS. Using both synthetic data
and pre-computed PRS from the UK Biobank, we obtained PRS that are indistinguishable
across races, while improving overall prediction accuracy in terms of adjusted R2 and NRI.

Our results show that performance also improved within ancestry groups in the UK
Biobank data. Predictive performance improved for all ancestry groups, except Asians (east
and south), for whom the performance was equivalent to the ePRS.23 The fact that improve-
ment in accuracy did not come at the expense of either group is reassuring, suggesting FairPRS
is safe in the sense it might not cause more harm than using regular PRS.

Despite their potential, GWAS are often plagued by the over-representation of European
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ancestry populations in their cohorts. If left uncorrected, this disproportional representation of
population structure can lead to spurious associations and might only be able to explain a small
fraction of heritability, among others issues.26 As PRS are computed from GWAS summary
statistics, PRS inherits many of these drawbacks which contribute to its poor generalizability
and transferability across populations due to the underlying influence of LD structure and
environmental factors.2 Our method for finding fair estimates of PRS based on domain adap-
tation learns ancestry-invariant estimates which provide both qualitative and quantitative
advantages.

Domain adaptation is a sub-field of machine learning focusing on model performance across
multiple domains. The simplest driving example is when the distribution of data used for
development, shifts during the deployment of the model. For example, using images of Swiss
cows in the grassy Alps for training, while deploying the model to identify cows on the sandy
beaches of Corsica.12,27 By having training data from multiple such sources and by training
in an environment-aware approach - as with IRM, we can reduce the number of spurious
correlations our model learns, like the grassy Alpine background.

In this work, we extend the notion of “domains” to different population ancestries. We ap-
ply the IRM framework, a form of supervised domain adaptation, to adjust the pre-computed
PRS scores to be ancestry ignorant. Intuitively, we try to learn the most phenotype-predictive
PRS, while forcing ourselves to ignore (or “forget”) any residual race information. Using IRM
means we encourage the model to learn only information that is shared across ancestries. By
constraining the PRS distribution of ancestries to coalesce, we ensure that when using the
PRS for phenotype prediction, we get equal performance across ancestries. Thus, leading to
a fairer PRS.

Different ancestries do exhibit disparities in health-related measures, and, therefore, differ-
ent phenotypic distributions. However, these differences are rarely inherently biological. More
often they are the result of how different ethnic subgroups interact with the healthcare system
differently.28,29 (More formally, race disparities are more of an acquisition shift, rather than
population or prevalence shift30). Consequently, forcing to disentangle race information from
genetic information will (at least partially) remove race bias and will lead to a fairer usage of
genetic data when assessing genetic risk.

Nonetheless, IRM is not limitations-free. First, more generally, IRM includes a challenging
bi-level optimization that can fail if test data are too dissimilar to the training data.31 To
counter that, more advanced flavors of IRM have been subsequently developed.32 In this work,
we used the original formulation since we observe all environments (ancestries) during training,
guaranteeing that test-time environments are indeed similar to training-time ones. Secondly,
We also encountered difficulties when modeling binary traits, probably due to combining a
cross-entropy loss for the classification task with a mean squared error for the continuous PRS
reconstruction, which operate on different scales, requiring an additional hyper-parameter to
weigh between them and further complicating the training process. Substituting the cross-
entropy loss with an MSE, which is equivalent to a Brier score33 objective, lead to smoother
training, but not necessarily better performance. We aim to fix this part of the model in future
to obtain similar performance in binary traits as we observed in continuous traits. Thirdly, we

Pacific Symposium on Biocomputing 2023

205



saw a performance deterioration after increasing the number of expected environments and
having not all of these present in the dataset, e.g., when having six expected ancestries in
UKB experiments. However, in the real world we usually only have two to four ancestries that
present relevant population structure, so while this was observed, it might be less of concern.
An exciting future research direction is delving deeper into the interplay of FairPRS with
local-ancestry based methods which highlights population sub-structure.

Limitations notwithstanding, FairPRS can be used as a tool to find unbiased estimates
of pre-computed PRS or from GWAS summary statistics which would better predict the
phenotype of interest. Unlike other methods which adjusts for admixed populations or LD
interactions in computing PRS9,10 and needs summary statistics, LD information, etc. FairPRS
can work with pre-computed PRS as well as summary statistics, making it easier to work with.

FairPRS estimates can be used as a step forward to achieve equity in precision medicine
and evaluating disease risk in large clinical cohorts. It can be extensively used for out-of-
sample prediction with pre-computed PRS to obtain ancestry-robust PRS which transport
better across ancestries and datasets. In future work, we want to compare the performance of
PRS computed by state-of-the-art methods and ancestry-robust FairPRS and evaluate their
portability to other ancestries.

As the use of PRS is being advocated in clinical care, FairPRS can be an important tool
to achieve equity in healthcare as well as further our understanding of true genetic causes of
disease risk. We hope that FairPRS will contribute to a fairer characterization of patients by
genetics rather than by race.

Code Availability A Pytorch based implementation of FairPRS, along with scripts, de-
scriptions and sample data to run experiments are available at https://github.com/

ComputationalGenomics/FairPRS

Data Availability Simulated data is made available upon request. UKB-ePRS are available
from UK Biobank.

Supplementary Material Supplementary material is hosted in the Supplementary directory
in https://github.com/ComputationalGenomics/FairPRS
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helping with data access.
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Using Association Rules to Understand the Risk of Adverse Pregnancy
Outcomes in a Diverse Population
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Racial and ethnic disparities in adverse pregnancy outcomes (APOs) have been well-
documented in the United States, but the extent to which the disparities are present in
high-risk subgroups have not been studied. To address this problem, we first applied associ-
ation rule mining to the clinical data derived from the prospective nuMoM2b study cohort
to identify subgroups at increased risk of developing four APOs (gestational diabetes, hyper-
tension acquired during pregnancy, preeclampsia, and preterm birth). We then quantified
racial/ethnic disparities within the cohort as well as within high-risk subgroups to assess
potential effects of risk-reduction strategies. We identify significant differences in distribu-
tions of major risk factors across racial/ethnic groups and find surprising heterogeneity in
APO prevalence across these populations, both in the cohort and in its high-risk subgroups.
Our results suggest that risk-reducing strategies that simultaneously reduce disparities may
require targeting of high-risk subgroups with considerations for the population context.

Keywords: Adverse pregnancy outcomes, risk assessment, health disparities

1. Introduction

The U.S. department of Health and Human Services defines health disparity as a particular
kind of health difference that is closely linked with social, economic, and/or environmental
disadvantage.1 The American healthcare system has many examples of disparities between
communities.2–4 In 2016-2018, the all-cause mortality rate among Black populations was 24%
higher than among White populations nationally.5 Similarly, the Hispanic population in the
USA has lesser access to health insurance than other racial/ethnic groups—before the imple-
mentation of the Affordable Care Act in 2014, 30% of Hispanic individuals reported no health
insurance as compared to 11% of non-Hispanic White individuals.

In addition to the adverse consequences for the affected people and their communities,
health disparities result in larger economic burden for the entire nation.6,7 Eliminating health
disparities could have reduced direct medical expenses by approximately $230 billion, and
indirect productivity costs by more than $1 trillion for the years 2003-2006, with the most of
the estimated cost reduction attributed to the generally poorer health outcomes of the Black
and Hispanic communities.6

Adverse pregnancy outcomes (APOs) such as gestational diabetes mellitus (GDM),
preeclampsia (PReEc), preterm birth (PTB) and new hypertension (NewHTN) are known to
disproportionally affect racial/ethnic groups. As an example, a study of 5,562 women found

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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the rate of GDM was the highest among Asian American women (16%), followed by non-
Hispanic Black women (9%), Hispanic women (11%), and non-Hispanic White women (8%).8

In another study, non-Hispanic Black women were found to be significantly more likely to ex-
perience preterm birth, hypertensive disease of pregnancy, and small-for-gestational-age birth
than were non-Hispanic White women.9 Understanding these disparities is critical to ensur-
ing equitable health outcomes; however, due to the complex interaction between biological,
social, and environmental factors, the mechanisms that lead to their formation are difficult to
identify. It therefore remains challenging to design policies or intervention strategies that can
reduce both APO risks and existing disparities.10

When designing this study, we had four different goals in mind. First, to identify subgroups
at high risk for APOs from a large cohort pregnant women. Second, to quantitatively measure
racial/ethnic disparities within these high-risk subgroups and compare them to the population-
level disparities. Third, to identify potential intervention strategies that may lead to the
greatest reduction in APO prevalence. And fourth, to measure the impact of such intervention
strategies on existing disparities. To achieve this, we obtained data from the diverse nuMoM2b
cohort which contained clinical data for 10,038 nulliparous women,11 and used association
rule mining to identify high-risk subgroups. By increasing the resolution of the disparity
analysis from the population-level to high-risk subgroups, we gained additional insights into
the interplay between the main risk factors and disproportionate health outcomes. In addition,
by measuring the effects of potential intervention on disparity, we found that the largest risk-
reducing intervention may not be the largest disparity-reducing intervention. This finding
could have implications for the design of future clinical interventions, as risk factors may vary
significantly across racial/ethnic groups.

2. Methods

2.1. The nuMoM2b cohort

The Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-To-Be (nuMoM2b) cohort
was recruited prospectively to identify factors that contribute to APOs.11 The study enrolled
10,038 subjects from eight clinical centers in the US. Women were eligible for enrollment if
they had a viable singleton gestation, had no previous pregnancy that lasted more than 20
weeks of gestation (i.e., nulliparous), and were between 6 0/7 and 13 6/7 weeks of gestation
at enrollment, which was also the first study visit. Haas et al.11 provide an overview of the
biospecimen collection, clinical measurements, and standardized questionnaire instruments
that were collected during each of the three study visits and at delivery. The cohort is racially
and ethnically diverse, with more than 4,000 individuals reporting race other than White, and
has a high concordance between self-reported race and inferred ancestry from genetic data.12

Operationally, the cohort comprises of 1,509 subjects positive for at least one APO. Of those,
807 were positive for PTB, 568 for preeclampsia, 55 for fetal demise, 414 for GDM, and 406
experienced fetal growth restriction.

To capture an accurate representation of the participants prior to any clinical interventions,
we used data from the first study visit only. For quality control, 10 individuals with high
information missingness were excluded. To ensure our findings are based on sufficiently large
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sample sizes and to reduce possible confounding introduced by mixed cultural effects within
groups, only self-reported races/ethnicities with more than 100 participants were included
and participants who did not report race/ethnicity (n = 639) or reported more than one race
(n = 486) were excluded. Participants were then assigned to one of four racial/ethnic groups
based on their self-reported race and ethnicity: non-Hispanic Asian, non-Hispanic Black, non-
Hispanic White, and Hispanic. In total, 8,903 participants were included in the final analysis.

Our study primarily relies on clinical variables and the features selected for analysis in-
clude basic demographic features and a curated set of features previously known to affect the
likelihood of developing APOs.13 These include age, body mass index (BMI), family history of
diabetes mellitus (Family DM), polycystic ovary syndrome history (PCOS), Alternate Healthy
Eating Index-2010 (AHEI2010) score, activity levels measured by the metabolic equivalent of
tasks (METs),14 and high blood pressure (High BP). The diet of a participant was considered
“poor” if her AHEI2010 score was below the 25th percentile of all scores, “normal” if it was
between 25th and 75th percentile, and “good” if it was above the 75th percentile. Consistent
with previous studies, a participant’s exercise level was considered “inactive” if her METs is
below 450 and “active” otherwise.14,15 Participants reporting age or BMI of zero were recoded
as having missing age or BMI. For compatibility with downstream association rules analysis,
age and BMI were discretized into intervals as defined by the nuMoM2b study.11

2.2. Clinical data as a transactional database

To find interesting and interpretable patterns in the nuMoM2b data, we converted it to a
transactional database and performed association rule mining.16 An association rule is a prob-
abilistic implication discovered from a transactional database. For example, in the context of
nuMoM2b, a high-confidence rule {Race = Asian,Age > 40} ⇒ {GDM = 1} has the interpretation
“Pregnant Asian women above the age of 40 are likely to be diagnosed with GDM”.

A transactional database D = {t1, t2, ..., tm} is a set of transactions, where each transaction
is a subset of items from I = {i1, i2, . . . , in}. To represent a clinical database as a transactional
dataset, we first convert the collected descriptors and clinical measurements into clinically
relevant binary features such as {Race = Asian}, {Age > 40} and {GDM = 1}. Then for each
subject in the cohort, we create a transaction containing only those binary features (as items)
that are true for the subject. For example, based on the three features above, an Asian par-
ticipant above the age of 40 and diagnosed with GDM, would be represented as {Race = Asian,

Age > 40, GDM = 1}. In total, 25 binary features were created from Age (5), BMI (5), Family
DM (2), PCOS (2), High BP (2), Exercise (2), Diet (3) and APOs (4) in the nuMoM2b data.

2.3. Association rules

For a transactional database D defined on a set of items I, an association rule is an implication
of the form A ⇒ B, where A and B are disjoint subsets of I and are referred to as the antecedent
and the consequent of the rule, respectively. Typically, the evidence of a rule in D is quantified
in terms of the confidence defined as fraction of transactions containing all items in B out
of the transactions that contain all items in A. In other words, it quantifies the conditional
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probability of seeing B in a transaction given that A has been already seen. Formally,

ConfidenceD(A ⇒ B) =
SupportD(A ∪B)

SupportD(A)
,

where SupportD(A) is the fraction of transactions in D that contain A; i.e., SupportD(A) =
|DA|/|D|, and DA = {t|A ⊆ t, t ∈ D} is the set of transactions containing A. Applying these
definitions to the example above, ConfidenceD({Race = Asian,Age > 40} ⇒ {GDM = 1}) is the
fraction of women diagnosed with GDM out of all Asian women above the age of 40 in the
cohort; i.e., the empirical probability that a pregnant Asian woman above the age of 40 has
GDM. SupportD({Race = Asian,Age > 40,GDM = 1}) is the fraction of Asian women above the
age of 40 diagnosed with GDM in our cohort.

Association rules can be efficiently discovered with the Apriori algorithm.16 We apply Apri-
ori to the transactional database created from the nuMoM2b data using the efficient-apriori
Python package with the parameters min support = 0.0005, min confidence = 0.001, and
max length = 6. Afterwards, we extracted rules with APOs as the consequent; i.e., {GDM = 1},
{NewHTN = 1}, {PReEc = 1}, and {PTB = 1}.

2.3.1. Measuring clinical significance of association rules

While confidence is easily interpretable as a conditional probability, it fails to capture the
relative improvement over the baseline probability of the consequent.17 Any rule A ⇒ B, where
B has low support, is likely to have low confidence, irrespective of the relative increase in the
conditional probability over the baseline. Such rules are still important in clinical applications;
e.g., finding causal attributes for rare diseases. To overcome the limitations of confidence, we
use positive likelihood ratios (LR+), a standard measure used in clinical settings.18 Formally,

LR+(A ⇒ B) =
ConfidenceD(A⇒B)/(1−ConfidenceD(A⇒B))

SupportD(B)/(1−SupportD(B))
,

with asymmetric 95% confidence intervals determined by bootstrapping.19 We additionally test
the null hypothesis that the association between A and B occurs by chance, using Fisher’s
exact test, and compute the p-value.

2.4. Quantitative measure of disparity

Disparity of outcomes across different groups can be measured in several ways and there is
not a single best quantitative measure for it.20 We adopt the measure often used in the field
of economics to study income inequalities, and define disparity as the Gini coefficient of APO
prevalence rates among different populations.21 More formally, let a binary outcome variable
Y (e.g., GDM) take values Y = {0, 1}, where 1 (0) indicates presence (absence) of an APO.
Let X be a variable of interest (e.g., racial/ethnic group) taking values in X , where different
values of X characterize different subpopulations of interest. Let p(x, y) be a joint distribution
over variables X and Y . We define the disparity of Y with respect to (w.r.t.) X as the Gini
coefficient of the conditional probabilities p(Y = 1|X = x) over all values of x ∈ X ; i.e.,

δ(Y |X) = Gini
(
{p(Y = 1|X = x)}x∈X

)
, where Gini(S) =

∑
a∈S

∑
b∈S |a− b|

2|S|
∑

a∈S a
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computes the Gini coefficient of the set S. Note that Gini coefficient is scale independent,
due to normalization by

∑
a∈S a, unlike measures such as standard deviation. This property

makes it ideal to compare disparity between two populations (e.g., before and after removing
high-risk individuals) with outcomes on different scales.

We study disparity of APOs w.r.t. racial/ethnic groups in the nuMoM2b dataset. Under the
disparity formulation given above, an APO ∈ {GDM,PReEc,PTB,NewHTN} serves as Y and
racial/ethnic groups serve as X. Let D denote a cohort under study given as a transactional
database defined on a set of items I (Section 2.2). In particular, I contains items Y = 1 and
X = x for ∀x ∈ X . D defines an empirical distribution over X and Y given by

pD(x, y) =

{
SupportD(X = x ∪ Y = 1) when y = 1,

SupportD(X = x)− SupportD(X = x ∪ Y = 1) when y = 0,

where SupportD(A) denotes the Support of an itemset A ⊆ I computed on D. Furthermore,
the conditional probability pD(Y = 1|X = x) under D is given by

pD(Y = 1|X = x) = ConfidenceD(X = x ⇒ Y = 1),

where ConfidenceD(A ⇒ B) denotes the confidence of the rule A ⇒ B computed on D. Thus
the disparity of the APOs (Y ) w.r.t. racial/ethnic groups (X) on D is given by

δD(Y |X) = σ
(
{pD(Y = 1|X = x)}x∈X

)
, where σ(S) = Gini(S).

We are interested in the contribution of the high-risk subgroups, defined in terms of the risk
factors such as age and BMI, towards the overall prevalence and the disparities of each APO.
To do so, we evaluate the relative difference in APO prevalence and disparity when the high-
risk participants are omitted from the cohort. Let R ⊆ I be the attributes (not including
APO or racial/ethnic groups) identifying the high-risk individuals. Let DR = {t|R ⊆ t, t ∈ D}
denote the set of transactions (individuals) in D that contain R. Let DR = D \DR be the set
of transactions in D that do not contain R. The disparity of the APOs (Y ) w.r.t. racial/ethnic
groups (X) on DR is given by,

δDR
(Y |X) = σ

({
p
DR

(Y = 1|X = x)
}
x∈X

)
.

The relative change in disparity on removing the participants having all phenotypes/attributes
in R is given by

δDR
(Y |X)− δD(Y |X)

δD(Y |X)
.

Similarly, for the subpopulation having X = x, the relative change in the APO prevalence rate
on removing the participants having all phenotypes/attributes in R is given by

p
DR

(Y = 1|X = x)− pD(Y = 1|X = x)

pD(Y = 1|X = x)
.
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2.4.1. Identifying high-risk subgroups

To identify high-risk subgroups used in the disparity analysis, we started with the initial set
of rules with the APOs in the consequent, that pass the support and confidence thresholds.
The rules were further filtered based on the following inclusion criteria: LR+ value above 1;
does not contain the variable of interest (race/ethnicity) in the antecedent; and the size of the
antecedent is no more than 3.

3. Results

3.1. Association rules effectively identify high-risk subgroups

A total of 1,627 rules satisfied filtering criteria, among which 726 were nominally significant
(p < 0.05) and 527 (GDM: 188; NewHTN: 130; PReEc: 119; PTB: 90) were significant after
adjusting for multiple hypothesis testing using the Benjamini-Hochberg procedure.22 Among
the statistically significant subgroups, 21 rules had one attribute in the antecedent, 146 rules
had two attributes and 360 had three attributes. BMI and Age were the two most common
attributes in the rules, where 339 rules (64.3%) contained a BMI attribute and 234 rules
(44.4%) contained an Age attribute (Table S1).

The generated rules were able to capture many known risk factors that are common to all
APOs. For example, obesity is a known risk factor for APOs and the subgroup {BMI ≥ 35}
was generated as a high-risk subgroup with varying likelihood ratios in APOs (Table 1). In
addition, the generated rules were also able to capture APO-specific high-risk subgroups. For
example, older age is a risk factor for GDM23 and NewHTN,24 while younger age is a risk factor
for PTB25 and PReEc.26 Consistently with prior findings, we observe the corresponding risk
groups {Age = 35-39} and {Age < 18} being generated in the association rules. The association
between dietary choices and risk on PReEc was recently reported27 and we similarly see an
increased risk for PReEc for the subgroup that has poor diet.

Table 1. Examples of statistically significant association rules for the nuMoM2b cohort.

Antecedent Consequent Confidence LR+ [95% CI] Adjusted p-value

{Age = 35-39} {GDM = 1} 9.6% (51/531) 2.5 [1.9, 3.2] 4.7× 10−7

{Age = 35-39} {NewHTN = 1} 21.1% (112/531) 1.4 [1.1, 1.7] 1.1× 10−2

{Age < 18} {PTB = 1} 14.3% (70/489) 1.8 [1.4, 2.3] 1.7× 10−4

{BMI ≥ 35} {GDM = 1} 8.8% (78/882) 2.3 [1.8, 2.8] 5.8× 10−9

{BMI ≥ 35} {PTB = 1} 11.9% (105/882) 2.2 [1.8, 2.7] 7.2× 10−4

{BMI ≥ 35} {NewHTN = 1} 25.3% (223/882) 1.8 [1.5, 2.0] 1.1× 10−10

{Diet = poor} {PReEc = 1} 7.9% (146/1853) 1.4 [1.2, 1.6] 3.0× 10−4

{Exercise = inactive,High BP = 1} {PTB = 1} 21.4% (19/89) 2.9 [1.8, 4.8] 5.7× 10−3

{Diet = poor,High BP = 1} {PReEc = 1} 22.2% (16/72) 4.7 [2.7, 8.1] 1.2× 10−3

{Age = 35-39,BMI = 30-35} {NewHTN = 1} 33.3% (22/66) 2.6 [1.6, 4.3] 3.6× 10−3

Furthermore, association rules were able to identify high-risk subgroups from combinations
of features where each feature individually may not necessarily be a strong risk factor. Such
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Fig. 1. The prevalence of each adverse preg-
nancy outcome (APO) with respect to self-reported
race/ethnicity. GDM: gestational diabetes mellitus;
NewHTN: new hypertension; PReEc: preeclampsia;
PTB: preterm birth. A pairwise comparison of APO
rates by race/ethnicity is available in Table S2.

combinations of features also allow for investigating the impact of a singular feature on an
existing subgroup. All generated rules are listed in Supplementary Table S1, which is available
online at the project github (https://github.com/hoyinchu/PSB_2023_Supplement).

3.2. Disparity is highly heterogeneous within and across APOs

We assessed the level of disparity over the entire cohort as well as in high-risk subgroups
finding significant heterogeneity across APOs (Fig. 1, Table 2) and risk groups (Table S1). For
example, Black participants have the lowest prevalence of GDM compared to other groups
(3.1%), but the highest rates of all other APOs (9.3% in PReEc, 11.1% in PTB, 19.4% in
NewHTN). Asian participants have the highest rate of GDM (10.8%), while also having the
lowest rate of PReEc (3.2%). The rates of APOs in White participants are comparable to
those in Hispanic, except for NewHTN (17.2% vs. 10.7%). Surprisingly, disparities in high-
risk subgroups do not follow a regular pattern either. In GDM, for example, the disparity of
the {Age = 35-39} subgroup (LR+ = 2.5; p = 4.7 × 10−7) is reduced from 0.268 (population;
Table 2) to 0.112 (high-risk subgroup; Table S1), whereas the disparity of the {BMI = 30-35}
subgroup (LR+ = 1.9; p = 1.1 × 10−6) is increased to 0.356 (Table S1). Similar patterns were
observed in other APOs.

Table 2. Prevalence and count of APOs in each racial/ethnic group, their respective disparity measure
and p-values from a chi-square (χ2) test.

APO
Asian

(n = 381)
Black

(n = 1291)
Hispanic
(n = 1587)

White
(n = 5644)

Total Gini χ2 p-value

GDM 41 (10.8%) 40 (3.1%) 72 (4.5%) 213 (3.8%) 366 (4.1%) 0.268 1.70× 10−10

NewHTN 57 (15.0%) 250 (19.4%) 169 (10.7%) 968 (17.2%) 1444 (16.2%) 0.114 9.32× 10−11

PReEc 12 (3.2%) 120 (9.3%) 90 (5.7%) 291 (5.2%) 513 (5.8%) 0.204 2.43× 10−8

PTB 27 (7.1%) 143 (11.1%) 130 (8.2%) 459 (8.1%) 759 (8.5%) 0.087 0.004

3.2.1. Disparities in high-risk GDM subgroups

For simplicity and interpretability, we focus our analysis mainly on single-attribute high-risk
subgroups. In GDM, the {Age ≥ 40} subgroup has the highest LR+ compared to other single-
attribute subgroups, followed by the {Age = 35-39}, and {High BP = 1} subgroups; Fig. 2a.
Among these subgroups, the one with the highest disparity measure was also the {Age ≥ 40}
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Fig. 2. The prevalence and disparities of GDM and high-risk subgroup relative contribution to the
disparity. (a) The LR+ associated with high-risk GDM subgroups. (b) The relative change in GDM
prevalence if a subgroup is omitted from the cohort. (c) The relative change in Gini coefficient if a
subgroup is omitted from cohort, with markings for statistically significant values. Exact values and
prevalence by each racial/ethnic group are available in Supplementary Tables S3-S6.

subgroup, followed by the {BMI = 30-35} and {High BP = 1} subgroups (Table S3). We then
evaluated the proportion of GDM patients in each of these subgroups to understand how
these risk-factors may differentially impact races/ethnicities. We found that across risk-factors,
Asian participants have higher rates of GDM compared to other races/ethnicities within the
same subgroup except in the {Age = 35-39} subgroup (Table S4). In particular, the rate of
GDM is considerably higher in the {Age ≥ 40} subgroup, which is also the subgroup with the
highest GDM disparity measure (Table S3).

We next investigated the contribution of GDM rates from each high-risk subgroup to the
overall GDM rate in the cohort by calculating the relative difference between the rate of GDM
before and after the subgroup is removed from the cohort; see Methods. We observe the largest
decrease in GDM rate if the {Family DM = 1} subgroup is omitted, followed by {BMI ≥ 35} and
{BMI = 30-35} subgroups; see Fig. 2b and Table S5. Subsequently, we calculated the relative
change in disparity if these subgroups were to be omitted. We observe the greatest decrease
in GDM disparity when the {Age ≥ 40} subgroup is omitted (Fig. 2c), which is reflected in the
large decrease in GDM rate in Asian participants (Table S6).

3.2.2. Disparities in high-risk NewHTN subgroups

In NewHTN, the top three single-attribute subgroups with the largest LR+ are {BMI ≥ 35},
{BMI = 30-35} and {Age = 35-39} (Fig. 3a), where the disparity measure is the highest in the
{BMI = 25-30}, {BMI ≥ 35} and {Family DM = 1} subgroups (Table S3). The relative prevalence
of NewHTN by race/ethnicity in each high-risk subgroup is highly heterogeneous: in high
BMI groups such as {BMI = 25-30} and {BMI ≥ 35}, Asian participants have the highest rate
of NewHTN, whereas White participants have the highest NewHTN rate in the {Age = 35-39}
groups and Black participants have the highest NewHTN rate in the {Family DM = 1} group,
as shown in Table S4.

When omitted from cohort, the top three single-attribute subgroups that result in
the largest reduction in NewHTN rate were all BMI-related ({BMI ≥ 35}, {BMI = 30-35},
{BMI = 25-30}); see Fig. 3b. However, only the {BMI ≥ 35} subgroup led to a decrease in
disparity measure when omitted (Fig. 3c). The racial/ethnic group for which the reduction in
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Fig. 3. The prevalence and disparities of NewHTN and high-risk subgroup relative contribution to
the disparity. (a) The LR+ associated with high-risk NewHTN subgroups. (b) The relative change
in NewHTN prevalence if a subgroup is omitted from the cohort. (c) The relative change in Gini
coefficient if a subgroup is omitted from cohort, with markings for statistically significant values.
Exact values and prevalence by each racial/ethnic group are available in Supplementary Tables S3-
S6.

NewHTN risk was the highest was also different for each BMI subgroup, where omitting the
{BMI ≥ 35} subgroup leads to the greatest reduction in NewHTN risk in Black participants,
omitting the {BMI = 30-35} subgroup leads to the greatest reduction in NewHTN risk in His-
panic participants, and omitting the {BMI = 25-30} subgroup leads to the greatest reduction
in NewHTN risk in Asian participants (Table S6).

3.2.3. Disparities in high-risk PReEc subgroups

The subgroup with the highest LR+ for PReEc is the {High BP = 1} subgroup, followed by
the {BMI ≥ 35} and {BMI = 30-35} subgroups (Fig. 4a, Table S3). The disparity measures for
each of these subgroups are also similar, with {High BP = 1}, {PCOS = 1} and {Age < 18} being
the three subgroups with the highest disparity (Fig. 4b), two of which are also in the highest
disparity subgroups for PTB. The rates of PReEc by race/ethnicity are comparable as well,
with Black participants having higher rates of PReEc across similar risk factors (Table S4).

The top three best PReEc risk-reducing when omitted single-attribute subgroups
are {BMI ≥ 35}, {Diet = poor}, and {BMI = 30-35}. Among these high-risk subgroups, the
{Diet = poor} subgroup is unique to PReEc and is not a high-risk subgroup found in other
APOs in isolation (Table S5). The best disparity-reducing single-attribute subgroup when
omitted is {High BP = 1}, followed by {BMI ≥ 35} and {Diet = poor}; see Table S5. The ef-
fect of omitting these subgroups on the overall rate of PReEc varied, where omitting the
{High BP = 1} subgroup leads to the highest reduction in PReEc rate in Black participants,
omitting {BMI ≥ 35} leads to significant reduction in both White and Black participants, and
omitting the {BMI = 30-35} or {Family DM = 1} lead to the highest reduction in PReEc rate in
Asian participants, although not statistically significant (Table S6).

3.2.4. Disparities in high-risk PTB subgroups

The landscape of disparity in PTB was vastly different from that in GDM. In PTB, the sub-
group with the highest LR+ is {High BP = 1}, followed by {Age < 18} and {PCOS = 1}; Fig. 5a.
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Fig. 4. The prevalence and disparities of PReEc and high-risk subgroup relative contribution to
the disparity. (a) The LR+ associated with high-risk PReEc subgroups. (b) The relative change in
PReEc prevalence if a subgroup is omitted from the cohort. (c) The relative change in Gini coefficient
if a subgroup is omitted from cohort, with markings for statistically significant values. Exact values
and prevalence by each racial/ethnic group are available in Supplementary Tables S3-S6.
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Fig. 5. The prevalence and disparities of PTB and high-risk subgroup relative contribution to the
disparity. (a) The LR+ associated with high-risk PTB subgroups. (b) The relative change in PTB
prevalence if a subgroup is omitted from the cohort. (c) The relative change in Gini coefficient if a
subgroup is omitted from cohort, with markings for statistically significant values. Exact values and
prevalence by each racial/ethnic group are available in Supplementary Tables S3-S6.

For these high-risk subgroups, the disparity measure is the highest in {Age < 18} followed by
{Age = 35-39} and {High BP = 1}; see Table S3. The prevalence of PTB by racial/ethnic group
also differed from that of GDM, with Black participants being the group with the highest PTB
rate across high-risk subgroups except those in the {Age < 18} subgroup, where the proportion
of PTB patients are the highest among White participants (Table S4).

When omitting high-risk subgroups, we observe the greatest reduction in PTB rate is
achieved when the {BMI ≥ 35} subgroup is omitted, followed by {Age < 18} and {High BP = 1}
(Fig. 5b). Omitting the subgroup {BMI ≥ 35} led to highest reduction in disparity, followed by
{Age < 18} and {High BP = 1}; see Table S5. Upon investigating the effect of omitting subgroup
on PTB rate by race/ethnicity, we found all three high-risk subgroups where reduction in PTB
prevalence is the most significant ({BMI ≥ 35}, {Age < 18}, {High BP = 1}) are also the groups
that when omitted lead to the highest rate reduction in Black participants (Table S6).

3.3. Major APO risk-factors are associated with population structure

Given the frequent occurrence of Age and BMI as attributes in high-risk groups and the
high variance in APO prevalence by race in these subgroups, we hypothesize that one of the
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Fig. 6. Age and BMI distributions for each racial/ethnic group in the cohort visualized using the
kdeplot function from the Python library Seaborn.

components for disparities in APO could be partially attributable to the differences in age
and BMI distributions between races/ethnicities in our cohort. We then employed the Kruskal-
Wallis H-test on the age and BMI distributions marginalized by race and found the difference
in distributions to be highly significant (Age: p = 8.7 × 10−280, BMI: p = 7.0 × 10−268); see
Fig. 6.

4. Discussion

Adverse pregnancy outcomes can affect a family long after the delivery, and the ability to
identify sources of disparities is crucial for ensuring equitable access to resources needed to
address these outcomes. In this study, we used association rule mining as a tool to detect
subgroups that are at increased risk for experiencing APOs, and evaluated the racial/ethnic
disparities within these subgroups. We discovered significant heterogeneity in APO prevalence
across racial/ethnic groups, quantified the disparity in each high-risk subgroup, and evaluated
each subgroup’s contribution to the total risk and disparity through observing the relative rate
change when the subgroup was omitted from the cohort. In addition, we identified significant
differences in age and BMI distributions across racial/ethnic groups, which appear to play an
important role in shaping the APO risk landscape. The simplicity and interpretable nature of
association rules also enable the findings to be accessible to wide audiences including clinicians
and policy makers. While the study does not model clinical intervention, our findings can be
used to inform planning of policy interventions, such as influencing resource allocation in
communities where disparities and health outcomes need to be addressed. For example, the
high prevalence of GDM among Asian participants above the age of 40 could serve as evidence
for prioritizing education on the potential impact of maternal age on the risk of gestational
diabetes in Asian communities, while the high prevalence of PReEc among Black participants
with high blood pressure could serve as evidence for prioritizing education on blood pressure
management in Black communities.

As with any clinical data, some variables used in our study may be underreported or in-
correctly recorded. Additionally, the modest sample size resulted in relatively large confidence
intervals in some high-risk subgroups. The change in APO proportion if a subgroup is omitted
also represents an idealized form of intervention with two strong assumptions; i.e., we assume
that if an intervention on a risk factor is given, then (1) this risk factor is reduced to 0% in the
population and (2) individuals who originally harbored these risk factors will proportionally
distribute to other subgroups. These should not be taken as a realistic estimate of how much
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APO prevalence might decrease if an intervention is placed on a specific risk factor but rather
an estimate of the contribution of the risk factors to the overall prevalence of APOs. It is
also worth mentioning that when a high-risk subgroup is omitted but the disparity measure
increases, it does not necessarily mean that addressing such a subgroup should not be per-
formed; instead, it shows that some groups may not receive equal benefits from addressing
these risk factors.

This study can be extended to include higher-resolution groupings of risk factors as well as
the possibilities that other factors (e.g., social, economic, cultural) could have larger impact on
disparities than the features investigated herein. Of note, however, this work does not provide
evidence for biological differences between races and ethnicities that may predispose one over
another towards certain APOs. Overall, this study calls for the investigation of disparities
beyond the population level, and brings to attention the importance of considering subgroup-
level disparities, which may manifest differently from their population form.

Acknowledgements

The authors acknowledge the support by the NIH grant R01HD101246 to DMH, SN, and PR.

References

1. R. Aungst, Perspect Audiol 7, 29 (2011).
2. Lasser et al., Am J Public Health 96, 1300 (2006).
3. Orsi et al., Am J Public Health 100, 349 (2010).
4. Lavizzo-Mourney et al., N Engl J Med 384, 1681 (2021).
5. Benjamins et al., JAMA Netw Open 4, e2032086 (2021).
6. T. Laveist and D. Gaskin, Int J Health Serv 41, 231 (2011).
7. M. Engelgau et al., Ethn Dis 29, 103 (2019).
8. E. Petersen et al., Morb Mortal Wkly Rep 68, 762 (2019).
9. W. Grobman et al., Obstet Gynecol 131, 328 (2018).

10. D. Williams and T. Rucker, Health Care Financ Rev 21, 75 (2000).
11. D. Haas et al., Am J Obstet Gynecol 212, 539.e1 (2015).
12. Guerrero et al., Genetic polymorphisms associated with adverse pregnancy outcomes in nulli-

paras, medRxiv 2022.02.28.22271641 (2022).
13. N. Artzi et al., Nat Med 26, 71 (2020).
14. W. Bao et al., JAMA Intern Med 174, 1047 (2014).
15. K. A. Pagel et al., JAMA Netw Open 5, e2229158 (2022).
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25. C. Ferré et al., Morb Mortal Wkly Rep 65, 1181 (2016).
26. J. Sheen et al., Am J Obstet Gynecol 220, S222 (2019).
27. N. Makarem et al., Circulation 145, A073 (2022).

Pacific Symposium on Biocomputing 2023

220



© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 
License. 

The Role of Global and Local Ancestry on Clopidogrel Response in African Americans 
Guang Yang1, Cristina Alarcon1, Paula Friedman1, Li Gong2, Teri Klein3, Travis O’Brien4, Edith A. 

Nutescu5, Matthew Tuck6, David Meltzer7, Minoli A Perera1 
1. Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine,

Northwestern University, Chicago, IL. 
2. Department of Biomedical Data Science, Stanford University, Stanford, CA.

3. Department of Biomedical Data Science and Department of Medicine, Stanford University,
Stanford, CA. 

4. Department of Pharmacology and Physiology, The George Washington University, School of
Medicine and Health Sciences, Washington, DC 

5. Department of Pharmacy Practice and Center for Pharmacoepidemiology and Pharmacoeconomic
Research, University of Illinois Chicago, College of Pharmacy, Chicago, IL. 

6. Washington DC VA Medical Center, Washington, DC and The George Washington University,
Washington, DC 

7. Section of Hospital Medicine, Department of Medicine, University of Chicago, Chicago, IL.

Pharmacogenomics has long lacked dedicated studies in African Americans, resulting in a lack of in-
depth data in this populations. The ACCOuNT consortium has collected a cohort of 167 African 
American patients on steady state clopidogrel with the goal of discovering population specific 
variation that may contribute to the response of this anti-platelet agent. Here we analyze the role of 
both global and local ancestry on the clinical phenotypes of P2Y12 reaction units (PRU) and high 
on-treatment platelet reactivity (HTPR) in this cohort. We found that local ancestry at the TSS of 
three genes, IRS-1, ABCB1 and KDR were nominally associated with PRU, and local ancestry-
adjusted SNP association identified variants in ITGA2 associated to increased PRU. These finding 
help to explain the variability in drug response seen in African Americans, especially as few studies 
on genes outside of CYP2C19 has been conducted in this population. 

Keywords: African American, Pharmacogenomics, Clopidogrel, Ancestry. 

1. Introduction

Clopidogrel is an anti-platelet agent used in coronary artery disease (CAD), acute coronary
syndrome (ACS) in patients undergoing percutaneous coronary intervention (PCI), peripheral 
vascular disease (PVD) and stroke. Wide inter-individual variation in response, defined by either 
laboratory response (i.e., P2Y12 reaction units [PRU]) or clinical response, has been documented.1,2 
High on therapy PRU (HTPR), defined as measures over 230, have been linked to greater risk of 
major cardiovascular events in clinical trials.3 Variable response is, at least in part, heritable, with 
up to 70% of the variability observed in clopidogrel response attributed to genetic factors.4,5  
 Clopidogrel is an oral prodrug that requires the hepatic cytochrome P450 enzymes, CYP2C19, 
to be biologically active. Several pharmacogenomic studies have shown that both loss-of-function 
(LOF) and gain-of-function alleles in CYP2C19 are associated with clopidogrel efficacy and risk of 
major adverse cardiac events. Specifically carriers of the CYP2C19*2 and *3 alleles are at a 
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significantly greater risk of myocardial infarction after stent placement than non-carriers.6,7 Hence, 
the Food and Drug Administration (FDA) added a boxed warning recommending the reduction of 
clopidogrel in patient carrying LOF variants in CYP2C19.8 Yet, African Americans (AAs) made up 
a small proportion of the initial pharmacogenomic discovery studies and clinical trials, and little is 
known about population-specific variation that may affect their response to clopidogrel.   
   Genetic admixture is the result of recent interbreeding between previously separated 
populations. In AAs, this has resulted in the addition of European DNA segments into the 
background of an African genome. The result is a genome which contains a mosaic of both 
populations. Genetic ancestry varies substantially between AAs, with the global proportion of 
African ancestry ranging from nearly 100% to as low as 20% in self-identified AAs.9 However, at 
any specific loci the local genetic ancestry can vary drastically, even between individuals that have 
relatively similar global proportions of African ancestry. This more fine-scaled ancestry is dubbed 
local ancestry (LA). this may be especially important for gene regulation, which occurs in discrete 
nearby locations to the gene. We have already shown that LA is an important in eQTL mapping for 
admixed populations and that global ancestry proportions are significantly correlated to the 
expression of several hepatic gene.10,11 Here we investigate the association of global or LA at 
candidate genes to clinical phenotypes related to clopidogrel response. 

2. Methods

2.1.  Cohort 

One hundred and seventy AAs on clopidogrel were recruited from 5 hospital system in Chicago and 
Washington DC (University of Chicago Medical Center, University of Illinois and Northwestern 
Memorial Hospital, George Washington University Hospital and Medical Faculty Associates, and 
the Washington DC VA Medical Center) through the African American Cardiovascular 
Pharmacogenomics Consortium (ACCOuNT).12 All subjects self-identified as AAs over the age of 
18, were able to consent and provided at least two blood samples: one purple top tube for DNA 
extraction and one sodium citrate coagulation tube for PRU measurement. All subjects were on 
clopidogrel for at least 15 days at the time of recruitment and PRU measures. PRU measures were 
obtained from either the Northwestern Memorial Hospital or the VA medical Center clinical 
laboratories through the VerifyNow Assay (Accumetrics, San Diego, California). Clinical and 
demographic variables related to clopidogrel response were collected and included: age, sex, 
concomitant medications, platelet counts, and indication for therapy. HTPR was prespecified as 
PRU greater than or equal to 230 on clopidogrel therapy as previously described.13 

2.2.  Genotyping and Quality Control 

The ACCOuNT clopidogrel cohort was genotyped with the Infinium Multi-Ethnic Genotyping 
Array (Illumina) at the University of Chicago Genomics Core. Quality control measures included: 
SNPs exclusion based on genotyping rate <95%, minor allele frequency (MAF) <5%, and failed 
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Hardy-Weinberg equilibrium tests p <0.00001. SNPs were also excluded if they were: A/T or C/G 
SNPs to eliminate flip-strand issues, SNPs on the X and Y chromosomes or mitochondrial SNPs. 
Genotype data was used to validate gender and identity-by-descent (IBD). Samples were also 
excluded due missingness >0.05, gender misspecification, or IBD >0.125. Additionally, principal 
components 1 and 2 were used to confirm ancestry of all individuals (Sup. Figure). Genotypes were 
phased using Eagle v2.4 and imputed using the TopMed Imputation server in NCBI build 38 (hg38) 
coordinates. Post imputation quality control involved exclusion of SNPs if the MAF was <0.05, 
imputation quality <0.8, and failed Hardy-Weinberg equilibrium tests p <0.00001. This resulted in 
141 subjects retain in the analysis. Because of the small sample size of our cohort, we restricted the 
LA analysis (described below) to a set of candidate genes known to be associated with clopidogrel 
response, adverse events, or platelet function while on clopidogrel. Genes were chosen from a query 
of significant variants associated to clopidogrel phenotypes from PharmGKB 
(https://www.pharmgkb.org/chemical/PA449053/variantAnnotation). This resulted in 35 genes 
used the LA ancestry analyses (listed in Appendix A). 

2.3.  Global Ancestry Association Analysis 

 The genotypes of 141 subjects were merged with HapMap phase 3 reference data from four 
global populations: Yoruba in Ibadan, Nigeria (YRI); Utah residents with Northern and Western 
European ancestry (CEU); Han Chinese in Beijing, China (CHB); and Japanese in Tokyo, Japan 
(JPT). Population structure of the merged data was inferred by the Bayesian clustering algorithm 
STRUCTURE deployed within fastStructure v1.0 and performed without any prior population 
assignment.14 We employed the admixture model, and the burn-in-period and number of Markov 
Chain Monte Carlo repetitions were set to 20,000 and 100,000, respectively. The number of parental 
populations (K) was set to 3. West African Ancestry (WAA) percentages of each subject were 
calculated and used for association to PRU and HTPR using a linear or logistic regression in R. 

2.4.  Local Ancestry Association Analysis 

We estimated the local ancestry of each subject with RFMix version 2 using YRI and CEU 
samples from 1000 Genome phase 3 as the reference populations, using a window size of 0.2 Mb. 
15 The LA at the gene transcriptional start site of each candidate gene was assigned as 2 African 
alleles (AFR/AFR), two European Alleles (EUR/EUR) of one of each (AFR/EUR) for association 
with mean PRU and HTPR. We used a general linear model (Gaussian method) in R for the 
association to PRU with LA and a general logistic binomial in R for the association of HTPR to LA. 
All analyses used age, sex, diabetes, hypertension and the first 2 genomics PCs as covariates. We 
prespecified a p<0.001 (0.05/35) as significant. 

 We conducted local ancestry-adjusted SNP association, restricted to SNPs within 1Kb of each 
candidate gene resulting in 10962 SNPs included in this analysis. We used the TRACTOR 16 
deconvolved model to conduct the ancestry adjusted analysis in each ancestry separately. 
TRACTOR uses the following model: 
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𝑌 = 𝑏! + 𝑏"𝑥" + 𝑏#𝑥# + 𝑏$𝑥$ + 𝑏%𝑥% + 𝑏&𝑥&	…+ 𝑏(𝑥( 

where x1 is the number of haplotypes coming from the index ancestry, and x2 and x3 represent the 
risk alleles, and x4-xk are other covariates such as age, sex, genomics PCs. This analysis produces 
ancestry specific effect size estimates and p-values for each SNP in each ancestry. We prespecified 
a p< 1x10-6 as significant. We then ran a meta-analysis on the deconvoluted AFR and EUR summary 
statistics using METAL.17 All analyses used age, sex, diabetes, hypertension and the first 2 genomic 
PC as covariates. These results were compared to association without the inclusion of LA conducted 
in PLINK. 

3. Results

We estimate WAA in our ACCOuNT clopidogrel cohort as well as in the 1000 genomes AFR and 
EUR superpopulations using fastSTUCTURE (Fig. 1). The average percentage of WAA in our 
cohort was 80.9% (range 53.9% - 95.8%).  

We investigate the association of WAA on both PRU and HTPR. In this cohort of patients, the 
prevalence of high on-treatment platelet reactivity (HTPR), was 26%. There was no significant 
difference in any demographic or clinical covariates between cases with HTPR and controls (Table 
1), though both Type 2 diabetes (T2D) and hypertension were more common in the cases  
(Percent difference 19.5%, p = 0.11, and 9.7%, p = 0.28 respectively) though not statistically 
different. Hypertension was associated to PRU (p<0.05) and was thus included in the downstream 
analysis. We included T2D as a covariate in all analyses as some of the candidate genes tested were 

Figure 1: Ancestry proportions continental and admixed populations. 
Admixture percentages inferred from fastSTRUCTURE in the EUR (TSI- Toscana in Italy, CEU – Utah residents 
with European ancestry, GBR – British, IBS – Iberian in Spain, FIN – Finns) and AFR (GWD – Gambians, ASW 
– African Americans, ACB, African Caribbeans, YRI - Yoruban, LWK – Luhya in Kenya, MSL - Mende in Sierra
Leone, ESN – Esan in Nigeria) superpopulations in 1000 genomes and the ACCOuNT clopidogrel cohort (black
box). fastSTRUCTURE was run with K= 3. Each column represents an individual within each population with the
proportion of each population shown as the colored bars. The African proportion (shown as in red) was use in the
global association analysis.
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specifically found in patient with diabetes while on clopidogrel. We then tested the association of 
both PRU and HTPR to WAA percentage. Neither of these phenotypes were associated with 
percentage of WAA (p = 0.09 and 0.14 respectively) 

Next, we tested if LA at the TSS of candidate genes was associated to either PRU or HTPR. We 
found no significant associations in either analysis, though three genes, IRS-1 (p= 0.02), KDR (p= 
0.02), and ABCB1 (p= 0.03) reached nominal significance with PRU, and IRS-1 reached nominal 
significance with HTPR (p= 0.05, lower HTPR in individuals with EUR ancestry). Additionally, 
CYP2C19, CYP2C9, and ECS1 showed suggestive association (p= 0.09, 0.09 and 0.06 respectively) 

Table 1: Demographics of the ACCOuNT cohort. 
Variable Cases (PRU³230) 

N=38 
Controls (PRU<230) N = 
103 

P-value

Age (mean ± SD) 67.3 ± 11.4 64.6 ± 14.5 0.27 
Sex (% Female) 14 (38.9%) 37 (41.6%) 0.94 
BMI (mean ± 
SD) 

28.96 ± 4.56 29.8 ± 6.7 0.41 

Type 2 Diabetes 
(T2D) 

24 (66.7%) 42 (47.2%) 0.11 

Hypertension 33 (91.7%) 73 (82.0%) 0.28 
Platelet count 
(mean ± SD) 

237 ± 68.38 254.6 ± 81.78 0.15 

p = 0.020, b = -23.26, R2 = 0.05 p = 0.020, b = -24.14, R2 = 0.05 

p = 0.03, b = 21.79, R2 = 0.05 p = 0.09, b = -20.21, 
R2 = 0.03 

Figure 2: Violin plots showing the association of LA at the gene TSS of IRS-1, KDR, ABCB1 and CYP2C19 
to PRU. 
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with PRU. Figure 2 shows that IRS-1, KDR, and CYP2C19 had higher PRU in individuals with local 
AFR ancestry and ABCB1 had lower PRU in individuals with local AFR ancestry. 

 We then investigated the ancestry-adjusted SNP association around candidate genes to PRU and 
HTPR. Given the high degree of African ancestry in our cohort, only the AFR-specific analysis is 
reported, as only a few AAs had adequate EUR ancestry at these SNP positions to be included in 
the analysis. However, we included the EUR-specific summary statistics in the meta-analysis to 
adjust for both ancestries. We identify a new near significant association in Chr. 5 at ITGA2 (lead 
SNP: rs7725246, p = 4.75 x10-5, b = -25.48) in the meta-analysis. This SNP also showed a 
suggestive association in the AFR-specific analysis (lead SNP: rs7725246, p = 1.36 x10-4, b = -
29.82) (Figure 3). The most significant SNPs in the EUR analysis were also found on in Chr 5 
(rs27618), but only reached a p-value at 0.003, as only 58 people were included in this analysis 
(Table 2). These SNPs are common across global populations. The most significant SNP at the 
CYP2C19 locus (rs1200314) has a higher allele frequency in AFR populations, is associated with 

Figure 3: Ancestry-specific GWAS results 
Manhattan plots of (A) AFR-specific and (B) Meta-analysis LA-adjusted SNP associations. Both analyses were 
corrected for age, sex, hypertension, diabetes and the first 2 PCs. The x-axis represents chromosomal location while 
the y-axis represents -log10(p value). Each dot is a SNP tested for an association with PRU and the color of each dot 
represents the effect size of the association where blue and red colors are negative and positive effects, respectively. 
A significant threshold line is drawn at 1x10-6.  A suggestive threshold line is drawn at 1x10-4 
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increased PRU and is not in LD with CYP2C19*2 (r2< 0.02). Of note, the CYP2C19*2 alleles were 
not significant (p > 0.02) in either the AFR-specific analysis or the meta-analysis. None of these 
SNPs were signficanat in in the standard association analysis using PC correction. 
Table 2: Top SNPs from LA inferred (LAI) SNP association. 

AFR-specific results 
Chr SNP EAF Effect P 

5 rs7725246 0.70 -29.82 1.36E-04 
10 rs1200314 0.87 33.54 8.51E-04 
15 rs7182019 0.47 28.82 1.05E-03 

Meta-analysis results 
Chr SNP EAF Effect P (LAI) P (Standard analysis) 

5 rs7725246 0.70 -25.48 4.75E-05 0.89 
10 rs1200314 0.87 30.58 1.37E-03 0.03 
15 rs4271565 0.21 29.61 7.01E-04 0.67 

4. Discussion

Here we describe the association of both global ancestry and LA at candidate genes with clinically 
relevant association to clopidogrel response. Antiplatelet therapy with clopidogrel has been the 
mainstay for thromboprophylaxis of CVDs18. The American Heart Association and American 
College of Cardiology recommend clopidogrel as first-line antiplatelet therapy in patients suffering 
non-ST-elevation acute coronary syndrome.19 Despite the clinical benefits, many patients have 
cardiovascular events after being prescribed clopidogrel and inter-individual variability in drug 
response affects both the efficacy and safety profile.2 Little is known about the effect of population 
specific variants on clopidogrel response outside of East Asians and Europeans. Most GWAS 
studies of both PRU and adverse cardiovascular event after clopidogrel treatment have not included 
African Ancestry populations. Given the unique cohort of an admixed African population taking 
clopidogrel, we explored the association of both global and local ancestry on PRU (a clinical 
measure of clopidogrel efficacy) and HTPR (a clopidogrel outcomes measure).  

  We identified nominal associations with the candidate genes IRS-1 (insulin receptor Substrate 
1), KDR (Kinase Insert Domain Receptor, also called VEGFR2) and ABCB1 (ATP Binding Cassette 
Subfamily B Member 1, also called MDR1) to PRU. IRS-1, a ligand of insulin receptor tyrosine 
kinase, is central to the insulin signal transduction pathway.20 SNPs within this gene have previously 
been associated with HTPR (as defined as the 75th percentile of the ADP-induced platelet 
aggregation) and ADP and arachidonic acid induced platelet aggregation in diabetic patients on 
clopidogrel.21,22 Notably, both studies were done in East Asian populations. Clinical trials have 
shown that diabetes mellites and high serum glucose are independently associated with clopidogrel 
nonresponse. In our study we did not see an association with HTPR and diabetes though we used 
T2D co-morbidity as a covariate in our analysis. As people with AFR ancestry at the locus had 
higher PRU, this suggests that IRS-1 may be more highly expressed in those with local African 
ancestry at this locus and thus may result in great nonresponse to clopidogrel therapy. Further 
experimental validation is needed. 
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KDR has been associated to arthrosclerosis and coronary artery disease (CAD) as well as 
clopidogrel non-response.23,24 KDR can bind to VEGF and cause angiogenesis. The dysregulation 
of this process is thought to contribute to a wide variety of diseases including atherosclerosis and 
CAD.25-27 Two SNPs, rs7667298 and rs2305948, in this gene have been associated with increased 
risk of angina pectoris when treated with clopidogrel in people with CAD.28 Both of these risk alleles 
are more common in African ancestry populations. The effect of these SNPs on KDR expression 
has been limited, with rs2305948 thought to affect the binding efficacy of VEGF to KDR and KDR 
serum levels.29,30 
 ABCB1 encodes an intestinal efflux transporter protein, P-glycoprotein, which modulate the 
absorption of clopidogrel. A LOF allele, rs1045642, in this gene has been association with major 
adverse cardiovascular event and death in patient on clopidogrel.31,32 ABCB1 gene expression has 
been shown to be higher in European as opposed to African Americans in peripheral blood.33 
Between different ethnic groups in Brazil, the allele frequency of  rs1045642 differs by group 
affiliation, with those identifying as African having the lowest frequency.34 In our study AFR 
ancestry at ABCB1 was associated with decreased PRU, suggesting this gene may play a smaller 
role in clopidogrel adverse events in African ancestry populations as compared to Europeans. 
 While the association of LA at neither CYP2C19 nor CYP2C9 reached nominal significance, we 
presented our findings as these genes have been the most widely studies in relation to clopidogrel 
response. The CYP2C19*2 allele explains about 12% of the variability in PRU in Europeans and 
7% of variability in PRU in admixed Puerto Ricans (mean EUR and AFR ancestry of 70% and 19% 
respectively).35,36 Our result show that AFR ancestry at the TSS of both genes trend toward higher 
PRU. In our previous work in African American primary hepatocytes, we found that CYP2C19 was 
significantly associated with proportion of WAA (global ancestry) with lower expression of 
CYP2C19 with increase WAA. This agrees with previous findings that African Americans as a 
group have higher major adverse myocardial event while on clopidogrel than other populations.37 
Notably, CYP2C19*2 was not significantly associated to PRU or HTPR, suggesting other variants 
may play a role in response variability. Taken together these findings suggest additional population 
specific variation in these genes may contribute to clopidogrel response. 
 In our AFR specific GWAS and meta-analysis we identified SNPs within ITGA2 with near 
significant associated with PRU. SNPs in this gene have been associated with residual platelet 
activity in the plasma of patient on clopidogrel and increase platelet aggregation.38,39 ITGA2 also 
positively correlated to platelet aggregation with collagen.40 Our previous work on population 
difference in the platelet transcriptome did not identify ITGA2 as differentially expressed.41 
 There are several limitations to this study. Our cohort size is small, especially for the HTPR 
analyses in which only 38 subjects were defined as cases. Thus, we are underpower to detect small 
to medium effects. Our LA-adjusted method is able to identify those alleles with large difference in 
allele frequency between populations but may have reduced power to find allele that have more 
similar allele frequencies between populations as previously reported.42 We were not able to 
replicate the previous associations found in CYP2C19 in the ancestry-adjusted SNP associations. 
Others have reported that the association to CYP2C19*2 to mortality and myocardial infarction risk 
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in AAs was not significant though these associations were robust in European subjects.43 The lack 
of AA cohorts on clopidogrel with PRU data hampers our effort to replicate our findings. Even the 
most recent GWAS by the International Clopidogrel Pharmacogenomics Consortium, which 
included 2592 patients, was exclusively European.44 

Our studies represent a unique analysis on an all AA clopidogrel cohort with PRU and HTPR 
phenotypes. This work highlights who variability in ancestry between African Americans may be 
useful in identifying potential genes and SNPs associated to pharmacogenomic phenotypes. 
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6. Appendix
Appendix A: Candidate Gene List 

Gene Effect on Clopidogrel 
ABCB1 Metabolism, Efficacy, ADR 
AGAP3 Efficacy (Asian only) 
ATP10A Efficacy (Asian only) 
B4GALT2 Platelet Aggregation, PRU 
CDH13 Efficacy 
CDH15 Efficacy 
CES1 Metabolism, Platelet Aggregation, Efficacy, 
CES1P1 PRU (East Asian only) 
CYP1A2 Survival and ADR (African Americans only) 
CYP2B6 PRU (European only) 
CYP2C19 PRU, HTPR, Platelet aggregation, Efficacy, 

Metabolism, ADR 
CYP2C9 PRU, HTPR, Platelet Aggregation, Metabolism, 

Efficacy, ADR 
CYP3A4 Platelet Aggregation (European only) 
CYP3A5 Efficacy, Platelet Aggregation, ADR, PRU, 

Metabolism 
CYP4F2 Efficacy, Platelet Aggregation, 
ECHS1 Efficacy (East Asian only) 
EFR3A Efficacy (East Asian only) 
F2R PRU (East Asian only) 
FMO3 HTPR (East Asian only) 
IRS-1 PRU (East Asian only) 
ITGA2 Platelet Aggregation, PRU, 
ITGA3 Efficacy 
KDR Efficacy 
MED12L Platelet Aggregation, PRU 
MYOM2 Efficacy (East Asian only) 

Supplementary Figure: PC plot of 
Clopidogrel cohort. 

PC
2 

PC1 
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Widespread availability of antiretroviral therapies (ART) for HIV-1 have generated considerable 
interest in understanding the pharmacogenomics of ART. In some individuals, ART has been 
associated with excessive weight gain, which disproportionately affects women of African 
ancestry. The underlying biology of ART-associated weight gain is poorly understood, but some 
genetic markers which modify weight gain risk have been suggested, with more genetic factors 
likely remaining undiscovered. To overcome limitations in available sample sizes for genome-wide 
association studies (GWAS) in people with HIV, we explored whether a multi-ancestry polygenic 
risk score (PRS) derived from large, publicly available non-HIV GWAS for body mass index 
(BMI) can achieve high cross-ancestry performance for predicting baseline BMI in diverse, 
prospective ART clinical trials datasets, and whether that PRSBMI is also associated with change in 
BMI over 48 weeks on ART. We show that PRSBMI explained ~5-7% of variability in baseline 
(pre-ART) BMI, with high performance in both European and African genetic ancestry groups, but 
that PRSBMI was not associated with change in BMI on ART. This study argues against a shared 
genetic predisposition for baseline (pre-ART) BMI and ART-associated weight gain. 

Keywords: HIV; AIDS; Polygenic Risk Scores; BMI; Pharmacogenomics. 

1. Introduction

1.1.  Many antiretroviral therapies for HIV are associated with weight gain 

There are ~1.2 million individuals in the United States and ~38 million worldwide living with 
HIV-1.1 With >30 FDA-approved antiviral agents for treating HIV-1, many available in 
combination co-formulated tablets, and with long-acting injectable agents now available, HIV is 
now a chronic treatable infection in most patients with access to contemporary antiretroviral 
therapy (ART). However, there remains considerable interindividual variability in HIV treatment 
responses including drug toxicity, immune recovery, and drug-drug interactions. Variable 
responses may be influenced by polymorphisms in drug absorption, distribution, metabolism, and 
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elimination (ADME) genes and/or off-target genes. Beyond the need to develop novel therapies 
and optimize current therapies are newer priorities which include achieving functional or 
sterilizing cure of HIV and reducing HIV-associated inflammation and immune activation so as to 
prevent end-organ complications. 

Weight gain following ART initiation is common with most modern ART regimens.2 The 
greatest weight gain has been observed in individuals of African ancestry, especially among 
women of African ancestry. While environmental and social factors likely play a role, there is also 
the potential for an underlying genetic predisposition.3 As a few examples among many, it has 
been shown that, among patients who switched from efavirenz- to integrase strand transfer 
inhibitor (INSTI)-based ART, CYP2B6 genotype was associated with weight gain, possibly 
reflecting withdrawal of inhibitory effects of higher efavirenz levels.4 Analyses using Phase 1 
clinical trials data showed that CYP2B6 slow metabolizers who switch from efavirenz to 
dolutegravir will have more prolonged subtherapeutic dolutegravir levels.5 In ART-naïve AIDS 
Clinical Trial Group (ACTG) studies, CYP2B6 slow metabolizers had less weight gain at week 48 
in participants receiving efavirenz with tenofovir disoproxil fumarate (TDF) but not those 
receiving efavirenz with abacavir.4 We previously discovered and replicated an association 
between CYP2B6 15582C→T (rs4803419) and efavirenz Cmin in self-identified Black, Hispanic, 
and white individuals, showed that this single nucleotide polymorphism (SNP) improved 
prediction of efavirenz plasma exposure in individuals living with HIV in South Africa, and 
showed that this polymorphism is associated with decreased plasma nevirapine clearance in 
Asians.6,7 While we and others have identified potential genetic associations with weight gain, a 
large proportion of variation remains unexplained. Given this discrepancy, it is plausible that 
susceptibility to ART-associated excessive weight gain will be affected by each individual’s 
overall genetic predisposition at many genetic loci. 

1.2.  Polygenic risk scores allow for prediction of complex traits such as body mass index 

Polygenic risk scores (PRS) are the cumulative, mathematical aggregation of risk derived from the 
contributions of many DNA variants across the genome. PRS are a powerful technology in the 
field of disease risk prediction and have been shown to be correlated with disease incidence in 
coronary artery disease, type 2 diabetes, atrial fibrillation, breast cancer, schizophrenia, and many 
other traits.8–15  In recent years there have been advances in PRS methodology that incorporate 
diverse ancestry groups, quantitative and qualitative phenotypes, and consider different linkage 
disequilibrium (LD) reference panels.16–19 In addition, PRS and SNP-based heritability estimation 
have been applied to body mass index (BMI) in large biobank populations and genome-wide 
significant SNPs have been shown to explain ~6% of trait interindividual variation in BMI (while 
considering all common SNPs, the estimate is greater than 20%).20,21 When considering the 
underlying genetic predisposition to weight gain in response to ART, is it possible that the 
underlying genetic background for BMI in populations without HIV will also be predictive of 
weight gain in response to ART? In this paper, we explore whether susceptibility to ART-
associated weight gain is influenced by each individual’s overall genetic predisposition to higher 
BMI as reflected by PRS for BMI (PRSBMI) derived from large datasets from populations without 
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HIV. Figure 1 shows an overview of our study design, which is described in more details in 
Methods. 

2. Methods

Fig. 1.  Study Overview 

2.1.  Data and Study Participants 

2.1.1.  GWAS Summary Statistics 

We used publicly available summary statistics from existing genome-wide association studies 
(GWAS) for BMI in European and African ancestry populations. The European ancestry summary 
statistics come from the GIANT consortium’s meta-analysis of ~700,000 individuals of European 
ancestry which contained 2,336,269 SNPs.21 The African ancestry summary statistics come from 
the African American Anthropometry Genetics Consortium’s GWAS of 42,752 individuals which 
included ~18,000,000 variants.22 Both sets of summary statistics were subset to the ~1.1 million 
HapMap3 SNPs included in the PRS-CSx LD reference for the PRS-CSx analysis.18 

2.1.2.  AIDS Clinical Trials Group Data 

These study data are from a retrospective analysis of a clinical trials cohort from efavirenz-
containing arms of prospective, randomized ACTG protocols. Data were from ART-naïve 
individuals who initiated efavirenz-containing regimens in ACTG studies A5095 (NCT00013520), 
A5142 (NCT00050895), and A5202 (NCT00118898) in the United States and consented to 
genetic testing.23–27 All participants provided written informed consent for genetic research and 

Pacific Symposium on Biocomputing 2023

235



provided DNA for analysis. Drug class components of regimens were randomly assigned 
(efavirenz-based versus comparator) except for nucleoside reverse transcriptase inhibitor (NRTI) 
choice in A5142. Eligible individuals met the following criteria: initial efavirenz-containing 
regimens included TDF or abacavir; available weight data at entry and week 48 (± 4 weeks); >100 
CD4 T-cells/mm3 at baseline and week 48; HIV-1 RNA <400 copies/mL at week 48; and 
available CYP2B6 genotypes. This cohort did not receive INSTIs. The participants’ sex was 
78.4% male (n = 413) and 21.6% female (n = 114). Data on participants’ gender was not available. 

2.2.  Quality Control 

2.2.1.  Genotypic Data 

DNA was extracted from whole blood collected from consenting participants, and DNA extracted. 
Samples were labelled with coded identifiers. Stored DNA was genotyped in seven different 
phases using different genotyping arrays. Phases 1, 2, and 3 were genotyped at the Broad Institute 
with HumanHap650Yv3_A for phases 1 and 2, and Human1M-Duov3_B for phase 3. For phases 
4-7, genotyping was performed at the Vanderbilt Technologies for Advanced Genomics
(VANTAGE) facility using the Human Core Exome chip for phase 4, HumanOmni2.5Exome-8-
v1.1_A1 chip for phase 5, the HumanOmni25-8v1-2_A1 chip for phase 6, and the Illumina
Infinium Multi-Ethnic Global BeadChip (MEGAEX) for phase 7.

Post-genotype quality control was performed by Vanderbilt Technologies for Advanced 
Genomics Analysis and Research Design (VANGARD).  All quality control steps were performed 
using PLINK version 1.9.28 Genotyping efficiency per participant was > 99% for all samples, and 
discordant samples between genotype sex and reported sex were removed from the datasets prior 
to imputation. After quality control steps, each genotyping phase was imputed separately using the 
TOPMed reference panel after transforming to genome build 38 using liftOver and stratification 
by chromosome to parallelize the imputation process.29 The seven imputed datasets were merged 
using PLINK, and we excluded imputed polymorphisms with imputation R2 scores < 0.3, 
genotyping call rates < 95%, or minor allele frequency (MAF) < 0.05.28 Genotype data were 
transformed back to genome build 37 using liftOver to allow compatibility with the PRS-CSx LD 
reference panels. Genetic ancestry was inferred using principal component analysis with 1000 
Genomes as the reference, to assign each participant to a superpopulation of African (AFR), 
Admixed American (AMR), East Asian (EAS), European (EUR), South Asian (SAS), or Other.  

2.3.  Polygenic Risk Score Construction 

2.3.1.  Pruning and thresholding 

A PRS for baseline BMI (PRSBMI) was created using PRSice 2.3.5 (2021-09-20) for LD clumping 
and p-value thresholding with default optimization parameters.17 A multi-ancestry LD reference 
was generated using data from the 1000 Genomes Project.30 Optimal p-value thresholds were 
estimated in a subset of the target data comprising 20% of the total target set (n=105/527) for both 
the European and African ancestry summary statistics. This threshold was then used to calculate 
an EUR-derived PRSBMI and AFR-derived PRSBMI for the remaining 80% of individuals. This 
approach was also used to separately optimize p-value thresholds for predicting BMI change on 
ART. 
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2.3.2.  PRS-CSx 

PRS-CSx (version July 29, 2021) was used to construct a multi-ancestry PRSBMI, where both the 
European and African ancestry summary statistics were jointly adjusted by the model using 
default optimization parameters to learn the shrinkage factor.18 The output was then converted to 
risk scores using the PLINK ‘--score’ function as described in the PRS-CSx documentation.28 The 
resulting PRSs were analyzed independently for their performance in each ancestry group and 
were also linearly combined to create a multi-ancestry PRSBMI. A mixing parameter for the 
combined PRSBMI was optimized in a subset of the target data comprising 20% of the total target 
set (n=105/527) and was optimized to minimize the difference in mean PRSBMI between the AFR 
and EUR ancestry groups. The resulting PRSCOMB took the form of PRSCOMB = PRSEUR + 
α*PRSAFR where α is the mixing parameter. 

2.4.  Computational and statistical analysis 

All data analyses were performed using python3, scipy, and pandas in a jupyter notebook.31–33 The 
distribution of PRSBMI scores was compared between ancestry groups to evaluate systematic 
ancestry-dependent trends and biases. Performance of each PRSBMI was evaluated as the R2 value 
of the PRSBMI in the test set against the phenotype of interest (baseline BMI or change in BMI). 
Linear regression was used to calculate a p-value for each PRSBMI. For the pre-ART BMI 
phenotype, we also adjusted for the first 10 principal components, age, sex, and baseline weight in 
our regression and calculated the incremental performance of our PRSBMI by comparing the 
PRSBMI + covariates R2 to the covariates-only model and recorded the p-value for the PRSBMI 
parameter in the PRSBMI + covariates model. For BMI change, we also adjusted for the first 10 
principal components, age and sex, as well as baseline BMI. 

Pacific Symposium on Biocomputing 2023

237



3. Results

3.1.  PRS-CSx produces a high-performing multi-ancestry PRS for baseline BMI 

Fig. 2.  Distribution of PRSBMI from PRS-CSx in each ancestry group. (A) European-derived PRSBMI 

vs baseline BMI. (B) African-derived PRSAFR vs baseline BMI. (C) Combined PRSAFR + PRSEUR vs 

baseline BMI. (D) Combined PRSAFR + PRSEUR vs BMI change from baseline to week 48 on ART. 

3.1.1.  PRSBMI generated from European summary statistics systematically overestimate BMI 
in African ancestry individuals 

Consistent with other work applying PRS across ancestry groups, the EUR-derived PRSBMI 
(PRSEUR) from PRSice and PRS-CSx both perform best in the EUR ancestry subset of our data 
and have significant performance decreases in other ancestry groups. Before covariate 
adjustment, PRSEUR from PRSice performs better at predicting baseline BMI in EUR than the 
PRSEUR from PRS-CSx, with an R2 of  0.080 versus 0.070. However, the PRSice PRSEUR 
performs very poorly in AFR compared to the PRS-CSx PRSEUR, with R2 in AFR of 0.0032 
and 0.055 respectively. Scatterplots of the PRS vs BMI show that the discrepancy in 
performance is accompanied by a systematic overestimation of AFR BMI in the PRSice 
PRSEUR (Supplementary Figure 1). This trend is also present in the PRS-CSx results (Figure 
1A). Full PRS performance results are provided in Supplementary Table 1. Interestingly, the 
performance of the PRSice PRSEUR in AMR was high, with an R2 of 0.110.  

3.1.2 PRS generated from African summary statistics produces a bimodal distribution 

Similar to the trend in PRSEUR, the AFR-derived BMI PRS (PRSAFR) performs better in the AFR 
ancestry subset of our data, with R2 in AFR of 0.052 and 0.062 for PRSice and PRS-CSx 
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respectively. However, the PRSAFR from PRSice performs much worse in EUR than the PRS-CSx 
one does, with R2 of  0.0063 and 0.034 respectively. In both the PRSice and PRS-CSx results, the 
distribution of PRS varies by ancestry, but the difference is particularly pronounced between AFR 
and EUR, where scores in the AFR population and EUR population from both PRSice and PRS-
CSx are entirely disjoint, with the highest AFR score being lower than the lowest EUR score 
(Figure 1B, Supplementary Figure 1).  

3.1.2.  Linear combination of the European and African PRSBMI improves performance in both 
European and African ancestry populations 

Given that PRSEUR overestimates BMI in AFR compared to EUR and that PRSAFR underestimates 
BMI in EUR compared to AFR, we combined the two PRS additively, tuning a mixing parameter 
such that we minimized the difference in mean combined PRS (PRSCOMB) between the AFR and 
EUR test sets (Table 1). Beyond outperforming both PRSAFR and PRSEUR in AFR test set, the 
PRSCOMB also improves performance in the EUR set. The PRSCOMB also improves performance for 
admixed individuals (AMR) over the PRS-CSx PRSEUR which achieved an R2 0.056. For 
comparison purposes, we explored a similar linear combination of the PRSice scores, but to avoid 
further reducing the sample size, we opted to optimize the combination in the entire test set by also 
minimizing the difference in mean PRS. Despite the possibility of overfitting to the test data, we 
found that this approach resulted in drastically diminished performance in the AFR test set, with 
an R2 of 0.0016. This seems to indicate that linear combination of PRSBMI from pruning and 
thresholding is not as effective for creating an unbiased multi-ancestry PRSBMI. Full PRSBMI 
performance results for predicting BMI in each ancestry group are provided in Supplementary 
Table 1. Additionally, when we adjust our PRSBMI for the first 10 principal components, age, sex, 
and height, the incremental performance of PRS-CSx PRSCOMB on the entire population is greater 
than the incremental performance of the PRSice PRSCOMB with R2 increases of 0.053 and 0.038 
respectively over the covariates alone. Furthermore, we see that the incremental performance of 
the PRS-CSx PRSCOMB is greater than the incremental performance of the single-ancestry PRS-
CSx PRSs (Supplementary Table 2).  

Table 1. Multi-ancestry PRS-CSx PRSCOMB performance for BMI prediction in 

each ancestry group 

Target Ancestry R2 p-value
EUR (n=206) 0.0725 9.1e-5 
AFR (n=128) 0.0795 1.3e-3 
AMR (n=43) 0.0674 0.060 
Multi-ancestry (n=422) 0.0663 8.1e-8 
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3.2.  PRSBMI is not correlated with weight change on antiretroviral therapy 

With our high-performing multi-ancestry PRSBMI from PRS-CSx, we then measured its 
performance in predicting BMI change from baseline to week 48 following initiation of ART. 
Across all ancestry groups, the PRSBMI was not a significant predictor of weight change and had 
small R2 values in all analyses (Table 2). The performance of the other PRSs for BMI change 
prediction can be found in Supplementary Table 3 with concurrent results. When we subsequently 
adjust for the first 10 principal components, age, sex, and baseline BMI, we see negligible change 
in prediction performance or statistical significance (Supplementary Table 4). This evidence 
further supports the conclusion that weight gain following ART shares little to no underlying 
genetic predisposition with baseline BMI.  

4. Discussion

Our work carries interesting implications for the underlying biology of ART-associated weight 
gain and for the application of PRS derived from large population GWAS for predicting 
potentially related traits. First, we were able to successfully construct PRS for BMI (PRSBMI) 
using large, publicly-available GWAS summary statistics for BMI in different ancestry groups. 
We showed that while pruning and thresholding produced higher performance in EUR using the 
EUR summary statistics, PRS-CSx produced a better multi-ancestry PRS, with the exception of 
the AMR population subset, where pruning and thresholding-based combined PRS performed 
higher than any other ancestry or PRS. A larger validation set of AMR individuals will be needed 
to see whether this performance holds, but this could be a consequence of the use of a multi-
ancestry subset of the dataset to tune the p-value threshold. Notably, we also demonstrated that our 
PRSBMI derived from summary statistics from a population without HIV is highly predictive of 
BMI pre-treatment in individuals with HIV. Through the use of PRS-CSx, we were subsequently 
able to create a multi-ancestry PRSBMI that performed very well in both EUR and AFR 
populations. This followed from the peculiar observation that the PRSAFR from both PRSice and 
PRS-CSx showed a disjoint bimodal distribution where PRSAFR is drastically lower in the AFR 
subset of the population. Since PRSEUR tends to overestimate BMI in the AFR subset, the PRSAFR 
can be seen as a “correction factor” for the PRSEUR, increasing scores for EUR and decreasing 
scores for AFR to mitigate the bias. Despite this trend appearing from both PRSice and PRS-CSx, 
PRSice did not produce a very effective multi-ancestry PRS.  

Despite the strong correlation between our PRSBMI and baseline BMI, the PRSBMI was not well 
correlated with BMI change in response to ART, and we did not find statistically significant 
evidence that PRSBMI is associated with BMI change in response to efavirenz-based therapy, even 
when adjusting for covariates including baseline BMI. Our results provide compelling evidence 

Table 2. Multi-ancestry PRSBMI performance for weight change prediction in each 

target ancestry group 

Target Ancestry R2 p-value
EUR (n=206) 0.0085 0.186 
AFR (n=128) 8.97e-07 0.992 
AMR (n=43) 0.020 0.305 
Multi-ancestry (n=422) 0.0073 0.080 
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that an individual’s genetic predisposition based on a common variant PRS for higher BMI may 
not contribute to greater ART-associated weight gain. It is still possible that other genetic models 
and/or low frequency variants not captured by PRS may play a role in ART-associated weight 
gain. Future research on the causes of ART-associated weight gain should explore distinct 
mechanisms beyond our canonical understanding of the genetics of obesity and BMI.  

There are limitations to this work which may have influenced our results. First, our PRSBMI

testing sample size was limited to approximately 500 individuals, and when subdivided by 
ancestry the sample sizes become smaller, limiting our power to find associations between our 
PRS and target traits. As such, it remains a possibility that PRSBMI could be associated with ART-
associated weight gain, but at a smaller effect size than we could detect given our statistical power. 
Additionally, due to particularly small sample sizes of East Asian and South Asian individuals, we 
mostly focused on cross-ancestry performance in EUR, AFR, and AMR populations, as well as in 
the entire population. Finally, it is also worth noting that integrase inhibitor-associated weight gain 
is greater than efavirenz-associated weight gain and that integrase inhibitors are currently the 
preferred initial therapy for most people.  The ACTG cohorts included in this study did not receive 
INSTIs; thus the effect sizes may be larger if this investigation was repeated in a cohort of 
individuals who experienced weight gain after receiving INSTIs. 

Subsequent work in this area could investigate how other covariates may influence BMI 
change. In further exploration of the use of large sample-size GWAS to construct PRS for drug 
response traits, one could study other phenotypes, such as how GWAS for liver function tests 
(such as alanine transaminase (ALT) and aspartate transaminase (AST)) may be predictive of 
adverse liver events, or whether a PRS derived from GWAS for major depressive disorder is 
predictive of neurological effects of ART. These approaches have the potential to leverage large, 
publicly available datasets to generate new discoveries in smaller pharmacogenetic cohorts. As 
more associations or lack thereof are found, we continue to narrow down the likely biological 
causes of adverse drug reactions such as excessive weight gain, bringing us closer to the true 
etiology.  
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1.  Introduction

Over time, evolutionary processes, for instance, natural selection, migration, and genetic drift, are
the key factors that have contributed to the variations in genetic makeup and admixture of
populations. Populations living in the same geographical area share a similar genetic background.
Generally, genetic population substructure is analyzed using single nucleotide polymorphisms
(SNPs) or haplotypes (derived from SNPs). Haplotype-based methods usually involve making
haplotype inferences, which are computationally more cumbersome than direct allele frequency
processing in SNP-based methods. Subpopulation detection has an important role in precision
medicine and is beneficial for downstream analyses, especially for genome-wide association
studies (1) and drug target identification for homogenized groups of individuals (2). Hence, the
accuracy of population subtyping methods is crucial to generate sufficient power in these efforts.

Several SNP-based clustering algorithms exist, each leading to different clustering results and
accuracy. Promising results in the context of SNP-based fine-scale population subtyping have been
demonstrated for the following iterative algorithms. The iterative pruning Principal Component
Analysis (ipPCA) method classifies individuals into groups without prior assumptions (3, 4). The
idea of iteratively creating latent Principal Component (PC) spaces can be applied to estimating
the number of clusters. Spectral Hierarchical clustering for the Inference of Population Structure
(SHIPS) is based on determining the number of clusters in the post-process (5). This method
incorporates a divisive hierarchical clustering, which allows a progressive investigation of
population structure. The SHIPS method estimates the number of clusters in a dataset via the gap
statistic (6). The method produces a promising solution to infer fine-scale genetic patterns and has
a low computational cost when applied to genome-wide SNP data. The graph-based method
iNJclust is an alternative unsupervised clustering method (7). It operates iteratively on the
Neighbor-Joining (NJ) tree. This framework uses the allele-sharing distance to build up the
neighbor-joining tree. The behavior of the fixation index (FST) is utilized as a stopping criterion for
this algorithm.

This paper presents detailed information on IPCAPS (implemented as R package (8)),
including its underlying methodology, its performance via large-scale simulations, and a real-life
application. IPCAPS is based on the ipPCA mechanism and relies on iterative PCA estimation
from SNP data. However, all known limitations of ipPCA are addressed by IPCAPS. These
include: resolving limitations of inflated type I errors caused by a 2-means algorithm, advancing
on ipPCA’s stopping criteria based on Tracy-Widom statistics (3) and the EigenDev heuristic (4),
mowing away from a commercial implementation environment (MATLAB) toward a widely
accessible environment (R environment (9)), and identifying outliers interfering with robust
clustering. Most importantly, although ipPCA can capture general population structure, it cannot
detect fine-level structure when FST is close to 0.001, such as is the case for Swedish-Norwegian
samples (FST=0.001) or Polish-German samples (FST=0.0012) (10). A proof of concept for
IPCAPS’ ability to identify fine-scale structure was given before on a relatively small African
dataset (8). In this paper, we not only showcase IPCAPS on 1000 Genomes data, using
populations from African, American, European, East Asian, and South Asian ancestries, but we
also demonstrate IPCAPS performance in a variety of theoretical scenarios via an extensive
simulation study.
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2.  IPCAPS methodology for SNP-based subtyping

The current implementation of IPCAPS takes GWAS SNPs as input and iteratively creates PCA
spaces to identify substructures in populations. Hence, prior to IPCAPS applications, Quality
Control (QC) pre-processing steps largely coincide with standard practices to GWAS QC or
SNP-based PCA analyses for population structure evaluations. In particular, data QC may include
missing genotype filtering (missingness < 0.02), Hardy–Weinberg equilibrium (HWE) testing
(p<0.001), and linkage disequilibrium (LD) pruning (r2<0.1). Each missing genotype is replaced
by the most common value (11); see also supplementary section S1. QC processing steps are
followed by a data matrix construction for IPCAPS analysis: rows of this data matrix represent
individuals, and the columns represent SNPs. SNPs are encoded as 0, 1, and 2, reflecting the
number of minor alleles present at the corresponding loci. As a consequence, the encoded data
matrix contains numeric values suitable for standard PCA. The data matrix is subsequently
normalized by a zero-mean and unit variance procedure. In case all individuals contain only a
single genotype at some loci, the normalized value is zero representing no variation. In practical
applications, this issue frequently occurs for common alleles.

IPCAPS’ core methodology can be broken down into the following steps (see Supplementary
Figure S1 for a graphical workflow):

Step 1: In each iteration, select genotype data according to the remaining individuals from the𝑋
previous iteration; however, the whole data are used for the first iteration. The matrix 𝑋
contains rows and columns representing a number of individuals and a number of𝑁 𝑀
SNPs, respectively. The SNP matrix is normalized using zero-mean and unit variance
methods.

Step2: Construct a covariance matrix from matrix multiplication in order to reduce𝑋𝑋𝑇

complexity for computation.
Step 3: Extract principal components (PCs) from the matrix as , where𝑋𝑋𝑇 𝑋𝑋𝑇 = 𝑈𝐷𝑈𝑇 𝑈

represents eigenvectors and is a diagonal matrix of positive eigenvalues of𝐷 𝑋𝑋𝑇

eigenvalues. A matrix of eigenvectors is used as PCs. For faster computation, PCs are
calculated partially (12) according to the estimated high-impact number of PCs ( ) in𝑃
Step 4 from the previous iteration. The matrix PCs contains rows and columns𝑁 𝑃
representing a number of individuals and a number of PCs, respectively.

Step 4: Calculate the EigenFit value from the matrix D (Step 3), defined as in Eq. (1):
(1)𝐸𝑖𝑔𝑒𝑛𝐹𝑖𝑡 = 𝑚𝑎𝑥(𝐷),

where is a vector of differences defined as in Eq. (2)𝐷
(2)𝐷 = (|𝐿

1
− 𝐿

2
|, |𝐿

2
− 𝐿

3
|,  ...  , |𝐿

𝑁−1
− 𝐿

𝑁
|) ,

with Li the eigenvector corresponding to the logarithm of eigenvector i (i=1,...,N). If the
EigenFit is less than a user-specified threshold, then stop the iteration and define the
current set of individuals as a subgroup. If not, continue to the next step. In this step, the
P high-impact PCs is also estimated to be used in Step 3 in the next iteration, where P is
derived from as defined in Eq. (4) and (5):𝑃'
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(4)𝑃' =
𝑖=1

𝑁−1

∑ 𝐼
[𝑖≤𝑚]

(5)
with , and is an order of EigenFit in vector . To have at least a 3D PC𝑖 = 1, 2, 3,..., 𝑁 𝑚 𝐷
space for clustering, if is less than or equal to 3, then , otherwise .𝑃' 𝑃 = 3 𝑃 = 𝑃'

Step 5: Apply RubikClust (13) on P high-impact PCs. Higher-dimensional outlier detection via
RubikClust is used to enhance the stability of IPCAPS clustering, which identified
outliers are allocated to separate clusters.

Step 6: Check if the number of subgroups obtained from RubikClust equals 1. If so, submit PCs
to MIXMOD clustering in Step 7. If not, skip to Step 9.

Step 7: Apply MIXMOD clustering on PCs via the function mixmodCluster in the R package
Rmixmod (14) and the Bayesian information criterion (BIC) (15) to determine the
optimal number of subtypes (clusters). Additional details are provided in supplementary
section S2.

Step 8: Check if the number of subgroups obtained from MIXMOD clustering equals 1. If so,
then stop this iteration and define the current set of individuals as a subgroup. If not,
continue to the next step.

Step 9: Check if the number of individuals in obtained subgroups is less than a pre-specified
cutoff by users. If so, then stop this iteration and define the current set of individuals as a
subgroup (defined as a group of outliers). If not, continue to the next step.

Step 10: Calculate pairwise FST for all pairs of subgroups. If FST is more than a user-specified
threshold, then continue to the next iteration in step 1. If not, the pairs with FST less than
the threshold are combined and defined as a single cluster.

Note that IPCAPS methodology combines three stopping criteria: 1) checking whether the
EigenFit is lower than a prespecified threshold (Step 4), 2) determining whether the fixation index
(FST) value between two clusters is lower than a threshold (Step 10), 3) checking whether a
number of individuals in each cluster is lower than a customizable cutoff. Regarding the latter, if
the minimum cluster size is low (i.e., 3-5), then too many sparse subgroups may be obtained.
Hence, a balance needs to be sought between many potentially small, highly homogeneous,
clusters or a few less homogeneous clusters that have sufficient power to be followed up for
characterization in downstream analyses. When analyzing a dataset with a small number of
individuals, for example, <100 individuals, it may be more practical to allow for minimally 5 to 10
individuals per final IPCAPS group. Our findings from an application on 1000 Genomes data (see
Section 3) motivates 0.18 as maximum for the EigenFit threshold and the simulation scenario I
(supplementary section S4) suggests 0.03 as minimum. The choice of FST threshold depends on the
number of markers and samples available for subtyping. However, we motivate in supplementary
section S3 the default of 0.0008.

3.  Datasets

To assess the performance of IPCAPS we generated synthetic data with FILEST (16) according to
3 main scenarios. Simulation scenario I aimed to investigate a type I error, simulation scenario II
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aimed to assess the accuracy of IPCAPS, and simulation scenario III targeted quantifying
scalability and speed. Cluster agreement between two clustering results was assessed via the
Adjusted Rand Index (ARI) using the R Package mclust (17). The maximal attainable ARI value
is 1, representing an identical match between 2 groups, while a negative value represents a
mismatch.

3.1. Simulation scenario I: test for Type I error

The objective of simulation scenario I is to examine the type I error rate of our method. Ideally,
there should not be any error if we apply IPCAPS to a single homogeneous population. In other
words, in this case, the IPCAPS algorithm should only reveal 1 group; the initial population. We
compared our method to other iterative pruning-based clustering methods such as ipPCA (3, 4),
iNJclust (7), and SHIPS (5). Moreover, we simulated one population with 500 individuals and
10,000 SNPs without any outliers and did so 100 times (i.e., 100 replicates). The parameter
settings for FILEST are listed in Table 1 and the supplementary section S4.

3.2. Simulation scenario II: test for accuracy

The objective of simulation scenario II is to determine the accuracy of IPCAPS. Comparative
iterative pruning-based methods for clustering are the same as for simulation scenario I: ipPCA,
iNJclust, and SHIPS. For scenario II, we simulated 100 replicates of 10,000 SNPs and 500
individuals per population. For the settings SII-1, SII-3 and SII-5, two populations were simulated.
We added an additional population in the settings SII-2, SII-4 and SII-6. The adopted FST values
represented pairwise genetic distances as before (Hudson’s fixation index) and ranged from 0.0008
to 0.005. We selected the lowest FST as 0.0008 according to the result in the supplementary section
S3, and the highest FST as 0.005 according to the genetic distance among clearly distinct European
populations. To assess the impact of outliers, we added three outliers in the settings SII-3 and
SII-4, and five outliers in the settings SII-5 and SII-6. An outlier was considered when it was
separated into its own group or grouped with other outliers. All setting parameters are summarized
in Table 1 and the supplementary section S5.

3.3. Simulation scenario III: test for scalability and speed

The objective of simulation scenario III is to check the scalability and speed of IPCAPS. In
particular, we wanted to investigate which of the two factors, the number of individuals or the
number of SNPs, has the most impact on computation time. We chose to compare IPCAPS to
ipPCA only. The parameter settings for this simulation scenario were as follows. We simulated
100 replicates of two populations while fixing FST at 0.005. This single fixed value of FST was
motivated by the fact that IPCAPS was able to accurately separate two populations with
FST=0.005. For setting SIII-1, we fixed the number of input SNP to 10,000 and varied the number
of individuals from 100 to 10,000. For setting SIII-2, we considered 1,000 individuals and varied
the number of SNPs from 25,000 to 100,000. To measure the performance of IPCAPS in terms of
computation time, we performed all experiments on the same 64-bit Linux cluster with the 2.2
GHz Intel Xeon 8-core processor and 128 GB of memory per node. Since the cluster was working
routinely and we could not control other running processes, we reported the median of execution
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times from 100 replicates instead of the mean. All parameter settings are summarized in Table 1
and the supplementary section S6.

Table 1. Parameter settings for simulation studies of scenarios I, II, and III. Scenario I contains one setting.
Scenario II contains six settings, and Scenario III contains two settings.

Parameters Settings

SI SII-1 SII-2 SII-3 SII-4 SII-5 SII-6 SIII-1 SIII-2

No. populations 1 2 3 2 3 2 3 2 2

No. outliers 0 0 0 3 3 5 5 0 0

Population
Distance (FST)

- 0.0008, 0.0009, 0.001, 0.002,
0.003, 0.004, 0.005

0.005 0.005

No. individuals
per population

500 500 100, 2.5k, 5k,
7.5k, 10k

1k

No. SNPs 10k 10k 10k 25k, 50k, 75k,
100k

No.  replications 100

3.4. Real-life scenario: application of genome-wide data using the 1000 Genomes Project

The aim of this experiment is to check the performance of IPCAPS in a big real-life dataset (large
matrix calculation usually causes a computational error) and to potentially refine the genetic
structure of the 1000 Genomes data in view of the obtained ADMIXTURE profiles (version 1.3.0)
(18). Initially, we obtained the 1000 Genomes dataset (19), which consisted of 3,609 individuals
from 26 populations and 78,136,341 SNPs in total. All quality control (QC) steps were carried out
in PLINK version 1.9 (20). The QC steps consisted in selecting only founders or unrelated
individuals (--filter-founders), selecting only autosomal chromosomes 1-22 (--not-chr 0,x,y,xy,mt),
filtering out SNPs in linkage disequilibrium (LD) blocks (--indep-pairwise 50 5 0.1), removing
SNPs that disagree with the Hardy–Weinberg equilibrium (HWE) testing (--hwe 0.001), allowing
individuals with call rate at least 95% (--mind 0.05), filtering out missing genotypes >2% (--geno
0.02), and removing SNPs with low minor allele frequency (MAF) (--maf 0.05). After data QC,
there were 2,504 individuals and 127,526 SNPs left. We then performed a population clustering
analysis using IPCAPS on the filtered data set after QC steps. Finding actual SNP-based
discriminators between IPCAPS clusters was beyond the scope of this study. Since this dataset
was huge, it required a lot of memory to perform the analysis. Therefore, all analyses were
performed on the 64-bit Linux cluster with the 2.3 GHz Intel Xeon 24-core processor and 512 GB
of memory per node.

Pacific Symposium on Biocomputing 2023

250

https://www.zotero.org/google-docs/?0gCsn1
https://www.zotero.org/google-docs/?o3EDDR
https://www.zotero.org/google-docs/?nOnjZF


4. Results

4.1. Type I error (simulation scenario I)

From the considered clustering methods, only IPCAPS and SHIPS did not split up the single
population into subgroups (average ARI=1). Notably, ipPCA and iNJclust enforced two subgroups
(average ARI=0) and 174.79 groups (average ARI=0), respectively. (see supplementary section
S4)

Apart from testing for Type I error, we also estimated the minimum EigenFit value from
the results of ipPCA because ipPCA forced to split the data into 2 clusters. The average EigenFit
value was 0.03, therefore we could use this value as the minimum threshold of EigenFit.

4.2. Accuracy (simulation scenario II)

Overall, IPCAPS (red curve in Fig. 1) had optimal performance compared to ipPCA (blue), SHIPS
(green), and iNJclust (yellow) in terms of accuracy expressed by average ARI estimated over 100
replicates when comparing observed and expected clustering methods. In particular, IPCAPS
performed well with 100% accuracy when FST=0.002 for all simulation scenarios, while the other
strategies performed less for the same FST=0.002. As for the other strategies, the performance of
IPCAPS decreased for decreasing FST<0.002, although the accuracy reduction was least dramatic
for IPCAPS compared to ipPCA, SHIPS, and iNJclust.

In the case of two populations without outliers (setting SII-1, Fig. 1A), IPCAPS and ipPCA
gave similar results, but ipPCA performed slightly better for FST=0.0008. The average ARI of both
methods increased to 0.8 when FST=0.001 and reached 1 when FST=0.002. SHIPS became highly
accurate (ARI=1) only when FST>=0.004, while iNJclust performed poorly (ARI=0) in this setting.

In the case of three populations without outliers (setting SII-2, Fig. 1B), IPCAPS was more
accurate than the other considered methods. The average ARI of IPCAPS reached 1 when
FST=0.002, while the performance of ipPCA dropped in this setting, with ARI reaching 1 from
FST=0.003 onwards. SHIPS showed similar performance in setting SII-2 as in the previous setting,
SII-1. The average ARI of iNJclust started to increase when FST=0.003 and increased up to 0.8 but
never reached 1.

In the case of two populations with three and five outliers (settings SII-3 and SII-5, Fig. 1C
and 1E), IPCAPS maintained its good performance, similar to the simulation setting SII-1 with
two populations and no outliers. The performances of ipPCA and SHIPS dropped in comparison to
setting SII-1; iNJclust consistently performed poorly for all FST in this setting (ARI=0).

In the case of three populations with three and five outliers (settings SII-4 and SII-6, Fig. 1D
and 1F), IPCAPS still performed similarly to the corresponding settings without outliers. The
performances of ipPCA and SHIPS dropped in comparison to setting SII-2. Interestingly, iNJclust
showed increased accuracy for FST>0.003. However, the average values of ARI of ipPCA, SHIPS,
and iNJclust stayed lower than 1 in settings SII-4 and SII-6.

Focusing on simulation settings with outliers and visualizing the number of outliers detected
versus FST, IPCAPS clearly detected the largest number of outliers in comparison to ipPCA,
SHIPS, and iNJclust (Fig. 1G, 1H, 1I, and 1J). Recall that an outlier was considered when it was
separated into its own group or was grouped with other outliers. Particularly in the settings SII-4
and SII-6 (Fig. 1H and 1J), iNJclust had a hard time identifying any outliers at all. Although
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ipPCA was able to identify outliers, for all scenarios, it could detect approximately 2 out of 3 in
the settings SII-3 and SII-4 (Fig. 1G and 1H), and 4 out of 5 in the settings SII-5 and SII-6 (Fig. 1I
and 1J). SHIPS could not detect outliers in the settings SII-3 and SII-4 (Fig. 1G and 1H), but it
was able to identify approximately 1 out of 5 in the settings SII-5 and SII-6 (Fig. 1I and 1J).

4.3. Scalability and speed (simulation scenario III)

The average execution time of ipPCA (Fig. 1K – blue curve) exponentially grew according to the
number of individuals, reaching >24,000 seconds for 10,000 individuals (setting SIII-1). In
contrast, the average execution time of IPCAPS (Fig. 1K – red curve) was lower than ipPCA; it
reached approximately 2,000 seconds for 10,000 individuals (setting SIII-1). For setting SIII-2
(Fig. 1L), the average execution time of IPCAPS and ipPCA was much lower than for setting
SIII-1. The average execution time of ipPCA reached 150 seconds for 100K SNPs, while the
average execution time of IPCAPS was slightly lower and less than 150 seconds for 100K SNPs.

4.4. Real-life scenario: the 1000 Genome Project

IPCAPS subtyping resulted in 24 groups (excluding the outliers) as shown in Fig. 2. There were
five selected populations of East Asian, and IPCAPS could detect four groups (groups 1 to 4)
since two closely related Chinese populations were in the same groups (CHB and CHS).
Interestingly, the selected four admixed American populations were clustered into five groups
(groups 5 to 9) because the Peruvian population (PEL) was mainly separated into two clusters
(groups 8 and 9). This was due to the complex admixture found in most of the American
populations in that one cluster of PEL had an ancestral background from European (cyan) (group
9), while another cluster of PEL did not (group 8). Five South Asian populations were rather
clustered into five clusters. Group 11 was mainly mixed and mainly driven by ITU and STU.
Group 12 (BEB) was slightly mixed with East Asian ancestry (light green), and this evidence
agreed with what was found in Changmai et al. 2022 (21). Groups 10, 13, and 14 (PJL and GIH)
were differentiated according to the European ancestry (cyan). Seven African populations were
clustered into six groups, and the results agreed with what was described in Chaichoompu et al.
2019 (22). Groups 15, 16, and 17 were differentiated by the different admixed proportions of two
ancestors (pink and brown). ESN and YRI were clustered in the same groups. ABC and ASW
were clustered together but separated into two groups 18 and 19, and they were differentiated by
the cyan European ancestor. Group 20, LWK, rather had a unique admixture profile. Five
European populations were separated into four clusters (groups 21-24). FIN had a unique ancestral
profile (red), as suggested in Wangkumhang et al. 2022 that they were the most distinct group
amongst Europeans (23). GBR and CEU were in the same group (group 22), unlike IBS and TSI,
which had similar ancestral patterns and were differentiated by the other small ancestral parts.
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Fig. 1. The simulation results from different scenarios. The clustering accuracy for the simulated datasets
without outlier is shown in A (2 populations) and B (3 populations). The clustering accuracy for the
simulated datasets with 3 outliers is shown in C (2 populations) and D (3 populations). The
clustering accuracy for the simulated datasets with 5 outliers is shown in E (2 populations) and F (3
populations). The number of detected outliers for the simulated datasets with 3 outliers are shown
in G (2 populations) and H (3 populations). The number of detected outliers for the simulated
datasets with 5 outliers are shown in I (2 populations) and J (3 populations). The median execution
time when the number of individuals is scaled is shown in K, and when the number of SNPs is
scaled is shown in L. See Table 1 for detailed information for all simulation settings.
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Fig. 2. IPCAPS results of the 1000 Genomes dataset depicted via ADMIXTURE (18) profiles (default
options). The 24 identified IPCAPS groups are shown in the grey bar (without outliers).

5. Discussions

IPCAPS was generated in the quest for efficient subtyping of individuals at fine scale, using SNPs
rather than multilocus haplotypes. It is an iterative clustering algorithm that was templated on
ipPCA, yet combines three stopping criteria. As part of the IPCAPS development RubikClust
provides a first rough assessment of substructure detection, identifying multi-dimensional outliers.
Here, an outlier is an observation that is isolated from other observations in a PC-space. Outliers
are collectively removed from further analysis but can be analyzed separately in a sensitivity
analysis. The impact of outliers on clustering results with IPCAPS was assessed via several
simulation studies, which entailed increasingly complex data structures (simulation scenario II).
Among several explored clustering algorithms available from the R environment, MIXMOD
served our purposes best, exhibiting excellent performance on complex datasets (see
supplementary text S2). Notably, to further increase robustness of final conclusions, rather than
choosing one clustering algorithm, multiple ones can be chosen, and a consensus clustering may
be derived. The computational burden of IPCAPS depends on the number of individuals due to the
dimensionality reduction prior to PCA via the technique, in which a dimension of the matrix𝑋𝑋𝑇

becomes smaller.
EigenFit, which is used as one of the IPCAPS stopping criteria, is motivated by the

drawback of EigenDev (4). The EigenDev value for a diverse and small subgroup is high and
causes the failure in stopping clustering iteration in ipPCA. Hence, we have adjusted the
calculation and provided the empirical simulation to check for the minimum threshold of EigenFit
(see the section 5.1).
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Estimated type I error rates for IPCAPS in our simulation scenario are zero due to the fact that
IPCAPS has adopted the FST threshold of 0.0008 according to sample size and the number of
SNPs. Accuracy is defined as the ability to retrieve existing substructure; the adjusted rand index
method (ARI) is used to measure accuracy. In all simulation scenarios, IPCAPS generally
outperforms ipPCA, SHIPS, and iNJclust. The ipPCA method has a higher average ARI than
IPCAPS for FST=0.008 because ipPCA over separates data as it is observed that Type I error of
ipPCA is high (100%). When testing for speed, it is observed that IPCAPS is faster than ipPCA.
When dealing with complex population structures in our simulation scenario, IPCAPS delivers
satisfactory results. In general, IPCAPS has excellent performance for both fine-level and
large-scale settings as supported by experimental results. Initially, the objective of this paper was
to develop a tool that deals with fine-level structure. IPCAPS accurately deals with the rough
structures by splitting off bigger groups and then zooming in to find additional subtle structures.

Finally, in principle, it is possible to apply IPCAPS methodology to other data types then SNPs, as
long as it makes sense to derive PCs, and distance-based stopping criteria (for instance FST) are
adapted to the nature of the data at hand.

6. Conclusions

In this paper, we explained and motivated the components underlying IPCAPS subtyping and for
the first time showed extensive simulation studies that underpin its outperformance compared to
other iterative subtyping algorithms, namely ipPCA, iNJclust, and SHIPS. The simulated datasets
used in all experiments were generated using our own tool FILEST. It allows simulating samples
and complex data structures with and without outliers. Furthermore, IPCAPS was applied to big
data from the 1000 Genomes project, and it revealed the potential of IPCAPS to detect general
population structure, possibly non-linear in nature. Especially for populations in geographically
confined regions, IPCAPS was shown to detect meaningful subgroups, which are otherwise hard
to detect with classic PCA or ADMIXTURE. We recommend the use of ADMIXTURE or similar
software tools to assist in interpreting obtained population subtypes.

7. Supplementary information and availability of software

The supplementary information, the datasets, the experimental scripts, and the results from this
paper are publicly available on Zenodo (DOI: 10.5281/zenodo.7141144). IPCAPS is implemented
as an R package that is publicly available on the CRAN repository (https://CRAN.R-project.
org/package=IPCAPS), and the GitHub repository (https://github.com/kridsadakorn/ipcaps).
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Precision medicine requires a deep understanding of complex biomedical and healthcare data, which 
is being generated at exponential rates and increasingly made available through public biobanks, 
electronic medical record systems and biomedical databases and knowledgebases. The complexity 
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and sheer amount of data prohibit manual manipulation. Instead, the field depends on artificial 
intelligence approaches to parse, annotate, evaluate and interpret the data to enable applications to 
patient healthcare At the 2023 Pacific Symposium on Biocomputing (PSB) session entitled 
“Precision Medicine: Using Artificial Intelligence (AI) to improve diagnostics and healthcare”, we 
spotlight research that develops and applies computational methodologies to solve biomedical 
problems. 

Keywords: Artificial intelligence; Machine learning; Genomics; Multi-omics 

 
1.  Introduction 

The goal of precision medicine is to tailor medical care to the individual patient, from disease 
prevention to diagnosis to treatment. It holds the key to improve healthcare for all, diminishing 
health disparities. The generation of extensive, comprehensive and diverse medical datasets provide 
the opportunity to develop tools and methods that will advance the medical field through patient-
tailored treatment enabling healthcare equity across diverse populations. Below, we summarize 
research focusing on methodology development and applications to move personalized medicine 
forward. Based on the accepted submissions for the Precision Medicine: Using Artificial 
Intelligence (AI) to improve diagnostics and healthcare session at the Pacific Symposium on 
Biocomputing (PSB) 2023, computational and AI approaches are being used to advance cancer 
research, aid in pregnancy-related healthcare, reduce bias in biomedical data, enhance medical 
imaging and improve immunotherapy strategies. 

2.  AI-driven tools for improving diagnostics and healthcare 

As copious amounts of data are generated at rapidly increasing rates, precision medicine research 
faces the challenge of integrating across the landscape of “multi’s”, including multi-omics, multi-
models, multi-model systems and multi-sample types. (Acosta) The following submissions highlight 
greatly needed methods for analysis of integrated data across diverse datasets, and one submission 
addresses population bias in data. 
 
Hashim et al. developed a self-supervised learning approach for cancer type classification based on 
multi-omics cancer data, particularly for unannotated or unlabeled data. They applied their pre-
training paradigm to The Cancer Genome Atlas pan-cancer dataset. Benefits to their approach is 
that it can handle missing omics data types and is flexible enough to handle different types of 
datasets for pre-training and downstream training. (Hashim et al.) 
 
Bhattacharyya et al. integrate multi-omics and model systems to study cellular mechanisms of 
cancer to discover therapeutic associations. Their hierarchical Bayesian evidence synthesis 
framework, BaySyn, uses Gaussian process models and is suitable for rich datasets. The authors 
applied their framework to multi-omic cancer cell line and patient datasets for pan-gynecological 
cancers, implicating multiple functional genes across cancers. (Bhattacharyya et al.) 
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Trinh et al. address the problem of using multi-omics data from a study to investigate questions 
beyond the scope of that study. To do this, they develop trans-omic knowledge transfer modeling 
and apply it to the case of using information from an ulcerative colitis cohort in the Integrative 
Human Microbiome Project (IHMP) to understand biomarkers for anti-TNF therapy resistance in a 
different ulcerative colitis cohort.  They discuss the advantages and disadvantages of three different 
approaches to knowledge transfer modeling: using a supervised classifier, relative separation, and 
signature transfer. Through the application of these methods, they provide insights into 
implementing trans-omic, cross-cohort biomarker discovery. (Trinh et al.) 
 
An important aspect of precision medicine is efficiently identifying disease and disease risk in a 
patient, and subsequently predicting treatments and therapies that will be effective for that person. 
The following submissions focus on improving methods for detecting and predicting disease and 
treatment efficacy. 
 
Extending conventional causal inference methods, Aoki and colleagues propose a framework to use 
neural networks to estimate multi-treatment effect size. By training a neural network with inputs 
that include treatments, covariates, as well as outcomes, the deep learning approach summarizes the 
impact of each treatment with the expectation that the latent space distills meaningful information 
regarding true treatment effect. Using three synthetic datasets with known true treatment effect, the 
authors show their approach best approximates treatment effect compared multiple standard 
benchmark causal inference methods. (Aoki et al.) 
 
Machine learning algorithms optimize certain accuracy metrics by finding best low-dimensional 
representation of the data. While this approach leads to high predictive power, it can lead to biased 
conclusions when, for example, training data does not represent the target population. This is 
problem is of particular importance in biomedical data when patient's health is at stake. De Paolis 
Kaluza et al. propose a method to identify and quantify bias in a setting where labeled data is known 
to be drawn from a biased population and unlabeled data is drawn from target population. Under a 
mild assumption that data comes from a mixture of Gaussian distribution, they developed a multi-
sample expectation-maximization algorithm to identify and quantify the bias. (De Paolis Kaluza et 
al., 2023) 
 
In genetic testing for disease diagnosis or risk, genes with functional significance for the given 
phenotype are tested to identify what variants a patient possesses. Variant classification following 
guidelines from the American College of Medical Genetics and Genomics (ACMG) and the 
Association for Molecular Pathology (AMP) (Richards) is used to determine if variants found are 
potentially pathogenic, benign or a “variant of unknown significance” (VUS). VUS are inconclusive 
for diagnoses but are commonly assigned due to limited clinical evidence regarding many variants. 
High throughput assays can be leveraged to molecularly characterize variants lacking sufficient 
clinical evidence to improve variant classification. The work of Chen and Jain et al. aims to use 
clinical objectives and in silico variant pathogenicity prediction to prioritize genes for high 
throughput assays. The authors found they could improve on current knowledge-driven and data-
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driven strategies for variant classification by using a combined score from three metrics quantifying 
the importance of genes in satisfying specific clinical objectives. (Chen and Jain et al.) 
 
As researchers find ways to vectorize different data modalities we observe more and more creative 
applications of machine learning for detecting health conditions. In particular, Aryal et al. developed 
a set of algorithms for quantifying acoustic-linguistic signals and used them to predict status of 
Alzheimer's disease. Given the dataset of over 1000 patients, they found that in their setting human-
engineered linguistic features were more predictive of the disease than acoustic and learned features. 
(Aryal et al.) 
 
Zhang et al. focused on improving immunotherapy strategies by developing a pipeline for predicting 
binding affinity for T cell receptor (TCR) and epitope sequences.  Computational binding prediction 
could help streamline the T cell design process. The authors created PiTE -- Pipeline leveraging 
Transformer-like Encoders -- that uses large numbers of TCR amino acid sequences to pre-train the 
model and an advanced sequence encoder. (Zhang et al.) 
 
In the past several years, a spotlight has been shown on racial and ethnic disparities in pregnancy-
related conditions. (Carty et al.) In fact, pregnancy-related complications and deaths in general in 
the U.S. continue to rise. (Heavey) The following two submissions discuss computational 
applications to gestational diabetes and pre-eclampsia. 
 
Mathur et al. demonstrate reasonable and useful applications of Bayesian network modeling 
approaches that can incorporate both data-driven learning and domain knowledge in the form of 
network constraints (independence and monotonicity). The methods are well-summarized and 
demonstrated in a concrete application for gestational diabetes that illustrate the value of multiple 
different learning and knowledge modeling techniques beyond purely data-driven models. (Mathur 
et al.) 
 
For many diseases, transcriptional profiling has been used to identify differentially expressed genes 
(DEGs). The ignorome is the set of genes that have been experimentally identified as associated 
with disease but for which no established mechanistic relationship exists. In “Knowledge-Driven 
Mechanistic Enrichment of the Preecomplasia Ignorome”, Callahan et al. use a biomedical 
knowledge graph to gain insights into the molecular mechanisms behind pre-eclampsia and to 
connect experimental findings with previously described disease mechanisms in the literature. Their 
model provides an approach that could be generalizable to other complex disease processes. 
(Callahan et al.) 
 
Additional submissions in this session focus on improving data representation of genomic variation 
and deep learning segmentation modeling in medical imaging. 
 
In practice, the use of genomics terms and vocabulary can be community or context dependent. 
Annotation and representation of genetic variants and their states (e.g., genotypes, alleles, 
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haplotypes) vary widely across domains including somatic cancer, Mendelian disease and 
pharmacogenomics. There are multiple formats for genetic data exchange, some predominantly used 
in each domain, but each has its limitations especially for application to a different domain. 
(Pawliczek et al., Holmes et al., den Dunnen et al., Gaedigk et al.) To promote standardized and 
interoperable representation of genetic variants for precision medicine, the Global Alliance for 
Genomics and Health (GA4GH) Variation Representation Specification (VRS) developed a 
Genotype model designed to unambiguously represent the allelic composition of a genetic locus. 
Here, the Goar et al. describe their Genotype model along with their Haplotype model in the context 
of several relevant precision medicine settings, including pharmacogenomics. (Goar et al.) 
 
Despite extensive progress in segmentation models in medical imaging, deep learning segmentation 
models are prone to catastrophic mis-annotation in out-of-domain or foreign examples. Given 
known clinical priors (such as there is only one prostate or most biological structures are convex), 
Wooten et al. propose a set of shape features that can identify poor quality segmentation in medical 
imaging. Features related to area, perimeter, volume, compactness, and convexity are shown to be 
able to distinguish between acceptable and unacceptable segmentation of the kidney. Using a set of 
acceptable and unacceptable segmentations of the kidney on CT imaging from radiotherapy 
treatment plans, the authors show simple heuristics and clustering algorithms can partition between  
acceptable and unacceptable segmentations, which can be used to quality check deep learning 
models. (Wooten et al.) 

3.  Conclusion 

Paralleling continued progress in general artificial intelligence, we find there is steady and rapid 
progress in the application of machine learning to healthcare. Precision medicine is a combination 
of precision therapeutics - targeting the right treatments to address specific mechanisms of action or 
response - as well as precision diagnostics - identifying the right patients to the right therapeutics. 
In this year’s session of Precision Medicine: Using Artificial Intelligence to improve diagnostics 
and healthcare at PSB 2023, we find wide ranging innovations in many modalities and medical 
datasets. From imaging to genetic data to modeling of clinical treatments, the application of 
algorithms in the space of healthcare allows a deeper understanding of complex questions.  
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We have gained access to vast amounts of multi-omics data thanks to Next Generation
Sequencing. However, it is challenging to analyse this data due to its high dimensionality
and much of it not being annotated. Lack of annotated data is a significant problem in
machine learning, and Self-Supervised Learning (SSL) methods are typically used to deal
with limited labelled data. However, there is a lack of studies that use SSL methods to
exploit inter-omics relationships on unlabelled multi-omics data. In this work, we develop a
novel and efficient pre-training paradigm that consists of various SSL components, including
but not limited to contrastive alignment, data recovery from corrupted samples, and using
one type of omics data to recover other omic types. Our pre-training paradigm improves
performance on downstream tasks with limited labelled data. We show that our approach
outperforms the state-of-the-art method in cancer type classification on the TCGA pan-
cancer dataset in semi-supervised setting. Moreover, we show that the encoders that are
pre-trained using our approach can be used as powerful feature extractors even without
fine-tuning. Our ablation study shows that the method is not overly dependent on any
pretext task component. The network architectures in our approach are designed to handle
missing omic types and multiple datasets for pre-training and downstream training. Our
pre-training paradigm can be extended to perform zero-shot classification of rare cancers.

Keywords: Self-supervised Learning; Contrastive Learning; Multi-omics; Cancer Type Clas-
sification

1. Introduction

According to WHO, cancer accounted for around 10 million deaths in 2020 or about one in
six deaths.1 Many cancers can be cured with early diagnosis, and effective treatment.2 Various
factors are responsible for late diagnoses, such as symptoms being detected late, lack of access
to oncologists, as well as the time & cost involved. It could also be because of vague and unclear
symptoms and indistinguishable signs on scans and mammograms.3 Nevertheless, performing
cancer diagnosis in its early stages or even before it starts developing could remarkably improve
survival and provide opportunities for more effective treatment. Studies in the areas of biology
that end with omics, such as genomics, proteomics, transcriptomics or metabolomics, are called
omics sciences. With the advent of Next Generation Sequencing, we have gained access to
multiple types of omics data. Each type of omics data reveals different characteristics within
the tumour. However, due to the high dimensionality and the numerous different types of

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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omics data, it is nearly impossible for clinicians to analyse multi-omics data. Due to this
reason, they tend to focus on analysing the values of specific biomarkers. However, to get a
complete picture of a tumour, which is heterogeneous and complex, multi-omics data analysis
is vital.

Modern machine learning algorithms, especially deep neural networks, have shown to be
able to work well with high-dimensional data. Deep learning has made massive progress in
tasks like object recognition, object detection and semantic segmentation in the visual domain.
It has also made strides in speech and natural language processing on tasks such as machine
translation, speech recognition and question answering. The algorithms developed for the tasks
mentioned above require processing high-dimensional inputs. In this work, we developed Self-
Supervised Learning (SSL) methods for multi-omics data to provide supervision to the model
from unlabelled data. We explored various SSL pretext tasks on top of the usual reconstruction
task with autoencoders. Some of the SSL techniques we implemented include contrastive
learning, recovering data from its corrupted versions and aligning representations from multi-
omics data.

The low-dimensional representations that our model produces from high-dimensional
multi-omics data can be considered ”computational biomarkers”. The model that learns from
large datasets gets good at producing such biomarkers and can be used to produce good rep-
resentations for smaller datasets. Furthermore, as the model learns from tumours diagnosed
early, it produces better representations for such tumours. Therefore, even if the dataset at
hand does not have samples of tumours that are sequenced early, the fact that it was pre-
trained on a large dataset that contains many samples of such tumours makes the model
better at early diagnosis.

2. Literature Review

Self-supervised learning (SSL) has been extensively applied in representation learning of data
in various domains such as natural language processing4–6 audio and image.7–9 These methods
mainly use spatial, semantic and temporal structural relationships in the data. This is done
through developing novel pretext tasks, data augmentation methods and model architectures.
Due to the absence of the relationships mentioned above in tabular data, such methods could
be less effective. For instance, augmentation methods used on images, such as scaling and
rotation, cannot be directly used on tabular data. SSL techniques have not been explored
enough on tabular data due to these reasons.10

An autoencoder is a deep network that consists of an encoder and decoder.11 While the
encoder is trained to map the input to a latent representation, the decoder is trained to re-
construct the input from this latent representation. A popular work in images is denoising
autoencoders (DAE).12 It is built on the hypothesis that partially destroyed inputs should
result in a similar latent representation as the original inputs. In this work, the authors inves-
tigated an autoencoder’s robustness to partial demolition of inputs. The input is corrupted
and fed to the autoencoder, whose job is to recover the original ”clean” input. A group of re-
searchers developed VIME,10 a novel SSL framework for tabular data. They developed a couple
of pretext tasks called feature vector estimation and mask vector estimation. The former aims
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to reconstruct an input sample from its masked version, while the latter involves predicting
the mask vector applied to the sample. In other words, the pretext task is to estimate which
features are masked and predict the values of the corrupted features. A work called SubTab
focuses on converting the representation learning problem from single-view to multi-view.13

Here, the features are divided into subsets to produce the various views. The authors claim
that this is analogous to cropping images and bagging features in ensemble learning. They
demonstrate that the encoder learns more useful representations from a subset of the data
than a corrupted version of it. They pre-trained the network on this pretext task and tested
its performance on some downstream tasks.

Self-supervised representation learning of multi-omics data is an under-studied area of
research. Many methods used for representation learning mainly focus on the integration of
multi-omics data. Many integration strategies have been proposed. We will review the inte-
gration methods here due to the lack of self-supervised methods. A group developed a group
lasso regularised deep learning method for cancer prognosis by integrating multi-omics data
using early fusion.14 They perform various data preprocessing techniques, and the model con-
sists of a few fully connected layers. Another work integrates multi-omics data using standard
and disjointed deep autoencoders.15 Various omics data such as DNA methylation, microRNA
expression, mRNA expression and reverse phase protein array data are concatenated before
being fed into the autoencoder. A work called OmiEmbed16 does intermediate multi-omics
data integration. It is a multi-task framework that is built on a variational autoencoder. The
pretext task here is the reconstruction of three types of omics data: gene expression, mi-
croRNA expression and DNA methylation. They show the effectiveness of their method by
testing on various downstream tasks. They also developed a multi-task strategy that concur-
rently trains multiple downstream modules such as survival analysis, cancer type classification
and phenotype prediction. Training it this way has shown to perform better than training the
downstream modules separately. Late integration of multi-omics data was done in a work that
predicts breast cancer prognosis.17 They perform feature selection and use a deep neural net-
work for the task. Gene expression, copy number alterations and clinical information are fed
into three separate networks. Their predictions are combined at the end with a score-fusing
technique called weighted linear aggregation.

There exists a lack of studies on self-supervised representation learning of multi-omics data.
Studies focusing on adding more pretext tasks on top of the reconstruction task are rare. The
usual focus is on integrating the data and less on exploiting inter-omics relationships through
constraints and other SSL losses. Moreover, lack of annotated data can be tackled with SSL
approaches.

3. Method

3.1. Dataset

For our experiments, we used The Cancer Genome Atlas (TCGA) pan-cancer multi-omics
dataset.18 Table 1 gives an overview of the dataset. It is one of the most popular multi-omics
datasets. It consists of omics data as well as phenotypic information of patients. We used three
types of omics data from the TCGA dataset: DNA methylation, miRNA stem-loop expression,
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and gene expression. They are 485,577, 1881 and 60,483 dimensional respectively. The dataset
contains samples of 33 different tumour types and of normal tissues.

Table 1. An overview of TCGA pan-cancer dataset.

Dataset TCGA

Domain Pan-cancer
Tumour types 33 + 1(normal) = 34
Omics data type Gene exp DNA methylation miRNA exp
No of features 60,483 485,577 1881
No of samples 11,538 9736 11,020

3.2. Data Preprocessing

We downloaded harmonised data of 3 types of omics data from UCSC Xena data portal.19

RNA-Seq gene expression dataset comprises 60,483 features, each denoting the expression of
a gene. Gene expression level is obtained as the log2 transformation of fragments per kilobase
of transcript per million mapped reads (FPKM) value. miRNA stem-loop expression levels
were given as the log2 transformation of reads per million mapped reads (RPM) value. DNA
methylation dataset comprises beta values for each CpG site. Beta values are the ratio of
methylated to total array intensity for the corresponding CpG site.20 Lower beta values mean
lower levels of methylation and vice-versa. The beta values missing in the DNA methylation
dataset were mean imputed. We removed the means of the three datasets and scaled them to
unit variance.

3.3. Pretext problem formulation

The architecture we designed for pre-training comprises three autoencoders, one for each type
of omics data, and is shown in Fig 1. Our codebase also supports the usage of a common
encoder and decoder for all three omic types, but since the inputs of the three omic types
are different in size, we used some fully connected layers to downsample them to the same
size and the rest of the encoder is shared. The pretext loss minimised during pre-training is
a weighted sum of the losses described below. The codebase supports more SSL losses not
described here, such as Maximum Mean Discrepancy (MMD) loss and latent reconstruction
loss.

3.3.1. Reconstruction loss

Let’s denote the input data x of ith omic type as xi and the reconstructed data as x′i. Let
there be N number of omic types. In our case, the value of N is three. As given below,
the reconstruction loss can be formulated as the mean squared error loss between input and
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Fig. 1. Pre-training architecture: We partially masked the inputs and fed them to the encoders one
by one, producing three latent representations, h1, h2 and h3. These are then passed onto the decoders
to reconstruct the entire feature set, including the other two omic types. The latent representations
are also fed into a projection layer to compute contrastive alignment objective between each pair
of projections, namely (z1, z2), (z1, z3) and (z2, z3). Distance objectives between each pair of latent
representations are also minimised. Pre-training also minimises contrastive noise loss, illustrated in
Fig 2.

reconstructed omics data.

Lreconstruction =
1

N

N∑
i=1

MSE
(
xi, x

′
i

)
(1)

To make the network robust to noise, we performed partial corruption of one omic type
and made the network recover the entire feature set, including the other omic types. For
this purpose, we divided the almost 60,000-dimensional gene expression data into 23 subsets,
each corresponding to the chromosome on which the gene is located. The same is done for
around 400,000 dimensional DNA methylation data. The model is then trained to reconstruct
the input data when some or all subsets of a specific omic type are masked. The masking
methods used are zeroing out and adding Gaussian or swap noise. A random masking method
is chosen during each epoch. For instance, 6, 12, 18 random subsets or all 23 subsets of gene
expression data can be corrupted. The model can then be asked to reconstruct all the input
features, including the corrupted gene expression features and DNA methylation and miRNA
expression values. Here, a higher weightage is given in the loss function for recovering the
corrupted omic type. Let x1, x2 and x3 be gene expression, DNA methylation and miRNA
expression features respectively. If we mask gene expression features, the reconstruction loss
can be modified as

Lreconstruction =
1

N

(
0.5 ∗MSE

(
x1, x

′
1

)
+ 0.25 ∗MSE

(
x2, x

′
2

)
+ 0.25 ∗MSE

(
x3, x

′
3

))
(2)
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Another novel pretext task that we designed is masked subset or chromosome prediction. As
described above, gene expression and DNA methylation data were divided into subsets, and
random subsets were masked in each epoch. We made the network predict which subsets were
masked by feeding the representations from the encoder to a masked chromosome prediction
module.

3.3.2. Contrastive alignment loss

The latent representations h1, h2 and h3 were passed through a projection network to obtain
projections z1, z2 and z3. The alignment loss introduced in CLIP (Contrastive Language-Image
Pre-Training)21 was used to compute alignment between the pairs (z1, z2), (z1, z3) and (z2, z3).
The idea is that like text and image provide different types of information about a concept,
various omic types contain different information about a patient’s tumour. These multiple
views are aligned using a contrastive loss.

3.3.3. Contrastive noise loss

Let the latent representation from ith omic type xi be denoted as hi. By feeding noisy sample
x

′

i to the same encoder, we can produce h
′

i. By passing hi and h
′

i through the projection layer,
we obtain zi and z

′

i respectively. Contrastive noise loss is computed between each pair (zi, z
′

i).
This is illustrated in Fig 2. The contrastive noise loss we implemented is the one introduced
in the work Barlow Twins.22 Our codebase also supports the usage of NT-Xent loss23 and
SimSiam loss24 as both contrastive alignment and noise losses.

Fig. 2. Illustration of contrastive noise objective: Original and noisy samples are fed to the encoder
one after the other to obtain their corresponding representations and projections between which the
contrastive noise objective is calculated. This process is repeated for each omic type.

3.3.4. Distance loss

Using this loss, the distances between pairs of latent representations (h1, h2), (h2, h3) and
(h1, h3) are minimised. This ensures that representations from multiple omic types are con-
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sistent with each other. The distance loss can also be computed between the projections.
Computing it between latent representations gave better results.

Ldistance = MSE(h1, h2) +MSE(h2, h3) +MSE(h1, h3) (3)

3.4. Downstream task: Cancer type classification

Once the encoders and decoders are trained to minimise the pretext loss, the layers of encoders
are frozen and attached to the downstream network to perform cancer type classification, as
shown in Fig 3. The dataset consists of 33 cancer types. Each patient’s sample is a tissue that
could be either normal or cancerous, belonging to one of these classes. The loss function for
the downstream classification task is formulated as follows

Lclassification = CE(y, y′) (4)

Here, y is the label, y′ the prediction and CE the cross entropy loss.

Fig. 3. Downstream module: The encoders are frozen after pre-training and representations from
the encoders are aggregated by concatenating them, taking their mean or summing them up. This
aggregated representation is then passed through the downstream network to predict the patient’s
tumour type.

3.4.1. Handling missing omic types

Our framework is suitable for handling missing omic types. For pre-training with missing omic
types, encoders for only the available omic types can be trained. This is possible since we have
separate encoders for each omic type. We can also train the downstream network using new
samples that contain missing omic types. For instance, if gene expression is the missing omic
type for a new sample from lung tumour, the pre-trained gene expression encoder can be used
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to generate gene expression representation for this new sample. This representation could be
the average gene expression representation of all lung cancer samples. This way, information
about the missing omic types can be generated in their absence. Alternatively, we could decide
not to use the pre-trained encoder for missing omic types and aggregate representations (mean
or sum aggregation) from available omic types. This flexibility allows the usage of datasets
which contain different types of omics data for pre-training and downstream training. This is
important as datasets usually differ in the type of omics data they contain.

4. Experiments and results

4.1. Implementation

Code and links to download the datasets are available at
https://github.com/hashimsayed0/self-omics. We used Pytorch Lightning25 to build the mod-
els.

4.2. Semi-supervised learning

To evaluate the effect of pre-training, we trained the model in semi-supervised fashion. The
model was first pre-trained on the entire training set and was then trained for the downstream
task using only part of the training set. The encoders were also kept frozen and not allowed
to be optimised for the downstream task. Fig 4 shows the leap in performance provided by
our pre-training approach over training the downstream network with random initialisation
and OmiEmbed16 which is the state-of-the-art approach in cancer type classification using
multi-omics data. A performance comparison between the methods based on metrics is given
in Table 2.

Table 2. Performance metrics of cancer type classification using 1% training data during
downstream training.

Method Omic type(s)
1% training data

Accuracy F1 AUC Precision Recall

OmiEmbed multi-omics (A,B,C) 21.37 7.82 73.58 6.77 14.74

w.o. pretraining multi-omics (A,B,C) 30.69 19.1 73.03 32.2 22.85

w. pretraining

gene exp. (A) 13.9 4.21 57.99 3.71 9.67
DNA meth. (B) 32.98 20.47 70.59 21.45 23.66
miRNA exp. (C) 42.75 27.21 82.51 28.92 32.2

multi-omics (A,B,C) 64.45 43.33 82.95 43.99 49.83

4.3. Ablation study

We ran experiments to analyse the effects of removing various components of the pretext loss
one at a time. This usually helps identify the essential components of the pretext loss and
evaluate the method’s robustness. Fig 5 shows the effect on downstream performance due to
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Fig. 4. Semi-supervised cancer type classification performance on multi-omics data: x-axis shows
the percentage of training data used during downstream training and the y-axis denotes the accuracy.
The encoders were kept frozen during downstream training.

the removal of various components of pre-training loss. The performance is robust to such
removals and is not overly dependent on any component.

4.4. Latent aggregation method

As we have separate encoders for each omic type, representations from the encoders have
to be aggregated to be passed to the downstream network. We experimented with various
aggregation methods, including mean, concatenation and sum. Fig 5 shows that concatenation
performs slightly better than other methods.

4.5. t-SNE Visualisation

To visualise the model’s discriminative ability, we fed the latent representations produced by
a trained model to t-SNE.26 Fig 6 shows how the model clusters test samples from the same
cancer type together. It is interesting to note how well the model is able to cluster cancer
types even using 1% training data for the downstream task.

5. Discussion

By analysing the results of the experiments, it is clear that our approach works well with
less training data, thanks to efficient pre-training. Although OmiEmbed performs well with
an unfrozen encoder when the whole training set is provided during downstream training, it
fails to achieve decent performance when encoder layers are frozen and a limited amount of
training data is used. The performance of our approach with frozen encoders is comparable to
the performance of OmiEmbed with unfrozen encoder, as reported in their paper.16 With ab-
lation studies, we show how the model is not entirely dependent on any particular component
of the pretext task. The contrastive noise objective helps the encoders become robust to noise
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Fig. 5. The plot on the left shows the effect of removing various components of pretext loss, and
the one on the right shows the performance variation with different downstream latent aggregation
methods. The x-axis shows the percentage of training data used during downstream training, and
the y-axis denotes accuracy.

Fig. 6. t-SNE Visualisation: The plot on the left is produced using a model trained on one per cent
of training data for downstream training, and the one on the right refers to the model that used the
entire training set for downstream training. The legend shows the TCGA codes for the cancer types
that the colours represent.

and be able to identify samples from their distorted versions. The contrastive alignment ob-
jective makes the encoders learn similar and discriminative information from representations
of different omic types of the same patient. Reconstructing the full feature set from the rep-
resentation of one omic type forces an encoder to learn information about the two other omic
types from this omic type. By asking the network to recover masked gene expression data,
we make it rely on DNA methylation and miRNA expression data. From our experiments, we
found out that masking the latter two omic types did not improve performance. This is also
in line with our understanding that gene expression is influenced by DNA methylation and
miRNA expression. While there is a significant difference in performance between different
experiment settings when less than 10% of training data is used, the performance converges
as a higher amount of data is used.
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6. Conclusion

We began by discussing various SSL approaches used in tabular domain and methods that in-
tegrate multi-omics data. After describing the dataset, we formulated the various components
of our pretext task. The main idea behind using these components was to make the encoders
learn what is common and specific about different omic types based on patients’ profiles. This
would help the encoders produce relevant features for the downstream tasks. To evaluate our
approach, we designed a semi-supervised framework and ran experiments. We showed that in
this framework, our approach outperforms the state-of-the-art method. We performed abla-
tion studies to analyse our approach and its robustness. We then discussed key insights from
the results and explained our findings. This work has shown that pre-training with a huge
dataset like TCGA with efficient components improves downstream performance in various
settings. Our approach also offers the flexibility to use different datasets for pre-training and
downstream training and is suitable for handling missing omic types. A limitation of this
approach is that the features present in the pre-training dataset need to be available in the
downstream dataset to perform pre-training and downstream training on different datasets.
Another limitation is that the models trained in this framework contain many parameters and
require a good amount of CPU and GPU memory to load the dataset and train the model.
This work can be further extended to perform zero-shot classification of rare cancer types.
To do this, we need to develop a model that learns about rare cancers from common cancers.
This might require representing cancer types like words in latent spaces.4,5 It could be useful
to investigate models like gene2vec27 for this purpose.
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8. J. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. Á.
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The discovery of cancer drivers and drug targets are often limited to the biological systems - from
cancer model systems to patients. While multiomic patient databases have sparse drug response
data, cancer model systems databases, despite covering a broad range of pharmacogenomic plat-
forms, provide lower lineage-specific sample sizes, resulting in reduced statistical power to detect
both functional driver genes and their associations with drug sensitivity profiles. Hence, integrating
evidence across model systems, taking into account the pros and cons of each system, in addition
to multiomic integration, can more efficiently deconvolve cellular mechanisms of cancer as well as
learn therapeutic associations. To this end, we propose BaySyn - a hierarchical Bayesian evidence
synthesis framework for multi-system multiomic integration. BaySyn detects functionally relevant
driver genes based on their associations with upstream regulators using additive Gaussian process
models and uses this evidence to calibrate Bayesian variable selection models in the (drug) outcome
layer. We apply BaySyn to multiomic cancer cell line and patient datasets from the Cancer Cell Line
Encyclopedia and The Cancer Genome Atlas, respectively, across pan-gynecological cancers. Our
mechanistic models implicate several relevant functional genes across cancers such as PTPN6 and
ERBB2 in the KEGG adherens junction gene set. Furthermore, our outcome model is able to make
higher number of discoveries in drug response models than its uncalibrated counterparts under the
same thresholds of Type I error control, including detection of known lineage-specific biomarker
associations such as BCL11A in breast and FGFRL1 in ovarian cancers. All our results and imple-
mentation codes are freely available via an interactive R Shiny dashboard at tinyurl.com/BaySynApp.
The supplementary materials are available online at tinyurl.com/BaySynSup.
Keywords: Additive Gaussian processes, cancer driver genes, gene-drug associations, hierarchical
Bayesian variable selection, KEGG gene sets, spike-and-slab priors.

1. Introduction
With the advent of sophisticated techniques and platforms, large-scale datasets covering multiple
layers of cellular omics are becoming increasingly available.1,2 Consistent advancements have been
made in the last few years towards adding more dimensions to these high-throughput datasets, namely
(1) additional to patient-level disease databases, model systems such as cell lines, patient-derived
xenografts and organoids are being studied extensively in context of cancer and other diseases;3,4 (2)
assessing clinical information and therapeutic response with omics data to make pharmacogenomic
discoveries is becoming increasingly common.5,6 Multiple challenges arise during investigations of
such datasets, including but not limited to computational inefficiency, complex nature of associations
among the omic variables considered, and the biological interpretability and clinical implications of
the results.7 Specifically in context of cancer, the necessity to not only detect biomarker associations

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed
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with drug/treatment regimens but also to assess the functional relevance and mechanism of such
associations is paramount, potentially guiding future therapeutic advances. Thus, novel algorithms
that integrate multi-omics patient and model systems profiles can potentially reveal novel biomarkers,
drug targets and predictive models in cancer.
Multi-dimensional data integration in cancer To address the wide range of complexity and vari-
ability in both detection and management of cancer, a number of multi-omics approaches have been
able to uncover intricate molecular mechanisms and discover prognostic candidates.8 Data integra-
tion approaches have proven particularly useful - both vertical (multiple experiments on a common
cohort of samples)9,10 and horizontal (meta-analysis of different cohorts)11,12 integration methods
have been developed.13 To simultaneously identify pharmacogenomic associations and correspond-
ing functional mechanisms, singular usage of either of these dimensions is insufficient due to the
richness of the currently available omics databases. Multi-omics patient databases of cancer such
as The Cancer Genome Atlas (TCGA),14 while rich in transcriptomic, proteomic and other levels of
omics profiles, do not typically provide comprehensive and systematic drug response on the same co-
hort of patients, restricting utilization of these profiles directly in pharmacogenomic contexts. Model
systems databases such as the Cancer Cell Line Encyclopedia (CCLE)15 and Genomics of Drug Sen-
sitivity in Cancer (GDSC)16 provide both molecular profiles and drug sensitivity information on the
same set of models, but the cancer- or lineage-specific sample sizes of such databases are lower than
their patient counterparts and association models built solely on them may suffer from the lack of suf-
ficient statistical power to detect all the true signals. In this work, we propose a solution to this, based
on a multi-stage hierarchical Bayesian framework that synthesizes information from both patient and
model system databases across multiomic levels to improve the identification of novel cancer driver
genes and association with drug responses.
A Bayesian evidence synthesis procedure Our integrative framework is called BaySyn: a multi-
stage hierarchical Bayesian evidence synthesis pipeline for analysis of multi-system multiomic data.
The first stage identifies cancer driver genes by detecting transcriptomic associations with upstream
changes, which are then utilized to inform biomarker association models in the second stage to im-
prove selection. Specifically, the first stage uses additive Gaussian process regression models to de-
tect potential nonlinear associations of gene expression data with corresponding copy number and
methylation profiles for both cell line cancer lineages and patient cancer types. To tackle the issue of
lower sample size in cell line data, we propose multi-lineage versions of these mechanistic models
that can deconvolve lineage and upstream main effects as well as any potential interactions, in ad-
dition to single-lineage versions of the same. Evidence synthesized across a common pool of genes
from the two sources is then used in a calibrated Bayesian variable selection procedure in the sec-
ond stage to identify genes having high association with an outcome variable of interest, such as
drug response data. Specifically, the evidence quantifications from the mechanistic models are used
in these outcome models to upweight the prior probability of selection of different biomarkers in
a spike-and-slab prior setting. A conceptual schematic of the procedure is presented in Figure 1,
providing a high-level summary of the multi-model system evidence synthesis through the mecha-
nistic models and calibrated biomarker selection via the outcome models. We apply our framework
to multiomic CCLE and TCGA datasets from pan-gynecological cancers (breast, ovary, and uterus
lineages). Our mechanistic models provide cancer-specific and cross-lineage evidence that implicate
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several relevant functional genes such as PTPN6 and ERBB2 in the KEGG adherens junction gene
set. Furthermore, our outcome model is able to make higher number of discoveries in drug response
models than its uncalibrated counterparts under the same thresholds of type I error control, including
detection of known lineage-specific biomarker associations such as BCL11A in breast and FGFRL1
in ovarian cancers.
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Fig. 1: Conceptual schema of the BaySyn framework.

The rest of the paper is organized as follows. Section 2 summarizes the multi-stage data inte-
gration framework. Section 3 describes the CCLE and TCGA data processing and analysis pro-
cedures, along with summarization of interesting results. We finish with a brief discussion of
our proposed procedure and findings in Section 4. All the processed datasets, R codes for the
pipeline, and the complete set of real data results are available for access via an interactive R
Shiny dashboard at tinyurl.com/BaySynApp. The supplementary materials are available online at
tinyurl.com/BaySynSup.
2. Methods
Multi-stage integration pipeline Following Figure 1, for a given set of samples (patients/model
systems), we build gene-specific mechanistic models to infer functional relevance of the genes in
the samples of interest based on the association of the gene’s expression pattern with its upstream
covariates such as copy number changes or DNA methylation. Particularly, in case of model systems,
certain cancer lineages may contain a low number of samples and the mechanistic models may suf-
fer from a lack of sufficient statistical power to identify true associations with upstream factors.
Therefore, we build two versions of the mechanistic models depending on the sample size scenarios
- a multi-lineage model that can borrow strength across samples from different lineages (used in
this work for modeling the cell line samples; Section 2.1.1), and a single-lineage version that can
be applied to a set of samples from a single cancer lineage/type (used in this work in context of the
patient samples; Section 2.1.2). Based on statistical summaries of significance of the upstream factors
for each gene from these models, we then build the outcome-specific Bayesian hierarchical variable
selection models (outcome models, in short; Section 2.2) that can incorporate such prior information
and borrow strength to improve selection of genes. The pseudocode for the complete framework is
available at Supplementary Notes Section S1.1. The specifics of each type of model are described in
full detail in the rest of this section.
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2.1. Mechanistic Models
For the mechanistic models, we investigate a gene of interest specifically in relation with its upstream
factors to detect whether it is a functional driver, and repeat the procedure across the complete pool
of genes included in the analyses. This approach offers a highly parallelizable framework, and the
efficiency only depends on the computational resources used by each individual model. Further, the
class of genomic associations with upstream factors that we are interested in may be highly nonlinear,
as has been indicated in past cancer literature.17,18 Therefore, we intend to equip our models with
sufficiently flexible specifications that can identify a broad range of association patterns. Keeping
these useful features in mind, we describe the mathematical details of the multi- and single-lineage
mechanistic models below.
2.1.1. Multi-lineage Mechanistic Models
Notations We begin with setting up some notations. Let 𝑀 denote the number of lineages across
which we intend to borrow strength in a single mechanistic model, and let {𝑛1,… , 𝑛𝑀} denote the
lineage-specific sample sizes, with 𝑛 =

∑𝑀
𝑐=1 𝑛𝑐 being the total sample size. Across a total of 𝑗 ∈

{1,… , 𝑞} genes, let 𝐺𝑖𝑗 denote the (continuous) normalized expression data for the 𝑗th gene in the 𝑖th
sample. Let 𝐿𝑖 denote the lineage (tissue/cancer type) of the 𝑖th sample, and let 𝐔𝑖𝑗 = (𝑈𝑖𝑗1,… , 𝑈𝑖𝑗𝑝𝑗 )

𝑇

denote the 𝑝𝑗 × 1 vector of upstream information from sample 𝑖 matched to gene 𝑗. Our mechanistic
models are gene-specific, allowing different sample sizes for each gene. However, for simplicity of
notations, we describe the models assuming a fixed 𝑛.
Model structure For the 𝑗th gene, we build an additive multi-lineage mechanistic model containing
separable components for the main effects of lineage and each upstream covariate, along with any
possible interactions of lineage with the upstream factors. Assuming the 𝐺𝑖𝑗s to be mean-centered,
the general mathematical form of such a model is presented in the following equation.

𝐺𝑖𝑗 = 𝑓1𝑗(𝐿𝑖)
⏟⏟⏟

Lineage main effect

+
𝑝𝑗
∑

𝑣=1
𝑓2𝑗𝑣(𝑈𝑖𝑗𝑣)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Upstream main effects

+
𝑝𝑗
∑

𝑣=1
𝑓3𝑗𝑣(𝐿𝑖, 𝑈𝑖𝑗𝑣)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Interaction effects

+ 𝜀𝑖𝑗
⏟⏟⏟

Error

,∀𝑖 ∈ {1,… 𝑛}. (1)

The simplest choice is to specify each component 𝑓∙ as a linear model. Such models have been ex-
plored in context of cancer omics.19 Although they are computationally simple, they may not be fully
able to capture the general range of cellular association patterns. An obvious nonlinear extension is
to use splines to construct piece-wise linear mean profiles. Such approaches have also been explored
in this context.20 However, there are multifold challenges – including specifying the number of knots
(hence the degree of adaptable nonlinearity) and increasing computational intensity with increasing
number of covariates. To build a general class of additive association models while maintaining a
reasonable extent of computational efficiency, we use Gaussian process (GP) models.
To build an additive GP model with interaction effects, we adapt an existing approach proposed in
context of longitudinal data.21 In a repeated measures setting, this approach provides a way to in-
corporate sample-level baseline effects and treatment effects in a nonlinear fashion. We extend this
idea to our scenario to include lineage-level baseline effects (treating the experiments on cell lines
from the same lineage akin to a repeated experiment setting) and changes in the effects of upstream
covariates across different lineages. While samples belonging to cancers sharing some larger group-
specific commonalities (e.g. all gynecological cancers) may share patterns of mechanistic impacts

Pacific Symposium on Biocomputing 2023

278



of upstream platforms on gene expressions, there may still be cancer-specific differences in the exact
effects. Briefly, we use a GP equipped with a zero-sum (zs) kernel for the main effect of the cate-
gorical lineage variable, one with an exponentiated quadratic (eq) kernel for the main effects of the
continuous upstream variables, and a product of the zs and eq kernels for their interactions, following
existing approaches.21,22 The specifics of the GP model along with the prior choices are described in
detail in Supplementary Notes Section S1.2.
Model fitting and hypothesis testing The interest now is in building mechanistic models and test-
ing for different main and interaction effects of interest. We use a dynamic Hamiltonian Monte Carlo
(HMC) sampler to obtain draws from the posterior distributions of the parameters. Since we are inter-
ested in evaluating the roles of lineage, upstream factors, and any possible interactions in explaining
the variability in gene expressions, we are interested in testing the following hypotheses.

(1) Lineage main effect: 𝐻0𝐿𝑗 ∶ 𝑓1𝑗 = constant.
(2) Upstream main effects: 𝐻0𝑈𝑗 ∶ 𝑓2𝑗𝑣 = constant,∀𝑣 ∈ {1,… , 𝑝𝑗}.
(3) All upstream effects: 𝐻0𝑈𝐼𝑗 ∶ 𝑓2𝑗𝑣, 𝑓3𝑗𝑣 = constant,∀𝑣 ∈ {1,… , 𝑝𝑗}.

To perform these tests, we use model comparison procedures using HMC-based draws of the joint
log-posterior function of the parameters in a model. For a model M containing all or some of the com-
ponents in Equation (1), let 𝐻0∙ be the test of interest and M∙ be the null model, which is a submodel
of M not containing the components set to constant under 𝐻0∙. For example, if we are interested in
testing the lineage main effect in a main effects-only model M, M∙ would be an upstream-only model.
We define pseudo-Bayes factors (pBF∙𝑗s) as scalar summaries of component significance, defined to
be the mean difference of the log-posteriors evaluated across the MCMC draws between the two
models being compared. The pBFs for the three hypotheses above and for the 𝑗th gene are denoted
respectively by pBF𝐿𝑗 , pBF𝑈𝑗 , and pBF𝑈𝐼𝑗 . Note that these quantities are approximations for the
traditional log-Bayes factors (lBFs) for comparing Bayesian models under equal model priors. To
compute an lBF, one has to compute the expected posteriors for each model, followed by their log-
ratio. Here, we are computing an empirical average of the difference of log-posteriors of the model
parameters. The exact expressions of these quantities for a given HMC sample of the parameters
are derived in Supplementary Notes Section S1.3. We use standard cut-offs for significance used for
lBFs at a log10(∙)-scale: < 0.5 (no evidence), 0.5 − 1 (substantial), 1 − 2 (strong), and > 2 (decisive).23
From now on, by pBF we always mean a quantity already in this scale.
Sequential evidence detection To identify driver genes, we quantify evidence of any upstream ef-
fect on gene expression untangled from any possible lineage effect. To this end, mimicking classical
approaches in regression settings, we follow a sequential scheme as described in Supplementary
Figure S1.

(1) Test for any lineage main effect using pBF𝐿𝑗 . If pBF𝐿𝑗 ≤ 1, go to Step 2. Else go to Step 3.
(2) Test 𝐻0𝑈𝑗 using pBF𝑈𝑗 . Set mechanistic evidence 𝑗1 = pBF𝑈𝑗 .
(3) Test 𝐻0𝑈𝐼𝑗 using pBF𝑈𝐼𝑗 . Set mechanistic evidence 𝑗1 = pBF𝑈𝐼𝑗 .
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2.1.2. Single-lineage Mechanistic Models
These models do not include any lineage main or interaction effects. Thus, from Equation (1), the
full models reduce to the following for the 𝑗th gene, using same notations as before.

𝐺𝑖𝑗 =
𝑝𝑗
∑

𝑣=1
𝑓𝑗𝑣(𝑈𝑖𝑗𝑣)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Upstream main effects

+ 𝜀𝑖𝑗
⏟⏟⏟

Error

,∀𝑖 ∈ {1,… 𝑛}. (2)

We use the same eq kernel parametrization for the GP priors on each 𝑓∙ as we used for the 𝑓2∙ com-
ponents in the multi-lineage models. We now test 𝐻0𝑗 ∶ 𝑓𝑗𝑣 = constant,∀𝑣 ∈ {1,… , 𝑝𝑗} for each
gene. We compare the full model in Equation (2) with a noise-only null model. The derivation of
the corresponding pBF𝑗 is described in Supplementary Notes Section S1.4. We assign the evidence
𝑗2 = pBF𝑗 , as described in Supplementary Figure S1.
2.2. Outcome Model
For a given pool of genes, it is possible to compute multiple lines of evidence (𝑗 = (𝑗1,… , 𝑗𝐸)𝑇

for gene 𝑗). For example, for a given gene 𝑗, we may compute one pBF from a multi-lineage model
built on cell line samples, and another pBF from a single-lineage model built on patient samples
(𝐸 = 2). With interest in some disease- or therapy-related phenotype/outcome 𝑌 and the selection of
biomarkers associated with it, the goal is to inform the outcome model about any level of evidence
captured in these 𝑗𝑒s in a covariate-specific way to possibly improve selection.

(1) Sufficiently strong evidence in favor of a covariate ⟹ higher prior probability of inclusion.
(2) Otherwise, a uniform prior is placed on selection/non-selection for that particular covariate.

We utilize a hierarchical Bayesian setting with calibrated spike-and-slab priors, described below.
Let 𝑌𝑖 be the mean-centered continuous outcome for the 𝑖th sample. Simple extensions to categor-
ical/censored outcomes are possible, but in this work we only focus on continuous outcomes. The
mathematical form of the calibrated Bayesian variable selection (cBVS) model is then the following.

𝑌𝑖 =
𝑞
∑

𝑗=1
𝛽𝑗

⏟⏟⏟
Gene expression coefficients

𝐺𝑖𝑗 + 𝜂𝑖
⏟⏟⏟

Error

, 𝑖 ∈ {1,… , 𝑛}. (3)

Model and prior specifications The errors 𝜂𝑖 are iid N(0, 𝜏2),∀𝑖 ∈ {1, ..., 𝑛}. A standard conjugate
prior is used for 𝜏2 ∼ Inverse-Gamma( 𝜈

2
, 𝜈𝜆
2
). Let 𝜷 = (𝛽1,… , 𝛽𝑞)𝑇 denote the 𝑞-dimensional vector of

regression coefficients. We place a calibrated hierarchical spike-and-slab prior on 𝜷.
𝜷|𝜹, 𝜏 ∼ N𝑞(𝟎,𝐃𝜹,𝜏),
𝛿𝑗|𝜃𝑗 ∼ Bernoulli(𝜃𝑗), ∀𝑗 ∈ {1, ..., 𝑞},

𝜃𝑗 ∼ Beta
(

 (𝑗),
1

 (𝑗)

)

, ∀𝑗 ∈ {1, ..., 𝑞}. (4)
Here 𝐃𝜹,𝜏 = 𝜏2𝐀𝜹, where 𝐀𝜹 is the 𝑞×𝑞 diagonal matrix 𝐀𝜹 = diag{𝛿1𝑣1+(1−𝛿1)𝑣0,… , 𝛿𝑞𝑣1+(1−𝛿𝑞)𝑣0}
and 𝑣1 ≥ 𝑣0 > 0 are respectively the slab and spike variances. The binary latent variables 𝛿𝑗 are
variable inclusion indicators with 𝛿𝑗 = 1 meaning that the 𝑗th variable is included in the model.
 is a calibration function mapping the evidence vector 𝑗 = (𝑗1,… , 𝑗𝐸)𝑇 to the prior covariate
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inclusion probability 𝜃𝑗 . The advantages of the hierarchical formulation (Equation (4)) coupled with
the evidence calibration function  are multifold. First, by adapting  , our framework allows the
user to incorporate other significance quantities (such as p-values) into the final outcome model.
Any external upstream information, including categorical and continuous covariates, can be used in
the mechanistic layer to compute such summary statistics. Finally, by tuning  appropriately, our
framework allows the user to control the impact of the prior information on selection, as we show
below. We discuss all these in more detail in Section 4.
Choice of evidence calibration function We use a calibration function  on ℝ𝐸 → [0, 1] to ag-
gregate multi-dimensional prior evidence into a scalar prior probability. To this end, we use a four-
parameter logistic map reflecting the maximal evidence across all sources on a continuous and non-
decreasing spectrum of evidence strength. The exact mathematical form and the motivation behind
this choice are described in Supplementary Notes Section S1.5. Using this function, the calibrated
prior means of 𝜃𝑗 (representative values of maximal evidence at the pBF∕ ln(10) scale in parentheses)
are as follows: 0.502 (0.25), 0.543 (0.75), 0.726 (1.5), 0.962 (3). As illustrated in Supplementary Fig-
ure S2, the corresponding prior distributions of 𝜃𝑗 shift from an uniform prior to one concentrated
close to one with increase in prior evidence strength.
Variable selection Inference is centered around the posterior 𝓅(𝜷, 𝜹,𝜽, 𝜏|𝒀 ,𝑮,, 𝜈, 𝜆, 𝑣0, 𝑣1), where
𝜷, 𝜹, and 𝜽 are the 𝑞 × 1 vectors of all 𝛽𝑗s, 𝛿𝑗s, and 𝜃𝑗s respectively, 𝒀 𝑛×1 is the outcome vector, 𝑮𝑛×𝑞
is the design matrix, and 𝑞×𝐸 is the matrix of the 𝑗𝑒s. We approximate this using a Gibbs sampler
implemented via the rjags R package.24 We obtain posterior estimates of the parameters (i.e., 𝛽𝑗s,
�̂�𝑗s, and 𝜏) as their corresponding empirical posterior means. Model selection is performed using
the collection of 1 − �̂�𝑗 as p-value type quantities and applying a false discovery rate (FDR) control
procedure,25 described in Supplementary Notes Section S1.6.
3. Multi-system and Multi-platform Integrative Analyses of Pan-Gynecological Cancers
We perform an integrative analysis of cancer cell lines data from CCLE and patient samples from
TCGA.14,15 Using multi-lineage mechanistic models for cell line samples and single-lineage mech-
anistic models for patient samples, we quantify gene-specific associations of expression with corre-
sponding copy number and methylation data. We then use the pBFs from these two sources to inform
and build cBVS models of drug response on gene expression based on the cell line samples. Specif-
ically, our multi-lineage mechanistic models on the cell line samples borrow strength by combining
data across three gynecological lineages - breast, ovary, and uterus. The single-lineage mechanistic
models on the patient samples are built separately for each of the three corresponding TCGA cancer
types by tissue - breast invasive carcinoma (BRCA), ovarian serous cystadenocarcinoma (OV), and
uterine carcinosarcoma (UCS). The outcome models on the cell line samples are built in a lineage-
specific way for a collection of drugs of interest in gynecological cancers. Our investigations are
aimed broadly at answering two sets of questions.

(1) We assess within-system and between-system patterns of functional evidence garnered by the
mechanistic models (i.e., a gene may have strong mechanistic evidence of association with
the upstream factors for the cell lines only, the patients only, both, or none).

(2) We identify panels of genes whose expressions are associated with responses to specific drugs
in the cell line samples, potentially offering novel introspection into treatment selection and
the cellular mechanisms/targets of such drugs.
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3.1. Data Processing and Analysis Pipeline
Multi-omics cell line and patient data Gene expression, copy number, and DNA methylation data
on cancer cell lines from CCLE, drug response data from GDSC, along with annotation information
to match genes to upstream information, are downloaded from the depmap portal.26 Gene expression,
copy number, and DNA methylation data on TCGA patient samples, along with annotation informa-
tion matching genes to upstream covariates, are downloaded from the Xena browser.27 Sample size
and other filtering requirements result in a pool of 5,792 genes and 65 drugs to be included in all
further analyses, as described in Supplementary Notes Section S1.7. Summary information on each
dataset are available in Supplementary Table S1 and Supplementary Figures S3-S8.
BaySyn analysis of gynecological cancers For each gene, a multi-lineage mechanistic model with
𝑀 = 3 (breast, ovary, uterus) is constructed (termed the CL model hereafter) and hypothesis tests
are performed as described in Supplementary Figure S1. Further, for each gene, three single-lineage
mechanistic models (one for each cancer type – BRCA, OV, UCS) are built on the patient samples
and upstream effects are quantified following Supplementary Figure S1. As a post-model fitting in-
vestigation, we perform gene set enrichment analyses (GSEA)28 using these four sets of evidence
(CL, BRCA, UCS, OV) for the Kyoto Encyclopedia of Genes and Genomes (KEGG)29 and gene
ontology (GO) gene sets.30,31 For our analyses, we use the gene set enrichment (GAGE) procedure
implemented in the gage R package due to the reason that our pBFs are on a different scale than
typical expression levels or fold-change summaries.32 The gene set-specific hypothesis that we test
is whether the set in question exhibits significantly higher level of activity as summarized by the
evidence statistics compared to the genes outside the gene set, due to the unidirectional nature of the
pBFs. For each lineage, drug-specific response association models are built using the cBVS proce-
dure, and variable selection is performed using a 10% FDR control threshold. Illustrative examples of
annotated and integrated datasets for each stage of modeling are presented in Supplementary Notes
Section S1.8 and Supplementary Figures S9-S11.
3.2. Results
Utility of borrowing strength to detect mechanistic evidence Figure 2a summarizes the number
of genes inferred to be at the decisive level of evidence (in favor of associations with corresponding
upstream covariates) across the three single-lineage models for each TCGA patient cancer type and
the multi-lineage model for the cell lines data. The connected dots at the bottom indicate the inter-
section of the mechanistic models for which the number of genes summarized by the bar height are
decisive. The top three combinations of models in terms of detecting decisive evidence all belong to
some combination of the TCGA data sets (BRCA only, BRCA and OV, BRCA and UCS - in decreas-
ing order). However, except for the BRCA dataset which utilizes > 750 samples for all genes to build
the mechanistic models, the cell lines mechanistic models borrowing strength across three lineages
detect more unique signals (4th in the ranking) than the other TCGA datasets. This further validates
the utility of building joint nonlinear association models with main and interaction components that
can identify shared patterns of association across smaller datasets which would potentially be missed
in dataset-specific models. The list of genes uniquely identified by the cell lines mechanistic model
is available in Supplementary Table S2.
KEGG gene set enrichment analyses illustrate utility of mechanistic evidences To assess the
utility of the mechanistic evidence quantities and to validate their use in future detection of novel
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Fig. 2: Mechanistic evidence summary and gene set enrichment results. Panel (a) presents an upset plot of
the number of genes at the decisive level of evidence based on the mechanistic models for different intersections
of the patient and cell line datasets. Panel (b) presents a dotplot summarizing significance levels for KEGG
gene sets. The gene sets are ordered from top to bottom in decreasing order of q-values (≤ 0.2 included).
The labels beside the dots indicate set sizes in our analyses. Panels (c) and (d) present heatmaps summarizing
levels of mechanistic evidence for the genes in KEGG herpes simplex infection and adherens junction gene
sets respectively. Genes in the rows are ordered based on clusters resulting from the evidence statistics.

functional drivers, we perform GSEA using the four evidence sources and the KEGG and GO gene
sets. Due to space limitations we only discuss the KEGG results here. The GO results are presented
in Supplementary Figures S17-S32. Several KEGG gene sets have been implicated to have signif-
icant roles generally in cancer33,34 and specifically in gynecological cancers.35–38 The results from
our KEGG GSEA are summarized in Figure 2b, exhibiting the seven gene sets with FDR-controlled
q-value < 0.2. The gene set-specific mechanistic evidences are summarized in Figure 2c-d for the
top two KEGG gene sets; the rest are presented in Supplementary Figures S12-S16. The top gene
set identified in the KEGG analyses is the herpes simplex infection pathway (p-value = 3.88 × 10−16)
(Figure 2b). This gene set contains a large cluster of genes exhibiting decisive evidence across ma-
jority of the mechanistic models, as can be seen in Figure 2c. Following these genes are two major
clusters - one containing genes at the decisive level for the BRCA, OV, and CL mechanistic models,
and one containing genes at the decisive level for all three TCGA cancers. The consistent nature
of functional evidence across this gene set is in agreement with findings from past investigations -
multiple studies have indicated the prognostic value of members of this pathway in gynecological
cancers - including breast,39 ovarian,40 and endometrial41 cancer. The second-highest gene set in the
KEGG analyses is the adherens junction gene set (p-value = 5.52 × 10−5) (Figure 2b). The genes
PTPN6 and ERBB2 exhibit decisive levels of mechanistic evidence in all four models (Figure 2d).
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Different upstream mechanisms of the ERBB2 gene have been implicated in different gynecological
cancers, such as copy number changes in ovarian tumors42 and somatic mutations in breast cancer.43
The EGFR gene has also shown promise as a potential therapeutic target in multiple gynecological
cancers,44,45 which is in alignment with our findings of some signal in all the TCGA and cell line
models (Figure 2d).
Calibrated drug response models identify high-association lineage-specific biomarkers We
build calibrated hierarchical Bayesian variable selection-based drug response models for each lin-
eage × drug combination across all 65 drugs and all three cell line lineages. Figure 3a presents a
wordcloud where each gene is weighted by the total number of times it is selected in a drug response
model at the 10% FDR-controlled cutoff. The genes BAHCC1, ALOX12P2, and SYCP2 emerge as
the top candidates, with selection in 14, 12, and 12 models respectively. While this summary allows
us to identify general candidates for future pharmacogenomic investigations, it does not indicate any
potential lineage-specific utility of these genes. To this end, Figure 3b summarizes the number of
times the top genes across all drug response models are selected in each lineage. For breast, genes
BAHCC1, BCL11A, and SYCP2 are at the top, with respectively eight, eight, and six detected drug
associations. The role of BCL11A in triple-negative breast cancer (TNBC) stemness is well known,
and it is considered to be one of the first utilizable targets for treatment of TNBCs.46 A similar con-
firmation can be obtained for SYCP2, which has recently been identified as a prognostic biomarker
in breast cancer.47 However, to the best of our knowledge, BAHCC1 has not so far been identified
to have breast cancer-specific functional roles, which renders it as a novel detection that deserves
deeper investigations. Top genes in the two other lineages also include both novel and known func-
tional drivers - such as ALOX12P2 (nine selections, novel) and FGFRL1 (eight selections, known)48
for ovary and FBXO17 (seven selections, novel) for uterus.

(a) (b) (c)
ModelBAHCC1

ALOX12P2

SYCP2

BCL11A

ACBD7

CDCA7

FBXO17

FGFRL1

GRK5HOXC4
IL18RAP

KRT7

NEDD4

PANX2

S100A1

SPON1

SRCIN1

ZNF853

Fig. 3: Drug response model summaries. Panel (a) presents a wordcloud of top genes across all the drug
response models (three lineages × 65 drugs). The sizes of the words are proportional to the total number of
times across all models that a gene is selected based on a 10% FDR-controlled threshold. Panel (b) presents a
radar chart of the top 18 genes (selected in at least nine drug response models) according to the three lineages.
Panel (c) presents a discovery plot across increasing FDR control thresholds for the drug docetaxel in lineage
breast and the drug cisplatin in lineage ovary. BMS refers to an uncalibrated Bayesian variable selection model
based on the Bayesian model averaging procedure (see Supplementary Notes Section S1.9).

Calibration improves statistical power to detect gene-drug associations To assess the discover-
ies for specific lineage × drug combinations, we focus on two drugs with known use in specific cancer
lineages - docetaxel for breast and cisplatin for ovary. The number of discoveries across different FDR
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thresholds for these are presented in Figure 3c-d and the corresponding discoveries are summarized
in Supplementary Tables S3-S4. Similar plots and tables for all other models are available in our R
Shiny dashboard at tinyurl.com/BaySynApp. Evidently, compared to an uncalibrated Bayesian vari-
able selection procedure implemented via the BMS R package (see Supplementary Notes Section
S1.9), cBVS models make more discoveries at the same level of error control, allowing a contin-
uum of assessment for top candidates emerging across increasing control thresholds. This indicates
the utility of synthesizing mechanistic evidence and calibrating the outcome models with such evi-
dences. Several examples of cell lines-based discoveries guided by evidences discovered in patient
data emerge. For example, the model for docetaxel response in breast cell lines identify an associa-
tion with the gene GRK5 at 10% FDR control. Cell lines overexpressing GRK5 have previously been
observed to demonstrate an increase in resistance to docetaxel in male gynecological cancers,49 and
our finding suggests that it deserves further investigations in female gynecological cancers as well.
Another top discovery at the same FDR threshold is the gene CD83, expression of which is known
to be enhanced by docetaxel in metastatic breast cancers.50 For the response model of cisplatin in
the ovarian lineage, multiple solute-carrier family (SLC) genes are selected at the 10% FDR thresh-
old. These genes are known potential biomarkers of ovarian cancer and are under investigation for
prognostic utility.51 Another interesting discovery is that of the CDCA7 gene from the cell division
cycle pathway, silencing of which has recently been shown to downregulate cisplatin resistance in
lung cancer subtypes, making it a potential therapeutic target.52 Our finding seems to indicate similar
scope in ovarian cancer, demanding further investigation. Notably, all four of these discussed find-
ings had no cell lines-based mechanistic evidence, but had decisive evidence from at least one TCGA
source – which further underscores the importance of synthesizing evidence across model systems.
4. Summary and Discussion
We propose BaySyn, a hierarchical multi-stage Bayesian evidence synthesis procedure for multi-
system multiomic integration. BaySyn detects functionally relevant driver genes based on their as-
sociations with upstream regulators and uses this information to guide variable selection in outcome
association models. We apply our framework to multiomic cancer cell line and patient datasets for
pan-gynecological cancers. pBFs from the mechanistic layer of BaySyn exhibit high enrichment in
previously known KEGG gene sets and detect driver genes known to have functional roles in the can-
cers studied. Calibrated outcome models for drug responses identify several confirmatory and novel
lineage-drug-gene combinations providing further evidence on the profitability of our approach to-
wards future precision oncology endeavors.
Several features of our framework makes it readily adaptable to more general settings and richer
datasets. The calibrated spike-and-slab prior can be generalized to include any number (more up-
stream platforms such as miRNA or mutation) and form (other evidence metrics such as p-values) of
prior information by tuning the calibration function accordingly. The outcome model can easily be
extended to include other biomarkers such as proteomics. While we use cell lines data to illustrate the
integrative approach across model systems, it is straightforward to apply our pipeline to datasets from
cancer model systems with higher fidelity to human tumors53 - such as organoids54 or patient-derived
xenografts55 - as such databases become increasingly comprehensive and available. Further, both the
stages of our framework are highly parallelizable and individual runs are quite efficient - a single
gene-specific multi-lineage mechanistic model with interactions takes approximately 20 minutes on
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average to complete, while a single lineage-drug specific outcome model takes approximately 12
minutes on average (both based on runs on a single core of a 2015 Macbook Air with 8 GB memory
and Intel i5 processor). Thus, extending our analyses to include larger gene-drug panels with similar
sample sizes is straightforward with existing parallel computing resources.
Limitations and Future Work Certain improvements are of interest given the biological context
of our work. First, although we assess mechanistic relevance at a gene-by-gene basis, at a molecular
level, genes interact in functional pathways to result in downstream modifications. This motivates
joint models for driver genes in a multivariable setting accounting for underlying gene-gene interac-
tions. Second, the relatively low lineage-specific sample sizes in cell lines data make fully Bayesian
exploration of the posteriors feasible in the outcome models. Higher data dimensions would result
in increased computation times; where-in approximate Bayesian computation schemes such as the
E-M based variable selection56 or variational Bayes57 would need to be employed. Third, while our
framework allows integration of covariate-specific prior information in a variable selection frame-
work, more granular information (both sample- and covariate-specific) may be available, allowing
improved learning of the molecular functions driving the changes in an outcome of interest. For ex-
ample, sample-specific data on tumor heterogeneity may be available, and such data may need to be
incorporated in the outcome models driving changes in the covariate effects. Finally, as outlined in
Supplementary Notes Section S1.5, in the presence of multiple lines of evidence, how best to aggre-
gate them depends heavily on the context - while multiple possible approaches exist, a case-specific
decision must be made to ensure best utilization of the evidences. A data-driven procedure of choos-
ing evidence weights would eliminate this requirement. We leave these tasks for future exploration.
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A critical challenge in analyzing multi-omics data from clinical cohorts is the re-use of these valuable 
datasets to answer biological questions beyond the scope of the original study. Transfer Learning and 
Knowledge Transfer approaches are machine learning methods that leverage knowledge gained in 
one domain to solve a problem in another. Here, we address the challenge of developing Knowledge 
Transfer approaches to map trans-omic information from a multi-omic clinical cohort to another 
cohort in which a novel phenotype is measured. Our test case is that of predicting gut microbiome 
and gut metabolite biomarkers of resistance to anti-TNF therapy in Ulcerative Colitis patients. Three 
approaches are proposed for Trans-omic Knowledge Transfer, and the resulting performance and 
downstream inferred biomarkers are compared to identify efficacious methods. We find that multiple 
approaches reveal similar metabolite and microbial biomarkers of anti-TNF resistance and that these 
commonly implicated biomarkers can be validated in literature analysis. Overall, we demonstrate a 
promising approach to maximize the value of the investment in large clinical multi-omics studies by 
re-using these data to answer biological and clinical questions not posed in the original study.  

Keywords: Trans-omic. Multi-omic. Transfer Learning. Knowledge Transfer. Microbiome. Colitis. 

1. Introduction

The generation of matched multi-omics datasets from large clinical cohorts has resulted in
identification of novel biomarkers of disease progression and therapeutic response in cancers [1-3], 
inflammatory [4, 5], and other complex human diseases [6, 7]. The Integrative Human Microbiome 
Project (iHMP) is a recent effort to understand the complex host and microbiome drivers of 
inflammatory bowel disease (IBD) [8], type 2 diabetes (T2D) [7], and preterm birth (PTB) [9] 
through the integration of human multi-omics. The development of computational tools to integrate 
molecular data across scales [10] and relate signatures to human phenotypes [11] has been a critical 
parallel and synergistic effort to experimental advances that have expanded the scope of molecular 
profiling. Because sequencing remains one of the highest costs to scaling clinical multi-omics, 
patients are recruited with defined criteria to ensure sufficient statistical power to answer the primary 
study questions. Therefore, though the molecular data in these cohorts are rich in detail and scope, 
the clinical and phenotypic variables are often sparse and limited in scope.  

Transfer Learning, the use of information gained solving one problem to inform the solution of 
a different one, is a machine learning area suited to maximize the value of the financial, research, 
and patient efforts required to generate clinical datasets. The profiling of different molecular data 
types in multi-omic cohorts encode trans-omic information that enables correlation of signals across 
scales. If one of these scales is present in single-omic cohort matched to new phenotypic variables, 
the trans-omic relationships in the multi-omics study could reveal molecular associations with the 
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phenotypic variables in the single-omic cohort. We term this Trans-omic Knowledge Transfer and 
suggest that this approach represents a largely untapped reservoir of opportunity to reuse data from 
clinical cohorts to answer questions beyond those posed in the original study.  

Here, we examine potential strategies for Trans-omic Knowledge Transfer to associate multi-
omic signatures from one cohort of patients to a drug-resistance phenotype in another (Figure 1). 
Our objective is to identify gut microbial taxa and metabolites in the IBD Multi-omics Database 
(IBDMDB)[8] predictive of anti-tumor necrosis factor alpha (anti-TNF) therapeutic response in 
Ulcerative Colitis (UC) patients, a phenotype not in the original IBDMBD data.  

 

 
 
Figure 1. Study Overview. (A) Trans-omic Knowledge Transfer to predict biomarkers of response to an anti-TNF drug 
(Infliximab: IFX) training on UC patient gene expression data (GSE16879, “GSE-Data”) and predicting on a test set 
(IBDMDB). (B) Case 1: Supervised Classifier Transfer. The PLS-DA model constructed on the training data is applied 
to IBDMDB gene expression data to predict IFX response. New PLS-DA models are constructed to associate microbial 
taxa and metabolites to the predicted IFX response. (C) Case 2: Relative Separation Transfer. The weights matrix W is 
extracted from the GSE-trained PLS-DA model and the IBDMDB gene expression data are projected onto the GSE 
latent variables (LV). PLS-R models are trained to associate microbial taxa and metabolites to the positions of the 
IBDMDB samples on the IFX response, GSE-trained LVs. (D) Case 3: Signature Transfer. Genes predictive of IFX 
response in the GSE-trained model are extracted via Variable Importance of Projection (VIP) analysis to define an IFX-
response Gene Set. Single Sample Gene Set Enrichment Analysis (ssGSEA) constructs a resistance score for this 
signature in IBDMDB data. PLS-R models are built to associate taxa and metabolites to the resistance score.  
 

UC is a chronic inflammatory condition of the digestive tract that impacts the large intestine and 
results in progressively worsening inflammation and intestinal damage [12]. Patients typically 
progress through a sequence of therapies including antibiotics and general immunosuppressive 
drugs, to more targeted biologic agents, the most common of which are anti-TNF agents [13]. 
However, 10-40% [14] of patients will exhibit primary resistance, and up to 50% [15] of initial 
responders will eventually acquire resistance, depending on the disease type and experiment design. 
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Therefore, anti-TNF resistance represents a major clinical problem in UC and the identification of 
microbial and metabolite biomarkers of response could aid in the development of probiotic and 
prebiotic approaches to enhance response and overcome resistance.  

Since information about anti-TNF response is not available in the meta-data for the IBDMDB, 
we developed three transfer learning approaches to leverage UC patient gene expression data 
matched to anti-TNF response in another cohort to infer an anti-TNF response gradient and 
biomarkers in IBDMDB. To compare these approaches, we held the initial model constant, a Partial 
Least Squares Discriminant Analysis (PLS-DA), and compared three strategies for knowledge 
transfer we term (1) Supervised Model, (2) Relative Separation, and (3) Signature Transfer. We 
show how each of these methods enables discovery of cross-cohort biomarkers, assess consistency 
of different approaches, and offer recommendations on how to generalize these approaches to other 
classes of machine learning models for trans-omic, cross-cohort biomarker discovery.  
 
2. Methods 
 
2.1 Datasets – Download and Processing 
Multi-omics data was obtained from the integrated Human Microbiome Project (iHMP) IBD Multi-
omics Database [16, 17]. Large intestine samples from Ulcerative colitis and non-IBD control 
patients were selected if each unique patient had all three of the following data types: gut 
metabolomics data, 16S rRNA seq data, and colorectal transcriptomics. The cohort consisted of 18 
UC patients with all three sets of data. 16S rRNA-seq and gut metabolomic data were log2 
normalized, and the transcriptomic data was z-scored normalized. Gene expression data for UC 
patients matched to Infliximab response information were obtained from Gene Expression Omnibus 
(GEO) from dataset GSE16879 (N = 24) [18, 19]. Data were log2 RMA normalized [20] and the 
top 33% of most variable genes were selected for analysis. The IBDMDB gene expression dataset 
was filtered for just these top 33% of most variable genes from GSE16879 to ensure comparability.  
 
2.2 Partial Least Squares and Variable Importance of Projection Analysis 
Partial Least Squares Discriminant Analysis (PLS-DA) and Regression (PLS-R) models were 
trained in MATLAB_R2022a using the ‘plsregress’ function. For training the initial model with 
GSE16879 gene expression data, models with 1 to 8 latent variables (LV) were assessed using 6-
fold cross-validation. Percent variance explained in Y (infliximab response) and minimized mean 
squared error (MSE) were examined to select the optimal number of LVs for Knowledge Transfer 
to the test set. Test set models using metabolomics or microbial taxa information were trained 
examining 1 to 8 LVs using 6-fold cross-validation and the optimal number of LVs were selected 
based on percent variance explained and minimized MSE. For gene expression, metabolomics, and 
16S rRNA-seq data, predictive features were identified in the PLS models using variable importance 
of projection (VIP) analysis. A VIP score assesses the weighted variance captured by a feature in a 
PLS model relative to the total variance captured in the model. A feature with VIP score greater 
than 1 is considered significantly predictive and higher VIP scores indicate more predictive features.  
 While other methods for predictive modeling do exist (e.g. random forest, neural networks) 
that we could examine here, the strength of PLS-DA and PLS-R is the ease of interpretation of the 
loading coefficients on the latent variables, enabling us to use the inferred biological signatures as 
validation lists. This is necessary since the nature of Trans-omic Knowledge Transfer involves 
prediction on a test set for which we cannot know the ground-truth biological signatures.  
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2.3 Case 1: Supervised Classifier Transfer 
Following PLS-DA model training on the GSE16879 gene expression data predicting Infliximab 
response, the model regression coefficients matrix 𝛽, was extracted. We applied 𝛽 to the z-score 
normalized IBDMDB gene expression data, filtered for overlapping genes with the top 33% most 
variable genes, to predict an Infliximab response for the IBDMDB samples. Predicted values greater 
than 0 were marked as “sensitive” or “1” and less than 0 were marked as “resistant” or “-1”. We 
then used these labels to construct PLS-DA models for the IBDMDB metabolomics and 16S rRNA-
seq data predicting the Infliximab response variable. Models were trained and predictive metabolites 
and microbial taxa were extracted via the procedures described in 2.2.  
 
2.4 Case 2: Relative Separation Transfer 
Following PLS-DA model training on the GSE16879 gene expression data predicting Infliximab 
response, the model weights matrix W was extracted. We multiplied W by the z-score normalized 
IBDMDB gene expression data, filtered for overlapping genes with the top 33% most variable 
genes, to predict an Infliximab response for the IBDMDB samples, to infer the scores of IBDMDB 
samples on GSE16879-trained latent variables. Using this continuous Y matrix, we constructed 
PLS-R models for the IBDMDB gut metabolomics and 16S rRNA-seq data to predict separation of 
IBDMDB samples on Infliximab response-associated latent variables. Following model training as 
described in 2.2 for IBDMDB metabolomics and 16S rRNA-seq data, predictive metabolites and 
microbial taxa were extracted via VIP analysis.  
 
2.5 Case 3: Signature Transfer 
Following PLS-DA model training on the GSE16879 gene expression data predicting Infliximab 
response, significantly predictive genes were extracted via VIP analysis at a threshold of VIP > 2.  
These genes were used to define a gene set for analysis via single sample Gene Set Enrichment 
Analysis (ssGSEA). We analyzed the IBDMDB gene expression data in R (v4.1.1) using the 
package ssGSEA2.0 to infer patient-specific Infliximab resistance pathway scores. After running 
ssGSEA2.0, sample-specific Infliximab-resistance scores for the IBDMDB patients were extracted 
for downstream analysis. We trained PLS-R models with the IBDMDB metabolomics and 16S 
rRNA-seq data to predict the Infliximab resistance scores. Models were trained and significantly 
predictive metabolites and microbial taxa were extracted via VIP analysis as described in 2.2.  
 
2.6 Data Code Availability 
All data required to reproduce the findings in the manuscript is publicly available through GEO [18] 
or the IBDMBD [8] portals. All code required to reproduce the findings in this manuscript is 
available at: https://github.com/WeldonSchool-BrubakerLab/psb2023.git 
 
3. Results 
 
3.1 Training the source PLS-DA model on Infliximab Response-Matched Transcriptomics 
We trained a PLS-DA model predicting Infliximab response from large intestine pinch biopsy gene 
expression data in GSE16879 as the foundational model we held constant in comparing Trans-omic 
Knowledge Transfer modeling approaches. Processed gene expression data were filtered for the top 
33% most variable genes (5,779 genes) as our X-block and a PLS-DA model was trained using a 
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binary Y variable for Infliximab response (Sensitive 1, Resistant -1) (Figure 2A). UC samples 
primarily separated by Infliximab response on LV1 and a two latent variable model minimized 
prediction error across 6-fold cross-validation. Using Variable Importance of Projection (VIP) 
analysis, we identified genes in the model predictive of Infliximab response (2,266 genes VIP > 1) 
and extracted a 70 gene Infliximab resistance signature (VIP > 1) to define an Infliximab resistance 
gene set for trans-omic models (Figure 2B-2C). Of those genes, 55 were up-regulated in Infliximab 
resistant patients relative to sensitive patients. 

 
 
Figure 2. Training the underlying PLS-DA model. (A) Scores of GSE16879 ulcerative colitis samples in PLS-DA 
latent variables (LV) predicting Infliximab sensitivity or resistance. Two LV were selected explaining 71.4% variance 
and minimizing MSE. (B) Volcano plot of genes by VIP score and log2 fold change between R and NR patients. (C) 
Heatmap of Infliximab response-associated genes at VIP > 2 used to construct the gene set for Case 3: Signature Transfer 
Modeling. R-Responder, NR- Non-responder or resistant. Bolded genes are up-regulated in Infliximab resistant patients.  
 
3.2 Inferring Gut Microbial Taxa Predictive of Infliximab Response 
Having trained the initial PLS-DA model predicting Infliximab response from gene expression data 
in UC patients from GSE16879, we examined three approaches for Trans-omic Knowledge Transfer 
to identify gut microbial taxa predictive of Infliximab response using gene expression and 16S 
rRNA-seq data from IBDMDB (Figure 3). For our first case, Supervised Classifier Transfer, we 
applied the PLS-DA model trained on GSE16879 gene expression data to the IBDMDB gene 
expression data to predict a binary Infliximab response variable for these patients. Having made this 
prediction, we trained a new PLS-DA model (2 LV – 73.2% variance explained) predicting 
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IBDMDB Infliximab response labels from IBDMDB 16S rRNA-seq data (Figure 3A). The 
microbial taxa information was able to stratify the predicted labels primarily along LV1. 

For the second case, Relative Separation Transfer, we applied the weights matrix W from the 
GSE16879-trained PLS-DA model to the gene expression data from IBDMDB to calculate the 
scores of IBDMDB samples on GSE16879 latent variables. We then trained a PLS-R model (2 LV 
– 59.9% variance explained) predicting IBDMDB scores on GSE16879 LV1 and LV2 using 
IBDMDB 16S rRNA-seq data (Figure 3B). Positive scores on GSE16879 LV1 and LV2 were 
associated with Infliximab resistance (Figure 2). We observed that these scores were not well 
stratified by the PLS-R model, but some separation could be observed on 16S rRNA-seq LV1.  

 

 
 
Figure 3. Gut Microbial Predictors of Infliximab Response. (A) Case 1 Supervised Classifier Transfer. Scores plot 
for a PLS-DA model predicting IBDMDB inferred Infliximab response classes from 16S rRNA-seq data. Infliximab 
response classes were predicted by applying the GSE16879 trained PLS-DA model to the IBDMDB gene expression 
data. (B) Case 2 Relative Separation Transfer. Scores plot for a PLS-R model trained to predict separation of IBDMDB 
samples on GSE16879 PLS-DA latent variables from 16S rRNA-seq data. Plots are colored by IBDMDB sample scores 
on GSE16879 latent variables 1 and 2 inferred using IBDMDB gene expression data. (C) Case 3 Signature Transfer: 
PLS-R model predicting IBDMDB Infliximab resistance gene score from 16S rRNA-seq data. (D) Comparison of 
microbial taxa VIP scores from Case 1 (C1), Case 2 (C2), and Case 3 (C3) PLS Knowledge Transfer models. (E) Venn 
diagram of the number of Infliximab response-associated taxa (VIP > 1) across models.  
 
 For the third case, Signature Transfer, we used the 70 genes with VIP scores greater than 2 
from the GSE16879 PLS-DA model to define an Infliximab resistance gene set for single sample 
Gene Set Enrichment Analysis (ssGSEA) of the IBDMDB gene expression data. In brief, ssGSEA 
calculates an enrichment score for a pathway or gene set, for each sample in a dataset based on the 
cumulative expression of genes within that sample gene set. Here, we used ssGSEA to calculate an 
Infliximab resistance score for each sample in the IBDMDB gene expression data and then trained 
a PLS-R model predicting that score using the IBDMDB 16S rRNA-seq data (Figure 3C). We 
observed very strong separation of IBDMDB samples by Infliximab resistance scores along the 
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microbial taxa latent variables. Compared to the Supervised Classifier Transfer and Relative 
Separation Transfer approaches, the model trained using Signature Transfer generated latent 
variables capturing the greater proportion of variance between samples.  
 We performed VIP analysis of the microbial taxa in each Knowledge Transfer model to 
extract Infliximab response-predictive microbial taxa from each approach. When we compared the 
extracted features across models by VIP score, we observed that there was relatively little 
consistency between the biomarkers identified by each approach (Figure 3D). This suggests that 
while all approaches shared the same base-model, a PLS-DA model trained on GSE16879 gene 
expression data, the specific procedures of trans-omic knowledge transfer strongly influence the 
downstream-inferred biomarkers. Despite these differences, we were able to identify a core set of 
50 microbial taxa associated with Infliximab response across all approaches (Figure 3E). Of these, 
18 have been reported to be associated with anti-TNF-α response in clinical studies (Table 1). 
 
Table 1. Bacteria abundance in response to anti-TNF treatment in IBD patients 

SILVA Genus Effect 

Subdoligranulum responder baseline↑[21] responder post-therapy↑ [22] 

Blautia responder baseline↑[23] responder after therapy↓[21, 22]  

Butyricicoccus responder after therapy↑[24]  

Fusicatenibacter responder after therapy↑[22] 

Roseburia responder baseline↑[24] responder after therapy↑[25] 

Clostridium sensu stricto 1 responder baseline↑[24] 

Faecalibacterium responder baseline↑[26] responder baseline↑ (F. prausnitzii) [21] responder 
after therapy↑[22, 25] non-responder after therapy↓[22] 

Eubacterium hallii group responder after therapy↑[22] CD responder after therapy↑[24] 

Ruminococcacea NK4A214_group responder baseline↑[24] 

Lachnospiraceae NK4A136 group responder baseline↑[24] 

Eubacterium coprostanoligenes group responder baseline↑[24] 

Dialister non-responder baseline↑ responder after therapy↓[21] 

Ruminococcacea NK4A214 group responder baseline↑[24] 

Coprococcus responder after therapy↓[21]  

Ruminococcus gnavus group responder after therapy↑[24] responder baseline↑[23]  

Dorea responder baseline↑[23] responder after therapy↑[22] 

Bacteroides relapser baseline↓[27] 

Eubacterium rectale responder baseline↑[28] 
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Faecalibacterium is one of the most abundant bacterial genera in the human intestine, and 
Faecalibacterium prausnitzii is the only known species in this genus [29]. Its abundance is reduced 
in both CD and UC [30-34]. Recent literature shows that a higher pre- and post-treatment level of 
Faecalibacterium correlates to a better anti-TNF-α response [21, 22, 25-27], which may result from 
the anti-inflammatory effect of a high amount of butyrate produced by Faecalibacterium prausnitzii 
[33]. Furthermore, the pre- and post-treatment level of Blautia, Roseburia, Dorea, and 
Ruminococcus gnavus group is also found to differentiate between anti-TNF-α responders and non-
responders [21-25, 28, 35], inferring that they may be useful biomarkers for IBD prognostics. 
 
3.3 Inferring Gut Metabolites Predictive of Infliximab Response 
Similarly, to the microbial taxa Knowledge Transfer models, we used the PLS-DA model trained 
on UC patients from GSE16879 to examine Trans-omic Knowledge Transfer approaches to identify 
gut metabolites predictive of Infliximab response using gene expression and stool metabolomics 
data from IBDMDB (Figure 4). For Supervised Classifier Transfer, we used the same Infliximab 
response labels inferred for analysis of the 16S rRNA-seq data to train a new PLS-DA model using 
the IBDMDB stool metabolomics data to predict the inferred IBDMDB Infliximab response labels 
(Figure 4A). A two LV model (83.4% variance explained) strongly separated IBDMDB samples by 
predicted Infliximab response and appeared to capture more total variance explained in these 
samples than the 16S rRNA-seq PLS model.  

For Relative Separation Transfer, we used the same projections of IBDMDB samples onto 
GSE16879 gene expression latent variables used in for the 16S rRNA-seq models in Figure 3. We 
trained a PLS-R model (2 LV – 69.9% variance explained) using gut metabolomics to predict 
IBDMDB scores on GSE16879 latent variables and observed that the metabolomics data produced 
clearer separation of projection scores and captured more sample-to-sample variance than the 16S 
rRNA-seq data (Figure 4B). For Signature Transfer, we trained a new PLS-R model predicting the 
IBDMDB Infliximab resistance gene score from the IBDMDB metabolomics data (2 LV - 86.0% 
variance explained) and observed strong separation of IBDMDB samples by resistance score on the 
inferred metabolomics latent variables (Figure 4C). Like the microbial taxa data, the clearest 
separation between samples and the largest variance explained was attributable to the Signature 
Transfer methodology. The models using the metabolomics data produced clearer separation 
between IBDMDB samples than the microbial taxa data in all matched cases, potentially due to the 
greater percent variance captured in the Y-block by the metabolomics data.  

We performed VIP analysis of the metabolites in each Knowledge Transfer model to extract 
Infliximab response-predictive metabolites from each approach. Just like with the 16S rRNA-seq 
models, when we compared the metabolites across models by VIP score, we observed that there was 
relatively little consistency between the biomarkers identified by each approach (Figure 4D). This 
strengthens our observation that while all approaches shared the same base GSE16879 trained 
model, the trans-omic knowledge transfer approach strongly influence the downstream-inferred 
biomarkers. Despite these differences, we identified core set of 44 microbial taxa associated with 
Infliximab response across all approaches (Figure 4E).  
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Figure 4. Gut Metabolite Predictors of Infliximab Response. (A) Case 1 Supervised Classifier Transfer. Scores plot 
for a PLS-DA model predicting IBDMDB inferred Infliximab response classes from gut metabolomics. Infliximab 
response classes were predicted by applying the GSE16879 trained PLS-DA model to the IBDMDB gene expression 
data. (B) Case 2 Relative Separation Transfer. Scores plot for a PLS-R model trained to predict separation of IBDMDB 
samples on GSE16879 PLS-DA latent variables from gut metabolomics. Plots are colored by IBDMDB sample scores 
on GSE16879 latent variables 1 and 2 inferred using IBDMDB gene expression data. (C) Case 3 Signature Transfer: 
PLS-R model predicting IBDMDB Infliximab resistance gene score from gut metabolomics data. (D) Comparison of 
microbial taxa VIP scores from Case 1 (C1), Case 2 (C2), and Case 3 (C3) PLS Knowledge Transfer models. (E) Venn 
diagram of number of Infliximab response-associated taxa (VIP > 1) across models. 
 
Sphingomyelin (d18:1/16:0), a sphingolipid abundant on the apical side of the gastrointestinal 
epithelial cell membrane and in the myelin sheath of nerve cells [36], significantly increased in the 
UC mice [37, 38] and ileum of CD human [39]. It was reported that the sphingomyelin level was 
elevated in anti-TNF-α non-responding IBD patients' serum [40]. This accumulation potentially 
results from the downregulation of alkaline sphingomyelinase—one of the sphingomyelin digesting 
enzymes that exhibit anti-inflammatory properties in colitis mice—in IBD [41-43], inferring that 
the increase of sphingomyelin may correlate to the aggravation of the inflammation, which 
manifests as the diminished effect of anti-TNF-α. Our model also identified glycine as a core 
metabolite. It is an amino acid that has been reported to increase in the feces of adult and pediatric 
IBD patients [44, 45]. The metabolome profile of pediatric Crohn's Disease patients shows a 
decrease in pediatric CD patients after anti-TNF-α treatment [46]. Given glycine inhibits the TNF-
α activity [47], such a decrease could result from the remission. In the same study, sebacic acid, a 
breakdown product of fatty acids that is normal in urine, was reported to be more abundant in the 
non-responder. Furthermore, metabolites like leucine, phosphatidylcholine, and arginine are closely 
related to TNF-α and associated pathways in IBD [48-51]. Their potential as metabolomic predictors 
of anti-TNF-α response warrants future studies. 
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4. Discussion 
 
We show that Trans-omic Knowledge Transfer provides a framework for inferring multi-omic 
biomarkers of phenotypes across cohorts. The approaches we examined, Supervised Classifier, 
Relative Separation, and Signature Transfer, have methodological and interpretability differences 
with advantages and disadvantages. Supervised Classifier Transfer is direct application of a 
supervised model on a test set. New phenotypic labels are inferred in the test set using one data type, 
and secondary models are built to infer biomarkers in other data types in the test set. The challenge 
with this approach generally is that the validity of the inferred phenotypic labels cannot be directly 
assessed and for a binary phenotype, drug resistant or sensitive, the classification threshold at which 
the phenotypes are defined in the test set may influence the resulting downstream biomarkers.  
 Relative Separation Transfer partially addresses issues of classification threshold and by 
using a projection onto latent variables to define a continuum of anti-TNF resistance states in the 
test set. This allows for continuous modeling of relative differences in samples in the test set along 
one or more latent variables defined in the training data. However, the projection procedure appears 
to be the noisiest of the approaches we tested here based on the lack of clear separation by LV scores 
and interpreting positions on latent variables, rather than a binary phenotype, is challenging.  
 Signature Transfer is perhaps the most interpretable Knowledge Transfer approach we 
examined here. Once the gene signature is extracted from the training set, no other features of the 
model from the training data are retained, all inference of biomarkers is performed in the test set 
modeling the signature as a dependent variable. The final model thus only aims to characterize the 
trans-omic relationships in the test set and relative signature score associated with a phenotype. 
Separation between samples was clearer in this model compared to the Relative Separation approach 
and the internal consistency of the model mitigates some concerns of predicted class validity in the 
Supervised Classifier Transfer approach. Though the association of gene signature activity with 
anti-TNF resistance is still uncertain in this approach, we recommend Signature Transfer as the most 
rigorous and interpretable Trans-omic Knowledge Transfer approach among those tested here.  
 Despite the methodological differences in the three approaches, we find that a common set 
of microbial and metabolite biomarkers of anti-TNF response can be identified. Validation against 
literature suggests that consensus biomarkers inferred across approaches have potential clinical 
benefit. A fourth approach to Trans-omic Knowledge Transfer may be to construct multiple models 
using the same single-omic training and multi-omic test sets and extract the commonly identified 
trans-omic features for future biological studies. This Ensemble approach to Knowledge Transfer 
may be further augmented by testing multiple classes of prediction models, such as support vector 
machines, random forests, or neural networks, and extracting the resulting consensus biomarkers.  
 Our study has some limitations which may be addressed in future studies to extend the 
approach. While we present important feasibility and proof of concept data here, a disseminatable 
software toolbox would increase the impact and applicability of our approaches to other problems. 
Part of this should include additional benchmarking using pairs of multi-omics datasets, varying 
gene inclusion threshold percent, and withholding select data types to enable more quantitative 
validation metrics. While not examined here, in principle our frameworks could be expanded to 
other -omic data types, including proteomics, scRNA-seq, and metagenomics data, provided data 
types are encoded in latent variables reflective of data-specific distributional properties.  
 In conclusion, we demonstrate that Trans-omic Knowledge Transfer modeling is a 
potentially powerful approach for integrating multi-omics and single-omics data across clinical 
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cohorts to discover biomarkers of conditions and phenotypes measured in one or the other cohort. 
To our knowledge, there are no comparable approaches widely implemented for us to compare our 
approaches and results to, making this an important first feasibility study of the utility of Trans-
omic Knowledge Transfer. The paucity of other methods in this space is likely due to the challenge 
of validating approaches with quantitative metrics, a limitation we acknowledge and propose a 
solution to for future methodological studies.  

In future work, extensions of this approach could account for cohort-specific covariates in 
biomarker discover to enhance the robustness of the inferred associations. The ability to re-use 
clinical multi-omics data to answer novel biological questions adds an important tool to preclinical 
studies of drug resistance and disease biology. Such methods increase the value of the initial 
investment to generate the cohort by allowing basic and translational scientists to test new 
hypotheses through computational models of existing data and to potentially advance new therapies.  
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Multi-treatment Effect Estimation from Biomedical Data
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Several biomedical applications contain multiple treatments from which we want to
estimate the causal effect on a given outcome. Most existing Causal Inference methods,
however, focus on single treatments. In this work, we propose a neural network that adopts
a multi-task learning approach to estimate the effect of multiple treatments. We validated
M3E2 in three synthetic benchmark datasets that mimic biomedical datasets. Our analysis
showed that our method makes more accurate estimations than existing baselines.

Keywords: Causal Inference, Multiple-treatments, biomedical data

1. Introduction

Consider the following setting: an exploratory study on hearing loss as an Adverse Drug
Reaction (ADR) in children under cancer treatment with the drug Cisplatin.1 While Cisplatin
is one of the most effective chemotherapeutic agents for children, reports have also demonstrated
that 75-100% of infant patients have hearing loss. Note that patients often receive a drug
cocktail, and while a single drug might not lead to ADR, ADR is observed when we have a
combination of these drugs. Previous studies1 pointed out that hearing loss is the result of a
combination of factors, such as the patient’s age, genetic predisposition, dosage, and exposure
to several drugs (more drugs, more heavy metals accumulation in the body, higher the chances
of hearing loss). The study’s data are the patient’s clinical information (low-dimensional),
genetic information (high-dimensional), the drugs given to the patient, and the observed ADR.

In Causal Inference notation, the covariates X are the patients’ clinical information and
genetic information; the outcome of interest Y is the ADR, and each drug is a binary treatment
(T = [T0, T1, ..., TK ], where Tk = 1 records that the k-th drug was given). Understanding and
learning the causal effect of each treatment on the outcome can be used to support doctors
in recommending more precise treatments, minimizing ADRs in this example, or maximizing
the drug response in other cases. Note that existing treatment effect estimators designed for
individual binary treatments could be adopted: For each drug k ∈ {0, ...,K}, we fit an estimator
using all the other drugs as covariates. However, such an approach assumes the estimator
would perform covariate adjustment correctly - and here is where we argue that an estimator
that considers the multiple treatments together could be a better alternative for biomedical
data.

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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Recent advances in Machine Learning(ML) are now widely being used to improve Causal
Inference methodologies. One example is how ML can improve the covariate adjustment of
applications with high-dimensional datasets. Such improvements fit perfectly with the precision
medicine vision of developing diagnosis, prognosis, and treatment techniques that consider
the individual, often high-dimensional data. Most machine learning methods solve only a
single task, i.e. they predict a single target variable. Multi-task learning (MTL) methods,2 on
the other hand, optimize a model to simultaneously solve multiple tasks (or, in our context,
treatments). The main argument in favor of MTL is that single-task learning may fail to
capture the synergy of multiple treatments, e.g., an additive effect or a genetic predisposition
to a certain combination of treatments, but not to individual treatment. Currently, there are
only a few methods capable of estimating the causal effect of multiple treatments. Hi-CI3

considers and models multiple treatments but assumes that only one is assigned to a unit at
any given time. The Deconfounder Algorithm (DA),4 a probabilistic graphical model, works
with multiple treatments but has received some recent criticism regarding its assumptions.5

Contributions: The main contributions of this paper are as follows:

• We propose the Multi-gate Mixture-of-experts for Multi-treatment Effect Estimation
(M3E2), a method to estimate the multi-treatment effect.

• We validate M3E2 in three synthetic datasets that mimic biomedical applications. We
also compare our method with three existing baselines.

• We create the repository github.com/raquelaoki/M3E2 with an implementation of
our methods, baselines, and datasets. We also share all the configuration files for
reproducibility of our results, with hyperparameters and seeds adopted.

2. Related Work

This work combines the estimation of treatment effects and multi-task learning (MTL).
Estimating Treatment Effects: BART,6 Causal Forests,7 CEVAE,8 and Dragonnet,9 have

explored the estimation of a single treatment effect, using Bayesian Random Forests, Random
Forests, VAEs, and neural networks (NN) respectively. The inverse propensity weighting-
based methods,10 meta-learners11 also focused on binary single-treatments. The Deconfounder
Algorithm,4 Hi-CI,3 approaches based on the propensity score,12,13 and others14–16 aim to
estimate multi-treatment effect. However, many of these methods assume that only one
treatment is applied to any given unit or consider all the combinatorial interventions, which is
infeasible for larger numbers of treatments. Note that several works assume robustness to missing
confounders.4,8,14,17 Their robustness is often built on the assumption that extra information is
known, such as a known number of hidden confounders or replacing unobserved confounders
with proxies. There are, however, several concerns regarding some of these methods.5,18 Our
proposed method focuses on multiple treatment effect estimation through an outcome model in
a multi-task learning neural network architecture and ignorability. By considering all treatments
simultaneously, our proposed architecture can learn a better representation of input data and
perform a better covariate adjustment than existing baselines.

Multi-task learning (MTL): MTL neural network (NN) architectures aim to optimize
a single model for two or more tasks simultaneously. Hard-parameter sharing NN19 is one
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of the MTL pillars. Such architecture is composed of a set of layers shared among all tasks
and a set of task-specific layers on the top. From the MTL perspective, the Dragonnet9 has a
hard-parameter sharing architecture. Building upon the hard-parameter sharing architectures,
the Multi-gate Mixture-of-Experts (MMoE)20 architecture, where each expert can be seen as a
hard-parameter sharing NN, and all the experts are combined through a gate function, which
is also trainable. The core idea of such an approach is to improve the model’s generalization;
plus, it allows experts to specialize in one of the tasks. To put into perspective, an MMoE is to
hard-parameter sharing NN what a Random Forest Model is to a Decision Tree. Our proposed
method M3E2 uses a MMoE20 as a component. Our work expands the MMoE architecture to
satisfy causal inference assumptions and estimate the multi-treatment effect.

3. MMoE for Multi-treatment Effect Estimation

This section describes our proposed method, M3E2. Its multi-task learning architecture
simultaneously predicts the outcome and the propensity scores for each treatment.

Fig. 1. M3E2 training architecture, for K = 2 (two treatments), and 3 experts. It receives as input
the covariates X = [Xlow, Xhigh], and predicts the treatment assignment T = {T1, ..., TK} and the
outcome Y . The LVM model Ω learns a latent representation L of the high-dimensional covariates
Xhigh. The gates gk, experts fe, ∀e ∈ {1, 2, 3}, and task-specific layers H1 and H2 learn a representation
H of the input data, and H is used to predict the propensity scores p1 and p2 and the outcome Y .

When working with observational studies, one must always describe how the confounders
are addressed. Some works assume no unobserved confounders,6,9,21,22 others try to reduce the
bias through latent variables;4,8,17 while others question if the latent variables are solving the
problem at all.5,18 While exploring alternatives to the ignorability assumption is an interesting
research direction, the main focus of this work is the estimation of effect of multiple treatments.
Hence, in our work, we assume no unobserved confounders.

Figure 1 illustrates the proposed neural network architecture, with a MMoE,20 and a
Latent Variable Model (LVM) as subcomponents. This architecture predicts K + 1 tasks: the
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outcome Y and K propensity scores pk. The propensity scores estimate the probability of a
treatment being assigned given the covariates (P (Tk = 1|X)), and it is important to guarantee
the identifiability of the causal effects (Theorem 1). The LVM contributes to the model by
efficiently combining low and high-dimensional covariates (section 3.2). The MMoE is an MTL
architecture adopted to handle multiple tasks. It contains a combination of experts, gates, and
task-specific layers (section 3.3).

One of the strengths of M3E2 is its capacity to estimate the combined effect of a large
number of treatments: the M3E2 network only grows linearly with the number of treatments,
handling all potential combinations, something that other multi-treatment methods typically
struggle to accomplish. Furthermore, the proposed architecture of M3E2 extends the MMoE
architecture by incorporating causal inference assumptions through suitable regularizers and
adding the outcome model to estimate the treatment effects.

Notation: We define low-dimensional covariates as Xlow and high-dimensional covariates
as Xhigh. An example of the first is clinical variables and, from the latter, genomics information.
The split of covariates into low-dimensional and high-dimensional will be explained in Section
3.2. We define the covariates concatenation as X = [Xlow, Xhigh]. The continuous outcome is Y ,
and K represents the number of treatments. T = {T0 = t0, T1 = t1, ..., TK = tK}, where T could
e.g. be the drug cocktail taken by a patient.

3.1. Assumptions

Assumption 1. Stable Unit Treatment Value Assumption (SUTVA):23 the response of a
particular unit depends only on the treatment(s) assigned, not the treatments of other units.

Assumption 2. Common Confounders and conditional independence:24 Treatments share
confounders. Given the shared confounders, the treatments are independent.

Ti ⊥ Tj |X,∀i, j ∈ {0, ...,K}, i ̸= j

Assumption 3. Ignorability - the potential outcome is independent of the treatments given
the covariates.

Theorem 1. Sufficiency of Propensity Score:9,25 If the average treatment effect is identifiable
from observational data by adjusting for X, i.e., ATE = EX [EY [Y |X,T = 1]− EY [Y |X,T = 0]],
then adjusting for the propensity score also suffices:

ATE = EX [EY [Y |h(X), T = 1]− EY [Y |h(X), T = 0]]

First, we consider applications with a continuous outcome, binary or continuous treatments,
and a set of covariates. Assumption 1 (SUTVA) is standard in Causal Inference. According to
SUTVA, the samples are independent and do not interfere with each other. Assumptions 2
and 3 are related to the identifiability of the treatment effect. Assumption 2 assumes no links
(dependencies) between the treatments given the covariates, and Assumption 3 assures all
back-door paths can be blocked by conditioning on the observed covariates X - guaranteeing
the identifiability of the treatment effect.26 Assumption 2 is also related to multi-task learning
(MTL). The ideal use of MTL is when tasks (in our case, treatments) are somehow related. In
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that case, it is reasonable to assume they also share confounders. The Theorem 1 is presented
here as originally proposed, so for the proofs and demonstrations, please check the original
publications.25,27 According to Theorem 1, it suffices to adjust only the information in X

that is relevant for predicting the treatment Tk, which is the output of Hk(XL1). For multiple
treatments, the generalization goes as follows:27

ATE = E[E[Y |H(XL1), T1 = t1, ..., TK = tK ]− E[Y |H(XL1), T1 = 1− t1, ..., TK = tK ]]

Under these assumptions and theorem, the identifiability comes from the Propensity Score’s
Sufficiency and the following causal structure: T → Y , X → T , X → Y .

3.2. Latent Variable Model (LVM)

M3E2 can handle different data types by dividing the input covariates X into two groups,
Xlow and Xhigh. While the Latent Variable Model (LVM) handles the covariates in Xhigh, the
Xlow covariates are fed directly to the experts. The split of the covariates X into Xlow and
Xhigh is defined by the user. Ideally, Xhigh contains high-dimensional covariates, such as gene
expression, single-cell data, or image data; and Xlow contains low-dimensional data, such as
clinical variables. Note that, in applications with only one data type, both Xlow = ∅ and
Xhigh = X, and Xlow = X and Xhigh = ∅ are acceptable splits.

In applications where Xhigh ̸= ∅, M3E2 uses a LVM to reduce the dimensionality of the
covariates in Xhigh. Note that, while there are similarities with other works that adopt proxies
to handle unobserved confounders, our LVM component is responsible only for reducing the
dimensionality of Xhigh. As described in Section 3.1, our work assumes strong ignorability,
a setting with no unobserved confounders. Under strong ignorability, however, we can still
have confounding within the observed data. The LVM component, along with the experts, is
responsible for extracting a meaningful representation of the input data. These features are
used in the covariate adjustment E[Y |X,T0, ..., Tk], which should close the back-doors and make
the treatment effect identifiable. To learn a meaningful representation of X in applications
with a mix of high-dimensional and low-dimensional covariates, it was important to find an
approach that is capable of combining these different types of covariates. Without the LVM
component, the experts could give a disproportional weight to Xhigh covariates, as they would
be the majority in X, and even ignore relevant information in Xlow.

In our experiments, M3E2 adopts an autoencoder with two linear encoder layers and two
linear decoder layers. Note, however, that one is free to choose a different architecture or factor
model to extract a latent representation of Xhigh. Consider an application with n samples, c2
columns in Xhigh, cL as the latent variables size, and the input data Xhigh as a matrix n× c2.
The function ωenc(Xhigh) returns L(n×cL), a representation of Xhigh in a lower dimension. Finally,
ωdec(Xhigh) returns the reconstructed data X ′

high, back on n× c2 space.

3.3. MMoE Architecture

In Machine Learning, it is common for a set of shared layers to predict multiple tasks. These
architectures are called hard-parameter sharing neural networks. A multi-gate mixture-of-
expert (MMoE)20 architecture contains several experts, where each expert can be seen as a
hard-parameter sharing neural network. It was shown that MMoE architectures generalize
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better,20 especially in biological applications.28

The user defines the number of experts E and the fe architecture. In the context of multiple
treatment effect estimation, the tasks are the propensity score and the outcome Y prediction.
The experts’ input data is XL1 = [Ωenc(Xhigh), Xlow] = [L,Xlow]. The ideal number of experts
depends on the tasks. Homogeneous tasks might not benefit from many experts and might
overfit if the number of experts is too large. Conversely, heterogeneous tasks tend to benefit from
a larger number of experts. Note that the definition of homogeneous and heterogeneous tasks
is subjective. Here, we define applications whose tasks adopt the same loss as homogeneous
tasks. An example would be an application with only classification tasks. On the other
hand, heterogeneous task applications contain classification, regression, multi-label, and other
potential tasks in the MTL model. The gates control the contribution of each expert to each
task. There is a gate gk per treatment defined as: gk(XL1) = softmax(WK ×XL1),∀k ∈ 1, ...,K,
where Wk ∈ RE×d is a trainable matrix of weights, E is the number of experts defined by the
user, and d is the number of columns in XL1. Finally, note that the gates can be seen as an
attention29 mechanism, learning which experts are more relevant for each task.

3.4. Task-specific Layers

The task-specific layers are responsible for predicting the propensity score pk and the outcome of
interest Ŷ . Each treatment task-specific layer receives as input a weighted average of the experts,
where the weights come from the gates associated with that given task. This relationship is
formally defined as:

Hk = hk(
∑E

e=1 gk(XL1)fe(XL1)), ∀k ∈ {1, ...,K}
In the training phase (Figure 1), the treatment assignment is predicted with the propensity

score pk, estimated as pk = P (Tk = t|Hk) (for discrete treatments) or pk = P (Tk ≤ t|H) (for
continuous treatments using the conditional density fT |X(t, x)30,31). To estimate the treatment
assignment of Tk we only use Hk, ∀k ∈ {1, ...,K}. For binary treatments, a softmax activation
function will outputs, for each sample, the probability of P (Tk = 1|Hk) and P (Tk = 0|Hk). These
predictions are used to calculate the loss of the neural network, as described in Section 3.5.
The propensity score losses are used to drive Hk to be sufficient (Theorem 1 - Section 3.1).
Note that hk can be a combination of one or more layers.

Finally, a layer with trainable weights Φ is used to predict the outcome. Consider the
input data of this layer as XTH = [T1, ..., TK , H], where T1, ..., TK are the observed treatment
assignments, H =

∑K
k=1 Hk

K , and cTH is the number of columns. The trainable weights layer
Φ = [τ1, . . . , τk, . . . , τcTH

] estimates the final outcome as Y = Φ×XTH . In our context of treatment
effect estimation, τk is the treatment effect of the treatment k. The Φ works as an outcome
model and each weight associated with a Ti, ∀i ∈ {0, ...,K} represents an ATEi.

Our approach targets additive effect, which is fairly common in biomedical applications.32

Consider, for example, the ADR study on patients under cancer therapy described in Section
1. Many of these drugs contain heavy metals, and their accumulation can result in adverse
drug reactions. Non-linear effectsa are an interesting extension left for future work.

aNote that the linearity only applies to the last layer Φ, not to the autoencoder or the experts.
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3.5. Loss function

M3E2’s loss function is composed of:

(1) Root mean square error loss ℓy(Y, Ŷ ) = RMSE(Y, Ŷ ) for continuous outcomes and binary
cross-entropy ℓy(Y, Ŷ ) = BCE(Y, Ŷ ) for binary outcomes.

(2) Similar to the outcome loss functions, we adopt ℓpk
(T, T ′) = RMSE(Tk, T̂k) or/and

ℓpk
(T, T ′) = BCE(Tk, T̂k) as the propensity score losses, ∀k ∈ {0, ...,K}.

(3) ℓA(Xhigh, X
′
high) = RMSE(Xhigh, X

′
high) is the autoencoder loss function.

(4) 1
2n

∑
w w2 as the L2 regularization.

As a reminder, while our architecture minimizes the propensity score and the outcome
losses, our main target is to obtain estimates of the treatment effects. The treatment effects
are a co-product of this model, i.e., the weights associated with the treatments in the trainable
layer Φ (See Section 3.4). The model also learns weights in Φ associated with the H; however,
these are not considered treatment effects. The total loss is L = αℓy+β

∑K
k ℓpk

+γℓA+ λ
2n

∑
w w2,

where α, β and γ are weights. There are two possible ways to define these weights: to adopt
them as a hyper-parameter or to adopt an MTL task balancing approach. Modifying both ℓgk
and ℓy to other loss functions is also straightforward.

4. Experiments

In causal inference, the lack of ground truth for real-world applications poses a challenge to its
evaluation. Therefore, we adopt three synthetic datasets that have known treatment effects.
These synthetic datasets mimic existing biomedical datasets:

• Genome-Wide Association Study (GWAS):4,33,34 Semi-synthetic sparse dataset with 1000
covariates, 3-10 binary treatments, and continuous outcome. In this dataset, the covariates
and treatments are single-nucleotide polymorphisms (SNPs), and the outcome represents
a clinical trait. The simulation starts by removing highly correlated SNPs with linkage
disequilibrium from the 1000 Genome Project (TGP).35 Then, a PCA extracts c = 5

components from TGP, creating the genetic representation matrix Γv,c. The patients’
representation matrix is generated as Πn,c ∼ 0.9× Uniform(0, 0.5), where n is the number
of desire samples. The covariates are simulated as Xn,v ∼ Binomial(1,Πn,c × ΓT

v,c). The
set K contains the index of K columns randomly picked to be treatments. The effect
of each covariate is defined as τi ∼ Normal(0, 0.5)∀i ∈ K(causal effect), else, τi = 0 (non-
causal effect). Three groups were extracted using k-means(X) to add confounding. Each
group l ∈ {1, 2, 3} has an intercept value λl and noise distribution ϵ ∼ Normal(0, σl),
σl ∼ InvGamma(3, 1). The outcome is calculated as Y =

∑
v τvXn,v + λln + ϵ.

• Copula:32 This recently proposed dataset also mimics a Genome-Wide Association Study.
The Copula, unlike the GWAS dataset, features a fully synthetic dataset. We adopted
the setting with four treatments and non-linear outcomes. The covariates are generated
as Xn,v ∼ Normal(0, σ), where n is the sample size and v the number of covariates. The
treatments are simulated as Tn,l = PCA1(Xn,v) + ϵt,∀l ∈ {1, 2, 3, 4}, ϵt ∼ Normal(0, σt),
and Y = 3 × T1 − T2 + T3IT3>0 + 0.7 × T3IT3≤0 − 0.06 × T4 − 4 × T 2

1 + 2.8 ×
∑

v Xn,v + ϵy,
ϵy ∼ Normal(0, σy). The causal effects are τ = [1, 0.25,−0.2, 0.1].
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• IHDP:6,8,9 the Infant Health and Development Program (IHDP) is a traditional benchmark
for single binary treatments. It is supposed to mimic a study on infant development. In
that study, the treatment was assigned (T = 1) if the child had special care/home visits
from a trained provider. The outcome Y is cognitive test scores, and the goal is to measure
the causal effect of the home visits. This benchmark contains ten replications of such a
study, with 24 covariates and a continuous outcome. We adopt this dataset to compare our
proposed method with some of the single-treatment baselines that have been previously
evaluated on the IHDP benchmark datasets. b

Due to the synthetic nature of the datasets adopted c, we can calculate the mean absolute
error (MAE) between the estimated treatment effect and the true treatment effect. Defining τk
as the true treatment effect of Tk, and τ̂k as its estimated value by one of the methods. As we
have multiple treatment effects, we report their average error

∑K
k=0

|τk−τ̂k|
K , where K is the total

number of treatments. We repeat each combination of (data×model × setting) B = 20 times,
and in our plots, we show the MAE calculated over all these runs:

MAE =

B∑
b=0

(∑K
k=0 |τk − τ̂k|

K

)
1

B
(1)

A good estimator has estimates close to the true treatment effect values; therefore, low
MAE values are desirable. We adopt an experimental setting similar to the multi-task learning
settings,20 where the proposed multi-task learning method is compared with other multi-task
learning methods and single-task learning models. Among our baselines, the DA4 is the only
method that can estimate the effect of multiple treatments with one model. The CEVAE8 and
Dragonnet9 are single-treatment methods. We used the author’s implementation of the baselines
when available. For single-treatment baselines, the multiple treatment effects were estimated as
follows: to estimate τ1, the baseline methods receive as input T1 as the treatment assignment,
and the columns T0, T2, ..., TK are added to Xlow. We follow this setup for all K treatments.
We also performed experiments with BART. However, since CEVAE and Dragonnet achieved
better performance results in the recent publications,8,9 and BART performed poorly on the
GWAS and Copula datasets, we decided not to discuss BART in the experimental section.

4.1. Overall Performance

Figure 2 shows, for each dataset, the average MAE across all settings. Our proposed method,
M3E2, clearly outperforms all baselines on the multi-treatment datasets GWAS and COPULA.
On IHDP, a single-treatment dataset, M3E2 was outperformed by Dragonnet, yet, it was better
than the other two baselines. Note that our results for Dragonnet on IHDP match the results
previously reported,9 and the estimators’ larger variance on the IHDP dataset can be explained
by the scale of the true treatment effect. Our main take from Figure 2 is that our method
outperforms all the baselines on its ideal use-case: applications with multiple treatment effects.

bImplementation available at github.com/AMLab-Amsterdam/
cImplementation available at github.com/raquelaoki/CompBioAndSimulated_Datasets

Pacific Symposium on Biocomputing 2023

306

github.com/AMLab-Amsterdam/
github.com/raquelaoki/CompBioAndSimulated_Datasets


In single-treatment applications, while achieving reasonable results, simpler architectures that
target single-treatment estimation like the Dragonnet tend to achieve better performance.

Fig. 2. MAE barplots of the M3E2 and baseline methods. Small MAE values are desirable. The
black line indicates a 95% confidence interval.

Fig. 3. Copula results for one simulated dataset (n = 10000, k = 4, v = 10) with 24 independent
repetitions of each model. The baselines’ results are shown in orange, our results are in blue, and the
red line shows the true effect (c-f).

Figure 3 shows a deeper analysis of the Copula dataset. Figure 3.a shows that M3E2
has the lowest MAE values compared to the other baselines. Figure 3.b shows the total run
time of each method in seconds. As a reminder, both DA and M3E2 fit one model for all
treatments; Dragonnet and CEVAE, on the other hand, fit one model for each treatment. DA,
a probabilistic model, has the fastest running time; M3E2 has the lowest running time among
the NN methods. A comparison between the true τ (line in red) and the estimated treatment
effects (dots) is shown in Figures 3.c-f. Note that for τ0 and τ2, M3E2 is the only method
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whose estimates are centered around the true value. For τ1 and τ3, M3E2 overestimates the
treatment effects, yet, it still produces reasonably good estimates. Overall, M3E2 has a good
performance. However, we noticed two limitations: First, M3E2 has a larger variance than the
other methods; second, for some runs, it estimated values very far from the true treatment
effect τ0. Considering our baselines, while they have a smaller variance, we noticed that DA and
Dragonnet often estimated the treatment effect as 0, indicating that these methods might fail to
estimate the treatment effect in this dataset correctly, despite achieving reasonable predictive
performance. CEVAE was the second-best method; still, its results were never centered around
the true values (red lines) and often underestimated the magnitude of the treatment effect.

4.2. Impact of Dataset Parameters

Fig. 4. Impact of the dataset parameters in estimating multiple treatment effects.

We also explored the impact of the dataset parameters in estimating the multiple treatment
effects. We focused on three parameters: the sample size, number of treatments, and covariates.
Figure 4 shows, in detail, the average MAE and the 95% confidence interval (colored area) for
the several settings. Figure 4.a and 4.d show the impact of the sample size on the GWAS and
Copula dataset, respectively. Our proposed method, M3E2, is the method that benefits the
most from increasing the sample size. We noticed that all methods are robust to the increase in
the number of covariates (Figures 4.b and 4.e), with M3E2 having a small increase on MAE on
the Copula dataset with 125 covariates. The most surprising result of all is shown in Figure 4.c.
The MAE increases in all baselines with the increase in the number of treatments. Nevertheless,
M3E2 achieves better results with nine treatments than with six treatments. Such a result
shows that, while the methods are similar regarding the dataset impact on MAE and are quite
robust to variations in the number of covariates, M3E2 significantly outperforms all other
methods when a larger number of treatment effects are considered.

Pacific Symposium on Biocomputing 2023

308



5. Discussion and Conclusion

In this paper, we have investigated the problem of estimating the effect of multiple treatments
in observational data, a setting often found in biomedical applications. To address current
limitations, we proposed the M3E2, a multiple treatment effect estimator that uses a MTL
neural network architecture. One of the main advantages of M3E2 is its flexibility, as several of its
subcomponents can be replaced by alternative implementations, e.g., by different experts, latent
variable models, or propensity score predictors. We experimentally compared M3E2 against
three baselines on three synthetic benchmark datasets that mimic biomedical applications.
The online repository github.com/raquelaoki/M3E2 contains the code to replicate all the
experiments, and we put extra effort into making the M3E2 implementation agnostic to the
application; therefore, its deployment in other applications should be straightforward. M3E2
demonstrated promising experimental results and strong evidence that MTL contributed to
more accurate estimates of the treatment effects. Nevertheless, there remain several directions
for future research. As discussed in Section 3.1, our method assumes ignorability, which is quite
limiting in real-life applications. M3E2 also inherits the limitations of other MTL models, in
particular, the susceptibility to imbalanced tasks and overfitting. All strengths and limitations
considered, we believe that M3E2 has a very good use case with manageable limitations. In
future research, we want to apply our proposed method to a real-world dataset that records
adverse drug reactions in therapies for treating cancer in infants, moving a step forward toward
the precision medicine goal of providing the right drug at the right dose to the right patient .36
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An Approach to Identifying and Quantifying Bias in Biomedical Data
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Data biases are a known impediment to the development of trustworthy machine learning
models and their application to many biomedical problems. When biased data is suspected,
the assumption that the labeled data is representative of the population must be relaxed
and methods that exploit a typically representative unlabeled data must be developed. To
mitigate the adverse effects of unrepresentative data, we consider a binary semi-supervised
setting and focus on identifying whether the labeled data is biased and to what extent.
We assume that the class-conditional distributions were generated by a family of compo-
nent distributions represented at different proportions in labeled and unlabeled data. We
also assume that the training data can be transformed to and subsequently modeled by
a nested mixture of multivariate Gaussian distributions. We then develop a multi-sample
expectation-maximization algorithm that learns all individual and shared parameters of the
model from the combined data. Using these parameters, we develop a statistical test for
the presence of the general form of bias in labeled data and estimate the level of this bias
by computing the distance between corresponding class-conditional distributions in labeled
and unlabeled data. We first study the new methods on synthetic data to understand their
behavior and then apply them to real-world biomedical data to provide evidence that the
bias estimation procedure is both possible and effective.

Keywords: Bias detection, bias estimation, semi-supervised learning

1. Introduction

The development and application of machine learning methods have become commonplace
in biomedical sciences and have the potential to transform clinical care.1,2 Many of those
predictive modeling approaches take place in a binary semi-supervised setting; that is, where
the prediction outcome is dichotomized and the available data for training and evaluation
contains samples of labeled and unlabeled examples. One such scenario is the prediction of
the effect of genomic variants as pathogenic or benign, where labeled data contains pathogenic
(positive) and benign (negative) variants from databases such as ClinVar3 and the unlabeled
data is often a large reference set of observed variants such as gnomAD.4

A traditional approach in semi-supervised learning is to assume that the labeled data is
representative of unlabeled data, thus requiring little sophistication during model develop-
ment, model selection, and performance evaluation. However, a distinguishing feature of real
biomedical data is that the labeled examples may not be representative of the unlabeled data;
that is, the labeled data may be biased.5 Data biases can have adverse effects on the ability of
models to be optimized for the unlabeled data at hand and can also lead to poor estimation

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Fig. 1: An illustration of bias in labeled data. Left: unbiased (unobserved, dash-dotted lines) distri-
butions of positive (f+) and negative (f−) classes that comprise the (observed, solid line) unbiased
mixture distribution f = αf+ + (1 − α)f−, drawn here with α = 0.3. Right: the same unbiased
observed mixture f together with biased observed distributions of positive (f ′

+) and negative (f ′
−)

classes. The objective of this work is to use datasets from (f, f ′
+, f

′
−) to estimate the existence and

extent of the differences between f+ and f ′
+ and between f− and f ′

−.

of a classifier’s performance on a reference distribution.6 More generally, biased data presents
an obstacle to the development of trustworthy methods that are necessary for the societal
acceptance of machine learning-based predictive technologies.7,8

Learning under sample selection bias is a well-known problem.9 Early approaches relaxed
the assumption of fully representative data by assuming the same class-conditional distribu-
tions in labeled and unlabeled data, thus reducing the problem of posterior estimation to
estimation of class priors in unlabeled data.10,11 Other approaches consider situations where
at least one class-conditional distribution from which the labeled data is generated is repre-
sentative of its unlabeled counterpart.12–15 While such methods have advanced the treatment
of sample selection bias, we are not aware of methods that can identify whether and to what
extent labeled data differs from unlabeled data for a general form of bias.

The objective of this work is to develop a statistical test for identifying biased labeled data
while simultaneously quantifying the level of bias. We assume that the real-world data can be
transformed and subsequently modeled using nested mixtures of multivariate Gaussian distri-
butions; that is, with both positive and negative samples being Gaussian mixtures themselves.
We then model these class-conditional distributions in both labeled and unlabeled data by
the shared underlying component distributions, but permit the proportions at which the data
is sampled from those component distributions to differ between labeled and unlabeled data.
We finally develop an expectation-maximization (EM) algorithm that learns both individual
and shared parameters from the combined data which allows us to identify and quantify bias.
Our experiments on synthetic and real-world data demonstrate the ability of this procedure
to detect bias and provide useful information to data scientists in their workflows.

2. Problem Formulation

We consider the binary classification problem where input features x ∈ RD are used to predict
class label y ∈ Y = {−,+}, where + and − represent the positive and negative class, respec-
tively. Let p(x, y) be the unknown joint distribution that governs how x appears in nature or
in a target population of interest and its relationship with y. We refer to p(x, y) as the unbi-
ased distribution, where we expect a classifier to perform optimally. Let f+(x) = p(x|y = +)

and f−(x) = p(x|y = −) denote the positive and negative class-conditional distributions, re-
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spectively. Let f(x) = p(x) denote the marginal distribution over x and α = p(y = +) be the
probability that a random point from p(x, y) is positive, the class prior for the positive class.
It can be shown that f is a mixture distribution with components f+ and f− and mixing
proportions α and 1− α, respectively; i.e.,

f(x) = αf+(x) + (1− α)f−(x). (1)

Let L+ and L− represent sets of positive and negative labeled examples, respectively and
U represent a set of unlabeled examples, available for training. Though we observe examples
drawn randomly from f(x) in U , unlike the standard classification setting, we might not observe
labeled examples drawn randomly from f+(x) and f−(x). Instead L+ and L− are drawn from
potentially biased class-conditional distributions f ′

+(x) and f ′
−(x), respectively (Fig. 1). We

use the term bias here in a purely statistical sense; the labeled positives and negatives in
the observed data are systemically different from those in the unlabeled data such that they
cannot be interpreted to be drawn i.i.d. from the same distribution. In this work, we are
interested in detecting and quantifying the extent to which the examples in L+ and L− differ
from the positives and negatives in U , without the knowledge of the class labels in U .

2.1. Assumptions

If f ′
+(x) and f ′

−(x) are arbitrarily different from f+(x) and f−(x), respectively, detecting
and quantifying the bias is an intractable problem. Fortunately, for most practical settings
the biased and unbiased distributions are related. In this work, we employ a (G)aussian
(c)omponent-based “(m)ixing (b)ias” assumption (MB-GC),16 relating the biased and un-
biased distributions. Formally, we assume both f+(x) and f ′

+(x) can be expressed as mixtures
with the same K+ shared Gaussian component distributions, but with differing mixing pro-
portions. f−(x) and f ′

−(x) are assumed to be related in the same manner with K− shared
Gaussian components. Mathematically,

f∗(x) =
∑
k∈K∗

w∗
kϕ

∗
k(x) and f ′

∗(x) =
∑
k∈K∗

v∗kϕ
∗
k(x), (MB-GC)

where ∗ is a placeholder for + or −; K∗ = {1, 2, . . . ,K∗}; w∗ = [w∗
k]k∈K∗ and v∗ = [v∗k]k∈K∗ are

probability vectors; i.e., w∗
k, v

∗
k ≥ 0,

∑
j∈K∗ w∗

j = 1 and
∑

j∈K∗ v∗j = 1; and ϕ∗
k(x) = ϕ(x;µ∗

k,Σ
∗
k)

is the D-dimensional Gaussian density function with mean µ∗
k and covariance Σ∗

k. We use the
shorthand µ∗ = {µ∗

k}k∈K∗ and Σ∗ = {Σ∗
k}k∈K∗ to group the parameters.

It is important to mention that a parametric approximation of the distributions becomes
a universal nonparametric approximator as K+,K− → ∞.17 However, picking a large number
of components may lead to a complex model prone to overfitting and identifiability issues. We
therefore restrict ourselves to a relatively small number of components, up to eight, in each
class-conditional representation, as in the parametric paradigm.

Since Gaussian mixture models are effective up to a moderate number dimensions, for
high-dimensional data, we employ the MB-GC assumption after dimensionality reduction.
Conceptually, we interpret the input feature x ∈ RD as a low-dimensional representation
of Dr-dimensional raw features (Dr > D) in such cases. It is conceivable that neither the
raw features nor the dimensionality-reduced features appear exactly as Gaussian mixtures,
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especially with a small number of components. In spite of this limitation, we argue that
the modern representation learning approaches18,19 can be used to learn embeddings that do
satisfy that property, potentially making our assumptions and methods even more effective.

2.2. Quantifying Bias

Although various distance measures can be used,20 we quantify the bias between f+ and f ′
+

as the area under the ROC curve (AUC) of an optimal binary classifer, or a score function
s : RD → R, between them. Based on the probabilistic interpretation of AUC,21 it is the
probability that a randomly drawn example from f+ achieves a higher score than a randomly
drawn example from f ′

+, as per an optimal score function. Mathematically, for S being the
family of all real-valued score functions defined on RD,

AUC(f+, f
′
+) = maxs∈S AUCs(f+, f

′
+),

where, correcting for ties, AUCs(f+, f
′
+) = p(s(Xf+) > s(Xf ′

+
)) + 1

2p(s(Xf+) = s(Xf ′
+
)); Xf+ and

Xf ′
+
are random variables distributed according to f+ and f ′

+, respectively. Note that AUC
is symmetric; i.e., AUC(f+, f

′
+) = AUC(f ′

+, f+). It ranges from 0.5 to 1, with a higher value
indicating a larger difference between the two distributions and consequently a larger bias.
Typically, values between 0.5 and 0.6 are considered to be small enough that the distributions
can be interpreted to be practically indistinguishable. A value of 1 corresponds to a perfect
classifier; that is, a situation when the supports between f ′

+ and f+ are distinct. Thus, in this
work, a value of 0.5 indicates no bias and a value of 1 indicates maximum bias (Fig. 2).

If samples from f+ and f ′
+ were available, AUC(f+, f

′
+) could be estimated by first training

a classifier to separate the samples, and then computing AUC in the standard manner as the
area under the ROC curve. Though a sample from f+ is not readily available, such a sample
is procured using the approach presented in Methods. The bias between f− and f ′

− can be
quantified as AUC(f−, f

′
−) and estimated similarly.

3. Methods

In order to detect and quantify the bias, we derive an expectation-maximization (EM) algo-
rithm from multi-sample Gaussian mixtures. Under the MB-GC assumptions each of L+, L−

and U contain examples drawn i.i.d. from a Gaussian mixture. Formally,

∀x ∈ L∗, x ∼
∑
k∈K∗

v∗kϕ
∗
k(x) ∀x ∈ U, x ∼

∑
k∈K+

αw+
k ϕ

+
k (x) +

∑
k∈K−

(1− α)w−
k ϕ

−
k (x),

where the second equation for the distribution of U is obtained by combining MB-GC assump-
tions with Eq. 1 and ∗ is a placeholder for + or −. Note that the resultant distribution is a
mixture of K+ +K− components. The combined data log-likelihood is given by

L
(
θ;L+, L−, U

)
=
∑
x∈L+

log

(∑
k∈K+

v+k ϕ
+
k (x)

)
+
∑
x∈L−

log

(∑
k∈K−

v−k ϕ
−
k (x)

)

+
∑
x∈U

log

(∑
k∈K+

αw+
k ϕ

+
k (x) +

∑
k∈K−

(1− α)w−
k ϕ

−
k (x)

)
,
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where θ = {α,w+,w−,v+,v−,µ+,µ−,Σ+,Σ−} represent all unknown parameters. To obtain
the maximum likelihood estimates of the parameters, we derive the following update equations,
under the EM framework.

α̂ =
1

|U |
∑
x∈U

∑
k∈K+

ω+
k (x; θ̌), ŵ∗

k =
1

α̌∗|U |
∑
x∈U

ω∗
k(x; θ̌), v̂∗k =

1

|L∗|
∑
x∈L∗

ν∗k(x; θ̌)

µ̂∗
k =

∑
x∈U ω∗

k(x; θ̌)x+
∑

x∈L∗ ν∗k(x; θ̌)x∑
x∈U ω∗

k(x; θ̌) +
∑

x∈L∗ ν∗k(x; θ̌)
(EM-update)

Σ̂∗
k =

∑
x∈U ω∗

k(x; θ̌)(x− µ̌∗
k)(x− µ̌∗

k)
T +

∑
x∈L∗ ν∗k(x; θ̌)(x− µ̌∗

k)(x− µ̌∗
k)

T∑
x∈U ω∗

k(x; θ̌) +
∑

x∈L∗ ν∗k(x; θ̌)
,

where ˇ and ˆ are used to represent the current and updated parameters, respectively, during
an EM iteration; α+ = α and α− = 1− α; ω∗

k(x;θ) is the probability that a given x ∈ U comes
from ϕ∗

k; similarly, ν∗k(x;θ) is the probability that a given x ∈ L∗ comes from ϕ∗
k; i.e.,

ω∗
k(x;θ) =

α∗w∗
kϕ(x;µ

∗
k,Σ

∗
k)∑

k∈K+ αw+
k ϕ
(
x;µ+

k ,Σ
+
k

)
+
∑

k∈K−(1− α)w−
k ϕ
(
x;µ−

k ,Σ
−
k

)
ν∗k(x;θ) =

v∗kϕ(x;µ
∗
k,Σ

∗
k)∑

k∈K∗ v∗kϕ
(
x;µ∗

k,Σ
∗
k

) .
Starting with an initial value, as discussed in Section 3.3, the parameters in θ are iteratively up-
dated using Eq. EM-update until convergence, when the relative change in the log-likelihood,
(L(θ̂;L+, L−, U)−L(θ̌;L+, L−, U))/L(θ̌;L+, L−, U), is less than a small predefined threshold (δ)
or until the number of iterations reaches a predefined maximum (I).

3.1. Estimating Bias

Once θ is estimated, we use the estimated value of w+ to infer the distribution of the unbiased
positives, f+, as per Eq. MB-GC. In order to estimate the bias in the labeled positive sample,
we first subsample from U , to procure a set, L̂+, representing estimated f+. To this end, we
use the responsibility, r+(x; θ) =

∑
k∈K+ ω+

k (x; θ), giving the probability that a given x ∈ U is
a positive. Precisely, ∀x ∈ U , if

Bernoulli
(
r+(x; θ)

)
=

{
1 add x to L̂+,

0 discard x,

where r+(x; θ) is used as the success probability of the Bernoulli distribution. Once L̂+ is
procured, we estimate the bias, AUC

(
f+, f

′
+

)
, by training a classifier between L+ and L̂+

treated as positives and negatives, respectively, and compute the AUC using the classifier’s
score function. The bias in L− can be similarly estimated using the responsibility r−(x; θ) =∑

k∈K− ω−
k (x; θ) to subsample L̂− from U and then computing the AUC for a classifier trained to

separate L̂− and L−. For a dataset S = (L+, L−, U), we denote the estimated bias as Biasest(S).

3.2. Detecting Bias

We focus the subsequent presentation on bias detection in L+ only; the detection of bias in
L− can be approached similarly. Due to model misspecification and errors in the parameter
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and bias estimation, a bias higher than 0.5 is likely to be estimated, when, in fact, the data
is unbiased. To mitigate this issue, we introduce a bias threshold, τ ∈ [0.5, 1], and interpret a
dataset to contain bias only if its estimated bias is above τ . A higher value of τ would decrease
the probability that an unbiased dataset is detected to have bias (type-1 error), e(τ). However,
it will also decrease the probability that a biased dataset is detected to have bias (power),
q(τ). To achieve a low type-1 error and a high power, we determine an appropriate value of τ
by controlling for type-1 error on synthetic datasets; see Synthetic Data.

Let Sub
syn and Sb

syn be two families of unbiased and biased synthetic datasets, respectively,
where each dataset is of the form (L+, L−, U) and bias is defined as per the current context.
Let esyn(τ) = |{Biasest(S)≥τ, S∈Sub

syn}|/|Sub
syn| and qsyn(τ) = |{Biasest(S)≥τ, S∈Sb

syn}|/|Sb
syn| be the fraction

of unbiased and biased synthetic datasets with estimated bias above τ , respectively. We define
τη = minτesyn(τ) ≤ η as a suitable threshold for which type-1 error computed w.r.t Sub

syn is η

(typically, η ∈ [0, 0.1]); i.e., esyn(τη) = η. The power computed w.r.t. Sb
syn at τη is qsyn(τη). Using

this framework, for any real-world dataset S = (L+, L−, U), we enable computing a p-value for
bias detection as p-value(S) = esyn(Biasest(S)), the proportion of unbiased synthetic datasets
estimated to have a bias above Biasest(S).

Note that estimates of type-1 error, power and p-value computed w.r.t. synthetic datasets
are representative of their true values to the extent that they capture the diversity of the
real-world datasets. In addition to explicitly diversifying the synthetic datasets to a feasible
extent, we address this issue by also estimating type-1 error and power w.r.t. selected unbiased
and biased real-world datasets, still using the synthetic data threshold; see Data and Results.

3.3. Implementation Details

Initialization Parameter estimates of our algorithm are likely sensitive to the initial param-
eters; it is known to be the case for the standard EM algorithm (GMM) for a single Gaussian
mixture sample.22,23 Because we have access to labeled data, we leverage it for parameter
initialization. However, in order to introduce more diversity to initialization across multiple
restarts, we do not use parameters estimates on only labeled data as our initial parameters;
e.g., by using parameters from GMM on each L∗. Instead, we initialize parameters in the
following steps. (1) Run GMM with K∗ components on L∗ to obtain initial estimates of v∗,
for ∗ ∈ {+,−} and save the location parameter estimates u∗ = {u∗k}k∈K∗ (2) Run k-means++24

on unlabeled data U with K+ +K− centers. Sort the centers based on the minimum distance
to any location in u+. Pick the top K+ centers to initialize µ+ and the remaining centers
as µ−. (3) Compute the distance from unlabeled points x ∈ U to each of the K+ +K− cen-
ters and assign them to the closest one. This gives an assignment for all points to a cluster
which has already been assigned as positive or negative. (4) Use the assignments to compute

α =
∑

k∈K+ |A+
k |

|U | , w∗
k =

|A∗
k|∑

k∈K∗ |A∗
k|
and Σ∗

k = 1
|A∗

k|
∑

x∈A∗
k
(xi−µ∗

k)(xi−µ∗
k)

T , where A+
k (A−

k ) indicate

points assigned to the k-th positive (negative) cluster.

Model Selection Parameter estimation with EM algorithms when the number of compo-
nents is unknown is not trivial and many methods exist for model selection.25,26 We employ the
one-fold cross-validation-based information criterion (CVIC)25 for model selection by running
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our EM optimization for various values of K+,K− and selecting the model that achieves the
highest log-likelihood on a validation set.

Hyper-parameters We assume K ≡ K+ = K− for convenience in experimentation. We use
the maximum number of iterations I = 2000 and the convergence threshold δ = 10−8 for
termination. We run the estimation on each dataset 20 times with different random seeds.

4. Data

4.1. Synthetic Data

To find appropriate bias thresholds and evaluate our method, we generate synthetic Gaussian
mixture datasets, following MB-GC assumptions, from known parameters. This allows us to
control bias directly and evaluate performance for different levels of bias in the dataset.

Here f+ and f− are both K-component Gaussian mixtures. Their parameters are deter-
mined by a given AUC(f+, f−) range (e.g., [0.65, 0.7]) and mutual irreducibility parameters,
support (σ = 0.01) and pairwise responsibility threshold (ρ = 0.9), governing the overlap be-
tween each pair of components. Let ϕi and ϕj be two of the 2K components and let Zi and Zj

be samples of 1000 examples each, drawn from ϕi and ϕj, respectively. If more than σ fraction
of points in Zi have ϕi(·) ≥ ρ(ϕi(·) + ϕj(·)) and, similarly, more than σ fraction of points in
Zj have ϕj(·) ≥ ρ(ϕi(·) + ϕj(·)), then ϕi and ϕj are considered to be approximately mutually
irreducible.27 Starting with random values for the location and shape parameters for each
component as well as the mixing proportions w+ and w− of the two mixtures (drawn from a
flat Dirichlet distribution), the parameters are perturbed until AUC(f+, f−), evaluated with
f+(·)/f−(·) as the score function (known to be optimal), lies in the desired range and all pairs of
the 2K components are approximately mutually irreducible w.r.t. σ and ρ.

We generate 1000 unbiased datasets for each combination of dimensions D ∈ {1, 2, 8, 16}
and number of components K ∈ {2, 4, 8}. The class prior α is sampled uniformly from the
range [0.01, 0.99] for each dataset. Seven AUC(f+, f−) ranges, [0.65, 0.7], [0.7, 0.75], . . . , [0.95, 1]
are approximately equally represented in the 1000 datasets for each setting. For the unbiased
datasets, f ′

+ and f ′
− are set equal to f+ and f−, respectively.

To evaluate performance of bias estimation against known values of bias, we generate 1750
datasets for each dimension and number of components for varying levels of bias AUC(f+, f

′
+)

between 0.5 and 1 (Fig. 2b). First α, f+ and f− are generated as for the unbiased data, where
the seven AUC(f+, f−) ranges are equally represented across the 1750 datasets. A desired
range of bias is achieved by drawing random mixing proportions, v+, from a flat Dirichlet
distribution until AUC(f+, f

′
+) computed with the optimal score function f+(·)/f ′

+(·) is in the
target bias range. The five bias ranges [0.5, 0.6], [0.6, 0.7], . . . , [0.9, 1] are equally represented
across the datasets. For simplicity, f ′

− is set equal to f−.
Each dataset has 100,000 unlabeled points from f = αf++(1−α)f− and 5,000 labeled points

from each f ′
+ and f ′

− with the chosen parameters. Figure 2a shows examples of 1D distributions
for different values of AUC(f+, f−) within the range we use to sample synthetic data. These
examples illustrate the complexity of synthetic datasets; even for higher AUC(f+, f−), the
positive and negative distributions are not easily distinguished.
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(a) Positive f+ and negative f− classes (b) Bias in positive samples

Fig. 2: Synthetic data in one dimension. Examples of (a) low and high AUC(f+, f−) and (b) low and
high bias AUC(f+, f

′
+). Unlabeled mixtures f shown here with α = 0.5 in all cases.

4.2. Biomedical Data

We selected 8 biomedical datasets from the the UCI Machine Learning Repository28 to apply
our methods. The following datasets were used, with a note that for each we give the number of
examples, the fraction of examples from the positive class (α) and the number of features D in
parentheses: Activity recognition with healthy older people using a wearable sensor29 (52481,
0.29, 8), Epileptic Seizure Recognition30 (11500, 0.18, 178), Smartphone-Based Recognition
of Human Activities and Postural Transitions31 (10929, 0.16, 561), Mushroom28 (8124, 0.21,
126), HIV-1 protease cleavage32 (6590, 0.20, 160), Splice-junction Gene Sequences33 (3190,
0.24, 287), Parkinsons Telemonitoring34 (5875, 0.48, 20), and Physicochemical Properties of
Protein Tertiary Structure28 (45730, 0.13, 9).

Datasets were constructed by assigning one class as positive and the remaining as negative
for multi-class data or setting a threshold for regression data. For each problem, 100 unbi-
ased datasets were generated by selecting a subset of labeled points uniformly. We generate
250 biased datasets for each biological dataset through Markov sampling. First a point xi
is selected uniformly at random from the positive class. The same point is resampled with
some probability pstay and a new point xj is selected with probability 1− pstay. The transition
probability Pr(xj |xi) is proportional to the inverse of the squared Euclidean distance between
points ||xi − xj ||2. Since the true bias cannot be measured directly, we use the probability of
resampling pstay as a proxy for bias. Higher values of pstay correspond to higher bias in labeled
data since the feature space will be less uniformly sampled (Fig. 3). In each case, 20% of points
are held out as a validation set used for model selection. We reduce the dimensionality with
PCA for datasets with more than 8 features.

Fig. 3: Unbiased (far left) and biased samples from the dataset HIV32 with varying probability of
resampling a point pstay. Features are illustrated projected onto the first two principal components.
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5. Experiments

Empirical Null Distribution and Bias Threshold We use synthetic Gaussian mixture
datasets to determine the bias threshold for a range of dimensions D ∈ {1, 2, 8, 16} and number
of components K ∈ {2, 4, 8}. We consider bias in positive class, but the method for estimating
bias in the negative class or both would follow the same process. We run the EM optimization
on each unbiased dataset to estimate all unknown parameters, θ. We use the estimated pa-
rameters θ̂ to compute the estimated bias for the positive class, AUC(f̂+, f̂ ′

+), where ·̂ indicates
the parameters estimated by the optimization procedure and the distributions parameterized
by them. The true bias AUC(f+, f

′
+) for these datasets is exactly 0.5 since the distributions

are identical (no bias), but because there is error in the estimation θ̂, AUC(f̂+, f̂ ′
+) ≥ 0.5. For

each setting of dimension D and number of components K used to generate the datasets, we
determine τη(D,K) for η ∈ {0.05, 0.10} of datasets with AUC(f̂+, f̂ ′

+) ≥ τη(D,K).

Model Selection To apply the appropriate bias threshold τη(D,K) to any data it is impor-
tant to know the number of components that best represent the data and use the threshold
found for that setting (dimension is known). However, the true or best value of K is not gen-
erally known for any dataset. We evaluate the effect of unknown K for finding the threshold τη
by running the optimization on unbiased datasets for K ∈ {2, 4, 8} on all datasets, regardless
of which value was used to generate the data. For each dataset, we compute the estimated
parameters log-likelihood on a validation set and choose the model that maximizes the value.
The validation set is generated with the same parameters as the original dataset.

Bias Quantification and Detection To evaluate our method in detecting and estimating
bias, we run our EM optimization algorithm on synthetic and biological datasets with varying
amount of bias and report the estimated bias. For synthetic data where the true bias is known,
we evaluate power for each level of type-1 error, η ∈ {0.05, 0.10}. Ground truth biased datasets
B are those where the true bias AUC(f+, f

′
+) > 0.5, for K number of components. Predicted

biased datasets B̂ are those where AUC(f̂+, f̂ ′
+) ≥ τη(D, K̂) for K̂ selected through model

selection. Power is estimated as q(τ) = |B̂|/|B|.

6. Results and Discussion

Figure 4 illustrates the thresholds found for each dimension and number of components. When
the number of components, K, is smaller, parameter estimation more reliably estimates the
bias lower. As the number of dimensions and number of components increases, so does the
complexity of the optimization problem and the estimated value of bias. These results suggest
the utility of finding dimension- and component-specific thresholds, and the empirical null
distribution for ascertaining bias.

Results on quantification of bias on synthetic (Fig. 5) and biomedical (Fig. 6) data show
increasing estimated bias as true bias increases. Note that for biomedical datasets the true bias
is unknown and pstay is not a direct measurement of bias; different data sets have different levels
of compactness in their feature space. Since the sampling probability is proportional to the
inverse distance between points, the bias is also dependent on the density of points. Bias will
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Fig. 4: Bias (AUC(f+, f
′
+)) thresholds found from parameter estimation on unbiased data sets.

differ across datasets for the same value of pstay and estimated bias cannot be directly compared
between datasets. However, for each datasets bias should increase as the sampling less uniform,
i.e. pstay increases. In synthetic data, we see excellent power (Fig. 7) for the type-1 error of
0.05 across all levels of bias, dimensionality D and the number of components (K) per class-
conditional distribution. We also see for high-bias datasets (AUC(f+, f

′
+) ≥ 0.9) on datasets

with two components, that some datasets have a low estimated bias. Our investigation showed
that to generate datasets with high bias and few components, the mixing proportions w+

k or v+k
must be very skewed, making the optimization difficult, sometimes unrealistically so. For one
dimension, the average minimum value of the smallest w+

k for datasets with AUC(f+, f
′
+) ≥ 0.9

is 0.01, 0.07 for 0.8 ≤ AUC(f+, f
′
+) < 0.9, and 0.19-0.23 for AUC(f+, f

′
+) < 0.8.

Figure 7 shows the power for bias detection on synthetic datasets for type-1 error η ∈
{0.05, 0.10}. For each setting we see generally higher power in bias detection as the true bias
increases. For higher type-1 error, the detection achieves a higher power. Again there is a drop
in performance for K = 2 in high-bias datasets due to the challenging nature of these datasets.

For real datasets we also show that our estimation of α and negative bias is not generally
affected by increasingly biased samples of the positive class (Fig. 6, middle and bottom rows,
respectively). Our EM algorithm is still able to detect that the set of unbiased labels from
the negative class are truly unbiased (a low value of AUC(f̂−, f̂ ′

−)). The estimation for bias for
negative class in UCI results is consistently better than the estimation of bias for unbiased
positive samples because α is always less than or equal to 0.5. Higher estimated bias in nega-
tives seems to be correlated with overestimation of the class prior α, particularly exemplified
in the parkinsons dataset.

7. Conclusion

Despite a broad awareness that biased data may adversely impact the deployment of machine
learning tools in biomedicine, there is a surprising dearth of methods built to ascertain the
existence and the level of bias in available data. We set out to address this deficiency by devel-
oping and extensively evaluating a bias estimation method based on reasonable assumptions.
We used synthetic and real-world biomedical data to show that technologies for bias detection
and ultimately correction can be realistically implemented in future data processing pipelines.

Code

The source code for this project is available at https://github.com/claradepaolis/bi-est
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Fig. 5: Estimated bias on Gaussian mixtures with varying true bias AUC(f+, f
′
+). Bias thresholds

τ0.05, τ0.10 shown as dash-dotted and solid lines, respectively.

Fig. 6: Bias and parameter estimation for biomedical datasets. Each column shows results for samples
from each dataset. Top: Bias estimation for positive class for unbiased (leftmost) and biased sampled
datasets for increasing levels of pstay, corresponding to larger bias. Middle: Estimation of the class
prior α with true value shown as dashed line. Bottom: Bias estimation for negative class, which is
unbiased in each case.
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Multi-objective prioritization of genes for high-throughput functional assays
towards improved clinical variant classification
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The accurate interpretation of genetic variants is essential for clinical actionability. How-
ever, a majority of variants remain of uncertain significance. Multiplexed assays of variant
effects (MAVEs), can help provide functional evidence for variants of uncertain significance
(VUS) at the scale of entire genes. Although the systematic prioritization of genes for such
assays has been of great interest from the clinical perspective, existing strategies have rarely
emphasized this motivation. Here, we propose three objectives for quantifying the impor-
tance of genes each satisfying a specific clinical goal: (1) Movability scores to prioritize
genes with the most VUS moving to non-VUS categories, (2) Correction scores to prioritize
genes with the most pathogenic and/or benign variants that could be reclassified, and (3)
Uncertainty scores to prioritize genes with VUS for which variant pathogenicity predictors
used in clinical classification exhibit the greatest uncertainty. We demonstrate that exist-
ing approaches are sub-optimal when considering these explicit clinical objectives. We also
propose a combined weighted score that optimizes the three objectives simultaneously and
finds optimal weights to improve over existing approaches. Our strategy generally results
in better performance than existing knowledge-driven and data-driven strategies and yields
gene sets that are clinically relevant. Our work has implications for systematic efforts that
aim to iterate between predictor development, experimentation and translation to the clinic.

Keywords: Multiplexed Assays of Variant Effect; MAVE; clinical variant classification; vari-
ant pathogenicity prediction, gene prioritization.

1. Introduction

The American College of Medical Genetics and Genomics (ACMG) and the Association for
Molecular Pathology (AMP) have developed guidelines to standardize the practice of clin-
ical variant classification and interpretation.1 These guidelines group the disparate sources
of information about a genetic variant into different lines of evidence, weigh them in terms
of evidential strength, and provide rules to combine these differently weighted lines of evi-
dence to assign a variant to one of five classes: pathogenic, likely pathogenic, benign, likely
benign or a variant of uncertain significance (VUS). Despite the tremendous progress that
the ACMG/AMP guidelines have brought about, a substantial number of variants, particu-
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© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
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larly missense, remain VUS due to the limited availability of evidence.2 Furthermore, variants
assigned to the remaining four classes are often reclassified due to initial misclassification.3

Among the evidential lines, functional evidence derived from in vitro assays holds the po-
tential to address aforementioned challenges, as they are weighted highly in the ACMG/AMP
guidelines. In particular, multiplexed assays of variant effects (MAVEs) can query the func-
tional impact of all possible amino acid substitutions at every position in a protein within a
single assay, allowing for the construction of a variant effect map for all missense variants for
a gene.4,5 However, only a limited number of genes have been assayed with the explicit intent
of addressing the goal of clinical variant interpretation.

Historically, the selection of genes for MAVEs and functional characterization has been
driven by study-specific motivations, including the study of sequence-structure-function rela-
tionships,6 the characterization of biologically or medically important genes7 and the develop-
ment of new technology.8 This is typically done on the basis of prior knowledge and expertise
and is likely to recapitulate preferences for well-studied genes.9 With the accumulation of
large numbers of clinically interpreted variants in knowledgebases such as ClinVar,10 it is now
feasible to devise data-driven strategies to more directly address clinical objectives when pri-
oritizing genes for MAVEs. To date, only one study has sought to systematically prioritize
genes explicitly for clinical decision-making.2 This study proposed a difficulty-adjusted impact
score (DAIS) that accounted for the number of VUS in each gene, after adjusting for gene
length, and up-weighted those that appeared in multiple patients and for which classifications
were most likely to be impacted upon adding new functional evidence.

To the best of our knowledge, none of these strategies have incorporated computational
predictors of variant pathogenicity. Variant pathogenicity predictors assign scores to each
variant indicative of their pathogenicity based on different features such as sequence context,
evolutionary history, protein structure and function, among others.11 Recent work has sug-
gested that at appropriate score thresholds, some predictors can provide strong evidence for
both pathogenicity and benignity as per the ACMG/AMP guidelines.12 This motivates an
alternative strategy that uses computational variant pathogenicity predictors to guide the se-
lection of genes for MAVEs such that when functional and predictive evidence are combined,
they will be of sufficient strength to impact the overall clinical classifications of a large set of
variants across different genes.

Here, we define three objectives for gene prioritization for MAVEs that improve clinical
variant classification and operationalize these objectives through the use of variant pathogenic-
ity predictors. We formalize the process of prioritizing genes for MAVEs solely from the
perspective of clinical variant classification and define three objectives (two direct and one
indirect) that are desirable in this context. The first two were devised to (1) move the most
VUS towards more definitive classifications of pathogenicity or benignity, and (2) reassess and
possibly correct existing classifications of the highest numbers of pathogenic and/or benign
variants. The third objective emphasizes the use of MAVEs as a means to improve pathogenic-
ity predictors themselves, which in turn, when combined with MAVE data can reclassify VUS.
We then quantify to what extent the genes that have already been assayed in the literature
or are registered to be assayed by MAVEs fulfill these objectives, along with other poten-
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tial strategies that one could adopt. Finally, we present and evaluate alternative strategies to
prioritize genes such that these objectives are optimized individually and when combined.

2. Methods

2.1. Data collection

ClinVar variants. We extracted all missense variants in ClinVar (October 2021) and sepa-
rated them by the category of clinical significance: Pathogenic (P), Likely Pathogenic (LP),
Benign (B), Likely Benign (LB), variants of uncertain significance (VUS), and variants with
conflicting interpretations of pathogenicity for each gene. The ClinVar data set contained
11,281 genes with 402,721 missense variants (Supp. Table 1).
gnomAD variants. VUS in ClinVar are likely to accumulate in a biased manner due to
differences in the frequency with which different genes are tested. At the gene-level, variants
in population-scale sequencing resources such as gnomAD accumulate in a less biased manner
as all genes are likely to be uniformly sampled. To this end, we extracted missense variants
from gnomAD (v2.1.1 GRCh38 dataset) as an additional set of variants that are not annotated
as P, LP, B or LB.13 Only variants with genotype quality (GQ) ≥ 20 and depth (DP) ≥ 10
were retained. We identified 17,988 genes that had 4,542,252 missense variants.
Genes with MAVEs. We extracted genes from three resources: MaveDB,14 VariantEffect
(https://github.com/VariantEffect/MaveReferences), and MaveRegistry,15 to create a
representative set of genes with functional data. The first two record and maintain information
on which genes have been subject to MAVEs either by submission to the resource or by
reviewing the literature. MaveRegistry hosts information on which genes are currently being
assayed or are expected to be assayed in the near future. After accounting for overlaps between
these resources, we were left with a set of 94 assayed genes.

2.2. Data pre-processing

We treated P, LP, and P/LP as a single pathogenic category; B, LB, and B/LB as a single
benign category; VUS and conflicting interpretations of pathogenicity as the VUS category.
Motivated by the clinical objectives that we define in Section 2.4, we only retained genes that
had at least one VUS and at least one pathogenic or benign variant in the ClinVar data set,
reducing our data set to 3,981 genes. Considering the increased difficulty in mapping variant
effects for longer proteins, we removed genes that were longer than genes previously assayed
by MAVEs. We also removed genes that were shorter than those previously assayed because
these genes may have had too few known variants to justify prioritization for MAVEs. Only
genes that appeared in both ClinVar and gnomAD were considered and variants that were
recorded in both databases were removed from gnomAD data so as to avoid double-counting
when scoring. The set of genes remaining after these pre-processing steps (3,829 genes with
321,619 VUS/P/B variants and 1,161,072 gnomAD variants) served as our starting gene set.

2.3. Obtaining calibrated REVEL scores

REVEL is a meta-predictor that combines scores from multiple pathogenicity predictors and
has been shown to perform well for clinical variant interpretation.11 For each variant in all
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data sets, we extracted REVEL scores by mapping the chromosomal position and amino
acid alteration to REVEL’s prediction tables.11 However, REVEL scores themselves are not
calibrated for clinical use and our formulations for clinical objectives require that prediction
scores best approximate the posterior probability of pathogenicity/benignity (Section 2.4).
Therefore, we obtained a mapping of all possible REVEL scores to local posterior probability
of pathogenicity and benignity from Pejaver et al .12 We then recorded these local posterior
probabilities for all variants in this study and used them in all analyses.

2.4. Gene prioritization objectives: a clinical perspective

From a clinical perspective, the overall goal of gene prioritization is to make definitive and
accurate classifications for more variants appearing in patient populations, when combining
new functional evidence and existing evidence. This includes: (1) assisting the movement
of VUS to pathogenic and benign classes, (2) correcting for errors in current pathogenic
and benign classifications and (3) improving predictors to assist clinical decision making. To
operationalize these objectives we rely on pathogenicity predictions from REVEL for variants
in ClinVar and gnomAD over a subset of ClinVar genes. While ClinVar variants are the most
relevant to the clinical goal, we include gnomAD variants to account for biases in ClinVar
VUS annotations that arise out of the preferential testing of some genes over others. We refer
to this combined set of ClinVar VUS and gnomAD variants as the unlabeled set of variants.

Let G be a subset of ClinVar genes filtered based on constraints related to assay feasibility
and other attributes of interest (Sections 2.1, 2.2). For a gene g ∈ G, let P(g), B(g) be the
set of variants in g annotated as P/LP and B/LB in ClinVar, respectively. Let U(g) be the
unlabeled set of variants, i.e., the combined set of ClinVar VUS and gnomAD variants for gene
g. For a variant v, let ρ(v) be a variant’s probability of pathogenicity, estimated by explicitly
calibrating a predictor’s pathogenicity scores on a set of pathogenic and benign variants,
i.e., ρ(v) = p(v is pathogenic| REVEL(v)) (Section 2.3). We then define three prioritization
objectives, each serving different purposes in relation to our overall goal.

(a) Movability. We define movability as the ‘movement’ of a variant from a VUS annotation to
a non-VUS (P, LP, B, LB) annotation when additional functional evidence is collected. This
is similar to a previous definition2 but allows for the incorporation of prediction outputs
more explicitly towards the reduction of VUS annotations. To have maximal impact on
the reclassification of VUS, we aim to prioritize genes that contain the highest expected
number of movable variants, i.e., the expected number of pathogenic/benign variants among
a gene’s unlabeled variants. Since annotating new pathogenic variants and new benign ones
have different benefits, we propose two movability scores for each gene: the movability-to-P
score and the movability-to-B score, and calculate them as follows:

MoveP (g) =
∑

v∈U(g)

ρ(v) and MoveB(g) =
∑

v∈U(g)

1− ρ(v)

Optimizing this objective can also benefit the objective of improving predictors (see below),
as it is expected to increase the number of P/LP and B/LB variants available for training.

(b) Correction. We define the ‘correction’ of a variant’s clinical annotation as the update
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of an existing P/LP classification to B/LB/VUS or of an existing B/LB classification to
P/LP/VUS, when additional functional evidence is collected. To have maximal impact on
pathogenic or benign variants that may be currently misclassified, we want to prioritize
those genes that contain the highest expected number of variants whose clinical classifica-
tion ought to be corrected, i.e., the expected number of pathogenic (benign) variants among
a gene’s variants annotated as benign (pathogenic). Again, since there are differences in
importance between correcting misclassifications of pathogenic variants and benign ones,
we propose two correction scores for each gene: the correction-of-P score and the correction-
of-B score, and calculate them as follows:

CorrectP (g) =
∑

v∈P(g)

1− ρ(v) and CorrectB(g) =
∑

v∈B(g)

ρ(v)

(c) Predictor improvement. Though not obvious, increasing the number of VUS with more
certain predictions towards benignity or pathogenicity has a significant role to play in
moving more VUS to a non-VUS (P, LP, B, LB) annotation. If the improvement in the
prediction of a VUS is large enough, it may directly provide an additional line of evidence
that may be enough to push it to a non-VUS annotation. Furthermore, an improved predic-
tion on variants from the same gene, might make the gene more likely to be assayed by an
experimentalist motivated by the movability objective defined above. The new functional
evidence thus obtained would help its movement to a non-VUS annotation.

In order to increase the number of VUS with more certain predictions, the predictors
themselves ought to be improved. To that end, we intend to generate more functional
evidence for unlabeled variants (VUS and gnomAD variants) with uncertain predictions
and we prioritize genes with high average uncertainty over their unlabeled variant set.
The new functional evidence accrued on these variants would help improve the predictors,
either by incorporating it as a feature while training a pathogenicity predictor or via transfer
learning from function to disease domain. Note that the improvement in the predictor thus
obtained is not restricted to the assayed variants, but also to other variants due to the
predictor’s generalization capabilities. Inspired by the entropy-based uncertainty sampling
approach in the active learning literature,16 we prioritize genes for predictor improvement
based on the average entropy of prediction on a gene’s unlabeled variants. Intuitively,
the criterion prioritizes genes having a higher fraction of unlabeled variants with calibrated
pathogenicity score close to 0.5. Formally, we define the average entropy of a gene, adjusted
for the number of unlabeled variants, as

Entropyadj(g) =
∑

v∈U(g)

−ρ(v) log2 ρ(v)− (1− ρ(v)) log2(1− ρ(v))

|U(g)|

(
1 + λ

log2 |U(g)|
log2 |maxh∈GU(h)|

)

In this expression, the term
(
1 + λ log2 |U(g)|

log2 |maxh∈GU(h)|

)
, with λ ∈ [0, 1], serves as an adjustment

factor that prevents genes with very small number of unlabeled variants from being pri-
oritized. The log scale gives genes with many unlabeled variants only a small advantage.
The hyperparameter λ can be further used to moderate the advantage given to genes with
a large number of unlabeled variants. In this work, we choose λ = 1.
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2.5. Gene prioritization strategies and their comparison

There are several possible strategies to prioritize genes for high-throughput functional assays.
We describe a diverse set of prioritization strategies below.

(1) Knowledge- or expert-driven. The set of 94 assayed genes described in Section 2.1
serve as an appropriate proxy for expert-driven gene prioritization. After applying the
pre-processing steps described in Section 2.2, we were left with a set of 68 genes. This
set is referred to as the assayed set. In addition, we simulated knowledge-driven se-
lection in a simple manner by prioritizing genes in terms of the collective knowledge
that we have about them. Here, we used publication counts as reported by PubMed (
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz) in July 2022. We refer
to this gene set as the highest publications set.

(2) Data-driven. In this strategy, knowledgebases such as ClinVar are explicitly queried
and genes are prioritized based on the numbers of variants of interest observed in them.
For instance, genes with a high number of VUS are of particular interest because of the
challenges in classifying such variants. We constructed a gene set ranked by the highest
number of unlabeled variants (VUS and gnomAD). We refer to this gene set as the highest
unlabeled variants set. Similarly, one may be interested in genes with the most number
of VUS along with P/LP variants. We also constructed a gene set ranked by the highest
total of VUS and P/LP. We refer to this gene set as the highest non-benign variants set.

Previous work introduced two sophisticated strategies to prioritize genes for MAVEs
in addition to the number of ClinVar VUS in a gene.2 The movability- and reappearance-
weighted impact score (MARWIS) incorporated patient data from Invitae to define vari-
ants’ movability and reappearance and give extra weight for reappearing and movable
VUS. The other score, difficulty-adjusted impact score (DAIS) was a specialized version of
MARWIS that was adjusted for protein length. DAIS was deemed to be better-performing
in practice and a set of 100 genes with the highest DAIS was made available to the commu-
nity. After applying the pre-processing steps in Section 2.2 to this set, 94 genes remained.
We refer to this gene set as the DAIS set.

(3) Single score optimization. We constructed five gene sets by directly optimizing the
five scores, derived to increase movability, correction and predictor improvement (Section
2.6). For each score, we picked the top-K genes to create a gene set of length K. We refer
to the resulting five gene sets as the highest movability-to-P, the highest movability-to-B,
highest correction-of-P, highest correction-of-B and the highest uncertainty sets. As these
gene sets represent the best selection for their corresponding score, no other gene set can
be better w.r.t. that score.

(4) Multiple score optimization. In order to obtain a single gene set that improves on
all three objectives simultaneously, we implemented an approach to optimize a weighted
combination of the five scores. The weights are learnt to incentivize improvement over the
assayed gene set on all five scores (Section 2.6). The resultant gene set is referred to as
the combined score set. This gene set makes tradeoffs between the five scores depending
on how well the assayed gene set performs on each score.

(5) Random selection. To create a baseline gene set of length K, we sampled K genes
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randomly from the starting gene set and refer to this gene set as the random set.

We evaluated these different strategies by computing their score distributions in terms of
MoveP (g), MoveB(g), CorrectP (g), CorrectB(g), and Entropyadj(g). Then, we tested whether
the single score optimization strategy was significantly better than all other strategies using
one-sided Wilcoxon rank-sum tests. We also tested whether the multiple score optimization
strategy was better than those that were used to generate the assayed and DAIS gene sets.
To ensure a fair comparison, we only compared gene sets of the same length. Since the assayed
and DAIS are extant gene sets of fixed length, they determined the length constraints on the
remaining gene sets. For comparisons with the assayed set, K was set to 68, and for those
with the DAIS set, K was set to 94.

2.6. Multiple score optimization

Let G be a starting set of genes available to be assayed. Let A ⊆ G (e.g., assayed set) be an
existing gene set of length K, determined to be suitable for assaying based on some criteria.
We present an approach to create a novel gene set optimized to improve over A, w.r.t. the
five scores, derived to increase movability, correction and predictor improvement (Section 2.4).
Let w = [wi]

5
i=1 be a weight vector with five non-negative entries such that

∑5
i=1wi = 1. Let

S1, S2, S3, S4 and S5 be short-hands for MoveP ,MoveB,CorrectP ,CorrectB, and Entropyadj,
respectively. We define the combined weighted score as

Combinedw(g) =
∑5

i=1wiSi(g)

where S(g) denotes a score S(g) after z-score normalization on the entire gene set G. The
normalization ensures that the scores are on the same scale, which in turn allows us to define
an optimization criteria that treats each score equally. It also allows the weights to be on
the same scale, which makes it easier to find a good solution. In order to learn the optimal
w, we first create a sample, W , containing 105 candidate weights from Dirichlet(1, 1, 1, 1, 1), a
uniform distribution over the space of five dimensional probability vectors. For each candidate
w ∈ W , we sort the genes in G in the decreasing order of Combinedw(g). The top K genes are
picked in a candidate gene set OK

w . For a set of numbers X, let Median(X) and Prctile90(X)

denote the median and the 90th percentile of those numbers. For G ⊆ G, let Si(G) denote the
set containing the ith normalized score evaluated on genes in G. If the median or the 90th

percentile of any normalized score on OK
w is less than that on A, then discard w, i.e., for any

i, if Median
(
Si(OK

w )
)
< Median

(
Si(A)

)
or Prctile90

(
Si(OK

w )
)
< Prctile90

(
Si(A)

)
, then discard

w. This ensures that each remaining weight leads to a gene set with higher median and 90th

percentile on each of the five score distributions compared to the A. Let Wgood be the set of
remaining candidate weights. If Wgood ̸= ∅, a w ∈ Wgood is guaranteed to give a better gene set
than A on each of the five scores. In order to select an optimum weight from Wgood, we define
the following optimization criteria to find weights that lead to largest cumulative increase in
the the normalized score medians compared to A:

C(w) =
∑5

i=1

[
Median

(
Si(OK

w )
)
−Median

(
Si(A)

)]
.

The optimum weights are given by wopt = argmaxw∈Wgood
C(w). The corresponding gene set,

OK
wopt

is the optimal gene set, referred to as the combined score set. Note that if a gene set
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of a different size, K1 ̸= K, is needed, the top K1 genes sorted based on Combinedwopt
(g) are

selected. The resultant set is referred to as OK1
wopt

.

2.7. Functional and phenotypic enrichment analyses

To evaluate the biological and clinical relevance of the multiple score optimization strategy,
we ranked all genes by their combined score and conducted a functional enrichment analysis
on the top 100 genes using the g:GOSt function in the gProfiler web-server.17 We used our
starting gene set of 3,829 genes as the background set. Any Gene Ontology (GO) and Human
Phenotype (HP) Ontology terms that were significantly enriched in the top 100 genes, after
correcting for multiple hypothesis testing (P -value < 0.05) were recorded.

3. Results

3.1. Multiple score optimization outperforms knowledge-driven and simple
data-driven strategies

We compared multiple gene sets (see Section 2.5), constructed through diverse prioritization
strategies on the five scores, covering the three clinical objectives: movability, correction and
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Fig. 1. Score distributions 68-gene sets constructed based on seven prioritization strate-
gies. A. Score distribution of movability to pathogenic (left) and benign (right),B. Score distribution
of correction of pathogenic (left) and benign (right) variants, C. Uncertainty score distribution.
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predictor improvement (Figure 1). All the sets in this comparison had 68 genes, to be consistent
with the assayed set. Unsurprisingly, for any given score, the highest single score gene set, being
the best set for the score, outperformed all other gene sets. As expected, the combined score set
performed better than the assayed gene set because it was explicitly constructed to improve
over the assayed set. Overall, the combined score set performed better than all other gene sets
except the respective highest single score sets. There were two exceptions to this. In the case of
movability-to-B score, the combined score set did not perform better than the highest unlabeled
variants and highest non-benign variants gene sets, suggesting that the number of unlabeled
variants may be a strong determinant of movability-to-B due to the high prior probability of
benignity in general. In particular, the scope of improvement in movability-to-B score over
the highest unlabeled variants set is limited as can be observed in comparison to highest
movability-to-B set, the best possible set for that score. Furthermore, among all comparisons
of the combined score where it performs better, it does so with statistical significance, except
in one case: comparison with highest non-benign variants set on movability-to-P score.

The assayed set performed slightly better than random on most scores. Moreover, its
score distributions were far away from that of the corresponding highest single score set.
This suggests that there is a huge scope of improvement on the set of genes currently being
assayed, with respect to clinical objectives. On all score criteria, the performance of the highest
publication set is quite similar to that of the assayed set. This is consistent with the previous
observation that genes with fewer publications are less likely to be functionally tested.9
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Fig. 2. Score distributions for top 94 genes prioritized by our proposed strategies and
by existing data-driven strategies. A. Score distribution of movability to pathogenic (left) and
benign (right), B. Score distribution of correction of pathogenic (left) and benign (right) variants,
C. Uncertainty score distribution. DAIS, 94 genes out of the top 100 genes ranked by the difficulty-
adjusted impact score.2
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3.2. Multiple score optimization outperforms existing clinically motivated
prioritization strategies

We next compared our single and multiple score optimization strategies to a previously pro-
posed strategy that explicitly aimed to improve clinical variant classification, DAIS2 (Figure
2). Since the DAIS set comprised of 94 genes, we considered the top 94 genes with the high-
est single and combined scores. The single and multiple score optimization strategies yielded
statistically significant improvements over DAIS in all situations, with one exception. When
considering the movability-to-B score, the combined score set showed improvement over DAIS,
although not significantly, similar to our observations in Section 3.1.

3.3. Multiple score optimization yields clinically relevant genes

We characterized the properties of the highest-scoring genes in the combined score set and
investigated to what extent our strategy aligned with biomedical interests. Among the top 20
genes, six genes were in our assayed gene set, and 12 genes were also prioritized by DAIS,
albeit with differences in ranking (Table 1). All identified genes generally have a large number
of variants recorded in ClinVar and gnomAD, with the exception of SCN10A, which has no

Table 1. Missense variant counts and scores for the top 20 genes from the combined
score gene set. Similar counts and scores are available for all genes in this study here:
https://igvfgenecard.shinyapps.io/GeneCardApp/ Genes in bold were also present in the as-
sayed set. The Movability and Correction scores are rounded to the closest integer. The Combined
score is given as the weighted sum of the five scores after z-score normalization. The weights for
movability-to-P, movability-to-B, correction-of-P, correction-of-B, and uncertainty were 0.143, 0.160,
0.380, 0.310, and 0.006, respectively.

DAIS
rank

ClinVar Movability Correction Entropy
adjustedRank Gene P/LP B/LB VUS gnomAD Total to P to B of P of B Combined

1 TSC2 32 80 185 2178 273 2716 318 2035 29 17 0.8 13.3
2 BRCA1 10 120 206 2817 160 3303 181 2727 71 11 0.5 10.5
3 LDLR 40 635 62 564 176 1437 155 547 265 4 0.9 10.1
4 FBN1 39 873 17 1338 536 2764 335 1451 257 2 0.9 9.9
5 BRCA2 9 57 236 5453 325 6071 173 5533 37 6 0.3 7.5
6 IDS 1055 120 57 49 125 351 32 134 39 10 0.7 7.0
7 MYH7 2 271 17 1284 297 1869 355 1129 150 2 1.1 6.7
8 SCN1A 66 452 39 670 361 1522 283 683 146 3 1.0 6.6
9 NF1 11 232 19 2750 224 3225 261 2632 162 0 0.5 6.4
10 MSH2 4 73 26 1757 123 1979 369 1409 28 6 1.0 5.9
11 COL4A5 1839 414 87 66 372 939 72 347 80 6 0.7 5.6
12 SCN8A 468 122 44 346 250 762 125 438 43 6 0.9 5.3
13 SCN5A 63 83 33 1058 386 1560 361 998 23 5 1.0 5.3
14 MLH1 8 122 33 1103 80 1338 175 957 62 4 0.8 5.0
15 SCN10A 391 0 55 381 831 1267 226 930 0 6 0.8 4.8
16 FLNA 211 32 85 560 493 1170 150 858 16 6 0.8 4.7
17 CACNA1S 323 12 44 393 777 1226 251 858 3 6 0.9 4.7
18 FBN2 155 33 58 708 1005 1804 300 1331 13 5 0.9 4.6
19 TP53 1 143 76 717 27 963 176 525 54 4 1.0 4.5
20 ABCA4 130 235 17 582 845 1679 252 1110 109 0 0.8 4.3

variants classified as pathogenic or likely pathogenic. In addition, our combined score also
prioritized important genes that may have been overlooked previously. For example, IDS,
which has more than 200 IDS variants were found in Hunter syndrome patients18 was ranked
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6th. COL4A5, with over 400 variants thata cause Alport syndrome, was (ranked 11th). Many
sodium voltage-gated channels (SCN )-related genes were also ranked within the top 20, and
mutations in these genes can lead to channel defects and cause channelopathies.19 Since the
objective of improving predictors may not necessarily yield genes that are clinically relevant,
we systematically explored the functional and phenotypic characteristics associated with the
combined score set. We conducted an enrichment analysis on the top 100 genes ranked by their
combined score and reported significantly enriched GO terms and the 40 most significant HP
terms (Supp. Figure 1A). This top-100 gene set was enriched in many biological processes
such as neuronal action, membrane depolarization, and molecular functions such as multiple
channel activities and transmembrane transporter activity. From the phenotypic perspective,
enriched high-level HP terms included abnormalities of different organ systems such as skin,
gastrointestinal tract, nervous system, among others (Supp. Figure 1B). More specific HP
terms included cardiovascular related disease, limitation of mobility, and stroke, among others.

4. Discussion

Genetic and genomic testing are now routinely used in healthcare systems to provide diagnoses
and infer lifetime risk for disease symptoms, particularly in the identification of hereditary
susceptibility to cancer, metabolic conditions, intellectual and physical developmental disor-
ders, among others. The classification of genetic variants detected in a patient’s gene panel
or genome is a key step in this context. In this regard, our study presented three objectives
that explicitly captured the goal of improving clinical classification of variants and derived
five scores to operationalize them. We derived an optimal gene set for each score and also
derived a combined score gene set by optimizing a weighted combination of the five scores to
explicitly improve over the existing assayed set.

As expected, all single score optimization strategies, led to the best performance on the
corresponding score. More importantly, evaluating the existing approaches relative to the sin-
gle score optimization, demonstrated a considerable performance gap, suggesting a significant
scope of improvement on each objective. Even though our combined score gene set was ob-
tained by optimizing directly over the three objectives relative to the assayed set, its observed
improvement over the assayed and DAIS gene sets on all scores is not entirely obvious due to
the inherent trade-offs between the objectives (movability vs. predictor improvement). This
is a further testament to the scope of simultaneous improvement on all objectives along with
an approach that demonstrably does so.

DAIS, a more sophisticated strategy, presented higher scores in general but did not out-
perform our approach. Unlike DAIS, our approach does not use any proprietary patient data,
but despite this, one-third of our genes overlapped with the DAIS set. Our approach can be
potentially complementary to DAIS, since we accounted for conflicting variants, incorporated
non-VUS and less biased gnomAD variants and focused on correction and predictor improve-
ment as objectives. Another strength of our strategy is its interpretability. The movability
scores and correction scores are interpreted as the expected number of pathogenic or benign
variants, and the uncertainty score as predictive uncertainty. In addition, our approach for
multiple score optimization could be easily extended to incorporate other scores such as DAIS,
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if appropriate data were available, or could directly optimize the combined score to improve
over both the assayed and DAIS sets.

Though our movability objective quantifies the expected number unlabeled variants in a
gene that are pathogenic (or benign), it is possible that after running a given assay the number
of variants moved to the P/LP (B/LB) categories as per the ACMG/AMP guidelines might
differ. This might happen either because the assay might not capture the functional mechanism
that leads to the disease, or the strength of the new evidence combined with existing evidence
might not be enough to move the variant. Without functional assay outcomes, this is difficult
to discern and is a limitation of our study. In future, when additional information on an
assay’s relevance to specific diseases is available, refined criteria that take that information
into account might better quantify the movement. Similarly, if all existing evidence for a
variant is accessible, the criteria may be refined to take it into account, as done so by Kuang
et al.2 Our study is currently limited in this regard, as ClinVar does not detail which specific
lines of evidence were used to classify a variant. Similar considerations apply to the correction
scores as well.

In conclusion, we defined three objectives in terms of improving clinical classification by
using variant pathogenicity predictors. Our final combined scores provided a list of prioritized
genes for MAVEs but this list will keep updating with iterated future work between prediction
and experimentation. All data sets, analysis scripts, and supplementary results for this study
can be accessed here: https://github.com/strongbeamsprout/Gene-Prioritization.
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The average life expectancy is increasing globally due to advancements in medical technology,
preventive health care, and a growing emphasis on gerontological health. Therefore, developing
technologies that detect and track aging-associated disease in cognitive function among older
adult populations is imperative. In particular, research related to automatic detection and
evaluation of Alzheimer’s disease (AD) is critical given the disease’s prevalence and the cost
of current methods. As AD impacts the acoustics of speech and vocabulary, natural language
processing and machine learning provide promising techniques for reliably detecting AD.
We compare and contrast the performance of ten linear regression models for predicting
Mini-Mental Status Exam scores on the ADReSS challenge dataset. We extracted 13000+
handcrafted and learned features that capture linguistic and acoustic phenomena. Using
a subset of 54 top features selected by two methods: (1) recursive elimination and (2)
correlation scores, we outperform a state-of-the-art baseline for the same task. Upon scoring
and evaluating the statistical significance of each of the selected subset of features for each
model, we find that, for the given task, handcrafted linguistic features are more significant
than acoustic and learned features.

1. Introduction

People are living longer due to advancements in medical technology, preventive health care,
and a growing emphasis on gerontological health. The Administration for Community Living
estimates that by 2020, 77 million people in the United States will be 60 years of age or older.
Hence, developing technologies that detect and track aging-associated disease in cognitive
function among older adult populations is imperative.

For decades scientists have examined the association between psychological well-being and
cognition. In prior research, gerontologists have identified a significant relationship between
mental acuity, loneliness and depression, and social engagement among older adults. Specifically,
late-life dementia has been associated with extended periods of loneliness in older adults.1

Another cognition study,2 conducted a longitudinal study of adults aged 60 years or older
living in North Manhattan, New York, and who were randomly selected from a dementia
registry. Their study assessed the association between depressed mood and the onset of dementia.
Physicians collected neuropsychological data to assess the degree of decreased cognitive function
and determine the risk of dementia. Study results indicated that of the 1,070 participants,
218 (20%) met the criteria for dementia at baseline assessment. Among the 852 participants

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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that did not have dementia, depressive symptoms were common among those with cognitive
impairment. Two years after the baseline data collection, follow-up data were collected on 478
participants who did not have dementia from the baseline collection. A comparison of baseline
and follow-up results concluded that of the 478 participants (93%), the depressed mood was
associated with dementia and exhibited symptoms of Alzheimer’s disease.2

Before the turn of the last century, the only way to ascertain if a person has AD was
via posthumous autopsy. Currently, as per the National Institute of Health (NIH), medical
professionals ask the patient and their caregivers about overall health, medications, diet, medi-
cal history, and changes in behavior and personality. They may also administer a psychiatric
evaluation to determine confounding causes and conduct tests on memory, problem-solving,
attention, counting, language, blood, urine, and other standard medical tests. Finally, perform-
ing computed tomography (CT), magnetic resonance imaging (MRI), or positron emission
tomography (PET) supports an AD diagnosis or rules out other plausible causes.3 While
there are other methods, such as accumulation of amyloid plaques and associated genes, these
methods may not be entirely accurate4.5 Nonetheless, all methods listed are cost-prohibitive
or require at least one dedicated medical professional. Consequently, researchers have been
studying and modeling non-invasive methods using speech and linguistic features that do not
necessitate human intervention to detect and evaluate AD patients. In addition, caregivers
experience feelings of depression and being overwhelmed when caring for an older adult lacking
social support mechanisms and are predominantly female and overwhelmingly low-income.1

Thus, with an aging world population negatively impacted by the symptoms associated
with cognitive decline and an overwhelmed caregiving profession, research into technologies to
help alleviate these issues is necessary. As AD affects the acoustics of speech6 and vocabulary,7

natural language processing and machine learning provide promising techniques for reliably
detecting AD. While significant work has been done on detecting AD, this paper will evaluate
and score mental status with ten different linear regression models using a combination of
handcrafted or learned acoustic-linguistic features. The statistical significance and relevance of
each selected feature are also studied.

The rest of the paper covers a review of related works in Section 2. The models, dataset,
feature extraction, feature selection, and training-testing protocol are detailed in Section 3.
The performance of our models and features are compared to a state-of-the-art baseline linear
model in section 4. The final section outlines the conclusion and future work.

2. Related Works

There has been significant research into the symptoms and manifestations of Alzheimer’s
Disease (AD) in medical literature and AD detection in interdisciplinary research. The review
of relevant literature will be divided into two subsections: the first will cover the well-known
acoustic-lingual expression of AD in patients, and the second will cover models and techniques
currently used for evaluating and detecting AD. Furthermore, the first subsection helps
establish the relevance of acoustic and linguistic features for AD progression, whereas the
second subsection supports the reasoning behind our methodology.
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2.1. Acoustic and Linguistic Features in AD

The relation between loss of memory and AD-associated neurodegeneration is well established.
Recent research has studied acoustic and verbal aberrations present in patients with AD. In
particular, dysarthria/slurring, stuttering, monotony, higher delay, and associated acoustic
features with AD.7 Additionally, linguistic features such as paucity of words or aggramatism are
also present with AD.6,8 In severe cases, sentences uttered may comprise only nouns; articles,
auxiliary verbs, and inflectional affixes are absent or replaced in lesser forms. Unsurprisingly,
multiple approaches have utilized acoustic and linguistic features for the automatic detection
of AD. We will discuss a few of these approaches in the following subsection.

2.2. Contemporary Models and Techniques for AD Evaluation

Speech has been used to distinguish between healthy and AD patients.9 Some researchers have
focused on developing dedicated machine learning model architectures10–12 while others have
focused on language models to classify AD.13 Some research has been focused on extracting
acoustic and textual features that capture information indicative of AD, such as the length
of segments and the amount of silence.13 Other researchers have used linguistic and audio
features extracted from English speech.14,15 Prosodic features have been extracted from English
speech16–18 and so have paralinguistic acoustic features.19 Other approaches have attempted
to focus on collecting speech from people performing multiple normative tasks to improve
generalizability.20 However, most of these approaches utilize unbalanced, non-standardized,
and proprietary datasets, which hampers their reproducibility and generalizability. We suggest
the reader peruse this survey21 to get a better understanding of these approaches.

In 2020, The ADReSS Challenge22 defined shared tasks and standardized datasets with
predefined metrics. Different approaches for automated recognition of AD based on spontaneous
speech and transcripts can be compared with two tasks: AD Classification (AD vs. not-AD)
and the neuropsychological score regression. The challenge provided a baseline using standard
machine learning models such as Random Forest and k-Nearest Neighbors on classification
metrics (accuracy, precision, recall, F-1) and regression Root Mean Square Error (RMSE)
scores. More details pertaining to the dataset are discussed in the Methodology section.

Since the release of the dataset, significant work has been done on the classification task,23–25

the regression task,26 or both.27–30 Of the two tasks, a high degree of accuracy 83% to 92.84%
has been obtained on the classification task. However, the regression task, being the more
challenging of the two, still has room for improvement and is the focus of this paper. Of the
approaches reviewed, the lowest RMSE score of 4.56 was acheived on both training and testing
sets and utilizes a linear Ridge Regressor model on a set of the 30 best correlating features.27

We refer to this work as the baseline and state-of-art for the comparison of our model and
feature set through the remainder of the paper.

3. Methodology

The models, dataset, feature extraction, feature selection, and training-testing protocol are
detailed in the following subsections. All of the tasks performed were performed on a standard
personal laptop machine or a Google Collaboratory notebook.31 No specific accelerators are
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required, however, feature extraction, feature selection, and training-testing could be sped up
through the utilization of more computing cores.

3.1. The ADReSS Dataset and Metrics

To enable comparison with the baseline, the ADReSS Challenge dataset22 is utilized. This
dataset comprises of audio recordings, transcripts from patients performing the Cookie Theft
task from the Boston Diagnostic Aphasia exam.32 Also provided with the dataset are metadata
relating to the subject’s age, gender and Mini Mental Status Examination (MMSE) score for
both non-AD and AD patients. The regression task for this paper is associated with predicting
these MMSE score based on the given audio recording and transcripts. Although the MMSE
was originally designed to screen for dementia, it is an instrument currently used extensively to
assess cognitive status in clinical settings.33 According to the Alzheimer’s Association (2020), an
MMSE score of 20–24 corresponds to mild dementia, 13–20 corresponds to moderate dementia,
and a score < 12 is severe dementia.

Furthermore, the dataset comes divided into a Train Set (108 patients - 54 non-AD and
54 AD) and a Test Set (48 patients - 24 non-AD and 24 AD). As per the original challenge’s
guidelines and our baseline, the RMSE is used to determine and compare the performance of
our approach. Since the dataset comes with many-to-one mapping of audio file to transcript
files, in contrast to previous work, we opted to consider each unique audio-transcript file pair
as a distinct observation. While this approach does limit us to shorter audio files with few
utterances per file, the number of observations increases to 1447 for training and 569 for testing.

3.2. Modeling and Train-Validation-Test Protocol

Although the we were able to increase the sample size by considering audio-transcript file
pairs, the number is still smaller than is demanded by most deep learning methods. While
work such as34 has been done on small sample learning, these methods are still a black box.
Interpretability is required to evaluate the association between features and the output of the
model. While conventional, non-linear machine learning models such as Random Forest and
k-Nearest Neighbors were originally the benchmark provided with the dataset,22 they have been
outperformed by the baseline’s linear models27 likely owing to the small sample size. Thus, we
also opt for linear modeling. Similar to,27 we use regression models with in-built regularization
or specific optimizations namely Ridge.35 Additionally, we also employ Lasso,36 ElasticNet,37

LassoLars,38 Bayesian Ridge,39 Bayesian Automatic Relevance Determination,40 Orthogonal
Matching Pursuit,41 Huber,42 TheilSen,43 and Stochastic Gradient Descent optimization.44

The models were trained and evaluated using a combination of the BSD-licensed scikit-learn,45

numpy,46 seaborn,47 scipy,48 and pandas49 package, and the PSF-licensed matplotlib.50 The
ISF-licensed regressors51 was used to evaluate the statiscal signficance of each selected feature .
Beyond the default, the hyperparameters for each model can be found through the Appendix.

The training and testing protocol utilizes the provided disjoint sets provided with the
dataset. Similar to the baseline, each model is trained using Leave One Subject Out (LOSO)
Cross Validation on the training set and the RMSE is evaluated on both the training and test
set. Of the models, Ridge, Lasso, ElasticNet, LassoLars, and Orthogonal Matching Pursuit’s
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L1 or L2 regularization parameters were evaluated during this cross-validation. Additionally, a
random 80-20 train-validation split of only the training set is used for feature selection.

3.3. Feature Extraction, Pre-processing, and Feature Selection

3.3.1. Feature Extraction

To learn from both the audio recording and text transcripts, feature extraction is necessary.
The dataset provides audio broken up into normalized audio chunks of the subject’s sen-
tences/utterances. Text from each participant’s transcripts was combined into one large string
separated by a new line for linguistic feature extraction. To aid in our feature extraction a
combination of software, and python libraries was used. Each of these third-party software,
libraries, and their associated licenses are detailed in the Appendix.

We further classify each feature into Audio Features and Linguistic Features. Each of
these features may also either be handcrafted or learned. In total, each audio-transcript pair
produced just over 13,000 features. To the best of our knowledge, a significant subset of these
features are novel applications for the current task of MMSE score prediction.

* Audio Features (11,659 Features):
The learned audio features derived from audio recordings include Articulation,52,53 Phona-

tion,52,54 and Prosody52,55 Features. Articulation features are made up of Bark band energies.
Phonation features are composed up of pitch perturbation quotient, logarithmic energy, and
derivatives of fundamental frequencies account for 28 features. Prosody features, based on
energy and duration, include 103 features. The handcrafted audio features include spectral,
Mel Frequency Cepstral Coefficients (MFCCs), and Chroma Vector/Deviation features. While
all together these features total to 138, we utilized 80 different combinations of frame sizes and
overlaps when the average feature are calculated. This was done to find the optimal frame size
and overlap which would provide the most significant association with the given task during
feature selection.

* Linguistic Features (1,693 Features) Linguistic features include, but are not limited to,
Word/Sentence Count, Vocab Set, reading scales, and emotion analysis. These features were
all extracted from the textual transcript files and totaled up to 1,693 features.

3.3.2. Pre-processing

Since audio data was retrieved from a normalized chunks no further pre-processing was required
beyond feature extraction. Each participant’s transcript was parsed and combined into one
large string separated by a new line characters which was used for linguistic feature extraction.
Lacking previous background and for convenient modeling, the features were divided by the
maximum value. The scaled features were normalized as required by the modeling library
before training. No other pre-processing was performed.

3.3.3. Feature Selection

While extracting over 13,000 features provides us with a significant amount of data. Linear
models, even with strong regularization, tend to get over-parameterized at this scale and
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Fig. 1. Validation RMSE vs Num Features using Correlation and Recursive Elimination

require specific adaptation. Thus, we opt to select a subset of 100 due to limitations in available
computing power and time. We utilized two methods from45 for selecting the best features for
this problem: (1) Recursive Feature Elimination using a standard Linear Regression estimator
and (2) Correlation Scores. For the first method, the best set of features which decreased the
RMSE on a standard linear regression model trained on 80% of the training set and minimized
RMSE on the 20% validation set was used. We could not get to 100 features since the method
only lets us select a minimum number of features required and outputted a set of features
> 100. For the second method, we simply selected a the top 100 most correlated features
with the output. In order, to further simply the model we trained and validated the models
on features from the top 2 features until the all top 100 features selected by the algorithms.
Plots of validation RMSE for each of the methods can be seen in Figure 1. As expected, the
error does incrementally decrease with the addition of each feature. However, we are better
suited taking a cut off around at a few feature after the steep decrease in RMSE. We chose to
set this limit at 54 features which is half the number of subjects in the training set. Lacking
precedence, we used P-values < 0.05 and coefficient > 0.01 were considered significant. Given
page limitations, model summaries, source code, and additional plots are provided via the
Appendix. In the following section, we will cover the results of our modeling experiments and
perform comparisons with the baseline.

4. Results

All of the models using features selected by both RFECV and Correlation outperformed the
baseline model on the training set. Of these models, the standard linear regression model
performed the best with an RMSE improvement of 2.37 compared to the baseline of 4.56. The
RMSE plot for each model can be seen in Figure 2.

However, for the test set, not all models outperformed the baseline. Interestingly, none of
the models which used features selected by recursive elimination outperformed the baseline
whereas five models using correlation features outperformed the baseline despite the two
methods having an overlap of 17 features selected out of the total 54. Of these models that
outperformed the baseline, the stochastic gradient descent optimized model performed the
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Fig. 2. Train RMSE for each model and each feature selection method

Fig. 3. Test RMSE for each model and each feature selection method

best with an RMSE improvement of 0.66 compared to the baseline RMSE of 4.56. The plot of
RMSE can be seen in Figure 3.

Upon a closer look into the the box in Figure 4 and histogram plots in Figure 5 of the
residuals of each of the models that outperformed the baseline, we notice that stochastic gradient
descent optimization has the most reliable performance. However, the range of prediction is
currently too large and unreliable in all of these models for real world application.

Moreover, of the 54 features selected by the methods, it was noticed that all were handcrafted
linguistic features related to word usage, readability, and character frequencies. This observation
is inline with the observations of both the baseline and speech pathological research6,8 that
linguistic features are better predictors for this task in comparison to acoustic features and is
supported. Details results of feature selection can be found via the Appendix
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Fig. 4. Boxplot of Residuals on the Test set

Fig. 5. Histogram of Residuals on the Test set

5. Limitations and Future Work

The major limitation of this work stems from data source. Since the dataset consists of audio
recordings of the participants performing a specific task, it is unlikely these findings may be
generalizable to recordings that are not obtained from the same task or for non-native English
speakers. Furthermore, the standardization based on this task might also explain the proclivity
of models to find significance of linguistic features over acoustic features for the prediction
of MMSE scores. It is possible that other modes of data capture may be better suited to a
general approach for evaluating AD patients.20

Although the current dataset is remarkable, the sample size limits researchers from fully
realizing and utilizing the most recent advancement in machine learning. While approaches
such as early stopping and dropouts could be utilizes, one must question the external validity
of such approaches within such a small sample size. Perhaps research into small sample size
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algorithms34 could be applied; however the issues related to interpretability still persists.
Contemporary research has shown the continued need to advance further the study of aging-

associated disease effects on cognitive impairment in older adults.56 Researchers studied older
adults who were already enrolled in research projects investigating the onset of Alzheimer’s
Disease (AD) on cognition under the assumption that the Functional Activities Questionnaire
(FAQ) using the Instrumental Activities of Daily Living (IADL) scale to detect and track
diminishing capability in managing and remembering daily household tasks and personal
responsibilities. Difficulties in managing IADL identified in the FAQ proved helpful in detecting
and tracking changes in cognition in healthy older adults at risk for Alzheimer’s Disease.57

Furthermore, social determinants of health such as transportation, education, diet, and other
daily factors negatively impact a person’s health outlook. Black and Brown persons in the
United States are adversely affected by schooling, diet, and disease symptoms associated
with hypertension and diabetes that might cause cognitive decline.58 To further improve the
reliability of the models social determinants, facial features, depression, and other correlates
can be considered in conjunction with an in-home monitoring and audio-video capture device.

While we do believe that this paper sufficiently advance the state-of-the-art for this task,
explores the largest feature space to date, and guides us towards automating the diagnosis
of AD and modeling of cognitive status in the elderly, we must note that with automation
we should not intend to replace trained medical professionals. We firmly believe that any
technology stemming from research should be used as a tool to guide, assist, and ease medical
professionals and caregivers to provide the best care possible.

6. Conclusion

While we were able to outperform the baseline with 5 different models, the performance of
these models are still not fully suited for real world application. More research needs to be
done to find models that work on low resource problems such as neurological evaluation of AD
patients using audio and textual features.
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Accurate prediction of TCR binding affinity to a target antigen is important for development
of immunotherapy strategies. Recent computational methods were built on various deep
neural networks and used the evolutionary-based distance matrix BLOSUM to embed amino
acids of TCR and epitope sequences to numeric values. A pre-trained language model of
amino acids is an alternative embedding method where each amino acid in a peptide is
embedded as a continuous numeric vector. Little attention has yet been given to summarize
the amino-acid-wise embedding vectors to sequence-wise representations. In this paper, we
propose PiTE, a two-step pipeline for the TCR-epitope binding affinity prediction. First,
we use an amino acids embedding model pre-trained on a large number of unlabeled TCR
sequences and obtain a real-valued representation from a string representation of amino acid
sequences. Second, we train a binding affinity prediction model that consists of two sequence
encoders and a stack of linear layers predicting the affinity score of a given TCR and epitope
pair. In particular, we explore various types of neural network architectures for the sequence
encoders in the two-step binding affinity prediction pipeline. We show that our Transformer-
like sequence encoder achieves a state-of-the-art performance and significantly outperforms
the others, perhaps due to the model’s ability to capture contextual information between
amino acids in each sequence. Our work highlights that an advanced sequence encoder on
top of pre-trained representation significantly improves performance of the TCR-epitope
binding affinity prediction∗.

Keywords: TCR; epitope; binding affinity prediction; sequence encoder.

1. Introduction

T cells play fundamental roles in the adaptive immune system. T cell receptor (TCR) is a cell
surface protein complex that binds to peptides presented by antigen presenting cells (APCs)
via major histocompatibility complex (MHC, pMHC is the peptide-MHC multimers that are
presented to T cells).1 A successful binding and recognition of a foreign antigen triggers an
immune response to defend our body from the invaders. The binding is essentially determined

§Now at Google.
∗Code and models are publicly available at https://github.com/Lee-CBG/PiTE

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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by two short amino acid chains.2 One is an epitope, a part of antigen peptides bound within
pMHC presented by APCs and a TCR is the counterpart. Of a TCR, the complementarity-
determining region 3 (CDR3) of TCR β chain is known to be the most important part that
interacts with its cognate epitope pairs.2–4

Accurate prediction of TCR binding affinity to a target epitope is a critical step to unrav-
eling the underlying binding mechanisms. Especially, the ability to predict computationally
is extremely valuable as it can automate screening of cognate TCRs for an epitope of inter-
est. Computational screening of a confident candidate set of TCRs for a target epitope can
dramatically reduce the time and the cost of wet lab assays, thereby further enabling rapid
development of personalized immunotherapy.5,6

Many machine learning models to predict the binding affinity of TCR and epitope se-
quences have been developed.7–14 While earlier models such as TCRex8 and TCRGP7 utilized
random forest and gaussian process respectively, more recent models leveraged a large capacity
of deep neural networks. For example, NetTCR9 and NetTCR2.010 were built on multiple con-
volutional neural network (CNN) layers with different sizes of filters to encode each sequence
followed by dense layers to predict the binding affinity scores between the encoded sequences.
To accommodate the amino acid sequential data, ERGO11 utilized a long-short term memory
(LSTM)15 layer followed by a multi-layer perceptron. Similarly, TITAN12 and ATM-TCR13

leveraged the attention mechanism.16

The first step to process the input for these machine learning models is translating string
representation of peptides (both TCR and epitope sequences) into a real-valued numeric vec-
tor. Overwhelmingly many models7–10,12 map each amino acid in a TCR (or epitope) sequence
to a predefined vector of numeric values using evolutionary-based distance matrices BLO-
SUM.17 However, the models using BLOSUM-based embedding suffer from limited perfor-
mance, especially when predicting binding affinity for out-of-sample epitopes13 not present in
the training data the models were trained on.

In order to improve generalized prediction performance, several amino acids embedding
models have been proposed.11,14,18,19 These models were trained on a large number of unpaired
TCR sequences by considering the input sequence itself as the supervision signal. Among these,
especially the embedding models14,19 whose architectures were inspired by language represen-
tation models such as Bert20 and ELMo21 have shown to learn more effective contextualized
embeddings for TCR and epitope sequences and improved prediction performance. Typically,
such models yield a larger size of embedding vectors than those of BLOSUM-based method.
Average pooling has been commonly used to reduce the size of the embedding model outputs
and enable training a binding affinity prediction model with less computational burden. How-
ever, it wipes off position-specific information and degrades prediction performance because
it averages vectors over all amino acids.

We propose PiTE, a Pipeline leveraging Transformer-like Encoders to predict the binding
affinity between a pair of TCR and epitope sequences. Our pipeline consists of two parts: (1)
amino acids embedding for each TCR and epitope, and (2) binding affinity prediction between
the two sequences. First, we use a pre-trained embedding model to map string representations
of amino acids sequences (e.g., GLCTLVAML) to a sequence of real-valued vectors. It leverages a
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large number of unlabeled TCR sequences to train an embedding model, and learn contextual
representations of TCRs and epitopes using a bidirectional LSTM architecture. Second, we
train a binding affinity prediction model that takes a pair of TCR and epitope embeddings
as an input and returns a binding affinity score between those two sequences. PiTE encodes
TCR and epitope amino acids embeddings using two sequence encoders, respectively, and
determines the binding affinity between those two sequences using multiple linear layers. In
particular, we explore various different types of neural network architectures to encode each
sequence on top of existing embedding models. We highlight the importance of an advanced
sequence encoder to boost the performance of the TCR-epitope binding affinity prediction.

2. Data

2.1. Positive Sample Collection

To train our models, we sampled TCR-epitope pairs with known binding affinity from three
publicly available databases–IEDB,22 VDJdb,23 and McPAS.24 Pairs with MHC class I type
epitopes and TCRβ CDR3 sequences were used in our analysis. In this paper, TCR sequence
refers to CDR3 unless otherwise stated. Sequences containing wildcard amino acids, such as
* and X were excluded. After removing duplicates from three databases, a total of 150,008
unique TCR-epitope pairs known to bind were obtained.

2.2. Negative Sample Generation

While there is real negative binding data,10 the dataset only covers a limited number of
epitopes (19 epitopes), we strictly generated the same number of negative samples so that our
data have an 1:1 ratio of positive and negative samples. In detail, we collected TCR sequences
from TCR repertoires of healthy controls in ImmunoSEQ25 portal. We then replaced TCRs
of the positive TCR-epitope pairs with TCRs randomly selected from the healthy controls,
resulting in 150,008 negative TCR-epitope pairs. Combining our collected positive pairs and
generated negative pairs, we had 300,016 unique TCR-epitope pairs in total.

2.3. Training and Testing Set Split

The binding characteristic of TCRs and epitopes is many-to-many, which means a TCR can
bind to multiple epitopes and an epitope can bind to multiple TCRs. Considering that our
dataset has 290,683 unique TCRs and 982 unique epitopes, it is highly likely that an epitope
can be found in both training and testing sets if we randomly split the sets. It is less likely
that a TCR present in both training and testing sets, but this can still happen. Therefore, the
random split of training and testing sets cannot properly measure generalization performance
of our model on novel TCRs and epitopes. In order to measure generalization performance on
novel TCRs and epitopes, we followed two dataset splitting approaches used in ATM-TCR:13

the TCR split and the epitope split. In the TCR split, no testing TCRs ever appeared in the
training set, allowing us to evaluate the performance of binding affinity prediction models on
out-of-sample TCRs. Similarly, in the epitope split, no testing epitopes ever appeared in the
training set, allowing us to evaluate the performance on out-of-sample epitopes.
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3. Methods

PiTE consists of two parts: amino acid embedding and TCR-epitope binding affinity prediction
(see Fig. 1). In the TCR (or epitope) amino acids embedding part, we use a pre-trained
embedding model to map a TCR (or epitope) sequence of string representation of amino acids
to a sequence of real-valued vectors. In the binding affinity prediction part, we train a variety
of different binding affinity prediction models, which composed of two sequence encoders (one
for TCR and the other for epitope) and a block of linear classification layers. In particular, we
are interested in how different types of encoders would perform in summarization of amino-
acid-wise embedding vectors into a sequence-wise representation.Fig 1. Pipeline

Binding / Non-binding

TCR (lt) Epitope (le)

lt × 1024 le × 1024
Block 1. 
Sequence

Summarization

layer

Block 2. 

Binding affinity 
classifier layer

(u, v, |u − v | )
linear layers

Embedding Embedding

TCR Encoder Epitope Encoder

concatenation

softmax

u v

1. catELMo -> Embedding

2. SeqEnc -> TCR Encoder, Epi Encoder


3. Used different color for TCR and epi encoder

4. encode, summarization


22 x 1024  amino acid vectorS—> 1 x 1024 vector, output is the 
compressed representation

Amino acids 
Embedding


Model

Binding Affinity 
Prediction 

Model

Fig. 1. PiTE pipeline: A TCR sequence with length of lt is first fed to the amino acids embedding
model. Each amino acid is embedded as a 1 × 1024 vector, hence a TCR sequence is embedded as
a lt × 1024 matrix. Similarly, an epitope sequence with length le is embedded as a le × 1024. These
embeddings are then passed into each sequence encoder to obtain the summarized representation u
and v for the TCR and epitope sequence, respectively. Finally, u, v, and their absolute subtraction
|u − v| are concatenated, and fed to two linear layers followed by a softmax activation function to
predict the binding affinity between the TCR and epitope sequences. Note sequence encoder layers
and binding affinity classifier layer are trained together as one binding affinity prediction model.

3.1. Amino Acids Embedding

Amino acid embedding is a process to map each amino acid in a TCR (or epitope) sequence to a
real-valued vector. Recently, amino acid embedding models11,14,18,19 leveraging a large number
of (unlabeled) TCR sequences have shown great advantages over the BLOSUM-based models.
We use a pre-trained amino acids embedding model19 trained on unlabeled TCR sequences
collected from ImmunoSEQ portal. The embedding model adopted the overall architecture
from a widely used language representation model, ELMo,21 with different layer sizes. Note
that this paper does not aim to find an optimal architecture for amino acid embedding. We
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use this model because it performs the best on our dataset, but it can be replaced by any
other state-of-the-art embedding models such as TCR-Bert14 and DeepTCR.18

The embedding model serves as a feature extractor that maps each amino acid in a string
representation of TCR (or epitope) sequence to a numeric vector of size of 1×1024. Therefore,
a TCR sequence of length lt is represented by a sequence of embedding vectors (i.e., a matrix
of size lt × 1024). Similarly, an epitope sequence of length le is represented by a sequence of
embedding vectors (i.e., a matrix of size le×1024). These embeddings will serve as the input of
the binding affinity prediction model. Since the binding affinity prediction model requires the
input to have the same shape and size, we align TCRs and epitopes using the IMGT approach
with a predefined length l. If the length of the TCR sequence (lt) is longer than l, we remove
an embedding vector of the amino acid from the end until it equals l. Otherwise, we append
zeros to the end of embedding vectors to ensure the embedding length is l. We predefine l as
22 for both the TCR and epitope sequences. This preprocessing step is applied before feeding
the TCR (or epitope) embeddings into our sequence encoder except for the baseline average
pooling encoder.

3.2. TCR-epitope Binding Affinity Prediction

3.2.1. Sequence Encoders

Average pooling (baseline): Average pooling is a pooling technique that projects a high
dimensional matrix to a low dimensional one by averaging values with regards to some fea-
ture dimension. It has been commonly used for obtaining sequence representations from the
output of amino acids embedding models. It helps to reduce the dimension of the amino acid
embedding of which the size is generally larger than the BLOSUM embedding. We used an
average pooling with regards to the length dimension as the baseline for sequence encoders. In
detail, we performed the average pooling on each embedding of TCRs with the size lt × 1024,
and obtained a summarized TCR sequence representation with the size 1 × 1024. Similarly,
we obtained a summarized epitope sequence representation with the size 1 × 1024. It helps
to handle various lengths of TCR (or epitope) sequences by reducing the dimension of their
amino acids embedding size.

Transformers: Transformer16 is a deep learning model using an encoder-decoder structure
that leverages multi-head self-attention mechanism to learn contextual representation of texts.
Although it was originally designed for machine translation, it and its variants have been
achieving revolutionary performances in many other natural language processing tasks such
as question answering, text generation, and textual entailment.20,26

We use a multi-head self-attention module for sequence encoders, which is similar to Trans-
former encoder. The attention module allows the model to attend different amino acid residues
of a TCR (or epitope) sequence based on their contextual relationship. In detail, the module
takes three types of vectors as input: a query vector Q, a key vector K, and a value vec-
tor V . Each vector is defined by a linear projection of a TCR (or epitope) embedding, and
each element in the projection matrix is considered as a model parameter. Then the scaled
dot-product of Q and K determines the strength of contextual relationship between different
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amino acid residues. The self-attention layer is then calculated by the following equation:

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V.

The multi-head self-attention layer is defined as a concatenation of multiple self-attention
layers. Taking an embedded TCR sequence (lt × 1024) as an example, we first feed it into
a multi-head attention layer with two heads followed by a dropout layer27 with a rate of
0.1 and a layer-wise normalization.28 The output of which is then served as the input for
a feed-forward layer followed by another dropout layer with a rate of 0.1 and a layer-wise
normalization. Finally, a SiLU29 activation function followed by a global max pooling layer is
used to produce a 1 × 1024 summarized representation for the TCR sequence. Similarly, we
generate a 1 × 1024 sized representation for the epitope sequence.

BiLSTMs: LSTM15 is a type of recurrent neural networks designed for dealing with long-
term dependencies in sequential data and have been commonly used to process protein or
genomic sequences.11,30 Evidence has shown that BiLSTMs with max-pooling achieved overall
better performance than other recurrent units such as vanilla LSTMs and GRUs31 for sentence
encoding in natural language process.32 We therefore select a BiLSTM structure as one of our
sequence encoders. A BiLSTM layer consists of two LSTM layers in opposite directions: the
forward layer and the backward layer. The forward LSTM layer is used to predict the current
state given previous ones by feeding the input sequence in order, and the backward LSTM
layer is used for producing the current state given the future ones by feeding the input sequence
reversely. In this way, a BiLSTM layer can learn features from both directions.

In detail, taking an epitope sequence with length le as an example, we first use a biLSTM
layer with 32 units to encode the epitope sequence, followed by a time-distributed linear layer
with 256 neurons. The output vector size is le × 256. We then feed this vector to a SiLU
activation function29 and global max pooling layer as it has been shown the global max-
pooling achieves better encoding results in general.32 The final outputed representation vector
is 1 × 256 for the epitope sequence. Similarly, the representation size for a TCR sequence is
also 1 × 256.

CNNs: CNNs are a type of neural networks using convolution operations to extract high-
level features in image processing.33 CNNs have achieved excellent performances in many
computer vision tasks involving videos or images.34,35 A recent work suggested that CNNs
could also perform well even when dealing with sequential data such as protein sequences.36

Specifically, they trained a ByteNet-based37 CNN model on protein data and showed that
their CNN model achieved comparable performance with Transformers. We thereby design an
CNN-based architecture for the sequence encoders using ByteNet.

A ByteNet block consists of 3 one-dimensional CNN layers, each of which is followed by a
batch normalization38 layer and GeLU39 activation function. The number of filters for these
three CNN layers are 256, 512, and 1024, respectively. The first and third CNN layers with
both kernel sizes and stride steps being 1 are utilized to process the sequential TCR and
epitope sequences. The middle CNN layer is a dilated CNN40 with a kernel size of 5 and stride
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step of 1, and it is used to expand the receptive field of input sequence covered without pooling
to learn global context information. The input and output of each block are added together,
and serve as the input for the next block. Four blocks are used in total. The dilation rate for
the dilated CNN layer in each block increases by a factor of 2, ranging from 2 to 16.

Taking a TCR amino acids embedding (lt×1024) as an example, we first feed it into an 1D
CNN layer with 256 filters followed by a GeLU activation function and another 1D CNN layer
with 512 filters. Batch normalization and a GeLU activation function are then applied. The
output of which is then feed into a 1D CNN layer with 1024 filters followed by 4 continuous
ByteNet blocks. We use the final output of these ByteNets as the summarized representation
for TCR or epitope sequences. The size of summarized representation is 1 × 1024.

3.2.2. Linear Prediction Layers

On top of the sequence encoders, we stack two dense layers for determining the TCR-epitope
binding affinity score between two sequence representations. The classifier takes a pair of
summarized TCR and epitope representation vectors as the input and predicts the probability
(0–1) that they are binding to each other. Taking a summarized TCR sequence representation
(denoted as u) obtained from the baseline sequence encoder (size of 1 × 1024) as an example,
a summarized epitope sequence representation is also 1 × 1024 size (denoted as v). We first
concatenate u, v, and their absolute subtraction |u− v| together, resulting in a 1 × 3072 input
vector under baseline circumstance. The reason we include |u − v| into the concatenation is
that we aim to force the model to not only learn features from TCR and epitope sequences
but also pay attention to the difference between them. We then feed this input vector into a
linear layer with 1024 neurons, followed by a batch normalization,38 a 0.3 rate dropout27 and a
SiLU29 activation function. The output of which is then passed into another linear layer with
a single neuron followed by a softmax function to produce a binding affinity score ranging
from 0 to 1.

4. Experiments

We compared four different sequence summarizing encoders, including average pooling as base-
line, our Transformer-based, BiLSTM-based, and CNN-based sequence encoders. We trained
the sequence encoders together with a two-layer neural network that concatenates output
representations of the encoders and predicts the binding affinity of TCR and epitope pairs.

4.1. Implementation Details

We trained TCR-epitope binding prediction models using adam41 optimizer and binary cross-
entropy loss with a learning rate of 0.001 and a batch size of 32. An early stopping method was
used to avoid over-fitting. It stops training if the validation loss has not decreased for the last
30 epochs or the epoch become larger than 200. For each type of the sequence encoder, we listed
the size of summarized representations (u for a TCR sequence and v for an epitope sequence
showed in Fig. 1), as well as the total number of trainable parameters in the TCR-epitope
binding affinity prediction models in Table 1. Note that the summarized representation size of
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our BiLSTM-based method is 1× 256, which is one fourth of other methods. We intentionally
designed in this way to build a lite sequence encoder for comparison purposes. We trained
each model for 10 runs and reported mean and standard deviation of AUC, precision, and
recall scores. We tuned the number of heads in the multi-head attention layers and the size
of binary classification layers, and selected values achieving the highest AUC in epitope split
(Supplementary table 1). Each run took less than 1 day to finish on a NVIDIA RTX 2080
GPU with 11 GB memory. All our code was developed upon Tensorflow.42

Table 1. Summarized representation size of different sequence encoder and
trainable parameters of TCR-epitope binding affinity prediction models. We show
number of total trainable parameters in the prediction model and trainable pa-
rameters in encoder layers in parentheses.

Sequence Encoder Structure Representation Size Trainable Parameters (in encoders)

Average Pooling (Baseline) 1 × 1024 3,149,825 (0)
Transformer 1 × 1024 20,082,753 (16,932,928)
BiLSTMs 1 × 256 1,364,993 (574,464)
CNNs 1 × 1024 11,430,657 (8,280,832)

4.2. Results and Discussion

Our Transformer-based sequence encoder significantly outperforms the rest three
methods. To visually compare performances of different sequence encoders, we showcased the
ROC curves for both TCR and epitope split in Fig. 2. It was constructed by plotting the true
positive rate against the false positive rate. A model is considered to have good performance if
its ROC curve is close to the top-left corner. As seen in Fig. 2, we found that our transformer-
based model outperformed the other three methods under both TCR and epitope split settings,
indicating that it can summarize the TCR and epitope amino acids embedding better. It
may be because the multi-head attention mechanism assists to learn contextual information
between amino acids. We also compared the AUC, precision, and recall scores of the methods
in Fig. 2. The mean values across 10 runs are shown on top of each bar in Fig. 2. The height
of error bars represents the standard deviation over 10 runs. A two-sample paired t-test was
carried out for statistical significance testing. A p-value less than 0.05 means a significant
performance difference, otherwise, we considered it an statistically equivalent. We showed
that our Transformer-based model significantly outperformed both the baseline and BiLSTM-
based method in TCR and epitope split. In detail, our Transformer-based method achieved
a 97.48% AUC score in TCR split, outperforming baseline and BiLSTM-based methods by
3 and 2 points, respectively. Similarly, even bigger performance gains were observed in the
epitope split. The Transformer-based method reached a 89.83% AUC score which surpassed the
baseline and BiLSTM-methods by around 5 and 4 points, respectively. Our comparison results
suggested that Transformer-based sequence encoder can best summarize TCR (or epitope)
representations.
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Fig. 2. Performance of the TCR-epitope binding affinity prediction models using variety of different
sequence encoders in a. TCR split and b. Epitope split.

The choice of model architecture can be more important than the number of model
parameters. Our BiLSTM-based method significantly outperformed the baseline method in
both TCR split and epitope splits as well. As seen in Fig. 2, it achieved a 95.73% AUC
score in the TCR split, which is 1 point higher than the baseline of which the number of
trainable parameters are three times larger (Table. 1). We also observed that the current size
of BiLSTM-based method performed similar with a larger size BiLSTM model (representation
size 1× 1024). The large BiLSTM model achieved an AUC of 95.52% in the TCR split, and of
87.13% in the epitope split, showing that increasing the number of parameters in BiLSTM is
not a significant factor for improving the prediction performance. Moreover, we also observed
that CNN may not be an optimal structure for summarizing TCR or epitope sequences. It
performed significantly worse than baseline in both TCR split and epitope split. The AUC
score dropped around 4 points to 90.06% and 81.07% compared to baseline in both TCR and
epitope split, respectively. While the CNN-based model contains three more times parameters
than the baseline method, it failed to summarize better embeddings for sequences. It may be
because the the CNN-based model focused on leaning local contextual information but not
on global contextual information. All those results showed that carefully selecting the neural
network structure can make great improvement for TCR-epitope binding affinity prediction
than simply increasing model capacities.

The Transformer-based method performs best on most individual out-of-sample
epitopes. To take a closer look at our models’ performance on individual unseen epitopes,
we further compared AUC scores of each epitopes having the top 20 frequency in the epitope
split (Table. 2). For each epitope, we highlighted the highest AUC score across four models in
bold. We found that our Transformer-based method achieved the highest AUC scores in 17 out



of 20 epitopes. Apart from the first two epitopes, the Transformer-based and BiLSTM-based
model surpassed the baseline for the other 18 epitopes. The CNN-based model, on the other
hand, generally performed worse than baseline. Overall, the comparison results of individual
epitopes was consistent with our observation in Fig 2.

Table 2. AUC scores for Top 20 frequent epitopes in testing set

Epitopes Number of TCRs Baseline Transformers BiLSTM CNNs

MIELSLIDFYLCFLAFLLFLVLIML 23146 74.37 60.05 68.81 64.94
GILGFVFTL 10802 85.93 80.75 83 78.82
LLWNGPMAV 4716 79.75 89.51 87.41 75.75
LSPRWYFYYL 3502 71.19 93.69 80.62 78.67
VQELYSPIFLIV 2126 77.99 92.86 89.56 80.67
GMEVTPSGTWLTY 1990 74.88 93.17 86.19 76.99
ELAGIGILTV 1970 86.86 90 88.84 82.29
YEDFLEYHDVRVVL 1752 81.06 96.58 92.76 75
FLPRVFSAV 1734 78.78 89.16 84.49 75.38
MPASWVMRI 1558 75.61 89.74 81.26 75.23
FPPTSFGPL 1362 79.01 93.18 86.79 80.92
YEQYIKWPWYI 1074 67.88 95.63 87.25 77.1
VLHSYFTSDYYQLY 970 79.18 86.5 86.09 79.39
KTAYSHLSTSK 952 59.14 80.68 78.79 70.59
CRVLCCYVL 870 71.04 80.35 80.92 75.64
ILGLPTQTV 472 78.39 95.34 93.65 75.43
FIAGLIAIV 406 77.1 93.35 82.52 66.26
SMWSFNPETNIL 398 80.66 92.72 89.45 81.41
ILHCANFNV 398 80.16 95.98 90.46 85.18
FTISVTTEIL 396 76.27 94.45 88.39 80.31

5. Conclusions

This paper proposed PiTE, a pipeline that achieved a state-of-the-art performance for the
TCR-epitope binding affinity prediction problem. In particular, we explored various types
of neural network architectures for the sequence encoders that can be used on top of the
existing embedding models. We showed that the Transformer-based method achieved the best
performance. Our experimental evidence showed that the performance can be further boosted
with more advanced structure of sequence encoders.
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We consider the problem of modeling gestational diabetes in a clinical study and develop
a domain expert-guided probabilistic model that is both interpretable and explainable.
Specifically, we construct a probabilistic model based on causal independence (Noisy-Or)
from a carefully chosen set of features. We validate the efficacy of the model on the clinical
study and demonstrate the importance of the features and the causal independence model.

Keywords: Probabilistic Models, Bayesian networks

1. Introduction

We consider the problem of predicting the onset of gestational diabetes mellitus (GDM) from a
combination of risk factors and a polygenic risk score. To this effect, we consider data from the
Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b1)
study and develop a probabilistic model for modeling GDM. While the success of deep learn-
ing methods2 in medical tasks3 has significantly increased the interest in machine learning
based methods, these models suffer from the twin problems of being data-hungry and unin-
terpretable. While quite powerful in their classification abilities, these models are not easy to
be employed in decision-making systems that require human interaction.

Consequently, we propose a probabilistic learning method that can effectively and effi-
ciently incorporate domain knowledge. Inspired by previous work in probabilistic learning
with expert knowledge,4,5 we develop a framework for modeling GDM from a few risk factors
including Age, BMI, metabolism, family history, blood pressure, etc, and combine the results
with a polygenic risk score.

Specifically, our work considers two types of knowledge - causal independencies and quali-

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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tative influences. Causal independencies6–9 specify sets of risk factors (called random variables
in probabilistic learning terminology) that are independent of each other when affecting the
target. The idea here is that each of these variables has an independent effect on the target
– for instance, BMI and age affect GDM independently – and their effects can be combined
by a probabilistic combination function. One such example is Noisy-Or. The advantage of
such independencies lies in the fact that they lead to a drastic reduction in the number of
parameters needed to learn the model.

While powerful, specifying only causal independencies could be insufficient. As an exam-
ple, consider age and BMI as risk factors for GDM. While both these risk factors could be
independent, when they both are higher, the risk of GDM could be increased. This information
is not captured by simple causal independencies. To model such knowledge, earlier methods
employ the use of qualitative constraints.4,10,11 A qualitative constraint could be a monotonic
statement of the form as X increases Y increases. For instance, in our task, it is easy to specify
that as age increases the risk of GDM increases.

Inspired by our prior work,5 we combine these two types of domain knowledge to learn
a probabilistic model for predicting GDM from the nuMoM2b data and employ the use of
polygenic risk score to provide a prior over the incidence of GDM. Specifically, we take the
view of a temporal model due to Heckerman and Breese6 and combine the influence due
to the different risk factors using Noisy-Or. For each of these risk factors, we also employ
monotonicity constraints whenever applicable. Our empirical evaluations demonstrate that the
proposed method with the knowledge from domain experts outperforms probabilistic learning
only from data and is comparable with the best machine learning methods that are not
interpretable or interactive.

To summarize, we make the following key contributions: (1) We view the problem of
modeling GDM using a probabilistic lens and in the presence of domain expert knowledge in
the form of qualitative constraints and causal independencies. (2) We take the temporal view
and derive the gradients for learning the probabilistic model. (3) We evaluate the algorithm
on a real GDM study and establish its effectiveness.

2. Data description

The Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nu-
MoM2b1) study was established to study individuals without previous pregnancy lasting 20

weeks or more (nulliparous) and to elucidate factors associated with adverse pregnancy out-
comes. The study enrolled a racially/ethnically/geographically diverse population of 10, 038

nulliparous women with singleton gestations. The enrolled participants were followed for the
duration of their pregnancy and visits were scheduled four times during the pregnancy: 6 weeks
0 days through 13 weeks 6 days estimated gestational age (EGA), 16 weeks 0 days through 21

weeks 6 days EGA, 22 weeks 0 days through 29 weeks 6 days EGA, and at the time of delivery.
Our subset has 7 variables - BMI, PRS, METs, Age, Hist, PCOS, HiBP.

For our work, we excluded 193 cases where women were diagnosed with pregestational
diabetes. Additionally, 3, 368 cases with missing features in the dataset were excluded. In our
experiments, we use two cohorts. Figure 1 illustrates the mechanism for choosing these cohorts.
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10,038 participants in
the nuMoM2b study

10,028 participants

9,835 participants

9,368 participants

5,666 non-Hispanic
white participants

6,164 participants

5,034 participants with
inferred European ancestry

3,533 participants

10 participants did not
have baseline information

193 participants had diag-
nosis or treatment of di-
abetes before pregnancy

467 participants were
not tested for GDM

632 participants from
non-European ancestry

1,501 participants did not
have data for physical activ-
ity and polygenic risk score

3,368 participants did not
have data for some risk factors

Fig. 1. Flowchart illustrating the process of selecting the cohorts for our experiments. The two
sub-cohorts used in our experiments are indicated in green.

A sub-cohort of 3, 533 non-Hispanic white participants with European ancestry was used for
experiments involving PRS and a cohort of 6, 164 participants was used for experiments not
involving PRS. Of the 7 variables, Hist, PCOS, HiBP are binary, Age is discrete while BMI,
PRS and METs are continuous. Age was categorized into 4 values based on quantiles to limit
the number of possible values. The continuous variables BMI, PRS, and METs were discretized
into 5 categories based on quantiles.

3. Background: Knowledge-guided learning

We now present the necessary background on the two types of expert knowledge that we
consider in this work – qualitative influences and causal independencies.

3.1. Qualitative influence

A qualitative influence (QI) statement10 indicates the effect of change in one or more factor(s)
on a target.5 We focus on one particular type of QI: monotonicty. Monotonicity represents a
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direct relationship between two variables: “As BMI increases, neck circumference increases”
indicates that the probability of greater neck circumference increases with an increase in BMI.
Note that while the QI statements do not directly specify the quantitative relationships (i.e.,
the precise probabilities), they specify how the conditional distribution (P (circumference |
BMI) changes as the value of BMI changes. Such statements are quite natural to be specified
in many domains, and more so, in medicine. Formally, a monotonic influence (MI) of variable
X on variable Y , denoted XM+

≺ Y (or its inverse XM−
≺ Y ), indicates that higher values of X

stochastically result in higher (or lower) values of Y .

Fig. 2. A belief network for multiple causes and a single effect (left) and Temporal interpretation
of Independence of causal influence (right).

3.2. Causal Independence

Causal independence, in simple terms, states that (1) the effect is independent of the order in
which causes are introduced, and (2) the impact of a single cause on the effect does not depend
on what other causes have previously been applied. This definition facilitates a (probabilistic)
belief network representation that is consistent with a set of causal independence statements.6,7

The Noisy-Or model, illustrated in Figure 3, belongs to a class of causal interactions which are
characterized by the independence of causal inputs. The belief network in Figure 2 represents a
general multiple-cause interaction wherein n causes influence a single effect (target variable) y.
While this representation provides an intuitive way to capture the causal interaction between
the risk factors xi and the target variable, it requires 2n parameter assessments for binary
variables - one parameter for each instantiation of the causes. This leads to an exponentially
large number of examples required to learn a robust conditional distribution.

Akin to conditional independence assumptions in Bayesian networks, causal independence
assumptions allow efficient parameter learning by causing an exponential reduction in the total
number of model parameters as compared to the case of general multiple-cause interaction.
Concretely, the presence of independence of causal influences allows us to represent the belief
network in Figure 2 on the left as the temporal network on the right, for any ordering of
causes σ = {σ1, . . . , σn}. Here, the unobserved effect variable at a timestep y′σi is defined as a
deterministic function of the cause xσi, the previous state of the effect y′σi−1 and ϵσi, a dummy
variable representing the uncertainty. Finally, x0 represents all causes not considered in the
model and y′σn is the observed effect variable. This relation can be expressed as

y′σ1 = hσ(x0, xσ1, ϵσ1) (1)

y′σi = hσ(y
′
σi−1, xσi, ϵσi), ∀i ∈ {2, . . . , n} (2)
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Fig. 3. The Noisy-Or model

For the case where hσ is the Noisy-Or function, the temporal belief network is equivalent to
the Noisy-Or model shown in Figure 3. The number of parameters in the Noisy-Or model is
linear in the number of causes, n, while it is exponential in the original model.

Causal independence statements, in conjunction with qualitative influence statements,
allow the injection of rich domain knowledge into an interpretable model while ensuring feasible
parameter learning from data. We build upon prior work5 in employing this knowledge in the
context of GDM modeling.

4. Causal independencies with qualitative constraints for modeling GDM

Given: A set of causally independent risk factors X for the target GDM Y and a set of
qualitative influences C

To Do: Learn an interpretable model m that models the conditional probability of a target
variable given the risk factors.

As mentioned earlier, X is the set of risk factors ⟨BMI, PRS, METs, Age, Hist, PCOS, HiBP ⟩
while Y denotes GDM. So the goal of our work is to learn P (GDM | X) given the constraints
C. In the rest of this section, we use X and Y instead of specific risk factors and GDM to
demonstrate the generality of the approach.

In the Noisy-Or model, the target variable is activated if any of the causes is active,
unless the active causes are inhibited. Formally, the probability of a cause being active is
called the link probability and we parameterize it using the sigmoid function σ, i.e., P (Yi = 1 |
Xi = xi) = σ(wixi + bi), ∀i ∈ {1, . . . , n}. The key assumption of the Noisy-Or model is that the
inhibitory effect for each cause is independent. Consequently, we parameterize these inhibition
probabilities as P (Y = 0 | Yi = 1) = σ(qi), ∀i ∈ {1, . . . , n}. Finally, the target variable may still
be activated even if none of the causes are active. This is called leakage and represents all other
possible causes that are not included as risk factors. We parameterize the leak probability as
P (Y = 1 | Y1 = 0, . . . , Yn = 0) = σ(ql). Thus, the target distribution under Noisy-Or is

P (Y = 1 | X = x) = 1− (1− ql)

n∏
i=1

(P (Yi = 1 | Xi = xi)qi + P (Yi = 0 | Xi = xi)) (3)
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Following previous work,4,5 we define positive (or negative) monotonic influence Xi
M+
≺ Y (or

Xi
M−
≺ Y ) as P (Yi = 0 | Xi = a) ≤ P (Yi = 0 | Xi = b) ∀a, b ∈ domain(Xi), a > b (or a < b). The

Noisy-Or model with monotonic influences is shown in Figure 3.

4.1. Parameter Learning under monotonicity constraints

The log-likelihood under the Noisy-Or model can be written as:

L(w,b,q, ql;D) =

N∑
j=1

logP (Y = y(j) | X = x(j))

=

N∑
j=1

y(j) log(1− P (Y = 0 | X = x(j))) + (1− y(j)) logP (Y = 0 | X = x(j))

(4)

We encode the monotonic influences as the margin constraints δa,bi ≤ 0 where:

δa,bi =


P (Yi = 0 | Xi = a)− P (Yi = 0 | Xi = b) + ϵ Xi

M+
≺ Y ∈ C

−P (Yi = 0 | Xi = a) + P (Yi = 0 | Xi = b) + ϵ Xi
M−
≺ Y ∈ C

0 otherwise

Intuitively, if the monotonicity constraint is satisfied, δ ≤ 0 while if the constraint is violated,
δ > 0. ϵ is a small margin. Now using these constraints, we define the penalty function,

ζa,bi = Iδa,b
i >0δ

a,b
i

2
. Intuitively, the penalty is applied if the constraint is violated and is equal to

the square of the magnitude of the violation. Essentially, the model will not penalize the cases
where the constraints are satisfied (for instance, if the constraint on BMI is satisfied when the
parameters are learned, the penalty for that parameter = 0).

Including the penalty function, the final objective that is to be maximized is

J(w,b,q, ql;D) = L(w,b,q, ql;D)− λ

n∑
i=1

∑
a>b

ζa,bi

where, λ is the penalty weight. The first term is the classic log-likelihood that is computed
using the different conditional distributions and the second term is simply the sum of the
non-zero penalties weighted by a constant λ. Recall that w and b are the link probability
parameters, and q and ql are inhibition probability and the leak probability parameters re-
spectively. Intuitively, the penalty function serves as a regularizer that forces the model to
satisfy the constraints as much as possible given the data.

The advantage of this formalism is that since it is a weighted combination,the data could
be noisy or the constraints could be incorrect. The model can simply trade-off between
the data and constraints accordingly. Exploring the case when both data and domain expert
are noisy is outside the scope of this work. Thus, the model is robust to both data noise and
expert advice noise. λ could be chosen by cross-validation, but, in our experiments and in
prior work,5 the model is robust to the choice of λ as long as it is not close to 0 or 1.
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4.2. Derivation of the gradients of the log-likelihood term

First, we define the following intermediate gradient terms:

Uj =
∂ logP (Y = y(j) | X = x(j))

∂P (Y = 0 | X = x(j))
=

−y(j)

P (Y = 1 | X = x(j))
+

1− y(j)

P (Y = 0 | X = x(j))

Qlj =
∂P (Y = 0 | X = x(j))

∂ql
= −P (Y = 0 | X = x(j))σ′(ql)

1− ql

Qij =
∂P (Y = 0 | X = x(j))

∂qi
=

P (Y = 0 | X = x(j)))P (Yi = 1 | Xi = x
(j)
i )σ′(qi)

P (Yi = 1 | Xi = x
(j)
i )qi + P (Yi = 0 | Xi = x

(j)
i )

Vij =
∂P (Y = 0 | X = x(j))

∂P (Yi = 1 | Xi = x
(j)
i )

=
P (Y = 0 | X = x(j))(qj − 1)

P (Yi = 1 | Xi = x
(j)
i )qi + P (Yi = 0 | Xi = x

(j)
i )

Wij =
∂P (Yi = 1 | Xi = x

(j)
i )

∂wi
= σ′(wixi + bi)xi

Bij =
∂P (Yi = 1 | Xi = x

(j)
i )

∂bi
= σ′(wixi + bi)

Here, Uj is the gradient of the log-likelihood of the jth data example with respect to the
probability that the target Y is 0 (i.e., the case where GDM = false). Qlj and Qij, Vij are
the gradients of the probability that the target is 0 (GDM = false) for the jth data example
with respect to the leak parameter ql, the inhibition parameter qi, and the link probability
P (Yi = 1 | Xi = x

(j)
i ) respectively. Wij and Bij are the gradients of the link probability

P (Yi = 1 | Xi = x
(j)
i ) with respect to its parameters wi and bi respectively. Finally σ′ is the

gradient of the sigmoid function σ′(x) = σ(x)(1− σ(x)).
The gradients of the log-likelihood function with respect to the link parameters wi and bi

can be computed in terms of Uj, Vij, Wij and Bij as

∂L(w,b,q, ql;D)

∂wi
=

N∑
j=1

∂ logP (Y = y(j) | X = x(j))

∂wi

=

N∑
j=1

∂ logP (Y = y(j) | X = x(j))

∂P (Y = 0 | X = x(j))

∂P (Y = 0 | X = x(j))

∂P (Y = 1 | Xi = x
(j)
i )

∂P (Yi = 1 | Xi = x
(j)
i )

∂wi

=

N∑
j=1

UjVijWij

(5)
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∂L(w,b,q, ql;D)

∂bi
=

N∑
j=1

∂ logP (Y = y(j) | X = x(j))

∂bi

=

N∑
j=1

logP (Y = y(j) | X = x(j))

∂P (Y = 0 | X = x(j))

∂P (Y = 0 | Xi = x(j))

∂P (Yi = 1 | Xi = x
(j)
i )

∂P (Yi = 1 | Xi = x
(j)
i )

∂bi

=

N∑
j=1

UjVijBij

(6)

The gradients of the log-likelihood function with respect to the inhibition and leak parameters
qi and ql can be computed in terms of Uj, Qij and Qlj as

∂L(w,b,q, ql;D)

∂qi
=

N∑
j=1

∂ logP (Y = y(j) | X = x(j))

∂qi

=

N∑
j=1

∂ logP (Y = y(j) | X = x(j))

∂P (Y = 0 | X = x(j))

∂P (Y = 0 | X = x(j))

∂qi

=

N∑
j=1

UjQij

(7)

∂L(w,b,q, ql;D)

∂ql
=

N∑
j=1

∂ logP (Y = y(j) | X = x(j))

∂ql

=

N∑
j=1

∂ logP (Y = y(j) | X = x(j))

∂P (Y = 0 | X = x(j))

∂P (Y = 0 | X = x(j))

∂ql

=

N∑
j=1

UjQlj

(8)
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4.3. Derivation of the gradients of the penalty term

The gradients of the penalty function are given by

∂ζa,bi

∂wi
=

∂ζa,bi

δa,bi

δa,bi

∂wi

= Iδa,b
i >0 2δa,bi

δa,bi

∂wi

= Iδa,b
i >0


P (Yi=0|Xi=a)

∂wi
− P (Yi=0|Xi=b)

∂wi
+ ϵ Xi

M+
≺ Y ∈ C

−P (Yi=0|Xi=a)
∂wi

+ P (Yi=0|Xi=b)
∂wi

+ ϵ Xi
M−
≺ Y ∈ C

0 otherwise

= Iδa,b
i >0


σ′(wia+ bi)a− σ′(wib+ bi)b+ ϵ Xi

M+
≺ Y ∈ C

−σ′(wia+ bi)a+ σ′(wib+ bi)b+ ϵ Xi
M−
≺ Y ∈ C

0 otherwise

(9)

∂ζa,bi

∂bi
=

∂ζa,bi

δa,bi

δa,bi

∂wi

= Iδa,b
i >0 2δa,bi

δa,bi

∂bi

= Iδa,b
i >0


P (Yi=0|Xi=a)

∂bi
− P (Yi=0|Xi=b)

∂bi
+ ϵ Xi

M+
≺ Y ∈ C

−P (Yi=0|Xi=a)
∂bi

+ P (Yi=0|Xi=b)
∂bi

+ ϵ Xi
M−
≺ Y ∈ C

0 otherwise

= Iδa,b
i >0


σ′(wia+ bi)− σ′(wib+ bi) + ϵ Xi

M+
≺ Y ∈ C

−σ′(wia+ bi) + σ′(wib+ bi) + ϵ Xi
M−
≺ Y ∈ C

0 otherwise

(10)

Using these gradients, we solve the maximization problem using the L-BFGS-B algorithm,
increasing the value of λ until the solution satisfies all the constraintsa. The high-level flowchart
of our model construction is presented in Figure 4. Given the entire GDM data set, after
preprocessing and obtaining the causal independencies, we construct the smaller data set
where we learn the model such that the qualitiative constraints are satisfied. The final model
is then evaluated on the test set and the results are presented in the next section.

5. Experimental evaluation

Our experiments explicitly aim at answering the following questions,

Q1: Does inclusion of QIs improve model performance over a base model that does not have
background knowledge in the form of QIs?

aThe code is available at https://github.com/saurabhmathur96/noisy or
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Fig. 4. Flowchart for the Noisy-Or model construction process

Fig. 5. Noisy-OR model used for the GDM dataset. Both QIs and causal independence knowledge
are incorporated in this model. This representation shows that PRS, Hist, PCOS, HiBP, Age and
BMI have a positive monotonic influence on GDM whereas METs have a negative monotonic influ-
ence. Additionally, all the risk factors are causally independent in this model.

Q2: Can our proposed model incorporate causal independencies to efficiently estimate model
parameters without significantly losing performance?

We evaluate our proposed approach on two sub-cohorts in the nuMoM2b study - one sub-
cohort with PRS as a risk factor and one without it - as described in section 2. The domain
knowledge in the form of causal independencies and QIs were provided by our domain expert
Dr. Haas. Figure 5 presents our proposed noisy-OR model that incorporates this domain
knowledge for the task of GDM prediction given the 7 risk factors.

To answer the first question, we train noisy-OR models for the two cohorts with and
without the inclusion of QIs. Figure 6 presents the AUC-ROC12 for our model trained on
each of the sub-cohorts. In the case of the sub-cohort using the PRS (bottom in Figure 6),
it can be clearly noted that incorporating QIs improves AUC-ROC from 0.6409 ± 0.0408 to
0.7371 ± 0.0149. In the sub-cohort not using the PRS, incorporating QIs improves the AUC-
ROC from 0.6640± 0.0079 to 0.6863± 0.0091. It is evident from these charts that the inclusion
of QIs as domain knowledge improves model performance. This analysis helps us answer Q1.
Our proposed approach can effectively incorporate QIs to improve model performance.

To answer the second question, we compare our proposed approach to a strong discrimi-
native baseline: gradient boosted trees (GBT). Figure 6 presents a comparison of our model
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with the baseline for the two sub-cohorts (left and center). GBT achieves AUC-ROC scores of
0.7261±0.0174 and 0.6831±0.0130 for the sub-cohort with and without PRS, respectively. This
is comparable to the performance of our proposed approach when QIs are incorporated. How-
ever, unlike the noisy-OR model, GBT does not make any causal independence assumptions
and hence has no causal meaning and is much more difficult to interpret. This analysis helps
us answer Q2. Our proposed model can incorporate causal independencies to allow feasible
parameter learning without losing model performance as compared to models that do not
make causal independence assumptions.

To summarize, our experiments on two sub-cohorts of the GDM dataset suggest that
our proposed approach can leverage domain knowledge in the form of QIs and causal inde-
pendencies to effectively and efficiently learn an interpretable model without losing model
performance as compared to a strong discriminative baseline that is uninterpretable.

GBT NOR NOR+QI
0.5

0.6

0.7

0.8

0.9

1

GBT NOR NOR+QI
0.5

0.6

0.7

0.8

0.9

1

NOR QIPRS PRS+QI
0.5

0.6

0.7

0.8

0.9

1

Fig. 6. The AUC-ROC scores for the Noisy OR model (NOR) as compared to the Gradient Boosted
Trees model (GBT) with PRS (left) and without PRS (center). The AUC-ROC scores for the Noisy
OR model (NOR) in the presence of PRS and Qualitative Influences (right). The bars show the mean
score over 10 boostrap samples and the error bars show the standard deviation.

6. Conclusion

We adapted the use of qualitative constraints and causal independencies to build an inter-
pretable and explainable probabilistic model for modeling GDM given a small number of
risk factors. We presented the learning method that learned the parameters of the model.
Our empirical evaluations on nuMoM2b dataset clearly demonstrated that the use of the two
types of constraints yielded better results than learning only from data and most importantly,
exhibit similar performance as the state-of-the-art machine learning algorithm. Extending the
model to include more risk factors is an immediate research direction. Learning a fully gen-
erative model such as Bayesian network would provide valuable insights in the interactions
between risk factors. Finally, evaluating the learned models on larger and diverse data such
as EHRs remains an interesting future direction.
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Preeclampsia is a leading cause of maternal and fetal morbidity and mortality. Currently, the only
definitive treatment of preeclampsia is delivery of the placenta, which is central to the pathogenesis
of the disease. Transcriptional profiling of human placenta from pregnancies complicated by
preeclampsia has been extensively performed to identify differentially expressed genes (DEGs).
The decisions to investigate DEGs experimentally are biased by many factors, causing many DEGs
to remain uninvestigated. A set of DEGs which are associated with a disease experimentally, but
which have no known association to the disease in the literature are known as the ignorome.
Preeclampsia has an extensive body of scientific literature, a large pool of DEG data, and only one
definitive treatment. Tools facilitating knowledge-based analyses, which are capable of combining
disparate data from many sources in order to suggest underlying mechanisms of action, may be a
valuable resource to support discovery and improve our understanding of this disease. In this work
we demonstrate how a biomedical knowledge graph (KG) can be used to identify novel
preeclampsia molecular mechanisms. Existing open source biomedical resources and publicly
available high-throughput transcriptional profiling data were used to identify and annotate the
function of currently uninvestigated preeclampsia-associated DEGs. Experimentally investigated
genes associated with preeclampsia were identified from PubMed abstracts using text-mining
methodologies. The relative complement of the text-mined- and meta-analysis-derived lists were
identified as the uninvestigated preeclampsia-associated DEGs (n=445), i.e., the preeclampsia
ignorome. Using the KG to investigate relevant DEGs revealed 53 novel clinically relevant and
biologically actionable mechanistic associations.

Keywords: Preeclampsia; Knowledge Graphs; Knowledge-based Enrichment; Ignorome.

1. Introduction

Preeclampsia has been known since Hippocrates described it in 400 BC and remains a leading 
cause of maternal and fetal morbidity and mortality.1,2 Preeclampsia is a hypertensive, 
multisystemic disorder with an unknown etiology and variable maternal and fetal manifestations.3 

Maternally, preeclampsia presents as both hypertension and proteinuria, but can quickly progress

____________________________________
© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 
License.
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to affect the kidneys, brain, and liver and in severe cases, results in thrombocytopenia, stroke,
visual disturbance, renal failure, placental abruption, seizure, and death.4 Fetal consequences of
preeclampsia are a function of gestational age and the severity of the mother’s condition, which
may include intrauterine growth restriction (IUGR), prematurity, and perinatal death.5

Mechanistically, preeclampsia is thought to be partially caused by alterations in circulating
angiogenic factors like vascular endothelial growth factor (VEGF), which is known to tightly
regulate angiogenesis,6 and triggers the development of organs. Preeclampsia is caused when free
levels of transforming growth factor (TGF ), placental growth factor (PIGF), and VEGF areβ β
decreased, due to increased levels of antiangiogenic factors like soluble FMS-like tyrosine kinase
1 (Sflt-1) and Endoglin (sEng).7 Despite extensive research and an in-depth understanding of the
pathophysiology of preeclampsia, clinicians remain unable to prevent this disease.8 One advantage
of preeclampsia research is that upon termination of a pregnancy and/or delivery, the placenta is a
non-vital organ and biopsies can be performed.9 Even with this advantage and the sizable
collection of transcriptomic data deposited in the public domain that has resulted from it,
individual studies and many recent meta-analyses have not made much progress in furthering our
understanding of effective prevention or treatment of preeclampsia.

In similarly complex diseases like asthma, strategies to identify relevant genes have yielded
novel mechanistic insight into previously ignored genes.10 The ignorome is defined as the portion
of a gene signature shown to be significantly associated with a specific disease, but without a
published mechanistic link — and often without any published disease association. Recently,
researchers discovered that the top 5% of statistically significant differentially expressed genes
(DEGs) were responsible for 70% of the published literature for a given disease.11 Further
examination of ignorome genes revealed no differences between the published and ignored genes
in terms of their connectivity in co-expression networks; the biggest factor as to whether or not a
gene was well-represented in the literature was its date of discovery.11

Preeclampsia has an extensive body of scientific literature, a large pool of DEG data, and only
one definitive treatment. Given the rate at which science advances, tools facilitating
knowledge-based analyses may be a valuable resource to support discovery and improve our
understanding of this disease. Knowledge-based clinical research, and its ability to integrate
disparate data from many sources in order to suggest underlying mechanisms of action, provides a
potentially powerful new avenue to obtain mechanistic insight into experimental findings, such as
in the enrichment of DEG lists. Very few DEGs are examined after an initial experiment because
experimental follow-up is difficult and expensive, and nonsignificant DEGs are often investigated
because prioritization approaches are generally based on experimental signal (e.g., effect size)
rather than on existing knowledge. The goal of this paper was to demonstrate how a large-scale
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heterogeneous biomedical knowledge graph (KG) could be used to identify novel preeclampsia
mechanisms from previously analyzed transcriptomic experiments.

2.  Methods

The preeclampsia ignorome was identified in two steps: (i) identification of preeclampsia DEGs
from multi-platform microarray meta-analysis and (ii) identification of genes associated with
preeclampsia in the literature. The preeclampsia ignorome was generated from the set difference
of the gene lists generated by these steps. Supplemental Material, code, and data are publicly
available (http://tiffanycallahan.com/ignorenet/). Please see the analysis workflow readme
(https://github.com/callahantiff/ignorenet/blob/master/analyses/preeclampsia/README.md) for
information on the algorithms and data sources (KGs and gene lists) used for this analysis.

2.1.  Identification of the Preeclampsia Molecular Signature

In collaboration with a PhD-level molecular biologist (ALS) who specializes in reproductive
science, a meta-analysis was performed to identify relevant transcriptomic data on the Gene
Expression Omnibus (GEO). Using the keyword “preeclampsia”, publicly available human
experiments deposited in GEO were examined. The initial set of identified studies were further
reviewed for the following criteria to ensure: (i) processed samples were from a human placenta
biopsy (i.e., chorionic villi, decidua basalis, and placenta); (ii) samples were processed using
Agilent, Affymetrix, Applied Biosystems, Illumina, or NimbleGen; and (iii) studies provided
normalized data and/or DEG lists. Each study’s normalized data were processed using standard R
pipelines using the ignorenet library (https://github.com/callahantiff/ignorenet). The final gene list
was assembled by selecting significant  DEGs (p<0.05) in at least 50% of the studies.

2.2.  Identification of Genes Associated with Preeclampsia in the Literature

To identify known preeclampsia genes two strategies were employed: (i) Literature-Driven. This
strategy aimed to identify relevant genes via keyword search against PubTator,12 DisGeNET,13 and
Malacards (implemented 08-11/2017).14 For this step, all queried results were manually verified
for accuracy (i.e., verified that hits obtained were actually to preeclampsia and the associated
keywords and were not errors or mismatches to closely associated synonyms or acronyms) and all
valid associations were used to create a final unique list of genes; and (ii) Gene-Driven. This
strategy aimed to identify relevant articles by querying 18 keywords in addition to the the
preeclampsia molecular signature DEGs against PubAnnotation.15 Similar to the Literature-Driven
Approach, all results were manually verified for accuracy and all associations were used to create
a final unique list of genes. See the Supplemental Material for keyword lists.
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2.3.  Evaluation

2.3.1.  Knowledge Graph Node Embeddings

A v1.0 PheKnowLator KG16 built using Linked Open Data and Open Biological and Biomedical
Ontology Foundry ontologies was used for this analysis. The core set of ontologies included
phenotypes (Human Phenotype Ontology [HP]17), diseases (Human Disease Ontology [DOID]18),
and biological processes, molecular functions, and cellular components (Gene Ontology [GO]19).
Genes, pathways, and chemicals were added to the core set of ontologies to form the foundation of
the KG which was extended by adding relations between phenotypes, diseases, and GO biological
processes, molecular functions, and cellular components. Node embeddings were derived using
C++ implementation of DeepWalk (hyperparameter settings suggested by developers: 512
dimensions, 100 walks, a walk length of 20, and a sliding window length of 10).20

2.3.2. Visualizations

Node embeddings were visualized using the t-distributed stochastic neighbor embedding (t-SNE)
algorithm.21 Experiments were performed to identify the best hyperparameter setting
(perplexity=50). Node embeddings and ignorome genes were overlaid and visually inspected.

2.3.3. Enrichment

Using the node embeddings, the 100 nearest disease, drug, gene, GO concepts, pathway, and
phenotype (i.e., domains) annotations for each ignorome gene as measured by pairwise cosine

similarity (i.e., L2-normalized dot product of embedding vectors: )22 of the𝑘(𝑥,  𝑦) =  𝑥𝑦⊤

||𝑥||𝑦||

node embeddings were obtained. Annotations were reviewed by a PhD molecular biologist
specializing in reproductive science (ALS; 08-09/2021). To determine if they occurred by chance,
we:

1. Examined the overlap between the top-100 closest associations to each ignorome gene in
the expert-verified list and the associations generated when enriching the preeclampsia
ignorome using ToppGene;23

2. Computed how often the reviewed associations occurred by chance in 1,000
ignorome-sized random samples drawn from all non-ignorome genes represented in the
KG. For each sample, the top-100 closest annotations to each gene, by domain were
obtained and the number of annotations that overlapped with the expert-verified list was
recorded. P-values were obtained for each domain by dividing the number of overlapping
annotations out of the 1,000 samples, where a p-value of 0.05 indicates a 50 in 1,000
chance of observing a sample annotation that overlaps with the expert-verified annotations.
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3.  Results

3.1.  The Preeclampsia Ignorome

As shown in Figure 1, there were 68 studies returned from the domain-expert review of GEO
(Supplemental Table 1). Of these, 12 studies were determined to be eligible for inclusion in the
current project (Supplemental Table 2). Processing these studies led to a sample of 548 DEGs,
which appeared in 50% of the studies. The Gene-Driven strategy returned 1,962 articles which
resulted in a total of 417 known preeclampsia genes. The Literature-Driven strategy returned
1,102 articles and 658 genes. These lists were combined and yielded a total of 946 unique genes
associated with preeclampsia in the literature. Of the 548 genes identified as the preeclampsia
molecular signature, 103 were found in the list of genes associated with preeclampsia in the
literature, leaving 445 DEGs with no known literature evidence (i.e., “PE Ignorome” or
non-overlapping blue circle of Figure 1). The remaining 843 genes associated with preeclampsia
in the literature not found in the list of experimentally-derived genes are those that were found in
less than 50% of studies, were not transcriptionally regulated, or played a role in the placenta.

The preeclampsia ignorome genes were examined for associations to other diseases in the
literature. Figure 2, illustrates the number of articles from Malacards, DisGeNET, PubAnnotation,
and PubTator that annotated each preeclampsia gene and the number of annotations to diseases
other than preeclampsia that were found for each ignorome gene. Supplemental Table 3 contains
the list of gene symbols binned by article count. As shown in Figure 2 (a), most genes were cited
by fewer than 20 articles and less than 20 of the ignorome genes were cited more than 100 times.
Among the genes cited 100 or more times were BRAF (n=2,749), TARDBP (n=694), and IDHI
(n=564). Figure 2 (b) illustrates the most frequently annotated diseases, which included neoplasms
(n=1,778), mental disorders (n=280), and congenital diseases (n=272).

The PheKnowLator KG contained 128,286 nodes and 3,203,264 edges. The following 10 edge
types, (ordered by frequency): drug-disease (n=1,216,900), drug-pathway (n=711,043), gene-gene
(n=594,100), gene-go concept (n=265,002), gene-phenotype (n=120,288), gene-pathway
(n=107,029), pathway-disease (n=106,727), disease-phenotype (n=43,817), gene-disease
(n=20,452), and pathway-go concept (n=17,906), were used for the current analysis. The t-SNE
plot is shown in Supplemental Figure 1 with nodes colored by node type and the preeclampsia
genes marked using gold stars. As expected, most entities appeared closer to entities of a similar
type than entities of other types except for GO concepts and phenotypes.

3.2.  Preeclampsia Ignorome Gene Enrichment

Performing enrichment analysis on the preeclampsia ignorome genes using ToppGene returned
4,098 annotations (p<0.001 or Q-value Bonferroni <0.05). The annotations included four diseases,
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Fig. 1.  Overview of Results for Finding the Preeclampsia Ignorome. The figure provides an overview of
the procedures utilized in order to obtain the preeclampsia ignorome. Acronyms - PE: Preeclampsia.

3,667 drugs, 248 genes, 116 GO biological processes, 44 GO cellular components, 19 GO
molecular functions, and no pathways or phenotypes. PheKnowLator node embeddings were used
to annotate the preeclampsia ignorome genes by obtaining the 100 closest entities in vector space,
which resulted in a total of 19 diseases (average similarity of 0.37 and frequency of 1.0 across the
preeclampsia genes), 521 drugs (average similarity of 0.37 and frequency of 1.08 across the
preeclampsia genes), 1,060 GO concepts (average similarity of 0.38 and frequency of 1.49 across
the preeclampsia genes), 563 pathways (average similarity of 0.44 and frequency of 2.29 across
the preeclampsia genes), and 64 phenotypes (average similarity of 0.30 and frequency of 1.0
across the preeclampsia genes). None of the identified diseases, GO concepts, pathways, or
phenotypes overlapped with the ToppGene annotations, but seven of the identified drugs and 188
of the identified genes did.

The reproductive science expert reviewed the KG-derived annotations and provided
explanations using her domain expertise and rigorous literature review, which resulted in the
validation of 53 annotations and included five phenotypes (Supplemental Table 4), 10 pathways
(Supplemental Table 5), 10 drugs (Supplemental Table 6), 10 genes (Supplemental Table 7), 10
GO concepts (Supplemental Table 8), and eight diseases (Supplemental Table 9). The expert spent
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Fig. 2.  Preeclampsia Ignorome Gene Annotations in Other Diseases. (a) illustrates the literature coverage
of the 445 preeclampsia ignorome genes to other diseases. The x-axis represents the number of
disease-annotated articles for each gene. The left y-axis shows the number of genes as bars, where the red
bar contains the number of genes with no literature annotations to any disease. The right y-axis shows the
number of diseases annotated to each preeclampsia gene and the number of annotations to diseases other
than preeclampsia that were found for each ignorome gene in the literature. (b) Plots the counts of
literature annotations to high-level disease categories.

~six hours on this task, noting that the drug and disease associations were the most challenging
and time consuming to review. For all tables, evidence is provided in the form of mechanistic
explanations and includes support from peer reviewed articles. None of the expert-reviewed
annotations occurred by chance (ps<0.005): (i) Diseases. 485 concepts with an average similarity
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of 0.40 (0.26-0.77); (ii) Drugs. 8,371 concepts with an average similarity of 0.41 (0.25-0.69); (iii)
Genes. 23,728 concepts with an average similarity of 0.47 (0.24-0.93); (iv) GO Concepts. 15,447
concepts with an average similarity of 0.39 (0.25-0.77), four overlapped with ToppGene (i.e.,
GO:0000398, GO:0005747, GO:0070125, and GO:0005833); (v) Pathways. 1,671 concepts with
an average similarity of 0.45 (0.24-0.77), four overlapped with ToppGene (i.e., R-HSA-194840,
R-HSA-611105, R-HSA-5419276, and R-HSA-6799198]); and (vi) Phenotypes. 3,080 concepts
with an average similarity of 0.36 (0.25-0.63), one overlapped with ToppGene (i.e., HP:0008316).

4.  Discussion

Recent examination of the ignorome genes has revealed an interesting phenomena; the only
difference between the genes that are frequently published for a given disease and those that are
not is the date in which the genes were discovered.11 This presents new exciting opportunities for
discovery, especially with respect to improving our understanding of complex diseases like
preeclampsia. Given the rate at which science advances and the volume of data that is generated as
a result, tools facilitating knowledge-based analyses are valuable resources to support discovery.
This paper demonstrates how a large-scale biomedical KG could be used to identify novel
clinically relevant and biologically actionable preeclampsia mechanisms from previously analyzed
experiments. Although limited, similar work has demonstrated the value of using KGs to generate
new disease-associated genes,25,26 drug-target interactions,27 and evaluate the consistency of
genome annotations through biological pathways.28 A big difference between these methods and
ours is the depth and breadth of knowledge covered by our KG and that we are able to generate
explanations that consist of multiple types of biological entities. To the best of our knowledge, our
work is the first to perform KG-based mechanistic enrichment of the preeclampsia ignorome.

4.1.  Novel Preeclampsia-Associated Mechanisms

Precise characterization of phenotypes will require the ability to identify and understand
complicated biological relationships. Our novel preeclampsia ignorome associations required
fairly complicated explanations. A few relevant results from each domain are described below.

Phenotypes. These associations present new opportunities to enrich our understanding of the
phenotypic variance within preeclampsia. There were many interesting associations, but one of the
most relevant was PPM1K to Elevated Plasma Branched Chain Amino Acids. Examining this
mechanism closer revealed that the disruption of PPM1K results in an increase of branched chain
amino acids, which can result in oxidative stress, insulin resistance, and eventually obesity, by
activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling.29 mTORC1
signaling is vital for communicating placental growth factor signaling and when reduced in IUGR
pregnancies, has been found to impair mitochondrial respiration and lead to placental
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insufficiency.30 While mitochondrial dysfunction is known to be central to preeclampsia
pathophysiology,31 the role of PPM1K in preeclampsia has yet to be thoroughly examined.

Pathways. Associations within this domain highlight potential new avenues of investigation
for specific gene targets within pathways that are known to play a role in preeclampsia. Three
associations are highlighted: (i) MFAP5 and FBLN5 to the Elastic Fibre Formation pathway – this
pathway is altered in umbilical cord vessels from pregnancies complicated by preeclampsia,32 but
the exact molecular mechanism causing the alteration is unknown; (ii) ADAMTSL3 and SPON1
to Diseases Associated with O-glycosylation of Proteins – it is known that altered o-glycosylation
is associated with aberrant immune cell dynamics at the maternal-fetal interface33 and in severe
preeclampsia, altered glycosylation of maternal plasma proteins is associated with increased
monocyte adhesion;34 and (iii) TCP1, RGS11, and TBCD to Protein Folding; the impact of
aberrant protein folding on preeclampsia is well documented35 but the roles of TCP1, RGS11, and
TBCD in this pathway are not fully understood.

Drugs. The association of MME to anti-asthmatic agents may provide an avenue for drug
repurposing. Membrane matrix remodeling is critical to placental development36 and women who
experience asthma during pregnancy have an increased risk of developing preeclampsia.37 While
beta-adrenergic agonists such as ritodrine and terbutaline have been used for the management of
asthma and preterm labor, it is unclear as to whether or not anti-asthmatic medications could
reduce the risk of preeclampsia.38

Genes. Associations within this domain may provide a deeper understanding of the molecular
landscape of preeclampsia by helping researchers identify relevant, yet understudied genes, for
example, the associations from PLOD1, FBLN5, and PTGDS to PLOD2. These associations are
supported by evidence that PLOD2 is a protein that is upregulated in trophoblast stem cells
cultured under hypoxic conditions.39

GO Concepts. These associations may highlight opportunities to bridge findings across
domains, for example, the associations between ACTR3, NEBL, ACTR3B, MYO1B, COBLL1,
ZNF185, and ITPRID2 to the GO Molecular Function Actin Filament Binding. Preeclampsia is
associated with altered actin polymerization via endothelial protein C receptor.40 Traditionally,
actin has been studied via cell biology or histology but a deeper examination of these associations
within the biological context of preeclampsia has the potential to connect the findings derived
from these disconnected studies.

Diseases. By enriching microarray data derived from placental samples with KG-based
mechanisms it is possible to identify diseases that occur later in life, but which are likely to be
associated with fetal exposure to maternal preeclampsia. For example, the association between
STS and Attention Deficit Hyperactivity Disorder (ADHD); STS dysfunction causes ADHD41 and
offspring of preeclamptic mothers41 are more likely to be diagnosed with ADHD.42
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4.2.  Preeclampsia Ignorome Enrichment

Examining differences in the enrichment of GO annotations relevant to preeclampsia revealed
some interesting insights. For example, Placenta Development included 25 genes associated with
preeclampsia in the literature, 10 genes with both literature and experimental evidence, but none
were ignorome genes. This finding confirms our expectations – a lot of genes known to impact
placental development exist and many have been investigated experimentally. In contrast, the Cell
Surface Receptor Signaling Pathway included genes from all three of the aforementioned groups,
supporting our observation that the things enriched for this biological process are over-studied.
Only ~10% of the ignorome genes (n=42) had no other disease annotations when examining the
coverage of ignorome genes in the literature. This leaves a significant body of literature spanning
a wide-range of diseases, which would take a substantial amount of time and domain expertise, a
task which is often out-of-scope for most researchers.

4.3.  Limitations and Future Work

Our work has important limitations: (i) all analyses were performed using data available in 2017.
More data has likely become available since then, but re-analysis of these data was not feasible;
(ii) microarray data were only obtained from GEO. It is important to explore other repositories and
other types of molecular data; (iii) the pipeline depends on tools like PubTator to review the
literature and domain experts to formulate explanations for annotation. Incorporation of more
advanced models and pipelines would improve scalability and reduce bias; (iv) our results require
additional validation (i.e., wet lab and sensitivity analysis/ablation studies) before the full utility of
our approach can be determined; and (v) the PheKnowLator Ecosystem is new and while
preliminary studies have suggested it produces robust KGs additional experiments are warranted.
Future work aims to address these limitations and will explore advanced algorithms to process
novel associations like natural language generators.

5.  Conclusion

Large-scale biomedical KGs new opportunities to improve our understanding of complex diseases,
like preeclampsia. With assistance from a domain expert, we propose potential mechanistic
explanations for 53 new associations between preeclampsia ignorome genes. These mechanistic
explanations represent biologically-actionable discoveries that await further investigation in the
hopes of finding a means to prevent preeclampsia.
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As the diversity of genomic variation data increases with our growing understanding of the role of
variation in health and disease, it is critical to develop standards for precise inter-system exchange of
these data for research and clinical applications. The Global Alliance for Genomics and Health
(GA4GH) Variation Representation Specification (VRS) meets this need through a technical
terminology and information model for disambiguating and concisely representing variation concepts.
Here we discuss the recent Genotype model in VRS, which may be used to represent the allelic
composition of a genetic locus. We demonstrate the use of the Genotype model and the constituent
Haplotype model for the precise and interoperable representation of pharmacogenomic diplotypes,
HGVS variants, and VCF records using VRS and discuss how this can be leveraged to enable
interoperable exchange and search operations between assayed variation and genomic knowledgebases.

Keywords: Genomics, GA4GH, VRS, Genotype, Haplotype, Allele, HGVS, VCF

1. Introduction

Representation of genomic variation as recorded in genomic data systems is highly varied and complex,
involving the computable formalization of imprecise concepts with imprecise definitions for data exchange
between systems. Several well-known formats and tools have been developed for exchanging some common
forms of variation, including the Variant Call Format (VCF)1, the Human Genome Variation Society (HGVS)
variant nomenclature2, the NCBI Sequence-Position-Deletion-Insertion (SPDI) data model3 and the ClinGen
Allele Registry web service4, among others5–8. Despite this, these common fit-for-purpose variation models use
unaligned terminologies, conventions, and assumptions that make it challenging to losslessly convert

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed
under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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information between formats. More pressingly, these formats are difficult to extend to domain-specific
requirements for variation representation across different communities, promoting further division of terms,
information models, and exchange formats for genomic variation9,10.

The precise conceptual representation of variation is important for the application of computational
methods in assessing human genomic variation in a clinical context. When studying rare diseases and cancers,
clinical evaluation of patients increasingly includes interrogation of patient genomes for variants of potential
clinical significance. Often, these assays will be highly targeted to query only those specific regions of interest,
providing only partial information for clinical reporting. In some cases, observation of a variant allele is
reported only as “heterozygous” (the presence of at least two different alleles at a genomic locus),
“homozygous” (multiple copies of an allele at a locus with no other alleles), or “hemizygous” (an allele
describing a locus for which there is only one total allele). These reports often omit further information
regarding the total number of alleles at the locus or (for heterozygous variants) the composition of other alleles.

These abbreviated representations of human genotypes are imprecise, implying a diploid genotype when
the patient may have aneuploidy caused by large-scale structural variation11 and/or meiotic nondisjunction12,
typically resulting in abnormal phenotypes and disease. Heterozygous genotypes described in this way further
connote the presence of a reference-agreement allele, though this too is not necessarily the case. To complicate
the matter further, the manner in which variants are reported relies on an understood meaning of terms such as
allele, genotype, and haplotype, which have similar but distinct meanings across different genomic
communities and laboratories.

Clinical evaluation of genomic biomarkers also extends to drug response evidence, which can vary widely
between individuals. In order to better understand how genetic information contributes to this variability, the
pharmacogenomics (PGx) community collected evidence to gauge how genetic variants within a patient
contribute to the overall responsiveness of a patient to different drugs13. Evidence from PGx knowledgebases
can provide important information regarding drug toxicity and response within a patient, allowing for a more
personalized treatment14.

One class of biomarkers describing PGx knowledge are “Star (*) Alleles”, which were first used to identify
or denote alleles within the CYP gene family15. The results of PGx assays are often reported as diplotypes
(pairs of haplotypes) due to the human genome being diploid10. The association of diplotypes and phenotypes
enables the identification of pharmacogenetic interactions. For the assessment of PGx diplotypes, the most
widely used nomenclature system for PGx alleles is the domain-specific “star” (*) system16. Due to the
complex nature of PGx alleles and clinical assays, there continues to be ambiguity that can make it difficult to
utilize PGx data in practice17–24. Some of these challenges were highlighted by the Centers for Disease Control
and Prevention’s (CDC) Genetic Testing Reference Material (GeT-RM) Coordination Program test for clinical
PGx genetic testing25,26. The results of this study demonstrate many inconsistencies due to a lack of a unified
and standardized nomenclature system and different PGx designs. To help overcome the challenges regarding
PGx data, the Clinical Pharmacogenetics Implementation Consortium was created to help educate and facilitate
the use of PGx data in clinical settings19,27–29. Despite this, challenges remain in aligning PGx Star Alleles and
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other clinical biomarker domains30. Notably, there is a “*” representation that is called a spanning deletion in
VCF, describing overlapping deletion Alleles at sites of other variants in a VCF file31.

To address the challenge of aligning the disparate genotype variation representations found in clinical
reports, existing genomic variant exchange formats, and the PGx community, the Global Alliance for Genomics
and Health (GA4GH)32 Genomic Knowledge Standards (GKS) Work Stream developed the Variation
Representation Specification (VRS; vrs.ga4gh.org)33 to enable the reliable and precise exchange of variation
between computer systems. The GA4GH VRS standard leverages a clearly defined terminology and
information model, a value object design philosophy, and fully-specified JSON Schema, which allows it to
meet these diverse use cases through modular variation representation. The VRS design philosophy makes it
well-suited to describing complex variation concepts using a standard, computationally defined set of objects,
enabling precise semantics and improving FAIR genomic data exchange. In this manuscript we describe a new
model for representing genotypes using VRS, and demonstrate applications of this model to structure related
concepts in other systems, including VCF, HGVS, and PGx Star Alleles.

2. Results

2.1. A landscape analysis of genotype concepts across communities

We first surveyed the requirements of genotype variation data as represented by large-scale genomic data
standards (i.e. VCF), clinical reports (HGVS), and knowledgebases containing PGx (Star Allele) and/or
variant-disease evidence (HGVS). We analyzed the conceptual alignment of terms from each specification to
existing concepts in VRS to inform a conceptual framework for genotype representation (Figure 1).

The simplest conceptual unit of variation is the “small variant”, a contiguous sequence change (typically
fewer than 50 residues in length) often referred to simply as a “variant” or “allele”. This is the fundamental unit
of the Variant Call Format (VCF), used for representing variants called from high-throughput sequencing data.
Each record within a VCF contains an identified variant with its corresponding position and the reference (also
called “wild type”) allele it was called against, along with other relevant information including the genotype.
The VCF specification defines an allele as, “representing single genetic haplotypes (A, T, ATC)”34, which
aligns with the NCBI definition of a Contextual Allele3. The HGVS nomenclature uses the aligned term
“variant” to describe a small variant but differentiates this from the term “Allele” (as described below). The
PGx nomenclature describes this as a “sequence variation”35, and also differentiates this from a broader
definition for “allele” (also discussed below). In VRS, this fundamental concept is termed an Allele33, and is
defined as the state of a molecule at a contiguous segment of a biological sequence.

A broader concept, in which several small variants occurring on the same molecule (in-cis) are described
together similarly goes by several different definitions among the genomics community. In the VCF
specification, this concept is a haplotype, defined as “a set of variants which are known to be on the same
chromosome in the germline genome”. This aligns to the ClinGen concept of a “haplotype” and a “star allele”
in the PGx community. HGVS also terms this an “allele”, defined as “a series of variants on one
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chromosome”36. An HGVS Allele may represent a series of changes in-cis, and variants are considered
different Alleles when on different chromosomes (i.e. in-trans). In addition, the HGVS nomenlcature may
represent a set of variants with uncertain phase. The in-cis variation concept in VRS is termed Haplotype33,
defined as a set of non-overlapping Allele members that co-occur on the same molecule.

Fig 1. Genomics Concepts across Communities
Communities use different terms for similar concepts. These concepts are represented with respect to VRS nomenclature
while using terminology from each community. Among these standards, the VRS Genotype (blue dashes) aligns most
closely to in-trans HGVS Alleles, VCF genotypes, and PGx diplotypes. Similarly, HGVS Alleles, VCF Haplotypes, and
PGx Star Alleles are all aligned to the VRS Haplotype (green dots). Finally, a VRS Allele is conceptually aligned with a
VCF allele, an HGVS variant, and a PGx “sequence variation” (black circles). HGVS and VRS genotypes are illustrated
with both broad and narrow representations (blue dashes), as they may represent either.

To model a Genotype in VRS, we built upon these concepts and analyzed the use of “genotype” or similar
terms as described in other community standards.  The VCF genotype is defined as: “an assignment of alleles
for each chromosome of a single named sample at a particular locus.” The reference allele in a VCF is encoded
using a 0, while alternate alleles use 1, 2, etc. For example, in a diploid variant call, a heterozygous reference
and alternate allele genotype would be encoded as 0/1 or a heterozygous alternate 1 and alternate 2 allele
genotype would be encoded as 1/2. A homozygous alternate allele genotype is annotated as 1/1. Haploid
variant calls only contain a single allele, while a triploid variant call would contain three alleles (e.g 0/0/1). An
unphased genotype is represented using the “/” whereas a genotype with known phasing uses a “|” (e.g. 1 | 0).

The HGVS nomenclature doesn’t use the term genotype, but (as described above) in-trans alleles are
conceptually aligned with the common meaning of the term36. The use of “heterozygous” and “homozygous” as
free text are used in some clinical reports37 accompanying an HGVS variant, in lieu of a formal HGVS
trans-allele structure. This observation illuminated a key modeling requirement to capture the concept of
heterozygous alleles within a genotype while lacking complete information about the constituent members.
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We evaluated how PGx Star Alleles were represented within genotypes, and found that PGx evidence may
be associated with a specific genotype representation described as a diplotype (a diploid genotype). Similarly,
PGx evidence at the Star Allele level can be described naturally by a VRS Haplotype. This conceptual design
benefits from a diploid constraint, and was well-suited to our starting model for Genotype (see Methods). We
kept these diplotypes as an example case for testing in developing a VRS Genotype model.

2.2. The VRS Genotype information model and supporting classes

To develop the Genotype information model in VRS, we evaluated the definitions and constraints of the Allele
and Haplotype models identified in our landscape analysis. The VRS Haplotype class had previously been
defined as “a set of non-overlapping Allele members that co-occur on the same molecule”, but Haplotypes were
allowed to contain a minimum of one Allele, designed to capture a semantic distinction between an Allele and a
single-Allele Haplotype. However, after evaluating related concepts in the community, it was decided that the
Haplotype information model should be updated to require at least two Allele members. This was informed by
the lack of a distinction between a single-Allele Haplotype and an isolated Allele in other systems.

As a result of our modeling, we defined Genotype as “a quantified set of Molecular Variation associated with
a genomic locus”, where Molecular Variation collectively refers to VRS Alleles, Haplotypes, and future classes
of variation that exist on a contiguous molecule. This is in contrast to VRS Systemic Variation (including
concepts such as Genotype and Copy Number Variation) which describe variation across several molecules
within a system. We aligned this genotype definition with an information model that is flexible enough to
capture the cross-domain concerns identified in our landscape analysis. As noted, some specifications (e.g.
VCF and HGVS) distinguish between genotypes with and without known in-trans phasing. The GA4GH
Variation Representation team is working on a generalized phasing model that captures the semantics of
phasing, and has opted to define this independent of the Genotype model.

Each Molecular Variant constituting a Genotype is contained within an associated Genotype Member object
to quantify the Molecular Variant present at a genomic locus (Figure 2). This provides a convenient mechanism
for compactly representing identical Molecular Variation at a locus as well as expressing uncertainty in the
count of that variation through the application of Definite Range or Indefinite Range objects33. The count
attributes of the Genotype Member and Genotype classes also enable compact representation of Molecular
Variation in polyploid genomes and reflect similar conceptual structures designed for this purpose38.

In addition, a count field exists at the Genotype level for expressing the total copies of the genomic locus as
described by the Genotype Members. The Genotype count value could be greater (but never less) than the
summation of counts across Genotype Members. In such cases, the difference conveys additional unspecified
Molecular Variation that is expected to exist but is not explicitly represented. This feature allows for precisely
representing ambiguity in genotype concepts when not all Molecular Variation are reported.
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Fig 2. Genotype Class in VRS
The Genotype class in VRS must contain at least one member consisting of an Allele or Haplotype and its count of
occurrences within the system. This can be represented by an integer Number or as a Definite/Indefinite Range. The
Genotype also has a count, representing the expected total of the genotype’s molecule in the system, expressed as an
integer or as a definite/indefinite range. This allows the user to describe what is known regarding the genotype without
making an inference. For example, a user could add a single Genotype Member with a count = 1 and have the Genotype
count = 2 to represent that there are additional molecular variations expected to exist but they are not explicitly described
by the user or data.

2.3. Applications of the Genotype information model

We evaluated how this structure provides the flexibility to represent concepts from a simple two allele genotype
or a diplotype composed of a single Allele in-trans with a haplotype. The two-Allele genotype example is
exemplified by a common VCF record pattern, where two or more VCF Alleles are expressed in-trans
independent of in-cis phasing with neighboring Alleles (e.g. 0/1). In this case, each VCF Allele is expressed as
a VRS Allele, put into a Genotype Member object with count=1, and both of those Genotype Members added
to a Genotype with count=2 (Figure 3A). We also developed a utility for annotating VCF records with VRS
Alleles (see Methods) to assist Genotype reconstruction from single-sample and multi-sample VCFs.

A more complex scenario was tested on the CYP2C19 *1/*17 diplotype (Figure 3B) as represented by
changes from a reference sequence. Initialization of this process requires selection of a sequence context for
describing the constituent variants. In this example we selected the GRCh38 genomic reference39. It is
important that a genomic DNA sequence is used in this step, as Star Alleles include variation in regulatory and
intronic regions and representation of intronic variation with respect to a cDNA sequence (e.g. RefSeq NM_
sequences) is dependent upon an inferred alignment of these variants to a genomic reference. VRS Alleles were
constructed on the selected reference sequence, and in-cis Alleles were subsequently grouped into VRS
Haplotypes. The count of each Molecular Variation (in this example, one Haplotype representing a CYP2C19
*1 Star Allele and one Haplotype representing a CYP2C19 *17 Star Allele) is specified using the Genotype
Member class. These Genotype Members are assembled into a Genotype and the overall count (2) of alleles at
the locus is recorded, explicitly indicating a diploid state at this locus.
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Fig 3. Visualization of Genotypes in VRS
Variants are represented in their genomic coordinates and then normalized and translated into their VRS-allele ID’s using
VRS-Python. A. Representation of a 0/1 Genotype from a VCF. B. CYP2C19*1 is composed of a single variant and can
be placed into a Genotype Member with a count of 1. CYP2C19*17 contains two variants in-cis which needs to be
represented by a Haplotpye and then placed into a Genotype Member with count = 1. These two genotype members are
then used to construct the genotype shown above with a total copy count of 2. A Star Allele representation incorporating
reference-agree VRS Alleles is depicted with dashed lines. C. Representation of a heterozygous variant from an eMerge
report.
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Nuances to the use and meaning of the VRS Genotype model for representing Star Alleles were captured in
discussion with members of the PGx informatics community. While the VRS Genotype model faithfully
represents the variants for these Star Alleles as displayed in PharmVar, the meaning of these PGx Star Alleles
and how they should be assessed is more complex than simply observing the described collection of
non-reference allele variants. The Star Allele model also assumes that there is an associated set of definitive
locations that have been assayed (and are expected to be reference-agree) to properly assign Star Allele
Haplotypes from patient sequencing data. To address this, we leveraged the Allele design of VRS to
demonstrate a data structure to efficiently communicate this nuance between systems using both variant and
reference-agree Alleles (Figure 3B and Methods). This has the added benefit of preserving the context under
which Star Alleles are described, aiding reinterpretation and data reuse as additional Star Alleles are discovered
and the number of definitive sites increase.

Finally, we tested this model on Genotypes with missing members to illustrate how this model captures
those annotations. Starting with an eMERGE-seq panel report37, we create a Genotype from a heterozygous
variant report with only one allele described. We used the VRS Indefinite Range concept33 to express the
heterozygous variant as observed at least once at a genomic locus with at least two alleles (Figure 3C). An
alternative could also be to infer a diploid state for this report, in which case we would represent this as a
variant observed once at a locus of two alleles.

2.4. Implementation support

The definition and information model for Genotypes has been implemented in documentation at vrs.ga4gh.org,
structured in JSON Schema at github.com/ga4gh/vrs and implemented in Python at
github.com/ga4gh/vrs-python/tree/pgx. We have also created example PGx jupyter notebooks to demonstrate
how to create and use Genotypes and other VRS components within VRS-Python to build and search Star
Alleles at github.com/ga4gh/vrs-python/blob/pgx/notebooks/PGx.ipynb, alongside methods for VCF and
HGVS translation to VRS at github.com/ga4gh/vrs-python/blob/pgx/notebooks/Extras.ipynb.

In addition to the static examples available above, this and other VRS-Python notebooks can be run from a
local copy of the vrs-python repository or using zero-install cloud-based notebooks hosted at
mybinder.org/v2/gh/ga4gh/vrs-python/pgx. The cloud-based notebooks are a simple mechanism for newcomers
to interactively test the functionality and scope of VRS-Python and associated VRS models by leveraging our
publicly accessible REST APIs to support services. A user may follow the examples provided within the
notebooks to gain an understanding of VRS and can even edit or add cells to further explore VRS using their
own data or examples.

3. Discussion

Defining a model for genotype representation required careful conceptual alignment and semantic precision for
interoperability of this model with similar concepts across different communities. We found that while the
VRS, VCF, HGVS, and PGx communities have some differences between the terms allele, haplotype, and
genotype, there are shared conceptual relationships describing the in-cis and in-trans representation of
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sequence variants at a genomic locus. We found that these shared conceptual models enabled a unified
computational structure for interchangeable and lossless description of these concepts between systems,
advancing our ability to automate scalable evidence search operations between assayed data and genomic
knowledgebases.

The VRS Genotype model explicitly captures the count of individual alleles and all expected alleles at a
locus as independent values, allowing for the flexible description of genomic loci and enabling precise forms of
ambiguity using VRS Definite Range and Indefinite Range quantifiers. We demonstrated how this allows for
reconstruction of ambiguity as derived from clinical reports and representation of Genotypes of ambiguous
ploidy. We also illustrated how this model enables lossless capture of the VCF record-level genotype model,
and like VCF, this provides a straightforward mechanism for representation of alleles at polyploid loci. In
addition, we showed how the Genotype model enables the representation of diplotypes as expressed in PGx
resources. We also illustrated how this model can be extended using the modular design of VRS to associate
Genotypes with additional necessary elements for precisely-defined representations of PGx Star Alleles.
Together, these findings provide a template for the flexible use of VRS Genotypes across various genomics
communities with domain-specific requirements.

Our future efforts will focus on extending our VCF-annotation tool to include the ability to annotate VRS
genotypes in VCF files. We will also be applying the VRS genotype model to the ClinVar database. In addition,
the GA4GH Variation Representation team will be implementing a phasing model to explicitly capture in-trans
and in-cis semantics for Variation collections, that will allow for richer expression of Genotypes with validated
in-trans relationships.

Prior to this work, data exchange between PGx and other genomic communities has been somewhat
challenging. VRS allows us to precisely describe the genotypes within PGx data, VCF files, and lab reports
using a shared syntax, opening an avenue for advanced queries, search operations, and machine learning by
improving interoperability between disparate clinical assays and knowledgebases.

4. Methods

4.1. Community modeling and use case discussions

The Genotype model was initially discussed and revisited on several occasions during the development of
VRS, and an initial model was under consideration for the VRS 1.2 release. This initial model was a structure
containing a set of Haplotypes and was designed to represent the set as an in-trans model. This model was
unwieldy due to the lack of support for Molecular Variation counts or total Molecular Variant count at a locus.

In July 2022, the GA4GH sponsored a VRS hackathon at the Intelligent Systems for Molecular Biology
2022 Annual Conference in Madison, Wisconsin. During the hackathon, modeling of the Genotype class was
selected as a preferred topic, and participants in this activity worked together to evaluate the Genotype model
and its relation to similar concepts in different communities, including immunogenomic and pharmacogenomic
use cases. The group discussed the concepts of alleles, genotypes, and haplotypes and how they are related to
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one another to determine the best way to precisely model a genotype within VRS. Multiple examples from
clinical reports, genomic assay results, and genomic knowledgebases were chosen to test and revise the ideas
proposed. Once the group finalized the VRS Genotype model, they used the model to describe PGx alleles
using VRS to test the model for interoperability between assayed PGx data and pharmacogenomic knowledge
bases.

4.2. Community Review

Community involvement and review is a critical component of developing standards that are meant for the
global community. We presented the new VRS genotype model during the July 18th and July 25th GA4GH
Variation Representation meetings, and with the VCF community maintainers on the GA4GH July 27th
VRS/VCF alignment call to receive feedback from interested community members and domain experts. We
also sent an open call for review to the GA4GH community for comments and questions during our open
review period. The community comments for the review of this model were documented online at
github.com/ga4gh/vrs/pull/394.

4.3. VRS-VCF annotation tool

The VRS-VCF annotation tool allows users to annotate the reference and alternate alleles of a VCF record with
VRS. The VRS allele identifier is stored in the INFO field of the VCF and an optional pickle file containing the
entire VRS object can be created for all the annotated records. The VRS allele identifier can then be used for
precise and speedy lookup of information from databases utilizing VRS, which drastically simplifies the variant
annotation process. The tool is open-source and readily available online at
github.com/ga4gh/vrs-python/blob/main/src/ga4gh/vrs/extras/vcf_annotation.py.

4.4. Software availability

All code supporting the development, documentation, implementation, and validation of the VRS Genotype
model is available online at GitHub as indicated throughout the text, under the permissive Apache 2.0 open
source license.
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Deep learning methods for image segmentation and contouring are gaining prominence as an 
automated approach for delineating anatomical structures in medical images during radiation 
treatment planning. These contours are used to guide radiotherapy treatment planning, so it is 
important that contouring errors are flagged before they are used for planning. This creates a need 
for effective quality assurance methods to enable the clinical use of automated contours in 
radiotherapy. We propose a novel method for contour quality assurance that requires only shape 
features, making it independent of the platform used to obtain the images. Our method uses a random 
forest classifier to identify low-quality contours. On a dataset of 312 kidney contours, our method 
achieved a cross-validated area under the curve of 0.937 in identifying unacceptable contours. We 
applied our method to an unlabeled validation dataset of 36 kidney contours. We flagged 6 contours 
which were then reviewed by a cervix contour specialist, who found that 4 of the 6 contours contained 
errors. We used Shapley values to characterize the specific shape features that contributed to each 
contour being flagged, providing a starting point for characterizing the source of the contouring error. 
These promising results suggest our method is feasible for quality assurance of automated 
radiotherapy contours. 

Keywords: Shape statistics; Contour quality assurance; Medical imaging; Random forest. 

1. Introduction

Segmenting anatomical structures in medical images is a critical step in radiation treatment 
planning, as treatment plans are optimized to achieve a high radiation dose to tumor while sparing 
nearby organs at risk. Recently, increasing effort has been put into automating the contouring 
process, as this would save clinicians time, reduce human error, and enhance access to radiation 
therapy in low-resource environments [1]. Deep learning methods like convolutional neural 
networks (CNN) have revolutionized the automation of contouring. While the results from these 
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methods are promising, they provide no measures to indicate uncertainty or low confidence in 
challenging cases. Deep learning methods can make mistakes in image segmentation and 
contouring, particularly when faced with real data that do not resemble instances in their training 
data. It is of critical importance to avoid contouring errors in radiotherapy planning, as contouring 
mistakes could lead to overdosage of organs at risk. Currently, automatically generated contours 
must be manually reviewed for errors. Creating an automated contour review process to find and 
flag problematic contours would be a more objective and efficient approach.  

Some approaches have been proposed to tackle this challenge. McIntosh et al. (2013) used a 
groupwise conditional random forest to detect contour errors based on imaging features [2], while 
Hui et al. (2018) showed that volumetric features of a set of contours can be used to fit univariate 
parametric distributions and find outliers on each feature [3].  Rhee et al. (2019) showed promising 
results using a second CNN-based model for flagging unacceptable contours [4]. However, relying 
on a similar approach for contouring and quality assurance may create redundancy, as similar 
methods may fail in similar ways. 

We propose an orthogonal method for flagging unacceptable contours that only uses shape 
features of the contour without relying on deep learning methods or image features. This approach 
was chosen to allow our method to be applicable across various imaging systems, as image intensity 
and radiomic features depend heavily on the platform used for image acquisition. Our method 
accurately flags erroneous contours based on aspects of the resulting shapes, avoiding dependence 
on the imaging modality. Specifically, we trained a random forest classifier on shape features of 
kidney contours and compared its performance to alternative machine learning methods in correctly 
flagging unacceptable contours. We demonstrate its application to an external data set, where we 
identify potential contouring errors and characterize the shape features that informed these 
predictions.  
 

2. Background 

 

2.1 Shape features  
 
Shape features are quantitative summaries that aim to characterize the geometric aspects of an 
object. Existing works on shape analysis, including Dryden [5] and Wirth [6], provide numerous 
examples of shape features that can be used to describe various geometric properties. Here, we rely 
on the features listed in Table 1.  

Since several of these shape features require computing the convex hull of an object, we provide 
some additional discussion of the convex hull and its properties. The convex hull of an object is the 
smallest convex shape that contains the object, as illustrated in Figure 1a. The area is the shaded 
portion, while the convex area is the portion within the convex hull, shown as a dotted outline. 
Furthermore, the perimeter of the shape is calculated from the outline of the shaded object, whereas 
the convex perimeter is calculated from the outline of the convex hull.  

Additional features of interest include sphericity, which describes how closely the shape 
resembles a sphere (or circle in two dimensions) and is a ratio of the minimum radius to the 
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maximum radius. Naturally, for a circle, the minimum and maximum radii are the same. Hence the 
farther this ratio deviates from 1, the less circular the shape. Figure 1b illustrates how the minimum 
and maximum radii used in computing this shape statistic would be calculated.  

Fig 1. a) Shape with convex hull; b) Sphericity is the ratio of a shape’s minimum and maximum radii; c) 
Shapes decreasing in value from left to right for compactness, convexity, solidity, and roundness. 

 

Table 1.  Shape features and their descriptions 

Shape Feature Description Formula 
Area Number of pixels/voxels in a shape  

Perimeter Length of number of pixels/voxels in the boundary of the 
object 

 

Minimum Radius Shortest radius value from the center of shape to  
boundary 

 

Mean Radius Average radius value from the center of shape to 
boundary 

 

Max Radius Largest radius value from the center of shape to boundary  
Centroid Size Square root of the sum of squared Euclidean distances 

from each landmark to the centroid [5] 
 
 

 
Compactness The ratio of the area of an object to the area of a circle 

with the same perimeter 
 
 

 
Sphericity The degree to which an object approaches the shape of a 

sphere 
 
 

 
Convexity The relative amount that an object differs from a convex 

 object 
 
 

 
Solidity The ratio of the area of an object to the area of a convex 

hull of the object 
 
 

 
Roundness The ratio of the area of an object to the area of a circle 

with the same convex perimeter 
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Finally, we include the shape features compactness, convexity, solidity, and roundness. These 
four shape features take values from 0 to 1, where a higher value indicates the shape is smoother 
and less spiky than lower values. In Figure 1c, we see the circle on the left would have the highest 
value on these four shape statistics, and the irregular shape on the right would have the lowest value. 
 

3. Methods 

 

3.1 Training dataset 
 

Our training data was obtained from CT scans for cervix radiotherapy treatment planning. Here we 
focus on contouring of the kidney; since most patients have two kidneys, this yields two structures 
per patient plan. The contours were generated by the Radiation Plan Assistant (RPA) [7], using a 
deep learning model based on a CNN algorithm. In total, we obtained 260 clinically acceptable 
contours using the RPA. A dosimetrist then manually created erroneous contours of several of the 
same kidney structures, yielding 52 unacceptable contours. Figure 2 provides an illustrative example 
showing acceptable and unacceptable contours of a patient’s kidney. Typically, an organ at risk will 
be reflected in multiple image slices, where each slice captures a view of the patient’s anatomy for 
a given orientation and depth. 

Fig. 2. An axial view of a cervix radiation treatment plan with organ structures contoured 
 

To extract the contour for downstream analysis, we created a mask for the organ on a 512 by 
512 voxel grid. The entries in the corresponding binary matrix representation were set to 1 if the 
voxel coordinate was contained within the contour boundary, and otherwise set to 0. We repeated 
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this for every axial slice in the plan until we had a complete three-dimensional array of the organ 
structure. The dimension of each voxel was 1.27mm x 1.27 mm x 2.5 mm. 
 
3.2 Extracting shape features 
 
We now describe how the shape features described analytically in Table 1 were computed in 
practice. We extracted shape features from the contours using R by inputting the binary matrix 
representation of the contour mask into various functions. The functions assume there is a single, 
closed contour. The perimeter and compactness of a contour were calculated by counting the number 
of voxels on its edge. We relied on the EBImage package to calculate the minimum, mean, and 
maximum radii, by finding the midpoint of the contour and the radii to each edge voxel [8]. With 
the radii values we calculated sphericity. We calculated the convex hull of a contour using the chull 
function in the grDevices package that returns coordinates of the convex hull [9]. We calculated the 
area and convex area of a contour using the concaveman package [10]. Finally, we relied on the 
shapes package to calculate the centroid size [11]. We captured these shape features for every slice 
in the patient’s radiotherapy treatment plan, resulting in a vector of values for each feature across 
slices.  

 
3.3 Histogram and volumetric features 

Fig. 3. a) 3D rendering of the unacceptable (red) and acceptable (green) contours of the right kidney; b) 
distributions of the areas; c) distributions of convexity. 
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A challenge in treating these shape features as predictors in a model is that the organ structures vary 
in size across patients, resulting in vectors of different lengths. For example, some structures could 
be defined in 50 slices, while others could be defined in 100 slices. In addition, values from 
neighboring slices tend to be highly correlated. To construct a consistent set of summary features, 
we relied on histogram features which summarize the distribution of shape values for each organ.  
    Specifically, we take all the values from a specific shape feature, and we calculate the minimum, 
1st quartile, median, mean, 3rd quartile, maximum, and standard deviation. Figure 3 illustrates an 
unacceptable and an acceptable 3D structure, along with the shape feature distributions for area and 
convexity. Here, we can see a distinct difference in the shape feature distributions. We augmented 
our feature set by including volume, surface area, and the volume to surface area ratio. This resulted 
in a total of 80 features per structure.  

 
3.4 Machine learning classifier 
3.4.1 The random forest algorithm 
 
Random forests are a popular machine learning algorithm that use an ensemble of decision trees 
[12]. Each tree casts a vote for the most popular class per input vector. The trees in the random forest 
are created by partitioning the feature space into rectangular regions on a randomly chosen set of 
features called nodes. Based on an optimization criterion, the tree splits at a particular value in the 
feature space. The decision trees created are “weak learners,” meaning a single tree alone would 
have poor accuracy in classification. However, together the trees break up the feature space uniquely 
and make powerful predictions. Random forests are robust to challenging settings, and can 
accommodate non-linear effects, interactions among features, and correlated predictors. In addition 
to strong predictive performance, random forests can provide insight on the relative importance of 
predictors through variable importance scores. To develop our random forest model, we used the 
randomForest package in R with 500 trees and 16 node splits per tree.  
 
3.4.2 Comparators  
 
To assess the performance of the random forest relative to that of other machine learning 
approaches, we applied other popular classifiers including logistic regression, lasso logistic 
regression [13], naïve Bayes [14], and extreme gradient boosting (XGBoost) [15].  
 
3.4.3 Model training and performance metrics  
 
To train the classifiers, we performed repeated 5-fold cross validation on all 312 kidney 
observations. For each fold we used roughly 80% of the data as a training set and 20% of the data 
as a test set. Performance metrics including the area under the curve (AUC) for the receiver 
operating characteristic (ROC) and precision-recall (PR) curves were computed on each test set and 
averaged over folds and replicates. We also computed the sensitivity and specificity using a default 
threshold value of 0.5 and an optimized threshold obtained using Youden’s Index. 

a
) 

b
) 
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3.4.4 Shapley values 

 
In a machine learning framework, the Shapley value can be used to explain model predictions by 
calculating each feature’s contribution in a particular instance [16]. The contribution for a given 
feature is calculated by removing that feature from the model and seeing how the prediction value 
changes. If removing a feature drastically changes the prediction, then that feature would have a 
large Shapley value. Importantly, unlike variable importance scores, which provide a single ranking 
of features for the entire data set, Shapley values are case-specific. Using the shapr package in R, 
we applied this framework to identify key features driving the model predictions [17]. The resulting 
Shapley values were plotted as a bar chart to provide a starting point for identifying why specific 
contours were flagged. 
 
4. Results 

Fig. 4. ROC and PR Curves of various classifiers  
 

In Table 2, we provide a summary of predictive performance in terms of the AUC for the ROC and 
PR curves, sensitivity and specificity using a threshold of 0.50, and sensitivity and specificity using 
an optimized threshold from Youden’s index (indicated by subscripts). The metrics in Table 2 reflect 

Table 2.  Performance metrics from 10 iterations of five-fold cross validation 

Classifier Random Forest Logistic 
Regression 

Lasso Naïve Bayes 
 

XGBoost 

AUCroc 
AUCpr 

Specificity0.50 

Sensitivity0.50 

Specificityyi 
Sensitivityyi 

0.937 ( 0.008) 
0.828 ( 0.022) 
0.977 ( 0.005) 
0.608 ( 0.016) 
0.883 ( 0.042) 
0.889 ( 0.053) 

0.809 ( 0.013) 
0.506 ( 0.033) 
0.861 ( 0.014) 
0.640 ( 0.060)         
0.817 ( 0.072) 
0.733 ( 0.076) 

0.912 ( 0.009) 
0.829 ( 0.011) 
0.271 ( 0.019) 
0.983 ( 0.014) 
0.902 ( 0.057) 
0.808 ( 0.043) 

0.849 ( 0.008) 
0.647 ( 0.018) 
0.920 ( 0.004)  
0.692 ( 0.013) 
0.878 ( 0.030) 
0.816 ( 0.062) 

0.831 ( 0.020) 
0.655 ( 0.067) 
0.970 ( 0.011) 
0.571 ( 0.044) 
0.879 ( 0.101) 
0.719 ( 0.103) 
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averages over 10 replicates of five-fold CV. The AUC for the ROC curve summarizes predictive 
performance in terms of sensitivity and specificity across a range of threshold values. The PR curve 
is like the ROC curve but focuses on the trade-off between precision (also known as positive 
predictive value) and recall (also known as sensitivity). The PR curve is particularly useful in 
characterizing classification accuracy for imbalanced data sets. The proposed random forest 
prediction model outperformed the other classifiers with a cross-validated AUCroc value of 0.937 
and one of the highest AUCpr value of 0.828 (similar to the value achieved by lasso logistic 
regression). Figure 4 shows illustrative ROC and PR curves from one replicate of the five-fold CV. 
In Table 2, we also provide sensitivity and specificity for specific cut-off values, where an instance 
is considered as flagged if its predicted value is above the threshold. We considered 0.50 as a 
standard cut-off and an optimized cut-off obtained using Youden’s Index. In the radiation therapy 
quality assurance setting, a more sensitive classifier is preferred to ensure that concerning cases will 
get additional review. The random forest with Youden’s index performed very well in this regard, 
achieving a sensitivity of 0.889. To illustrate, figure 5 shows the probabilities of each contour from 
the random forest trained on the entire dataset. Contours with probabilities above the threshold 
values are flagged as unacceptable. Shape features and code to reproduce analysis provided at: 
https://github.com/wootz101/QA_Contours 

Fig 5. Random forest probabilities in blue with example thresholds in grey; the true class is marked in 
black, where acceptable contours have a value of 0 and unacceptable contours have a value of 1. The index 
range of 1-260 correspond to acceptable contours and 261-312 correspond to unacceptable contours. 
 
5. Application to unlabeled data 

Table 3.  Error Rates 
Model Ground Truth Not Flagged Flagged Class Error 

80 Variable  
 

Acceptable 
Unacceptable 

255 
16 

5 
36 

1.9% 
30.8% 

Top 10 Variable 
 

Acceptable 
Unacceptable 

250 
15 

10 
37 

3.8% 
28.8% 
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Based on these results, the random forest prediction method performed well at discerning acceptable 
vs. unacceptable contours in a cross-validation setting. We then sought to assess the utility of this 
approach when applied to a new external data set. To do so, we first trained a final random forest 
model using the entire dataset of 312 kidney contours, using the same parameters as before. Training 
on the full dataset, the random forest performs well with a total accuracy of 93.27% and an AUC 
value of 0.937, with a false positive rate of 1.9% and a false negative rate of 30.8%. Table 3 gives 
further information on the random forest’s error rates based on a 50% threshold.  

 
5.1 Variable importance 
 
The random forest is a useful classifier in this regard as it also provides a measure of feature 
importance. Table 4 shows the top ten variables of importance by their inclusion mean decrease in 
accuracy percent. 

The shapr package in R is limited to 13 variables as the computation time increases exponentially 
with the number of variables. Therefore, we constructed a new random forest that only uses these 
top 10 shape histogram features to accommodate the software and hardware constraints. We used 
500 trees and 8 node splits per tree as parameters. We lowered the node splits from 16 to 8 because 
we went from 80 to 10 input features. Trimming down the original model is an important step in 
order to use Shapely values to interpret why a contour gets flagged. Table 3 shows the performance 
of the random forest when we scale down from 80 features to the top 10. These results indicate the 
top 10 variable random forest model performs similarly to the full 80 variable model. In fact, the 
top 10 model is slightly more sensitive in flagging unacceptable contours. 
 
5.2 Unlabeled dataset 

Fig 6. Probability of unacceptable contours from unlabeled dataset 

Table 4.  Importance measure 

1st 2nd 3rd 4th 5th 
Sphericity (Max) 

2.7% 
Min Radius (Min) 

1.6% 
Centroid (SD) 

1.2% 
Min Radius (SD) 

1.2% 
Area (SD)   
1.1% 

6th 7th 8th 9th 10th 

Perimeter (SD)  
1.1% 

Mean Radius (SD) 
 0.9% 

Max Radius 
(Median)  

0.7% 

Area (Min) 
 0.6% 

Solidity (Mean) 
 0.6% 
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We obtained an external data set of 18 radiation treatment plans for cervical cancer radiotherapy. 
The voxel dimensions of these plans were 1.172 mm x 1.172 mm x 2.5 mm. From these plans, we 
extracted 36 kidney contours. These independent test contours were previously unseen and so were 
considered unlabeled data. We extracted the shape features as previously described and applied our 
trained random forest to obtain model predictions. Figure 6 shows the estimated probabilities of 
each contour being unacceptable for use in radiotherapy planning. A total of 6 contours were flagged 
with a probability > 0.5. 
 
5.3 Shapley values of flagged contours 

Fig 7. Shapley values show the impact each feature has on the overall prediction for the corresponding 
contour, with dark blue increasing and light blue decreasing the prediction of an error. The id: 1-4 are 
correctly flagged and outlined in green, and id: 5-6 are incorrectly flagged and outlined in red. 
 
As would happen in the potential clinical application of our approach, an expert reviewer then 
inspected the flagged contours to simulate the clinical workflow. Of the 6 contours flagged, 4 were 
found to contain errors including over-contouring and under-contouring of the kidney region. Figure 
7 shows the Shapley values of each variable for the flagged contours along with example images of 
the unacceptable kidney contours that were correctly flagged and the acceptable kidney contours 
that were incorrectly flagged. The errors in these contours are visually noticeable, with under-
contouring being the most common error. Using the Shapley values, we can interpret how the deep 
learning contour erred. For instance, examining the Shapley value plot and corresponding contour 
for id: 1, we see the random forest model flagged the contour because the contour’s centroid size, 
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perimeter, mean radius, and minimum radius had low standard deviations. The generated contour 
was indeed under-contoured which explains its out of distribution metrics. For id: 2, the contour had 
minor errors as it didn’t contour the beginning of the kidney which resulted in a large mean solidity 
value. Hence, we see there is no contour in the medical image for id: 2 where there should be one. 
We see in id: 3 the Shapley value plots indicate that the maximum sphericity value was too high. 
The kidney was over-contoured on this patient which led to a highly spherical shape that the random 
forest noticed and flagged. For id: 4 we see that the area standard deviation and perimeter standard 
deviation values for the contour were too low, causing it to be flagged. Low standard deviation of 
area and perimeter would indicate that the area and perimeter values varied less from slice to slice 
than they did for acceptable contours. This real data application highlights the feasibility of our 
approach for radiotherapy quality assurance.  
    Our method also has limitations and sometimes generates false positives. We see in id: 5 the 
contour was flagged due to its high maximum sphericity value, however, there were no contouring 
errors found. This false positive is particularly interesting because it has the highest prediction value 
for being flagged. False positives are to be expected due to the inherent variation in human anatomy; 
our expert reviewer noted that in this instance the kidney structure was completely connected to a 
neighboring structure. The connectedness of the structure might lead to some variation in 
contouring. While this contour is safe for clinical use, it is challenging for both humans and 
machines to distinguish the ground truth border for this patient. For id: 6 the solidity mean value 
was too high which caused the contour to be flagged even though there were no errors.  

6. Discussion

We have shown that training a random forest on shape features of contours is a viable method of 
contour quality assurance. Our method is novel and would be robust to differences in imaging 
platform or imaging processing steps in that it only requires shape features, and no imaging or 
radiomic features. Classification of contours using shape features could be useful in other contexts 
beyond radiation treatment planning; in particular, segmentation of the brain is a key task in the 
analysis of MRI data, while automatic detection of objects in images is a critical step in the 
development of automated driving systems. In both cases, critical structures identified using deep 
learning or other automated tools could potentially be distinguishable using shape features. 

One of the limitations in this study is that the unacceptable contours used in the training data 
were created by hand. Since only acceptable contours are used in clinical radiotherapy treatment 
planning, real-world cases of unacceptable contours are difficult to obtain. Our method provides 
basic annotations to characterize which features drove the model predictions. More detailed 
information, including the spatial locations with potential errors, would enhance the interpretation 
of results. We plan to explore methods to enable location-specific annotation within contours in 
future work. Furthermore, we plan to explore how this method performs across other imaging 
platforms.  
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This PSB 2023 session discusses challenges in clinical implication and application of risk 
prediction models, which includes but is not limited to: implementation of risk models, responsible 
use of polygenic risk scores (PGS), and other risk prediction strategies. We focus on the 
development and use of new, scalable methods for harmonizing and refining risk prediction models 
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by incorporating genetic and non-genetic risk factors, applying new phenotyping strategies, and 
integrating clinical factors and biomarkers. Lastly, we will discuss innovation in expanding the 
utility of these prediction models to underrepresented populations. This session focuses on the 
overarching theme of enabling early diagnosis, and treatment and preventive measures related to 
complex diseases and comorbidities.  
 
Keywords: Risk Prediction, risk factors, clinical implementation polygenic risk scores, complex 
human diseases 

 
1. Introduction:  
  
Genetic variants each harboring small phenotypic effects are shown to collectively contribute to 
complex trait and disease risk. Genome-wide association studies (GWAS), a mainstay of genetics 
research, are widely used to identify such common genetic variants (single nucleotide 
polymorphisms or SNPs) that convey increased or decreased risk for complex traits in populations. 
Due to the polygenic nature of complex traits, reliably predicting disease susceptibility or risk 
often requires studies of large sample sizes. To address this, large biobanks such as the Million 
Veteran Program (MVP) and UK Biobank, and consortia such as the Global Lipids Genetics 
Consortium (Graham et al., 2021), Global Biobank Meta-Analysis Initiative (Zhou et al., 2021), 
and Genetic Investigation of Anthropometric Traits (Yengo et al., 2018), among several others, 
have been successful at identifying and validating genetic components of complex traits based on 
sample sizes ranging from hundreds of thousands to over a million. Nevertheless, identifying 
people at risk of disease prior to the presentation of symptoms remains one of the main challenges 
and goals of precision medicine. Countless hours and resources are spent in understanding the 
pathophysiology of complex diseases and identifying clinical, genetic, and exposure risk factors 
that influence the risk of prevalent diseases that substantially impact public health such as breast 
cancer, coronary artery disease (CAD), obesity, and type 2 diabetes.  
  
Consequently, estimating the disease risk of patients based on their common genetic variants by 
aggregating the weighted sum of the trait-affected alleles from GWAS into polygenic scores [PGS, 
also known as genetic risk scores (GRS) or polygenic risk scores (PRS)] has gained popularity 
(Wand et al., 2021). PGS provides an opportunity to estimate an individual’s genetic risk (or 
predisposition) for complex diseases or traits. This is set as a non-modifiable lifetime risk and 
could be utilized prior to symptom onset to improve patients’ health by predicting relatively 
modifiable factors such as lifestyle, nutrition, clinical, and other cumulative non-genetic risks that 
may act over multiple years (Torkamani et al., 2018). PGS capture a larger proportion of genetic 
liability than individual SNPs alone and have already been used to identify patients with disease 
risk equivalent to monogenic mutations, predict mortality, identify cases with earlier disease onset, 
and provide evidence for cross-trait associations. Recently, focus and interest have shifted from 
the theoretical application of PGS post hoc in large populations to the implementation of these 
methods for individual patients in clinical practices. Risk models such as BOADECIA for breast 
cancer (Lee et al., 2019) and cardioriskSCORE for CAD include PGS along with other clinical 
risk factors such as family history. Models for cancer risk have been integrated into wider gene 
screening panels such as PGLNext and ColoNext that test a subset of genes to provide cancer-type 
specific testing as a consumer product.  
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We are in a golden digital age for medicine in which individuals have access to their health records 
and genetic data at their fingertips. There is a strong public interest in better understanding personal 
genetics made clear in the various companies that have been founded in the last decade to bridge 
the gap between consumer and clinician. Companies like 23&Me provide genetic insight into trait 
and disease risks, while others focus on aspects of genetics including ancestry, embryo screening, 
fertility, cancer risk, allergy predispositions, diet optimization and weight loss, immune health, 
and cardiovascular event prediction. PGS have become a particular focus area of the health 
technology sector as a means of data-driven disease prevention. Numerous companies are geared 
towards providing genetics-based health risk predictions based on the application of PGS. These 
have been designed not only for the average individual but also for companies looking to build 
wellness incentive programs within their own businesses. Some PGS-focused companies provide 
risk score prediction as a clinical tool or platform for health systems and healthcare providers to 
implement in their clinics and hospitals. The wide scope of commercial applications underscores 
the keen interest in exploring genetic risk prediction. The direct-to-consumer model, however, 
comes with a great responsibility to critically examine the methodology with respect to health 
equity and diversity.  

Despite recent advancements, a number of aspects of PGS require evaluation. PGS generated from 
currently available GWAS typically explain only a small proportion, 2-10%, of trait variation 
(Stringer et al., 2011). Moreover, a disproportionate majority (>78%) of participants in genetic 
studies are of European descent, limiting applications of PGS for many traits to individuals from 
this ancestry only (Sirugo et al., 2019). Also, many questions remain regarding best practices for 
the harmonization of multiple risk factors into clinically relevant models, particularly when 
including genetic factors in non-European populations or in longitudinal cumulative risk 
predictions. 

Consented EHR-linked biobanks provide a vast and continuously growing repository of 
longitudinal data on diverse clinical populations that can fuel clinical, genetic, and epidemiologic 
research. Risk prediction models are not limited to a single phenotype or to a cross-sectional 
analysis of patient health. With the availability of multidimensional genomic and EHR data, 
longitudinal and time-series analyses can be conducted to investigate patient disease trajectories 
(Jensen et al., 2014). Complex genetic diseases often do not present phenotypically in the same 
way, in the same timeframe, in all patients (Woodward et al., 2022). Understanding which types 
of individuals develop certain conditions– and when– is essential for prognostics and disease 
prevention. Moreover, linking phenotypic patterns with genetic underpinnings can improve the 
predictive power of risk models. Such integrated risk prediction could be built upon a variety of 
machine learning methodologies and clinical and genomic data types. This is especially useful for 
understanding both the etiological basis for disease comorbidity and the architecture of disease co-
occurrence (Monchka et al., 2022). Various network and statistical approaches have been applied 
to determine shared genetic components of comorbid conditions and the interactions between 
disease-associated gene products (Barabási et al., 2011). Leveraging longitudinal data in these 
analyses can provide a predictive aspect for disease onset. In addition, other kinds of omics data 
(e.g., transcriptomics, proteomics, metabolomics) can explain variance attributable to genetics as 
well as some lifestyle/environmental factors (Kim et al., 2015). Furthermore, the fact that EHR 
data are collected in real-world clinical settings makes them particularly valuable for research 
aimed at reflecting population diversity. 
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2. Overview of the contributions 
 
The SALUD session keynote talk by Dr. Cooke-Bailey entitled “Pause, Reflect, Redirect: Clinical 
Scalability of Genetic Risk Scores Remains Limited due to Lack of Diversity” will focus on the 
utility of risk scores across disease, model, and scope of genetic data, as well as and what remains 
lacking across the breadth of these approaches in clinical scalability and broad applicability. While 
future GRS and PRS may serve as surrogate measures for disease risk, the current landscape leaves 
much room for improvement in clinical implementation across different ancestral groups. Key to 
realizing the true power of clinical and genetic risk models is intentional focus on improving 
representation of data from populations that have historically been underrepresented in research. 
This session will be focused on the utility of risk scores across several common and complex 
disorders as described briefly below.  

 
One of the goals of precision medicine is to be able to stratify patients based on their genetic risk 
for a disease using GRS to inform future screening and intervention strategies. However, the 
variants used to calculate these scores are often based on European (EUR) ancestry individuals, 
limiting their clinical utility. Study titled “Diversity is key for cross-ancestry transferability of 
glaucoma genetic risk scores in Hispanic Veterans in the Million Veteran Program” by 
Waksmunski et al.  addresses the challenges of applying GRS in complex conditions like primary 
open-angle glaucoma (POAG). POAG disproportionately affects individuals of African and 
Hispanic (HIS) ancestries. This study evaluates the risk stratification performance of POAG GRS 
based on cross-ancestry variants in EUR and HIS individuals. 
  
Abdominal aortic aneurysms (AAA) are common enlargements of the abdominal aorta which can 
grow larger until rupture, often leading to death. Recent large-scale genome-wide association 
studies have identified genetic loci associated with AAA risk. Study titled “Predictive models for 
abdominal aortic aneurysms using polygenic scores and PheWAS- derived risk factors” by 
Hellwege et al. combines known risk factors, PRS, and precedent clinical diagnoses from 
electronic health records (EHR) to develop predictive models for AAA. The resulting models 
improve identification of people at risk of a AAA diagnosis compared with existing guidelines. 
       
Study titled “Quantifying factors that affect polygenic risk score performance across diverse 
ancestries and age groups for body mass index” by Hui and Xiao et al. addresses the challenge of 
limited transferability of PRS across groups that differ in ancestry or sample characteristics. To 
evaluate these factors in the PRS generation process, the authors quantified the effects of ancestry, 
genome-wide association study summary statistics sample size, and LD reference panel on PRS 
performance. This was done using a cross-ancestry and age-specific approach. PRS for body mass 
index (BMI) was generated for this analysis. Furthermore, comorbidities and clinical associations 
in electronic health records with PRS for BMI were explored.    
  
Late-onset Alzheimer’s disease (LOAD) is a polygenic disorder with a long prodromal phase, 
making early diagnosis challenging. PRS leverage combined effects of many loci to predict LOAD 
risk, but often lack sensitivity to preclinical disease changes, limiting clinical utility. Study titled 
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“Resilience polygenic risk score may be sensitive to preclinical disease changes” by Eissman et 
al. generates a resilience phenotype to model better-than-expected cognition given LOAD 
biomarker levels in order to bolster preclinical polygenic risk prediction. The resulting LOAD PRS 
and resilience PRS models together are evaluated for prediction of preclinical disease status among 
dementia-free and biomarker-positive individuals.  
     
3. Conclusion 
 
Developing accurate risk prediction models for disease is one of the main goals of precision 
medicine. The addition of genetic data to these models could enhance their performance. However, 
there are many questions about appropriate implementation, interpretation, and derivation of 
genetic risk prediction models. The studies presented in this session explore these issues by 
combining genetic scores with known risk factors to test the improvement in performance, enhance 
transferability of genetic scores in diverse ancestries, and evaluate the ability of models including 
genetic scores to predict preclinical disease status. This research is essential as we move towards 
incorporating genetic risk prediction models in clinical practice.  
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A major goal of precision medicine is to stratify patients based on their genetic risk for a disease to 
inform future screening and intervention strategies. For conditions like primary open-angle glaucoma 
(POAG), the genetic risk architecture is complicated with multiple variants contributing small effects 
on risk. Following the tepid success of genome-wide association studies for high-effect disease risk 
variant discovery, genetic risk scores (GRS), which collate effects from multiple genetic variants 
into a single measure, have shown promise for disease risk stratification. We assessed the application 
of GRS for POAG risk stratification in Hispanic-descent (HIS) and European-descent (EUR) 
Veterans in the Million Veteran Program. Unweighted and cross-ancestry meta-weighted GRS were 
calculated based on 127 genomic variants identified in the most recent report of cross-ancestry 
POAG meta-analyses. We found that both GRS types were associated with POAG case-control status 
and performed similarly in HIS and EUR Veterans. This trend was also seen in our subset analysis 
of HIS Veterans with less than 50% EUR global genetic ancestry. Our findings highlight the 
importance of evaluating GRS based on known POAG risk variants in different ancestry groups and 
emphasize the need for more multi-ancestry POAG genetic studies.  
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1.  Introduction 

Primary open-angle glaucoma (POAG) is the leading cause of irreversible blindness globally (1,2). 
To mitigate severe POAG outcomes, early intervention is essential (3). POAG is a complex disease 
with a substantial genetic component (4,5). Comprehensively evaluating individual genetic profiles 
via genetic risk scores (GRS) may enable POAG risk stratification (6). Specifically, in the era of 
precision medicine, it is possible that individuals with high genetic risk for developing POAG and 
experiencing more aggressive disease course could be eligible for earlier and more frequent 
comprehensive eye examinations and be prioritized for early intervention.  

While showing promising clinical utility for diseases with complex disease etiology, GRS are 
not without limitations (7–9). Historically, studies that inform which variants are included in GRS 
have been predominantly performed on data from individuals of European descent (EUR), 
regardless of whether disease burden is highest in EUR or other ancestries (10). GRS also lack cross-
ancestry generalizability (9). Although POAG burden is higher in Hispanic (HIS) and African-
descent (AFR) individuals (11), most POAG genetic studies have been reported in EUR individuals. 
Additionally, HIS individuals have a high degree of genetic admixture shaped by Native American, 
EUR, and AFR ancestries (12), which presents a possible limitation for the clinical use of GRS. We 
previously found that performance of a POAG GRS was significantly diminished in AFR Veterans 
compared to EUR Veterans in the Million Veteran Program (MVP) (13). To overcome limitations 
of contemporary GRS, representation of ancestral diversity in genetic studies must increase. The 
most recent genome-wide POAG analysis was a cross-ancestry meta-analysis of over 34,000 cases 
and nearly 350,000 controls that identified 127 POAG-associated loci (14). While this dataset 
predominantly included EUR individuals, it also included individuals of Asian and African descent 
(14), representing an important step towards increasing ancestral diversity in POAG genetic studies.  

Large-scale, multi-ancestry biobanks linked to electronic health records (EHR) offer another 
way to increase diversity in genetic studies. We accessed the MVP, which is an ongoing US-based 
observational research program and mega-biobank funded by the Department of Veterans Affairs 
(VA) Office of Research and Development (15). To date, over 800,000 Veterans with linked genetic, 
EHR, health survey, and other clinical data have been enrolled in the MVP (15,16).  Representation 
of diverse ancestral populations (16) is prominent in the MVP; about 29% of participants are from 
ancestries that have been historically underrepresented in genetic studies, including HIS (16).  

In this study, we sought to assess the cross-ancestry transferability of a POAG GRS in HIS and 
EUR Veterans in the MVP. Among POAG cases and controls in the MVP, we calculated GRS based 
on 127 variants identified in the 2021 cross-ancestry POAG meta-analysis (14). Finally, we 
evaluated the GRS performance for POAG case classification in HIS and EUR Veterans. 

2.  Methods 

2.1.  Study demographics 

We classified POAG cases and controls with a previously published algorithm developed in the VA 
(17) and applied to the MVP as previously described (13). Ancestry groups were defined using the 
Harmonized Ancestry and Race/Ethnicity (HARE) algorithm (18), which classifies an individual’s 
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HARE group based on the correspondence of their self-identified race/ethnicity and genetically 
inferred ancestry.  

2.2.   GRS calculations and association tests 

We calculated 127-variant GRS for HIS and EUR Veterans in the MVP. GRS were either 
unweighted or weighted by published cross-ancestry effect estimates (14) as shown in Equations 1 
and 2, respectively. Risk alleles were defined by having odds ratios greater than 1 in the cross-
ancestry analysis (14).  

 𝐺𝐺𝐺𝐺𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢ℎ𝑡𝑡𝑢𝑢𝑡𝑡(𝑢𝑢) = ∑ 𝑀𝑀𝑢𝑢𝑖𝑖
𝑘𝑘
𝑖𝑖=1  (1) 

where M = risk allele dosage, i = individual, k = 127 variants 

 𝐺𝐺𝐺𝐺𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢ℎ𝑡𝑡𝑢𝑢𝑡𝑡(𝑢𝑢) = ∑ 𝛽𝛽𝑖𝑖𝑀𝑀𝑢𝑢𝑖𝑖
𝑘𝑘
𝑖𝑖=1  (2) 

where M = risk allele dosage, i = individual, k = 127 variants, β=log(odds ratio) 
 

We tested for association between the GRS and POAG via logistic regression-based analyses 
using unadjusted models as well as models adjusting for age, sex, and 10 sample-specific principal 
components (PCs). 

2.3.  GRS performance for POAG risk stratification in the MVP 

We compared POAG case classification across GRS deciles and evaluated GRS model performance 
with area under the curve (AUC) estimates from receiver operating characteristic (ROC) curves, as 
previously described (13). To elucidate the contributions of each model variable, we estimated the 
proportion of POAG variance explained by: (i) age, (ii) age and sex, (iii) age, sex, and 10 PCs, and 
(iv) age, sex, 10 PCs, and each GRS (unweighted and weighted). Coefficients of determination (R2) 
were calculated on the observed scale (Nagelkerke’s) and the liability scale using a fixed disease 
prevalence of 2.4% (19) as well as increases in R2 with the addition of each variable to the model. 

2.4.  Subset analyses based on global genetic ancestry 

HIS Veterans are more genetically admixed than EUR Veterans (18); thus, we evaluated GRS 
performance in a subset of HIS Veterans with less than 50% EUR global genetic ancestry (GGA) 
as determined via the ADMIXTURE software program (20). We compared these subset results to 
the full MVP HIS POAG case-control dataset. 

3.  Results 

3.1.  POAG cases and controls in the MVP 

Applying the above-described phenotype and ancestry group definitions to the MVP, our dataset 
included 3,347 HIS Veterans (382 cases; 2,965 controls) and 62,193 EUR Veterans (3,382 cases; 
58,811 controls) (Table 1). Nearly all the study participants were male (Table 1). Among EUR 
Veterans, 96.48% of POAG cases and 97.76% of controls were male (p < 0.05; Table 1); whereas, 
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among HIS Veterans, 97.12% of POAG cases and 98.01% of controls were male (p > 0.05; Table 
1). Although the average ages of EUR POAG cases and controls were not significantly different, 
HIS POAG cases were about 2 years younger, on average, than HIS controls (p < 0.05; Table 1). 
 

 

3.2.  GRS calculations and association tests 

We detected association between the 127-variant GRS and POAG case-control status in HIS and 
EUR Veterans in the MVP. Unweighted and weighted GRS were significantly associated with 
POAG status in both EUR and HIS Veterans (p < 0.05) (Table 2). Although effect estimates were 
comparable between both datasets for each GRS type, the association signals were more pronounced 
in the analyses of EUR Veterans compared to HIS Veterans (Table 2).  
 

 

3.3.  GRS performance for POAG risk stratification in the MVP 

POAG case proportions generally increased across GRS deciles for both EUR and HIS Veterans 
(Figure 1). In the top deciles, a higher proportion of EUR POAG cases were consistently categorized 
compared to HIS POAG cases (Figure 1). 
 

Table 1. POAG case-control demographics in the MVP. The p-values shown were from Welch’s t-test for 
age and chi-square test for sex. SD: Standard deviation. 
 

HIS EUR 
Cases Controls Total p-value Cases Controls Total p-value 

N  
(% total) 

382 
(11.41) 

2,965 
(88.59) 

3,347 
(100)  3,382 

(5.44) 
58,811 
(94.56) 

62,193 
(100)  

Age  
(SD) 

70.24 
(9.70) 

72.16 
(7.23) 

71.94 
(7.57) 0.0002 73.32 

(9.55) 
73.11 
(7.3) 

73.12 
(7.44) 0.2021 

N Males  
(% total) 

371 
(97.12) 

2,906 
(98.01) 

3,277 
(97.91) 0.3402 3,263 

(96.48) 
57,496 
(97.76) 

60,759 
(97.69) 1.8 x 10-6 

 

Table 2. Association test results for unadjusted and adjusted models for unweighted and weighted GRS in 
HIS and EUR Veterans in the MVP. Effect estimates are calculated as log(odds ratio) for a 1 standard 
deviation increase in the GRS. 

Population Model GRS Type Effect Estimate Standard Error z value p-value 

HIS 
Unadjusted Unweighted 0.55 0.057 9.56 1.18 x 10-21 

Weighted 0.61 0.058 10.54 5.37 x 10-26 

Adjusted Unweighted 0.54 0.059 9.20 3.54 x 10-20 
Weighted 0.61 0.060 10.16 3.13 x 10-24 

EUR 
Unadjusted Unweighted 0.56 0.018 30.63 5.65 x 10-206 

Weighted 0.61 0.018 34.43 7.62 x 10-260 

Adjusted Unweighted 0.56 0.018 30.64 3.36 x 10-206 
Weighted 0.61 0.018 34.40 2.28 x 10-259 
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Fig. 1. Case proportions for EUR and HIS Veterans in the MVP for the unweighted and weighted GRS. 

 
For both weighted and unweighted approaches, when we specifically compared the top GRS 

decile to the bottom 90%, we observed ~3-fold higher odds of POAG case classification for both 
GRS types in the top decile for both EUR and HIS Veterans (Table 3; Figure 2).  

 

 
 

 
Fig. 2. Comparison of the top GRS decile versus the bottom 90% of the GRS distribution for unweighted 

and weighted GRS in EUR and HIS Veterans in the MVP. 
 
We found no statistically significant difference in GRS performance based on ROC curve 

comparisons between HIS and EUR Veterans (AUC range: 0.65-0.69) (Figure 3). This trend was 
observed for both unadjusted (Figure 3A) and adjusted models (Figure 3B).  

Table 3. Odds ratios (OR) comparing the top GRS decile to bottom 90% in HIS and EUR Veterans. 

Population GRS Type OR  
(95% CI) p-value 

HIS 
Unweighted 2.70  

(2.03-3.56) 3.20 x 10-12 

Weighted 3.11  
(2.35-4.07) 4.63 x 10-16 

EUR 
Unweighted 2.74  

(2.51-2.98) 2.26 x 10-116 

Weighted 3.03  
(2.78-3.29) 9.05 x 10-147 
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Fig. 3. ROC curve comparisons for (A) unadjusted and (B) adjusted models for unweighted and weighted GRS in HIS 
and EUR Veterans in the MVP. The p-values shown were calculated from DeLong’s comparison of ROC curves. 

3.4.  Proportion of variance explained by model variables 

We found that coefficients of determination (R2) on the observed (Nagelkerke’s) and liability scales 
were less than 0.1 for all the model variable combinations that we evaluated in our adjusted analyses 
(Table 4). Covariates alone (age, sex, and 10 PCs) explained a higher proportion of POAG variance 
in HIS Veterans (Nagelkerke’s R2 = 0.034; liability R2 = 0.030) than in EUR Veterans (Nagelkerke’s 
R2 = 0.002; liability R2 = 0.0023) (Table 4). Adding the GRS (unweighted and weighted) to the 
model resulted in similar increases in R2 in HIS and EUR Veterans (Table 4). 
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3.5.  Subset analyses based on global genetic ancestry 

Among the 382 HIS POAG cases and 2,965 HIS controls in the MVP, a subset (220 POAG cases 
and 1,486 controls) had less than 50% EUR GGA (Figure 4). On average, cases in the GGA-based 
HIS subset were about 70 years old, while controls were about 72 years old (p = 0.0018). ROC 
curves for the GGA-based subset were comparable to those for the full HIS POAG case-control 
dataset (Table 5). 
 

 
Fig. 4. Admixture proportions for EUR and HIS Veterans in the MVP. Five-way admixture was computed with 

ADMIXTURE using five 1000 Genomes reference groups (GBR: British in England and Scotland; PEL: Peruvian in 
Lima, Peru; YRI: Yoruba in Ibadan, Nigeria; LWK: Luhya in Webuye, Kenya; CHB: Han Chinese in Beijing, China). 
The vertical black line denotes 50% GBR; HIS Veterans to the right of the line were included in the subset analyses. 

 

 

Table 4. Coefficients of determination (R2) on the observed scale (Nagelkerke’s) and the liability scale for model 
variables in our adjusted GRS models for HIS and EUR Veterans in the MVP.   

HIS EUR 

Model Variables 
Nagelkerke's R2 

(Observed Scale) 
Liability R2 

Nagelkerke's R2 

(Observed Scale) 
Liability R2 

Age 0.013 0.012 0.0001 0.0001 
Age+Sex 0.014 0.012 0.0011 0.0013 
Age+Sex+10PCs 0.034 0.030 0.0020 0.0023 
Age+Sex+10PCs+Unweighted GRS 0.085 0.076 0.047 0.054 
Age+Sex+10PCs+Weighted GRS 0.096 0.086 0.058 0.067 
R2 Increase     

Unweighted GRS 0.051 0.046 0.045 0.052 
Weighted GRS 0.062 0.056 0.056 0.065 

 

Table 5. Comparison of ROC curves for full HIS case-control dataset and GGA-based HIS subset. 

GRS Type 
Area Under the Curve 

(95% CI) 
DeLong’s Comparison of 

ROC curves 
HIS HIS Subset p-value 

Unweighted 0.65 
(0.62-0.67) 

0.63 
(0.59-0.67) 0.61 

Weighted 0.66 
(0.63-0.69) 

0.65 
(0.61-0.69) 0.84 
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4.  Discussion  

In this study, we confirmed that GRS based on 127 POAG risk variants identified through cross-
ancestry meta-analysis performed similarly in HIS and EUR Veterans in the MVP. We also observed 
this trend in our subset analyses based on GGA. However, it is important to note that across the 
highest GRS deciles, a higher proportion of EUR POAG cases were categorized compared to HIS 
POAG cases in the MVP. This emphasizes the need for more inclusive POAG genetics studies to 
improve the development of equitable risk prediction models based on genetic data.  

The genetic etiology of POAG is complex with heritability estimates from twin studies and 
GWAS ranging from 0.26 to 0.93 (21–27). To date, over 125 genomic variants have been implicated 
in the genetic architecture of POAG, but these individual variants only moderately influence disease 
risk and only account for about 10% of the additive genetic variance of POAG (5,14). Rather than 
investigating single genetic variant associations, we performed logistic regression-based association 
analyses on unweighted and weighted GRS in HIS and EUR Veterans and found that both GRS 
types strongly associated with POAG case-control status in these groups (Table 2). However, when 
we examined the proportion of POAG variance explained by model variables, we observed varied 
effects of the addition of covariates alone compared to the combination of covariates and GRS in 
HIS and EUR Veterans (Table 4). This trend was also observed in our prior study, where covariates 
were more informative for POAG variance in AFR Veterans while GRS were more informative for 
EUR Veterans in the MVP (13). We hypothesize that this could be partially explained by the 
significant difference in the average ages of the AFR (13) and HIS POAG cases and controls (Table 
1). Additionally, while the variants included in the 127-variant GRS were identified from a cross-
ancestry meta-analysis (14), the variants may still be more informative for EUR individuals than 
individuals of other ancestries due to the high proportion of EUR individuals included in that study.  

Based on our ROC curve comparisons and case classification evaluations, the performance of 
the 127-variant GRS was not significantly different between HIS and EUR Veterans (Figures 1 and 
3). This is in stark contrast to our prior work, which found that GRS performance was significantly 
reduced when applied to AFR Veterans compared to EUR Veterans (13).  Similar trends have been 
observed in the application of polygenic risk scores (PRS) for coronary heart disease in EUR, HIS, 
and AFR individuals (28,29) as well as for breast cancer in HIS individuals with varying proportions 
of EUR and Native American ancestry (30). It was hypothesized that the similar PRS performance 
in HIS and EUR individuals was attributable to the masking of the breadth of diversity in the HIS 
group (31), which is more genetically admixed (32).  To interrogate this in our study, we evaluated 
GRS performance in a subset of HIS Veterans with less than 50% EUR GGA and did not detect a 
significant difference between the full and subset analyses (Table 5). Because AFR and HIS 
Veterans have a higher admixture proportion than EUR Veterans in the MVP (18), future work 
should consider the contributions of local genetic ancestry in POAG GRS performance.  

While this study describes the application of GRS to a large multi-ancestry POAG case-control 
dataset, it has limitations. Nearly all the MVP-enrolled Veterans in this study were male due to 
demographic trends in the US military (15). While previous studies have estimated higher POAG 
prevalence in males than females (19), future work should evaluate GRS performance in a sex-
balanced dataset to ensure that their application is equitable. Also, although this study examined 
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GRS in both EUR and HIS Veterans, there are substantially more EUR Veterans than HIS Veterans 
in our analyses. We also limited our GRS to 127 risk variants identified in the largest-to-date multi-
ancestry POAG GWAS (14), and we were unable to assess GRS weighted by ancestry-specific 
effect estimates because the previously published meta-analysis did not include HIS individuals 
(14). Future studies examining a larger portion of the genetic architecture of POAG in multi-ancestry 
datasets should be prioritized to facilitate the construction of more informative GRS.  

In summary, based on our knowledge of the current GRS limitations (e.g., dearth of diversity in 
GWAS and lack of transferability of GRS across different ancestries) and what we learned from this 
study, it is clear that POAG genomics studies need to increase the inclusion of diverse ancestral 
groups, especially those who have been historically underrepresented in research. This will 
hopefully improve understanding of the complex genetic architecture of POAG and ensure that GRS 
can be equitably introduced to the clinic for POAG risk stratification, especially for HIS and AFR 
individuals for whom POAG burden is higher. 
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Abdominal aortic aneurysms (AAA) are common enlargements of the abdominal aorta which can 
grow larger until rupture, often leading to death. Detection of AAA is often by ultrasonography and 
screening recommendations are mostly directed at men over 65 with a smoking history. Recent large-
scale genome-wide association studies have identified genetic loci associated with AAA risk. We 
combined known risk factors, polygenic risk scores (PRS) and precedent clinical diagnoses from 
electronic health records (EHR) to develop predictive models for AAA, and compared performance 
against screening recommendations. The PRS included genome-wide summary statistics from the 
Million Veteran Program and FinnGen (10,467 cases, 378,713 controls of European ancestry), with 
optimization in Vanderbilt’s BioVU and validated in the eMERGE Network, separately across both 
White and Black participants. Candidate diagnoses were identified through a temporally-oriented 
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Phenome-wide association study in independent EHR data from Vanderbilt, and features were 
selected via elastic net. We calculated C-statistics in eMERGE for models including PRS, phecodes, 
and covariates using regression weights from BioVU. The AUC for the full model in the test set was 
0.883 (95% CI 0.873-0.892), 0.844 (0.836-0.851) for covariates only, 0.613 (95% CI 0.604-0.622) 
when using primary USPSTF screening criteria, and 0.632 (95% CI 0.623-0.642) using primary and 
secondary criteria. Brier scores were between 0.003 and 0.023 for our models indicating good 
calibration, and net reclassification improvement over combined primary and secondary USPSTF 
criteria was 0.36-0.60. We provide PRS for AAA which are strongly associated with AAA risk and 
add to predictive model performance. These models substantially improve identification of people at 
risk of a AAA diagnosis compared with existing guidelines, with evidence of potential applicability 
in minority populations.  

Keywords: Abdominal Aortic Aneurysm, Polygenic Scores, Prediction, Precision Medicine 

1.  Introduction 

Abdominal aortic aneurysms (AAA) is a common and life-threatening condition in which 
enlargement of the abdominal aorta can lead to a deadly rupture. Rupture is associated with a 
mortality rate as high as 81%, including mortality of over 50% even among individuals that rupture 
in a hospital setting1. Current estimates suggest that approximately 4% of the US population over 
65 has an AAA, and 41,000 deaths a year are attributed to AAA complications2,3. Based on AHA 
2019 Heart Disease and Stroke statistics, the prevalence of AAA ranges from 1.3% in males 45-54 
years old to 12.5% in males 75-84 years old4. For females, the prevalence ranges from 0% in the 
youngest to 5.2% in the oldest age groups4.  

Common risk factors for AAA risk are race, age, sex, smoking behavior, atherosclerosis, 
hypertension, and hyperlipidemia5-7. A family history of AAA is associated with an adjusted OR of 
2.178. Factors associated with aorta diameter from Mendelian randomization studies include pulse 
pressure, triglycerides, and height9. An estimate of SNP-based heritability for AAA is not available, 
however, heritability of AAA is estimated to be as high as 70%10. Multiple genome-wide association 
studies have been conducted and have detected 24 distinct loci11-15. These observations provide a 
basis for including genetic information in prediction of future AAA events. 

There are no currently available pharmacological therapies for prevention or treatment of AAA. 
When discovered, AAA cases are monitored using periodic ultrasounds, where the goal is to observe 
AAA expansion until the risk of rupture is deemed to be larger than the risks posed by surgical 
repair16, which for many patients is when the diameter reaches 5.5 cm17. AAA cases are most often 
either discovered incidentally by abdominal imaging for some other indication, or by screening 
programs that target specific high-risk groups.    

Current US Preventative Services Task Force (USPSTF) guidelines focus on screening men 
between 65 and 75 years of age with a history of smoking18. In a recent large retrospective study of 
almost 291,850 AAA hospitalizations, 23% were women, and over 60% were not between 65 and 
75 years of age19. USPSTF recommendations are not derived from statistical models and may 
underserve understudied groups or individuals who are at unusually high risk for their demographic 
category due to an accumulation of known and unknown risk factors.  
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Strong racial disparities have been observed in prevalence, risk, and response to surgical 
treatments in AAA patients20,21.  These important and poorly understood aspects of AAA 
epidemiology are often neglected in screening guidelines. Because effective AAA management 
depends on detection, this opportunity for improving the screening strategy has the potential to save 
lives, many of whom are in underserved groups. In this paper, we leverage prior GWAS of AAA 
and electronic health records (EHR) linked to genetic information to develop predictive models that 
outperform the USPSTF guidelines in identifying high-risk individuals and evaluating the 
performance of polygenic predictors in multiple ancestral groups.  

2.  Methods 

2.1.  Synthetic Derivative 

The Synthetic Derivative (SD) is a deidentified mirror of EHR at Vanderbilt University Medical 
Center (VUMC) with records for >3 million patients dating to January 1990 and updated regularly. 

2.2.  BioVU 

The BioVU DNA Repository is a subset of the SD at VUMC with linkage to individuals’ DNA 
samples. A detailed description of the database and how it is maintained has been published 
elsewhere22,23. BioVU participant DNA samples were genotyped on a custom Illumina Multi-Ethnic 
Genotyping Array (MEGA-ex; Illumina Inc., San Diego, CA, USA). Quality control included 
excluding samples or variants with missingness rates above 2%. Samples were also excluded if 
consent had been revoked, sample was duplicated, or failed sex concordance checks. Imputation 
was performed on the Michigan Imputation Server (MIS) v1.2.424 using Minimac4 and the 
Haplotype Reference Consortium (HRC) panel v1.125. AAA cases were identified using 
phecodes26,27:  2 or more instances of an International Classification of Diseases (ICD) version 9 or 
10 diagnostic code for AAA, while controls were those without any ICD codes for AAA or phecodes 
in range 440-449.9 (Diseases of Arteries, Arterioles, and Capillaries). Individuals with one AAA 
ICD code were excluded. Smoking status was defined using ICD codes. 

2.3.  eMERGE  

The eMERGE Network is a consortium of several EHR-linked biorepositories formed with the goal 
of developing approaches for the use of the EHR in genomic research28,29. Consortium membership 
has evolved over eMERGE’s 11-year history, with many sites contributing data: Group 
Health/University of Washington, Marshfield Clinic, Mayo Clinic, Northwestern University, 
Vanderbilt University, Children’s Hospital of Philadelphia (CHOP), Boston Children’s Hospital 
(BCH), Cincinnati Children’s Hospital Medical Center (CCHMC), Geisinger Health System, Mount 
Sinai School of Medicine, Harvard University and Columbia University. The eMERGE study was 
approved by the Institutional Review Board at each site and all methods were performed in 
accordance with the relevant guidelines and regulations. Participants at all sites provided written 
informed consent. AAA cases and controls were defined as in BioVU. 
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2.4.  Genome-wide Summary Statistics 

We combined genome-wide summary statistics for AAA from the Million Veteran Program11 and 
FinnGen30 for a total of 10,467 cases and 378,713 controls of European ancestry) using fixed-effects 
inverse-variance weighted meta-analysis implemented in METAL31. 

2.5.  Polygenic Score Development 

PRSs were constructed using PRS-CS32 software and PLINK233, followed by p-value thresholding 
(range: p=1 - 5x10-8) as in Ref34. Optimal p-value thresholds were 1.0 in Whites and p<5x10-3 in 
Blacks, as determined by maximal variance explained in BioVU (0.76% and 0.59%, respectively). 

2.6.  Identification of phecode risk factors 
We extracted all diagnostic codes from individuals in the SD who were not part of the BioVU 
MEGA genotyped set who classified as either a case or control for AAA status. Codes for AAA 
cases were censored following the earliest AAA diagnosis code – i.e. all diagnoses post-AAA were 
removed, in order to capture only those diagnoses which preceded AAA diagnosis and represent 
potential risk factors for subsequent diagnosis of AAA. We performed a phenome-wide association 
study35 (PheWAS) on this temporally-censored dataset with AAA as the outcome with each phecode 
status used as predictor, adjusted for age and sex, stratified by self-reported race/ethnicity. 
Bonferroni correction was used to set significance thresholds to identify significant phecodes. 

2.7.  Selection of independent components with elastic nets 
We used elastic net models with 10-fold cross validation in BioVU to estimate feature weights, 
implemented in the glmnet R package36,37 for selection of candidate risk features derived from the 
temporal PheWAS in the SD. Among the variables considered were 196 candidate phecodes 
(significant in at least one temporal PheWAS), age, sex, BMI, smoking status, race, and ethnicity. 
Individuals missing status (with only one AAA ICD code or an exclusion code) were classified with 
controls (using probit linkages) in a case-cohort design to allow simultaneous modeling of phecodes. 

2.8.  Predictive models 
Prediction of AAA diagnoses in eMERGE data used logistic regression implemented in R, and 
evaluated area under the receiver operator curve (pROC package), net reclassification index (nricens 
package), and Brier scores. Phecodes selected from the elastic net were included alongside age, sex, 
BMI, smoking status, polygenic scores, and principal components of ancestry. 

3. Results

3.1.   Polygenic risk score development, performance, and association with AAA 
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We performed meta-analysis of MVP and FinnGen summary statistics for AAA using a fixed-effects 
inverse-variance weighted method in METAL. Polygenic scores were constructed using PRS-CS to 
generate weights, followed by p-value thresholding. The optimal p-value threshold was 1.0 in non-
Hispanic Whites (NHW), while the optimal threshold in non-Hispanic Blacks (NHB) was p<5x10-3 
as determined by maximal variance explained in BioVU (0.76% and 0.59%, respectively; Table 1); 
at these thresholds, the PRSs contained 1,118,966 and 12,314 SNPs, respectively.   



Table 1. Variance explained across PRS p-value thresholds in BioVU Non-Hispanic Whites and Blacks 
RACE 1 0.5 5.0E-02 5.0E-03 5.0E-04 5.0E-05 5.0E-06 5.0E-07 5.0E-08 

NHW 0.0076 0.0070 0.0072 0.0062 0.0056 0.0042 0.0039 0.0031 0.0014 
NHB 0.0018 0.0021 0.0018 0.0059 0.0032 0.0021 0.0023 0.0012 0.00001 

We observed increasing odds of AAA in eMERGE by PRS of both scores when modeled adjusting 
for age, sex, body mass index (BMI), and 10 principal components (Figure 1). In NHW, the scores 
were both significant (p-value = < 2e-16) and each explained 0.014% of the variance, while in NHB 
only the p<5e-3 score (PRS-B) was significant (p-value = 0.0028). When modeled as deciles, 
associations trended toward higher odds ratios at higher deciles for both PRS in NHW, but more 
consistently in NHB with the p=5e-3 PRS (Figure 1).  The 95th and higher percentile vs. the rest 
odds ratios were 2.45 (95% Confidence Interval [CI]: 2.09-2.88; p-value <2x10-16) and 2.11 (95% 
CI 0.84-5.31; p-value = 0.11) for NHW and NHB subsets, respectively, for the p=1 score (Table 2). 
For the p=5x10-3 PRS, the odds ratios were 2.2 (95% CI: 1.87-2.59; p-value <2x10-16) and 3.34 
(95% CI 1.49-7.47; p-value = 0.003) for NHW and NHB subsets, respectively.  

Table 2. Association between AAA PRS and AAA outcome in eMERGE 

RACE 
CASES / 

CONTROLS 

P=1 PRS 
OR (95% CI) 

P=1 PRS 
P-VALUE 

P=5E-3 PRS-B 

OR (95% CI) 

P=5E-3 PRS-B 

P-VALUE 

NHW 2,165 / 42,843 
2.45 

(2.09-2.88) 
<2.0x10-16 

2.20 
(1.87-2.59) 

<2.0x10-16 

NHB 42 / 4,492 
2.11 

(0.84-5.31) 
0.11 

3.34 
(1.49-7.47) 

0.003 

Each PRS modeled as top 5% of distribution compared to remainder. Covariates included age, sex, BMI and 10 principal 
components of ancestry.  

3.2.   Identification of phecode diagnosis risk factors 

In order to identify risk-associated diagnoses which precede AAA diagnosis/events, we performed 
a temporally-censored PheWAS. Within the Vanderbilt Synthetic Derivative dataset, we censored 
any diagnosis codes occurring after an ICD code for AAA, and performed a PheWAS using AAA 

Figure 1. Odds ratios for AAA with p=1 PRS (A) and p=5e-3 PRS (B) deciles in eMERGE  
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as the outcome and each phecode as the predictor. Atherosclerosis phecodes were broadly 
significant, while Kawasaki disease was significant only in NHB individuals. In total, 192 phecodes 
were significant in analyses of NHW, 10 in NHB, 3 in Hispanic and none in non-Hispanic Asian 
(NHA) (Table 3). In total, 196 phecodes were significantly associated in at least one analysis. All 
significant phecodes were included as components in the elastic net.   

Table 3. Feature-identifying PheWAS in Vanderbilt Synthetic Derivative 
RACE CASES CONTROLS PHECODES 

ANALYZED 

SIGNIFICANT 

PHECODES  

NHW 4,416 1,202,332 1866 192  
NHB 292 166,170 1860 10  
NHA 23 23,490 1802 0  
Hispanic 31 47,003 1843 3  

 
Of 202 variables (196 Phecodes) included in the elastic net, 87 were retained in the model- four a 
priori variables (smoking status, median BMI, age, and gender), and 83 Phecode diagnoses. 67 of 
87 features were negatively associated, that is, diagnosis of a preceding Phecode was associated 
with a reduced risk of AAA diagnosis. Chromosomal abnormalities and genetic disorders diagnoses 
(phecode 758) had the largest weighting in the elastic net model, despite being generally uncommon 
in the population studied (0.04%). Evaluation of the 83 phecodes indicated several hierarchical 
codes which were collapsed to select independent features, resulting in a final set of 68 phecodes. 

3.3.  Predictive models  

We validated our AAA risk prediction models developed in BioVU using external data to evaluate 
its discrimination and calibration. We benchmarked our models to the performance of the USPTF 
screening criteria. A sparse model containing age, sex, BMI, smoking status and principal 
components of ancestry performed substantially better than USPTF screening criteria, with AUCs 
over 0.8 in all three groups compared to AUCs ranging from 0.55-0.63 for USPTF primary and 
secondary criteria (Table 4, Figure 2). The AUCs when including PRS and covariates were 0.846 

Table 4. AUC (CI) for predictive models fit in BioVU and applied to eMERGE 
MODEL ALL NHW NHB 

USPTF-B 0.613 (0.604-0.622) 0.614 (0.605-0.623) 0.545 (0.504-0.586) 
USPTF-C 0.632 (0.623-0.642) 0.632 (0.622-0.642) 0.594 (0.539-0.650) 
COV 0.844 (0.836-0.851) 0.838 (0.830-0.845) 0.819 (0.765-0.873) 
PHE 0.859 (0.849-0.870) 0.853 (0.842-0.864) 0.807 (0.732-0.883) 
PHE+COV 0.883 (0.874-0.893) 0.877 (0.868-0.887) 0.758 (0.659-0.857) 
PRS 0.494 (0.484-0.505) 0.598 (0.586-0.610) 0.531 (0.448-0.613) 
PRS+COV 0.836 (0.829-0.844) 0.846 (0.838-0.854) 0.820 (0.766-0.874) 
FULL 0.883 (0.874-0.893) 0.877 (0.868-0.887) 0.758 (0.659-0.857) 

PRS-B 0.533 (0.522-0.544) 0.601 (0.589-0.613) 0.580 (0.498-0.662) 
PRS-B+COV 0.846 (0.839-0.854) 0.846 (0.838-0.853) 0.830 (0.776-0.874) 
FULL-B 0.883 (0.873-0.892) 0.880 (0.870-0.890) 0.758 (0.659-0.857) 

PRS: Best performing PRS overall; PRS-B/FULL-B: models including p<5e-3 optimal PRS in NHB 
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 (0.839-0.854), 0.846 (0.838-0.853) and 0.830 (0.776-0.884) for the entire dataset, in NHW, and in 
NHB respectively. Adding phecode predictors to the models improved AUCs further: 0.883 (0.873-
0.892), 0.880 (0.870-0.890) in the entire data and NHW set, respectively, but not in NHB (AUC = 
0.758 (0.659-0.857). 

We evaluated model reclassification and calibration using net reclassification indices (NRI) and 
Brier scores, respectively. Generally, although model calibration was very good for the full models 
(0.003-0.023; Table 5), inclusion of both PRS and phecode predictors to models using covariates 
had a moderate impact on reclassification indices (0.23) in combined datasets, with larger impacts 
in NHB (Table 6). The NRIs from these data compared to USPTF guidelines is striking, with 
covariates alone having an NRI of 0.20-0.37, and full models 0.46-0.83. 

Table 5. Brier scores for various models in eMERGE 
MODEL ALL NHW NHB 

FULL 0.021 0.023 0.0032 
FULL-B 0.021 0.023 0.0030 

4.  Discussion 

We have integrated a variety of data types to construct models for predicting AAA diagnoses across 
multiple EHR systems. Our polygenic scores for AAA, despite being developed using only 
European-ancestry genetic data, associated with AAA in NHB as well as NHW, and are being made 
available through the polygenic score catalog (pgscatalog.org). Addition of the PRS in the entire 
eMERGE dataset had a small negative effect on the model (DAUC = -0.008), however the model 
improved in the NHW and NHB strata separately, as did all PRS-B models. 

Our study suggests an enhanced disease screening program of asymptomatic individuals who 
would otherwise be considered lower risk by USPTF guidelines would substantially improve AAA 
detection in the US population. Even covariates alone perform substantially better than the USPTF 
guidelines, similar to what has been shown in a recent UK Biobank study with a simple predictive 

Figure 2. Receiver-operator curve plots using models applied in (top to bottom:) eMERGE overall, NHW and NHB 
for (left to right:) USPTF primary+secondary guidelines, covariates only, PRS-B only, covariates + PRS-B, phecodes 
only, and full models (covariates, PRS-B, and phecodes). 
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Table 6. NRI for predictive models in eMERGE compared with USPSTF screening criteria 
MODELS EMERGE EMERGE NHW EMERGE NHB 

USPTF C : B 0 0 0 
COV : USPTF B 0.37 0.31 0.20 
COV : USPTF C 0.37 0.31 0.20 
PRS+COV : COV 0.025 0.031 0.008 
PRS-B+COV : COV 0.018 0.024 0.048 
FULL : COV 0.23 0.25 0.61 
BFULL : COV 0.23 0.24 0.63 
FULL : USPTF B 0.60 0.50 0.82 
FULL : USPTF C 0.60 0.50 0.82 
BFULL : USPTF B 0.60 0.46 0.83 
BFULL : USPTF C 0.60 0.46 0.83 

PRS: Best performing PRS overall; PRS-B/FULL-B: models including p<5e-3 PRS (optimal in NHB). 
model that lacked variables for genetics, sex, or race38. This demonstrates the principle that 
opportunities exist to substantially improve the public health impact of AAA. Clinical decision 
support tools for identifying patients for AAA screening based on USPTF guidelines have existed 
for over a decade39-42, however, recent reports indicate that even those fitting USPTF criteria remain 
unlikely to receive screening (only 13% of eligible patients within ≥ two years)43. Importantly, these 
studies focused on male patients, while in both BioVU and eMERGE, females made up 23-25% of 
the AAA cases, higher than the 17% observed in the UK Biobank risk prediction study38.  

A critical aspect of implementing predictive models that rely on multiple structured data 
elements and complex calculations is scalability. Compared with the USPSTF guidelines, which are 
straightforward to incorporate into clinical practice, implementing the models we present here would 
require that calculations be integrated into EHR systems. Ideally risk determinations would be 
presented to the clinical practitioner in real time during an encounter with a patient. Given the 
significant discrimination improvement over USPSTF criteria, and examples of implementation for 
other traits44, we believe that real-time risk evaluation is feasible. Enhanced screening seems 
unlikely to lead to unnecessary invasive clinical procedures, as previous meta-analyses indicate that 
repair of small unruptured aneurysms had no advantage over routine ultrasound surveillance45. 

Recent studies have explored integration of imaging-derived parameters in prediction of AAA 
growth, rupture and mortality46-49. While our analyses rely on diagnostic codes and demographic 
information, our overarching goal is to identify potentially high-risk individuals for AAA screening 
via imaging. The goals of these approaches are distinct: identification of who is likely to develop 
AAA and who among AAA patients requires intervention. Restriction to extant structured data in 
the EHR improves the likelihood and feasibility of implementation of models in the clinical setting. 

Our study is most limited by sample counts for most diverse racial/ethnic groups being too small 
to include as separate strata. This is concerning due to racial/ethnic differences in screening 
prevalence but also in clinical presentation, treatment, and mortality following surgical repair19-

21,50,51. We were able to include NHB individuals in all phases of this analysis, and confirmed that 
performance of USPTF criteria is lower in this group19,43,51, but that clinically meaningful prediction 
(AUC>0.8) were attainable using either basic covariates or medical diagnoses.  
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Our results in eMERGE NHB participants incorporating phecodes suggested that despite use of 
cross-validation, our models from BioVU were likely overfit due to sparseness of NHB participants 
relative to the number of terms estimated. Larger numbers of NHB participants would facilitate 
improved models, however, we observed good discriminative performance compared with USPTF.  

Predictive models including a PRS optimized in NHB individuals resulted in models that 
performed nearly equally as well in NHW but provided modest improvements in NHB. This is 
unusual for genetic studies based solely on European-ancestry participants52 but suggests that risk 
variants may persist across diverse populations, making prediction of events easier. Although the 
PRS alone was little better than chance at predicting AAA diagnosis, including covariates was 
sufficient to yield clinical utility53. Future work evaluating scalability and incorporating sex-
stratified estimates into models will enhance quality of prediction and clinical implementation. 

In summary, we provide predictive models and polygenic scores for AAA which strongly 
associated with and predict AAA risk in multiple populations. These models substantially improve 
identification of people at risk of a AAA diagnosis compared with existing guidelines.  

References  

1. Dua A, et al. Epidemiology of aortic aneurysm repair in the United States from 2000 to 2010. 
J Vasc Surg. 2014;59(6):1512-1517. 

2. Summers KL, et al. Evaluating the prevalence of abdominal aortic aneurysms in the United 
States through a national screening database. J Vasc Surg. 2021;73(1):61-68. 

3. Stuntz M. Modeling the Burden of Abdominal Aortic Aneurysm in the USA in 2013. 
Cardiology. 2016;135(2):127-131. 

4. Benjamin EJ, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the 
American Heart Association. Circulation. 2019;139(10):e56-e528. 

5. Lo RC, et al. Abdominal aortic aneurysms in women. J Vasc Surg. 2016;63(3):839-844. 
6. Jahangir E, et al. Smoking, sex, risk factors and abdominal aortic aneurysms: a prospective 

study of 18 782 persons aged above 65 years in the Southern Community Cohort Study. 
Journal of epidemiology and community health. 2015;69(5):481-488. 

7. Pleumeekers HJ, et al. Aneurysms of the abdominal aorta in older adults. The Rotterdam 
Study. Am J Epidemiol. 1995;142(12):1291-1299. 

8. Ye Z, et al. Family history of atherosclerotic vascular disease is associated with the presence 
of abdominal aortic aneurysm. Vasc Med. 2016;21(1):41-46. 

9. Portilla-Fernandez E, et al. Genetic and clinical determinants of abdominal aortic diameter: 
genome-wide association studies, exome array data and Mendelian randomization study. 
Hum Mol Genet. 2022. 

10. Wahlgren CM, et al. Genetic and environmental contributions to abdominal aortic aneurysm 
development in a twin population. J Vasc Surg. 2010;51(1):3-7; discussion 7. 

11. Klarin D, et al. Genetic Architecture of Abdominal Aortic Aneurysm in the Million Veteran 
Program. Circulation. 2020;142(17):1633-1646. 

12. Jones GT, et al. Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic 
Aneurysm Identifies Four New Disease-Specific Risk Loci. Circ Res. 2017;120(2):341-353. 

13. Bradley DT, et al. A variant in LDLR is associated with abdominal aortic aneurysm. Circ 
Cardiovasc Genet. 2013;6(5):498-504. 

14. Bown MJ, et al. Abdominal aortic aneurysm is associated with a variant in low-density 
lipoprotein receptor-related protein 1. Am J Hum Genet. 2011;89(5):619-627. 

Pacific Symposium on Biocomputing 2023

434



 
 

 

15. Gretarsdottir S, et al. Genome-wide association study identifies a sequence variant within 
the DAB2IP gene conferring susceptibility to abdominal aortic aneurysm. Nat Genet. 
2010;42(8):692-697. 

16. Chaikof EL, et al. The Society for Vascular Surgery practice guidelines on the care of 
patients with an abdominal aortic aneurysm. J Vasc Surg. 2018;67(1):2-77.e72. 

17. Kent KC. Clinical practice. Abdominal aortic aneurysms. N Engl J Med. 
2014;371(22):2101-2108. 

18. Guirguis-Blake JM, et al. Primary Care Screening for Abdominal Aortic Aneurysm: 
Updated Evidence Report and Systematic Review for the US Preventive Services Task 
Force. Jama. 2019;322(22):2219-2238. 

19. Li SR, et al. Epidemiology of age-, sex-, and race-specific hospitalizations for abdominal 
aortic aneurysms highlights gaps in current screening recommendations. J Vasc Surg. 2022. 

20. Deery SE, et al. Racial disparities in outcomes after intact abdominal aortic aneurysm repair. 
J Vasc Surg. 2018;67(4):1059-1067. 

21. Williams TK, et al. Disparities in outcomes for Hispanic patients undergoing endovascular 
and open abdominal aortic aneurysm repair. Ann Vasc Surg. 2013;27(1):29-37. 

22. Pulley J, et al. Principles of human subjects protections applied in an opt-out, de-identified 
biobank. Clinical and translational science. 2010;3(1):42-48. 

23. Roden DM, et al. Development of a large-scale de-identified DNA biobank to enable 
personalized medicine. Clinical pharmacology and therapeutics. 2008;84(3):362-369. 

24. Das S, et al. Next-generation genotype imputation service and methods. Nat Genet. 
2016;48(10):1284-1287. 

25. McCarthy S, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat 
Genet. 2016;48(10):1279-1283. 

26. Wu P, et al. Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development 
and Initial Evaluation. JMIR Med Inform. 2019;7(4):e14325. 

27. Wei WQ, et al. Evaluating phecodes, clinical classification software, and ICD-9-CM codes 
for phenome-wide association studies in the electronic health record. PLoS One. 
2017;12(7):e0175508. 

28. Gottesman O, et al. The Electronic Medical Records and Genomics (eMERGE) Network: 
past, present, and future. Genetics in medicine : official journal of the American College of 
Medical Genetics. 2013;15(10):761-771. 

29. McCarty CA, et al. The eMERGE Network: a consortium of biorepositories linked to 
electronic medical records data for conducting genomic studies. BMC medical genomics. 
2011;4:13. 

30. Kurki MI, et al. FinnGen: Unique genetic insights from combining isolated population and 
national health register data. medRxiv. 2022:2022.2003.2003.22271360. 

31. Willer CJ, et al. METAL: fast and efficient meta-analysis of genomewide association scans. 
Bioinformatics. 2010;26(17):2190-2191. 

32. Ge T, et al. Polygenic prediction via Bayesian regression and continuous shrinkage priors. 
Nature communications. 2019;10(1):1776. 

33. Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer 
datasets. GigaScience. 2015;4:7. 

34. Manca R, et al. The neural signatures of psychoses in Alzheimer's disease: a neuroimaging 
genetics approach. European archives of psychiatry and clinical neuroscience. 2022. 

Pacific Symposium on Biocomputing 2023

435



 
 

 

35. Carroll RJ, et al. R PheWAS: data analysis and plotting tools for phenome-wide association 
studies in the R environment. Bioinformatics. 2014;30(16):2375-2376. 

36. Simon N, et al. Regularization Paths for Cox's Proportional Hazards Model via Coordinate 
Descent. J Stat Softw. 2011;39(5):1-13. 

37. Friedman J, et al. Regularization Paths for Generalized Linear Models via Coordinate 
Descent. J Stat Softw. 2010;33(1):1-22. 

38. Welsh P, et al. Derivation and Validation of a 10-Year Risk Score for Symptomatic 
Abdominal Aortic Aneurysm: Cohort Study of Nearly 500 000 Individuals. Circulation. 
2021;144(8):604-614. 

39. Chaudhry R, et al. Use of a Web-based clinical decision support system to improve 
abdominal aortic aneurysm screening in a primary care practice. J Eval Clin Pract. 
2012;18(3):666-670. 

40. Hye RJ, et al. Leveraging the electronic medical record to implement an abdominal aortic 
aneurysm screening program. J Vasc Surg. 2014;59(6):1535-1542. 

41. Eaton J, et al. Effect of visit length and a clinical decision support tool on abdominal aortic 
aneurysm screening rates in a primary care practice. J Eval Clin Pract. 2012;18(3):593-598. 

42. Lee ES, et al. Implementation of an aortic screening program in clinical practice: 
implications for the Screen For Abdominal Aortic Aneurysms Very Efficiently (SAAAVE) 
Act. J Vasc Surg. 2009;49(5):1107-1111. 

43. Anjorin AC, et al. Underutilization of Guideline-based Abdominal Aortic Aneurysm 
Screening in an Academic Health System. Ann Vasc Surg. 2022;83:184-194. 

44. Pasley J. Predicting blood clots before they happen in pediatric patients. VUMC Reporter. 
May 28, 2021, 2021. https://news.vumc.org/2021/05/26/predicting-blood-clots-before-they-
happen-in-pediatric-patients/. 

45. Ulug P, et al. Surgery for small asymptomatic abdominal aortic aneurysms. Cochrane 
Database Syst Rev. 2020;7(7):Cd001835. 

46. Dong H, et al. MR Elastography of Abdominal Aortic Aneurysms: Relationship to 
Aneurysm Events. Radiology. 2022;304(3):721-729. 

47. Lorandon F, et al. Scannographic Study of Risk Factors of Abdominal Aortic Aneurysm 
Rupture. Ann Vasc Surg. 2021;73:27-36. 

48. Jalalzadeh H, et al. Estimation of Abdominal Aortic Aneurysm Rupture Risk with 
Biomechanical Imaging Markers. J Vasc Interv Radiol. 2019;30(7):987-994.e984. 

49. Hirata K, et al. Machine Learning to Predict the Rapid Growth of Small Abdominal Aortic 
Aneurysm. J Comput Assist Tomogr. 2020;44(1):37-42. 

50. Ribieras AJ, et al. Racial disparities in presentation and outcomes for endovascular 
abdominal aortic aneurysm repair. J Vasc Surg. 2022. 

51. Barshes NR, et al. Racial and ethnic disparities in abdominal aortic aneurysm evaluation and 
treatment rates in Texas. J Vasc Surg. 2022;76(1):141-148.e141. 

52. Martin AR, et al. Clinical use of current polygenic risk scores may exacerbate health 
disparities. Nature genetics. 2019;51(4):584-591. 

53. Lambert SA, et al. Towards clinical utility of polygenic risk scores. Hum Mol Genet. 
2019;28(R2):R133-r142. 

 

Pacific Symposium on Biocomputing 2023

436



© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 
License. 

Quantifying factors that affect polygenic risk score performance across diverse ancestries 
and age groups for body mass index 

Daniel Hui1*, Brenda Xiao1*, Ozan Dikilitas2, Robert R. Freimuth3, Marguerite R. Irvin4, Gail P. Jarvik5, 
Leah Kottyan6, Iftikhar Kullo7, Nita A. Limdi8, Cong Liu9, Yuan Luo10, Bahram Namjou11, Megan J. 
Puckelwartz12, Daniel Schaid13, Hemant Tiwari14, Wei-Qi Wei15, Shefali Verma16, Dokyoon Kim17, 

Marylyn D. Ritchie18** 
1Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, 

PA, USA 
2Department of Internal Medicine, Department of Cardiovascular Medicine, Clinician-Investigator 

Training Program, Mayo Clinic, Rochester MN 
3Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA 

4Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States 
5Departments of Medicine and Genome Sciences, University of Washington, Seattle WA, USA 

6Center for Autoimmune Genomics and Etiology, Department of Pediatrics, University of Cincinnati, 
Cincinnati, OH, USA 

7Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA 
8Department of Neurology & Epidemiology, University of Alabama at Birmingham, Birmingham, AL, 

USA 
9Department of Biomedical Informatics, Columbia University, New York, NY, USA 

10Department of Preventive Medicine (Health and Biomedical Informatics), Northwestern University, 
Chicago, IL USA 

11Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA 
12Department of Pharmacology, Northwestern University, Chicago, IL USA 

13Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo 
Clinic, Rochester, MN 55905, USA 

14Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States 
15Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA 

16Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of 
Pennsylvania, Philadelphia, PA, USA 

17Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, 
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 

18Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University 
of Pennsylvania, Philadelphia, PA, USA 

Email: marylyn@pennmedicine.upenn.edu

*Equal contributions to the manuscript
**Corresponding author

Polygenic risk scores (PRS) have led to enthusiasm for precision medicine. However, it is well 
documented that PRS do not generalize across groups differing in ancestry or sample characteristics 
e.g., age. Quantifying performance of PRS across different groups of study participants, using
genome-wide association study (GWAS) summary statistics from multiple ancestry groups and
sample sizes, and using different linkage disequilibrium (LD) reference panels may clarify which
factors are limiting PRS transferability. To evaluate these factors in the PRS generation process,
we generated body mass index (BMI) PRS (PRSBMI) in the Electronic Medical Records and
Genomics (eMERGE) network (N=75,661). Analyses were conducted in two ancestry groups
(European and African) and three age ranges (adult, teenagers, and children). For PRSBMI

calculations, we evaluated five LD reference panels and three sets of GWAS summary statistics of
varying sample size and ancestry. PRSBMI performance increased for both African and European
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ancestry individuals using cross-ancestry GWAS summary statistics compared to European-only 
summary statistics (6.3% and 3.7% relative R2 increase, respectively, pAfrican=0.038, 
pEuropean=6.26x10-4). The effects of LD reference panels were more pronounced in African ancestry 
study datasets. PRSBMI performance degraded in children; R2 was less than half of teenagers or 
adults. The effect of GWAS summary statistics sample size was small when modeled with the other 
factors. Additionally, the potential of using a PRS generated for one trait to predict risk for 
comorbid diseases is not well understood especially in the context of cross-ancestry analyses – we 
explored clinical comorbidities from the electronic health record associated with PRSBMI and 
identified significant associations with type 2 diabetes and coronary atherosclerosis. In summary, 
this study quantifies the effects that ancestry, GWAS summary statistic sample size, and LD 
reference panel have on PRS performance, especially in cross-ancestry and age-specific analyses. 

Keywords: polygenic risk scores (PRS), risk prediction, transferability, diversity

Introduction
Polygenic risk scores (PRS) provide individualized genetic estimates of a phenotype by 
aggregating genetic effects across hundreds or thousands of loci, typically from genome-wide 
association studies (GWAS). PRS are potentially a powerful source of increased prediction 
performance, even when combined with family history (1,2). However, in recent years it has 
become increasingly apparent that performance of PRS is substantially reduced when the 
ancestry of the individuals in whom prediction is being done differs from the ancestry of the 
individuals from the GWAS used to generate SNP weights used for PRS construction. For 
instance, when using GWAS from European ancestry individuals, the prediction accuracy of 
polygenic scores in individuals of African or Hispanic/Latino ancestry have a relative 
performance of 25% and 65% compared to performance in European ancestry individuals (3). 
Additionally, evidence exists suggesting that for some traits, such as adiposity traits, this 
disparity may be further exacerbated by environmental, demographic, or social risk factors 
(including age, physical activity, smoking status, and alcohol use (4–7)). For example, 
differences in the genetic architecture of body mass index (BMI) have been shown to differ 
between age groups (8–11). Thus, the performance of PRS for BMI is also affected by the age of 
the individuals used in the GWAS and the study data where the PRS is evaluated (12). Broad-
sense heritability estimates for BMI in adults ranges from 40%-90% when estimated in adults of 
different cohorts even of homogeneous ancestry (13); even if heritability estimates are similar 
across populations, genetic architecture and enrichment for variants in different functional 
categories may still differ (14,15). 

Several outstanding questions surrounding PRS, especially within the context of adiposity 
traits and BMI, warrant further investigation. For instance, when cross-ancestry summary 
statistics (i.e., those including individuals of multiple ancestry groups in the GWAS) are 
available, can they be used to improve prediction performance in individuals from one or more 
different ancestry groups? We need a more thorough evaluation of the potential prediction 
performance gain (or loss) in African ancestry individuals when cross-ancestry GWAS summary 
statistics are used to estimate the SNP weights. In addition, we need to improve our 
understanding of the impact of the composition of the linkage disequilibrium (LD) reference 
panel in combination with cross-ancestry GWAS summary statistics on PRS prediction 
performance. For prediction of BMI specifically, how does prediction performance differ for 
individuals in different age groups, especially those who are not adults (i.e., less than age 18)? 
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Additionally, how much these different variables impact the PRS performance when considered 
together is important to explore. Developing a deeper understanding of which features (ancestry 
of individuals in the GWAS, ancestry of the individuals generating the LD references panel, 
ancestry of the study data, age of the study data) have the greatest impact of PRS performance 
will help the field develop future studies and strategies around clinical risk prediction with PRS. 
The degree to which increased GWAS sample size increases prediction performance regardless 
of these other factors is also important to determine. Finally, there is potential for using a PRS 
generated for one trait to predict risk for comorbid traits.  Understanding how much the different 
elements of PRS generation affects associations with clinical comorbidities of obesity is of great 
importance for precision medicine.  
 We comprehensively investigated the influence of these factors on the performance of PRS 
using the Electronic Medical Records and Genomics (eMERGE) Network dataset. eMERGE is 
an NIH funded consortium that combines participants from multiple electronic health record 
(EHR) linked biobanks (16). In the present study, we included 75,661 individuals of diverse 
ancestry and age (14% African ancestry, 55% female, and 12% children age < 13). These 
individuals were from the eMERGE III imputed array dataset (N=83,717) (dbGaP Study: 
phs001584.v2.p2), estimated European or African ancestry, and had BMI measurements 
available. For these analyses, we used published BMI GWAS summary statistics from the 
GIANT (Genetic Investigation of ANthropometric Traits) consortium, an international 
consortium that primarily studies anthropometric traits, which included participants (max 
N=339,224, mean N per variant=226,960) from European, African, and Asian ancestry groups 
(17). We also used summary statistics from a European ancestry BMI GWAS (18) in UK 
Biobank (UKBB) individuals (N=339,721), which was conducted using both the full sample size 
of the European ancestry UKBB, as well as after down-sampling to the same number of 
individuals in the GIANT GWAS. This comparison allowed us to better evaluate whether it was 
the ancestry composition or the sample size of the dataset where the GWAS summary statistics 
were derived that affected the results of the PRS performance. We calculated PRS for BMI 
(PRSBMI) across 90 different combinations of analyses (described more in Methods) – six 
different groupings based on ancestry and age, five different LD reference panels (of varying 
ancestry and from three different cohorts), and the three mentioned sets of GWAS summary 
statistics. We then statistically compared the different sets of analyses to see what factors most 
influence PRSBMI performance across various groupings of individuals based on ancestry and 
age. Lastly, we also tested the association of the best performing PRSBMI with common 
comorbidities across ancestry groups to identify the clinical relevance of the PRSBMI in 
phenotypes derived from an Electronic Health Record (EHR). Investigation of these variables 
elucidates our understanding of the factors that affect PRS performance and transferability across 
ancestries and populations, especially within the context of BMI, as well as the potential of using 
PRSBMI to predict risk for comorbid disease. 

Methods 
Overall study design 
The electronic Medical Records and Genomics (eMERGE) network dataset is an NIH funded 
consortium that combines participants from multiple electronic health record (EHR) linked 
biobanks. In this study, we included 75,661 individuals with available genetic and phenotypic 
data. The individuals in the eMERGE dataset include multiple ancestry groups – genetically 
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inferred ancestry was assigned by the eMERGE consortium (16) – and a large age distribution 
(14% African ancestry, 19% less than age 18, Figure 1). Briefly, we calculated PRSBMI for all 
individuals within each combination where the following elements of the model varied: 1) LD 
panels that differed in ancestry, 2) GWAS summary statistics with variable ancestry 
composition, and 3) GWAS summary statistics for two different sample sizes. The details for 
each of these are provided more below. The data was also split by ancestry and age group, and 
we statistically compared PRSBMI performance between all the different groups – in total, 90 sets 
of PRSBMI were calculated separately and then compared. We first estimated the effect and 
significance of each variable (i.e., ancestry of GWAS summary statistics and test data, LD panel 
ancestry, size of GWAS summary statistics, and age of test individuals) on PRS performance. 
Next, we estimated how much each variable affects PRSBMI performance when all are modeled 
together, and finally we analyzed the potential clinical associations by testing the PRSBMI for 
association with common comorbid conditions from the EHR. For the primary results related to 
LD panel or ancestry of summary statistics and test data, we restricted analyses to adults as the 
other age groups were limited in sample size. In the following sections, we describe all these 
elements in more detail. 

Figure 1. Flowchart of project. Max size of LD panel was 5,000 individuals. UK Biobank (UKBB) 
European GWAS summary statistics were down-sampled to the mean sample size per variant of GIANT 

(N=226,960), full size of UKBB European was N=377,921. 1000 Genomes is abbreviated as 1KG. 

Summary statistics to generate PRSBMI 

We obtained published GWAS summary statistics from the GIANT consortium (17) to use as 
one set of BMI GWAS summary statistics. Up to 322,154 adults of European ancestry, as well as 
an additional 17,072 adults of non-European ancestry (adults of African, East Asian, and South 
Asian ancestry), were included in the GIANT GWAS analysis. 

For the second set of summary statistics, we performed a GWAS in the individuals of 
European ancestry from the UK Biobank (UKBB). Individuals were first filtered by low quality 
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samples (sex mismatch between genetically inferred and self-reported, variant missingness > 
5%), relatedness (no 2nd degree relatives or higher), and within the White British ancestry subset 
(with these individuals being defined by UKBB and selected based on self-reports and 
genetically determined ancestry) (18); a total of 377,921 individuals initially remained. Variants 
were filtered on imputation quality score (using the INFO metric (19)) > 0.30, and minor allele 
frequency > 1% within this subset of individuals. In addition, we generated a second set of 
GWAS summary statistics from the UKBB, where we randomly down-sampled individuals to 
the sample size in the GIANT GWAS dataset (N=226,960). In each UKBB GWAS, data 
processing and modeling were performed similarly as in the GIANT GWAS – summary statistics 
were calculated using linear regression, with age, age2, sex, and the first 5 genetic principal 
components (PCs) included as covariates. BMI, defined as weight in kilograms divided by 
squared height in meters, was first inverse-rank normal transformed.  

After calculation of BMI GWAS summary statistics in each of the two datasets of UKBB 
individuals of European ancestry, we harmonized variants across all datasets used (UKBB, 
eMERGE, GIANT, and 1000 Genomes Phase 3). For the remainder of downstream analyses, we 
kept only those variants that were present in all datasets, and additionally excluded any strand-
ambiguous SNPs (alleles A/T or C/G), and retained only biallelic variants; in total, 2,014,457 
variants were retained for analyses. 

LD reference panels 
Five different LD reference panels were used for each set of PRSBMI calculations: 1) all of 1000 
Genomes (1KGAll) (N=2,504), 2) 1000 Genomes European ancestry (1KGEUR) (N=503), 3) 5,000 
randomly selected European ancestry individuals from the UK Biobank (UKBBEUR), 4) 5,000 
randomly selected individuals from all of UK Biobank (UKBBAll), and 5) up to 5,000 randomly 
selected individuals from the dataset for which PRSBMI were being calculated for in the eMERGE 
dataset (referred to as test data henceforward). These panels were chosen to test for differences in 
ancestry distribution and sample size on PRS performance. 

Statistical methods 
PRS software 

For each comparison set, PRSBMI were calculated using pruning and thresholding method via 
PRSice v2.1.9 (20). We chose to use PRSice due to the flexibility it provides in choosing 
external LD panels and allowed us to easily include multi-ancestry LD panels in our analyses. 
Default parameters were used in all analyses (clumping performed in 250 kb windows using an 
R2 of 0.1, p-value step size of 0.00005 between p-values of .0001 up to .10 and step size of .0001 
between p-values of .10 up to .50).  

Statistical comparisons 

Incremental R2 for PRSBMI was calculated by subtracting the R2 using a model with only the 
covariates from the R2 of the model using the covariates and the PRSBMI (the default option in 
PRSice). Statistical differences between model performances from different iterations were 
determined using the Wilcoxon rank-sum test to compare the distributions of the squared 
residuals generated from the model for all individuals in the iteration; for comparisons between 
the same set of individuals, the paired Wilcoxon rank-sum test was used. When testing which of 
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the five LD panels performed the best, we used a Bonferroni-corrected threshold of 0.05/10 = 
0.005 (ten comparisons between five LD panels). When comparing the best performing PRSBMI 
across ancestries and summary statistics using their best LD panel, we used a Bonferroni 
threshold of 0.05/25 = 0.002 (25 comparisons between the five LD panels used). 

Proportion of variance explained by each individual variable 

We modeled all evaluated features together in the following linear regression model: 
R2 ~ LD panel + NSumstat + AgeTest + AncestrySumstat + AncestryTest + AncestrySumstat*AncestryTest 

Where the Sumstat subscript is defined as a set of GWAS summary statistics, and the Test 
subscript is defined as a set of test individuals that PRS prediction is being assessed in. We 
quantified the variance in R2 that could be explained by each of these different variables using 
type II sum of squares from ANOVA. The sum of squares of variables involving ancestry were 
summed together; an interaction term between summary statistics ancestry and test data ancestry 
was included to identify whether the ancestry of summary statistics and test data matched. 

Association of PRSBMI with comorbidities 

We selected the ten most frequent Phecodes (21) from the EHR data in the eMERGE dataset 
(which includes obesity as a positive control) to test their association with the PRSBMI. For each 
Phecode, individuals were classified as a case for the condition if there was at least one 
occurrence of the respective Phecode in their EHR record; individuals were classified as a 
control for that condition if there was no occurrence of the Phecode. This classification is a rule-
of-one instance of a Phecode to define case status. For each eMERGE ancestry subgroup, we 
selected the best performing PRSBMI i.e., the PRSBMI with the highest R2, and tested the 
association of the PRSBMI with these ten clinical conditions using a logistic regression model. 
PRSBMI was first mean-centered and standard deviation was set to 1. Sex, age, age2, and the first 
five genetic PCs were included as covariates. 

Data visualization 

The ‘ggplot2’ R package was used for plotting, with the ‘geom_signif’ package used to include 
significance bars. The association results were plotted using PheWAS-View (22). 

Results 
Effect of LD panel 
For adults of African ancestry, when using the down-sampled UKBB GWAS summary statistics, 
using either cross-ancestry or African ancestry test data LD panels significantly improved 
PRSBMI performance compared to European ancestry LD panels (Figure 2). When using the 
UKBB summary statistics, the top PRSBMI R2 was 0.0140 using the test data as LD panel, while 
the second-best performing LD panel (UKBB European) had an R2 of 0.0109 (p = 4.94x10-20). 
When using the GIANT summary statistics, the top PRSBMI R2 was 0.0149 using 1KGAll as the 
reference panel. The PRSBMI calculated using the best European ancestry panel (1KGEUR) resulted 
in a R2 of 0.0141, but this difference between these two reference panels was not Bonferroni 
significant (p = 0.037). However, the 1KGall LD panel performed significantly better than the two 
UKBB LD panels (UKBBAll: R2 = 0.0134, p = 3.65x10-5; UKBB European: R2 = 0.0128, p = 
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3.65x10-9). The test data LD panel performed the second-best with an R2 of 0.0142, and 
significantly outperformed the UKBB European LD panel (p = 4.78x10-5). For adults of 
European ancestry, we observed more significant differences in performance when using the 
GIANT summary statistics compared to the down-sampled UKBB summary statistics. The 
1KGAll LD panel performed the best with a R2 of 0.0612. It also significantly outperformed all 
other LD panels (1KGEUR: R2 = 0.0560, p = 5.54x10-104; Test data: R2 = 0.0564, p = 6.50x10-67; 
UKBBAll: R2 = 0.0561, 8.09x10-107; UKBBEUR: R2 = 0.0561, p = 3.02x10-77). We note that this 
increase was larger when using the GIANT summary statistics but was still present when using 
the UKBB summary statistics. When using the UKBB summary statistics, the choice of LD 
panel had a much smaller impact on prediction performance. While the 1KGAll LD panel 
performed the best, the difference in performance was much less significant between the next 
best performing LD panel (R2

1KGAll = 0.0590, R2
UKBBAll = 0.0583, p = 3.48x10-4). The difference 

between the best and worst performing scores – LD panel using 1KG all versus 1KG European – 
was also much less significant (p= 1.15x10-12). These results suggest that the choice of LD panel 
particularly matters when calculating PRSBMI using cross-ancestry GWAS, or for African 
ancestry individuals when the GWAS summary statistics are derived from European ancestry 
individuals. 

      However, we did observe a slight decrease in the impact of the choice of LD panel when 
using the full UKBB summary statistics for adults; again, the largest differences were observed 
in adults of African ancestry, but differences in performance across LD panels were not as 
significant. The test LD panel performed second best with the 1KGEUR LD panel performing best 
(R2

Test = 0.0197, R2
1KGEUR = 0.0200, p = 0.18). The 1KGAll LD panel was the worst performing LD 

panel with an R2 of 0.0185, and this difference between the 1KGEUR LD panel was significant 
after multiple hypothesis correction (p = 5.08x10-7). 

Figure 2. PRS R2 values across all runs in adults. Asterisks without bars indicate significantly different R2 
values between the other 4 LD panels used. Bars are present for significant differences between specific 

R2 values. 

EUR Adults AFR Adults
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Effect of summary statistics and ancestry of test data 

As expected, the R2 values of the PRSBMI were significantly higher when calculated for European 
ancestry adults than adults of African ancestry, even when using the cross-ancestry GIANT 
summary statistics (Figure 2). When using the GIANT summary statistics, the best performing 
PRSBMI in adults of European ancestry had an R2 of 0.0612, which was significantly higher than 
the R2 from the best performing PRSBMI in African ancestry adults (R2 = 0.0149, p < 4.9x10-324). 

In African ancestry adults, the R2 when using the GIANT summary statistics was higher than 
the R2 when using the down-sampled UKBB summary statistics with their respective best LD 
panel (GIANT (1KGAll LD panel): R2 = 0.0149, UKBB (test data LD panel): R2 = 0.0140; p = 
0.038). This difference was not statistically significant after multiple hypothesis correction. 
However, the GIANT summary statistics with the 1KGAll LD panel did significantly outperform 
the UKBB summary statistics with all other LD panels. When keeping the LD panel constant, the 
PRSBMI calculated using the GIANT summary statistics resulted in higher R2 than using the 
UKBB summary statistics for all LD panels except for the test data LD panel, and this difference 
was statistically significant for the 1KGAll (p = 1.55x10-33), 1KGEUR (p = 6.78x10-18), and 
UKBBAll (p = 1.28x10-15) LD panels. Somewhat surprisingly, we observed higher R2 values for 
European ancestry adults when using the cross-ancestry GIANT summary statistics versus the 
down-sampled European UKBB summary statistics (R2

GIANT = 0.0612 versus R2
UKBB = 0.0590), 

with this difference being statistically significant (p = 6.26x10-4); the best performing LD panel 
for both set of summary statistics was 1KGAll.  

We also compared prediction performance in all individuals using the full (N=377,921) 
European UKBB GWAS versus the European UKBB GWAS down-sampled to GIANT’s sample 
size (N=226,960) (Figure 2, Supplemental Table 1). For consistency, UKBB European 
individuals were used for the European test ancestry comparisons, and for the African ancestry 
comparisons the test sets (i.e., African ancestry LD panels) were used as LD panels. Uniformly 
across test ancestry and age groups, we observed higher and statistically significant increases in 
R2. 

Prediction performance across different age groups 
Across different ancestries and summary statistics, we broadly observed similar R2 values for 
adults and teenagers, with substantially reduced performance in children (Supplemental Figure 
1). R2 values in children were consistently less than half of that in adults and teenagers, with 
differences in R2 values for adults and teenagers being minimal (except in the case of African 
ancestry individuals using the GIANT summary statistics, with teenagers having more than 
double the R2 of adults). Somewhat surprisingly, teenagers consistently had higher R2 than adults 
across all analyses, although these differences were much less significant than those compared 
with children. 

Proportion of variance explained by each assessed factor  
While we observed significant differences due to ancestry, age, and number of individuals used 
to calculate summary statistics, we aimed to quantify the effect of these different variables on 
PRSBMI performance when considered together (Table 1). We observed that 89.5% of the 
variance in PRSBMI R2 could be explained using these variables, indicating that the majority of 
the effects of LD panel, ancestry, age, and sample size could be explained through linear 
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relationships with PRSBMI R2. In the context of these comparisons, the ancestry of the summary 
statistics or test data accounts for 55.1% of the variance explained in PRSBMI R2. Choice of LD 
panel and age of test individuals accounted for similar amounts of variance explained in PRSBMI 
R2 (16.5% and 15.9%, respectively), while the number of individuals used to calculate the 
GWAS summary statistics only accounted for 1.9% of variance explained in PRSBMI R2. Per 
previous sections, while number of individuals used for summary statistics resulted in significant 
differences in PRSBMI performance, its overall impact when modeled jointly with all the other 
factors in the context of these analyses seemed to be small. 

 
Table 1. Proportion of variance in R2 that can be explained by different variables using type II sum of 

squares from ANOVA. 

PRSBMI association with comorbid traits 
To determine whether the PRSBMI was associated with clinical comorbidities, we performed a 
Phenome-Wide Association Study for ten clinical conditions (Supplemental Table 2, described 
more in Methods).  Here, the PRSBMI was tested for association with diagnosis codes (Phecodes) 
to evaluate whether the polygenic background for BMI associates with these clinical diagnoses.  
The PRSBMI was significantly associated with several of the most frequent Phecodes in eMERGE, 
particularly in European adults (Figure 3a). As expected, obesity had the strongest association 
with PRSBMI in all ancestry groups (pEUR < 4.9x10-324; pAFR = 5.17x10-8); this was a positive 
control. In European ancestry individuals, the best performing PRSBMI was also significantly 
positively associated with type 2 diabetes (pEUR = 1.04x10-102), essential hypertension (pEUR = 
7.12x10-56), coronary atherosclerosis (pEUR = 3.61x10-26), hyperlipidemia (pEUR = 4.38x10-16), 
depression (pEUR = 1.95x10-13), hypercholesteremia (pEUR = 3.64x10-15), asthma (pEUR = 3.13x10-

13), and diverticulosis (pEUR = 0.0017). These associations were less statistically significant in 
African ancestry individuals, which had much lower sample size, and many associations were no 
longer significant after Bonferroni correction. Only type 2 diabetes (pAFR = 1.2x10-5) and 
coronary atherosclerosis (pAFR = 0.001) were significantly associated with the PRSBMI in African 
ancestry adults. We also looked at the prevalence of each condition per PRS quintile for the most 
significantly associated conditions (Figure 3b). The case prevalence generally increased in higher 
PRSBMI quintile groups for conditions significantly associated with the PRSBMI, a trend matching 
the results we obtained from the association analysis. Phenotypes with downward trends were 
not significantly associated with PRSBMI, and low sample sizes in earlier quintile groups may 
have contributed to this seemingly decreasing prevalence. We performed similar analyses in 
teens and children but identified no statistically significant associations (results not shown). The 
much smaller sample sizes of the Phecodes in these age groups may have also contributed to the 
lack of statistically significant results – most of these diagnoses are adult-onset conditions. 
 

Variable Proportion of explained variance 
Ancestry of summary statistics or test data 0.5510 
Choice of LD reference panel 0.1650 
Age of test individuals 0.1590 
N individuals used to calculate summary statistics 0.0195 
Residuals (unexplained variance) 0.1050 
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Figure 3. a) Best PRSBMI associations with top 9 most prevalent conditions overall in eMERGE adults. 
Note the association with obesity is not included in the plot because the p-value in European ancestry 

individuals was pEUR < 4.9x10-324  which was off the scale of the plot. b) Prevalence plots of significantly 
associated conditions in eMERGE adults by best performing PRS quintile 

Discussion 
Somewhat unintuitively, African ancestry LD panels performed best for African ancestry 
individuals, regardless of whether European ancestry or cross-ancestry GWAS summary 
statistics were used. We observed minimal impact of the choice of LD panel when both test data 
and summary statistics were of European ancestry. These results suggest that as long as either the 
test data or GWAS summary statistics are of similar ancestry, or the test data and LD panel are 
of similar ancestry, the difference in PRS performance may be minimal as compared to if all the 
GWAS summary statistics, test data, and LD panel are all of the same ancestry. We also 
observed significantly decreased PRS performance in children compared to adults and teens, 
with the GWAS used in this study being conducted on adult populations. 

While the findings in this study highlight many important strategies for performing PRS in 
different ancestry and age groups, there are limitations that should be addressed in future studies.  

a) 

EUR Adults AFR Adultsb) 
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First, inclusion of analyses that evaluate how different proportions of non-European ancestry 
individuals affect the prediction performance of PRS would be useful. The GIANT summary 
statistics we used in this study are only about 6% non-European ancestry. It may be useful to see 
how the PRS prediction performance changes in both non-European and European ancestry 
datasets as a function of the proportion of non-European ancestry samples included in the 
GWAS. Such analyses may be possible by combining African ancestry individuals from these 
different datasets. These analyses will be possible once larger datasets that include non-European 
ancestry cohorts are publicly available or could be tested by analyzing other traits with larger 
African ancestry GWAS. Future analyses could also include sex-stratified GWAS and 
comparison sets to evaluate the influence of sex on PRSBMI performance.  Finally, repeating these 
types of analyses with different PRS methods would be useful as novel PRS methods are being 
developed on a regular basis, many of which incorporate ancestry in different ways. 

Overall, this study demonstrates the importance of expanding non-European ancestry data 
resources for PRS, specifically in the generation of GWAS summary statistics and LD reference 
panels.  Failure to do so reduces the impact of PRS in diverse populations and increases the 
potential for continued health disparities, especially in precision medicine where genetics is 
being integrated into clinical care.   
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Supplemental data include one figure and two tables 
(https://upenn.box.com/s/7cec571ltjkcyv409vwi7w9t0stkvo12). 
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Jaclyn M. Eissman1,2, Greyson Wells1, Omair A. Khan3, Dandan Liu3, Vladislav A. Petyuk4, Katherine 
A. Gifford1, Logan Dumitrescu1,2, Angela L. Jefferson1, and Timothy J. Hohman1,2†

1Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, 
USA 

2Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA 
3Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA 

4Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest 
National Laboratory, Richland, WA 99354, USA  

†Email: timothy.j.hohman@vumc.org  

Late-onset Alzheimer’s disease (LOAD) is a polygenic disorder with a long prodromal phase, 
making early diagnosis challenging. Twin studies estimate LOAD as 60-80% heritable, and while 
common genetic variants can account for 30% of this heritability, nearly 70% remains “missing”. 
Polygenic risk scores (PRS) leverage combined effects of many loci to predict LOAD risk, but often 
lack sensitivity to preclinical disease changes, limiting clinical utility. Our group has built and 
published on a resilience phenotype to model better-than-expected cognition give amyloid pathology 
burden and hypothesized it may assist in preclinical polygenic risk prediction. Thus, we built a 
LOAD PRS and a resilience PRS and evaluated both in predicting cognition in a dementia-free cohort 
(N=254). The LOAD PRS had a significant main effect on baseline memory (β=-0.18, P=1.68E-03). 
Both the LOAD PRS (β=-0.03, P=1.19E-03) and the resilience PRS (β=0.02, P=0.03) had significant 
main effects on annual memory decline. The resilience PRS interacted with CSF Aβ on baseline 
memory (β=-6.04E-04, P=0.02), whereby it predicted baseline memory among Aβ+ individuals 
(β=0.44, P=0.01) but not among Aβ- individuals (β=0.06, P=0.46). Excluding APOE from PRS 
resulted in mainly LOAD PRS associations attenuating, but notably the resilience PRS interaction 
with CSF Aβ and selective prediction among Aβ+ individuals was consistent. Although the resilience 
PRS is currently somewhat limited in scope from the phenotype’s cross-sectional nature, our results 
suggest that the resilience PRS may be a promising tool in assisting in preclinical disease risk 
prediction among dementia-free and Aβ+ individuals, though replication and fine-tuning are needed. 

Keywords: Alzheimer’s disease, polygenic risk, resilience, preclinical, cognition 

1. Introduction

Late-onset Alzheimer’s disease (LOAD) is a highly polygenic disorder, characterized by a 
neuropathological cascade resulting in neurodegeneration and cognitive impairment.1 Notably, 
LOAD is characterized by a long prodromal phase in which pathology begins to accumulate prior 
to the onset of clinical disease. The prodromal stage thus represents decades of pathological changes 
before cognitive deficits are detected (e.g., dementia), making early clinical dementia diagnosis 
quite challenging,1 yet imperative. Additionally, LOAD is a highly heritable trait, with twin studies 
estimating LOAD heritability to be 60-80%,2,3 though the source for much of the genetic variation 
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driving LOAD heritability has yet to be elucidated.2,3 Genome-wide association studies (GWAS) 
have been integral in beginning to uncover narrow-sense heritability, defined as the additive genetic 
component of heritability. As of 2022, LOAD GWAS have identified and replicated 33 risk and 
protective loci.2,4 However, the effect sizes of known LOAD GWAS loci are small to moderate,5 
accounting for ~8% of total LOAD heritability, with ~6% out of this ~8% coming from the APOE 
ε2 and ε4 risk and protective alleles.5 Furthermore, studies have estimated the portion of LOAD 
narrow-sense heritability driven by common variants in the population, including and in addition to 
APOE. For example, Ridge and colleagues calculated that ~30% of LOAD phenotypic variance can 
be explained by a summation of effects of common GWAS variants,5 suggesting a substantial 
heritable component remains unexplained or missing. 

In recent years, LOAD polygenic risk scores (PRS) have leveraged the effects of multiple 
genetic loci to predict LOAD risk, but these PRS have not had expected clinical utility. One reason 
is that LOAD PRS are often built from case/control GWAS, which may represent later-stage disease 
processes, resulting in a loss of sensitivity when applied to preclinical disease.6 Thus, LOAD PRS 
may be most beneficial in identifying symptomatic MCI or LOAD cases.6 At the same time, some 
studies have found that LOAD PRS can be built in a sensitive manner to predict MCI or LOAD risk 
in younger, dementia-free individuals.7,8 Yet, it also remains unclear if LOAD PRS hold more 
predictive power than simply predicting genetic risk from APOE genotype alone. Many studies have 
found that LOAD PRS hold predictive power for LOAD risk above and beyond APOE genotype,9,10 
while other studies have found that APOE genotype is still the best predictor.6,11 

While neuropathology is a hallmark of LOAD and other related disorders, it is notable that a 
subset of individuals can maintain normal cognition in the face of neuropathology. In fact, ~30% of 
elderly adults who meet NIA-AA Reagan neuropathological criteria for AD at autopsy remain 
cognitively unimpaired throughout life.12,13 These elderly individuals are characterized as “resilient” 
in frameworks of cognitive reserve and resilience.14,15 Our group has defined a continuous measure 
of resilience, representing better-than-expected cognition given amyloid pathology burden, and 
leveraged this measure for genomic analysis.16 The purpose of our original resilience GWAS was 
to identify common genetic variants that relate to cognition in the face of amyloid. By design, the 
residual metric of resilience is not correlated with amyloid, but is strongly predictive of future 
memory performance among people who are Aβ+.16,17 Notably, we found resilience to be 20-25% 
heritable,17 and found it has a genetic architecture distinct from that of clinical AD.17   

However, to our knowledge, very few studies have examined polygenic resilience scores for 
complex traits, but these few have laid a framework for polygenic resilience scores as a tool to study 
complex, heritable traits. In 2021, Hess and colleagues created a method of calculating a “polygenic 
resilience score” for schizophrenia. In brief, this method takes marginal SNP effects from a trait, 
builds a weighted summary score from these SNP associations, and then selects the controls and the 
cases with the highest scores.18 Hou and colleagues applied this method to look at LOAD in the 
context of resilience and observed that a higher polygenic resilience score was associated with lower 
LOAD risk penetrance among high-risk LOAD individuals.19 A caveat of Hou and colleague’s study 
is that their findings attenuated when only examining their score among high-risk APOE ε4 carriers, 
and Hou et al. reiterates that PRS contributions above and beyond APOE is mixed in the literature.19 
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Additionally, a limitation of this polygenic resilience score method is that it uses trait-based GWAS 
and binning to determine “resilient” individuals, limiting the scope of the analysis.  

We felt we could extend the polygenic resilience score framework by 1) leveraging our 
continuous, quantitative resilience phenotype 2) clarifying if a resilience PRS could predict risk 
above and beyond APOE 3) examine the relationship of a resilience PRS with amyloid pathology, 
which has been scarcely analyzed in LOAD PRS studies. Thus, we generated a LOAD4 PRS and a 
cognitive resilience17 PRS. In a dementia-free cohort, we assessed the association of each PRS with 
baseline memory and with annual memory decline and tested to see if amyloid modified the 
association of each PRS with memory performance. We hypothesized that while the LOAD PRS 
would be useful in predicting annual memory decline due to neuropathological build up, the 
resilience PRS would be more predictive of baseline memory in the presence of amyloid pathology, 
by differentiating the heterogeneity in memory performance among Aβ+ individuals.   

2. Methods

2.1.  Participants 

Participants were recruited as part of a case-control, longitudinal, observational design study, the 
Vanderbilt Memory and Aging Project (VMAP) which takes place at the Vanderbilt University 
Medical Center in Nashville, Tennessee.20 VMAP began in 2012 and recruited individuals who were 
60+ years of age, English speakers, had auditory/visual capacity for testing, and had a study partner. 
Each participant was given a Clinical Dementia Rating (CDR) interview and NIA-AA criteria was 
leveraged to classify individuals into cognitively unimpaired or mild cognitive impairment (MCI).20 
All protocols for the VMAP cohort were IRB-approved and informed consent for each participant 
was obtained prior to enrollment. Please see Table 1 for an overview of the VMAP cohort. 

2.2.  Cerebrospinal fluid amyloid 

A subset of participants (N=155) consented to and successfully completed lumbar puncture. 
Cerebral spinal fluid (CSF) was collected, spun down, and supernatant was analyzed through 
enzyme-linked immunosorbent assays (ELISA). One assay conducted was the INNOTEST® β-

Cohort Characteristics 
Number of participants 334 

Number of participants with genetic data 76.05% (254) 
Total number of visits 3.83 +/- 0.76 

Longitudinal follow-up (years) 2.27 +/- 1.97 
Demographics and Health Characteristics 

Age at baseline (years) 72.74 +/- 6.89 
Sex (% female) 27.54% (92) 

Education (years) 16.13 +/- 2.56 
     APOE ε4 (% positive) 26.35% (88) 

Amyloid status (% positive) 49.70% (166) 
Diagnosis at baseline (% MCI) 29.34% (98) 

Figure 1. Flow-chart summary of 
analytical workflow. 

Table 1. VMAP Cohort Demographics. 
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AMYLOID(1-42), which includes autoantibodies for neo-epitopes of amino acids 1 and 42 of the 
Aβ1-42 amino acid peptides, ensuring specificity for Aβ1-42 peptides. Binarized amyloid status was 
determined for each participant based on CSF Aβ1-42 measurements. A published cut-point of CSF 
Aβ1-42 530ng/L was implemented, thus defining Aβ+ individuals with CSF Aβ1-42 values under 
530ng/L.21 A more detailed protocol is described in a prior paper by our group.20  

2.3.  Neuropsychological composites 

Participants completed a series of neuropsychological tests that covered domains including memory, 
and a memory composite score was defined in a prior paper by our group.22 Memory composites 
were calculated from item-level data, to reduce multiple testing burden. The composite score 
leveraged test item-level data from the California Verbal Learning Test, Second Edition, and the 
Biber Figure Learning Test. Composite scores were calculated with a bifactor latent variable model, 
and final memory composite scores were on a z-score scale.22  

2.4.  Genetic data quality control and imputation 

Individuals consenting to genotyping (N=333) were genotyped from whole blood on the Illumina 
MEGAEX genotyping array. Raw genetic data were processed as follows. First, variant-level 
filtering removed variants with >5% missingness, <1% minor allele frequency (MAF), and non-
autosomal variants. Next, sample-level filtering removed individuals with >1% missingness, those 
who were related, those with mismatched self-reported and genetically determined sex, and 
heterozygosity outliers. Then genetic data were filtered to keep self-reported non-Hispanic white 
individuals, and genetic ancestry outliers (e.g., principal component analysis – PCA) were 
removed. Variants were also filtered for Hardy-Weinberg equilibrium (HWE) exact test P<1x10-6. 
Finally, genetic data were lifted over to hg38 and compared and aligned to the Trans-Omics for 
Precision Medicine (TOPMed) reference panel,23–25 dropping variants that failed lift-over or 
mismatched with the reference panel.  

Cleaned genetic data were next phased (Eagle phasing) and imputed on the TOPMed imputation 
server.23–25 Raw, imputed data were filtered to remove variants with an imputed R2<0.8 or 
duplicated/multi-allelic variants. Additionally, original genotypes were merged back in with the 
imputed data. Another HWE exact test was performed filtering for P<1x10-6, and variants with MAF 
<1% were removed. Once again, genetic ancestry outliers determined by a PCA were subsequently 
filtered. The final, cleaned, imputed VMAP genetic data included 255 non-Hispanic white 
participants and 8,689,730 variants. Additionally, APOE genotypes were determined by the TaqMan 
genotyping assay for rs7412 and rs429358 performed on DNA extracted from whole blood.20 

2.5.  Statistical analyses 

See Figure 1 for an overview of our analytical plan. 

2.5.1.  Polygenic risk score generation 

Two PRS were calculated leveraging Kunkle et al. LOAD case/control genome-wide meta-analysis4 
and our group’s recent genome-wide meta-analysis on resilience17. No participants in VMAP were 
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included in either of the original GWAS. First, when applicable, GWAS were lifted to hg38. Next, 
GWAS variants were compared to the VMAP genetic data. Any ambiguous, palindromic variants 
were filtered out. Then overlapping variants between the GWAS and the VMAP genetic data were 
retained and then were compared for variants on opposite strands between the GWAS and the 
genetic data, and strand differences were resolved. Then, linkage disequilibrium (LD) clumping was 
performed with PLINK26 in the VMAP genetic data (r2=0.5, window=250kb), to choose the variant 
with the most significant phenotypic association within each genetically-linked genomic region. 
Each PRS was built with three different P-value thresholds: P=1, P=0.01, and P=0.00001, wherein 
variants were included in the PRS only if their phenotypic association was less than the given 
threshold. The LD-clumped genetic data were then leveraged to calculate each PRS with PLINK’s 
profile function27 which calculates scores as follows: Weights were retrieved from the variant 
associations with LOAD or with resilience from the respective GWAS. For each variant the given 
weight was multiplied by 0, 1, or 2, based on how many risk alleles an individual had. The 
summation of this process results in a summary score for an individual. Since APOE polymorphism 
is a robust risk factor for LOAD, PRS were calculated with and without the APOE region, defined 
by a 1Mb region up- and downstream of the APOE gene. 

2.5.2.  Baseline and longitudinal linear models 

We performed a series of linear models and linear mixed effects models in R (v. 4.2) for each PRS. 
Fixed effects in our models included baseline age, self-reported sex, and the given PRS. Linear 
mixed effects models included a PRS-by-interval term, where interval was determined by the 
difference between a participant’s age at each cognitive visit and their baseline age. Additionally, 
linear mixed effects models allowed slope and intercept to vary for each participant. In addition, we 
performed identical sets of models with the addition of a PRS-by-amyloid term in linear models and 
a PRS-by-amyloid-by-interval term for linear mixed effects models, with amyloid measured by the 
CSF Aβ1-42 assay outlined above. The outcome of our models were baseline memory or annual 
memory decline for linear models and linear mixed effect models, respectively. Each set of models 

Figure 2. Main effect PRS associations 
(P=0.01 threshold; with APOE) with 
baseline memory (A, B) and annual 
memory decline (C, D). 
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above was performed again stratifying by amyloid 
status. Sensitivity analyses were performed for all 
models leveraging PRS generated without the APOE 
region.    

3. Results

We performed a series of linear models and linear 
mixed effects models investigating each PRS 
association with baseline memory or annual memory 
decline, respectively. All main effect associations are 
presented in Figure 2 and/or Table 2. The LOAD PRS 
had a significant main effect on baseline memory 
(Figure 2A; Table 2), but when APOE was excluded 
from the PRS, this result attenuated to nonsignificant 



(Table 2). Both the LOAD PRS (Figure 2C; Table 2) and the resilience PRS (Figure 2D; Table 
2) had significant main effects on annual memory decline irrespective of APOE inclusion in PRS.

Next, we performed a second series of models with a PRS-by-CSF-Aβ interaction term to 
determine if amyloid modified the association of each PRS with memory performance. Additionally, 
we performed amyloid status-stratified models to determine if Aβ- individuals or Aβ+ individuals 
(or neither) were driving any observed significant interactions. All CSF-Aβ interaction and amyloid-
status stratified results are presented in Figure 3 and/or Table 2.   

The LOAD PRS did not interact with CSF Aβ on either baseline memory (Figure 3A; Table 2) 
or annual memory decline (Figure 3C; Table 2), and this was consistent when APOE was excluded 

from PRS (Table 2). However, the LOAD PRS 
significantly predicted annual memory decline 
more strongly among Aβ+ individuals (Figure 3C; 
Table 2), albeit this result is difficult to interpret 
with the PRS-by-CSF-Aβ interaction term being 
nonsignificant. The resilience PRS significantly 
interacted with CSF Aβ on baseline memory 
(Figure 3B; Table 2), whereby it significantly 
predicted baseline memory among Aβ+ individuals 
(Figure 3B; Table 2) but not among Aβ- 
individuals (Figure 3B; Table 2). These results 

remained consistent when APOE was excluded. 
In addition to the PRS with a P=0.01 threshold 

which are presented in the figures, we tested two 
other P-value thresholds: P=1 and P=0.00001 (Table 

2). All results were consistent across all three thresholds unless denoted in the following paragraph. 
The LOAD PRS without APOE fell just under significance in the main effect association on annual 
memory decline at the P=1 and P=0.00001 thresholds. The resilience PRS did not have a main effect 
on annual memory decline at P=1 or P=0.00001 (with or without APOE). Additionally, the resilience 
PRS-by-CSF-Aβ interaction trended significant at P=1, but still significantly predicted baseline 
memory among Aβ+ individuals. Lastly, both the LOAD PRS and the resilience PRS varied by 
threshold – and by APOE inclusion for the LOAD PRS – in predicting annual memory decline 
among Aβ- individuals and/or among Aβ+ individuals. 

Table 2. PRS Associations with Baseline Memory and Annual Memory Decline. 
Baseline Memory 

PRS Main Effect Aβ*PRS Aβ- Aβ+ 
PRS Threshold β P β P β P β P 

LOAD P=1 -0.13 0.03 2.73E-04 0.41 -0.11 0.21 -0.10 0.59 
LOAD P=0.01 -0.18 1.68E-03 4.36E-04 0.16 -0.08 0.37 -0.13 0.47 
LOAD P=0.00001 -0.25 4.00E-05 5.70E-04 0.13 0.02 0.87 -0.11 0.57 

Resilience P=1 0.09 0.12 -4.97E-04 0.08 0.10 0.21 0.57 1.33E-03* 
Resilience P=0.01 0.09 0.14 -6.04E-04 0.02* 0.06 0.46 0.44 0.01* 
Resilience P=0.00001 0.01 0.88 -7.83E-04 0.02* -0.09 0.30 0.52 0.02* 

Figure 3. PRS associations (P=0.01 threshold; 
with APOE) with baseline memory (A, B) and 
annual memory decline (C, D) stratified by 
Aβ status. 
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Annual Memory Decline 
PRS Main Effect Aβ*PRS Aβ- Aβ+ 

PRS Threshold β P β P β P β P 
LOAD P=1 -0.02 0.02 2.59E-05 0.63 -0.03 0.04* -0.05 0.01* 
LOAD P=0.01 -0.03 1.19E-03* 8.08E-05 0.08 -0.03 0.09# -0.05 0.01* 
LOAD P=0.00001 -0.03 8.66E-04 7.16E-05 0.21 -0.01 0.54# -0.02 0.23 

Resilience P=1 4.74E-03 0.60 3.66E-05 0.42 9.88E-04 0.94 0.04 4.69E-02* 
Resilience P=0.01 0.02 0.03* 2.76E-05 0.51 0.03 0.02* 0.02 0.36 

Resilience P=0.00001 0.01 0.39 -6.30E-05 0.25 -2.41E-03 0.87 0.08 6.60E-04* 
Note: P-values with * remain significant without APOE; # significant without APOE only 

4. Discussion

We built a LOAD PRS and a cognitive resilience PRS and evaluated each PRS in predicting memory 
outcomes among dementia-free elderly individuals. Both sets of PRS provided useful information 
and performed best in the spheres most closely related to the original phenotype in the GWAS. The 
LOAD PRS was predictive of annual memory decline in the whole sample and more strongly among 
Aβ+. In contrast, the resilience PRS was a particularly strong predictor of baseline memory in the 
presence of amyloid pathology, reflecting that the original phenotype was built to represent better-
than-expected memory performance among those with high levels of AD biomarkers. Together, our 
findings suggest that the complementary information of a resilience PRS could improve preclinical 
prediction. It also highlights the need to expand sample sizes allowing for incorporation of 
longitudinal cognitive data into genetic studies of resilience to improve polygenic risk score 
applications in the future. 

4.1.  LOAD PRS is a strong predictor of annual cognitive decline in later stages of disease 

Our main effect findings (Figure 2; Table 2) highlight that the LOAD PRS had a significant main 
effect on both baseline memory and annual memory decline. While the LOAD PRS did not interact 
with CSF Aβ on baseline memory or annual memory decline (Figure 3; Table 2), it more strongly 
predicted annual memory decline among Aβ+ individuals. LOAD PRS associations with cognitive 
decline have been replicated in other studies. For example, Kauppi and colleagues found that an AD 
PRS significantly predicted cognitive decline in a cohort of cognitive unimpaired individuals.28 Ge 
and colleagues determined that a LOAD PRS predicted cognitive decline among Aβ+ cognitively 
unimpaired and MCI individuals.29 Likewise, both Tan et al. and Desikan et al. observed that a 
polygenic hazard score was associated with cognitive decline.30–32 More specifically, Tan et al. 
found that those that had a high polygenic hazard score, indicative of high polygenic risk for LOAD, 
and who were Aβ+, showed steeper cognitive decline.30–32 Taken together, it may be that the LOAD 
PRS reflects a number of heterogeneous routes to cognitive impairment that includes AD 
neuropathology, but also includes some non-AD processes. All the studies mentioned as well as 
ours, found consistent associations with cognitive decline and stronger associations among Aβ+ 
individuals than among Aβ- individuals, though the difference in our non-demented cohort was 
negligible at best. It is notable that we did not observe a LOAD PRS-Aβ interaction. Perhaps the 
LOAD PRS models later stages of disease where Aβ accumulation has already occurred in many 
individuals and is but one contributor, while other pathways downstream and parallel to amyloidosis 
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are primarily contributing to cognitive decline. This idea was posited by Carrasquillo and 
colleagues6 (and others) and appears to be supported by our findings.  

4.2.  Resilience PRS is a strong predictor of cognition in earlier stages of disease 

Only the resilience PRS significantly interacted with Aβ on memory performance, whereby it 
predicted baseline memory among Aβ+ individuals but not among Aβ- individuals. (Figure 3; 
Table 2). Notably, previous studies are mixed regarding if LOAD polygenic risk associates with Aβ 
burden. Multiple studies have found associations between LOAD PRS and amyloid positivity, 
including Mormino and colleagues who also observed an association between their LOAD PRS and 
cognitive decline.7,27,33 Other studies have found no association between a LOAD PRS and amyloid 
positivity, or an association that attenuated when APOE was excluded.11,29,34,35 It is noteworthy that 
Ge and colleagues found no association between the LOAD PRS and baseline Aβ, but did find an 
association of the LOAD PRS with cognitive decline among Aβ+.29 Ebenau and colleagues 
comment on the mixed literature surrounding LOAD PRS association with Aβ positivity, pointing 
to heterogeneity in Aβ progression across diagnostic status as a potential reason for disagreement.33   

Our original resilience phenotype was designed to predict better-than expected cognition in the 
presence of amyloid pathology.16 This matches what we are seeing with the resilience PRS, and the 
cross-sectional result we see with the PRS matches the cross-sectional nature of the phenotype.16 A 
recent study showed that a LOAD PRS enriched for amyloid-positivity-associated loci was 
associated with cognitive decline, whereas simply a LOAD PRS was not associated.36 This 
highlights that loci driving amyloidosis, which begins earlier in disease progression, may not be the 
same loci driving clinical dementia (downstream).36 To address this limitation, the resilience PRS 
may be a complementary tool in this case, as based on our novel results, it can selectively predict 
baseline memory among Aβ+ individuals (Figure 3; Table 2). Since much of the elderly population 
is living with neuropathology,12 determining those most at risk for future cognitive decline is 
imperative. Whereas the LOAD PRS may be working through amyloid pathology, performing 
similarly irrespective of amyloid pathology, the resilience PRS, in contrast, may be interacting with 
amyloid pathology, predicting genetic risk above and beyond amyloid pathology. It is noteworthy 
that all individuals in the VMAP cohort were dementia-free. Thus, our resilience PRS may be a tool 
that can best predict genetic risk for cognitive deficits among biomarker-positive individuals while 
they are still in the preclinical stage of disease. Our promising initial results indicate that we may 
have developed a novel PRS that 1) does not lose predictive power among those with Aβ pathology 
2) performs its best among this high-risk Aβ+ group, separating them out from those in the elderly 
population who may or may not have Aβ in their brain, and 3) performs robustly irrespective of an 
individual’s future clinical diagnosis. Replicating our findings, incorporating longitudinal data into 
resilience models, and increasing sample size will be necessary to fine-tune this PRS. 

4.3.  PRS including more variants may have predictive power beyond the APOE locus 

Over the last decade of PRS as a tool for LOAD risk prediction, there has been much debate 
regarding if a LOAD PRS has more predictive power than APOE genotype alone. Studies have been 
mixed, with many demonstrating that LOAD PRS associate with LOAD risk and LOAD-

Pacific Symposium on Biocomputing 2023

456

mailto:brenner@compbio.berkeley.edu
mailto:brenner@compbio.berkeley.edu
User
Line



 
 

 

endophenotypes above and beyond APOE,9,27,37 while some studies show that LOAD PRS without 
APOE attenuate to nonsignificant in predicting LOAD risk or endophenotype levels.11,29,34 
However, some of the studies that found PRS to contribute to risk prediction beyond that of APOE 
still underscore that APOE is contributing a large amount to polygenic risk.9,37 One study positing 
that a LOAD PRS has predictive power beyond APOE also stated that 43.8% of the 61.0% total 
predictive power of the LOAD PRS on conversion from MCI to LOAD was coming from APOE 
alone.9 Notably, our resilience PRS findings remained consistent when APOE was removed from 
PRS calculations, which makes sense as the resilience phenotype attempts to regress out effects of 
amyloidosis17 which are often driven by APOE.34 A resilience PRS like the one we built in this study 
may be promising in terms of its ability to predict LOAD-related cognitive outcomes above and 
beyond that of APOE but replicating our findings and larger sample sizes for future resilience 
GWAS are needed to fully elucidate this theory. 

In addition, there is no gold standard for a singular P-value threshold to leverage for LOAD 
PRS calculations. Two recent studies examined LOAD PRS at a variety of different thresholds. Ge 
and colleagues observed fairly consistent results across thresholds spanning from P=0.01 to 
P=1x10-7.38 Another study observed that distinguishing between cognitively unimpaired and 
LOAD participants was best with a threshold of P=0.01, and in fact predictive power plateaued 
after P=0.01.27 In this study, we tested three thresholds: P=1, P=0.01, and P=0.00001. Our results 
were mostly consistent across the three thresholds, but the resilience PRS at P=0.01 seemed to best 
predict annual memory decline. Overall, our results combined with some previous studies suggest 
that perhaps allowing for inclusion of more loci that fall below the stringent genome-wide 
threshold captures a wider variety of processes contributing to complex trait risk.18,19,27  

4.4.  Strengths and weaknesses 

Our study had multiple strengths. We leveraged a deeply-phenotyped cohort, the Vanderbilt 
Memory and Aging Project. This cohort has many important features including participants free of 
dementia, baseline biomarker status for participants, and longitudinal measurements of memory 
composite scores. However, our study did have some limitations. Our resilience PRS was not built 
with inclusion of measures of tau pathology or other known age-related neuropathologies. Sample 
size is a limiting factor for these measures of pathology, but as sample sizes increase in these cohorts, 
we plan to incorporate other pathology measures into our resilience models in addition to amyloid. 
Additionally, our sample size (in VMAP) was limited to those consenting to genotyping, 
neuropsychological testing, and lumbar puncture. Our study was limited to non-Hispanic white 
individuals, attenuating the generalizability of our findings to other populations. Currently, genetic 
data is becoming available for individuals across multiple ancestry groups, allowing groups 
including ours to expand diversity in GWAS studies, including cross-ancestry approaches. With 
more diverse GWAS, future studies will be able to build PRS in multiple ancestry groups, which 
will aid in our understanding of AD genetic risk in diverse populations. Lastly, some of the PRS 
associations reported in this study did not survive correction for multiple comparisons with the false 
discovery rate (FDR<0.05) procedure, likely due to power and sample size constraints of the original 
GWAS. The sample sizes of individuals with cognition, genotyping, and neuropathology data are 
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ever increasing, which we are leveraging to increase our sample sizes for our resilience GWAS, and 
this will contribute to increased power in an analysis like this one in the future. 

4.5.  Conclusions 

Although our study needs to be replicated, we find our initial novel findings to be promising that a 
cognitive resilience PRS may serve as a complementary clinical tool with a LOAD PRS in 
identifying those most at risk for future cognitive decline while individuals are still in the preclinical 
and prodromal stages of LOAD. 
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Innovations in human-centered biomedical informatics are often developed with the eventual goal of 
real-world translation. While biomedical research questions are usually answered in terms of how a 
method performs in a particular context, we argue that it is equally important to consider and formally 
evaluate the ethical implications of informatics solutions. Several new research paradigms have 
arisen as a result of the consideration of ethical issues, including but not limited for privacy-
preserving computation and fair machine learning. In the spirit of the Pacific Symposium on 
Biocomputing, we discuss broad and fundamental principles of ethical biomedical informatics in 
terms of Olelo Noeau, or Hawaiian proverbs and poetical sayings that capture Hawaiian values. 
While we emphasize issues related to privacy and fairness in particular, there are a multitude of facets 
to ethical biomedical informatics that can benefit from a critical analysis grounded in ethics. 

Keywords: Ethics; Bioethics; Privacy; Fairness; Bias; Biomedical Data Science; Pono 

 

1.   Introduction 

The field of biomedical informatics is intrinsically tied to ethics, as a large portion of innovations 
are developed for the explicit purpose of advancing human health. However, every innovation 
involves a wide array of stakeholders, such as clinicians, patients, family members of the patients, 
healthy individuals whose data are used to support an informatics solution, and many others. A 
solution that improves the health of one stakeholder may harm or put at risk another stakeholder in 
often inadvertent and subtle ways.  
      Considering the ethics of biomedical informatics solutions may lead to varying conclusions 
depending on the ethical framework used to conduct the analysis. Utilitarianism, for example, is a 
framework centered around doing the greatest amount of good for the largest number of people. 
Deontological ethics, by contrast, centers around doing the morally right action regardless of the 
number of people affected. One can propose countless examples of decisions that may align with 
one ethical theory but directly conflict with another. For example, collecting large swaths of training 
data that contain protected health information may be ideal from a utilitarian standpoint, as the 
model would be used to help a large number of people, but might be unethical from a deontological 
view without extensive privacy protections in place. 
      Here, we consider another ethical perspective: Olelo Noeau, or Native Hawaiian proverbs that 
capture Native Hawaiian values and the Hawaiian worldview. The Pacific Symposium on 
Biocomputing (PSB) takes place in Hawaii every year. As such, we center this introduction on a 
discussion of Native Hawaiian values as they relate to the field of biomedical informatics. While 
we acknowledge that many Native Hawaiian values have variety and layers to their meaning, for 
our purposes, we will focus on the more commonly understood meanings of these phrases. We 
summarize relevant Olelo Noeau for biomedical informatics in Table 1. 
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Table 1.  Correspondence between either Olelo Noeau and analogous ethical considerations in 
biomedical informatics research. 

Olelo Noeau English 
interpretation 

Relevant 
Hawaiian 
concepts, values 

Analogue in 
Biomedical Informatics 

Ike aku, ike mai, 
kokua aku kokua mai; 
pela iho la ka nohona 
ohana 

Recognize and be 
recognized, help and 
be helped; such is 
family life. 

Ohana, 
Laulima 

Inclusiveness, Human-
Centered Design 
Utilitarian ethics, 
Collaboration 

Ike i ke au nui me ke 
au iki 

Know the big current 
and the little current 

Pono Equity, Fairness 

Kanukanu, huna i ka 
meheu, i ka maawe 
alanui o Kapuukolu 

Covering with earth, 
hiding the footprints 
on the narrow trail of 
Kapuukolu 

Kapu Respect for privacy and 
sanctity 

He waiwai nui ka 
lokahi 

Unity is a precious 
possession 

Lokahi Balance of traditional 
performance metrics, 
privacy, and fairness 

 

2.   Ike aku, ike mai, kokua aku kokua mai; pela iho la ka nohona ohana. Family life 
requires an exchange of mutual help and recognition.  

Ohana, the word for family, is one of the key Hawaiian principles that defines Hawaiian culture. 
The Hawaiian proverb “Ike aku, ike mai, kokua aku, kokua mai; pela iho la ka nohona ohana” 
literally describes the importance of a human-centered design process - “recognize and be 
recognized, help and be helped; such is family life” [1]. Native Hawaiian social structure is centered 
around extended families. For example, illnesses affect the entire Ohana because what impacts one 
impacts all. Laulima is also a pillar of Hawaiian culture: goals must be achieved by collaboration 
and cooperation. Traditionally, survival depended on this.       
     Following this ideal, one might suggest that biomedical informatics solutions should be 
developed with to work for all stakeholders, regardless of socioeconomic, demographic, political, 
or geographic factors. This includes involving all stakeholders in the development and design 
process, often with the aid of established human-centered design practices.
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      Digital solutions for various health conditions often and increasingly incorporate informatics 
solutions. For example, the SuperpowerGlass system developed by some of the authors at Stanford 
[2] was initially designed using in-person human-centered design sessions with participants. Before 
even the first quantitative feasibility study was conducted, iterative design sessions with participants 
were completed, and parent and child stakeholders were extensively interviewed by the study team 
[3-4]. Qualitative feedback was collected and coded to inform the updated design decisions of future 
iterations of the wearable therapeutic [5]. Only after these design sessions was the SuperpowerGlass 
system tested in feasibility studies [6-8] and a formal randomized controlled trial [9]. The process 
of co-designing with the end users of a medical solution can prevent situations where extensive time 
and effort is put into developing elaborate solutions that are ultimately disregarded by patients and 
clinicians as being unusable or unethical. 

3.   Ike i ke au nui me ke au iki. Know the big current and the little current. 

The Hawaiian proverb “Ike i ke au nui me ke au iki” translates to “know the big current and the 
little current” in English, meaning that it is valuable to recognize the importance of all knowledge, 
be it small or large [1]. Ensuring the dialogue of data sources and data analysis is inclusive of all 
supports this ideal.  
    Similarly, the concept of Pono refers to the ideal balance of equity and abundance among all 
living and non-living entities [19]. A Pono concept is larger than the defense of right conduct that 
structures our conversations around ethics and ensures that our motivation in seeking pono is for the 
prosperity of all communities.      
    Fairness in machine learning is particularly important in the contexts of biology, medicine, and 
health. Machine learning models that make a diagnostic prediction, for example, can be problematic 
if the level of fidelity of the prediction of disease status is inconsistent across demographic groups. 
Machine learning classifiers are limited by the input data that are used to train them, and in many 
instances, the training data are unbalanced and biased. Due to differences in representation levels at 
the granularity of a hospital, city, or country, it may be impossible to collect balanced data sets 
without discarding large amounts of data from the majority class. Recent algorithmic techniques 
enable increased fairness, including data augmentation to upsample the underrepresented groups 
[10-12], enforcing a flavor of fairness in the loss function or otherwise imposing an algorithmic 
constraint [13-14], or post-processing methods for redefining the prediction thresholds for a black 
box model [15-17]. Some argue that beyond issues with data are fundamental biases in the 
quantitative methodologies themselves, which can put underserved populations at a disadvantage. 
Maggie Walter and Chris Andersen explore this topic in “Indigenous Statistics: A Quantitative 
Research Methodology” [18], discussing issues such as the inherent power dynamics between non-
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Indigenous and Indigenous populations in statistical and policy discourse and ways that data 
collection methods are designed to only collect data of certain types. 
      

4.   Kanukanu, huna i ka meheu, i ka maawe alanui o Kapuukolu. Covering with earth, 
hiding the footprints on the narrow trail of Kapuukolu.       

This Hawaiian proverb shares a value of privacy and guarding of personal information from those 
who pry. “In ancient times a person who did not want to be traced by his footsteps carefully 
eradicated them as he went” [1]. While these ideals can extend to a variety of topics in biomedical 
informatics, we hone in on respect of the participants whose data are used to develop biomedical 
innovations. We discuss respect for privacy in particular, which is the greatest concern of 
participants who share their data. 
 The concept of Kapu similarly reflects the respect required of personal data and the privilege 
of working with information that can be identifiable [47]. Kapu references not only the interaction 
with the dataset, but the ability to safeguard, protect and honor that which comprises the sacredness 
and dignity of each individual.      
      Biomedical data are sensitive by definition, often containing protected health information and 
identifiable information. It is crucial to share these data with the broader community in order to 
advance scientific progress [20-21]. However, the potential for data breaches must be accounted for. 
In biomedical informatics, avenues for potential breaches extend beyond traditional hacking and 
computer security issues. Risks specific to this field include but are not limited to identifying the 
genome of a single individual from within a larger dataset [22-25], cross-referencing multiple 
databases using demographic and familial information [26-27], inherently identifying multimedia 
datasets [28-32], and performing diagnostic assessments with humans in the loop [33-38]. Other 
considerations are the management of very small data sets, since the careless release of these could 
compromise not only privacy, but also dignity of subjects. Current solutions to these issues include 
homomorphic encryption [39-41], running privacy audits through bioinformatics tools [42-43], data 
sanitization [44], and differential privacy [45], and federated learning [46]. 

5.   He waiwai nui ka lokahi; Unity is a precious possession. (Lokahi as it relates to 
Balance and Harmony) 

Lokahi is the concept of balance; in the Native Hawaiian worldview it incorporates the balance 
between spirituality (Akua), humankind (Kanaka), and nature (Aina). These three pillars of Lokahi 
are embodied in the Lokahi triangle (Figure 1). The values of the Lokahi  triangle are central to the 
Hawaiian notion of holistic health, including in contemporary health practices in Hawaii [48]. 
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Lokahi is encompassed in the Hawaiian proverb “He waiwai nui ka lokahi”, or “unity is a precious 
possession” [1]. Lokahi translates directly to ethical biomedical informatics as the marriage of 
traditional performance metrics (such as accuracy, mean squared error, F1-score, and AUROC) with 
metrics that contain an ethical component (such as attack success rate for privacy and demographic 
parity for fairness). Often, these metrics can be at direct odds with each other. For example, it has 
been repeatedly documented that improving fairness can often detriment model performance and 
vice versa [49-55]. Considering our framework perspective, consideration for what is ultimately the 
best solution for this concept is the one that does the pono (proper) thing and finds a way to balance 
both. 

Fig. 1.  Lokahi triangle, consisting of spirituality (akua), humankind (Kanaka), and nature (Aina). 
Together, these elements represent balance.  

6. Closing Thoughts

We emphasize that the Hawaiian cultural concepts are not simply words/phrases but ways of living. 
Biomedical informatics is a discipline that is inherently human-centered, and yet the quantitative 
logistics of the field can stray far from this central core, resulting in researchers forgetting the ethical 
implications of their work. We hope that this short piece will inspire PSB attendees to become 
Alakai, or leaders, in the incorporation of values-driven perspective in all facets of biomedical 
informatics research. Doing so could help avoid ethical complications and setbacks while ensuring 
inclusivity, respect for not only our populations but also in our field, and equity. We close with a 
proverb that we hope all attendees will follow: “O ka pono ke hana ia a iho mai na lani” [1], meaning 
“continue to do good until the heavens come down to you”, or “blessings come to those who persist 
in doing good.” 
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AI has shown radiologist-level performance at diagnosis and detection of breast cancer from breast 
imaging such as ultrasound and mammography. Integration of AI-enhanced breast imaging into a 
radiologist’s workflow through the use of computer-aided diagnosis systems, may affect the 
relationship they maintain with their patient. This raises ethical questions about the maintenance of 
the radiologist-patient relationship and the achievement of the ethical ideal of shared decision-
making (SDM) in breast imaging. In this paper we propose a caring radiologist-patient relationship 
characterized by adherence to four care-ethical qualities: attentiveness, competency, 
responsiveness, and responsibility. We examine the effect of AI-enhanced imaging on the caring 
radiologist-patient relationship, using breast imaging to illustrate potential ethical pitfalls.  
Drawing on the work of care ethicists we establish an ethical framework for radiologist-patient 
contact. Joan Tronto’s four-phase model offers corresponding elements that outline a caring 
relationship. In conjunction with other care ethicists, we propose an ethical framework applicable 
to the radiologist-patient relationship. Among the elements that support a caring relationship, 
attentiveness is achieved after AI-integration through emphasizing radiologist interaction with their 
patient. Patients perceive radiologist competency by effective communication and medical 
interpretation of CAD results from the radiologist. Radiologists are able to administer competent 
care when their personal perception of their competency is unaffected by AI-integration and they 
effectively identify AI errors. Responsive care is reciprocal care wherein the radiologist responds 
to the reactions of the patient in performing comprehensive ethical framing of AI 
recommendations. Lastly, responsibility is established when the radiologist demonstrates goodwill 
and earns patient trust by acting as a mediator between their patient and the AI system.  
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1.  Background 

1.1.  Artificial Intelligence in breast imaging  

AI is widely applied to diagnostic and screening breast imaging, across almost all modalities. AI 
for clinical use can be subdivided into computer-aided detection (CADe), diagnosis (CADx), and 
exam triage (CADt) systems1.  The first CADe system for screening mammography, designed to 
mark mammograms in areas of suspicion before review by a radiologist, was approved by the 
FDA in 19982. By 2008, CADe was used in 70% of screening and 48% of diagnostic 
mammography patient visits in hospitals3. AI-enabled breast imaging CADe and CADx systems 
can be classified as standalone and reader aid systems4. Standalone AI-enabled CADs are 
designed to provide a diagnosis on their own, while reader aid systems are designed to assist a 
radiologist in establishing a diagnosis.  

Recently, there has been a flood of research investigating deep learning-based solutions for 
breast imaging for cancer risk prediction, diagnosis and prognosis, and in predicting treatment 
response1,5-7. Deep learning has shown performance consistent with radiologists at cancer 
detection and diagnosis in 2D and 3D mammography8-10, ultrasound11,12, and MRI13 in research 
settings. Deep learning-based CADe and CADx systems have the potential to both reduce the 
workload on radiologists by accurately diagnosing simple cases and advance breast imaging as AI 
can pick up on image characteristics not obvious to human radiologists. However, in reducing the 
workload on radiologists, a deep learning-based CADe/x system removes the opportunity for the 
radiologist to exercise fundamental diagnostic skills in their clinical practice.  

1.2.  The ethical ideal: shared decision-making  

We identify shared decision-making (SDM) as an ethical ideal for healthcare delivery. SDM has 
the ultimate aim of cultivating a partnership between patient and radiologist. SDM is promoted by 
both the Radiological Society of North America’s Radiology Cares campaign14 and the American 
College of Radiology’s Imaging 3.0™15. SDM literature in breast imaging, specifically 
mammography, places particular emphasis on the following three components of care delivery16: 

1. Information Delivery and Patient Education: The first step to informed consent and 
treatment under SDM is patient education through presentation of risks and benefits 
associated with imaging. A personal breast cancer risk assessment is also recommended 
to contextualize imaging and treatment options17,18. Effective information delivery can 
involve risk scoring, visual aids, and real-world examples in addition to verbal delivery 
by the radiologist. In addition, information delivery should involve discussion of CADs.  

2. Interpersonal Radiologist-Patient Communication: Open, honest communication between 
radiologist and patient is essential to SDM. Verbal, nonverbal and paraverbal physician 
communication effect patient trust, comfort, and visit satisfaction19. Radiologists can 
contribute to effective communication through asking questions and attentive, empathetic 
listening. SDM involves patients and radiologists interacting in a democratic manner, 
with equal gravity given to radiologist and patient.  
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3. Framework of the Decision: SDM requires that treatment decisions be situated in the 
patient’s values, understanding, and background16.  The patient must understand that the 
decision to undergo imaging is their choice to make after communication of risks and 
benefits. The nature of informed consent regarding AI is an open research area20-23.  SDM 
should be adapted to patient cultural background and mindful of possible language 
barriers between radiologist and patient. Patient trust in their radiologist, patient-
perceived radiologist expertise, and patient misunderstanding around the role of AI and 
CADs can all be barriers to decision framing and interpersonal communication.   

We introduce care ethics and its goal to foster caring relationships as an ethical framework that 
supports SDM.  

2.  Care Ethics  

Care ethics has been developed as an alternative to principle-based theories that have historically 
dominated biomedical and healthcare ethical thinking. In the past 20 years, care ethics has been 
increasingly applied to a range of healthcare issues, particularly in nursing ethics24-26. Care ethics 
begins with the assumption that moral responsibility derives from our nature as embodied, 
interdependent, relational beings. As such, we all experience some level of vulnerability during 
our lifetimes that puts us in need of care from others. Valorizing relationships and recognizing the 
work of care is a central tenet. Rather than considering how universal principles enter into ethical 
decision-making, care ethics takes a contextual point of view, seeing moral dilemmas as arising 
from concrete situations in the context of particular relationships. This shifts the emphasis of 
moral questions away from “What principles establish my moral obligations?” to “How can I best 
meet my caring responsibilities in this context?” 

Joan Tronto distinguishes between two senses of care:  as an action and as a disposition. To 
provide a useable framework for navigating the complex terrain of caring processes, she identifies 
four phases that ideally play out in all caring relationships. These are caring about (becoming 
aware and attending to a need for care); caring for (assuming responsibility to meet such a need); 
caregiving (the actual work of care, which requires knowledge and judgment); and care receiving 
(a complex dynamic involving the shared moral burden between the cared for and caregiver).  She 
also identifies four elements of care—attentiveness, competence, responsibility, and 
responsiveness—that refer to the disposition of those involved in caring relationships27. 

Tronto observes that almost all medical care is “necessary care.” Since it is not care one can 
provide for oneself, it involves the development of a caring physician-patient relationship: “In 
such settings [those wherein one cannot care for oneself] there is always a power imbalance 
between care providers and care receivers”27. This inherent power imbalance, wherein a 
radiologist has substantial societal authority and epistemological advantage over their patient, 
creates a cautionary situation for the reciprocal nature of an ideal caring relationship. When AI is 
introduced through a CADe/x/t system, further complications arise in that the epistemological 
authority of the radiologist may be challenged and opportunities for strengthening of the 
radiologist-patient relationship are removed. In this context, we take breast radiology as a suitable 
clinical lens for considering the ethical implications resulting from the use of AI-based CADe/x/t 
systems in breast imaging, due to care ethics’ emphasis on the radiologist-patient relationship.  
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3.  The Caring Radiologist-Patient Relationship 

3.1.  Assumptions 

For the purposes of the bioethical analysis in this paper, we identify key assumptions about the 
roles of both the radiologist and CADe/x/t systems in breast imaging. Firstly, we assume that only 
healthcare professionals interact directly with the CADe/x/t system. Secondly, we assume that the 
system being used falls into either the CADx or the CADe classifications (the combination of 
which is referred to as CAD henceforth). We make this assumption because it is possible that 
through the use of a CADt system, a radiologist may never see their patient’s imaging, which 
eliminates the opportunity to exercise a crucial part of the competency quality of care, restricting 
the development of the radiologist-patient relationship. We also assume that all CADs involve the 
use of AI and that the patient is aware of the use of CAD in their examination. Finally, we assume 
that the radiologist is involved with image acquisition, image analysis, and communication of 
results to the patient. This does not entail that the radiologist necessarily acquire the images 
themselves, nor that the radiologist initially or exclusively communicates results to the patient.  

The 21st Century Cures Act requires radiology records be made available to patients as soon 
as information is in the patient’s electronic health record28. This is consistent with our 
assumptions, as long as the radiologist communicates with the patient in a reasonable timeframe. 
However, immediate release of imaging may expose the patient to CAD results (for example, 
automated breast density assessment from mammography) before radiologist contact. This may 
cause the patient to question the competency of the radiologist and damage the radiologist-patient 
relationship. This is further reason to have the radiologist engaged in caring communication with 
the patient.   

3.2.  Developing the idea of caring relationships 

Virginia Held argues that the central focus of care ethics is “the compelling moral salience of 
attending to and meeting the needs” of particular others for whom we take responsibility29. 
Complimenting Trontoʻs position that a care ethic is a relational ethic, Nel Noddings and Vrinda 
Dalmiya develop care ethics along an “individualistic, dyadic model”30,31. This person-to-person 
model is conducive to discussing radiologist-patient interaction. Thomas Randall identifies 
attentiveness, mutual concern, responsiveness, and trustworthiness as values integrated in good 
caring. He finds mutual concerns to be “expressed between related beings when there exists a 
shared interest to make possible the cooperation required to develop and sustain association for the 
benefit of all involved”32. This focuses attentiveness on the part of both radiologist and patient. It 
engenders trustworthiness in support of a robust and positive relationship supportive for follow up 
care. This is particularly important for responsiveness, which focuses on how a patient responds 
and whether their needs are met by the care given. It requires paying close attention, honed 
listening skills, receptiveness, and understanding33. A caring relationship between the radiologist 
and the patient can thus be characterized by adherence to the four elements identified by Tronto: 
attentiveness, competence, responsiveness, and responsibility, throughout the stages of caring 
about, caring for, taking care of, and care receiving. Tronto emphasizes the mediating role of 
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communication in care ethics, highlighting such facets of caring such as empathy, attentive 
listening, and expressions of sympathy and concern from the caregiver.  

The following sections explore how Tronto’s four caring elements play out in a breast imaging 
workflow adhering to the previously stated assumptions.  

3.3.  Attentiveness 

When one is attentive, the need for care is recognized so caring can begin. Attentiveness does not 
only trigger the beginning of care; empathetic and enthusiastic listening is an act of care itself34. 
Radiologists care attentively when they listen to their patients and examine symptoms and imaging 
carefully and without bias. In adhering to SDM, a radiologist allows a patient to express their need 
for care in their own terms. To strengthen reciprocity in the radiologist-patient relationship, 
patients can cultivate attentive care by communicating their needs and concerns openly, asking 
questions, listening in turn, and adhering to their treatment plan.  

Attentiveness is of particular importance in breast imaging, where patients may identify 
palpable lumps or other symptoms during self-examination and need to communicate concerns to 
their care provider. Breast cancer and breast imaging can be an emotional experience for patients; 
the connections of the breast to motherhood and sexuality can make seeking care for breast-related 
concerns embarrassing or anxiety-inducing35. This adds to the vulnerability of the patient and must 
be recognized in attentive breast imaging care, as patients may not be comfortable expressing their 
need for care candidly. An attentive radiologist observes possibly minute indications of patient 
condition and adjusts caregiving, particularly the communication of results, in kind. 

CADs can disrupt attentiveness in the radiologist-patient relationship. Essentially, there are 
two designs for CADs in clinical practice, 1) the radiologist needs to interact directly with the 
CAD during a patient encounter (when the radiologist is performing diagnostic imaging 
themselves, such as an ultrasound follow-up to mammography), and 2) the CAD is used out of 
sight of the patient. In this first situation, the opportunity to interact with the CAD during the 
patient appointment is encountered, and the interaction between radiologist and patient is 
interrupted. When the radiologist is interacting with the CAD, they are not serving as a physician, 
but as a technician. This fragmentation of roles can lead to disinterestedness in serving as a 
physician when interacting with the CAD36. Aside from role-switching when interacting with 
CAD, if used in real-time, radiologists may possibly need to input data, trigger analysis, or 
actively identify lesions in certain CADx systems. This reduces the amount of time spent face-to-
face with patients and can damage the patient’s perception of the radiologist’s attentiveness. Over-
interaction with results from non-real-time CAD produces similar damage to the attentive quality 
of care. Patients can receive attentive care by the caring radiologist choosing to keep CAD 
interaction to a minimum during patient encounters, or relegating CAD to non-real-time use, such 
as in exams performed by a radiology technician.  

3.4.  Competence 

After identifying that caring needs to occur, for care to be competent, the caregiver needs to be 
able to administer the needed care well. Requiring ethical care to be competent recognizes that 
care ethics does not simply involve good intentions but also requires knowledge, judgement, and 
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skillful execution. Competent caring in breast imaging involves, but is not limited to, maintaining 
technical competence by staying up to date with new technologies, adhering to reporting standards 
such as those set forth by the American College of Radiology’s Breast Imaging Reporting & Data 
System37, and deferring to other physicians or diagnostic tools when necessary. The relational 
nature of ethical care requires not only that the radiologist administer care well, but that the patient 
perceives care as competent. Thus, competent caring also involves maintaining patient trust in the 
radiologist. Medically correct care administered without the perception of competency damages 
trust and cannot be ethical care. Administering competent care also involves clear, empathetic 
communication of imaging results at a level appropriate for the patient. 

 CADs can impact both perception and realization of a radiologist’s competency in caring. 
When a CAD is introduced into the breast imaging workflow, there is a risk of skill erosion, 
wherein the radiologist loses some or all of their ability to interpret imaging without the use of the 
CAD. Skill erosion can also occur when new radiologists are not taught the skills which are now 
being addressed by the CAD. For example, less emphasis may be placed on developing the skills 
for precise lesion delineation, because this is a common feature of CADe systems. Medical skill 
erosion, not specific to radiology, has been well-documented as a response to new clinical 
technology and is an oft-cited professional consequence of incorporating clinical decision support 
systems into medical practice38-40. 

 The ethical question is then whether or not skill erosion challenges the ability of the radiologist 
to provide competent care. We propose that it does not. The competency requirement of care 
entails that radiologists evolve with developments in medicine so they provide the best care 
available to their patient. If we accept that a CADx system diagnoses breast cancer from 
mammography with higher sensitivity and specificity than the radiologist, then, if the radiologist 
neglects to defer to the CADx when inspecting imaging, the quality of care suffers. Misdiagnosis 
can be extremely traumatic for the patient in the case of a false positive, with negative 
psychological effects lasting up to three years35, and deadly in the case of a false negative. Thus, it 
is essential in maintaining a healthy, caring radiologist-patient relationship that a diagnosis be as 
accurate as possible, and this implies the use of the CADx system.  

Accepting that a particular CAD provides a better diagnosis does not necessitate skill erosion. 
Radiologists may maintain their imaging inspection skills by either examining imaging for a 
selection of patients without use of the CAD, or ensuring they inspect imaging independently 
before referring to the CAD. Two concerns present themselves here:  The former option may harm 
a subset of patients and is unethical unless the patients give their informed consent after an SDM-
adherent discussion of risks and benefits. The latter slows down the radiologist at best, and at 
worst subjects patients to over-testing.  In the event that the CAD is removed from the medical 
practice, it is the radiologist who is responsible for “upskilling” to maintain a high quality of care. 

The inclusion of a reading aid-style CAD in a breast imaging workflow presents opportunity 
for disagreement between the radiologist and the CAD. Without the opportunity for follow-up 
discussion and explanation as one would have with a human collaborator, this can challenge the 
radiologist’s perception of their own competency41,42. However, this need not directly affect the 
caring radiologist-patient relationship, unless the self-perceived skills of the radiologist affect their 
patient interactions. On the contrary, referring to the CAD adds to the radiologist-patient 
relationship in much the same way that consulting with another radiologist would. A critical 
component of providing competent care is knowing when to defer decision-making to others.  
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 The perception of radiologist competency by patients is essential to maintaining a caring 
relationship. In order to accept care, the more vulnerable care-receiver must trust the caregiver. 
The inclusion of CAD in the clinical breast imaging environment can damage a patient’s trust in 
the competency of their radiologist. If a CAD is referred to for all imaging results, or if CAD 
results are presented with minimal explanation of medical significance from the radiologist, there 
is a risk of seeing the radiologist as just an intermediary between the patient and the computer 
system43. A particular risk to patient perception of radiologist competency arises when CAD 
results are made available automatically to the patient, before the radiologist can make contact. In 
this scenario, the patient receives medical information without input from the radiologist, 
establishing a pseudo computer-patient relationship, in which the computer is presented as 
competent. When a patient finds a computer to be more competent than the radiologist there is risk 
to the radiologist-patient relationship (examples from other fields44-46). To maintain the perception 
of competency, radiologists need to be skilled empathetic listeners and communicators, not only 
with respect to medical knowledge and CAD results47, but also in person-to-person interactions. If 
the radiologist and the CAD system agree, radiologists give ethical care when they communicate 
CAD results effectively. When the patient receives CAD results independently, then the 
radiologist may maintain the perception of competency by providing adequate medical framing of 
CAD decisions. If they do not agree, the radiologist may need to compete with a patient’s 
perception of an established epistemic authority in CAD (Note that we are not explicitly referring 
to explainable AI technologies here, but the skill of the radiologist in communicating diagnostic 
results in terms appropriate for the patient).   

3.5.  Responsiveness 

The responsive element refers to the complex dynamic between caregiver and care-receiver. It 
implies a shared ethical responsibility, requiring that attention be paid to both the patient and their 
responses to the care administered. Responsiveness recognizes the vulnerability of the patient and 
places a particular emphasis on understanding what is being expressed by the patient throughout 
all stages of care. Both patient and radiologist have a role in responsive care. Medical care can be 
administered according to best practices, attentively and competently, but as soon as the response 
of a patient is not considered and care adjusted accordingly, the care can end in moral failure. For 
example, a patient who is uncomfortable with the breast compression involved in mammography 
and communicates this discomfort may not continue to be ethically treated. A care-ethical 
response would involve discussing alternative imaging modalities, and/or adjusting the procedure 
(or pre-procedural communication) to make the patient more comfortable.  

Responsive care encourages dialogue consistent with the ethical ideal of SDM. Patients must 
feel comfortable expressing their response to care and radiologists must demonstrate that they 
adjust caregiving to patient response. Responsive caring also necessitates that patient values are 
incorporated into caregiving. Attitudes around and adoption of mammography have been shown to 
vary based on patient cultural background48-50 and a responsive caregiver will adjust their practice 
and communication to best suit their patient.  Radiologist’s opportunities to provide responsive 
care are expanded with the integration of CAD systems, particularly when patients are exposed to 
CAD results before radiologist communication can occur. Radiologists display responsive care 
when they modify their communication of CAD results to both the epistemological position and 
emotional state resulting from previous discovery of CAD results.   
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However, responsive care can be harmed by CAD usage in clinical breast imaging practice. 
The application of patient values relating to diagnosis and treatment decisions requires the ethical 
implications and explanation for these decisions be communicated to the patient. For example, 
women with different backgrounds may react differently to being told that there is a 2% chance of 
malignancy in an identified breast lesion, and a recommendation of follow-up imaging or biopsy. 
CAD decisions are not a priori centered around patient value-systems. This risks placing the entire 
burden of ethical contextualization on the patient.   

A patient’s capacity to be engaged in responsive care can be further harmed by CAD 
integration when there is no avenue for the patient to provide feedback on the quality of care they 
are receiving directly to the CAD. For this reason, the CAD can never assume a role as a moral 
agent, from a care ethics perspective. We argue that feedback and dialogue with the radiologist is 
crucial and some may see it as an appropriate substitute for providing feedback to the CAD, 
especially in the situation where the CAD is serving as a reader aid to the radiologist. We disagree, 
on the grounds that dialogue about quality of care and accurate diagnosis should be provided to 
every entity that is making decisions. Patient and radiologist feedback could be incorporated into 
CADs through closed-loop designs where feedback is used to improve performance. Furthermore, 
for care to be responsive, the caregiver needs to react to feedback from the care-receiver. The 
ethical, caring patient cannot receive care from a CAD without substantial radiologist intervention 
to bridge the ethical gap between CAD output and patient values.  

3.6.  Responsibility  

When considering care ethics as a professional ethical framework, we draw attention to the 
distinction of care ethics as a responsibility-based ethical theory, as opposed to more traditional 
obligation-based ethical theories. A care ethics approach to moral decision making involves 
asking how decisions fulfill our responsibility to maintain caring relationships51. By contrast, 
obligation-based ethical theory asks how decisions influence what we owe to others, thus 
distancing ourselves from our interpersonal relationships. Defining care ethics as responsibility-
based in healthcare assumes practitioners are responsible for the care of their patients as a result of 
the physician-patient relationship. Radiologists are not care-ethically obligated to administer 
treatment to their patient; however, they are responsible for how their treatment (and the patient’s 
outcome) will influence not only the radiologist-patient relationship but also the wide network of 
professional and personal relationships linking the radiologist and patient. Responsible care 
involves a reciprocal effort on the part of the patient to be open to receiving care.  

Radiologists demonstrate responsible care simply by taking it upon themselves to care for their 
patients. We believe this responsibility need not erode with the use of CAD but can evolve to 
include more non-medical aspects of care. Radiologists who specialize in breast imaging have 
unique opportunities to interact with patients in both performing imaging and communicating 
results. As the medical needs of a patient are met, the radiologist can focus on more humanistic 
aspects of their practice. The responsibility of radiologists to attend to the emotional and mental 
wellbeing of their patient through the skills of communication, listening, and empathy is no less a 
responsibility than diagnosis and treatment. If we take as given that ethical actions are grounded in 
healthy, caring relationships, it seems obvious that maintaining the radiologist-patient relationship 
is essential to ethical breast imaging care. It may therefore be necessary for radiologists to shift 
their focus from medical skills to their less-technical, more caring skills, precisely because CAD 

Pacific Symposium on Biocomputing 2023

479



 

 

are incapable of forming relationships, and thus cannot function as moral agents from a care ethics 
perspective43.  

Consideration of CAD errors draws particular attention to the breast radiologist’s care-ethical 
responsibility for their patient. CAD may be susceptible to errors due to dataset shift in 
deployment due to unrepresentative training data and differences in data acquisition methods, 
among other hard-to-detect reasons52. A caring radiologist must be sufficiently competent to 
identify CAD errors and trust their own judgement53,54. Furthermore, a responsible radiologist 
must safeguard their patient from erroneous CAD output to maintain trustworthiness and goodwill 
towards the patient. Thus, within a care context the radiologist is responsible for the effects CAD 
may have on their patient’s diagnosis, and thus must engage in AI/CAD safety and monitoring 
protocols.  

 Patients need to trust that their radiologist is administering responsible care. This grounds the 
radiologist-patient relationship. Trust implies an assumption of goodwill between parties involved. 
Radiologist-patient trust can be fostered through accurate diagnoses, open communication, and 
empathetic listening. CAD can harm this trust because the patient cannot trust the CAD, which is 
serving as an extension of the radiologist in making diagnosis decisions. A distinction can be 
made between reliability and trustworthiness where consistency in decisions and behavior is a 
condition of reliability, but does not necessarily imply trustworthiness55. Trustworthy AI 
initiatives that focus on the removal of bias contribute to reliability under this framework.  

CAD in itself cannot add to the perception of radiologist trustworthiness, since goodwill and 
responsibility towards the patient cannot be assumed. The CAD and the radiologist are not the 
same entity. The radiologist may be trusted while the CAD is not. However, while the CAD is 
advising the radiologist in image interpretation, it serves as an extension of the radiologist.  Trust 
cannot be established in a radiologist who relies exclusively on CAD to make decisions in their 
practice. Therefore, the radiologist must be present to compensate for CAD’s inability to 
demonstrate goodwill to patients and safeguard them from CAD unreliability and errors; for 
example, when identifying and communicating why a CAD recommendation has been dismissed, 
as with unorthodox breast placement, where CAD is known to be unreliable.  

4.  Conclusion  

CAD can reduce some of the burden on radiologists for diagnostic decision-making in breast 
imaging but is not wholly consistent with the caring radiologist-patient relationship without 
considerable adaption of radiologist care patterns. The potential diagnostic accuracy and speed of 
CAD in breast imaging is impossible for human radiologists to replicate, and the potential for 
CAD to lessen imaging quality/frequency gaps in low-resource settings is groundbreaking. To 
deny patients the opportunity to receive timely care and the most correct diagnosis would be 
blatantly unethical. The perspective of care ethics requires maintenance of responsive relationships 
in which conflicts can be resolved without damage to the continuing relationship56. Radiologist 
maintenance of the radiologist-patient relationship involves administrating attentive care through 
disengagement with CAD during patient encounters, demonstrating competency through effective 
communication of CAD results, providing comprehensive ethical framing of CAD output, and 
establishing responsibility through caution in applying CAD diagnoses.  
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Federated learning is becoming increasingly more popular as the concern of privacy breaches
rises across disciplines including the biological and biomedical fields. The main idea is to
train models locally on each server using data that are only available to that server and
aggregate the model (not data) information at the global level. While federated learning
has made significant advancements for machine learning methods such as deep neural net-
works, to the best of our knowledge, its development in sparse Bayesian models is still
lacking. Sparse Bayesian models are highly interpretable with natural uncertain quantifi-
cation, a desirable property for many scientific problems. However, without a federated
learning algorithm, their applicability to sensitive biological/biomedical data from multiple
sources is limited. Therefore, to fill this gap in the literature, we propose a new Bayesian
federated learning framework that is capable of pooling information from different data
sources without breaching privacy. The proposed method is conceptually simple to un-
derstand and implement, accommodates sampling heterogeneity (i.e., non-iid observations)
across data sources, and allows for principled uncertainty quantification. We illustrate the
proposed framework with three concrete sparse Bayesian models, namely, sparse regression,
Markov random field, and directed graphical models. The application of these three models
is demonstrated through three real data examples including a multi-hospital COVID-19
study, breast cancer protein-protein interaction networks, and gene regulatory networks.

Keywords: Causal discovery; Distributed computation; Graphical models; Privacy; Sparse
regression.

1. Introduction
Sparse models such as sparse regression and graphical models have been extensively studied
and find numerous applications in biological and biomedical sciences such as biomarker iden-
tification for electronic health records data1 and reverse-engineering gene regulatory networks
for genomic data.2 Sparse Bayesian models not only provide point estimation but also natu-
rally quantify the estimation uncertainty, which facilitates interpretation especially for models
that have moderate to large numbers of parameters. Shrinkage and variable selection priors
have been developed for this purpose including the horseshoe prior,3 the Bayesian lasso,4 the
spike-and-slab prior,5 and the thresholding prior.6 In this article, we study the sparse Bayesian

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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models under the federated learning setting where data are distributed across multiple local
sources (called local servers hereafter) and the goal is to perform global inference that pools
information from local servers without breaching the local data privacy. Typical application
includes privacy-preserved analyses of electronic health records data across multiple hospitals
or medical centers where data may be limited in size in each site (hence independent anal-
ysis in each site would lack statistical power) but cannot be shared across sites due to the
sensitivity of protected health information.

Federated learning is an emerging area and finds many applications especially in health.7–9

Essentially, the idea is to train models locally on each server using data that are only available
to that server and then send model information (instead of any private data) to a central server
for aggregation. The central server subsequently sends the aggregated model information back
to local servers. The exchange of information between the central and local servers can be an
iterative process depending on the communication cost and the design of the federated learning
algorithm.10 Another interesting line of federated learning research considers heterogeneous
scenarios where the data distributions may be different across local servers.11 In general,
methods developed for federated learning could be applied for distributing computational
tasks on massive data, but the opposite is not true as distributed computing does not generally
preserve privacy of the local data.

This article particularly focuses on Bayesian methods, which typically provide more natu-
ral uncertainty quantification than the frequentist counterpart. Bayesian inference, however,
often requires running a long Markov chain Monte Carlo (MCMC) algorithm to achieve prac-
tical convergence, which can be time-consuming. Therefore, Bayesian distributed computing
has been developed to improve the computational efficiency through parallelization. One such
line of research is so-called consensus Monte Carlo for which MCMC is run on each local server
without communication among the servers and the Monte Carlo samples are only aggregated
at the end.12–18 Intuitively, the idea is to divide the posterior into separate sub-posteriors
to be computed on each local server; then the research question becomes how to effectively
combine these local chains into a single posterior. However, in many situations (e.g. the local
data being heterogeneous or highly non-Gaussian), consensus Monte Carlo may not have good
empirical performance,19 but work is continuing to attempt to overcome these issues.20 There
are also methods that run multiple chains with somewhat frequent communication during
the course of MCMC.19,21,22 These methods are potentially useful for federated learning but
require carefully crafted MCMC methods to protect privacy. Another line of research involves
using a distributed version of stochastic gradients within Langevin Dynamics (i.e., Langevin
Monte Carlo),23 which subsamples each local dataset for gradient approximation. In fact, mul-
tiple methods have applied the distributed stochastic gradients idea to federated learning.24,25

However, gradient does not exist for discrete parameters such as variable selection indicators
in sparse models, which is the main focus of this article. Lastly, Bayesian neural networks have
seen recent advancements in the federated learning setting where the aggregation is achieved
through fitting parametric or nonparametric models to local network parameters.26,27 While
useful for neural networks, it is not straightforward to extend their methods to other models
including sparse models such as sparse regression and graphical models.
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Our paper demonstrates how basic MCMC algorithms can be used within the federated
learning setting by reformulating the model and adding an explicit layer for pooling the local
models. As the order of MCMC updating steps can be interchanged, the communication
between local servers and the global server can be reduced by running multiple local steps
per global aggregation. Through multiple sparse models and real data examples, we show the
simplicity and broad applicability of the proposed method.

2. Method
2.1. Overall Framework
We first introduce the proposed federated learning framework for Bayesian models. Later, we
will provide several concrete examples illustrating the application of the proposed framework
to three specific sparse Bayesian models – sparse regression, Markov random field, and directed
graphical models.

Let D1,D2, . . . ,DM denote M datasets and let D = {D1, . . . ,DM} be the collection of all
datasets. If they are available on the same computing server (i.e., under the non-federated
learning setting) and if they are independent and identically distributed (iid), then a single
probability model can be used to model D, D ∼ P (D|θ) =

∏M
k=1 P (Dk|θ), which is schemat-

ically represented by a directed acyclic graph in Figure 1(a). However, this model has two
obvious downsides under the federated learning setting: (i) Dk is only available on the local
server k = 1, . . . ,M and cannot be shared with other servers due to privacy concerns, etc; and
(ii) D1, . . . ,DM may not be iid. A naive approach to address these two concerns is to consider
M independent probability models (Figure 1(b)), one for each local server, Dk ∼ P (Dk|θk).
This approach does not provide a joint inference across datasets, which can result in sta-
tistically inefficient inference and poor interpretation of model parameters. To provide joint
inference while preserving privacy, federated learning approaches have been developed. For
example, one may aggregate the estimates of θ1, . . . , θM using some deterministic function
θ = f(θ1, . . . , θM ) such as average for continuous parameters and majority vote for discrete
parameters. Such deterministic approach is often ad hoc (e.g., lack of finite-sample theoretical
justification) and generally does not propagate estimation uncertainty from local parameters
θ1, . . . , θM to the global parameter θ. In this article, we will instead consider a probabilis-
tic aggregation approach, which overcomes all the aforementioned limitations. The proposed
approach is conceptually simple and natural for Bayesian models. Consider the following hi-
erarchical model, for k = 1, . . . ,M ,

Dk ∼ P (Dk|θk), θk ∼ P (θk|θ), θ ∼ P (θ).

Given appropriate choices of P (θk|θ) and P (θ) (to be discussed later), this conceptually simple
hierarchical model provides a principled recipe to probabilistically aggregate local informa-
tion through the posterior distribution P (θ|θ1, . . . , θM ) ∝ P (θ)

∏M
k=1 P (θk|θ), which directly

provides point and interval estimation of θ through e.g., the posterior mean and the credible
interval. Algorithmically, by exploiting the conditional independence of θk and D−k given θ

(subscript “−k” means removing Dk from D), the computation is trivially parallelizable at the
local level and no data ever need to be passed to the global server, hence preserving privacy;
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see Figure 1(c). In Algorithm 1, we outline the federated learning MCMC pseudocode, which
highlights the local parallelizability and privacy protection (there is no data sharing, and the
shared parameters are not observation-level parameters).

The aggregation via the posterior distribution depends crucially on the choices of the prior
distribution of local parameters given the global parameter P (θk|θ) and the prior distribution
of the global parameter P (θ). Three properties are deemed desirable: (i) P (θk|θ) should en-
courage θk to tightly concentrate around θ so that θ can be interpreted as a global version of
local server-specific parameters θ1, . . . , θM , (ii) P (θk|θ) should also allow occasional deviation
of θk from θ if Dk strongly supports it, which accommodates non-iid scenarios, and (iii) P (θ)

should encourage sparsity in θ for better model interpretability. To make the discussion con-
crete, we now consider three specific sparse Bayesian models. For ease of exposition, we start
with a sparse regression model.

Fig. 1: Illustration of (a) a single model, (b) independent models, and (c) a federated model. The
arrows represent the direct dependencies among the variables. The federated model has three levels:
global, intermediate, and local. The parameters at the intermediate level are passed from local servers
to the global server whereas the data never leave the local servers.

2.2. Example 1: Federated Sparse Regression
2.2.1. Sparse Regression
Let Dk = (Xki, Yki)

nk

i=1 for k = 1, . . . ,M denote the local server-specific dataset with nk obser-
vations where Xki = (Xki1, . . . , Xkip)

T is p-dimensional covariate vector and Yki is the response
variable for i = 1, . . . , nk. Consider the following server-specific regression model,

Yki = XT
kiθk + ϵki, (1)

for k = 1, . . . ,M and i = 1 . . . , nk, where θk = (θk1, . . . , θkp)
T is the regression coefficient vector

and ϵki ∼ N(0, σ2
k) is a normal error term. For simplicity, we do not make joint inference on σ2

k

as the parameter of interest of a regression model is typically the regression coefficient θk; but



Algorithm 1 General Algorithm
Input: Dk and hyperparameters
Output: Monte Carlo samples of θ1, . . . , θM and θ

Initialize θ(0) on the global server
for t in 1, . . . , T do ▷ MCMC iterator

parfor k in 1 . . . ,M do ▷ Parallel for-loop
Send the global parameter θ(t−1) to local server k

Sample θ
(t)
k |Dk,θ

(t−1) ∼ P (θk|Dk,θ
(t−1)) on local server k ▷ Local Update

Send θ
(t)
k to the global server

end parfor
Sample θ(t) ∼ P (θ|θ(t)

1 , . . . , θ
(t)
M ) on the global server ▷ Global Aggregation

end for

if desired, our method can be easily extended for joint inference of σ2
k. In many applications,

not all covariates are predictive of the response variable and, correspondingly, θk is assumed
to be sparse, i.e., most of the entries θk are zero or very close to zero.

2.2.2. Prior
We now specify the prior distributions P (θk|θ), P (θ), and P (σ2

k). To achieve the fist two
desired properties outlined at the end of Section 2.1, we impose an element-wise mean-shifted
horseshoe prior for θk, which is centered around the global parameter θ,

θkj |θj ∼ N(θj , λ
2
kjτ

2
j ),

λkj , τj ∼ C+(0, 1),

where C+(0, 1) is the standard half-Cauchy distribution. The mean-zero horseshoe prior28,29

has been extensively studied in the sparse regression model, which is capable of shrinking
small coefficients aggressively towards zero while leaving large coefficients untouched. Our use
of mean-shifted horseshoe prior aggressively shrinks local parameter θkj towards the global
parameter θj but still allows substantial deviation if data dictates so.

To encourage sparsity, we assume a spike-and-slab prior5 on the global parameter with a
beta-Bernoulli hyperprior,

θj |γj ∼ γjN(0, ηj) + (1− γj)N(0, c0ηj),

γj ∼ Bernoulli(ρ), ρ ∼ beta(aρ, bρ),

where c0 is fixed small constant (e.g., 0.01) and γj is a binary indicator variable, which equals
1 if θj is significantly away from 0 and equals 0 if θj is so small that it can be safely treated
as zero without affecting the model fit. The prior specification is completed with conjugate
inverse-gamma priors for variance parameters σ2

k ∼ IG(aσ, bσ) and ηj ∼ IG(aη, bη).
In summary, the local horseshoe prior shrinks local parameters towards the global param-

eter (i.e., the aggregation) and the global spike-and-slab prior induces sparsity.
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2.2.3. MCMC
We expand the “Local Update” and the “Global Aggregation” steps of Algorithm 1 for sparse
regression model in Algorithms 2 and 3, respectively. Note that for the sampling of horseshoe-
related parameters, we utilize the parameter expansion technique.30 Also note that one can
opt to run multiple local update steps per each global aggregation due to the standard Markov
chain theory; see the for-loop in Algorithm 2.

Algorithm 2 Local Update for Sparse Regression
for ℓ in 1, . . . , L do

Sample νkj ∼ IG(1, 1 + λ−2
kj ) ▷ Parameter Expansion30

Sample λ2
kj ∼ IG

[
1, ν−1

kj + (θkj − θj)
2/(2τ2j )

]
Sample θk ∼ f(θk) ∝

∏nk

i=1N(Yki|XT
kiθk, σ

2
k)

∏p
j=1N(θkj |θj , λ2

kjτ
2
j )

Sample σ2
k ∼ IG(aσ + nk/2, bσ +

∑nk

i=1(Yki −XT
kiθk)

2/2)

end for

Algorithm 3 Global Aggregation for Sparse Regression
Sample ξj ∼ IG(1, 1 + τ−2

j ) ▷ Parameter Expansion30

Sample τ2j ∼ IG
[
(M + 1)/2, ξ−1

j +
∑M

k=1(θkj − θj)
2/λ2

kj

]
Sample θ ∼ f(θ) ∝

∏p
j=1

[
N(θj |0, c1−γj

0 η)
∏M

k=1N(θkj |θj , λ2
kjτ

2
j )
]

Sample η ∼ IG
[
aη + p/2, bη +

∑p
j=1 θ

2
j/c

1−γj

0

]
Sample γj ∼ Bernoulli(qj) with qj =

ρN(θj |0,η)
ρN(θj |0,η)+(1−ρ)N(θj |0,c0η)

Sample ρ ∼ beta(aρ +
∑p

j=1 γj , bρ + p−
∑p

j=1 γj)

2.3. Example 2: Federated Markov Random Field
The sparse regression model in Section 2.2 can be extended to the sparse Gaussian Markov ran-
dom field model (also known as the Gaussian graphical model), which can also be worked out
in a federated learning setting. Let Dk = (Y ki)

nk

i=1 for k = 1, . . . ,M where Y ki = (Yki1, . . . , Ykip)
T

is a random vector whose conditional independence relationships are of interest. We assume
a centered multivariate Gaussian distribution,

Y ki ∼ N(0,Ω−1
k ), (2)

with precision (inverse covariance) matrix Ωk = [ωkjh]
p,p
j=1,h=1. If ωkjh = 0, then Ykj and Ykh

are conditionally independent given all the other variables. Often, such conditional indepen-
dence relationships are represented by an undirected graph/network where nodes represent
the random variables and two nodes are connected j − h by an undirected edge if and only if
ωkjh ̸= 0. Interestingly, Gaussian Markov random field is closely related to sparse regression,
which leads to the so-called neighborhood selection method.31 Note that the joint distribution
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(2) implies the conditional distribution of Ykij given all the other variables,

Ykij = Y T
ki,−jθkj + ϵkij , (3)

with θkj = −Ωk,−j,j/ωkjj and ϵkij ∼ N(0, ω−1
kjj), which is exactly a regression model with re-

sponse Ykij and covariates Y ki,−j. Therefore, ωkjh = 0 if and only if θkjh = 0. Consequently,
estimating a sparse precision matrix Ωk reduces to estimating the set of sparse regression
coefficient for p independent regressions. Hence, the proposed federated learning algorithm
for sparse regression can be applied in parallel to (3) for j = 1, . . . , p. One caveat is that the
neighborhood selection method has no guarantee of the symmetry of Ωk but simple post-
processing procedures based on union or intersection can be used to obtain a consensus undi-
rected graph.31

2.4. Example 3: Federated Directed Graphical Models
Markov random field is useful for investigating symmetric association but cannot be used to
identify causal relationships, which are asymmetric (cause and effect are not exchangeable).
Directed graphical models32,33 are popular tools for discovering causality (i.e., generating plau-
sible causal hypotheses in an exploratory fashion). Consider the following structural equation
model,34,35

Y ki = Y kiθk +Eki, (4)

where θk = [θkjh]
p,p
j=1,h=1 is the causal effect matrix and Eki = (ϵki1, . . . , ϵkip)

T ∼ N(0,Σki) is
the normally-distributed error vector with diagonal covariance Σki. Under the causal Markov
assumption,32,33 we say Ykh is a direct cause of Ykj if θkjh ̸= 0, which can be represented by
an arrow j ← h in a directed graph/network. The error distribution induce a distribution for
Y ki,

Y ki ∼ N(0, (I − θk)
−1Σki(I − θk)

−T ),

where I is a p × p identity matrix. Note that for observational data, the causal relationships
may not be identifiable due to Markov equivalence. To ensure identifiability, various methods
have been developed. As an example, we take advantage of the non-Gaussianity for causal
identifiability.36 Specifically, we assume each diagonal entry of Σki to be exponentially dis-
tributed, which induces a marginal Laplace distribution for ϵkij for j = 1, . . . , p. We remark
that the popular causal discovery method, Bayesian network, is a special case of the directed
graphical model considered here by restricting the graph to be acyclic. Because biological sys-
tems tend to have feedback loops, we do not make such restriction. The price to pay is that we
lose conjugacy but the proposed federated learning framework is still applicable with a minor
tweak: replace the Gibbs sampling of θk in Algorithm 2 by a Metropolis step. Specifically, we
propose a new value θ⋆

k from some proposal density q(·) such as normal, which could depend
on the value of θk from the last iteration. Then we accept θ⋆

k with probability min(1, a) with

a =
q(θk)N(0, (I − θ⋆

k)
−1Σki(I − θ⋆

k)
−T )

∏
j ̸=hN(θ⋆kjh|θjh, λ2

kjhτ
2
jh)

q(θ⋆
k)N(0, (I − θk)−1Σki(I − θk)−T )

∏
j ̸=hN(θkjh|θjh, λ2

kjhτ
2
jh)

.
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3. Numerical Studies
We demonstrate the proposed methods with three real data examples. Simulation results are
provided in the Supplementary Materials https://www.dropbox.com/s/5cl1ag92otaos54/
kidd_supp.pdf?dl=0.

3.1. Johns Hopkins COVID-19 Data - Federated Sparse Regression
COVID-19 (a coronavirus) has been a recent pandemic receiving a great amount of atten-
tion worldwide. We analyze the COVID-19 clinical data electronically recorded in four Johns
Hopkins’ hospitals (i.e., M = 4). Each hospital provides 100-150 patients, leading to a total
sample size of 552. Due to the sensitive protected health information, data cannot be easily
shared across hospitals for the purpose of statistical analyses but local computation within
each hospital is feasible. Therefore, this data provide an excellent opportunity to illustrate
the practical utility of the proposed federated learning method.

An important marker for COVID-19 is the arterial oxygen saturation (SaO2, our response
variable), which, unfortunately, is difficult to measure. Instead, because of its non-invasiveness,
the peripheral oxygen saturation (SpO2, our main covariate) is often used as a proxy measure-
ment for SaO2. We will apply the federated sparse regression model to the Johns Hopkins data
to examine the association between SpO2 and SaO2 in COVID-19 patients while adjusting for
eight variables commonly collected at doctors visits: temperature in Celsius (Temp_C), mean
arterial pressure (MAP), gender, age, and race, hemoglobin count (HGB), bilirubin levels, and
creatinine levels. Dummy variable coding is used for gender (Male) and race (Race_b (Black),
Race_h (Hispanic), Race_a (Asian)).

We run the federated learning algorithm with T = 1000 global aggregation and L = 100

local updates per each global aggregation. We report the posterior mean of θ and posterior
inclusion probability (PIP) in Table 1. PIP is defined as the posterior mean of γj and a large
value indicates high significance of Xj. As expected, SpO2 is the most significant predictor of
SaO2 with PIP=0.777, which demonstrates that the proposed federated sparse regression has
the potential to identify important variable by pooling information from multiple local servers
without breaching privacy.

3.2. Breast Cancer Protein-Protein Interaction Networks - Federated Markov Random
Field

Breast cancer is one of the most prevalent types of cancer, affecting over 5% of women in the
United States throughout their lives. Since cancer is a genetic disease, modern treatment of
breast cancer relies heavily on the fundamental understanding of genetic architecture of breast
cancer tissues. Therefore, it is crucial to understand genetic networks at different levels such
as gene and protein levels. In this section, to demonstrate federated Markov random field, we
consider a Reverse Phase Protein Array data from the The Cancer Proteome Atlas.37 Protein
expression data are extracted from 7 sites with over 50 observations (the biggest site has 149
observations). We focus our analysis on p = 11 breast cancer-related proteins.38 We reported
PIP of all pairs of proteins in Figure 2(a) with darker color corresponding to higher PIP. The
most significant interaction, STK11 and CDKN1B, is biologically plausible as STK11 is known
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Table 1: COVID-19 data

Covariate θ PIP
SpO2 0.673 0.777
Age -0.002 0.032

MAP 0.006 0.048
Temp_C 0.152 0.306

HGB 0.029 0.123
Bilirubin -0.013 0.157

Creatinine -0.017 0.090
Male 0.013 0.142

Race_b -0.003 0.216
Race_h -0.007 0.178
Race_a -0.037 0.217

CASP8

CDKN1B1

CDKN1B2
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(a) Protein-protein interaction network (b) Gene regulatory network

Fig. 2: Breast cancer genetic networks.

to phosphorylate CDKN1A39 and CDKN1A and CDKN1B belong to the same family of CDK
inhibitor. The next most significant association is between CDKN1B1 and CDKN1B2, which
is also not surprising given they are the variants of the same protein CDKN1B. As we noted
before, Figure 2(a) is not symmetric due to the artifact of neighborhood selection.31 It can be
symmetrized if desired by taking the maximum or minimum of PIP for each pair of pairs.
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3.3. Breast Cancer Gene Regulatory Networks - Federated Directed Graphical Models
To demonstrate federated directed graphical models, we consider the breast cancer gene ex-
pression data obtained from the Genomic Data Commons project of the National Cancer
Institute.40 The consortium hosts data generated from over 45 different sites. We restrict our
analysis to the 10 sites with over 50 observations, leading to total sample size 901 with the
largest site having 227 observations and two others having over 100 observations each.

We focus our analysis on the WNT/β-catenin signaling pathway known to be critical
for breast cancer development.41 Particularly, p = 16 genes emphasized in the recent review
paper41 are considered. We present the estimated gene regulatory network in Figure 2(b)
where Bayesian false discovery rate control42 is used to threshold the PIP to obtain the sparse
network.

Some feedback loops are interesting. For example, DVL1 is known to inactivate AXIN1,
but our analysis also shows a direct feedback from AXIN1 to DVL1, which requires further
experimental validation. In addition, the regulatory relationship from CTNNB1 to MMP7 also
matches the existing biological knowledge that MMP7 is a downstream effect of CTNNB1.43

4. Discussion
We have brought sparse Bayesian models into the realm of federated learning. The proposed
method is conceptually simple and allows for data heterogeneity (i.e., non-iid observations) and
proper uncertainty quantification. By switching the MCMC order and updating local models
multiple times between global server updates, we manage to the limit the communication cost
while maintaining theoretical convergence (as MCMC eventually converges regardless of the
update order). Through real data examples, we show the applicability of the proposed method
for sparse regression, Markov random field, directed graphical models.

There are several future directions. First, we have only considered linear models for both
regression and graphical models. Nonlinearity can be incorporated by spline basis expansion.44

Second, some variables may not be measured in certain sites. By pooling the covariance
information together through federated learning, one can impute these missing variables under
the missing at random assumption. Preliminary simulations (not shown) support this idea.
Third, we have focused on the federated learning setting where there is a central server. It
would be interesting to extend our current approach to the scenarios where there is no central
server and only pairwise direct communication among local serves is possible.
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Machine learning predictive analytics (MLPA) are utilized increasingly in health care, but 
can pose harms to patients, clinicians, health systems, and the public. The dynamic nature 
of this technology creates unique challenges to evaluating safety and efficacy and 
minimizing harms. In response, regulators have proposed an approach that would shift more 
responsibility to MLPA developers for mitigating potential harms. To be effective, this 
approach requires MLPA developers to recognize, accept, and act on responsibility for 
mitigating harms. In interviews of 40 MLPA developers of health care applications in the 
United States, we found that a subset of ML developers made statements reflecting moral 
disengagement, representing several different potential rationales that could create distance 
between personal accountability and harms. However, we also found a different subset of 
ML developers who expressed recognition of their role in creating potential hazards, the 
moral weight of their design decisions, and a sense of responsibility for mitigating harms. 
We also found evidence of moral conflict and uncertainty about responsibility for averting 
harms as an individual developer working in a company. These findings suggest possible 
facilitators and barriers to the development of ethical ML that could act through 
encouragement of moral engagement or discouragement of moral disengagement. 
Regulatory approaches that depend on the ability of ML developers to recognize, accept, and 
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1. Introduction

Machine learning (ML) is increasingly utilized in health care, but can pose a variety of harms
and raise ethical concerns. (Chen et al., 2021) Yet, unique features of ML create challenges to 
evaluating its safety and efficacy and minimizing harms. (Char, Shah, & Magnus, 2018 ; London, 
2022) Proposed regulatory approaches designed to meet these challenges would shift the locus of 
responsibility for assessing and mitigating potential harms to ML developers. (US Food & Drug 
Administration, 2018, 2019, 2021) The success of such an approach would depend on the ability 
of ML developers to recognize, accept, and act on responsibility for mitigating harms. Other 
research suggests that the environment of computer science and software development could 
contribute to deflection of responsibility for harms (Gotterbarn, 2001; Vakkuri, Kemell, Jantunen, 
& Abrahamsson, 2020) in ways that are at odds with the culture of health care. We previously 
found that developers or machine learning-based predictive analytics for health care (MLPA) 
recognized a wide range of potential harms to individuals, social groups, and to the health care 
system. (Nichol, 2022) In addition, some developers were able to identify drivers of these harms 
and strategies to respond to these drivers through the development process. Those findings 
suggested that some MLPA developers acknowledge harms of their products and recognize 
strategies to mitigate those harms. However, recognition of the potential for harms and their 
mitigators is insufficient to prevent manifestation of harms if developers do not have moral 
awareness – the appreciation that there is an ethical aspect to the decisions that they make. 
According to the Rest Model, there are four components of ethical decision-making: (1) moral 
awareness, (2) moral judgment, (3) moral intention, and (4) moral action. (Narvaez & Rest, 1995) 
That is, developers would, at the very least, have to accept responsibility for identifying and 
minimizing harms as a prerequisite for taking appropriate action. We present a new analysis of 
previously-collected data from interviews of health care MLPA developers in the US (Nichol, 
2022) which examines developers’ perceptions of moral awareness and responsibility.  

2. Methods

2.1.  Recruitment 

We recruited individuals from July 2019 to July 2020 who were working for U.S.-based 
organizations involved in developing MLPA tools for use in health care settings. We selected 
individual organizations based on our previously published analysis of the landscape of predictive 
analytics in health care (Nichol  et al., 2021) which included a range of organizational types and 
sizes. The sample consisted of computer software and information technology companies, 
including those specifically focused on health care, as well as health insurers and hospital systems. 
In addition, we classified organizations by size based on number of employees (1-50, 51-1,000, 
over 1,000), as specified in the LinkedIn page for each organization. We identified 96 
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organizations, of which we selected 15 that were representative of the range of organizations, both 
in terms of type and size. (Table 1) 

From these organizations, we identified potential participants through LinkedIn, reviewing 
search results by organization for key words such as data scientist, software engineer, or manager. 
We contacted individuals to participate through LinkedIn’s direct messaging feature. To identify 
additional participants, we also used a snowball sampling approach. (Bernard, 2006) To examine 
the MLPA development process from different perspectives, we intentionally included participants 
representing a variety of roles, including data scientists, software engineers, project managers and 
executive leaders, among others. Individuals were offered a $100 electronic gift card for 
participation. Our study was approved by the Institutional Review Boards of Stanford University 
and the University of Pennsylvania. 

2.2.  Data collection 
Each participant completed a one-hour semi-structured interview through video conference. 

Interviews were conducted by one of two members of the research team (AAN or MCH). We 
iteratively developed the interview guide through pilot interviews with MLPA developers with 
familiarity with health care ML, and who were not included in the final sample. The interview 
guide included questions on the participants’ background and training, company and MLPA 
product goals in health care, facilitators and barriers to product development, potential benefits 
and harms of these products, and views on their regulation and oversight. 

2.3.  Data analysis 
Interviews were audio-recorded, transcribed verbatim and de-identified. We analyzed the data 

using the mixed-method analytic software DedooseTM 8.3, using standard qualitative data analysis 
methods (Miles, Huberman, & Saldana, 2019) based on grounded theory. (Strauss & Corbin, 
1997) To generate the initial codebook, all team members reviewed a subset of interview 
transcripts and generated a list of key concepts identified in the data. The team then iteratively 
refined the codebook through multiple rounds of provisional coding. Once the codebook was 
finalized, at least two team members independently coded each interview to enhance rigor and 
reliability, resolving any coding differences through team consensus. To further examine 
participant perceptions of the potential harms of MLPA in health care, and their attitudes toward 
regulation and oversight, we then reviewed all data coded to these topics across all participants to 
identify consistency and variability in narratives both within and across participants. 

3. Results

3.1. Participant characteristics 
40 of 76 MLPA developers contacted responded (52.6%). The majority (n=29, 72.5%) of 

participants worked at health care-oriented computer software and information technology 
companies. Almost two thirds (n=25) of participants held roles that involved both working directly 
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with data in MLPA development and other functions, such as leadership. Sixteen participants 
occupied high-level management roles. Thirty-five percent held health-related advanced degrees.  

3.2. Developer perspectives on responsibility 
In analyzing our interview data on developer perspectives on potential harms and benefits of 

their products, we found statements revealing their perspectives on roles and responsibilities to 
mitigate harms even though we did not ask about them directly.  Some respondents indicated a 
sense of moral sensitivity or awareness that included recognition of moral issues and empathy 
with others’ points of view, (Narvaez & Rest, 1995) and some of those reflected recognition of the 
developer’s role in addressing these issues. Others made statements that minimized harmful 
impacts of their products or their responsibilities to mitigate them. Examples of these statements 
are described below. 

3.3. Moral disengagement 
 Many developers made statements recognizing the potential harms from use of ML in health 

care, especially to patients, such as bias, loss of privacy, or inaccurate output of models. However, 
a subset of these statements also indicated minimization of harms or deflection of responsibility 
for preventing or mitigating them. We identified eight different subtypes of “moral 
disengagement” statements that created moral distance between their actions and harms or 
responsibility. (Table 2) These eight types of moral distancing or disengagement could be grouped 
into two categories: (1) rationalizations for, or minimization of harms of AI in health care 
applications (minimizing risk), or (2) minimization of the developer’s role in addressing or 
mitigating harms (minimizing responsibility).  

Examples of each of the eight subtypes of moral disengagement statements are shown in Table 
2, and the label we gave to each subtype. Some of these statements compared the harms of ML to 
those in other contexts such as social media, or financial data and asserted that there was no 
difference between those contexts and health care (Subtype: No difference). Others favorably 
compared the harms of ML to current practices in health care (Status quo is worse). Some of the 
harms of ML were recognized but were either believed to be justified by benefits (Risks justify 
benefits), minimized by being characterized as being irrelevant to the interviewee’s work product 
(Not in my AI), or by downplaying the role of ML in health care, usually by locating ultimate 
decision-making authority with a clinician (ML doesn’t make decisions). Similarly, other 
statements suggested that the harms of developers’ products were not characteristics of the 
products themselves but arose from how they were used or misused (Off-label use). Finally, 
another type of statement stressed the role of regulation in assuring that harms would be 
minimized or prevented (Regulation prevents harms). 

3.4. Moral awareness and engagement 
In contrast, other participants made statements reflecting not only a recognition of the potential 

for their work to cause harm, but that their decisions had moral implications for which developers 

Pacific Symposium on Biocomputing 2023

499



had responsibility. There was almost no overlap between the set of participants who made 
statements indicating moral disengagement and those who made statements indicating moral 
engagement, which were defined as statements indicating awareness of a moral issue, statements 
recognizing the potential for conflicting interests leading to a moral dilemma, statements 
acknowledging responsibility, and statements indicating that responsibility aligned with personal 
values. Almost all statements indicating awareness of a moral issue also acknowledged some 
responsibility of ML developers, or at least recognized the role of developers in potentially 
causing harm. 

You know, for some of these indications there are very negative effects to incorrectly 
identifying a person, either positively or negatively.  Say the treatment for a certain 
indication puts somebody under a lot of duress and if we falsely flag somebody as having 
that indication then the culpability of that duress, you know, at least partly does lay on our 
shoulders. (Participant 8) 

Another participant demonstrated their awareness of a moral issue, as well as recognition of 
the link between design decisions and harms. 

It’s hard to realize that hey, somebody could actually not get treatment or a claim for 
somebody could be denied because you built a claims adjudicator algorithm, so that 
compass I think exists with us because you can fine tune your algorithm to be let’s say 
more precise or be more specific, or like for precision recall, and both have different 
implications. (Participant 24) 

This participant went on to acknowledge not only the link between developers’ algorithmic 
design decisions and effects on patients, but also the power and implied responsibility conferred 
by the data scientist’s specialized knowledge. 

Now, a data scientist has tremendous powers here because like your stakeholders don’t 
really understand what precision recall is and where that threshold should be, so it’s up to 
you to use your own judgment and say, you know what, actually I think I would rather that 
people have their claims paid than denied, so I will just tune it for true-positives. 
(Participant 24) 

A few of these participants also recognized moral differences of ML in the health care 
context:…but there’s a lot of consequences in telling people to do the wrong thing in healthcare. 
(Participant 3) Others made statements reflecting a sense of responsibility for ensuring that their 
products would be of benefit to patients, and that fulfilling that responsibility was not only 
aspirational, but a requirement, and one that aligned with personal values. 

But, you know, my hope is that also the people on the plans, like the members, will also 
benefit from these products. If I didn’t think that they were going to be also benefiting from 
these products, then I probably wouldn’t be working at [respondent’s company]. 
(Participant 26) 

Another participant also expressed that the purpose of their product was to benefit patients: 
This is why we’re here. This is why we’re doing this is to help people. And I would like to think 
that we’re helping people. (Participant 25) But this participant also described a sense of internal 
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conflict about their goals: …that’s a fine line to walk every day, right, because at the end of the 
day like we’re B2B products. (Participant 25)  

It was striking that many of the statements indicated recognition of the potential for conflicting 
interests leading to a moral dilemma, primarily financial interests: …a lot of times you’re just 
seeing predictive models being built for… based on cost, right… it’s a very easy… easily 
understood outcomes, and then that leads to all sorts of potentially irrelevant or even slightly 
harmful socially or clinically sort of predictions being made. (Participant 5) This participant 
indicated taking action to mitigate the potential harm: … there was a separate analytics team … 
who did the predictive modeling work. But we were involved to help them determine some of the 
more useful inputs and also the outcome of interest, and we did steer them away from cost-based 
outcomes. 

However, several participants expressed discomfort with harms that could be inflicted by users 
of their products, and a lack of knowledge or ability to prevent those harms. What are the 
safeguards we put in to make sure that when that genomic data gets other sources of data that it 
doesn’t ever go near underwriters?  You know, how do we quarantine that data that it’s only used 
to improve patient outcomes…and never for estimating risk, you know, for the business side? 
(Participant 1) Some even expressed resignation or inevitability of conflicting interests leading to 
misuse. …and these are not things that I advocate nor does the entire… our company advocate at 
all, but…at the end of the day a company’s gonna do what a company’s gonna do. (Participant 20) 

4. Discussion
We conducted a qualitative analysis of interviews of 40 developers in the U.S. who were 

working on ML-based predictive analytics for health care. In our analysis of ML developers’ 
perceptions of responsibility for harms of their work, we found that many of them raised issues 
indicating an awareness of a moral component of those harms – that is, that those harms could be 
caused by developers’ actions (Figure 1: Moral awareness) and that developers or others might 
have responsibility to mitigate those harms. Few of these developers, however, described taking 
action to prevent or mitigate harms, possibly because of lack of knowledge about how to do so, or 
perceiving lack of agency (Figure 1: Moral action). However, developers also expressed 
uncertainty about responsibility for averting harms as an individual developer working in a 
company and moral conflict between personal values and those of their companies (Figure 1: 
Conflict).  

One subset of developers, while recognizing harms, also displayed several forms of distancing 
themselves from harms or responsibility for those harms that were similar to a phenomenon 
described in the literature as moral disengagement. (Bandura, Barbaranelli, Caprara, & Pastorelli, 
1996) Bandura et al. developed this construct as a cognitive mechanism to “deactivate moral self-
regulatory processes and thereby help to explain why individuals often make unethical decisions 
without apparent guilt or self-censure.” (Bandura, 1986) We do not claim that this cognitive 
mechanism is active in the ML developers that we interviewed, or make any claims about 
psychological processes in general. However, we do find similarities between the types of 
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rationales made by ML developers and researchers in other fields that serve to minimize harm, 
deflect responsibility for mitigating harm, or justifying research or its products despite the 
recognized harms. (White, Bandura, & Bero, 2009) Statements reflecting moral disengagement 
could be grouped into two general types: those that indicated minimization of the risks of ML 
(Figure 1: Minimizing risk), and those that indicated minimization of the ML developer’s 
responsibility for those risks (Figure 1: Minimizing responsibility). 

Our findings corroborate those of others who have found that AI developers have a number of 
rationales for their detachment from responsibility for their work. For example, in interviews of 
developers of health care AI developers, Vakkuri et al. heard several types of explanations that 
ethical concerns were not relevant to their work. One was that if projects were early-stage, i.e. 
“just a prototype,” they didn’t have any responsibility attached to them. (Vakkuri et al., 2020) 
Gotterbarn et al. (Gotterbarn, 2001) and McDonald et al. (McDonald & Pan, 2020) also found that 
computer scientists and students had a narrow view of responsibility that created moral distance 
by being task-oriented, by deflecting blame for errors (i.e. flaws in developers’ programming 
being framed as “computer error”), or by casting failures in software as “inevitable or normal 
accident” inherent in complex systems. (Nissenbaum, 1994) 

However, the subset of developers who not only recognized potential harms of their work, but 
also expressed a sense of responsibility for preventing or mitigating them was largely not 
overlapping with the group who made statements indicating moral disengagement. We do not 
know whether there were any particular characteristics that distinguish these two different groups 
of ML developers, such as education, experience with working in the health care context, role in 
the company, or demographic characteristics such as age, gender, race or ethnicity. We will 
investigate this question further in a larger sample of ML developers. 

The financial conflicts of interest identified by our participants could be in part due to our 
sample being drawn almost completely from ML developers working at companies. That said, 
worries over how ML-based products might be misused in health care by health insurers and 
health care institutions were of concern to our interviewees. ML developers in corporate settings 
face not only internal values conflicts or uncertainty, but conflicts between their values and goals 
and those of their companies.  

These findings suggest possible facilitators and barriers to the development of ethical ML that 
could act through encouragement of moral engagement or discouragement of moral 
disengagement. Regulatory approaches that depend on the ability of ML developers to recognize, 
accept, and act on responsibility for mitigating harms might have limited success without 
education and regulatory guidance for ML developers about the extent of their responsibilities and 
how to implement them, for example through standardization of key aspects of model evaluation 
such as performance metrics. Facilitators could include the integration of people with deep clinical 
knowledge on development teams, and alignment of organizational values with those of individual 
developers in order to reduce values conflicts, for example, about how to avoid misuse of MLPA 
models. Companies could also facilitate ethical ML development by encouraging a sense of 
agency among developers in making design decisions with values implications. However, the 
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conflicts of interest inherent in corporate settings and in MLPA products aimed at increasing 
health care efficiency pose particular challenges to mitigating their negative impacts. While our 
findings suggest internal actions that ML developers and companies can take to foster ethical ML 
developers, they also lend support to technology company arguments that regulation should come 
from government and not be developed themselves (Carter, 2020), and to those who question the 
ability of AI and data analytic companies to critically evaluate themselves. (Martin, 2022) 

Table 1. Participants’ Professional and Academic Characteristics 

Participant Characteristics (n=40) % 
Management levels* 
None 15 37.5% 
Mid-level 9 22.5% 
High-level 16 40.0% 
Data interaction levels** 
Data only 15 37.5% 
Data + 25 62.5% 
Academic backgrounds 
Bachelors 11 27.5% 
Health-related Masters 5 12.5% 
Non-health-related Masters 6 15% 
Health-related PhD 5 12.5% 
Non-health-related PhD 9 22.5% 
MD 4 10.0% 
Type of organization 
Computer software and information technology - health care 29 72.5% 
Computer software and information technology - general 3 7.5% 
Health insurer 3 7.5% 
Hospital 5 12.5% 
Number of employees at organization 
å 19 47.5% 
51-1,000 5 12.5% 
Over 1,000 16 40.0% 
*None refers to participants without managerial duties; Mid-level refers to participants with some
managerial duties; High-level refers to participants with participants with extensive managerial duties 
**Data only refers to participants who handle and work directly with the data in their daily work; Data + 
refers to participants who not only work with data but also perform other functions within their 
organization. 

Table 2: Forms of moral disengagement identified in statements of MLPA developers 

Moral disengagement type Example 

Minimizing risk 
No difference …it’s like your financial data is out there too and

somebody can way more ruin your life from, you know, 
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Harms of ML are no different in health care than in 
other contexts 

stealing your identity than they can from like posting 
that so-and-so has… except for a couple of conditions, 
you know… like who cares what… like that’s my 
attitude  
(Participant 20) 

Status quo is worse 
The status quo in healthcare (without ML) is worse 
than any hazards that ML might present 

So I mean we’re expecting them to assimilate data, 
draw conclusions, and make projections, and when a 
computer does it somehow it seems more scary, but to 
me actually the fact that a person can just make a 
decision based on their gut is more scary…  
(Participant 16) 

Risks justified by benefits 
AI has risks but they are justified by benefits 

There’s been all sorts of really terrible uses of machine 
learning that mostly penalize people that are already 
penalized in lots of other ways, like people of color or 
other kind of minorities.  It’s just sort of amplifying all 
these other bad things that are already 
happening….but I’m also not like a person… you 
know, I want to be able to do machine learning and 
have progress and see…machine learning helping 
medicine, ‘cause it has so much that it can offer I think. 
(Participant 15) 

Not in my AI 
There may be hazards of AI, but they are not relevant 
to the type of AI that the participant works on 

I think that the problem of bias and pitfall might be 
more pertinent to other types of technologies, maybe 
like device technology.  But I’m just… all my 
experience has been in the clinical decision support 
world where I really don’t see a huge amount of risk. 
(Participant 10) 

Minimizing responsibility 
ML doesn’t make decisions 
The healthcare provider makes the final decision, not 
the ML 

It totally leaves it in the clinician’s hands.  The 
clinician understands the context within which the 
prediction is made and they know that, you know, it’s 
up to them to decide whether or not the patient should 
be treated.  It’s really just an indicator.  It’s like the 
dog in cartoons that points itself in an arrow, it says 
look this way, and so, you know, the clinician goes and 
has a look at the patient and they decide whether or 
not to treat them and how they should go about doing 
so. (Participant 9) 

Off-label use 
What other people do with produce is the problem, not 
the product itself 

I mean it depends on how the analytics is used and the 
purpose and the motives and the intention of the users. 
But as producers of analytics, we intend them to be 
used for general good I mean I would say.  
(Participant 31) 

Not my job 
I don’t have the expertise or it’s not my role 

I’m not like a health economist type of person, so my… 
the unsatisfactory answer is my work has not tried to 
optimize for any of that. 
(Participant 17) 
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Regulation prevents harms 
Regulation is responsible for preventing harms 

… we raised that to the company and we talked about
it and we sort of said okay, there’s federal laws in 
place to prevent that from happening, so that’s why, 
you know, we were sort of okay with that moving 
forward. 
(Participant 26) 

Figure 1: Facilitators and barriers to ethical ML 
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Biomedical data are distributed in different locations in the form of various sources. Distributed data 
can be divided into horizontally or vertically partitioned data based on their distributed form. When 
the sites (e.g., government agencies, business establishments, or hospitals) have the same variables 
but different data subjects, the distributed data across the sites are known as horizontally partitioned 
data. On the other hand, when the sites hold disjoint sets of features for the same data subjects, the 
distributed data are known as vertically partitioned data. Utilizing the distributed data can increase 
the generalizability of research, provide insights that can prevent disease, and deliver highly 
customizable care to patients by considering more information about the patient. However, the 
confidential nature and privacy issues of patient data limit the sharing of distributed data. The data 
protection law in the USA, HIPAA, restricts the sharing of important data. In the European Union, 
the General Data Protection Regulation established a well-formulated guideline for securing the 
confidentiality and privacy of citizens.1 Additionally, Canada's PIPEDA, the UK's Data Protection 
Act (PDA), and Russia's federal law on personal data reflect the growing global awareness of the 
importance of data privacy and confidentiality.2-4 Patients are increasingly aware of the use of 
personal data and they are reluctant to share their data. Furthermore, owners of distributed data 
sources may not want to share data with other agencies, according to their institutional policies. 

VdistCox: Vertically distributed Cox proportional hazards model 
with hyperparameter optimization 
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Vertically partitioned data is distributed data in which information about a patient is distributed 
across multiple sites. In this study, we propose a novel algorithm (referred to as VdistCox) for the 
Cox proportional hazards model (Cox model), which is a widely-used survival model, in a vertically 
distributed setting without data sharing. VdistCox with a single hidden layer feedforward neural 
network through extreme learning machine can build an efficient vertically distributed Cox model. 
VdistCox can tune hyperparameters, including the number of hidden nodes, activation function, and 
regularization parameter, with one communication between the master site, which is the site set to 
act as the server in this study, and other sites. In addition, we explored the randomness of hidden 
layer input weights and biases by generating multiple random weights and biases. The experimental 
results indicate that VdistCox is an efficient distributed Cox model that reflects the characteristics of 
true centralized vertically partitioned data in the model and enables hyperparameter tuning without 
sharing information about a patient and additional communication between sites. 

Keywords: Cox proportional hazards model; vertically partitioned data; privacy protection; 
hyperparameter tuning; extreme learning machine. 

1. Introduction

1.1.  Characteristics of biomedical data 
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1.2.  Vertically distributed survival model 

Survival analysis for a time-to-event outcome (i.e., the length of time from the starting point to an 
event of interest, such as mortality or disease) is widely used in biomedical research. The most 
common model in survival analysis is the Cox proportional hazards model (Cox model). To utilize 
the distributed data without data sharing for privacy preservation, many studies have developed 
horizontally5-9 or vertically10,11 partitioned data-based distributed algorithms for deep learning or 
statistical models. The various features required for predicting a patient’s prognosis do not exist in 
a single institution. The features have mutually exclusive characteristics in the form of vertically 
partitioned data. A patient's prognosis can be predicted more precisely by using information about 
the same patient from different institutions such as hospitals, insurance companies, and government 
agencies. VERTICOX11 is the only distributed Cox model based on vertically partitioned data. 
VERTICOX using alternating direction method of multipliers (ADMM) has an advantage of 
obtaining almost the same estimated parameter as the global model. However, the algorithm deals 
with the standard Cox model with a linearity assumption, which limits its application in many real-
world data. Because the vertically partitioned data can easily become high-dimensional data and it 
is difficult to confirm the interaction relationship between features distributed across sites, assuming 
only a simple linear relationship can be a limitation. Furthermore, ADMM requires many iterations 
(i.e., 2,000 and 1,500 for real data with 20 and 10 features) to obtain stable model parameters. 

1.3.  Objective 

To overcome the limitation of the linearity assumption, nonparametric approaches such as neural 
networks can be useful alternatives. Faraggi and Simon (1995)12 proposed an approach for modeling 
survival data with a simple feed-forward neural network as the basis for a nonlinear proportional 
hazards model. We used the optimization technique of extreme learning machine (ELM)13 under the 
framework of Faraggi and Simon for the nonlinear Cox model. ELM has single hidden layer 
feedforward neural networks (SLFNs) that randomly choose the input weights and analytically 
determine the output weights. In this study, we developed a vertically distributed Cox model 
(referred as to VdistCox) while avoiding the transmission of patient features, which considers 
various functional forms in the Cox model using ELM, including hyperparameter tuning in a one-
shot manner. 

2. Materials and Methods

2.1.  Cox model in non-partitioned data 

In the Cox model,14 the hazard of individual 𝑖 with risk vector 𝒙𝒊 at time t can be rewritten as the 
product of a baseline hazard ℎ(𝑡), and a positive function of the covariates as follows: 

ℎ(𝑡) = ℎ(𝑡)exp (𝑓(𝒙𝒊)), (1) 
where 𝑓(𝒙𝒊) can be any function of 𝒙𝒊, and for a standard Cox model, 𝑓(𝑥) = 𝑥𝛽.     In Faraggi 
and Simon,12 𝑓(𝑥) is replaced with the output of a neural network for a nonlinear proportional 
hazards model rather than a linear functional form. We consider the output of the ELM as 𝑓(𝑥) 
under the framework of Faraggi and Simmon. ELM is an efficient learning algorithm for SLFNs 
that randomly chooses the input weights and analytically determines the output weights.13 
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2.2.  Vertically distributed Cox model 

We considered the Cox model with neural networks by replacing 𝑓(𝑥) in Eq. (1) with the ELM 
output. The proposed model (VdistCox) is communication efficient without iterative 
communication between the server and sites owing to the characteristics of ELM optimization. 

To implement VdistCox, we set one of the sites as the master site, which plays the role of a 
server, to aggregate the intermediate results from the sites and derive the final model. Throughout 
this study, the first site was the master site. The setting of the master site does not affect the model 
results. VdistCox requires the following assumptions before implementation: 

 There is a unique identifier for each patient (e.g., study ID) shared across institutions.
 It is not necessary to store event and time outcome information in every site. One of the

sites stored the outcome should be the master party.
To illustrate VdistCox, some notations are summarized in Table 1. 

Table 1. Summary of notations for VdistCox 
Notation Description 
K Number of sites 
N (= 𝑛 + n) Number of patients 
X (𝑛 × 𝑀) Feature matrix for model training 
𝑋෨ (n × 𝑀) Feature matrix for model validation 
M Number of features distributed across K sites 
L Number of nodes 
S Number of randomly generated input weight 
𝑅(s) ((𝑀 + 1) × L) Random matrix of s-th input weight 
𝛽(𝑠) Output weight of s-th random input weight. L- dimensional vector 
𝑔(. ) Activation function 
𝑀 Number of features for the k-th party, k = 1, …, K 
𝑅(s) (𝑀 × L) Random matrix of s-th input weight at k site, k = 2, …, K 
𝑋 (𝑛 × 𝑀) Feature matrix of 𝑘 party for model training, k = 2, …, K 
𝑋෨ (n × 𝑀) Feature matrix of 𝑘 party for model validation, k = 2, …, K 

At the master site, N patients are randomly divided into n patients for model training and n  
patients for model validation, and the information is shared to the other sites. The feature matrices 
of the training and validation sets are denoted by 

𝑋𝒌 = 
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𝑋𝟏 and 𝑋෨ଵ of the master are (𝑛 × (1 + 𝑀ଵ)) matrices in which the first column of Eq. (2) is all 1. 
Each site randomly generates a hidden layer input weight matrix corresponding to the 𝑀 features 
under a non-overlapping seed number range between sites, and the master site generates an input 
weight matrix including the hidden layer bias. The random matrix on the hidden layer input weights 
and biases is generated S times at each site. The s-th random matrix is denoted as 
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(ଵା∑ ெ

ೖ
సభ )

(𝑠)


ெೖ×

.   (3) 
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R(s), which is a centralized random matrix, is not known in reality, but it can be considered as 
𝑅(s)் = [𝑅ଵ(s)்| … | 𝑅(s)்]. Each k site (k = 2, …, K) calculates 𝑇(𝑠) = 𝑋𝒌 𝑅(s) and 
𝑇෨(𝑠) = 𝑋෨𝒌 𝑅(s) , and sends {𝑇(s)}௦ୀଵ

ௌ  and {𝑇෨(s)}௦ୀଵ
ௌ  to the master site. The master site 

calculates 𝑇(𝑠) = ∑ 𝑇(𝑠)
ୀଵ  and 𝑇෨(𝑠) = ∑ 𝑇෨(𝑠)

ୀଵ . Subsequently, the master site takes any 
activation function on 𝑇(𝑠) and 𝑇෨(𝑠), and hidden layer output matrices, 𝐻(𝑠) = 𝑔(𝑇(𝑠))  of size 
(𝑛 × 𝐿) and 𝐻෩(𝑠) = 𝑔(𝑇෨(𝑠)) of size (𝑛 × 𝐿), are derived at master site. The master site estimates L output 
weights, (𝛽(𝑠)) = (𝛽ଵ(𝑠),  𝛽ଶ(𝑠), … ,  𝛽(𝑠)), which minimizes −𝐿𝐿(𝜷(𝒔)) of Eq. (4) using the 
Newton–Raphson method. 

−𝐿𝐿(𝜷(𝒔)) =  𝑑௧

்

௧ୀଵ

log ቌ  exp ቌ 𝛽(𝑠)



ୀଵ

𝑔(𝑥, 𝑏(𝑠), 𝑟(𝑠))൱ቍ

∈ℛ

ቍ 

− ∑ ∑ ቀ∑ 𝛽(𝑠)
ୀଵ 𝑔(𝑥௨, 𝑏(𝑠), 𝑟(𝑠))൯ቁ௨∈𝒟

்
௧ୀଵ + 𝜆‖𝜷(𝒔)‖ଶ

ଶ  (4) 

Here, T denotes the number of distinct event times. At time t, 𝒟௧ is the event set of all samples 
whose event occurs at time t, 𝑑௧ is the number of events, and ℛ௧ is the risk set of all samples who 
caused the event or censoring after t. The negative log-partial likelihood in Eq. (4) for the estimation 
of the output weights includes a regularization term with tuning parameter 𝜆 . The master site 
computes 𝑓መ(𝑥 ) = 𝐻෩ (s)𝛽መ(𝑠). Subsequently, the concordance index15 of R(s), 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), is 
calculated using 𝑓መ(𝑥) as a risk score. The master site selects R(𝑠∗) and 𝛽መ(𝑠∗) as the final hidden 
layer input weights, biases, and output weights of VdistCox, corresponding to s with the largest 
𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), where 𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥௦𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)). VdistCox is exactly the same as its centralized 
model because 𝑇(𝑠)=∑ 𝑇(𝑠)

ୀଵ  and 𝑇෨(𝑠)=∑ 𝑇෨(𝑠)
ୀଵ  are the same as 𝑋𝑅(s) and 𝑋෨𝑅(s). Fig. 1 

shows the overall communication process and model structure of VdistCox. 
There are three hyperparameters: 𝑔(. ), 𝜆, and 𝐿, in VdistCox. The activation function and the 

regularization parameter can be adjusted at the master site. The two hyperparameters can be 
explored by setting various candidate values after obtaining 𝑇(𝑠) and 𝑇෨(𝑠) at the master site. The 
number of hidden nodes affects the size of the random matrix R; moreover, an additional 
communication between the master site and other sites is required to consider various L values. A 
more efficient method is to generate {𝑅(s)}௦ୀଵ

ௌ  of size (𝑀 × 𝐿௫) by setting the maximum 
number of nodes, 𝐿௫. Subsequently, 𝑅(s) is divided into various sizes of (𝑀 × 𝐿ଵ), (𝑀 × 𝐿ଶ), 
…, and (𝑀 × 𝐿௫) at the master site, where 𝐿ଵ< 𝐿ଶ< … < 𝐿௫. The number of nodes is adjusted 
by generating 𝑅(s) of various sizes. Therefore, all three hyperparameters can be explored within 
one communication between the master site and other sites. 

2.3.  Experimental Settings 

Two simulations were performed to confirm the characteristics of VdistCox in a vertically 
distributed setting, assuming two sites and four features. It was assumed that x1 and x2 are at site 1, 
x3 and x4 are at site 2, and site 1 is the master site with outcomes.  

For various simulated data generations, the function of Eq. (1) was considered as follows: 
 𝑓 (Linear): 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ+𝛽ଷ𝑥ଷ+𝛽ସ𝑥ସ

 𝑓 (Quadratic + interaction): 𝛽ଵ𝑥ଵ
ଶ + 𝛽ଶ𝑥ଶ

ଶ+𝛽ଷ𝑥ଷ
ଶ+𝛽ସ𝑥ସ

ଶ + 𝛽ହ𝑥ଵ𝑥ଷ+𝛽𝑥ଶ𝑥ସ

 𝑓 (Gaussian + interaction):
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𝑙𝑜𝑔(5) 𝑒𝑥𝑝 ቆ−
𝑥ଵ

ଶ + 𝑥ଶ
ଶ

2(0.5)ଶ
ቇ + 𝑙𝑜𝑔(5) 𝑒𝑥𝑝 ቆ−

𝑥ଷ
ଶ + 𝑥ସ

ଶ

2(0.5)ଶ
ቇ + 𝛽ଵ𝑥ଵ𝑥ଶ + 𝛽ଶ𝑥ଷ𝑥ସ 

We set [0.5, 1, 0.5, 1]  as [𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛽ସ]  of 𝑓 , [2, 1, 2, 1, 1, 1]  as [𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛽ସ, 𝛽ହ, 𝛽]  of 𝑓 , and 
[1, 1] as [𝛽ଵ, 𝛽ଶ] of 𝑓. 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, and 𝑥ସ were randomly generated from a uniform distribution, U(-
1, 1). The baseline hazard was derived from a Weibull distribution with a scale of 20 and a shape of 
5. Given 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝛽’s, and the baseline hazard, the event rate was set to 30%.

In the first simulation, we confirmed whether VdistCox can represent the true function by setting 
𝑓 and 𝑓or whether the interaction relationship between the vertically partitioned features can be 
elucidated. We manually selected the hyperparameter setting in this first simulation under several 
settings without a criterion for the hyperparameter optimization as follows: 10, 30, 100, and 300 for 
the hidden node, TanHRe, Sigmoid, ELU, Softplus, and LReLU16 for the activation function, and 
0.1, 10, 100, and 300 for the regularization parameter. (Sigmoid, 30, and 300 in the setting of 𝑓) 
and (Softplus, 30, and 0.1 in the setting of 𝑓୯) were selected as the activation functions L, and 𝜆, 
respectively. The size of the simulated data was set to N = 2000, and the training and validation sets 
were randomly divided in an 8:2 ratio. S was set to 100. 

In the second simulation, the results of VdistCox based on various hyperparameter settings were 
explored under the settings of 𝑓  and 𝑓 . As discussed in Section 2.2, to proceed with the 
hyperparameter tuning without additional communication, 𝐿௫ was set to 300, and 10, 30, 100, 
and 300 hidden nodes were considered. TanHRe, Sigmoid, ELU, Softplus, and LReLU16 were 
considered as the activation functions, and the values of 0.1, 10, 100, and 300 were considered as 
the regularization parameters. We explored the results of the hyperparameter settings for 4 hidden 
nodes×5 activation functions×4 regularization parameters = 80. The size of the second simulated 
data was set to N = 1500, out of which the external (N = 500) dataset was randomly extracted and 
then randomly divided into training (N = 800) and validation (N = 200) from the remaining N = 
1000. In each function setting, S was set to 100, and the distribution of the 100 performances in the 
validation set under 80 hyperparameter settings was confirmed. We selected four hyperparameter 
settings from each of 𝑓  and 𝑓 , based on the following criteria among the 80 hyperparameter 
settings: 
1. Activation function: By comparing the Cindex(R(s*)) values of five activation functions under

L = 10, two activation functions with the largest and smallest values were selected.
2. L and 𝜆: In the two selected activation functions, among the total L and 𝜆 combinations of 16,

two combinations with the largest or smallest values of Cindex(R(s*)) were selected.

Fig. 1 Illustration of the VdistCox. (A) Model structure. (B) Process of communication. 
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     In addition, we compared the performance of the test set between the centralized standard Cox 
model and the proposed model under the four hyperparameter settings selected for each function. 
The results were confirmed according to s*, smin, and smed to examine the advantage of generating 
the random input matrix S times, where 𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥௦𝐶𝑖𝑛𝑑𝑒𝑥 ( 𝑅(s) ), 𝑠 =

𝑎𝑟𝑔𝑚𝑖𝑛௦𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), and 𝑠ௗ  is s when 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)) has a median value. The centralized 
standard Cox model was performed with N = 1,000, combined with both training and validation sets. 
For the second simulation, 100 different simulated data were generated. The four hyperparameter 
settings based on the aforementioned two criteria were selected using the first simulated data among 
100 simulated data. The 100 simulations were performed under the selected four hyperparameter 
settings and the results thus obtained were compared with those of the standard Cox model. 

Furthermore, we confirmed the validity of VdistCox with real-data using electronic Intensive 
Care Unit (eICU) Collaborative Research Database.17 We considered 27 factors included in Acute 
Physiology, Age, and Chronic Health Evaluation (APACHE) scores as features and the length of 
stay from the date of ICU admission to the date of mortality during the ICU stay as the outcome of 
the Cox model. We extracted 2,486 stays with all 27 features and outcomes, hospitals corresponding 
to the number of beds ≥500, and Caucasians; 19 hospitals were included in 2,486 stays. We 
randomly selected 486 stays as the test set, and divided 2,000 stays 8:2 into the training and 
validation sets. The comparative analysis with the standard Cox model was also performed using 
the eICU data, and the same 2,000 stays were used for both VdistCox and the standard Cox model. 
After setting the centralized eICU data with 2,000 stays and 27 features, two vertical sites were 
assumed. Site 1 was a master site with 14 features and outcomes, where site 2 was a site with only 
13 features. For hyperparameter setting, 𝐿௫ was set to 500, and 10, 30, 100, 300, and 500 hidden 
nodes were considered. As the activation functions, the five functions were used in the same manner 
as the simulation, and six regularization parameters of 0.1, 10, 100, 300, 500, and 1,000 were 
considered. Hyperparameter settings of 5 hidden nodes × 5 activation functions × 6 regularization 
parameters = 150 were explored.   

VdistCox was implemented with R software and the source code is available from the authors 
upon request. 

3. Results

3.1.  Simulations 

Fig. 2 shows the results of the first simulation. The contour plot shows the relationship between 𝑥ଵ 
and 𝑥ଷ when 𝑥ଶ and 𝑥ସ are zero and the relationship between 𝑥ଶ and 𝑥ସ when 𝑥ଵ and 𝑥ଷ are zero. In 
addition, graphs (a) to (h) confirm that the proposed model adequately describes the interaction 
relationship between variables under 𝑅(𝑠∗) and 𝛽መ(𝑠∗). The graphs in (a) and (b) represent the results 
of 𝑓መ , which is the output of VdistCox, according to xଵ  when xଷ  is -1 and xଷ  is 1, where 𝑓 =

0.5𝑥ଵ+0.5𝑥ଷ. Because xଵ and xଷ have no interaction, the slopes of the graphs of (a) and (b) should 
not change regardless of whether x3 is -1 or 1, and the results reflect this fact efficiently. In addition, 
(c) and (d) show the result of 𝑓መ according to xଶ when xସ is -1 and xସ is 1, where 𝑓 = 𝑥ଶ+𝑥ସ, and 
they have a parallel shape with no change in the slope. The true slopes of (a) and (b) are smaller 
than those of (c) and (d), which is also reflected in the results. In the setting of 𝑓= 2xଵ

ଶ + 2xଷ
ଶ +
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xଵxଷ, the results of VdistCox represent the true functions of x1 and 𝑓 when x3 is -1 and x3 is 1 (see 
the results of graphs (e) and (f)). Further, because the interaction of x1 and x3 exists, the vertices of 
(e) and (f) are different under the same quadratic function. In 𝑓= xଶ

ଶ + xସ
ଶ + xଶxସ, when x4 is -1 

and x4 is 1, (g) and (h) on the graph of 𝑓መ according to x2 have different vertices under the same 
quadratic function form owing to the interaction of x2 and x4. The true coefficient of quadratic terms 
(e) and (f) is larger than that of (h) and (g), and the result of VdistCox efficiently reflects the true 
relationship, as (e) and (f) are more concave than (h) and (g). 

Fig. 2.  Simulation results under (A) 𝑓 and (B) 𝑓. Site 1 stores 𝑥ଵ and 𝑥ଶ and Site 2 stores 𝑥ଷ and 
𝑥ସ. 𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥௦𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛௦𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), The true functions of a (black solid), b (black 
dashed), c (grey solid), d (grey dashed), e (black solid), f (black dashed), g (grey solid), and h (grey dashed) are 

𝑓(𝑥) = 0.5𝑥ଵ − 0.5, 𝑓(𝑥) = 0.5𝑥ଵ + 0.5, 𝑓(𝑥) = 𝑥ଶ − 1, 𝑓(𝑥) = 𝑥ଶ + 1, 𝑓(𝑥) = 2𝑥ଵ
ଶ − 𝑥ଵ + 2, 𝑓(𝑥) = 2𝑥ଵ

ଶ +
𝑥ଵ + 2, 𝑓(𝑥) = 𝑥ଶ

ଶ − 𝑥ଶ + 1, and 𝑓(𝑥) = 𝑥ଶ
ଶ + 𝑥ଶ + 1, respectively. 

Fig. 3 and 4 show the results of the second simulation. Fig. 3 shows the distribution of 100 
Cindex (R(s) )s at 80 hyperparameter settings. In the linear function setting, the performance 
distribution tended to increase as 𝜆 increased from 0.1 to 300. Additionally, as the number of nodes 
increased, the distribution of the performance did not significantly increase. Moreover, the value of 
Cindex(R(s*)) was overall large in the Sigmoid among the five activation functions. However, in 
the nonlinear setting, as λ was small and the number of nodes increased, the performance generally 
increased. The LReLU had a high overall performance distribution compared to the other activation 
functions. The change in performance according to hyperparameter selection is larger in the 
nonlinear function than in the linear function. According to the two criteria of hyperparameter 
selection described in Section 2.3, in the linear function, Sigmoid was selected as the activation 
function with max(Cindex(R(s*))), and TanHRe was selected as the activation function with 
min(Cindex(R(s*)). The four settings of Sigmoid/L = 30/𝜆  = 300, Sigmoid/L = 300/𝜆  = 0.1, 
TanHRe/L = 10/𝜆 = 300, and TanHRe/L = 300//𝜆 = 0.1 were selected as the hyperparameter settings 
with 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)) values of 0.8610, 0.8287, 0.8510, and 0.8143, respectively. In the nonlinear 
function, LReLU was selected as the activation function with max(𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)), and TanHRe 
was selected as the activation function with min(𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)). The four settings of LReLU/L = 
30/𝜆 = 0.1, LReLU/L = 30/𝜆 = 300, TanHRe/L = 30/𝜆 = 0.1, and TanHRe/L = 100/𝜆 = 300 were 
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selected as the hyperparameter settings with 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)) values of 0.7405, 0.5381, 0.7033, and 
0.4711. 

Fig. 4 shows the distribution of 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)), 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠ௗ)), and 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅൫𝑠൯) in 
the validation and test sets of 100 simulations performed under four settings selected from linear 
and nonlinear, respectively. In a linear setting, the standard Cox model, which can be viewed as a 
true model, showed a higher performance distribution than VdistCox, and the performance results 
of 𝑠∗  and 𝑠ௗ  were similar. The two hyperparameter settings of Sigmoid/L = 30/𝜆 = 300 and 
TanHRe/L = 10/𝜆 = 300, which showed similar performance in the validation set, showed similar 
performance in the test set, and the performance distributions 𝑠∗ and 𝑠ௗ in the two settings were 
similar to that of the standard Cox model. The 𝑠∗ of Sigmoid/L = 30/𝜆 = 300 showed the highest 
performance, with an average performance of 0.7821. The average performance of the standard Cox 
model is 0.7860. In all settings of nonlinear function of Fig.4, 𝑠∗, 𝑠ௗ, and 𝑠 showed a higher 
distribution of performance for the test set than the standard Cox model. The two hyperparameter 
settings of LReLU/L = 30/𝜆 = 0.1 and TanHRe/L = 30/𝜆 = 0.1, which showed similar performance 
in the validation set, showed similar performance in the test set, and the 𝑠∗ of LReLU/L = 30/𝜆 = 
0.1 showed the highest performance with an average performance of 0.6677. In both the linear and 
nonlinear functions, 𝑠∗ under the hyperparameter setting, which had the highest performance in the 
validation set, showed the highest performance in the test set on average. 

3.2.  Real data 

Additionally, we explored 150 hyperparameter settings to confirm validity in real data, and four 
settings of ELU/L = 300/λ = 1000, ELU/L = 500/λ = 0.1, Sigmoid/L = 500/λ = 10, and Sigmoid/L 
= 500/λ = 0.1 were selected. As summarized in Table 2, the differences in performance in the 
validation and test sets between the four settings was quite large. Similar to the simulation results, 
the performance in the test set was also the highest at ELU/L = 300/λ = 1000, which had the highest 
performance in the validation set; smed and s* in this setting showed higher performance than the 
standard Cox model. 

Fig. 3. Simulation results on distribution of {𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠))}௦ୀଵ
ଵ  at each hyperparameter setting under (A) 𝑓 and (B) 

𝑓 settings. Dashed boxes represent selected four hyperparameter settings based on the two criteria described in 
section 2.3. 
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Fig. 4. Results on performances distribution in validation and test sets based on 100 simulations  
under the four hyperparameter settings of (A) 𝑓 and (B) 𝑓. Dashed boxes represent the best results of performance 

among four hyperparameter settings. 

Table 2. Results of performance as measured by the C-index in validation and test sets under vertical two sites setting 
based on eICU dataset. 

VdistCox 

ELU Sigmoid 

300/1000 (L/𝜆) 500/0.1 (L/𝜆) 500/10 (L/𝜆) 500/0.1 (L/𝜆) 
validation test validation test validation test validation test 

smin 0.8170 0.7149 0.4216 0.4458 0.7938 0.7162 0.2563 0.4253 
smed 0.8296 0.7204 0.5419 0.5086 0.8144 0.7154 0.3686 0.4686 
s* 0.8466 0.7294 0.7440 0.6017 0.8422 0.7159 0.7539 0.6502 

Standard Cox model test: 0.7160 

Bold represents the best results in the validation and the test sets in VdistCox. 

4. Discussion

VdistCox shares only the value obtained by multiplying the feature value by the random value 
independently generated at each site in a privacy-preserving manner, and it has an efficient process 
that requires only one communication between the master site and other sites. Because VdistCox 
derives the exact same model as its centralized model without data sharing, it can provide a stable 
distributed model if the centralized ELM-based Cox model is valid. We confirmed the validity and 
characteristics of the proposed model through experiments using simulated and real data. 

According to the results of the first simulation (Fig.2), VdistCox showed the real functional form 
between the variables, and it also reflected the interaction relationship between the vertically 
partitioned features. 

To overcome the instability caused by the randomness, of the input weights and hidden biases, 
we generated the matrix of random input weights and hidden biases S times and selected the best 
random matrix among them. In the results of the performance of the test and validation sets of the 
second simulation (Fig.4), the performance of s*and smed was similar in the linear function setting, 
however it was different in the nonlinear function setting. This indicates that it is efficient to generate 
the R matrix multiple times in the nonlinear function setting. However, even in the nonlinear 
function, there was no difference in the performances of s*and smed depending on the hyperparameter 
selection (in the case of LReLU/L = 30/λ = 0.1). This means that hyperparameter selection could be 
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a more important factor than the randomness of R. However, exploring multiple R can prevent 
choosing the worst random weights. The results for the performance of smin were worse compared 
to those of s*and smed in all cases. However, in the results on real data (Fig.4), the performance on 
the test set of smin was slightly better than that of s*and smed in Sigmoid/L = 500/λ = 10. This indicates 
that the selection of a random value with good performance in the validation dataset may be a 
selection with low generalizability in external validation. However, considering the overall results, 
the best performance on the test dataset was s*. 

Hyperparameter tuning can be crucial for obtaining a good trade-off between accuracy and 
convergence in models with neural networks; it could affect the quality of the learned model.18 To 
train a distributed model under different hyperparameter settings, many computing resources are 
required, and the evaluation of hyperparameters is extremely expensive for a large-scale distributed 
dataset.19 In the framework of VdistCox, the three hyperparameters can be explored without 
additional communication between the master and other sites after obtaining the T and 𝑇෨  matrices 
at the master site. The importance of hyperparameter selection was confirmed through experiments. 
The results of the second simulation showed a large difference in performance according to the 80 
hyperparameter settings, and the importance of the hyperparameter was greater in the nonlinear 
function than in the linear function settings (Fig. 3). Further, we confirmed that the setting with good 
performance in the validation set also showed good performance in the test set (Fig.4 and Table 1). 
Assuming a distributed model with iterative communication, if we want to explore 80 
hyperparameter settings, the distributed model will have to be run 80 times, which consumes a 
significant amount of computing resources. In VdistCox, a wide range of hyperparameter choices 
can be implemented in a one-shot manner. 

Comparing the results of VdistCox and the centralized standard Cox model, in the linear function 
setting of the second simulation, VdistCox (Sigmoid/L = 30/𝜆 = 300) showed a similar performance 
to the standard Cox model, which is a true model. In addition, in real data where the true function 
is unknown, the performance of VdistCox (ELU/ L = 300/ 𝜆 =1000) was higher than that of the 
standard Cox model, which may indicate that the true relationship between the 27 features is not 
linear. Vertically partitioned data combines features of various characteristics for the same patient 
from different sites. Therefore, compared to the data from a single site, the number of features in 
vertically partitioned data is more likely to become high dimensional, and the 𝑓(𝑥) of Eq. (1) 
cannot be determined in advance because we cannot distinguish which interaction exists between 
the numerous distributed variables. Compared to the standard Cox model based VERTICOX, the 
VdistCox may flexibly reflect 𝑓(𝑥) based on the real data characteristics in the distributed data that 
is difficult to share between the sites. Additionally, there is a possibility that the number of features 
exceeds the number of patients in vertically partitioned data in which only the number of features 
increases in a certain patient group (N<<M). In these data characteristics, the parameter estimation 
in the standard Cox model may become unstable and the accuracy of prediction may decrease. 
Therefore, compared to VERTICOX, which aims to accurately estimate the parameter of the 
standard Cox model, the VdistCox can provide a stable predictive model in high-dimensional 
vertically partitioned data of N<<M. Moreover, VERTICOX requires several iterations to obtain 
stable parameter estimates (i.e., 2,000 and 1,500 for real data with 20 and 10 features). By contrast, 
VdistCox requires only one communication including hyperparameter optimization.  
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In this study, we confirmed the characteristics and validity of our novel model, VdistCox. 
However, because it was performed using restricted simulated and real data, it is possible that the 
validity of VdistCox has not been sufficiently proven in this paper. Additionally, we have not 
proposed an index that can interpret the influence of features such as the hazard ratio provided by 
the VERTICOX. However, in the results of the first simulation, the relative influence between 
features from VdistCox were identified. For example, in the setting of 𝑓, true 𝛽ଵ and 𝛽ଶ were set to 
0.5 and 1, respectively, and the slope of 𝑥ଶ  was greater than that of 𝑥ଵ  in (a) to (d) of Fig. 2. 
Furthermore, in the setting of 𝑓, true 𝛽ଵ and 𝛽ଶ were set to 2 and 1, respectively, and the concave 
degree of 𝑥ଵ was greater than that of 𝑥ଶ in (e) to (h) of Fig. 2. Explaining the influence of each 
feature in terms of interpretation of the model is important and further discussion in VdistCox on 
the interpretation is required. 

5. Conclusion

The model proposed in this study, VdistCox, is communication-efficient vertically distributed Cox 
model by sharing once the intermediate results that are obtained by multiplying the features of each 
site to the input weight randomly generated at each site, while avoiding data sharing. In VdistCox 
using ELM, we proposed generating random input weights multiple times and a hyperparameter 
tuning process. In our experiments, the importance of randomness on input weights and 
hyperparameter selection depended on the data type (e.g., linear or nonlinear relationship between 
features). However, because confirming the true relationship between features in a real vertically 
distributed environment is difficult, considering multiple random input weights and hyperparameter 
tuning can be an effective means for a stable vertically distributed Cox model. 
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Scientists and policymakers alike have increasingly been interested in exploring ways to advance 
algorithmic fairness, recognizing not only the potential utility of algorithms in biomedical and digital 
health contexts but also that the unique challenges that algorithms—in a datafied culture such as the 
United States—pose for civil rights (including, but not limited to, privacy and nondiscrimination). 
In addition to the technical complexities, separation of powers issues are making the task even more 
daunting for policymakers—issues that might seem obscure to many scientists and technologists. 
While administrative agencies (such as the Federal Trade Commission) and legislators have been 
working to advance algorithmic fairness (in large part through comprehensive data privacy reform), 
recent judicial activism by the Roberts Court threaten to undermine those efforts. Scientists need to 
understand these legal developments so they can take appropriate action when contributing to a 
biomedical data ecosystem and designing, deploying, and maintaining algorithms for digital health. 
Here I highlight some of the recent actions taken by policymakers. I then review three recent Supreme 
Court cases (and foreshadow a fourth case) that illustrate the radical power grab by the Roberts Court, 
explaining for scientists how these drastic shifts in law will frustrate governmental approaches to 
algorithmic fairness and necessitate increased reliance by scientists on self-governance strategies to 
promote responsible and ethical practices.  

Keywords: Algorithmic Fairness; Privacy; Nondiscrimination; ELSI; Law; Policy 

1. Introduction
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1. Introduction

Data scientists are increasingly aware of and concerned about the ethical dimensions and societal 
impact of their work, as evinced by many thought-provoking ethical, legal, and social implications 
(ELSI) workshops,1-3 sessions,4 and keynotes5-9 at the Pacific Symposium on Biocomputing and 
other scientific conferences. Multidisciplinary collaborations comprising biomedical data scientists, 
bioethicists, and other subject matter experts continue to be encouraged.10-11 Among the major topics 
of concern is algorithmic fairness, for which there are numerous articulations of what precisely that 
entails and proper measures of it.12 Stated simply, from a data science perspective, algorithmic 
fairness refers to performance parity (demonstrated through specified metrics) across different 
groups of people and mitigation of computational biases.13 From a legal perspective, fairness 
involves the “quality of treating people equally or in a reasonable way” or “the qualities of 
impartiality and honesty,”14 and information privacy is oft-used as a mechanism to prevent bias and 
discrimination.e.g.,15 Fairness and privacy are conceptually distinct yet closely connected in 
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biomedical data science and law,  as limiting data that an algorithm can access, use, or disclose is 
viewed as a means to prevent unlawful, unfair discrimination. As worries grow regarding civil rights 
in a datafied culture such as the United States and as leaders call for reforms (such as an AI Bill of 
Rights16-17), it is essential that scientists and policymakers act together to advance algorithmic 
fairness in feasible and effective ways.  

There have been considerable efforts in recent years, both within the scientific community and 
through public policy, to promote ethical data science.e.g., 18 However, there has also been a recent 
and dramatic shift in the balance of power between the legislative, executive, and judicial branches 
prompting fears that the U.S. democratic “experiment” is set for failure.19 Data scientists need to be 
aware of these developments and recognize the implications for their own work so that innovative 
alternative strategies to promote ethical and responsible data science practices can be designed, 
implemented, and refined. To facilitate awareness and stimulate further discussion among data 
scientists, I highlight some of the recent efforts taken by the Federal Trade Commission (FTC) and 
legislators to advance algorithmic fairness. I then offer a succinct review of three recent Supreme 
Court cases (TransUnion LLC v. Ramirez,20 Dobbs v. Jackson Women’s Health Org.,21 and West 
Virginia v. EPA22) and foreshadow a fourth (303 Creative LLC v. Elenis23) that illustrate the Roberts 
Court’s radical judicial activism and power grab, explaining how these shifts in law will frustrate 
governmental approaches to algorithmic fairness (including but not limited to fairness pursued 
through mandated data practices grounded in privacy principles). I conclude that the widening 
imbalance of powers along with instability and uncertainty of law necessitates an increased reliance 
by scientists on self-governance strategies to advance algorithmic fairness. 

2. Recent Activity by the Federal Trade Commission to Advance Algorithmic Fairness

The FTC is responsible for preventing unfair and deceptive acts and practices in or affecting 
commerce, drawing its main authority from the Federal Trade Commission Act24 and dozens of 
other statutes. In the absence of a specific federal statute on algorithmic fairness or comprehensive 
data privacy, the FTC can draw from its general authority to prevent bias and discrimination through 
compelling responsible data practices (such as privacy- and discrimination-aware design, reasonable 
bias mitigation protocols, or even diversity promoting measures) in digital health technologies. The 
FTC has not been using its unfairness authority to its full potential;e.g.,25 however, the FTC’s 
composition has shifted (with confirmations of Lina Khan as Chair and Alvaro Bedoya, a privacy 
law expert, as commissioner), and signs over the past two years suggest the FTC is ready to take 
bold steps to promote algorithmic fairness in and beyond digital health. For example, in January 
2021, the FTC settled a case against Flo Health over data practices.26 In April 2021, the FTC issued 
business guidance underscoring that racially biased algorithms are prohibited and warning that 
algorithmic performance (1) must not be exaggerated and (2) must be tested before and periodically 
after deployment to detect discriminatory outcomes.27 In July 2021 the FTC announced regulatory 
priorities that included issues affecting the healthcare industry and technology platforms.28 In Sept. 
2021, the FTC issued a privacy and security report to Congress flagging its intention to pursue 
expanded remedies for unsavory data practices (such as disgorgement of ill-gotten gains) and to 
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focus on digital platforms, including development of guidance on health-related algorithms.29 That 
same month in a statement regarding the FTC health breach notification rule,30 Commissioner 
Slaughter explicitly called for the FTC to “lead a market shift toward data minimalism.”31 And in 
March 2022, the FTC took action against a weight loss app vendor to protect children’s online 
privacy, requiring data deletion, destruction of algorithms developed with ill-gotten data, and a hefty 
monetary penalty.32  

3. Recent Legislative Activity to Advance Algorithmic Fairness

Congress also has been actively working on several pieces of legislation that would provide 
comprehensive data protections and advance algorithmic fairness. Among the many consumer data 
protection bills being debated and developed in the 117th Congress are the Consumer Data Privacy 
and Security Act of 2021 (S. 1494); the Setting an American Framework to Ensure Data Access, 
Transparency and Accountability (SAFE DATA) Act (S.2499); and the Consumer Online Privacy 
Rights Act (S.3195). A bipartisan bill, the American Data Privacy and Protection Act (H.R.8152), 
has made it farther than any other, having been reported favorably out of House Committee on 
Energy and Commerce on July 20, 2022—just a month after it was formally introduced.E.g.,33 Other 
legislative efforts to advance algorithmic fairness include, e.g., the Algorithmic Justice and Online 
Platform Transparency Act (S.1896, H.R.3611); Algorithmic Accountability Act of 2022 (S.3572, 
H.R. 6580); Protecting Americans from Dangerous Algorithms Act (S.3029, H.R.2154); the GOOD 
AI Act of 2021 and 2022 (S.3035 and H.R. 7296, respectively); Promoting Digital Privacy 
Technologies Act (S.224, H.R. 847); Digital Accountability and Transparency to Advance Privacy 
Act or DATA Privacy Act (S.3065, H.R. 5807); Federal Trade Commission Technologists Act of 
2021 (S.3187, H.R.4530); and Digital Platform Commission Act of 2022 (S.4201, H.R. 7858).  

4. Recent Activity by the Roberts Court that Will Undermine Algorithmic Fairness

Three cases are particularly illustrative of the dramatic shift in power instigated by the Roberts Court 
that will frustrate approaches to advance algorithmic fairness by the FTC and Congress: TransUnion 
LLC v. Ramirez20 (which upended Article III Standing Doctrine34 and weakened the powers of the 
legislative branch), Dobbs v. Jackson Women’s Health Org.19 (which obliterated the Stare Decisis 
Doctrine35-36 and toppled U.S. Constitution-based privacy rights at least in so far as reproductive 
health decisions), and West Virginia v. EPA22 (which weakened the powers of both the legislative 
and executive branch through its invention and embrace of the Major Questions Doctrine37 and 
warming interest in the Nondelegation Doctrine38). A fourth case worth noting is 303 Creative LLC 
v. Elenis23,39 (which the Roberts Court agreed to review and which pits nondiscrimination rights
directly against Free Speech rights). Indeed, as one respected law scholar has commented, “we are 
in the era of the imperial Supreme Court” in that the actions are reflective not of any particular 
judicial philosophy but an alarming concentration of power in the Supreme Court to the detriment 
of all others.40 at 2 These actions are “making America ungovernable” with respect to the most 
pressing policy issues of today.18  
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4.1.  TransUnion LLC v. Ramirez 

The Roberts Court decided (5-4) TransUnion LLC v. Ramirez on June 25, 2021, with Justice 
Kavanaugh authoring the majority opinion. The case involved a class action lawsuit under the Fair 
Credit Reporting Act (FRCA) for improper data practices, with the class consisting of 8,185 
individuals falsely characterized as “potential terrorists” and “drug traffickers” on credit reports and 
1,853 individuals for whom these false and misleading credit reports were distributed to third-party 
businesses. At trial the jury had awarded the consumers $60 million in statutory and punitive 
damages for multiple willful FRCA violations.20 at 2202 In what has been described by prominent 
privacy law scholars as a “profound usurpation of legislative power,”41 the Court required injury-in-
fact in order to establish there has been a “concrete harm” (a prerequisite for standing to sue in 
federal courts). The Court basically held “no harm, no foul”42 for violations of data and disclosure 
practices mandated by statute and refused to acknowledge any “concrete harm” could have been 
incurred by those consumers for whom an inaccurate flag in their credit report was never disclosed 
to a third-party. At the core of its decision, the Court acknowledged, “Congress may ‘elevate to the 
status of legally cognizable injuries concrete, de facto injuries that were previously inadequate in 
law;”20 at 2204-2205 (internal citations omitted) however, the Court distorted precedent set by Spokeo, Inc. v. 
Robins,43 tethering lawmakers’ ability to create remedies only for harms with a “close historical or 
common-law analogue.”20 at 2204 Substituting its judgment for Congress and the jury, the Court 
overlooked, ignored, or discounted the diversity of privacy-related harms that exist44 and framed the 
controversy as a distinction between individuals suing to ensure regulatory compliance (which is 
not allowed for Article III standing) and individuals suing to redress “real and actual” harms incurred 
personally (which is required for Article III standing).  

This case will have serious repercussions for enforceable data protection laws, as dataveillance 
(i.e., digital data surveillance) and data injustices of today would likely have no common law 
analog. This includes laws that would close gaps in protections and promote responsible data 
practices across HIPAA (Health Insurance Portability and Accountability Act45) and non-HIPAA 
contexts alike. The Roberts Court focused on disclosure of the false information analogizing this 
to defamation and otherwise dismissed inaccuracies about consumers—however horrible and 
stigmatizing and with whatever risks they cause downstream—unless those inaccuracies were 
disclosed to others. In a dissenting opinion, Justice Kagan noted the ruling had transformed Article 
III Standing Doctrine from “a doctrine of judicial modesty to a tool of judicial aggrandizement” 
and lamented that Congress—not the Supreme Court—was in the better position to determine 
whether “something causes a harm or risk of harm in the real world.”20 (dissent at 2225) 

Federal approaches for data privacy law reform (particularly those incorporating private causes of 
action as a key enforcement mechanism, a feature HIPAA lacks) might be for naught even if a bill 
is successfully passed by Congress and signed into law given, in light of TransUnion, what cases 
may be heard by federal courts. Thus, this case complicates debates about whether federal 
preemption of state data protection laws would be a pro or con for consumers46 and generates 
uncertainty as to whether the Roberts Court, if given the opportunity, would deem harms 
established by any new federal data protection statute as “concrete” to allow consumers to have 
their day in court if statutory violations occur. This development does not bode well for 
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policymakers trying to use data practice measures to promote innovation and protect consumers in 
and out of digital health contexts.  

4.2.  Dobbs v. Jackson Women’s Health Org. 

The Roberts Court issued its bombshell opinion in Dobbs v. Jackson Women’s Health Org. on June 
24, 2022, with Justice Alito authoring the majority opinion. The case involved a constitutional 
challenge to the Mississippi Gestational Age Act, a forced birth law barring healthcare providers 
from providing pregnancy termination services after 15 weeks of gestation. The main holding was 
to uphold the law and overturn both Roe v. Wade47 and Planned Parenthood of Southeastern Pa. v. 
Casey.48 In addition to the effects of this case on the practice of medicine, news of the decision 
quickly prompted scholars to call attention to the far-reaching implications the case has for 
dataveillance enabled by digital health technologies.e.g.49-54 Such technologies are not always within 
regulatory reach of HIPAA.55 But even for data situated within the HIPAA regulatory environment, 
there is a law enforcement exception to the Privacy Rule.56 In light of state laws that began to take 
effect with the Dobbs decision (e.g., Texas H.B. 8, designed to evade judicial review57-58), increased 
attention needs to be given to ensuring the privacy of health data and information.59 Recognizing 
the possibility that laws containing “bounty hunter” enforcement mechanisms might incentivize 
people to disclose protected health information under cover of the law enforcement exception to the 
HIPAA Privacy Rule, guidance60 was quickly issued by the Dept. of Health and Human Services 
Office of Civil Rights (OCR) emphasizing the narrowness of the exception and clarifying how 
obligations under HIPAA interact with, and prevail over, conflicting state laws with regard to data 
privacy and security requirements.61  

There is understandable concern that the exceptions to the HIPAA Privacy Rule could swallow the 
rule in a post-Roe society. Additionally, there continues to be legal uncertainty in our modern 
datafied culture regarding the boundaries for reasonable expectations of privacy under the Fourth 
Amendment. In 2018 the Roberts Court in Carpenter v. United States62 declined to put an end to 
the Third-Party Doctrine (a categorical rule that negates an individual’s expectation of privacy if 
information is shared with or known by third parties and allows for warrantless searches)E.g.,63 and 
instead allowed for the possibility of a preserved expectation of privacy in information exposed to 
third parties depending upon the “deeply revealing nature” of the information; “depth, breadth, 
and comprehensive reach”; and “inescapable and automatic nature of its collection.”64 Health 
information has a more established position as sensitive and worthy of protections than other types 
of information; however, biomedical databases, electronic health records, and health-related 
information in a wide array of settings are in danger of being more readily accessed and used 
against individuals.e.g.,65 While the Carpenter ruling was purportedly narrow (perhaps merely 
creating a limited exception rather than a revision to the Third-Party Doctrine66), we must monitor 
how the Roberts Court construes privacy interests in health information generally. In response to 
the legal uncertainties, biomedical data scientists might try data minimization and use of synthetic 
data; however, such efforts might unintentionally exacerbate biases in digital health algorithms. 
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4.3.  West Virginia v. EPA 

On June 30, 2022, the Supreme Court issued its 6-3 ruling in West Virginia v. EPA20 with the 
majority opinion authored by Chief Justice Roberts. The case involved a challenge the Affordable 
Clean Energy Rule promulgated in 201567 to implement updated performance standards under the 
Clean Air Act, a 50-year-old statute.68 The rule had never taken effect, as it had been challenged by 
opponents, stayed pending litigation, and repealed in 2019.69 A review of the text and legislative 
history indicated that the law to stop pollution and improve air quality was intended to provide the 
EPA with “regulatory flexibility” to avoid rapid obsolescence attributable to unavoidable “changing 
circumstances and scientific developments.”22 (dissent at 2622) Nevertheless, the Court chose to exert 
control rather than practice judicial restraint, substituting its own views for those of Congress and 
the EPA. Cunningly, the Court purported to follow precedent to reach its decision despite the fact 
that the “Majority Questions Doctrine” upon which it relied was not even a term used by the 
Supreme Court—a point noted in the dissenting opinion.22 (dissent at 2634) In actuality, the Major 
Questions Doctrine is an independent theory that sidesteps administrative law precedent (i.e., the 
Chevron Doctrine, which has persisted since 1984).37 The gist of the Major Questions Doctrine is 
that in “extraordinary cases” of any notable “economic and political significance,” an agency has 
no authority to act (including to interpret ambiguity in an agency’s explicit statutory authority to 
act) unless Congress has explicitly empowered the agency to do so.22 at 2608  

The case is important for data scientists because the Roberts Court has fundamentally shifted how 
agencies can act when implementing and enforcing statutes once they (finally) have been passed 
by Congress. The Court has made clear that it will second-guess (1) Congress in the breadth and 
specificity of statutory text used and (2) agency interpretations of statutes (not only by the EPA 
but any administrative agency, including, e.g., the FTC, FDA, CMS, and others). Indeed, the 
Court explained that “extraordinary cases”—to which the Major Questions Doctrine presumably 
now applies—“have arisen from all corners of the administrative state.”22 at 2608 Put simply, statutes 
are increasingly at risk of being struck down by the Roberts Court pursuant to the Nondelegation 
Doctrine if any meaningful amount of discretion is given to agencies in the interest of enabling 
data-informed policy and regulatory flexibility—necessary features for effective governance when 
involving rapidly changing science, technologies, and applications. Similarly, regulations are 
increasingly at risk of being struck down pursuant to the newly christened Major Questions 
Doctrine as exceeding the enforcement authority delegated by Congress. For algorithmic fairness 
in particular, policy efforts thus far have largely been based on general authority rather than 
explicit, specific authorization by Congress. Any laws to advance algorithmic fairness now must 
require specification (exhaustive enumeration) of the “major” issues that the agency is permitted 
or required to resolve and provide the agency with “intelligible principles” for implementation.70 

4.4.  303 Creative LLC v. Elenis 

It would be a mistake to assume that the Roberts Court will ease off from its activist turn when the 
2022-2023 session begins. Among several cases the Court has agreed to hear that could signal 
further trouble is 303 Creative LLC v. Elenis.23 At issue is the Colorado Antidiscrimination Act 
challenged by a graphic designer who plans to, but does not yet, offer the design of wedding websites 
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and who does not want to offer such services for same-sex weddings. Throughout the litigation, 
Colorado has argued there is “nothing novel” about antidiscrimination laws that target businesses 
(i.e., commercial conduct)71 and that the only speech affected is the ban on statements proposing 
illegal activity.72 The Court agreed to hear the case on February 22, 2022, framing the question to 
be resolved as “[w]hether applying a public-accommodation law to compel an artist to speak or stay 
silent violates the Free Speech Clause of the First Amendment.”23  

Challenges to laws affecting commercial speech (for which the government typically has had more 
leeway to regulate than expressive, non-commercial speech) have traditionally been answered using 
the Central Hudson test.73 Applying this test, a court will theoretically uphold a law restricting 
speech if the restriction is narrowly tailored (i.e., not more extensive than is necessary) and if the 
government has a “substantial” interest that is directly advanced by the restriction. This test arguably 
got harder for the government to overcome following Sorrell v. IMS Health Inc.74 (a case in which 
a Vermont law imposing restrictions on the sale, disclosure, and use of pharmacy records and 
prescription information to detailers was struck down even though the stated intent of the law was 
to “protect medical privacy, including physician confidentiality, avoidance of harassment, and the 
integrity of the doctor-patient relationship”74 at 2668). There, the Supreme Court rejected the argument 
that the law targeted conduct and only incidentally burdened speech and instead framed the law as 
imposing impermissible content-based and speaker-based restrictions. According to one scholar, 
“[n]o commercial speech restriction has passed the Central Hudson test in decades, and it is now 
unclear whether a restriction on non-deceptive commercial speech can ever pass this test.”75  

The Roberts Court has decided a wide array of First Amendment cases,76 earning criticism for 
having “turned the first amendment into a weapon” for “conservative interests.”77 While privacy 
law scholars have long indicated that data privacy laws are not properly envisioned within First 
Amendment space78 such claims predated the provocative decision in TransUnion. 303 Creative 
LLC v. Elenis needs to be watched carefully by data scientists. Whether algorithms (or more 
specifically data, coding, and algorithmic outputs) can or will be considered “speech” remains an 
open question (although the Supreme Court in Sorrell suggested without deciding that “the creation 
and dissemination of information are speech for First Amendment purposes”74 at 2657). Resolving this 
question is left for separate in-depth discussion.79-85 Nevertheless, one can speculate that the extent 
to which data minimalism and privacy-by-design practices can be lawfully required by Congress or 
administrative agencies (whether the FTC or FDA) might hinge, according to the Roberts Court, on 
whether such mandates are “compelled silence” and, similarly, the constitutionality of mandated 
nondiscrimination-by-design principles might hinge on viewing them as “compelled speech” as 
opposed to mandated conduct.See also 86-87 Commercial speech restrictions are unlikely to pass muster 
if the Roberts Court applies something more than rational basis review, which is likely given the 
expansive protections it has extended to corporate expression over the past decade.See 75  

The way in which the Roberts Court framed the question to be decided in 303 Creative LLC v. 
Elenis suggests it is ready to expand the notion that anti-discrimination laws cannot regulate 
commercial speech as a public accommodation because “eliminating discriminatory bias [is] a 
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‘decidedly fatal objective’ in light of a Free Speech challenge.”88 If so, and if the Roberts Court 
views data or algorithms as speech, it could become all but impossible for the government to 
impose responsible requirements to advance algorithmic fairness (whether through data privacy or 
nondiscrimination mechanisms). With this in mind, and also recognizing that Section 1557 of the 
Affordable Care Act—the omnibus nondiscrimination provision for health activities—continues to 
be revised (including a proposed rulemaking announced in August 2022 that would apply to use of 
algorithms in clinical decision-making89-90), politicized, and challenged, alarm bells are properly 
being rung for the future of civil rights under the Roberts Court.91-93   

5. Discussion

Given the above highlights, it seems clear that government-imposed data practice rules (e.g., 
regarding collection, management, processing, and disclosures) to promote algorithmic fairness and 
equal participation in, access to, and shared benefits and burdens of digital health and biomedical 
data science are going to be extremely difficult to realize in the Roberts Court era. First, such 
approaches might be considered as mere attempts to elevate harms that are “non-existent” or having 
no 1776 analog, thus leaving plaintiffs without adequate standing to have cases settled in federal 
courts. Second, if data and algorithmic outputs are viewed as speech, data protection laws of all 
sorts would be in direct tension with First Amendment protections. It seems at least plausible that 
privacy-by-design (although likely not nondiscrimination-by-design) measures could be considered 
content neutral “manner” restrictions if crafted carefully.See 94 Third, rules to combat data biases and 
discrimination and advance algorithmic fairness could be considered content-based compelled 
speech and subjected to heightened or strict scrutiny review. With the Roberts Court taking a broad 
view of the First Amendment, this could spell bad news for the FTC with its more aggressive 
approach toward data-related policies. 

With all of the legal gaps and uncertainties, now more than ever it is incumbent upon the biomedical 
data science community to develop and adopt self-governance strategies to advance algorithmic 
fairness. Contracts between individuals and entities can be used to mandate certain behaviors 
(including data practices and algorithmic uses), and terms of service and privacy policies should be 
examined and revised as appropriate. Moral clauses can address matters of ethical significance and 
impose duties not otherwise required by law (including performance of privacy-by design practices 
and due diligence to detect and remedy biases in algorithms). Feedback mechanisms are needed to 
incentivize responsible and deter detrimental conduct in a biomedical data ecosystem, including, 
e.g., mechanisms for reporting biased algorithms, removing them from further use, and correcting
them. Professional societies have a role to play as well by establishing practice norms and guidance 
and setting enforceable codes of conduct for their members. Self-governance strategies to advance 
algorithmic fairness will continue to require multidisciplinary collaborations and policy-focused 
research, so opportunities to connect on such issues in meaningful, focused, and psychologically 
safe ways (e.g., new or recurring Innovation Labs10) should be supported and prioritized.  
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Accessing clinical-grade genomic classification data through the ClinGen Data Platform*
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The Clinical Genome Resource (ClinGen) serves as an authoritative resource on the clinical
relevance of genes and variants. In order to support our curation activities and to disseminate our
findings to the community, we have developed a Data Platform of informatics resources backed
by standardized data models. In this workshop we demonstrate our publicly available resources
including curation interfaces, (Variant Curation Interface, CIViC), supporting infrastructure
(Allele Registry, Genegraph), and data models (SEPIO, GA4GH VRS, VA).

Keywords: Clinical Genomics; ClinGen; GA4GH; Data Standards; Variant Interpretation

1. Introduction

Genome-guided precision medicine requires evaluating the clinical significance of genomic
variation through the aggregation and standardized evaluation of disparate lines of functional,
clinical, and observational evidence. The process by which evidence is combined and turned into a
formal classification of significance is guided by professional organization or consortia-driven
recommendations, such as the 2015 ACMG/AMP guidelines 1 for Mendelian disease variants, the
2017 AMP/ASCO/CAP guidelines 2 for somatic cancer variants, and the recently published 2022
ClinGen/CGC/VICC guidelines3 for cancer variant oncogenicity. The application of these
guidelines requires carefully controlled curation interfaces and expert vetting of evidence to
ensure reproducible and high-quality assertions of clinical significance.

To address this need, the NIH-funded Clinical Genome Resource (ClinGen) was founded in
2013 to serve as a central authority for defining the clinical relevance of genes and variants for use
in precision medicine and research. The ClinGen Data Platform represents the coordinated
activities of the ClinGen data tools that drive the generation and dissemination of carefully
curated, high-quality assertions of clinical relevance in public databases and precision medicine
pipelines (clinicalgenome.org/working-groups/data-platform). The Data Platform enables the
clinical knowledge journey: the interfaces used to curate clinical significance classifications, the

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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frameworks for structuring and normalizing them, and the tools for exchanging and widely
disseminating this clinical knowledge for use in clinical systems.

2. Workshop Topics and Presenters

2.1. Introduction - The Clinical Genome Resource

Presented by: Heidi Rehm (Broad Institute of MIT and Harvard & Massachusetts General Hospital)

This workshop describes the Clinical Genome Resource (ClinGen) and how ClinGen standardizes
and supports the classification of the clinical significance of genes and variants. ClinGen activities
include development of standardized frameworks for gene and variant classification, provision of
the needed software structures to support this work, and crowd-sourcing the sharing of gene and
variant classifications and underlying curated evidence through ClinGen’s website
(clinicalgenome.org), GenCC (Gene Curation Coalition) and ClinVar (NCBI supported).
Conflicting classifications are resolved through interlaboratory efforts for both ClinVar and
GenCC entries, and a subset of variants are reviewed and classified through the consensus-driven
application of ClinGen’s expert panels. This session will also examine forward-looking
approaches needed to scale the classification of variants, including example patient cases with
variants for use throughout each portion of the workshop. This will entail a review of evidence
types used in variant classifications and discussion of how sharing this data according to
harmonized data models enables more scalable approaches to variant classification.

2.2. Generating clinical-grade genomic knowledge

2.2.1. Clinical variant knowledge from Variant Curation Expert Panels

Presented by: Matt Wright, Karen Dalton, Mark Mandell (Stanford University)

The ClinGen Variant Curation Interface (VCI )4 is a global, open-source cloud-native, variant
classification platform for supporting the application of evidence-based criteria and classification
of variants based on the ACMG/AMP variant classification guidelines. Publicly accessible via
https://curation.clinicalgenome.org, the VCI is among a suite of tools developed by ClinGen and
supports an FDA-recognized human variant curation process. It enables collaboration and peer
review across ClinGen Expert Panels, and supports users in identifying, annotating, and sharing
relevant evidence while making variant pathogenicity assertions.  Navigation workflows support
users by providing guidance to comprehensively apply the ACMG/AMP evidence criteria and
document provenance for asserting variant classifications both within ClinGen expert panels and
the wider genomics community.

At this part of the data journey from patient genomic data to clinically relevant interpretation
of variants, data is ingested from a variety of community resources and, after complete curation, is
exported to other resources within the ClinGen ecosystem and also exported with classified
variants into ClinVar and the Evidence Repository. We will discuss the use of defined ontologies
and data structures to produce consensus interpretations from defined methodologies at scale. The
semi-structured workflow in combination with the evaluation by expert panel members moves
determinations of variant pathogenicity away from the prior methods of relying on subjective
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judgment by a single individual toward structured review of evidence to reach expert consensus,
thereby increasing the confidence in the data created.

2.2.2. Somatic cancer clinical variant knowledge from Somatic Cancer Variant Curation Expert
Panels

Presented by: Kilannin Krysiak (Washington University in St. Louis), Alex Wagner (Nationwide
Children’s Hospital and the Ohio State University)

The crowd-sourced, public domain Clinical Interpretations of Variants in Cancer (CIViC)
knowledgebase5 is a cancer variant knowledgebase funded by the NCI Informatics Technology for
Cancer Research program that collaborates closely with ClinGen and captures literature-derived
evidence for the clinical assessment of genomic variants in cancers through an open evidence
curation interface6. ClinGen Somatic Cancer Variant Curation Expert Panels (SC-VCEPs) capture
evidence in CIViC using concepts from established terminologies for cancer types, therapies,
histopathologies, and genes, alongside CIViC-defined structured data fields and human-readable
text. The CIViC curation interface supports a rigorous evidence curation protocol7, which is used
and expanded upon by SC-VCEPs in domain-specific (e.g. tumor type and/or gene specific)
curation activities. CIViC content is freely available without registration via the web interface, text
downloads or API access, and its content is released under a public domain (CC0) declaration.

We will cover the fundamental data types curated in the CIViC interface, and how these apply
to professional society guidelines to guide clinical interpretation of tumor variants. A hands-on
exercise using Python-based Jupyter notebooks will demonstrate the use of the GraphQL API and
the CIViCpy8 SDK for accessing and applying curated content in clinical and research workflows.

2.3. Standardizing exchange and dissemination of clinical-grade genomic knowledge

2.3.1. Overview of the ClinGen Genomic Knowledge Model and the Variant Annotation framework

Presented by: Larry Babb (Broad Institute of MIT and Harvard), Alex Wagner (Nationwide
Children’s Hospital and the Ohio State University)

Throughout our infrastructure ClinGen has an ongoing commitment to make genomic
knowledge findable, accessible, interoperable and reusable (FAIR) and has devoted consistent data
engineering resources over the past 6 years to deliver on that commitment. ClinGen is an ideal
platform for evolving these genomic knowledge standards with its consortium comprised of
several separate software engineering teams all dedicated to an integrated ecosystem for
supporting the collection and curation of evidence, the standardization of variation and other
fundamental related genomic concepts, and the dissemination of fully qualified evidence-based
genomic knowledge from expert groups. We will be discussing the SEPIO framework, the
ClinGen Genomic Knowledge Model, and the application of the Variant Annotation framework9

that is the foundation for the ongoing standards work being done with the Global Alliance for
Genomics and Health (GA4GH)10,11 within the Genomic Knowledge Standards working group.

We will also examine the GA4GH Genomic Knowledge statement design for representing
provenance-based evidence, the assessment of that evidence based on an associated method and
the final classification of the knowledge being addressed. ClinGen is leveraging this design to
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represent gene and variation based knowledge for Gene Validity, Dosage Sensitivity, Variant
Pathogenicity and Clinical Actionability. We will walk through exercises related to Variant
Pathogenicity and Therapeutic Response statements to illustrate challenges addressed by this
framework and the benefits of standardized, clinical-grade, interoperable and reusable genomic
knowledge content. We will then cover the application of this framework to the previously
described variation curation platforms, and how it relates to downstream resources such as the
Evidence Repository and LDH. A hands-on exercise will be presented for querying (and
generating) compliant data with community-developed software tools.

2.3.2. Tools for variant registration and evidence association

Presented by: Kevin Riehle (Baylor College of Medicine)

This session will describe the ClinGen Allele Registry (CAR - https://reg.clinicalgenome.org)12

which provides a canonicalization service resulting in >2.5B canonical allele identifiers (CA IDs)
representing alleles that have equivalent representations across genome builds and transcripts.
The Linked Data Hub (LDH: https://ldh.clinicalgenome.org), provides a structured environment
that leverages excerpted data from external sources (e.g. molecular consequence, BRCA
Exchange, CIViC, ClinVar, population allele frequency, etc.) with links to other core documents
(e.g. variants, genes, etc.) that results in aggregation of knowledge for a given query. We will
provide an overview and demonstration of the CAR and LDH as it relates to supporting curation
efforts in ClinGen and how the functionality can be applied to other projects and consortia.

We will also showcase the incorporation of GA4GH-modeled ClinVar data into the LDH and
how this process can be leveraged to support additional resources that maintain SEPIO and
non-SEPIO structured documents.  Combining the registration service (CAR) with supporting
evidence (LDH) provides for downstream tool integration to support curation (e.g., Variant
Curation Interface), deduplication, provenance, and other types of applications.

2.3.3. Tools for knowledge dissemination

Presented by: Tristan Nelson (Geisinger)

ClinGen has applied the models developed within the SEPIO Framework and GA4GH Variant
Representation and Annotation standards to the variant assessments in ClinVar, as well as Gene
Dosage and Gene Validity curations. Through our Genegraph service, we make available a form of
ClinVar that represents submissions on a given variant by individual submitters (SCV), as this
view of the data allows a fine-grained assessment of the professional assessments made regarding
the clinical relevance of a variant, which can then be filtered based on several factors, including
the purpose of the assessment and the reputation of the source. We represented the ClinGen Gene
Dosage and Validity data in the same formats; demonstrating the utility and flexibility of these
models in the context of diverse and highly clinically relevant datasets. We investigate some of the
ways these datasets can be explored to produce clinical insights.

3. Conclusion

This workshop will introduce the methods and tools used to support the lifecycle of consuming,
generating, and classifying clinical genomic knowledge. We will describe the Variant Curation

Pacific Symposium on Biocomputing 2023

534

https://reg.clinicalgenome.org


Expert Panel evaluation process for constitutional and somatic cancer variant curation, and how
these data are disseminated for reuse and expert evaluation between systems through modern data
normalization and community-driven data exchange standards.
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As biomedical research data grow, researchers need reliable and scalable solutions for storage and
compute. There is also a need to build systems that encourage and support collaboration and data
sharing, to result in greater reproducibility. This has led many researchers and organizations to use
cloud computing [1]. The cloud not only enables scalable, on-demand resources for storage and
compute, but also collaboration and continuity during virtual work, and can provide superior
security and compliance features. Moving to or adding cloud resources, however, is not trivial or
without cost, and may not be the best choice in every scenario. The goal of this workshop is to
explore the benefits of using the cloud in biomedical and computational research, and
considerations (pros and cons) for a range of scenarios including individual researchers,
collaborative research teams, consortia research programs, and large biomedical research agencies /
organizations.

Keywords: cloud computing; data; bioinformatics; compute research infrastructure.
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1. Background

1.1.  Growing use of the cloud in biomedical research

For at least 30 years, biomedical research data have been growing exponentially, largely since
Wally Gilbert first quantified the size of genomics data in 1990 and projected exponential growth
until 2040 with a genome for everyone. NHGRI notes that “estimates predict that genomics
research will generate between 2 and 40 exabytes [2] of data within the next decade [3].” Making
sense from data often requires large and extensible storage and compute capacity, not only because
of the sheer size of the data but also because of the complex nature of biology and systems.
Additionally, data become more valuable over time, as they grow and also as we learn more about
the context surrounding the data. Thus, models that encourage data stewardship and longevity
have a greater chance of unlocking discovery.

Many large research organizations are moving to the cloud to handle computational biology
research, including the National Institutes of Health (NIH), the National Science Foundation
(NSF), the Department of Energy (DoE), the National Aeronautics and Space Administration
(NASA), and many academic research institutions. NIH’s Science and Technology Research
Infrastructure for Discovery, Experimentation, and Sustainability (STRIDES) program is a model
for enabling NIH-funded researchers to use cloud resources [4]. It provides choice to researchers
by partnering with Google Cloud, Amazon Web Services (AWS), and Microsoft Azure. Through
STRIDES, cloud adoption can be done at the organizational (e.g., university) and individual
researcher/research lab level. NSF has also been a leader in developing tools like CloudBank for
researchers to make it easier to use and track cloud computing in their research grants [5].

Biomedical research increasingly makes use of Machine Learning/Artificial Intelligence
(ML/AI) research, as funding opportunities and a focus on developing public policies for ML/AI
research grow [6]. These types of research efforts often require large compute and/or
supercomputing, beyond what is available to many researchers, from students to principal
investigators, on their own laptops. For researchers at institutions who do not have access to large
on premise computation and/or supercomputers, the cloud can be a good option to enable research
on larger scales. The ability to use tools for ML/AI, such as TensorFlow, can enable researchers to
get the most out of their data.

1.2.  Benefits of cloud computing

Cloud computing can also be used to increase access to compute and storage for researchers at
institutions with less infrastructure or IT support. Cloud deployments are almost always more
environmentally-friendly, due to both efficient use of computing resources and engineering, and
site engineering that minimizes environmental impacts. Data silos are often a problem with
on-premise environments, as the data on one’s laptop aren’t discoverable or easily shareable with
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collaborators. This can be overcome with cloud computing, but only if the systems are engineered
to improve collaboration and data sharing. Best practices in cloud implementations and
engineering are critical to avoid the need for data duplication, re-deploying systems in multiple
places, and data leaks. These challenges are not inherent to cloud computing, but are often a result
of the technology not being used efficiently. They are also likely signs of an evolving technology
and the relevant organizations figuring out how to meaningfully incorporate cloud computing into
their funding model to enable researchers.

In addition to filling an immediate need, broader adoption of the cloud into a researcher or
organization’s infrastructure requires a thoughtful approach and deep understanding of the
technology, often in partnership with private sector colleagues. Incorporating cloud computing in
an IT infrastructure means the involvement of many different teams, likely including financial,
administrative, central IT, research IT, and the researchers themselves. The decision making
process often happens at the level of the organization, while the needs of the individual researcher
and research groups need to be accounted for in this process.

1.3.  Organizational deployments of cloud computing for research

Beyond individual research labs, research groups, and organizations adopting cloud, there are
many examples of large research consortia building databases and communities in the cloud. The
All of Us Research Program is a good example [7]. It has developed a custom implementation of
Terra, a secure, scalable, open-source, cloud-based platform for biomedical researchers to access
data, run analysis tools, and collaborate [8]. The UK Biobank initially used a data download
approach and has now moved to a cloud-based platform built by DNAnexus to prevent download
and promote centralized data access [9]. The National Cancer Institute's (NCI’s) Imaging Data
Commons is also cloud-based and provides cancer images and other related data to the research
community [10]. NHGRI’s AnVIL platform, another implementation of Terra, for genomics
provides cloud-based resources for researchers to compute directly on the platform but also allows
for data download [11]. When possible, many researchers still tend to download data and compute
locally versus leverage cloud computing centrally. This stifles not only collaboration, but also the
potential for data reproducibility that centralized platforms with data, tools, and researcher
community can offer. Another challenge is that some researchers get accustomed to one system or
one cloud platform, and portability can be an issue if a system or cloud platform changes. There
are tools to help with this, and many cloud providers are developing multi-cloud solutions to
enable portability between and among systems, but this is another thing for researchers to consider
in their cloud consideration journey. At the organizational level, the All of Us Research Program is
committed to expanding to multi-cloud to give researchers the freedom of choice in terms of
platforms and tools.

When evaluating the possibility of using cloud for research, researchers and organizational IT
professionals often consider the cost, size, and age of on-premise infrastructure, familiarity with
and ability to implement cloud-based systems, as well as the research-specific factors like size and
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persistence of data sets, frequency of use, types of analysis workflows, and bioinformatics tools
and languages. The choice of which cloud(s) to use often also involves cost comparison and an
evaluation of which tools are available on the various cloud platforms. Peculiarities of the
academic research environment, including especially funding models, complicate the decision
about whether to migrate to cloud computing. There is also an ability for organizations to create
multi-cloud and hybrid solutions so that the cloud can be used to extend on-premise environments,
act as a bridge to cloud computing, and/or enable choice among researchers as to which cloud
platform to use. This flexibility means that there are a wide variety of options available, which can
also make the decision more confusing and the path forward less clear.

2. Relevance to biocomputing

The size of data, types of data, and types of ML/AI analytic workflows that are used in
biocomputing research are relevant for cloud computing, particularly as data grow and are more
voluminous. As this trend towards the cloud continues, it is important to share considerations and
discuss challenges together as a community. The topic is timely since not only is there a growing
use of the cloud, but also growth in data and an emphasis on ML/AI research - all of which require
flexible compute and the storage that the cloud can provide. NIH has addressed this topic recently
in a Virtual Workshop in September 2021 on Broadening Cloud Computing Usage in Biomedical
Research, MSIs, HBCUs, TCUs, etc [12].

The text string “cloud computing” search on PubMed has been growing, with 63 publications
in 2021 (Figure 1). Other biomedical conferences that have covered cloud computing include the
American Medical Informatics Association (AMIA) and the American Society of Human Genetics
(ASHG).

Fig. 1.  Number of publications with “cloud computing” in PubMed from 2009-2021

The new policy on data sharing that will go into effect in January 2023 also means that cloud
computing will be even more useful for researchers whose data don’t fit neatly into one of the
existing NIH primary data archives [13].

3. Workshop overview

This workshop, first and foremost, will be a balanced discussion about the pros and cons of
moving to the cloud in a variety of situations, while considering different-sized labs and

Pacific Symposium on Biocomputing 2023

539

https://sharing.nih.gov/data-management-and-sharing-policy/about-data-management-and-sharing-policy/data-management-and-sharing-policy-overview#after


organizations, and for a wide range of research applications. This balanced perspective is a key
feature to ensure that the discussion is an opportunity for learning and information exchange. The
focus will include a range of compute options, including various public cloud providers,
on-premise, hybrid and multi-cloud options.

Specific research use cases for biocomputational research in the cloud will be shared, and
considerations for researchers and organizations who are evaluating the possibility of moving to
the cloud, along with the range of possibilities including hybrid and multi-cloud. A discussion of
the evolving technology and the relevant organizations is critical to figuring out how to
meaningfully incorporate cloud computing into funding models to enable researchers.

The workshop is organized into talks and a panel discussion. The talks set the stage for the
panel discussion, and cover considerations of moving to the cloud and how this went/is going.
Talks include both researchers who are using the cloud, and those who are not using the cloud but
have evaluated the possibility and decided against it. Session organizers also participate in talks
and the panel discussion. The session includes diverse viewpoints, both from the cloud adoption
perspective and the organizational type, size, and considerations perspective.

For the panel discussion, private sector researchers were invited to participate, to include the
industry perspective along with larger organizations, including NIH. The panel is meant to spark
discussion amongst the workshop participants. For both the talks and the panel, diversity and
inclusion were goals incorporated into the final workshop organization.
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1. Introduction, Background, and Motivation
Artificial intelligence (AI) is making a big impact on patient experiences, clinician workflows, researchers,
and the pharmaceutical industry work in the healthcare sector. In recent decades, technological advancements
across scientific and medical disciplines have led to a torrent of diverse, large-scale biomedical datasets such
as health, imaging data, clinical notes, lab test results, and other ‘omics data. The dropping costs of genomic
sequencing coupled with advances in computing allow unprecedented opportunities to understand the effects
of genetics on human disease etiologies and has resulted in the creation of population-level biobanks like the
Million Veteran Program1, UKBioBank2, PennBioBank3. As a consequence, the demand for novel
computational methods, computational infrastructure, and algorithm improvements to efficiently process and
derive insights from these datasets, particularly where it applies to clinical translational research, has
dramatically increased. In addition to handling the sheer size and quantity of biomedical data, newly
developed methods must also adapt and employ state-of-the-art AI algorithms that account for the unique
complexities of biomedical datasets, such as sparseness, incompleteness, and noisiness of data, data
multidimensionality such as clinical measurements from electronic health records, prescription drug data,
environmental exposures. Additionally, these methods have to leverage the advances in high-performance
computing like GPUs, faster inter-connects, and fast-access memory to help generate the needed insights at
a faster rate.
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The recent explosion of high-throughput experimental techniques for generating biological ‘omics 
datasets (e.g., genomic, transcriptomic, or metabolomic) has led to a specific set of challenges related to the 
integration of biomedical with multi-omics data and second to the analysis of these integrated datasets. To 
begin to model complex phenotypic traits, modern statistical and machine learning methods must now draw 
from various datasets with diverse origins, such as from analogous data across multiple model organisms or 
from complementary data within the same species. It leads to challenges stemming from integrating 
biomedical and multi-omics data, including challenges related to the identification, visualization, and 
reproducibility of patterns elucidated from integrated datasets.  

Data-intensive computing has firmly established itself as the fourth paradigm in scientific discovery. 
Advances in computing have propelled discovery in many physical sciences (cosmology, high energy 
physics, aerospace, to name a few). The data-intensive nature of computational problems in medicine and 
biomedical informatics warrants the use and development of advanced computing infrastructure and software 
methods. In recent years, advances in computational infrastructure, methods, and algorithms enabled storage 
and analysis of large-scale datasets (e.g., Exascale Computing Project, Cloud Computing, ESNet)4. These 
advances have created silos of excellence, and scientific discovery propelled by computation has been driven 
by computationally well-endowed groups.  Though distributed computing in the cloud can dramatically 
improve the performance of complex computational analyses by reducing runtime and local storage 
requirements, it is still severely limited by the availability of cloud-compatible software packages. Gaps also 
exist for these packages to leverage supercomputing capabilities.  
 To address this, we invited experts leading the development and application of artificial intelligence and 
cutting-edge computing approaches to drive innovation in precision medicine. We discussed current 
breakthroughs in which our speakers are involved and the strengths and limitations of artificial intelligence 
in medicine. Our workshop session focused on four major domains of AI and computing 1) AI in Healthcare 
2) Genomics in medicine 4) Exascale computing to advance precision medicine.

2. Workshop Presenters
The three-hour workshop will begin with an overview presentation of the workshop followed by four
presentations. The workshop will conclude with a panel discussion session, which will be moderated by Drs.
Torkamani and Verma.

2.1. Workshop Speakers 

2.1.1. Rick Stevens, PhD - Rick Stevens is the Associate Laboratory Director of the 
Computing, Environment and Life Sciences Directorate at Argonne National 
Laboratory, and a Professor of Computer Science at the University of Chicago, with 
significant responsibility in delivering on the U.S. national initiative for Exascale 
computing and developing the DOE initiative in Artificial Intelligence (AI) for 
Science. At Argonne, Rick leads the Laboratory’s AI for Science initiative and 
currently focusing on high-performance computing systems which includes leading 
a significant collaboration with Intel and Cray to launch Argonne’s first exascale 
computer, Aurora 21, which will pursue some of the farthest-reaching science and 
engineering breakthroughs ever achieved with supercomputing, as well as a 
partnership with Cerebras Systems to bring hardware on site to advance the massive 
deep learning experiments being pursued at Argonne for basic and applied science 
and medicine with supercompute-scale AI. Stevens’ research spans the 
computational and computer sciences from high-performance computing, to the 
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building of innovative tools and techniques for biological science and infectious 
disease research as well approaches to advance deep learning to accelerate cancer 
research. He also specializes in high-performance computing, collaborative 
visualization technology, and grid computing. Currently, he is the PI of the Bacterial 
/ Viral Bioinformatics Resource Center (BV-BRC) which is developing comparative 
analysis tools for infectious disease research and serves a large user community; the 
Exascale Deep Learning and Simulation Enabled Precision Medicine for Cancer 
project through the Exascale Computing Project (ECP), which focuses on building 
a scalable deep neural network application called the CANcer Distributed Learning 
Environment (CANDLE); the Predictive Modeling for Pre-Clinical Screening (Pilot 
1) of the DOE-NCI Joint Design of Advanced Computing Solutions for Cancer
(JDACS4C) project; and the Co-design of Advanced Artificial Intelligence (AI)
Systems project focused on predicting behavior of complex systems using
multimodal datasets. Rick has won numerous awards for his work, including two
R&D 100 Awards and an HPCwire Readers' Choice Award. Rick was elected a
Fellow of the American Association for the Advancement of Science (AAAS) in
2003 and since then is a Fellow of the Institute of Electrical and Electronics
Engineers (IEEE) in IEEE Computer Society, an ACM Fellow and a member of the
Association for Automated Reasoning and the Association for Symbolic Logic

2.1.2. Marylyn Ritchie, PhD - Dr. Ritchie is a Professor of Genetics and Director of the 
Institute for Biomedical Informatics at the University of Pennsylvania School of 
Medicine.  She is also Associate Director of the Penn Center for Precision Medicine, 
Director of the Center for Translational Bioinformatics, and Co-Director of the Penn 
Medicine BioBank.  Dr. Ritchie is an expert in translational bioinformatics, with a 
focus on developing, applying, and disseminating algorithms, methods, and tools 
integrating electronic health records (EHR) with genomics. Dr. Ritchie has over 20 
years of experience in translational bioinformatics and has authored over 375 
publications. Dr. Ritchie was appointed a Fellow of the American College of 
Medical Informatics (ACMI) in 2020. Dr. Ritchie was elected as a member of the 
National Academy of Medicine in 2021; she is being recognized “for paradigm-
changing research demonstrating the utility of electronic health records for 
identifying clinical diseases or phenotypes that can be integrated with genomic data 
from biobanks for genomic medicine discovery and implementation science.” Dr. 
Ritchie holds a Ph.D. from Vanderbilt University in Statistical Genetics, an M.S. 
from Vanderbilt University in Applied Statistics, and a B.S. in Biology from the 
University of Pittsburgh at Johnstown. Dr. Ritchie is also the host of two podcasts: 
she co-hosts The Biomedical Informatics Roundtable podcast with Dr. Jason Moore 
and the solo host of The CALM Podcast: Combining Academia and Life with 
Marylyn. 

2.1.3. Ravi Madduri - Ravi is a computer scientist in the Data Science and Learning 
division at Argonne National Laboratory and is Senior Scientist at the Center of 
Research Computing at the University of Chicago. He is an innovation fellow at the 
Polsky Center of Entrepreneurship at University of Chicago. Ravi led several 
successful large projects in NSF, NIH and DOE. His research interests are in 
building sustainable, scalable services for science, reproducible research, large-scale 
data management and analysis. He co-leads the MVP-CHAMPION project, which 
is a collaboration between VA and DOE and developed methods to perform large-
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scale genetic data analysis using DOE’s high performance computing capabilities, 
including methods for generating PRS scores in Prostate Cancer, genome-wide 
PheWAS on Summit supercomputer. Additionally, Ravi is one of three key 
contributors to the National Institutes of Health $100M Cancer Biomedical 
Informatics Grid (caBIG), which linked 60 NIH-funded cancer centers and clinical 
sites engaged in cancer research. For his efforts in project management, tool 
development, and collaboration, Ravi received several Outstanding Achievement 
Awards from NIH. Ravi led the design and implementation of scientific and high-
performance workflows under the caGrid toolkit. Ravi leads the Globus Genomics 
project (www.globusgenomics.org), which is used by thousands of researchers 
across the world for genomics, proteomics, and other biomedical computations on 
Amazon cloud and other platforms. He architected the Globus Galaxies platform 
that underpins Globus Genomics and several other cloud-based gateways realizing 
the vision of Science as a Service for creating, maintaining sustainable services for 
science. Ravi plays an important role in applying large-scale data analysis, deep 
learning to problems in biology. For his work on “Cancer Moonshot” project, he 
received the Department of Energy Secretary award in 2017.  

2.1.4. Jessilyn Dunn, PhD - Dr. Dunn, is Assistant Professor in the Department of 
Biomedical Engineering at Duke University. She works on developing new tools 
and infrastructure for multi-modal biomedical data integration to drive 
precision/personalized methods for early detection, intervention, and prevention of 
disease. She leverages expertise in data science, engineering, informatics, medicine, 
biological sciences, and population health. Her works has direct implication by 
arming healthcare professionals with tools and information to detect illness and 
intervene early and to deliver the right treatment at the right time to the right person. 
Dr. Dunn received Ph.D. in Biomedical Engineering from Georgia Institute of 
Technology in 2015. 

2.2. Panel Moderators 
2.2.1. Ali Torkmani PhD.  Dr. Torkamani is the Director of Genomics and Genome 

Informatics at the Scripps Research Translational Institute and Professor at The 
Scripps Research Institute. Dr. Torkamani’s research centers on the use of genomic 
and informatics technologies to identify the genetic etiology and underlying 
mechanisms of human disease to define health risks and individualized 
interventions. Major focus areas include human genome interpretation, genomic 
discovery of novel rare diseases, comprehensive, genetically-informed machine- and 
deep-learning prediction of risk for common diseases, and digital communication of 
genetically-informed disease risk. He has authored over 100 peer-reviewed 
publications as well as numerous book chapters and Medscape references, and his 
research has been highlighted in the popular press. Dr. Torkamani’s overall vision 
is to decipher that code in order to understand and predict interventions that restore 
diseased individuals to their personal health baseline. 

2.2.2. Anurag Verma PhD. Dr. Verma is an Instructor in the Department of Medicine at 
the University of Pennsylvania and Associate Director of Clinical Informatics and 
Genomics for Penn Medicine BioBank. His research has focused on the study of the 
genetic basis of complex diseases using big data techniques with the main focus of 
studying the genetic architecture of multimorbidity, the phenotypic architecture of 
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common genetic risk, polygenic risk scores, and phenome-wide association studies 
to identify the complex phenotypic and genomic interactions that lead to complex 
disease. He has biomedical informatics expertise in the integration of genetic data 
with electronic health records (EHRs) from large biobanks, with extensive 
experience in analyzing large biobank datasets, including Penn Medicine BioBank, 
Million Veteran Program, Geisinger MyCode, and eMERGE network.  

2.2.3. Jennifer Huffman PhD. Dr. Huffman is a member of the Faculty for the 
Department of Medicine at Harvard Medical School and the Scientific Director for 
Genomics Research within the Center for Population Genomics at the VA Boston 
Healthcare System. She is currently an investigator with the VA Million Veteran 
Program. She leads research investigations into the genetic contributions to 
cardiovascular risk factors and coordinates and implements several infrastructure 
programs for the program. This has also allowed her to actively participate in several 
collaborations with statisticians and computer scientists to improve analyzing “big 
data” methods. 
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The primary efforts of disease and epidemiological research can be divided into two areas: 
identifying the causal mechanisms and utilizing important variables for risk prediction. The latter is 
generally perceived as a more obtainable goal due to the vast number of readily available tools and 
the faster pace of obtaining results. However, the lower barrier of entry in risk prediction means 
that it is easy to make predictions, yet it is incredibility more difficult to make sound predictions. 
As an ever-growing amount of data is being generated, developing risk prediction models and 
turning them into clinically actionable findings is crucial as the next step. However, there are still 
sizable gaps before risk prediction models can be implemented clinically. While clinicians are 
eager to embrace new ways to improve patients’ care, they are overwhelmed by a plethora of 
prediction methods. Thus, the next generation of prediction models will need to shift from making 
simple predictions towards interpretable, equitable, explainable and ultimately, casual predictions.  

Keywords: Risk Prediction; Methodology; AutoML, Explainable Artificial Intelligence, Federated 
Learning, Model Interpretation. 

1. Introduction

The purpose of this workshop is to introduce and discuss the current and future of risk prediction in 
the context of disease and epidemiological research. We will discuss the pressing topics ranging 
from data sources to model implementation. Our speakers will discuss the most commonly used 
data sources, e.g., genetics, imaging, clinical, and epidemiological data, for developing the 
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prediction models. A number of novel risk prediction methods, including automatic machine 
learning (AutoML), explainable artificial intelligence (XAI), and polygenic risk score, will be 
presented. Issues regarding how to handle the high dimensionality of the features will be discussed 
from the perspective of accuracy and computational scalability. Data privacy considerations during 
the construction and dissemination of prediction models will be addressed. Furthermore, model-
based and post-hoc analysis of prediction models, including the biases and uncertainty 
quantification, model interpretation, and fairness and diversity of the prediction results, 
transferability and generalizability of the models to different populations and datasets will be 
thoroughly discussed. Finally, the current progress and future perspective regarding the validation 
and clinical implementation of the risk prediction models will be reviewed.  

2. Machine learning

Recent advances in machine learning (ML) methods, combined with the rapidly increasing 
availability of healthcare data, forebode an avalanche of explorations of ML in medical research. 
Since risk prediction tasks constitute a large portion of the applications of ML in medicine, 
knowledge on how to develop, implement and evaluate risk prediction models, as well as interpret 
the results on their basis is critical for enhancing the model quality, transparency, trust and for 
decreasing the instances of bias. This workshop provides a roadmap to help refine and enhance 
understanding of risk prediction and assessment by focusing on all stages of developing and 
validating risk prediction models. 

2.1 Automatic Machine Learning 

One of the many challenges of machine learning is the selection of the method to use and the 
tuning of its hyperparameters. This is a challenge for both experts and beginners because there are 
dozens of methods and each looks at the data in a different way. It is difficult to know which 
method is most appropriate when using machine learning to develop risk models. Automated 
machine learning (AutoML) seeks to address this issue by exploring a wide range of models and 
hyperparameters with minimal user input. Maduchi et al. (2022) recently reviewed automated 
machine learning for the genetic analysis of complex traits. One of these methods, the Tree-Base 
Pipeline Optimization Tool (TPOT), has been applied to genomics data (Le et al. 2020) and uses 
expression trees to represent machine learning pipelines with operators including feature selectors, 
feature transformers, feature engineering algorithms, and a wide range of machine learning 
algorithms all available from the sci-kit learning library. Pipelines are explored and optimized 
using genetic programming with multi-objective optimization and cross-validation to limit 
overfitting. Manduchi et al. (2022) demonstrate the application of TPOT to the genetic analysis of 
coronary artery disease (CAD) using genome-wide association study (GWAS) data from UK 
Biobank. A central focus of this study was prioritizing genes based on their druggability and 
pharmacologic relevance to CAD. The TPOT algorithm was able to automatically identify an 
optimal machine learning pipeline for predicting CAD with evidence of genetic heterogeneity 
revealed by feature importance score methods. This study is used as an example to demonstrate 
the potential for AuoML to inform the development of genetic risk models for common disease. 
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3. Statistical modeling

Statistical modeling plays an important role in risk prediction, which has a broad application in 
clinical science, epidemiology, and health services. With the growing availability and variety of 
real-world healthcare data sources, such as claims data and electronic health records, there are 
emerging statistical challenges that need to be addressed for constructing more reliable and 
generalizable risk prediction tools. In this workshop, we discuss advanced statistical methods that 
address the following challenges (1) prediction models with limited and imperfect labels (2) 
building risk prediction models for underrepresented populations with limited data (3) combining 
data from multiple sources to improve the generalizability and transferability of risk prediction 
models. In addition to the methods, we will also discuss the theoretical insights and examples of 
potential real-world applications.  

4. Conclusion

Our workshop puts an even focus on all stages of developing and validating risk prediction 
models. Rather than focusing exclusively on the methodologies, we believe by structuring a more 
balanced workshop theme, the speakers and the audiences will have more opportunities to 
exchange ideas and viewpoints. Discussion sessions would also be employed to break up the talks 
and to provide a venue for general dialog around themes that have evolved from the lectures.  
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In cancer, complex ecosystems of interacting cell types play fundamental roles in tumor 
development, progression, and response to therapy. However, the cellular organization, 
community structure, and spatially defined microenvironments of human tumors remain 
poorly understood. With the emergence of new technologies for high-throughput spatial 
profiling of complex tissue specimens, it is now possible to identify clinically significant 
spatial features with high granularity. In this PSB workshop, we will highlight recent advances 
in this area and explore how single cell spatial profiling can advance precision cancer medicine. 

Keywords: Spatial biology, spatial transcriptomics, machine learning, artificial intelligence, 
cancer biology, precision medicine 

1. Introduction, Background, and Motivation

Maps are indispensable tools for understanding and navigating our world. While the earliest maps 
had limited resolution, in recent decades, we have witnessed an explosion in the scale, scope, and 
complexity of digital mapping data. Today, large fleets of satellites perform high resolution 
geospatial surveys at a global scale, while smartphones and wearables provide a nearly “limitless” 
supply of real-time physiological data with spatial coordinates. Significant advances in spatial 
mapping technology have permeated other areas as well, including biology – where, for example, 
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the IMAXT project (one of Cancer Research UK’s Grand Challenges) is currently building the 
first 3D virtual reality map of a tumor. 

Within biology in particular, technologies for mapping spatial organization are in the midst 
of a revolution. In 2020, Nature Methods highlighted “Spatially Resolved Transcriptomics” as the 
method of the year1. However, existing platforms for spatial biology are highly heterogeneous. For 
example, single-cell proteomic assays, such as cyclic immunofluorescence, CODEX, molecular 
ion beam imaging (MIBI), and imaging mass cytometry (IMC) are capable of cellular, or even 
sub-cellular, regional analysis but are limited to joint profiling of tens to hundreds of preselected 
proteins. Likewise, commercially available platforms for profiling single-cell mRNA expression 
in spatial dimensions, such as MERSCOPE (Vizgen) and CosMx (NanoString), are limited to 
preselected genes. In contrast, Visium (10x Genomics) and GeoMX (NanoString) can recover the 
entire transcriptome, but at lower spatial resolution. Clearly, such differences, along with the 
complexity of the data generated by each assay, require sophisticated analytical solutions. 
Moreover, while current platforms are predominantly limited to two-dimensional profiles, 3D, 4D 
(spatiotemporal), and even multiomic analysis capabilities are on the horizon, driving the need for 
increasingly powerful and scalable computational methods.  

Previous PSB workshops have emphasized the importance of translational bioinformatics 
and precision medicine, however none have focused on the computational and analytical 
challenges underpinning spatial transcriptomics and proteomics. In this workshop, we will explore 
and highlight recent advances in this burgeoning arena, with an emphasis on cancer. As one of the 
major beneficiaries of spatial profiling technologies, cancer research has advanced considerably 
in recent years through meticulous cell atlasing and spatial profiling efforts2-13. For example, using 
MIBI to analyze 36 proteins in 41 triple negative breast cancers, Keren et al.6 identified immune-
mixed and immune-compartmentalized tumors. In the latter, the immunoregulatory protein PD1 
was generally expressed on CD4 T cells, whereas in the former, PD1 was largely expressed on 
CD8 T cells. Moreover, compartmentalized tumors showed distinct immune structures at the tumor 
boundary that predicted longer survival time. These findings offer potential insights into why PD1 
expression is not a reliable biomarker for response to immune checkpoint inhibition.  

This workshop will cover computational aspects of multiplexed imaging, spatial 
transcriptomics, and platform integration (e.g., alignment of single-cell and spatial 
transcriptomics), with an emphasis on basic and translational cancer research. Our goal is to 
stimulate new ideas, foster critical debate, and form new collaborations in this exciting and 
challenging research area. 

2. Speaker Abstracts

Atlas of clinically distinct cell states and ecosystems across human solid tumors  
Andrew J. Gentles 
Tumors are complex ecosystems consisting of malignant, immune, and stromal elements whose 
dynamic interactions drive patient survival and response to therapy. A comprehensive 
understanding of the diversity of cellular states within the tumor microenvironment (TME), and 
their patterns of co-occurrence, could provide new diagnostic tools for improved disease 
management and novel targets for therapeutic intervention. To address this challenge, we 
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developed EcoTyper, a novel machine learning framework for large-scale identification of TME 
cell states and their co-association patterns from bulk, single-cell, and spatially resolved tumor 
expression data. Applied to over 6k tumor and adjacent normal samples from solid tumor types 
profiled by The Cancer Genome Atlas (TCGA), EcoTyper identified robust transcriptional states 
across 12 major cell types, including epithelial, fibroblast, endothelial, and 9 immune subsets. 
These states included both known and novel cellular phenotypes, nearly all of which could be 
validated in a compendium of scRNA-seq tumor atlases. For example, EcoTyper recapitulated the 
transcriptional profiles of M1 and M2 polarized macrophages, along with 7 other macrophage 
states. Most cell states were specific to neoplastic tissue, ubiquitous across tumor types, and 
significantly associated with overall survival, both in TCGA and in over 10k held-out tumor 
specimens. We found that specific cell states co-occur in distinct cellular communities with 
characteristic patterns of ligand-receptor interactions, genomic features, clinical outcomes, and 
spatial organization. One such ecosystem defined a normal-like state that was strongly enriched in 
non-malignant samples. Others delineated novel pro- and anti-tumor inflammatory environments 
involving specific fibroblast, endothelial, and immune cell transcriptional programs. In summary, 
large-scale deconvolution of cell type-specific transcriptomes across thousands of solid tumors 
revealed a comprehensive atlas of TME cell states and cellular ecosystems. Our results provide a 
high-resolution portrait of cellular heterogeneity in the TME across multiple solid tumor types, 
with implications for novel diagnostics and immunotherapeutic targets. 
 
The spatial landscape of progression and immunoediting in primary melanoma at single-cell 
resolution 
Ajit J. Nirmal  
Cutaneous melanoma is a highly immunogenic malignancy, surgically curable at early stages, but 
life-threatening when metastatic. The spatial organization of the tumor ecosystem during early-
stage melanoma is not well understood. Here we integrate high-plex imaging, 3D high-resolution 
microscopy, and spatially resolved micro-region transcriptomics to study immune evasion and 
immunoediting in primary melanoma. We collected highly multiplexed single-cell data from 70 
distinct histological regions from 13 specimens (patients) selected to have multiple progression-
associated histologies within a single resection. These histologies range from pre-malignant fields 
in which melanocytic atypia represents the first steps in cancer initiation to non-invasive (radial 
growth phase) and invasive (vertical growth phase) primary melanoma that eventually gives rise 
to disseminated disease. We find that recurrent cellular neighborhoods involving tumor, immune, 
and stromal cells change significantly along a progression axis involving precursor states, 
melanoma in situ, and primary invasive tumor. Hallmarks of immunosuppression were detectable 
as early as the melanoma precursor stage, and when tumors become locally invasive, a 
consolidated and spatially restricted environment with multiple overlapping immunosuppressive 
mechanisms forms along the tumor-stromal boundary. This environment is established by cytokine 
gradients that promote expression of MHC-II and IDO1 and by PDL1-expressing macrophages 
and dendritic cells engaging activated T cells. However, only a few millimeters away, T cells 
synapse with melanoma cells in fields of tumor regression. Thus, invasion and immunoediting can 
co-exist within a few millimeters of each other in a single specimen. Multiplexed single-cell 
imaging and micro-region mRNA profiling link morphological and molecular features of tumor 
evolution within and across primary cancer specimens, revealing highly localized programs of 
immune and tumor cell communication via paracrine cytokine signaling and direct cell-cell 
contact. 
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Systems approach to target tumor ecosystem responses for therapeutic benefit  
Laura M. Heiser 
Breast tumors arise and progress via processes that involve intrinsic deregulation of epithelial cells 
and that also alter the composition and function of associated stromal and immune cells. Together, 
these tumor-intrinsic and microenvironmental changes enable malignant epithelial cells in the 
tumor to acquire key cancer hallmarks, including proliferation, migration, immune evasion and 
further evolution. The resulting collection of cancer and stromal cells comprise a complex, 
adaptive tumor ecosystem. Dr Heiser will discuss how multiple tissue imaging was used to test the 
hypothesis that treatment strategies designed to simultaneously attack cancer cell state 
vulnerabilities and promote anti-tumor microenvironments may lead to deeper therapeutic 
responses in patients. To examine therapeutic responses of diverse aspects of the tumor ecosystem, 
they deployed a novel drug delivery microdevice that enables rapid, high-throughput assessment 
of the effects of multiple therapies on tumor cells and the surrounding microenvironment. When 
coupled with multiplex tissue imaging, this platform provides a comprehensive assessment of the 
state and spatial organization of the tumor ecosystem as it adapts to therapy. These studies 
demonstrated that many drugs designed to target malignant epithelial cells strongly impact stromal 
and immune cells, providing new insights into the importance of considering multiple aspects of 
the tumor ecosystem when designing effective therapeutic strategies. Together, this integrated 
experimental-computational approaches have provided insights into adaptive responses of diverse 
components of the tumor ecosystem that can be targeted to improve therapeutic responses. 
 
Mapping the spatiotemporal proteome architecture of human cells 
Emma Lundberg 
Biological systems are functionally defined by the nature, amount, and spatial location of the 
totality of their proteins. We have generated an image-based map of the subcellular distribution of 
the human proteome, showing that there is great complexity to the subcellular organization of the 
cell. As much as half of all proteins localize to multiple compartments, giving rise to potential 
pleiotropic effects, and around 20% of the human proteome shows spatiotemporal variability. 
Their temporal mapping results shows that cell cycle progression explains less than half of all 
temporal protein variability, and that most cycling proteins are regulated post-translationally, 
rather than by transcriptomic cycling. This work is critically dependent on computational image 
analysis, and we will discuss machine learning approaches for classification of spatial subcellular 
patterns and how such embeddings can be used to build multi-scale models of cell architecture. 
We will also demonstrate the importance of spatial proteomics data for improved single cell 
biology and present how the freely available Human Protein Atlas database 
(www.proteinatlas.org) can be used as a resource for life science. 
 
Robust alignment of single cell and spatial transcriptomes with CytoSPACE 
Aaron M. Newman 
Spatial transcriptomics is a powerful tool for delineating spatial gene expression in primary tissue 
specimens. However, commonly used platforms such as 10x Visium currently rely on bulk gene 
expression measurements, whereas single-cell spatial expression platforms such as Vizgen 
MERSCOPE have low gene recovery. To overcome these challenges, we developed CytoSPACE, 
a robust and efficient computational method for optimally aligning single-cell and spatial 
transcriptomes into a reconstructed tissue specimen at single-cell resolution. Across multiple 
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benchmarking experiments, CytoSPACE outperforms previous methods with respect to noise 
tolerance and accuracy. Using diverse examples spanning mouse brain regions, mouse kidney, and 
human tumors, we illustrate the ability and versatility of CytoSPACE to enable exciting new 
discoveries that are not obtainable from competing methods or from scRNA-seq or spatial 
platforms alone. 
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