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1 �Introduction
‘Mycoviruses’ is the term used for viruses infecting fungi and fungus-like 
organisms. Mycoviruses have been reported in Ascomycota, Basidiomycota, 
Chytridiomycota, Deuteromycota and Zygomycota (Ghabrial et al., 2015). Most 
reported mycoviruses consist of linear double-stranded RNA (dsRNA; ~70%), 
while a small number are composed of negative single-stranded RNA (−
ssRNA) or positive single-stranded RNA (+ssRNA; ~30%) (Ghabrial et al, 2015; 
King et al, 2011). More rarely, mycoviruses with circular single-stranded DNA 
(ssDNA) have been found (Jiang et al., 2013; Li et al., 2020; Yu et al., 2010). 
Like animal and plant viruses, mycoviruses require the living cells of their host 
to replicate. The main differences between animal and plant viruses on the one 
hand, and mycoviruses on the other, lie in the fact that most mycoviruses lack an 
extracellular route for infection and are transmitted between cells through cell 
division, sporulation and occasionally cell fusion, as well as lacking movement 
proteins (Son et al., 2015).
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Many of these mycoviruses are considered to be cryptic, and supposedly 
have little to no effect on their host. However, some notable exceptions have 
been described, in which the viruses cause deleterious effects on their host, 
and where the host is a plant pathogen, may cause hypovirulence, reducing the 
infection, growth and reproduction of the fungus. Virocontrol, the biocontrol 
of pathogens via hypovirulence-causing mycoviruses, is a small field, but one 
which is now receiving more attention. This chapter discusses the characteristics 
of mycoviruses and the conditions that need to be met to make a successful 
virocontrol agent. The chapter describes one of the success stories so far, that 
of the virocontrol of Cryphonectria parasitica, the chestnut blight pathogen. 
The chapter ends by reviewing future trends and information on sources of 
more information on mycoviruses and virocontrol.

2 �Mycovirus types and origins
In over 50 years of mycovirus research, an enormous diversity of mycoviruses 
has been found. They vary in their make-up from DNA to RNA, single-stranded 
or double-stranded, consisting of a single fragment or multiple fragments, linear 
or circular, with folds or without folds at their ends, with or without a protein coat, 
consisting of one or multiple protein components, multiple fragments packed 
singly or together, and localised in the fungal cytoplasm or the mitochondrion. 
Mycoviruses are classified based on their genetic organisation, their form and 
resemblance to other (myco)viruses. Mycovirus names are generally derived from 
their fungal host names, with the first letters deriving from the fungal genus and 
species epithet, some letters relating to virus organisation followed by a number.

The type of nucleic acids and the number of fragments forming the 
mycovirus genome determine the virus families they belong to. The majority of 
mycoviruses consist of dsRNA and are grouped in the families of the Chryso-, 
Megabirna-, Quadri-, Partiti-, Reo-, and Totiviridae (Ghabrial et al., 2015; King 
et al, 2011, 2012; Wang et al., 2016). Some dsRNA mycovirus species have also 
been found to belong to new, as yet unnamed virus families (e.g. Liu et al., 
2019). Linear positive-sense +ssRNA mycoviruses can belong to the Alphaflexi-, 
Ambigui-, Barna-, Beny-, Botourmia- Endorna-, Fusari-, Gammaflexi-, Hypo-
, Narna-, Tombus-, Tymo-, Virga- and Yadokariviridae families. Some of the 
described reverse transcribed +ssRNA mycoviruses fall in the Meta- and 
Pseudoviridae families. The rarer negative-sense −ssRNA viruses belong to 
the Mycomononega- and Ophioviridae (Ghabrial et al., 2015; Gilbert et al., 
2019; Marzano et al., 2016) families. Finally, the ssDNA mycoviruses fall in 
the Genomoviridae or unclassified groups (Ghabrial et al., Li et al., 2020). For 
characteristics of the different virus families, see Table 1. Members of quite a 
number of diverse mycovirus families have been found in the past 50+ years, 
but undoubtedly many more are to be discovered.
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Mycoviruses are usually located in the cytoplasm of the fungal host, but 
may be associated with the mitochondria (e.g. Heaton and Leslie, 2004; Hong 
et al., 1998, 1999; Polashock and Hillman, 1994). Many mycoviruses have a 
protein coat, but naked mycoviruses also occur, without a protein coat (e.g. 
Qiu et al., 2010). Isometric forms identified by electron microscopy are the 
predominant coat morphology, but rigid or flexuous rods, club-shaped 
particles, enveloped bacilliform particles and herpes-like particles have also 
been described (e.g. Ghabrial et al., 2015; Kazama and Schornstein, 1973; 
Varga et al., 2003; van Diepeningen et al., 2008). Wickner (1996) described 
a virus capsid protein that both provides protection in the form of subcellular 
compartmentalisation for transcription and replication, and has a catalytic 
function in decapping host messenger RNA (mRNA) in favour of viral mRNAs. 
The isometric particles are generally based on a 120-subunit T = 1 capsid 
with a dimer as the asymmetric unit, while insertions at the capsid’s outer 
surface are likely linked to its enzymatic activities (Luque et al., 2018). Some 
ssRNA viruses code for RNA-capping methyl transferases as a mechanism to 
protect their genome (e.g. Howitt et al., 2001; Roossinck et al., 2011). Others 
use a cap-snatching mechanism and borrow from the 5’-part of mRNA of 
their host as protection and as a primer to synthesise viral transcripts (e.g 
Fujimura and Esteban, 2011). Some mycoviruses have been described 
where the mycovirus is associated with or enveloped in colloidal cellular 
components (e.g. KanhayuwaKanhayuwa et al., 2015; Kozlakidis et al., 2009). 
Other mycoviruses protect their RNA by folding their 5′- and 3′-UTR regions 
in stem-loop structures for protection (e.g. Torres-Trenas and Pérez-Artés,  
2020).

Different hypotheses exist about the origin of mycoviruses. The two main 
hypotheses are: (1) the ancient co-evolution hypothesis and (2) the plant virus 
hypothesis (Ghabrial, 1998). In the case of ancient co-evolution, Koonin et al. 
(1991) suggested the acquisition of an ancestral ssRNA virus from a plant 
based on sequence similarities, and during co-evolution of fungus and virus, 
a subsequent loss of protein coat and a shift towards the dominant dsRNA 
replication type as observed in a Cryphonectria parasitica hypovirus. Support 
for the co-evolution hypothesis can also be found in the large number of 
chromosomal genes needed for replication of the so-called killer viruses in 
Saccharomyces cerevisiae (Wickner, 1996), the use of host-coded enzymes for 
capsid processing (Huang et al., 1997) and use of the mitochondrial genetic 
translation code in mycoviruses located in the mitochondria (Park et al., 2006). 
Several phylogeographic studies (e.g. Arthur et al., 2007; Voth et al., 2006) also 
support co-evolution.

The trade-off theory explains why a reduced virulence of a pathogen is 
needed when the transmission of it is limited, since it would go extinct when 
a host is too affected to transmit the pathogen. This theory may explain why 
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so many presumably co-evolved mycoviruses are cryptic, with no apparent 
effects in their host and limited or no transmission. Göker and colleagues 
(2011) studied the codivergence of mycoviruses with their hosts. Their study 
was significantly influenced by the numbers of viruses sampled per family, but 
for well-sampled mycovirus families, gave significant support to co-evolution. 
However, not all mycoviruses are consistent with the first hypothesis, as they 
have deleterious effects on their host or do not follow the evolutionary pattern 
of their host (e.g. Carbone et al., 2004; Liu et al., 2003).

The plant virus hypothesis is supported by observations that some 
mycoviruses – both dsRNA and ssRNA mycoviruses – are more closely related 
to certain plant viruses than to other mycoviruses (e.g. Adams et al., 2004; 
Chu et al., 2002; Fauquet et al., 2005; Howitt et al., 2001, 2006; Linder-Basso 
et al., 2005; Martelli et al., 2007; Xie et al., 2006) or have a similar genome 
organisation and gene expression strategy as certain plant viruses (Kwon et al., 
2007). Some fungi are known to be vectors of plant viruses, and carry those 
virions on the outside of the fungal structures, where a rare event may have led 
to internalisation (Varga et al., 2003). Besides having an evolutionary link, also 
the cological link between plant viruses and plant pathogenic fungi is clear 
(Roossinck, 2019).

Recent work has shown that transfer, replication and expression of plant 
viruses from plant to different (plant pathogenic) fungi and lichens is possible 
(Andika et al., 2017; Mascia and Gallitelli, 2016; Mascia et al., 2019; Petrzik 
et al., 2014). In reverse, transfer of fungus to plant has been observed where 
the mycoviruses of an endophytic fungus successfully replicated in plant cells 
(Nerva et al., 2017), suggesting that transfer of viruses between plant and 
fungus may occur in both directions.

A third alternative hypothesis would be the transfer of animal viruses to 
fungi. There is as yet less evidence for this. However, the Reoviridae contain 
mostly animal viruses and a few plant and fungal viruses, with only low to 
moderate levels of similarity between them (Hillman et al., 2004; Suzuki et al., 
2004; Tanaka et al., 2012; Wei et al., 2003). More recently discovered fungal 
members of Yadokariviridae and the Mycomononegaviridae have animal 
pathogenic relatives. With the diversity of mycoviruses observed in the fungal 
kingdom, it seems likely that multiple hypotheses (ancient co-evolution, 
plant and animal transfer hypotheses) are needed to explain the diversity  
observed.

3 �Mycovirus detection and incidence
The first hints of the existence of mycoviruses came from fungi showing 
abnormalities for which no visible pathogens could be detected. The work 
of Hollings (1962) can be seen as the first evidence of mycoviruses being the 
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cause of die-back diseases such as La France disease and virus X disease in 
the white button mushroom Agaricus bisporus. The phenotypic evidence of 
mycoviruses can also present itself as slower growth, irregular colony rims, 
reduced spore production and/or different colony colour (e.g. Sivanesan and 
Holliday, 1981; van Diepeningen et al., 2006).

Hollings (1962) is also the first to show that infection with multiple 
mycoviruses in one host can occur. In Holling’s electron microscopic 
photographs, both isometric particles and bacilliform rods were visible, while 
infectivity of the virus was demonstrated by injection of the tissue of the 
Agaricus sporocarp with a hypodermic needle. Electron microscopy used for 
the visualisation of A. bisporus mycoviruses is still the main technique, often 
with preceding (density gradient) centrifugation, to visualise mycoviruses (e.g. 
Sharma et al., 2011).

Many (cryptic) mycoviruses have been detected based on the presence 
of their (dsRNA) genomes. After viral nucleic acid isolation, determination of 
the (double-stranded) RNA nature of mycovirus genomes was first resolved 
chemically (Banks et al., 1968), and later enzymatically (e.g. Buck et al., 1973; 
Varga et al., 1994). The numbers and sizes of fragments were determined 
via agarose or acrylamide gel electrophoresis (e.g. Buck and Ratti, 1975). In 
many of the first (dsRNA) mycovirus detection protocols, a phenol-step to 
deproteinise viral fragments (Banks et al., 1968) in the nucleic acid extraction 
protocols proved essential for isolation. This compound was later replaced 
by sodium dodecyl sulfate and potassium acetate (SDS/KOAc) treatments, 
followed by CF-11 chromatography to separate dsRNA from other nucleic 
acids (e.g. DePaulo and Powell, 1995).

Direct cloning, amplification and sequencing of dsRNA genomes have 
advanced gradually (for an overview, see Potgieter et al., 2009), providing more 
insight into the diversity and functioning of mycoviruses. Many viruses are now 
detected in silico after analysis of (meta)transcriptome data (e.g. Gilbert et al., 
2019; Marzano et al., 2016; Myers et al., 2020; Zoll et al., 2018).

Estimates of the numbers of mycovirus-infected strains in a population 
suggest that 30–80% of fungal species may be infected (Ghabrial and Suzuki, 
2009), while infection rates per species vary between 0% and 100% (Table 2). 
Mycoviruses occur commonly both in Ascomycetes and Basidiomycetes as 
well as in earlier-diverging lineages (Myer et al., 2020). Multiple infections with 
two or more, often unrelated, mycoviruses in a host appear quite common, 
irrespective of the detection technique (e.g. Gilbert et al., 2019; Hao et al., 
2018; Herrero and Zabalgogeazcoa, 2011; Hollings, 1962; Osaki et al., 2016; 
Ran et al., 2016). Defective dsRNA and/or satellite dsRNA can also be found 
(Ghabrial and Suzuki, 2008). Osaki and co-workers (2016) even reported a 
single strain of Fusarium poae that appeared to be infected with 16 different 
mycoviruses of the dsRNA and –ssRNA types.
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Table 2 Examples of estimated incidences of virus infections and debilitating/hypovirulence-
causing infections in different fungal and oomycete genera and species

Fungal genus/
species

% Mycovirus 
infected strains 
in population

% Debilitating/
hypovirulence 
phenotype1 in 
population References

Alternaria alternata 
(Japansese pear)

44 4 Hayashi et al., 1988; Fuke et al., 2011

Aspergillus nidulans 0 0 Coenen et al., 1997
Aspergillus section 
flavus

8–11 0 Elias and Cotty, 1996; van 
Diepeningen et al., 2008

Aspergillus section 
nigri

10 0.1 Ratti and Buck, 1972; van 
Diepeningen et al., 2006, 2008

Botrytis cinerea 72 ≤1.5 Howitt et al., 1995; Hao et al., 2018; 
Wu et al., 2010

Chalara elegans 84 18.6 Bottacin et al., 1994
Cryphonectria 
parasitica

2–36 2–36 Adamčíková et al., 2012; Montenegro 
et al., 2008; Murolo et al., 2018; Park 
et al., 2008; Peever et al., 1998

Fusarium 
graminearum

3.7 1.5 Aminian et al, 2011; Chu et al., 2002, 
2004; Darissa et al., 2011

Fusarium oxysporum 11 5 Kilic and Griffin, 1998
Fusarium oxysporum 
f.sp dianthi

≥15 ≥0.4–2 Torres-Trenas et al., 2019; Torres-
Trenas and Pérez-Artés, 2020

Fusarium poae 100 0 Fekete et al., 1995
Fusarium 
proliferatum

4 0 Heaton and Leslie, 2004

Fusarium solani 2.9 0 Nogawa et al., 1993
Monilia fructicola 63 0 Tsai et al., 2004; Tran et al., 2019
Magnaporte oryzae 19–71 ≤6 Hunst et al., 1986; Moriyama et al., 

2018; Okada et al., 2015
Phytophthora 
infestans

36 0 Tooley et al., 1989

Pythium irregulare 85 0 Gillings et al., 1993
Rosellinia necatrex 14–20 Arjona-Lopez et al., 2018; Arakawa 

et al., 2002
Sclerotinia 
sclerotiorum

20 ≤20 Boland, 1992

Ustilago maydis 34–100 0 Voth et al., 2006

1 Debilitation is defined as when the comparison of isogenic virus-containing and virus-free strains 
show clear phenotypic differences in their growth. Percentually small effects due to use of host 
resources are not taken into account. Hypovirulence – when a plant pathogenic strain shows reduced 
pathogenicity in bioassay.

BDS_Ch20_Plant_V1_CED_docbook_new_indd.indd   8 15-07-2021   20:22:50
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4 �Mycovirus effects
The majority of mycoviruses are cryptic or latent, with no apparent effect on their 
host. In theory, every mycovirus that draws on its host’s resources should have 
at least a small negative effect on its host. The impact of this theft of resources 
may depend on the availability of resources from the fungal environment. In 
lab tests under nutrient-restricted conditions, the growth effects on a host 
by a mycovirus were more pronounced than under nutrient-rich conditions 
(van Diepeningen et al., 2006, 2008). This section summarises the different 
phenotypic effects caused by mycoviruses, providing an overview of what is 
known about the cellular mechanistic effects of the mycoviruses causing such 
phenotypic effects.

4.1 �Debilitation and hypovirulence

A small number of mycoviruses (0–20%, depending on the host species) 
(Table 2) show clear debilitating effects on their host, with reduced growth rate, 
sporulation and/or virulence. In contrast, the reduction of pathogen virulence 
is called hypovirulence. Hypovirulence has been studied in some of the 
major plant pathogens like Alternaria alternata, Cryphonectria parasitica and 
Magnaporthe oryzae, and is linked to a reduced ability to infect, colonise, kill, 
and/or reproduce on susceptible host tissues (Table 3). In studies with green 
fluorescent marker strains from Fusarium oxysporum f.sp. dianthi, Torres-Trenas 
and co-workers (2019) showed that the initial colonisation of the carnation 
root was similar for virus-infected and virus-free strains, but that colonisation 
of internal tissues of the carnation root by mycovirus-infected strains was 
slower and less dense. They also showed that the infection more rarely became 
intracellular through the virus-infected strain, whereas virus-free strains readily 
infected the cells in the medulla.

Hypovirulence has been observed in all major groups of mycoviruses. This 
includes dsRNA mycoviruses like chrysoviruses (e.g. Moriyama et al., 2018), 
+ssRNA viruses like the hypoviruses (e.g. Koonin et al., 1991), a −ssRNA member 
of Mycomononegaviridae (Liu et al., 2014) and even in the ssDNA mycovirus 
of Genomoviridae (Yu et al., 2010). The strength of effects of a mycovirus 
on its host not only depends on the virus type but also on the virus titre in 
the mycelium (Aoki et al., 2009; Darissa et al., 2012; van Diepeningen et al.,  
2006).

Hypovirulence may be caused by the fitness effects of nutrient depletion 
due to mycovirus infection. Different virulence-related mechanisms of the 
fungus may be influenced directly or indirectly by the viral infection. Melanins, 
for example, are linked to microbial virulence and protection against oxidising 
agents. Moriyama and co-workers (2018) observed that chrysovirus infection in 
M. oryzae tends to lead to lighter-coloured colonies due to reduced melanin 
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production and due to hypovirulence. Mycotoxins in many fungi are also 
linked to increased host pathogenicity. Virus infection decreases mycotoxin 
production in many fungi, for instance in different Aspergillus species (Elias 
and Cotty, 1996; Kotta-Loizou and Couuts, 2017); Nerva et al., 2019) and in 
Fusarium graminearum (Aminian et al., 2011; Chu et al., 2002; Li et al., 2016).

4.2 �Hypervirulence

Hypervirulence is the opposite of hypovirulence, and has also been observed 
in mycovirus-infected strains, where infected strains show an increased growth 
rate, sporulation and/or virulence on their host. In Chalara elegans (a.k.a 
Thielaviopsis basicola), two different dsRNA mycoviruses have been observed, 
one of which caused hypovirulence while the other caused hypervirulence 
(Bottacin et al., 1994). In Nectria radicicola, a viral dsRNA upregulates host 
virulence (Ahn and Lee, 2001). In A. alternata, pathogenic to Japanese pear, 
both hypovirulent and hypervirulent mycoviruses have been observed. The 
hypervirulent virus AaCV1 caused impaired growth of its host fungus, but 
enhanced pathogenicity against Japanese pear plants, related to an increase 
in AK-toxin (Okada et al., 2018). In the US-8 lineage of Phytophthora infestans, 
most strains harbour the PiRV-2 virus that enhances its host’s ecological fitness 
through down-regulation of ammonium and amino acid uptake, thus achieving 
stimulated sporulation (Cai et al., 2019). However, virus infection may also 
stimulate fungal growth without causing increased virulence (Tran et al., 2019).

In the human pathogen Aspergillus fumigatus, the AfuPmV-1 virus 
increases host virulence. An analysis of the nucleotide composition and codon 
usage showed that, in comparison to non-hypervirulent viruses, the AfuPmV-1 
has a higher GC content and a preferred codon usage ending on G or C, while 
codons ending with A and U were not observed (Je et al., 2019).

The trade-off hypothesis is one way to study the symbiotic relationship 
between viruses and their hosts. In the tripartite system of mycovirus–fungal 
pathogen–plant host, the trade-off hypothesis can explain situations where 
either microbial (hypovirulence) or macrobial host (hypervirulence) has the 
larger cost, and also situations where everyone wins (Márquez and Roossinck, 
2012).

4.3 �Killer mycoviruses and other beneficial traits

In several yeasts and filamentous fungi, killer-mycoviruses have been observed 
that kill off any uninfected strains in the proximity of the fungus. The satellite 
dsRNAs of these killer-mycoviruses code both for secreted protein toxins and 
immunity to the toxin. Such ‘killer-virus’-infected strains may have a direct 
selective advantage above killed or non-infected competitors, depending on 
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environmental conditions (e.g. Czárán and Hoekstra, 2003; Wickner, 1996; 
Wloch-Salamon et al., 2008). This is seen as an extreme form of beneficial 
interaction. In Saccharomyces cerevisiae, several different satellite dsRNAs, 
called M1, M2, M28 or Mlus each encode a protein toxin, killing by a different 
mechanism (Schmitt and Breinig, 2006). The plant pathogenic yeast Ustilago 
maydis possesses multiple mycovirus-encoded killer systems based on 
different cellular mechanisms (e.g. Bruenn, 1986; Koltin, 1986; Park et al., 1996). 
Expression of the killer protein by transgenic maize renders it virtually immune to 
U. maydis (Allen et al., 2013). In the plant pathogenic fungus Helminthosporium 
victoriae (a.k.a Cochliobolus victoriae), a protein with antifungal properties has 
been isolated from a virus-infected strain (de Sa et al., 2010).

A different type of beneficial trait conferred by a mycovirus has been 
observed in Curvularia protuberata, an endophyte of panic grass, Dichanthelium 
lanuginosum. This fungus, its host and a mycovirus of C. protuberata have an 
interesting three-way symbiosis, where the dsRNA mycovirus (called Curvularia 
thermal tolerance virus (CThTV)) confers thermal tolerance to both the 
endophyte and host plant (Márquez et al., 2007).

In Trichoderma harzianum, the removal of Trichoderma harzianum 
mycovirus 1 (ThMV1) resulted in improved biocontrol of Fusarium oxysporum 
f.sp. cucumerinum. On the other hand, the same virus improved the growth of 
cucumber (Liu et al., 2019). Recent work in Sclerotinia sclerotiorum has identified 
a 2-kb mycovirus that converts this pathogen into beneficial endophytes for the 
Brassica species and increases yield (Zhang et al., 2020).

4.4 �Intracellular mechanisms

Mycoviruses affect their hosts in different ways and via diverse mechanisms. 
With so many different mycoviruses, different cellular compartments where 
mycoviruses are located and different mechanisms within the fungal cell 
at different physiological stages, the intracellular processes affected by 
mycoviruses may vary over time.

RNA silencing can function as a virus defence mechanism in a diverse 
range of eukaryotes, and many viruses are capable of suppressing the silencing 
machinery targeting them. Hammond and co-workers (2008) have shown that 
Aspergillus viruses are both targets and suppressors of RNA silencing, and that 
Aspergillus  virus 1816 in particular shows strong deleterious effects on host 
growth, with sporulation suppressing RNA silencing through a mechanism 
that alters the level of small interfering RNA.  In Fusarium graminearum, viral 
fragments interact with different components of the RNA interference (RNAi) 
pathway (Yu et al., 2018). In Rosellinia necatrix, the mycoreovirus suppresses 
RNA silencing (Yaegashi et al., 2013). In Cryphonectria hypovirus1 (CHV1), p29, 
a papain-like protease suppresses hairpin RNA-induced, virus-induced RNA 
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silencing, by inhibiting the expression of the RNAi genes (Choi et al., 1991; 
Segers et al., 2006). In addition to their roles in silencing viral replication by 
degrading viral RNAs, RNAi components also promote viral RNA recombination 
in C. parasitica (Sun et al., 2009a; Zhang et al., 2008).

C. parasitica has at least four RNA-dependent RNA polymerases 
(RdRPs) that may be involved in transcriptional and posttranscriptional 
gene silencing and antiviral defence (Zhang et al., 2014). The Aspergillus 
fumigatus polymycovirus-1 (AfuPmV-1) seems to have adapted its own RdRPs 
codon usage to that of its fungal host, and increased its virulence (Je et al.,  
2019).

Genome-wide studies have shown the transcriptional regulation by 
viruses to be very complex, for instance, in Aspergilli (Ejmal et al., 2018), F. 
graminearum (Cho et al., 2012), R. necatrix (Shimizu et al., 2018) and S. 
sclerotiorum (Li et al., 2008). The study of Shimizu et al. (2018) showed that 
545 genes in the host were upregulated due to virus infection, while 615 
were downregulated. With such profound effects on the expression of genes, 
mycoviruses also affect the secretion of specific gene products (Kazmierczak 
et al., 2012). Moriyama et al. (2018) suggested that mycovirus infection, with 
all its effects on the fungal cell and metabolism, can be a driving force behind 
the development of physiological diversity of strains and the evolution of 
pathogenic races.

Transcriptional reprogramming or usage of specific host genes has also 
been observed in several mycovirus–host systems. This started with studies 
on single genes. In F. graminearum, the hex1 gene was found necessary for 
fungal asexual reproduction and pathogenesis as well as for efficient viral 
RNA accumulation (Son et al., 2013). In C. parasitica, the transcription factor 
gene pro1 proved responsive to hypovirus, necessary for female fertility, 
asexual spore development and the stable maintenance of virus infection (Sun 
et al., 2009b). In C. parasitica, the vir2 gene is also downregulated by the virus, 
resulting in reduced asexual sporulation and pycinidium production, as well as 
impaired sexual crossing ability (Zhang et al., 1993).

5 �Transmission of mycoviruses
Transfer of (hypovirulence-causing) mycoviruses is important for effective 
biocontrol. One of the main differences between mycoviruses and viruses 
from plants and animals lies in the fact that mycoviruses in general have no 
extracellular phase. Mycoviruses depend on vertical transmission through 
asexual structures or sexual spores, and on horizontal transmission after hyphal 
contact for new infection. However, with so many different types of viruses and 
virus effects on their host, mycoviruses can differ in their modes and rates of 
transfer.
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5.1 �Asexual transmission

The cellular location of mycoviruses can vary. Some are found in the 
mitochondria, like the mitoviruses in C. parasitica, F. proliferatum and 
Ophiostoma novo-ulmi (e.g. Heaton and Leslie, 2004; Polashock and 
Hillman, 1994; Hong et al., 1998, 1999). Others are found in association with 
the trans-Golgi network (Jacob-Wilk et al., 2006), while for many, the exact 
intracellular location is not known. They may spread within the growing 
mycelium or between dividing yeast cells. However, mycovirus titres need 
not be homogenous throughout the mycelium, as variations in mycovirus-
titres have been observed especially in mycovirus infections with negative 
effects (Aoki et al., 2009; Darissa et al., 2012; van Diepeningen et al., 2006). 
As a consequence of this inhomogeneous spread, (sequential) hyphal tip 
isolations have been a way to obtain cured or partially-cured isolates (e.g. Tran 
et al., 2019; van Diepeningen et al., 2006). However, the mycovirus spread 
throughout the growing fungal mycelium in general seems sufficient to infect 
the large majority of cells within the mycelium.

Whether the viral transport through the mycelium takes place by an active 
or a passive process is unknown. Plasma streaming in general may be a transport 
mechanism (Sasaki et al., 2006), but transport via the microtubules may also be 
possible. In the case of mitochondria-associated mycoviruses (‘mitoviruses’), 
transport with the organelle may be likely (Wu et al., 2010).

Many fungi are capable of producing asexual reproductive structures 
throughout their mycelium. The asexual reproduction varies from the 
production of conidiospores on special conidiophores or in asexual fruiting 
bodies like pycnidia, to a transformation of mycelial cells to survival structures 
like chlamydospores and sclerotia. The transfer rates to such asexual structures 
seem generally high (e.g. Buck, 1998; van Diepeningen et al., 1997, 1998), 
but clearly can vary by mycovirus within a species and even within a multiple-
infected strain (Herrero and Zabalgogeazcoa, 2011).

5.2 �Sexual transmission

The vertical transmission of mycoviruses through sexual spores seems usually 
much less effective than via asexual spores in the same species. This is the 
case, for example, in several Aspergillus species, where the majority of the 
sexual spores prove virus-free, while asexual spores of the same species prove 
infected (Coenen et al., 1997; Varga et al., 2001). Exclusion of dsRNA segments 
from sexual spores was further observed in, for example, the ascomycetes 
Gaeumannomyces graminis strains (McFadden et al., 1983), Ophiostoma ulmi 
(Brasier, 1983), Epichloë festucae (Romo Vaquero et al., 2007) and R. necatrix 
and in the basidiomycete Helicobasidium mompa (Ikeda et al., 2004). The 
exclusion of mycovirus from the sexual spore is in line with the selection arena 
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hypothesis – to exclude deleterious elements and mutations from the germ line 
(Bruggeman et al., 2004).

However, there are also species where the transmission to the sexual 
offspring is very efficient. This is the case, for example, in the basidiomycetes 
Ustilago maydis (Koltin and Day, 1976) and Heterobasidion annosum (Ihrmark 
et al., 2004) and ascomycetes like S. cerevisiae (Brewer and Fangman, 1980) 
and F. graminearum (Chu et al., 2004).

5.3 �Heterokaryon incompatibility and horizontal transmission

Horizontal transmission is the transfer of one mycelium to another, as opposed 
to the vertical transmission to sexual and asexual offspring. This horizontal 
transmission via hyphal fusion or anastomosis seems under the control of 
the fungal self/non-self-recognition system regulated by vegetative (vic) or 
heterokaryon (het) incompatibility genes. This system is thought to have 
evolved to limit the spread of harmful organisms like mycoviruses (Caten, 
1972). In many model organisms, this vegetative/heterokaryon incompatibility 
system is under the regulation of multiple allelic or non-allelic vic or het genes, 
and most species seem to involve different genes (Glass and Dementhon, 
2006; Saupe, 2000).

In 1970, Lhoas described how mycoviruses could be transferred via 
heterokaryosis in Aspergillus niger (Lhoas, 1970). Since then, transmission 
between isolates carrying the same vic or het genes has been reported in 
many species, for example, in C. parasitica (Liu and Milgroom, 1996) and A. 
nidulans (Coenen et al., 1997). In contrast, incompatibility blocked virus transfer 
in Aspergillus and Cryphonectria (e.g. Coenen et al., 1997; Milgroom and 
Cortesi, 2004; van Diepeningen et al., 1997). However, transfer may depend 
on the strength of the incompatibility reaction in the fungal species as well as 
on the virus (Biella et al., 2002). Transmission of mycoviruses has been found to 
be effective between intersterility groups of H. annosum (Ihrmark et al., 2002), 
and by anastomosis between incompatible individuals of Beauveria bassiana 
(Dalzoto et al., 2006). Carbone and co-workers (2004) found that transmission 
may occur in one direction, while it may not be as efficient in the reciprocal 
pairing. The systemic disruption of multiple vic/het loci can be a way to engineer 
super mycovirus-donor strains, as has been shown in C. parasitica (Zhang and 
Nuss, 2008).

So far, one virus, the Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4), 
has been found to suppress the host’s self/non-self-recognition system and 
thus enable its own intermycelial transfer (Wu et al., 2017). Environmental 
conditions may also influence intermycelial transfer. Zinc compounds have, for 
example, been found to attenuate heterokaryon incompatibility reactions in R. 
necatrix (Ikeda et al., 2013).



Published by Burleigh Dodds Science Publishing Limited, 2021.

Biocontrol via mycoviruses: a neglected option for bioprotection?﻿ 17

5.4 �Protoplast fusion and other alternative infection routes

The rigid cell wall of fungi has been thought to serve as a structural barrier against 
the uptake of virus particles from extracellular sources. This is because protoplasts, 
competent cells or cells during the sexual reproduction stage of  the yeast S. 
cerevisiae could be infected by purified virus particles (el-Sherbeini and Bostian, 
1987). Removal of the fungal cell wall and subsequent protoplast fusion has been 
a way to transfer mycoviruses within a species, though vegetative/heterokaryon-
incompatible combinations of strains could still result in limited or no virus transfer 
when cytoplasms are mixed (e.g. van Diepeningen et al., 1998; Wu et al., 2012). 
The transmission of mycoviruses to protoplast particles has been a way to expand 
the host range of (hypovirulent) mycoviruses to other (plant pathogenic) fungi 
(e.g. Kanematsu et al., 2010; Lee et al., 2011; van Diepeningen et al., 1998).

An alternative way to transfer hypovirulence within a population of C. 
parasitica has been the construction of infectious cDNA clones of hypoviruses 
and the subsequent transgenic lines (Chen and Nuss, 1999; Choi and Nuss, 
1992). Such transgenic hypovirulent C. parasitica strains differ from natural 
hypovirulent strains in having the ability to transmit hypoviruses to ascospore 
progeny. However, vegetative/heterokaryon incompatibility still limits the 
colonisation and conversion of treated cankers (Root et al., 2005).

5.5 �Extracellular transmission

The majority of mycoviruses have a strictly intracellular lifestyle, but more 
mycoviruses are being discovered that have an extracellular stage. The first 
mycovirus found with an extracellular phase was a mycoreovirus (Hillman et al., 
2004; Fauquet et al., 2005). A mycovirus consisting of 4 double-stranded RNA 
fragments from the human pathogenic fungus A. fumigatus, the Aspergillus 
fumigatus tetramycovirus-1, proved infectious both as purified particles as well 
as in naked dsRNA form (Kanhayuwa et al., 2015).

The first DNA mycovirus discovered, Sclerotinia sclerotiorum hypovirulence-
associated DNA virus 1 (SsHADV-1), was also found to have an extracellular 
phase (Yu et al., 2010, 2013). Isolated virus particles of SsHADV-1 proved to be 
able to transfer hypovirulence under field conditions, reduce disease severity 
and enhance rapeseed yield. SsHADV-1 could be transmitted to sister species 
Sclerotinia minor and S. nivalis, but not to other species (Yu et al., 2013).

There is relatively little evidence for the use of vectors for the transmission 
of mycoviruses. SsHADV-1 proved able to use a mycophagous insect – Lycoriella 
ingenua – as a vector for transmission. SsHADV-1-infected fungus could 
suppress the production of repellent volatile substances to attract adults to 
lay eggs on its colony. Larvae fed on virus-infected fungus became viruliferous 
adults that could transmit SsHADV-1 transovarially, while stimulating the female 
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adults to produce more eggs (Liu et al., 2016). Cryphonectria parasitica with 
mycovirus has been found in dejecta of the mite Thyreophagus corticalis fed 
with the fungus in vitro. The faecal pellets in turn could transmit the infection 
further (Bouneb et al., 2016).

In Helicobasidium mompa, mycophagous nematodes found in the 
basidiocarps of the fungus may play a role in virus–fungus interactions (Ikeda 
et al., 2005). In C. parasitica, the mycophagous nematode Aphelenchoides 
hylurgi and relatives can be vectors for hypovirulent strains (Griffin et al., 2009, 
2012)

5.6 �Phylogenetic studies do suggest interspecies transfer

Indirect evidence for interspecies transfer can be derived from (phylo)genetic 
studies. Such studies suggest that closely-related mycoviruses may occur 
in different host species, and that, despite interspecies barriers, interspecies 
transfer may occasionally be possible. Interkingdom transfer of viruses between 
plant and fungus and vice versa has been proven possible (Andika et al., 2017; 
Mascia and Gallitelli, 2016; Mascia et al., 2019; Nerva et al., 2017; Petrzik et al., 
2014).

van Diepeningen et al. (2008) found that within species and between closely 
related species, mycovirus transfer via protoplast fusions seems to occur less than 
the transfer between more distantly related species when cell wall restrictions 
are removed. Mycoviruses transferred via protoplast fusion or transfection are 
often viable in related hosts (e.g. van Diepeningen et al., 2008; Yu et al., 2013), 
but transfer to other genera is also possible (e.g. van Diepeningen et al., 2000). 
Transferred mycoviruses even may keep their debilitating and hypovirulent 
effects in their new hosts (e.g. van Diepeningen et al., 1998).

In H. mompa, related mycovirus fragments were found in different 
vegetative/heterokaryon compatibility groups, suggestive of horizontal 
transfer (Ikeda et al., 2005). The same variants of Cryphonectria HypoVirus-1 
(CHV1) have been detected in different species of the genus Cryphonectria 
(Liu et al., 2003). At least one virus, the Scler​otini​a scl​eroti​orum ​mycor​eovir us 4 
(SsMY​RV4),​ suppresses host non-self-recognition and facilitates horizontal 
transmission of itself and heterologous viruses in  S. sclerotiorum (Wu et al., 
2017). Mycoviruses may also have as yet unknown extracellular infective stages 
or use an animal vector for transfer (see Section 5.5).

In their analysis of pathogenic, saprotrophic and mycorrhizal fungi inhabiting 
the same forest stand, Vainio et al. (2017) showed that horizontal transmission 
of mycoviruses between the different groups was possible. In the context of 
potential virocontrol applications, they did not find a major infection pressure 
towards the indigenous fungal community, but the ecological consequences of 
such putative interspecies virus transmission will require further investigation.
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6 �Essential traits for a virocontrol product
The principle of virocontrol is the biocontrol of fungal plant pathogens via 
hypovirulence-causing mycoviruses. It has mostly been studied in the Chestnut 
– C. parasitica–hypovirus model system. More host plant–fungal pathogen and 
mycovirus interactions are being studied such as fruit tree–white root rot fungus–
mycoviruses (e.g. Chiba et al., 2010). From these studies of plant, pathogen and 
mycovirus interactions, and studies on mycoviruses in different fungal systems, 
the two most important essential traits needed for effective virocontrol can be 
identified:

•• Hypovirulence; and
•• Transferability.

These are discussed in the following sections.

6.1 �Hypovirulence

Whereas most viruses have cryptic effects in their host, quite a number have 
deleterious effects that could cause hypovirulence. Occasionally, mycovirus 
infection may cause hypervirulence and stronger adverse effects of the 
pathogenic fungus on their host plant. The three-way interaction of plant, 
pathogen and mycovirus should be studied. Hypovirulence is not a trait limited 
to a particular mycovirus family, but may occur in all major types of mycoviruses. 
Many fungal species harbour mycoviruses themselves, but mycoviruses may 
be transferred to new host species either naturally or via protoplast fusions. 
Transfer between related species (or species with similar physiology and codon 
usage) may be more effective, and mycoviruses may then retain their effects on 
host physiology, including hypovirulence.

6.2 �Transferability

The majority of mycoviruses do not have an extracellular route, and rely on 
intercellular transmission between the hyphae of different mycelia. The population 
structure of the pathogen in the field with respect to heterokaryon/vegetative 
incompatibility is important in the choice of a suitable and compatible vector 
strain or strains for introduction in the field. A pathogen with one clonal lineage 
will be easier to control than a pathogen with abundant incompatibility in the 
field that limits the effectiveness and transfer of the virocontrol agent. Selection 
or construction of an omni- or pluri-compatible strain could be advantageous, 
but may need genetic modification. For the rare mycoviruses that do not rely on 
intercellular transmission, but have an extracellular route, the fungal host strain is 
of importance for multiplication but presumably not for transmission.
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6.3 �Developing a commercial virocontrol product

To develop a successful commercial biological control product, Köhl 
et al. (2011, 2019) described and tested a useful series of steps for screening. 
Considering virocontrol, these steps could be adapted as shown below:

•• Step 1: Assessment of targeted crops, diseases and markets;
•• Step 2: Origin and isolation of candidate organisms;
•• Step 3: Stepwise assessment of biomass production, safety and ecological 

characteristics of candidate antagonists in rapid-throughput screening 
systems;

•• Step 4: Assessment of potential risks for use and patent positions of 
candidate antagonists;

•• Step 5: Efficacy testing of candidate antagonistic mycovirus/fungal host 
combinations on infected plants or infected parts of plants;

•• Step 6: Preliminary assessments of mass production;
•• Step 7: Development and testing of a pilot formulation and estimation of 

registration costs;
•• Step 8: Upscaling mass production and full-field testing; and
•• Step 9: Integration into cropping systems.

These steps are discussed in more detail below.

Step 1: Assessment of targeted crops, diseases and markets for a 
virocontrol plant protection product. With regard to the plant, it is 
important to take into account crop characteristics and the affected and 
targeted parts of the plants. With regard to the pathogen, one must take 
into account the life cycle of the pathogen, heterokaryon incompatibility 
within the population, natural presence of a suitable hypovirulence-
causing mycovirus and the potential for genetically modified organisms 
(e.g. when needing omni- or pluri-compatible strains). Market size, 
competing products and regulations should also be taken into account.

Step 2: Origin and isolation of candidate organisms. Candidate mycovirus/
fungal combinations from the relevant niche and location should ideally 
be used. Standard growth media and growth conditions are preferable to 
reduce production costs. In view of the convention of biological diversity 
and the Nagoya Protocol, it is important to avoid restricted isolates.

Step 3: Stepwise assessment of biomass production, safety and eco-
logical characteristics of candidate antagonists in rapid-throughput 
screening systems. A key criterion is purity of the colony. This is described 
as regular colony development and conclusive barcoding sequences. For 
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mycovirus-containing fungal strains, the conclusive barcoding sequences 
would be the more important criteria, as colony morphology may be irreg-
ular due to the mycovirus infection and its effects. The sporulation criterion 
of 105 spores after 21 days on oat meal agar at 18°C may be more variable 
due to virus content. The criteria for safety (no germination and growth at 
36°C; no mycotoxin production) and for field applicability (cold tolerance, 
high or low pH tolerance, draught tolerance and UV-B radiation) may be 
normally met. Compatibility with fungicides against the target pathogen 
and with pesticides against non-target pathogens as applied in the agri-
cultural setting of the host plant is also important.

Step 4: Assessment of potential risks for use and patent positions of 
candidate antagonists. With regard to intellectual property rights (IPR) 
protection, a potential application already protected by patents or already 
published can affect the commercial value of the product. It is essential 
to carry out safety/risk assessments for human/animal pathogenicity, 
allergies and mycotoxins. Pathogenicity of the fungal pathogen to plants 
other than the target plant is an important issue. The availability of relevant 
registration data in dossiers or publications and toxicology profiles can 
make registration and marketing easier.

Step 5: Efficacy testing of candidate antagonistic mycovirus/fungal host 
combinations on infected plants or infected parts of plants. When 
assessing the efficacy of the mycovirus/host combinations, it is necessary 
to check for disease control in planta but also for possible growth effects 
on the host plant.

Step 6: Preliminary assessments of mass production. The mass production 
of the fungus and mycovirus will probably take place using either solid or 
liquid fermentation. Mycovirus infections may lower both mycelial growth 
rates as well as spore production. In general, mycovirus effects seem 
less severe under nutrient-rich conditions than under nutrient-restricted 
growth conditions (van Diepeningen et al., 2006), making it important to 
optimise mass production as well as minimise production costs.

Step 7: Development and testing of a pilot formulation and estimation of 
registration costs. Scaling up mass production, downstream processing, 
product formulation and shelf life are the next steps, all of which may be 
affected by the intracellular presence of the mycovirus. Human toxicity 
and environmental safety of the formulated product are important issues 
for the estimation of registration costs.

Step 8: Upscaling mass production and full-field testing. The best 
candidates for both the production process and the formulation must 
finally be selected. Candidates with expected low-risk profiles will 
probably have lower assessment costs for registration.
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Step 9: Integration into cropping systems. In this last phase before 
registration, evaluation of the virocontrol within common plant protection 
schemes in target crops and other crops, and with existing or under-
development non-chemical control should be evaluated. Furthermore, 
persistence in the environment should be evaluated.

Though quite a number of hypovirulence-inducing mycoviruses have 
been described, no biocontrol product based on mycovirus/fungal host 
combinations has been registered and/or is commercially available. Only the 
Cryphonectria parasitica virus I has been extensively used experimentally, but 
not commercially in the field, to reduce chestnut blight. This means that as 
there are no guidelines yet detailing whether a mycovirus-based product faces 
the same requirements as a fungal biocontrol product or whether additional 
requirements need to be met.

7 �Success story: Cryphonectria parasitica
In 1904, chestnut blight caused by C. parasitica was first observed in American 
chestnut trees in New York City. Within forty years, the pathogen had killed 
around 3.5 billion trees in North America and destroyed much of the former 
oak-chestnut forest in Eastern North America, in the triangle between Ontario, 
Maine and Alabama, and impacted forest ecology, including insects and wildlife. 
In Europe, the chestnut blight was first discovered in 1938, where it was less 
destructive and killed fewer trees, partly because of higher blight resistance 
levels in the European chestnut, and partly due to the natural occurrence of 
hypovirulent strains (Anagnostakis, 1982). The origin of C. parasitica lies in 
Asia, and the presumably co-evolved resistance in chestnuts is observed 
there (Anagnostakis, 1992). The Chinese chestnut is generally considered to 
be highly resistant, but the pathogen can affect various other members of the 
genus Castanea in China (Qin et al., 2002). In Japan, the pathogen is sometimes 
destructive on the otherwise relatively blight-resistant Japanese chestnut 
(Uchida, 1977).

The pathogen causing chestnut blight, Cryphonectria parasitica (Murrill) 
M.E. Barr was first described as Diaporthe parasitica (Murrill, 1906), renamed 
Endothia parasitica by Anderson and Anderson (1912), until it was given its 
current name in 1978 (Barr, 1978). C. parasitica causes cankers on branches and 
stems of susceptible chestnut trees with conspicuous yellow to orange-brown 
stromata, containing fungal conidiomata (containing asexual spores), ascomata 
(containing sexual spores) as well as host cells. On resistant trees, the stromata 
are infrequent or inconspicuous. In natural populations, C. parasitica exhibits 
a mixed mating system and sexual offspring is formed both by outcrossing as 
well as selfing (Marra et al., 2004). C. parasitica also has a saprophytic phase on 
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dead wood with both perithecia and pycnidia being formed (Prospero et al., 
2006). After introduction of C. parasitica in a new area, eradication efforts by 
cutting and burning the infected plants/trees have mostly failed (Rigling and 
Prospero, 2018).

Different dsRNA mycoviruses have been found in association with C. 
parasitica, some of which cause hypovirulence of their host, which results in 
less virulent, non-fatal infections of the chestnut tree. The infection rate of both 
non-virulent and hypovirulent mycoviruses in C. parasitica lies in the range of 
between 2% and 36% of the isolates being infected (e.g. Adamčíková et al., 
2012; Montenegro et al., 2008; Murolo et al., 2018; Park et al., 2008; Peever 
et al., 1998). The first hypovirulence virus described was CHV-1 (Anagnostakis, 
1982) which is also the type virus of the Hypoviridae, but since then, more 
hypovirulence-causing viruses of Hypoviridae as well as other mycovirus 
families have been found (e.g. Hillman et al., 2004). Different subtypes of CHV-1 
based on sequence variation and RFLP have been described. Phylogenetic 
analysis of these subtypes and their spread suggests that the subtypes diverged 
several hundreds of years ago, and that different subtypes were introduced in 
Europe and elsewhere afterwards (Gobbin et al., 2003). The mycovirus-induced 
hypovirulence caused by CHV-1 in C. parasitica has been well studied both in 
the field, in the lab, and back in the field again in recurrent cycles, to enhance 
its potential as a biocontrol method (Nuss, 2000).

The effects of CHV-1 on its host vary from transcriptional repression of 
specific host genes (Kazmierczak et al., 1996; Sun et al., 2009b; Zhang et al., 
1993) to influencing the secretion of proteins by its host (Kazmierczak et al., 
2012). The virus-induced RNA-silencing process can be suppressed by a papain-
like protease of CHV-1 (Choi et al., 1991; Segers et al., 2006). In addition to their 
roles in silencing viral replication by degrading viral RNAs, RNAi components 
also promote viral RNA recombination in C. parasitica (Sun et al., 2009a; Zhang 
and Nuss, 2008). C. parasitica has at least four RNA-dependent RNA polymerases 
(RdRPs) that may be involved in transcriptional and post transcriptional gene 
silencing and antiviral defence (Zhang et al., 2014).

Genetic variation exists in the interaction of different C. parasitica isolates and 
different CHV variants (Peever et al., 2000; Brusini et al., 2019). Some observed 
effects may be mitigated by environmental conditions, for instance, the typical 
‘white’ phenotype of C. parasitica upon infection with a hypovirus and lower 
conidiation can be overcome with a high dose of light (Hillman et al., 1990).

CHV-1 does not have an extracellular life stage. Vertical transmission of 
mycovirus occurs to asexual offspring, where transfer rates can vary with 
host and mycovirus genotype (Brusini et al., 2019). The production of sexual 
offspring is largely inhibited by virus infection (Nuss, 2005). However, the 
construction of transgenic lines with cDNA clones of hypoviruses has been 
a way to construct hypovirulent lineages that have the ability to transmit the 
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hypovirulence to ascospore progeny (Chen and Nuss, 1999; Choi and Nuss, 
1992). In the saprophytic phase on dead wood, perithecia yield only hypovirus-
free sexual spores, while pycnidia contain 5–41% hypovirulence-infected 
conidia (Prospero et al., 2006).

Horizontal transmission between isolates carrying the same vic genes 
occurs readily (Liu and Milgroom, 1996), but incompatibility effectively blocks 
virus transfer (Milgroom and Cortesi, 2004), also from virulence encoded by 
the transgenic lines (Root et al., 2005). The systemic disruption of multiple vic 
loci can be a way to engineer super mycovirus-donor strains (Zhang and Nuss, 
2008).

In North America, the transmission of virulence-attenuating mycoviruses 
is severely hampered by the at least 120 vegetative incompatibility groups 
present in the field, and therefore the effects of virocontrol are very limited. To 
restore some of the former oak-chestnut forests, breeding programmes exist 
where some of the remaining American chestnuts, mainly existing as understory 
sprouts from extant root systems, are crossed with the blight-resistant Asian 
chestnut species and back-crossed afterwards towards producing trees with 
the form, phenology and growth characteristics of the American chestnut 
(Anagnostakis, 2012).

In Europe, less vegetative incompatibility groups occur, and hence the 
more ready transfer of viruses from hypovirulent strains. In Europe, however, 
hypovirulence was already present, caused by different viral subtypes 
(Anagnostakis, 1982; Bisseger et al., 1997; Gobbin et al., 2003). The European 
chestnut also has a higher resistance level (Anagnostakis, 1982). Bissigger and 
colleagues (1997) in their study in two fields in Switzerland observed 21 Vegetative 
Compatibility Groups (VCGs). European vegetative compatibility groups proved 
to have equal infection rates with the hypovirulent virus (Bissegger et al., 1997). 
Young chestnut sprouts were especially killed in their first year, while over the 
following years, the growth of cankers decreased and hypovirulent strains were 
observed on all surviving sprouts, suggesting natural spread of the hypovirus 
infection and/or of hypovirulent strains (Bissegger et al., 1997).

When looking at spreading infections throughout Europe, one can see that 
in general, more recently colonised areas contain lower numbers of VCGs or 
only one mating type may be present (e.g. Montenegro et al., 2008; Robin and 
Heiniger, 2001; Robin et al, 2009). The spontaneous introduction and further 
spread of hypovirulence in these populations may now occur to mitigate the 
disease (e.g. Montenegro et al., 2008; Trapiello et al., 2017). On the other hand, 
as the success of biocontrol with the hypovirus CHV1 is negatively correlated 
to the number of VCGs present, an increase in VCG diversity may jeopardise 
biocontrol efforts. Movement of chestnut plants and wood should be restricted 
and mycelial mixtures of CHV1-infested C. parasitica for biocontrol should only 
contain the local VCG and mating types (Robin and Heiniger, 2001).
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In Asia, the place of origin of C. parastica, the numbers of VCGs appear to 
be highest. In Japan, at least 71 groups could be recognised in 79 isolates, while 
in China, two populations of 28 and 11 isolates all consisted of unique VCGs, 
while a third population consisted of 15 VCGs in 25 isolates (Anagnostakis 
et al., 1998; Liu and Milgroom, 2007). However, due to the high resistance to 
chestnut blight in the different chestnut species in Asia, the disease causes only 
minor problems.

The application of hypovirulent C. parasitica in the field is quite laborious. 
Holes are drilled around cankers on sprouts and branches, and are then filled 
with hypovirulent inoculum, with each canker treated separately. Heiniger and 
Rigling (2009) found that while treated cankers were cured, the hypovirus 
might slowly spread to untreated cankers. The choice of strains of the right 
locally present VCGs, mating type and the type of hypovirulent virus are 
important. Virus types that are too virulent/hypovirulent may limit host growth 
and spore production, thereby limiting their own spread. The spread of 
hypovirulent inoculum may be helped by certain arthropods, for example, 
mites (Bouneb et al., 2016) or mycophagous nematodes (Griffin et al., 2009,  
2012)

No simple all-round product for the treatment of C. parasitica is available, 
as locally abundant VCGs have to be taken into account, as well as choice of 
the virus. However, C. parasitica is still the best-studied example of virocontrol. 
While C. parasitica eradicated many of the American chestnuts in America, 
the largely natural biocontrol of the pathogen in Europe by mycoviruses has 
proved quite successful.

8 �Future trends
Mycoviruses have been reported in Ascomycetes, Basidiomycetes as well 
as in Deuteromycetes, and in groups formerly considered as fungi, like 
Chytridiomycota and Zygomycota (Ghabrial et al., 2015). As  whole-genome 
sequencing and RNA-Seq are becoming ever more available and are integrated 
into routine descriptions of fungi, more viruses will be detected, even in 
low titres. Some of these viruses – both DNA, ss and dsRNA viruses – cause 
hypovirulence and debilitation in their host (Table 3). Virus and hypovirulence 
incidences vary per species, and sometimes per population (Table 2). For 
species with no known natural mycovirus infections, mycoviruses transfer via 
protoplast fusion has shown to be a successful way of interspecies transfer (e.g. 
Ejmal et al., 2018; Lee et al., 2011; van Diepeningen et al., 1998, 2000). The 
integration of cDNA and the construction of transgenic hypervirulent lines may 
also be an option to get hypovirulence out in the field (e.g. Choi and Nuss, 
1992; Chen and Nuss, 1999). Hypovirulence or debilitation-causing viruses 
often retain this trait in a new host (e.g. Ejmal et al., 2018; Lee et al., 2011; van 
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Diepeningen et al., 2008). There is thus a range of potential virocontrol viruses 
available for the control of pathogenic fungi.

The limited vegetative transfer between different isolates of a species, due 
to the omnipresent heterokaryon or vegetative incompatibility genes, may be a 
more serious limitation to virocontrol than the availability of mycoviruses. So far, 
especially in natural populations with lower diversity in het/vic variation, virus 
transmission is established via donor strains compatible with the occurring 
pathogen(s). Engineering of super mycovirus donor strains disrupted in 
multiple het/vic loci may be an option to overcome the problem in more 
diverse populations (Zhang and Nuss, 2016). Alternatively, adding compounds 
like zinc to the virocontrol formulation to attenuate incompatibility reactions 
and enhance anastomosis rates between heterogenic strains, may increase 
virus transfer (Ikeda et al., 2013). How and where to apply virocontrol of fungi 
in the field is another question, and depends on the host–pathogen system and 
spread of hypovirulent fungal propagules via naturally present routes or via 
necessary additional vectors, be it human or animal.

There is also the question of whether a risk of virocontrol is that plant 
pathogens are used as donor strains. In principle, the plant pathogens used are 
hypovirulent and should not be a risk in themselves, in comparison to the virus-free 
pathogens. Chances of losing a mycovirus spontaneously are relatively small as 
shown by laboratory experiments on curing infected strains (e.g. van Diepeningen 
et al., 2006), while the presence of other isogenic and thus vegetative-compatible 
biocontrol isolates will lead to rapid re-infections and consequent hypovirulence. 
However, one should evaluate carefully if a hypovirulent strain is sufficiently 
a-virulent and that the introduction of high amounts of a mild pathogen does not 
cause problems, whether applied preventively or curatively.

There are currently no examples of non-pathogenic variants of pathogen 
species being used (only hypovirulent ones). However, with new insights 
into the molecular organisation of pathogenicity in many species and whole-
genome sequencing techniques, one can use donor strains containing less 
virulence-related genes or make knock-out constructs without certain virulence 
or toxigenic genes. How registration regulations will deal with application of a 
hypovirulent pathogen or potentially of a non-pathogenic strain of this fungus 
as donor is not certain, as no products have been registered yet.

Present heterokaryon or vegetative incompatibility in and between species 
limits both needed and unwanted spontaneous transfer, and reduces the risk of 
accidental infection of neutral or beneficial fungal species. As most mycoviruses 
lack a viable extracellular phase, transfer via that route is also very limited. 
Some mycoviruses are related to plant viruses, most seem co-evolved with their 
fungal host, while a relation to animal viruses seems very limited (Göker et al., 
2011). Recently, Andika et al. (2017) showed the natural occurrence of a cross-
kingdom infection of pathogenic fungi with a plant virus. No research has been 
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done to see if the reverse also may occur. That does leave the risk observed 
by Moriyama and co-workers (2018) in M. oryzae and A. alternata, that at least 
some chrysoviruses may not only confer hypovirulence but may also be the 
driving force behind the development of physiological diversity in the hosts, 
including new pathogenic races.

Virocontrol via hypovirulent fungi is not only used in plant pathology, but 
is also gaining interest in human and animal mycology. A lack of applicable, 
effective antifungals is limiting treatment, while the number of vulnerable, 
often immunocompromised, patients is growing. Treatment of A. fumigatus, 
the main cause of Aspergillosis, with introduced (Refos et al., 2013) or intrinsic 
(Kanhayuwa et al., 2015; Takahasi-Nagaguchi et al., 2020; Zoll et al., 2018) 
mycoviruses has been explored. In the case of the AfuTmV-1, which seems 
to be an intermediate between a dsRNA and positive strand ssRNA virus in 
build-up, the virus is infectious both as purified entity and as naked DNA 
(Kanhayuwa et al., 2015). One study shows such a natural mycovirus may 
cause hypovirulence when tested in the Galleria mellonella model (Özkan and 
Coutts, 2015). On the other hand, recent studies on mycoviruses in Malassezia 
yeasts, common inhabitants of the human skin and occasionally causing 
infections, show that mycovirus infection may enhance skin colonisation 
and enhance interferon production (Applen Clancey et al., 2020; Park et al.,  
2020).

9 �Conclusion
Virocontrol and the use of hypovirulent mycoviruses is a small field in biocontrol 
research. However, advances in genomic techniques have made the screening 
for mycoviruses and assessing (molecular) effects on their host easier, and a 
plethora of mycoviruses have been found in all divisions of fungi and related 
phyla. Infections with mycoviruses appear quite common in most fungal species, 
with infection rates varying between 0% and 100%, with corresponding effects 
on host pathogenicity. For those pathogens that do not contain hypovirulent 
mycoviruses themselves in nature, alternative ways of infection are available, 
using viruses from other (related) species and protoplast techniques.

Fungal (population) biology has taught us a lot about the reproduction 
modes of fungi and vegetative (in)compatibility, and how that may affect 
mycovirus transmissions. Vertical transmission rates of viruses to sexual and 
asexual offspring can vary per species and per mycovirus, as does horizontal 
transfer between isolates. For successful application in the field, virus donors 
need to be compatible with the target field isolates and demonstrate 
incompatibility and species boundaries to limit further spread.

As yet, no commercial virocontrol product exists for the control of plant 
pathogenic fungi. However, mycovirus research so far has shown that for 
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many of the major plant pathogens, potential candidates for virocontrol with 
hypovirulent mycoviruses exist.
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