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1 �Introduction
The management of any supply chain requires accurate inventories of 
stock quantity and quality. This requirement is accentuated in fresh fruit and 
vegetable supply chains, which involve perishable produce with a narrow 
window on harvest timing and shelf life. For example, to reduce the potential 
for product loss, forward knowledge of both crop load and harvest timing is 
required before harvest to inform decision making on harvest resourcing in 
terms of requirements ranging from labour needs to purchase of packaging 
materials. Additional post-harvest information on product quality, shelf life and 
infestation is required to inform marketing and biosecurity assessments.

There have been great advances in technologies for the assessment of 
produce attributes in recent decades. For example, weight, colour and defect 
grading are now commonplace in packhouses, and technology for both in-line 
and in-field, non-invasive assessment of fruit soluble solids content (SSC, 
usually measured as °Brix) and dry matter is readily available. Various remote or 
proximal sensing technologies are also becoming available for the estimation 
of fruit load pre-harvest. However, as with all measurement scenarios, the step 
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from data collection to interpretation requires consideration of the quality of 
the data in terms of both measurement accuracy and precision.

All measurements have the potential for error. Measurement error is 
low relative to the required specification in some cases, for example, weight 
assessment on a packing line, while in other cases the measurement error for the 
assessment of a given criterion is relatively high. The setting of a specification 
should, therefore, give consideration to the potential for such error, for example, 
a specification requiring that the level of an attribute be above a specific value 
might be shifted to a higher value to accommodate measurement error and to 
avoid inclusion of under-specification produce in the accepted class.

There is typically only one point in fruit and vegetable supply chains where 
all produce can be inspected as individual units – at the packhouse as the 
produce passes over a grading line (Fig. 1). Elsewhere in the chain from the 
orchard through to retail shelf, assessment is based on a sample only of the 
consignment. A decision must be taken on where to take samples and how many 
samples to take. Acquiring a sample that is representative of the population is 
not a trivial task, however, and sampling practice is often constrained by the 
logistics of undertaking these assessments. The issue is, of course, variability. 

Figure 1 Typical chain involved in production, transport, storage and/or ripening and 
marketing of fresh produce (top panel) and an image of a grading line – the one point 
in the chain where all produce items can be inspected individually (bottom panel). 
(Image source: https://search​.creativecommons​.org​/photos​/aaa81a9d​-38a4​-4b72​-9fa5​
-912b03c61eeb).
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Crudely, the more variability in the population, the greater the sample size 
required and the more attention that is required to the selection of samples to 
achieve a valid estimate of that variability and of the mean of the population.

Measurement and sampling issues are recognised in the scientific 
literature. For example, Follett and Hennessey (2007) note that ‘incorporating 
sample size and confidence levels into host status testing protocols along 
with efficacy will lead to greater consistency by regulatory decision-makers 
in interpreting results and, therefore, to more technically sound decisions on 
host status’. However, while the issue is recognised, it is under-represented 
in scientific literature, relative to reports on measurement technology and its 
efficacy. For example, the text ‘Fruit and vegetables, harvesting, handling and 
storage’ (Thompson, 2003) gives comprehensive coverage to methods of the 
assessment of various fruit attributes but no coverage of population sampling.

A recent review concluded that ‘further consideration of sampling statistics 
is warranted, with the aim of producing decision support aids to postharvest 
management, to assist in design of sampling regimes’ (Walsh et al., 2020). We 
attempt to address this call in the current chapter. Relevant statistical tools are 
reviewed, with worked examples, and case studies are presented of the pre-
harvest measurement of fruit load in an orchard, determining harvest timing 
and post-harvest assessment of eating quality or biosecurity assessment.

2 �Positioning the industry problem
Consider the issue of pre-harvest crop load estimation. Fruit can be counted 
on a sample of plants, but for the estimate to be valid and representative, how 
many plants should be counted and how should those plants be selected? In 
Australia, the national citrus crop estimate involves surveys of the same sites 
assessed every year for the density of fruit on representative tree canopies 
across many orchard blocks, with fruit density counts based on counting fruit 
numbers in a ‘frame’ (Citrus Australia, 2003). However, the statistical rationale 
that forms the basis for such best-practice sampling regimes is not readily 
available.

Specifications on post-harvest quality attributes have been developed by 
international bodies, such as the Codex Alimentarius and the United Nations 
Economic Commission for Europe (UNECE), with these recommendations 
informing private organisation specifications and standards, for example, 
GlobalGAP or individual retailers. These specifications typically place quantitative 
limits on external product attributes, such as size, shape, colour, and surface 
defects, and on internal attributes, such as SSC or dry matter content, firmness and 
defects, such as internal browning in apple. However, whilst these specifications 
give detailed product criteria with targets and tolerances, they are generally 
weak with regard to the sampling protocol to be used in testing the degree of 
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compliance with the specification, especially in terms of sampling strategy and 
numbers (Fig. 2). For example, a typical specification for apple includes ‘total 
minor defects (within allowance limit) to be <2 defects per item, total minor 
defects (outside allowance limit) must not exceed 10% of consignment, and total 
major defects must not exceed 2% of consignment, with combined total not to 
exceed 10%’ (Freshmark, 2020). However, the specification is silent on the number 
of fruit to be sampled per consignment, that is, the sampling frequency. Likewise, 
the public documentation of those providing testing services, for example, QIMA 
(2020) or Farmsoft (2020), is also silent on the sampling strategy to be adopted.

Perhaps the best accessible documentation on sampling for fruit 
specifications is provided by the United States Department of Agriculture 
(USDA, 2021). The US Grade Standards are supplemented by documentation 
on sampling. This documentation notes that ‘the importance of obtaining 
representative samples cannot be over emphasized. Accurate certification is 
possible only if the samples examined are truly representative of the entire 
lot or accessible portion. All portions of a lot or load shall receive the same 
attention in sampling regardless of the difficulty involved in reaching all layers 
or parts of a lot or load’.

In practice, the reality of sampling constrains this ideal and much can be 
left to operator interpretation. For example, the USDA instructions for banana 
are ‘the sample size shall be a minimum of 50 count (50 individual bananas) 
for packages containing 50 or more specimens’, with the number of samples 
involving a minimum of 1% of the lot. That instruction is clear; however, a caveat 
is added: ‘It is the inspector’s responsibility to examine additional representative 
samples when the quality or condition (of) samples is decidedly different to 
ensure an accurate description of the lot’ (AMS, 2020a).

Figure 2 A consignment of fruit reaching a distribution centre. How should a representative 
sample of fruit be taken for quality control assessment?
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In another example, the instructions (AMS, 2020b) for the sampling of 
lemon consignments in bulk containers (e.g. trailers, bulk bins) are given as 
‘examine a minimum of 25 contiguous fruit per sample. When a sample tolerance 
is exceeded, the sample size must be at least doubled’. The caveat is added: 
‘due to potential variations in size, quality and condition, a specific number of 
samples per load or lot cannot be provided. It is the inspector’s responsibility to 
examine a sufficient number of samples to ensure that a complete and accurate 
depiction of the load or lot is obtained’. Such instructions place considerable 
discretion and responsibility on the inspector.

Similar sampling issues arise in biosecurity assessments. For example, one 
regulator of horticultural produce biosecurity inspections requires a sample of 
either 600 units (pieces of fruit) or 2% (with a minimum of three packages) of 
the number of packages in each consignment (DAWR, 2021). These sampling 
criteria set a minimum number of items to sample, yet in practice the number 
of samples required to detect an infested sample at a desired confidence 
level will vary with incidence rate. These examples highlight the uncertainty in 
sampling strategies that can be found in both regulatory and market-based 
fresh produce sampling.

3 �Sampling statistics
3.1 �The problem is variation

Of course, if all units (i.e. individual fruit) in a lot were identical, only one sample 
(i.e. selection of fruit) would need to be assessed for a consignment description 
to be representative of all units in that lot. However, as the degree of variation 
for given criteria within the lot increases, more units must be assessed to 
provide a representative picture of the diversity of the consignment. Ideally all 
units in each lot would be assessed to achieve a true estimate of population 
parameters. Such measurement of the entire population is rarely possible, with 
some exceptions, for example, fruit passing sensors such as cameras or load 
cells on a packing line. To reduce measurement effort, a sample population of 
units is selected from the population and used to make inferences about the 
parameters of the whole population. The representativeness of this sample is 
determined by its size and the sampling strategy used to collect it.

The selection of sampling strategy and size is a vexed one, requiring 
preliminary information on the spatial and possibly temporal variation of the 
attribute of interest in the population for an informed decision on the choice 
of sampling strategy, and for an estimate of population variance to inform the 
choice of the number of samples used.

This section of the chapter gives background to the issues of ‘where to 
sample’ and ‘how many to sample’, to describe a population in terms of the 
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number of units, the average result and variance in the level of an attribute or 
the proportion of units meeting some specific criterion. These approaches and 
formulae are then implemented within several case studies.

3.2 �Where to sample

To avoid bias in estimates, probability (random) sampling is required. The 
International Plant Sampling Standard ISPM 31of the International Plant 
Protection Convention (2020) describes the advantages and disadvantages of 
the common sampling strategies, including simple random sampling, systematic 
sampling, stratified sampling, sequential sampling, cluster sampling, fixed 
proportion sampling for statistically based sampling methods, convenience 
sampling, haphazard sampling and elective or targeted sampling for non-
statistically based (non-probability) sampling. Each type of sampling affects 
the inferences that can be drawn from the data obtained from the analysis of 
attributes of the sampled population.

The following text considers four common approaches to sampling: simple 
random sampling, systematic sampling, stratified sampling, and clustered 
sampling. Stratified sampling and clustered sampling involve multistage 
designs, while systematic sampling can be implemented as single or multistage 
designs.

	 1	 Simple random sampling: In the simple random sample (SRS) scheme, 
units are randomly selected to be in the sample with equal probability, 
with each possible combination of units up to the sample size also 
equally likely to be selected. The standard statistical estimators of mean 
and variance may be used when using this sampling scheme. 

True random sampling is, however, often difficult to achieve in practice 
if sample selection is left to human choice. Operator bias exists in the 
‘random’ selection of a sample, be that a tree in an orchard or a carton 
from a pallet. Best practice involves the assignment of numbers to units 
in the population and the use of a random number generator for the 
selection of samples. 

	 2	 Systematic sampling: Systematic sampling is easier to implement than 
SRS. In this sampling method, sample units are selected according to 
a random starting point but with a fixed, periodic interval. Population 
estimates are calculated as for SRS. However, this sampling scheme can 
result in a bias on estimates if there are spatially periodic effects in unit 
attribute levels. For example, sampling the carton from the same position 
in the top layer of every sampled pallet could result in a biased result 
if this position is not representative of the whole pallet. For example, if 
the supplier knows where the sampling from a given pallet will occur, 
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they may place a higher quality product in this location. The sampling 
interval should, therefore, be considered carefully in implementing a 
systematic sampling strategy. 

	 3	 Stratified sampling: Stratified sampling requires the population to be 
divided into subgroups (or strata), which share a similar characteristic. 
This method can improve the accuracy and representativeness of the 
results by reducing sampling bias and can reduce the number of units 
needed. However, it can be difficult to choose the characteristic(s) to use 
in stratification.

	 4	 Clustered sampling: Clustered sampling can be implemented with 
any of the above sampling strategies. This approach involves the use 
of subgroups (‘clusters’) of the population as the sampling unit, rather 
than individuals. Clusters are randomly selected for assessment. If the 
chosen clusters are not representative of the population, this method 
will result in sampling error. 

Multistage designs involving sampling of units at different ‘strata’ within the 
population. Each stratum is assigned its own sampling strategy and probability. 
Consider a quality inspection of fruit in a shipping container containing pallets 
of fruit from two farms, with the sampling of five fruit per box of a box taken from 
each of three layers within pallets located at the front, middle and rear of the 
container, that is, a total of 90 fruit. This sampling strategy involves stratification 
on farm as the primary sampling unit (PSU), systematic sampling pallet and 
layer and random sampling of fruit within a box. In another example, consider 
the estimation of SSC of fruit in an orchard of 100 blocks of 1000 trees each, 
with orchard blocks defined by the management system (tree cultivar, age and 
training system). A sampling approach is imposed in which every third block of 
a given management system is randomly chosen, with assessment of five fruit 
randomly chosen from each side of every twentieth tree in every second row. In 
this approach, blocks are the PSU, with systematic sampling of blocks, rows and 
trees, stratified sampling of tree sides and random sampling of fruit on tree.

4 �How many to sample: ‘power’ calculations in simple 
random sampling

In the following section, consideration is given to the question of estimating an 
appropriate sample size to collect for the determination of population mean 
to a known error and probability. Greater detail on sampling techniques and 
related equations can be found in Thompson (2012). Example applications 
include: determining the number of fruit that should be sampled to establish 
that the population average of an attribute is above a specified level and the 
number of trees that should be sampled in an orchard to establish the average 
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fruit load per tree. A key requirement for such estimates is a prior estimate of 
the population variance.

4.1 �Does a lot meet specification?

Consider the determination of whether a population mean is greater than a 
specification. First the minimum detectable difference, d, should be defined. 
This value is set to be confident in concluding the population mean is above 
threshold from the sample if the population mean is at least d or greater above 
the threshold. Often d is based on domain knowledge and may be the smallest 
value to be biologically important. It should not be 0, however, as if the population 
mean is equivalent to the threshold, then the sample mean will be below the 
threshold half of the time. An estimate of the population mean can be used to 
inform the setting of d, with a smaller required sample size associated with the 
use of a larger d in association with a larger mean to specification difference.

A statistical test is then used to determine if there is evidence that the 
population mean is greater than the specification. The test will be undertaken 
to a given probability, called the power of the test. Often the power is set to 
80%. This is equivalent to specifying the type 2 error at 20% ( b = 0 2. ), which is 
the chance the test incorrectly fails (false negative) to detect that the population 
is above the standard. The chance of a type 1 (false-positive) error, that is, the 
probability that the test indicates that the population is above the standard 
when it is not, is defined by the setting of the significance level (α) of the test. 
This value is often set to 5% (a = 0 05. ); that is, the user accepts a 1 in 20 chance 
of a false-positive result.

Given a simple random sampling, the minimum sample size needed to 
achieve a power of 1 100-( )´b %  in detecting a difference d between the 
population mean and a standard using a t-test with α = 5% is calculated as 
follows:

	 n
t t

d
n n=

+( )- -s a b
2

1 1
2

2
, , , 	 (1)

where σ is the standard deviation, σ2 is the variance, tα and tβ are the values 
from the students’ t-distribution with n − 1 degrees of freedom (df) such that 
the probability of being greater than tα and tβ is α and β respectively. Note 
that n should always be rounded up to the nearest integer in giving the 
required sample size. There are many lookup tables available online for tα 
and tβ, for example, https://www​.itl​.nist​.gov​/div898​/handbook​/eda​/section3​
/eda3672​.htm and https://stattrek​.com​/online​-calculator​/t​-distribution​.aspx. 
Additionally, various software packages include functions to calculate such 
values, for example, Microsoft Excel (T.INV) and R (qt).

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm
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The tαand tβ are a function of n; however, if n is large (>120 in SRS), the 
standard normal Z-score can be used:

	 n
Z Z

d
=

+( )s a b
2 2

2 . 	 (2)

Z-score lookup tables are also available online, for example, https://www​.itl​
.nist​.gov​/div898​/handbook​/eda​/section3​/eda3671​.htm, https://stattrek​.com​/
online​-calculator​/normal​.aspx, or through use of functions in Microsoft Excel 
(NORM.INV) and R (qnorm).

Consider a test to establish if a block of kiwifruit has an average dry matter 
(% FW; fresh weight) over a threshold of 16%. From a previous sample, the 
standard deviation was estimated at 2.0% and mean at 16.5%. It is desired to 
correctly accept blocks using a minimum detectable difference of 0.3% FW, that 
is, if block DM is >16.3% and to give the test 80% power (β = 0.2) to correctly 
determine that the population is above the threshold, while at the same time only 
having a 5% (α = 0.05) chance of wrongly concluding that the mean is above the 
threshold when it is not. To calculate the minimum sample size required, we can 
use eq. 2, with the input of the Zα score for α = 0.05 and the Zβ score for β = 0.2:

	 n
Z Z

=
+( )

=
+( )

=
2

0 3
4 1 645 0 8416

0 09
274 7

2
0 05 0 2

2

2

2
. .

.
. .

.
. 	

worked example for eq. (2).
Rounding up, we conclude 275 fruit are required.
If n were < 120, then eq. 1 should be used, starting with the solution from 

eq. 2 and increasing n until the df = n − 1. Consider if an α = 0.5 is used in the 
previous example. This is equivalent to a positive test if the sample mean is 
greater than the threshold irrespective of the magnitude. Using eq. 2:

	 n
Z Z

=
+( )

=
+( )

=
2

0 3
4 0 0 8416

0 09
31 48

2
0 5 0 2

2

2

2
. .

.
.

.
. 	

Rounding up, n is estimated to be 32. The value df in eq. 1 can be set as n − 1, 
i.e. 31, giving:

	 n
t t

=
+( )

=
+( )

= =
2

0 3
4 0 0 8534

0 09
32 37 33

2
0 5 31 0 2 31

2

2

2
. , . ,

.
.

.
. 	

Since the df = 31 ≠ 33 − 1, we try again with n = 33, i.e. df = 32

	 n
t t

=
+( )

=
+( )

= =�
.

.
.

.. , . ,2
0 3

4 0 0 8530
0 09

32 34 33
2

0 5 32 0 2 32
2

2

2
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worked example for eq. (2).
Now the df and n match, so n = 33 is the final solution.
Sometimes it is useful to consider d as a percentage of a standard 

population mean. This is achieved by division by population mean, μ:

	 n
CV Z Z

d
=

+( )
æ
è
ç

ö
ø
÷

2 2

2

�
,a b

m

	 (3)

where the coefficient of variation, CV, is σ/μ.
For the case of the above-worked example, CV is 12.27% (= 2/16.3) and 

d is 1.84% of the mean (=  0.3/16.3). The calculation of the required sample 
number based on eq. 3 is:

	 n =
+( )

( )
=

( )
=

12 27 1 645 0 8416

1 84

150 5529 2 4866
3 3856

27
2 2

2

2. . .

.

. � .
.

44 96 275. = 	

worked example for eq. (3).

4.2 �Comparing lots

Note that eqs 1, 2 and 3 are one-sided tests, to be used if it is desired to detect 
a difference in one direction, that is, that the population mean is greater than 
the specification by at least d. For the detection of a difference of at least d 
between two populations, and assuming equal variance in the two populations, 
n can be calculated as:

	 n
Z Z
d

=
+( )2 2 2

2

s a b . 	 (4)

Consider the number of fruit that should be sampled from a consignment to 
determine if fruit SSC is at least 0.5% SSC higher than a second consignment. 
For populations of SD = 2% SSC, the required sample number can be calculated 
for a 5% (α = 0.05) chance of a type I error and 80% power (β = 0.2) for type II 
error as:

	 n =
× +( )

= =
2 2 1 645 0 8416

0 5
98 9 100

2

2

. .
.

. 	

worked example for eq. (4).
However, sampling almost always occurs without replacement, invalidating 

the sample unit independence assumption inherent in probability-based 
sampling designs. The impact of sampling without replacement increases 
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as sample size increases relative to the population size. A finite population 
correction (FPC) may be used to adjust estimates. As a rule of thumb, FPC is 
required when the sample taken is more than 5% of the population. The FPC 
reduces the required sample size (eq. 5) and the estimated variance (eq. 6) by 
a factor of (N − n)/(N − 1), where N is the population size and n is the sample  
size:

	 n FPC nN
n N( ) =
+ -( )� ,

1
	 (5)

	 s
s2

2

1
FPC

N n
N( ) = -( )
-( ) . 	 (6)

For example, if in worked example 2 it was estimated that 33 fruit should be 
sampled. If this was for assessment of DM of the finite population of a box of 
100 fruit, then eq. 5 could be used to calculate an adjusted n as:

	 n FPC( ) =
+ -( ) =
33100

33 100 1
25 	

worked example for eq. (5).

4.3 �Estimating a population parameter

The above examples relate to the estimate of sample number to carry out a 
significance test. In other situations, an estimate of a population parameter 
such as a mean or proportion is required, within a margin of error (e). The 
required sample number for this requirement is based on the confidence 
interval calculation and rearranging for n. The sample size required to estimate 
a population mean within e is:

	 n
t
e

t
e

n n=
( )

=
æ

è
ç

ö

ø
÷

- -s sa a
2

2 1
2

2
2 1

2
/ , / , . 	 (7)

However, to obtain a t-statistic requires an estimate of the df and that requires 
a value for n. This ‘chicken and egg’ situation can be solved by using the 
Z-score as an initial solution to n and then increasing n from there until the df is 
equivalent to the solution minus 1 in eq. 7.

In the case study presented in detail in field example (i), an orchard of 494 
trees had an estimated mean and SD of 88 and 82 fruit per tree, respectively. 
The number of trees to be counted to achieve a margin of error of ten fruit per 
tree with 95% confidence (α = 0.05) can be first approximated using a Z-score 
obtained from a lookup table or from R (qnorm(0.975) = 1.961), as:
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	 n
t

=
( )

=
( )

= =-82
10

82 1 961
10

258 57 259
2

2 259 1
2

2

2 2

2
a / , .

. 	

worked example for eq. (7).
Using n = 259, t na / ,2 1-  is obtained from a t-statistic function in R of 

qt(0.975,259  −  1), giving a value of 1.969. The value of n can then be 
re-estimated as:

	 n = ( )
= =

82 1 969
10

260 69 261
2 2

2

.
. 	

As 261 is greater than 259 the process needs to be repeated, this time using 
261 − 1 = 260 degrees of freedom in the t-statistic calculation, resulting in n 
= 260.7 = 261. This is taken as the solution as the current answer for n (261) 
agrees with the t-statistic degrees of freedom (260 = 261 − 1).

Such a sample is more than 5% of the population, so an FPC adjustment is 
made using eq. 5 with n = 261 and N = 494, to yield a new n of 171 trees.

The sample size required for a given margin of error expressed as a 
percentage of the mean (PE) the calculation can be calculated as:

	 n
CV t

PE
=

( )
( )

2
2

2

2
a / . 	 (8)

Consider that if in the example above it was desired to estimate n to achieve 
a PE of 10% rather than an error of ten fruit/tree. In this case, using a CV of 
82/88*100 = 93.2% and a Z-score of 1.961:

	 n = ( )
( )

= =
0 931 1 961

10
333 3 334

2 2

2

. .
. 	

worked example for eq. (8).
This estimate can be refined using the input of a t score and by correcting 

for the size of the finite population using the FPC calculation. The outcome for 
the example is:

	 n FPC( ) = ´
+ -( ) =

334 494
334 494 1

200 	

worked example for eq. (5).

4.4 �Population proportion

When dealing with the estimation of a proportion, p, of a population with an 
attribute, rather than the mean, the normal approximation to the binomial 
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distribution is used in place of the t-distribution, such that σ2 ~ p(1 − p). The 
required sample size from eq. 7 can be estimated as:

	 n
p p Z

e
=

-( )( )1 2

2
a . 	 (9)

Note that the closer p is to 0.5 the larger the sample size required to achieve a 
given margin of error. The approximation should be used only when the n × p 
and n × (1 − p) are both greater than 5.

To calculate the minimum number of samples required to detect a 
difference in the proportion of fruit in the population with a specified attribute 
with power ( ) %1 100- ´b  and significance level α, the one-sided test is:

	 n
p p Z Z

d
=

-( ) +( )1 1
2

2

1 a b . 	 (10)

Consider the example of sampling to detect if the rate of internal browning in 
apples is below the specification tolerance limit of 2% (see Field example (iii) 
below). To measure an attribute with an incidence level of 2% (p = 0.02) to a CI 
of 95% (Zα = 1.96) and an uncertainty of ±1% (e = 0.01) requires sampling of n 
fruit, following eq. 9:

	 n =
-( )( )

= =
0 02 1 0 02 1 96

0 01
752 95 753

2

2

. . .
.

. 	

worked example for eq. (9).
A number of online calculators exist for general practitioner use. For exam-

ple, the Australian Bureau of Statistics offers a resource for calculation of sample 
size related to the estimation of the proportion of a population belonging to a 
given category, for example, a survey to establish the proportion of consum-
ers that are satisfied with a product (ABS, 2021) (https://www​.abs​.gov​.au​/web-
sitedbs​/d3310114​.nsf​/home​/sample​+size​+calculator). Entering the values of 
95% of confidence level, 0.02 for proportion and 0.01 for confidence interval 
produces a calculated value for required samples of 753.

More complicated sampling plans may be required in situations where 
SRS is not appropriate. For example, randomly sampling fruit across an orchard 
may be logistically difficult and instead a systematic or clustered sampling 
strategy might be preferred. However, it is important that the design used is 
incorporated into any calculations of the required sample size. Some online 
calculators on required sample number from an estimate of mean and standard 
deviation provide for sampling designs other than SRS (e.g. https://stattrek​.com​
/survey​-sampling​/sample​-size​-calculator​.aspx​?tutorial​=samp; doa 1/4/2021).

https://stattrek.com/survey-sampling/sample-size-calculator.aspx?tutorial=samp;
https://stattrek.com/survey-sampling/sample-size-calculator.aspx?tutorial=samp;
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5 �Estimating mean and variance
5.1 �In a simple random sampling design

When each sample unit has the same probability of being selected, as in an SRS 
scheme, the confidence interval for the estimate of the population mean can 
be estimated as:

	 x t s
nn± -a

2 1, , 	 (11)

where x  is the sample mean, s the sample standard deviation, ta
2

 the t-value 
with n − 1 degrees of freedom corresponding to the α level of confidence. The 
confidence interval describes the attribute range for which a given proportion 
(1 − α) of sample estimates of the mean will fall if sampling were repeated a 
large number of times. Here α is the type 1 error rate, often accepted at 0.05 
(5%), corresponding to a 95% confidence interval.

Consider the example of estimation of fruit load per tree in which the 
number of trees in the orchard (N) is 494, s is 82 and n is 261. Using the t-statistic 
from the table https://www​.itl​.nist​.gov​/div898​/handbook​/eda​/section3​/
eda3672​.htm or the ‘calculator’ at https://stattrek​.com​/online​-calculator​/t​
-distribution​.aspx, t is read for the 0.025 error rate, or P(T  ≤  t)  =  0.975, and 
260 degrees of freedom, at 1.969. Thus the 95% confidence interval for the  
mean is:

	 1 969 82
261

10. ´ = fruit/tree 	

worked example for eq. (11).
As sample size, n, becomes larger relative to population size, N, the 

confidence interval becomes tighter. The calculation becomes:

	 x t s
n

N n
Nn±
-
--a

2 1 1, . 	 (12)

The adjusted confidence interval for the example above is:

	 10 494 261
494 1

10 0 69 7´
-
-

= ´ =. 	

worked example for eq. (12).
These calculations assume normality; however, they are reasonably robust 

to departures from this assumption.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm
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5.2 �In other designs

In a two-stage cluster design, a sample of PSUs is first taken and then secondary 
sampling units (SSU) are sampled from each PSU. The population mean is 
estimated as:

	 x K
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x

m
i

k
i i

i
j
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i

i

= == =å å1 1where , 	 (13)

N is the total population size, K is the number of PSU’s in the population, k the 
number of PSUs sampled, Mi the number of SSU’s in the ith PSU, and mi the 
number of sampled SSU from the ith PSU.

The confidence interval is then calculated as:
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If all PSU’s contain the same number of SSU’s, M, and the same number of 
SSUs are sampled per PSU, m, then eq. 14 may be rewritten as:
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where sa
2  and sb

2  are the between and within-cluster variance estimates. 
Again, if the fraction of clusters or units within clusters sampled are small, the 
respective FPC’s may be ignored.

Consider the example of a container of 100 pallets of 50 cartons each, with 
3 cartons sampled in each of 10 pallets. Pallets are the PSU (K = 100, k = 10) and 
cartons are the SSU (M = 50, m = 3) (Table 1).

Using eq. 15 and s values from Table 1, the 95% confidence interval is:
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	 16 6 2 26 0 35 15 8 17 4. . . . , .± ´ = ( ) 	

worked example for eq. (15).

5.3 �Multistage designs

In a multistage design employing strata with either simple random, systematic, 
stratified or cluster sampling, if may not be possible to select units with 
equal probability in each stratum. In this situation probability weights should 
be calculated for each unit in the sample as the inverse of the probability 
of selection. These weights can then be used to adjust point estimates of 
population parameters such as population mean and variance, with weighting 
based on the stratum sizes, as:

	 x
N

N x
i

K

i i=
=
å1

1

, 	 (16)

where Ni and xi  are the population size and sample mean of the ith stratum,

 	 N Ni
i

K
=

=å 1
 

is the total population size, and K is the number of strata.
The confidence interval around this sample mean is calculated as:
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where si is the sample standard deviation of the ith stratum and t is calculated 
using

	 n Ki
i

K

=å -
1

 

degrees of freedom. Note that

	  N n
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-
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ö
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is the FPC (eq. 5).
Consider the data from Table 1 with the modification that there are only ten 

pallets in the container to provide an example of a stratified design. Samples 
are taken from all pallets in the population, so a given pallet is treated as a strata 
and carton becomes the PSU. The calculation of the 95% confidence interval 
becomes:
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worked example for eq. (17).
If restricted by the number of samples possible it is often better to sample 

as many PSUs as possible at the expense of the lower number of units per PSU, 
assuming most variation occurs at this level. Conversely, if it is of interest to 
quantify the within – and between – cluster variance, sampling of more units per 
cluster is required.

In most cases, the calculation of variance estimates is not trivial in 
multistage designs. Popular methods for variance estimation include the 
linearisation methods, resampling techniques such as jackknife, balanced 
repeated replication and bootstrap. The simplest of the replication methods 
is the jackknife. In this approach, k jackknife replicates are created, where k is 
the number of PSUs sampled. Each replicate removes a unique PSU from the 
sample, adjusts the weights accordingly, and calculates the statistic of interest. 
The variance is then estimated by how different the replicate statistics are from 
the full sample statistic. To calculate the variance of the mean, the weighted 
mean is first calculated as:
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where k is the number of PSUs and m is the total number of units in the PSU. 
For non-stratified samples, the jackknife coefficient used to adjust the replicate 
weights is defined as:

	 r k
k

=
-1. 	 (19)

See SAS (2021) for the calculation used when stratification is used. The ith 
jackknife replicate mean is then calculated as:
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and the jackknife standard error of x  is then:
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Owing to the complexity of variance estimates it is recommended to use 
specialist software such as STATA, SAS, or R (survey package) to analyse data 
collected under such schemes.

The next section of the chapter considers some specific case studies to 
position sampling schemes in given situations.

6 �Case studies
6.1 �Pre-harvest estimation of crop load

6.1.1 �The challenge

Estimation of crop load in the field, for example, the number of fruit on the 
trees in an orchard, is typically achieved by counting of fruit from a sample of 
trees. A set number of trees are typically counted in commercial practice, with 

Figure 3  Heat map (green/yellow/orange/red, low to high) of fruit load (#fruit/tree) 
across an orchard from machine vision assessment.
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trees selected on a line through the orchard for operator convenience. This 
methodology is flawed, in terms of both sample number and location. If tree-to-
tree variation is high, more sample units (trees) should be assessed to reduce 
the uncertainty of the estimate. If tree yield is spatially heterogeneous across the 
orchard (Fig. 3), sampling patterns should be informed by knowledge of that 
spatial variation. An easily assessed attribute that is correlated to fruit load is 
required to stratify orchards. Remotely assessed indices like canopy normalised 
difference vegetation index (NDVI) have been used, for example, by Wulfsohn 
et  al. (2019), Rahman et  al. (2018) and Anderson et  al. (2019), although the 
correlation of vegetation index to fruit load is sometimes weak.

6.1.2 �Required sample number in SRS

In Table 2, data is presented of the fruit load on six trees chosen randomly within 
each of three equal-sized canopy NDVI classes (a stratified design) in each 
orchard. The sample number required for an estimate of the mean using SRS at 
the stipulated confidence level, and %error was calculated using the mean and 
SD of this preliminary sample by application of eq. 8, with adjustment for the 
finite sizes of the populations using eq. 5.

In farm practice, the undertaking of a preliminary sampling to estimate 
population SD to achieve a desired error (e.g. <10% of mean) can be replaced 
by an on-the-go estimate. For example, Wulfsohn et al. (2019) describe a tablet-
based app for entry of data, allocation of random starting points in a stratified 
sampling design and calculation of required sample number (Pronofruit 2021).

Table 2 Data on tree number and mean, SD and CV on fruit number per tree for 18 trees in 
each of 10 mango orchards, with calculated sample n and n* required for a 95% confidence 
and an error of 10% in estimation of average fruit number per tree, where n* is after adjustment 
for population size

Orchard
N 

(#trees)
Mean

(fruit#/tree)
SD

(fruit#/tree)
CV

(SD/M)
n

(#trees)
n*

(#trees)

1 469 88 82 93 334 195
2 486 259 102 39 60 53
3 1017 240 160 67 171 146
4 1100 80 34 43 69 65
5 224 59 36 61 143 87
6 1205 97 65 67 173 151
7 1091 201 55 27 29 28
8 1818 106 51 48 89 85
9 1176 77 61 79 241 200
10 1117 85 40 47 85 79

Data from Anderson et al. (2019).
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6.1.3 �Other sampling designs

The required sample number can be decreased if sub-populations with a 
lower variation that the total population can be identified through stratified, 
systematic or cluster sampling, as appropriate. For example, consider a 
hypothetical orchard with areas of high- and low-yielding trees separated 
spatially. SRS sampling of 50 trees over the entire orchard results in an estimate 
error of 11 fruit per tree, while sampling of 50 trees in two sub-populations 
results in a decrease in measurement error (Fig. 4).

o achieve a measurement error of 5 fruit/tree at 95% probability, the 
sample number could be reduced from 246 to (33 + 16 =) 49 trees.

Alternatively, using the right-hand side of eq. 17 for a stratified design to 
estimate the population mean from a sample of 50 trees (25 per strata) gives 
e = 3.5:
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Thus, the sample number can be reduced from 246 to 28 trees for a 
measurement error of 5 fruit/tree:
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This decreased sampling effort illustrates the benefit of a more efficient 
sampling strategy compared to SRS.

(a) (b)

(i) For n = 50, P=0.05: e=11.1, e*=10.5         For n=50: e = 6.2, e *=5.9    e = 4.1, e *=3.9 

(ii) For e=5, P=0.05: n = 246, n*=198                    n = 35, n*=33           n = 16, n*=16 

x = 100
s = 40
N = 1000

x =150
s = 15
N = 500

x = 50
s = 10
N = 500

Figure 4 Hypothetical case of (i) estimate error achieved for a count of a set number 
of trees, and (ii) number of trees to be counted to estimate average tree fruit load of 
an orchard, n, for a set estimate error, e, and probability, P. Estimates are calculated 
using average number of fruit/tree, x, the standard deviation of the number of fruit/tree, 
s, the number of trees in the orchard, N, through application of eqs 5, 7 and 13. The 
required finite populate adjusted n is denoted n*, and adjusted e, e*. Two conditions are 
considered: (a) SRS of the entire orchard, and (b) a stratified design with SRC within two 
classes.
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A systematic-uniform-random sampling strategy is advocated by Wulfsohn 
et al. (2019) to reduce counting effort over traditional ‘random’ sampling and 
to provide an advantage in field convenience, in terms of locating trees. This 
procedure involves manual fruit counts of systematically selected row, tree, 
branch and branch segments, with the sampling unit defined by the crop and 
canopy architecture. The periodicity of sampling requires prior knowledge 
of the source of variation (within vs between trees). The method yields a high 
number of small units distributed uniformly in the three dimensions of tree 
canopies. The low counts per sample unit are considered important to reduce 
human errors in counting.

6.2 �Optimising time of harvest

6.2.1 �New Zealand kiwifruit example

Kiwifruit growers in New Zealand are required to ensure industry-set ‘maturity 
clearance’ standards are met before harvesting a crop. Rather than the use of 
a set attribute level that the average of the sample must exceed, the maturity 
metric is a set percentile point. The maturity clearance standard for the gold-
fleshed Zespri™ SunGold Kiwifruitis is the 90th percentile for colour (90% of the 
sample must be below a specified hue value) and the 30th percentile for DM 
(70% of the sample must have a DM value greater than a specified threshold). 
Additionally, strict and detailed sampling protocols must be followed in the 
selection of fruit used for the maturity clearance test, in terms of sample number 
and sampling strategy.

‘Maturity areas’ (MAs) of an orchard are selected on the basis of providing 
homogenous growing conditions, consistent with respect to terrain and 
climate factors, which will minimise variance within that scale. The area is 
typically around 1 ha and cannot exceed 4 ha, with a typical yield > 12 000 
tray equivalents or 360 000 average-sized fruit. Perhaps surprisingly then, the 
typical maturity clearance sample from an MA is only 90 fruit, only 0.025% of 
the typical fruit number.

The required sample number to achieve a desired measurement uncertainty 
and probability is a function of population SD, not population size (cf. eq. 1). 
In the New Zealand kiwifruit industry, it has been empirically established that 
there is little to no benefit to have sample sizes larger than 90 (Fig. 5), at least in 
comparison to the increased complexity and costs that would be incurred with 
larger sample sizes.

How should the required sample of 90 fruit be acquired from a 1 ha field 
containing 360 000 fruit? The development of a sampling strategy to achieve a 
true representation of the heterogeneity is a key challenge with maturity testing 
given fruit-to-fruit variation is large on orchards at all scales, be it within single 
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fruit, between fruit in a single plant, between plants, within orchard blocks and 
between blocks. The kiwifruit sampling protocol involves a stratified multistage 
strategy of first mapping the entire MA into a spatially representative grid 
sampling pattern of 90 sampling vines. The area of each sampling vine is then 
divided into three representative lanes (i.e. fruit canes close to the leader 
line, halfway out along the canes and then close to the end of the canes) and 
sampled on a rotational basis through the sequence of sampling vines. Low-
hanging fruit, which are easily accessed and would tend to be over-represented 
in unsupervised human sampling and sun-exposed upper canopy fruit, tend 
to be outliers in attribute levels. Fruit are therefore taken from within a ±10 
cm zone of the middle canopy, enforcing consistency between the designated 
strata pattern. The importance of proper sampling is underlined by the fact 
that only fully independent and audited operators are authorised to do the 
sampling.

These kiwifruit sampling protocols are continually being updated and 
refined, on a near yearly basis, as more is learnt about orchard and vine variability. 
Change in crop consistency due to changes in genetics, agronomic practice 
or growing conditions requires a change in sampling effort. For example, the 
‘improved’ Gold cultivar requires greater sampling for the same certainty of 
measurement (Fig. 5), and inconsistent pollination can increase crop variability, 
requiring greater sampling effort for the same certainty of estimation.

Figure 5  Standard error of mean DM (% FW) versus sample size, with regard to the 
Taste Zespri Grade (TZG) standard (Zespri, 2018). Gold dots represent Zespri™ SunGold 
Kiwifruit; green dots represent Zespri™ Green Kiwifruit.
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6.3 �Post-harvest: in-line sorting statistics and the impact of 
measurement error

6.3.1 �Measurement error in packlines

The fresh produce packline represents a point in the supply chain where all units 
can be individually assessed using a range of sensors. Weight assessment is 
achieved with relatively high accuracy, approximately ±1 g, with measurement of 
fruit on conveyors moving at around 1 m s−1. Machine vision allows discrimination 
of fruit on the basis of external features such as colour, shape and surface defects 
like scars, blemishes and bruises. Near-infrared spectroscopic (NIR) sorting 
systems allow sorting on internal fruit quality factors such as sweet taste (SSC, 
DMC) and/or the presence of defects (internal browning, cavities). The machine 
vision and NIR sorting systems are generally used to provide binary sorting 
classifications of fruit, into acceptable and unacceptable grade categories.

However, the training of a machine vision method to recognise specific 
external defects, and the training of models based on NIR spectra for 
assessment of internal attributes of fruit assessment, is a time-consuming 
and difficult exercise. The predictive models can be prone to relatively large 
errors. The consequence is that these newer sorting operations should be 
operated with a system to deliver regular and current information on the error 
or misclassification rates in sorting. The error rates are essential knowledge for 
maintaining the integrity of the sorter output, whether it is in maintaining high-
grade category standards and/or minimising losses to the low-grade category. 
Such a quality control system requires a sampling strategy in the choice of 
samples.

For example, the measurement error associated with NIR spectroscopy is 
often reported as the root mean square of error of prediction (RMSEP),
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p a

n

n

=
-( )å� ,1

2

	 (23)

where p is the predicted value, a is the actual or reference method value and 
n is the number of samples. The RMSEP encompasses prediction accuracy, as 
expressed by bias, the average difference between actual and predicted values 
as well as prediction precision, as:

	 RMSEP bias SEP= +� ,2 2 	 (24)

where SEP is bias-corrected RMSEP, i.e.
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In practice, SEP is reasonably stable for established (multi-year) NIR 
spectroscopic-based models of attributes that are commonly assessed in 
commercial practice (e.g. >0.5% FW for DM content and 0.5% w/v for SSC). 
However, unacceptable biases (>1% FW on DM) on prediction can still occur 
with new incoming populations. This bias can be associated with an instrument 
or population changes. Changes in temperature of fruit or instrument can be 
accommodated in the modelling process, there being a predictable impact on 
water absorption peaks and detector sensitivity, respectively. Other population 
changes are less predictable. For example, growing conditions may affect fruit 
cell size, skin thickness and composition, with impact on a NIR-based prediction, 
primarily as bias.

Bias can be quantified by measuring the average difference between 
predicted and actual values on a small sample set. Precision on an estimate of 
bias, sbias can be calculated as:

	 s
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Note that as sample size, n, appears as a divisor in eq. 26, it does not have to be 
very large to achieve good bias precision.

Bias can be ‘simply’ accommodated in further predictions. This correction 
is central to commercial viability for NIRS applications, avoiding the need for 
expensive re-development of multivariate models. However, there is an art 
involved in judging how often to check for the need for adjustment.

6.3.2 �Packline sampling

The standard statistical approach to understanding classification errors 
involves the assessment of representative fruit samples from both the 
acceptable and the unacceptable output bins of the sorting operation. As 
with all sampling, the need for representative sampling from the output bins 
is paramount, requiring care to avoid the introduction of sampling bias. For 
instance, randomly sampling from only the top layers of an output bin will 
result in the selection of fruit representative of those recently processed 
by the sorter, and not of the whole consignment. Fruits presented to the 
grader generally have a heterogeneity correlated with in-orchard trends that 
match fruit harvesting order. For example, if a number of trees producing 
high-quality fruit are harvested together, it is likely that these fruits will 
also present together to the sorter. There will be fewer unacceptable fruit 
graded as acceptable than in the overall population. A systematic sampling 
approach could be employed, with the grader directing every nth sample to 
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an assessment bin, rather than a collection of fruit from the top layers of fruit 
in the output bin at a single point in time. Alternatively, a stratified design 
could be employed, given knowledge of orchard variation in the attribute of 
interest.

6.3.3 �Sorting statistics: apple browning and kiwifruit DM 
examples

Sorting involves a pass/fail binary classification, termed positive (P) and 
negative (N) classes. The terms P and N are typically used in the sense that a 
sorter is used to find and remove unacceptable fruit as ‘positive’ detections 
and otherwise to report ‘negatively’ or ignore the acceptable fruit. Fruit in 
the P grade will include both true positives (TP) and false positives (FP), the 
latter being acceptable fruit incorrectly assessed as unacceptable. Fruit in 
the N grade will consist of true negatives (TN) and false negatives (FN), the 
latter being unacceptable fruit falsely classified as acceptable. Examination 
of representative fruit samples from the respective output bins enables 
calculation of the number of FP, also known as a false alarm or a type I error 
and FN, also known as a miss or a type II errors. A common practice is to lay out 
the statistical results of the samplings as a confusion matrix, also known as an 
error matrix (Fig. 6).

Sometimes the classification is based on the measurement of a discrete or 
continuous variable, rather than a direct binary classification. Consider the case 
of a sorting technology, which non-invasively assesses the severity of internal 
browning in an apple on a 1 to 5 scale, in which scores of 1 and 2 are considered 
acceptable and 3–5 as unacceptable (Khatiwadi et al., 2016). The incidence of 
FP and FN results will change with the proportion of P and N in the incoming 
population, with the rate of measurement error and with threshold value or cut-
point around which the sorting decision is made (Fig. 7). For example, as the 
mean score of a population decreases, the incidence of defect fruit accepted 
(FN/P) will increase for a given sorting threshold. Decreasing the acceptable 
threshold will decrease FN/P but will increase the incidence rate of acceptable 
fruit rejected (FN/P). Optimisation of the sorting operation requires knowledge 
of the instrument measurement error and the mean and SD of the defect in the 
incoming population.

n = 227 Predicted acceptable Predicted defective
Actual acceptable 50 21
Actual defective 0 156

Figure 6 Example of a confusion matrix: results of a non-invasive sorting operation (using 
a threshold of 2, see Fig. 7) on 227 fruit to separate fruit with internal browning defect 
from acceptable fruit, compared to actual, as assessed from visual inspection of cut fruit.
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However, sorting statistics and decisions are often made on the basis of 
only very small subsamples from the output bins, without accurate knowledge 
of the incoming population in terms of the number of actual good (N) and 
poor (P) fruit. What is generally known with good accuracy is the recovery rate 
of the sorting operation, the volume fraction of outgoing fruit to incoming 
fruit (N/(P  +  N)). With that parameter and estimates of the false positive 
and negative proportion in the sorted bins, the sensitivity and FPR can be 
calculated as:
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where PnN and NnP are sample estimates of the fractional number of fruit 
incorrectly sorted into the good (N) and poor (P) classes, respectively, and R is 
the total recovery rate in terms of the volume of good fruit.

As in much of statistics, there is seldom one single best summary statistic 
or graph to represent all aspects of a sorting operation. Common examples 
include accuracy (ACC), F-score (F1), area under curve (AUC) and the Matthews 
correlation coefficient (MCC). A receiver operating characteristic (ROC) curve 
is commonly used to understand sorting efficiency, if it can be conveniently 
assembled. It is a plot of the true positive rate (TP/P; also known as the sensitivity) 
against the false-positive rate (FP/N; equivalent to 1 − specificity) (Ooms et al., 
2010). It can be time-consuming to generate as it requires varying the threshold 
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Figure 7 Example of impact of change in threshold level in a sorting operation on apple 
internal browning in terms of % of good fruit correctly accepted (TN/N) and rejected 
(FP/N = false-positive rate), and of defect fruit accepted (FN/P) and rejected (TP/P = 
sensitivity), for a population of mean score 3.1 and SD 1.4 (data of Khatiwadi et al., 2016).
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or cut-point value across a large fraction of the incoming population range. 
Some simulated sorting data are shown in the ROC format in Fig. 8, where the 
scattered points represent various randomised re-samplings of the output 
bins, at various threshold levels, and with the black curves being a calculated 

Figure 8  ROC (Sensitivity against false positive rate) plots for a simulation of NIR 
spectroscopy sorting of kiwifruit to a DM specification 16.1% FW. The statistics were 
generated by random subsampling of 50 (top panel) or 200 (bottom panel) fruit from 
both the high- and low-DM sorted output bins. The colour scale represents the variation 
with change in the selected sorting threshold value (colour bar).
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running averaged ROC curve in each case. The curves illustrate the trade-off 
between the success of the sorting operation in removing actual defective or 
poor fruit (TP/P; sensitivity) and the cost that must be simultaneously met in 
removing good fruit (FP/N; false-positive rate FPR). The further the curves in 
a ROC plot are towards the upper left-hand corner, of high sensitivity and low 
FPR, the more accurate the sorting operation.

There are alternative framings of the classification problem, such as that 
described by signal detection theory (SDT; Bollen and Prussia, 2009). SDT theory 
uses similar concepts to the classification statistics described above but then 
narrowly frames the problem as the detection of one distinct ‘signal’ population 
within another, for instance, of two distinctly different normally distributed 
populations of differing means and standard deviations. The reframing enables 
the specification of new metrics from the output sample data, such as the 
detectability d′ (the difference between the means) and the setpoint criterion S 
(an optimising cut-point), both of which can be used to conveniently compare 
the performance of different sorting operations. However, the SDT approach is 
valid only for those fruit sorting applications where there are distinctly different 
sub-populations to segregate, such as in detecting a small diseased fruit 
population within a larger healthy population.

In some applications, such as with NIR-based sorting on internal fruit quality, 
the goal is simply to separate a low or high fraction from a single population 
distribution. In that case, there are not two separate populations to distinguish, 
rather just one that has to be split, and the theoretical modelling required in 
that circumstance involves truncated distributions, split around the chosen cut-
point. As analytical methods of analysis do not exist for those circumstances, 
the sorting scenario needs to be modelled numerically, for example, with 
Monte Carlo methods (e.g. Harrison, 2010).

Given knowledge of the measurement error (i.e. SEP) for a NIR spectros-
copy-based prediction of an attribute and knowledge of attribute distribution 
(mean and SD) in a population, it is possible to model ROC curves, as dem-
onstrated in Fig. 8 for a simulated DM segregation of kiwifruit. The simulation 
exercise involved the calculation of a recovery rate and resampling of 50 fruit 
from each of the good and poor bins, to calculate the PnN and NnP parameters 
for a sorting threshold of 16.1% FW. The data were generated from a simulated 
fruit DM population (of the normal distribution with mean 17% FW and variance 
2% FW), with added NIR prediction noise (normal with mean 0% FW and vari-
ance 1% FW). The exercise revealed considerable spread in the reported data, 
which must be due to sampling variation (Fig.  8). Further simulation studies 
showed clear benefits of increasing sample sizes for the good and poor bins 
(Fig. 8, bottom panel). In this example, the average spread around the true or 
mean ROC curve in the simulations decreased from near 10% to below 5% as 
the sample size increased from 50 fruit to 200 fruit.
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6.4 �Post-harvest: sampling for biosecurity assessment

6.4.1 �Sample selection

Sampling inspections of harvested and packed fruit are often mandated by 
industry regulation to ensure fruit lots meet set quality standards. The sampling 
practices required to provide assurance that a consignment meets pest and 
disease standards are relatively well developed relative to those for eating 
quality assessment, because they are critical to international trade, and the 
biosecurity risks involved in the failure to detect are huge.

The International Plant Protection Convention provides sampling 
standard ISPM 31 (IPPC, 2020). The standard involves taking a subsample of 
a consignment for visual inspection, with the decision of acceptability dictated 
by the number of positive samples. The size of the subsample is chosen based 
on the desired degree of confidence that the pest or disease will be picked 
up for a given rate of infestation. ISPM 31 provides an example case where ‘at 
a 95% confidence level, not more than 0.5% of the units in the consignment 
are infested’(MAF Biosecurity New Zealand, 2008), where a ‘unit’ is typically 
an individual fruit. The sample size required to achieve this confidence is often 
modelled as a binomial distribution and assuming a given acceptance level, 
that is, infested units allowed in the subsample.

Let X be the number of infested units in the subsample, then X will be 
binomally distributed (X ∼ Binom(n,p)), where n is the subsample size and p is 
the proportion of infested units in the whole lot.

The sample size required can then be found by setting p  =  detection 
level (0.005 in the above statement), and finding the minimum n such that 
(X > 0) = 95% for a 95% confidence level. This is equivalent to solving for n 
such that Pr (X = 0) = 5%, which results in a value of 598 units (see calculation 
below). Sampling of 600 units is mandated in many phytosanitary inspection 
protocols with the lot failing inspection if one or more sampled units are out of 
specification. This equates to a 95% confidence in rejecting an infestation level 
of 0.5%, that is, a proportion of 0.005.

Equation 9 can be used to get an approximate solution by setting 
e = p = 0.005 and α = 0.05:

	
p p Z

e
1 0 005 1 0 005 1 645
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An exact solution can be found by setting the probability of no infested units in 
the sample to α, that is:

	 a = -( )1 p n 	
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which can be rearranged to solve for n:

	 n
log

log p
=

( )
-( )
a

1
	 (29)

	 n
log

log
=

( )
-( ) =
0 005

1 0 005
598

.
.

	

worked example for eq. (29).
This can also be computed using the cumulative density function of the 

negative binomial distribution. This can be calculated in R using the qnbinom 
function. In the above example qnbinom(0.95,1,0.005)   =  597, which is the 
upper 95% limit on the number of clean samples before one infested sample is 
observed. That is, the total samples needed are 597 + 1 = 598. If the population 
size was 1000 with 5 infested (infestation level of 0.005) and 995 clean units, 
the required sample size can be calculated using the negative hypergeometric 

Figure 9 ABS sample size calculator (https://www​.abs​.gov​.au​/websitedbs​/d3310114​.nsf​
/home​/sample​+size​+calculator) for the case of detection of a defect at 0.5% incidence 
rate at a 95% confidence interval, for an infinitely large population (left panel) and a 
population of 1000 units (right panel).
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distribution. The R function qnhyper(0.95,995,5,1) from the extraDistr package 
gives 450 samples. Note that the qnhyper function gives the total sample size 
as the solution so does not require adding the minimum number of infested 
units in the sample before the sample fails inspection (1 in this example).

The Australian Bureau of Statistics calculator (ABS, 2021), which is based 
on eq. 9, can also be used with this example (Fig. 9), with the limitation that 
the calculator only allows for 95% or 99% confidence interval. As the test in the 
example is one-sided (infestation < 0.005), the previous estimates were based 
on a 2.5% chance (not 5%) that the sample will be clean if the population has 
0.5% infestation.

This calculation assumes that the visual inspection will always detect 
any infested units (fruit) included in the subsample. Relaxing this assumption 
requires adjustment of the P parameter. For example, if visual inspection 
correctly classifies an infested unit 90% of the time, then in the above example 
P = 0.005 × 0.9 = 0.0045. Using eq. 29, this results in a requirement for a sample 
of 

	
log .

log .
0 05

1 0 0045
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-( ) =  

units to achieve a 95% confidence that a lot with an infestation rate of 0.5% 
will fail inspection.

ISPM 31 tabulates the required sample size in the context of sample 
detection level and confidence level (Table 3).

A requirement is placed on the above estimates that the population size 
is large relative to the sample size. When the sample size is small (i.e. <5% of 

Table 3 Sample size required for detection of a given infestation rate in a large lot (as defined 
by the lot size being at least 20 times larger than the sample size) at a given confidence level 
(from ISPM 31)

Infestation rate (%) Confidence level (%) Sample size (units)

5 90 45
5 95 59
5 99 90
5 99.9 135
0.1 95 2995
0.5 95 598
1 95 299
2 95 149
5 95 59

10 95 29
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N), the hypergeometric distribution should be used in place of the binomial 
distribution. Defining the number of infested units included in the visual 
inspection sample as X, then X ∼ (N,K,n), where N and n are the population and 
sample sizes, respectively, and K is the total number of infested units in the lot. 
A 95% confidence of detection for a lot size of 1000 with 5 infested units (0.5% 
incidence) is achieved with a sample of 450 units (see also Fig. 10).

6.4.2 �Adding sorting technology to biosecurity assessments

Currently, phytosanitary inspections are undertaken manually. It is interesting 
to consider the impact of the use of a non-invasive assessment technology 
installed on a fruit grading platform. Such a technology could be used to 
assess all the units of a population or a large subsample of the population. 

Figure 10  Probability a lot failing inspection under various sampling protocols. The 
standard 600-fruit visual inspection curve without accounting for the finite population 
are given as a reference. Calculations were based on a lot of 10 000 units with varying 
infestation levels. The simulation assumed grading of 1000 units combined with visual 
inspection of a 50 or 100 unit subsample of lots graded as positive.
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This advantage is counterbalanced by the disadvantage that detection of the 
infested fruit by the non-invasive method would probably be less reliable than 
a destructive method involving human assessment.

Two important measures of this performance are sensitivity and specificity. 
Sensitivity is the probability that the grading will correctly detect an infested fruit. 
Specificity is the probability that the grader will correctly classify a clean unit. It is 
desirable to have both as high as possible, but this can vary by technology, the 
algorithm used for prediction and also the severity of infestation. For example, 
sorting of a consignment of fruit with mild disease symptoms will suffer a lower 
sensitivity if a larger proportion of infested units are incorrectly classified as clean.

The assurance provided by automated grading compared with manual 
visual inspection is influenced by these two measures. Lower sensitivity is often 
less of an issue as the increased sample size for the automated grading will 
offset this drawback, and it will outperform a smaller sample assessed offline or 
online by manual visual inspection. Specificity, however, could pose a significant 
issue if not 100%. Specificity less than 100% means that the inspection is at risk 
of false positives, with this rate amplified by the high number of units graded 
in terms of the number of false positives encountered. A specificity of 100% is 
generally unrealistic and so caution should be used to reject lots based solely 
on a small number of units classified by the grader as infested. An additional 
subsample of the units rejected by the grader should then be taken for visual 
inspection. This subsample would be smaller than the 600-fruit sample required 
if the decision was based solely on visual inspection of randomly sampled 
units as the infestation rate should be higher in the rejected units than in the 
population.

Ignoring the finite population, the standard calculations of sample size 
can be based on the expected infestation rate of the rejected unit from the 
grader rather than the whole-lot infestation rate if the full lot is graded. For 
example, a grader with 90% specificity and 80% sensitivity grading units used 
in the assessment of a population with a 0.5% incidence rate would expect to 
achieve a precision (correctly detected positives/all detected positives) in the 
identification of infested units of:
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From eq. 29, this would require a sample of only 
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rather than 600, units to achieve 95% confidence that a lot with an infestation 
rate of 0.5% will fail inspection. Simulations of full lot grading, at varying 
sensitivity and specificity rates, suggest a good advantage in reduced sampling 
sizes for at-line tests (Fig. 10).

7 �Conclusion
New measurement technologies are facilitating new approaches for the 
improvement of safety and quality in agri-food supply chains. However, 
measurement uncertainty and choice of sampling strategy can influence 
the effectiveness of sampling outcomes. This chapter provides a sampler of 
calculations of population statistics, required sample sizes and approaches to 
sampling strategy and provides an insight into the complex considerations 
that need to be undertaken to ensure that the results from the sampling 
exercise are representative and without bias. It is essential to consider the 
degree of heterogeneity of the product population itself and whether a given 
defect is equally distributed through the product population or is a discrete 
issue (specific grower in a consignment from multiple growers or an area of 
an orchard in a whole crop harvest) that has its own pattern of distribution 
within the sub-population of a whole consignment. While examples from 
the fresh produce sector are given, the themes explored in this chapter are 
of relevance to the student and practitioner operating in agri-supply chains 
more generally.

8 �Where to look for further information
The topics covered in this chapter are of practical relevance to fruit value chains 
and thus relevant techniques are embedded into the operation of organisation 
operating through the value chain. By way of examples, reference has been 
made in this chapter to commercial operations such as Geco Enterprises (San 
Vicente TT, Chile), a company involved in crop load estimation, and Zespri 
(New Zealand), a company involved in kiwifruit marketing. Organizations 
involved in quality control inspections, particularly biosecurity inspection, 
are also practitioners of the art of sampling. As recommended in section 2, 
documentation on sampling for fruit specifications as provided by the United 
States Department of Agriculture (USDA, 2021) is well presented. For statistics 
theory, the text by Thompson (2012) is recommended.
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