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1 �Introduction
1.1 �Knowledge domains of monitoring and forecasting 

research

Integrated pest management (IPM) is repeatedly characterized as a knowledge-
intensive approach for plant protection. Thresholds for interventions and 
sampling for pest occurrence, the results of which inform whether a threshold 
has been reached, form the foundation and central organizing principles of 
all IPM activities (Castle and Naranjo, 2009). Information collected from the 
crop on occurrence or densities of pest(s) must be appraised in respect to the 
status of the crop system. The system’s status concerns, among other things, 
crop phenology and its associated sensitivity to pests compared with pest 
density and prevailing and forecast weather conditions that will influence pest 
development.

Based on the information collected and its appraisal, a decision needs to be 
made: whether or not to intervene and how to intervene? Decisions, in turn, are 
appraised through a socioeconomic filter: crop value, cost of intervention, the 
farmer’s level of risk taking and ecological, economic and social considerations 
of the sustainability of crop production. Farming objectives, the farmer’s and 
society’s values and attitudes and the farm’s economic situation, all modulate 
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the selection of tools needed for information collecting and appraisal, as well 
as the decisions made based on that information.

To develop efficient tools for the implementation of monitoring and 
forecasting in practice, we need scientific research and knowledge and/
or technological innovations from at least four different domains (Fig. 1): 
(1) biology and ecology of the pest and pest identity; (2) pest detection to 
estimate the pest’s density or proportion of infested sampling units; (3) 
evaluation of the data on pest densities for decision-making with the help of 
pre-established reference thresholds that bring bioeconomics into the picture; 
and (4) forecasting of anticipated pest developments within and/or between 
the growing seasons. In the case of invasive pests, detecting and forecasting 
concern also their dispersal and establishment in new geographical regions. 
Forecasting can in some cases replace direct pest detection, but more often 
these two domains complement each other: forecasting results inform the 
grower about when and where to start monitoring.

At this point one thing must be made clear. Sampling and monitoring 
are not, strictly speaking, the same thing. Sampling is a one-time process 
of acquiring necessary information on the real-time pest status of a crop by 
using a sampling protocol (plan). Pests can be sampled for example by directly 
counting them on crop plants, by vacuuming, sweeping or beating to remove 
pests from plants for counting, or by destructive sampling by removing whole 

Figure 1  Four knowledge domains needed to develop tools for monitoring and 
forecasting insect pests. Identified challenges are listed after the domain name. EIL, 
economic injury level; ET, economic (damage) threshold; AT, action threshold. The arrows 
indicate the dependence of the domains on each other (see text for details).
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plants or plant parts for counting pests on them. Flying pests can be sampled 
using different types of traps: suction traps or traps that attract pests with 
colour, light or odour sources and that are equipped with a sticky surface or a 
vessel filled with liquid where insects are trapped. Depending on the sampling 
method, pest counts are either absolute or relative. Monitoring denotes the 
use of a sampling plan sequentially in time to monitor the change in the 
density of the target pest population – such repeated sampling can be called 
cascaded sampling. (Binns et al., 2000). Pest forecasting concerns the predicted 
occurrence and/or activity of biotic agent(s) that could cause economic 
damage to a crop, usually in the near future. Forecasting is customarily based 
on the knowledge concerning the impact of weather or climate on pest 
biology (Olatinwo and Hoogenboom, 2014) in order to predict the timing of 
pest attack or pest population development (Finch et al., 1996; Phelps et al.,  
1993)

The arrows in Fig. 1 depict how the four knowledge and technology 
domains associated with pest monitoring and forecasting interact with each 
other. Knowing the pest’s biology, ecology and behaviour and being able 
to identify it are necessary for developing reliable detection methods and 
decision-making tools. Economic injury levels (EILs) and economic damage 
thresholds (ET) cannot be developed without understanding how the pest 
utilizes its plant resources in comparison with farmers’ goals regarding those 
resources. Each method of detecting the pest requires associated knowledge 
on the relationship between pest counts and economic damage to the plant 
population. The nature of the economic damage imposes requirements on the 
nature of detection methods (e.g. how early the pest must be detected so as to 
be able to manage it with the existing tools for intervention). Pest identification 
issues are often intricately related to the detection method, since the latter 
influences the condition in which the pest is available for identification and how 
many other species interfere with the identification task.

The biological, ecological, phenological and sometimes even genetic 
fundamentals of the pest must be known so as to be able to develop forecasting 
models that accurately predict pest emergence and population dynamics. The 
forecast results, in turn, contribute to or wholly enable decision-making concerning 
interventions and their timing. Simulation models may reveal important new 
aspects of the pest’s behavior, biology, ecology and/or bioeconomics that would 
be very laborious and resource-demanding to study empirically.

1.2 �Mini reviews on 12 pest species to collect information on 
bottlenecks and challenges in the knowledge domains

For this chapter, the way of identifying the bottlenecks and challenges concerning 
monitoring and forecasting was as follows: a total of 12 key insect or mite 
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pests of seven important fruit, berry and vegetable crops – apple, strawberry, 
cruciferous vegetables, onion, tomato + cucumber and carrot – were chosen for 
mini reviews on their status of monitoring and forecasting (Table 1). These pests 
included species that directly damage the end product and those that damage 
only non-saleable parts of the crop. Whiteflies were chosen as pests for a closer 
case study, as the author is most familiar with their biology and management. 
Through the 12 mini reviews, it was possible to obtain a picture of the status 
of research and implementation of monitoring and forecasting in horticultural 
crops that form important parts of the human diets all over the world, with 
emphasis on the boreal, temperate and Mediterranean climate zones.

Literature searches were made for the chosen pests on the status of 
the methods for their practical identification and detection and sampling 
programs, and also decision-making tools and forecasting of phenological 
development or population dynamics. The status of knowledge on the biology, 
ecology, etc., of the pests was reviewed only to the extent that was necessary 
to understand why there were bottlenecks in the above knowledge domains. 
Based on reviewing the status of monitoring and forecasting for the chosen 
pest species, the issues depicted in Fig. 1 were identified as crucial ones for the 
development of monitoring and forecasting systems for pests of horticultural 
crops. Other issues could have emerged had the sample of crops and pest 
species been larger.

1.3 �Overview of bottlenecks and challenges in pest monitoring 
and forecasting

Sampling and detection require time, labour, and identification skills (Binns 
et al., 2000). There is a tendency for farmers and scouts to try to minimize the 
time needed for sampling based on in situ counts and checking traps (Agnello 
et al., 1994; Hamilton et al., 2004; Rincon et al., 2020). At the same time, 
farmers’ tendency for risk aversion is influenced by the ‘uncertainty associated 
with pest sampling and forecast information’, EILs and ETs (Gent et al., 2011; 
Milner-Gulland and Shea, 2017). Uncertainties are caused by for example 
yearly trends in commodity values (Damos, 2014) and abiotic and biotic 
conditions that influence pests and natural enemies, efficacy of pesticides, yield 
levels and losses and the correlation between pest densities and economic 
losses (Johnson et al., 1992; te Beest et al., 2013). If exact information on 
these variables is not available at the time of sampling and forecasting pest 
population development, the inclusion of their variance, by way of a probability 
distribution, in calculations of ETs can be used, instead of explicitly known 
values. This results in probabilistic EILs (Peterson and Hunt, 2003), which instead 
of taking mean values for the parameters C, V, I and D in the EIL function (see 
Fig. 2), use the whole range of probabilities for values of these variables. For 



Published by Burleigh Dodds Science Publishing Limited, 2022.

Pest and disease monitoring and forecasting in horticulture﻿ 5

growers this means, for example, that they can choose from different levels of 
EILs depending on their risk aversion level. A risk-averse grower could choose 
a lower EIL that occurs only 25% of the time, due to uncertainties associated 
with the above variables (Higley and Peterson, 2009). Probabilistic EILs and ETs 
are rare, although they would address the very problem of uncertainty of EILs 
and ETs and farmers’ risk aversion and its consequences for decision-making. 
Uncertainty of information tends to result in treating the crop even when there 
would be no need to treat it (Gent et al., 2011; McRoberts et al., 2011) or taking 
control actions before pest forecasts recommend taking action (Evans et al., 
2017; Möhring et al., 2020). For farmers, the value of information about yield 
prospects and not suffering yield losses tends to be higher than that about pest 
density (Pannell, 1994). Farmers’ risk aversion and uncertainty of information 
concerning pest numbers must be taken into account when developing and 
implementing sampling/monitoring and forecasting tools (Evans et al., 2017).

Pest insect identification is seldom a problem with traps based on female 
sex pheromones that only attract males to the traps (Witzgall et al., 2010). 

Table 1 Pests of five horticultural crops chosen for mini reviews that were used as the basis 
of identifying bottlenecks and stalled research concerning the pest species’ monitoring and 
forecasting. EILs and ETs are available for all these pest species, either based on in situ counts 
or counts from traps, or both

Crop
Pests causing direct damage 
to the end product

Pests causing indirect 
damage to the crop

Apple 	 1.	 Cydia pomonella (codling moth)1,2,5,6
	 2.	 Argyresthia conjugella (apple fruit 

moth)1,2,4,5,6

	 3.	 Panonychus ulmi 
(European red mite)4,5,6

Strawberry 	 4.	 Drosophila suzukii (spotted wing 
drosophila) 2,3,4,5

	 5.	 Anthonomus rubi (strawberry weevil)2,4,5

	 6.	 Phytonemus pallidus 
(strawberry mite)4,5,6

Crucifeours 
vegetables

	 7.	 Delia radicum (cabbage root fly)2,3,4,5,6
	 8.	 Plutella xylostella (diamondback moth) 

(direct pest in some crops)1,4,5,6

	10.	 P. xylostella (indirect pest 
in some crops)1,4,5,6

Onions 	11.	 Delia antiqua (onion fly) 3,5,6

Carrot 	12. 	 Psila/Chamaepsila rosae (carrot fly)3,6

Tomato and 
cucumber 
(greenhouse)

13. 	 Whiteflies (Trialeurodes 
vaporariorum 
greenhouse whitefly, 
Bemisia tabaci 
sweetpotato whitefly)3,4,5,6

1 Sex pheromone available for attracting males to traps; 2Other semiochemicals available or under 
product development for attracting both males and females, either alone or in combination of sex 
pheromones; 3Visual traps commonly used for monitoring; 4Sampling plans available for in situ counts 
from plants/soil for estimating abundance; 5EILs and/or ETs available for decision-making at least in 
some crops; 6Degree day or phenology models available for predicting emergence, flight peaks and/
or population dynamics/trajectories, at least in some crops/regions. References will be given later in 
the text.
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Sex pheromones are available for all three Lepidopteran pests mentioned in 
Table 1, but not all pest species use sex pheromones for attracting mates. The 
performance of sex pheromones is not always sufficient or it is too variable, 
as with Plutella xylostella (Evenden and Gries, 2010); their use could benefit 
from combining them with additional semiochemicals (Dai et al., 2008; Li et al., 
2012). The high selectivity of sex pheromones can be problematic, too. With 
only male captures, it is difficult to make exact projections of crop damage, as 
it is ultimately the females that are responsible for the damage. The correlation 
between captured male counts and crop damage is not necessarily very good, 
thus the precision of trap catches in predicting damage needs improving for 
some pests (Adams, 2017). Therefore, it is desirable to also attract females to 
traps but without attracting too many non-targets.

Usually only a few traps based on sex pheromones are used per orchard or 
field, but even so, checking them still takes time and effort and requires walking 
to the traps to check them. This issue is addressed nowadays with traps equipped 
with cameras to enable automated checking of traps and even automated iden-
tification of trapped insects (see Section 2.1). Furthermore, the frequency of 
false negatives and overestimated positives (e.g. codling moth trapping) can 
be high with single, widely spaced traps, adding to the uncertainty of trapping 
results. (Adams, 2017). Males entering traps baited with sex pheromones do not 
always indicate damage potential, even if thresholds are exceeded. Knowing 
the pest’s biology and ecology is important. The apple fruit moth (Argyresthia 
conjugella) lays eggs in apples only when there are insufficient rowan berries for 
the whole female population (Kobro et al., 2003; Tuovinen, 1987). It is therefore 

Figure 2  Phases of developing economic injury levels and economic thresholds for 
decision-making in pest management. Based on Radcliffe et al. (2009) and Higley and 
Pedigo (1996).
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important to know not only the number of males coming to traps but also the 
number of rowan berries available for egg-laying with respect to the estimated 
size of the female population. Methods exist for this and should be combined 
with the use of traps (Edland, 1974; Tuovinen, 1987).

Food baits or plant-derived kairomones alone may not be as effective 
at attracting insects as sex pheromones (Landolt et al., 2007), and it can be 
difficult to find the right kinds of combinations of substances that would 
function equally well in all plant species backgrounds (Knudsen et al., 2017). 
The chemical ecology of herbivores has been a thriving domain of science only 
since the 1990s. There are still surprises to be revealed about how herbivores 
interact with their biotic environment, as exemplified by the recent advances in 
the chemical ecology of Drosophila suzukii.

Low sampling and trapping selectivity is an important bottleneck for 
reliable estimation of pest densities and can seriously hinder the uptake of 
sampling plans by practitioners. New, more efficient solutions for detecting and 
trapping pests lead to the need for developing new EILs, ETs/action thresholds 
(AT). The ET is theoretically dependent on the EIL (Pedigo et al., 1986), but it 
is very common for an ET to be established in isolation, as a practical action 
level arrived at through experience or direct field testing. This is because 
substantial research is required to derive an EIL (Fig. 2), so revisions of ETs are 
often based on experimentation (Hamilton et al., 2009a). Such experimental 
revisions may be possible for combinations of different pests that occur in the 
crop simultaneously, but once natural enemies are incorporated into EILs and 
ETs, mere empirical research can get very complicated. Modelling is needed to 
understand how natural enemies influence pest density in different scenarios 
of pest population dynamics.

Determination of EILs for crop plants had its peak period in the 1980s, 
and since then this research activity has been declining (Castle and Naranjo, 
2009). The context for use of EILs and ETs is gradually changing due to 
removal of rapidly acting pesticides from the market for reasons of human and 
environmental health (Collier et al., 2020). Thus, EILs and ETs may gradually lose 
their importance as mere thresholds for curative intervention with pesticides. 
Binns et al. (2000) consider EIL too narrow a concept: in its current form, it does 
not take into account that a grower may have other values than profit that guide 
her/his decision-making.

With increased reliance on biological control, cultural management and host plant 
resistance, pest control decision rules, and especially monitoring, will become even 
more important. Because it is often difficult to quantify the abundance of natural 
enemies, let alone predict their impact, monitoring [i.e. repeated sampling on time, 
particularly when there are multiple pest generations per growing season] is a useful 
tool for assessing the effectiveness of biological control.

(Binns et al., 1996)
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The incorporation of natural enemies in ETs brings along several challenges 
related to the uncertainty of factors that influence the EIL and ET and methods 
of threshold development. Growers in developed countries in particular 
tend to focus on economic returns and risk-averse management tactics, as 
explained above. Therefore, they may consider reliance on biological control 
too risky (Giles et al., 2017 and references therein) unless they have access to 
reliable, standardized impact data reports on biological control efficacy that are 
comparable across cropping systems, just as pesticide efficacy tests are reported 
(Giles et al., 2017). According to Macfadyen et al. (2015), when assessing the 
impact of natural enemies, the timing and consistency of mortality caused by 
natural enemies between seasons can be more important than the magnitude 
of mortality attributed to them. Impact assessments must be tailored according 
to the needs of farmers and the specific pest problems they face so that 
natural enemies can be incorporated as an integral part of decision-making, 
particularly upon reliance on conservation biological control (Macfadyen et al., 
2015). But, as these authors state, studies on tangible quantified impacts of 
natural enemies associated with ETs are still scarce. Macfadyen et al. (2015) list 
the challenges and key research questions associated with assessing the impact 
of natural enemies and describe methods to assess the impacts. Whether 
obtaining such impact data is possible at all, and under what circumstances 
such data can be relied upon, is a matter of investing in empirical research and 
modelling of the impact of natural enemies, communicating the results and 
understanding farmers’ perceptions and approaches to IPM when developing 
EILs and ETs. EILs and ETs incorporating natural enemies will require more 
thorough information on the role and biology of natural enemies in different 
crops as well as how to sample for them (Giles et al., 2017) (Fig. 3). This calls 
upon new biological, ecological and behavioural research on natural enemies 
and the factors that influence their performance. Modelling the interaction of 
pests and natural enemies also becomes more important than before in order 
to be able to incorporate their impact into EILs and ETs. To calculate economic 
impacts of natural enemies, modelling can be used as a starting point to create 
hypotheses that can be tested empirically in subsequent phases of research. 
One example is modelling the quantitative effects of entomopathogenic fungi 
in reducing yield losses of cereals by aphids (Saussure, 2019).

The development and use of new sampling protocols must be included 
in the skill repertoire of crop protection researchers, consultants and growers, 
and that also involves skills to use models for validation. Sampling methods 
for natural enemies must be developed and their robustness compared and 
established to satisfy the requirements of trustworthiness of sampling (Table 2). 
In this new situation, ensuring the practicality of sampling can become an issue, 
as it is challenging even now. The interaction between theory and practice will 
gain a heightened importance.
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Validation of sampling plans that include natural enemies is even more 
important than validating sampling plans for pests alone, but Castle and 
Naranjo (2009) stated that validation of sampling plans is often not done 
despite the fact that methods have been available since the 1990s (Hamilton 
et al., 2009b; Hull and Beers, 1990; Naranjo and Hutchison, 1997). In 2009, 
roughly half of the ETs developed were not accompanied by a corresponding 
sampling plan for their effective implementation (Castle and Naranjo, 2009). 
This is unfortunate because validation is particularly important for sampling 
plans developed for applying a decision rule involving ETs, the corner stones 
of decision-making in IPM (Castle and Naranjo, 2009).

Success of insect pest management actions is largely determined by 
the efficacy of the management action, the appropriate life stage of the 
pest targeted and the appropriate timing of the intervention (Tonnang et al., 
2017). Forecasting is undertaken to predict the timing of crucial events in pest 
lifecycles so that management actions can be applied when they are likely to 
be most effective (Collier et al., 2020). Forecasting is based on models, that 
is, representations of the construction and working of systems of interest. A 
model must be both realistic and simple. Two general types of modelling 
approaches are commonly used for pest forecasting in IPM: mechanistic and 
statistical. Mechanistic models can be theoretical (analytical), or they can be 
simulation models of a given specific system. Simulation models are meant 
for experimenting on how the output changes when input parameters and 

Figure 3  Phases of development of a formal validated sampling plan, with short 
descriptions of the empirical and probability models needed to obtain the required 
parameters in different phases and perform sampling. Including natural enemies in the 
sampling will add a new layer or several new layers to the picture, depending on how 
many natural enemy species must be taken into account. Based on Binns et al. (2000); 
Hoy (1991); Naranjo (2008); Pedigo and Buntin (1993).
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configuration of input variables are changed in the system of interest. They 
should preferably involve stochasticity (i.e. at least one of the input or output 
variables is probabilistic) (Maria, 1997). In pest forecasting, the goal is to 
understand the role of different factors for the change in pest or natural enemy 
population dynamics (Prasad and Prabhakar, 2012).

The mechanistic approach is based on causality and tracks pest dynamics 
in a process model that simulates the development of the target organism and 

Table 2 Attributes of trustworthy sampling plans (Binns et al., 2000)

A trustworthy 
sampling plan has What does it mean?

Good practicality A simple enough procedure to appeal to users, not be 
misunderstood and must fit in with the agenda of the user 
regarding sampling time and the time it takes to collect the 
samples. 

High representativeness No unaccountable biases in the sampling protocol in 
selecting which instances of pest occurrence become 
sampled. This means several things (see bias) 

Low bias Bias is the difference between the expectation of an estimate 
and the true value. Bias is caused by many things, for 
example, by: (a) taking too few samples (can be a problem 
in sequential sampling plans if a minimum sample size 
is not given); (b) taking samples from just some parts of 
a field and leaving other parts unsampled; (c) selecting 
samples based on how easy it is to reach and process them; 
(d) selecting sample units on the basis of a characteristic 
which is correlated with the properties to be investigated by 
sampling; and (e) substituting omitted or rejected sample 
units by more readily observable units.

High reliability No uncontrolled variables should influence the 
sampling protocol. They include the person collecting 
the data, weather, or possible diurnal behaviour of 
the pest (determines sampling time). Reliability and 
representativeness together ensure that the sample mean, m, 
is an unbiased estimate of the true pest density, μ.

Reasonable relevance The estimate of pest abundance has a reasonable 
relationship to crop yield and loss.

Moderate to high precision 
depending on the goal and 
practicality of the sampling 
plan. 

Refers to how close to its own expectation one single 
estimate is. Increases with increasing number of samples. 
A lower precision is often acceptable in sampling plans for 
decision-making in IPM. Moderate precision, is, however, 
required even then.

Good accuracy A measure of how close an estimate is to what it is estimating. 
Can be estimated by the mean square error, mse (the greater 
the mse, the lower is the accuracy). Incorporates both bias 
and precision. Example: an estimate may have high precision, 
but low accuracy because of high bias.
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perhaps its host(s) and natural enemies. Mechanistic models are based on 
knowledge on how the input variables lead to the output(s), whereas statistical 
models give little or no insight into the specific processes leading to the 
output(s) (Baker et al., 2018). Mechanistic models enable the creation of new 
hypotheses concerning the functioning of the system of interest, whereas the 
purpose of statistical models is limited to prediction (Table 3). Statistical models 
are correlative. They range from simple regressions to much more complex 
models such as Bayesian models where probabilities represent all uncertainty 
contained in the input parameters and outputs, and finally to models based on 
artificial intelligence (AI) methods operating on very large data sets.

Mechanistic modelling involves two stages. First, the model is constructed 
and calibrated by using a subset of the available data. This is done with 
the help of simplified mathematical formulations of the assumed causal 
mechanism. Second, another subset of the data is used to validate and refine 
the model. Validating is needed to determine whether the range of possible 
input–output behaviours predicted by the model (the causality hypothesis) 
is consistent with experimental observations. After validation, the model 
can be used in applications where experiments are impossible or difficult to 
achieve (Baker et al., 2018). Magarey and Isard (2017) list problems and their 
causes and solutions associated with creating, parameterizing, validating and 
implementing mechanistic pest forecast models. Problems associated with the 
implementation phase can be rather challenging. Does the model represent 
stakeholder field observations? Are the model outputs useful to stakeholders, 
that is, do they give critical information for decision-making and is there time to 
act on the information in practice? Do stakeholders take the model into use at 
all due to time limitations or difficulties in understanding the model’s outputs? 
These issues concern also the development of EILs and ETs.

Three subcategories of mechanistic models characterized by their input 
variables and output types are important for pest forecasting. First, phenology 
models are used to predict adult emergence time, peak adult flight and 
egg-laying activity, egg hatch or occurrence of damaging stages in order to 
optimize the timing of control measures. The measure of accumulated heat 
(degree days) provides a reference for the physiological age and development 
of organisms (Orlandini et al., 2017), but other weather factors such as rainfall 
or humidity can also be important, as shown for the emergence of the carrot fly, 
for example (Ovcharenko and Nikolaeva, 2020). Complete phenology models 
of insect and mite pests include mathematical functions for development time 
and rate, mortality, senescence, survival and reproduction of the species in 
question (Tonnang et al., 2017).

Phenology can be simulated in a deterministic or stochastic manner to 
yield the pest’s life table parameters such as intrinsic rate of natural population 
increase (rm), net reproduction rate (R0), finite rate of increase (ƛ), mean 
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generation time (G) and the doubling time (t) (Tonnang et al., 2017). Another 
goal is to simulate the impacts of different pest scenarios on crop production 
when both yield losses and the effect of changing climate on organisms must be 
taken into consideration (Donatelli et al., 2017). For this purpose, crop and pest 
behaviour models must be coupled, which is not always easy (Donatelli et al., 
2017). The eventual goal is, in fact, to be able to create complete simulation 
models that include biological, ecological, economic and social processes and 
their interactions, all of which together influence crop production and guide 
on the ways of managing crop systems (see Tonnang et al., 2017 and their 
reference to Walters et al., 2016). Tonnang et al. (2017) list a range of research 
questions that must be answered to achieve such an ambitious modelling goal. 
In accordance with such goals, bioeconomic models are expected to gain more 
importance as tools for creating EILs and ETs (Tonnang et al., 2017; Zhang and 
Swinton, 2012). Management of simulations and updation of decision support 

Table 3 Features that differentiate mechanistic and statistical forecast models

Feature Mechanistic forecast models Statistical forecast models

Basis of relationship 
between inputs and 
outputs

Causality (Baker et al., 2018). Correlation (Baker et al., 2018).

Basic tools Mathematical equations 
describing the phenomenon of 
interest; associated assumptions 
to simplify the mathematical 
expressions that describe the 
relation between inputs and 
output (Maria, 1997).

Tools such as regression and AI 
algorithms that filter out irrelevant or 
redundant information to discover 
relevant co-occurrences and 
dependencies in the data (Baker 
et al., 2018).

Focus is on (1) Understanding the 
mechanisms of pest 
development and infestation 
progression via mimicking 
real-life events; (2) generation 
of novel hypotheses for 
causal mechanisms through 
observations (Baker et al., 2018). 
Deductive approach.

Prediction via isolating relevant 
inputs from the dataset for a given 
output. Only little or no insight into 
the specific processes leading to 
the outputs. The predictive power of 
machine learning models increases 
with the number of unique cases that 
can be observed and used to train 
the predictor (Baker et al., 2018). 
Inductive approach.

Dataset size Small data sets are OK (Baker 
et al., 2018).

Large data sets on historical or 
current events (Baker et al., 2018).

Extrapolation of 
prediction beyond 
the observed 
conditions

Yes (Baker et al., 2018). No. Outputs are dependent on the 
specific input data and can only 
make predictions that relate to 
patterns within the data supplied 
(Baker et al., 2018). 

Generation of new 
hypotheses

Good possibilities (Orlandini 
et al., 2017).

Less or no possibilities (Orlandini 
et al., 2017).
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systems that use the simulations present large obstacles for implementing 
simulation models for pest forecasting (Orlandini et al., 2017).

Improvements of phenology models are still needed to make the outputs 
more precise and to improve region or site specificity of outputs, as shown for 
root-feeding insect pests such as the carrot fly and the cabbage root fly (Bažok 
et al., 2012; Biron et al., 2002; Collier et al., 2020; Dreves, 2006; Villeneuve 
and Latour, 2017) and the codling moth (Damos and Soulopoulou, 2019). 
Producing phenological forecasting models can be complicated by genetic and 
behavioural differences between different pest (or natural enemy) populations, 
as exemplified by the winter morphs of D. suzukii (Amarasekare and Shearer, 
2013; Shearer et al., 2016) and late and early emerging forms of Delia radicum. 
In some regions, these two genotypes occur (Biron et al., 2002), whereas in 
other regions, all flies emerge synchronously (Johansen and Meadow, 2006). 
Migrating species such as P. xylostella, combined with climate warming, bring 
new challenges to the development of phenological and other forecasting 
models (Zalucki et al., 2017; Zalucki and Furlong, 2008; Zhu et al., 2018).

Most of the earlier models lack a stochastic function for variability in 
development times among individuals within a population, resulting in prediction 
errors (Orlandini et al, 2017). Furthermore, for insect species that exhibit 
seasonality, diapause or aestivation in their life cycles should be accommodated 
in the models. This can be done with Monte Carlo simulation modelling (Orlandini 
et al., 2017). Mechanistic phenological models are often built considering 
the developmental rate function only. The models can be enriched and their 
accuracy increased by including elements of demographic models in them, such 
as the age distribution of individuals which exit from the overwintering phase, 
the age- and temperature-dependent profile of the fecundity rate function 
and the consideration of a temperature-dependent mortality rate function, as 
exemplified for Cydia pomonella by Pasquali et al. (2019).

Second, life table and population models aim at representing and 
understanding different or selected factors such as, for the diamondback 
moth, host plants (Jaleel et al., 2019), temperature (Ngowi et al., 2017), 
specific natural enemies (Tonnang et al., 2010, 2009) or a combination of 
factors (Li et al., 2016) that influence population development and abundance. 
A drawback for forecasting the time and size of population peaks is gaps 
in the ecological databases such as short-range dispersal, overwintering 
behaviour, colonization patterns and age-specific mortality including inter- and 
intraspecific competition (Prasad and Prabhakar, 2012). Such obstacles may in 
some cases be bypassed using statistical models based on neural networks 
and large data sets (Tonnang et al., 2010). There is also some imbalance as to 
modelling the life cycle and population dynamics of different kinds of pests. For 
example, soil-borne diseases have not been modelled to the same extent as 
airborne diseases. Primary infection by active inoculum accumulated within the 
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rhizosphere of host plants is the main target for model development (Orlandini 
et al., 2017).

One important input for pest modelling is pest observations. Sharing 
pest observations with other growers would allow everyone to see a more 
comprehensive picture of pest activity, but this is rarely done and tools for 
doing it are lacking (Orlandini et al., 2017).

Third, species distribution models (SDM) use a variety of algorithms to 
estimate relationships between species locations and environmental conditions 
and predict and map habitat suitability (Franklin, 2010). SDMs for pest forecasting 
can be used at two scales: predicting the establishment risk of exotic pests in 
new geographic areas of distribution (Franklin, 2010) and predicting where to 
target pest management actions in site-specific pest management within crop 
fields or orchards (Méndez-Vázquez et al., 2019). At both scales, SDM output is 
a risk map. At the larger, geographic scale, SDM make use of georeferenced 
presence data of species, digital maps of environmental variables and correlative 
algorithms such as Bioclim, Genetic Algorhitm for Rule Production, Maxent, or 
General Linear Models. For predicting insect distribution at geographic scales, 
Tonnang et  al. (2017) list the advantages and disadvantages of commonly 
used inductive (statistical) and deductive (causal) approaches to using SDMs. 
Modelling alone is not always enough to predict how exotic species behave in 
new areas of distribution. Surprising results can be obtained with closer research 
as exemplified by the better than expected overwintering ability of D. suzukii in 
regions with cold winters (Thistlewood et al., 2018).

At the field scale, the classic precision agriculture techniques of zoning 
are enriched with one or more spatially explicit ecological layers (species’ 
niches) that are created on the basis of a pest’s within-field distributional 
patterns (Méndez-Vázquez et al., 2019). In addition to the model itself, it must 
be parameterized using high-resolution environmental data sampled with such 
precision agriculture tools as wireless sensor networks for plants, soil and air 
measurements, drones and remote sensing.

The relative status of mechanistic and statistical forecast models is changing 
with the advancement of statistical modelling approaches based on AI. With 
the growing number of observations and variables, the need for mechanistic 
models has been reduced and the predictive power of statistical models has 
increased. This is because a very large number of unique cases that can be 
observed and used to train the mechanism-free predictor essentially represent 
the whole reality that is covered in the input–output relationship. In the omics 
research, high-throughput methods of data collection produce very large data 
sets, but according to Baker et  al. (2018), the research community remains 
focused on producing a plethora of potential mechanistic models that explain 
small pieces of a much bigger picture. The use of big data for forecasting in 
pest management research is not commonplace as yet, either, as concluded by, 
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for example, Fenu and Malloci (2021), who studied the kinds of AI algorithms 
used for forecasting the onset of disease at a pre-symptomatic stage. One 
important obstacle of course is how to collect large amounts of data needed 
for big data analyses.

2 �Addressing key issues and challenges of pest 
monitoring and forecasting

2.1 �Automated identification of insects from traps and plants

2.1.1 �Fixed camera-based systems

Automated identification with up to 100% identification success was developed 
for C. pomonella as early as 2011; this required a modified trap equipped with 
mobile phone cameras of different resolutions and a commercial acquisition 
and data transfer system using wireless technology to transfer the images for 
analysis (Guarnieri et al., 2011). Some other, smaller, insects came to the trap 
also, but they did not interfere with identification. The technical and operating 
characteristics used by Guarnieri et al. (2011) are nowadays regarded as being 
fairly basic. When a pest-selective sampling method provides ‘clean’ samples 
without non-target species and when the orientation of individuals in the traps 
allows complete feature extraction, automated identification is relatively easy 
based on images taken of trapped individuals and image analysis developed 
with machine learning or AI algorithms. With deep learning algorithms even 
the ‘wrong’ orientation of insects in traps, background clutter and interference 
from uneven illumination in the images can be overcome (Wen et al., 2015). 
Developments since 2011 include independent power sources (such as 
solar-powered batteries) for the camera and for sending images via wireless 
channels plus, of course, more powerful data analysis techniques, such as 
artificial neural networks, that can be trained to identify patterns in images. The 
newest techniques allow dozens of species from different insect orders to be 
distinguished from each other (Cardim Ferreira Lima et al., 2020). For a recent 
review detailing the strengths and limitations of camera-based traps for pest 
insect detection, consult Preti et al., 2020.

Automated identification is unnecessary if insects can be trapped and their 
images sent to computer screens for identification by expert entomologists. 
High-quality images are required but that is not a problem nowadays, and 
for human eyes, the poor orientation of targets is not necessarily an obstacle 
for correct identification (unless very specific miniscule features must be 
seen to distinguish co-occurring species from each other). Automated 
traps equipped with specific or generic semiochemicals and cameras have 
been developed and applied successfully for distinguishing different fruit 
fly species in images sent to human experts (Shaked et al., 2018). Shaked 
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et al. (2018) also made attempts to automate identification of individual fruit 
fly species to distinguish them from other species of fruit fly and from other 
insects, but that has turned out to be difficult so far. Traps with fixed cameras 
are, of course, expensive, but owing to the miniaturization of optics and 
electronics, material costs are becoming lower in addition to savings in travel 
and time of checking the traps.

2.1.2 �Mobile camera-based systems

Cheap traps photographed with mobile cameras present another option to 
acquire pest images automatically. Roosjen et  al. (2020) used cameras fixed 
to traps and also cameras attached to custom-made drones (unmanned aerial 
vehicles – UAV) to take images of D. suzukii flies on red sticky trap surfaces, under 
various illumination conditions in the field. Deep learning methodology was 
applied for feature detection. The results for images taken with static viewpoint 
cameras were satisfactory, but the positioning of cameras on the UAV produced 
lower-quality images and resulted in limited success in terms of automated 
identification. In the field, UAVs should be operating autonomously for them to 
be feasible as mobile ‘photographers’ of traps. It would not really make sense 
for a person to walk in an orchard manoeuvring UAVs within their sight, as the 
whole idea of automated trapping is to reduce human labour, making their 
presence unnecessary. In a presentation on the project (https://www​.abim​.ch​
/fileadmin​/abim​/documents​/presentations2019​/ABIM​_2019​_7​_03​_Johannes​
_Fahrentrapp​.pdf), the authors concluded that trapping efficiency must be 
improved and that a landing platform for the UAV must be placed in front of 
the trap to take better images. Even so, they concluded that deep learning, in 
combination with high resolution, has good potential for the detection of small 
insects; it is the practical technical aspects of capturing insects and acquiring 
high-quality images that still need to be worked upon.

A commercial example of traps equipped with pheromones or other 
semiochemicals and fixed-position cameras are iScout-traps. Different types of 
iScout-traps are available for several insect species, for example, D. suzukii, C. 
pomonella and P. xylostella, and they include a vertically placed, coloured sticky 
trap with a camera in front of it (https://metos​.at​/iscout​.com). Images are sent 
to a web portal for analysis.

2.1.3 �Tools for identifying pests with challenging taxonomic 
features such as flies

It seems difficult to achieve automated identification of, for example, fly species 
that closely resemble each other, occur together in the field, and are attracted 
to the same traps and whose taxonomy involves observing, for example, 

https://www.abim.ch/fileadmin/abim/documents/presentations2019/ABIM_2019_7_03_Johannes_Fahrentrapp.pdf
https://www.abim.ch/fileadmin/abim/documents/presentations2019/ABIM_2019_7_03_Johannes_Fahrentrapp.pdf
https://www.abim.ch/fileadmin/abim/documents/presentations2019/ABIM_2019_7_03_Johannes_Fahrentrapp.pdf
https://metos.at/iscout.com
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minute details of genitalia and hairs on the legs and body. There are as yet 
no reports for automated identification attempts of Delia spp. or Psila rosae. 
Information on probabilities of host associations may help in the identification 
process (Savage et al., 2016), but even so, there is room for uncertainty. The 
visual traps used to detect the presence and relative abundance of D. radicum 
tend to capture a lot of non-target species that also include other Delia species 
not considered as pests. By combining visual stimuli with a feeding attractant 
and a new trap design, KLP+ traps by CSalomon have improved the selectivity 
of trapping D. radicum. The flies are retained by glue on the surface of a 
transparent plastic sheet surrounding the inside of a plastic cup (http://www​
.csalomontraps​.com​/4listbylatinname​/pdffajonkentik​/deliaradicum​.pdf). Even 
so, the trap manufacturer lists a couple of other Delia species, flea beetles 
and Ceutorhynchus weevils that are attracted to the lure, too. Thus, whenever 
different Delia species occur together in a trap, identification is complicated and 
requires expert skills. The same problem of non-selective traps also concerns P. 
rosae, although the orange traps (e.g. https://www​.andermattbiocontrol​.com​/
sites​/products​/monitoring​-systems​/rebell​-orange​.html) are the most attractive 
for this species and the habitus of the carrot fly is more easily recognizable than 
that of different Delia species. Among carrot pests, the identity of psyllids in 
traps is also difficult to verify, as species living in wild relatives of carrot can end 
up in the traps, too, and can only be distinguished from the carrot psyllid based 
on differences in male genitalia (Nissinen, 2008). The costs of developing 
specific identification methods for regional pests make an obstacle for R&D.

Molecular methods have been suggested as a replacement for visual 
identification of Delia sp. from traps (Thöming et al., 2017). In some cases, 
however, the glue in sticky traps can compromise the possibilities of molecular 
identification, as shown for sandflies vectoring a human disease (Halada 
et al., 2018), whereas for some other species, the glue of sticky traps has 
been considered as an excellent preservative, and did not hinder the use of 
molecular markers for insect identification (Chen et al., 2014; Frey and Frey, 
1995). The bottlenecks lie in getting sufficient amounts of DNA easily in field 
conditions and having to send the DNA samples to a laboratory for processing. 
Rapid identification tools based on extremely small amounts of DNA are 
available for laboratory use, as for example, for eggs, immatures and adults 
of a psyllid pest of potato (Sumner-Kalkun et al., 2020). DNA can be extracted 
from trapped individuals with Flinders Technology Associates FTA®cards, that 
is, chemically treated filter papers designed for the collection, preservation 
and shipment of biological samples for subsequent DNA and RNA analysis. 
Lemmetty and Vänninen (2014) used them successfully for extracting DNA 
from Bemisia adults on sticky traps. Up to now, FTA cards for DNA extraction 
have been shown to work also for 11 other genera of insects including beetles, 
leafhoppers, flies, psyllids and aphids that were either frozen or glued on sticky 

http://www.csalomontraps.com/4listbylatinname/pdffajonkentik/deliaradicum.pdf
http://www.csalomontraps.com/4listbylatinname/pdffajonkentik/deliaradicum.pdf
https://www.andermattbiocontrol.com/sites/products/monitoring-systems/rebell-orange.html
https://www.andermattbiocontrol.com/sites/products/monitoring-systems/rebell-orange.html
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traps (Pusz-Bochenska et al., 2020). The method can be used also by growers 
and advisors in the field, but the cards must be sent to a laboratory for analysis. 
DNA barcodes can be used for identification, but this presupposes that there 
has been adequate a priori identification of barcoded specimens. The study 
by Savage et  al. (2016) on taxonomy and ecology of Delia spp. shows how 
important the understanding of biological and ecological differences in respect 
to herbivore–host plant associations is in order to develop the accuracy of 
barcoding. Differences in the ecology of different populations can be reflected 
also in their DNA, use of host resources and pest status.

2.1.4 �Automated identification based on optoacoustics

New approaches for automated identification are emerging from domains other 
than the visual sensory domain. By combining the acoustic sensory domain 
with advanced optical detection methods, new ways of identifying fly species 
are emerging. The wing beat frequency of fruit flies that enter tachometer traps 
equipped with attractants can be detected with optoelectronic devices based 
on LED (light-emitting diode) light probes and transformed into frequency 
profiles to differentiate between the species of interest expected to enter the 
trap (Potamitis et al., 2018, 2017, 2015). The fundamental frequencies of the 
wingbeats of the flies of interest must be known and used as a reference to 
measure if the energy of the bandwidth exceeds a threshold. If it does, it is 
a verified detection. Changes in wingbeat due to temperature differences 
can be accommodated. Species verification can be achieved either in situ or 
by transmitting the recordings and performing recognition on a server. The 
current system makes in situ decisions about the identity of flies entering a 
trap for only one species. But, based on the recordings that are stored inside 
the trap and transmitted further, the recognition scores are greatly improved 
and allow for better discrimination, even between fruit fly species, although 
at the cost of increased power consumption and decreased algorithmic 
complexity at the trap level. According to Rigakis et al. (2019), the wingbeat 
frequencies of D. suzukii are included in the research group’s agenda for 
automated detection.

The acoustic domain is used also for differentiating whitefly species 
(Kanmiya, 2006, 1996; Kanmiya and Sonobe, 2002) and even sibling species of 
Bemisia tabaci from each other (Nakabayashi et al., 2017). Males of Trialeurodes 
vaporariorum and B. tabaci drum the leaf surface with their abdomen as mating 
behaviour in a species-specific manner (Kanmiya, 2006, 1996). These ‘acoustic 
signatures’ can be recorded with a sensitive microphone and compared with 
reference frequency profiles. Male acoustic signatures are likely to be used 
for species recognition during courtship behaviour. In the citrus whitefly, 
it is the females that drum the leaf surface and males orientate towards the 
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females using vibrations as cues (Liao and Yang, 2015). Monitoring for the 
presence of cryptic species of Bemisia (that are indistinguishable on the basis 
of morphology), or finding mixed infestations of the greenhouse whitefly and 
Bemisia, would be possible with acoustic signatures. Of course, such a tool 
should be developed so that it does not require complex ‘studios’ to record 
the whitefly vibration sounds and so that ambient sounds do not interfere with 
the recording. The vibrations even provide avenues for controlling whiteflies 
(Yanagisawa et al., 2020)

2.2 �Improved detection with more selective traps

Sex pheromones for monitoring and subsequently also for mass-trapping 
of Lepidopteran species have been available since the 1960s. Aggregation 
pheromones are currently also available for monitoring thrips (Kirkpatrick 
et al., 2017) and strawberry weevils (Cross et al., 2006b). Recently, compounds 
that are most likely to function as potent oviposition stimulants to female D. 
suzukii were found (Tait et al., 2020) and developed into what can be called an 
egg-sink that attracts females strongly even in the close presence of attractive 
berries on which to lay eggs (Rossi Stacconi et al., 2020a). Other functions of 
the compound mixture are being investigated, as the ingredients attract male 
flies, too. Depending on the attractive distance of the mixture to D. suzukii, and 
its selectivity, this finding can mean a breakthrough not only in monitoring the 
flies but also for their control through behavioural disruption.

To attract females selectively to traps, plant-derived kairomones, as 
attractants, have been studied intensively during the last 20 years. Such efforts 
have resulted in substantial advances in monitoring techniques for several 
horticultural pest insects (Table 4), but there is still work to do. The chemical 
ecology of Delia radicum, D. antiqua and P. rosae received a bout of research 
interest in the 1980s–1990s, but then there was a halt. Interestingly, since 2010, 
a French research group took the initiative to focus again on the chemical 
ecology of D. radicum (Kergunteuil et al., 2015, 2012; Lamy et al., 2018, 2017). 
They have produced new results on both attractive and repellent compounds 
for this species for the purpose of developing a push–pull strategy for managing 
the cabbage root flies. A similar bout of new research for better monitoring 
techniques is emerging for D. antiqua in Japan, Norway and the United States 
of America (Hoshizaki et al., 2020; Thöming et al., 2017; Willett et al., 2020).

Improving the selectivity of traps would have positive consequences for 
automated identification of pest species and for more efficient coverage of the 
sampling universe, resulting in more accurate decision-making. The following 
criteria for a good trap can be used to guide research on trap selectivity. Traps 
should: (a) specifically attract only the target pest insect, (b) be effective at 
capturing and retaining the majority of pest insects that come in contact with 
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the trap, (c) provide early detection of the pest insect and (d) allow correlation 
of trap catch with subsequent crop infestation (Cloonan et al., 2018). When 
many attractive substances are available, as is the case for D. suzukii, odour 
cues from different sources may interfere with each other and reduce the pest’s 
attraction to otherwise attractive odour combinations – a risk to be taken into 
account (Cloonan et al., 2019). On the other hand, the case with Anthonomus 
rubi shows that multi-pest traps are possible when the attractive compounds 
are specific enough for the different target pests, in which case they do not 
interfere with each other (Baroffio et al., 2018; Fountain et al., 2017).

Inspired by inconsistencies and high variability in trapping C. pomonella 
with sparsely placed sex pheromone traps, a new concept of understanding 
the interaction principles between traps and pest insects was developed 
recently (Adams, 2017; Miller et al., 2015). The new concept aims at being 
able to estimate absolute – instead of only relative – population densities in 
the landscape. This is done by specifying the attractive plume radius of the 
attractants and the proportion of target insects caught by the trap per areal 
unit. One outcome from the new concept is a recommendation for placing 
sex pheromone traps in line close to each other to reduce the variability of 
catches that are a problem when single traps placed far apart are used for 
trapping C. pomonella. Line trapping offers savings in time and cost when 
servicing aggregated versus distributed traps (Adams, 2017). Specific action 
thresholds were developed for the pear ester trap and compared with those of 
sex pheromone traps. Traps equipped with the kairomone pear ester improved 
female catches and predicted the egg hatching time of C. pomonella better 
than codlemone traps. The prediction improvement was based on cumulative 
degree-day totals required from Biofix until egg hatch: the degree-day totals 
had the lowest variability when the Biofix was based on the sustained catch of 
female moths in a pear ester-baited trap (Knight and Light, 2005b).

Trapping studies with D. suzukii show that lure attractiveness and selectivity 
can change during the season in relation to environmental temperatures and 
phenological, developmental and physiological stages of both the pest and its 
host plants. Different lures must be implemented in different periods and for 
different purposes, that is, for monitoring or mass trapping (Rodriguez-Saona 
et al., 2020; Tonina et al., 2018; Wong et al., 2018). The plant background can 
significantly influence trap catches, as shown for D. suzukii (Cha et al., 2018) and 
A. conjugella (Cha et al., 2018; Knudsen et al., 2017; Knudsen and Tasin, 2015). 
Thus, the same lure is not always appropriate in all contexts. The potential 
for trap catches to predict the density of larval populations depends on the 
crop species, pest generation, and density and geographical region, with 
variations due to climate and natural enemy complexes. Unique pheromone-
based predictive models may be needed in different growing regions where 
the climate and the responses of the moths to pheromones vary. Furthermore, 
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the presence and composition of natural enemies influence the relationship 
between trap catches of moths and the density of moth immature stages; 
therefore, a weighing factor is needed in the predictive model to take the effect 
of natural enemies into account (Miluch et al., 2013).

Depending on the target species, traps integrating both visual and 
olfactory cues can be superior tools for monitoring (Kirkpatrick et al., 2017). 
Trap design can have a crucial effect on trap catches as shown for D. suzukii 
(Kirkpatrick et al., 2017) and the multispecies trap for A. rubi, Lygus sp. (Fountain 
et al., 2017) and D. radicum (http://www​.csalomontraps​.com​/4listbylatinname​/
pdffajonkentik​/deliaradicum​.pdf).

2.3 �Remote sensing for reducing sampling time and overcoming 
sampling problems caused by patchy pest distribution

Most horticultural pest insects and mites are aggregated spatially. This is a 
nuisance when developing sampling plans: patchy distributions make accurate 
estimates of populations difficult, resulting in the implementation of the wrong 
management strategy. The seemingly more economical approach of taking 
fewer than the recommended number of samples has little value, because 
the representativeness of sampling suffers (see Table 2) and information is 
lost through apparent savings in human labour and time investments. A good 
example is P. xylostella in vegetables in Australia: stakeholders tend to favour 
fixed sample sizes, but even so, they take too few samples. This preferred 
sampling plan was shown to erode the criteria for reliable decision-making 
(Hamilton et al., 2006), although simpler and more time-saving sampling 
protocols are available (Hamilton et al., 2004) but seemingly do not match the 
criteria of stakeholders.

The effect of a patchy distribution also concerns phytophagous mites 
(Zahner and Baumgaertner, 1984), adult and immature whiteflies in, for 
example, tomato (Kim et al., 2001; Park et al., 2011b), eggs and consequently 
root-inhabiting maggots and pupae of cabbage root flies in cabbage fields 
(Bligaard, 1999; Finch et al., 1978, 1975), the carrot fly (Jens, 1983), eggs and 
onion maggots infesting the roots of seedlings and later the swollen plant part 
sitting on the soil (Whitfield et al., 1985) and larvae of P. xylostella that consume 
different types of Brassica vegetables (Chua and Lim, 1979). Automating the 
sampling or detection of patchily distributed pests or plants infested by them 
would be a desirable option to obtain sufficient numbers of observations with 
less time and labour. Such automation could concern either in situ counts of the 
pests themselves or measuring plant responses to the presence of the pests, 
that is, biotic stress.

Instead of farmers walking their crops, drones could do the sampling when 
this requires in situ counts or observations, particularly in very large cultivations. 

http://www.csalomontraps.com/4listbylatinname/pdffajonkentik/deliaradicum.pdf
http://www.csalomontraps.com/4listbylatinname/pdffajonkentik/deliaradicum.pdf
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Up until now, most research on the use of drones for crop protection 
purposes has focused on disease detection through plant phenotyping using 
multispectral, hyperspectral, RGB (red, green, blue), fluorescence and thermal 
images of canopies as well as landscape and habitat features (Gogoi et al., 2018; 
Zhang et al., 2019). In situ counts of insects from plants using cameras attached 
to drones are much more difficult. Illumination, angle of capture and shadows 
can significantly interfere with pest or symptom detection in images taken with 
drones. Furthermore, the visual and spectral cues used to detect pests may be 
the result of several different factors, including other insect species than the 
target ones that may be present in the crop. Therefore, verification by other 
methods of species detection is often necessary (Barbedo, 2019).

There have been, however, some proof-of-concept type experiments 
which suggest that drones could have a bigger role in sampling or monitoring 
horticultural pest insects, either for research purposes or for purposes of 
actual crop protection. Aerial thrips have been sampled with the help of sticky, 
customized Petri plates attached to a drone, to study trivial and long-distance 
dispersal of thrips above onion fields (Smith et al., 2015) and to monitor several 
insect species from the air above rice fields (Kim et al., 2018). Drones can also 
carry a sweep net and sample insects from vegetation in otherwise inaccessible 
places (Löcken et al., 2020) or fields that are too large to sample by walking 
(Kovanci et al., 2005). The same approach could be used to sample adult P. 
xylostella in Brassica vegetables, and even insect larvae can be sampled as 
shown by Löcken et al. (2020). Adult carrot flies and cabbage root flies move 
between crop fields and their surrounding habitats daily. Drone sampling may 
help to detect details of these flies’ dispersal and local migration behaviour, for 
which studies on sampling aerial thrips with the help of drones pave the way for 
(Smith et al., 2015). In vineyards, drones are being developed for monitoring 
Phylloxera by taking hyperspectral, multispectral or RGB images of the foliage 
and correlating reflectance spectra with pest densities (Vanegas et al., 2018). 
Mini drones have even been developed as artificial predators for monitoring 
and killing moths in greenhouses (https://pats​-drones​.com/). For research 
purposes, drones equipped with UVA sensors could be used for detecting 
insects treated with fluorescent substances in ecological studies, for example, 
for finding out how insects move in their habitats or between habitats (Teickner 
et al., 2019). Fixed traps equipped with sensors measuring abiotic conditions 
in the monitoring area contribute to data collection on factors influencing 
pest occurrence and reproduction and may eventually be integrated with 
forecasting models for pest occurrence and population dynamics.

Infestation by phytophagous mites, aphids and whiteflies causes changes 
in the spectral reflectance of leaves and canopies. Detection of such changes 
has already been shown to be possible in soybeans infested by aphids 
(Marston et al., 2020) and whiteflies (Barros et al., 2021). The same methods are 

https://pats-drones.com/


Published by Burleigh Dodds Science Publishing Limited, 2022.

Pest and disease monitoring and forecasting in horticulture﻿ 25

applied in greenhouses for pest detection through stress symptoms in plants, 
with the help of drones (https://www​.greenhousemag​.com​/article​/the​-drones​
-are​-close/). Pats drones have developed a phone-based app that uses GPS 
and mapping software to autonomously fly a drone to points in a field selected 
by the farmer. The images taken by the drone are interpreted by the app to 
provide an accurate green area index (GAI) and to count emerging plants. The 
quality of the image collected also is good enough to identify weeds and is 
claimed to be sufficiently accurate to capture insect damage on a single leaf 
(https://pats​-drones​.com/). In horticulture, low-growing crops such as cabbage, 
strawberry, onion and lettuce are the easiest candidates for monitoring using 
drone-based cameras to detect pests or their symptoms. Tall crops such as fruit 
trees, tomato and cucumber or berry bushes can be more challenging, due to 
their more complex vertical structure.

With remote sensing and AI, it has become possible to use plant, field 
and regional scale phenotypic information and integrate it into predictive 
and prescriptive management tools for monitoring, mapping and predicting 
outbreaks (Jung et al., 2021). When the whole field can be covered with remote 
sensing, implementing sampling plans that take the pest spatial distribution into 
account will decrease in importance. The remote sensing techniques include 
ground-based spectroradiometers, aerial photographic cameras, airborne 
digital multispectral and hyperspectral imaging systems, and moderate and 
high-resolution satellite imaging systems (Abd El-Ghany et al., 2020; Prabhakar 
and Thirupathi, 2018; Yang and Everitt, 2011). Radar-based technologies 
make a group of their own that is ground based but focuses on detecting 
insects in the air even in the night time so that it is possible to detect insect 
migrations in the dark (Abd El-Ghany et al., 2020; Prabhakar and Thirupathi,  
2018).

The reviews by Abd El-Ghany et al. (2020) and Prabhakar and Thirupathi 
(2018) list the different vegetation indexes that are used to measure the stress 
level of plant canopies and what kind of stress types the indices can reveal. 
Glenn and Tabb (2019) compared different methods of determining the NDVI 
(normalized difference vegetation index) for apple trees. They concluded 
that NDVI is a useful tool when evaluating long-term crop changes such as 
pest damage, chronic water shortage and nutrient deficiencies that affect 
chlorophyll, whereas NDVI is not useful for acute stresses such as an irrigation 
pump failure or plugged irrigation lines that have an effect within days. Overall, 
remote sensing techniques for detecting pests or pest-caused changes in 
apple trees are not very advanced yet (Park et al., 2021), although the use of 
reflectance indices in leaves infested by different densities of mite pests was 
studied already in the 1990s (Penuelas et al., 1995), and a review of remote 
sensing and geospatial techniques for fruit tree management was published in 
2010 (Panda et al., 2010).

https://www.greenhousemag.com/article/the-drones-are-close/
https://www.greenhousemag.com/article/the-drones-are-close/
https://pats-drones.com/
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Pests, diseases and their impacts on plants can also be detected based 
on the chemicals the infested plants emit into the air. E-noses are suitable for 
monitoring when they provide information on pest presence at a time when it is 
still possible to initiate, continue or intensify control actions. The use of e-noses 
is greatly enhanced by AI-based pattern recognition algorithms. There are, 
however, still challenges to overcome regarding sensor performance, sampling 
and detection in open areas, and scaling up measurements, as reviewed by Cui 
et al. (2018) from the point of view of IPM in vegetables and fruit trees.

An important advantage of visual and thermal remote sensing techniques, 
particularly those based on aircraft and satellites, is the improvement of spatial 
and temporal resolution compared with traditional methods for pest monitoring 
such as traps of different kinds or in situ counts. A disadvantage is that the 
remote-sensing tools tend to be expensive to use in small areas, particularly 
when time-series are the goal. Aerial images particularly are costly if repetitive 
imaging is required to study canopy status. Technical issues include distortions 
in images due to the relative motion of sensors and source. The glasshouse 
environment can be challenging for day-time spectral remote sensing because 
of inconsistent lighting, spectral scattering and shadows caused by glasshouse 
structures. Such problems were overcome when the images were taken after 
sunset with an active light source (Nguyen and Nansen, 2020). With this 
innovation, leafminers in the leaves of bok choy and spinach could be detected 
with >99% accuracy. Lastly, data processing requires specialized training for 
analysis of images (Prabhakar and Thirupathi, 2018).

Crop pests and diseases commonly occurring in continuous cropping 
pattern zones are best amenable to remote sensing, whereas crop pests/
diseases that occur sporadically in time and space are less amenable to be 
monitored by remote sensing (Rao and Lakshmikantha, 2020). Because 
remote sensing of pests cannot be cost-effectively or technically applied to 
all pest species, the approach taken to evaluate its possibilities in detecting 
and forecasting pest insects in China is worth bringing up. Cock et al. (2016) 
compiled tables on symptoms, thresholds for action and options for pest 
management responses of main agricultural insect pests in important crops. 
Chinese cabbage represented horticultural crops in the study. The authors 
used the tables, among other things, to evaluate the scope for remote sensing 
of the pests in China and how the information generated or forecast would be 
used to improve pest management by existing agricultural extension services. 
Among the insect pests and diseases important in Chinese cabbage, three 
were concluded to benefit from the use of remote sensing: one viral and one 
fungal disease and the diamondback moth P. xylostella. The authors also list 
the currently existing ETs and intervention options for the pests of biggest 
importance and in so doing integrate with each other the need to adapt 
such thresholds with the new technology. For example, correlations must 
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be produced for results of remote sensing based on vegetation indexes or 
hyperspectral profiles and associated pest densities to enable decision-making 
concerning intervention needs.

Results of remote sensing can be integrated into robotic platforms such 
as autonomously moving trolley-mounted robots or robotic platforms in 
greenhouses. The Ecoation robotic platform includes, among other things, 
an optochemical method for detecting the presence of whiteflies in tomato 
(https://www​.ecoation​.com/) based on changes in plant chemistry. Another 
example of the use of robots for the same purpose is the Greenpatrol-
robot under development in Spain for use in tomato and cucumber crops in 
greenhouses (http://www​.greenpatrol​-robot​.eu​/Greenpatrol​-robot). A user 
interface can be accessed by farmers to determine the robot’s status and see 
a map of healthy and infected zones together with recommended actions. The 
robot is capable of identifying where pests are located and of returning to 
treat them. Under the farmer’s instruction, the robot has the ability to spray the 
plant with pesticide. Scanning of the greenhouse by the robot is based on IPM 
strategy algorithms. There is no information, as yet, whether the system will at 
some point also include natural enemies as recommended actions.

2.4 �Nano-inspired biosensors for plants

Various nano-inspired biosensors have been reported that range from 
detection of plant infections (fungal, viral and bacterial), abiotic stress, 
metabolic content, phytohormones, miRNAs, genetically modified (GM) plants 
to transcriptional and genetically encoded biosensors in a very short time span 
(Giraldo et al., 2019; Kumar and Arora, 2020). Combined with abiotic data at 
a microenvironmental level, the nanosensors would make a good reporting 
tool about the status of the crop in terms of plant health, as so called ‘plant 
wearables’. A plant wearable can consist of an ultrathin and ultra-lightweight 
nanosensor, the aim being to attach flexible sensor devices directly on plant 
tissues such as leaves for continuous monitoring (Li et al., 2020). It is too early 
to tell whether they can be used for detecting horticultural pest insects and 
mites. They would probably complement, or replace, spectral imaging tools as 
biomarkers for detecting symptoms caused by various stressors, but it is not 
clear how closely they can fingerprint to give the stressors’ identity. Sampling 
plans must be developed with a good understanding of the spatial distribution 
of the pest species and the criteria that must be fulfilled to achieve reliable 
information about pest occurrence in the field or greenhouse.

Owing to their small size, nanosensors could in principle be ‘sown’ on 
the crop in large numbers, or they could be taken to the crop and attached 
there according to a sampling plan that has a clear goal. If biotic stressors 
are detected only on a presence–absence basis in a few locations, there is 

https://www.ecoation.com/
http://www.greenpatrol-robot.eu/Greenpatrol-robot
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a danger of the concept of the EIL and ET becoming obsolete. That threat 
notwithstanding, nanostructure-supported non-invasive detection tools 
combined with smartphones pave the way for fast and on-site diagnosis of 
plant diseases and long-term monitoring of plant health conditions. Such 
solutions are desirable particularly in resource-poor settings (Li et al., 2020). 
A potential application could be nanosensors attached to plants for detection 
of whitefly-induced biochemical changes in plants. The changes are systemic, 
and detection could be improved by placing the sensors in the top and middle 
layer of vertical plants to target leaves with L3 and L4 immatures and adults 
that induce the strongest local and systemic biochemical changes in the plant 
(Estrada-Hernández et al., 2009).

2.5 �Natural enemy adjusted thresholds (NEETs)

Decision-making solutions (sampling plans and EILs and ETs) developed in the 
1990s for managing phytophagous mites in apple have paved the way for new 
research that aims to include natural enemies in sampling plans and EILs (Nyrop, 
1988; Park et al., 2000; Van Der Werf et al., 1994). Van Der Werf et al. (1994) 
developed a sequential sampling program for phytoseiid predators of mites in 
apple and continued the program development by modelling predator:prey 
ratios for phytoseiids and phytophagous mites in the same crop (Van Der Werf 
et al., 1994). Action thresholds for tetranychid mites in some ornamental plants 
were developed by incorporating phytoseiid mites as their control agents 
(Alatawi et al., 2005; Opit et al., 2003). Later on, Zhang and Swinton (2012, 2009) 
undertook pioneering work by developing natural enemy adjusted thresholds 
(NEETs) for soybean aphids in the United States of America. They introduced 
a new decision rule for judicious insecticide decisions using NEETs. The new 
threshold represents the pest population density at which insecticide control 
becomes optimal in spite of the opportunity cost of injury to natural enemies of 
the target pest. Bannerman et al. (2015), also working on soybean, in Michigan, 
compared the relative bias, precision and efficiency of sampling methods for 
natural enemies of the soybean aphid. Such studies are still rare though, and an 
additional challenge is that NEETs require modelling and computer skills. Tran 
and Koch (2017) determined the spatial patterns of predators of a pest aphid. 
Decision support systems are considered to be necessary for implementation of 
NEETs, as otherwise turning sampling results into decisions is too complicated. 
Automated sampling and identification is unlikely to become possible for all 
species of pest and their natural enemies; despite this, sampling plans should 
be as practical as possible in terms of the time and labour resources required.

It is the farmer who takes the risk of adjusting her plant protection strategy 
that may or may not involve natural enemies, and her decision concerning 
investment in biological control has repercussions concerning pesticide residues 

http://www.predator:prey
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in food and the environment as well as the economics of the farm. Traditional 
cost–benefit analysis may not be good enough to estimate the socioeconomic 
costs and benefits of such investments comprehensively. How does the farmer, 
then, know whether it would be good for her or not to invest in using biological 
control? This question was recently addressed by Benjamin and Wesseler 
(2016), who used the maximum incremental social tolerable irreversible costs 
(MISTICs) as a tool for such evaluation. The output of the MISTIC modelling tool 
is an estimation of when the incremental reversible benefits of the IPM strategy 
that includes biocontrol outweigh possible irreversible costs of such a strategy 
by a minimum threshold. Only when the minimum threshold is exceeded should 
introduction of biocontrol as part of farm-level IPM be considered. At the same 
time, the output informs us how the individual farmer’s decision influences 
society. The results obtained by Benjamin and Wesseler indicate that including 
biocontrol in potato, but not in maize, IPM is feasible. According to the authors, 
the reasons behind biocontrol being more feasible in potato could be lack of 
adequate pesticide control of diverse pests in potato, the sensitivity to residue-
free products by society and the regulated use of IPM by authorities. Although 
theoretical, the modelling study by Benjamin and Wesseler highlights how the 
changed context that is likely to involve reduced efficacy and availability of 
pesticides changes the premises of making decisions concerning the adoption 
of alternative pest management strategies. Predicting the costs and benefits of 
biocontrol at the farm and societal level gives impetus to develop and target 
the development of NEETs at the crop level.

2.6 �The value of information, sampling plans and economic/
action thresholds: the cases of P. xylostella and T. absoluta

Three papers from three different decades together highlight important 
issues that were brought up in the overview of bottlenecks and the challenges 
of monitoring and forecasting. The first is that when sampling for decision-
making, there is a lower limit for the number of samples that must be taken 
to obtain reliable information for decision-making, whereas the maximum 
number of samples can be adjusted and resources thus saved. The second 
issue is that stakeholders tend to prefer fixed-size sampling with so low sample 
sizes that such sufficient information is not obtained. The third issue is farmers’ 
risk aversion that tends to result in ignoring sampling results that recommend 
no action.

The issues culminate in the following questions: (1) which types of sampling 
plan give precise enough results for decision-making in practice and optimize 
the net value of sample information but would still be acceptable to users in 
terms of practicality; (2) how should ETs actually be implemented – as top–
down recommendations that must be strictly followed or as learning tools that 
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are developed together with the stakeholders through a bottom–up principle 
and that give room for the peculiarities of human risk aversion and associated 
decision-making style; and 3) how to support farmers in the implementation of 
sampling plans that may first seem complicated, but which in effect are quite 
practical and information laden at the same time? These questions concern 
sampling that requires in situ counts of pests in the crop, as they are considered 
more time consuming and laborious compared to using traps that concentrate 
pests in one or more locations.

‘Sequential classification sampling plans’ were strongly recommended by 
Binns et al. (2000). Sequential means that the sample size is not predetermined. 
Instead, the decision of whether to make a decision (intervene or not) is made 
during the sampling process, based on the cumulative counts of pests in 
samples collected so far. There must be some criterion with which to compare 
the cumulative count, of course, to be able to know if more samples must be 
taken or if sampling can be stopped and a decision taken. The person assessing 
the crop takes samples and checks whether the cumulative count of insects is 
below or above the stop boundary after every sample.

There can also be two stop boundaries, in fact; in this case, the sampling is 
called ‘tripartite classification sampling’. With ‘sequential tripartite classification 
sampling’, the farmers get more information: depending on where they 
end up with the cumulative sample size, they must either intervene now 
or not intervene, they also receive a recommendation for when they should 
sample again on a later date (e.g. after 7 days). Because the sampling result 
now informs the farmers about future actions, so that the sampling plans are 
‘chained’ in time, a tripartite sampling plan is also called a ‘cascaded tripartite 
classification sampling plan’. If the sampling plan can advise the farmers reliably 
about when in the near future the next sampling bout should be undertaken, 
and the interval (e.g. being 7, 14 or 21 days) between current and future 
sampling plan depends on the current sampling result, the sampling plan is 
called ‘adaptive frequency classification sampling’ Nyrop et al. (1994). Cornell 
University produces tripartite classification sampling plans for apple growers for 
decision-making concerning the management of the European red spider mite 
(Anonymous, 2020). The plans are presented as charts and with instructions on 
how to undertake the sampling and how to compare the sampling results with 
the chart for decision-making.

Precision of a sampling plan refers to SEM/m, the ratio of the standard error 
to the sample mean (Green, 1970). A fixed, or predetermined, precision level 
of 0.25–0.30 is often considered sufficient for decision-making purposes in IPM. 
The total number of samples needed to be taken depends, then, on the degree 
of precision required. In sequential sampling, sample size is greatest when 
the population is estimated to be within a critical range of densities at which 
treatment may be necessary – it is not desirable to make a wrong decision. 
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Sample size is less when the population estimates are well above or below 
that range. The goal is to achieve acceptable sampling precision with minimal 
effort. In this way, situations of taking unnecessary samples can be avoided in 
contrast to fixed-size sampling plans, where the same number of samples is 
always taken (Binns et al., 2000; Pedigo and Buntin, 1993).

Because sequential tripartite classification or adaptive frequency 
classification sampling protocols give much more information to the grower 
than simpler sampling plans, in addition to that they save sampling resources, 
they were considered by their creators (Binns et al., 1996; Binns and Nyrop, 
1992; Nyrop et al., 1994, 1989, p. 1989; van der Werf et al., 1997) to be much 
more valuable than traditional fixed-size sampling plans. But their reception 
among farmers has not been particularly encouraging as they can be considered 
too complicated by the practitioners. The same concerns variable intensity 
sampling plans, where sampling intensity (how many sampling units are taken) 
is reconsidered after every sampled segment of the sampling transect and 
which also fulfils the criterion of representatively sampling throughout the field 
(Pedigo and Buntin, 1993) (see also Fig. 3).

Monitoring the diamondback moth in broccoli fields in Australia at the 
beginning of the 2000s brought up the issue of sequential sampling again. 
Hamilton et  al. (2004) developed a sequential sampling plan for the moth 
larvae. The plan used a dynamic action threshold that accounted for factors 
such as the prevalence of parasitism, crop growth stage and intended market 
destination. It was presented as a computer program. After a couple of years, it 
turned out that the sequential sampling plan was not used: it was considered 
too complex, and stakeholders preferred fixed-size sampling plans, but 
took usually only 10–20 samples per field, which according to Hamilton was 
clearly too few to produce reliable results. Furthermore, only a small part of 
broccoli fields was covered by such low sample sizes, thus sampling violated 
the criterion of representativeness. Sequential sampling plans demand that at 
least a minimum sample size always be taken from a field to satisfy the criterion 
of representativeness. To achieve even better representativeness, a variable 
sampling plan (see Fig. 2) can be applied.

In Hamilton’s case of sampling for P. xylostella, he showed that to achieve 
a good enough level of precision using a fixed sampling size, at least 45 
samples should be taken per field. This was in contrast to the industry standard 
of fixed sample size of 10–20 samples per field, too few to result in reliable 
decision-making. Hamilton et  al. (2006) also showed that depending on the 
lower or higher action threshold (larvae per plant) used for decision-making, 
the probability of making type II error (not treating when there would be a need 
to treat) was higher for the lower AT, particularly if the sample size was too 
small (Hamilton et al., 2006). This meant that when taking only a few samples, 
risk aversive growers (who wanted to intervene at lower pest densities) were 
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actually making the type II error more often than growers who accepted 
higher pest densities before intervening. Thus, the appropriate sample size is 
dependent upon both the AT and the level of type II error that one is prepared 
to accept. The question then becomes: what should be done to encourage 
the implementation of reliable and at the same time less resources-demanding 
sampling plans by the stakeholders to really help their decision-making?

Giles et  al. (2017) offered an answer to the above question: ‘These 
thresholds are more likely to be utilized by stakeholders when integrated 
into dynamic web-based IPM decision support systems that summarize pest 
management data [and push site-specific biological control management 
recommendations to decision-makers].’ A very interesting approach to answer 
the same question was offered recently by Rincon et al., (2020), who also ended 
up recommending IT-based support systems – albeit in a less complicated form 
than that of Giles et al., to encourage farmers to take up more reliable sampling 
plans. However, their approach went deeper into the socioeconomic issues 
that may hinder implementation of sampling plans. They began with the issues 
concerning uncertainty and the value of information, and the time constraints 
of farmers and their risk aversion, but addressed also the issue of fixed ETs 
which in reality vary according to the variation in product price in particular.

Rincon et  al. (2020) worked on a tomato greenhouse infested with T. 
absoluta, undertook intensive sampling in the crop to first determine explicitly 
the level of infestation, and then evaluated two sequential and two variable-
intensity sampling (VIS) plans for the classification of pest density, by letting 
farmers do the sampling and measure the time needed for sampling. The 
re-sampling was undertaken both with computer simulations and by field trials. 
As a result they suggested a new approach to ETs: that they should be seen 
not as fixed recommendations but as learning tools. With the help of such a 
learning tool, the farmers can determine their own threshold, keeping in mind 
the reference, but at the same time adjusting their decision-making according 
to their experience, intuition and knowledge about market developments.

Eventually, Rincon et al. (2020) recommended variable intensity sampling, 
not sequential sampling. The value of the information produced by VIS was the 
highest, and the time needed for sampling was no more than that needed for 
binomial presence–absence sampling. The merits of the study by Rincon et al. 
(2020) are in their collaborative approach to developing the sampling plan and 
doing an intensive sampling first and in using it as a reference for the farmers, 
who tested the four different sampling plans. The farmers learned about the 
level of uncertainty of the sampling results directly and could themselves 
consult their risk-averse selves with regard to decision-making. However, they 
were equipped with objective knowledge about the pest situation. Rincon et al. 
(2020) concluded that implementation of the adaptive sampling plan requires 
simultaneous technological developments to make real-time calculations and 
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deliver the information in an appropriate format. They foresee apps that will 
do the calculations for the sampler, as they must get instruction to continue or 
not continue sampling ‘on the go’. In such situations, documentation based on 
voice recognition would be of great help as it frees the grower’s or advisor’s 
hands for actual work.

It must be noted that sampling based on counts in situ turned out to be 
adequate for a pest like T. absoluta, where the larval mines in leaves are easily 
seen and counted. VIS sampling that is based on counting specimens may 
not be the best option for pests such as whiteflies that are more difficult to 
see. VIS can be implemented also with presence–absence sampling, in which 
case the difficultly of counting very small and prolific specimens is avoided. 
Furthermore, automated counting methods like the app that recognizes either 
adult or immature stages of whiteflies (Anonymous, 2021) is exactly what is 
needed for situations like this, and such tools, once available for use in the field, 
can play a decisive role in the willingness of stakeholders to adopt a sampling 
plan.

2.7 �Forecasting

Innovations regarding mechanistic models and advances in statistical models 
brought about by the use of AI and associated growing importance of Big Data 
and data quality are some of the key developments in forecasting for IPM. These 
developments concern not only horticulture but primary production in general. 
Several authors emphasize ‘seeing the wood for the trees’, that is, moving from 
reductionist mechanistic models towards more systemic or holistic approaches 
to modelling as a tool of pest forecasting in IPM. Harvey (2015) calls for Big 
Data for conducting meta-analyses and constructing powerful models for IPM 
in temperate horticulture. Orlandini et al. (2017) describe the need to develop 
agroclimatology-based mechanistic models in terms of how models are built, 
parameterized, validated and implemented to produce, as outputs, pest risk 
maps for long-term decision-making and preparedness, and pest forecasts 
for day-to-day decision-making. Tonnang et al. (2017), Baker et al. (2018) and 
Orlandini et al. (2017) all emphasize the creation of a modelling culture that 
should involve model developers, service providers (e.g. for weather data) and 
final users.

New approaches to data analysis such as Big Data algorithms emphasize 
collaboration between computer scientists and biologists. The literature 
is replete with reviews about Big Data and its possibilities, but what is really 
needed for pest forecasting are more empirical cases of the use of Big Data 
for improving forecasting at wider temporal and spatial scales than before. This 
need poses new requirements for multidisciplinary collaboration and for being 
able to identify what types of data are relevant and valuable now, even though 
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they may not have been so before. This requires also that the importance of 
data collecting must be made understood to all stakeholders. Otherwise a 
large part of important data could remain only anecdotal and not become used 
(Harvey, 2015).

Orlandini et al. (2017) call for coupling of pest models with crop models, 
that is, a step towards a more systemic approach, since many current pest 
models do not have outputs that are easy to translate into pest impacts. They 
foresee also an increasing quantity of pest observations and a move toward 
the concept of big data and associated technologies for capturing, storing, 
managing and analysing data. Such a move is expected to result in a changed 
balance between mechanistic and statistical forecast models, as depicted 
by (Baker et al., 2018). A thorough understanding of mechanisms behind 
biological and ecological processes is still needed instead of mere working 
with ‘black boxes’ associated with statistical models. Developments in both 
modelling approaches are foreseen to better use them together, and thus get 
more out of the combination of deductive and inductive modelling approaches. 
Mechanistic models could be used by machine learning algorithms both as 
transient inputs and as a validating framework. (Baker et al., 2018).

At the same time, technical developments in remote sensing are also 
making mechanistic models more powerful by helping to get better data for 
model validation. One limitation of mechanistic weather-based phenology 
models has namely been that data sets of in situ temperature are very specific 
to the locality of weather stations, that is, the data have a low spatial and 
temporal resolution. Satellite-based remote sensors that continuously measure 
land surface temperatures over vast areas can nowadays be used for creating 
more accurate degree-day accumulation maps for large areas. One example is 
given by the studies of Marques da Silva et al. (2015) on T. absoluta in Portugal. 
Remotely measured land surface temperature data was combined with the 
threshold temperature and thermal constants of T. absoluta development. The 
outputs were risk maps depicting the number of generations produced by the 
pest in different parts of the country with respect to the spatial and temporal 
variation of degree-days sum. The authors found that the spatial resolution of 
such maps was better than those produced with in situ weather stations. Such 
resolution improvement can make a difference in site-specific management of 
the pest. The authors foresaw an early warning system that could geographically 
locate farmers associated with similar climatological patterns and could warn 
them when higher risk levels are reached.

At a smaller scale, precision agriculture technologies enable predicting 
the zoning of pest prone areas within fields for pests that have aggregated 
distributions. There are methods to partition fields in management zones, but 
zoning for pest management purposes requires spatially explicit ecological 
layers that are created on the basis of a pest’s within-field distributional patterns. 
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Such layers represent a species’ ecological niche. The patterns, or zones, 
are generated via species distribution modelling (SDM) and high-resolution 
environmental data using tools such as drones and wireless sensor networks 
to map environmental conditions with high spatial and temporal resolutions. 
Méndez-Vázquez et al. (2019) delineated site-specific pest management zones 
in a lime orchard using SDM by first mapping pest-driving environmental 
features within the orchard via precision sampling tools. These measurements 
served as raw data for creating the spatially explicit ecological layer needed 
for predicting where selected pests would thrive. They worked with six virtual 
pest species (with known affinity to lime trees) and mapped, in a correlative 
manner, their known distributional ranges within the experimental orchard 
using a subset of real environmental predictors. Lastly, they evaluated the 
performance of the selected zoning models in terms of multivariate similarities 
between environmental preferences of pests and environmental characteristics 
of individual management zones. The authors concluded that the use of the 
ecological layer that was created for purposes of identifying pest management 
zones according to the environmental requirements of the pest species 
worked better than the classical zoning methods. The approach appears 
rather demanding in terms of measurements that need to be done but may be 
feasible to do in long-term habitats such as fruit orchards.

Tonnang et al. (2017) give an overview of advances in crop pest forecast 
modelling and present such approaches based on advanced mathematics, 
computer and physics theories. These approaches include artificial neural 
networks, cellular automata coupled with fuzzy logic, fractal, multi-fractal, 
percolation, synchronization and individual/agent-based approaches. Most of 
the new types of modelling tools presented by Tonnang et al. (2017) concern 
spatio-temporal dynamics of pest distributions and densities. For example, a 
cellular automata modelling was used to predict the risk of the invasion and 
natural spread of T. absoluta from Spain across Africa. The output revealed 
that T. absoluta could reach South Africa 10 years after being detected in 
Spain (Guimapi et al., 2016). The cellular automata model integrated NDVI, 
temperature, relative humidity and yield of tomato production. Artificial neural 
networks (ANN) are showing good promise in predicting pest dynamics more 
accurately. Examples include predictions for population densities of P. xylostella 
and its ichneumonid parasitoid Diadegma semiclausum (Tonnang et al., 2010) 
and forecasting paddy stem borer population occurrence (Yang et al., 2009). 
More recently, Yan et al. (2015) compared multiple regression (MR) and ANN 
for predicting monthly pest risks of Thrips palmi and P. xylostella. MR is the 
simplest and most widely used method for pest-risk prediction. The advantages 
of ANN are that the modelling can be conducted without prior knowledge: any 
relationship between given predictors and dependent variables can be learned 
by the neural networks, regardless of linearity or non-linearity. Non-normally 
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distributed data, multicollinearity issues and data noise are also tolerable when 
training the network. But when using ANN, the importance of predictors to a 
given dependent variable cannot be explicitly identified by ANN as it performs 
like a black box.

Yan et al. (2015) list a number of characteristics of MR and ANN that have 
importance for the modelling process and output. These authors are among 
those that see benefits in combining the mechanistic and statistical modelling 
approaches. MR could be used to identify key variables that contribute to pest 
development, that is, MR can open up the black box that ANN cannot do and 
can reduce the model complexity and improve the training efficiency and/or 
accuracy (Yan et al., 2015). Likewise, Kumar et  al. (2018) also found out that 
ANN produced more accurate outputs than classical regression in predicting 
incidence of two rice insect pest species and one natural enemy species using 
weather variables as inputs. ANN and fuzzy logic were used also to predict daily 
risk of the western flower thrips in roses grown in greenhouses using only four 
variables in comparison with earlier models that needed a large number of 
variables to produce desired output (Tay et al., 2020).

D. suzukii exemplifies several of the issues that Magarey and Isard (2017) 
list in their troubleshooting guide concerning mechanistic forecasting models. 
As D. suzukii is an invasive species, the biggest of problems or gaps concern 
details of its biology and ecology, but also a validation of models that predict 
the development of its life stages or fitness in the new regions of its distribution. 
Degree-day-based models and stage-structured models are not always 
validated to see how well they predict the inter-annual variation in the activity of 
the pest. Initial population development after invasion, survival at temperature 
extremes, and conditions necessary for the development of damaging 
populations are not known well enough to use these details as input for models. 
Existing models may rely on development measured in laboratory experiments 
(Kinjo et al., 2013; Tochen et al., 2016) instead of utilizing field detection data 
from traps or fruit samples. Data on winter survival and spring populations 
of D. suzukii in regions with cold winter conditions are limited (Dalton et al., 
2011; Shearer et al., 2016; Stockton et al., 2018); thus, there is a need to further 
evaluate and predict fly activity using field-collected data on adult flies. The age 
structure of estimated populations suggests that trap and fruit infestation data 
are of limited value for validating models concerning the fly’s development 
(Hamby et al., 2016; Tochen et al., 2016; Wiman et al., 2014). Despite these 
issues, D. suzukii activity was concluded to be predictable and environmental 
conditions (such as the annual number of days below 0°C, the number of winter 
and spring days above 10°C and the fly activity in the preceding year) can be 
used in temperate regions to provide regional risk warnings (Leach et al., 2019).

P. xylostella is a migrant species whose appearance in new regions comes 
as a nasty surprise. A climate niche model has been developed for the moth. 
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The model has been used to predict the global geographic distribution of P. 
xylostella, but the moth’s seasonal abundance for various locations has not 
been used in construction of the model. The model was also used to ‘predict’ 
historical population dynamics in Hangzhou, China, over several years, and 
for analysis of recent outbreaks of the species in the British Isles (Zalucki and 
Furlong, 2008; Zhu et al., 2018).

Climate warming has created the need to update phenological models 
for many pests, including Psila rosae, D. radicum and D. antiqua, whose peak 
flight and start of egg-laying are predicted with phenological models. The 
likelihood of D. radicum producing a fourth generation in the autumn in the 
United Kingdom is foreseen if mean annual temperatures increase by 5 or 10°C, 
coupled with earlier hatching of the flies from overwintering pupae (Collier 
et al., 1991). The warming climate can influence the flight dynamics of pests 
such as the codling moth during the growing season (Roşu-Mareş et al., 2020), 
resulting in prolonged periods of control and increased damages to crops. 
Samietz et  al. (2013) took advantage of the improved spatial and temporal 
resolutions of climate model projections and modelled the phenology and 
generations of the codling moth. Their results also indicate that the pest’s 
impact on apples would increase and its management would become more 
difficult with climate warming. Using 49 climate indices and undertaking further 
analyses with climate projections, Bradshaw et  al. (2019) predicted that in a 
2–4°C warmer world, B. tabaci could pose a risk to outdoor UK crops, including 
vegetables, in July and August. Currently, the pest occurs outdoors at the 
latitudes of southern France.

3 �Case study: whitefly sampling, monitoring and 
forecasting

3.1 �Two forms of plant injury by whiteflies complicate EIL and 
ET development

The relationship between yield reduction and plant injury by whiteflies has 
been elusive for a long time, since whiteflies cause economic damage in 
two ways: directly by depleting plants of photosynthates and indirectly by 
secreting honeydew. Honeydew accumulates on leaves and fruits and causes 
two types of harm: firstly, by favouring the growth of saprophytic fungi that 
block access of light to leaves and secondly, by causing aesthetic and technical 
harm through contamination of fruits, resulting either in loss of grade A fruits 
or in the need for washing them prior to sale. Honeydew production by the 
adult and larval stages and the effect of temperature and nitrogen fertilization 
on its production are known (Blua and Toscano, 1994; Costa et al., 1999; 
Henneberry et al., 2001; Hong and Rumei, 1993). This could in principle be 
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used as a proxy for estimating the variable feeding intensity of immatures. In 
practice, measuring honeydew production is difficult and must be limited for 
research purposes and the EILs and ETs must be based on the proportion of 
contaminated fruits.

In Fig. 4, the components and their correlations needed to understand 
the direct and indirect effects of whiteflies on yield quantity and quality are 
summarized. The light green and light blue components denote variables 
that have been measured traditionally to study whitefly economic damage 
impacts on plant yield: feeding and honeydew secretion. Johnson et  al. 
(1992) showed that the yield of field grown tomato correlated negatively with 
cumulative immature whitefly-days (per 1 cm leaf disk of tomato). (The whitefly 
days indicate the prolonged pest pressure on the physiology of plants due to 
feeding by both adults and immature stages.) A 5% direct yield loss, but little 
loss to sooty mould, occurred after 69 cumulative immature whitefly days (with 
a maximum of 0.7 nymphs/cm2 in weekly samplings per plot). On the other 
hand, a 5% yield loss in grade A fruit caused by sooty mould contamination 
alone would have been reached after 298 cumulative greenhouse whitefly days 
(peak density = 8.3 immatures/cm2 tomato leaflet). At that point, a total loss of 
26% tomato yield would have occurred due to the combination of feeding and 
sooty mould contamination. No clear initial plateau in yield could be discerned; 
instead, yield reduction was linear throughout the sampled levels of whitefly 
abundance. It appears that direct yield reduction was more important than 
contamination of fruits with honeydew.

3.2 �Sampling, monitoring and identifying of whiteflies

In an ideal world, tomato or cucumber growers can choose a monitoring 
protocol that depends on the size of their crop and willingness to invest in 
monitoring the pest. In a relatively small greenhouse, say 5000 m2, they can 
use yellow sticky traps (YST) for monitoring by placing them at a distance of at 
least 15–20 m2 from each other (1 trap per 200–400 m2, roughly) so that they do 
not produce spatially redundant information as shown by Kim et al. (2001) and 
Park et al. (2011b). Besides the usual YSTs, LED-enhanced or LED-based traps 
that attract whiteflies have been developed and equipped with fixed cameras 
that take an image at selected intervals and send it to a computer screen 
(Stukenberg et al., 2015; Stukenberg, 2018). Counting of adult whiteflies from 
YSTs is being made easier by automatic counting using machine-vision-based 
apps (https://play​.google​.com​/store/​/apps​/details​?id=<aidev​.cocis​.makere​
re. org.whiteflycounter &hl=fi&gl=US) (https://www​.koppert​.com​/natutec​- 
scout/) (McCarthy et al., 2020). A statistical model, based on machine-vision 
data, for distinguishing T. vaporariorum and B. tabaci adults from each other 
in traps has also been developed (Moerkens et al., 2019). Even immature 

https://play.google.com/store//apps/details?id=
http://www.aidev.cocis.makerere.
http://www.aidev.cocis.makerere.
https://www.koppert.com/natutec-scout/
https://www.koppert.com/natutec-scout/


Published by Burleigh Dodds Science Publishing Limited, 2022.

Pest and disease monitoring and forecasting in horticulture﻿ 39

stages on leaves can nowadays be distinguished from each other and 
counted automatically, but such phenotyping is currently cost-effective and 
practical only for research purposes used in the laboratory (Anonymous,  
2021).

From the traps, the grower monitors both the pest and a predatory bug M. 
pygmaeus and can conclude from their relative counts whether biocontrol by 
the predator is going well or not (Böckmann and Meyhöfer, 2017; Moerkens 
et al., 2020). Based on trap catches of the parasitoid Encarsia formosa, she can 
also conclude whether parasitism is going on well: six or more individuals per 
trap indicates the parasitoid is keeping the pest in control (Böckmann et al., 
2014). Should the grower want to check the parasitization rate of puparia 
on the leaves, she can use the threshold of 80% black, parasitized pupae for 
concluding that the whitefly situation is in control (van Roermund et al., 1997). 
And if the grower is well updated, she knows that she must place Encarsia 
cards so that there is no more than an 8 m distance from one point to another. 
Otherwise there will be areas that parasitoids do not cover (Pérez et al.,  
2011).

Figure 4 Factors needed to understand plant injury and economic damage caused to 
plants by Trialeurodes vaporariorum. Data for cucumber (green boxes) (Rumei and Liying, 
1991) were used to indicate the relative strength of correlations between, plant growth 
indices, yield quantity and quality and abundance of T. vaporariorum. Thick green line: 
correlation significant at 0.01. Thin green line: correlation significant at 0.05. Dashed thin 
line: correlation almost significant. The correlations between honeydew production with 
growth indices are not based on empirical results, just sketched to show the relationships. 
The orange boxes give the most recent research targets for the impacts of whitefly on 
plants, and eventually yield. Their direct correlations with variables in the green and blue 
boxes are not known, but all correlate significantly with whitefly density. References: 1 
(Cai et al., 2016; Chen et al., 2011) for tomato, 2 (Darshanee et al., 2017; Su et al., 2018) 
for tomato, 3 (Shannag and Freihat, 2009) for cucumber.
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3.3 �Possibilities of physiological EILs

To succeed in biological control, the grower must have started control measures 
as soon as she observed the first whiteflies in the crop. The whiteflies reduce 
the chlorophyll content of leaves, the performance of the remaining chlorophyll 
gets poorer than normal and the stomatal conductance also decreases; these 
negative consequences take place in both tomato (Buntin et al., 1993) and 
cucumber (Rumei and Liying, 1991; Shannag and Freihat, 2009). Provided that 
there were no more than five to six adult whiteflies per plant in the beginning of 
the infestation (an EIL in greenhouse cucumber where the economic damage 
will develop into significant yield reductions in 2–3 months in the absence of 
control measures, as shown by Jeon et  al. (2009)), such reductions in plant 
performance will not be reflected in the yield immediately. In cucumber, 20% 
of chlorophyll content of leaves can decrease before it results in yield decrease 
(Rumei and Liying, 1991); at this point, sooty moulds due to honeydew secretion 
are not present yet, so yield reduction is directly from the sucking action by 
whiteflies. So there is time to act after detecting the whiteflies but the length of 
time depends on the initial level of infestation and on stages of whiteflies of the 
initial infestation (Rumei and Liying, 1991).

The extent to which stomatal conductance and chlorophyll content and 
performance are reduced and transpiration is increased depends on how plants 
are fertilized, how much light they receive, how high fruit load they have and 
what other biotic and abiotic stressors are affecting them. The physiological 
direct yield response varies depending on environmental conditions, but this 
correlation remains understudied. Current portable phenotyping instruments 
such as fluorometers for measuring chlorophyll and secondary metabolites 
(Groher, 2019), chlorophyll meters (Chrysargyris et al., 2020; Vesali et al., 2017), 
porometers for measuring stomatal conductance (Buntin et al., 1993) and 
Fv/Fm-meters for measuring the maximum quantum efficiency of the plants’ 
photosystem (Poudyal et al., 2019) can be used to determine physiological 
changes in crop plants. The data can be used for determining physiological 
EILs. Big Data approaches should help in revealing the correlations between 
such physiological responses and environmental factors.

3.4 �Simultaneous mass trapping and monitoring with sticky 
traps: consequences to ETs?

In year-round tomato and cucumber crops in Finland at the beginning of the 
2010s, nominal thresholds for initiating occasional treatments with selective 
pesticides were based on whitefly catches with sticky traps. Relatively few 
growers monitored whitefly dynamics with YSTs at that time. Following a 
collaborative project in 2010–12 (Vänninen et al., 2015), the use of sticky traps 
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for monitoring increased and nominal thresholds developed with input from 
growers and advisors were taken up more widely. At the same time, however, 
large yellow sticky bands for mass trapping gained popularity, as an approach 
to improve whitefly management in year-round crops where biocontrol does 
not work as reliably as in summer crops. This has created a new situation: the 
small YSTs used for monitoring seem to catch fewer whiteflies nowadays, as the 
large yellow glue bands hung above every row of the crop seemingly compete 
with the small traps by attracting more whiteflies.

At the moment, there are no fixed thresholds and decision-making 
is based on the experience of growers and advisors, either in counting/
observing adults from leaves in plant tops or monitoring whiteflies with YST 
or a combination of these approaches. Decision-making based on experience 
can work well but seems to be insufficient in years when whitefly pressure is 
high due to outdoor weather conditions that promote whitefly reproduction in 
wild plants near greenhouses; subsequently, the pest pressure in the autumn 
from outdoors is high when winter crops of tomato and cucumber are planted 
in the greenhouses and attract whiteflies from outdoors when the weather gets 
colder. The large yellow glue bands can also influence the spatial distribution 
of whiteflies in the crops. No formal studies on whitefly distribution in these 
cropping systems have been made so far but are now being conducted.

3.5 �New approaches to whitefly monitoring

Spotting and locating whitefly hot spots is one goal of monitoring. This can 
be achieved using information on spatial distribution of whiteflies to cover the 
greenhouse area with appropriate placement of YSTs, as described above, 
or by plant sampling plans. Plant sampling is not a common procedure in 
greenhouse tomato and cucumber except for observing adults in tops of 
plants when working on the plants daily. Growers develop nominal thresholds 
based on experience of seeing adults on the top leaves and combine this 
information with YST counts, if the latter are used. Formal sampling plans for 
adult and immature counts have been developed for outdoor tomato crops. 
Sequential sampling plans with fixed precision for B. tabaci immatures were 
shown to reduce the number of needed leaf samples by 60–70% compared 
to conventional sampling plans based on fixed sample sizes (Gusmão et al., 
2006, 2005) – a considerable reduction in time and labour for sampling. Better 
coverage of microclimate monitoring would help in recognizing risk zones for 
whitefly hot spots, as shown below.

For very large greenhouses where even YST monitoring is impractical, 
robotic platforms based on optochemical techniques are already available 
(https://www​.ecoation​.com). They scan plant rows for pests and fruit ripeness 
automatically but take in also human observations in digital form. The 

https://www.ecoation.com
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detection can be based on multispectral or hyperspectral imaging, but also 
on detection of volatile organic compounds emitted by infested plants – no 
information is available on this. A detection process that covers all plant rows 
makes the need for knowledge on spatial distribution of the pest obsolete 
and helps detect hotspots. The platform’s AI system is so designed that it can 
correlate pest pressure and microclimatic conditions (temperature, humidity, 
light intensity, air currents) and therefore can help identify zones of high 
pest risk. The system also does future projections to forecast pest pressures 
within the coming week which helps to order the right amounts of biocontrol 
agents. Sophisticated AI-based statistical algorithms based on data that is 
accumulated continuously are doing the job that is too complex for humans 
alone (Ecoation, n.d.).

3.6 �Simulation of whitefly population dynamics

Many mathematical simulation models have been created to map the 
responses of whiteflies to temperature. They include both linear and non-linear 
phenological models, with or without stochasticity, for development times 
or rates based on temperature (and host plant) (Chandi et al., 2021; Drost 
et al., 1998; Gamarra et al., 2020; Muñiz and Nombela, 2001; Nava-Camberos 
et al., 2001; Wang and Tsai, 1996). In most models air temperature is used, 
but leaf temperature has been shown to explain development time better 
(Park et al., 2011a). Life-table and population dynamic models for whiteflies 
include differential equations, matrix models, dimension-changeable matrix 
models and box car train models (Giessen et al., 1995; Hulspas-Jordaan and 
van Lenteren, 1989; van Roermund and van Lenteren, 1992; Yeow and Becker, 
2018).

The interaction of whiteflies with their important natural enemy Encarsia 
formosa has been modelled by several researchers (e.g. Hulspas-Jordaan 
and van Lenteren, 1989; Yano et al., 1989). Rodríguez (2016) also included 
the whiteflies’ interaction with powdery mildew that often occurs on tomato 
leaves together with whiteflies and can influence both the pest and its natural 
enemies. Rincon et al. (2015) produced an algorithm to simulate the effect of 
within-plant heterogeneity on whitefly–predator dynamics based on explicit 
prey spatial distributions. Such models can be used to scale-up functional 
responses of natural enemies. Giessen et  al. (1995) explored the effects of 
antibiotic resistance of tomato plants on whitefly population development with 
a deterministic model. Moerkens et al. (2020) used simple statistical modelling 
based on whitefly and Macrolophus counts in YSTs to predict the success 
level of biocontrol. With the development of wireless sensors or moving 
robotic AI-platforms that measure microclimate on the go and accumulate 
data on pest densities at the same time, the predictive use of forecasting 
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models is being integrated into whitefly management in decision support  
systems.

4 �Conclusion
Pest monitoring in horticulture is developing technologically to reduce time and 
labour needed for sampling and to produce more accurate pest predictions. 
New ways of detecting pests based on selective e-traps, e-noses, cameras 
and acoustic signatures are already in use or emerging. Remote sensing of 
pests requires the development of new economic injury levels and ETs. The 
relative importance of mechanistic and statistical models is changing due to 
AI-technologies and Big Data. The use of Big Data will force researchers to 
collect, use and value data differently than before. The incorporation of natural 
enemies in ETs will take place gradually and require researchers to acquire 
modelling skills. Research for advancing monitoring and forecasting also must 
include the socioeconomic factors that determine whether new technologies 
will be implemented by farmers. Developing trustworthy sampling plans and 
forecasting models, and validating and implementing them in collaboration 
with stakeholders, remains important.

5 �Future trends in research
The new, high-technological approaches to data collection and management 
appear very prominently in the research literature of pest management 
nowadays. The feasibility of these new technologies in annual and perennial 
horticultural crops of different sizes is an issue that needs to be considered as 
one of the research targets. Remote-sensing techniques require new ETs to be 
developed. Criteria can be developed in advance concerning the feasibility 
of new solutions for specific purposes as exemplified by the study of Cock 
et al. (2016) evaluating the usefulness of remote sensing for monitoring key 
agricultural pests. Feasibility evaluations should not, however, restrict empirical 
research too much, as practice often produces serendipitous new information 
and seeds for innovations that cannot be produced only by theory.

Remote sensing can indicate the occurrence of a pest in the crop, without 
having to pay attention to the pest’s spatial distribution when collecting 
data. But can remote sensors tell also on the abundance of all pests or the 
abundance of natural enemies that influence the future trajectory of the pest 
population? Hardly. Phenological models will use increasingly site-specific 
data and become very accurate, but their output does not tell whether the pest 
really occurs at a specific site or how many pests there will be. Possibilities of 
using mobile phones for implementing accurate enough sequential sampling 
plans that are also user-friendly and not costly to use deserve research 
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investments. The uncertainty of information is an issue that influences growers’ 
willingness to follow ET recommendations. Does their willingness to rely on 
fixed ETs change if they obtain reliable evidence on how certain the ETs are 
or should ETs see as learning tools that help growers to adjust their behaviour 
regarding intervention decisions? Are ETs that take into account the level of risk 
aversion of growers more readily accepted than fixed one-option ETs? If ETs 
are probabilistic, does this increase or decrease growers’ willingness to apply 
them? How to address the gap between the theory and practice of sampling 
and monitoring? Sampling plans are worth nothing if they serve only the CV of 
researchers and publication lists. Fitting them into the agenda and activities of 
stakeholders is the ultimate goal and must be included in research on sampling, 
monitoring and forecasting.

While digitalization is gaining a foothold in horticulture, the importance of 
biology, ecology and physiology of organisms is actually being accentuated with 
the advancement of new technologies. The Big Data collected must represent 
relevant life stages and events in the pests’ life cycles. A similar requirement 
comes from the inclusion of natural enemies in ETs. Biological research is needed 
also to couple the knowledge concerning the pest, its natural enemies and the 
crop plant with each other for modelling purposes and for the timing of control 
actions such as push–pull technologies, use of trap crops or spatial and temporal 
performance of biocontrol agents. Sampling methods and decision thresholds 
for natural enemies will gradually become more important research targets. 
Studies on tangible quantified impacts of natural enemies associated with ETs 
are still scarce and must be incorporated in bioeconomic models. Improvements 
of phenology models of both pests and natural enemies are still needed to make 
the outputs more precise and to improve region- or site-specificity of outputs. 
Climate change is also contributing to this research need, as updated data are 
required on pest and natural enemy biology and interactions (Collier et al.,  
2020).

Sharing pest observations among growers and researchers with the help 
of current IT solutions should be encouraged by research to show its benefits 
for collecting Big Data and for being able to adjust sampling and management 
decisions with changing contexts of farming. Field-level precision farming 
decisions can then be combined with knowledge obtained from wider spatial 
and temporal scales that, depending on the pest species, can influence local 
pest conditions and decision-making. Using Big data successfully requires 
collaboration between theory (in the natural sciences) and practice (farmers, 
IPM researchers, advisors, AI specialists) so that we understand the type of data 
that is valuable and what are not. 

Research on the application of automated identification and more selective 
trapping of insects will continue. New sensory domains (olfaction, acoustics) are 
already included in research agendas concerning insect and mite responses 
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to their environment and the application of sensors to identify insects. For 
example, could wingbeat frequencies be used to distinguish species of Delia 
when they enter semi-selective traps? No information exists as yet. It seems that 
studies on the chemical ecology of several pest species are being revived now 
that research methods have become more sophisticated, our understanding 
of insect olfaction has increased and successful examples of kairomone traps 
are available as examples. New approaches must be compared with existing 
sampling methods in terms of efficacy and cost, to choose the best solution 
from the practical point of view.

6 �Where to look for further information
6.1 �Further reading

•• A concise overview of sampling principles and practices in lecture form: 
Barbour, J. Sampling Insect Populations for Pest Management: http://
pnwpestalert​.net​/uploads​/meetings​/BarbourIPMsampling​.pdf.

•• Binns, M. R., Nyrop, J. P., van der Werf, W. and Wopke, W. 2000. Sampling 
and Monitoring in Crop Protection: The Theoretical Basis for Developing 
Practical Decision Guides. CABI.

•• Higley, L. G. and Pedigo, L. P. 1996. Economic Thresholds for Integrated 
Pest Management. University of Nebraska Press.

•• Koul, O. and Cuperus, G. W. (Eds.). 2007. Ecologically Based Integrated 
Pest Management. CABI.

•• Pedigo, L. P. and Buntin, G. D. 1993. Handbook of Sampling Methods for 
Arthropods in Agriculture. CRC Press.

•• Remote sensing for insect pests – reviews and case studies (Potamitis et al., 
2017; Roosjen et al., 2020; Suckling et al., 2020; Zhang et al., 2019).

•• Review on the role of kairomones in IPM: (Murali-Baskaran et al., 2018).
•• A review of sampling and monitoring methods for beneficial arthropods in 
agroecosystems (McCravy, 2018).

•• Local, regional and global performance of models and effects on resource 
use of research: how to direct efforts and resources, also in the context 
of current IPM programs and monitoring and forecasting as one of its 
principles (Berlin et al., 2018).

•• Big Data and IPM: Data types and collection (Zaza et al., 2018); Data 
processing (Pratheepa and Antony, 2018); Data valuation (Demirel and 
Kumral, 2021; Weersink et al., 2018).

•• Integrated Pest Management Pheromones Market Size, Share & Trends 
Analysis Report (2020–2027): https://www​.grandviewresearch​.com​/industry​- 
analysis​/ipm​-pheromones.

http://pnwpestalert.net/uploads/meetings/BarbourIPMsampling.pdf
http://pnwpestalert.net/uploads/meetings/BarbourIPMsampling.pdf
https://www.grandviewresearch.com/industry-analysis/ipm-pheromones
https://www.grandviewresearch.com/industry-analysis/ipm-pheromones
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6.2 �Examples of companies offering tools for automated 
monitoring and identification of pests and platforms for 
documentation of scouting and sensor data

•• https://metos​.at​/iscout/.
•• https://www​.trapview​.com​/v2​/en/.
•• https://www​.ecoation​.com/.
•• https://arisbv​.nl​/en​/vision​-for​-phenotyping​/ornamental​-crops​-2​/

phenotyping​-products​/cirillo.
•• https://www​.botany​.nl​/en​/cirillo.
•• https://www​.koppert​.com​/natutec​-scout/.
•• https://www​.letsgrow​.com.
•• https://www​.30mhz​.com​/products​/platform/.
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