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Preface

This book is a textbook for algebraic number theory. It grew out of lecture notes
of master courses taught at the Radboud University over a period of more than
four decades. It is self-contained in the sense that it uses only mathematics of
a bachelor level, including some Galois theory, as for example treated in Galois
Theory [35]. To some extent the language of categories is used, especially in later
chapters.

Part I contains topics in basic algebraic number theory as they may be presented
in a beginning master course on algebraic number theory. The theory in Part IT is
more advanced. It contains in particular full proofs of the main theorems of class
field theory using a ‘classical’ approach to class field theory, which is in a sense
a natural continuation of the basic theory in Part I. The advantage for students
is that no more prerequisites are needed. Each approach has its own advantages,
so for specialists in algebraic number theory it is advisable to have knowledge of
more than just one. For specialists of other areas of pure mathematics who want to
use it, the exposition as given here might very well suffice. The last two chapters
provide the connection to the more modern and more advanced idelic version of
class field theory.

It is not the purpose of this book to present up to date information on the state
of the art. The section References is just what it says: it contains references made
in the text and is not an exposition of the vast literature on the subject.

Many students were so kind to report on typos. Merlijn Keune has read large parts
of the manuscript and I profited a lot of his dozens of comments. Undoubtedly,
several typos and errors remained undetected. Suggestions for improvements are
welcome: keune@math.ru.nl.

Nijmegen, February 2023 Frans Keune
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Introduction

Number theory is a part of mathematics and is as old as mathematics itself. Many
number problems come down to solving algebraic equations in integers. Their solu-
tions are algebraic numbers. This has led to the introduction of abstract algebraic
structures such as groups, rings, fields and modules. Abstract algebra dates from
the beginning of the nineteenth century and developed rapidly since then. As a
result the focus in number theory shifted from algebraic numbers to (algebraic)
number fields, finite extensions of the field of rational numbers. The study of
algebraic structures arising in number theory is known as algebraic number theory.

A deep and highly developed part of algebraic number theory is class field theory, a
theory of the abelian extensions of number fields. Its origin lies in the various reci-
procity laws discovered in the nineteenth century, the oldest being the well-known
quadratic reciprocity law of Gauf}, which is strongly related to quadratic number
fields, quadratic extensions of the rationals. For the field of rational numbers as
the base field the theorem of Kronecker and Weber is fundamental: every abelian
number field is a subfield of a cyclotomic field. For an arbitrary number field as
base field the situation is much more complicated. How to generalize already is
a problem, proving the generalization is an even bigger problem. All of this was
realized by Takagi and Artin in the first half of the twentieth century. Later, new
insights have led to new and powerful approaches, especially via group cohomology.

For the transfer of mathematical knowledge to students choices have to be made
for the level of abstraction, especially in case of a subject with a long history.
Unlike other sciences, mathematics is cumulative: what has been shown to be
true remains true forever. Luckily however, the organization of mathematics does
change. New insights lead to new concepts and more efficient, more elegant proofs.
For a student this means that there is no need to digest the complete history of a
theory. On the other hand, to master a highly developed theory, it is advisable for
reasons of motivation to have it somehow based on its origins. At the same time
one can profit from knowledge of modern concepts as they are nowadays standard
in the mathematics curriculum of a university. This is the main idea behind the
organization of this textbook.

In developing a course choices have to be made at which stage to introduce new
concepts. For algebraic number theory this applies especially to notions of localiza-
tion, Dedekind domain, discriminant, different, completion, zeta function, group
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Introduction

cohomology and idele. In this book a new concept is introduced at the moment it
makes a real difference to have it available. Further features are:

xii

In chapter 2 is chosen for a definition of a Dedekind domain which is directly
related to the unique factorization property of nonzero ideals.

Quadratic number fields get special attention. In chapter 4 algorithms are
given for their ideal class groups as well as for the fundamental unit in the
real quadratic case. Based on these algorithms the formula for the 2-rank
of the ideal class group is derived. This computation is quite technical. A
second proof is in the exercises of chapter 12. Using class field theory the
formula is easily derived: a third proof is in chapter 15, showing the power
of class field theory.

Localization of Dedekind domains is defined in chapter 6 using discrete val-
uations of the field of fractions. It is used in the next chapter when studying
the relative case of an extension of number fields: decomposition, inertia and
ramification groups, Frobenius automorphisms. This all will be used for the
theory of abelian number fields in chapter 9. For later use the theory is given
in a more general algebraic setting: extensions of Dedekind domains, not just
of rings of integers of number fields.

Analytic methods are introduced in chapter 8, especially the theory of zeta
and L-functions. They are used for class number formulas for abelian number
fields in chapter 9. Analytic methods are used in later chapters on class field
theory as well.

Chapter 9 is devoted to abelian number fields. It contains a proof of the
Kronecker-Weber Theorem: every abelian field is contained in a cyclotomic
field. The proof uses ramification groups and discriminants. In chapter 15
this theorem will be just an easy example in class field theory. Chapter 9
contains the classification of abelian number fields by finite groups of Dirichlet
characters. Class number formulas for abelian number fields are derived using
Gaufl sums of Dirichlet characters.

The chapters 10, 11 and 12 prepare for class field theory. In chapter 10 the
completion of valued fields is treated in a general setting and in chapter 11
local fields are studied. Chapter 12 is about the Galois cohomology for cyclic
groups. It contains computations needed in the proofs of the main theorems
of class field theory in later chapters. Only a small self-contained part of
group cohomology is needed for the proofs of the main theorems of class field
theory.

Global class field theory is treated in the chapters 13, 14 and 15. Dirichlet
characters of number fields are defined as characters on the monoid of nonzero
ideals of the ring of integers. By focussing on primitive Dirichlet characters, it



is often possible to suppress the choice of a modulus of the field. It generalizes
the use of Dirichlet characters of the field Q in chapter 9.

e Local class field theory is derived as a consequence of global class field theory.
Local fields are introduced in chapter 11, the local Artin map in chapter 15.
Local class field theory is treated in chapter 16, where it is applied to Hilbert
symbols. It is shown how classical reciprocity theorems follow from global
class field theory via Hilbert’s Reciprocity Theorem.

e In chapter 17 the behavior of ramification under restriction to a subextension
is treated. The close connection between ramification groups and local Artin
maps is described. It uses the different of an extension, which is defined for
this purpose in this chapter. The Conductor-Discriminant Formula for an
abelian extension is proved. It expresses the discriminant as the product of
the conductors of the associated Dirichlet characters.

e The Brauer-Kuroda formula is a relation between the Dedekind zeta functions
of the intermediate fields of a Galois extension of number fields. The formula
is derived in chapter 18 by direct computation using the Euler products
expressing the Dedekind zeta functions. It is based on a study of the relations
between the norms of subgroups in the group ring of a finite group. Though
Artin L-functions of Galois extensions of number fields are introduced, here
they are not used in the proof of the Brauer-Kuroda formula.

e In the last chapter, chapter 20, the idelic Global Classification Theorem is
derived from the ideal-theoretic version in chapter 15. It is used to clarify the
connection between global and local reciprocity. The main tools used in the
theory based on ideles are treated in chapter 19: some topological algebra
and in particular profinite groups. Moreover, in this chapter results on finite
number field extensions are extended to infinite algebraic extensions.

Examples of excellent textbooks on algebraic number theory are Number Fields [28]
by D.A. Marcus and Algebraic number theory [12] by A. Frohlich and M.J. Taylor.
In [28] localization and completion are avoided, whereas in [12] these concepts form
a fundamental part of the theory. Both [28] and [12] contain a treatment of zeta
functions and L-functions. The last chapters of these books contain an introduction
to respectively class field theory (in [28]) and an exposition of Artin L-functions (in
[12]). Algebraic Theory of Numbers [33], a translation from the French [32], by P.
Samuel is a well written concise introductionary text on algebraic number theory
and includes the necessary Galois theory. Another good textbook is Number Theory
[3] by Z.I. Borevich and L.R. Shafarevich, translated from the originally Russian
text. It contains a lot of interesting information on the subject.

There are various approaches to global class field theory, the theory of abelian
extensions of a number field. The modern way is by using idéles. This concept
was introduced by Chevalley and is especially useful for the passage from local to
global class field theory. The ‘classical’ approach of Tagaki and Artin is through

xiii
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rings of integers in number fields and their ideals. It is classical in the sense that
it came first. This is the approach taken for the textbook Algebraic Number Fields
by Janusz [20] as well as for this book. Essentially, the route to class field theory
taken in this book is also followed in the Parts One and Two of Lang’s Algebraic
Number Theory [25]. However, Lang’s exposition is quite different: new concepts
are introduced far earlier, the style is more compact, less self-contained and it does
not contain exercises other than leaving proofs to the reader as an exercise. Lang’s
book goes deeper into the subject: it has a Part Three on analytic methods. In
[20] the modern approach to class field theory is not explained. Textbooks on class
field theory usually start with a short overview of some standard algebraic number
theory. Neukirch’s Algebraic Number Theory [31] is organized this way. It gives
an excellent axiomatic treatment of class field theory and in the last chapters the
classical version of class field theory is deduced from the idele-theoretic version.
For a clear introduction in the subject read A Brief Guide to Algebraic Number
Theory [36] by H.P.F. Swinnerton-Dyer.

Ideles are useful for theoretical purposes, for computation in concrete cases it is
usually more convenient to use the classical notions. Moreover, knowledge of the
classical approach is helpful for obtaining a better understanding of modern de-
velopments. This was also Hasse’s idea behind the publication [17] in 1967 of his
1932/33 lecture notes on class field theory.

Books suitable for further reading which go much deeper into the subject than this
textbook:

Algebraic Number Theory [31] by Neukirch, already mentioned above.

Algebraic Number Theory [7] by Cassels and Frohlich (eds.), proceedings of an
instructional conference in 1965 in Brighton. It contains many expositions of new
developments in algebraic number theory. Contributions by Serre and Tate, among
others.

Introduction to Cyclotomic Fields [37] by Washington, the book for the theory of
abelian number fields.

Class Field Theory [14] by Gras. No proofs of the main theorems of class field
theory, but a lot on the consequences of these theorems.

Introduction to Modern Number Theory [27] by Manin and Panchishkin. From
the preface: ‘We present many precise definitions, but practically no complete
proofs.” It is their interpretation of the word ‘introduction’. It is good for getting
an impression of the state of the art.

This book focusses on the abstract theory and not on the algorithmic aspects and
applications in cryptography. For algorithms consult A Course in Computational
Algebraic Number Theory [8] by Cohen. The reader is advised to use the free open-
source mathematics software system SageMath, https://www.sagemath.org, in
which implementations of many algorithms in number theory are available.
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1 Integers in a Number Field

Finite extensions of the field Q are called number fields and in each number field
there is a subring, the ring of integers of the number field. The idea is to do
arithmetic in a number field analogously to what we are used to in case of Q and its
subring Z. In this chapter number fields and their rings of integers are considered in
general, especially the additive group of the ring of integers is studied and ways to
compute this subgroup of the additive group of the number field are given. Ideally,
the ring of integers is a principal ideal domain, but it turns out that this is not the
case in general. However, rings of integers are Dedekind domains, rings in which
there is not necessarily a unique factorization of elements, but instead a unique
factorization of ideals. Dedekind domains are treated in general in chapter 2 and
in chapter 3 it is shown that rings of integers of number fields are indeed Dedekind
domains. Euclidean domains, integral domains with a norm that makes division
with remainder possible, are principal ideal domains. In the last section of this
chapter examples of quadratic number fields are given for which the ring of integers
is a euclidean domain.

1.1 Number fields

1.1 Definition. A field K of characteristic 0 of finite degree over its prime field Q
is called a number field. If [K : Q] = n, the number field is said to be of degree n.

Since C is algebraically closed, such fields are embeddable in C. In fact, number
fields are often given as subfields of C. Note that embedding in C may result
into different subfields: e.g. the field Q[X]/(X® — 2) is isomorphic to two different
subfields of C.

The field Q is the only number field of degree 1. There are infinitely many number
fields of degree 2. They are parameterized by the squarefree integers m # 1: such
an m corresponds to the field Q(y/m). (This is exercise 1 of this chapter.)

1.2 Definition. A number field of degree 2 is called a quadratic number field. If it
is embeddable in R, it is called a real quadratic number field, otherwise it is called
an imaginary quadratic number field.



1 Integers in a Number Field

So the real quadratic number fields are the fields Q(v/m) with m squarefree > 1
and the imaginary ones those with m squarefree < 0. Note that a real quadratic
number field has two embeddings in R. An imaginary quadratic number field has
two embeddings in C and no embeddings in R. In the last case we rather speak
of a pair of embeddings since the embeddings are closely related: they interchange
under composition by complex conjugation.

The field Q is a subfield of R and the ring Z is a lattice in both in the sense of the
following definition.

1.3 Definition. Let V' be an n-dimensional Q-vector space. A subgroup A of the
additive group of V is called a lattice in V if there is a basis (v1,...,v,) of V such
that A = Zvy + - - - + Zv,,. Similarly for R-vector spaces. A subring R of a number
field K is called a number ring of K if R is also a lattice in the Q-vector space K.

Note that lattices in n-dimensional Q- or R-vector spaces are free abelian groups
of rank n. Conversely, a free abelian group A of rank n can be embedded in an
n-dimensional Q-vector space by extension of scalars: A - Q®z A, a1 ®a. In
the same manner A can be embedded as a lattice in a real vector space.

1.4 Examples.
a) The ring Z is a number ring of Q; it is the only one.

b) The ring Z[i] is a number ring of the imaginary quadratic number field Q(z).
We will see that it is maximal in the sense that all number rings of Q(¢) are
contained in Z[i]. A simple example is Z[2i] (= Z + Z2i), which is contained
in Z[i] with index 2.

¢) The ring Z[(3] is a number ring of the imaginary quadratic number field

Q(vV=3).

d) Let v = 1+T\/57 the ‘golden ratio’. The ring Z[7] is a number ring of the real
quadratic field Q(v/5).

Clearly, a number ring R of a number field K is an integral domain and its field
of fractions is the field K. We can embed a number field K of degree n into the
commutative R-algebra R ®g K of R-dimension n by extension of scalars:

K 3R K, a—l®a

Under this embedding a Q-basis (aq,...,a,) of K is mapped to the R-basis
1®ag,...,1®a,) of R®g K. In particular, a number ring of K maps onto
a lattice in the real vector space R ®q K.

For the determination of the structure of the real algebra R ®g K we consider the
n embeddings of K in C. Let r be the number of embeddings in R (called real

embeddings); possibly r = 0. Then there are s = "5 pairs of nonreal embeddings



1.1 Number fields

in C (called complex embeddings). Let o1,...,0,: K — R be the real embed-

dings and 7,77, ...,7Ts,7s the complex embeddings. Then we have the following
embedding in the R-algebra R” x C*:
1: K =>R"xC°, a— (o1(a),...,on(a), 71 (a),...,7s()).

This embedding ¢ we will frequently use. It depends on some choices: the or-
der of the embeddings and the choice of a complex embedding for each pair of
complex embeddings. It agrees with the embedding ¢/ given earlier in the fol-
lowing sense: the R-algebra homomorphism ¢: R ®g K — R" x C?, given by
A®ar— (Aop(a),. .., Ats()), makes the following triangle commutative

R@QK

R" x C*

and is actually an isomorphism: take a primitive element 1 of the field extension
K : Q, that is K = Q(9) and let f € Q[X] be its minimal polynomial over Q.
Then o1(9),...,0.(9) are the r real zeros of f and 71(9), 71 (9),...,7s(9), 75(F)
the s pairs of complex zeros of f. Then over R the factorization of f is

f=rffra1 - gs,
where fi = X —0;(9) fori=1,...,r and g; = X% — (1;(9) + 7;(9)) X + 75 (9)7;(9)
for j = 1,...,s. The map ¢ is the composition of the following isomorphisms of

R-algebras:
R ®q K = R®q Q[X]/(f) = RIX]/(f)
= R[X]/(f1) x - x RIX]/(fr) x R[X]/(g1) x - - x R[X]/(g5)
S R™ x C,
where for the third isomorphism the Chinese Remainder Theorem is applied and

the isomorphisms R[X]/(f;) — R and R[X]/(g;) — C are induced by X — ¢;(?)
and X — 7;(9) respectively.

1.5 Examples.

a) An imaginary quadratic number field has one pair of complex embeddings.
The number rings Z[i] and Z[(3] are lattices in the R-vector space C.

b) A real quadratic number field has two real embeddings. For instance the
two embeddings of Q(v/5) in R map v/5 to v/5 and —/5 respectively. The
number ring Z[y] maps onto a lattice in R2.
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Figure 1.2: The lattice +(Z[y]) in R?

1.2 Algebraic integers

In this section the notion of integer in a number field is defined and it is shown that
the integers in a number field form a subring, the ring of integers of the number
field. For later use it is advantageous to introduce integrality in a somewhat more
abstract setting.

1.6 Definitions and notation. Let K be a field and R a subring of K. An a € K
is called integral over R if there exists a monic polynomial f € R[X] such that
f(a) = 0. The set of all @ in K which are integral over R is called the integral
closure of R in K. An integral domain is called integrally closed if it coincides with
the integral closure of the domain in its field of fractions. An a € C is called an
algebraic integer (or just an integer) if « is integral over Z. The subset of C of all
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algebraic integers is denoted by O. It is the integral closure of Z in C.

Integral closures are defined as subsets. It still has to be shown that they are in
fact subrings. To start with let’s compute the integers in Q and the integers in a
quadratic number field.

1.7 Proposition. Let « be an algebraic number and f € Q[X] its minimal polyno-

mial over Q. Then

a is an algebraic integer <= f € Z[X].

PROOF. Clearly, it suffices to show that f € Z[X] if « is an integer. Let a be
a zero of a monic g € Z[X]. Then f | g in Q[X] and so by the Gaufl Lemma
fezZXx. O

In the proof we used:

Gaufl Lemma. Let f € Z[X] and f = gh, where g, h € Q[X], then there ezists an
r € Q* such that rg, h € Z[X].

So if f is monic, then rg and %h are monic as well.
1.8 Corollary. ONQ = Z. O

So the only integers in QQ are the ordinary integers. Because of this, sometimes they
are called rational integers for being more specific.

1.9 Theorem (Integers of a quadratic number field). Let m € Z be squarefree
and # 1. The integers in Q(y/m) are the numbers

a+bym with a,b € Z

if m= 2,3 (mod4) and in case m =1 (mod 4) the integers are the numbers

b
% with a,b € Z and a = b (mod 2).

PROOF. Let a =1+ sy/m with r € Q and s € Q*. Then the minimal polynomial
of a over Q is X2 — 2rX + (r> — ms?). By Proposition 1.7 we have

a is integral <= 2r € Z and %> — ms® € Z,

which in fact also holds when s = 0. If « is integral, then r = § with a € Z. Then
a® —4ms? € 47 and so 4ms? € Z. Since m is squarefree, it follows that s = % with
b€ Z. Hence a = % with a,b € Z. Numbers % with a,b € Z are integral
exactly when 4 | a> —mb?. For m = 2,3 (mod 4) this is equivalent to a and b being
both even. For m = 1 (mod4) we have a? — mb? = (a — b)(a + b) (mod4), and the

condition becomes a = b (mod 2). O
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1.10 Notation. For squarefree integers m # 1 put

Y vm if m = 2,3 (mod4),
mo %+%\/E if m =1 (mod4).

1.11 Corollary. In the notation of Theorem 1.9: the integers in Q(y/m) form the
subring Zlwp). O

The rings Z[i], Z[(3] and Z[] of Example 1.4 are the special cases m = —1, m = —3
and m = 5 respectively.

There are alternatives for the definition of integrality. They can be helpful when
establishing integrality in certain cases.

1.12 Proposition. Let R be a subring of a field K. For o € K the following are
equivalent:

a) « is integral over R,
b) the subring R[c] is finitely generated as an R-module,

c) there exists a subring A of K which is finitely generated as R-module such
that o € A,

d) there exists a finitely generated R-submodule B # 0 of K such that aB C B.

PROOF.

a)=b): If a is a zero of a monic f € R[X] of degree n, then the subring R[o] of K is

n—1

generated by 1, a, ..., « as an R-module.

=c): Take A = R[a].
=d): Take B = A.
=a): Suppose fi,..., 3, generate B as an R-module. Then, since af; € B, we
have af; = ri101 + -+ - + rinBp With 741, ..., 75, € R, or in matrix notation
b1 B1
al 1| =M|: with M = (r;).
B Br

This means that « is an eigenvalue of the matrix M. Therefore, it is a zero
of the characteristic polynomial of M, which is a monic polynomial over R
since all r;; € R. O

1.13 Corollary. Let R be a subring of a field K. Then the integral closure R’ of R
in K is an integrally closed subring of K. In particular O is an integrally closed
subring of C and for a number field K the integers in K form an integrally closed
subring of K.
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ProOF. Clearly 1,—1 € R/, so for showing that R’ is a subring of K it suffices
to prove that R’ is closed under addition and multiplication. Suppose «, 3 € R/,
say f(a) =0 and g(8) = 0 with f, g € R[X] monic of degree m and n respectively.
Then the subring R[a, 8] of K is an R-submodule generated by the mn elements
a'B with i = 0,...,m —1and j = 0,...,n — 1. Since a + 3,08 € R[a, ] it
follows from Proposition 1.12 that a+ 3, a8 € R’. The field K contains the field of
fractions of R’; therefore, the ring R’ is integrally closed. The set O is the integral
closure of Z in C and for a number field K the subset O N K is the integral closure
of Z in K. O

1.14 Definition. The subring O N K of a number field K is called the ring of
integers of K. It is denoted by Ok.

Theorem 1.9 described the ring of integers in a quadratic number field K. It is a
number ring of K. In Section 1.6 we will see that this holds for the ring of integers
of any number field.

1.3 Norm, trace and characteristic polynomial

For finite field extensions we have the notions of norm and trace. General properties
of norms and traces are proved in this section.

1.15 Definitions and notations. Let L : K be a finite field extension, say
[L : K] =n. For each a € L we have a K-linear transformation

My: L — L, & af.

Let Aps, (X) € K[X] be the characteristic polynomial of M,, that is Ay (X) =
det(X -1 — M,), and let Tr(M,,) € K be the trace of M,. We define

a) the characteristic polynomial ALK (X) of o over K:

AZR(X) = A, (X),

b) the trace Trk () of o over K:

Tr]L((a) = Tr(M,),

¢) the norm N (a) of a over K:

NE (o) = det(M,).

Thus Trk and N% are maps L — K.
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1.16 Example. Let m € Z be squarefree # 1. The characteristic polynomial of
a=r1+sy/meK =Q(/m), where r,;s € Q, is

AR(X) = X2 — T ()X +N§(a) = X* —2rX + 7% —s*m.

This polynomial was used in the proof of Theorem 1.9 for the computation of the
ring Ok.

Note that for [L : K] = n:
AVF(X) = X" = Trg (@) X" '+ -+ (=1)"NE (o) € K[X].

Clearly, in the quadratic case the characteristic polynomial is completely deter-
mined by the trace and the norm.

1.17 Proposition. Let L : K be a field extension of degree n. Then for all o, 8 € L
and c € K:

a) Tri(a+ ) = Trg(a) + Trg(8),
b) Trk(ca) = ¢Trk(a),

¢) Trg(c) = ne,

d) Ni(aB) = Ng(a)NE(8),

) Ni(c) = c™.

PrOOF. These rules follow directly from the following identities for linear trans-
formations: My1g = Mo + Mg, Mco = cMy, M. =c-1 and Mag = Mo Mg. ]

e

So in particular we have a K-linear function Tr%: I — K and a group homomor-
phism N&: L* — K*.

The notions of trace and norm are defined for arbitrary finite field extensions. For
separable finite extensions we derive formulas for them in terms of the conjugates
of an element, i.e. in terms of the roots of its minimal polynomial.

1.18 Theorem. Let L : K be a finite separable field extension of degree n. Let
O1,...,0n be the embeddings of L in a normal closure L of L : K fizing the elements
of K. Let « € L, [K(«a) : K] = d and f the minimal polynomial of o over K.
Then we have:

n

AEF(x) = £ = T[(X = o),
=1

Ni(a) =[] oila) and Trg(a)=>_ai(a).

=1 =1

10
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PROOF.

Let M/, be the restriction of M, to K(a) and let f(X) = X4 +a; X491+

-+ 4+ aq be the minimal polynomial of o over K. The matrix of M/, with respect

to the basis 1,a,...,a%"
0 0
10
IR R
0 0

1'is the companion matrix of f:

0 —aq
0 —aq—1
0 —agqg—2
1 —ay

The polynomial f is the characteristic polynomial of its companion matrix:

X 0 0 Qq
-1 X 0 ad—1
det(X-l—M(;): 0 -1 ... 0 aqd—2

0 0 ... -1 X+4a
1 X ... X2 XX 0 ... 0 aq
0 1 0 0 -1 X ... 0 ag—1

— : : 0 -1 0 aq—2
0 O 1 0 : : :
0 O 0 1 0 0 -1 X+4+au
0 0 0 f(X)
-1 X 0 ad—1

10 -1 0 a2 | = f(X).
0 0 -1 X+a;

Let f31,...,Bn/a be a K(a)-basis of L. Then
(ﬂlaaﬂl "'7ad71ﬂ17"'>Bn/d7a6n/da"'7ad716n/d)

is a K-basis of L. The matrix of M, with respect to this basis is in block form

A

o M) ... 0

[Ma] = : : :
0 0 .. [M]

and so the characteristic polynomial of a € L over K is

«

n

AFF(X) = Ap, (X) = (det(X - 1= M))™? = 0O = [](X — 0s(@)).

i=1

11
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The coefficients of X”~! and X° yield the expressions for the trace and the norm.
O

Note that we have (in the notations used above): Nk (a) = (N?&)(a))”/d =
(—1)"a3/d and Tr¥ (o) = %Trg(a)(oe) =—%a1.

For a tower of field extensions the norm and the trace are transitive, that is they
satisfy the rules described in the following proposition. Here we prove this for
separable extensions only.

1.19 Proposition. Let Ky : K1 and Ky : Ky be finite separable field extensions.
Then for all a € Ky:

N2 (a) =N (N2 () and  Trje(a) = Trgh (Tr (a)).

PROOF. Let L be the normal closure of Ky : Ky. There are exactly m = [K; : Ko
embeddings o1, ...0,, of K; in L fixing K elementwise and exactly n = [K» : K1]
embeddings 71, ...,7, of K5 in L fixing K; elementwise. Let 01,...,0m,7T1,.--,Tn
be prolongations to automorphisms of L of the equally named embeddings. The
restrictions of the o;7; to Ky are just the mn embeddings of K, in L fixing Ky
elementwise. The formulas are by now easy consequences of Theorem 1.18. O

1.4 The norm on a number field

Let K be a number field and o € K with minimal polynomial f over Q. Since AXK:Q
is a power of f we have that a € Ok if and only if AK:Q € Z[X]. In particular, it
is clear that N (a), Tr(g(a) € Z if a € Ok. In section 1.6 we will show that Ok
is a number ring in K using the Q-linear function Tr(g : K — Q. In this section
the homomorphism Ng : K* — Q* is considered, especially in relation to O}, the
group of units. In section 5.4 the Dirichlet Unit Theorem will be proved, a theorem
which fully describes the structure of this group.

We have embedded a number field K into the real algebra R" x C*®, r being the
number of real embeddings of K and s the number of pairs of complex embed-

dings. The norm on K can be extended in a natural way to a multiplicative map
N:R" x C* —» R.

1.20 Definition. The norm N on the R-algebra R™ x C*® is defined as follows

. T s _ _
N:R"XC* >R, (@1, y@p,21,---,25) > L1 " XTp212] " ** 2525~

12



1.4 The norm on a number field
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Figure 1.3: The norm on C and on R?

The diagram

clearly commutes: let o1, ..., 0, be the real embeddings and let 74, ..., 75 represent
the pairs of complex embeddings of K, then for all « € K

Ni(a) = N(o1(a),...,o0(a), 71(a),. .., 7s(a))
=01 (a) T Ur(a)Tl(a)w' o Ts(a)m = Ng(a)

1.21 Example. We have embedded imaginary and real quadratic number fields
in C and R? respectively. Elements with a given norm in these R-algebras form
circles and hyperbolas respectively, see Figure 1.3.

Note that the restriction N: (R*)" x (C*)®* — R* is a group homomorphism. For
the computation of units of a ring of integers the following is useful.

1.22 Proposition. Let K be a number field. Then for a € Ok we have

a €0y < Nj(a) ==+l

13
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Co . .
1 1
-1
Gt . .

Z[¢s]* Zlv=-2|

Figure 1.4: The units of Z[i|, Z[(5] and Z[v/—2]

PROOF.

= Since a, 2 € Ok, we have Ng(a),N(g(é) € Z and Ng(a)Ng(i) =1
<: The characteristic polynomial of « over Q is of the form Xg(X) + 1, where
g9(X) € Z[X]. It follows that ag(ar) = 1. O

1.23 Example. For K an imaginary quadratic number field we have O}, = {£1}
if K # Q(i), Q(v/—3), whereas Z[i]* = (i) and Z[(3] = ((s), see Figure 1.4.

1.24 Example. Let K be a real quadratic field, say K = Q(y/m) with m € Z,
m > 1 and squarefree. Suppose we have an € € O} with € > 1. Let o be the
nontrivial automorphism of K. Then of the four units &, —e, o(e) and —o(e) the
unit € is the greatest. Hence ¢ = a+by/m with a,b >0 and a,b € Z- $ (or a,b € Z
if m = 2,3 (mod4)). For such a unit € the set of all ¢ + dy/m < € with ¢,d > 0
andc,d € Z- % is finite; therefore, in the interval (1,¢) there are only finitely many
units. It follows that, if there is a unit > 1, there also is a least one. If € is the least
unit > 1 of Ok, then O} = (—1,¢). Later, in chapter 4 and again in chapter 5,
we will see that units # +1 do exist. The least one > 1 is called the fundamental
unit of the real quadratic field K. The number 1 + V/2 is the fundamental unit of
Q(v/2) and v is the fundamental unit of Q(1/5). See Figure 1.5.

1.5 The discriminant

For a finite field extension L : K the trace map Trk : L — K is a K-linear function
on L. It is used to define a K-bilinear form on L:

1.25 Lemma. Let L : K be a finite field extension. Then the map
LxL—K, (ap)—Trk(ap)

is a symmetric K-bilinear form on L. O

14
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142

Figure 1.5: The groups Z[v2]* and Z[y]*

A bilinear form on a finite dimensional vector space has a matrix with respect to a
basis of the vector space. In this case its determinant is called the discriminant:

1.26 Definition. Let L : K a field extension of degree n and let (ay,...,a,) be a

K-basis of L. The element

discre (@, - - ., ) = det(Tri (a;a))

of K is called the discriminant of the K-basis (aq,...,a,) of L. Usually it is clear

which field is the base field and then we often write disc instead of discg.

Discriminants of different bases differ by a factor which is a square:

1.27 Proposition. Let L : K be a field extension of degree n and let (aq, ..

and (B1,...,0n) be K-bases of L. Then
disc(B1,. . ., Bn) = det(T)* disc(a, . . ., o),

where T is the transition matriz from (B1,...,8n) to (a1, ..., ap).

PrOOF. This follows from

(Tr (BiBj)) = T'(Tri (eva;))T.

* 70511)

O

If Bi = 32, aijoy for i =1,...,n, then T' = (aji). It is called the transition matrix
from the B-basis to the a-basis since it satisfies T'[x]g = [z]a, Where [z]g € K"
stands for the column of S-coordinates of x € L. Multiplication by T transforms

the -coordinates to the a-coordinates.

For separable extensions there is another description of the discriminant:

15
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1.28 Proposition. Let L : K be a separable field extension of degree m and let
01,...,0y be the n embeddings of L in a normal closure of L : K which leave the
elements of K fized. Then for K-bases (a1, ...,ay) of L we have

disc(au, . . ., o) = det(o;(a;))>.

Proor. By Theorem 1.18 we have

(05 (i) (oi(ay)) = (Tri(aia;))
and from this the proposition follows. O

Powers of a primitive element of a finite field extension L : K form a K-basis of
L. The discriminant of such a basis is equal to the discriminant of the minimal
polynomial:

1.29 Proposition. Let K(¥) : K be a separable field extension of degree n and let
f be the minimal polynomial of ¥ over K. Then

disc(1,9,92,...,9" 1) = disc(f) = (—1)2""INKD (f/(9)).

PROOF. Letoy,...,o0, bethe embeddings of K (¥) in a normal closure of K (9) : K
which leave the elements of K fixed. (This normal closure is a splitting field of f
over K.) By Proposition 1.28 we have

disc(1,9,92%,...,9" 1) = det(o;(9)7~1)?
= H(ai(ﬁ) —0;(09))? (Vandermonde)
= (=1 [(0:(0) - 05(0).
i
By definition disc(f) =[], ;(0:(9) — 0 (9))?. We also have

n

NEO @) = T = [1 /@) = [ - 00, O

i=1 i#£j
1.30 Corollary. Let L : K be a separable field extension of degree m and let
(a1, ...,ap) be a K-basis of L. Then disc(aq,...,a,) # 0.

PROOF. Since the extension is separable, it has a primitive element . By
Proposition 1.29 we have disc(1,9,...,9" 1) # 0 and by Proposition 1.27 also
disc(aq, ..., an) # 0. O

16
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This corollary states that for a separable finite field extension L : K the K-bilinear
form (a,B) — Trk(aB) is nondegenerate. This is equivalent to L — L™, o
Tr%((oz—) being an isomorphism of K-vector spaces, where the notation LY stands
for the dual vector space of the K-vector space L. In case of characteristic 0 we could
have proved the nondegeneracy also by showing directly that the map o — Tr (a—)
is injective: if a # 0, then Trg(a- 2) = Trg (1) = n # 0.

1.31 Definition. Let L : K be a finite separable field extension of degree n. Then
the K-bilinear form L x L — K, (a, ) — Trk (o) is nondegenerate and so for
each K-basis (ai,...,a,) of L there exists a unique K-basis (81, ..., S,) of L such
that

1 ifi=j,

0 ifi#j.

The basis (81, ..., 0,) is called the dual basis of (aq,...,a,) (with respect to the
given bilinear form on L).

Tri (i) = {

The discriminant of the dual of a basis is simply the inverse of the discriminant of
that basis:

1.32 Proposition. Let L : K be a finite separable field extension of degree n and
(B1,.-.,0Bn) the dual of a K-basis (a1, ...,ay). Then

disc(B1,. .., Bn) = disc(aq, ..., a,) "t

Proor. For o = 2161+ -+ .06, € L with z1,...,z, € K we have for i =
1,...,n:
Trk (o) = o1 Trk (0 B1) 1 + - + 2 Trk (04 8,) = 4.
So
a =Trk(am)p + -+ Trk (aa,) B
and in particular for i =1,...,n

o = Trf((aial)ﬂl 4+t Trf((aian)ﬁn.

So the matrix (Tr (aja;)) is the transition matrix from the a-basis to the S-basis.
Hence by Proposition 1.27

disc(av, ..., ap) = disc(aq, . .., ap)* disc(B1, . . ., Bn). O

The following proposition is helpful when calculating discriminants.

1.33 Proposition. Let M : L and L : K be finite separable field extensions,
(a1,...,ap) a K-basis of L and (B1,...,Bm) an L-basis of M. Then

discx (181, - -y nfm) = discx (a1, ...y an)™ - Né(discL(ﬁl, ey Bm))-

17
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PRrROOF. Let oyq,...,0, be the embeddings of L in a normal closure M of M : K
which leave the elements of K fixed and 7i,...,7,, the embeddings of M in M
which leave the elements of L fixed. Extend the o; and 7; to automorphisms in
Gal(M : K). Then the o;7; are the mn embeddings of M in M which leave the
elements of K fixed. Put B = (75(5;))1<i,j<m and A = (0i(e;))i<ij<n. Then
discr,(B1,. .., Bm) = det(B)? and disck (a1, ...,a,) = det(A)% The o;3; form a
K-basis of M and the discriminant of this basis is the square of the determinant
of

o1(B) 0 o1(a)m  o1(ag)ly, o1(an)m
0 o2(B) 0 oo(an)l  o2(an)lpy, oo(an)m
0 0 <o op(B) on(a)ym o1(a)lm - oplan)ln
The entries in these matrices are m x m-matrices. O

1.6 The additive group of the ring of integers of a
number field

In this section the discriminant will be used to show that the ring of integers in a
number field is actually a lattice in the number field. This leads to the notion of
discriminant of a number field.

1.34 Lemma. Let R be an integral domain with field of fractions K and let K' : K
be a finite field extension. Then K' has a K-basis consisting of elements which are
integral over R.

PrOOF. Let a € K and let f(X) = X%+ a; X% ! +--- + a4 be the minimal
polynomial of o over K. Let r € R be a common multiple of the denominators of
ai,...,aq, that is ra; € Rfori=1,...,d. Then

Tdf(X) = (TX)d + Tal(rX)d_l gl e X 4 rday.
The element ra is integral over R since it is a zero of

X' +ra X+ 4097y X + 1%y € RIX].

So given a K-basis (a1,...,a,) of K', choose r1,...,7, € R such that r;«; is
integral over R. Then (riaq,...,ryap) is a K-basis of K’ as well and its elements
are integral over R. O

1.35 Corollary. Let K be a number field of degree n. Then K has a Q-basis
(a1,...,ap) such that aq, ..., an € Ok. O

18
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1.36 Proposition. Let R be an integrally closed domain with field of fractions K,
K’ : K a finite separable field extension of degree n, R’ the integral closure of R in
K’ and (ay,...,a,) a K-basis of K’ such that a1,...,a, € R'. Let (B1,...,0n)
be the dual basis of (aq,...,ap) with respect to the nondegenerate K -bilinear form

(o, B) — Tr? (af). Then
Raq + -+ Rap, C R C RB1 + -+ RB, C j(Ra1 + -~ + Ray),
where d = disc(aq, ..., ap).

PROOF. Let o € R. Then o = Trk (a1a)By + -+ + Trk (an@)B,. Since R is
integrally closed, a;a € R’ and Trk (a;a) € K, it follows that Trk (o) € R and
soa€RBL+ -+ RB,.

For M = (Tr? (aa5)) we have

aq B1

Qn Bn
Multiplication by the adjoint of M yields
a B
adj(M) | | = det(an) |
om Bn
Since adj(M) has entries in R and det(M) = disc(aq,...,a,) =d, we have
ﬁi6%(Ral—i—--wl—Ran)forz’:L...,n. O

In general the ring R’ in the above proposition is not a free R-module of rank n.
But if R is a principal ideal domain, it is. For this we need the following lemma.

1.37 Lemma. Let R be a principal ideal domain, A a free R-module of rank n and
B an R-submodule of A. Then B is a free R-module of rank < n.

ProOF. We will use induction on n. For n = 0 it is trivially true and for n =1
it is a reformulation of R being a principal ideal domain. Let n > 1 and aq,...,a,
be an R-basis of A. Consider the projection

A= R, ria1+---+Tpan = Ty
We have a short exact sequence of R-modules
0— Ker(m)NB— B —7(B)—0

with m(B) free of rank <1 (case n = 1) and Ker(7) N B an R-submodule of a free
R-module of rank n — 1. The sequence splits and from this the lemma follows. []
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1.38 Corollary. (Notation of Proposition 1.36). If R is a principal ideal domain,
then there exists a K-basis (a1,...,a,) of K’ such that R = Ray + -+ + Rau,.

Proor. If R is a principal ideal domain, an R-submodule of a free R-module of
rank n is a free R-module of rank < n. Because the ring R’ is sandwiched between
free R-modules of rank n, it is itself a free R-module of rank n. O

For the case R = Z we have in particular:

1.39 Corollary. Let K be a number field. Then the ring Ok is a number ring of
K. O

1.40 Lemma. Let A be a free abelian group of rank n and B a subgroup of A of
the same rank, (aq,...,q,) a basis of A and (B1,...,08,) a basis of B. Then for
the index of B in A we have

(A:B) = | det(T)],

where T is the transition matriz from (B1,...,0s) to (a1,...,apn).

PrROOF. The matrix T" has entries in Z and det(T") # 0. Since Z is a Euclidean
domain, the matrix T can be transformed by elementary operations to a diagonal
matrix without changing the determinant. So we can assume that 7T is a diagonal
matrix and for such a matrix the lemma clearly holds. O

1.41 Proposition. Let (aq,...,a,) and (B1,...,08n) be Q-bases of a number field
K. Let the lattices A and T' in K, generated by these Q-bases respectively, satisfy
I'CA. Then

disc(B1,...,Bn) = (A :T)2 - disc(aq, ..., ap).

Proor. This follows from Proposition 1.27 and Lemma 1.40. O

1.42 Definition. Let K be a number field. A Q-basis (aq,...,a,) of K which
satisfies Zay + - - - + Zay,, = O is called an integral basis of K. The discriminant
of K is defined as the discriminant of an integral basis of K. By Proposition 1.41
it is independent of the choice of the integral basis. Notation: disc(K). Note that
disc(K) e QN O =Z.

Note that an integral basis of a number field K is not just a basis consisting of
integers of K, but is a Z-basis of Ok.

Specializing the Q-basis (ayq, ..., a,) of Proposition 1.41 to the case of an integral
basis yields:

1.43 Theorem. Let (B1,...,Bn) be a Q-basis of a number field K with 81,..., 0, €
Ok and let T be the lattice generated by this basis. Then

disc(B1, ..., Bn) = (Ok : T)? - disc(K).
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1.6 The additive group of the ring of integers of a number field

In particular, if K = Q(9) with 9 € Ok, then
disc(f) = (O : Z[9])? - disc(K),

where f is the minimal polynomial of ¥ over Q. O

1.44 Example. Theorem 1.9 describes integral bases for quadratic number fields.
Let m be a squarefree integer # 1. For m = 2,3 (mod 4) we have disc(Q(y/m)) =
4m, whereas disc(Q(y/m)) = m for m =1 (mod 4).

The discriminant of a number field is an integer. The following two propositions
give further restrictions.

1.45 Proposition (Stickelberger). Let K be a number field. Then disc(K) =
0 (mod4) or disc(K) =1 (mod4).

Proor. Let K be of degree n and let o1,...,0, be the embeddings of K in
the normal closure L of K : Q. Let (aq,...,a,) be an integral basis of K. By
Proposition 1.28 the discriminant of K is the square of det(o;(c;)). We have

det(o;(ar;)) ngn Ho,r(z (o) ZHUW(i)(ai) -2 Z How(i)(ai),

T =1 7 odd i=1

where the sums ) _ are over all permutations « of {1,...,n}. Put

pP= ZHoﬂ(i)(ai) and Q= Z Haﬂ(i)(ai).

T i=1 7 odd i=1

If 0 € Gal(L : Q), then o; — oo; permutes the embeddings o1,...,0, and so
o(P) = P. By the Main Theorem of Galois Theory it follows that P € Q. Since
P is integral we have P € Z. Moreover,

disc(K) = (P —2Q)? = P? + 4(Q* — PQ).
This implies that Q% — PQ € Q and even Q% — PQ € Z, since Q* — PQ € O. Hence
disc(K) = P? (mod 4). O
1.46 Proposition. Let K be a number field and let s be the number of pairs of
complex embeddings of K. Then sgn(disc(K)) = (—1)*.

PRrROOF. In the notation used in the proof of the previous proposition: if ¢ is com-
plex conjugation, then the permutation o; — oo; of the embeddings is a product of
s disjoint transpositions. Therefore, det(oo;(c;)) = (—1)° det(o; (). If s is even,
then det(o;(cy;)) is real, and if s is odd, then det(o;(c;)) is purely imaginary. O

For a given number field K it is usually not difficult to find a Q-basis consisting of
integers. By Theorem 1.43 the problem of finding an integral basis is then reduced
to checking integrality of a finite number of elements of K:

21



1 Integers in a Number Field

1.47 Lemma. Let K be a number field of degree n and let (o, ..., o) be a Q-basis
of K consisting of integers. If m € N* and kq, ..., k, € Z satisfy

kiag + -+ kpan,
m

€0k and ged(m,ky,... . ky) =1,

then m? | disc(asq, ..., ap).

Proor. If k; # 0, then

klal ++knan

disc(ag, ..., a1, S QT ey Qi)
m
1. k?
=3 disc(aq, ..., qi—1, ki, Qig1, ..., Q) = 2 disc(aq, ..., ap).
Hence m? | k? disc(a,...,ay) for i = 1,...,m. Since ged(m, ky,...,k,) = 1 it
follows that m? | disc(a, . .., ay,). O

The cyclotomic fields Q((,) form an important class of number fields. The field
Q(Gm) is of degree p(m), the Euler totient of m. The minimal polynomial of ¢,,, over
Q is the cyclotomic polynomial ®,,(X), the polynomial with the ¢(m) primitive
m-th roots of unity as zeros. We will show that Z[(,] is the ring of integers of

Q(Cm)-

1.48 Lemma. Let m € N*. For the Q-basis (1,(m, (2, .,Qﬁ(m)_l) of Q&) we
have
disc(1, Cp, €2, ..., COM=LY | (),

PrROOF. We have X" —1 = ®,,(X)-h(X) with A(X) € Z[X] a monic polynomial.
Take the derivative:

mX™ = ®,,(X) - h(X)+ @, (X) - h(X).

Evaluate at (,:
m 77:;71 = ‘%(Cm)h(Cm)
and so

Cmh(Cm) - @ (Gm) = .

Take norms:
NG (BlGm)) NG (B, (Gn)) =m0,

From h(X) € Z[X] it follows that h({,,) is an integer of Q((,,) and so

NG (h(Gm)) € Z.

Now the lemma follows from Proposition 1.29. O

First we consider cyclotomic fields Q(¢,,) where m is a prime power.
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1.6 The additive group of the ring of integers of a number field

1.49 Proposition. Let p be a prime number and r € N*. Then Z[(yr] is the ring
of integers of the cyclotomic field Q((pr).

PrROOF. Write (,r = ¢ and ¢(p") = n. By Lemma 1.48 p is the only prime
divisor of disc(1,¢,...,¢"1). Since Z[¢] = Z[1 — ¢], we have by Proposition 1.41
disc(1,¢,...,¢" 1) = disc(1,1 = ¢,..., (1 —¢)" ). By Lemma 1.47 it suffices to

show that there are no ao,...,a,—1 € Z such that ged(p, ag,...,a,—1) =1 and
atar(l=Q+ - Faa(1-9"" _
p
Suppose such ag, ..., a,_1 do exist. Let ¢ be the least index for which p { a;. Then

the element 4
g WA= a1 ="
p

is integral. Since ®,-(1) = p we have

H (1 - Ck) =D,
0<k<p”
ptk

from which it follows that W is integral:

P4 pm—iml P n—iel 1—¢*
T A sl A | S s

ptk

Multiply « by this element:

p a4
=07 T 1=¢

+ (element of Z[(]).

It follows that lajC is integral. Therefore,

mo(ai)_gz
N = 7
¢ \1-¢ p &

which contradicts p t a;. O
For the general case we will use the following theorem.

1.50 Theorem. Let K1 and Ko be number fields, K1 of degree ny and Ko of degree
ng. Let dy = disc(K7), do = disc(K2) and d = ged(dy, da). If, moreover, K1Ks is
of degree nino, then

d-Ok,k, C Ok, Ok,.
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1 Integers in a Number Field

PrROOF. Let (aq,...,an,) be an integral basis of K;. Then the condition on
K1 K5 implies that (aq,...,q,,) is also a Ka-basis of Kj K5 consisting of integral
elements. We have Og,a1+---+Ok,an, C Ok, k,. Let A1,..., Ay, be the Q-basis
of K satisfying Tr(g1 (a;Aj) = 0;5. There are ny embeddings of K1 K5 in C leaving
elements of K> fixed. Their restrictions to K7 are just the n; embeddings of K7 in
C. So we have

Trt ™2 (idg) = o1(idy) + - + o, (i) = Trft (i) = 65
By Proposition 1.36 we have
Ok, Ok, = O,a1 + - + Ox,am, € Ore i, € 3-(Oryn + -+ 4 Orcy i, )
— L0k, 0k,

So di - Ok, k, C Ok, Ok, and similarly ds- Ok, k, C Ok, Ok,. Since ged(dy,ds) =
d, there are ay,as € Z such that d = a1d; + a2ds and this implies

d-Og, K, Cdi- Ok, kg, +d2- Ok, K, € Ok, Ok,. O

1.51 Theorem. For each m € N* the ring Z[(y] is the ring of integers of Q((pm).

ProoF. By induction on the number of prime divisors of m. The case of one
prime divisor is Proposition 1.49. If m has more than one prime divisor, write
m = mymg with ged(mq,mg) = 1 and mq, me > 1. By assumption we have

O0(¢m,) = Zl[Cm,] and  Og,,,) = Z[Gms,]-

Note that Q(le)Q(CmQ) = Q(leaCmg) = Q(Cm) and similarly Z[§m1]Z[Cm2] =
Z[(m). Also note that

[Q(Gm) : Q = p(m) = p(m1)p(mz) = [QCm,) = Q) - [Q(Gm,) = Q-
From Theorem 1.50 and Lemma 1.47 follows that Ogc,.) = Z[(m]- O

1.52 Corollary. Let m € N* with m > 2 and 9., = G + (b Then Z[Yy] is the
ring of integers of the number field Q(¥,).

PrROOF. Putn= @ Then [Q(¢,,) : Q] = n and it is easily shown that
QWm) =Q+ QU + QU2 + -+ QU
=Q+Q ((m+ ) +Q- (4G + - +Q- (G +GY)
and similarly
2] =7+ Ly + 292, + -+ - + 2O
—Z4+Z- G+ )+ 2 G+ GO+ + 2 (G + G,
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1.6 The additive group of the ring of integers of a number field

The ring of integers of Q(9,,) is Z[(rn] N Q(Y1). Let o € Z[(n] N QY1) say
a=ag+a1(Gn+ )+ Fan (G +GY)
with ag,a1,...,a,—1 € Q. Then
Gula=an 1t an ot ot o aol T el 4 ana G

and since (" la € Z[(,,] it follows that ag,...,a,_1 € Z, that is a € Z[9,,]. O

The ring of integers of a number field K is an example of a number ring of K. It
is maximal among the number rings of K, since by Proposition 1.12 the elements
of a number ring are integral. We have seen examples of number rings which are
principal ideal domains. These examples were rings of integers of number fields. It
is easy to see that this is necessarily so. Let a number ring R of K be a principal
ideal domain and let « € Ox. We will show that o € R. The field K is the field
of fractions of R, so there are 3,7 € R such that a = % Since R is a principal
ideal domain we can assume that ged(5,v) = 1. Since « is integral, it is a zero
of a monic polynomial f € Z[X], say f(X) = X" + a1 X" '+ .-+ +a,. Then
B 4+ a1ty + -+ 4+ apy™ = 0 and this implies that v | 7. So an irreducible
divisor of 7 is also a divisor of 8. But ged(8,7) = 1. This means that v has no
irreducible divisors, that is v is a unit of R. It follows that a = 8y~ € R.

1.53 Example. The simplest example of a ring of integers which is not a principal
ideal domain is Z[/—5], the ring of integers of the imaginary quadratic number field
Q(v/=5). In this ring we have: 6 =23 = (1 4+ /=5)(1 — v/5). The elements 2, 3,
1++/=5 and 1 —+/=5 are irreducible: their norms are 4, 9, 6 and 6 respectively and
in Z[/—5] there are no elements of norm 2 or 3. So 6 has two different factorizations
as a product of irreducible elements. Hence Z[y/—5] is not a principal ideal domain.

For future reference we compute the discriminants of Q(¢,,) and Q(¢, + ¢;,;}) for
m a prime power.

1.54 Proposition. Let p be a prime number, r € N* and p” > 2. Then
disc(Q(Cpr)) = Hpp' Prr=1),

The discriminant is negative when p = 3 (mod4) or p” = 4 and positive otherwise.

PROOF. The cyclotomic polynomial ®,-(X) is the minimal polynomial of (- over
Q. Since

X —1
(I)P"' (X) = Xpr—l — 17
we have
(I)/ (X) _ (Xpr71 B 1) 'pTXpril - (Xpr B 1) 'prilXpTilil

X =)
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1 Integers in a Number Field

and so .
P Cpr
(bl r ) = d .
P (Cp ) Cp _ 1
Put n = p(p") = p"~!(p — 1). Then by Proposition 1.29:
rr—1
dise(Q(Gy ) = (-~ INEED (T
Cp -1
= (_1)%n(n—1) 5)(7% 5 — (_1)%n(n—1)pp7'71(pr—r—1)-
pr/PT
The number Fn(n — 1) is odd if and only if p = 3 (mod 4) or p" = 4. O

1.55 Proposition. Let p be a prime number, r € N*, p" > 4 and 0, = (pr + Cp_rl.
Then . )

. J (=) e == G s odd,
dise(Q(dyr)) = {22"‘2<r—1)—1 ifp=2.

PrOOF. Put L = Q((pr) and K = Q(Jpr). By Theorem 1.51 and Corollary 1.52
OL = Z[Cpr} and OK = Z['ﬂpr] So OL = Z[Cp’”] = Z[ﬂpr}[cpr] = OK[CPT] and by
Proposition 1.33

disc(L) = disc(K)? - Ng(diSCK(l, Cpr))-

The minimal polynomial of ;- over K is X? —d,-X + 1. So
discrc(1,Gr) = =N (26 = dp) = ~Nie(Gr = G)
and

N&(¢2- —1)=p ifpisodd
NK d.‘ 1’ r = NL T — 77‘1 == Q P ’
| @( iscx (1, pr))l Q(Cp G ) Né(ggr—l—l) =4 ifp=2.
By Proposition 1.54

pP’Her=r=1-1 " if 4 is odd,

. 2
disc(K)" = {22"‘10"—1)—2 it p— 2.

The sign of disc(K) follows from Proposition 1.46. O

1.7 Norm-Euclidean quadratic number fields

One way to prove that a ring is a principal ideal domain is by showing it is a
Euclidean domain. In this section we consider only quadratic number fields. Let

m be squarefree # 1. The restriction of the norm N = Ng(‘/ﬁ): Q(vm) — Q to

26



1.7 Norm-Euclidean quadratic number fields

V=5 1++-5

V=2 1++-2

Figure 1.6: Points in C (inside a rectangle or-a
Zlwy] for m = -2, m = -5, m=—11 and m = —15

the ring of integers Z|w,,] takes values in Z. For which m is the map a — |[N(«)]
a BEuclidean norm on Z[w,,]? If it is, the number field Q(y/m) is called norm-
FEuclidean. We will see that for many m it is not.

We distinguish the imaginary and the real case.

Imaginary quadratic number fields

Let a, 8 € Z|wy,] with 8 # 0. Instead of a = k8 + p, where &, p € Z[wy,], we can
write & = k + £. The norm is Euclidean if elements & are the sum of an integral
element and an element of norm < 1. The question becomes: for which m can C

be covered by open discs with radius 1 and center in Zw,,]|?

Suppose m = 2,3 (mod 4). The distance of a complex number to Z[w;,] is at most

%ﬂ, the radius of the circumscribed circle of a rectangle with sides 1 and

v/—m. So the norm is a Euclidean norm if and only if ”T‘l < 1, that is m > —3.
There are only two cases: m = —1 and m = —2.
Suppose m = 1 (mod4). The distance of a complex number to Z[w,,] is at most

4’\’7}7}1, the radius of the circumscribed circle of a triangle with sides 1, @/%ﬂ

and ,/%’H. So the norm is a Euclidean norm if and only if m > —7 — 4+/3, that
is m > —11. There are three cases: m = —3, m = —7 and m = —11.

Thus we have found five norm-Euclidean imaginary quadratic number fields. These
are in fact all imaginary quadratic number fields having a Euclidean ring of integers:

1.56 Theorem. For squarefree m < 0 we have:

Z|wm] is a Euclidean domain <— m = —1,-2,-3, -7 or —11.
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1 Integers in a Number Field

PrROOF. We still have to prove the implication =. Suppose that for some m #
—1,—-2,-3,—7,—11 that there is a Euclidean norm ¢ : Z[w,,] \ {0} — N. We will
derive a contradiction. Take in the set

{8 eZlwn] | B#0and § ¢ Zlwn]" }

an element S with ¢(8) minimal, i.e. § # 0,1, —1 with ¢ () minimal. Note that
Zlwm]* = {1, -1}, since m # —1, —3. The residue class ring Z[w,,]/(8) consists of
2 or 3 elements:

Let o € Z[wyy,]. Then there are k, p € Z[wy,] with

{a =kB+p
Y(p) <y(B) if p#0.

So p =0 or p € Zlwy]*, that is p € {0,1, —1}, and this means that o € (5)
ora €14 (8)orac —1+(8). Because § ¢ Z[wy,]*, the ring has 2 or 3

elements.
It follows that N(8) = 2 or N(8) = 3. However, as is easily verified, for m #
—1,—2,—-3,—7,—11 such a [ does not exist. Contradiction. O

Five of the imaginary quadratic number fields have a Euclidean ring of integers.
These rings are principal ideal domains. But there are more: later we will see that
also Zlw_19], Zlw_43), Z[w_e7] and Z[w_13] are principal ideal domains.

Real quadratic number fields

Let m € Z be squarefree and > 1. The norm N = N%(W): Q(v/m) — Q now
also takes negative values, e.g. N(y/m) = —m. Restriction to Z[w,,] yields a map
N: Z|wm] — Z. The question is: for which m is the map Z[w,,] — N, a +— |[N(«a)|
a Euclidean norm on Zw,,|? For which m are there for each a, 8 € Z|w,,| with
B # 0 numbers &, p € Z[wy,] such that

a=rB+p and |N(p)| <|N(B)|?

Via the embedding in R xR the ring Z[w,,] maps onto a lattice in R x R. The points
v of R x R with |[N(¥)| < 1 lie ‘inside’ the hyperbolas with equations xy = +1. For
which m is the plane covered by all translations of this domain over the vectors of
the lattice? The following square, which is contained in this domain is easier to
handle

{(z,y) | |z]+ |yl <2},

see Figure 1.7. Using this square instead already yields a number of Euclidean
domains. Translation of the square over (1, 1) does overlap with the original square.
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(1, 1)

Figure 1.7: The domains |zy| < 1 and |z| + |y| < 2 inside R x R

They also have to overlap under translation over (y/m, —/m) for m = 2,3 (mod 4),

respectively over (1+2\/H7 175/m) for m =1 (mod4). The first is the case if m < 4

and the second if m < 16. See Figure 1.8. So we have:

1.57 Theorem. The map Z[w,] = N, a — |N(a)| is a Euclidean norm on Z[wy,]
form=2 m=3 m=5 and m=13. O]

Here is a complete list of values of m for which Zjwm] — N, a — |N(a)| is a
Euclidean norm: —11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37,
41, 57, 73.

There are four negative m for which Z[w:n] is a non-Euclidean principal ideal do-
main. For positive m there are possibly infinitely many principal ideal domains; for
1 < m < 100 the values of m for which Q(y/m) is not norm-Euclidean and Z[w,]
is a principal ideal domain are: 14, 22, 23, 31, 38, 43, 46, 47, 53, 59, 61, 62, 67, 69,
71, 77, 83, 86, 89, 93 and 97.

EXERCISES

1. Show that there is a one-to-one correspondence between quadratic number fields
and squarefree integers # 1, where such an integer m corresponds to the field

Q(v/m).
2. Show that Z[v/=6], Z[v/—13], Z[*4,=*2] and Z[V/10] are no principal ideal domains.
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@
@

%

Figure 1.8: Overlap of squares in R x R under translation over respectively (1,1),
(\f; _\/5)7 (\/77 _\/6)7 (%7 kT\/ﬁ) and (HT\/ﬁv FT\/ﬁ)

3. Let K = Q(y/m) with m a squarefree integer > 1. Let’s assume that Oj # {1, —1}.
Then, as explained in Example 1.24, K contains a fundamental unit.

(i)

Suppose m = 2,3 (mod4). Let v1,v2 € O such that vo,v1 > 1. Then
Vi = x1 +y1/m, v2 = T2+ y2/m and v1va = x3 + ys/m with z;,y; € N* for
i =1,2,3. Show that y3 > y1, y2.

For m = 2,3 (mod 4) there exists a least y € N* such that my® £1 is a square,
say x2, in N*. Show that 2 4+ y/m is the fundamental unit of K.

Suppose m = 1 (mod4) and m # 5. Let v1,v2 € O such that vo,v1 > 1.
Then v1 = %xl + %ylx/m, Vo = %xg + %ygx/m and vivs = %xg + %ygx/m with
Zi,y; € N* for i = 1,2,3. Show that y3 > y1, ya.

For m = 1 (mod 4) there exists a least y € N* such that my® 4 4 is a square
in N*, say z2. Show that %x + %y\/m is the fundamental unit of K if m # 5.

Compute the fundamental units for m = 11,13,14,15,17. (This way of com-
puting fundamental units is slow. For m = 19 the least y is 39 and for m = 94
it is 221064. A fast algorithm based on continued fractions is described in
section 4.8.)

4. Show that for extensions L : K of finite fields the group homomorphism
NL . L* — K* is surjective.
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Exercises

5. Let p be an odd prime. Show that Q({,) contains a unique quadratic number field.
Which one?

6. (i) Let o € R satisfy o® = a4 1. Show that Z[a] is the ring of integers of Q(a).

(ii) Let a € R satisfy o® = a + 2. Show that Z[a] is the ring of integers of Q(cv).

7. Determine an integral basis of @(\/ -2+ \/5)

8. Let m € Z be not a cube in Z. We determine an integral basis of the pure cubic
number field K = Q({/m).
(i) Show that there are h, k € Z such that K = Q(v/hk2), ged(h, k) =1, h and k
squarefree, hk # 1, h = 0,1 (mod 3) and k = 1 (mod 3).
Put a = Vhk? and 8 = Vh2k.
(ii) Let v = a + ba + ¢fB, where a, b, c € Q. Verify:

A, = X? —3aX? +3(a® — hkbc)X — (a® — 3hkabc + hk*b® + hkc®).

(iii) Let p be a prime divisor of h or k. Let v = a + ba + ¢f with a,b,c € Z. Show
that % ¢ O if ged(p, a,b,¢) = 1.

(iv) Suppose h = k = 1 (mod3). Let v be as in (iii). Show that if 2 € O, then
a* = bc (mod3) and @ +b+c = 0 (mod3). Show that this implies that
a=b=c(mod3).

(v) Suppose h =k =1 (mod3) and let v =1+ o + 8. Show that

%eo = 1-3hk +hk® + K%k = 0 (mod 27) <= h =k (mod9).

(vi) Conclude that (1,c, ) is an integral basis of K if h # k (mod9) and that
(1, a, 2248 is an integral basis if h = k (mod 9).
(vii) Determine integral bases of Q(/m) for m = 2,3,5,6,7,12,17,18,19, 20, 44.
9. Let m,n € Z be different and squarefree # 1. We determine an integral basis of
the biquadratic field K = Q(v/m, v/n). Put k = PTCRDLE

(i) Prove that 20k C Z 4 Zwm + Zwn + Zwy. (Notation: see comment after
Theorem 1.9. Hint: use the traces from K to quadratic subfields.)

(ii) Let € K. Prove that o € Ok if and only if Ng(m)(a), Trg(m)(a) € 0.
(iii) Show that there are essentially the following three cases:
(I) m =3 (mod4) and n,k = 2 (mod 4);
(I1) m=1(mod4) and n =k £ 1 (mod4);
(III) m=n=k=1 (mod4).
(iv) Show that an integral basis of K is for the above three cases as follows:
(1) (1v/m, v/, LR,
(1) (1, 552, i, S,
(HI) (17 1+5/H7 1+2\/ﬁ7 1+5/H . 1+2\/E)_
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10.

11.

12.

13.

14.
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(v) Prove that disc(K) = disc(Q(v/m)) - disc(Q(y/n)) - disc(Q(vk)).

(vi) Show that (Ok : Z + Zwm + Zwn + Zwy) = 2.
Diophantine equations of type 3> = 2® + k, where k € Z and k # 0, are called
Mordell equations. In this exercise we solve the equation for k = —1. Let x,y € Z
satisfy 3% + 1 = 22

(i) Show that z is odd and that y is even.

(ii) Prove that y + 4 is a cube in Z[i].

(iii) Solve the Diophantine equation.
The Mordell equation for k = —4. Let z,y € Z satisfy y* + 4 = z°.

(i) Show that y + 2: is a cube in Z[{].

(if) Solve the equation.

Sometimes a Mordell equation can be solved using ordinary integers, for example
for k = 7. Let x,y € Z satisfy y*> = 2 4 7.

(i) Show that z is odd and that y is even.
(ii) Prove that 2® 4 8 has a prime divisor = 3 (mod 4).

(iii) Derive a contradiction.

Let K and L be number fields such that [KL : Q] = [K : Q][L : Q] and moreover
ged(disc(K), disc(L)) = 1. Prove that

disc(KL) = disc(K)[L:@] diSC(L)[K:Q].

Let m,n € N* be relatively prime. Show that

disc(Q(Cmn)) = disc(@({m))w(") disc(@({n))w(’”).



2 Dedekind Domains

Principal ideal domains are unique factorization domains: in a principal ideal do-
main there is unique factorization of nonzero elements as products of irreducible
elements. Some rings of integers of number fields are principal ideal domains, but
many are not. E.g. the ring of integers of Q(y/—5) is not a principal ideal domain,
see Example 1.53. The notion of Dedekind domain is more general than that of
principal ideal domain. In Dedekind domains there is a unique factorization not of
elements, but of nonzero ideals, namely as a product of prime ideals. In chapter 3
it will be shown that rings of integers of number fields are Dedekind domains. In
this chapter Dedekind domains are treated in general. In section 2.4 it is shown
that the isomorphism classes of nonzero ideals of a Dedekind domain form a group,
the ideal class group. This group is trivial if and only if the Dedekind domain is a
principal ideal domain.

2.1 Definition

The notion of product of ideals is essential for our approach to Dedekind domains.

2.1 Definition. Let a and b be ideals of a commutative ring R. Their product is
the ideal
ab=(ab|a€aandbeb),

the ideal of R generated by all products ab with a € a and b € b.

The ideals of a commutative ring R form under multiplication an abelian monoid,
in particular the multiplication is associative:

(ab)c = a(bc) (= abc = (abc|a € a, b€ band c€c)).

The unity element is the ring R itself. For principal ideals we have (a)(b) = (ab).

The sum a+ b of the ideals a and b consists of all a + b with a € a and b € b. The
union of systems of generators of the ideals a and b is a system of generators of
a+ b. Under addition the ideals form an abelian monoid as well. The ideal (0) is
the zero element. The multiplication is distributive over the addition:

a(b+c) =ab+ ac.

33



2 Dedekind Domains

2.2 Definition. Let a and b be ideals of an integral domain R. Then the ideal a is
said to divide the ideal b (notation: a | b) if there exists an ideal ¢ of R such that
ac = b.

Note that for principal ideals we have:
(a)| (b) <= a|b < be (a) <> (a) D (D).

2.3 Definition. An integral domain R is called a Dedekind domain if R is not a
field and for all ideals a, b of R we have

a|lb < aDb.

Note that “=" holds in general. If a is a principal ideal, then the converse is true
as well: assume a = (a) with a # 0 (otherwise it is trivially true) and a D b; then
b consists of multiples of a and the ideal

lp={2|ben}

satisfies

a--b=0.

Q=

The collection of nonzero ideals of a Dedekind domain is a monoid with cancella-
tion:

2.4 Proposition (Cancellation). Let R be a Dedekind domain. Let a, ¢ and ¢ be
ideals of R, where a # 0. Then

acCad = ¢C ¢

and consequently
ac=ad = c=¢.

PROOF. Since a # (0), there is an a € a with a # 0. Because R is a Dedekind
domain, there is an ideal a’ such that (a) = aa’. We have (a)c = ad’c C d'ad’ =
(a)¢’. Since R is an integral domain, it follows that ¢ C ¢’. O

In section 2.5 a characterization of Dedekind domains is given, which is based
on three properties of Dedekind domains, the Propositions 2.6, 2.8 and 2.9. In
Proposition 2.6 the following alternative for the definition of prime ideal will be
used.

2.5 Lemma. Let R be a commutative ring. Let a and b be ideals of R and let p be
a prime ideal of R. Then

po2ab = pDa or p2b.
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PROOF. Supposep D ab. If p 2 a, then there exists an a € a\p. Then ab € ab C p
for all b€ b. So b € p for all b € b, since p is prime. Hence p D b. O

2.6 Proposition. Prime ideals # (0) of a Dedekind domain are mazimal ideals.

PROOF. Let R be a Dedekind domain and p # (0) a prime ideal of R. Let a be
an ideal of R with p C a. Because R is a Dedekind domain, there is an ideal b of
R such that ab = p. By Lemma 2.5 we have p O a or p O b. In the first case we
have p = a. In the second p = b and by Proposition 2.4 we have a = R. So p is
maximal. O

2.7 Notation. For R a commutative ring, we denote the set of maximal ideals of
R by Max(R), and the collection of prime ideals of R by Spec(R).

On Spec(R) the so-called Zariski topology can be defined: the closed sets are the
intersections of the sets

V(r)={p € Spec(R) |r€p},

where 7 € R. The set of prime ideals of R equipped with the Zariski topol-
ogy is called the spectrum of R. For R a Dedekind domain we have Max(R) =
Spec(R) \ {(0)} (Proposition 2.6). The Krull dimension of a commutative ring R
is by definition the maximal length n of a chain

PoCp1 C---Chn

of prime ideals of R. By Proposition 2.6 the Krull dimension of a Dedekind domain
equals 1. Note that we excluded fields in the definition. Fields have Krull dimension
0. If there is an infinite chain of prime ideals, the Krull dimension is said to be
infinite.

Ideals of a Dedekind domain are finitely generated: Dedekind domains are Noethe-
rian. Equivalently, infinite ascending chains of ideals stabilize, or nonempty collec-
tions of ideals have a maximal element (an ideal in the collection not contained in
any other ideal of the collection). The proof of these generalities is in many algebra
textbooks. Here the proof of these equivalences is left as an exercise (exercise 2).

2.8 Proposition. Dedekind domains are Noetherian.

ProoOF. Let a1 C as C ag C --- be a chain of ideals of a Dedekind domain R.
Then b = |J, a; is an ideal of R. We can assume that that b # 0. Since R is a
Dedekind domain, there are a b € b\ {0} and an ideal b’ of R such that bb’ = (b).
Then (b) = |J; a;b’. There is an N € N* such that ayb’ = (b). Then a,b’ = (b) for
all n > N and so by cancellation a,, = ay for all n > N. O

The far most important property of Dedekind domains is the unique factorization
of ideals: Theorem 2.11 in the next section. The definition of Dedekind domain
(Definition 2.3) as presented here is quite close to this factorization property. In
chapter 3 we will prove that the ring of integers of a number field is a Dedekind
domain. This will not be done directly from the definition, but by proving the
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2 Dedekind Domains

three properties which will characterize Dedekind domains. The third of these is
the following.

2.9 Proposition. Dedekind domains are integrally closed.

ProOOF. Let R be a Dedekind domain with field of fractions K and let a € K
be a zero of a monic f € R[X]. We will prove that a € R. Put f(X) = X" +
lenil + b2Xn72 +---+b, and a = % with a1,a2 € R. Then

al +bral tag + beal " 2a3 4 - 4 bpal = ab fla) =0

and so
a} € (a7 tag, ... a1ay" " ay).
Put a = (a7 ' a? 2ay,...,a1a3 % ay~ ). Then
ara = (at,a} tag, ..., atay "2 aray™t) C (a' tag, ..., afay % aral Tt a) = aga.
Since R is a Dedekind domain it follows that (a1) C (a2), that is 2L € R. O

2.2 Factorization of ideals

In a principal ideal domain we have unique factorization of nonzero elements. For
a Dedekind domain we have unique factorization of nonzero ideals.

2.10 Notation. Let R be an integral domain. The set of nonzero ideals of R is
denoted by I (R). Under the product of ideals it is an abelian monoid.

2.11 Theorem. Let R be a Dedekind domain and a € IT(R). Then there are prime
ideals p1,...,pn such that a = py---p,. This factorization is unique up to order.
(We allow that n = 0: an empty product equals R.)

PROOF. First we prove that every ideal a # (0) is a product of prime ideals. If
a # R, then there is a maximal ideal p; DO a. Then, since R is a Dedekind domain,
a = pia;, where a; is a nonzero ideal. If a; # R, then continue with a;: there
is a maximal ideal po D a; such that a; = poas, etc. Since R is Noetherian, we
thus obtain a strictly ascending chain a = a9 C a; C as C --- C a,, = R such that
a;_1 = p;a; with p; a prime ideal for j =1,...,n. Then a =p;---p,.

For the uniqueness of the factorization we use Lemma 2.5. Suppose that p; ---p,, =
qi---Gqm (pi,q; being prime ideals # (0) of R). Then p1 | g1---qm and so
g1 qm C p1. So there is a q; C p;. We may assume: q; C p;. Since R is a
Dedekind domain, the nonzero prime ideal q; is maximal, so q; = p;. By cancel-
lation: po---p, = g2+ qm. Proceed by induction. O
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2.2 Factorization of ideals

2.12 Example. In Example 1.53 we saw that in the ring Z[+/—5] there is no unique
factorization of elements: the element 6 can be factored as a product of irreducible
elements in two ways: 6 =2-3 = (1++/—5)(1 — v/—5). In Z[v/—5] we have ideals

p2=(2,1+v=5), p3=(3,1+V-5) and pj=(3,1—=5).

It is easily verified that the lattices Z2 + Z(1 + v/—5), Z3 + Z(1 + +/—5) and
Z3 + Z(1 — /=5) are actually ideals of Z[\/—5]. From this it follows that they are
the ideals po, p3 and pj respectively. Because their indices in Z[y/—5] are 2 or 3,
these ideals are maximal ideals. It is easily verified that

(2) =p3, (3) =psps, (1+V-5)=pops and (1—+/=5)=pops.

So the irreducible elements do not generate prime ideals. The two factorizations
of the element 6 both lead to the same factorization of the ideal (6):

(6) = p3psps.

In the next chapter we show that rings of integers of number fields are Dedekind
domains. In particular Z[y/—5] is a Dedekind domain. For this example many
verifications were needed. Later, having many structure theorems for rings of
integers at our disposal, almost all of these computations become unnecessary.

2.13 Definition and notation. Let p be a prime ideal # (0) of a Dedekind domain
R and let a be an ideal # (0) of R. The number of factors p in the factorization
of a as a product of prime ideals is called the p-valuation of a and is denoted by
vp(a). So vy(a) € N and this number is given by

p» @ |a and pr @+l 4q,
(Let’s agree that p® = R.) Thus we have a monoid homomorphism
vp: IT(R) = N, ar vp(a)

from the multiplicative monoid I (R) to the additive monoid N.

For a € R\ {0} we have aR € I (R) and we define
0p(0) = vp(aR).
Note that
vp(a) =0 < pfa.

For each ideal a # (0) we have

a= Hpvp(ﬂ)7
p
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2 Dedekind Domains

where the product is over all p € Max(R). This formula makes sense: vy(a) # 0
only for finitely many p and we can interpret the formula as the product over all p
with vy (a) # 0.

The unique factorization property implies that the map

(vp)p: IT(R) — @ N, ar— (vp(a))y (2.1)
pEMax(R)

is an isomorphism of abelian monoids: the product of a,b € T*(R) is given by
vp(ab) = vp(a) + vp(b) for all p € Max(R).

To put it differently: for a Dedekind domain R the monoid I (R) is a free abelian
monoid on the set Max(R). The set I*(R) is ordered by the relation O, which for
Dedekind domains is the same as |. Under the isomorphism (2.1) a | b translates
into

vp(a) <wvp(b) for all p € Max(R).
In the next proposition we consider two other operations: addition ((a,b) — a+b)
and intersection ((a,b) — anb).

2.14 Proposition. Let p be a mazximal ideal of a Dedekind domain R and let a,b €
It (R). Then:

vp(a+b) = min(vy(a),vp(b)) and wvp(anb) =max(vy(a),vy(b)).

PRrROOF. Note that a + b is the supremum of a and b in the ordering of IT(R),
whereas a N b is the infimum. O

In I (R) we clearly have the notion of greatest common divisor and least common
multiple and the proposition tells us that ged(a,b) = a + b and lem(a,b) = anb.
For elements a,b in a principal ideal domain we have:

(a)(b) = (ab),
(a) + (b) = (ged(a, b)),
(a) N (b) = (Icm(a, b)).

The ged and lem of elements are defined up to units of the domain.

2.15 Definition. Nonzero ideals a and b of a Dedekind domain R are called rela-
tively prime if they are comaximal, that is if a + b = R.

So ideals a and b of a Dedekind domain R are comaximal if and only if no p €
Max(R) is a common divisor of a and b. In general, comaximality of ideals of a
commutative ring has an important implication for the residue class rings:
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2.16 Chinese Remainder Theorem. Let R be a commutative ring and let a and b
be comazimal ideals of R. Then the ring homomorphism R — R X R, z + (x,x)
induces an isomorphism

R/ab = R/a x R/b.

ProOOF. The kernel of the homomorphism
R— R/ax R/b, xw— (T,T)

is the ideal anb. By comaximality there are a € a and b € b such that a+b = 1. So
for each = € anb one has x = xa+xb € ab. Since trivially ab C anb, it follows that
ab = anb. Surjectivity of the homomorphism follows from ya+xb = xb = x (mod a)
and ya + xzb = ya = y (mod b). O

Unique factorization of ideals in Dedekind domains has implications for the struc-
ture of their residue class rings.

2.17 Proposition. Let R be a Dedekind domain, a an ideal # (0) of R and let p be
a prime ideal # (0) of R. Then the kernel of the surjective ring homomorphism

¢: R/pa— R/a, x+par— z+a,

is an R-module isomorphic to R/p.

PRrROOF. Clearly Ker(¢) = a/pa. From pa C a and the unique factorization follows
that pa C a. Choose a € a\ pa. Then there is an ideal b such that ab = aR. We
have p 1 b, since otherwise pa | ab and so a € pa. Note that ab N pa = abp and
ab + pa = a. The inclusion aR C a induces an R-module homomorphism

¥: aR/ap — a/pa.
We prove that v is an isomorphism:
Ker(¢) = (aRNpa)/ap = (abNpa)/ap = abp/ap = ap/ap = 0.
Im(y) = (aR + pa)/pa = (ab + pa) /pa = a/pa.

Clearly the R-module isomorphism R — aR, r — ar induces an isomorphism
R/p = aR/ap. Hence,

R/p = aR/ap = a/pa = Ker(p). O
In terms of exact sequences: there is a short exact sequence
0— R/p — R/pa — R/a — 0

of R-modules. Note that if p { a, then by the Chinese Remainder Theorem we have
an isomorphism R/pa =+ R/p x R/a. In this case the short exact sequence splits
and the proposition follows in a direct manner. So the more interesting aspect of
the proposition is that it holds if p | a as well.
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Ideals of a Dedekind domain may not be principal, but since the domain is Noethe-
rian, they are finitely generated. In fact at most two elements are needed for the
generation of an ideal. This will follow from:

2.18 Lemma. Let R be a Dedekind domain, P a finite collection of mazimal ideals
of R and p € P. Then there exists an x € R satisfying vy(x) = 1 and vg(xz) =0
for allq € P\ {p}.

PROOF. Choose a m € p \ p?. Such an element exists because p # p? by the
cancellation property. By the Chinese Remainder Theorem there exists an x € R

such that
o — 4 (modp?),
~ |1 (modq)  for each q € P\ {p}.
Then z € p, z ¢ p? and = ¢ q for all g € P with q # p. O

2.19 Proposition. Let R be a Dedekind domain and let a and b be nonzero ideals
of R such that a C b. Then there exists an x € b such that b = a + zR.

PrOOF. Let P be the collection of prime divisors of a. By Lemma 2.18 we can
choose for each p € P an z, € R such that vp(zp) = 1 and vq(z,) = 0 for all

g€ P\ {p}. Take
T = Hx;‘“(b).

peP
Then v, (z) = vy(b) for all p | a. By Proposition 2.14 we have a + zR = b. O

2.20 Corollary. Let a be an ideal of a Dedekind domain R. Then there are a,b € R
such that a = (a,b).

PrOOF. We may assume that a # 0. Take a € a with ¢ # 0. By Lemma 2.19
there is a b € R such that a = aR + bR = (a, b). O

Commutative rings with only finitely many maximal ideals are called semi-local.
2.21 Proposition. Semi-local Dedekind domains are principal ideal domains.

PROOF. Let R be a Dedekind domain with Max(R) finite. It suffices to prove that
maximal ideals of R are principal. Let p be a maximal ideal of R. By Lemma 2.18
there is an @ € R such that vy (2) = 1 and vq(x) = 0 for all maximal ideals q # p.
It follows that p = zR. O

2.3 The ideal class group of a Dedekind domain

2.22 Definition. Let R be an integral domain and a,b € I"(R). Then a and b
are called equivalent if there exist nonzero x,y € R such that za = yb. Notation:
a~b.
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Note that za € Tt (R). It can be seen as the product of the principal ideal (x) and
the ideal a.

2.23 Lemma. Equivalence of nonzero ideals of an integral domain R is an equiv-
alence relation in IT(R).

PROOF. Obviously the relation is reflexive and symmetric. For transitivity it is
needed that the ring has no zero divisors. O

For Dedekind domains we have the following property, which—as we will see—has
many consequences.

2.24 Lemma. Let R be a Dedekind domain and a € Tt(R). Then there is a
b € T (R) such that ab is a principal ideal.

PrROOF. Choose a € a with @ # 0. Then a D (a) and hence a | (a), that is
(a) = ab for a b € Tt(R). O

2.25 Proposition. Let R be a Dedekind domain. Multiplication in It (R) induces
a group structure on the set I (R)/~ of equivalence classes.

ProOOF. Clearly, if a,a’,b,b" € IT(R) satisfy ' ~ a and b’ ~ b, then a’b’ ~ ab.
Let’s denote the class of a by [a]. It follows that IT(R)/~ is an abelian monoid

under the operation [a] - [6] = [ab]. The unit element is [(1)], which is the class of
principal ideals. By Lemma 2.24 for each a € I (R) there is a b € I (R) such that
[a] - [6] = [ab] = [(a)] = [(1)], so the class [b] is the inverse of [a]. O

2.26 Definition and notation. Let R be a Dedekind domain. The equivalence
classes in It (R) are called ideal classes and the group IT(R)/~ is called the ideal
class group of R. Notation: C/(R). The class of an a € I'"(R) is denoted by [a].

As remarked in the proof of Proposition 2.25 the unity element of the ideal class
group of a Dedekind domain consists of all principal ideals of that domain. So in
a sense the ideal class group tells us how much a Dedekind domain deviates from
a principal ideal domain:

2.27 Proposition. Let R be a Dedekind domain. Then R is a principal ideal domain
if and only if the group CL(R) is trivial. O

By Proposition 2.21 only Dedekind domains with infinitely many maximal ideals
can have a nontrivial ideal class group. In chapter 1 examples were given of rings of
integers of number fields which are no principal ideal domains. In the next chapter
it will be shown that rings of integers of number fields are Dedekind domains. So
each ring of integers which is not a principal ideal domain, is a Dedekind domain
with a nontrivial ideal class group.

Representing ideals of ideal classes of a Dedekind domain can be chosen to be
comaximal with a given nonzero ideal:
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2.28 Proposition. Let R be a Dedekind domain and let a and b be nonzero ideals
of R. Then there is an ideal ¢ of R such that ¢ ~a and b+ ¢ = R.

PRrROOF. Take a € a with a # 0. Then aR = ada’ for an ideal a’ of R. From
Lemma 2.19 it follows that there is an € R such that a’ = a’b + zR. Then
aR = ad = ad’b 4+ za = ab + 2R. So take ¢ = Za. O

a

2.4 Fractional ideals

Ideals in a commutative ring R are R-submodules of the R-module R. For an
integral domain R we consider a larger collection of R-modules isomorphic to ideals
of R.

2.29 Definition. Let R be an integral domain and K its field of fractions. A
nonzero R-submodule a of K is called a fractional ideal of R if there is an x € K*
such that xa C R. The set of fractional ideals of R is denoted by I(R). Fractional
ideals Ra with a € K* are called principal fractional ideals. The set of principal
fractional ideals of R is denoted by P(R).

For Noetherian integral domains we have an alternative characterization:

2.30 Lemma. Let R be a Noetherian integral domain with field of fractions K and
let a be a nonzero R-submodule of K. Then:

a is a fractional ideal of R <= a is a finitely generated R-module.

ProOOF. Fractional ideals of R are isomorphic to ideals of R and these are by
definition finitely generated. On the other hand, if an R-submodule of K is finitely
generated, then there is a nonzero x € R such that za C R: for x one can take the
product of the denominators of the fractions generating a. O

Fractional ideals are R-submodules of K and as such they can be added: a +b =
{a+b|ac€a, beb}. Using the multiplication in the field of fractions there also
is a multiplication of fractional ideals as there is one for ideals of R:

2.31 Definition. Let R be a Noetherian integral domain with field of fractions
K and let a and b be fractional ideals of R. The product ab of a and b is the
R-submodule of K generated by all ab with a € a and b € b.

Note that if a and b are fractional ideals, say za C R and yb C R, where xz and y
are nonzero elements of R. Then zyab C R. Hence ab is indeed a fractional ideal.

2.32 Lemma. Let R be a Noetherian integral domain. Then the set I(R) is an
abelian monoid under the multiplication of fractional ideals. The ring R is the
unit element of the monoid. Moreover, the multiplication is distributive over the
addition.
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PrROOF. The proof is straightforward. O

2.33 Definition. Let R be a Noetherian integral domain. A fractional ideal of R
is called invertible if it is an invertible element of the monoid I(R). If a € I(R) is
invertible, then a~! is also denoted by 1 or £. More generally, a product a='b is
also denoted by g.

2.34 Lemma. Let R be a Noetherian integral domain and a,b € I(R) invertible.
Then:
aDdb < altcep L

PrROOF. IfaDb,thena!'=a"'bb~!' Caltab~! =b"" O

2.35 Theorem. Let R be a Noetherian integral domain. Then R is a Dedekind
domain if and only if the monoid I(R) is a group.

PROOF. Let R be a Dedekind domain and a € I(R). There is a nonzero z € R such
that za C R. Let y be a nonzero element of the ideal za. Then yR C xa. Since R
is a Dedekind domain, there is an ideal b of R such that xza-b = yR. It follows that
the fractional ideal %b is the inverse of a. So all fractional ideals of R are invertible,
that is I(R) is a group. Conversely, suppose I(R) is a group and let a,b € IT(R)
satisfy @ O b. Then b = a(ba™!) and by Lemma 2.34 ba=! C bb~! = R. Hence
alb. O

2.36 Theorem. Let R be a Dedekind domain. Then I(R) is a free abelian group
with the set Max(R) as a basis.

PROOF. The monoid I (R) is freely generated by the maximal ideals of R. This
implies that the group I(R) is freely generated as an abelian group by the maximal
ideals. O

We can now extend the definition of v, for nonzero ideals in a Dedekind domain
to the group I(R):

2.37 Definition. Let R be a Dedekind domain. The maps v, : I(R) — Z are the
coordinate maps corresponding to the basis of maximal ideals p of B. The map v,
is called the p-adic valuation of I(R). For a € K* we put vp(a) = vy(Ra). Thus
we also have a group homomorphism v, : K* — Z, the p-adic valuation on K.

So for a Dedekind domain R we have a group isomorphism

I(R) = P Z, ar (vp(a)).

pEMax(R)

The abelian group @p Z is the group completion of the abelian monoid @F N and

the group I(R) of fractional ideals is the group completion of the monoid I (R) of
nonzero ideals.

2.38 Lemma. Let R be a Dedekind domain. Then P(R) is a subgroup of I(R).
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PROOF. For nonzero a, b in the field of fractions of R we have Ra - Rb = Rab and
in particular Ra - Ra~! = R. O

2.39 Proposition. Let R be a Dedekind domain. Then the inclusion IT(R) — I(R)
induces an isomorphism C/(R) = I(R)/P(R).

PrROOF. The map IT(R) — I(R)/P(R) is surjective. Ideals a,b € IT(R) are
congruent modulo P(R) if and only if there is an a € K* such that a = ab. Put
a= % with z,y € R\ {0}. Then za = yb, that is a ~ b. O

So for a Dedekind domain R with field of fractions K we have an exact sequence
1—R"— K" —I(R) — C(R) — 1.

The map K* — I(R) sends a to Ra. The fractional ideal Ra is the unit element R
of the group I(R) if and only if @ € R*. Alternatively, we have an exact sequence

1 — R — K" Dz — aRr) — 1. (2.2)
p

For each p the map Z — C/(R) sends 1 to [p].

2.5 Characterization of Dedekind domains

We have seen in section 2.1 that Dedekind domains are integrally closed Noetherian
domains in which nonzero prime ideals are maximal. In this section we prove the
converse. This converse (Theorem 2.43) is the main tool for identifying Dedekind
domains in many cases. A direct consequence is that the integral closure of a
Dedekind domain in a finite separable extension of its field of fractions is a Dedekind
domain as well (Theorem 2.45). This applies directly to the rings of integers of a
number field (Theorem 2.46), being the integral closure of Z in the number field.

2.40 Lemma. Let R be an integrally closed integral domain with field of fractions
K and let a € K*. Then a € R if and only if there is a finitely generated nonzero
submodule A of K such aA C A.

PrROOF. This follows from Proposition 1.12. O

2.41 Lemma. In a Noetherian ring every nonzero ideal contains a product of
nonzero prime ideals.

PROOF. Let R be a Noetherian ring and suppose that there exists an ideal a # (0)
of R that does not contain a product of prime ideals # (0). Then the collection ®
of such ideals is nonempty. Since R is Noetherian, the collection ® has a maximal
element, say m. Then m clearly is not a prime ideal, so there are a,b € R with
a,b ¢ mand ab € m. We have m C m+ (a) and m C m+ (). Since m is maximal in
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®, the ideals m + (a) and m + (b) both contain a product of nonzero prime ideals.
But then (m + (a))(m + (b)) contains such a product as well. However,

(m+ (a))(m 4+ (b)) = m? + am + bm + (ab) C m,

in contradiction with m € ®. O

2.42 Lemma. Let R be a Noetherian domain with the property that nonzero prime
ideals of R are maximal. Let a be an ideal of R with (0) # a # R. Then there
exists an element ¢ € K, the field of fractions of R, such that ¢ ¢ R and ca C R.

PrOOF. Let a € a with a # 0. By Lemma 2.41 there are prime ideals py,...,p,

of R such that py ---p, C (a) and such that r is minimal. Let p be a maximal ideal

such that p O a. Then p D p;---p, and so p D p; for some i, because maximal

ideals are prime. Say p O p;. Since nonzero prime ideals are maximal, we have

p = p1. The number r is minimal, so there exists a b € py - - - p, with b ¢ (a). Then
ba C bp Cpy---pr € (a)

a’

and so ga C R, whereas g ¢ R. So take c = 2 O
2.43 Theorem. An integral domain R is a Dedekind domain if and only if

a) R is Noetherian,

b) nonzero prime ideals of R are mazimal ideals,

c) R is integrally closed.

PROOF. We have already seen that a Dedekind domain satisfies a), b) and c):
Propositions 2.8, 2.6 and 2.9. Now let R be an integral domain satisfying a), b)
and c), and let K be its field of fractions. Let ® be the collection of ideals b of R
which contain an ideal a, whereas b { a. We will prove that ® is empty. Suppose
® £ (). Since R is Noetherian, ® has a maximal element b and let a be an ideal of
R such that a C b and b1 a. By Lemma 2.42 there are nonzero a,b € R such that
b e K\Rand 2b C R. Put b’ = 1(a,b)b. Then b’ = b+ 2b C R, so the fractional
ideal b’ is actually an ideal of R. We have b’ O b, since otherwise b’ = b’ + 2b/,
that is 2b’ C b’ and because R is Noetherian this would imply by Lemma 2.40 that
b€ R. Sowe have b’ ¢ ® and a C b’. Hence, there exists an ideal ¢’ of R such that
a=b'c. Take ¢ = L(a,b)¢. Then bc = L(a,b)bc’ = b'¢’ = a and this contradicts
b € ® if ¢ is an ideal of R, that is if ¢ C R. For all ¢ € ¢ we have ¢cb C a C b and
so again by Lemma 2.40 indeed ¢ € R. O

The integral closure of a Dedekind domain in a finite separable extension of its
field of fractions is again a Dedekind domain. For a proof we will use this char-
acterization of Dedekind domains. The following well-known lemma will be used.
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2.44 Lemma. Let R be a Noetherian ring, A a free R-module of finite rank and B
an R-submodule of A. Then B is a finitely generated R-module.

PrOOF. Let n denote the rank of A. For n = 0 it is trivially true. We proceed
by induction on n. Let n > 1. We may assume that A = R". Let p: R® — R" !
be the projection (r1,...,7n-1,74) — (r1,...,7n—1). For an R-submodule B of
R™ we have B/(Ker(p) N B) = p(B). The R-module p(B) is finitely generated by
induction hypothesis since it is a submodule of R*~!. The R-module Ker(p) is
free of rank 1, so B N Ker(p) is finitely generated because the ring is Noetherian.
Clearly B is generated by generators of BNKer(p) together with lifts of generators
of p(B). O

2.45 Theorem. Let R be a Dedekind domain with field of fractions K and let
K’ : K be a finite separable field extension. Then the integral closure R’ of R in
K’ is a Dedekind domain.

Proor. We apply Theorem 2.43:

a) By Proposition 1.36 R’ is an R-submodule of a free R-module of finite rank
and so is each ideal of R’. Since R is Noetherian, it follows from Lemma 2.44
that each ideal of R’ is finitely generated as R-module and, therefore, also as
R’-module.

b) Let q be a nonzero prime ideal of R’. Then p = qN R is a nonzero prime
ideal of R. Since R is a Dedekind domain, p is a maximal ideal. The ring
R’/q is both an integral domain and a finite-dimensional R/p-vector space.
It follows that R'/q is a field. So g is maximal.

¢) The ring R’ is integrally closed by Corollary 1.13. O
In particular:
2.46 Theorem. The ring of integers of a number field is a Dedekind domain.

ProOOF. Let K be a number field. Then O is the integral closure of the principal
ideal domain Z in K. O

In the next chapter we continue the study of number fields. Here we only give
an example of a Dedekind domain with a nontrivial ideal class group. Another
example is given in the exercises.

2.47 Example. The ring Z[v/—5] is the ring of integers of the number field Q(y/—5).
By Theorem 2.46 it is a Dedekind domain. It is not a principal ideal domain
(Example 1.53). The ideal po = (2,1 + v/—5) is not principal, see Example 2.12,
so po represents a nontrivial element of C/(Z[v/—5]). Since p3 = (2), we have
[p2]? = [(2)] = 1. So the element [ps] of the ideal class group is of order 2. For
ps = (3,1 ++/=5) we have pap3 = (1 ++/=5) and so [p2] = [p3]. In the next
chapter it will be shown that the ideal class group of Z[\/=5] is a group of order 2
(Example 3.27).

46



Exercises

EXERCISES

1. (i) Let a, b and ¢ be ideals of a Dedekind domain R. Show that a(bN¢) = abNac.

(ii) Give an example of an integral domain R and ideals a, b and ¢ of R such that
a(bNec) # abnNac.

2. A commutative ring is called Noetherian if its ideals are finitely generated. Let R
be a commutative ring. Show the equivalence of:

(i) R is Noetherian.

(ii) Each nonempty collection ® of ideals of R ordered by inclusion contains a
maximal element.

(iii) Each ascending chain a9 C a3 C -+ C a,, C --- of ideals of R stabilizes, i.e.

there is an N € N such that a,, = ay for all n > N.

3. Let a be a nonzero ideal of the ring of integers of a quadratic number field. Show
that there exist a € N* and « € a such that a = Za + Za.

4. Let a be a nonzero ideal of the ring of integers of a quadratic number field. Show
that aa’ = (n) for some n € N*. (Use exercise 3; a’ is the conjugate ideal of a, that
is a’ = o(a), where o is the nontrivial automorphism of the number field.)

5. The ring of integers of a quadratic number field is a Dedekind domain. Show this
by applying the result in exercise 4.

6. Let m € Z be squarefree # 1 and congruent to 1 modulo 4. Show that Z[/m] is
not a Dedekind domain.
7. Let m € Z be squarefree, negative and congruent to 2 modulo 4. Let p = (2, /m).
(i) Show that p is a prime ideal of Z[/m].
(ii) Prove that [p] € C/(Z[/m]) is of order 2.
8. The field K = R(X) is the field of fractions of the polynomial ring R = R[X]. Let
L = K(y) such that 4> =1 — X2
(i) Show that [L : K] = 2 and that R[y] is the integral closure of R in L.

(ii) Show that the ideal (X, 1—y) of R[y] represents an ideal class of order 2 in the
ideal class group of the Dedekind domain R[y]. (In exercise 6 of chapter 10 it
is asked to compute the ideal class group.)
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3 Rings of Integers of Number Fields

In the previous chapter it was shown that rings of integers of number fields are
Dedekind domains (Theorem 2.46). In section 3.3 it will be shown that their
ideal class groups are finite. The argument used for this result enables us to
compute ideal class groups in simple cases. In chapter 5 a more powerful method
of computation is described and moreover in chapter 4 algorithms are given for the
quadratic case.

In chapter 1 we noted (on page 25) that a number ring which is a principal ideal
domain, necessarily is the ring of integers. In fact, the ring of integers of a number
field is the unique number ring of that field which is a Dedekind domain:

3.1 Proposition. Let K be a number field and let a number ring R of K be a
Dedekind domain. Then R = Ok.

PROOF. Since R is finitely generated as an abelian group, we have by Proposi-
tion 1.12 that R C Ok. The field K is the field of fractions of R. Since R is a
Dedekind domain, it is integrally closed and so its integral closure in K is R itself.
Because Z C R, their integral closures in K satisfy Ox C R. O

The group of fractional ideals of a Dedekind domain is a free abelian group with
the set of nonzero prime ideals as basis. In section 3.1 it is shown that prime
ideals divide (the ideals generated by) prime numbers. A method is given for
the computation of the factorization of ideals generated by prime numbers, which
works up to a finite number of prime numbers. The last section is about ramifying
prime numbers: prime numbers divisible by a prime ideal with multiplicity greater
than 1.

3.1 Prime ideals

Let K be a number field. Since its ring of integers Ok is a Dedekind domain,
we have in this ring unique factorization of nonzero ideals as products of maximal
ideals. What are the maximal ideals? Let p be a maximal ideal of Ox. Then pNZ
is a nonzero prime ideal of Z, say pNZ = pZ, for a prime number p. The ideal pOg
is contained in p and, since Ok is a Dedekind domain, we have p | pOk. Hence p
is a factor in the factorization of the ideal pOy.
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3 Rings of Integers of Number Fields

3.2 Definition. Let p be a maximal ideal of the ring of integers of a number field
K. The prime number p that generates p N Z is said to be under p. The prime
ideal p is said to be above p.

3.3 Definition. Let K be a number field, p € Max(Ok) and p the prime number
under p. Then v,(p) = v,(pOk) € N* is called the ramification index of p. No-
tation: e(p) = vy(p). The degree of the field extension Ok /p : F, is called the
residue class degree of p. Notation: f(p) = [Ox/p : Fpl.

So we have

pOK — Hpvp(l’) — H peﬂ’).
P

p|lpOK

Often we will write the factorization as pOx = pi* ---ps”, where the p; are the r
prime ideals above p and e; is the ramification index of p;. Accordingly, the residue
class degree of p; is then denoted by f;.

For a given number field the ramification indices and residue class degrees of the
prime ideals above a prime number satisfy a relation:

3.4 Theorem. Let K be a number field of degree n and let
POk = py' -9y
be the factorization of pOk in Og. Then
etfit+-tefr=n,
where f; is the residue class degree of p;.

PROOF. Since Ok is a free abelian group of rank n, the ring Ok /pOk is an
[F,-vector space of dimension n. For each ideal a | pOk the ring Ok /a is a homo-
morphic image of Ok /pOk and, therefore, an F,-vector space as well. Repeated
application of Proposition 2.17 yields that Ok /pOk is an F,-vector space of di-
mension ej f1 + - + e fr. O

3.5 Definition. Let K be a number field of degree n and p a prime number. For
the factorization of pOg there are three special cases:

p totally ramifies in K : there is only one prime ideal p above p and its ramification
index is n: the factorization is pOg = p™.

p remains prime in K: the ideal pOf is a prime ideal; then the ideal pOg is the
only prime ideal above p and its residue class degree is n.

p splits completely in K : there are n prime ideals above p; then each of them hav-
ing ramification index 1 and residue class degree 1.
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3.1 Prime ideals

The three cases described in this definition are in a sense the three extreme cases.
For a quadratic number field they are obviously the only possible cases, see also
Theorem 3.7. In section 3.4 we will see that it are precisely the prime divisors of the
discriminant of the number field that ramify. So only finitely many primes ramify.
In chapter 5 it is shown that at least one prime number ramifies (Theorem 5.25).
Total ramification of a prime, however, does not need to occur. On the other hand
infinitely many primes split completely (exercise 16 of chapter 7). It depends on
the number field whether there are primes that remain prime. If there is such a
prime number, there are infinitely many of them.

In many cases it is not hard to factorize (the ideal generated by) a prime number
in the ring of integers of a number field. The main tool for computations is given
by the following theorem.

3.6 Theorem (Kummer-Dedekind). Let K be a number field and ¥ € Ok a
primitive element of K : Q. Let f € Z[X] be the minimal polynomial of 9 over Q.
Assume the prime number p satisfies p1 (O : Z[9]). Let

f=gv-gr

be the factorization of the polynomial f € F,[X] as a product of irreducible poly-
nomials, where the g; € Z|X] are taken to be monic. Then

POk = (p,91(9))" -~ (p, g+ (9))"
is the factorization of pOg as a product of prime ideals.

PrOOF. The ring homomorphism Z[X] — F,[X] induces a ring isomorphism
Z[X]/(p,9:) — Fp[X]/(g;) and the ring homomorphism Z[X] — Z[J] induces an
isomorphism Z[X]/(p, g;) — Z[Y]/(p, 9:(9)). Since F,[X]/(g;) is a field, the ideal
(p, gi(¥)) of Z[¥] is maximal. The inclusion Z[] = Ok induces a ring homomor-
phism

¥: 2[9]/(p, 9:(9)) = Ok /(p: 9i(9))-

We will show that that the condition on the prime number p implies that it is an
isomorphism.

Surjectivity: Let @ € Ok and put k = (O : Z[V]). Since p 1 k there are z,y € Z
such that zk +yp = 1. Then a = zka + ypa € Z[9] + pOk and so ¢(zka) =
rka =a.

Injectivity: Z[9]/(p, g:(¥)) is a field, so it suffices to show that (1) # 0. Suppose
¥(1) = 0. Then 1 € pOk + ¢;(9)Ok and so k € pkOk + ¢;($)kOx C
pZ[Y] + g;(9)Z[9], which means that & = 0 in the field Z[J]/(p, g;(9)). This
field is of characteristic p. Contradiction with p 1t k.
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3 Rings of Integers of Number Fields

So the ideals (p, g;(9)) of Ok are maximal ideals of residue class degree deg(g;).
Next we show that they are different. Let i # j. Then g, and g; are different
irreducible polynomials in F,[X]. So there are u,v € Z[X] such that @-g;+v-g,; = 1,
that is ug; +vg; € 1+ pZ[X]. It follows that w()g; () + v(0)g;(¥) € 1 + pZ[I].
Therefore, 1 € (p, g:(9), 9;(9)) = (p, 9:(9)) + (p, g:(9¥)). So the maximal ideals are
comaximal and in particular they are different. Finally we have

(P, 91(9)" -+ (P, 9+(9)* C (P, g1 (D) -+~ g-(9)") = (p, f(I)) = (p)

and since the residue class degree of (p, g;(¢)) equals deg(g;), it follows from The-
orem 3.4 that we have equality here. O

A straightforward application of this theorem yields the splitting of primes in a
quadratic number field. Let m be a squarefree integer # 1. We will compute the
factorization of prime numbers in the quadratic number field K = Q(y/m). The
ring of integers of K is Z[w,y,]. Since the index of Z[/m] in Z]w,,] equals 1 or 2, we
can apply Theorem 3.6 for the factorization of prime numbers using the primitive
element /m if the prime number is odd or if the index equals 1.

Let p be a prime number. The polynomial X2 — m is the minimal polynomial of
vm over Q. The polynomial X? —m € F,[X] is reducible if and only if m is a
square in F,,. We have the following cases for the factorization of (p) in Z{w,,| for
p odd or m = 2,3 (mod 4):
L. ptm and m € F} is not a square. Then (p) is a maximal ideal. In this case
p remains prime.

2. pfmand m € F* is a square, say m = n> with n € Z. Then (p) = pp’, where
p=(p,n—+/m)and p’ = (p,n++/m). In this case p splits completely, unless
p=2and m = 2 (mod4), in which case p ramifies.

3. p|m. Then (p) = p?, where p = (p,/m). In this case p ramifies.

For the factorization of (2) in Q(y/m) with m = 1 (mod 4) we can use the minimal
polynomial of % This is the polynomial f(X) = X2 — X + 1_Tm. There are
two cases:

1. m =1 (mod8). Then f(X) = X? — X € F5[X] and so (2) = pp’, where

p=(2 1+ﬁ) and p’ = (2, l_ﬁ). In this case 2 splits completely.

2. m =5 (mod8). Then f(X) = X?+X+1 € F5[X], an irreducible polynomial.

In this case 2 remains prime.

Now we have a complete picture of the splitting behavior of primes in a quadratic
number field:

3.7 Theorem. Let m € Z be squarefree # 1 and let p be an odd prime. The
factorization of the ideal (p) in the ring of integers of the quadratic number field

Q(y/m) 1is as follows.
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3.1 Prime ideals

a) If ptm and ™ is not a square in ¥y, then p remains prime.

b) If ptm and m = n? (mod p), then p splits completely:

(p) = (p,n — vm)(p,n + /m).
c) If p|m, then p ramifies: (p) = (p,/m)*.
For the prime 2 we have:
d) If m =2 (mod4), then 2 ramifies: (2) = (2, /m)2.
e) If m =3 (mod4), then 2 ramifies: (2) = (2,1 + /m)>.

f) If m =1 (mod8), then 2 splits completely: (2) = (2, 17\/E)(27 1+‘/E).

g) If m =5 (mod8), then 2 remains prime. O

Note that this computation shows that a prime p ramifies in a quadratic number
field if and only if it is a divisor of the discriminant of that field. In section 3.4
we will see that this holds for any number field (Theorem 3.30). The splitting of
an odd prime number p in a quadratic number field Q(y/m) is determined by the
residue class of m modulo p. The following terminology is often used.

3.8 Definition. Let p be a prime number and a € Z such that p { a. If @ is a square
in F, the integer a is called a quadratic residue modulo p. Otherwise it is called a
quadratic nonresidue modulo p.

By squaring 1 up to % and taking the residues of these outcomes by division by p
one obtains all quadratic residues modulo p. Figure 3.1 is a graphic representation
of the quadratic residues modulo the first twelve odd prime numbers. Because —1 is
a quadratic residue modulo a prime = 1 (mod 4), for these primes the distribution
of the quadratic residues is symmetric with respect to the midpoint of the interval.
For primes = 3 (mod4) quadratic residues map to quadratic nonresidues under
reflection in the midpoint.

Problem. For the first twelve odd primes p the following holds

e for primes p = 1 (mod 4) there are more quadratic residues in the first (and
fourth) quarter of the interval [0, p] than in the second (and third) quarter;

e for primes p = 3 (mod4) there are more quadratic residues in the first half of
the interval [0, p] than in the second half.

Is this generally true for all odd primes?

This is solved in chapter 9 using complex analytic methods. It is generally true
and surprisingly that the difference in these numbers depends on the orders of the

ideal class groups of Q(1/—p).
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quadratic residues modulo 3:

® quadratic residue
O quadratic nonresidue

0 1

quadratic residues modulo 5:

© Q)

@ O O @
0 1 2 3 4
quadratic residues modulo 7:
@ @ O @ O O
0 1 2 3 4 5 6
quadratic residues modulo 11:
@ O @ @ @ O O @ O
0 1 2 3 4 5 6 8 9 10

quadratic residues modulo 13:

@ O ® @ O O O O

0 1 2 3 4 5 6 7 8

quadratic residues modulo 17:

0 1 2 3 4 5 6 7 8 9 10

quadratic residues modulo 23:

@ @ O @
11

9 10

—0—00000 0000000600000 0000—

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

quadratic residues modulo 29:

5 16 17 18 19 20 21 22

—0-0-00000000000600e6000e00e0e0e6e00e—

o 1 2 3 4 5 6 7 8 9

quadratic residues modulo 31:

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

—0-0-0-00-000 0000000008060 000e000e00—

0O 1 2 3 4 5 6 7 8 9

quadratic residues modulo 37:

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

B 2% 4 20,0, (0, o o o 20,0.0, 10,0,0,0, 10,0,0, o o . 10, 10,0, . .0,

01 2 3 4 5

quadratic residues modulo 41:

6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0000000000000 00e00e00800000000000e00000000e-

0123 45 6 7 8 910111213141516171819202122232425262728293031323334353637383940

Figure 3.1: Quadratic residues modulo the first twelve odd primes
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3.9 Example. Z[V/5] is the ring of integers of Q(+/5), see exercise 8 of chapter 1.
We factorize 2, 3, 5 and 7 in Q(+/5) by factorizing X> — 5 over Fy, F3, F5 and Fy;
respectively, where a = /5:
(2) = (2,14 a)(2,1 4+ a+ a?),
(3) = (3,14 )3,
(5) = (5,0)°,

(7) is a prime ideal.

So: 7 remains prime, 3 and 5 totally ramify and 2 splits as a product of two prime
ideals having different residue class degrees.

3.10 Example. Let o € R satisfy o® = a + 1. The ring of integers of Q(«) is Z[a]
(exercise 6 of chapter 1). Over Fa3 we have

X3 - X —-1=(X-10)*X -3).
So the factorization of 23 in Q(«) is
(23) = (23,a — 10)%(23,a — 3).
Note that the two prime ideals above 23 have different ramification indices.

These examples show that residue class degrees and ramification indices of prime
ideals above the same prime number may differ. For Galois extensions this does
not happen. It is a consequence of:

3.11 Theorem. Let K : Q be a Galois extension and p a prime number. Then
Gal(K : Q) operates transitively on the set of prime ideals of K above p.

PrROOF. Put G = Gal(K : Q) and X = {p € Max(Ok) | pNQ = pZ}. Suppose
the action of G on X is not transitive: there are py,ps € X such that o(p1) # po
for all 0 € G. Then by the Chinese Remainder Theorem there is an o« € O such
that

o= 0 modulo po,
|1 modulo o(p;) for all o € G.

So 07 () = 1 (modpy) for all o € G. It follows that N§ (a) = [[,cqo(a) ¢
p1NQ = pZ. But since a € pa, we have Nf (a) = a - [Ioz10(0) € p2NQ = pZ.
Contradiction. O

3.12 Corollary. Let K : Q be a Galois extension, p a prime number and p1,ps €
Max(Og) above p. Then e(p1) = e(p2) and f(p1) = f(p2).

PROOF. There is a 0 € Gal(K : Q) such that o(p1) = p2. This automorphism o
induces an automorphism of O, which in turn induces an isomorphism Ox /p; —
Ok /p2. Hence f(p1) = f(p2). For the ramification indices we have

e(p1) = vp, (POK) = Vo(p,) (0 (pOK)) = vp, (POK ) = e(p2). O
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3.13 Terminology and notation. Let K : Q be a Galois extension and p a prime
number. The number e(p), where p is any prime ideal of Ok above p, is called the

ramification index of p in K and is denoted by eZ(,K). Similarly we have the residue

class degree fz(,K) of pin K.

For K : Q a Galois extension and p a prime number the formula in Theorem 3.4
simplifies to n = ref, where e is the ramification index of p in K, f the residue
class degree of p in K and r the number of prime ideals of Og above p.

Let’s compute the splitting behavior of a prime p in a cyclotomic field Q(¢,). The
minimum polynomial of (,,, over Q is the m-th cyclotomic polynomial

en(X)= I X-0= JI x-¢.
¢en(C) 0<k<m
o(¢)=m ged(k,m)=1

Since Z[(] is the ring of integers, the splitting of p can be computed by factorizing
the m-th cyclotomic polynomial over F,,. First we consider the case p { m.

3.14 Proposition. Let m € N* and p a prime number with ptm. Then p does not
ramify in Q((n) and the residue class degree of p in Q((n) is equal to the order of
D in the group (Z/m)*.

PROOF. Let f be the order of p € (Z/m)*. For p € Max(Z[(y]) above p, the
extension Z[(y]/p : F, is the m-th cyclotomic extension of F,. It is a Galois
extension and its Galois group is generated by the Frobenius automorphism z — P,
This automorphism is of order f. So the polynomial ®,, € F,[X] is a product of
w(m)/f irreducible polynomials, each of degree f. It follows that pZ[(,] is a
product of ¢(m)/f prime ideals of residue class degree f. O

For the general case we will use the following lemma.
3.15 Lemma. Let m,n € N* and p a prime number. Then
(i) @pmn(X) [ @n(X™),

Dpn(X) ifpln,

(i) @, (X7) = {q)n(X)%n(X) if ptn.

PROOF.

(i) ®,n(X) is the minimal polynomial of (,,, and this root of unity is a zero of
D, (X™).

(ii) In both cases the right hand side divides the left hand side. For p | n this
follows from (i). For p { n use that ®,, and ®,, are different irreducible
monic polynomials which both divide ®,,(X?). Equality follows by comparing
degrees. O
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3.16 Theorem. Let m € N*, p a prime number, r = vy(m), m = p"my and
K =Q(¢n)- Then

eZE,K) =(p") and fZSK) = the order of p € (Z/mp)*.

PrOOF. The case r = 0 is dealt with in Proposition 3.14, so we assume that
r > 0. By Lemma 3.15

T

1 By (X))
(I)P"'mo (X) = q)pT*1m0 (Xp) - = (I)pmg (Xp ) - W.

Hence in F)[X]:

and so N N
D, (XP D, (X)P et
B(x) = P LT e,
(I)mo (Xp ) (bmo (X)p
The theorem follows from the splitting behavior of ®,, for the case p  m. O

3.2 The norm of an ideal

The rings of integers of number fields are lattices, and so are the nonzero ideals,
more precisely:

3.17 Lemma. Let K be a number field and a a nonzero ideal of Og. Then a is a
lattice in K and the residue class ring Ok /a is finite.

PROOF. Let a € a with a # 0. Then aOg is a lattice in K: if aq,...,a, is
an integral basis of K, then aa,...,aq, is a Z-basis of aO. The ideal a is
sandwiched between aOg and Og: aOg C a C Og. We can take a to be an
element of a N N*. Then, if n = [K : Q], the index of aOk in Ok is equal to a™.
The index of a in O is a divisor of this number. O

Since nonzero ideals are of finite index in the ring of integers, we can make the
following definition.

3.18 Definition. Let K be a number field and let a be a nonzero ideal of Og. The
number of elements of the residue class ring O /a is called the norm of the ideal
a. Notation: N(a) = #(Ok/a).

The norm is multiplicative in the following sense;

3.19 Proposition. Let K be a number field and a and b nonzero ideals of Ok.
Then N(ab) = N(a)N(b).
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ProoOF. This follows from Proposition 2.17 by induction on the number of prime
ideal factors in the factorization of a. O

Note that for a prime ideal p of Ok above p we have N(p) = #(Ox/p) = p’®.
Applying the above proposition to pOx = pit - - - pg" yields

pn _ N(p1)€1 . .N(pr)er _ p€1f1 . .p€7~fr _ p€1f1+"'+€rf'r'

Thus we have in this way another proof of Theorem 3.4, a proof that uses the
finiteness of residue class rings of rings of integers of number fields.

The norm of an element is related to the norm of the ideal it generates:

3.20 Proposition. Let K be a number field and o a nonzero element of O . Then
N(aOx) = INE (@),

PrROOF. Let (a1,...,q,) be an integral basis of K and M the matrix of the Q-
linear transformation x — «x with respect to the basis (aq,...,a,). Then by
definition Ng (o) = det(M). The matrix M is the transition matrix from the basis
(aar, ..., aap) to the basis (aq,...,a,). Then by Lemma 1.40

(Ok : aOk) = | det(M)| = [N§ ()] O

For Galois extensions K : Q we have:

3.21 Proposition. Let K : Q be a Galois extension and a a nonzero ideal of Ok .
Then

N(a)Ok = H o(a).

c€Gal(L:K)

Proor. It suffices to prove that N(p)Ox = [[, o(p) for prime ideals p. Let p be

a prime ideal of Ok above a prime number p. Put e = el(,K) and f = fIEK). Then

by Corollary 3.12
ef AV P 7
[Tew =TI a) =(II o) = 00x) = 'Ok =N)Ox,
o qlpOx qlpOK
where q varies over the prime ideals of O above p. O
In particular:

3.22 Corollary. Let K be a quadratic number field, a a nonzero ideal of Ok and
o its conjugate. Then [a/] = [a] 1.

ProOOF. By Proposition 3.21 aa’ = N(a)Og and so [a] - [a'] = 1. O
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3.3 The ideal class group of a number field

In this section it is shown that the ideal class group of the ring of integers of a
number field is finite.

The ring Ok of integers of a number field K is determined by the field K. Because
of this circumstance, objects related to Ok are often attributed to K instead of
Ok and as a consequence notations are adapted accordingly.

3.23 Terminology and notations. The ideal class group of the ring of integers of a
number field K is also called the ideal class group of K. Notation: C/(K). Similarly,
the groups of fractional ideals and of principal fractional ideals are denoted by I(K)
and P(K) respectively. Moreover, the monoid of nonzero ideals of Ok is denoted
by I (K).

The finiteness of the ideal class group of a number field is based on the following
proposition.

3.24 Proposition. Let K be a number field. Then there is a A € R such that for
every nonzero ideal a of Ok there is a nonzero a € a with [N§ (a)| < AN(a).

PrROOF. Let (ay,...,a,) be an integral basis of K and o7, ..., 0, the embeddings
of K in C and let m € N* be such that m™ < N(a) < (m + 1)". Consider the
following subset of Ok:

{ijaj ‘mj € Nand m; < m}

J=1

This set has (m + 1)™ elements. Since O /a has less elements, there must exist
two of these elements which are congruent modulo a. Their difference is an element
=31 mja; in a with [m;| <m. We have

So we can take

A =TI loulay) =

For a nonzero a € a we have a O aOk and since Ok is a Dedekind domain a | aOk.
By multiplicativity of the norm it follows that |[N§ ()] is a multiple of N(a). So
the A\ in the proposition can be taken to be in N* and, therefore, there is a least
such A. The ring Ok is a principal ideal domain if and only if this least A equals 1.
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3.25 Corollary. Let K and X\ be as in the proposition. Then every ideal class of
Ok contains a nonzero ideal b satisfying N(b) < \.

ProOOF. Let C be an ideal class of O and a € C~!. By Proposition 3.24 there
is a nonzero a € a such that |Ng(a)\ < AN(a). We have aOx = ab for an ideal
b € C. From |N6(a)| = N(a)N(b) follows that N(b) < \. O

3.26 Theorem. The ideal class group of a number field is finite.

PrOOF. Let K be a number field and A be as in Proposition 3.24. By Corol-
lary 3.25 the ideal classes of O are represented by ideals a with N(a) < A. Since
there are only finitely many prime numbers < A, the number of prime ideals p of
Ok with N(p) < A is finite as well. Ideals a with N(a) < X are products of these
prime ideals. It follows that there are only finitely many of such ideals. O

3.27 Example. For d € Z squarefree with d = 2,3 (mod 4) the ring of integers of
Q(V/d) is Z[/d]. An integral basis is (1,v/d). For this basis the number X in the
proof of Theorem 3.24 equals (14 |v/d|)2. For d = —5 we have A = (14/5)? < 11.
In Example 2.12 it is shown that Z[y/—5] is not a principal ideal domain. The ideal
p2 = (2,1 + +/—5) represents an ideal class of order 2 (Example 2.47). Ideals of
norm less than 11 are products of prime ideals of norm < 11 and these are above
prime numbers < 11. Since (2) = p2, the ideal ps is the only prime ideal of norm 2.
From (3) = psp4 follows that p3 and p4 are the prime ideals of norm 3. The ideal
ps = (v/—5) is the unique prime ideal of norm 5: we have (5) = pZ. The element
3+ /=5 has norm 14, so (3 4+ v/=5) = pap7 for some prime ideal p7 of norm 7. In
fact (7) = prph = (7,3 + V/=5)(7,3 — /=5). The ideals of Z[v/=5] of norm < 10
are: (1), pa, 3, P3, P3 = (2), p5 = (V=5), paps = (1 + v=5), paps = (1 — V=),
p7, Ph, PS = 2pa, p3, paps = (3) and pops. The ideal class group is generated
by the classes represented by the prime ideals among these. From pzp} = (3) it
follows that [p}] = [p3]~' and similarly for the other prime ideals. So the group is
generated by [p2], [p3] and [p7] ([ps] = 1). Since pops and popr are principal ideals
the group is generated by [p2] alone and by Example 2.47 it is a group of order
2. The algorithm in chapter 4 will simplify the computation considerably. Apart
from this, in chapter 5 we will see on general grounds that we could have taken
A = 2. Then po is the only prime ideal to consider.

3.4 Ramification

3.28 Definition. Let K be a number field. A p € Max(Og) with ramification
index e(p) > 1 is called ramified. We also say that in that case the prime p under
p ramifies in K.

In this section it is shown that for a given number field it are just the prime divisors
of its discriminant which ramify. We will use the following lemma.
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3.29 Lemma. Let K be a number field, p a prime number and ay,...,a, € Ok
such that (ag,...,0y) is an Fp-basis of Ok /pOk. Then p | disc(K) if and only if
p | disc(ag, ..., ap).

PrROOF. Clearly (aq,...,q,) is a Q-basis of K. Let (f1,...,05,) be an integral
basis of K. Then disc(a,...,a,) = det(T)? disc(K), where T is the transition
matrix from (31,...,8,) to (a1,...,a,). Since both (a7, ...,a,) and (B ..., B,)
are F,-bases of Ok /pOf, the transition matrix T is invertible. Hence det(T') # 0,
that is p 1 det(T). So p | disc(a, ..., a,) if and only if p | disc(K). O

3.30 Theorem. Let K be a number field and p a prime number. Then p ramifies
in K if and only if p | disc(K).

PRrROOF. Suppose that p does not ramify in K, say pOx = p1 -+ - p, with py,...,p,
the different maximal ideals of O above p. Put f; = f(p;) fori =1,...,r. Choose

for each i an [F,-basis (5,4, .. ,Bm) of Ok /pOk, where B;; € Ok for all ij. The
Chinese Remainder Theorem implies that there are a;; € Ok such that

o, — J Bis (modpy),
710 (mod py) for all k # .
Then
(0[11,...,alfl,agl,...,agh,... ...,arl,...,arfr)

is modulo pOg an F,-basis of Ok /pOk, and, therefore, also a Q-basis of K. By
Lemma 3.29 it suffices to prove that p t disc(aqi,..., ). For i # k we have
aijop € pOg, and so Trg(aijakl) € pOk. The matrix A = (Trg(aijakl)) has the
following shape:

Ay

A2 *

Ay

where the A; are the f; x f;-matrices (Trg(aijail)) and in the matrix outside these
square matrices along the diagonal all entries are in pZ. It suffices to prove that
ptdet(4;) fori=1,...,r, because det(A) = det(Ay)-det(As) - - - det(4,) (mod p).
Since the a1, ..., o, form modulo p; a basis of Ok /p;, we have in F):

Trg(aijozik) = Tr(Maijaik) = Tr(Mm>

So det(A4;) is the discriminant of the F-basis of Ok /p;. By Corollary 1.30 it follows

that det(A;) # 0, that is p { det(A4;).

61



3 Rings of Integers of Number Fields

For the converse suppose that p ramifies in K. Then there is a p € Max(Ok)
above p such that pOg = pa, where a is an ideal of O with p | a. Choose
an a € a\ pOg. Then o? € pOg. The ring O /pOf is an IF,-vector space of

dimension n = [K : Q]. The image @ of « in Ok /pOk is not 0, so there are
a1,...,0, € O such that (ay,...,@,) is a basis of the Fy-vector space Ok /pOk
and oy = a. The discriminant of (a1,...,a,) is the determinant of the matrix

(Trg (ovir;)). We show that the entries in the first row of this matrix are all
multiples of p. The 1j-entry equals Trg(aaj). Modulo p this is Tr(Mae;), the
trace of the IF)-linear transformation = — @a;x of Ok /pOf . Since (aw;)? € pOk,
the square of this linear transformation is the 0-map. It follows that Tr(Mgs;) = 0,

that is p | ’Iirg(aaj). Therefore, disc(a,...,a,) = det(Tr(a;0)) € pZ. O

3.31 Example. Let a satisfy a® = o+ 1. The discriminant of Q(«) is —23 and its
ring of integers is Z[a]. In Example 3.10 we saw that 23 ramifies in Q(«). Since
23 is the only prime divisor of the discriminant, it is the only ramifying prime.

3.32 Example. Let p be a prime number and » € N* and, moreover, r > 2 if
p = 2. The discriminant of the cyclotomic field Q({,~) is a divisor of a power of p.
(Lemma 1.48). We have for ideals in the ring of integers (p) = (1 — (,~)?®"). The
prime p totally ramifies in Q({,r). Since ¢(p”) > 1 the field is not Q, so p ramifies.
By Theorem 3.30 it is the only ramifying prime.

EXERCISES

1. Let R be a number ring. Show that nonzero prime ideals of R are maximal.

2. Let m € Z be squarefree and # 1. Prove that Z[\/m] is a Dedekind domain if and
only if m = 2,3 (mod 4).

3. Prove the following for ideals in Z[v/3]:

(33,7 —3V3) = (4 +3V3),
(13,74 5V3) = (4 + V3),
(1+V3) = (1-V3),
(4+V3) # (4—-V3).

4. Compute the norm of the following ideals of Z[v/7]:

V7), (8 + 3V7), (1+7), (3+V7),
Q2+V7), A+V7,3+V7), 1+VT)NEB+V7).
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10.

11.

12.

13.

14.

15.

Exercises

Let w = y/—14. Factorize the following ideals of Z[/—14] as a product of maximal
ideals:

(11 — w), (2 —w), (22 — 22w), (13 — 2w),

(1-w), (I3 -2w)(1-w), (1l-w,2-w), (11-w,1l—-w),
(13 -2w,1-w), (11—-w)N(1l—-w).

Compute all nonzero ideals a of Z[v/10] with N(a) < 17.

Prove that Z[ + +/—19] is a principal ideal domain.

Prove that Z[+/6] is a principal ideal domain. (It is even Euclidean.)
Prove that the ideal class group of Q(1/—6) is of order 2.

Show that the ring of integers of Q(y/m) is not a principal ideal domain for m
squarefree < 0, m Z 5 (mod 8) and m # —1, -2, —7.

We will show that the Mordell equation for & = —5 has no solutions. (See exercise 10
of chapter 1.) Let x,y € Z satisfy y* + 5 = 2>,
(i) Show that z is odd and that y is even.
(i) Prove that the ideal (y + +/—5) of Z[v/—5] is the cube of an ideal.
(iii) Show that y + /=5 is a cube in Z[\/=5] and this leads to a contradiction.
)

(iv) Also the identity (y? +4) = (z — 1)(2® + 2 4+ 1) for z,y € Z leads to a
contradiction. How? (Hint: show that 2 4+ + 1 = 3 (mod 4).)

Let K be a number field of degree n and let (aq,...,an) be a Q-basis of K with
Aty ...,0n € Og. Put d = disc(au, ..., a,). Show that a prime divisor p of d with
vp(d) odd ramifies in K.

(i) Show that for K = Q(v/—23) we can take A = 11 in Proposition 3.24.

(ii) Compute the prime ideal factorizations of the ideals (p) of Z[w_23] for the
prime numbers p < 11.

(iii) Compute the prime ideal factorization of the ideals (w—23) and (1 + w_23) of
Z[w_23].

(iv) Compute the ideal class group of Q(v/—23).
Let a € R satisfy o® = a 4+ 2. The ring Z[a] is the ring of integers of Q(«a)
(exercise 6(ii) of chapter 1).
(i) Compute all prime ideals p of Z[a] of norm < 10.
(i)
(iii) Show that the nonzero ideals of Z[a] of norm < 10 are principal.
(iv)
Let K be a number field of degree n and suppose that p is a prime number less

than n which splits completely in K. Show that there is no a € Ok such that
O = Z[a].

What is the number of nonzero ideals a of Z[a] of norm < 107

v) Which prime numbers ramify in Q(«)? Compute their factorization in Z[a].
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16.

17.

18.

19.

20.

21.
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Let K be the unique cubic subfield of Q((s1). Prove that there is no a € Ok such
that Ox = Z[a].
(i) Show that the ideals (2), (3) and (7) of Z[(s] are prime.
(ii) Show that 5 totally ramifies in Z[(5] and that the prime ideal of Z[(s] above
5 is principal.
(iii) Show that 11 splits completely in Z[(5] and that (2 + (5) is a prime ideal of
Z[(5] above 11.

(iv) Show that 1+ (s, 14 C5 + ¢2 and 14 G5 + ¢Z + ¢& are units of Z[C5).

Let o € C be an algebraic integer with minimal polynomial f € Z[X]. Let p be a
prime number with p { disc(f). Show that p { (Ok : Z[a]).

Let o € C be an algebraic integer with minimal polynomial f € Z[X]. Let k € Z
and p a prime number such that p | f(k) and p*> { f(k). Prove that the ideal
(p,a — k) of Ok is a prime ideal of norm p.

Let p be a prime number. Let’s call a polynomial
f=X"4+a X" "+ Fan1X +an € Z[X]
an Eisenstein p-polynomial if p | ai,...,a, and p* { an. Let K be a number field

of degree n.
(i) Suppose that p totally ramifies in K, say (p) = p" in Ok. Let a € p\ p°.
Show that the minimal polynomial of o over Q is an Eisenstein p-polynomial.
(if) Let K = Q(a) with o € Ok. Suppose that the minimal polynomial of o over
Q is an Eisenstein p-polynomial. Prove that p totally ramifies in K.

(iii) Suppose that p totally ramifies in K. Prove that there is an a € Ok such
that pt (Ok : Z[a]).

Let p be a prime number, r a positive integer and ¥ = (pr —|—Cp?1. Show that p totally
ramifies in Q(9). Show that the unique prime ideal of Z[J] above p is principal.



4 Quadratic Number Fields

Fractional ideals of quadratic number fields are lattices of rank 2. They are equiv-
alent to lattices having 1 as a first basis element. Such fractional ideals are deter-
mined by the second basis element. Thus equivalence of ideals is translated into
equivalence in the set of these second elements. This is the basis for algorithms
for ideal class groups of quadratic number fields. In the imaginary case the action
of SLy(Z) on the upper half of the complex plane is used, whereas in the real case
use is made of continued fractions. Continued fractions are also used to show the
existence of a fundamental unit for real quadratic number fields. Moreover, they
provide an easy computation of the fundamental unit (section 4.8).

In the last section the 2-rank of the ideal class group is determined. Especially
in the real case this is—though not difficult—quite elaborate because of the many
case distinctions that have to be made. Later, when the main theorems of class
field theory are available, it will be an easy application (Application 15.68).

Throughout this chapter m is a squarefree integer # 1.

The discriminant of the quadratic number field Q(y/m)) is denoted by D,, (so
D, = mif m =1 (mod4) and D,, = 4m otherwise). In the first section it is
shown that the splitting behavior of prime numbers in Q(y/m) is determined by
their residue class modulo |D,,|. It is an application of the well-known Quadratic
Reciprocity Law.

4.1 The Quadratic Reciprocity Law

An interesting question is
Which primes remain prime in a given quadratic number field?

In the previous chapter we saw that an odd prime p remains prime in Q(y/m) if
and only if 7 is not a square in F),. So the question

In which quadratic number fields does a given prime remain prime?

is relatively easy: omly a finite number of cases need to be considered. At first
sight the first question is difficult. However, the Quadratic Reciprocity Law makes
it accessible. The notation introduced in the following definition will be used in its
formulation.
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4.1 Definition. Let p be an odd prime and a € Z. We define:

0 ifp]la,
a
<> =<1 if pta and a is quadratic residue modulo p,
—1 if pta and a is a quadratic nonresidue modulo p.

<a> is called a Legendre symbol.
p

For a fixed odd prime p the Legendre symbol can be seen as a map
a
Z—{0,1,-1},a — ()
p

a
and since () depends only on the residue class of a modulo p, it determines a
p

map
F, — {0,1,—-1}, @ <a>
P

The group F}, is cyclic of even order, so the squares in this group form a subgroup

of index 2. The image of the group homomorphism Fy — F, @+ a’T s {1,-1}
and the unique subgroup of index 2 is its kernel. From this follows:

4.2 Proposition (Euler’s criterion). Let a € Z and p an odd prime. Then

(a) = a7 (modp). O

p

Fasy consequences of this criterion are:

b b
4.3 Corollary. (a) = (a) <> for all odd primes p and all a,b € Z. O
p b/ \p
-1 .
4.4 Corollary. Let p be an odd prime number. Then () = (—1)T1. O
p

The first proofs of the Quadratic Reciprocity Law were given by Gauf. Here we
give a proof of the Quadratic Reciprocity Law using finite fields as described in [22].
Another proof, using the theory of splitting of primes in abelian number fields, will

2
be given in chapter 7. First we compute the Legendre symbol ()
p

2 pz—
4.5 Proposition. Let p be an odd prime. Then () =(-1)"=s :
p
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PROOF. Let L be the splitting field of X® — 1 over F,,. Then L = F,(¢), where ¢
is a primitive 8-th root of unity. The element n = ¢ + (~! € L satisfies

P =+ =C+ 2=+ D +2=2.

So 2 is a square in I, if and only if € F,, and this in turn is equivalent to n* = 7.
From n? = (P + (P it follows easily that n? = n if and only if p = +1 (mod8). O

2
The sign of (—1) B depends only on p modulo 8. We could also write

2\ J1  ifp=17(mod8),

p)  |-1 ifp=3,5(mod8).
Prime numbers are positive by definition. Another choice for a system of repre-
sentatives of the irreducible integers modulo association is obtained by requiring
the odd ones to be congruent to 1 modulo 4. For p an odd prime, p* is the prime
associated to p which is congruent to 1 modulo 4. This notation is used in the

proof of the Quadratic Reciprocity Law below.

n—1

4.6 Notation. For odd n € Z we write n* = (—1) =z n.

4.7 Theorem (Quadratic Reciprocity Law). Let p and q be different odd primes.

Then o
(-

PROOF. Let L be the splitting field of f = X? —1 € F,[X] over F,. Then
L =TF,(¢), where ( is a primitive ¢g-th root of unity. The discriminant of f is easily
computed:

g—1 q—1
dise(f) = (=) [[ /¢ = (=0 [[a¢" ' = (-0)"F g = "¢ ' €F.
k=0

k=0

The Galois group Galg, (f) of the polynomial f is the group of permutations of

the set {1,¢,...,¢% '} induced by the automorphisms in Gal(L : F,). The group

Gal(L : Fp) is generated by the automorphism given by ¢ + ¢?. So Galg, (f) is the

cyclic group glenerated by the permutation o: ¢/ + (77 of {1,(,..., (971}, Ttis a
g

product of 4= disjoint cycles of length n, where n is the order of p in F;. We have

(q) =1 <= disc(f) is a square modulo p
p

<= Galp, (f) consists of even permutations

<= 0 is an even permutation

-1 -1
<= g iseven <= n a—- = (p) =
n 2 q
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So we have

and since

1 q

() () () - ()

the Quadratic Reciprocity Law follows. O

4.8 Application. Corollary 4.4 and Proposition 4.5 are called the Subsidiary Laws
for Quadratic Reciprocity. The Quadratic Reciprocity Law and its Subsidiary Laws
enable us to compute Legendre symbols; for example

)=

Since in the computation numbers have to be factorized, for large numbers this is
an obstacle. See, however, the end of this section, especially Application 4.15.

4.9 Examples. For odd primes p we know that p remains prime in a quadratic

number field Q(v/m) if and only if (Z) = —1. So Corollary 4.4 implies

p remains prime in Q(¢) <= p =3 (mod 4)
and by Proposition 4.5 we have
p remains prime in Q(v2) <= p = 3,5 (mod8)

and
p remains prime in Q(v—2) <= p=5,7 (mod8).

()=o)

p remains prime in Q(v3) <= p=3,7 (mod12)

follows that

and
p remains prime in Q(v/—3) <= p =2 (mod 3).

For the quadratic number fields K in the examples we see that there is an N € N*
such that the splitting behavior in K of a prime only depends on its residue class
modulo N. This is a consequence of the Quadratic Reciprocity Law and we will
see that this holds for quadratic number fields in general. The following lemma
will be used:
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4.10 Lemma. Letn € Z with n # 0. Then n has a unique factorization
ki ki
n — upl PR pr ,
where p1,...,p, are different odd primes, ki, ..., k. € N* and u € {£2F|k € N} .

PRrROOF. This is just the unique factorization in the principal ideal domain Z with

another choice for the irreducible elements. O

4.11 Proposition. For each odd prime p the Legendre symbol <m> only depends
p

on the residue class of p modulo |D,y,|.

PRrOOF. Use the factorization of the squarefree m as in the above lemma:

Then u € {1,—1,2,—2} and by quadratic reciprocity we have

<m> - <U> (pl) <p> - (U) (p) (p>
p p p p b/ \p br
From this the proposition follows. Note that u = 1 if m = 1 (mod4), u = £2 if

m =2 (mod4), and u = —1 if m = 3 (mod 4) O

So for the splitting behavior of primes in a given quadratic number field only a
finite number of cases have to be considered:

4.12 Corollary. For odd prime numbers p,q with p = q (mod |D,,|) we have
p remains prime in Q(v/m) <= q remains prime in Q(v/m). O

In chapter 9 another proof of this phenomenon will be given.

The proof of Proposition 4.11 suggests that the following definition could be useful.

4.13 Definition. Let b € N* with b odd and let a € Z. We define:

() -1m()"

This symbol is called the Jacobi symbol.

What makes this symbol interesting is the following theorem, which is a general-
ization of the Quadratic Reciprocity Law and its Subsidiary Laws. The proof is
straightforward when using the following congruences:

=TT+ =1 =T +u,G)E-1) =1+ 0,(b)(p — 1) (mod 4).

plb plb plb
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and

? =10+ -1)"" = [[(1+u0)0* - 1) =1+ u,(5)(p* 1) (mod 16).

plb p|b plb

4.14 Theorem.

(i) Let b € N* be odd and a1,as € Z such that a3 = az (modb).
Then <C;)1) = <C;2)

(ii) Let b € N* be odd. Then (bl) =(-1)=.

(iii) Let b € N* be odd. Then (Z) =(-1)"=s

(iv) Let a,b € N* be odd such that ged(a,b) = 1.

Then (Z) (Z) = (-1)F ", O

4.15 Application. Jacobi symbols can be computed without factorizing numbers.
As a result the computation is as fast as the well known Euclidean algorithm for
the computation of the greatest common divisor. Lets verify whether 1741 is a
square modulo the prime 3299:

(so30) = (1) = (i) = (57n) () = (i) =~ (5
(- (@) (5)--()--(D-- ()
()@@ -

So 1741 is not a square modulo 3299.

4.2 Equivalence of quadratic numbers

A fractional ideal of the quadratic number field Q(y/m) is a lattice Zvy; + Zrys of
Q(y/m). The fractional ideal is equivalent to Z + ZZ2. Our first concern is: for

which v € Q(yv/m)\Q is Z+Z~ a fractional ideal of Q(y/m)? The answer is simple.
We use the following terminology:
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4.16 Definition. A v € Cis called a quadratic number if it is a zero of an irreducible
polynomial of degree 2 over Q. As is easily verified, a quadratic number is the zero
of a unique polynomial of the form aX? + bX + ¢ € Z[X], where a > 0 and
ged(a,b,c) = 1. The integer b*> — 4ac is called the discriminant of the quadratic
number . Notation: disc(7y).

4.17 Lemma. Lety € Q(/m)\Q be a zero of the polynomial aX?*+bX +c € Z[X],
where a > 0 and ged(a,b,¢) = 1. Then

(i) disc(y) = disc(ay) = disc(1, ay), the last disc standing for the discriminant
of a Q-basis of Q(/m), and

(i) (Za + Zay)(Za + Zav') = a(Z + Zary), where the product is the product of
lattices.

(i) Za + Zay is an ideal of Zw.y,] if and only if Z + Zay = Z]wy,).
PRroor.

(i) The polynomial g = X? + bX + ac is the minimal polynomial of a7y over Q.
We have disc(y) = b? — 4ac = disc(ary) = disc(g) = disc(1, av).

(ii) A straightforward computation:

(Za + Zav)(Za + Za') = a(Za + Zay + Zav' + Zavyy')
= a(Za+Zb+ Zc + Zavy) = a(Z + Zay).

(iii) If Za + Zary is an ideal, then by (ii) Z 4 Za~y is an ideal as well and since it
contains 1, it equals Z[w,,]. Conversely, if Z + Zay = Z|wy,], then Za + Zay
is an ideal: v, (ay)? = —bay — ca € Za + Zary. O

4.18 Theorem. Let v € Q(v/m)\ Q. Then Z + Z~ is a fractional ideal of Zlwy,] if
and only if disc(y) = D,

PROOF. Let 7 be a zero of aX? + bX + ¢ € Z[X] with a > 0 and ged(a, b, c) = 1.
Equivalent are the following:

Z + Zry is a fractional ideal.
Za + Zary is an ideal.

7+ Zwy, = 7 + Zavy. (Lemma 4.17(iii))

disc(1, wpm) = disc(1, av).

Dy, = disc(y). (Lemma 4.17(1))
O
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4 Quadratic Number Fields

4.19 Definition. Let z € C\ Q and A = (2}) € GLy(Z) (that is A € My(Z) and

det(A) = +1). We define
az+b

cz+d

4.20 Proposition. (A, z) — Az is an action of the group GLa(Z) on the set C\ Q.
PrOOF. Clearly Iz = z. Let A= (¢}) and let B = (2 ). Then

z+
AB2 = (° b\ pzta _ avyi b a(pz+q) +b(rz+5)
c d)rz+s 24 g c(pz+q)+d(rz + s)

rz+s
(ap + br)z + (ag + bs)

= = (AB)z. O
(ecp+dr)z + (cqg+ ds) (AB)z

4.21 Definition. Numbers 21,22 € C\ Q are called equivalent if there is an A €
GL2(Z) such that zo = Az;. Notation: z; >~ z5. (So numbers are equivalent if they
are in the same orbit under the action of GLa(Z).)

4.22 Proposition. Let 71,72 € C\ Q. Then

V1 > ve <= there is a § € C* such that Z + Zrys = Z3 + Z31 .

PROOF.
=: Suppose y1 ~ 72, say 72 = (2 4) 1 with (2%) € GLy(Z). Then

ayy +0
~ L +d) + Zays +b) = Z+ Ty,
pro— (1 +d) + Z(ay: +b) M

L+Zys=7+7

where the last equality follows from ad — bc = £1.
<: Suppose there is a § € C* with Z + Z~, = ZS + Z7,. Then there is an

A € GL3(Z) such that
2\ _ 4 (B
(3)-(7)

CaBn b8 anm+b
2 cfyr+dB ey +d

Put A= (2%). Then

Ay O

So for fractional ideals in a quadratic number field we have:

4.23 Corollary. Let v and v2 be elements of Q(v/m) \ Q with disc(y1) = disc(7ys).
Then
Z+Z71NZ+Z’}/2<:>’)/12’}/2 O
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4.3 Equivalence of lattices in C

Equivalent quadratic numbers have equal discriminants:

4.24 Proposition. Let 1,72 € Q(v/m) \ Q such that v1 ~ 2. Then disc(y1) =

disc(vyz2).-

PROOF. The group GLy(Z) is generated by the matrices (§1), (¢ ') and (' 9)
(exercise 6). So it remains to verify that disc(vy;) = disc(y; 4 1) = disc(—y; ') =
disc(—v1) and this is straightforward. O

4.3 Equivalence of lattices in C

In the imaginary quadratic case the field is (embedded as) a subfield of C. Thus
lattices in imaginary quadratic number fields are lattices in the 2-dimensional real
vector space C.

4.25 Definition. Let A and I" be lattices in the real vector space C. Then A and
I" are called equivalent if there is an o € C such that aA =T.

A lattice in the real vector space C is equivalent to a lattice Z + Z~ with () > 0:
a lattice Zay + Zas is equivalent to Z + Z52 = Z + LZ-22.

The group SLy(Z) acts on the upper half plane H = {z € C| J(z) > 0 }:

ab az+b
SLy(Z)x H—H, ((2Y),2)— o d
From .
det A-3(z
x _
I(Az) = PEwER (4.1)

where A = (‘c’ g), indeed it follows that Az € H if z € H and A € SLy(Z). By
Proposition 4.22 and formula 4.1 we have:

4.26 Proposition. Let v1,v2 € H. Then the lattices Z+ Zry1 and 7.+ Zrys in C are
equivalent if and only if there is an A € SLa(Z) with vo = Avy;. O

4.27 Notation. A domain G in the upper half plane H is defined as follows:
G={z€C|S(2) >0, -2 <R() <L |2 >1, |z >1if R(z) <0}

See Figure 4.1.

This domain G is a fundamental domain for the action of SLy(Z) on H:

4.28 Theorem. G is a system of representatives of H/~.
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4 Quadratic Number Fields

43/‘;\ 1+G3

/1

Figure 4.1: A fundamental domain for the action of SL2(Z) on H

—1\ 1 0
2

N[ =

PrROOF. Let z € H. First we prove that there is an A € SLy(Z) such that Az € G.
For A= (2}Y) we have

S(2)

J(Az) = ——.
3(42) lez + d|?

Because ¢, d € Z, the number of pairs (¢, d) with |cz 4 d| less than a given number
is finite. From this it follows that there is an A € SLy(Z) with $(Az) maximal.
For T = (} }) we have

S(TAz) =S(Az+ 1) = $(A42).
Now let n € Z be such that

—3 <R(T"Az) < 3.

Then (7™ Az) is maximal as well. It follows that |T" Az| > 1, since otherwise the
imaginary part of 7T%Az (= ((1) ’01 ) T™Az) would be greater than the imaginary
part of T"Az. If R(T™Az) < 0 and [T"Az| = 1, then take ({ ') 7™ Az. Hence

for each z € H there is an A € SLy(Z) with Az € G.

Now suppose z1,z2 € G with 21 ~ 2o, say z0 = Az; with A = (‘Z g). We may

assume that I(z2) > $(z1), that is |cz; +d| < 1. Since z; € G this is only possible
if |e| < 1:if |¢| > 2, then

1S(cz1 +d)| = |e| - |S(z1)| > 2 3V3 > 1.

Forc=0: A= (}?) (if necessary replace A by —A) and so zo = z;+b. Comparison
of the real parts yields b = 0, that is z5 = z;.

For ¢ = 1: from |z; 4+ d| < 1 follows that there are only two possibilities left:
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4.4 Algorithm for the ideal class group of an imaginary quadratic number field

1. 21 =w-+1landd = —1. Thenbz—l—aandzzzwzl—f—w—f—a.
Soa =0 and z5 = 21.

2. |z1]=1and d = 0. Then b = —1 and 23 = a — Zz7. It follows that —z7 =1
and ¢ = 0 (and then z3 = i = 21), or =21 = (3 and a = 1 (and then
22:1+<3:,21).

For ¢ = —1: replacement of A by —A brings us to the case ¢ = 1.

So for each z € H there is a unique w € G with w ~ z. O

4.4 Algorithm for the ideal class group of an
imaginary quadratic number field

In this section m is negative. Fractional ideals of an imaginary quadratic number
field are lattices in C and they are congruent modulo the subgroup of principal
fractional ideals if and only if they are equivalent as lattices in C.

4.29 Proposition. Let G, = {v € GNQ(y/m) | disc(y) = Dy, }. Then the map
Gm — C(Q(v/m)), ~ > class of Z+ Zy
is a bijection.

PROOF. Suppose v1,7v € Gy, If Z + Zyy ~ Z + Zrys, then by Proposition 4.22
Y1 =~ 2. Because 71,72 € G, we have by Theorem 4.28 3 = 5. So the map is
injective.

Now let v € Q(y/m) with disc(y) = Dy,. Then to prove that there is a 79 € Gy,
with Z + Z~y ~ Z + Z~. By Theorem 4.28 there is a 79 € G with 79 ~ 7. By
Proposition 4.24 we have disc(vp) = disc(y) = D, and so v € G N Q(v/m).
Finally by Proposition 4.22: Z + Z~y ~ Z + Z. O

So the fractional ideals Z + Z~ with v € G,, form a system of representatives of
the fractional ideals modulo the principal fractional ideals. The condition v € G,,
is easily translated into conditions on a triple (a, b, c) € Z3:

4.30 Definition.

Vi = {(a,b,c) €Z% | a > 0,b* —4ac=D,,, —a<b<a,c>a,c>aifb>0}.

By definition of the discriminant of a quadratic number the map

—b++Dp,

Vin = Gm, (a,b,c) — %a

is a bijection.
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4 Quadratic Number Fields
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Figure 4.2: Computation of a system of representatives of C/(Q(v/—222))

4.31 Corollary. The map

—b+ /Dy,
(a,b,¢) — class of Za + Z%

from V,,, to CL(Q(y/m)) is a bijection.
Again it follows that C£(Q(y/m)) is finite: let (a,b,c) € Vi, then

4&2 < 4ac = b2 — D, < Cl2 - Dy,

and so
3a2 < —-D,,
that is
< Pm
a —_m
- 3
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4.4 Algorithm for the ideal class group of an imaginary quadratic number field
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Figure 4.3: Computation of a system of representatives of C/(Q(1/—491])

There are only finitely many such a. For each a there are finitely many b with
—a < b < a, and for given a and b there is at most one ¢ with b? — 4ac = D,,.

Since an ideal Za + Zfb% YD has norm a, for the A in Proposition 3.24 we can

take: b /%J. That is slightly better than | 2v/= D], the value that will follow
from estimates obtained in chapter 5 for number fields in general: Theorem 5.17,
see also Examples 5.12.

4.32 Example. m = —222. Then D,, = 4m = —888 and —2= = 296. So
a < |V296] = 17. A system of representatives of the ideal class group is the set of
the following ideals (where w = /—222):

7+ Zw 72 + Zw 73 + Zw 76 + Zw
ZT+7Z(83+w) ZT+Z(-34w) ZI1+ZB+w) Z11+4+7Z(-3+w)
Z13+Z(5+w) ZI3+Z(-5+w) ZI4+Z(4+w) Z14+7Z(—4+w)

See Figure 4.2. By Corollary 3.22 inversion in the ideal class group is induced by
(a,b,c) = (a,—b,c), which in the diagram corresponds to the reflection in b = 0.
The classes of order < 2 are represented by the ideals

7+ 2w, 72+ 7w, Z3+7Zw and 76+ Zw.
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4 Quadratic Number Fields

So the ideal class group is an abelian group of order 12 and its 2-rank is 2: its
structure is Cg x Cs.

4.33 Example. m = —491. Then D,, = m = —491 and a < {./%J = 12. From

b2 — dac = D,, follows that b is odd. A system of representatives of the ideal class

group is formed by the ideals (with w = 291 v27491):

7+ Zw 73 + Zw 23+ Z(—1+4w)
Z5+7Z(1+w) Z5+Z(—2+w) Z9+Z(3+w)
729+ Z(—4+w) ZI1+Z(4+w) Z11+ Z(—5+ w)

See Figure 4.3. The ideal class group is of order 9. The square of the class of
an ideal of norm 3 is the class of one of the ideals of norm 9, which is not the
inverse class of the ideal of norm 3. So the class of an ideal of norm 3 is of order
9. Therefore, the ideal class group is cyclic.

4.34 The product in {v € Q(v/m) | disc(y) = Dy, }. Suppose y1,72 € Q(v/m)
with disc(y1) = disc(y2) = D, i.e. Z + Zyy and Z + Zs are fractional ideals of

Zlwm) . How to determine 3 such that
(Z+7Z)(Z+ Zryo) ~Z+ Zrys ?
Let the quadratic numbers +; and -2 correspond to the triples (ay,b1,c¢1) and

(az,ba, c2). We have 7; = =% *“ﬁ and Z + Zy; ~ Za; + 2= Pm +\/7 The lattice
Za; + Z=245Pm s an ideal of Z[wm} with norm a;. So

b1+r)( —b2+2\/W)

(Zal "/ as +

is an ideal with norm ajas. As a lattice this ideal is spanned by

—asby + asv/D,, —aibs + al\/m —7b1b2—2i_Dm + 71)1—5&)2 \/m

a1az, 9 ) 9 ) 9
Let d = ged(az, aq, b1+b2) and let x,y, z € Z be such that
b1 +b
ras +yai + 2z 1;— 2 _d.

Then the lattice is
—zashy — yaiby — z% + dv/D,,
2

where @ € Z. The norm is ajas, so ad = ajas. So <3 corresponds to the triple
(ag, bg, 03) with

Za + 7.

aaz zasb + yaibs + Z%

2= d

az =
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4.5 Continued fractions

4.35 Computation of the representative in G. Suppose v € Q(v/m) with
disc(y) = Dy, and () > 0. How to find o € G with yg ~~?

Consider the mapping 7 + —% +n, where n € Z such that —% < %(—%
If  corresponds to (a, b, ¢), then I(y) = Y52 and S(f%Jrn) = %(f% = ¥=Dm,
We may assume that —2 < R(y) < 1. If y ¢ G, then a > ¢, or a = c and b > 0.

If a > ¢, then S(p(y)) = Y= > ¥Pm If g = cand b > 0, then ¢(y) € G. If

2c 2a
(an, bn, c,) corresponds to ¢™(a), then a,+1 = ¢,. There has to be an n such that

©™(y) € G, because otherwise we would have a strictly descending sequence in N:

a>c=ay>C =0y >Cy=as---

So we have an algorithm for finding .

The existence of a y9 € G with vy =~ « follows from Theorem 4.28. For imaginary
quadratic numbers it also follows from the above algorithm.

4.36 Example. We multiply in Example 4.32 the classes of
Z6 + Zw and Z14 + Z(—4 + w).

We have: a7 = 6, by = 0, ap = 14 and bo = 8. Then d = ged(6,14,4) = 2.
Take x = 0, y = 1 and z = —1. Then@z%zﬂand%z%z%&

Yo _ —1234+/—223 . 3+v—222 . 21 R )
3= 21 = 21 = T 3y/—222 11 :

represented by the ideal Z11 + Z(—3 + w).

The product is

4.5 Continued fractions

This section contains the fundamentals of continued fractions. The main result is

the unique representation of irrational real numbers by infinite continued fractions
(Theorem 4.52).

4.37 Definition. Define rational functions

(X1, xn) € Q(z1,...,2p)

for n € N* inductively by:

(z1) =71
(01, 22) = a1 + —
1,T2) = X1 o
(1, Tnga) = (X1, oy Tny (Tpg1, Tnga)) (for all n € N).

The function (z1,...,z,) is called the continued fraction of length n.
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4 Quadratic Number Fields

The field Q(z1,...,z,) of rational functions is the field of fractions of both the
polynomial rings Q[z1,...,z,] and Z[z1,...,2,]. The continued fractions can be
written as ordinary fractions:

Z1
1 T1T + 1
(T1,20) =21 + — = ———
T2 T2
(21,7 m}—x n 1 _ T1X2T3 + X1 + T3
D2 ! JSQ—O—i Toxs + 1 '
We will define polynomials py,(21,...,2Zn), gn(z1,. .., 2s) € Z[z1,...,2,] and will
prove that they can be taken as numerator and denominator of (x1,...,x,).

4.38 Definition. Define for n > —1 polynomials p,(x1,...,2n),qn(z1,...,2,) €
Z[z1,...,z,) inductively by

P—-1= 07 qd—1 = 17
Po = 17 and qdo = 07
Dn = TpPn—1 + P2 foralln>1 Gn = TnQn-1+qn_o foralln>1.

Here p,, is shorthand for p,(z1,...,z,). Analogously for g¢,.
4.39 Lemma. ¢, (z1,...,%n) = pn-1(z2,...,2y,) for alln > 0.

PRrROOF. The terms of the sequences (p,)n>—1 and (g,)n>—1 are determined in
the same way by the two preceding terms, but the ‘initial values’ differ. The lemma
follows from gy = 0 and ¢; = 1. O

_ pn(xla s 73371)

4.40 Theorem. (z1,...,x,) =
N
=T

for all n € N*.

ProoF. By induction on n. Clearly %
step: for n > 0 we have

1 and % =1z + %2 The induction

Pn+1(T1y...,T X 1y, Lnt2
(1o Tn2) = (@1, Bt By ) = LT 0T (Tnths Pnt2)
Qn—&-l(xla”-axna<xn+1axn+2>)

(xn—i-l + ﬁiz)pn +pn—1 _ Pn+1 + ﬁpn . Pn+2
(anrl + ﬁ“)Qn + dn—1 dn+1 + L1

Tn+42

qn B qn+2

4.41 Theorem. |7 Prtt| — (=1)™ for allmn > —1.
dn Qn+1
Proor. By induction on n. For n = —1 we have
P-1 Po 0 1 -1
= =-1=(-1)"".
’(I—l 9 ‘1 0‘ (=1)
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4.5 Continued fractions

Furthermore, for all n > —1:

Pnt1 Pn+2| _ |Pn+1 Tnt2Pn+1 T Pn| _ [Pnt1l Pn| _ _ |Pn Pn+l O
Gnt1  Gn+2 Qn+1  Tpt2dn+1 + Gn dn+1  Gn Gn  Gna1|’
(—1)ntt .
4.42 Lemma. (x1,...,%Tp41) — {(T1,...,&n) = T for all n € N*,
_qyn+1
PROOF. (xl,...,xn+1>—(xl,...,xn>:p"—“—p—":( Lyl O

dn+1 dn dndn+1
4.43 Proposition. p, = [[,_,(zk,...,zs) for all n € N*.

PrROOF. By induction on n. For n = 1 it is clear: p1 = x; = (x1). If p, =
[Th i {xk,...,x,) for some n € N*, then by Lemma 4.39 and the induction hy-
pothesis

Pn+1 = <131a e 75Cn+1>q7t+1 = <x17- .. 71'n+1>pn(1'27~ . -al’n-&-l)
n+1 n+1
= (X1, oy Tpt1) H(xk,~--;$n+1> = H<$k>---,$n+1>~ O
k=2 k=1

Rational functions in n variables over Q can be interpreted as functions on R™ de-
fined outside the zero set of their denominator. The continued fraction (z1, ..., z,)
determines in particular a function

RxR?x . xR =R, (a1,...,a,) = (a1,...,a,),

because g, (a1,as,...,a,) >0 (and so # 0) for ag,...,a, > 0.

4.44 Proposition. Let r € Q. Then there are ai,...,a, with a1 € 7Z and
ag, . ..,an € N* such that r = {(a1,...,a,). The length n of this continued fraction
can chosen to be of a given parity.

PRrROOF. Assume r # 0. Write r = %7 met p € Z, ¢ € N*, ged(p, q) = 1. Euclid’s
algorithm applied to p and ¢ gives

. p 1

p=aiq+mr or: - =a]+ —
q

q T2

q = agry + 12 — =az+ —

T1 T1

1 T3

L =a3r2 + 713 — =az+ —

T2 T2
T'n—2

Tp—2 = ApTpn—1 + T = an

Tn—1

81



4 Quadratic Number Fields

with ¢ > ry >re > -+ > r, =0 and so: %:<a1,%>:--~:<a1,...,an). From

T

rnj > 1. We have a,, = (a, — 1,1). So also:

Trn_o > rp_1 follows a, =

r={a,...,ap_1,a, — 1,1). O

4.45 Lemma. Let aq,as,... be a sequence with a1 € Z and as,as,--- € N*. Then
limy,oolay, ..., an) exists.

Proor. From ¢,+1 = ant1qn + gn—1 follows that ¢,11 > ¢, for n > 2. By

_1\ynt+1 .
Lemma 4.39 {(a1,...,a,11) — {a1,...,a,) = %. These differences form a
sequence with alternately positive and negative terms with absolute values de-
scending monotone to 0 for n — oc. O
4.46 Definition. For a sequence ai,as,... with a; € Z and as,ao,--- € N* we

define the infinite continued fraction (a1, as,as,...) as follows:

<a1,a2,a3,...> = lim <a1,...,an).
n—oo

4.47 Lemma. <a1, as, .. > = <a1, <a2, ce >>

PRroOOF.
<a17a27 .. > = nlggo<ala ey an> = nlggo<ala <a27 s 7an>>
= (a1, lim {ag,...,a,)) = (a1, (az,...)). O
n—oo

4.48 Lemma. |{(a1,a9,...)] =as.

Proor. We have (as,...) = ay + —— > as > 1. So (ag,...) > 1. Therefore,

(ag,...)

L<(L1,(LQ,...>J = Lal—i—ﬁj = aj. O
4.49 Definition. A transformation ¢ of R\ Q is defined by:

4.50 Lemma. cp((al,ag,...» = <a2,a3,...>.

PrROOF. ¢((a1,az,...)) = L = —— = (a,as,...). O

~ (a1,a2,...)—a1 (az, )

4.51 Lemma. z = (|z], |¢(2)],..., ¢" Y2)],¢"(x)) for alln € N.

PrOOF. From p(z) = m follows = = (|x], ¢(x)), so:

z=(|z], o) = (|z], [o(@)], p*(@)) = - -- .

82



4.5 Continued fractions

4.52 Theorem. The following maps are inverses of each other:

sequences a1, Gz, as, . . .

with a1 € Z - R\Q
and as,as,--- € N* —
ai,a2,as, ... — <a15a2aa3a >
lz], ()], |p*(@)],... = =

PRrROOF. For each n we have |[¢"({(a1,...))] = [{@n+1,s---)] = ant1. On the other
hand

(lz); Le(@)], ) =2 = {lz], le(2),...) = (lz],..., [¢" 7 (2)], " (2))
= lim (lz),..., " @) = (L), L™ (@), 0" (2))

= lim (=1)"
n—=o0 qny1([z], ..., [ H@)], o™ (@) gn(lz], - . -, [e" N (2)])
=0. O

4.53 Definition. If z = (a1,as,...) with a; € Z and az, a3, -- € N*, the sequence
ai,as, ... is called the continued fraction expansion of x. If there is an n > 0 with
ag+n = ay for all k greater than some natural number, then the expansion is called
repeating. The least n for which this holds is called the period of the repeating
continued fraction expansion. If there is an n > 0 with ag4, = ay for all k € N,
the expansion is called purely repeating. Notation:

(A1y ey Ol Tt Ty - 3 Ohgm) = (G, e oy Ay Qb Ty -« oy Aoty Bt 1y e - vy Qlopyy « -+ )

In the next section we show that it are exactly the real quadratic numbers which
have repeating continued fraction expansions.

4.54 Example.

Vi=2+(W7-2)

1 VT+2 V71
VT -2 3 3
3 _ﬁ+1_1+ﬁ—1
V-1 2 2
2 _ﬁ:1_1+ﬁ—2
VT-1 3 3

3
ﬁ72zﬁ+2:4+(ﬁ—2)

So V7 =(2,1,1,1,4).
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4 Quadratic Number Fields

4.6 Continued fraction expansions of real quadratic
numbers

4.55 Proposition. If z € R\ Q has a repeating continued fraction expansion, then
x 15 a quadratic number.

PrROOF. Clearly z is quadratic if and only if ¢(x) is. So we can assume that x

has a purely repeating continued fraction expansion. Set x = (a1,..-, a,). Then
. Drnt1(A1,. .., a0, ) _ xpn(a1, ... an) + pa_1(ai,..., an_l).
Gnt1(at, ... an, )  zgp(ar,...,an) + gn_1(ay,...,an-1)
This yields a quadratic equation for z. O
4.56 Proposition. Let z € R\ Q be quadratic. Then disc(¢(x)) = disc(x).
PRrOOF. This follows from disc(z + 1) = disc(z) and disc(1) = z. O

Let o € R\ Q be quadratic with disc(a) = D. Then a € Q(v/D). The embedding
of the real quadratic field in the algebra R x R restricts to an injective map

QWD)\Q = (R\Q) x (R\Q), v~ (1,7

From Proposition 4.56 follows that the transformation ¢ of R\ Q restricts to
a transformation of Q(v/D) \ Q and this transformation is compatible with the
transformation (z,y) — (z — |z|,y — |z]) — (ﬁ, ﬁ) of R\ Q) x (R\ Q):

|

o(y) — (e 5257) = (1) 0(7))

— (777/)

4.57 Theorem. Real quadratic numbers have repeating continued fraction erpan-
sL0nS.

PrROOF. Let v be a real quadratic number and put disc(y) = D. Then v €
Q(v/D). Consider the embedding Q(v/D) — R x R, a + (a, a’). The images of

v, ©(), ¥*(7), -
under the embedding in R\ Q x R\ Q are

(1,7, (1), (M), (©*(1),¢%()), -
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4.6 Continued fraction expansions of real quadratic numbers

(0,1)
(0,
(0,1) 0,1)
(o, (1,0) (0, (1,0)

Figure 4.4: The course of points in (R \ Q)? outside {(x,y) | |z] = |y} under ¢
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4 Quadratic Number Fields

If all elements of this sequence were in the domain { (z,y) | [z] = |y] }, then

o™ ()] = [¢"(7)"] foralln € N.

From

I i €
) e )
o)), " )] e (V)

it then follows by induction on n that ¢™(y') = ¢™(y)’. So the numbers v and ~’
would have equal continued fraction expansions. By Theorem 4.52 these numbers
are equal. However, v/ # 7. So there is an n such that |¢™(y)] # [¢"(7)']. As
indicated in Figure 4.4, we have for all k > n + 3

(
¥ s Lp(y
v =],

—

©"(y) >1 and —1<¢"(y) <.
Equivalently [¢®(y)] > 1 and |¢*(y)’| = —1. The domain
{(y)|z>1, -1<y<0}

contains only finitely many (y,7’) met disc(y) = D: suppose the triple (a,b,c)
corresponds to such a vy, then £ =y’ < 0 and there are only finitely many triples
(a,b,c) such that b>+a(—c) = D and ¢ < 0. It follows that for a quadratic number

7 the sequence |[v], [¢(Y)], [¢*(7)],... repeats. O

4.58 Definition. A real quadratic number v is called reduced if v > 1 and —1 <
~' < 0.

4.59 Theorem. A real quadratic number is reduced if and only if its continued
fraction expansion is purely repeating.

PROOF. First we show that the restriction of (z,y) — (-=— B m) to the do-
main { (z,y) |z > 1, —1 <y < 0} is injective.

Suppose (z1,y1) and (z2,y2) are in this domain, 21 — |21] = z2 — [22] and
y1 — |21] = y2 — |x2]. The inequalities —1 < yy,y2 < 0 imply |z1| = |z2]
and so also z1 = x5 and y; = yso.

Let T" be the set of reduced real quadratic numbers of discriminant D. The restric-
tion of ¢ to the finite set I' is injective. So it is a permutation of T'. O
4.60 Theorem. If v is a reduced real quadratic number, then so is —$. If v =

(@1, -, an), then —$ = (G, .., 01)-
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4.6 Continued fraction expansions of real quadratic numbers

PROOF. We have (where 7, = ¢"1(v)):

n 1 1 + (=)
Y=7=0a T — V! -
Y2 Vs !
1 1
Yo =ag + — and so —— =ax+ (—s)
3 3
1 1 1
YV = an + — —— = =ant+ (-7)- O
Ty 7 =T S et )
For square roots we have in particular:
4.61 Proposition. Let d € N* be not a square. Then
\/g - <a'17 ag, ... 7a'nva'n+1>
with ag, ..., an symmetric (aa = an,a3 = adp-1,...) and ap41 = 2a;.

Proor. Puta; = L\/(EJ Then V/d+a; is reduced and so it has a purely repeating
continued fraction expansion:

Vd+a, = (2a1,a9,...,ap)

and then
Vi = (a1,a2,---, ay, 203).
We have
1 1
(Vd+a1) N Vd—ay = {Gn, Gn-1, -, 62, 201).
Hence also
Va=a+ (@, an_1, 1 . a2,2a,) = (a1, 0n,an_1,-..,02,2a1).

The proposition follows from the uniqueness of continued fraction expansions. [

4.62 Definition. z,y € R\ Q are called tail equivalent if their continued fraction
expansions have equal tails, notation: = ~, y. So:

x ~,y <= there are k,n € N such that " (z) = ¢"(y).

4.63 Proposition. Let x € R\Q withz > 1 and let (§5) € GLo(Z) with ¢ > s > 0.
Then for y = (2 1) x there is an n € N* such that o™ (y) = x.
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4 Quadratic Number Fields

PRrROOF. Put % = (a1,...,ayn) with a1 € Z and as...,a, € N* such that
Pn Pna| _|p 7
dn 4dn-1 q S

(Use Proposition 4.44.) Then

B _ pn(al,-“,an)

q  qnlai,...,an)

and so p = p, and ¢ = ¢,,. From pg,,—1 —qpn—1 = ps—qr follows that q | p(gn—1—3)
and so q | ¢n—1 — s. However, |g,—1 — s| < ¢, s0 ¢g,—1 = s. And also p,—1 =r. We

then have

T _

<p r>l’ (pn pnl)xpn +pn ! :<a13-..,a/nax>.
q s dn  Qqn-1 qn® + Qn—1

So the numbers p,,, pn_1,qn, gn—1 are those from the continued fraction expansion
of (4 ) z. Furthermore, we have o™ ((§ %) z) = ¢"((a1,...,an,2)) = z. O

4.64 Theorem. For all x,y € R\ Q we have:

TRY = T~y Y.

PROOF.

«<: It suffices to show that x ~ ¢(x). We have

So z ~ ¢(x).

=: Now suppose that  ~ y. Say y = (} 3) z. For n € N we have

T = n  Pn—1 ().
(Qn dn—1 v ( )
So
a c Pn  Pn-1 n apn + Cdn GPp—1 + Cqn—1 n
= r)= x).
4 (b d) <Qn Qn1> v ( ) <bpn +dg, bpn—1 +dQn1> ¥ ( )
We have |z — 22 < L that is

q2’

5
Pn = qux+ —, where |§,] < 1.
dn
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4.7 Algorithm for the ideal class group of a real quadratic number field

a

We assume that bz + d > 0. (If necessary take (:b :g)). We have:
boy, .
bpn +dgn, = (bz + d)g, + — — 00 if n— oo.
dn

Take n so large that bp,_1 + dg,—1 > 0. Furthermore,

b,  boy—
bpn, + dgn, — (bpnfl + danl) = (bl‘ + d)(qn - anl) + ? - T; — 00
n n—

if n — oo. So there is an n with
bpn—l + dQn—l > 0

and, moreover, bp, + dg, > bpn,—1 + dg,—1. By Proposition 4.63 there is a
k € N such that ¢*(y) = ¢"(z). So  ~, y. O

4.7 Algorithm for the ideal class group of a real
guadratic number field

Let m > 1. In section 4.2 we constructed a bijection from C/(Q(y/m)) to

{7 € QUv/m)\Q | disc() = Dy }/~.

From section 4.6 it follows that this is mapped bijectively to Iy, /~, where

L = {7 € Q(vm)\Q | disc(y) = Dy, and y reduced }.

Since the restriction of ¢ to I'y, is a permutation, the ideal classes of Z[w,,] corre-
spond to orbits of this permutation.

Let v € I'y, correspond to the triple (a, b, ¢), then
0<b++vVDp <2a<—-b++vVDp,

and so 0 < —b < /D,,. It follows that 2a < 2v/D,,, that is a < v/D,,. From
—4ac = D,, — b*> < D,, follows that a < %\/m or —c < %\/m So in the class
or in the inverse class of an ideal a there is an ideal with norm < %m Since
Na’' = Na, each class contains such an ideal. This A for real quadratic number
fields is the same as the bound which will follow from Theorem 5.17, see also
Examples 5.12.

4.65 Example. We compute all reduced real quadratic numbers of discriminant
4-130. Let v € I'130 correspond to the triple triple (a, b, ¢). Then

. b+ V4130 —5+ /130

2a a
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4 Quadratic Number Fields

130 — (5)*:
129 1
126 T -2
121 p —3 *
114 2 4
105 -5 * *
94 —6
81 =7 *
66 -8 * *
49 -9 *
30 —-10 * | % * |k * *
9 —11] * * *
1 23456 7 8 910111213141516 171819 20 21 22

a ——

Figure 4.5: Computation of the reduced real quadratic numbers of discriminant
4-130

So 7 is reduced if

O<\/130+g<a<\/13 —g.

|V130] = 11,50 —11 < % < 0. The reduced real quadratic numbers of discriminant
4 -130 are (where w = v/130):

w41l w+7T

w11 — (orbit of length 3)
w+1l w —8 10 w —IE—) 10
(orbit of length 3)
3 10 3
w+10 w+10 w+d w+9 wH+b .
(orbit of length 5)
2 15 7 7 1
wrl0 w1l wrs wrd whs (orbit of length 5)
5 6 11 11 6 8

See Figure 4.5. So a system of representatives of I'139/~, consists of the numbers:

11
w11 = (22,2,2), wJ; -

1 S 1
R -, Al

<77 27 7>’

= (1,3,1,1,3).
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4.7 Algorithm for the ideal class group of a real quadratic number field

36 — b=l . b+l.

2 2 "
36 0 *
34 -1
24 2 -3 * | *
16 —4 * *
6 —5 x| *x|x*
1 23456 78 91011
a ——

Figure 4.6: Computation of the reduced real quadratic numbers of discriminant
145

The ideal class group is of order 4. The elements are represented by the ideals

Z+Zw+11) (=Z+ Zw),
73+ Zw+11) (=Z3+Z(w—1)) or Z10+Z(w+10) (=210 + Zw),
72+ Z(w+10) (=Z2+ Zw),
75+ Zw +10) (= 75 + Zw).

The map v +— 7' corresponds to inversion in C¢(Q(+/130)), and since —$ ~ v/, the

same holds for v — —2;. This last map is a permutation of order 2 of I',,,. This

permutation induces the trivial permutation of the set of four orbits. Hence every
element of C/(Q(+/130)) is its own inverse. So the group C/(Q(v/130)) is the Klein
fourgroup.

4.66 Example. We compute all reduced real quadratic numbers of discriminant
145. Let v € T'145 correspond to the triple (a, b, ¢). Then

N —b+ /145 _ —b+71+71+“2145
2a a '

So -y is reduced if

1++145 b-—1 1++/145 b+1
0< +2 + 5 <a< +2 - —;— .
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4 Quadratic Number Fields

[ 1245 | =6, s0 —6 < 251 < 0. The reduced real quadratic numbers of discrimi-

nant 145 are (where w = w45 = H_Qﬂ):
w w+5 i
G w+5 G (orbit of length 3)
3 5 4
w ;r w —; w ; (orbit of length 3)
4
w+3 wF wt5 (orbit of length 3)
w —81- 2w —2|- 2w ?)F 3 w+2 w+3
! . : 0 5 (orbit of length 5).

See Figure 4.6.

So a system of representatives of I'145/~, consists of the numbers:

5
w+5=(IL,T,1), e eax!
4 2 _
L =6, 2o ETTLY)

The ideal class group is of order 4. The elements are represented by the ideals

Z+Z(w+5) (=Z+Zw),

22+ Z(w+5) (=Z2+Z(w+1)),
72+ Z(w+4) (=72+ Zw),
Z4 + Z(w + 2).

The map ~y — —% leaves invariant only two of the four orbits of ¢ in I'145. So the
group C¢(Q(v/145)) is cyclic of order 4.

4.8 Algorithm for the fundamental unit of a real
qguadratic number field

4.67 Terminology. Let ¢ be a permutation of a finite set X, {z1,...,2,} an orbit
of ¢ of length n, ¢(x;) = x;41 for i = 1,...,n — 1 and ¢(z,) = x;. This is
summarized as: (z1,...,%,) is an orbit of the permutation . Note that for n > 1
this means that (zy - - x,) is an n-cycle in the decomposition of ¢ as a product of
disjoint cycles.

In this section the squarefree integer m is greater than 1. Orbits of the permutation
induced by ¢ on T, give rise to a nontrivial unit of Z[w,,]:

4.68 Theorem. Let (v1,...,v,) be an orbit of the permutation ¢ of T'y,. Then
T1Y2 Yo € Llwm]* and y1y2 -y > 1.
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4.8 Algorithm for the fundamental unit of a real quadratic number field

Proor. From ~; € T'), follows that v; > 1 and so 1 ---7v, > 1. We will prove
that 1 -+ v, € Z[wy,]* in two ways.

L Z+Zy =Z+Z(Im]+5;) = Z+2712, 50 ¥2(Z+7Zv,) = Z+Zry». Continuing
this way we obtain

VY Yn=1 V2L + L) =Z + Zm.

Proposition 1.12 implies that v1 -+ ¥y, (Y1 Yn) "L € Z]wp)-
2. Let v1 = (a1,...,an,71). Then

Qn+1(a17 <. 7an7’Yl) = pn(a27 ce 7a'n771)
n
= <H<ak7"'aan7fyl>> Y1 =71 Yn-
k=2
On the other hand g,+1(a1,...,0n,71) = o1 + gn—1 and v = %.

So v satisfies ¢n¥? + (¢n—1—Pn)y1 —Pn—1 = 0 and, therefore, v; corresponds

to a triple (a,b,c) with a | ¢,. We have Z + Zay, = Z]wp], 50 gny1 + Gn-1 €

Z|wm,], that is vy - - - vy, € Z[wy,]. Similarly, (,WL,) e (f,%,) € Z[wn] and so
1 n

L ¢ Zjwm]. O

VLY

Extra in the second proof is the identity gn+ti(ai,...,an,71) = 71 Yn, so the
continued fraction expansion of =i, one of the elements in the orbit, can be used
for the computation of 1 - - - yp.

As remarked in Example 1.24 the existence of a unit > 1 in a real quadratic
number field implies that the field has a fundamental unit. We now show that this
fundamental unit is the product of the elements in any of the orbits.

4.69 Theorem. Let (v1,...,7n) be an orbit of the permutation ¢ of Ty, and put
€ =71 Yn. Then for each v € Z|w,]* with v > 1 there exists an | € N* such
that v = €.

PROOF. Let v = v; correspond to the triple (a,b,c). Then Z + Zavy = Z|w,,| and
also Z+ Zavy' = Z|wy]. Put v =p—¢y'. Thenp,q€Z and a | q. From v —1' >0
and v — (—v') > 0 follows that p,¢q € N*. Put

A= (g piqu(rV()WQ ’

where N and Tr stand for Ng(ﬁ) and Trg(ﬁ) respectively. Then A € M2 (Z),
because N(v) = £, Tr(y) = —2 and a | ¢. Moreover,

a

det A = p* — pqTr(y) + ¢°N(v) = N(p — ¢7) = £1.
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4 Quadratic Number Fields

So A € GLy(Z). We have Ay = #% = ~, because

gy +p—qTr(y)) — py + aN() = ¢(v* — Tr(7)y + N(y)) = 0.

We will show that there is a £ € N* such that

A= (pk pkl)
% q-1)’
where the py etc. come from the continued fraction expansion of ~.
We have p — ¢Tr(y) = p— gy — gy = v + q(—7'). Since v/ = 1 and v > 1
we have || < 1; moreover, 0 < —y' < 1. So —1 < p — ¢qTr(y) < ¢+ 1, that is
0 <p—qTr(y) < gq. We distinguish three cases.

1. 0 < p—¢Tr(y) < q. Then Proposition 4.63 applies.

2. 0 =p—qTr(y). From ‘Iq) —ql:)f(v)

g=1and N(y) = —1. Theny = (¥}) vy and soy = (p,y) = (). In this case

=0 )

3. p—qTr(y) = ¢. From ’5 —aN()

=41, ¢ > 0 and N(v) < 0 Follows that

= =1 follows that ¢ = 1 and N(v) =

—(p£1). N(y) = —(p+1), then vy = p+ +1 and so v = p + v’il’
contradictory to —1 < 4’ < 0. SoN(y) = —(p— 1) and then v = p— 1-|—7+1 =
(p—1,1,7) = (p—1,1). In this case

_ (P2 P
2 Q)

So in each case there is a k € N* such that A = (2’“ zk_l). And so v = ¢*(v),
ko Qk—1

which implies n | k, say k = In. We have y = {ay,...,ax, ©* (7)) with a; =
[~ (7)] and so

e prva(an, .o ak )| PE— Yk 0
+1 = =
qk Qk+1(a17--~7ak»’7) qk Qk+1(a1a"'7ak77)
= 5/ . Qk+1(a1, cee 7ak7’7)-

Hence gg+1(a1,...,ax,v) = v (since v > 0) and, therefore, v = pi(aq, ..., ax,v) =
p(7) - pt(y) =€ m
4.70 Corollary. Let (y1,...,7vs) be an orbit of the permutation ¢ of T,,. Then
Y1 Yn @8 the fundamental unit of Q(y/m). O
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4.9 The 2-rank of the ideal class group

From & = 1 - -7, and N(v;) < 0 follows that N(¢) = (—1)". So either all orbits of
o are of even length or all are of odd length depending on the sign of N(g).

4.71 Examples. In Example 4.65 we had two orbits of length 3 and two of
length 5. Using the remark following the proof of Theorem 4.68: /130 + 11 =
(22,2,2,4/130 + 11), so

5(V130 + 11) + 2 = 57 + 5v/130.
is the fundamental unit of Q(+/130).
Similarly, the fundamental unit of Q(1/145) (Example 4.66) is

25 + 3v/145
2(2w145 +5) + 1 = Bwyas + 11 = —

For m squarefree and > 1 units of the real quadratic number field Q(v/m) corre-
spond to solutions of the Pell equation x*> — my? = +1 for m = 2,3 (mod4) and
to solutions of z® — my® = £4 for m = 1 (mod4). As indicated in exercise 3 of
chapter 1, the fundamental unit can be found in principle by looking for the least
y € N for which my® £ 1, respectively my? + 4, is a square, say z>. Then the
fundamental unit is = 4+ y/m, respectively & + £,/m. The algorithm described
in this section of course is by far better. It was already known in India in the
12th century. Bhascaracharya (1114-1185) found for example the least solution of
x? —109y? = 1, namely y = 15 140424 455100.

4.9 The 2-rank of the ideal class group

A finite abelian group is isomorphic to a product Cy, x Cqg, x --- x Cy, of cyclic
groups of orders di,...,d;. A classification of finite abelian groups is obtained by
requiring that d; 1 | d; for i = 1,...,k — 1 and d, # 1. The dy,...,d} are called
the group invariants of the finite abelian group. The 2-rank of a finite abelian
group is the number of even group invariants. If r is the 2-rank of a finite abelian
group A, then 2" is the order of the subgroup ;A of A of elements of order < 2
and also of the factor group A/A?. In this section a formula for the 2-rank of the
ideal class group of a quadratic number field is derived. We do this separately for
the imaginary and the real case.

Imaginary quadratic number fields

The transformation a — a’ of It (Q(y/m)) induces inversion in the ideal class group
and corresponds to the transformation

. 1
N ?f|7|>1and9?(v)<2,
v ifjyl=1or R(y) =

1
2
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€ T 6

/1

Figure 4.7: Location of the elements of G which correspond to elements of

Cl(Q(y/m)) of order 1 or 2

—1\ 1 0
2

N[ =

of GN{y € Q(v/m) | disc(y) = D,,}. The elements of order 1 or 2 in C/(Q(y/m))
correspond to the numbers « of discriminant D,, on the curve indicated in Fig-
ure 4.7. They correspond to triples (a,b,c) € V,,, with b =0 or a = ¢ or a = —b.

4.72 Example. In Example 4.32 the elements of order 1 of 2 are the classes repre-
sented by Z+ Zw (order 1), Z2+Zw, Z3+ Zw and Z6+Zw. So the group invariants
of the ideal class group are: 6,2.

4.73 Theorem.
rka (CU(Q(vm))) = 7(Dpn) — 1

where r(n) denotes the number of prime divisors of an n € Z.

PROOF. See Figure 4.8. Under the action of SLy(Z) .~ corresponds to

etc. So the number of elements v with disc(y) = D, on equals half of:

the number of elements on plus the number of elements on //r\

First we compute the number of (a, b, c) with a > 0, b*> — 4ac = D,, and b = 0.
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4.9 The 2-rank of the ideal class group

G3 AT 6

Figure 4.8: See the proof of Theorem 4.73

e For m =1 (mod4) we have D,, = m and in this case there are no a,c with
4ac = —m.

e For m = 2,3 (mod4) we have ac = —m and then the number equals the
number of divisors of —m, and this equals 2™ because m is squarefree.

Next the number of (a,b, c) with a > 0, b2 — 4ac = D,, and a = c.

e For m =1 (mod4): the number of (a,b) with @ > 0 and (2a—b)(2a+b) = —
This is the number of divisors of —m.

e For m = 2,3 (mod4): the number of (a, by) with a > 0 and (a—bg)(a+by) =
—m. (We took by = 2b.) This number is 2"™) if m is odd and 0 if m is even.

So, depending on m (mod 4), the number of elements of ,C¢(Q(y/m)) is in the last
column of the following scheme:

m0d4 ‘#Wlthb_o‘ hc:aH%xtotal
( 1) 2 m) 1
27”(m 0
2r(m 2r(m 2'r m)
It can be summarized to rke(C(Q(y/m))) = r( —1. O

So the group C¢(Q(y/m)) is of odd order (for m < 0) if and only if r(D,,) = 1.
This is the case if m = —1, m = =2 or m = —p (p a prime = 3 (mod4)). If p is
a prime = 7 (mod 8), then 2 splits completely in Q(v/—p), and for p > 7 the prime
ideal above 2 represent nontrivial elements of C/(Q(y/—p): they correspond to the
triples (2,1, ZE). So: if C¢(Q(y/m)) is trivial, then m = —1, m = -2, m = —7
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or m = —p, where p is a prime = 3 (mod 8). One easily verifies that C/(Q(y/m)) is
trivial for m = -3, m = —11, m = —19, m = —43, m = —67 and m = —163. In
1966 it was independently shown by A. Baker and H. Stark that there are no other
imaginary quadratic number fields with a trivial ideal class group.

Real quadratic number fields

The permutation v +— —% of T, corresponds to inversion in C/(Q(y/m)) and

induces a permutation of the set of orbits of ¢ in I'y,. If v = (a1,---;Gn), then
o) = (az, -, an, a1), —@(g), = (@1, Gn, .-, a3). Hence
_1
v v

®

1 1
© (_ ,> = ——, orin a diagram:
v

1

©(v) 20

The elements of ,C/(Q(y/m)) correspond to orbits in I',, of the action of ¢ which
under vy — —% map to themselves. In these orbits we have elements of the
following types:

Type A Type B
',7 Ve THep(v)
N(y) = -1 Tr(y) = 7]

In case an orbit consists of just one element, this element is both of type A and
of type B. In all other orbits there are exactly two elements of one of these types.
We distinguish three types of orbits which under ~ +— —% map to themselves:
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4.9 The 2-rank of the ideal class group

Type 1 Type 11 Type III

/ \ / \ / \
1 \ 1 \ 1 \
| [ \ | | |

one of type A two of type A none of type A
one of type B none of type B two of type B

An orbit of length 1 is of type I. We will count the number of elements of type A
and the number of type B. The sum of these numbers equals twice the number of
orbits of type I, II or III. Before doing so we first take a look at the role of the
fundamental unit.

The element w,, — |w!,| — 1 is of type B and is in the orbit corresponding to the
trivial element of C¢(Q(y/m)). Put

F?rL:{’}/EFm|’)/2wm—|_w,:n_J—l}
This is the set of elements in the ‘trivial’ orbit. So we have:
N(e) = —1 <= TY contains an element of type A.

On the other hand we have:

4.74 Lemma. There is an element of type A if and only if m (and then also D,,)
is a sum of two squares.

PROOF. Suppose v is of type A, and suppose 7 corresponds to the triple (a, b, ¢).
Then N(y) = ¢ = —1, and so D,,, = b? + (2a)?. Conversely, suppose D,, equals

a

b% + (2a)? with b < 0 and a > 0. Then take y = 7b+27 B O
4.75 Theorem. If N(¢) = —1, then m = py...p, or m = 2py...p., where
D1, - .., 0 are different primes =1 (mod4).

PROOF. Suppose N(g) = —1. Then I' contains an element of type A and so m
is a sum of two squares. Because m is squarefree, the theorem follows. O

So the norm of the fundamental unit equals —1 if and only if the trivial orbit
contains an element of type A. It may happen that an element of type A exists, but
outside the trivial orbit. For example 34 is the sum of two squares and so there is
an element of type A in I's4. The fundamental unit is of norm 1, so the element of
type A is not in the trivial orbit. In this case the trivial orbit is of length 4 and is
of type III. There is another orbit and this one is of length 6 and of type II.
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4 Quadratic Number Fields

First we determine the number of elements of type A.

4.76 Definition. Let n € N*. We define F(n) as a fourth of the number of ways n
is the sum of two squares. More precisely:

B(n) =1 #({(z,y) € Z* | 2* + y* = n}).

4.77 Lemma. E(n) = #({a| a is an ideal of Z[i] with N(a) =n}).
PRrOOF.

B(n) =5 #{(z,y) €2 |2 +y* =n}) = ;- #({a € Z[i] | N(a) = n})
= #({a|ais an ideal of Z[i] with N(a) =n }). O

The splitting behavior of primes in Z[i] implies that for p a prime number and
r € N* we have

1 if p=2,

1 if p=3 (mod4) and r is even,

0 if p=3 (mod4) and r is odd,

r+1 ifp=1(mod4),

and F(n) = E(pv»(™) for n € N*.
pln

4.78 Proposition. Let m be the sum of two squares. Then the number of elements
of 'y of type A equals 27(M)~1,

PROOF.

#{v€Tn |N(y) = —1})

#({7 € Qvm)\Q | v > 1, disc(y) = D, N(7) = —1})
#({(a bc) €Z|a>0,b* —4ac= D,,,b<0and c=—a})
#({ (a,b) e N | (2a)®> +b° = Dy, })

For m =1 (mod 4) this number equals

=1 H BE(p) = L.2r(m) = or(m)-1

plm

and for m = 2 (mod 4)
E(m) = 2rm—1 O

For the computation of the number of elements v of type B we distinguish two
kinds of elements:
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4.9 The 2-rank of the ideal class group

Type B1: |v] is even, Type B2: |v] is odd.

4.79 Lemma. The number of elements of type B1 equals

0 if m =1 (mod4),
2r(m)=1ifm = 2,3 (mod 4).

PROOF. Let v be of type Bl and let it correspond to the triple (a, b, ¢). Then

7] =Tr(y) = —g-

It follows that 2a | b. From b? —4ac = D,, follows that 4a | D,,. For m = 1 (mod 4)
this is not possible. Now we assume that m = 2,3 (mod4). Then a|m. If
conversely a € N* is a divisor of m, then for

vm

a

o =

we have disc(a) = 4m. Every 7 corresponding to a triple (a, %, %) such that Tr(y) €
27 and v > ' equals n+ « for some n € N*. If we require that Tr(v) = |v], then v
is unique: it is || +«. Finally there is the condition v > 1. We have |v| =2 |a].
Hence:

1>1 4= |7/ >21 < |a] >3} <= [a]|>] & a>1 < m>d.

Because m is not a square, the number of divisors a of m with a? < m is half the
total number of divisors. So the number of elements of type Bl equals 2"(™~1 O

4.80 Lemma. The number of elements of type B2 equals

0 if m =2 (mod4),
2r(m)=1 ifm = 1,3 (mod 4).

PROOF. Let v be of type B2 and let it correspond to the triple (a, b, ¢). From

follows that a | b. We distinguish two cases.

First case: m = 1 (mod4). From b — 4ac = m follows that a | m. Conversely, if

a | m, then
a++/m
2a

101



4 Quadratic Number Fields

has discriminant m. Every v of discriminant m corresponding to a triple (a, *, *)
satisfying Tr(y) € Z and v > +' equals n 4+ « for some n € N*. If moreover,
Tr(y) = |v/], then v = |a] — 1 + a. So the number of elements « satisfying
these conditions equals the number of (positive) divisors of m, being 27(m) - The
condition v > 1 will be considered further on.

Second case: m = 2,3 (mod 4). From b? —4ac = 4m follows that b is even. Because

b : by2 a,. : a b : b a
2 is odd, a is even. So (5)* —2- §c = m with §,5 € Z. Since _ is odd, § and

% have the same parity. It follows that m = 2 (mod4) is not possible. Now we
assume that m = 3 (mod4). We have § | m. Conversely, suppose d | m. Put

a = 2d. The argument goes as in the case m =1 (mod4), now using

o dEVm

a
The number of elements v of discriminant 4m satisfying Tr(y) = |v] and v > +/

equals 27(™)

In both cases we have o =
So

v D
CL_|—27mand’y:Laj—l+oz, and so |y] = 2]a] — 1.
a
Y>1 <= |7]>1 < |a]>1 <= a>1 < D, >d.

For m =1 (mod 4) the number of elements of type B2 equals the number of divisors
a of m with m > a2, and for m = 3 (mod4) the number of even divisors d of m

with 4m > (2d)?, that is m > d?. In both cases this number is 27(™)~1, O
Summarizing,
m (mod4) | sum of 2 squares || type A | type Bl | type B2 % x total
1 yes 2’)“(71’7.)71 0 2r(m)71 2r(m)71
1 no 0 0 gr(m)=1 || r(m)=2
) yes 2r(m)71 2T(m)71 0 2r(m)71
2 no 0 gr(m)—1 0 2r(m)=2
3 no 0 2r(m)—1 2r(m)—1 2r(m)—1

So in particular:

4.81 Theorem. Let m be squarefree > 1. Then

ko (C(Q(vm))) = {T(Dm) —1 if m is the sum of two squares,

(D) —2 if m is not the sum of two squares.

4.82 Corollary. Let m > 1 be squarefree. Then #(CL(Q(y/m))) is odd if and only
if m is either a prime or a product of two primes Z 1 (mod4). O
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Exercises

It is unknown whether there are infinitely many m such that Z[w,,] is a principal
ideal domain.

For another, more advanced, computation of the 2-rank of the ideal class group see
exercises 8 and 9 of chapter 12. In chapter 15 this 2-rank will be computed using
class field theory. This computation is far less technical than the computation in
this section, thus showing the strength of class field theory (Example 15.30).

EXERCISES

mn

ged(m,n)?’

(i) Let p be a prime number which splits completely in both Q(y/m) and Q(y/n).
Show that p splits completely in Q(vk) as well.

(ii) Let p be a prime number which remains prime in both Q(y/m) and Q(y/n).
What is its splitting behavior in Q(v/k)?

(iii) Let p be a prime number which ramifies in both Q(y/m) and Q(y/n). Show,
by giving examples, what the splitting behavior of p in Q(\/E) could be.

1. Let m,n € Z be different, squarefree and # 1. Put k =

2. (i) Verify whether 255 is a quadratic residue modulo the prime number 1151.
(i) Is 41 a square in Z/(225) ?
(iii) What is the splitting behavior of the prime number 10007 in Q(+/7429) ?

3. For which prime numbers p is 5 a quadratic residue modulo p? And for which p is
7 a quadratic residue modulo p?

4. Describe the splitting behavior of prime numbers in Q(v/—15) and compute the
ideal class group of this field.

5. Let m € Z be squarefree # 1 and p a prime number which splits completely in
Q(yv/m). Let ¢ be a prime number satisfying ¢ = —p (mod |D,,|). Show that ¢
splits completely in Q(y/m) if m > 1 and that ¢ remains prime if m < 0.

6. Show that the group GL2(Z) is generated by the matrices (§1), (9 5') and (3 9).
Also show that the first two generate the subgroup SL2(Z) of matrices of determi-

nant 1. Use that Z is Euclidean and also the identity (¢ 3') (§1) (% 6) = (2 9).

7. In the exercises 9 and 13 of chapter 2 the ideal class groups of Q(1/—6) and Q(v/—23)
have been computed. Compute them now using the algorithm described in sec-
tion 4.4.

8. Compute, using the algorithm in section 4.4, the ideal class group of Q(v/—34),
giving for each ideal class a representative. Show that the group is cyclic.

9. Let m € Z be squarefree # 1. Prove that the quadratic number field Q(y/m) is a
subfield of the cyclotomic field Q({n), where N = |D,,]|.
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4 Quadratic Number Fields

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.
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Compute the elements of C/(Q(y/—185)).
(i) Determine the 2-rank of this group.
) Determine the group structure.
(iii) Determine the order of [p], where p is a prime ideal above 3.
) Compute the ideal class group of Q(v/—41). Show that this group is cyclic.
Which element is of order 27
(ii) Determine the prime ideal factorization of the ideals (2 —v/—41), (3 ++/—41),
(2 —v/—41,3 +v/—41) and (2 — v/—41) N (3 + v/—41) of Z[/—41].
(ili) Which elements of the ideal class group of Q(v/—41) are of order 4?
In Example 4.32 the ideal class group of Q(v/—222) has been computed.
(i) Determine the prime ideal factorization of the principal ideals (11 + v/—222)

and (3 4 v/—222).
(ii) Which of the classes in C/(Q(1/—222)) are squares in this group?

Let n € N*. Determine the continued fraction expansion of v/n? + 1.
Let m and n be natural numbers. Compute (n, m, 2n).

(i) Prove that pp(z1,...,2n) = pn(Tn, ..., x1).
(ii) Let x = {(a1,az2,.--,an), where (az,...,an—1) = (an—1,...,a2) and a, = 2a;.
Prove using (i) that #* € Q. Show that this also follows from Theorem 4.60.

Determine all reduced quadratic numbers with discriminant 20.

Show that the ring of integers of Q(\ﬁ ) is a principal ideal domain. Compute also
the narrow ideal class group of this field. (The narrow ideal class group of a real
quadratic number field K is the group I(K)/P*(K), where Pt (K) is the group of
principal fractional ideals generated by an a € K with N (a) > 0.)

(i) Compute the ideal class groups of the fields Q(v/79) and Q(+/111).

(ii) Compute the fundamental units of these fields.

(i) Compute C/(Q(1/58)).
(i

)
)
(iii) Compute the narrow ideal class groups of these fields. (See exercise 17.)
)
)

Let a be an ideal of Z[v/58] which is not a principal ideal. Show that there is
an « € a such that |[N§ (@) = 2 N(a).

(iii) Which primes do ramify in Q(v/58) 7 The ideal of Z[v/58] generated by such
a prime is the square of a prime ideal. Is this prime ideal principal?

(iv) Compute the fundamental unit of Q(+/58).



5 Geometric Methods

In chapter 1 we embedded a number field of degree n in a real n-dimensional vector
space R" x C?. For imaginary and real quadratic number fields we considered in the
chapters 1 and 4 the images in C, respectively R2, of their rings of integers. These
images are lattices in the 2-dimensional vector space. As was shown by Minkowski,
this approach leads to results, both computationally and theoretically, for number
fields in general.

The standard inner product on R” determines a metric on R". Together with
this metric R™ is the n-dimensional Euclidean space, here also denoted by R™.
The standard Lebesgue measure on this Euclidean space is denoted by vol. It is
a translation invariant metric (a Haar-measure) on R™. Lattices in subspaces of
R™ can be characterized as discrete subgroups of the additive metric group R™
(section 5.1). Minkowski theory (section 5.2) is about the existence of nonzero
lattice elements in a measurable subset of R". In a few occasions we will need to
compute vol(E) for some simple Lebesgue measurable subsets E.

In chapter 3 a bound A, depending on the number field, was found such that every
ideal class of that number field contains an ideal of norm less than A. In section 5.3,
as an application of Minkowski theory, a much sharper bound is obtained, the
Minkowski bound. Minkowski theory is also applied in section 5.4 in a proof of
Dirichlet’s theorem, a description of the structure of the group of units. The group
of units determines a positive real number, the regulator of the field. This number
will come up again in the chapters 9 and 13, where complex analytic methods will
be used. The regulator is defined in the last section.

5.1 Discrete subgroups of R"
5.1 Definition. A subgroup I' of the additive group R” is called discrete if the
standard topology of R™ induces the discrete topology on I'.

Later, in section 19.2 we will consider topological groups. Here the emphasis is on
the additive group R™ with its standard topology.

We will show that the discrete subgroups of R™ are lattices in linear subspaces of
R™.
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5.2 Definition and notation. Let A be lattice in R™. For a given Z-basis
(z1,...,2,) of A the subset

F:{Ztixi|O§ti<1fori:1,...,n}

i=1

of R™ is called a fundamental parallelotope or a mesh of the lattice A. From
Lemma 1.40 it follows easily that the volume of F' is independent of the choice of
the basis of A. We denote this volume by 6(A).

5.3 Proposition. Let I' be a subgroup of the additive group R™. Then the following
are equivalent:

a) T is discrete.
b) For all bounded subsets B of R™ the set BNT is finite.
c) I' is a lattice in an R-linear subspace of R™.

PROOF.

a)=b): Let B be a bounded set of R". Then its closure B is compact. Since I is
closed in R”, the subset B N T is both discrete and compact, which implies
that it is finite.

b)=-c): Lattices in subspaces of R™ have rank < n. Choose one in I' of maximal
rank. Say it is A = Zvy + -+ + Zvy,, where (v1,...,v,) is R-independent.
Then T' C Ruy + -+ 4+ Ruy,: for each v € T the collection (v,vy,...,0:)
is R-dependent by the maximality of A. We will show that I is a lattice
in Rv; 4+ -+- + Ruv,,. Let F be a mesh of A. Then every coset of A in T is
represented by an element of F'. Since F is bounded, the set ' F is finite. It
follows that T'/A is finite, say of order . Then rI' C A. Wehave A C T C %A.
Since I' is sandwiched between two lattices in the subspace Rvy + - - - + Ruyy,,
it is itself a lattice in that subspace.

c¢)=-a): Let I be a lattice in an m-dimensional subspace W of R™. Then I' = Zv; +
-+« + Zvyy,, where (v1,...,vy) is a basis of W. Extend (v1,...,v,) to a basis
(v1,...,v,) of R™. Then for each v € T’

B, ={v+tivr+--+tyu, | -1 <t;<lfori=1,...,n}

is an open neighborhood of v such that B, NT" = {v}. O
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5.2 Minkowski theory

5.2 Minkowski theory

5.4 Proposition (Minkowski). Let A be a lattice in R"™ and E o measurable subset
of R™ with vol(E) > §(A). Then there exist u,v € E such that u # v andu—v € A.

PROOF. Let F' be a mesh of A. Then R" is the disjoint union of all z + F with
x € A and so E is the disjoint union of all (z + F) N E with 2 € A and for the
volume we have:

vol(E Zvol ((x+F)NE) ZVOIFO —x + E)).
TEA zEA

Because vol(E) > vol(F'), the subsets F'N(—x+ E)) of F are not all disjoint of each
other, so there are z,y € A with z # y such that (FN(—z+E))N(FN(—y+E)) # 0.
Say w is an element of this intersection. Take v = x+w and v = y+z, then u,v € E,
uFvandu—v=xz—y€A. O

5.5 Definition. A subset E of R™ is called convez if for all x,y € F and all ¢ € [0, 1]
also tx+(1—t)y € E. The subset F is called symmetric if for all z € F also —z € E.

Crucial for this chapter is Minkowski’s Lattice Point Theorem:

5.6 Theorem (Minkowski). Let A be a lattice in R™ and let E be a conver,
symmetric, measurable subset of R™ such that

vol(E) > 2"5(A).

Then E contains a nonzero element of A. If, furthermore, E is compact then the
condition vol(E) > 2"5(A) suffices.

PROOF. Since vol(3E) = 5= vol(E) > §(A), it follows from Proposition 5.4 that
there are u,v € %E such that u # v and u — v € A. By symmetry —v € %E and

by convexity su+ 3(—v) € 3E. Sou—v € E and u—v € A\ {0}.

In case E is compact and vol(E) > 2"0(A): apply the above to (1 + -L)E for
m = 1,2,.... There is a nonzero z,, € (14 =)ENA for all m. The sequence
() is contained in 2N A, which by Prop031t10n 5.3 is a finite set. It follows that
there is an ¢ such that z; € (1 + )E for infinitely many m. For this ¢ we have
z; € E. O

5.3 The Minkowski bound

In this section K is a number field of degree n. The ring of integers Ok is a lattice
in the Q-vector space K (Corollary 1.39). In section 1.1 we embedded K into the
R-algebra R™ x C*, which is a real vector space of dimension n = r + 2s:

1: K =>R"xC°, aw (o1(a),...,o0(a), 11(),...,7s()),
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where 01, ...,0,: K — R are the real embeddings of K and 71,...,7s are (half of)
the complex embeddings of K. Via z — (Rz,32) we identify this embedding with
an embedding in R™:

t: K= RY aw(o1(a),...,o0(@), R(11(a)), S(m1 (), ..., R(7s()), S(7s())).

The image of O under ¢ is a lattice in R™ and we will denote this image by Ag.

5.7 Proposition. §(Ax) = 5-/| disc(K).

PrROOF. Let ag,...,a, be an integral basis of K. Then the lattice Ak is spanned
by t(ay),...,t(cay). The number 6(Ag) is equal to the absolute value of the deter-
minant of the n X n-matrix having as i-th row

0'1(012‘), e ,UT(OQ), %(Tl(ai)), (\\S(Tl(ai)), ey %(Ts(ai)), %(TS(O&Z‘))

The effect on the determinant of replacing columns

R(r1(a1)) S(r1(en))
: and :
R(r1(an)) S(r1(an))
by
T1 (041) Tl(al)
and :
71 (an) m

is a multiplication by (2¢)°. By Proposition 1.28 the square of the determinant of
the matrix thus obtained equals disc(K). O

For an ideal a # 0 the image A, := ¢(a) is a lattice in R™ and since (Ag : Aq) =
(Ok : a) = N(a) we have:

5.8 Corollary. Let a be a nonzero ideal of Og. Then
1
0(Ay) = 5\/ | disc(K)| - N(a). O

In section 3.3 it was shown that the ideal class group of a number field is finite. The
main ingredient of the proof is the existence of a A such that every nonzero ideal a
of Ok contains a nonzero element « such that [N (a)| < AN(a). For computations
it is worthwhile to have a small A\ with this property. We will apply Minkowski’s
Lattice Point Theorem.

5.9 Proposition. Let A be a compact, convex, symmetric, measurable subset of
R”™ x C* with vol(A) > 0. Suppose that

IN(a)| <1 foralla € A.
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Then every lattice A in R™ x C® contains an x # 0 such that

QTL
IN@)| < i)

(N is the norm on R" x C*® of Definition 1.20, which via the embedding ¢ is com-
patible with Ng on the field K .)

PrROOF. Apply Theorem 5.6 to E = tA, where t is determined by
vol(tA) = t" vol(A) = 2"§(A).

So take t =2 {/ Vf)gf\j‘). Then there is a nonzero x € tA N A. For this z we have

n T n 2”
IN(z)| = t"IN()| < t" =

- vol(A) o(8). =

This implies that for a nonzero ideal a of Ok there is a nonzero « in a such that

2n 2r+s

\Ng(angm [dise(K] N(@) = S VIdieB) - N@. - (5.1)

This means that we can take A = %\MdiSC(KH. For a small A\, we need, of
course, an A satisfying the conditions of Proposition 5.9 with vol(A) large.

5.10 Definition. For r, s € N, not both equal to 0, we define

Ars = { (X1, Tpy21,...,25) ER"XC? ’ |x1 |+ |y |+ 221+ -+ 2|2 < n}

The domain A, s satisfies the conditions for A in Proposition 5.9:

5.11 Lemma. A, is compact, convex, symmetric and measurable subset of R™.
Furthermore, [N(a)| <1 for all a € A, .

ProoF. A, ;s clearly is compact, convex and symmetric. It is also measurable:
what is more, we will compute vol(4, s) in Proposition 5.14. Let a € A, 5, say
a=(x1,...,%p,21,-..,25). Consider the numbers

lz1l, -5 |zsls |21, |Z2), - - -5 |28 |75 )

Their geometric mean is {/|N(a)| and their arithmetic mean is at most 1. Since
the geometric mean of nonnegative reals is less than or equal to the arithmetic
mean, we have for all a € A, ; the inequality {/|N(a)| <1, that is [N(a)] <1. O

5.12 Examples.

a) A1o ={z e R | |z] <1} and vol(A;1,0) = 2. So for the field Q we obtain
A =1, which is not surprising.
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b) Ap1 ={z€C||z| <1} and vol(Ap1) = 7. So for an imaginary quadratic
number field K we get A = 2/— disc(K).

¢) Asg = {(z1,22) | |z1|+ |z2| £ 2} and vol(Ag) = 8. Then A = 1/disc(K)
for real quadratic K. See Figure 1.7 on page 29.

5.13 Example. Using the algorithm given in chapter 4 one easily verifies that the
ideal class group of Q(y/m) is trivial for m = —43, —67, —163. This is also easily
shown using the bound A in example b) above. For example the bound for K =
Q(v/—43) is 21/43. Every ideal class contains an ideal b with N( ) < 2143 < 5.
The ideal (2) is the only prime ideal of norm < 5. So Ok = Z[3 + £/—43] is a
principal ideal domain.

The computation of vol(4, s) is done by standard techniques of calculus.
nn

5.14 Proposition. vol(4, ) = —

' '2T~(g) , where n = r + 2s.
n!

Proor. Put
Vis(t) =vol({ (z1,...,21,...) € R"XC® | |x1|+ -+ ]|z, |+ 2|21+ - -+ 2|25 <t}

Note that V. 4(t) = t"V,. s(1) and vol(A, ;) =V, s(n). We will show that

Vo) = 2:(3)"

n!
This will be done inductively. For this it suffices to show that
(i) Vip(l) =2and Vo1 =7,
(i) Vost1(1) =%+ Wl(zw) - Vo.5(1) for all s € N*,
(iil) Vig1,6(1) = ;557 - Vs (1) for all (r.s) € N2\ {(0,0)}.
Proofs of (i), (ii) and (iii):
(i) This is clear, see also the examples a) and b) in 5.12.

(i)

Vo,s41(1 //2 1V05 (1—2v/a? +y?)dzdy
z2+y2 <3
1

1
2 2
=/ Vos(1 = 2p)pdpdyp = 277/ (1—=2p)*pdp-Vo,s(1)
0 0 0
0
= 27r/1 u?s %(1 — u)(—%)du -Vo,s(1)

1
2s 2541 ) _T. ; )
| = v, )= - gy Vo)
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5.3 The Minkowski bound
(iii)

1 1
Vig1.s(1) = 2/ Vis(l —z)de = 2/ (1—2)" "2 dz -V, 4(1)
0 0

2
= V... O
r4+2s+1 s(1)

5.15 Corollary. Let A be a lattice in R" x C*. Then A contains an x # 0 such that

where n = r + 2s.

Proor. Apply Proposition 5.9 to A, s given in Definition 5.10, and use Proposi-
tion 5.14: there is an x # 0 in A such that

\N(z)|§m ( ):ﬁ' o

n | r42s s |
b = 2 (s - 2 (2

In particular inequality (5.1) becomes:

5.16 Corollary. Let a # 0 be an ideal of Ox. Then a contains an o # 0 such that

IN(a) g%(,) V[ dise(K)| - N(a O

Now we have much a better A than in the proof of Proposition 3.24, so Corol-
lary 3.25 now becomes:

5.17 Theorem. Ewvery ideal class of O contains a nonzero ideal b satisfying

N(b) < ﬂ(%) [ disc(K)]. 0

n’ﬂ

Lrdys
The number %(7) | disc(K)| is called the Minkowski bound for the number
77

field K.

5.18 Example. Let K = Q(4/2). Then Ok = Z[¥/2] (exercise 8 of chapter 1) and
disc(K) = —27-4. Every ideal class contains an ideal b with N(b) < £.2.3v/3 < 3.
The only prime ideal with norm < 3 is (4/2) and this is a principal ideal. So Z[/2]
is a principal ideal domain.
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5.19 Example. Let K = Q({5). Then Ok = Z[(5] and disc(K) = 5. Every ideal
class contains an ideal b with

15W£2

N
(b) < 272 18

So every ideal class contains the ideal (1). The ring Z[(5] is a principal ideal
domain.

5.20 Example. We will show that Z[(7] is a principal ideal domain. In every ideal
class there is an ideal b with

4 2 4 5. 72 2
N([’>—6e()\ﬁ—23,7\[ 2 57\ﬁ<7xﬁ

3 37 33 < 5.

The minimal polynomial ®7 of (7 has over Fy two irreducible factors of degree 3
and these correspond to prime ideals of Z[{7] of norm 8. Over F3 the polynomial
is irreducible. So there are no prime ideals of norm less than 5.

For primes p the class number h, of the cyclotomic field Q(¢p) equals 1 only for
p < 19. For p = 23 the class number is 3. Later, in chapter 7, we will see that the
class number h; of the subfield Q(¢, + ¢, ') is a divisor of h, (Theorem 7.72). The
quotient h, /h;r is usually denoted by h, and is called the relative class number.
The relative class number h, has been computed for p < 521, e.g. hyy, is equal to
the following product of three primes:

257 - 20738 946049 - 1022997 744563 911961 561298 698183 419037 149697.

The class number h; is hard to compute. Kummer computed h,, for p < 67 and for
these primes we have h;f = 1. Probably the smallest prime p with h; > 11is 163 (it
depends on the so-called generalized Riemann hypothesis): hfs, = 4. Kummer’s

results:
p h|lp h|p Ry |p he | p hp
23 3 [37 37 |43 211 |53 4889 61 41-1861
31 32|41 112 |47 5-139 |59 3-59-233 |67 6712739

Kummer solved Fermat’s Last Theorem for regular primes, primes p with p{ h,. It
has been shown, however, that there are infinitely many irregular primes, whereas it
is unknown whether the number of regular ones is infinite. Apparently, the primes
37, 59 and 67 are irregular. A well-known conjecture is Vandiver’s Conjecture:
pth;t for all primes p.

5.21 Example. Let K = Q(¥/5). Then Ok = Z[/5] (exercise 8 of chapter 1) and
disc(K) = —27 - 52. The Minkowski bound for this field is

4 — ——s
™
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5.3 The Minkowski bound

The factorizations of (2), (3), (5) and (7) have been computed in Example 3.9.
The only prime ideals of norm less than 8 are

(2,14+a), (2,1+a+a?), (3,1+a) and (5,a),

where o = /5. They are of norm 2, 4, 3 and 5 respectively. Clearly (5,a) = (o),
a principal ideal. From Nf(a —2) =5 —8 = —3 it follows that (3,14 a) =
(o —2). So (3,1 + «) is principal. From Ng(a +1) =5+ 1 = 6 follows that
(¢ 4+1) = (2,1 + @)(3,1+ «). Therefore, (2,1 + «) is also principal and since
(2) = (2,14 a)(2,1 + a + a?), the prime ideal of norm 4 is principal as well. So
Q(+/5) has class number 1.

5.22 Example. We will show that the field K = Q(+/7) has class number 3. We
have O = Z[\dﬁ] Put o = /7. The Minkowski bound is less than 11, so we
factorize the ideals (2), (3), (5) and (7):

(2) = (2,a+1)(2,0° +a+1),
(3) = (3,a—1)%

(5) = (5,a — 3)(5,a% + 3 + 2),
(7) = (7,).

The prime ideals of norm less then 11 are
(2,a+1), (2, +a+1), 3,a—1), (5,a—3) and (7,q).

Their norms are 2, 4, 3, 5 and 7 respectively. The ideal (7, ) is the principal ideal
generated by a. The identities

(2)=(2,a+1)(2,0a* +a+1) and (a—2)=(2,a+1)3,a—1)

imply that (2,a% + o + 1) and (3, — 1) represent the same ideal class, i.e. the
inverse of the class represented by (2, + 1). Since Ng (o + 2) = 15, we have

(a+2)=3,a—1)(5a—23).

So (5, — 3) is equivalent to (2, + 1). Hence, the ideal class group is generated
by the class of (2, +1). Its inverse is the class of (3, — 1) and since (3,a —1)3 is
principal, the ideal class group is either of order 1 or of order 3. We will show that
(2, + 1) is not principal. Suppose (2, «+ 1) is principal, then there is an element
of norm +2. By direct computation

Ng(az +ya+ za?) = 2% + Ty® +492° — 21ayz

and so
Ng(x +ya + za?) = 2° (mod 7).

However, there is no € Z such that 3 = £2 (mod 7).
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5.23 Example. An integral basis of K = Q(v/—2,v/3) is (1,v/3,V/—2, %)
(Exercise 9 of chapter 1). We have disc(K) = 28 -32. The Minkowski bound is less
than 8. Put a = %. Then a® = —2 — /3 and the minimal polynomial of a
over Qis X* +4X2+1. So

disc(1, o, 0?, 0%) = disc(X* +4X> + 1) = N§ (40® + 8a)
= 4'NE ()NE (o +2) = 4'N§ (—v/3) = 4* . 32 = 2% . 3%,

It follows that O = Z[a]. Hence we can use the polynomial X* +4X? +1 for the
factorization of prime numbers in K:

(2) = (2,0 + 1)1,

(3) = (3,a —1)%(3,a + 1),

(5) = (5,02 — 20— 1)(5, 02 + 200 — 1),
(1) =(7,0* —a—1)(7,a* +a —1).

There are three prime ideals of norm less than 8:
p2:(2aa+1)a p3:(37a+1) and pg:(3,06—1)

The elements o+ 1 and o — 1 both are of norm 6. So (a+1) = paps and (a—1) =
paph. Hence C/(K) is generated by [p2] and from p3 = (2) it follows that the order
of the group is a divisor of 4. Since N{ (v/=2) = 4, we have (v/—2) = p3 and so

[p2]? = 1. Suppose K contains an element 3 of norm +2. Then from
NE(8) = NGV NE = (8))

it would follow that Q(1/—6) contains an element of norm +2, which is not the
case. Hence C/(K) is of order 2 and is generated by [ps].

5.24 Example. Let K = Q(v/2,v/3). Then (1,v/2,/3, @) is an integral basis
of K. We have disc(K) = 2% - 3% and in the same way as in the previous example
we see that Ok = Z[a], where o = %. The Minkowski bound is less than 5.
The minimal polynomial X% — 4X?2 + 1 of o over Q can be used for the splitting
of primes. This way we find that p; = (2, @+ 1) is the only prime ideal with norm
less than 5. We have Ng(a +1) =1-4+4+1 = —2, s0 py is the principal ideal
generated by « + 1. Hence C/(K) is trivial.

From Theorem 3.30 together with the computation of the Minkowski bound it
follows that @Q has no unramified extensions:

5.25 Theorem. Let K # Q. Then there is a prime number which ramifies in K.
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PrOOF. Put [K : Q] = nand n = r+2s, where 7 is the number of real embeddings
and s the number of pairs of complex embeddings. We have n > 2 and since norms
of ideals are > 1, we have by Theorem 5.17:

VI disc(K)[ > ZT(Z)

We will use that n—' > 271 for all n > 2. This is easily proved by induction: for

n!
n = 2 this is true and the induction step goes as follows

(41wt (n )T S ) s (14 1)
(n+1)!  nl nn n+1 nl -

1+ —
n n
n—1 1 n
> 9 (1—|—n-7> —on.
n
Hence i
| disc(K)| > 27! <D =9 Ix®

and so
[disc(K)| > 47 1n% = Larp®s > Lare2s _

It follows that | disc(K)| > 3 and so there is a prime divisor of the discriminant of
K. By Theorem 3.30 this prime number ramifies in K. O

5.4 Dirichlet’s Unit Theorem

In this section K is a number field. Dirichlet’s Unit Theorem gives a complete
description of the structure of the unit group Oj. We will use the embedding
t: K — R" x C?. This ring homomorphism induces a group homomorphism

v K* — (R™ x C%)*(= R* x C*%).

5.26 Notations. The map L: R*" x C** — R""¢ is defined by
L:(x1,...,2p,21,...,25) = (log|z1],...,log|z.|,log 2171, . . ., log z5Z5).

It is a homomorphism from the multiplicative group R*” x C*4 to the additive group
R7*¢. For the real embeddings o; (1 <i <) let A\;: K* — R be the composition

; log|.
K* o; R* OEHR
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and for the complex embeddings 7;: K — C (1 < j < s) the composition
JIGREN i U
is denoted by A, ;. Thus the composition Lc: K* — R"** is the homomorphism

o= ()\l(a)a AR )‘r+s(a))'

This homomorphism will be denoted by [ and its restriction to O} by ¥. So we
have a commutative diagram

K+ 4L> R*" x C*s
C l L

O% T Rr+s

We will determine the structure of O} by studying the kernel and the image of
the group homomorphism ¢: Of — R"*5.

5.27 Lemma. Let B be a bounded subset of R"**. Then L™Y(B) is a bounded
subset of R™ x C*.

PROOF. Since B is bounded, it is contained in a cube [—a, a]"™* for some positive
real a. The lemma follows from:

(i) The inverse image of [—a,a] under R* - R, z — log|z| is [—e®, —e %] U
[e~%, e%], which is contained in [—e?, e?].

(ii) The inverse image of [—a,a] under C* = R, z+logzZis {z € C|e™ 3 <
|z| <e3 }. It is contained in the disc {2z € C | |z| < e }.

5.28 Proposition. Ker(y)) = p(K).

PROOF. The only element of finite order in the additive group R"** is 0. So ¢
maps elements of finite order to 0, that is pu(K) C Ker(¢). Since {0} is a bounded
subset of R"*, by Lemma 5.27 its inverse image L~'({0}) = Ker(L) in R*" x C**
is a bounded subset of R” x C*. By Proposition 5.3 it contains only finitely many
elements of the lattice Ax. So Ker(v) is a finite subgroup of K* and its elements
are, therefore, of finite order, that is they are roots of unity. O

5.29 Notation. Let m € N*. The m — 1-dimensional subspace
{(x1,...;2m) ER" |21+ -+ 2, =0}

of the R-vector space R™ will be denoted by H,,.
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5.30 Lemma. ¢(O}) is a discrete subgroup of R"* and is contained in H, ;.

Proor. Put I' = ¢(O%). Let B be a bounded subset of R"*¢. Then by
Lemma 5.27 L~!(B) is a bounded subset of R" x C*. The inverse image of I' N B
is contained in A N L™1(B), and is, since Ax is a lattice in R” x C?, a finite set
by Proposition 5.3. So I' N B is finite. Hence by Proposition 5.3 the group I' is a
discrete subgroup of R"*5. It is contained in H,,: for € € O} we have

Ng(e) =o1(e) o (e)m(e)Ti(e) - - Ts(e)Ts(e) = £1
and so
log|o1(e)| + - +log o ()] + logT1(e)T1(e) + - - - + log 71 (e)T1(e) = 0. O
We will show that (O3 is a lattice in Hy 4.

5.31 Proposition. Let cy,...,c4s € RZ? such that
r+s N
[Ie = (f) Vdise(K)].
T
i=1
Then there exists a nonzero 3 in Ok such that
lo:(B)| < ei fori=1,...,r

and L
T7;(B)Ti(B) < ¢ciy; forj=1,...s.

PROOF. Let E be the subset of R” x C*® of all (z1,...,%,,21,...,2s) such that
|z < ety ooy f2e] < ey 2170 S Crgt, o, 2575 S Crgse
Then FE is convex, symmetric and measurable, and for its volume we have
Vvol(E)=2"cy -+ ¢p ToCry1 -+ Crps = 2“"\/@ =2"0(Ak).

By Theorem 5.6 there is a nonzero x € Az N E. Take 8 € Ok with «(8) =z. O

5.32 Lemma. Let k € N* with 1 < k <r+s. Then there ezists an € € O} such
that A\i(e) <0 for all i # k.

PROOF. Let a be a nonzero element of Ok. Choose ¢1,...,¢r45 € R>% such that
for all 1 # k

¢ <|oi(a)] ifi<r,
ci < |rir(a)* ifi>r
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and
r+s
[Ie= (%)2 Idisc(K))].
=1

By Proposition 5.31 there exists a nonzero § € Ok such that \;(8) < loge; for
i=1,....,r+s. So N(B) < \i(«) for all i # k. Thus we can form a sequence
a1, s, ... of nonzero elements of Ok such that for all m € N*

Ai(Qmg1) < Ai(ay,) forall i #k
and

NE ()| < (2) V(R

Because there is an upperbound for the norm of the principal ideals (v, ), there
are only finitely many of them. Hence there exist m; and mso such that m; < ms
and (m, ) = (Qm,). Take & = ;! iy, - O

5.33 Lemma. Let (a;;) be an m x m-matriz with entries in R such that
a) a; >0 fori=1,...,m,
b) ai; <0 fori £ J,
¢) > ai; =0 fori=1,....,m.

Then (a;;) is a matriz of rank m — 1.

PrOOF. We show that the first m — 1 columns are independent. Suppose that to
the contrary

aii a1,m—1 0
A S A : =11,
m1 Gm,m—1 0

where not all A; equal 0. Divide by Ap with |\;x| maximal: we may assume that
Ar =1and A\; <1 for j # k. Consider the k-th row:

m—1 m—1 m—1 m—1 m
0= Z )\jakj = arr + Z )\jakj > agk + Z agj = Z agj > Zakj =0.
Jj=1 Jj=1 Jj=1 Jj=1 Jj=1
J#k Jj#k
Contradiction. O

118



5.4 Dirichlet’s Unit Theorem

5.34 Proposition. (O3;) is a lattice in H,4.

Proor. By Lemma 5.32 there exist €1,...,&,45 € O} such that:
the i-th component of {(ey) is negative for all i, k with i # k.

Write l(ex) = (ak1,---,akr+s). The matrix (a;;) satisfies the conditions of
Lemma 5.33 (with m = r 4+ s). So the rank of this matrix equals r + s — 1.
This means that the subgroup (0% ) contains a lattice in H,4,. Since $(O7%) is
a discrete subgroup of R, it follows from Proposition 5.3 that it is a lattice in
H,ys. O

From Proposition 5.28 it follows that we have a short exact sequence
x ¥ *
1— u(K) — O — ¢(0%) — 0

and since by Proposition 5.34 ¢(O}) is a free abelian group of rank r + s — 1, this
sequence splits and we can choose €1,...,&,45-1 € O} which map under % to a
Z-basis of (O3 ). This leads to Dirichlet’s Unit Theorem:

5.35 Theorem (Dirichlet). There arecy,...,er45-1 € OF such that eache € O
can be written in a unique way as

= (et
with ¢ a root of unity and ki, ..., kyys—1 € Z. ]

5.36 Definition. A system e1,...,&,45—1 as in Theorem 5.35 is called a fundamen-
tal system of units of K.

5.37 Example. We compute O3 for the field K = Q(y/—2,v/3) of Example 5.23.
It is easily verified that —1 is the only nontrivial root of unity in K. By Dirichlet’s
Unit Theorem the group of units is of rank 1: O} = (—1,¢) for some ¢ € OF.
For the quadratic subfields we have Z[y/—2]* = Z[v/—6]* = (—1) and Z[/3]* =
(=1,24+/3). Let v € Ok. Let 0,7 € Gal(K : Q) such that K = Q(v/~2) and
K™ =Q(+/3). Then K°7 = Q(/—6) and

v-o(v) € Z[V-2]* = (-1),

vor(v) € ZIV3]* = (-1,2+V3),

v-or(v) € Z[vV—6]" = (-1).

For the product of these elements we obtain
V2 NE(v) € (-1,2+ V3),

and so v? € (—1,2+ \/§> By the way, in this special case this result already implies
that the group O3 is of rank 1. It suffices to verify whether there exist k,! € {0,1}
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with k and [ not both 0 such that (—1)*(2 4 v/3)! is a square in K. The number
—1 is not a square since i ¢ K. If 2 + /3 were a square, it would be the square of
a real number and, therefore, the square of a number in Q(\/g) Since 2 4+ /3 is
the fundamental unit in this quadratic number field, it is not a square in that field.
In Example 5.23 we saw that for o = % we have a2 = —2 — /3. Hence
O =(-1,a).

5.38 Example. We compute O} for the field K = Q(v/2,v/3) of Example 5.24.
For the quadratic subfields we have Z[v/2]* = (=1,1+/2), Z[V3]* = (=1,2+/3)
and Z[V6]* = (—1,5+2v6). Let v € O%. As in the previous example we conclude
that

V2 e (=1,14+v2,2+3,5+2V6).

From this and also from Dirichlet’s Unit Theorem it follows that O% is of rank 3.
Since the field is a subfield of R, 2 is a positive real number. It suffices to look for
v e K with v2 = (1 +v2)*(2 + V3)!(5 + 2v/6)™, where k,I,m € {0,1}. The ideal
po = (a+1) is the unique ideal of norm 2. So p? = (v/2) = (1+/3) = (24+v6). The

number vy = 1%5 € Oy satisfies ¥ = 2 4+ /3 and the number vy = 2?2/6 € 0%

satisfies v3 = 5 + 2v/6. We have v; = a and v5 = v/2 4 /3. Then

V2= (1+ \@)kyflugm

and so

(22) =+ Ve

[SLD)

The number 1+ /2 is not a square in K: its image is negative under an automor-
phism which maps v/2 to —v/2. So k = 0 and v = v{v3*. Hence

on = <f1,1+\/§,\f2+\/§,@>.

For the computation of the ideal class group knowledge of the group of units some-
times is helpful. The following is an example of this phenomenon.

5.39 Example. Let K = Q(+/11). Put a = ¥/11. Then O = Z[a] and disc(K) =
—27-112 (exercise 9 of chapter 1). The Minkowski bound is %\/5 < 6. We factorize
the primes less than 6 by factorizing X® — 11 modulo these primes:

(2) = (2,a+1)(2,0®* +a+1)

(3)=B.a+1)

(5) = (5, — 1)(5,0* + a + 1).

The ideal class group is generated by the classes of the prime ideals of norm less
than 6: po = (2,a+ 1), ph = (2,0 +a+ 1), p3 = (3,a+ 1) and p5 = (5, — 1).
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The factorization of (2) implies that p} is in the inverse of the class of pa. From
Ng(a —1) = —(13 — 11) = 10 follows that (o — 1) = paps, so also ps is in the
inverse of the class of py. Furthermore, Nfj (v — 2) = —(2* — 11) = 3, so the class
of p3 is the unity element. From all this it follows that C/(K) is generated by [p2].
The remaining problem is to determine the order of [ps]. We have Ng (a? —5) =
—(5% —121) = —4. Modulo ps we have a® —5 = (a+1)? =0 and so ps | (a? — 5).
Hence (a? — 5) = p3. So C/(K) is of order 1 or 2. We will show that it is of order
2 by showing that the ideal ps is not principal.

By Dirichlet’s Unit Theorem Z[a]* = (—1, €), where ¢ is a unit > 1, the fundamen-

tal unit of K. The ideal p3 is principal and p3 = (3). So v = @ € Z[a]*. Since

v > 0, it is a power of e. We will show that it is an odd power of €. From
3v=(a—2)3=(-1)> =4 (mod ps)

follows that 7 € Z[a]/ps = F5 is not a square. Therefore, v is not a square in Z[«].

Hence v is an odd power of €, say v = £* for an odd k € Z. This will be used

to show that ps is not principal. Later, in Example 5.44, we will see that in fact

k=-1.

Suppose ps is principal, say pa = (3). Then (8?) = p3 = (a? — 5) and so for some
leZ

B? = +cl(a?® - 5).
Raising to the power k yields
52 = £l (a2 — 5)*
and, since 3%* > 0, a® — 5 < 0 and k odd, we have in fact
52k = _l(a? — 5)*.

The prime 19 splits completely in K: (19) = (19, + 2)(19,a + 3)(19, — 5).
Modulo p1g = (19, — 5) we have

3v = (a —2)* = 3% (mod po)
and so v = 32 (mod p19). Hence, since a? — 5 =1 (mod py9),
ﬁQk =_3% (modplg),

from which it follows that —1 is a square modulo 19. This, however, is not the case
since 19 = 3 (mod 4). So ps is not principal and C/(K) is of order 2.
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Cubic fields with one real embedding

Let K be of degree 3 with one real embedding. Let’s assume that K is in fact
a subfield of R. Then the real embedding is just the inclusion map and K has
one pair (7,7) of complex embeddings. Examples of such fields are the pure cubic
fields; see exercise 8 of chapter 1. Since K is real, we have y(K) = {£1}. By
Dirichlet’s Unit Theorem O} is of rank 1. It follows that there is a ‘fundamental
unit’ € > 1 such that O3 = (—1,¢). The following lemma of Artin is useful when
computing the fundamental unit, because it gives a lower bound for positive units.

5.40 Lemma. Let v € O} with v > 1. Then |disc(K)| < 413 + 24.

Proor. We have N§(v) = vr(v)r(v) > 0, so N§(v) = 1. Since v ¢ Q and
v € Ok, we have that K = Q(v) and that Z[v] is a number ring of K. So
d = disc(1,v,v%) = m? - disc(K), where m = (Ok : Z[v]). There are unique
p € (0,00) and ¥ € (0, 7) such that

v=p? and 7(v)=p te?

(assuming that 7(v) has a positive imaginary part). We see d as a function of ¥
(keeping p fixed):

1 p2 p4
\/g _ /d(ﬁ) -1 p—lew p—2e2z‘19 _ (pS + p73)(67i19 _ eiﬁ) + o210 _ =200
1 p—le—iﬂ p—2e—2i19

= —2i((p® + p~3) sin ¥ — sin 209).
Set y = 2(p® + p~2). Then
Vid = —4i(ysind — sin ¥ cos 9)

and |d| has a maximum only when the derivative of ysin® — sin¥ cos ¢ vanishes.
Say this is the case for ¥ = 9. Then

ycostdg —2cos2¥g =0

and
|Vd| = 4|(y — cos¥) sind| < 4|(y — cos ) sing|.

Put z = cos¥g. Then
222 —yz—1=0 and |d] <16(y —2)*(1 —2?).
Hence,

|d| <16(y? — 2yz + 22)(1 — 2%) = 16(y* — 2yz + 22 — y?2% + 2y2° — 2*)
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=16(y> —2(222 — 1) + 2% — (222 = 1)2 +2(22% = 1)22 — 2*) = 16(y — 2* — 2*)
=4(p° +6+p ¢ —42% —42").

So it suffices to show that p=6 < 422 + 42%. The polynomial 2X? — yX — 1 has
two zeros, one of them is z. One root is positive and, since y = %(p3 +p73) > 1,

in fact greater than 1:
Y+ \/y +8 1 +v9 1
1 .

So z = cos ¥ is the other zero. The quadratic polynomial takes in —% p~3 anegative
value:

250 —y(—3p~ )—1=§(p‘6—1)<0~

3

Therefore, z < —1p~2 and so 2% > 1p~6. This implies p=¢ < 42? < 422 +42*. O

5.41 Corollary. Suppose |disc(K)| > 28. Let n € O} with n > 1, say n = &~.
Then k satisfies
isc(K)| — 24)k

| disc( 3
( 1 <n.

| dise(K)| — 24

4
(|disc(K)| - 24)k

4

Proor. By Lemma 5.40 < &3 and so

< eF =i O

Note that only finitely many k are possible:
k< 2logn where p = X (| disc(K)| — 24).

log p

5.42 Example. The ring of integers of K = Q(+/2) is Z[¥/2] (exercise 8 of chap-
ter 1). Put a = /2. We have disc(K) = disc(1,a, a?) = —N§ (3a?) = =37 - 4.
Clearly a—1 is a unit. Its inverse is a® +a+1, a unit > 1. We have (a?+a+1)3
(2+2+1)2 =125 and for all k > 2

(|disc(K

T)l) —21% > 212 > 1925.

By Corollary 5.41 o 4+ a + 1 is the fundamental unit.

5.43 Example. The ring of integers of K = Q(¥/7) is Z[V/7]. Put a = /7. We
have —1 = a® — 8 = (a — 2)(a? + 2a + 4), so a — 2 is a unit and —(a? + 2a + 4)
is its inverse. Put n = a® +2a + 4. Then n € O} and n = ﬁ > 1. We have
n=(a+1)2+3<3>+3=12. Forall k > 2

disc(K)| — 24\ * 1299k
(‘ il 4)| ) :( 4 ) > 324% > 324% > 12% > P

By Corollary 5.41 7 is the fundamental unit.
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5.44 Example. In Example 5.39 the ideal class group of K = Q(+/11) has been
computed. Now we compute its group of units. We use the notation of Exam-
ple 5.39. Put n = v~!. Then 7 is a unit > 1. We know already that it is an odd
power of the fundamental unit . We have

|disc(K)| —24 27112 - 24 3243

= 810
4 4 4 ~

and (using a < J)

3 (a? +2a + 4)3 9
= = =18 4000 + 89 < 271
n (a—2) 9 a” + 40a + 89 <

and so 73 < 2713, Since (W)?’ > 810% > 2713 > 13, by Corollary 5.41
n = e*, where 1 < k < 3. Since k is odd, only k = 1 is possible and so n = «.

Cyclotomic fields

Let m € N with m > 2. The m-th cyclotomic field Q((,,) is totally imaginary, i.e.
all embeddings are complex. Put L = Q((,,). The rank of O3 is by Dirichlet’s

Unit Theorem equal to @ — 1. Let K = Q({n + ¢;;'). This field is totally real,

all its %m) embeddings are real. So, again by Dirichlet’s Unit theorem, the groups
O} and O7 have equal rank. Since they are finitely generated, the index of OF in
O3 is finite and so is the index of OFu(L) in OF. In fact this index is at most 2.
This will be shown for a wider class of extensions. First a useful lemma.

5.45 Lemma. Let o be an algebraic integer, all of whose conjugates have absolute
value 1. Then « is a Toot of unity.

PROOF. Let f=X"—a; X" '+...+(~1)"a, € Z[X] be the minimal polynomial
of a over Q. Then f = (X —ay) -+ (X — ap) with a, ..., a, the conjugates of a.
We have aj, = s,&n)(al, ..oy ap) for k=1,...,n, where 8,(:) is the k-th elementary
symmetric polynomial in n variables. The condition |ag| = 1for k = 1,...,n yields

a bound for the ay:

n n n
k] = [si” (a1, an)| < sgV(1,.0 1) = <k>

It follows that only finitely many algebraic integers of degree < m over Q satisfy
the condition in the lemma. So the set of all powers of « is finite. This means that
« is of finite order in C*, that is « is a root of unity. O

5.46 Definition. A totally complex number field which is a quadratic extension of
a totally real field is called a CM-field. (CM stands for Complex Multiplication.)
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5.4 Dirichlet’s Unit Theorem

Let the CM-field L be a quadratic extension of the totally real field K. Then by
Dirichlet’s Unit Theorem O7F and O7j are finitely generated abelian groups of equal
rank. So the index of u(L)Oj in Oj is finite.

5.47 Definition. Let L be a CM-field and K the totally real subfield of L with
[L: K] =2. The index (OF : u(L)O%) is called the Hasse index or unit index of
L. Notation: Q(L).

Let L : Q be a Galois extension and 7 the automorphism of L induced by complex
conjugation. We assume that 7 is of order 2—so L has only complex embeddings—
and also that 7 is central in Gal(L : Q). This last condition implies that K := L7 is
totally real. So L is a CM-field with the property that L : Q is a Galois extension.
For each v € O} and all o € Gal(L : Q)

v e o)
“’(T(u))’ ot |re()]

By Lemma 5.45 we have ( € wu(L). Thus we have a map

f: 07 = ul), ve —.

This map clearly is a group homomorphism.

5.48 Proposition. Let L be a CM-field such that L : Q be a Galois extension and
let K = L7, where T is induced by complex conjugation. Then

()0 ={ve O | - )GM(L)}

and hence Q(L) < 2.

PRrROOF. We show that the kernel of the homomorphism f’: O3 — u(L)/p(L)?
induced by f as described above is the group u(L)O%. Clearly M(L) and (’)}{ are
contained in the kernel of f’. Let v € Ker(f’) that is ﬁ w(L)?, say T(V) =¢?
for a ¢ € pu(L). Then § = T(%) and so ¢ € Oj. Since p(L)/p(L )? is of order 2, it
follows that Q(L) < 2. O

Here we considered CM-fields which are Galois extensions of Q. with a little more
effort it can be shown that this proposition holds in fact for CM-fields in general.

5.49 Example. The biquadratic number field K = Q(v/—2,v/3) is a CM-field. Its
real subfield is the quadratic number field Q(v/3). From the computation of O%
in Example 5.37 follows that Q(K) = 2.

We compute the Hasse index of a cyclotomic field Q((,,) with m > 2. It is a
CM-field with Q((,, + ¢;,}) as its totally real subfield. For m not a prime power
we will use the following Lemma.

5.50 Lemma. Let m € N* be not a prime power. Then 1 — (,, € Z[(n]*.
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PROOF. For each k € N* the cyclotomic polynomial @, is the minimal polynomial
of ¢ over Q. We will prove that ®,,(1) = £1 and so Ng(cm)(l — (m) = 1.

Let r(k) denote the number of prime divisors of & € N*. We have X™ — 1 =
[ 14, ®a(X) and write this as follows

IT ®x)- I @a(X)

r(d)=1 r(d)>1

So for the values in 1:

II 2«0 I] @a)=]]p* - [ @a)=m- J] ®a1)

dlm plm dlm d|m
r(d)=1 r(d)>1 r(d)>1 r(d)>1
It follows that ®,,(1) = £1. O

In fact ®,,(1) = 1 if m is not a prime power, because the norm of a nonreal algebraic
integer is positive. It also follows by induction from the product given in the proof
of this lemma.

5.51 Theorem. Let m € N with m > 2 and m # 2 (mod 4). Then

1 if m is a prime power,

2 otherwise.

PROOF. Put L =Q((y) and K = Q((m + ¢,,,}). We distinguish three cases.

Case 1: m is a power of an odd prime p. Let v € O} . We have to show that % €
w(L)?. Put v =ag+a1m+- - +an_1¢% L, where n = p(m) and ag, ..., 0,1 € Z.
We have v = ag + - + ap—1 (mod1 — (). Also 7(v) = ag + a1(, + - +
Q- 1Cn_z(n_1) =ag+-++ap_1 (mod1l—¢y). So =1 (mod 1 — (). On the
other hand — € (L) = (=(m). Since =~ =1 (mod1 — (), it follows that

) ) =
s € {Gu) = (L)

Case 2: m is a power of 2, say m = 2" with » > 2. Let v € O}. Suppose

that ¥~ ¢ w(L)?. We have (L) = (Cor) and u(L)? = (Cyr-1), so Gy s a

primitive m-th root of unity. Since Ngé%: 1)(C2k) = (or—1 for k = 2,...,7, we
have NQ(CQ (C2r)4: i. But NQEC)’” (v) is a unit of Z[i], say Ngéf{” (v) = i'. Then
Nggf)m)(r(”l/)) = -4 = i* = (=1)" # i. Contradiction. So also in this case o €

pu(L)?.
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5.5 Regulators

Case 3: m is not a prime power. By Lemma 5.50 we have 1 — (,, € O}. The
homomorphism f: O — w(L) maps this unit to

1_Cm 1_Cm

= =L
T(l - CTn) 1- C;Ll "
Since —(;,! generates (L), the homomorphism f is surjective. O
5.5 Regulators
Let K be a number field of degree n with r real embeddings o1, ..., 0, and s pairs

{m,71},...,{7s,7s} of complex embeddings. By Proposition 5.34 the image of
P: O = R e l(e)

is a lattice in the subspace H, ., of R""*. We consider R"*¢ to be the standard
Euclidean space of dimension r + s and equipped with the standard Lebesgue
measure vol. Moreover, H, is a Euclidean subspace of dimension r + s — 1. Let
(€1y...,€r4s5—1) be a system of units. Then (¢(e1),...,9¥(er4s—1)) is a basis of
H, . if and ouly if (e1,...,6,45-1) is a free abelian group of rank » + s — 1, or
equivalently, if and only if this group is of finite index in O%. It is a fundamental
system of units if and only if (¢(e1), ..., ¥ (er+s—1) is a Z-basis of the lattice ¥(O%)
in Hyys. If (e1,...,6r45-1) is of rank 7 4+ s — 1, the volume of a mesh of ¥(O}) is
equal to the volume of the parallelotope in R"™* spanned by

(7/1(51), sy ¢(5T+371)7 'U)a

where v = \/:?(1, ..., 1), a vector of length 1 perpendicular to H,;s. Thus this
volume is the absolute value of
logloi(er)| -+ loglov(en) 2log|mi(er)] - 2loglT(en)]
| | |

log|o1(g2)| log|o,(g2) 2log |71 (e2) 2log |74(e2)

log |Jl (§T+S*1)‘ -+ log |J’l“ (‘ir+sfl)| 2log ‘7-1 15r+571)‘ <+ 2log |Ts (1Er+871)|
Vr+s e Vr+s r+s e Vr+s
0
0
The sum of the column vectors is : , so the volume equals /7 + s times
0

VT + s

the absolute value of the determinant of any of the (r +s—1) x (r + s — 1)-minors
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of the matrix

logloi(er)]  --- logloy(e)] 2log|ri(e)] oo 2logTs(en)]
logloi(e2)]  --- loglor(e2)] 2log |71 (e2)] 2log |75(e2)|

logloi(erps—1)| -+ loglov(eris—1)| 2log|mi(erps—1)| -+ 2log|7s(erps—1)l

5.52 Definition. The absolute value of the determinant of an (r+s—1) x (r+s—1)-
minor of the above matrix is called the regulator of (e1,...,e,45—1). Notation:
Reg(ey,...,epq4s5-1). For (e1,...,6,45-1) a fundamental system of units this num-
ber is called the regulator of the number field K. The notation for this number
is Reg(K). More generally, for X a subgroup of O3 of finite index we define the
regulator of X as the regulator of a maximal free subgroup of X. It is denoted by

Reg(X).
So by definition of the regulator:

8(¥(X)) = Vr + s - Reg(X).
In particular

5(¥(O0k)) = Vr + s - Reg(K)

and we have

Reg(X) = (¥(Ok) : (X)) - Reg(K).

Alternatively, Reg(e1,...,er+s—1) can be defined more symmetrically as the abso-
lute value of
log |01 (e1)] log |7 (1) 2log |11 (e1)] 2log |7s(e1)]
2)] 2log |71 (e2)| 2log [7s(e2)]

log |1 (e2)] log |0 (e

log |y (fi:r+5—1)| <+ log |0r(<1€7“+5—1)| 2log |1y (25T+S—1)| <+ 2log ‘73(25%&-3—1)‘

n n

By analytic methods (chapter 8) so-called class number formulas are derived. These
formulas are in fact formulas for h(K)Reg(K), the product of the class number
h(K) = #(C/(K)) and the regulator of a number field K.

5.53 Examples.

1. The regulator of @Q and also of imaginary quadratic number fields is the
determinant of a 0 x 0-matrix, which is taken to be equal to 1.

2. The regulator of a real quadratic number field equals the absolute value of
the logarithm of the fundamental unit. The same holds for cubic fields with
one real embedding.
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Exercises

EXERCISES

10.

11.
12.
13.

14.

. Let K = Q(v/2,v/=3). Show that O is a principal ideal domain.

. Show that Z[¢r + ¢; '] is a principal ideal domain.

Let a € R be such that a® = o + 7. Show that Z[a] is a principal ideal domain.

. Let K = Q(V/17). Show that O is a principal ideal domain.
. Let K = Q(+v/19). Compute C/(K).

Prove that Z[(o] and Z[Co + ¢4 '] are principal ideal domains.

Let K be a number field.

(i) Let a be a nonzero ideal of Ox and m be the order of [a] in C/(K). Then a™
is a principal ideal of Ok, say a™ = aOk. Put L = K( %/a). Show that aOy,
is a principal ideal of Of.

(ii) Show that there is a finite extension L : K such that aQp is principal for
every ideal a of Ok.

(iii) Let K = Q(v/—21). Find a finite extension L : K such that aQy is principal
for every ideal a of Ok.

Let K = Q(a), where o € C such that a* + 40® +2 = 0. Compute

Ok, C(Ok), Ok and Reg(K).

Compute Z[¢5]™.

Let K = Q(i,V6). Put a = Y64=5,

(i) Show that the set { (5,0(a) 4+ 1) | o € Gal(K : Q) } consists of all four prime
ideals above 5.

(ii) Compute C/(K).
(iii) Show that (i + 1) = (2 +/6) = (2,/—6), the ideals being ideals of Ok.
(iv) Compute O% and Reg(K).
Compute the fundamental unit of Q({/3).
Let a € R be such that a® + o — 3 = 0. Compute the fundamental unit of Q(«).
Let a € R be such that a® — 2a + 3 = 0. Compute the fundamental unit of Q(«).

Let K = Q(¥9), where ¥ = ¢7 + (7%
(i) Show that ¢ and ¥ — 1 are units of Z[J].
(ii) What is the image of Z[9]" in (Z[9]/(13))*?
(iii) Show that the index of (¢,9 — 1) in Z[¥]" is finite.
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15. Show that the alternative definition of the regulator on page 128 agrees with the
definition given in Definition 5.52.

16. Let L be a CM-field and K its maximal real subfield. Show that Q(L)Reg(L) =
2" Reg(K), where r = [K : Q] — 1.
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6 Localization of Dedekind Domains

In commutative algebra localization forces given elements of a commutative ring
to become invertible. In section 6.3 for Dedekind domains a slightly more general
type of localization is described. The idea is to force maximal ideals to become the
unit ideal. For its formalization discrete valuations are used. A first application of
localization is a description of residue class rings of a Dedekind domain. In the last
section some terminology is introduced for the case of rings of integers of number
fields.

6.1 Discrete valuations

6.1 Definition. Let K be a field. A surjective group homomorphism v: K* — Z
is called a discrete valuation on K if

v(a +b) > min(v(a),v(b)) for all a,b e K.
Here it is understood that v(0) = co and that co > n for all n € Z. So v is actually
seen as being a map K — Z U {oo}.

Each maximal ideal of a Dedekind domain determines a discrete valuation on its
field of fractions:

6.2 Proposition. Let R be a Dedekind domain, K its field of fractions and p €
Max(R). The p-adic valuation vy: K* — Z, defined in Definition 2.37, is o discrete
valuation on K.

PROOF. Since p? # p, there is a w7 € p \ p2. So the group homomorphism v, is
surjective: vy(m) = 1. Let a,b € K* such that a + b # 0. There is a nonzero ¢ € R
such that ca,cb € R. Then

(ca+ cb)R C caR + cbR.
Hence by Proposition 2.14

vp(c) +vp(a+0) = vp(cla+b)) = vp((ca+ cb)R) > vy(caR + cbR)
= min(vy (caR), vp(cbR)) = min(vy(c) + vp(a), vp(c) + vp (b))
= vp(c) + min(vp(a), vy (b)).
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6 Localization of Dedekind Domains

So vy(a + b) > min(vp(a),vy(b)). If one of the elements a, b and a + b equals 0,
then this inequality is trivially true. U

The p-adic valuation of an element is by definition the p-adic valuation of the
fractional ideal it generates. On the other hand the p-adic valuation of a fractional
ideal is determined by the p-adic valuations of its elements.

6.3 Proposition. Let R be a Dedekind domain, K its field of fractions, p € Max(R)
and a € I(R). Then

vp(a) = minvy(a).

PROOF. We can assume that a € IT(R). Clearly, vy(a) < vy(a) for all a € a.
By Proposition 2.28 there is an ideal b in the inverse of the class of a such that b
and pa are comaximal. Then ab = cR for a ¢ € a and, since v,(b) = 0, we have

0p(a) = vp(ab) = vp(cR) = v, (0). O
6.4 Proposition. Let R be a Dedekind domain with field of fractions K. Then

R={ac K |vy(a) >0 for all p € Max(R) }.
and

R*={a€ K |vy(a) =0 for all p € Max(R) }.

Proor. Because R is integrally closed and Noetherian, we have

R={a€K|aRCR} and R*={a€K|aR=R}. O

6.5 Proposition. Let v be a discrete valuation on a field K. Then the valuation
ring

R,:={aeK|v(a) >0}
1s a local subring of K.

ProOOF. From the definition of discrete valuation it follows that R, is a subring of
K and that the set m = {a € K |v(a) > 0} is an ideal of R,. Since R, \ m = R},
it is a local ring with maximal ideal m. O

6.6 Corollary. Let v be a discrete valuation on a field K and a,b € K such that
v(a) # v(b). Then
v(a + b) = min(v(a), v(b)).

PrROOF. Let R, and m be as in the proposition. Suppose that v(a) < v(b). Then
a#0and v(a+b) =v(a)v(l+ L) =wv(a), because 1+ £ € R, \ m = R}. O

a

6.7 Definition. An integral domain R, as in Proposition 6.5 is called a discrete
valuation ring.
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A more intrinsic characterization of a discrete valuation ring is given by:

6.8 Proposition. Let R be a local integral domain with maximal ideal m. Then the
following are equivalent:

a) R is a discrete valuation ring;

b) R is a principal ideal domain;

¢) R is a Dedekind domain.
PROOF.

a)=b) Let v be a discrete valuation on a field K such that R = R,. Let a be a
nonzero ideal of R. Put k = mingeq v(a) and let ag € a such that v(ag) = k.
Then for all nonzero a € a we have v( ) = v(a) — v(ag) > 0 and so ;- € R.
It follows that a € apR for all a € a. Since ag € a, we have a = agR.

b)=-c) Principal ideal domains are Dedekind domains.

c¢)=a) Let K be the field of fractions of R. The maximal ideal m determines the dis-
crete valuation vy, on K. By Proposition 6.4 we have that R is the valuation
ring of vy. O

So an alternative definition for ‘discrete valuation ring’ is: a discrete valuation ring
is a local Dedekind domain.

The monoid I (R) of nonzero ideals of a discrete valuation ring is isomorphic to
the additive monoid N: if p is the unique maximal ideal, then the nonzero ideals
are p°(= R), p'(=p), p%, p?, .... They are all principal: p" = (a) for any a € R
with v(a) = n. In particular, if 7 € R satisfies v(7) = 1, then p" = (™).

6.9 Definition. Let v be a discrete valuation of a field K and let 7 € K satisfy
v(m) = 1. Then = is called a uniformizer of the discrete valuation v.

So the uniformizer of a discrete valuation generates the unique maximal ideal of
its valuation ring.

6.2 Localization at a prime ideal

In commutative algebra we have the notion of localization. Here we consider only
localization for integral domains.

6.10 Definition. Let R be an integral domain. A multiplicative system in R is a
submonoid of the multiplicative monoid R \ {0}. IL.e. a multiplicative system is a
subset of R\ {0} which is closed under multiplication and contains 1.
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For S a multiplicative system in an integral domain R with field of fractions K we
can extend R by allowing elements of S as denominators. This yields the ring

SflR:{glaeRandses}.

s

It is a subring of K and since R C S~'R C K, the field K is the field of fractions
of S7IR as well.

6.11 Examples. Let R be an integral domain. Examples of multiplicative systems
in R:

a) Submonoids S of the group R*. For such S it is clear that S™'R = R.
b) S = R\ {0}. The ring S™!R is the field of fractions of R.

¢) Let p be a prime ideal of R. Then S = R\ p is a multiplicative system by
definition of prime ideals.

Let’s have a closer look at the last example.

6.12 Definition and notation. Let R be an integral domain, p a prime ideal of R
and S = R\ p. Then the ring S~ R is called the localization of R at p. Notation:
S_lR = Rp.

The localization at a prime ideal is a local ring:

6.13 Proposition. Let R be an integral domain, p a prime ideal of R. Then:
(i) aRp ={%|acaands¢p} for each ideal a of R;
(ii) Ry is a local ring with mazimal ideal pRy,;

(ili) Rp/pRy is the field of fractions of R/p.

PROOF.

(i) Obviously, ¢ =a -1 € aR,. The extended ideal aR, consists of finite sums
of elements a with a € a, 7 € R and s ¢ p. Such a sum clearly is equal to
an ¢ with a € a and s ¢ p.

(ii) From (i) it follows that
Ry \pRy ={ L[t s¢p}=(Ry)".
This implies that pR, is the unique maximal ideal of the ring R,,.
(ili) The inclusion R C R, induces a ring homomorphism
Rfp — Ry/pR,.

From pR, N R = p follows that we have an embedding of the integral domain
R/p in the field R,/pR,. An element of this field represented by Z is the
quotient of the images of the classes represented by r and s. O
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For Dedekind domains the localization at a maximal ideal is a discrete valuation
ring:

6.14 Proposition. Let R be a Dedekind domain, p € Max(R) and K the field of
fractions of R. Then R, is the valuation ring of the discrete valuation v, of K.
Moreover, the inclusion R C R, induces an isomorphism R/p = R, /pR,.

PROOF. For r € R and s ¢ p we have v,(%) = vy(r) > 0. So the localization at p
is contained in the valuation ring of v,. Let x € K™ be in the valuation ring of v,.
For the fractional ideal 2R we have R = ab~!, where a and b are nonzero ideals of
R and we may assume that p { b. Take b € b\ p. Then bR = bc for an ideal ¢ of R.
We have ac = bab™! = bzR. So br € R and xR = ab™! = ac(be)™! = %””R. Hence
x € Ry. Since R/p is a field, the last assertion follows from Proposition 6.13(iii). O

So the localization of a Dedekind domain at a prime ideal is a discrete valuation
ring; it is a local Dedekind domain. We will show that, conversely, a Noetherian
domain for which the localizations at the maximal ideals are discrete valuation rings
is a Dedekind domain. This is another characterization of Dedekind domains.

6.15 Lemma. Let R be an integral domain. Then R =\, cnrax(r) fim-

Proor. Clearly, R C (yemax(r) Bm- Let @ € Nyenax(r) fom- To prove that
x € R. We will assume that  # 0. Consider the ideal b={be R|bx € R}. We
will prove that b = R. Let m € Max(R). Because x € R, there exists ab € R\ m
such that bz € R, that is (R\ m)Nb # 0 and this means that b ¢ m. This holds
for all m € Max(R). So b = R. O

6.16 Theorem. Let R be a Noetherian integral domain. Then R is a Dedekind
domain if and only if Ry is a discrete valuation ring for all m € Max(R).

ProOOF. By Proposition 6.14 and Theorem 2.43 it remains to prove that if R, is
a discrete valuation ring for all maximal ideals of R, the ring R is integrally closed
and that nonzero prime ideals are maximal. So assume that all localizations R,
are discrete valuation rings. First we prove that R is integrally closed. Let a € K*
be integral over R. Then a is integral over Ry, for all maximal ideals of R. Discrete
valuation rings are integrally closed, so @ € (\,enax(r) fim- By Lemma 6.15 we
have a € R. This means that R is integrally closed.

Let p be a nonzero prime ideal of R and m a maximal ideal such that m O p. Then
pRy is a prime ideal of Ry: if £ % = S witha,be R, c € pands,t,u € R\m, then
abu = cst € p and so a € p or b € p. The ideal mR,, is the unique prime ideal of
the discrete valuation domain Ry,. It follows that pR, = mRy,. Let a € m. Then
aepRm,soa:gwithbepandseR\m. From as = b € p and s ¢ p follows

that a € p. Hence p = m. So the nonzero prime ideal p is a maximal ideal. O

We will have a closer look at the residue class ring R/a of a nonzero ideal a of a
Dedekind domain R. The Chinese Remainder Theorem implies that we can focus

on the case of a being the power of a maximal ideal: if a = p’fl cophr withpy, ... py
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different maximal ideals and k1, ..., k. € N*, then the maps R — R/pfi induce an
isomorphism
R/a = R/pht x - x R/pkr.

So we consider R/p* for R a Dedekind domain, p € Max(R) and k € N*. We will
construct a convenient system of representatives of R/p*.

6.17 Proposition. Let R be a Dedekind domain, p a mazximal ideal of R and k € N*.
Then inclusion R — Ry, induces an isomorphism R/p* = R, /(pRy)*.

PROOF. The induced ring homomorphism R/p* — R, /(pR,)* is an isomorphism
if and only if RN (pRy)* = p* and R + (pRy)* = R,. The first identity follows
from

RN(pRy)* =RN{z € K |vp(x) >k} = {z € R|vp(x) >k}

and for the second let ¢ € Ry, where a € R and s € R\ p. Since vy(s) = 0, the
ideals (s) and p* of R are comaximal. So there are b € R and ¢ € p* such that
a=bs+c Then 2 =b+ <€ R+ (pRy)". O

Let’s consider first the special case of a discrete valuation ring.

6.18 Proposition. Let R be a discrete valuation ring with maximal ideal p, m € R
such that p = mR, k € N*, x € R and S C R a system of representatives of R/p.
Then there are unique Sg,...,Sk—1 € S such that

T=So+ ST+ 4 st (modpk).

PRrROOF. For k = 1 this is trivially true. Suppose for some k € N* there are unique
80,-..,8,_1 € S such that

T=80+ ST+ -+ sp_gmt ! (modpk),

that is

z—(so+sim+-+ s ) € pF,

say
z— (so+s1m+ - +sp_1m L) = yrk

with y € R. For the unique s € S with y = s (mod p) we have

x—(so+s1m+ -+ sp_17° L) = spr® (mod pFtY). O

In general we have:

6.19 Theorem. Let R be a Dedekind domain, p € Max(R), m € R such that
vp(m) =1, ke N*, x € R and S C R a system of representatives of R/p. Then
there are unique Sg,...,Sk_1 € S such that

=80+ ST+ + s L (modpk).
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PRrROOF. This follows from Proposition 6.18. Note that S is a system of represen-
tatives of R, /pR, as well. O

The class T is invertible in the local ring R/pk if and only if = ¢ p and this is
equivalent to so ¢ p. If the representative of p is chosen to be 0, then the condition
becomes sg # 0.

6.20 Example. Let p be a prime number and k € N*. Take S ={0,1,...,p—1}.
Then for each z € Z there are unique sg,...,Sg_1 € S such that

r=s50+8p+ -+ sp_1p" ' (modp”).

This unique way or representing classes modulo p* can be used for counting ar-
guments. For example the class of x is invertible in the ring Z/(p*) if and only if
so # 0, from which it follows that #(Z/(p*))* = (p — 1)pF~1.

Theorem 6.19 provides alternative proofs of some of the results on Dedekind do-
mains in chapter 2, in particular of Proposition 2.17 and its consequences like the
multiplicativity of the norm of ideals in the case of number fields.

6.3 Localization at a collection of prime ideals

For p a maximal ideal of a Dedekind domain R, the valuation ring of v, is the
localization of R at the prime ideal p. The unique prime ideal of the Dedekind
domain R, is the ideal pR,. In this section we generalize this to an arbitrary
collection P of maximal ideals of a Dedekind domain R: we will extend R inside
its field of fractions to a Dedekind domain Rp with Max(Rp) = {pRp |p € P }.

In this section R is a Dedekind domain, K the field of fractions of R and P is a
subset of Max(R).

6.21 Definition. The subring
Rp={ae K|vy(a)>0forallpeP}

is called the localization of R at P.

Note that Rp C Rg if P O Q. For any P the ring R is a subring of Rp. Here are
some (extreme) examples:

6.22 Examples.
a) Ry = K.
b) By Proposition 6.4: Rypax(r) = R.

c) Let p € Max(R). Then R,y = Ry, the valuation ring of the discrete valuation
V.
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6 Localization of Dedekind Domains

Note that the localization of R at P is an intersection of discrete valuation rings:

Rp =) Ry.
peEP

We will compare ideals of R and ideals of Rp. If a is an ideal of R, the ideal of Rp
generated by a is aRp. If b is an ideal of Rp, then b N R is an ideal of R. Thus we
have extension and restriction of ideals:

at aRp
extension
ideals of R ideals of Rp
restriction
bNR 1b

For the extension of the restriction we have:
6.23 Proposition. Let b be an ideal of Rp. Then (bNR)Rp = b.

PrROOF. We can assume that b is not the zero ideal. The ideal (b N R)Rp is the
ideal of Rp generated by the subset b N R of the ideal b. So (b N R)Rp C b. Let
b € b. We will prove that b € (b N R)Rp. The principal fractional ideal bR of
R can be written as aja; 1, where a; and ay are comaximal ideals of R. Since
ap =az-bR C R-bR = bR C b, we have a; C bN R. For each p € P we have
vp(a1) = vy(az) + vy(b) > vp(az) and so vy(az) = 0. It follows that ay' C Rp.
Thus b € bR = a;a;* C (bN R)Rp. O

This can be used to show that the localization of a Dedekind domain is a Dedekind
domain:

6.24 Theorem. Let P be nonempty. Then Rp is a Dedekind domain.

PROOF. The ring Rp is not a field since P is nonempty: for p € P and 7 € R
with vy (7) = 1 we have m € Rp and L ¢ Rp. Let by and by be nonzero ideals of
Rp such that by D ba. We will prove that by | ba. For the ideals by N R and bo N R
of the Dedekind domain R we have by N R D by N R. There is an ideal a of R such
that (by N R)a = by N R. Tt follows that (by NR)Rp-aRp = (ba N R)Rp and so by
Proposition 6.23: by - aRp = by. In particular by | bs. O

6.25 Proposition. Let a be a nonzero ideal of R. Then

aRp ={xz € K |vy(x) > vy(a) forallp € P}.

Proor. For x € K the following are equivalent:

x € aRp,
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zR C aRp,

za~! C Rp,

vp(y) >0 forally € xza™! and all p € P,

vp(za~') >0 forallp € P (Proposition 6.3),

vp(x) > vy(a) for all p € P. O

So for the restriction of the extension we have:

6.26 Corollary. Let a be a nonzero ideal of R. Then

aRpNR =[] »». O
peP
Proor. By Proposition 6.25
aRpNR={z € R|vy(z) >vp(a) forallpe P}. O

Two special cases are worth mentioning;:
6.27 Corollary. Let a be a nonzero ideal of R.

(i) If p € P for allp | a, then aRp N R = a and the inclusion R — Rp induces
an isomorphism R/a = Rp/aRp.

(ii) If p ¢ P for allp | a, then aRp = Rp.
PROOF.

(i) By Corollary 6.26 aRp N R = a, so the homomorphism R/a — Rp/aRp is
injective. For surjectivity we need Rp = R+ aRp. Let b € Rp with b # 0.
It suffices to prove that bR C R + aRp. Write bR = a; a;l with a; and as
comaximal ideals of R. Since bR C Rp, we have vp(ug) =0forallpe P. It
follows that as + a = R and from this bR = bas + ba = a; +ba C R+ aRp.

(ii) By Corollary 6.26 aRp N R = R, so R C aRp and hence 1 € aRp. O

The following proposition describes the maximal ideals of a localization of a
Dedekind domain R at a set P of maximal ideals.

6.28 Proposition. The map
Max(Rp) = Max(R), q—qNR

is injective and its image equals P. The maximal ideals of Rp are the ideals pRp
with p € P.
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PRrROOF. By Proposition 6.23 (qN R)Rp = q for all ¢ € Max(Rp). In particular
g N R is a nonzero prime ideal of R, that is ¢ N R € Max(R). It also follows that
the map Max(Rp) — Max(R) is injective.

For p ¢ P by Corollary 6.27 we have pRp = Rp. Let q € Max(Rp). Then
qN R € P, since otherwise ¢ = (q N R)Rp = Rp. So the image of the map
Max(Rp) — Max(R) is contained in P. For p € P and a maximal ideal q O pRp
of Rp we have by Corollary 6.27 qN R 2O pRp N R =p and so qN R = p, since p is
maximal. By Proposition 6.23 we have in fact q = pRp. O

6.29 Proposition. Let v € K*. Then vq(x) = vp(x) forp € P and q =pRp.

PROOF. Since vy and vq are homomorphisms from K* to Z we may assume that
x € R. By Corollary 6.26

zRpNR=[]p»™

peP

and so by Proposition 6.23

zRp = (xRp NR)Rp = [[ (pRp)**™. O

peP
So the exact sequence (2.2) on page 44 for the Dedekind domain Rp is the sequence

1— Rp — K~ ol @Z—>C€(RP)—>1.
peP

Therefore, the ker-coker exact sequence of the commutative triangle

K* —> D emax(r) Z

N/

Dper Z

is as follows:
1— R"— Rp — @Z — Cl(R) — Cl{(Rp) — 1. (6.1)
pEpP

The effect of localizing at P is that the group of units becomes larger and that the
ideal class group becomes smaller in the sense that the ideal classes represented by
prime ideals outside P are killed.
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6.4 Localizations of rings of integers of number fields

For the ring of integers of a number field K we use special notations. We already
introduced in section 2.3 the notations C/(K), IT(K), I(K) for C/(Ok), IT(Ok),
I(Ok) respectively.

6.30 Notations. Let K be a number field and P C Max(Og). The following
notations are used:

Kp the localization (Ok)p,
Ip(K) the subgroup of I(K) generated by all p € P.

By Proposition 6.28 the map Ip(K) — I(Kp) given by p — pKp on base elements,
is an isomorphism. The exact sequence (6.1) on page 140 becomes

1—>(’)§(—>K}5—>@Z—>C€(K)—>C€(Kp)—>l.
peEp

The group C/(K) is finite and O3 is an abelian group of finite rank. So the group
K7 is of finite rank if and only if the group @p ¢pLis, that is if the complement of
P in Max(Og) is finite. Dirichlet’s Unit Theorem leads to the following theorem
on the structure of K5.

6.31 Theorem. Let K be a number field and P C max(Qf) such that the comple-
ment of P in Max(Ok) is finite. Then K} is a finitely generated abelian group of
rank r + s + #(Max(Og) \ P) — 1. O

In this chapter our starting point was a Dedekind domain R. The maximal ideals
of R correspond to discrete valuations of the field of fractions K of R. The local-
izations of R correspond to subsets of this set of discrete valuations. In chapter 10
we will see that for a number field there are no more discrete valuations than those
coming from maximal ideals of the ring of integers. In this case its ring of integers
is a convenient starting point because a maximal collection of discrete valuations
of the number field is involved.

EXERCISES

1. Let K be a number field, p € Max(Ox) and k € N*.

(i) Prove that N(p*) = N(p)* using Theorem 6.19. Show that this implies that
N is multiplicative: N(a)N(b) = N(ab) for nonzero ideals a and b of Ok.

.o * 1
(ii) Prove that #((OK/pk) )= N(p)k(l B W)
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6 Localization of Dedekind Domains

(iii) Let a be a nonzero ideal of Ox. Show that

#(0xc/0)") =N@) - T[ (1~ 5765 ):
pla

2. Let k be a field. The polynomial ring k[T] is a Euclidean domain and the rational
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function field k(7T') is the field of fractions of k[T]. For f € k(T)* the degree deg(f)
of f and the leading coefficient lc(f) are defined as follows: put f = g/h with
g, h € K[T], then

deg(f) = deg(g) — deg(h) and lc(f) = lc(g)/lc(h).

(i) Show that the map
Voo: K(T)" = Z, f+— —deg(f)

is a discrete valuation on k(7).

(ii) Let R be the valuation ring of v, m its maximal ideal and f € R\ {0}. Show
that f = le(f) (modm).

(iii) Prove that the inclusion k¥ C R induces an isomorphism k = R/m.

Let K be a number field. Show that there is a subset P of Max(Ok) such that
Max(Oxk) \ P is finite and the localization Op is a principal ideal domain.

In Example 4.32 it was shown that structure of the ideal class group of K =
Q(v/—222) is Cs x C3. Let S be a finite set of maximal ideals of Z[v/—222] such
that for P = Max(Z[v/—222]) \ S the ideal class group ({p(K) is trivial.

(i) Show that #(S) > 2.

(ii) Find two prime ideals p and q such that for S = {p,q} the ideal class group
Cl(Kp) is trivial. (Use exercise 12 of chapter 4.)

. Let p be the maximal ideal (3,1 + v/—5) of K = Q(v/—5).

(i) Show that K, is a principal ideal domain.
(ii) Show that K, = (—1,2 —+/=5).

. Let p be the maximal ideal (6 ++/—5) of K = Q(v/—5).

(i) Show that K is not a principal ideal domain.
(ii) Show that K, = (-1,6 ++/-5).

(iii) Prove that the Dedekind domain K, is not the integral closure of a principal
ideal domain.

. Show that there are Dedekind domains with all maximal ideals nonprincipal.

. Let R be a Dedekind domains which is not a principal ideal domain. Show that

there are infinitely many nonprincipal prime ideals of R.

. Let R be a Dedekind domain such that each ideal class of R contains a prime ideal.

Show that for any nonempty P C Max(R) nonprincipal ideal classes of Rp contain
prime ideals.



10.

11.

Exercises

Let K be a number field. An element a € Ok is called totally positive if o(a) > 0
for every embedding o: K — R. Let K+ denote the subgroup of K* of all totally
positive elements of K. Let P* (K) be the subgroup of I(K) of all principal fractional
ideals aOk with « totally positive. The factor group & (K) := I(K)/PtT(K) is
called the narrow ideal class group of K. So we have an exact sequence

1 —0kNKT — Kt S I(K) — T (K) — 1.

Let [a]T denote the class of a € I(K) in C/1(K) and [a] its class in C/(K).
(i) Show that the group homomorphism

Ut (K) = C(K), [a]t > [q]

is surjective and that its kernel is an elementary abelian 2-group.

(i) Show that O3 N K™ is a free abelian group of rank r + s — 1 if K has at least
one real embedding.

Let K be a real quadratic number field and ¢ the fundamental unit of K. Show
that
2. #(C(K)) if € is totally positive,

#(C(K)) = {#(Cﬁ(K)) otherwise.

In the following exercises the localization of a Dedekind domain in the sense of commuta-
tive algebra is compared with the localization as defined in this chapter (Definition 6.21).

12.

13.

14.

15.

Let R be a Dedekind domain with field of fractions K and S a multiplicative system
of R with 0 ¢ S. Let P be the collection of maximal ideals of R disjoint from S:

P={plpns=0}.

(i) Show that S™'R C Rp.

(ii) Let b an ideal of R satisfying p t b for all p € P. Prove that there exists a
b € b such that b ¢ p for all p € P.

(iii) Show that Rp C S™*R.

Let R be a Dedekind domain, P a finite nonempty collection of maximal ideals of
R and S= R\, pp- Prove that S is a multiplicative system in the ring R and

that Rp = S™'R.

pEP

Let R be a Dedekind domain, P a nonempty collection of maximal ideals of R and
S =R\ U,cpp. Assume that C/(R) is a torsion group. Prove that Rp = ST'R.

Let R be a Dedekind domain such that C/(R) contains elements of infinite order.
(i) Show that there exists a p € Max(R) such that [p] € C/(R) is of infinite order.

(ii) Let P = Max(R)\{p}, where p is as in (i). Assume there exists a multiplicative
system S in R such that S™'R = Rp. Show that qgNS = for all maximal
ideals q # p of R.

(iii) Show that pN.S =4.
(iv) Show that there is no multiplicative set S such that S™'R = Rp.
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7 Extensions of Dedekind Domains

In chapter 3 the splitting behavior of prime numbers in the ring of integers of a
number field K was studied. This ring Ok is the integral closure of Z in K. More
generally we can consider extensions L : K of number fields, the so-called relative
extensions, extensions K : Q being called absolute. In the relative case the ring
Oy is the integral closure of O in L. Our point of view in this chapter is even
more general: we start with just a Dedekind domain R and consider the splitting
behavior of prime ideals of R in the integral closure of R in a finite separable
extension of the field of fractions of R. Results of chapter 3 will be generalized,
using more general notions of norm and discriminant. Many examples are given,
most of them concern number field extensions.

Particularly important are the Galois extensions. The action of the Galois group
on the set of prime ideals above a given prime ideal of the base field determines
subgroups of the Galois group and hence, by the Galois correspondence, interme-
diate fields of the extension. This is studied in the sections 7.3 and 7.5. In this
last section a chain of subgroups of the Galois group related to a ramifying prime
is considered. This will be used in chapter 9 in a proof of the Kronecker-Weber
Theorem. Further on, in chapter 17, these groups are of fundamental importance.
In section 7.7 the Frobenius automorphism of a prime ideal is introduced. This is
a first step towards class field theory: in the abelian case it connects an ideal to
an automorphism of the extension.

7.1 Ramification index, residue class degree

Our aim is to generalize Theorem 3.4 to the relative case: for L : K an extension
of number fields an analogous theorem on the splitting of a p € Max(Ok) in L. In
fact, we will consider the even more general situation of an extension of a Dedekind
domain.

For this section we fix the following:

R a Dedekind domain,
K the field of fractions of R,
LK a finite separable field extension,
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n the degree of L : K,
S the integral closure of R in L.

By Theorem 2.43 the ring S is a Dedekind domain. So for each p € Max(R) the
ideal p.S of S has a unique decomposition as a product of prime ideals of S.

7.1 Lemma. Let q € Max(S) and p =qN R. Then p € Max(R) and q | pS.

PROOF. Since q is a prime ideal of S, the ideal p is a prime ideal of R. It is not
the zero ideal: for 0 # o € q we have N (a) € ¢ N K*. Because q D p we have
q 2 pS and so, since S is a Dedekind domain, q | pS. O

7.2 Definitions. A q € Max(S) is said to be above p if N K = p. It is then also
said that p is below q. For q € Max(S) above p € Max(R) the number vy(pS) is
called the ramification index of q over K. By Proposition 1.36 and Lemma 2.44
S is a finitely generated R-module, so the field extension S/q : R/p is finite. Its
degree is called the residue class degree of q over K. Notations: ex(q) = vq(pS)
and fx(q) = [S/q: R/p].

Thus the ideal p.S of the Dedekind domain S has a factorization

pS =[] ax@, (7.1)
qlpS

where the product is taken over the q € Max(.S) above p.

For a tower of field extensions it follows directly from the definitions that we have
the following (exercise 3).

7.3 Proposition. Let also M : L be a finite separable field extension and T the
integral closure of R in M. Then M : K is a finite separable field extension and T
is the integral closure of S in M. Let q € Max(T'). Then

ex(q) =er(q)ex(@nS) and fx(q) = fr(q)fx(anS). O

For P a collection of maximal ideals of R, the ring Rp is a Dedekind domain and
so is its integral closure in L. For the collection @ of all maximal ideals of S above
the maximal ideals in P the ring Sg is a Dedekind domain and is the obvious
candidate to be the integral closure of Rp in L, but this still requires a proof. First
some lemmas.

7.4 Lemma. Let p be a mazimal ideal of R and v € S such that v ¢ q for all
mazimal ideals q of S above p. Then NL(v) ¢ p.

PrROOF. Let M : K be the normal closure of L : K and T the integral closure
of S in M. Then ~ is not in any of the maximal ideals of T" above p. Because
NM () = NE(y)M:]] we may assume that L : K is a Galois extension. In that
case we have N&(v) = [, o(7), where the product is over all o € Gal(L : K).
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Suppose N£ () € p. Then for any q above p we have N% () € q. This implies that
a(v) € q for some o. But then v € 07 !(q). Contradiction. O

7.5 Lemma. Let p be a maximal ideal of R and @ the collection of primes of S
above p. Then Sg = R,S.

PROOF. From Ry, S C Sq follows that R,S C Sq. Let v € Sq. Then vS = { for
ideals a, b of S such that vq(b) = 0 for all g € Q). By Lemma 2.28 there exists an
ideal ¢ of R such that ¢ is in the inverse ideal class of b and vq(¢) = 0 for the finitely
many ¢ in . Then ac and bc are principal ideals, say ac = S and bc = 55 with
a,f€8S. ThenyS = ¢ =5 = %S and vq(8) = 0 for all q € Q. Hence v = %
with v € S*. Let 01, ...,0, be the K-embeddings of L in a normal closure of L : K
and take o to be the identity on L. Then N% (8) = 36, where § = a3() - - - o0 ().

So

av avd
’}/ = — = .
B Nk(B)
Then avé € S and by Lemma 7.4 N%(3) ¢ p. Hence v € R, S. O

7.6 Lemma. Let A and B be R-submodules of L such that R,A C R,B for all
p € Max(R). Then A C B.

PrROOF. Let oo € A. For each p € Max(R) there exists an 7, € R\ p such that
rpoe € B. The ideal of R generated by all r, is the unit ideal. So there are x, € R
such that all but a finite number of them # 0 and 1 = Zp ZpTp. Multiplying by «
yields

aszprpaeB. O
p

7.7 Theorem. Let P be a collection of mazimal ideals of R and @Q the collection of
all mazimal ideals of S above the mazimal ideals in P. Then Sg = RpS. Moreover,
Sq is the integral closure of Rp in L.

PrROOF. We apply Lemma, 7.6, using the Dedekind domain Rp instead of R. Both
Sq and RpS are Rp-submodules of L. The maximal ideals of Rp are the ideals
pRp with p € P. Note that the localization of Rp at pRp coincides with the
localization of R at p. Denote the collection of maximal ideals of S above p by Q.
By Lemma 7.5 we have R,S = Sg,. Let p € P. Then

RySqg = RySSq = Sq,5¢ = Sq, = RpS = RyRpS.

The ring Sg is integrally closed and the elements of RpS are integral over Rp. So
Sq is the integral closure of R, in L. O
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A generalization of Theorem 3.4:

7.8 Theorem.
> ex(a)fx(a) = [L: K],

alps
the sum being taken over all maximal ideals q of S above p.
PROOF. Let @ be the set of maximal ideals of S above p. By Theorem 7.7 (or

Lemma 7.5) the ring Sq is the integral closure of R, in L. The factorization (7.1)
becomes

pSo = [ (aSq) <. (7.2)
qlpS

By Corollary 6.27(i) we have commutative squares with horizontal ring isomor-
phisms

S/q —"= So/aSq S/pS — Sq/pSq
R/p ——— Ry/pR, R/p ——— Ry/pR,

From the first square it follows that the dimension of the R,/pR,-vector space
Sq/aSq is equal to the dimension of the R/p-vector space S/q. The second square
tells us that the dimension of the R,/pR,-vector space Sq/pSq is equal to the
dimension of the R/p-vector space S/pS. The ring R, is a discrete valuation ring
and in particular a principal ideal domain, so by Corollary 1.38 the latter dimension
equals n.

For every ideal a | pSg the ring Sg/a is an Ry-module and also a homomorphic
image of the R, /pRy-vector space S /pSq. Therefore, Sg/a is an R, /pR,-vector
space as well. The theorem follows by repeated application of Proposition 2.17
using the identity (7.2). O

7.9 Definitions.

e p is said to remain prime in L if fx(q) = n for some q € Max(S) above p.
By Theorem 7.8 q is the unique prime ideal of S above p.

e p is said to ramify in L if ex(q) > 1 for some q € Max(S) above p. It totally
ramifies in L if ex(q) = n for some q € Max(S) above p. If this is the case,
then by Theorem 7.8 q is the unique prime ideal of S above p.

e p splits completely in L if ex(q) = fx(q) = 1 for all ¢ € Max(S) above p. By
Theorem 7.8 there are exactly n such prime ideals q.
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e For R/p of characteristic p # 0: a q € Max(S) above p is said to be wildly
ramified over K if p | ex(q). Otherwise q is called tamely ramified over K.

Note that with this definition unramified implies tamely ramified. As this ter-
minology suggests, wild ramification is much more difficult to handle than tame
ramification.

Next we derive a generalization (Theorem 7.12) of the Kummer-Dedekind Theorem
(Theorem 3.6).

7.10 Lemma. Let R be a discrete valuation ring. Suppose there is a9 € S such that
S = R[Y] and let f € R[X] be the minimal polynomial of ¢ over K. Let g € R[X]
be a monic polynomial such that g € (R/p)[X] is an over R/p irreducible divisor
of f € (R/p)[X]. Then q=pS + g(9)S is a mazimal ideal of S above p.

ProoF. The surjective ring homomorphisms

(R/p)[X] RX] S

>

>
—~

<
~

h
induce isomorphisms
(R/p)[X]/(g) «—— R[X]/(pRIX] + gR[X]) ——— S/q.

Since g is irreducible over R/p, the ring on the left is a field. It follows that S/q is
a field and hence q is a maximal ideal of S. O

7.11 Proposition. Under the assumptions and in the notations of Lemma 7.10: let
f =397 ---gE be the factorization of f, where the polynomials g; € R[X] are monic
such that g, is irreducible over R/p. Then the factorization of pS into mazimal
ideals of S is

pS =ay'--ar,
where q; = pS + g;(9)S. The residue class degree of q; over R equals deg(g;).
Proor. By Lemma 7.10 the g; are maximal ideals of S. Their residue class degree
equals [(R/)[X]/(,) : R/p] = deg(g,). We have

a7 a7 = (b5 + g1 (D)S) - (pS + 4,(9)S)"
CpS+gi(0)" - g (D)5 =pS+ f(9)S = pS.

For i # j the maximal ideals q; and q; are different: take a(X),b(X) € R[X] such
that a(X)g,(X)+b(X)g,(X) = T € (/p)[X]. Then a(9)g;(9)+b(9)g;(0) € 1+pS

and so 1 € q;+q;. Since e1 f1+---+e, fr = 1 deg(g1)+- - -+e, deg(g,) = deg(f) =
[L : K], by Theorem 7.8 we actually have an equality: pS = q7' ---q¢". O
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7.12 Theorem. Let ¥ € S be such that L = K (V) and p € Max(R) such that Ry[J]
is the integral closure of Ry, in L. Let f be the minimal polynomial of ¥ over K and
=97 g% the factorization of f € (R/p)[X] with g1, ..., g, monic polynomials
over R. Put q; = pS + gi(¥)S for i = 1,...,r. Then the ideals q1,...,q, are
different maximal ideals of S and the factorization of the ideal pS in the Dedekind
domain S is

pS =ay'--ar
The residue class degree of q; over R is equal to deg(g;).
PROOF. Let @ be the set of maximal ideals of S above p. Then S = R,[0]. By
Proposition 7.11 the factorization of p.Sg is

pSq = (pSq + g1(9)SQ)" -+ - (pSq + 9:(9)Sg) .

Restriction of the ideals to the ring S yields

pS=qy'---qp,
where q; = (pSg + gi(9)Sg) NS = (pS + gi(9)5)So N S = pS + ¢:(9)S. O
Of course it depends on the element ¥ € S to which of the maximal ideals p of R
the theorem is applicable. In any case the theorem is applicable to all but a finite
number: for d = disc(f) € R we have by Proposition 1.36 that d - R[] C S, so the
theorem applies to all p € Max(R) with d ¢ p, i.e. all p for which f € R/p[X] has

no multiple roots. It is possible that there is no 9 € S such that S = R[4], or even
for a given p that there is no ¥ € S such that Sg = R,[v] (exercise 5).

For L : K a Galois extension the following generalizes Theorem 3.11. The proof is
a straightforward generalization.

7.13 Theorem. Let L : K be a Galois extension. Then the group Gal(L : K)
operates transitively on the set of prime ideals of S above p.

Proor. Put G = Gal(L : K). Let q and ¢’ be a prime ideals of S above p.
Suppose o(q) # ¢ for all 0 € G. By the Chinese Remainder Theorem there is an

a € S such that
0 (modq’),
o=
1 (modo(q)) forall o€ G.

Then a ¢ o(q), that is 0~ () ¢ q, forall 0 € G. So Nk (a) =[[,cqo(a) € g 2 p.
However, N&(a) € ¢ N K = p. O

Again we have:

7.14 Corollary. Let L : K be a Galois extension. Then all prime ideals of S above
p have the same ramification index over K and they also have the same residue
class degree over K. O

For Galois extensions the following terminology will be used.
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7.1 Ramification index, residue class degree

7.15 Definitions and notations. Let L : K be a Galois extension. The ramifi-
cation index of p in L is the ramification index ek (q) of any of the q € Max(5)

above p. Notation: e,(J ) = = ek (q). Similarly we have the residue class degree féL)

of p in L The number of q above p is often denoted by r,(JL). Then Theorem 7.8
reads rp L)f(L) [L: K].

7.16 Example. In chapter 3 the splitting behavior of

prime numbers in cyclotomic fields was studied (Theo-

rem 3.16). Proposition 7.4 provides an alternative way / \

for this. Let m € N* with m > 2, p a prime number  Q((,-) Q(Cmy)
and m = p"mg with p 4 mo. The prime p totally ram- \ /

ifies in Q(Gpr), s0 e ") = [QGr) : Q] = ¢(p")- By

Proposition 3.14 f; (Qmo)) _ f, where f is the order of

P in (Z/mo)*. The prime number p does not ramify in

this subfield and the number of prime ideals of Z[(,,] above p is p(mg)/f. By
Proposition 7.4 and Corollary 7.14

Q(Cm Q(¢m p” m
r{Qma)) | 7(@Gm)) FLREmo) FLREm) and e(Qr)) | e@Gm),

and because

o(m) = @(;”0) o(p7) - f | P @) ) — [((,0) < Q)

we have equality in all three cases.

7.17 Example. Let L = Q(a,(3), where o = /2. Then Gal(L : Q) = S3. Tt is
generated by o and 7 defined by

o(a) = Ga, and 7(a) =
o(() =G () = G-
By the Galois correspondence L has a unique quadratic subfield and three (pure)
cubic subfields:
=Q(G), L"=Q(a), L7 =Q(¢Fa) and L7 =Q(Ga)-

Application of relative traces to a v € Of, yields:

v+o(v) +0*(7) € Z[¢],
v+ 7(7v) € Zla],

v+ o07(y) € Z[Gal,

v+ 0?1(7) € Z[(sal.
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7 Extensions of Dedekind Domains

So 37+ N§(v) € Z[Cs] + Z[a] + Z[¢30] + Z[(3 o] and hence 3y € Z[(3,]. The prime
number 3 totally ramifies in both Q(¢3) and Q(«). Since the degrees of these fields
are relatively prime, the prime number 3 totally ramifies in Q((s5,a) = L, say
(3) = p%, where p is the unique prime ideal of Oy, above 3. From p? = (1 + 2¢3)
and p? = (a+ 1) follows that p is the principal ideal generated by § := %

We compute Op. Let 8 = % + %Cg with 8y, 81 € Z[«]. From
B€OL < Trgo)(B), Ni (B) € Zla]
follows that g € Oy, if and only if
2080 — B1 € 3Z[a] and B2 — Bofi + B € 9Z]al.
Let 81 = 28y — 37 with v € Z[a]. Then
B85 — Bobr + BT = 365 — 9Boy + 9°.

So 32 € 9Z|a] and hence By € (a + 1)?Z[a] and 1 = 26y — 37 € (o + 1)*Z]a].
Put ’%" = 22 and % = I with 49,71 € Z[a]. Then

a+1 a+1
"o gi! Yo 2’}/0
= = 0 — 'y — 6_ a.
b= gt S = ot ta 1% 76 =20 -G

Hence, (4, ad, a8, (3, a3, a?(3) is an integral basis of L. The identities
ad=1+2(3—8 and o6 =a+2al;—ald
imply that also (1, «, d, (3, a3, a?(3) is an integral basis. Since
30 =(a? —a+1)(1+2G)=1—a+ 23 —20Ga+ 2002,
we have for the discriminant of L (using Proposition 1.33):
disc(L) = disc(1, v, 6, (3, a3, &*(3) = & disc(1, o, 0?, (3, a3, @°(3)
= 1 disc(Q(a))* disc(Q(¢3))* = $(—4-27)*(-3)* = —2* . 3".

Because the discriminant of this field of degree 6 is small, the Minkowski bound
is (very) small, i.e. less than 6. The only prime ideal of norm < 5 is the principal
ideal p, so the ring Oy is a principal ideal domain.

Let’s compute Oj. Taking relative norms instead of relative traces yields:
(O1)* € Z" - Z[G]" - Zlo]" - ZlGsa]" - Z[GGa]" = (=C3,a = 1, Gz — 1),
Let v € O7. Then
V= (=G)" (@ = 1) (Ga — 1)*
with ko, k1, ke € Z. We look for units v ¢ (—(5,a — 1,{sa — 1). So we can assume
that ko, k1,k2 € {—1,0,1}. Clearly u(L) = (—(s), so k1 and ka are not both 0.

Using the action of the Galois group on O} together with z +— z~! it suffices to
consider four cases:
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7.1 Ramification index, residue class degree

(1) v®* = a — 1. There is no such v, since otherwise a — 1 would not be a
fundamental unit of Q(«).

(2) v3 = (3(a—1). Then (v7(v))® = (o — 1)? and this also contradicts the fact
that a — 1 is a fundamental unit of L.

(3) v3 = v L. The elements o + 1 and (3a + 1 both generate the ideal p? of

Or. So W'H € O35. We compute its cube:

(C3a+1>373C§062+3C3OZ+37 a—1
a+1/)  3a24+3a+3  (Ga—-1"

(4) v® = (3725, This is not possible in L, since in combination with (3) it

would lead to the existence of a primitive 9-th root of unity in L.

So the group generated by the units of proper subfields is of index 3 in O and

C30[ +1

OF = <— a—1, >

L G, at1

In this example the prime 3 totally ramifies in L: (3) = p®. For § we have v, (d) = 1
(and even p = (9)). Its minimal polynomial over Q is easily computed:

52:(1+2C3)2=— 3 __gatl  a+l
(a4 1)2 (a4 1)2 (a+1)3 a?+a+1

—(a+D(a—1)=—a?+1

and so
(52 — 1)3 =_—af = 4.

Hence the minimal polynomial of § over Q is
X0 —3X"+3X? +3.
It is an Eisenstein polynomial:
7.18 Definition. A polynomial
f(X)=X"4+u X" '+ 4+a,1X +a, € R[X]

is called a p-polynomial if aq,...,a, € p and an Fisenstein p-polynomial if, more-
over, a, ¢ p>.

Eisenstein polynomials are irreducible. More precisely:

7.19 Lemma. Let f be an Eisenstein p-polynomial. Then f is irreducible over K.

153



7 Extensions of Dedekind Domains

PROOF. Let L be a splitting field of f over K. The zeros of f in L are integral and
so they are elements of S. It follows that monic divisors in K[X] of f have coeffi-
cients in R. By reduction modulo p it is easily seen that divisors of p-polynomials
are p-polynomials as well. The constant term of a product of two p-polynomials is
divisible by p? and is, therefore, not an Eisenstein p-polynomial. O

For total ramification we have the following characterization in terms of a minimal
polynomial:

7.20 Theorem. The maximal ideal p totally ramifies in L if and only if there
exists a 9 € S such that L = K(¥) and the minimal polynomial of 9 over K is an
Fisenstein p-polynomial.

PROOF. Assume that p totally ramifies in L, say pS = q" with q € Max(.S). Take
¥ € S such that vg(¥) =1 and let

fX)=X"+a X" '+ - +a,_1X +a, € R[X]
be the characteristic polynomial of ¢ over K. Then
9" = —(alﬁ"_l + it a9+ ay)
and for 1 < j < n with a; # 0 we have
vg(a;9" ) =n-vy(a;) +n—j = —j (modn),
all different modulo n. So by Corollary 6.6
vq(alﬁn_l +- o tap—19+a,) = 11;1;1"71 ~vp(ay) +n—j.
If vy(a;) = 0 for some j, then vg(a19"~ ! + -+ +a,) < n—j < n. However,
vq(¥") = n. It follows that vy,(a;) > 0 for all j, that is f is a p-polynomial. Since

Vg (0" + an) = vg(a1 9"+ + a,19) r<r§1£1nn “vp(aj) +n—j>n

B

we have vq(a,) = n, that is vy(a,) = 1. So f is an Eisenstein p-polynomial.

Conversely, let L = K(¢) with ¢ € S and let the minimal polynomial
fX)=X"4+a X" '+ 4+a, 1 X +a, € RIX]

of ¥ over K be an Eisenstein p-polynomial. Let q be a prime ideal of S above p.
Then 9 € q because

9" = —(a 9"+ a,_ 19+ a,) €pS.

Put e = ex(q). We have to prove that e = n. Since vq() > 1, we have
vq(ajﬁn_j) >e+1 for 1 <j < n. The identity

9" +a, = (9" + - 4 ap_10)

yields vg(9™ + an) > e+ 1 and since vg(a,) = e, because f is an Eisenstein p-
polynomial, it follows that vq(9"™) = e. So n | e and, therefore, e = n. O
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7.2 Ramification and discriminant
Note that the ¢ in the Theorem can be any element of S with vq(¢) = 1, where q
is the prime ideal above p.

Locally we have:

7.21 Theorem. Let R be a discrete valuation ring. Suppose that p totally ramifies
in L. Then S = R[J] for any ¥ € S with vq(9) = 1 for q the prime ideal of S above
p.

PrROOF. By (the proof of) Theorem 7.20: L = K(¢). Clearly R[] C S. Let
co,---,cn—1 € K such that

co+ecd+ -+, 9"t es.

Then to prove that vy(c;) > 0 for ¢ = 0,...,n — 1. Suppose that v,(c;) < 0 for
some 4. Let ¢ be the least such that v,(c;) < 0. Then

G+ 49" e S

Since i < n, we have 57 € S and multiplication by this element yields

Ci% +Ci+17T+CZ'+27T19+"' es

and so ¢; 5 € S. However,

Uq(ci%):Uq(ai)+71—1§—n+n—1:—1. O

7.2 Ramification and discriminant

This section is about a generalization of Theorem 3.30. In this section

is a Dedekind domain,
the field of fractions of K,

K a finite separable field extension,

n -~ XX

the integral closure of R in L.

Since R is in general not a principal ideal domain we need a more general notion
of discriminant. The discriminant of S over R will not be an element of R, but an
ideal of R:

7.22 Definition. The discriminant of S over R (or the R-discriminant of L) is the
ideal of R generated by all disc(ay, ..., ), where (aq,...,q,) is a K-basis of L
with aq,...,a, € S. Notation: dg(L).
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7 Extensions of Dedekind Domains

Note that the ring S is determined by R and L. This is reflected in the notation
Or(L). The discriminant of a number field K is disc(a1, . . ., an), where (aq, ..., an)
is an integral basis of K. The Z-discriminant of K is the ideal (disc(au, ..., axn)) of
Z. In the terminology for number fields, as will be explained in Terminology 7.31:
g (K) = (disc(K)).

Under localization the discriminant behaves as expected:

7.23 Proposition. Let P C Max(R) Then

DR(L)RP = 0Rp (L)

ProOOF. Let @ be the set of maximal ideals of S above maximal ideals in P.
The ring S¢q is the integral closure of Rp in L (Theorem 7.7). If the elements
of a K-basis of L are in the subring .S, then they are in Sg, so the generators of
the ideal 0z (S) of R form a subset of the generators of the ideal g, (L) of Rp.
Hence 9g(L)Rp Cdg,(L). Let a1, ..., be a K-basis of L with a1, ..., a, € Sg.
We have to show that disc(ay,...,a,) € 0r(L)Rp. By Proposition 6.25 this is
equivalent to v, (disc(aq, ..., a,)) > v,(0r(L)) for all p € P. For a given p € P
take t € R such that v,(t) = 0 and tay,...,ta, € S. Then disc(ta,...,ta,) =
t?" disc(av, . . ., @) and, therefore, vy (disc(a ..., ap)) = vp(disc(taq, ..., tay,)) >
vp (O(L). O

It follows that the discriminant is determined locally:
7.24 Corollary. 95(L) = [[ &, (L)NR.
peMax(R)
ProOOF. For p € Max(R) denote pR, by p’. By Proposition 6.23, Corollary 6.26
and Proposition 7.23 we have for all p € Max(R):
Up(Or, (L) N R) = vy ((Or, (L) N (R)rp) = vpr (Or, (L)) = vy Qr(L)Ry)
= 5, (0(L). O

7.25 Theorem. Let (a1,...,ay) be a K-basis of L with ay,...,a, € S. Then
(a1, ...,ap) is an R-basis of S if and only if 0r(L) = disc(ay, ..., an)R.

PROOF. Suppose (ai,...,q,) is an R-basis of S. The ideal dr(L) is generated
by all disc(f1, ..., 3,) such that (B1,...,5,) is a K-basis of L and fB1,...,0, € S.
Let (B1,--.,0n) be such a basis. Then by Proposition 1.27

disc(B1,. .., Bn) = det(M)*disc(ar, . . ., ay),

where M is the transition matrix from (f51,...,08,) to (a1,...,a,). Because
(a1,...,0p) is an R-basis of S, the entries of M are in R. It follows that
disc(f1, ..., Bn) € disc(ay, ..., a,)R. Hence (L) = disc(ay, ..., an)R.
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7.2 Ramification and discriminant

For the converse suppose that dr(L) = disc(aq,...,a,)R. Let p € Max(R) and
Q the set of prime ideals of S above p. Then by Proposition 7.23 g, (L) =
Or(L)R, = disc(ai,...,an)Ry. Since R, is a discrete valuation ring, Sg has an
Ry-basis, say (B, ..., 3,) and for this basis we have disc(81,...,5,)Ry = 0g, (L).
Hence disc(av, ..., an)Ry = disc(B1, .. ., Bn)Ry. Again by Proposition 1.27

disc(au, ..., ap) = det(M)? disc(B1, . . ., Bn),

where M is the transition matrix from (aq,...,ay) to (B1,...,8,). It follows that
det(M) € Ry;. This implies that (a1,..., ;) is an Ry-basis of Sg. Let z € S.
Then there are unique by,...,b, € K such that z = bja; + -+ 4 bya,. Since
(a1,...,ay) is an Rp-basis of Sg, we have bi,...,b, € R,. This holds for all
p € Max(R). Hence by,...,b, € R and so (aq,...,ay,) is an R-basis of S. O

In particular we have the following.

7.26 Corollary. Let ¥ € S be a primitive element of L : K and f € R[X] the
minimal polynomial of 9 over K. Then dg(L) = disc(f)R if and only if S =
RY). 0

The following generalizes Lemma 3.29.

7.27 Lemma. Let p € Max(R) and ay,...,a, € S such that (aq,...,0,) is an
R/p-basis of S/pS. Then p | 0r(L) if and only if disc(ay, ..., an) € p.

PROOF. Put v,(d0r(L)) = k. Then dg(L)R, = p*R,. Proposition 7.23, with
P ={p} gives

p|O0r(L) <= pR, |O0r(L)R, <= pR, |0g,(L).

Let @ be the set of maximal ideals of S above p. The ring R, is a principal
ideal domain. So L has a K-basis (81, ..., [,) which is an R,-basis of Sg and by
Theorem 7.25 we have

Og, (L) = disc(B1,. .., Bn)Rp.

Let T be the transition matrix from (o, ..., an) to (B1,...,0s). Then T € My (R))
and
disc(av, ..., ap) = det(T)*disc(By, . . ., Bn)-

Since (a7, ...,%,) and (Bi,...,[B,) both are R,/pRy-bases of Sq/pSq, we have
det(T') € R;. So we have

og, (L) = disc(B1, ..., Bn) Ry = disc(a, ..., o) Ry.
Therefore,

p|or(L) <= pR, |0p, (L) <= disc(a1,...,a,) EPR,N R =1p. O
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7 Extensions of Dedekind Domains

The proof of Theorem 3.30 now easily generalizes to a proof of the following theorem
using Lemma 7.27.

7.28 Theorem. Let p € Max(R). Then

p ramifies in L <= p | or(L).

ProOOF. First assume that p does not ramify in S, say pS = q1---q, with
qi, - - - , qr the different maximal ideals of S above p. Put f; = fr(q;) fori=1,...,7r.
As in the proof of Theorem 3.30 one constructs a K-basis

(all,...,alfl,ozgl,...,azfz,... ...,arl,...,arfr)

of L consisting of elements of S such that (a;1, ..., a5y, ) is an R/p-basis of S/q; for
i =1,...,r; moreover, a;jax; € pS, and so Trf((aijakl) € p. Then again for the
matrix A = (Trk (a;;jon)) we have det(A) = det(A;)-det(Ag) - - - det(A,) (mod p),
where the A; are the f; x f;-matrices (Trf((aijail)). Since the a1, ..., q;p, form
modulo p a basis of S/q;, we have in R/p:

Trf((ozijozik) = Tr(Maijaik> = Tr(Mm>
So det(A;) is the discriminant of the R/p-basis of S/q;. By Corollary 1.30 it follows
that det(A4;) # 0, that is det(A;) ¢ p. By Lemma 7.27 we have p {or(L).

Assume now that p ramifies in S. Then there is a q € Max(S) above p such that
pS = qa, where a is an ideal of S with q | a. Choose an « € a\ pS. The ring S/pS
is an R/p-vector space of dimension n = [L : K]. The image @ of « in S/pS is not
0, so there are a,...,a, € S such that (@y,...,@,) is a basis of the R/p-vector
space S/qS and «; = a. The discriminant of (a,...,a,) is the determinant of
the matrix (Trk (a;a;)). As in the proof of Theorem 3.30 the entries in the first
row of this matrix are all in p. Therefore,

disc(aq,. .., o) = det(Tr(asa5)) € p.
From Lemma 7.27 follows that p | 0r(L). O

7.29 Proposition. Let R be a principal ideal domain, Ly and Ly intermediate fields
of L: K such that L =L1Ly and [L: K| =[L; : K][La : K|. Then

(Or(L1) +0r(L2))S C S15.
PrOOF. Let S; and Sy be the integral closures of R in L; and Lo respectively.
By Corollary 1.38 there are K-bases ai,...,on, and Bi1,...,08,, of L1 and Lo
respectively such that S; = Ray + -+ + Ray,, and So = RB; + --- + RB,,. Put

dy = disc(ay, . .., an, ) and do = disc(B1, - - ., Bn, ). By Theorem 7.250g(L1) = Rd;y
and 0g(L2) = Rdsy. As in the proof of Theorem 1.50 we have

dlS Q 5152 and ng Q S152. O
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7.30 Theorem. Let Ly and Lo intermediate fields of L : K such that L = LiLs
and [L : K| = [Ly : K][La : K]. Suppose that p € Max(R) ramifies in L1 and does
not ramify in Lo. Then

vp(R(L)) = vp (0 (L1)) =K.

PrOOF. Let S; and Sy be the integral closures of R in L; and Ly respectively.
First we prove the theorem under the extra assumption that R is a discrete valua-
tion ring and use the notations in the proof of Proposition 7.29. By Proposition 1.33
the discriminant d of the K-basis of the products a;3; equals d72d3*. By Theo-
rem 7.28 9r(L2) = (1), so Proposition 7.29 implies that S = 5153 and it follows
that the elements «;3; form an R-basis of S. We have

0r(L) = Rd = (Rdy)"* (Rdy)™ = (0r(L1))"* (0r(L2))" = (0r(L1))".

The general case is done by localization. Let P = {p} and Q, @1 and Q5 the sets of
prime ideals of respectively S, Sy and Sy above p. Then dg, (L2) = 0r(L2)Rp = R,.
The ring R, is a discrete valuation ring, so we have

Or(L)Ry = (0r(L1))" Ry.
The theorem follows from Proposition 6.29. 0

7.31 Terminology for number fields. For a number field extension L : K the
discriminant of L over K is the discriminant dp, (L). Notation: dx(L). So we
have: p € Max(Of) ramifies in L if and only if p | 95 (L).

7.32 Example. In Example 7.17 it is shown that the prime number 3 totally
ramifies in L = Q(a, (3), where o = /2. The prime ideal of O above 3 is the
principal ideal p = (). On page 153 the minimal polynomial f of § over Q has
been computed: f = X% —-3X*+3X?2+3. By Theorem 7.21, Proposition 7.23 and
Corollary 7.26 we have

vz(disc(L)) = vs(disc(f)).

Indeed, by the computation in Example 7.17: vs(disc(L)) = 7 and

disc(f) = —N§(66° — 126% + 65) = 6° - N§(0) - N§(6* — 26 + 1)
=6°-3-N§(0> —1)> =2°-37 - N§(6 — 1)* - N§(6 + 1)> = 2" - 37.

(Of course 31 N§(6* — 262 4 1), because 6* — 26> +1 ¢ p.)

In Example 7.17 the discriminant of L was computed using the computation of an
integral basis. For a computation of the discriminant it is not necessary to have
an explicit integral basis. One can argue as follows. Since 2 and 3 are the only
prime numbers ramifying in L, the discriminant is of type £2*3!. The sign is —1
by Proposition 1.46, the above computation shows that [ = 7 and by Theorem 7.30
we have k = 2 - vy(disc(K)) = 4.
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7.3 Decomposition groups and inertia groups

We consider the splitting of a prime ideal in a Galois extension. For this section
we fix the following notations:

R a Dedekind domain with the property that

all its residue class fields are finite,

K the field of fractions of R,

L: K a Galois extension,

G =Gal(L: K) the Galois group,

S the integral closure of R in L,

q € Max(S) a maximal ideal of S,

p=qNK the prime ideal of R under q,

Q the set of prime ideals of S above p,

f= féL) the residue class degree of p in L,

e= e,(JL) the ramification index of p in L,

r= r,(,L) the number of prime ideals of S above p,

G = Gal(S/q: R/p) the Galois group of the residue class field extension.

The extension S/q : R/p is a Galois extension since it is an extension of finite fields.
For R the ring of integers of a number field the condition of residue class fields being
finite is satisfied. Without this condition it still follows that this extension is normal
(exercise 1). Therefore, most of the results in this section hold under the weaker
condition of residue class fields being perfect. In section 7.7, however, it is essential
that the residue class fields are finite.

By Theorem 7.13 the group G operates transitively on (. Consequently, we have
the equality of ramification indices and of residue class degrees of the prime ideals
in @ over K (Corollary 7.14).

7.33 Definition. The stabilizer of q under the action of G on the set @ is called
the decomposition group of q over K. Notation: Z = Zk(q). So,

Zr(q) = Stabg(q).

The intermediate field L? is called the decomposition field of q over K. (The Z
stands for Zerlegung, which is German for decomposition.)

7.34 Proposition. #(Zk(q)) =ef.

PrOOF. The map
G—Q, o—o(q
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7.3 Decomposition groups and inertia groups
is surjective by the transitivity of the action of G. It induces a bijection from the
set of left cosets of Zx(q) in G to the set of primes above p. Hence,

(G:2)=nr.
From n = ref it follows that #(Zk(q)) = ef. O

7.35 Proposition. rgg) =1, effg) = e,(JL) and féL) = éL). In a diagram:

L q
ramification index = e
ef residue class degree = f
L? q”
, ‘ ramification index = 1
residue class degree =1
K p

PRrROOF. For all 0 € Z we have o(q) = q. Since Z acts transitively on the set of

primes of L above qZ, it follows that Té? = 1. The proposition follows from

L:LZ)=#(2)=ef, [L:L7] =212, el e and f7|f O

The elements of Zx(q) are the automorphisms ¢ € G which induce an automor-
phism of S/q. The map
Zrk(q) =G, oo

clearly is a group homomorphism. Its kernel consists of all 0 € Z with @ = 1, that
is o(a) = a (mod q) for all « € S.

7.36 Definition. The subgroup of Z of all o € Z with
o(la) =« (modq) forallae S

is called the inertia group of q over K. Notation: T' = Tk (q). (Tragheit is German
for inertia.)

Since T is the kernel of the group homomorphism Z — G, it is a normal subgroup
of Z. In Theorem 7.40 we will see that the homomorphism is surjective. Decom-
position groups and inertia groups of prime ideals above the same prime ideal of
the base field are related as follows.

7.37 Proposition. Let 0 € G. Then Zk(0(q)) = 0Zk(q)o~t and Tk(o(q)) =
oTk(q)o L.
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Proor. Forall 7 € G:
T € Zk(o(q)) < To(q) =0(q) < o 'ro(q) =4

— o 'ro€eZk(q) = TE€0ZK(q)o !

and

TE€TK(0(q)) < 7(a) =a (modo(q)) for all a € S
— o '7(a) =0} (a) (modq) for all « € S
— o '70(a) = a (modq) for all a € S

— o't €Tk(q) <= 7€ oTk(q)o™ " O

It follows that the decomposition group only depends on the prime ideal p if this
group is a normal subgroup of the Galois group. Similarly for the inertia group.

7.38 Definition and notations. If Zx(q) < G, the group Zk(q) is also called the
decomposition group of p in L. Notation Z;L). Similarly, if T (q) < G, the group
Tk (q) is also called the inertia group of p in L. Notation TP(L).

7.39 Lemma. The prime q of LT totally ramifies in L.

PROOF. Since ré? =1 (Proposition 7.35), it remains to show that f{g%) =1, that
is [S/q: ST /qT] = 1. Let a € S and consider

Aa(X) = [T (X — (),
oeT

the characteristic polynomial of a over LY. From o(a) = a (modq) for all 0 € T
it follows that o
Aa(X) = (X —a)*) e (5/q)[X].

Since A, (X) € ST[X] we have in fact
(X —a@)* @) e (sT/qT)[X].

The extension S/q: ST /qT, being an extension of finite fields, is separable. There-
fore, X — @ is the minimal polynomial of @ over ST /q7. Hence @ € ST /q* for all
a€esS. O

7.40 Theorem. The group homomorphism Z — G induces an isomorphism
Z|T = G.
PROOF. The homomorphism Z/T — G is injective by definition of T. By

Lemma 7.39 and Proposition 7.35 we have f;gT) = f,andso #(Z/T) = [LT : L?] >
f- m
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Summarizing:

7.41 Theorem. For the primes p, qZ, q7 and q we have:

L q
ramification inder = e T . .
€ ‘ ‘ residue class degree = 1 (4" totally ramifies in L)
LT q”
f ‘ ‘ ramification index =1 (47 ) ime in LT
residue class degree = f 47 remains prime i
LZ q%
‘ ramification indexr = 1
" ‘ residue class degree = 1
K p 0

7.42 Example. Let L = Q(a,(3) and K = Q, where a = /2, see also Exam-
ple 7.17. There Oy, disc(L) and O3 have been computed. Only the primes 2 and
3 ramify in L. Since G = Gal(L : Q) is not cyclic no prime number remains prime
in L. Let’s look at the factorization of the primes 2, 3, 5 and 7.

p = 2: 2 totally ramifies in Q(a): (2) = (a)®. So 3 | eéL). On the other hand 2
remains prime in Q(¢3). Hence the prime ideal factorization in L is (2) = p3,
where py = (). Since #(T') = egL) =3, we have LT = Q((3). Clearly Z = G
and so L? = Q. The prime 2 remains prime in Q({3) and subsequently totally
ramifies in L.

p = 3: In Example 7.16 it was shown that 3 totally ramifies in L: (3) = (4)%. In
this case G = Z =T and so LT = L% = Q.

p = 5: The prime ideal factorization of (5) in Q(«) is:
(5) = (5,a +2)(5,0% — 2a — 1).

This implies that 2 | f5(L) and féL) # 6. So f5(L) = 2. Take a prime q above the
prime (5, a+2) of Q(a). Then #(T) = el =1, #(2) = #(2/T) = f{ = 2.
Therefore, LT = L and, since 7 € G with 7(a) = o and 7 # 1 satisfies
7(q) = q, we have Z = (7), that is LZ = Q(a). So the prime (5, + 2) of
Q(«) remains prime in L. Note that, however, 5 does not split completely in
L%,

p = 7: 7 remains prime in Q(«) and splits completely in Q({3). So for any of the
two prime ideals of Of, above 7 we have LT = L and L? = Q((3).

7.43 Example. Let L = Q((), p a prime number and m = p"mg with p { my.
According to Theorem 3.16 (or Example 7.16) we have eéL) = (p"). Since p does
not ramify in Q((p,), prime ideals of Z[(,,] above p totally ramify in L and it

follows that LT = Q((m,)-
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For K’ an intermediate field of L : K, the decomposition group and the inertia
group of q over K’ are the intersections of respectively Z and T with Gal(L : K'):

7.44 Proposition. Let H be a subgroup of G. Then Zyu(q) = H N Zk(q) and
Tpu(a) = HNTrk(q).

PrROOF. For a o € G we have:

c€Zu(q) <= o€ Hando(q) =q < o€ H and 0 € Zk(q)

and
0 €Tru(q) < o€ H and (o) = o (mod q) for all a € S
< o€ H and 0 € Tk(q). O
L 7.45 Corollary. Let K' be an intermediate field of L : K.
™~ o Then for Z' = Zk:(q) and T' = Tk:(q) we have
/ ’ ’
v L7 =L?K' and L7 =LTK'.
L”
P PRrROOF. Apply Proposition 7.44 for H = Gal(L : K') and
L ‘ use the Galois correspondence. O
K/
-
K

For L' an intermediate field of L : K such that L’ : K is a Galois extension, the
decomposition group and the inertia group of q N L’ over K are the images of
respectively Z and T in Gal(L' : K). More precisely:

7.46 Proposition. Let N be a normal subgroup of G. Then the isomorphism
G/N = Gal(LY : K), oN ol
induces isomorphisms

Zr(@)/ (NN Zk(a)) = Zk @) and Tk(q)/(NNTk(q)) = Tr(q").

ProoF. Under the group homomorphism

f:G = Gal(LV : K), o o|~
the subgroups Zx (q) and Tk (q) are mapped to Zx (q~) and Tk (q”) respectively.
Indeed, if 0 € Zk(q), then o(q) = q and hence o(qV) = o(q) N (L) =qn LY =
gV, that is f(0) € Zx(q"), and similarly, if ¢ € Tk (q), then o(a) = a (mod q) for
all @ € S, and so also o(a) = a (mod qV) for all a € SV, that is f(0) € Tk (q").
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It suffices to show that the induced homomorphisms
Zx(a) = Zx (@), o= ol
Tk (q) = Tx(aY), o= olpy
are surjective.

Surjectivity for the decomposition groups. Let 7 € Zx(q"). Then thereis a o € G
such that o|,~ = 7. Choose ¢’ € Gal(L : L) = N such that ¢/(q) = o(q). Then

() lol@) =g and (o) lolpy =7
Surjectivity for the inertia groups. Let 7 € Tx(q"). Since we have surjectivity
for the decomposition groups, there is a ¢ € Zk(q) such that o[yy = 7. This
automorphism o induces a ¢ € G with G|gn /v = 7 = 1. It follows that 7 €

Gal(S/q: SN /q"). Choose a ¢’ € N such that ¢/ = &. Then

o) lo e Tk and (67 lo|in =T O
( q L
7.47 Corollary. Let L' be an intermediate field of L : K such / L
that L' : K is a Galois extension. Then for Z' = Zx(qNL’) I
and T' =Tk (qN L") we have ‘ .
L
Y2 =120l and (LT =LTNL. e
(L) () o
PrOOF. For N = Gal(L : L’) we have ‘ 4
~
(L/)Z :(LN)Z :LNZ:LZQLN:LZQL/, (L,)Z/
and similarly for the inertia groups. O o~ K

Decomposition groups and inertia groups are convenient tools when studying the
splitting behavior of a prime ideal in an extension.

7.48 Theorem. Suppose Z 1 G. Let K' be an intermediate field of L : K. Then
p splits completely in K <= K' C L%,

PRrROOF. L7 : K is a Galois extension. By Theorem 7.41 we have el(JLZ) = féLZ) =

1. Hence T,(DLZ) = [L? : K]. So p splits completely in LZ and it does so in any
intermediate field of LZ : K.

Conversely, suppose p splits completely in K’. Put H = Gal(L : K’). Then
eg? =e and f;fl) =f.

Hence,
#(Zpn(a)) = #(2).
By Proposition 7.44 we have H D Z, that is K’ C LZ. O
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7.49 Corollary. Suppose Z < G and T < G. Then p splits completely in L into
primes that remain prime in LT and which subsequently totally ramify in L. [

7.50 Theorem. Let Ly and Lo be intermediate fields of L : K. Then:
a) If p does not ramify in both L1 and L, then p does not ramify in Ly Ls.
b) If p splits completely in both Ly and Lo, then p splits completely in Ly Ls.
PROOF.

a) Put Hy = Gal(L : Ly) and Hy = Gal(L : Ly). Then Gal(L : L1Ls) = HiNH,.
Let p’ € Max(SH1"H2) be any prime ideal above p and choose q € Max(.9)
above p’. Then ex(q1) = 1 and ex(q2) = 1. Hence efﬁl)l = e and egﬁl =e.
Therefore,

#(Tpm () = #(T) and  #(Tpm.(q)) = #(T).

By Proposition 7.44 we have H; O T and Ho O T. Hence H{ N Hy D T. Tt
follows that Tr,1,(q) =T and so ex (p’) = 1.

b) As (i) with Z instead of T. O
7.51 Corollary. Let L : K be the normal closure of a field extension K': K. Then
a) p does not ramify in K' <= p does not ramify in L,
b) p splits completely in K' <= p splits completely in L.
PROOF. The field L is the composition of the fields o(K’), where o € G. O

7.4 The splitting of a prime ideal in an extension

In this section we consider the splitting of a prime ideal in a finite separable ex-
tension. The results will be used in the chapters 8, 15 and 18. A finite separable
extension is a subextension of a Galois extension. So let’s fix for this section the
following notations:

R a Dedekind domain,

K the field of fractions of R,

LK a Galois extension,

K K an intermediate field of L : K,

S the integral closure of R in L,
G=Gal(L: K) the Galois group,

H=Gal(L: K') the subgroup of G corresponding to K,
R =5H the integral closure of R in K,
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q € Max(S) a prime ideal of S,

Z =Zk(q) the decomposition group of q over K,
T=Tk(q) the inertia group of q over K,
p=qNK the prime ideal of R under q.

The splitting behavior of p in K’ will be described in terms of the subgroups H
and Z of G. The group G acts on the right on the set { Ho | 0 € G} of right
cosets of H in G by

(Ho,7) — Hor.

A group homomorphism f: G — S(X) from a group G to the group S(X) of
permutations of a set X corresponds to a left action of G on X: define g-xz = f(g)(z).
A left action is a map

GxX—>X, (g2)—~g-x

such that g+ (h-z) = (gh) -z and 1 -z = z for all g,h € G and z € X. A right
action of G on X is a map

XxG—X, (r,9)—=z-g

such that (z-g)-h=x-(gh) and -1 = z for all g,h € G and = € X. A right
action of a group can be seen as a left action of the opposite group. When we say
that a group acts (or operates) on a set, we will mean, unless indicated otherwise,
that it acts on the left.

The group Z, being a subgroup of G, acts on the right on the right cosets of H in
the same way. Let { Ho | 0 € G}z denote the set of orbits of this action of Z.
The orbit of Ho is denoted by [Ho].

7.52 Lemma. #([Ho]) = (Z : (ZNo 1Ho)).

PROOF. The map Z — [Ho], which sends p to Hop, is surjective and for pq, pa €
Z we have Hop; = Hop, if and only if c"'Hop; = 0 'Hops. So the number of
elements in the orbit of Ho under Z equals the number of left cosets of ZNo ' Ho
in Z. O

7.53 Theorem. The map
G — Max(R'), o~ o(q)NK’
induces a bijection
{Ho|o€eG}z = {qd eMax(R)|¢d NK=p}
and for each 0 € G we have
ex(o(a) NK') fr(o(a)NK') = (Z: (Zno~ Ho)) = #([Ho])
and

ex(o(q)NK')=(T:(TNno 'Ho)).
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PrROOF. The map defined on G factors through { Ho | 0 € G }z: for 7 € H and
p € Z we have

Top(q) NK' =710(q)NK' ' =7(c(q) N K') =0(q) N K".

Surjectivity of the induced map follows from the transitivity of the action of G' on
the set of prime ideals of S above p. For the proof of injectivity, let 1,00 € G
satisfy o1(q) N K’ = 02(q) N K'. The prime ideals o1(q) and o2(q) of S are above
the same prime ideal of R’, so there is a 7 € H such that 701(q) = o2(q). Then
02_17'01 € Z. So 101 = o9p with p € Z. Therefore, Hoy = Hoyp, which implies
that [H(jl] = [HO’Q].

Finally we compute eK(J( )N K')fk(o(q) N K'). It is equal to the quotient
ex(0(q)fx(o(q))/ex (o(q)) fx (o(q)). By Proposition 7.44 we have

ex (0(9)) fx(0(q) = #Zk (0(q)) = #(Zk (o(q)) NH) = #(cZo" ' N H)
=#(Zno 'Ho)

and similarly
ex:(0(q)) = #(T N0~ Ho).

So by Lemma 7.52

/ ex(0(a))fx(o(q)) #(Z)
ex(o(@) N K') filola) N Ky = ST A A = o
= #([Ho])
and
(ol K - @) D) -

ex/(o(q))  #(TNo~'Ho)

The prime ideal g% of SZ has residue class degree 1 over K. If LZ? : K is a Galois
extension, that is if Z is a normal subgroup of G, then p splits completely in LZ.
So in that case the number of prime ideals of SZ above p with residue class degree
1is equal to [LZ : K| = #(G/Z) = (G : Z). In the following proposition this is
generalized.

7.54 Proposition. The number of prime ideals of S above p with residue class
degree 1 is equal to (Ng(Z) : Z).

The group Ng(Z) is the normalizer of Z in G:
Na(Z)={occG|oZo ' =2},

the largest subgroup of G having Z as a normal subgroup.
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PRrOOF. By Theorem 7.53 the splitting behavior of p in LZ is given by the action
of Z from the right on the right cosets of Z in G. The primes of L above p of
residue class degree 1 over K correspond to right cosets Zo fixed by the action of
Z on the right. By Theorem 7.53 and Lemma 7.52 this is precisely the case when
0Zo~! = Z. So this number of right cosets is (Ng(Z) : Z). O

7.5 Ramification groups

Ramification groups are subgroups of the inertia group and provide information
on the structure of the inertia group. They will be used in chapter 9 and also
in chapter 17. In chapter 9 in the proof of the Kronecker-Weber Theorem, which
states that abelian number fields are subfields of cyclotomic fields; in chapter 17
for the proof of the Conductor-Discriminant Formula of class field theory. The
notations used in this section are the same as in section 7.3. In this section the
residue class fields are assumed to be finite.

7.55 Definition. Let q € Max(S) be above p € Max(R) and let ¢ € N. The
subgroup

Vi =Vi(q) = Vi.i(q) = {0 € Zr(q) | o(a) = a (mod q' ') for all a € S'}
is called the i-th ramification group of q over K. (Note that Vj is the inertia group.)

7.56 Proposition. For all i € N we have V;(q) < Zk(q) and Vi1 QV;. There is
an iy € N such that Vi, = {1}.

Proor. Clearly V; < Z, since V; is the kernel of a homomorphism:
V; = Ker(Z — Aut(S/q"™)).

The inclusion V; 1 C V; follows directly from the definition. Since G is finite, there
is an 49 € N such that V; =V, for all ¢ > iy. Let 0 € Z with o # 1. Then there is
an o € S such that o(a) # a. Let k = vq(0(a) — ). Then o(a) —a ¢ q*!, which
implies that o ¢ Vj. Therefore, o ¢ V;,. Hence V;, = {1}. O

So we have a chain of groups
Z>T>VI>Vob>-- >V = {1}

We will study the factor groups V;_1/V; for i € N*. Theorem 6.19 on the unique
representation of residue classes modulo powers of q will be used. Let 7 € S
with vg(m) = 1 and let X be a system of representatives of S7/q7. Since the
inclusion ST — S induces an isomorphism ST /qT = S/q, the set X is a system
of representatives of S/q as well. For each o € S and each ¢ € N there are unique
ag, - ..,a; in X such that

a=ap+am+---+a;rt (modgttt).
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Furthermore we assume that 0 € X, that is 0 is the representative of q. Then for
k with 0 < k <iand o € S we have

vg(la) =k <= ay=---=ar_1 =0and ax #0.

For o € T the element o(7) alone determines to which ramification group o belongs:

7.57 Proposition. Let 0 € T. Then

o0 €V; <= o(r) = (modq"tt).
PROOF. Suppose o(r) = 7 (modq*™!) and let a € S. Then there are unique
agp, ...,a; € X such that
a=ap+am+---+a;r (modg'tt).

We have

o(a) =o(ag+arm+ -+ a;w*) (mod g*t) (since o(q) = q)
=ao +ayo(n) +---+ a;o(r)" (modq*) (since a; € X € ST)
=ap+aym+ -+ a7t (mod gt (since () = )
So o(a) = a (mod q*+!) for all a € S, that is o € V;. O
7.58 Proposition. T/V; is isomorphic to a subgroup of (S/q)*.

PROOF. Let o € T. Then o(7) € q and there is a unique a € X \ {0} such that
o(m) = am (mod ¢?).

So we have a map
f:T—=(S/q)% o—a.

We will show that f is a group homomorphism. Suppose f(o) =@ and f(7) = b
with a,b € X. Then

7(7) = br (mod g?)

o7(m) = o(br) (mod g?) (since o(q) = q)
= bo () (mod g°) (since b € ST)
= bar (mod ¢*) (since f(o) =a).

If c € X with o7(7) = er (modq?), then ab = ¢ and so f(o1) = f(0)f(7).
Furthermore Ker(f) = V3, since o € Ker(f) <= o(n) = 7 (mod ¢?). O

7.59 Proposition. Let i > 2. Then V;_1/V; is isomorphic to a subgroup of the
additive group S/q.
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PROOF. Let 0 € V;_1. Then o(r) = 7 (mod q’). There is a unique a € X such
that ‘ _
o(n) — 7 = ar' (mod q*).
So we have a map
g:%,lﬁs/ch o —a.

We will show that it is a group homomorphism. Suppose f(o) =@ and f(1) = b
with a,b € X. Then

7(r) — 7 = br* (mod ¢ ),

o7(n) — o(n) = o(br") (mod ") (since o(q) = q)
= bo(m)" (mod q' 1) (since b € ST)

or(m) =7 —ar’ = b(m + ar®)’ (mod q*1)
= b’ (mod q**) (since i > 2).

If c € S with o7(7) = 7 + en® (mod q*t1), then a +b = ¢ and so f(o71) = f(0) +
f(7). Furthermore Ker(f) = V;, since o € Ker(f) <= o(r) = r (modq'™t). O
The maps f and g in the proofs of the propositions 7.58 and 7.59 can also be defined

by mapping o to the residue classes of respectively @ and ‘7(:# in the discrete

valuation ring Sq modulo its maximal ideal q.5q.

In case the group Z/V; is abelian, Proposition 7.58 can be strengthened to the
following.

7.60 Proposition. Let Z/V; be abelian. Then T/V; is isomorphic to a subgroup of
(R/p)".

PrROOF. We will prove that the image of the map f: T — (S/q)* constructed in
the proof of Proposition 7.58 is contained in the subgroup (R/p)*. Let ¢ € T' and
put N = #(R/p). Then to prove that f(o)N = f(o), that is a® = a (modp),
where a € X is such that o(7) = am (mod ¢?).

For all 8 € q we have o(8) = a8 (mod ¢?): if 3 = br (mod g?) for a b € X, then
o(B) = o(br) = bo(r) = abr = af (mod g?).

The map Z — G is surjective. Take ¢ € Z such that its image in G is the generator
x> 2V of G. Since ¢ € Z, we have p~1(7) € q and therefore

a(p” (1) = a- 9~} (n) (modq?).
Application of ¢ yields

(o™ )(7) = p(a)m = a7 (mod ¢%).

-1

Since Z/V; is abelian we have (¢op~!)(7) = o(m) (mod q?) and so

a®™ = a (modp). O
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The propositions in this section have consequences for the structure of the groups
Z,T and Vip:

7.61 Theorem. Let p be the characteristic of R/p. Then
(i) The group Vi is a p-group.
(ii) The group Vi is the Sylow p-subgroup of T.
(iii) The group Z is solvable.
Proor.
(i) This follows from Proposition 7.59: the group S/q is a p-group.
(ii) By (i) and Proposition 7.58: pt #(S/q)*.
(iii) The factor groups of the chain

Ze TV >V, ={1}

are all abelian. O
In particular we have:

7.62 Corollary. The prime ideal q of S is wildly ramified over K if and only if the
group Vi is nontrivial. [

The group Vi is also known as the wild inertia group of q over K.

For K’ an intermediate field of L : K, the ramification groups of q over K’ are
simply the intersections of the ramification groups over K with Gal(L : K'):

7.63 Proposition. Let H be a subgroup of Gal(L : K) andi € N. Then Vyu ;(q) =
Vi,i(a) N H.

PROOF. For o € Zk(q) we have

o€V i(q) < o€ Hand o(a) =a (modq™!) for all « € S
<= o€ H and o € Vg,(q). O

7.64 Example. Let p be an odd prime and r» € N*. The prime p is the unique prime
which ramifies in the cyclotomic field L = Q((,~). In fact, p totally ramifies in L
and the unique prime ideal of O, = Z[(,-] is the ideal p = (1 — ;). We compute
the ramification groups of p over Q. The group G = Gal(L : Q) is isomorphic to
the cyclic group (Z/p")* of order p(p") = p"~*(p — 1). Let a € Z be such that
a € (Z/p")* is of order p — 1. The element 1+ p € (Z/p")* is of order p"~t. Tt
generates the subgroup 1+ (p). A descending chain of subgroups is

(Z/p")* 21+ @) 1+ @)1+ @) o1+ @) (={1}).
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The corresponding chain of subgroups of the Galois group G is

G Gal(L: Q(¢p)) > Gal(L : Q(¢p2)) > -+ > Gal(L : Q((pr-1)) > {1}

For m € N* the kernel of the ring homomorphism Z/p™*! — Z/p™ is the ideal
(p™)/(p™*1). For the multiplicative groups of these local rings we have the short
exact sequence

L— (L+ ™)/ + @)™ — @/ — @Z/p™) — 1.

The group (1 + (p)™)/(1 + (p)™*1!) is of order p and is generated by 1+ p™. Put
V; = Vg, (p). Since p totally ramifies, we have Vy = G. The Propositions 7.58 and
7.59 imply that V4 = Gal(L : Q({,)) and that for j > 2 the indices (V;_1 : V})
are either 1 or p. Let m < r. The group Gal(L : Q((pm)) is generated by the
automorphism o14pm : (pr — ;;" P We have

1 (Gr) = Gr = Gt = G = Gr (G = 1) = G (Grom — 1),

It follows that ’Up(0'1+pr(1 — Cpr) — (1 — Cp")) = UP(0'1+pr (CPT) — Cp’") = pm By
Proposition 7.57

O14pm e ‘/;;m,_l \ me.
This implies
Vi =Gal(L:Q((m)) if pm™t<j<pm™—1.

So the jumps in the descending chain of ramification groups are at p™ — 1 for
m=0,...,r—1. (A jump at j meaning that V,; # V;.)

7.6 Norms of fractional ideals

For rings of integers of number fields we have the notion of norm of a nonzero ideal.
This easily generalizes to a notion of norm of a fractional ideal. It will take values
in the group of positive rational numbers. This group is isomorphic to the group
of fractional ideals of Z. We generalize this further. In this section

is a Dedekind domain,
the field of fractions of R,

K a finite separable field extension,

n -~ XX

the integral closure of R in L.
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7.65 Definitions and notations. We have homomorphisms
JEI(R) —» 1(S) and NZ:I(S) — I(R).
The first one is defined by j&(a) = aS, the second one is called a norm map and is

defined on basis elements q € Max(S) by N2(q) = (qN K)7, where f = fx(q), the
residue class degree of q over K. The inclusion K* — L* will be denoted by jX.

Clearly, the map jg is injective, because for each p € Max(R) the homomorphism
(p) — (q | g above p), p — pS is injective:

(p) — (q ] q above p)

7 ——— Dqjps Z

For a tower of extensions we have:

7.66 Lemma. Let also M : L be a finite separable field extension and T the integral
closure of R in M. Then

j2iE =R I(R) = I(T) and NENL =NL:I(T) - I(R). O

7.67 Proposition. The following diagrams commute:

L ——I(S) L ——I(S)
jﬂ s N@| &
K* —— I(R) K* —— I(R)

The horizontal maps are the homomorphisms which map an element to the principal
fractional ideal it generates.

PROOF. It is obvious from the definition that the first square commutes. For the
second let’s assume first that L : K is a Galois extension. Let o € L*. Then to
prove that N (aS) = NL () R. This means that v, (N2 (aS)) = v,(NE () for all
p € Max(R). So let p € Max(R). We have

v (NS(8)) = vp (Ng (H qvm))) - (H(q A K)fK(cnvq(a))
q q
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= (TP 7)< 30 (@) = 53 wnfe)

qlpsS qlps qlpsS

Let q € Max(S) above p. Put G =Gal(L: K) and Z = {0 € G | 6(q) = q}. Then
o(q) = 7(q) if and only if o and 7 are in the same left coset of Z in G. Therefore,

va(NE (@) = vq (T o(@)) = 3 valo(@) = 3 v riqy(@) = 3 vt

ceG ceG ceG ceG
L

D D ata(@) = D0 #(C) vgla) = e 5T D7 v

CeG/ZoeC qlpsS qlpsS

Hence, v, (NE (o)) = féL) 2_qlps Va(@). So indeed vp(NE(a9)) = v,(NE ().

In general, let M : K be the normal closure of L : K. Put t = [M : L] and let T
be the integral closure of R in M. Since M : K is a Galois extension, by the above
we have N%(aT) = N¥ (a)R for all « € M*. So in particular for o € L*:

NR(aT) = NR(N§(aT)) = NR(N}/(a)S) = Nj(a'S) = Nj(aS)'
and
NX ()R = NE(a')R = (NE (o) R)".
Since the group I(R) is torsion free, it follows that N3(a.S) = N&(a)R. O

7.68 Definition and notations. In the notation of Proposition 7.67: the map
N% induces a homomorphism C/(S) — C/(R), [b] — [NZ(b)]. It is called the
transfer from C/(S) to C/(R) and is denoted by tr%. The inclusion map j& induces
a homomorphism C/(R) — C/(S), [a] — [aS]. It is denoted by j& as well.

For a € K* we have N% (a) = al®*%]. In other words the composition N jK is
raising to the power [L : K|. For fractional ideals we have:

7.69 Proposition. Let a € I(R). Then N3jf(a) = alBKl. If L : K is a Galois
extension with Galois group G, then jENZ,(6) =[], o o(b) for all b € I(S).

PrOOF. It suffices to prove that the composition N3 j5 raises base elements p €
Max(R) to the power [L : K]. For such p we have by Theorem 7.8

N7jE(p) = Ng(H qum)) = [ pe @t = plea,

qlps qlpsS

The second assertion follows directly from the splitting behavior of prime ideals in
case of a Galois extension: for q € Max(S), p € Max(R) under q and f = féL) we
have

JENZ(@) = 5§ 0) = #9) = ] o(w). N

ceG
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7.70 Corollary. tr3 jF([a]) = [a]*5] for all a € TH(R). O

Number fields are the fields of fractions of their rings of integers. This is reflected
in the terminology and notation in the number field case.

7.71 Notations. Let L : K be a number field extension. The maps ]gf and Ngf{
are denoted by jX and N respectively. Thus we have homomorphisms

JE.I(K) - (L) and Nk:I(L) = I(K)
and similarly

jK. (K) - (L) and trk: Q(L) — CU(K).

Though the maps j&: K* — L* and j§: I(R) — 1(S) are injective, the induced
map j&: C/(R) — C/(S) need not to be so. The following theorem gives a class of
extensions for which this map is injective.

7.72 Theorem. Let m € N* withm > 2, L = Q((n) and K = Q((n + ). Then
the map

ji : CUK) = CU(L),  [a] = [aOL]
18 1njective.
PRrROOF. We may assume that m # 2 (mod4). Let a € I (K) such that aQy, is
principal. Then to show that a is a principal ideal of O. Complex conjugation
induces an automorphism 7 of L and we have L™ = K. Let a € O, generate aOy,.

Then
a0 =a0p =7(a)0r = 7(a0L) = 7(aOp) = 7(a)O.

Hence -5 € Op. For each o € Gal(L : Q) we have

- - -

(@) or(a)l  |ro(a)]
So by Lemma 5.45 —55 € w(L). We distinguish two cases.

Case 1: m is not a prime power. The proof of Theorem 5.51 shows that in this

case the map O7 — u(L), v — 5 is surjective. So there is a v € OF such

that o = 5. For § = at(v) we have 7(8) = 7(a)v = ar(v) = B. Therefore,
B € Ok. So

jt (@) = a0 = BOL, = ji (BOk).
Since jE: I(K) — I(L) is injective, it follows that a = BOk.

Case 2: m is a prime power, say m = p". From 7(1 — () = —¢,,,} (1 — () follows
that 7(117_45:1) generates p(L). Since T(ay is a Toot of unity, there is a k € Z such
that .

a (1—Gm)

()  T(1—(¢m)k
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So at(1 —(n)* € Ok. The prime p totally ramifies in L. Put q = (1 —(,,)Or, and
let p be the prime of K under q. Then pOr = (1 — (,,)"Or = q" and pOy, = q?,
where n = [L : Q] = ¢(m). Because at(1 — ()" € Ok, we have

vg(ar(l = Gn)*) =2 vp(ar(l = Gn)®)
and
0q(@) = 0q(a02) = 2 5y (0).
hence 2 | v4(7(1 — ¢n)¥) = k- vq(1 — () = k. We have

JE(@r(l = () 0K) = ar(1 = (n)FOL = a0y - 4" = jE (a)jF (0"/?) = j 1 (ap*/?).

Hence, by injectivity of j&, a(1 — ()" Ok = ap¥/2. Because q is a principal ideal,

so is p:

So also in this case a is a principal ideal of Ok. O
For an arbitrary quadratic extension of number fields by Corollary 7.70 the com-
position tr¥k jX: C0(K) — Cl(K) sends each class to its square, so the kernel of
JE: G(K) — (L) is contained in the subgroup ,C/(K) of classes having trivial
squares. On the ‘odd parts’ of the ideal class groups the map jX is injective. So

the extra information in the theorem is that ideal classes of order 2 of Q((m + Cnt)
do not vanish in C¢(Q(¢m))-

7.7 The Frobenius automorphism of a prime ideal

We will use the notations of section 7.3. Note that in particular the residue class
fields are finite. In this section there is the extra assumption:

q is unramified over K.

This means that the map Zx (q) — G is an isomorphism. Because the residue class

field R/p is finite, the group G is generated by the automorphism x — z# (/%) of
S/q. In other words:

7.73 Proposition. There is a unique ¢ € Gal(L : K) such that
o(a) = o (modq) forallaesS,

where N = #(R/p). This ¢ generates Z(q). O

7.74 Definition. The unique ¢ in Proposition 7.73 is called the Frobenius auto-
morphism of q over K. Notation: ¢x(q). (So we have Zx(q) = (px(q)).)

Let 0: L = L’ be a field isomorphism and put S’ = ¢(S). Then L’ is the field of
fractions of the Dedekind domain S’ and the following are equivalent:
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7 Extensions of Dedekind Domains

pxc(@)(@) = o (modq) for all a € S,
(@) = o(@)Y (modo(q)) for all a € S,

(cor(q)o™1)(B) = BY (modo(q)) for all B € S'.

So we have:

7.75 Proposition. Let o: L = L' be an isomorphism of fields. Then

Po(r) (0(0) = opr(q)o "

In particular if o € Gal(L : K), then

er(o(q)) = opr(q)o" 0

7.76 Corollary. If, moreover, L : K is abelian, then ¢k (q) satisfies

or(q)(a) = a” (modpS) forallacS.

PRrROOF. By Proposition 7.75 and the transitivity of the action of Gal(L : K) on
the set of prime ideals of S above p:

o (q) =pKr(q) forall ¢ € Max(S) above p.

Since p does not ramify in L, the ideal p.S is the product of the prime ideals above
p. O

For abelian extensions a Frobenius automorphism of a prime ideal q depends only
on the prime ideal below q in the base field. In this case we use a special notation.

7.77 Definition and notation. For L : K abelian and p € Max(R) unramified in
L put @E,L) = ¢k (q). The automorphism <pp ) e Gal(L : K) is called the Frobenius

automorphism of p in Gal(L : K).

7.78 Example. Let m € N* and p a prime number with p { m. Then p does not
ramify in the cyclotomic field Q(¢,,). The automorphism of Q((,,) with ¢, — (%,
is the Frobenius automorphism of p in Gal(Q({y) : Q), since

Z a;Cl, Z a;iCll = (Z alcm) (mod pZ[(m)]).

In particular fISL) is equal to the order of p in (Z/m)*.

7.79 Quadratic Reciprocity Law. The splitting behavior of primes in a cyclotomic
field leads to another proof of the Quadratic Reciprocity Law. Let p be an odd
prime number. Put p* = (=1)?~'/2p. Then K = Q(,/p*) is the unique quadratic
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subfield of Q(¢,). Let ¢ be a prime number # p and let f be the order of g in F;.
Let Z be the decomposition group of ¢ in Q(¢{,). Then

-1 -1
(q) =1 <= ¢ is a square modulo p <= f pT = 2 pT
p
= K CQ(()? <= ¢ splits completely in K.
For ¢ # 2 this is equivalent to (p) = 1. Hence, for odd ¢
q

p

()6) - wem G- ()7 -

For ¢ = 2 we get:

2
() =1 <= 2 splits completely in K <= p* =1 (mod38)
b

2

is even.

<~ p=1,7(mod8) — P

So (;) T

Finally, for future reference we consider the behavior of Frobenius automorphisms
under a change of the base field. We do so only in the number field case.

7.80 Proposition. Let L : K be a Galois extension of number fields and K' : K a
number field extension. Let q be an over K unramified prime ideal of Op and ¢
a prime ideal of Ok above q. Then q' is unramified over K' and @i/ (q')|r =
vr(a)!, where f = fx(q' N K').

ProOOF. By Galois theory restriction of automorphisms in Gal(LK’ : K') to L
yields an isomorphism

Gal(LK' : K') =5 Gal(L : LN K') C Gal(L : K).
By definition of inertia and decomposition groups this restricts to isomorphisms
Zg(d') = Zinxe () € Zx(q) and To(q') = Trar(a) € Tr(q)-

Since Tk (q) is trivial, so is Tk (q’), that is q’ is unramified over K’. Put p’ = ¢'NK’
and p =q N K(=qN K). The Frobenius automorphism of q" over K’ satisfies

o (@) () = aN®) (modq’) for all a € Opk.

In particular this holds for all « € Op. The Frobenius automorphism of q over K
is characterized by

o (q)(a) = aN®) (modq) for all & € Op.
The proposition follows from N(p’) = N(p)”. O
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In particular for abelian extensions we have the following.

7.81 Corollary. Let K' : K be a number field extension, L : K an abelian extension
of number fields, p a prime ideal of O which does not ramify in L and p’ a prime

ideal of O+ above p. Then <pl(fK,)|L = (@,EL))"C, where f = fr(p'). O

7.8 Galois groups of polynomials and reduction
modulo a prime ideal

In chapter 5 it was shown that in every number field there is a prime ideal which
is ramified over QQ, or in other words: there are no unramified extensions of Q. In
this section we show that for other base fields the situation can be quite differ-
ent: in Example 7.82 an unramified extension of a quadratic number field will be
constructed with Galois group As, the symmetric group on 5 elements.

Let K be a number field and f € Ok [X] a monic polynomial of degree n without
multiple roots. Then disc(f) is a nonzero element of Og. Let L be the splitting
field of f over K, say f = (X —a1) - (X — ap) with aq,...,a, € Op. Then
L=K(a1,...,a,) and L : K is a Galois extension of number fields. The Galois
group G = Gal(L : K) acts by restriction on the set A = {a,...,a,} and since
an automorphism of L : K is determined by its action on A, this restriction is an
injective group homomorphism

k: G — S(A4), o~ 0|a,

where S(A) is the full permutation group of A. The subgroup x(G) of S(A) is by
definition the Galois group Galg (f) over K of the polynomial f.

Let p € Max(Ok) and assume that disc(f) ¢ p. Choose q € Max(Op) above p.
For « € Oy, its class in the residue field Or/q is denoted by @. In (O /q)[X] we
have

f=X-a1)-- (X —a),
and since disc(f) = disc(f) # 0, the polynomial f has no multiple roots as well.
The subfield F = (Og /p)(aq,...,a,) of Or/q is a splitting field of f over Ok /p.
The composition

of surjective homomorphisms is injective: if o € Zx(q) induces the identity on A =
{a1,...,a,}, then also on A. Therefore, both homomorphisms are isomorphisms
and this implies that q is unramified over K (and since L : K is a Galois extension,
p doesn’t ramify in L) and that Or /q is a splitting field of f over Ok /p.

The group éiis generated by the automorphism z — zN®) . Tt induces a per-
mutation of A and the Frobenius automorphism of q over K induces the ‘same’
permutation of A: if &N ®) = @;, then ¢ (q): o — a.
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7.82 Example. Let f = X°— X +1 and let F be a splitting field of f over F5. Then
F : F5 is a Galois extension and Gal(F : Fy) is generated by the automorphism
x +— 2° A root x € F of f is mapped to z° = x — 1. So the automorphism is
of order 5. This means that f is irreducible over F5. From this it follows that
f is irreducible over Q. Let A = {a1,...,a5} be the set of roots in C and put
K = Q(«), where a = ;. Let L : Q be the normal closure of K : Q, that is L is
the splitting field of f over K. The group Gal(L : Q) is isomorphic to Galg(f), a
subgroup of S(A). Since [L : Q] is a multiple of [K : Q] = 5, the group Galg(f)
contains an element of order 5, which must be a 5-cycle of the set A. For instance,
the Frobenius automorphism of a q € Max(Op,) above 5 induces such a 5-cycle.

We have
disc(f) = N§ (5a* — 1) = =N§ (5¢° — a) = —=N§ (4o — 5) = —4°N§ (o — 3)
=4 ((5)° =2 +1)=5—4"=2869 =19 151.

Since disc(f) is squarefree, it follows that Ox = Z[a]. Only the primes 19 and 151
ramify in K. The factorization of f € Fo[X] is

F=(X+X+1)(X3+X2+1).

So Galg(f) contains a permutation which is the disjoint product of a 2-cycle and
a 3-cycle. The third power of this permutation is a 2-cycle (a transposition).
Because the subgroup Gal(f) of S(A) contains a 5-cycle and a 2-cycle, we have
Gal(f) = S(A) = S5, in particular [L : Q] = 5! = 120. The group Ss has a
unique subgroup of index 2, the group As of even permutations. So L has a unique
quadratic subfield, and since y/disc(f) € L, it is the field K’ = Q(+/19 - 151). The
extension L : K’ is a Galois extension of number fields and its Galois group is
isomorphic to As. We show that it is an unramified extension. Since only the
primes 19 and 151 ramify in K, these are also the only primes which ramify in the
normal closure L. It follows that prime ideals of O different from (19,+/19 - 151)
and (151,419 - 151) do not ramify in L. We have to show that e%) = egéi = 2.
Since Ok = Zla], the factorization of 19 and 151 in Ok can be computed by
factorizing f modulo 19 and 151 respectively. The factorization as product of
maximal ideals is as follows:

(19) = (19, a — 6)(19, 0 — 7a? — 6 + 9)
(151) = (151, — 39)%(151,  — 9)(151, a* — 64cx + 61).
The prime ideals p = (19, — 6) and q = (151, & — 39) have ramification index 2

over Q. We will show that they do not ramify in L. The field L is a splitting field of
f over K and also a splitting field of fo = X{ — € Ok[X] over K. This polynomial
has no multiple roots. The discriminant of fs is the product of all (a; — aj)? with
1,7 €{2,3,4,5}, i > j. It follows that
. disc 19 - 151 19 - 151
disc(f2) = = (f) = =

s — )2 fl@)  da=5

€ Zla).
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Since N§§ (4 — 5) = 19 - 151, the ideal (4o — 5) of Ok = Z[a] is the product of an
ideal of norm 19 and an ideal of norm 151. We have

da—5=4-6—-5=19 =0 (modp),
4dao—5=4-39—5=151 =0 (modq).

Hence (4o — 5) = pq. It follows that disc(f2) ¢ p,q. So p and q do not ramify in
K (as); therefore, they do not ramify in the splitting field L of f5 over K.

EXERCISES

1. Let R be a Dedekind domain, K its field of fractions, L : K a Galois extension, S
the integral closure of R in L, ¢ € Max(S) above p € Max(R).

(i) Let o € S. Show that the characteristic polynomial of o over K is a monic
polynomial over R which splits over L.

(ii) Prove that S/q: R/p is a normal extension.

2. Let R be a Dedekind domain, K its field of fractions, L : K a Galois extension, S
the integral closure of R in L, q € Max(S) and p € Max(R). Show that

gNK =p < qNR=p < q|pS.

3. Prove Proposition 7.3.

4. Let L : K be an extension of number fields and let a and b be nonzero ideals of Ok
such that aOr, | bOr. Show that a | b.

5. (i) Give an example of a biquadratic number field in which 2 splits completely
and also one in which 3 splits completely.
(ii) Let K be a biquadratic field in which 2 or 3 splits completely. Show that
there is no a € Ok such that Ox = Z[a].
6. Let R be a Dedekind domain, K its field of fractions, L : K a finite separable field
extension and S the integral closure of R in L.
(i) Let (au1,...,an) be a K-basis of L with a1,...,a, € S. Show that

vp(disc(aa, ..., an)) = vp(0r(S)) (mod 2)

for all p € Max(R).
(ii) Prove that the ideal class of 9(S) is a square in C/(R).

7. (i) Show that the extension Q(v/2,v/5) : Q(v/10) is unramified.

(ii) Prove that p € Max(Z[/10]) splits completely in Q(v/2,+/5) if and only if p
is a principal ideal.
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10.

11.

12.

13.

14.

15.

16.

17.

Exercises

Let L be a biquadratic number field. Suppose that 2 ramifies in each of the quadratic
subfields. Show that 2 totally ramifies in L.

Let a € R such that o® = a + 1. Show that the extension Q(«, v/—23) : Q(v/—23)

is unramified.

Let L : K be a Galois extension of number fields. Assume there is a p € Max(Ok)
which remains prime in L. Show that the group Gal(L : K) is cyclic.

Let L : K be a Galois extension of number fields with Galois group G. Suppose
p € Max(Ok) ramifies in L, but does not ramify in intermediate fields # L.

(i)

(ii)
(iii) Prove that H is a normal subgroup of G.
(iv)
Let L : K be a Galois extension of number fields with Galois group G. Suppose
p € Max(Ok) does not split completely in L, but does so in every intermediate
field # L. Prove the same (i), (ii), (iii) and (iv) as in the previous exercise.

Prove that there is a unique smallest nontrivial subgroup H of G.

Show that #(G) is a prime power.

Show that #(H) is a prime number and that H is a central subgroup of G.

Let L : K be a Galois extension of number fields with Galois group G. Suppose
p € Max(Ok) does not remain prime in L, but does so in every intermediate field
# L. Prove that G is cyclic of prime power order.

Give a detailed proof of Corollary 7.49.

Let K be a quadratic number field. Show that odd prime divisors of disc(K') ramify
tamely in K and that 2 ramifies wildly if and only if 2 | disc(K).

An elementary proof of a weaker version of Theorem 8.37 of the next chapter.

(i) Let f=aoX™+--+a1 X +am € Z[XLbe of degree m > 1. Show that there
are infinitely many primes p such that f € F,[X] has a root in F,,. (Consider
f(n!) in case am = 1. For the general case look at f(amX)/am.)

(ii) Let K be a number field. Prove that there are infinitely many p € Max(Oxk)
such that fo(p) = 1.

(iii) Let L : K be an extension of number fields. Prove that there are infinitely
many p € Max(Og) which split completely in L.

Let R be a Dedekind domain with finite residue fields, K its field of fractions,
L : K a Galois extension of degree n and S the integral closure of R in L. Suppose
p € Max(R) totally tamely ramifies in L: pS = q" with q € Max(S).

(i) Show that R/p* contains a primitive n-th root of unity and that the group
Gal(L : K) is cyclic.
Assume that also K contains a primitive n-th root of unity. Then by some Galois
theory one shows that there exists a 8 € L such that L = K(8) and 8" € K. See
also Proposition 15.9 in the section on Kummer extensions.

(ii) Put ve(B) = k and write 8 = 7"y, where vq(7) = 1. Prove that k = 1 (modn).
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18.

19.

20.

21.

22.

23.
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(iii) Show that there is a 8 € L such that L = K(8), " € K and vq(8) = 1.

Let L : K be a Galois extension of number fields and p a maximal ideal of Ok
which totally ramifies in L. Let q be the prime ideal of Oy, above p and w € O,
such that vq(m) = 1. Show that v, (N% (7)) = 1.

Let p be an odd prime and K the unique subfield of degree p of Q((,2). Compute
disc(K).

Let K be a quadratic number field in which the prime number 2 ramifies. Put
K = Q(y/m) with m € Z squarefree. Then m = 3 (mod4) or m = 2 (mod4). Let
q € Max(Ok) be above 2. There is a unique ¢ € N such that Vi(q) \ Vit1(q) is
nonempty. Compute ¢ for both cases.

Let K = Q(v/—2,/3). The prime 2 totally ramifies in K, see Example 5.23. Let p
be the prime ideal of Ok above 2. Compute Vg,;(p) for all i € N.

Let K = Q(%/2,¢3). The prime 3 totally ramifies in K, see Example 7.17. Let p be
the prime ideal of Ok above 3. Compute Vo ;(p) for all i € N.

In Example 7.64 the ramification groups of an odd prime p in Q((p~) have been
computed. Compute the ramification groups of 2 in Q(2r)



8 Analytic Methods

The splitting behavior of primes in a number field K determines a complex analytic
function, the Dedekind zeta function (x(s). It is defined by an infinite series (a
Dirichlet series) determined by the sequence (jx (n)),>1, where jx(n) denotes the
number of ideals of Ok of norm n. For the convergence properties we will need the
asymptotic behavior of sequences like these and this is studied in section 8.2. It is
based on estimates in section 8.1 for the number of lattice points inside a bounded
domain in a real vector space. It is remarkable that deep properties of a number
field are hidden in its Dedekind zeta function and, therefore, are determined by
the splitting behavior of primes in the number field alone. Dirichlet series are
considered in general in section 8.3. An important example is the Riemann zeta
function, the Dedekind zeta function of the number field Q. In section 8.5 the
notion of Dirichlet density is introduced. It is a measure for collections of prime
ideals in a number field. A positive density implies that the collection contains
infinitely many of them.

8.1 Counting lattice points in a bounded domain

Let D be a bounded measurable domain in the standard Euclidean space R™ and
let the boundary 0D be not too wild: lets assume that it is covered by the images
of a finite number of Lipschitz maps fi,..., fi: [0,1]"71 — R™.

A map f:[0,1]"7' — R" is a Lipschitz map if there is an upper bound for the
quotients ||f(z) — f(y)||/|lz — y||- The condition on the boundary prevents it to
have a complicated fractal structure, i.e. to have a fractal dimension > n — 1.

Let, furthermore, A be a lattice in R™. Since D is bounded, by Proposition 5.3 the
set D N A is finite. Our aim is to estimate the number of elements of D N A, more
precisely to give an estimate of #(aD N A) as a function of a € [1,00). Note that
#(aDNA) =#(DnNLA). Since D is measurable, it will follow that

lim §(L1A)-#(DNIA) =vol(D).

a— o0

So an estimate for the number #(aDNA) is Vgé(f;) a™. We will see that the condition

on the boundary of D implies the following for the error term.
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8.1 Proposition. Let D, a and A be as above. Then for #(aD N A) as a function
of a we have
vol(D)

#(@DNA) — 50A)

a™ = 0(a").

PrOOF. Let F' be the mesh of A determined by a Z-basis (v1,...,v,) of A and
let v be the center of F: v = 1 (vy +--- +v,). The Euclidean space is covered by

the translates of F' centered at lattice points:

R" = U(J?—U—‘rf).

FASHIN
For a € [1,00) put
S (a)={z€A|z—v+F CaD}, N7 (a) = #(5S (a)),
Sta)={zeA|(z—v+F)naD #0}, N*(a) = #(ST(a)),
S(a) = ANaD, N(a) = #(S(a)).

Then
S~ (a) C S(a) C ST (a).

and so N~ (a) < N(a) < N*(a). We have
<

N~ (a)§(A) < N(a)§(A) < NT(a)d(A) and N~ (a)d(A) < vol(aD) < Nt (a)d(A).

Therefore,
IN(a)3(A) - vol(aD)| < (N*(a) — N~ (a))3(A).

For z € A we have
r€ST(a)\ S (a) = (z—v+F)Nd(aD) # .

This and the condition for D will be used for estimating (N (a) — N~ (a))d(A).
Let D be covered by Lipschitz maps fi,..., fx: [0,1]"71 — R™. Take A > 0
such that ||f;(z) — fi(y)|| < A||z —y|| for i = 1,...,k and for all z,y € [0,1]"~L.
Divide [0,1] into |a] segments of equal length 1/|a|. The n-cube [0,1] is sub-
divided into [a]™™! cubes with edges of length 1/|a|. The boundary d(aD) is
covered by the images of the maps afi,...,afr. Let ¢ be any of these cubes. Put
d = diam([0,1]"!) = v/n —1. Then diam(c) = d/|a] and so diam(af;(c)) <
aXd/|a| < 2Xd for i = 1,..., k. Tt follows that af;(c) is contained in an n-ball
with radius Ad. Let r be the radius of an n-ball with center v and contained in
F. Comparison of volumes yields that the number of disjoint n-balls with radius
r contained in an n-ball with radius Ad is less than (Ad/r)". It follows that the
number of x € A with afi(c) N (z — v+ F) # 0 is less than (Ad/r)". The number
of small cubes is k(|a])" 1, so

N*(@) - N~ (a) < k(la)" - (29)" < k(29" 0,

r T
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8.2 The distribution of ideals over the ideal classes

Hence N(a)§(A) — vol(aD) = O(a™1), i.e.

vol(D)

#(@DNA) - 5(A)

a” = 0(a"). O

8.2 The distribution of ideals over the ideal classes

Given an ideal class of a number field K and an N € N*, in this section we estimate
the number of ideals of Ok of norm < N in the given ideal class.

8.2 Notations. Let K be a number field of degree d. It determines an arithmetic
function

Jrk:N* =5 NCC, n— #{a]ais an ideal of Ok with N(a) =n}

and a corresponding sequence of partial sums (Jx(N))n>1:

N
Jr(N) =Y jk(n) =#{a€I"(K) |1 <N(a) <N}

This counting of ideals will be done for ideal classes separately. For that purpose
we introduce the following notations, where C is an ideal class of K:

N
jon)=#{acC|N@)=n} and Jo(N)=) jo(n).

Clearly

jr(n) = jc(n) and Jx(N)=Y_Jo(N).
C

c

We will see that Jo(N) tends for N — oo asymptotically to a constant times N,
the constant being equal for all ideal classes, see Theorem 8.3. Moreover, the error
term will be of order N'=a. For Jg(N) it follows that asymptotically it tends
with an error term of the same order to a constant times N as well, the constant
being the constant for Jo(N) multiplied by the class number.

Fix b € C~!'. Then we have a correspondence

ideals a in C — principal ideals (o) C b
with N(a) < N — with [N& (@) < N -N(b) and o # 0
a +—— ab

ab™t — (a)
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So instead of counting ideals we can count principal ideals:
Jo(N) = #{a | a a nonzero principal ideal, a C b, N(a) < N - N(b) }.

Generators of principal ideals are determined up to a unit factor. The idea is
to have a domain in R" x C*, the R-vector space in which O is embedded as
a lattice, containing exactly one generator for each nonzero principal ideal. The
group O} embeds as a subgroup of (R” x C*)* = (R*)” x (C*)® and acts on it by
multiplication. In principle we want a fundamental domain for this action. It is,
however, easier to use the subgroup of O} generated by a fundamental system of
units. It is a free abelian group of rank » + s — 1, mapped under v isomorphically
to the lattice (O} ) in the subspace H of R™"*. A fundamental domain of its
action on R*" x C** contains exactly w(K) := #(u(K)) elements of ¢(O}).

Choose a fundamental system (e1,...,e,45—1) of units and let F be the fun-
damental parallelotope spanned by ¥(e1),...,¥(er4rs—1). Put vy = ¥(eg) for
k=1,...,7+s—1, then

r+s—1

F:{ 3 tkvk‘ogtk<1}.

k=1

Let v =(1,...,1,2,...,2) € R"5. Then v ¢ H and
D =LY (F+Rv) CR*" xC**

is a fundamental domain for the action of (g1,...,&,45—1) on R* x C**. For
positive reals a put D, = {z € D | [N(z)| < a}. The advantage of the particular
choice of v is the homogeneity of D, in the sense that

D, = \d/E'Dla

which implies that vol(D,) = a - vol(D7). The counting of ideals of norm < N in
a given ideal class comes down to counting lattice points in a bounded domain:

w(K) - Jo(N) = #(Ae N Dy.No))-

We will apply Proposition 8.1. A parameterization of D’ := Dy N ((0,00)" N C?)
will be given. It will show that 9D’, and by symmetry also 9D, is Lipschitz
parameterizable. The parameterization will be used for a calculation of vol(D’).
Then again by symmetry vol(D;) = 2" vol(D’). Thus we have

VOl(Dl)N(h)

o) N+ O(N'" 1)

w(K) - Jo(N) =
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8.2 The distribution of ideals over the ideal classes

r=—-Y r=Yy
r=—c%y D’ x =2y
Ty = — l‘yzl
zy=1 zy = —1

Figure 8.1: D; and D’ for real quadratic number fields

and by Corollary 5.8

27%5 yol(D')
w {/| disc(K)]
The vj, are vectors in R"T*. We will use the notation

Vg = (1}](91), [ ,U£T+S)).

Jo(N) = + O(N'1). (8.1)

Then (z1,...,21,...) € D’ if and only if there are t1,...,t45 € [0,1) and u €
(=00, 0] such that

r+s

logz, = (Z tkv,il)) +u
k=1

T+

logz, = (Z tkvl(:)) +u
k=1
r+s
2logz; = (Z tkv,(crﬂ)) + 2u
k=1
r+s

2log zs = (Z tkv,(cr+s)> + 2u.
k=1
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Now put z; = pjemf and t,s = e*. Then for

(z1,..., 20, p1er, ... peets) € D'
we have
T = by g€ troy” (for 1 <j<r),
p; = tyyset St (for r+1<j <r+s),
¥ = 27ty (forr+1<j<r+s).

Thus we have a parameterization of the interior of D’ and for the computation of
vol(D') it can best be seen as the composition:

(0,1)¢ 2% R™ 5 x R® 22 R™* x R® 43 R” x (0,00)° x R® 2% R” x C*.
These maps are defined as follows:

Al (tla s 7td> = (t17 tee 7t’l‘+871a log(t’l‘Jrs)a tT+S+1a s 7t7‘+28)7

U1
As(ug,u2) = (ur M, us), where M is the (r + s) x (r + s)-matrix : ,
Ur4s—1
v
As(ay,...,ap b1, ... bsicr, .00 c5) = (€%, el /2 e 2 oy ,27Cs ),

. . _ 2 i
A4(x17"'7x’r7p17"'7p877917"'7195) - (xlﬂ"'axTvple 1,...,ps€ )

The volume of D’ can be computed by standard calculus techniques. In the com-
putation occurs a Jacobian determinant

J(tl,...,td): X1 TpP1 " Ps det(M)
tr+s
Also note that logzy +---+2logp; +---=ru+2su=d-uand so xy---p?--- =

e = (e")? = t¢, .. Furthermore, for the matrix M we have by the formula on
page 128: |det(M)| = d - Reg(K).

vol(D') = / p1--psdry -+ -da,dpy - - - dpsddy ... )

:/ dpl~-~Ps|J(t1’-~-7td)|dt1---dtd
[(0,1]

.. 2 DRI 2
= 7| det(M)| T TP s gty
[0,1]¢ brgs
= 7| det(M))| 4ol dty - dtg = 37°[det(M)] = 7° Reg(K).
[0,1]¢
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8.3 Dirichlet series

8.3 Theorem. Let K be a number field of degree d. Then for every ideal class C
of K we have

27 (2m)® Reg(K) -1
Jo(N) = -N+O(N 4
o) W) dse(m)] (V)
and hence
Jie(N) = 2"(2m)*h(K) Reg(K) -N—&-O(Nl_é),

w(K)y/] disc(K)]
where h(K) = #(CUK)), the class number of K.

PROOF. The parameterization of D’ satisfies a Lipschitz condition because the
partial derivatives are bounded. Restriction to the 2¢ faces of the d-cube is a
Lipschitz parameterization of dD’. So the formula for Jo(IN) follows from the
above computation of vol(D’) and formula (8.1). O

In particular the number of ideals of a given norm N tends asymptotically to a
constant times N for N — oo:

_ 27(2m)°h(K) Reg(K)
w(K)+/| disc(K)]

Ji (N) -N for N — oco.

8.4 Examples.
1. For K imaginary quadratic, say K = Q(y/m) with m < —3 and squarefree,
we have
h(K
Jr(N) == (D) N+ O(N).

2. For K real quadratic, K = Q(y/m) with m > 1 and squarefree

_ 2h(K)loge
- \% D'H'L

where ¢ is the fundamental unit of K.

Ji (N) N +O(VN),

8.3 Dirichlet series

Power series can be seen as generating functions of sequences of numbers. Another
type of generating function is the Dirichlet series. This type of function is espe-
cially useful in case we are dealing with a multiplicative arithmetic function, see
Definition 8.15.
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8 Analytic Methods

Figure 8.2: Domain used in the proof of Proposition 8.8

8.5 Definition. A series of type

o0
an

ns
n=1
with a, € C and s € C is called a Dirichlet series. The terms & (= a,e *1°8") of
such a series are functions in the complex variable s.

8.6 Notation. When dealing with Dirichlet series one traditionally denotes the
complex variable by s instead of z. One also writes s = ¢ + it with o,t € R: the
real and imaginary part are denoted by o and t respectively.

8.7 Example. An important example of a Dirichlet series is Y~ | - (= ((s)),
the Riemann zeta function. Since |nL = n%,, it converges on the half-plane o > 1,

and—as we will see—to an analytic function on this half-plane.

8.8 Proposition. Let the Dirichlet series > %= converge for s = sg. Then it con-

ne

verges on the half-plane R(s) > R(so) to an analytic function.

PROOF. Under translation a Dirichlet series transforms into a Dirichlet series:
replacement of s by s + 5o in a term %2 gives “o- So we may assume that
so = 0, meaning that > a, converges. Then to prove the convergence for all s

with o > 0. We will prove that > %2 converges uniformly on the domain

{s] |arg(s)| <5 -4}

for arbitrary small §, see Figure 8.2. Then it follows that the sum is an analytic
function on this domain and, since § was arbitrary, it is so on the half-plane ¢ > 0.

192



8.3 Dirichlet series

Put
N

N
AN:Zan and AM,N:Zan (=0if M > N).
= n=M

Let € > 0. Choose Ny such that |Apy | < e for all N > M > Ny. Such an Ny
exists because the series Zzozl an converges. For N > M > Ny we then have
N-1

N Qp, AMn AMn 1 al AM,TL AM»”
Z ns Z— Z ns o Z (n+1)s

n=M n=M n=M n=M-—1

From
/"“ sde  [-11""" 1 1
wooxstl o zs )| ns (4 1)s
follows:
1 1 </"+1 s|de s|/ odr |s| (1 1
ns (n+1)%|~ J, zotl T zotl T o \n° (n+1)° /)"

If |arg s| < § — 4, then @ < C for some constant C. So:

- | Anen| 1
M,N
< Anin L
n:ZMn = TV +Z| Mal |55 = v 1y
1 € 1 1
“Cn%(‘w)—zw“(’(w‘w)
<f—|—€C’—<5(C’+1) O

Na'

8.9 Corollary. There is a unique oo € RU{—00,00} such that ) <= converges for
all s with R(s) > oo and diverges for all s with N(s) < og. O

8.10 Definition. The unique o( in Corollary 8.9 is called the abscissa of conver-
gence of the Dirichlet series ) %2

8.11 Example. The series ((s) =Y. ni diverges for s = 1, so og > 1. It converges
for all real s with s > 1. So the abscissa of convergence is 1.

8.12 Theorem. Let a € R with o > 0 such that 25:1 an, = O(N®). Then the

abscissa of convergence oq of the Dirichlet series ) %= satisfies o9 < a.
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8 Analytic Methods

Proor. It suffices to show convergence for ¢ € R with ¢ > a. Put Ay =
ZnN:1 an. Then |[Ax| < BN® for some B > 0. For partial sums of the Dirichlet

series we have
N
1 Ay
A, _ _—.
Z <Z ( o n+1)0‘>>+NU

n= 1

Since o > 0 we have

n+1
A, Lot = |A,] Lot anaU/ _dz_
n®  (n+1)° n®  (n+1)° n axotl

< Bo na+11—a‘
Convergence now follows from o > «:
N .
a—o a—0o—
‘ng_l e < BN —i—BanE 1n O

8.13 Theorem. lim,;(c —1)((0) = 1.

Proor. The function f,: z +— z% is monotone decreasing on the interval (0, c0).

So, see Figure 8.3:
Z / >
nG' O'

It follows that ((0) — 1 < 25 < ((0), and so 1 < (U —1)¢(0) < o. Therefore,
limy 1 (0 — 1)¢(0) = 1. O

The Riemann zeta function has a continuation to a meromorphic function on C,
also denoted by ((s). Here we confine to a simple proof that shows it has a
continuation to the half-plane R(s) > 0. This suffices for our purposes: we will
focus on its behavior near s = 1.

8.14 Theorem. The Riemann zeta function has a continuation to a meromorphic
function on R(s) > 0 which is analytic for all s # 1 and has a simple pole in s = 1.
Its residue in s = 1 equals 1.

PROOF. The series (3(s) = 1— 5+ 5= — 4=+ - - converges for all s with R(s) > 0,

because Z _1 an = O(1). There is absolute convergence in the half-plane f(s) > 1.
In this domain we have

So
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8.3 Dirichlet series

Figure 8.3: Proof of Theorem 8.13

The function 1 — 52+ is analytic on C and (»(s) is analytic on the half-plane
o > 0. Thus we have continued ((s) to a meromorphic function on this half-plane.
By Theorem 8.13 it is clear that it has a pole of first order in s = 1 with residue
1. We will show that there are no other poles. Poles can only occur in the zeros
of 1 — 3¢, so if 2571 = 1, that is s — 1 = 2K with k € Z. If we also consider

log 2
Ga(s) = (L+ 55 — 55) + (g5 + 55 — g=) + -, then we get
G(s)
) =171
35—1

This is another description of the (unique) continuation of {(s) to a meromorphic

function on the half-plane o > 0. We have 1 — 52+ = 0 for s — 1 = 2% with [ € Z.

) ] log 3
If s with R(s) > 0 is a pole, then s — 1 = ?fg”z‘ = folgg, that is 3* = 2. Then k = 0
and so s = 1. So the meromorphic function ¢(s) on the half-plane o > 0 is analytic
for all s # 1. O

As remarked above ((s) has a continuation even to a meromorphic function on
C, analytic for all s # 1. The construction uses the gamma function I'(s), a
meromorphic function on the complex plane extending the function (n —1)! on N*;

for R(s) > 0 it is defined by
I'(s) = / efyysﬁ.
0

Y
The gamma function has no zeros and the only poles are simple poles at s = —n
with n € N. The residue at s = —n is —%. The function
Z(s) =m"2I(5)¢(s) (82)
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is called the completed zeta function. It is a meromorphic function satisfying the
functional equation Z(s) = Z(1 — s) and its only poles are simple poles at s = 0
and s = 1. The residues at these poles are —1 and 1 respectively. The Riemann
zeta function has ‘trivial’ zeros in —2, —4, —6, - - - . The famous Riemann Conjecture
states that all other zeros are located on the line o = % See section VIL.1 of [31]
for details.

8.15 Definition. A sequence a: N* — C is also called an arithmetic function. Such
a function is called multiplicative if a(mn) = a(m)a(n) for all m,n € N* with
ged(m,n) = 1. If a(mn) = a(m)a(n) holds for all m,n € N* it is said to be
completely multiplicative.

For a multiplicative arithmetic function its Dirichlet series is an infinite product,
known as the Fuler product of the Dirichlet series:

8.16 Theorem (Euler product). Let a: N* — C be multiplicative and let the
Dirichlet series > o) pe gbsolute convergent for an s € C. Then for this s the

s
series is representable by an infinite product:

ooan Ooak
2217(15):1—[ (P)_

(The product is over all prime numbers p.)

i
PROOF. Note that for each prime p the series Ziio alp) converges absolutely:

= alp)| S [aln)
D EPI

< 0.

pS

The first term (for k& = 0) of the series > o ‘I;L,i]:) is 1. The infinite product
converges absolutely. This follows from

SIE AT S~

p

An infinite product [[°7 , b, is said to converge if the sequence [];_, bx of partial
products converges to a number # 0. If the partial products converge to 0 the
infinite product is said to diverge to 0.

An infinite product T]77 (1 + a,) with 1 4+ a, # 0 for all n is said to be absolute
convergent if T]>7 (1 4 |an|) converges and this is equivalent to Y > | |an| being
convergent. Absolute convergence implies convergence.

Let R be the set of all maps

m: {prime numbers} - N, p—m,
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with m, # 0 for only finitely many primes p. By unique factorization the map
n+— (p — vp(n)) is bijection from N* to R. In the domain of absolute convergence

of the Dirichlet series Y ar(:j) we then have

o~ a(n) _ a(I]
;nsiz(npm;}s‘ anmps ZH mps'

meR meR meR p
Now let N € N*. Then for Ry the set of all maps

m: {prime numbers < N} - N, p—m,

and Ay ={n € N*|v,(n) =0 for all p > N } we have

k

> oy [ DI s

neAnN meRN p<N p<N k=0

From

SECES

n=1 n€EAN ( n¢AN n¢gAn n>N
and the convergence of 3 | [%2] it then follows that
-~ a(p") (") -
I3~ i T[S0 -
p k=0 p<N k=0 ncAn n=1

8.17 Corollary. Let a be a completely multiplicative arithmetic function and s € C
such that Y % converges absolutely. Then

>, a(n) 1
nZ::l ns :Hl_a(p)'

Proor. For each p the series

k

P P

is a converging geometric series. Its sum is 1_@ 0
o

8.18 Corollary. For the Riemann zeta function ((s) we have for o > 1:
1

C(S) = H - L
P p*

In particular, ¢(s) does not vanish in the half-plane o > 1. O]
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The factor W_%F(S) in (8.2) can be seen as the ‘Euler factor’ at the prime co.

As we know since Euclid, there are infinitely many prime numbers. This is also
implied by this product representation of the Riemann zeta function: if there were
only finitely many, then ((s) would not have a pole at s = 1. This is of course
a far from elementary way of reasoning. However, it will be helpful when looking
at special collections of prime numbers or prime ideals. The first steps in this
direction will be made in section 8.5.

8.4 The Dedekind zeta function of a number field

With each number field we associate a Dirichlet series which contains a lot of
information on the number field.

Since in the context of Dirichlet series a complex variable is denoted
by s, the notations for the numbers of real and complex primes of a
number field K will be 7(K) and s(K) instead of simply r and s.

8.19 Definition. Let K be a number field. The Dirichlet series of the arithmetic
function

jr:N* = NCC, n— #{a]aisan ideal of O with N(a) =n},

considered in section 8.3, is called the Dedekind zeta function of K; notation:

Ck(s). So

Given an ideal class C' of K we have the partial Dedekind zeta function of the ideal
class C

determined by the function jo which only counts ideals in the class C. Obviously,

Ce(s)= Y. Cals).

Ccea(K)

The Dedekind zeta function generalizes the Riemann zeta function: ((s) = (g(s).

By Theorem 8.3 25:1 jo(n) = O(N), so by Theorem 8.12 the series converge
for 0 > 1. Theorem 8.3 contains more detailed information on the asymptotic
behavior of Jo(N) and Jx (N). This leads to:
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8.20 Theorem. Let K be a number field of degree d with r real embeddings and s
pairs of complex embeddings. Then for each ideal class C' the partial zeta function
Co(s) has a continuation to a meromorphic function on the half-plane R(s) > 1 fé
with one simple pole in s = 1 and so has the Dedekind zeta function (i (s). The
residue of (c(s) at s =1 equals

27(K) (27)(K) Reg(K)
w(K)/|dise(K)|

and the residue of (x(s) at s =1 equals

27K) (27) 5K h(K) Reg(K)
w(K)y/| disc(K)]

27K (277)5K) Reg(K)
w(K)y/| disc(K)]

i jo(n) — K
n=1 n*

Proor. Put k= and consider the Dirichlet series

By Theorem 8.3 we have
N
1
Y- Giem) = k) = Jo(N) = kN = O(N'~#).
n=1

So by Theorem 8.12 the Dirichlet series converges to an analytic function on R(s) >
1-— é. On the other hand we have

Cols) = J'Cn(zl) _ ZJ'C(Z)S—K n Z% _ (Z jC(Z)s_K) Fr-C(s).

n=1

The theorem now follows from Theorem &.14. O

The real number
L w(K)y/|disc(K)|

Q(K ) = log W
is, motivated by an analogy with function fields, known as the genus of the number
field K. So, with this notation, the residue at s = 1 of the Dedekind zeta function
is

h(K) Reg(K)
eg(K) :

As for the Riemann zeta function, there is a completed Dedekind zeta function

Zk(8) = Zoo(5)Ck (5)
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satisfying the functional equation Zk (s) = Zk(1—s). It is a meromorphic function
with only poles at s = 0 and s = 1. These are simple poles with residues

2R Reg(K) . 2" Oh(K) Reg(K)
w(K) w(K) '

The factor Zo(s) depends on a higher-dimensional gamma function I'k (s):
Zoo(s) = |disc(K)| 27 2 ' (3).
For details see the sections 4 and 5 of Chapter VII of [31].

8.21 Definition and notation. For o > 1 the Dedekind zeta function converges
absolutely. It easily follows that for such o there is no ambiguity in writing

1
W= D Fg

aclt(K)

More generally, for a given b: IT(K) — C we have an arithmetic function a given

by
a(n) = Z b(a)

acl™ (K)
N(a)=n

and we define the Dirichlet series of the function b: IT(K) — C by

b(a) _ <~ a(n)
2 N(a)® _nz::l ns

aclt (K)

If the Dirichlet series >~ aflf’) is absolutely convergent, the Dirichlet series of b is

absolutely convergent with respect to any ordering of its terms. In this case it is
said to be absolutely convergent as well.

The next theorem is a straightforward generalization of Theorem 8.16. First we
generalize the definitions of multiplicative and completely multiplicative.

8.22 Definition. Let K be a number field. We call a function b: IT(K) — C
multiplicative if for all comaximal aj,as € TT(K) we have b(ajas) = b(ay)b(az).
The function is called completely multiplicative if b(ajaz) = b(ay)b(az) for all a, b €
I"(K).

8.23 Theorem. Let K be a number field, b: 1T (K) — C multiplicative and s € C
such that the series
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8.5 Dirichlet density
converges absolutely. Then the series is representable by an infinite product:

b(a) ~ _b(p")
Z N(a)® HZ N(p)ks’

a€l+(K) P k=0

where the infinite product is over all p € Max(Ok ).

PROOF. As in the proof of Theorem 8.16 use unique factorization. In this situa-
tion the unique factorization of nonzero ideals as a product of prime ideals. O

8.24 Corollary. Let K be a number field and let b: IT(K) — C be completely

multiplicative. If the series ), 1\?((2)) converges absolutely in s € C, then for this s

we have ) )
a
Z N(a)* = H b(p) H
a p

S Ok

8.25 Corollary. For the Dedekind zeta function of a number field K we have
1

() =1] 1

1
P N(p)®
for ®(s) > 1. O

The formula ") )
2" 2m)* " h(K) Reg(K
Res e (s) — 2 2n COBE) Reg1)
s=1 w(K)4/| disc(K)|
is known as the class number formula. Especially in connection with Corollary 8.25
it gives information on the product h(K) Reg(K).

We have continued the Dedekind zeta function of a number field K to a meromor-

phic function on the half-plane R(s) > 1 — [K—@ For our purposes this suffices,

but more is possible: it has a continuation to a meromorphic function on the entire
complex plane. Also this continuation has just one pole, the simple pole at s = 1.

8.5 Dirichlet density

For P a collection of nonzero prime ideals of the ring of integers of a number field
K consider the series ]

peP
It is the Dirichlet series of the function

1 if a is a maximal ideal,

IM(K)—C, aw .
0 otherwise.
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The series converges absolutely in the half-plane o > 1:

1 1 1
> 5w =L NoF 52 N

peP a€l+(K)

The Dirichlet density of the collection P is determined by its behavior near s = 1:

8.26 Definition. Let K be a number field and P a set of nonzero prime ideals of
Ok. The set P is said to have Dirichlet density §(P) if

1
5(P) = lim 2=2<P NG
sl Z %
P N(p)

)

provided that the limit exists.
Rules for a density are satisfied by the Dirichlet density:

8.27 Proposition. Let K be a number field and let P, P" C Max(Ok) both have a
Dirichlet density. Then:

(i) 6(Max(Og)) = 1.
(i) 6(P) € R and 0 < §(P) < 1.

(iii) If PN P =0, then §(P U P') = 6(P) + 6(P').
(iv) If P C P', then §(P) < §(P').

PROOF. (i) and (iii) are obvious and for (ii) restrict the domain to (1,00). For
(iv) apply (iii) to P’ \ P and P. O
8.28 Notation. The notation f ~ g is used to express that the difference f — g of
functions f, g defined on ¢ > 1 is bounded in a neighborhood of s = 1.

8.29 Definition. Let K be a number field. A function x: IT(K) — C is called an
ideal character of K if
1. x(ab) = x(a)x(b) for all a,b € [T(K),
2. |x(a)| =1 or x(a) =0 for all a € I (K).
So an ideal character of K is a completely multiplicative map x: IT(K) — C in

the sense of Definition 8.22 which satisfies the second condition above. An ideal
character is determined by the values x(p) for p € Max(Ox).

An ideal character x determines a set P = {p € Max(Ok) | x(p) = 0} and induces
a group homomorphism

X : IP(K) - C~,
where T7(K) = {a € I(K) | vy(a) =0 for all p € P}. The homomorphism X' is a
character of the group I” (K) with values in the unit circle in C.
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8.5 Dirichlet density

8.30 Convention. The complex function log always stands for the principal branch
of the logarithm: for ;9 € R, 7 > 0 and —7 < ¥ < 7 we have log(re’) = log r+iv,

where the last log denotes the real natural logarithm.

8.31 Proposition. Let K be a number field and x an ideal character of K. Then
the series > X(9)  converges absolutely for R(s) > 1 and in this half-plane the

a N(a)s
series is representable by an infinite product

x(a) 1
N(a)s B H 1— x(p) -
a p N(p)s

Moreover, >, X(p)

N(p)s converges absolutely on the half-plane R(s) > 1 and

x(a) x(p)
1°g<§a: N(a)S)N — N(p)*

x(u

PROOF.

tion of K, a series converging absolutely on the half-plane ®(s) > 1. The product

representation on R(s) > 1 follows from Corollary 8.24.

In a neighborhood of s = 1 we have

log (Zﬂ: 13;5;1) = log (1;[ 1_+(p)) ~ D log 1_%(;')

N(p)* p

and for each p

> R

Hence

= Xx(p)*
’Zp:kz_z EN(p)ks

and this is bounded for o > %

1
DBy

In particular we have:

203



8 Analytic Methods

8.32 Corollary. Let K be a number field. Then
1
lo §) ~ —. O

8.33 Proposition. Let K be a number field. Then

> N
lim p N(p)

e N g,
sit —log(s — 1)

PRrROOF. For the Dedekind zeta function of K we have by Theorem 8.20

lim (s — 1)k (s) = K # 0,

s—1

where & is the residue of (x(s) at s = 1. The last identity implies that

log (i (s) ~ log(s — 1).

By Corollary 8.32 the function f(s) = >_, ﬁ + log(s — 1) is bounded in a
neighborhood of s = 1. So we have
1
Yo N _ f(s) —log(s — 1) f(s)

= =1- — 1 f 1. O
—log(s — 1) —log(s—1) log(s — 1) - or s |

8.34 Corollary. Let K be a number field and P C Max(Ok). Then

1 1
lim 2pep N(p)® _ s 2pep N(p)®
si1 Zp ﬁp)s si1 —log(s — 1)

(If one of the limits exists, then so does the other.) O

So an alternative definition of the Dirichlet density is

1
Zpep N(p)*®

8(P) = 15,1?11 —log(s —1)

8.35 Corollary. Let K be a number field. Finite sets of nonzero prime ideals of
Oy have Dirichlet density 0.

PRrROOF. For P finite ), p ﬁ is a finite sum of functions which are analytic

ins=1. ]

The Dirichlet density is often used to show the existence of infinitely many prime
ideals that satisfy certain conditions: if a collection of prime ideals has a nonzero
Dirichlet density, the collection is infinite.
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8.5 Dirichlet density

The absolute residue class degree of a prime ideal of a number field is its residue
class degree over Q. It equals 1 if and only if the norm of the prime ideal is a prime
number. Prime ideals of absolute residue class degree > 1 do not contribute to the
Dirichlet density. This follows from the following proposition.

8.36 Proposition. Let K be a number field and Py the set of prime ideals of Ok
of absolute residue class degree 1. Then 6(Py) = 1.

Proor. Let @ be the set of all prime ideals of K of absolute residue class degree
> 1. It suffices to prove that ZpeQ ﬁ ~ 0. For p € Q we have N(p) > p?,
where p is the prime number below p. For each prime number p there are at most

[K : Q] prime ideals of Ok above p. Therefore, for ¢ > 1 we have

1 1 1 K
DI ED B DIE-EED DD DT D
peEQ P peQ

P peEQ p p p
above p above p
— 1
SIK:Q) -5 =[K:Q@) 0
n=1

8.37 Theorem (Kronecker). Let L: K be a Galois extension of number fields
and P the collection of prime ideals of O which split completely in L. Then

6(P):[L:—1K],

PrOOF. Let @ be the set of prime ideals of O above prime ideals in P and
Q1 the set of prime ideals of L having absolute residue class degree 1. Prime
ideals in @Q; \ @ are ramified over K and so they are finite in number. Hence
J5(QNQ1) =0(Q1) =1 and since Q 2 Q N Q; it follows that §(Q) = 1, that is

1
2acQ Ny —
sit —log(s —1)

Because

1 1 LK 1
LN =2 X N — 2 N~ L N

q€Q peP gIE(Qp peEP peP
q =
we now have .
> peP NGIT 1
§5(P) = lim =2EC B O

sit —log(s —1) [L: K]
8.38 Corollary. Let Ly : K and Lo : K be Galois extensions of number fields and

P; the collection of prime ideals of O which split completely in L; (fori=1,2).
Then L1 C Ly <= P, O P;.

205



8 Analytic Methods

PrOOF. If Ly C Lo, then clearly P; O P,. So assume P; O P, and consider the
extension L1Ly : K. By Theorem 7.50 the prime ideals which split completely in
L1 Ly are precisely the prime ideals which split completely in both L; and Lo, so
this set of prime ideals is P, N P, = P,. By Theorem 8.37 we have

[L1Ly: K] =

§(P2) = [LQK]

and hence L1L2 = LQ, that is L1 g LQ. O

This is an interesting result: Galois extensions of a number field K are determined
by the collection of prime ideals of Ok which split completely in the extension field.
It was conjectured by Kronecker and proved by M. Bauer in 1903. It does not tell,
however, which are the prime ideal collections that occur as such collections. For
abelian extensions the solution of this problem is given by class field theory. It is
described in chapter 13 and the proof is completed in chapter 15.

8.6 Frobenius Density Theorem

There are various theorems on the Dirichlet density of collections of prime ideals
with a given splitting behavior in a field extension. The simplest, but important,
one is Theorem 8.37 in the previous section. Much more advanced is Chebotarev’s
Density Theorem proved in section 15.4. A weaker version of this theorem is the
Frobenius Density Theorem. First we consider the case of an abelian extension.

8.39 Theorem. Let L : K be an abelian number field extension. Let Z be a cyclic
subgroup of Gal(L : K) of order n and P the collection of nonramifying prime

ideals of Ok which satisfy (@fJL)) =Z. Then §(P) = [i(:?()].

PROOF. The proof is by induction on n. For n = 1 the theorem reduces to
Theorem 8.37. So let’s assume that n > 1 and that the theorem is true for smaller
cyclic subgroups of the Galois group. The collection P consists of nonramifying
prime ideals with their Frobenius automorphism in Z, but not in a proper subgroup
of Z. Subgroups of Z correspond to divisors of n. Let Z; be the subgroup of
Z of order d and Py the collection of nonramifying primes p with <<p,(3L)> = Zg.
Then Z, = Z and P, = P. Let @ be the collection of nonramifying primes p
with <p§,L) € Z. Then p € @ if and only if p splits completely in L%. Hence by
Theorem 8.37 6(Q) = ﬁ = ﬁ The set @ is the disjoint union of all Py
with d | n. By induction hypothesis all P; with d # n have a Dirichlet density, so
P has a Dirichlet density as well and we have

0 -i@-Ti - pg S O
d#n d#n
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8.6 Frobenius Density Theorem

If there is a prime ideal which remains prime in a Galois extension, then the Galois
group of this extension is cyclic. We now have:

8.40 Corollary. Let L : K be a cyclic extension of number fields of degree n and
P the set of prime ideals of Ok which remain prime in L. Then 6(P) = @. In
particular infinitely many prime ideals of Ok remain prime. O

We generalize Theorem 8.39 to the case of a Galois extension of number fields.

8.41 Definition. An equivalence relation ~ in G is defined by
01~ 0y <= (01) =0{oz)o" ! for some o € G.

The equivalence classes are called divisions of G and the division represented by
o € G is denoted by [o].

8.42 Lemma. Let G be a finite group, o € G of order n and Z = (o). Then
#([o]) = ¢(n)(G : Na(2)).

PROOF. The number of subgroups of G conjugate to Z is (G : Ng(Z)). Gen-
erators of different subgroups conjugate to Z differ and each of them has ¢(n)
generators. O

8.43 Frobenius Density Theorem. Let L : K be a Galois extension of number
fields, G = Gal(L : K), D a division in G and P the collection of prime ideals p
of Ok for which there is a prime ideal q of O above p with v (q) € D. Then

5(P) = #%4.

PROOF. Let p € P and q a prime ideal of O, above p with ¢x(q) € D. Put
o = ¢k(q) and Z = (o). By Proposition 7.54 the number of prime ideals of Oz
above p with residue class degree 1 is equal to (G : Ng(Z)). For the set P’ of prime
ideals p’ of Oz above a prime ideal p € P with fx(p’) =1 we have

0(P') = (Na(2) : Z) - 6(P).

For the set @ of prime ideals p’ of Opz which do not ramify in L and satisfy

Lpg,,L) € D we have by Theorem 8.39

where n = o(o). Because P’ C @ and Q \ P’ consists of prime ideals with residue
class degree over K equal to 1 and a finite collection of ramified primes, the sets
P’ and @ have equal Dirichlet density. Hence by Lemma 8.42

sy 8@

)= Nal2):2) ~ Nal2): 2)
L el el e (@:Ne(Z) _ #(D)
" Na(2):2) - F (D) HO) K]
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EXERCISES

1. Compute the residue at s = 1 of the Dedekind zeta functions of the fields

Q(vV=2,v3), Q(v2,v3) and Q(i,V6).

2. Compute at s = 1 the residue of the Dedekind zeta functions of the fields

Q(V2), Q(V7) and Q(V11).

3. Compute the residue at s = 1 of the Dedekind zeta function of the field Q((s).

4. The class number formula is based on counting ideals in ideal classes. What is the
effect on the formula if narrow ideal classes are used? Narrow ideal classes were
introduced in exercise 10 of chapter 6.

5. Determine the Dirichlet density of the set of prime numbers for which 2 is a square
modulo p. What about 2 a cube modulo p? And 2 a fourth power modulo p?

6. Let K be a number field, g € Ok [X] monic and irreducible over K, L the splitting
field of g over K and « € L such that g(a) = 0.

(i) Prove that for all but finitely many p € Max(Ok) the following are equivalent:
g has a root modulo p,
fr(p') =1 for some p’ € Max(Ok(a)) above p,
Zk(q) C Gal(L : K(«)) for some q € Max(Opr) above p.

(ii) Assume that deg(g) > 1. Prove that g has no roots modulo p for infinitely

many p € Max(Oxk).

7. Let K be a number field and f € Ox[X] monic, irreducible over K and of prime
degree. Prove that f is irreducible modulo p for infinitely many p € Max(Ok).
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O Abelian Number Fields

In section 9.1 the Kronecker-Weber Theorem is proved: every abelian number field
is contained in a cyclotomic field. As we have seen in the previous chapter, for the
splitting of primes in cyclotomic fields there is a simple description. As a conse-
quence the same is true for any abelian number field. This leads in section 9.3 to
the notion of Dirichlet character. These characters describe the splitting behavior
of primes in an abelian number field. In section 9.4 it is shown that abelian number
fields correspond to finite groups of Dirichlet characters. Since Dedekind zeta func-
tions of abelian number fields are determined by this splitting behavior, Dirichlet
characters are particularly useful in the study of these zeta functions. A Dirichlet
character determines a Dirichlet series, the L-series of the character (section 9.5).
Via Gaufl sums of Dirichlet characters this leads to applications concerning class
numbers of abelian number fields and units of cyclotomic fields, described in the
last section.

In this chapter and later chapters the terminology of categories and functors is
used. However, more advanced category theory is avoided.

9.1 The Kronecker-Weber Theorem

The first complete proof of the Kronecker-Weber Theorem was Hilbert’s in 1896. It
made use of the theory of ramification groups, here described in section 7.5. Let p be
an odd prime and r € N*. The cyclotomic field Q({,+1) contains a unique subfield
K of degree p”. The prime p is the only prime that ramifies in K. We will see that
this is the only number field of degree p” with this property (Proposition 9.5). For
the prime 2 we will derive a similar result (Proposition 9.8). The main ingredient
for the odd prime case is the next proposition. The Kronecker-Weber Theorem
will follow by reduction to these special cases.

9.1 Lemma. Let p be an odd prime and K an abelian number field of degree p
in which p is the only ramifying prime: pOx = pP with p € Max(Ok). Then
Va(p) = {1} and disc(K) = p*>P~1),

PROOF. There is a unique t € N* such that V;(p) = Gal(K : Q) and Vi11(p) =
{1}. We will prove that t = 1. Take 7 € Ok with v,(7) =1 and let f € Z[X] be
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9 Abelian Number Fields

the minimal polynomial of m over Q. Then deg(f) = p. Let o be a generator of
Gal(K : Q). Then

fX) = (X =m)(X —o(m)) - (X =P (m)) (9.1)
and so
f'(m) = (m = o(m))(x = o*(m)) - (w — P~} ().

We have V;\Vi11 = {0,0?%,...,0P  } and so vy (mr—0c'(7)) = t+1fori =1,...,p—1.
Hence

vp(f'(m) = (t+1)(p - 1).
Put f(X) = XP+a; XP~ ! +as XP~ 2+ “+ap_1 X +ap with ay,...,a, € Z. From
identity (9.1) it follows that

f(X) = X" € (Ok/p)[X].

(In fact, by exercise 20(i) of chapter 3 the polynomial f is an Eisenstein p-poly-
nomial; see also Theorem 7.20.) We have a1,...,a, € pNZ = pZ, say vy(a;) =n;
with n; € N* or n; = oo. Then v,(a;) = n;p. Apply v, to

flm)=pr? P +ar(p— )P 2+ +a, ;.

The valuations of terms on the right hand side are subsequently

p+(p—1), mip+ (p—2), nop+(p—3), ..., np_1p.

Some, but not all, of these might equal co. The others are all different, because
they differ modulo p. It follows that

(t+1)(p—1) =min(2p — L,nip+ (p — 2),...,np-1p) < 2p — 1,

that is (¢t — 1)p < ¢ and so, since p > 3, we have 2t < 3. Hence, ¢t = 1.

By Proposition 7.21 (Ok )y = Zy}[7]. Since K is totally real and p is the only rami-
fying prime, we have O = Z[r] and disc(K) = disc(1, 7, ..., 77~ 1) = N§ (f'()) =
PN, whete N = u,(NE(f'(m) = vy (f'()) = 2(p — 1). .
9.2 Lemma. Let p be a prime and L an abelian number field of degree p? in

which p totally ramifies. Let K be a subfield of L of degree p. Then v,(dx (L)) =
vp(disc(L)) — p - v,y (disc(K)), where p is the unique prime ideal of Ok above p.

PROOF. Let q be the unique prime ideal of O above p and p € Oy, such that
vg(p) = 1. Put 7 = NE&(p) € Ok. By Proposition 7.67 vy(m) = 1. Then by
Theorem 7.21 (OL)q = (Ok)plp] and (Ok)p = Zyyy[rl. So (Or)q = Zyylm, pl.
This means that the elements 7°p’ withi=0,...,p—1land j=1,...,p—1 form
a Zgpy-basis of (Or)q. From Proposition 7.23 and Theorem 7.25 follows that

vp(disc(L)) = vp(disc(..., 707, ...)),  wy(dise(K)) = vy(disc(1, 7, ..., 77~ 1))
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9.1 The Kronecker-Weber Theorem

and v, (0x (L)) = vy(disck (1, p,...,p"1)).
By Proposition 1.33
disc(..., 77, ..) = (disc(Lm, oo, 7)) N (discre (Lo,
So

0p Ok (L)) = vp(disc(L, . 1)) = up (N (disc(1, .. o))
= v,(disc(..., 707, ...)) — p-vy(disc(1, 7, ..., 7P~ 1)
= vp(disc(L)) — p - vp(disc(K)). O

9.3 Lemma. Let p be an odd prime and L an abelian number field of degree p? in
which p is the only ramifying prime. Then Gal(L : Q) is cyclic.

PROOF. The prime p totally ramifies in L, since otherwise there would be an
unramified extension of Q of degree p. Let K be a subfield of degree p of L, q the
prime ideal of Oy, above p and p = qNK. By Lemma 9.1 we have disc(K) = p>®P~1).
Put N = v,(disc(L)). Then by Lemma 9.2

ok (L) = pN—2p—1),

Let p € Op, such that vq(p) = 1. Then, since p is the only prime ideal of O which
ramifies in L, we have O = Ok|p]. Let o be a generator of the group Gal(L : K)
and t € N* such that Vi ,(q) = Gal(L : K) and Vi ;+1(q) = {1}. For the minimal
polynomial f of p over K we have

F'(p) = (p—a(p)(p—*p))...(p— " (p)).

Because Vi +(q) \ Vi.1+1(q) = {0,02,...,0771}, we have

vy (L)) = vp(NE (f'(p))) = vq(f'(p)) = (t + 1)(p — 1).

Hence (t+1)(p —1) = N — 2p(p — 1). In particular the value of ¢ is the same for
all subfields K of degree p. Let s € N* be such that Vg s(q) = Gal(L : Q) and
Vo,s+1(q) # Gal(L : Q). Then by Proposition 7.59 Vg s+1(q) is of order p. For
subfields K of degree p of L we have by Proposition 7.63

Gal(L: K) if Gal(L: K) = Vig.es1(q),

Vi s+1(q) = Vg,s+1(q) N Gal(L : K) = {{1} otherwise

Since t does not depend on K, there is only one such subfield. This means that
Gal(L : Q) has a unique subgroup of order p. O

9.4 Lemma. Let p be an odd prime. The subfield K of Q((p2) of degree p is the
unique abelian number field of degree p in which p is the only prime that ramifies.
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PROOF. Suppose there is another abelian number field L of degree p in which p
is the only prime that ramifies. Then KL is a noncyclic abelian number field of
degree p? and by Theorem 7.50 only the prime p ramifies in K L. This contradicts
Lemma 9.3. O

9.5 Proposition. Let p be an odd prime and r € N*. The subfield K of Q((pr+1)
of degree p” is the unique abelian number field of degree p” in which p is the only
prime that ramifies.

PROOF. Let L be another abelian number field of degree p” in which only p
ramifies. Then Gal(KL : Q) is a noncyclic abelian p-group of order > p". By
Theorem 7.50 only the prime p ramifies in K L. For H a subgroup of Gal(K'L : Q)
of index p, the field (K L) is an abelian number field of degree p in which p is the
only prime that ramifies. By Lemma 9.4 the subgroup H is the unique subgroup
of index p. It follows that Gal(K L : Q) is cyclic. Contradiction. O

9.6 Lemma. The only quadratic number fields in which only the prime 2 ramifies

are Q(v/2), Q(i) and Q(v/=2).

PROOF. These are the only quadratic number fields having a discriminant without
odd prime divisors. O

9.7 Proposition. Let r € N*. The field K = Q((ar+2 + C;,lﬁ) is the unique real
abelian number field of degree 2" in which 2 is the only prime that ramifies.

PrOOF. Let L be another real abelian number field of degree 2" in which only
2 ramifies. Then Gal(K'L : Q) is a noncyclic abelian 2-group of order > 2". By
Theorem 7.50 only the prime 2 ramifies in K L. For H a subgroup of Gal(KL : Q)
of index 2, the field (K L) is a real quadratic number field in which 2 is the
only prime that ramifies. This is the field Q(v/2). So Gal(KL : Q) has a unique
subgroup of index 2. Therefore, Gal(K L : Q) is cyclic. Contradiction. O

9.8 Proposition. Let r € N*. The only complex abelian number fields of degree 2"
in which only the prime 2 ramifies are

Q(Car+1)  and Q(Cor+e — C;E},z)

PrROOF. Let K be a complex abelian number field of degree 2" in which only the
prime 2 ramifies. Let 7 be complex conjugation. If ¢ € K, then by Proposition 9.7

K =K"(i) = Q(Cr+1 + C;H)(i) = Q((ar+1).
If : ¢ K, then apply this to K (i):

K(i) = Q(Gors2)-

The subfield fixed under the automorphism given by (or+2 — —Cz_rlﬂz

K = Q(Car+2 — (3ha)- O
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9.1 The Kronecker-Weber Theorem

We have determined all abelian number fields of prime power degree in which this
prime is the only ramifying prime. In particular they are subfields of cyclotomic
fields. Now we consider a more general case.

9.9 Proposition. Let p be a prime. Let K be an abelian number field such that
Gal(K : Q) is a p-group. Then K is contained in a cyclotomic field.

PrOOF. The proof will be by induction on the number of primes # p which
ramify in K. If this number is 0, we know by the Propositions 9.5 and 9.8 that K
is contained in a cyclotomic field.

Put [K : Q] = p". Suppose ¢ is a prime # p which ramifies in K. Let ¢ € Max(Ok)
be above ¢ and consider the ramification group Vi = Vi(q) of q over Q. By
Theorem 7.61 V; is a g-group. Because V; is a subgroup of the p-group Gal(K : Q),
we have V] = {1}, that is ¢ tamely ramifies in K. Now consider the inertia group
T = Ty(q). Being a subgroup of Gal(K : Q) it is a p-group, say #(T') = p', where
t < r. By Proposition 7.60 p' | ¢ — 1. Let L be the unique subfield of Q(¢,) of
degree p'. The prime ¢ totally ramifies in L, because it does so in Q(¢,). Since g is
the only prime which ramifies in Q((,), it also is the only one which ramifies in L.

Consider the abelian number field K'L and let q” € Max(Oky) be above q. Because
[KL : Q] is a power of p, again we have V1(q"”) = {1}. So T” = T(q") is a cyclic
p-group. The restriction to T” of the injective group homomorphism

Gal(KL:Q) —» Gal(K : Q) x Gal(L : Q), o+ (0|k,olr)
yields an injective group homomorphism
T" - T x Gal(L : Q).

The group on the right hand side is isomorphic to Cpt x Cpt. The order of T” is a
multiple of p?, the order of the inertia group of ¢ in L. It follows that T is cyclic
of order pt.

By Theorem 7.50 the primes which ramify in KL are the same as those which
ramify in K. Now consider the field

K' = (KL)T".

Prime numbers which ramify in K’ also ramify in K L. However, ¢ does not ramify
in K’. Hence the number of primes ramifying in K’ is less than the number of
primes ramifying in K. So we can assume that K’ is contained in a cyclotomic
field, say K’ C Q(¢mn). We have: ¢ does not ramify in K/ N L (it does not in K')
and ¢ totally ramifies in K’ N L (it does in L). Tt follows that K’ N L = Q and
therefore,

[K'L:Q|=[K:Q|L:Q]=[K:Q][KL:K']|=[KL:Q].
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9 Abelian Number Fields

So K'L = KL, because K’ C KL and L C KL. Hence

K CKL=K'LCQ((n)Q¢) = QCmr)
with m’ = lem(m, q). O
Finally we have:

9.10 Theorem (Kronecker-Weber). Let K be an abelian number field. Then K
s contained in a cyclotomic field.

PrOOF. The Galois group G is a direct product of p-groups, say
G=G G,
where G; is say a Sylow p;-subgroup. Put H; = G1---G;_1G;41--- G,. Then
K=KV = gNH: _ gl gHr

and we have

Gal(K" : Q)= G/H; = G,.
By Proposition 9.9 each of the K i is contained in a cyclotomic field and so the
same holds for their composite K. O

The intersection of cyclotomic fields is a cyclotomic field as well: Q((,,) NQ(&,) =
Q(¢4), where d = ged(m,n). So for an abelian number field K there is a least m
such that K is contained in Q((,,). This justifies the following definition.

9.11 Definition. Let K be an abelian number field. The least m € N* for which
K C Q(¢m) is called the conductor of K. The conductor of K is denoted by N.

For a conductor N of an abelian number field we have N # 2 (mod 4), because for
N =2 (mod 4) we have Q({n/2) = Q(¢N).

Composition and intersection of cyclotomic fields yield cyclotomic fields, i.e. for
m,n € N*, d = ged(m,n) and k = lem(m, n):

Q(¢m)Q(¢n) = Q(¢k) and  Q(Cm) NQ(Cn) = Q(Ca)-
This implies:
9.12 Proposition. Let K7 and Ky be abelian number fields. Then
NK1K2 zlcm(NKl,NK2) and NKlﬁKg Zng(NKUN[Q). O

For quadratic number fields we have:
9.13 Proposition. For m € Z squarefree # 1 the conductor of Q(y/m) is |Dyy,|.

PrROOF. Write m = upj---p}, where u € {£1,4+2} and py,...,p, are different
odd primes. The conductor of Q(y/n) for n = —1, 2, =2, p¥ is respectively 4, 8,
8 and p. It follows that Q(v/m) C Q(Cn), where N = |D,,|. Because all prime
divisors of D,,, ramify in Q(y/m), this field is not contained in a smaller cyclotomic
field. O
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9.2 Characters of finite abelian groups

9.2 Characters of finite abelian groups

In the next section Dirichlet characters are introduced. They describe the splitting
behavior of primes in abelian number fields and are essentially characters of a group
(Z/N)* for some N € N*. We will need some generalities on characters of groups,
in particular characters of finite abelian groups.

9.14 Definition. Let G be an abelian group. A character x of G is a group homo-
morphism y: G — C*. The character ¢: G — C* defined by e(g) = 1 forallg € G
is called the trivial or principal character on G.

If G is a torsion group, which means that each element of G is of finite order, then
X(G) C u(C) = Q/Z for each character x of G. So for such groups, e.g. finite
abelian groups, we could take characters to be homomorphisms of G to Q/Z.

9.15 Definition. Let y; and x»2 be characters of a group G. Then their product
x1X2 is defined by:

(x1x2)(9) = x1(9)x2(9) for all g € G.

Clearly this imposes an abelian group structure on the set of characters of G. This
group we denote by GV and is called the character group of G or also the dual of
G. The trivial character ¢ is the unit element of GV.

9.16 Definition. Let f: G; — G2 be a homomorphism of groups. The group
homomorphism
UG =G, x= xS

is called the dual of f.

One easily verifies that 16V = 1gv and (¢9f)" = fYg¢¥. Thus G — GV is a
contravariant functor from the category of groups to the category of abelian groups.

For any abelian group C' we have a contravariant functor Homz(—, C) from the
category of abelian groups (= Z-modules) to itself. Such a functor is left exact,
which means that it maps a short exact sequence 0 - A" — A — A” — 0 to
an exact sequence 0 — Homy(A"”,C) — Homy (A, C) — Homyz(A’,C). If it maps
short exact sequences to short exact sequences the functor is said to be exact and
the group C' is then by definition an injective Z-module. Injective Z-modules are
just the divisible abelian groups: abelian groups C' with the property that for each
x € C and each n € N* there is a y € C such that ny = x. Note that in the
multiplicative notation this reads: y™ = x.

9.17 Proposition. Let 1 — A" — A — A" — 1 be a short ezact sequence of abelian
groups (in the multiplicative notation). Then the induced sequence of the duals
1— A" = AY = A = 1 is ezact as well.

PrOOF. AY = Homgy(A,C*) and the group C* is divisible. O
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9 Abelian Number Fields

9.18 Corollary. Let Ay and As be abelian groups. Then (Ay X Ag)v =AY x AV

PrROOF. Apply Proposition 9.17 to the split short exact sequence 1 — A; —
A1 X AQ — Ag — 1. O

9.19 Proposition. Let C,, be a cyclic group of order n € N*. Then C,," is also
cyclic of order n.

PROOF. Let t be a generator of C,. For each character y of C,, x(¢) is an n-th
root of unity. The homomorphism x + x(¢) of C,," to the cyclic group p, of n-th
roots of unity is an isomorphism. (A generator of the dual group is the character
which maps ¢ to (,.) O

9.20 Theorem. Let A be a finite abelian group. Then AV = A.

PrOOF. A finite abelian group is a product of cyclic groups. So the theorem is a
consequence of Corollary 9.18 and Proposition 9.19. O

The theorem merely states that an isomorphism exists. It depends on the factor-
ization of the group as a product of cyclic groups and the isomorphisms from these
cyclic groups to their duals. There is however a natural isomorphism from A to
AV a = (x = x(a)).

The finiteness of A is crucial:
7" = Hom(Z,C*) = C*,

and
(éZ/z)v o Hom(é Z/Z,Q/Z) ~ f[ Hom(Z/2,Q/Z) = loj Z)2.

(TTSZ, As consists of sequences (a1,az,...) with a, € A, for all n € N*, whereas

n=1
;7 | An consists of such sequences which satisfy an extra condition: a, # 0 only
for finitely many n € N*.)

In the next section we will need the following propositions:

9.21 Proposition. Let p: A — B be a surjective homomorphism of abelian groups.
Then its dual p¥: BY — AV is injective and

p'(BY) ={x €AY | Ker(p) C Ker(x)}.

PrROOF. The dual of the short exact sequence

1—Ker(p) A2 B—1
is the short exact sequence

-V
3

1— BY 25 AV 2 Ker(p)” — 1.
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‘We have

p'(BY) =Ker(i") ={xc AY | xi=¢}
={x €AY | x(Ker(p)) ={e} } = {x € A | Ker(p) C Ker(x)}. O

A commutative diagram

of homomorphisms of abelian groups is called a cartesian square if for each pair
hi: X — Ay, ho: X — Ay of homomorphisms of abelian groups such that g1h; =
gahs, there exists a unique h: X — C such that fih = hy; and foh = hy. This
comes down to: for each (a1,a2) € Ay X Ay such that g1(a1) = ga2(az), there is a
unique ¢ € C such that fi(c) = a; and fa(c) = az. The square is cartesian if and
only if the following sequence is exact:
(g) (91 —g2)
0—C 2404, " B

Dually, in the categorical sense, the square is called cocartesian if for each pair
ki: A1 =Y, ky: A5 — Y of homomorphisms of abelian groups such that k; f; =

ko fo there exists a unique k: B — Y such that kg, = ky and kgs = ky. The square
is cocartesian if and only if the following sequence is exact:

(E) (91—2)
CA04, " B 0.

The square is called bicartesian if it is both cartesian and cocartesian. It follows
that the square is bicartesian if and only if the sequence

)

f1
O—)C(f—Z))Al@AQ(gliz B—0

is a short exact sequence.
9.22 Proposition. The dual of a bicartesian square of abelian groups is bicartesian.

PRrROOF. According to Proposition 9.17 the dual of a short exact sequence is a
short exact sequence. O
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9 Abelian Number Fields

9.3 Dirichlet characters

Dirichlet characters are essentially characters of groups (Z/N)*. In the next section
it is shown that they describe the splitting behavior of primes in abelian number
fields.

Let N € N*. A character x’ of (Z/N)* induces a map x: Z — C as follows:

x'(m) if ged(n,N) =1,
x(n) = :
0 if ged(n, N) > 1.
As is easily verified the map x satisfies for all m,n € Z:
(D1) x(n) =0 <= gcd(n,N) > 1,

(D2) x(mn) = x(m)x(n),

(D3) m=n (modN) = x(m) = x(n).
9.23 Definitions and notation. Let N € N*. A map x: Z — C satisfying (D1),
(D2) and (D3) above is called a Dirichlet character modulo N. The N is called

the modulus of the Dirichlet character. If x; and y2 both are Dirichlet characters
modulo N, then so is x1X2, the map defined by

(x1x2)(n) = x1(n)x2(n) for all n € Z,

The set of Dirichlet characters modulo N will be denoted by Dy. Under the
multiplication given above it is a group naturally isomorphic to (Z/N )*V. Dirichlet
characters of order 2 are called quadratic. Only 0, 1 and —1 are values of a quadratic
Dirichlet character.

Since Dy = (Z/N)*¥ = (Z/N)*, we have in particular #(Dy) = @(N).

If x is a Dirichlet character modulo N, then its inverse x !

L x(m)Tt ifged(n, N) =1
A {0 if ged(n, N) > 1.

is is given by

So x~!(n) = x(n) for all n € N. For this reason the inverse of a Dirichlet character
x is usually denoted by .

9.24 Example. Let p be an odd prime. The Legendre symbol determines a char-
acter of the group Fy:
F, — C*, > <n>
p
It corresponds to a quadratic Dirichlet character

7. — C, n»—><n>
p
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9.3 Dirichlet characters

Since all Dirichlet characters have the same domain and the same codomain, they
can be multiplied, even if their moduli differ, and the result is again a Dirichlet
character:

9.25 Definition. Let x; € Dy, and x2 € Dy,. We define x1x2: Z — C by

(x1x2)(n) = x1(n)x2(n)
for all n € Z. Clearly x1X2 € Dicm(Ny,Ns)-

Let N € N* and M € N* be such that M | N. The canonical surjective ring
homomorphism Z/N — Z/M induces a surjective group homomorphism (Z/N)* —
(Z/M)* and so also an injective group homomorphism (Z/M)*" — (Z/N)*", which
in turn induces an injective group homomorphism z%f : Dy — Dn. For x € Dy
the Dirichlet character i3 (x) is then given by

, x(n) for all n € Z with ged(n, N) =1,
(in ())(n) = ) : (
0 for all n € Z with ged(n, N) > 1.

Note that the surjectivity of (Z/N)* — (Z/M)* follows from the Chinese Remain-
der Theorem: given an n € Z with ged(n, M) = 1, there exists an n’ € Z such

that
, n (mod M)
n =
1 (modp”»(™))  for all primes p with p | N and p{ M.

For this n’ we have ged(n’, N) = 1 and n’ = n (mod M).

9.26 Definition. Let M, N € N* such that M | N and let x € Djs. Then the
Dirichlet character i}/ (y) € Dy is said to be induced by x. A Dirichlet character
modulo N is said to be a primitive Dirichlet character modulo N if it is not induced
by a Dirichlet character modulo M with M a proper divisor of N.

9.27 Examples.

1. For each N € N* there is the trivial or principal Dirichlet character xi; it is
the unit element of the group Dy:

1 if ged(n,N) =1,
x1(n) = .
0 if ged(n,N) > 1.

Only for N =1 it is primitive.

2. For N = 3,4,6 the group Dy is of order 2. It contains one quadratic char-
acter.
For N = 3:
1 ifn=1(mod3),

n— < —1 if n =2 (mod3),
0 ifn=0(mod3).
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For N = 4:
1  ifn=1(mod4),
n—¢—1 if n=23(mod4),
0 ifn=0(mod?2).

For N = 6:

1  ifn=1(mod6),
n— <=1 if n =5 (mod6),
0 ifn=0,23,4(mod6).
The first two are primitive; the last one is not: it is induced by the first.
3. For p a prime there are p—1 Dirichlet characters modulo p and p — 2 of them
are primitive. The group D), is cyclic of order p — 1. For p odd there is a

unique quadratic Dirichlet character modulo p: the character given by the
Legendre symbol, see Example 9.24.

9.28 Lemma. Let My, My, N € N* be such that My, My | N. Let x € Dy be
induced by a Dirichlet character modulo My as well as by a Dirichlet character

modulo My. Then x is induced by a Dirichlet character modulo M, where M =
ng(Ml, Mg) .

PrROOF. We can assume that N = lem(M;, Ms). From (M;) N (Mz) = (N) and
(My) + (M) = (M) it follows that the square

ZJN — 7./ M,

Z/My — 7/M

is a bicartesian square of surjective ring homomorphisms. Taking units yields a
bicartesian square

(Z/N)* — (Z/Ma)*

(Z/My)" — (Z/M)*

of surjective group homomorphisms. By Proposition 9.21 the dual square is bicarte-
sian. In the dual square the group homomorphisms are injective. It is canonically
isomorphic to the square
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9.3 Dirichlet characters

DM —_— DM2

DMl E— DN

Because the homomorphisms are injective, we have
in' (Dar,) Niy* (Dary) = iy (D). (9-2)

Since both x € i (Dar,) and x € iN* (D), it follows that x € % (Das), which
means that x is induced by a Dirichlet character modulo M. O

An important consequence is:

9.29 Corollary. Let x be a Dirichlet character modulo N. Then there is a unique
M | N such that x in induced by a primitive Dirichlet character modulo M. O

9.30 Definition. Let x be a Dirichlet character modulo N. The modulus of the
unique primitive Dirichlet character which induces x is called the conductor of x.
Notation: N,.

Induction of Dirichlet characters generates an equivalence relation: Dirichlet char-
acters being equivalent if there is a Dirichlet character that induces both of them.
The product of Dirichlet characters induces a product of equivalence classes. Each
equivalence class contains a unique primitive Dirichlet character. Thus the prod-
uct of equivalence classes induces a product of the representing primitive Dirichlet
characters.

9.31 Definition and notation.  The set of all primitive Dirichlet characters is
denoted by D. It is a group under the following multiplication. Let x; and x2 be
primitive Dirichlet characters. Then the product xix2 as in Definition 9.25 is a
Dirichlet character modulo lem(N,,, N,,). The product of x; and x2 in D is the
unique primitive Dirichlet character by which it is induced.

9.32 Change of notation. Henceforth all Dirichlet characters are assumed to
be primitive. The notation Dy will now be used for the subgroup of D of all
Dirichlet characters x with N, | N. That means that in Dy as originally defined
all characters are replaced by primitive characters and that the multiplication is
changed accordingly. Under this convention identity 9.2 in the proof of Lemma 9.28
becomes

Dgyca(my,mz) = Day ND, -

Dirichlet characters as originally defined will be referred to as Dirichlet pre-char-
acters.
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9 Abelian Number Fields

Now the notion of conductor reads: the conductor N, of x € D is the least N € N*
for which x € Dy. More generally we define:

9.33 Definition. Let X be a finite group of Dirichlet characters. Then the conduc-
tor of X is the least N such that X C Dp. Notation Nx.

9.4 Classification of abelian number fields

The splitting behavior of a nonramifying prime number in an abelian number field
is given by its Frobenius automorphism. The ramifying primes in a cyclotomic
field Q(() with m # 2 (mod4) are the prime divisors of m. The Frobenius
automorphism of a prime p 4 m is the automorphism given by ¢, — ¢2,. So the
splitting behavior of such p depends only on its residue class modulo m. Since an
abelian number field K is a subfield of a cyclotomic field Q({,,,) and the Frobenius
automorphism of p in Gal(K : Q) is the restriction of its Frobenius automorphism
in Gal(Q(¢Gm) : Q), we have the same regularity for the splitting behavior in K.

There is a one-to-one correspondence between abelian number fields and finite
groups of Dirichlet characters. This correspondence is as follows. For a fixed
N € N* it is a correspondence between subfields of Q({y) and subgroups of Dy.
Up to natural isomorphisms it comes from the correspondence between subgroups
of Gy := Gal(Q(¢n) : Q) and the duals of their factor groups. The last ones are
naturally isomorphic to subgroups of Dy. For X a finite subgroup of Dy define

Ker(X)={oe€Gn|x(o)=1forall xy € X}.

Note that x € Dy determines a character on G via the isomorphism (Z/N)* =
Gn, @+ 04, 0, being the automorphism given by (x — (%. For H a subgroup
of G define

Dir(H)={x €Dy |x(c)=1foralloc € H}.

Thus we have short exact sequences
1 — Ker(X) — Gy — XV — 1

and
1 — Dir(H) — Dy — HY — 1.

Taking duals yields

Dir(Ker(X)) =X and Ker(Dir(H))=H.
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9.34 Definitions.

a) Let K be an abelian number field and N € N* such that K C Q(¢x). The
group of Dirichlet characters associated to K is the group

D(K) := Dir(Gal(Q(¢n) : K)).
(Note that this group does not depend on the choice of N.)

b) Let X be a finite subgroup of D and N such that X C Dy. The abelian
number field associated to X is the field

Qux = Q(¢w) ¥,
(This field does not depend on the choice of N.)

Now we have a one-to-one correspondence between abelian number fields and finite
groups of Dirichlet characters:

9.35 Classification Theorem for Abelian Number Fields. The maps

abelian finite groups of
number fields Dirichlet characters
K D(K)
Qx X
are inverses of each other and they preserve the ordering given by inclusion. O

This implies:
9.36 Proposition.

(i) Let Ky and Ks be abelian number fields. Then D(K1K3) = D(K;)D(Ks)
and D(Kl N KQ) = D(Kl) N D(KQ)

(ii) Let X1 and X5 be finite groups of Dirichlet characters. Then Qx,x, =
QXlQX2 a’nd QleXz - QXl N QXQ'

(iii) The conductor of an abelian number field K is equal to the conductor of
D(K). O

9.37 Definition. A Dirichlet character y is called even if x(—1) = 1. Otherwise,
so if x(—1) = —1, it is called odd.

9.38 Proposition. An abelian number field is real if and only if the corresponding
group of Dirichlet characters contains only even characters.
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PROOF. Let the abelian number field K be contained in a cyclotomic field Q(¢x ).
Then K is real if and only if K C Q((y + Cg,l), which is the case if and only if
o_1 € Gal(Q(¢y) : K). This is equivalent to x(—1) =1 for all x € D(K). O

The group D(K) is isomorphic to the dual of Gal(K : Q). It describes the splitting
of primes in the field K.

9.39 Proposition. Let K be an abelian number field and let p be a prime. Then p
ramifies in K if and only if there is a x € D(K) with x(p) = 0.

PrROOF. Let N € N* be such that K C Q({y). Write N = p'M with p { M.
Consider the following diagram, where K’ = Q((,t) N K (Car)-

Q(¢N)

Since Q({pt) N Q) = Q, it follows that K'((as) = K(Car). Therefore, the
extensions K((p) : K and K((pr) : K’ are both extensions with an M-th root of
unity. So the primes above p in K and K’ do not ramify in K((as). It follows that

ef)( = ef)((CM) — ef/ = [K/ : Q}

So p ramifies in K if and only if K’ # Q. Since x(p) = 0 if and only if x # ¢
for all x € D¢, we have that K’ # Q if and only if there is a x € D(K') with
x(p) = 0. From K'(Cpr) = K(Cur) it also follows that D(K) Dy = D(K') Dy
Since x(p) # 0 for all x € Dyy, there is a x € D(K) with x(p) = 0 if and only if
there is a x € D(K’) with x(p) = 0. O

9.40 Theorem. Let K be an abelian number field and let p be a prime. Put Z =
Z5) and T = TS, Then

(i) KT is associated to the group Y = {x € D(K) | x(p) #0};
(ii) K? is associated to the group Y' = {x € D(K) | x(p) = 1}.
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PrROOF. For all x € Y we have x(p) # 0, so by Proposition 9.39 p does not
ramify in Qy. Since Y is the largest subgroup of D(K) with this property, Qy is
the largest subfield of K in which p does not ramify: Qy = K7T.

Since p does not ramify in K7, the field K7 is a subfield of Q(¢y) for some N € N*
with pt N. For Z' = Z,()Q(CN)) = (0,) we have

Dir(Z')={x€Dn|x(oc)=1forallo e Z"}
={x€Dnlx(op) =1} ={x €Dn[x(p) =1}

Put 2/ = Z5). By Corollary 7.47 (KT)?" = K N Q(¢y)? and (KT)?" =
KT N K? = KZ%. Hence by Proposition 9.36 we have

D(K?) = D(K)ND(Q((n)?) = D(K)NDir(2') =Y. O

9.41 Corollary. In the notation of Theorem 9.40: D(K)/Y =T, D(K)/Y' = Z
andY/Y' = Z/T. O

9.42 Application. We will use Dirichlet characters to show that for each finite
abelian group G there exists an extension L : K of abelian number fields such that
Gal(L : K) 2 G and no prime ideal of K ramifies in L.

Let G be a finite abelian group. Then G is a product of cyclic groups, say G =
Cp, X -+ x Cy, with n; > 1 for all i. Choose r different primes pi,...,p, such
that p; = 1 (modn;) for i = 1,...,r. For each i there is a x; € D, of order n,.
Choose another prime p, 11 such that p.;; =1 (modny---n,) and a x,41 € Dy, .,
of order nj - - - n,. For each i the conductor of x; is p;. Let X = (x1,...,xr+1) and
X’ = (x), where x = x1---Xr+1. Take L =Qx and K = Qx-. Then K C L and

Gal(L: K) = X/X"= (x1,...,x) = G.

The primes which ramify in L are p1,...,pr4+1. From Corollary 9.41 it follows that

for each i we have eéK) = eéL):

T]SIL) = X/<X17 e Xi—1 X1 - - 7X7‘+1> = <Xl> = C"rL1
T 2 (3) [ (X™) 2 Ch,.

So e;(aL) =1 for all p € Max(Ok).

Quadratic number fields

Quadratic number fields correspond to subgroups of D of order 2 and hence to
quadratic Dirichlet characters. Say the field Q(y/m) with m squarefree # 1 corre-
sponds to the quadratic Dirichlet character x.,,. We will describe this character.
By Proposition 9.13 the conductor of Q(y/m) is |D,,|. So by Proposition 9.36(iii)
Ny, = |Dml.
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9 Abelian Number Fields

9.43 Proposition. Let K be a quadratic number field. Then D(K) is of order 2
and generated by a quadratic Dirichlet character with conductor |disc(K)|. O

The character x,, describes the splitting behavior of primes in Q(y/m):

0 if p ramifies,
Xm(p) =11 if p splits completely,

—1 if p remains prime.
The field Q(y/m) is real if and only if m > 0, so
Xm(—1) = sgn(m).

These values determine Yy,,, because it is completely multiplicative. The value of
Xm in odd primes p is given by the Legendre symbol:

0.5 Dirichlet L-series

A Dirichlet character is an arithmetic function. Because it is completely multi-
plicative, it is worthwhile to study the associated Dirichlet series.

9.44 Definition. The L-series of x € D is the Dirichlet series

L(s,x) = Z X::)

The L-function of the trivial Dirichlet character is the Riemann zeta function.
Unlike the Riemann zeta function the L-function of a nontrivial Dirichlet character
is analytic at s = 1. For this we need the following simple lemma.

9.45 Lemma. Let x be a nontrivial Dirichlet character. Then ZnNél x(n) =0.
PROOF. Since x is nontrivial, there is a k € Z such that x(k) ¢ {0,1}. Then

NX NX NX
X)) x(n) =Y x(kn) =Y x(n).
n=1 n=1 n=1
Because x(k) # 0, this implies Zf:];l x(n) = 0. O
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9.46 Proposition. Let x be a nontrivial Dirichlet character. Then the L-series
converges to an analytical function on the half-plane R(s) > 0.

Proor. By Lemma 9.45 we have 22[:1 x(n) = O(1). The proposition follows
from Theorem 8.12. O

For x # 1 the function L(s,x) has a continuation to an analytic function on the
whole plane. The completed L-series is given by

A(s,X) = Loo(s8,X)L(s,x) for R(s) > 1,

where

et = () 1r(2)

the number k£ depending on the sign of x:
b 0 if x is even,
Sl it X is odd.

The completed L-series for nontrivial x admit analytic continuations to the whole
plane and satisfy the functional equations

A0 = 2940 s %),

i* /Ny

The g(x) in this equation is the Gaufl sum of the character. For the gaufl sum see
the next section. For the continuation of L(s, x) see section VII.2 of [31].

Since x is completely multiplicative, by Corollary 8.17 the L-series has a product
representation. Note that the series converges absolutely for £(s) > 1.

9.47 Proposition. Let xy € D. Then for R(s) > 1:

L(s,x):H; O

x(p)
p 1= 5

The group D(K) associated to an abelian number field K describes the splitting
behavior of primes in K (Proposition 9.39 and Theorem 9.40). This leads to a
relation between the L-series of the Dirichlet characters in D(K') and the Dedekind
zeta function of K.

9.48 Theorem. Let K be an abelian number field. Then

()= [I L.

XED(K)
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PROOF. The Dirichlet series (k(s) and all L(s, x) have a product representation
for R(s) > 1. We prove the equality by comparing these product representations.
Let p be a prime and put e = eZ(,K) and f = fl(,K). Then [K : Q] = ref, where r is

the number of p € Max(Ok) above p. We have to prove that

1 1
1— L - H 1— x(p) *
plpOK N(p)®  xeD(K) P°

: :<111)T

1— L _ 1
plpOK N(p)* ple

For the left hand side we have

and for the right hand side, using the notation of Theorem 9.40,

1 1 L 1 =y
11 1_X(P):H1_M:H 11 1_@:1_[ e
X€D(K) p* X€Y ps a=0 xeY ps a=0 s
x(p)=Cy
-1 r
1 1 r
:<H ?) - (17 I ) ' =
a=0 1 pT pfs

We have a product of meromorphic functions on £(s) > 0:

(s)=¢ts)- J] Lis.0,
XGXZ(lK)

where the two zeta functions have only one single pole at s = 1. The L-functions
for x # 1 are analytic in the half-plane. So we can express for abelian K the
residue of (x(s) at s =1 in terms of values of L-series for s = 1:

9.49 Corollary. Let K be an abelian number field. Then

Res (x(s) = 1T zax. O
XED(K)
x#1

For a given x € D of order n # 1 we have in particular

n—1
Res (o, (5) = 1;[1L(1,x“)-

The left hand side is nonzero by the class number formula for the number field Q,,
so the L-functions of nontrivial Dirichlet characters xy do not have a zero at s = 1:
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9.5 Dirichlet L-series

9.50 Theorem. Let x be a nontrivial Dirichlet character. Then L(1,x) #0. O

An application is a well-known theorem of Dirichlet on primes in an arithmetic
progression. In its proof we will use the following lemma.

9.51 Lemma. Let N € N* and a € Z such that gcd(a, N) = 1. Then

Z (@) = {go(N) if a =1 (mod N),

<€D 0 if a #1 (mod N).

PROOF. For a =1 (mod N) we have x(a) = 1 for all x € Dy. So assume that
a #Z 1 (mod N). Then there exists a xo € Dy such that xo(a) # 0,1 and we have

xo(@) Y x(@)= > (xox)(a) = Y x(a)

XEDN X€DN XE€DN

Since xo(a) # 1 it follows that 3° .5 x(a) =0. m

9.52 Theorem (Dirichlet). Let N € N*, a € Z such that gcd(a, N) = 1. Then the
set of primes p = a (mod N) has Dirichlet density ﬁ. In particular there are
infinitely many of these primes.

Proor. Let x € Dy. By Proposition 8.31 we have

X

log L(s, x)

Therefore, using Lemma 9.51

> Mksbisg ~ 32 S AR - 5 35 MR

X€DN XEDN P
_ Z SD(N)
p=a (mod N) p

On the other hand by Theorem 9.50

> x(a)log L(s,x) = ¢(s) + Y x(a)log L(s,x) ~ ¢(s).

XEDN XEDnN
x#1
Hence 1 1 1
Sl e tog(s— ).
S N N
Ny o)
So by Corollary 8.34 we have §(P) = ﬁ for P the set of primes p = a (mod N).

O
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9 Abelian Number Fields

Another consequence of Theorem 9.48 is that it leads to formulas for class numbers.
From this theorem and Theorem 8.20 follows:

9.53 Theorem. Let K be an abelian number field of degree n. Then

2"~ 1h(K) Reg(K)
disc(K)

, if K is totally real,

II cao-=
n/2
xeD(lK) (2m)" " h(K) I.Qeg(K)’ if K is totally imaginary.
X7 #(u(K))/| disc(K)

In particular for quadratic number fields we have:

9.54 Corollary. Let m € Z be squarefree # 1. Put hy,, = h(Q(v/m)). Then
L(1,x-1) = §ho1, L(1,x-3) = %2h_5 and

Thy,

= if m < =3,
L(]-a Xm) =
2logen, - hm ifm >0
VD, ’
(em is the fundamental unit of the real quadratic number field Q(y/m).) O

The next examples show how in principle L(1, x,,) can be calculated for a given
m. Later in this chapter a better technique will be described.

9.55 Example. For m = —1 we have
1
L(17X—1)=1—%+%—%+---=/ (1—2®42*—---)de
0

L de T
= —— —arctanl = —.
0 1+$2 4

So indeed h_; = 1.
9.56 Example. For m = 5 we have hy = 21¢¢3L(1,x5) and

LLxs)=1-3-3+H+G-2-Lt+0+--

1
:/ Q—z—2?+21+2°+20+...)de
0
1 2., .3 1 2
l1—x— 1—
:/ggﬁgﬂ;ﬁﬂu:/ggggi;gfm
0 1—x o 1+ax+--+at
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9.5 Dirichlet L-series

1-4 o dy < dz
1 ; do= 2 = 2
lil+a+a 2 yiHry—1 Js 22—

I

|
S—
h

N‘H

5
=T 2
1 S+4VE 2 VB4l
= log +— = —log 5
2,/5 3—3V6 V5

So h5:1

9.57 Example: complex biquadratic number fields. Let K be a complex bi-
quadratic number field and K7, Ko and K3 its quadratic subfields, say K; is the
real quadratic subfield and ¢ its fundamental unit. By Theorem 9.53 we have

47?h(K)Reg(K)  2h(Ki)loge . 2h(K>) 2mh(K3)

w(K)\/| disc(K)| - \/| disc(K1)| w(Kaz)4/|disc(K3)] . w(Kg)«/|disc(K3)|.

It is shown in exercise 9 of chapter 1 that

disc(K) = disc(K) - disc(K3) - disc(K3).
So for #(u(K)) #4,6,8,12 the formula reduces to
B(K) Rea(K) = h(K1)h(Ka)h(Ks) loge.

Inspection shows that this formula holds for #(u(K)) = 4,6,12 as well, so K =
Q(¢) = Q(4,+/2) is the only exception. Hence for K # Q((g):

hK) = 5Q(E)h(K1)h(K2)h(Ks3),
where Q(K) is the Hasse index of K. By Theorem 5.48 the Hasse index is 1 or 2.

9.58 Example: real biquadratic number fields. Let K be a real biquadratic
number field, K, K5 and K3 its quadratic subfields with fundamental units €1, e
and e3 respectively. By Theorem 9.53 we now have

24h(K) Reg(K) _ 22h(K;)logey _ 22h(K3) log o _ 22h(K3) loges
2./| disc(K)| 2/ disc(K7)| 2/ disc(Kz)|  2+/]disc(K3)[

This reduces to

h(K)Reg(K) = h(K1)h(K2)h(K3)loge loges loges.

The fundamental units of the quadratic subfields are units of K. The regulator
of K is defined using a fundamental system of units of K. Taking the system
(e1,€9,€3) instead leads to

loge; logey —loge;
Reg(e1,e2,e3) = |logea —loges loges | =4logeq logesloges.
loges —loges —loges

231



9 Abelian Number Fields

From

o e e Reg(e1, €2, 3)
(OK . OKl(')KzOKS) = W
then follows

hEK) = (0% : Ok, Ok, Ok, )h(K1)h(K2)h(K3).

0.6 The GauB sum of a Dirichlet character

In one of his proofs of the Quadratic Reciprocity Law Gaufl expressed square roots
of odd primes as sums of roots of unity, nowadays called Gauf} sums.

9.59 Definition. Let xy € D. We define

Ny

g0) =Y x(n)Ck. -

n=1

The number ¢(x) is called the (standard) Gauf sum of the Dirichlet character x.
More generally we define for k € Z:

NX
gk(0) =Y _ x(n)Cy.

(Thus g(x) = g1(x)-)

The sum is over the numbers 1 up to N,. Of course any system of representatives
of Z/Ny will do. The Gau sum of a x € D is an element of the m-th cyclotomic
field for m = lem(o(x), Ny)-

9.60 Lemma. Let x € D and k € Z such that ged(k, Ny) > 1. Then gi(x) = 0.

PrOOF. Put N, =dN; and k = dk;, where d = ged(k, N, ). Then

N Ny
200 = Xk =3 (<N 5 X“”)'
n=1 m=1 n=m (mod Ny)
1<n<N
It suffices to show that

Sm = Z x(n) = 0.

n=m (mod Ny)
1<n<N
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9.6 The Gaufl sum of a Dirichlet character

There is a t € Z such that t =1 (mod Ny), ged(t, N) = 1 and x(¢t) # 1. We have

X(t)$m = E x(nt) = sp,.
n=m (mod Ny)
1<n<N

So smy, = 0, because x(t) # 1. O
9.61 Proposition. Let x € D and k € Z. Then gi(x) = x(k)g(x).
Proor. Put N = N,. If ged(k,N) > 1, then x(k) = 0 and by Lemma 9.60

gr(x) = 0. So we assume that ged(k,N) = 1. Take an [ € Z such that kl =
1 (mod N). Then

N N N
900 = Y x(m)CR = x(nh)r = x(1) D> x(n)¢x = x(k)g(x)- O
n=1 n=1

n=1

9.62 Corollary. Let x € D. Then g(x) = x(—1)g(x).

PROOF. g(x) = S0 X(n)(x" = 9-1(%) = x(~1)g(%) O

9.63 Theorem. Let x € D. Then g(x)g(x) = Ny.

Proor. Put N = N,. We compute lecvzl 9t (X) gk (x) in two ways.

k;l Ilv:1 N m=1
=220 D xmcy ™" = ZZ Zc(“"
k=11=1 m=1 =1 m=1
N L N
=Y x(Ox) Y 1=p(N
=1 k=1
Hence g(x)g(x) = N O
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9 Abelian Number Fields

9.7 The GauBB sum of a quadratic Dirichlet character

By the results in the previous section the Gaufl sum of a quadratic Dirichlet char-
acter is determined up to sign:

9.64 Proposition. Let x,,, be the quadratic Dirichlet character corresponding to the
quadratic number field Q(\/m), where m is squarefree. Then g(Xm)? = D,

PrOOF. By Theorem 9.63, Corollary 9.62 and Proposition 9.43 we have

9(0xm)? = 9(xm)9(Xm) = Xm(=1)9(Xm)9(Xm) = Xm(~1)|Dm| = Dy. O

We will show that in fact g(x,n) = v/D, (with the usual convention for the square
root of a real number). First the computation will be reduced to the case m = p*
for p an odd prime. The character x,- is the character given by the Legendre
symbol a — (%) Examples strongly suggest that the formula g(x,~) = /p* is
indeed the right one, see the Figures 9.1 and 9.2, which are in fact just a variation
on the graphical representation given in Figure 3.1. It took Gaufl many years to
establish this result.

9.65 Definition. For a,b € R* define

—1 ifa<0andb<0,
[av b] = .
1 otherwise.

9.66 Lemma. For a,b € R* we have \/a - Vb = [a,b]vab. O

9.67 Proposition. Let my, ma € Z be squarefree # 1 such that ged(Dy,, , D, ) = 1.
Then g(Xml)g(sz) = [ml’ mQ}g(Xmlmz)'

ProoOF. Put Ny = |D,,,| and Ny = |D,,,|. We have

No
g(Xm1 X7TL2 - (mel CN1> <ZXW2(Z)C§V2>
=1

N, N,
kN2 +IN
=2 2 X (), (DGR
k=11=1
Ny N,
— Z (N1+N2)s . .
= Xy (8)Xms (8 )C N N (Chinese Remainder Theorem)
s=1

= N1+ N, (Xmyma) = Xmyma (N1 + N2)g(Xomym., )

= Xm1 (N1 + N2)Xm, (N1 + N2)g(Xmyms)

= Xm, (NQ)sz (Nl )Q(Xml mz)

= Xom, (580(m2)) Xm. (sg0(m1)) Xm, (M2) X, (11)9 (X1 ms)
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9.7 The GauB3 sum of a quadratic Dirichlet character

k @: term C;f
k O: term —C;,f

Figure 9.1: Terms of the Gaufl sum for the first six odd primes
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9 Abelian Number Fields

k @: term C;f
k O: term —C}’;

%5 -
26 97 9g 29 30

Figure 9.2: Terms of the Gaufl sum for the next six odd primes
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9.7 The GauB3 sum of a quadratic Dirichlet character

= Xmy (mQ)sz (ml)g(xmlmz)' (Xml (Sgn(mQ)) = [m17 m2])

So it remains to prove that

Xy (M2)Xm, (1) = [my, ma).
If m; = ning such that ged(Dy,, Dyn,) = 1, then
Xmy (M2) Xm (M1) = Xy (1M2) Xng (M2) Xims (11) Xomo, (112)
= Xny (mQ)sz (nl) * Xna (mQ)Xmg (77‘2)

and also
[m1,m2] = [nlva] : [n27m2]~

So it suffices to verify the formula for m; = p* and mgo = ¢* with p and ¢ different
odd primes, and also for m; = p* (with p an odd prime) and mq € {—1,2, —2}.

L oxpe (0%) = P, ¢°1(%) = % 01(9), 50 xp- (@)xg= () = (&) (B) = ", q7)-
2. Xp+ (=D)x-1(p*) = sgn(p*) = [p*, —1].
3. xp (2x2(p*) = (~1)F xa(p) = 1 = [p7, 2]

4. Xp (=2)x—2(p*) = sgn(p*)xp- (2)x2(P*)x-1(p*) = sgn(p*) = [p*, —2]. O

This proposition and the lemma will enable us to reduce the computation of the
sign of the Gaufl sum of the character x,, to the case where m = p*, where p is an
odd prime and the cases m = —1, m = 2 and m = —2.

9.68 Proposition. g(x_1) = v—4, g(x2) = V8 and g(x_2) = vV—8.

PROOF. g(x-1) = C1— ¢ =2i = V=4, glx2) = s — G — G + & = 2v2 and
9x-2) =G+ G -G -G =2v=2 O
9.69 Theorem. Let p be an odd prime. Then g(x,+) = /D*.

Proor. Put ¢, = (. Let T be the linear transformation of the complex vector
space C'r of all maps F, — C defined by

p—1

(TF)(G) = fk)CF,

k=0

for all f € C*». (T is a ‘Fourier transformation’.) We will compute the deter-
minant of this transformation 7" using two bases: the canonical basis and a basis
of characters. Comparison of the results of the two computations will lead to a
computation of the Gaufl sum of the quadratic character on IFp,.

237



9 Abelian Number Fields

First computation

On the canonical basis ey, ..., e,—1, where e;(j) = d;;, the matrix of T is of Van-

dermonde type:
(C(i—l)(j—l))

1<i<p-
1<i<p
The square of this matrix is
p 00 --- 00
000 -+ 0p
0 0 0 p O
00 p -~ 00
0O p 0 --- 00

So (det(T))? = (71)1’7*1]9;,’ hence

p—1
|det(T)| = p"7* V5.
(Alternatively, det(T)? = disc(X? — 1) = (—1)"z H ka )
On the other hand we can use the formula for the determinant of a Vandermonde
matrix: _ _
det(T) = [ (¢'=¢).

1>7
0<i,j<p—1

The factors in this product can be grouped in the following way:

det(T) = [ (€' =¢)(C7 =) (¢P~ = )¢ = ()

i>j

1<d,j<25t
p—1 p—1
2 2
JI@=n@e==n- [T =)
i=1 =1

All factors in the first and in the second product are positive reals, while the factors
in the third product are equal to —i times a positive real. So we have

det(T) = (=i)" = p"'\/p.

Second computation
For each of the p — 1 multiplicative characters x of the field F, we have

p—1

(TX) () = Y x(B)* = x(1)g(x)-

k=1
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9.7 The GauB3 sum of a quadratic Dirichlet character

So
Tx = g(x)X-
Let w be a character of F,, of order p — 1. Then the p — 1 powers

of w span a linear subspace CF» of dimension p — 1. These functions all take the
value 0 in 0, except w®, which takes the value 1. So a basis of CF? is

0,, —, 2 =2 —
ep, W , W, W, w,Ww,...,w 2?2 W2 w2 .

The character w”z is the unique quadratic character x,+ of F,. On this basis the
transformation 7" has the matrix

0 p
1 0

0 g

gw) 0

0 9@
gw?) 0
0 g(w(p*?»)/?)
g(wP=3)/2) 0
g(wP=1/2)
So

det(T) = (=) (~9(w)g(@)(~g(w?)g(@)) -+ (~g(w?I/2)g(@PI/2))g(wP~/2).

For the p — 2 nontrivial characters x we have

Hence

Finally,
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9 Abelian Number Fields

9.70 Theorem (GauB). Let m € Z be squarefree # 1. Then
9(xXm) = v/ Dm.

PROOF. Letm =upj---pl withu € {£1,4+2} and py, ..., p, different odd primes.
Then

Xm = XuXp; ' XPrs
a product of r (or r — 1 if w = 1) Dirichlet characters for which the theorem
has shown to hold (Proposition 9.68 and Theorem 9.69). The theorem follows by

induction using Lemma 9.66 and Proposition 9.67: let mq,ms € Z be squarefree
# 1 such that ged(Dy,,, Dim,) = 1, then

g(Xm1m2) = [ml&mQ]g(XTm )g(sz) = [ml’mQ] V Dml \% sz
= [m17m2][Dm1’Dm2]\/Dmlm2 = \/Dmlmz' O

An equivalent formulation is: for quadratic x € D we have g(x) = /x(—1)Ny.

9.8 Class number formulas

We compute L(1, x) for a x € D. Put N = N,,. By Proposition 9.61

Q(X) n—1
So we have
00 ') N—-1 N-1 oS 2mink
X(k ]. 1 e a— 2kmin ]. B 6 N
XE LS ST e R = == Y ()
Z1 k (X) I; k n=1 g(X) n=1 l; k

9.71 Lemma. Let ¥ € R such that 0 <9 < 2w. Then
ek ) NZ
:1k—"“4%mﬁ+42‘ﬁ-

PrROOF. The power series »_ % converges for |z| <1 and z # 1 to the principal
value of —log(1 — z). For |z < 1 the argument of 1 — z is between —7% and 7. We
have

, 9 9
|1 —e"| = |€79 —e 7| = ‘Qisina‘ = 2sin§
and 9
arg(l — ™) = arg(e% - e_%) + arg(e_%) = g — 5
Since —log(1 — z) = —log |1 — z| — i arg(1 — z), the lemma follows. O
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9.8 Class number formulas

9.72 Theorem. Let x € D and N = N,. Then

= . N—1
L(l,x) = —=— x(n logsm—Jr x(n)
( IL; N Ng n=1
ProOOF. By the lemma
o0 27r7nk
=—lo (QSinﬂ)—i—i(z—i—@) —lo 2—1———10 sm——&—ﬂ
& N 27N sy TRy TN

Class number formulas for quadratic number fields

The Gaufl sum of x,, has been computed in section 9.6 (Theorem 9.70). It is purely
imaginary for m < 0 and real for m > 0. So for the quadratic case Theorem 9.72
yields the following.

9.73 Theorem. Let m € Z be squarefree and # 1. Then

—Dp—1
T

L(l,xm) = —F——— m

ifm <0, and
~ ™
L1, xm) = — n) log sin

(1,x EZ: gsin 75

if m > 0. O

Now we have two computations of L(1, x;,). In one of them (Corollary 9.54) the
class number occurs. Equating the two outcomes yields formulas for the class
numbers.

9.74 Theorem. Let m € Z be squarefree and # 1. Then for m <0

—D,,—1

wm
hm = —— m
2D,, ; Xm (7)1
and for m > 0
1 Pedt
me 2loge Z Xm(n) logsin — .
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9.75 Examples.

2
6
,3:_6;X,3(n)n:_(1_2):1,
3
4 1
,1:—§;X,1(n)n:—§(1—3):1
= 32 (n)n = 1(1+2 3+4-5-6)=1
=g e =3 =1,
1
s =—— _ = ~11-13-17-19) = 2.
5 4OZX s(n)n = 20( +34+7+9 3-17-19)

9.76 Example. For m > 0 the formula can be put in the following form:

Dyp—1 *Xm(n)
E (Sin m)

m D °
m

n=1
For m =5:
. 2 2
2hs _ s1n%”sm3?7T B sm%r B (2cosﬂ)2 1+v5 22
= = - = —_ = = €r
> sin Z sin 4& sin T 5 2 o
5 5 5
so hs = 1.

9.77 Example. For m > 0 a somewhat different formula is often easier to handle.
From

7

L(LXm = - Z log 1 - Dm)

and Corollary 9.54 follows

Drn_l _/n
it = [T (1 G, rtr) = Lemtw=a 07 S5
n=1 " HX'm(n ( CDm)

For example

E2h2:<1—c§’)<1—<§):2—<§’—Cg 2+V2 _
-G 2-G-Gt 2-v2

SO h2:1

3+2V2=¢l

Finally for m < 0 we further simplify the class number formula. For m =
2,3 (mod 4) will use the following.
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9.78 Lemma. Let m < 0 with m = 2,3 (mod 4) and m squarefree. Then
Xm(n —2m) = —Xm(n)
foralln € Z.

PROOF. We may assume that n > 0. For n with ged(n,4m) > 1 this is trivially
the case. So we assume that ggd(n,4m) = 1. Then for m = 3 (mod 4):

) = () = (25 () = xatmnnlo

and 8o Xm(n —2m) = x—1(n — 2m)x—m(n —2m) = —x_1(n)X—m(n) = —xm(n).
For m = 2 (mod 4) we put m = —2my. Then

) = () (22 = x-alw o)

S0 Xm(n —2m) = x—2(n — 2'rn)Xmo (n—2m) = _X—2(n)X7no (n) = =xm(n). 0
9.79 Theorem. Let m < 0 with m = 2,3 (mod4) and m squarefree. Then

hm = i Xm(n).

PrOOF. For m = —1 the formula is correct. We assume that m # —1. Then
—4m—1 —2m—1 —4m—1

Z Xm(n)n = Z Xm(n)n + Z Xm(n)n
n=1 n=1 n=—2m-+1

—2m—1 —2m—1

= Xm(n)n + Z Xm(n —2m)(n — 2m)
n=1 n=1
—2m—1 —2m—1 —2m—1

I
g
>
3
3
£l
\

S X —2m)=2m Y xm(n)

3

I
3

n=1 n=1 n=1
—m—1 —2m—1
=2m < Xm(n)+ Y Xm(n))
n=1 n=—m-+1
—m—1 —1
=2m ( Xm (1) — Z XM(n)>
n=1 n=m-+1

O xm<—n>> —im 3 ym(n). O

n=m+1

3
Il
_

Next we look at the case m =1 (mod 4).
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9.80 Theorem. Let m < —3 with m = 1 (mod 4) and m squarefree. Then

—m—1

1 2
hin = o—— = Xm(n).
@ 2 )
Proor. We have
—m—1 —m=1 —m=1
Z Xm(n)n = Z Xm(2n) - 2n + Z Xm(2n —1)(2n — 1)
n=1 n=1 n=1
77n 1 —m—1
= 2xm (2 Z Z Xm(2n +m)(2n + m)
n=1 n= —715+1
—m—1 —m—1
= 2Xm Z Xm 7’L + me(Q) Z Xm (n)
n= n= 7vr;+1
—m—1 —m=l
= 2Xm(2) Z Xm(n)n_me(Z) Z X
n=1 n=
Hence )
—m—1 7m
m(n)n O
R e PR

9.81 Examples.

hos=x-5(1)+x-5(3)=14+1=2,
ho19 = 3(x—10(1) + x-10(2) + x-10(3) + x—10(4) + x—19(5) + X—19(6)
+ X-19(7) + x=19(8) + x=19(9))
=11-1-1+4141+1+1-1+1)=1.

Now we have solved the problem on the distribution of quadratic residues men-
tioned in chapter 3 on page 53 for primes = 3 (mod4).

9.82 Corollary. Let p # 3 be a prime with p = 3 (mod4). Then
p—1
ZQ: (n) _Jh_p  ifp=7(mod8),
= \p ~ 3h, ifp=3(mod8).
PrOOF. This follows from x_,(n) = ( ) for all n € Z. O
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9.8 Class number formulas

Among the numbers 1,...,p — 1 there are as many quadratic residues as there are
nonquadratic residues. For p = 3 (mod4) in the first half of these numbers the
quadratic residues outnumber the nonquadratic residues by A_,, or 3h_,,, depending
on p modulo 8. Note that for this we needed the sign of the quadratic Gauf§ sum:
the Gaul sum is a factor in the class number formula. For m = 3 (mod4) we
further simplify the class number formula.

9.83 Theorem. Let m < 0 be squarefree and m = 3 (mod4). Then

—m—1
£
h =2+ Y X-m(k)
k=1
PRrOOF.
" —77;—1 777;71 _1
hm = Z Xm(k) = Xm(QZ - 1) = (2[—1) Xfm(2l 1)

k=1 =1 =1

=1 s=1
= 2 x> xem®=20 ) xew(®
1<t<=m=1 1<t<=m=1 1<t<=m=1
t=0,1 (mod 4) t=2,3 (mod 4) t=0,1 (mod 4)
—mo1
=2 ( X—m(a) + > xm(b)> =2 > X_m(k). O
1<a< *"g*l %ﬂgbg%*l k=1

Now we have a solution for the problem in chapter 3 for primes = 1 (mod4) as
well.

9.84 Corollary. Let p be a prime with p =1 (mod4). Then
p—1
[k
> ()=
k=1
PrROOF. This follows from x,(n) = (%) for all n € Z. O
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9 Abelian Number Fields

For primes p with p = 1 (mod 4) we now have

= k p—1
hp:2-k§_:1(p) E2-T(mod4).

So h_, = 251 (mod4). Further note that the 2-rank of C/(O_,) equals 1. For
p =1 (mod8) we have h_, = 0 (mod4) and for p = 5 (mod8) we have h_, =
2 (mod4). So for p =1 (mod 8) the 2-primary part of C¢/(O_,) is cyclic of order at
least 4. For p = 5 (mod 8) the 2-primary part of C/(O_,) is of order 2.

9.9 Cyclotomic units

Let L = Q(¢n) and K = Q({m + ¢;,,}), where m € N* with m # 2 (mod 4) and
m # 1.

9.85 Definition. A v € O7 is called a cyclotomic unit if
S <_15<m71 _C’mal - 72n7"'71 - 7?:71>'

The group of cyclotomic units in Q((,,) is denoted by C,, and its subgroup of
cyclotomic units in K by C,},.

From now on we assume that in this section m is a prime power, say m = p”
with p a prime. By Theorem 5.51 a fundamental system of units of K is also a
fundamental system of units of L. We will show that C;}, is of finite index in O3.

9.86 Lemma.

1— (o
Proor. For k,b € N* with k < r and ptb we have
pF—1 pF—1
k . . r—k
1-¢r = J[a-c¢hdo=[[a-¢& ).
3=0 §=0

Because p { b+ jp"~*, the first identity in the lemma follows from this. For the
second identity use the fact that all 1 — (% with p { a generate the same ideal of
Z[Gm)- O

9.87 Notation. For a € Z \ pZ put

1ol =G _ G = Cop _ SINTT

2 = — - .
" 1=GCn Com — (o SN

ga:
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9.9 Cyclotomic units

9.88 Lemma. Let a € Z\ pZ. Then

ga € C;;a €a+m = 75(1 and E—a = 7€a~

ProoF. For p odd (m € (—1,¢n) € Cp, and for p = 2 we have Cg,;l = Q(,'f*l)m.
So &, € Cy, and from &, = &, follows that &, € C;},. The identity &4 = —&, follows
from (5," = —1 and since (g, — €5, = — (¢S, — Cone), We have £, = —&,. O

9.89 Proposition.

Con=(-1,Cn 6|1 <a< %, pta) and Ch=(-1,¢|1<a< T, pfa).

Proor. The second identity follows from the first. The first is a direct conse-
quence of the Lemmas 9.86 and 9.88. O

The &, with 1 < a < F and p{a form a system of @ — 1 units of OF. We will
prove that C} is of ﬁnlte index in O} by showing that this system has a nonzero
regulator. The following lemma on the computation of determinants will be used.

9.90 Lemma. Let G be a finite abelian group and f a map from G to C. Then

(i) det(f(orM), = [ D xlo

XEGY 0eG
(ii) det(f(or™") = f(0)orec = [] D x(0)f(0),
oT#l \eGY oea
x#1
(iii) if >, f(o) =0, then det(f(o7"))orec = H Z
o, 7#1 Xeflv cel
X

PROOF.

(i) Consider the C-linear transformation 7: C¢ — C% defined by

Zf (o) for all h € C% and 7 € G.
ceG

On the canonical basis (es)seq, Where e,(7) = d5. -, the transformation T'

acts as follows
(Teq)( Z f(p)es(pr) = floT7h).

So the matrix of T" on the canonical basis is (f(anl))U re- The transfor-

mation 7' maps a character x € GV to T(x) € C defined by

7) =) flo)x(or) =) flo)x(o)x(7)
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9 Abelian Number Fields

It follows that x is an eigenvector of T' with eigenvalue > _ f(o)x(c). The
characters of G form a basis of C%. On this basis the matrix of 7" is diagonal.
Therefore,

det(f(or_l))ojec =det(T) = H Z x(o)f(o).

XEGY c€G

(ii) Let V be the linear subspace of C¢ of all h with }__(h) = 0. The transfor-
mation T induces a transformation 7" of V: for h € V' we have

S TW)r) =3 fhler) = F@)hio) = (3 1) (D hie) =o.

The e/ = e,

basis is

— % with 7 # 1 form a basis of V. The matrix of 7" on this

(f(UT_l) - f(o))t;;i?

The nontrivial characters form a basis of V. The formula follows from this.

(iii) Given some ordering on the set G\ {1}, we have the following for determinants
of matrices:

1 O covernennnns 0
1 7o)
det(f(O’T ) - f(U))f;,;iClJ = (f(UT_l) _ f(0)>U,T€G
/(@) .
1 1 .een. 1 #(G) 1 «.een. 1
(@) o .
B (f(UT_l))U,TEG N (f(UT_l))a,-reG
f(a’) o, 7#1 0 o, 7#1

The regulator of the system (&,),, where the a satisfy 1 < a < %pr and p 1 a, is
the absolute value of the determinant with entries log|7(€,)| with 7 € Gal(K : Q).
For these entries we have

log|7(&a)| = log|1 — 7(¢m)"| — log|1 — 7((m)|
= log‘l - Taa(gmﬂ - 10g|1 - T(Cm)|

Apply lemma 9.90(ii) to f(o) = log|l — o(Q)|:

Reg((€a)a) = abs et (loglr(£,))),._,
= abs det(log|1 — 7(¢m)"| — log|1 — T(Cm)|)a;¢1
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9.9 Cyclotomic units

= absdet(10g|1 — o7 H¢m)| — log|1 — U(Cm)l)a"r¢1

=abs [ D x(0)loglt — o(¢m)l

XEGY c€G
x#1

= abs H Z a)log|l — ¢ |

XED(K) 1<a<m/2
x#1

= abs H ZX )log|l — 2|

XED(K) 1

x#1
For Ny = p* it follows from
prTR—1 prTR—1
1-¢o= I 0-¢ogar= T (1 -¢r™
t=0 t=0

that

> x(a)loglt — ¢l = x(a)log|1 — (.
1 a=1

For x € D(K) even and N, = p* we have by Theorem 9.72

1

900 A

L(1,x) = a)log|1 — (i

[ ME

and so
Zlog|1—<ak|—— GIL(L %) = —g0)L(L, ).

Hence

Reg((Sa)a) =abs [ 39(0)L(1,X) #0.
XEX’;(lK)

This implies that the cyclotomic units in K form a subgroup of O} of finite index.
Since K is totally real, by Theorem 9.53

Rea((€a)e) = yommymr 11 900l TT 1205

XED(K) XED(K)
x#l x#1

_ h(K) Reg(K
/disc(K) XEID_[K)r

and this can be further simplified using the following proposition.
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9 Abelian Number Fields

9.91 Proposition. disc(K H and disc(L) = (—1)#(m)/2 H N,.
XED(K) X€D(L)

More generally for every abelian number field K

disc(K)| = [ N

XE€D(K)

This is the Conductor-Discriminant Formula for abelian number fields, a special
case of the Conductor-Discriminant Formula for abelian number field extensions.
A proof of this formula will be given in chapter 17.

PROOF. The sign of the discriminant is given by Proposition 1.46. In chapter 1
disc(K) and disc(L) have been computed (Propositions 1.55 and 1.54):

. (-1)= Fp3@ T er—r=D=1) if p {5 odd,
d‘SC(K):{zz"' 1)1 itp—2.

and

disc(L) = (_1)w(m)/2pp7-71(m_r_1).
For N € N* put a(N) = #{X cD ‘ NX _ N} Then

pF2(p—1)% ifk>1,

a(p*) = #(Dyr) — #(Dper) = (o) — p(p*) = {p _q if k=1

For L we have
I M= J] M= H Ba() — pp-2+-1)" Shop hp* 7 o eror=1),
xE€D(L) XEDm

where the equality of the exponents of p is easily verified by induction on r. For
the field K we need the number of even characters of a given conductor:

bB(N)=#{x€D|Ny,=Nand x(—-1) =1}
The number b(p*) is related to a(p*) by

a(p®) ifk>1,
(p—3) ifk=1and podd,
if p* = 2.

b(p*) =

O NI= ol

Now the Conductor-Discriminant Formula for K easily follows from the formula
for L. O
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Exercises

By the formula for disc(K) we have
Reg((§a)a) = h(K) Reg(K)
and so we obtain the following remarkable theorem.
9.92 Theorem. [0} : C,l,] = h(K). O

The abelian groups O} /C,l: and C/(K) are of the same order. However, it is
unknown whether they are isomorphic.

EXERCISES

1. Let p be an odd prime and K the unique abelian number field of degree p. Let p
be the prime ideal of Ok above p. There is a unique ¢t € N* such that Vi 111(q) #
Vik,+(q). Compute t. (This ¢ occurs in the proof of Lemma 9.2. See also exercise 19
of chapter 7.)

2. (i) Describe all characters of Cs. Which of them are induced by a character of a
proper factor group?
(ii) As part (i), but now for the group Cy x Cs.

3. Let G be a finite abelian group. Show that each character of G is induced by a
character of a proper subgroup of G if and only if GG is not a cyclic group.

4. Describe a character of @, Z/2 which is not induced by a character of a proper
factor group.

5. Give all Dirichlet pre-characters modulo 7, and also all Dirichlet pre-characters
modulo 8, modulo 15 and modulo 24. Write each Dirichlet pre-character xy modulo
24 as a product of Dirichlet pre-characters with a conductor less than N, .

6. Determine the conductor of the quadratic Dirichlet character x—1x—73.

7. Determine the number of Dirichlet pre-characters with conductor 260. How many
of them are quadratic?

8. Let m,n € Z be different and squarefree # 1. Show that the conductor of
Q(y/m, /n) is equal to the least common multiple of the conductors of the quadratic

number fields Q(v/m) and Q(y/n).

9. Verify the conductor-discriminant formula for quadratic and biquadratic number
fields.

10. Let K be an abelian number field and p a prime number. Show that p | Nk if and
only if p ramifies.

11. Compute the class number of Q(1/—29) using Corollary 9.84.
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9 Abelian Number Fields

12.

13.

14.

15.

16.

17.

252

(i) Compute the ideal class group of Q(v/—55).

(ii) For how many n € N with 1 < n < 27 do we have x_s55(n) = —17 Find the
answer without computing character values.

Let x be one of the two Dirichlet characters with conductor 5 and of order 4.
Compute |L(1, x)| using Theorem 9.73.

Let x be one of the two Dirichlet characters with conductor 7 and of order 3.
Compute |L(1, x)| using Theorem 9.73.

Let K = Q(v/—2,v3). Compute h(K) Reg(K) using Example 9.57. Compare with
the calculations in Example 5.23 and Example 5.37.

Let K = Q(v/2,v/3). Compute h(K)Reg(K) using Example 9.58. Compare with
the calculations in Example 5.24 and Example 5.38.

Prove:

Z[Go]" = (—1,¢0, 1+ Co, 14+ ¢5) and Z[Co+ ¢ ' = (=1L, G+ G ¢ + G 2.



Part 1|
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10 Completions of Number Fields

Absolute values on a field determine a metric on the field. So we have the notion
of limit of a sequence of elements. Completion yields complete fields. In the
proofs of the main theorems of class field theory completions of number fields
are often used. There are two types of (nontrivial) absolute values: archimedean
and nonarchimedean. For number fields a full classification of absolute values is
derived. The archimedean absolute values are essentially the real and pairs of
complex embeddings of the number field, the nonarchimedean ones correspond to
prime ideals of the ring of integers, or, what amounts to the same, to discrete
valuations of the number field. The archimedean absolute values of number fields
are thought of corresponding to primes at infinity. This in analogy to fields of
algebraic functions, for which all absolute values are nonarchimedean.

10.1 Absolute values

An absolute value on a field determines a ‘distance’ in the field, the absolute value
being the distance to 0. It satisfies a triangle inequality with respect to addition
and it respects multiplication.

10.1 Definitions. Let K be a field. A function ||.||: K — R is called an absolute
value on K if

(AV1) ||z|| >0 for all z € K,

(AV2) ||z|| =0 <= ax=0forall z € K,
(AV3) [lzy[ = llz[| - ly[| for all z,y € K,
(AV4) [z +y[| < [l]| + [ly[| for all z,y € K.

The pair (K, ||.||) is called a valued field. An embedding o: (K,|.||) = (L, ||-||) of
valued fields is a field embedding o: K — L which respects the absolute value:
lo(z)|| = ||=| for all x € K.

Usually, when we call K a valued field, the absolute value on K is understood and
||| will be used as a standard notation for this absolute value.

Note that (AV2) implies that an absolute value ||.||: K — R can be restricted to a
map [|.||: K* — R* and so by (AV3) this map is a group homomorphism.

255



10 Completions of Number Fields

10.2

Examples.

. The ‘ordinary’ absolute value |.| on @, R and C.

An embedding o: K — C determines an absolute value ||.||, on the field K:

2|l = |o(x)] forall z € K.

Since |o(z)| = |o(x)], the absolute values ||.||, and ||.||z are equal.

Let v be a discrete valuation of a field K. It determines an absolute value on
K in the following way. Fix some ¢ € R with 0 < ¢ < 1. Then an absolute
value ||.||, on K is defined by

Iz = ¢,

(It is understood that v(0) = co and accordingly ||0||, = 0.) Here a stronger
version of (AV4) holds:

[z +yllo < max(f|zflv, [[yllv)-

Let R be a Dedekind domain and K the field of fractions of R. A maximal
ideal p of R determines a discrete valuation v, of K and so, by the previous
example, also an absolute value on K. This absolute value is denoted by
|.llp- The absolute value ||.||, is called the p-adic absolute value on K.

For a number field K and p € Max(Ok) one usually takes ¢ = ﬁ in the
previous example. Thus in particular for K = Q and p a prime number:

z]lp = p~* .

Every field K has a trivial absolute value:

1 ifx#0,
2] = L
0 ifz=0.

There are no interesting absolute values on finite fields:

10.3 Proposition. Let ||.|| be an absolute value on a finite field K. Then |.|| is the
trivial absolute value.

PrOOF. For all x € K* the value ||z|| € R* is of finite order and positive. O
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10.1 Absolute values

An absolute value ||.|| on a field K determines a metric d on K:

d(z,y) = [l = yl|.

This metric defines a topology on K. Absolute values are considered to be equiv-
alent if they induce the same topology. This comes down to: |.||; and ||.||2 are
equivalent if

el <yl <= llzllz <llyll2

and by (AV2) and (AV3) we can reduce this to the following definition.

10.4 Definition. Let ||.||; and ||.||2 be absolute values on a field K. Then ||.||; and
II|l2 are called equivalent if:

lz]1 <1 < |z[]2 < 1 for all x € K.

An equivalence class of nontrivial absolute values on a field K is called a place of
K.

A trivial absolute value determines the discrete topology and this absolute value is
only equivalent to itself.

10.5 Proposition. Let ||.||1 and ||.||2 be equivalent nontrivial absolute values on a
field K. Then there exists a positive real number a such that

|zl|$ = ||zl forallz € K.

ProoOF. Fix ay € K such that ||y||; > 1. We can do so because ||.||; is nontrivial.
If there exists an a as asserted, then necessarily

_ loglyll2
log |y[lx

We will show that the proposition holds for this a. Let z € K*. Then |z||1 = |y
for some b € R. Now choose a monotone decreasing sequence 7+ (i = 1,2,3,...)
in Q, where m; € Z, n; € N* and such that lim; ,, 7+ = b. Then

Izl = lyll} < [lyll 7™ for all 4.
Hence
i
H <1 for all 7
ymilh

and, because the absolute values are equivalent, also

Uz
’ <1 for all 4,
ymeli2
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or equivalently
mi/n;

lzll2 < llylla for all ¢

and this implies
]2 < [lyll5-

Similarly, using an ascending sequence in Q, we have ||z|2 > ||ly|/5. Hence

_ logllylla _ log|lz[l

= = for all x € K*,
logllyllh  logllz[lx

and so ||z||¢ = ||z||2 for all z € K. O

The p-adic absolute value on the field of fractions of a Dedekind domain satisfies
a stronger version of the triangle inequality. This property depends only on the
behavior of the absolute value on the least subring of the field:

10.6 Proposition. Let ||.| be a nontrivial absolute value on a field K. Then the
following are equivalent:

a) n-1|| <1 foralln € Z;
b) there is an n € N with n > 2 such that ||n- 1| < 1;
¢) [z +yll < max([|z], [y[) for all z,y € K.
PROOF.
a)=b) Trivial.

b)=-a) Suppose that some n > 2 satisfies ||n - 1|| < 1. Let m € N* and represent m
n-adically:
m=ag+ain+an®+ - +an"

with a; € N, a; <n and a, # 0. For all € N with a < n we have

a a

la- 1 =1+ +1 <[+ + 1] =a<n.

So

[m -1l < llag - 1| + flax - Ulfln - L + - - + flar - 1{fn - 1" < n(r+1).

logm

Tos and so for all m € N*:

Since n” < m, we have r <

logm)-

-1 <1+
logn

Replace m by m?®, where s € N*:

slogm)

-1 < n(1+
logn

for all s,m € N*.
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Hence
logm

—1 if s— oo.
logn

[m 1 </n-{/1+s

Therefore,
[lm-1] <1 for all m € N*

and thereby for all m € Z as well.

¢)=-a) This follows from

ln-1=)1+---+1 <1 =1 for all n € N*.

a)=-c) We may assume that ||z|| > |ly||. Then to prove that ||z + y|| < ||z||. For all
n € N* we have

ool =+ 07l = 3 (1 )a*t < 30 (7)1t
k=0 k=0
< SNyl < (V)]
k=0

So for all n € N* we have ||z+y|| < ¥/n + 1-|z||, which implies ||z+y| < ||lz]|,
because lim,,_yoo V1 +1 = 1. O

10.7 Definition. An absolute value |.|| on a field K is called archimedean if there
is an n € N* such that ||n- 1| > 1. An absolute value |.|| is called nonar-
chimedean if it is nontrivial and ||n - 1|| < 1 for all n € Z. A place of K is called
(non)archimedean if it consists of (non)archimedean absolute values.

Thus we have three types of absolute values: trivial, archimedean and nonarchime-
dean.

The field Q has a unique archimedean place:

10.8 Theorem. Let ||.|| be an archimedean absolute value on Q. Then ||.|| is equiv-
alent to the ordinary absolute value |.| on Q.

PROOF. By Proposition 10.6 we have ||n|| > 1 for all n > 2. Let m, n be integers
> 2. Represent m n-adically:

m=ag+an+amn®+--+an" with 0 < a; < n and a, # 0.

Then

logm log m
Jlinl

< 1 ™ < 1 T < (1 Togn |
lmll < 21+ finll + -+ llnll") < nlr+ Dijpl” < n(1+ 07
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Replace m by m?®, where s € N*:

1 og m og m
il < - 1+ 2250 B ) B i s — oo
logn
Hence ) 1
|m||@em < ||n||®en  for all m,n > 2
and so by symmetry
Im % = [n]|=en for all m,n > 2.

So there is an a € R such that ||n||ﬁ = ¢® for all n > 2, that is
[n|| = e*°8™ = no for all n > 2.

It follows that ||z|| = |z|* for all z € Q. O

In section 10.3 a classification of the archimedean places of a number field will be
derived: they correspond to real and (pairs of) complex embeddings of the number
field. In this section we derive a classification of the nonarchimedean places of a
number field. For discrete valuations we have the notion of discrete valuation ring.
More generally, we have for a nonarchimedean absolute value a valuation ring:

10.9 Proposition. Let ||.|| be a nonarchimedean absolute value on a field K. Then
R={zeK ||z <1}

s a local ring with
m={zeK||z]|<1}

as its maximal ideal.

PRrROOF. From Proposition 10.6 follows that R is a subring of K and also that m
is an ideal of R. Clearly R\ m = {z € K | ||z|| = 1} = R* and this implies that
R is a local ring with maximal ideal m. U

10.10 Definition. Let ||.|| be a nonarchimedean absolute value on a field K. The
the local ring R described in Proposition 10.9 is called the valuation ring of ||.||.

10.11 Proposition. Let ||.|| be a nonarchimedean absolute value on a number field
K. Then ||.|| is equivalent to the p-adic absolute value ||.||, for somep € Max(Ok).

Proor. Consider
R={zeK||z]|<1} and m={zeK||z|| <1}

By Proposition 10.9 R is a local ring with maximal ideal m.
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First we prove that O C R. Choose a Z-basis (aq,...,a,) of Og. Then for
A1yee.,Qp € L

laren +- -+ apay|| < max||aias|| < max(jeg].

It follows that the set {|af| | @ € Ok } is a bounded and multiplicatively closed
subset of RZ%. So this subset is contained in [0, 1]. This means that Ox C R.

Put p = Og N'm. Then p is a prime ideal of Ok. Also the localization (Ok),
is contained in R: for o € Ok and 3 € Ok \ p we have [[]| = [lof < 1, since
B € R\ m. The prime ideal p of Ok differs from the zero ideal, since otherwise
(Ok)p = K and this would imply that the absolute value is trivial.

Now choose m € Of with vp(m) = 1. It follows from (Of); € R* = R\ m that for
all « € K*

leel] = flam2» (e[ |?» () = [fr[|*» ).
Since also
ladly = Il
we have |la||° = ||a||, for all @ € K*, where ¢ is determined by ||7||° = ||7]l,. O

Now it follows easily that we have a classification of the nonarchimedean places of
a number field.

10.12 Theorem. Let K be a number field. Then the map p — class of ||.||, from
Max(Ok) to the set of nonarchimedean places of K is a bijection.

Proor. By Proposition 10.11 the map is surjective. For injectivity, let p1,po €
Max(Og) with p; # pa. Then there is an o € py \ po. This implies ||c||p, # 0 and
l[edlp, = 0. O

So for Q we have now a classification of its places.

10.13 Theorem (Ostrowski).  The nontrivial places of Q are its archimedean
place and the p-adic places, one for each prime p. [

10.2 Completions

An absolute valuation on a field K determines a metric on K and there is a standard
way to complete the metric space. Since the metric comes from an absolute value,
the completion will be a field as well.
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10 Completions of Number Fields

10.14 Definitions. Let K be a field with an absolute value ||.|| on K. A sequence
(an) in K is called a Cauchy sequence with respect to ||.|| if for each € > 0 there
is an N € N such that ||a,, — an|| < € for all m,n > N. The sequence is said to
converge to a € K if for each € > 0 there is an N € N such that |ja — a,| < ¢
for all n > N, that is if lim, ,o|ja — a,|| = 0. If a sequence (a,,) converges to
a, the (necessarily unique) element a is called the limit of the sequence; notation:
a = limy,_, a,. Sequences converging to 0 are called null sequences.

As is well-known, converging sequences are Cauchy sequences, but not necessarily
visa versa.

10.15 Definition. Let K be a field with an absolute value ||.||. Then K is called
complete (w.r.t. ||.||) if every Cauchy sequence with respect to ||.|| in K converges.

10.16 Definition. The completion of a valued field K is an embedding ¢: K — K
of the valued field K into a complete valued field K such that for each valued field
embedding o: K — L with L complete there is a unique valued field embedding
6: K — L such that the diagram

comimutes.

This definition of the completion is a definition by a universal construction. The
completion is thus defined up to a canonical isomorphism. Such a definition guar-
antees uniqueness, but not existence. For the existence usually an explicit con-
struction is needed.

10.17 Construction of the completion of a valued field. Let K be a valued
field, € the set of Cauchy sequences in K and 91 the set of null sequences in K.
By standard arguments we see that € is a ring under termwise operations and 9t
is an ideal of €, in fact a maximal ideal: a Cauchy sequence which is not a null
sequence is modulo Ot congruent to an invertible Cauchy sequence. Define K to
be the field €/M. Let’s write the class of a Cauchy sequence (a,) temporarily as
[(an)]. The embedding ¢: K — K is defined by sending a € K to the class of the

constant sequence (a), so ¢(a) = [(a)]. The absolute value |.| is extended to K by
()l = lim la,].

Note that the [la,|| form a Cauchy sequence in the complete valued field R. We
now have an embedding ¢: K — K of valued fields. It remains to prove that K is
complete and that : K — K satisfies the definition of completion.
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10.3 Complete archimedean fields

10.18 Proposition. Let K be a valued field. Then the valued field K as constructed
in 10.17 is complete.

PROOF. Let (ay), be a Cauchy sequence in K. Then for each € > 0 there is an
N such that ||ay, — an|| < & for all m,n > N. Let a = [(a,)] € K. For fixed m we
have [(@m — an)n] = t(am) — a. So ||t(am) — & < € for each m > N. This means
that the sequence (¢(am,)m) converges to a.

Now let (a,), be a Cauchy sequence in K. For each n choose a b, € K such that
|, — t(bn)|| < 2. Then (b,), is a Cauchy sequence in K and it follows that the

sequence (o, ), converges to [(by)n] € K. O

10.19 Theorem. Let K be a valued field. Then v: K — K as defined in 10.17 is a
completion of K.

PROOF. Let L be a complete valued field and o: K — L an embedding of valued
fields. Then define an embedding 6: K — L as follows. Let (a,) be a Cauchy
sequence in K. Then (o(ay,)) is a Cauchy sequence in L. Since L is complete, this
sequence converges to an element 8 € L. Define 6(«), where a = [(ay)], to be §.
One easily verifies that ¢ is an embedding of valued fields.

So each valued field has a completion and since equivalent absolute values determine
the same completion, the completions of a field K correspond to the places of K.

We will often identify a valued field K with its image in K. Thus, K is a complete
valued field and its elements are limits of Cauchy sequences in K: for each a there
is a sequence (a,) in K such that

a= lim a,
n—oo

and such sequences differ by a null sequence.

10.3 Complete archimedean fields

Theorem 10.12 classifies the nonarchimedean places of a number field. The classi-
fication of the archimedean places of a number field follows from another theorem
of Ostrowski (Theorem 10.21) which states that R and C are essentially the only
complete archimedean fields.

10.20 Lemma. Let ||.| be an absolute value on C, whose restriction to R is equiv-
alent to the absolute value |.| on R. Then ||.|| is equivalent to the absolute value |.|
on C.

263



10 Completions of Number Fields

PROOF. There is a ¢ > 0 such that ||a|| = |a|® for all a € R. We will prove that
ol = |af¢ for all @ € C. From 2 = —1 it follows that [|i|| = 1. Fora = a+bi € C
with a,b € R we have

el = lla +bill < lall + [[b]] = |a]* + [b]° < |a|® + [a]® = 2[a/".

For oo € C* put f(a) = ||a||/]a|®. Then 0 < f(a) < 2. For a fixed a € C* we then
have for all n € N*: f(a)" = f(a™) < 2, and so f(a) < /2. Hence f(a) < 1. Since
fla™) = f(a)~1, also f(a) > 1. Therefore, f(a) = 1. It follows that ||a| = |a|¢
for all a € C*. O

10.21 Theorem (Ostrowski). Let K be a field, complete with respect to an
archimedean absolute value ||.|| on K. Then K 2R or K =2 C and ||.|| is equivalent
to the ordinary absolute value |.| on R or C.

PRrROOF. Since ||| is archimedean, K is of characteristic 0. So we can assume
that Q is a subfield of K. The restriction of ||.|| to Q is an archimedean absolute
value on Q and is, by Theorem 10.8, equivalent to the ordinary absolute value on
Q. Since K is complete we can assume, by the universal property for completions,
that R is a subfield of K and that the restriction of ||.|| to R is equivalent to the
ordinary absolute value on R.

We will show that each a € K is the zero of a polynomial over R of degree 2. If
a € Rforall @ € K, then K = R. Otherwise there is an a such that K = R(a) = C
and by Lemma 10.20 the absolute value ||.|| is equivalent to the ordinary absolute
value on C.

Let o € K. Consider the function
P:C =R, 2z ||0®+ (z+2)a+ 23|,

This is a continuous function and lim,_,, ¥ (z) = oco. It follows that the subset
{¥(2) | z€ C} of R has a least element ¢ > 0. If a = 0, then « is a zero of a
polynomial over R of degree 2.

Suppose a > 0 and let ¢ € R with [[e]| = ¢. Let A={z € C|¢(z) =a} =¢ (a).
This is a nonempty compact subset of C. Take zy € A with |z| maximal. Consider
the following polynomials over R:

f(X)=X%+ (204+70)X + 20% + ¢,
9(X) = (f(X)—g)" — (&)™

Since disc(f) = (20 + 20)? — 420%0 — 4e = (20 — %0)? — 4e < —4e < 0, the zeros
of f are not real. Let w € C such that f(w) = 0, then the other zero of f is w
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10.4 Primes of a number field

and wW = zpZg + €. So |w| > |z9|. Therefore, w ¢ A, that is ¢(w) > a. Put
9(X) = H?L(X — w;) with wy, ..., ws, € C and wy = w. Then

2n 2n
lga)|? = G]m—mm = [Tlle = will - TTllev
i=1 i=1

= Hll(a —w)(a—m)| = [[w(w) = vw) []vw) > ¢@w)a"
i=1 =1

and
la(@ll < (@) = el + lel™ = ¥(z0)" + flel” = a” + T = a1+ 5.
It follows that b ) ” (@ )H2 ,
g(a 1
1< 5 <(1+3)

< a - a2n - + on
for all n € N*. Contradiction. O
10.22 Corollary. Let ||.|| be an archimedean absolute value on a number field K.

Then there is an embedding o: K — C such that ||.|| is equivalent to the absolute
value K - R, a— |o(a)].

PrROOF. Let t: K — K be a completion of the valued field K. Then K is a
complete archimedean valued field. So either there is an isomorphism 7: KSR
or an isomorphism 7: K = C. Hence the absolute value ||l.]l on K is equivalent to
a— |T(a)l. O

So the archimedean places of a number field K are the places represented by the
archimedean absolute values described in the second item of Examples 10.2.

10.4 Primes of a number field

For a number field K we have a classification of its places:

a) Nonarchimedean places represented by ||.||,, where p € Max(Ok) (Theo-
rem 10.12).

b) Archimedean places represented by ||.||, where o is a real or complex em-
bedding (Corollary 10.22).

Number fields have much in common with finite extensions of the field k(T") of
rational functions over a finite field k. The field k(7T') is the field of fractions of the
polynomial ring k[T], which is a Euclidean domain. Places of k(T') correspond to
the discrete valuations of k(T"). There is one discrete valuation on k(7') which does
not come from a prime ideal of k[T]: the valuation v given by v (f) = — deg(f),
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10 Completions of Number Fields

see exercise 2 of chapter 6. The field k(T) is the field of fractions of k[£] as well
and the valuation v, comes from the prime ideal (7). The ‘infinite’ places for
this type of function fields are not of a special kind. For number fields, however,
the situation is different. Their archimedean places are thought of being infinite
places of the number field. More on the places of a function field k(7)) in the
exercises 1-5. For another example, the function field of rational functions on a

circle, see exercise 6.

10.23 Definitions and notations. Places of a number field are called primes of
the number field. The nonarchimedean places are called finite primes and the
archimedean ones infinite primes. The infinite prime determined by a real or
complex embedding ¢ will be denoted by p,. It is called a real infinite prime if
o is a real embedding and a complex infinite prime if ¢ is a complex embedding.
The collection of primes of a number field K will be denoted by P(K). It is the
disjoint union of Py(K), the collection of finite primes, and Po.(K), the collection
of infinite primes of K. Each p € P(K) comes with an embedding o,: K — K,
where K, is the completion of K with respect to p. It is customary to refer to
nonzero prime ideals as being finite primes, although formally a finite prime is an
equivalence class of absolute values. For p € Py (K) we always take K, to be
either R or C. For a complex infinite prime p the embedding o,: K — C is one of
the corresponding pair of embeddings. For finite primes p we choose

1

||04Hp = W?

see Examples 10.2. We also use the notation ||.||, for infinite primes p. For o € K
the real number |||, is defined as follows

lally = |6, if p is real,
P Hoz||§|D if p is complex.

Note that for p a complex infinite prime ||.||, is not an absolute value; however,
its square root is one. The choices for the ||.||, are such that the following product
formula holds.

10.24 Proposition. Let K be a number field and o € K. Then
H||a||p =1,
P

where the product is over all primes p of K.

PRrROOF. Since ||c|, # 1 for only a finite number of primes p, the infinite product
makes sense. The product over the infinite primes:

IT lele= ITlow@l- JI lop@l® =]]lo(@)] = ING (o),

p infinite p real p complex
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10.4 Primes of a number field

where the last product is over all embeddings of K in C. This product is the inverse
of the product over the finite primes:

H ”aHp = H N(p)—vp(a) = N( H p_vp(a))

p finite peEMax(Ok) pEMax(Ox)
= N(aOg)™" = NG (a)| 1. -

For the splitting of finite primes in a number field extension we have the notions of
ramification index and residue class degree. We extend these notions to the infinite
case.

10.25 Definition. Let L : K be a number field extension, q an infinite prime of L
and p an infinite prime of K, say q = p and p = p,, where 7 and o are embeddings
in C of respectively L and K. Then q is said to be above p if 7 is a prolongation of
0. The residue class degree fi(q) of q over K is defined to be 1 in all cases. The
ramification index of q over K is defined by

2 if q is complex and p is real,

ex(q) = :

1 otherwise.

If a complex infinite prime lies above a real infinite prime, the complex infinite

prime of L is said to be ramified over K and the real infinite prime of K is said to
ramify in L.

The definitions of the ramification index and the residue class degree for infinite
primes are such that the relation with the degree of the field extension is the same
as in the finite case:

10.26 Proposition. Let L : K be a number field extension and q1,...,q, the dif-
ferent infinite primes of L above a given infinite prime of K. Then

ZeK(qi)fK(CIi) =[L: K].

PROOF. There are [L : K] prolongations to L of an embedding of K in C. The
number on the left hand side is precisely the number of prolongations. O

The formula also holds when we interchange here the notions of ramification index
and residue class degree. The choice is somehow a matter of taste. In the classifi-
cation of abelian extensions of number fields, as described in chapter 15, there is an
important role for the ramifying primes, including the infinite ramifying primes as
defined above. If the other choice is made, as is done in [31], this leads to another,
but equivalent, description of the classification.
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10 Completions of Number Fields

The action of the Galois group of a Galois extension L : K on the collection of
primes should be compatible with its action on the corresponding embeddings in
the completions, meaning that the following diagram commutes:

The vertical map on the right is the map induced by the embedding 0,.qp. For
q € Px(L) we take the map on the right to be the identity on R or C. This
determines the action of the Galois group on infinite primes:

10.27 Definition. Let L : K be a Galois extension of number fields, q an infinite
prime of L and p € Gal(L : K). The action of p on q is given by

Tpq=0ap '
As in the finite case the Galois group acts transitively on the primes above a given

prime.

10.28 Proposition. Let L : K be a Galois extension of number fields and p an
infinite prime of K. Then Gal(L : K) acts transitively on the set of primes above

p.

PrOOF. The action of Gal(L : K) on the set of prolongations to L of an em-
bedding ¢ of K in C is transitive. Hence the induced action on the set of infinite
primes above p,, is transitive as well. O

Also the notions of inertia group and decomposition group can be extended to
include the case of infinite primes.

10.29 Definition. Let L : K be a Galois extension of number fields and g an infinite
prime of L. The decomposition group of q over K is the stabilizer of q:

Zr(@)={peGallL:K)|p-q=q}.

The inertia group is defined to be equal to the decomposition group:

Tk (q) = Zk(q).

10.30 Proposition. Let L : K be a Galois extension of number fields, q an infinite
prime of L and p € Gal(L : K). Then Zk(p-q) = pZr(q)p~'.
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10.5 Completions of discretely valued fields

PRrROOF. For 7 € Gal(L : K) the following are equivalent:

T € Zk(p-q),

ap.qT’l = 0p.q,

oep T = 0qp7,

crq;f1

p~itp € Zk(a),

7€ pZr(q)p " O
10.31 Notation. Let L : K be an abelian extension of number fields and p an

infinite prime of K. Then Z,SL) denotes the decomposition group over K of any of

the infinite primes of L above p.

-1, _
T p =0y,

For an infinite prime p the group Z,SL) is nontrivial if and only if p is real and the
infinite primes of L above p are complex. In this case this group is of order 2.

10.5 Completions of discretely valued fields

In this section K is a field with a discrete valuation v. We fix a positive real number
¢ < 1. The discrete valuation determines a nonarchimedean absolute value ||.|:

2] = @ for z € K.
The field K is the field of fractions of the discrete valuation ring
R={zeK|vx)>0}={zeK||z| <1}
The maximal ideal of R is
p={zeK|v@)>0}={zeK|[z] <1}
and its group of units is
Rr={zeK|v(x)=0}={zecK||z]|=1}

Let K be the completion of the valued field K. The elements of K are limits of
sequences in K.

Let o € K. Then a = lim, 4 a, for a Cauchy sequence (a,) in K and || =
lim,, oo ||an||. If & # 0, then there is an N such that |ja,|| # 0 for all n > N. Since
{lle|l | @ € K*} = {e¢), a discrete subgroup of R*, there is an m € Z such that
eventually ||a,|| = ¢". This defines

v: K* =7, aw—m.
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10 Completions of Number Fields

It easily follows that v is a discrete valuation of K and that this v is a prolongation
of the discrete valuation of K. Accordingly, for the prolongation of ||.|| to K we
have

la|| = ¢v(@ fora € K.

We now have a discrete valuation ring
R={zeK|v)>0}={ze K ||z]| <1}
with maximal ideal

p={zeK|v@)>0}={zeK||z| <1}

10.32 Terminology. Let F' be a complete discretely valued field and v the discrete
valuation on F. A wuniformizer of F is a m € F such that v(m) = 1. (So the
uniformizer of F' is the uniformizer of the discrete valuation v in the sense of
Definition 6.9.)

Completion doesn’t affect the residue class rings:

10.33 Proposition. The inclusion R — R induces for each n € N an isomorphism
R/p™ = R/p".

Proor. Let n € N*. The kernel of the composition R — ]%A% R/p™is RNp™ =
{r € R|v(x) >n} =p". So the homomorphism R/p"™ — R/p™ is injective. For

each o € R there is an a € R such that v(a — a) > n. Hence R = R+ p™ and this
implies surjectivity. O

In particular the residue class fields are canonically isomorphic: R/p = ﬁi/ﬁ

If a series Z:’:l a, converges in a valued field, then the terms form a null sequence:

n n—1 n n—1
lim a,, = lim E a; — E a; | = lim E a; — lim g a; = 0.
n—oo n— oo n— oo n— oo

i=1 i=1 i=1 i=1

If lim,_,~ a, = 0 the series may diverge even when the field is complete, e.g. the
series in R given by a, = % In a complete discretely valued field, however, the
converse holds as well:

10.34 Proposition. Let F' be a complete discretely valued field and (an) a null
sequence in . Then the series - | a, converges in F.

PROOF. The series is a Cauchy sequence: for n < m we have

m
| > a

i=n—+1

< max |a;|
n<i<m

and ||a,|| — 0 for n — oo. O
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10.5 Completions of discretely valued fields

The completion K of the discretely valued field K is a complete discretely valued
field, so this proposition applies in particular to such a completion.

10.35 Theorem. Let I be a complete discretely valued field, R its valuation ring, p
the mazimal ideal of R, m a uniformizer of F' and S C R a system of representatives
of R/p. Then for each x € R there is a unique sequence (Sp)n>0 in S such that

oo
T = E Sy,
n=0

ProoF. By Proposition 6.18 for each k& € N* there are unique sg,...,Sx—1 € S
such that
k-1
T = Z s (mod p*). O
n=0

10.36 Corollary. Let F' be a complete discretely valued field, R its valuation ring
and p the mazimal ideal of R, m a uniformizer of F and S C R a system of
representatives of R/p. Then for each x € F* there is a unique N € Z and a
unique sequence (Sp)p>n i S such that

oo
ng s and sy & p.
n=N

The number N is equal to the valuation of x.
PROOF. F is the field of fractions of R. Apply the Theorem 10.35 to zx—*(*). [

10.37 Alternative construction. A more algebraic way of constructing the com-
pletion of a discretely valued field is as follows. First construct the valuation ring
R. It is the inverse limit of the R/p™. More precisely, it is the inverse limit of the
diagram

o= R/p™ = R/p™ — - = R/p,

where the maps R/p"T! — R/p™ are induced by the identity on R. So we can take

R={(...,Zpn+1,Tn,---,21) | xn € R/p" and z, 41 — x, for all n € N* }.

This kind of limits is treated in general in chapter 19. The connection with
the construction in this chapter is as follows: put x, = b, with b, € R, then
bpt1 — bn € p", so (by) converges and the element (..., Zp41,%n,...,21) COITe-
sponds to lim,, o b,. The field K is then obtained as the field of fractions of
R.

10.38 Notations.

1. For a complete discretely valued field F' the discrete valuation is often denoted
by v, the valuation ring by Op and the residue class field by kp.
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2. Let K be a discretely valued field, R its valuation ring with maximal ideal
p. The completion of K will be denoted by K,. It is a complete discretely
valued field. Its valuation ring will be denoted by R,. The notation p for the
maximal ideal of R, will be used for distinction from p. It is the ideal of R,
generated by p: for m € p \ p? we have

3. For K a number field and p € Max(Ok), K, is the completion of K with
respect to the discrete valuation v,. The valuation ring of K, will be denoted

by O,.

10.39 Example. Let p be a prime number. The completion of Q w.r.t. the discrete
valuation v,: Q* — Z is the field Q,, of p-adic numbers. Theset S ={0,1,...,p—1}
is a system of representatives of Z/p. The valuation ring is denoted by Z, and is
called the ring of p-adic integers. By Corollary 10.36 a nonzero p-adic number x
has a unique representation

o0
= E Spp"
n=N

with s, € S, N = v,(x) and sy # 0. This representation, or the sequence of the
Sn, is called the p-adic expansion of x. A p-adic integer x has a p-adic expansion

oo
T = E spp™.
n=0

For x # 0, the valuation of x is the least N € N with sy # 0.

10.6 Extensions of complete discretely valued fields

The main result in this section is that a finite extension of a complete discretely
valued field has again the structure of a complete discretely valued field (Theo-
rem 10.40). This will be used in the next chapter, where it is shown that a finite
extension of Q, is the completion of some number field (Corollary 11.5).

10.40 Theorem. Let F' be a complete discretely valued field and E : F a finite sep-
arable field extension. Then the integral closure of O in E is a discrete valuation
ring and E is complete with respect to the discrete absolute value determined by
the valuation.
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10.6 Extensions of complete discretely valued fields

PROOF. Put d = [E : F| and let S be the integral closure of O in E. By
Theorem 2.45 the ring S is a Dedekind domain and since this ring is semi-local it
is a principal ideal domain (Proposition 2.21). Moreover, because Op is a principal
ideal domain, S is a free Op-module of rank d (Corollary 1.38). Let f1,..., 84 be
an Op-basis of S. On the F-vector space F we have a norm ||.|| defined as follows:

la1f1 + -+ agBal = 12?§d||aj||p (for aj,...aq € F).

Then for all indices j with 1 < j < d we have ||aj||r < ||a181 + -+ + aqBal|. So a
sequence (a1, f1+ -+ aqnSBa)n with all a;,, in F' is a Cauchy sequence with respect
to ||.|| if and only if the sequences (ajy), converge in F. Put a; = lim,, a;,. Then
(a; — ajn)n is a null sequence in F' and we have

(a1 = a1n)B1 + - + (aq — ana)Ball = max la; — ajnllF-

It follows that the sequence (a1,81 + -+ + agnBd)n converges to aifB1 + - - + agfq
with respect to the norm ||.|]. Hence the vector space E is complete with respect
to this norm.

Next we show that the Dedekind domain S has only one maximal ideal. Let q be a
maximal ideal of S. Then ppS = q°a with e the ramification index of q over F' and
q t a. By the Chinese Remainder Theorem there exists for each n € Nan ¢, € S
such that

. =1 (modg™),
"7 10 (mod a®).

Then el — ¢, € q"a™ = phS = phBy + - + p%Ba. So &, is a Cauchy sequence
with respect to |.|. Put e = lim,, ,,. Since €2 — ¢, € q°"a™ is a null sequence with
respect to ||.||, it follows that €2 = . The image of € € S in the residue field S/q
is 1, so € # 0 and since F is a field we have ¢ = 1. The image of £ in S/a is both 1
and 0, so a = S.

It remains to show that E is complete with respect to ||.||q. Let (o, )n be a Cauchy
sequence in E with respect to ||.||q. Then for each M € N there is an N € N such
that a;, — a, € q°™ = pM S for all m,n > N. So (a,), is a Cauchy sequence with

respect to ||.||. Put oy, = a1,f1 + -+ + agnfaq with the aj, in F. The sequences
(a;n), converge in F' with respect to ||.||r as well as with respect to ||.|q. Hence
the sequence (ay,),, converges with respect to ||.||q. O

So a finite extension of a complete discretely valued field is in a unique way a
complete discrete valued field with the topology of the base field induced by the
topology on the extension. On the other had, such extensions are necessarily finite;
more precisely:
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10.41 Theorem. Let E : F be an extension of complete discrete valued fields such
that the absolute value on F induced by the absolute value on E is non-trivial
and that F is complete w.r.t. this absolute value. Let the extension of the residue
class fields be finite of degree f. Then Opg is a free Op-module of rank ef and
[E: F|=ef, where e = (Z : vg(F*)).

PROOF. The second assertion follows from the first, so we prove the first. Let
Bi,...,Br € Op be such that By,...,B; is a kp-basis of kg. Let p and 7 be
uniformizers of F' and E respectively. We will show that the elements

Bim? (i=1,....,fand j=0,...,e—1)

form an Op-basis of Op. Let X be a set of representatives of kr = Op/pr. Then
Y = Xp1 +---+ Xy is a set of representatives of kg = Og/pg. Instead of using
powers 7F when representing elements of Op we can also use the elements pir/
with i € N and 0 < j < e. Note that vg(p/n?) = ie + j. For elements of O we
have the unique representation

co e—1

a= ZZ%‘MW,

i=0 j=0

where the 7;; are unique elements of Y. Put v;; = Z£:1 cijkBr, where ¢, € X.
Then

oo e—1 oo e—1 f e—1 f 00
a=> "3 "yp T =Y 3N epBio'n =Y > (Z Cz’jkpi> By
=0 j=0 1=0 j=0 k=1 7=0 k=1 \i=0

Since Y% ¢ijup’ € Op, the B! generate the Op-module Op. It is straightforward
to show their independence over Or. So Of is a free Op-module of rank ef. [

10.42 Notation and terminology. Let E : F be as in the above theorem. The
ramification index of pg over F is called the ramification index of E : F and is

denoted by e%E). Similarly we have the residue class degree féE) of E: F.

10.7 Completions of field extensions

Completion of an extension of valued fields yields an extension of complete fields.
In case of discretely valued fields the result is an extension of complete discretely
valued fields as considered in the previous section. Here we study the connection
between the extension and its completion. In this section:
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a Dedekind domain,

the field of fractions of R,

a finite separable field extension,
= [L : K], the degree of L : K,

the integral closure of R in L,

=

a maximal ideal of R,
a maximal ideal of S above p,

= ex(q), the ramification index of q over K,

= 0 2 T I~

= fk(q), the residue class degree of q over K.

We study the effect of completing the field L with respect to the nonarchimedean
valuation |[|-||4-

The discrete valuations with respect to p and q of K and L respec-
tively, are related by L,

vg(a) = e-vp(a) forall o € K. I

So the absolute value on L given by |-||q = c?s() for some ¢ with K
0 < ¢ < 1, satisfies P

lallqg = @ = ||laf, forallacK, /

where ||-||, is taken to be (c¢¢)"»(). Tt follows that we can assume K
that the completion K, of K is a subfield of L.

10.43 Proposition. K,L = L.

Proor. The composition K,L is a composition of subfields of L, and so Lq 2
K,L. Choose ¥ € L such that L = K(9) and consider the subfield K,(9) of
Lq. Since 9 is algebraic over K, the extension K,(¢) : K, is finite and so by
Theorem 10.40 K, (¥) is complete w.r.t. (the restriction of) the absolute value ||.||4
on Ly. The field L is the completion of L w.r.t. ||.||; and L is a subfield of K,(9).
Hence KL = K, K (V) = K, (9) 2 Ly. O

10.44 Proposition. The ring Sq is a free Ry-module of rank ef and [Lq : Ky] =ef.

Proor. Apply Theorem 10.40: for E : F' take the extension Lq : K,. By Theo-
rem 7.7 the integral domain Sy is the integral closure of Ry, in Ly. Note that pSq =
PRy Sq = pSq = pSSq = q°Sq = q° and that [Sq/q: Ry/pl =[S/q: R/p]=f. O

For Galois extensions we have:

10.45 Theorem. Let L : K be a Galois extension. Then Lq : K is a Galois exten-
sion and the restriction of K,-automorphisms of Lq to L induces an isomorphism

Gal(Lq : Kp) = Zk(q).
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10 Completions of Number Fields

Ly Proor. From Lq = K,L follows that Ly : K, is a Galois

/ extension and Gal(Lq : K,) = Gal(L : (K, NL)). Put Z =

L Zk(q). If 0 € Z, then o(q) = q and so |lo(®)|lq = |l
for all @ € L. By the definition of completion o extends

Z K, uniquely to an automorphism of Lg, its restriction to K
e being the identity, because it is the unique extension of the
K,NL identity on K. From L, = K,L follows that we thus have
| an injective group homomorphism Z — Gal(Lq : K,), which

K is an isomorphism since the orders of both groups are equal.
Otherwise put: LZ = K,NL. O

Finally, we relate the ‘global’ norm N% and trace Trk to the ‘local’ norm Nf(“p

and trace Trf(l. The last notations will be abbreviated to Ng and Trg. We now
consider the extensions Lq : K, for all q | pS together. The embeddings L — L,
induce a homomorphism of K,-algebras

Yp: Ky @ L— [[ Ley a®B— (aB)q.
qlps

10.46 Proposition. The K, -algebra homomorphism 1, is an isomorphism.

Proor. The map v, is obtained by applying the exact functor K, ®x — to
the diagonal embedding L — qups Lg. Hence 1, is injective. Since L is an n-
dimensional K-vector space, the algebra K, ®x L is n-dimensional over K,. The
Kp-dimension of [, Lq is equal to n as well: >, s ex(q) fx(q) = n. O

10.47 Corollary. For o € L and p a prime of K

Ni(a) = [[Ni(@) and Tri(e)=> Tri(a).
qlpS qlpS

Proor. By Proposition 10.46 for both algebras K, ®x L and qups L4 multipli-
cation by a has the same characteristic polynomial. So for K, ® x L this polynomial
is ALK Hence

AL (X) = T ke (x).
qlpS

The identities for the norms and the traces are obtained by comparing coefficients.
O
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Exercises

EXERCISES

. Let k be a field and ||.|| a nontrivial absolute value on the field k(7)) of rational
functions such that its restriction to k is the trivial absolute value. Show that |.||
is a nonarchimedean absolute value on k(7).

. Let k and ||.|| be as in exercise 1.

(i) Prove that ||.|| is equivalent to ||.||, for some p € Max(k[T]) if ||T|| < 1.

(ii) Assume that ||T'|| > 1. Prove that ||.|| is equivalent to the absolute value ||.||v.,
determined by the discrete valuation v, described in exercise 2 of chapter 6:

[ fllow = ¢ 4P for f e k(T)",

where ¢ such that 0 < ¢ < 1.

(iii) Show that the v, with p € Max(k[T]) U {oo} are all discrete valuations on
k(T) which vanish on k*.

The symbol oo can be thought of as an infinite prime of k(7T"). However, this field
is the field of fractions of other Dedekind domains as well, including Dedekind
domains for which oo is one of the prime ideals, e.g. the Dedekind domain k[1].
This is best understood when considering k(7") geometrically as the field of rational
functions on the projective line.

. Let k be a field and let V' be the set of all discrete valuations on k(T") which vanish
on k*. So by part (iii) of exercise 2:

V ={wvp | p € Max(k[T]) or p = o0 }.

Denote the residue class field w.r.t. a valuation v by k,. Then k, : k is a finite
field extension: k., = k and for v = v, with p € Max(k[T]) we have k, = k[T]/p.
Define deg(v) = [ko : k.

(i) Prove that ) . deg(v)v(f) =0 for all f € k(T)".

(ii) Show that we have an exact sequence

1— K — k(1) Y Pz = 7o
veV

. Let k and V be as in exercise 3. Put Voo =V \ {v¢ry} and Vo = V' \ {veo}. Show
that for each subset W of V with @ # W # V the ring

{fe€k(T)|v(f)>0forallve W}

is a Dedekind domain: it is a localization of k[T or of k[+].

. Let k be a finite field.

(i) Show that the places of k(T") correspond to the discrete valuations of k(7).

(ii) For each discrete valuation v of k(T') choose a ¢, with 0 < ¢, < 1. Then the
places of k(T) are represented by the absolute values |||, defined by

Ifllo =) for f e k(T)".
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10 Completions of Number Fields

Let k., be the residue class field of the discrete valuation v. Show that if we
choose ¢, = #(kv)_1 the following product formula holds:

[Ifle =1 forall f € k(T)".

6. Let k£ be a field in which —1 is not a square. Then k is not of characteristic 2.
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Let R be the ring k[X,Y]/(X? +Y? — 1) = k[z,y]. (The elements z and y are the
classes of X and Y respectively and so z? +y* = 1.) Its field of fractions is k(z, ),
a quadratic extension of k(x).
(i) Show that intersecting the line y = t(z + 1) by the circle z* + 3* = 1 yields
an isomorphism ¢: k(z,y) = k(T). Compute this isomorphism.
(ii) Let V be the set of all discrete valuations of k(T') and put W = V \ {vq},
where q = (T% +1).
(iii) Prove that
o(R)={fek(T)|v(f)>0forallveW}.
So, in particular, by exercise 4 the ring R is a Dedekind domain.

(iv) Compute R* and C/(R) for k = R.
(Use the ker-coker exact sequence of k(T)" — €D, Z — @y, Z.)

Let p be a prime number and = a nonzero p-adic number. Show that x is a ratio-
nal number if and only if its p-adic expansion, as described in Example 10.39, is
eventually periodic. Determine the p-adic expansion of —1.

Let K7 and K> be number fields. Put L = K1 K3 and K = K1 N K. Let q be a
prime of L and p1, p2, p the primes under q of respectively K1, K2, K.

(i) We can assume that the completions (K1), , (K2)p, and K, are subfields of
Lq. Show that Lq = (Kl)p1 (Kz)pQ.

(ii) Show that K, C (K1), N (K2)p,, but that equality does not hold in general.



11 Local Fields

The completion of a number field with respect to a nonarchimedean absolute value
is a complete discretely valued field with a finite residue field. Such fields are
called local fields. In section 11.1 it is shown that all local fields of characteristic
zero are completions of number fields. A powerful property of local fields is the
similarity between (parts of) their additive and multiplicative structure given by
the logarithm and the exponential function. This is well-known for the complete
archimedean fields R and C. In section 11.4 the logarithm and exponential function
for the completions at finite primes are introduced.

11.1 Local fields of characteristic 0

The completion at a finite prime of a number field is a complete discretely valued
field of characteristic 0 with a finite residue class field. It will be shown that all
such fields are completions of some number field.

11.1 Definition. A complete discretely valued field with a finite residue class field
is called a local field.

The p-adic completion of a number field is a local field of characteristic 0. We
will show that conversely every local field of characteristic 0 is the completion at a
finite prime of some number field. The following lemma is crucial.

11.2 Krasner’'s Lemma. Letp be a prime number, F': Q, a Galois extension and
let a, B € F satisfy

la =8| < |lo(a) —af|  for all o € Gal(F : Qp) with o(a) # «,

where ||.|| is the unique prolongation of ||.||, to F. Then o € Q,(0B).

PrOOF. Let 7 € Gal(F : Qpu(f5)). The uniqueness of ||.| implies that automor-
phisms of F': Q, preserve the absolute value. So

() = Bl = lla = B

and, therefore,

Im(a) —all = |I7(e) = B+ B — af| < max([|T(a) = B, [ = B]]) = [l = BI|.
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11 Local Fields

The condition on « and [ implies that 7(a) = . Since this holds for all 7 €
Gal(F : Qp(8)), we have a € Q,(8). O

11.3 Lemma. Let K be a field with absolute value ||.|| and o € K a zero of f =
X" +a; X" '+ +a, 1X +a, € K[X]. Then

Jol < max(1, 3 llasl)).
i=1

Proor. If || > 1, then

n
as a
o) = Jar + 2 4+ 22 < S ] 0
i=1

11.4 Proposition. Let p be a prime number, F' : Q, a finite field extension and
a € F. Then Qp(a) = Qp(B) for some € F which is algebraic over Q.

PrOOF. By Theorem 10.40 F is a local field. Put n = [Q,(a) : Q,]. Let f €
Q,[X] be the minimal polynomial of a over Q,. Set f = X" +a; X" ' +--- +a,
and C' = max (1,1 |la;]|). Let € > 0, to be specified later, and put

5 zgn/nfci.
=0

Choose g = X" + b1 X" '+ -+ +b, € QX] with |la; —b;]| <dfori=1,...,n
Then by Lemma 11.3

n—1

llg(e)]l = llg(e) KEwamw“wazcue

Let E be a splitting field of fg over F' and ||.| the unique prolongation of ||.||, to
E. Over E we have

n

g=][(x -5 withpy,....5, € E.

=1

From

lg(e)ll = H\Ia—ﬁzll <e"

follows that || — 8| < e for some zero ﬂ of g. Take

e= i loa) —all
o(a)#a
Then by Krasner’s Lemma o € Q,(8) and so Q,(a) C Q,(8). Because n =
[Qp() : Qp] < [Qu(B) : Qp] < n, we have Qp(a) = Q,(f). O
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11.2 The multiplicative group

11.5 Corollary. Let p be a prime number and F : Q, a finite field extension. Then
F' is the local field of some number field K at a finite prime of K above p.

Proor. Choose a primitive element « of the extension F' : Q,. By Proposi-
tion 11.4 there is a 8 € Q,(«) which is algebraic over Q such that Q,(a) = Q,(8).
Take K = Q(B) € F and p = pr N K € Max(Og). Then K, C F and
F=0Q,8) CK,. 0

Summarizing, we have the following.
11.6 Theorem. Egquivalent are:

a) F is a local field of characteristic 0,

b) F' is a finite extension of Q, for some prime number p,

c) F is the p-adic completion of a number field at a finite prime p.
PRrOOF.

a)=b) Since F is of characteristic 0, its prime field is Q. The discrete valuation
on F' induces a discrete valuation on Q, which by Theorem 10.12 is the p-
adic valuation for some prime number p. So F' is an extension of Q,. By
Theorem 10.41 the extension F': Q, is finite: take F': @, for the extension
FE : F in the theorem.

b)=-c) Corollary 11.5.

c¢)=-a) The p-adic completion of a number field is a complete discretely valued field
(cf. section 10.5) with a finite residue class field (Proposition 10.33). O

11.2 The multiplicative group

In this section we study the multiplicative structure of a local field and, in partic-
ular, its roots of unity. It will be shown that the roots of unity of the residue field
of a local field can be lifted to the field itself in a canonical way. The completion
of a number field often has many more roots of unity than the number field itself.

11.7 Lemma. Let F be a local field. Then for o € OF and ¢ = #(kp) the sequence
(a9"),, converges to a (q — 1)-st root of unity congruent to o modulo pg.

PROOF. Put a,, = a4 . For the convergence of (an)n it suffices by Proposi-
tion 10.34 to show that (ay,4+1 — o)y is a null sequence. Since a € OF we have
lef] =1 and

n+1 n _ n
lmer = anll = 5™ —at" | = ale00" 1],
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11 Local Fields

From

qla=Da" ™ 1 (ala=Da" _ 1) (ala=Da" @ g glamDa" )

and a?~! =1 (modp) follows that
o (Oz(’kl)qn+l —1) > vp (a(qfl)qn -1).

Hence (ap4+1 — @p)y is a null sequence. All terms of the sequence (ay,), are con-
gruent to « modulo pp, so this holds for the limit as well. For { = lim,,_,o o, we
have

(= lim @ = ( lim aqn)q = (% O

n—oo n—oo
By this lemma we have for a local field F' a map

Ar: Of = pig1(F), aw lim .

n—oo

It clearly is a group homomorphism and for { € pq—1(F) the sequence (€™, is
constant, so Ap is a retract of O}, to its subgroup pq—1(F'). For a =1 (modpp)
we have Ap(a) = 1. Hence Ap induces a homomorphism

wr: kp = pg—1(F), @~ Ap(a).

The map Ap is surjective and so is this induced map. Since both groups kj. and
pq—1(F) are of order ¢ — 1, the homomorphism wp is an isomorphism. It follows
that we have a split short exact sequence

1—14pr — 0p — ki — 1

We have shown the first part of the following theorem.

11.8 Theorem. Let F be a local field and ¢ = #(kr), a power of a prime number
p. Then O3 is the direct product of the subgroups pig—1(F) and 1+pr. The kernel
of the restriction of Ap to p(F') is the p-primary part of u(F).

PrROOF. Let ¢ € u(F). Write ¢ = n& with n,£ € u(F), p1o(€) and o(n) a power
of p. Let m be the order of £&. The m-th cyclotomic polynomial splits over F and,
therefore, over kr as well. Since p f m, the finite field kp has a primitive m-th root
of unity. Hence m | ¢ — 1, that is £ € py—1(F). So we have

Ar(Q) = Ar(MAr(§) = Ar(§) =¢
and hence ¢ =7, if Ap(¢) = 1. O

If the local field is of nonzero characteristic, then it is of the same characteristic
as the residue class field. In this case the p-primary part of u(F') is trivial and so
w(F) = k.
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11.3 Extensions

The multiplicative group of a local field F' is the direct product of O} and and
the infinite cyclic subgroup generated by a uniformizer. So for this multiplicative
group we have:

11.9 Corollary. Let F be a local field, © a uniformizer of F and ¢ = #(kgr). Then
F* = (14pr) - pg-1(F) - (m),
a direct product of subgroups. O

So for a determination of the multiplicative structure a local field F' we can now
focus on the group 1 + pr. This will be done in section 11.5.

11.3 Extensions

For cyclotomic extensions of local fields we have:

11.10 Lemma. Let F be a local field of characteristic 0 with residue class field of
characteristic p, m € N* and E : F the m-th cyclotomic extension of F. Suppose
that ptm. Then:

(i) O = Orl[(], where ¢ is a primitive m-th root of unity.

(ii) The extension E : F is unramified and the canonical map Gal(E : F) —
Gal(kg : kr) is an isomorphism. In particular E : F is a cyclic extension.

PROOF.
(i) This follows from Corollary 7.26 as well as from Proposition 1.36.

(ii) We have E = F(¢) for a primitive m-th root of unity. Let g be the minimal
polynomial of ( over F. Then g | X™—1 (in Op[X]). So disc(g) | disc(X™—1)
in Op. Because p 1 m, it follows that vp(disc(g)) = 0. Sovp(dp(E)) =0. O

For a complete local field of characteristic p # 0 the m-th cyclotomic extension is
the m’-th cyclotomic extension, where m = p*m’ with ptm/. It easily follows that
in this case all cyclotomic extensions are unramified.

An extension of local fields is a totally ramified extension on top of an unramified
extension:

11.11 Theorem. Let E : F be an extension of local fields and ¢ = #(kg). Then
E : F(pq—1) is a totally ramified extension and F(piqg—1) : F is the mazimal unram-
ified subextension of E : F.
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11 Local Fields

PrROOF. By Theorem 11.8 E contains a primitive (¢ — 1)-st root of unity ¢. Con-
sider the intermediate field F' = F({) of the extension E : F. By Lemma 11.10
the extension F’ : F is unramified. The residue class field of F’ has a primitive
(g — 1)-st root of unity. So fl(f) =1 and hence [E : F'] = eg?)fl(f) = e%b:). By
Theorem 7.50 the composition of unramified extensions is unramified. So F’ : F' is

the maximal unramified subextension. O
Let e be the ramification index and f the residue class degree. If a1, ..., a5 € Opr
are such that @1,..., @y is an kp-basis of kp/, then a1,...,af is an F-base of F'.

For m € E with vg(r) = 1 the elements 1,7, ...,7°! form an F’-basis of E. Thus
we obtain an F-basis of E: all ayn/ with 1 < i < fand 0 < j < e—1. For
an extension of local fields this gives an extra meaning to the basis described in
Theorem 10.41.

11.12 Corollary. Let E : F be a finite extension of local fields and ¢ = #(kg).
Then E : F is unramified if and only if it is contained in the (q — 1)-st cyclotomic
extension of F. O

11.13 Corollary. Let F be a local field of characteristic 0 and F an algebraic closure
of K. Then for each n € N* there is a unique intermediate field E of F : F with
E : F unramified of degree n.

PROOF. Suppose the residue class field of F' has ¢ elements. Let n € N* and
¢ € F a primitive (¢ — 1)-st root of unity. Take E' = F(¢). Then kg : kp is the
(g™ — 1)-st cyclotomic extension of kr. By Lemma 11.3 E : F' is cyclic of degree
n, the order of § in (Z/q™ — 1)*. If E’ : F is unramified and of degree n, then
fl(wE) = n. By Theorem 11.11 E’ : F is the (¢" — 1)-st cyclotomic extension of
F. O

11.14 Example. Let p be a prime. The field Q, has a unique unramified quadratic
extension F : Qp, the (p? — 1)-st cyclotomic extension. For p = 2 we have F =
Q2(¢3) = Q2(v/—3). For odd p and a squarefree m € Z such that (%) = —1, set

K = Q(y/m) and p = pOg. Then E = Q(v/m), = Q,(v/m).

Integral primitive elements

Let E : F be an extension of local fields. The following proposition will be used in
chapter 17 when studying further properties of higher ramification groups.

11.15 Proposition. There ezists a v € O such that O = Ofp[y].

PROOF. Let a € O be such that @ € kg is a primitive element of kg : kr and
f € Op[X] a monic polynomial such that f € kr[X] is the minimal polynomial of
@ over kr. Then f(a) € pr and so vg(a) > 1. If vg(a) = 1, then we can take
v = a: by the proof of Theorem 10.41, or the remark following Theorem 11.11, Og

284



11.4 Exponential function and logarithm

is generated by products o' f(a)? and this implies O = Or[a]. So we will assume
that vg(a) > 2. Let 7 be a uniformizer of vg. Then by Taylor’s formula

fla+m) = fla) +7f'(a) + 7B,

where 8 € Og. The irreducible polynomial f € kr[X] has no multiple roots, so
/() € O%. It follows that vg(a +7) = 1 and in this case vy = o+ 7 will do. O

11.4 Exponential function and logarithm

In the sequel we will need more knowledge of the structure of the multiplicative
group of a local field than we already derived in the previous sections. For com-
plete archimedean fields the exponential function connects the additive structure
to the multiplicative structure: e.g. on R the exponential function is an isomor-
phism from the additive group R to the multiplicative group R>?, the logarithm
being its inverse. Usually the additive structure is easier to deal with than the
multiplicative structure. The German mathematician Hensel introduced the expo-
nential and logarithmic function on local fields. The starting points are the power
series representations of these functions just as they are in the archimedean case.

In this section F' is a local field of characteristic 0 with a residue class field of
characteristic p. For simplicity we put v = vp, p = pp, € = v(p) = egp) and

F=15) =[kr Fy).

Over a field of characteristic 0 we have formal power series

— h n 1<
expxr = Eon! and log(l+z) = E
n= n=1

The following relations hold, say in the formal power series ring Q[[T]], and where
x and y are formal power series in T" with constant term 0:

exp(r +y) =expx - expy, explog(l+x) =1+,
log(1+ 2)(1 +y) =log(1 + z) + log(1 + v), logexpz = .

First we consider the exponential function.

11.16 Definition. The exponential function exp on F' is given by a series:

exp(a i oi;

for all a € F' for which the series converges.
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11 Local Fields

By Proposition 10.34 the series converges if and only if the valuation of the n-th
term tends to infinity for n — oco. We need to know the valuation of n!. Hensel
gave a nice computation of its value. It goes as follows. Use the base p for a
representation of n:

n=ag+aip+ ap® + - + app® with 0 < a; < p and ai # 0. (11.1)

Let s, be the p-adic digit sum of n, i.e. s, =ag+ a1+ -+ ak.

n— Sy
p—1"°

11.17 Lemma. Let n € N*. Then vp(n!) =

PRrROOF. Let the p-adic notation of n be as in (11.1). Then

up(n!) = L%J + L%J et L%J

= (a1 +-+app" ) (a2 +appt )+ (apo1 + awp) +
=a1+ax(1+p)+as(l+p+p°)+- +ar(l+p+---+p" ")
p-1,  p-1 p*

=G1p71+a2p71 +~-~+akp71
:pi1(ao+a1p+a2p2+~--+akpk—(a0+a1+a2+...+ak))

N =8y .
=>=1

11.18 Proposition. Let o € F. Then:

(i) the series 7;) % converges if and only if v(a) > pi o
(ii) v(expa — 1) = v(a) for each a with v(a) > € o
p—

(iii) for each t > Ll the map
=

exp: pt = 1+ pt

is an injective group homomorphism from the additive group pt to the multi-
plicative group 1 + pt.

It will turn out that the homomorphism in (iii) is in fact an isomorphism. The
logarithm will be its inverse.
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11.4 Exponential function and logarithm

PROOF.

(i) By lemma 11.17

n e

o(55) = vle) — e ) = nv(e) - 5
:”(”(O‘)fpi1>+;.—sl n(v(e) - pil)'

So the n-th term tends to infinity if v(a) > 5. If v(a)

series diverges, since s, = 1 for infinitely many n.

X n > n—1
(ii) expa—1 :a—&-z% =oz+az c
: n=2

n=2
So

(n — sn)

and for each n > 2 we have s,, > 1.

n— Sy
p—

v(an_l) =(n—-1v(a)—c¢

n!

> (n—l)(v(a)— c ) > 0.

(iii) By (ii) the map exp: p* — 1 + p? is defined. The formal properties of exp
imply that exp(a; + as) = exp ay - exp ag for ag, as € pt. From (i) it follows
that exp(a) # 1 for a # 0, so the group homomorphism is injective. O

The logarithm on F' is defined as follows.

11.19 Definition. The logarithm on F is given by a series:

log(a i -1fa 1P

for all @ € F for which the series converges.

11.20 Proposition. Let o € F'. Then

1 n
(i) the series Z i 17) converges if and only if « € 1+ p;

(&
p—1

(i) v(log o) = v(ev — 1) for each o € F with v(a — 1) >
(iii) the map
log: 14+p = F

18 a homomorphism from the multiplicative group 1+ p to the additive group
F. For each t >

1t induces by restriction a homomorphism

log: 1+ p* — p'.
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11 Local Fields

PROOF.
0 o) — e m - o) 2 e v(a - 1) - SR it
i =n-vla—-1)—v(n)>n- -1)- oo ifn .
v - v(n) > n-v(o Tog p 00

0 _ 1\n—-1

(ii) loga = (@ —1) 4+ (« = 1) Z(—l)"&. It suffices to show that

n

n=2

v(%) =m-1)-v(@—1) —v(n) >0 forn > 2. For p{n we

have v(n) = 0, so assume that p | n. Then n > p and

elogn e(n—1) elogn
logp p—1 logp

v<w> >m—-1vla-1)—

n

—1 I
We have to show that —— > —&"
p—1 log p

or, since n > p and p > 2, that

n—1 — -1
> b . This follows from being monotone increasing for = > 1,
logn log p logz
which is easily seen by substitution of the monotonic increasing e¥ for x:
z—1 e¥—1 7iy"’1
logz vy 7n:1 n! ’

(iii) By (ii) the map log: 1 + p* — p’ is defined and the formal properties of log
imply that it is a homomorphism. O

Since exp and log are formally inverses of each other, the preceding propositions
imply the following.

11.21 Theorem. Lett € N with t > Ll' The maps

log: 1 +pt = p' and exp:pl —1+p

are group isomorphisms and inverses of each other. O

The subgroups p’ and 1+ p* of respectively Op and O} are of finite index. So the
groups Op and OF have much in common. An important consequence concerns
the group F™ of n-th powers of F*.

11.22 Theorem. Letn € N*. Then 1 +p" C F* fort > e-vy(n) + 54

PrOOF. Let o € 1+ p’. Then loga € p* because t > pfl. So v(%loga) >
t—wv(n) =t—e-vp(n) > 5 and for § = exp(:loga) € 1+ p*~*(™ we have

8™ = exp(loga) = a. Hence o € F*™. O
11.23 Corollary. For each n € N* the index of F*™ in F* is finite.
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11.5 The multiplicative group

PROOF. Let n € N*. By the theorem there is a ¢ € N* such that 1 + pt C
" N OF = OF*. The split short exact sequence

1 — 0 —F* 57 —1

induces a split short exact sequence

1 — Op/O — F*/F*™ 25 Z/n — 1.
So F*/F*™ = 0% /O3 x Z/n. The index of 1+ p* in OF is finite: OF/(1 + p') &
(Op/p')*. From 1+ p* C O3 C Of follows that the index of O in OF is finite
as well. 0

11.5 The multiplicative group

Let F be a local field with kpr of characteristic p and p = pp. First we show that
14y is a Zy,-module in a natural way. Writing operators of this multiplicative
group as exponents, we will define o® for a € 1 +p and z € Z,,. Its definition rests
on the following lemma.

11.24 Lemma. Let a« € 1+ p and z = lim,_, o, 2, with z, € Z for all n € N*.
Then the sequence (a*"),, converges in 1+ p. If also z = lim,,_, o 2}, with 2], € Z
for all n € N*, then

lim o = lim a™.

n—oo n—oo
PROOF. For each m € N* the group (1+p™)/(1+p™*1) is of order ¢ = #(kr/p).
It follows that for each m € N* the group (1+p)/(1+p™*!) is of order ¢™, that is

o =1 (modp™*!) for all m € N*.
Put vp(zp+1 — 2n) = an and vy(z), — 2,) = b,. Then lim, ,ca, = oo and
lim,,—yo0 b, = c0. Then
o A Entl—Zn — an+1 2=z — bn+1
=« =1 (modp ) and =« =1 (modp ).
a#n a®n

And so

@+t = o (mod p®» 1) and aFn = @ (mod p®» 1.
It follows that the sequence (a*), converges and that the limit does not depend
on the choice of the sequence (2, ). O
11.25 Definition. Let F' be a local field with kg of characteristic p, a € 1+ pp
and z € Z,. Then the power a* is defined by

o = lim o®",
n—roo

where (z,,), is a sequence in Z converging to z.
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11 Local Fields

11.26 Lemma. For each m € N* the abelian group 1+ p™ is a Z,-module under

Zpyx (1+p™) —14+p™, (z,a)—a”.

PrROOF. Let z = lim,_ 2, with z, € Z and a € 1 + p™. Then o*» € 14 p™ for
all n, because 14 p™ is a subgroup of F*. Hence a® € 1+ p™. Let also § € 1+ p™
and w = lim,,_, o w,, with w,, € Z. Then for each n:

(aB)* = o B, a?ntn — oFna®n and  afrWr — (o )wn
So by the well-known rules for limits we obtain
(aB)* =a*B*, o =a*a” and o = (a*)".
This means that under (z,a) — @ the group 1+ p™ is a Z,-module. O

We can now determine the structure of the multiplicative group of a local field of
characteristic 0.

11.27 Theorem. Let F' be a local field of characteristic 0 with kg of characteristic
p, [F: Q] =d and w = #(u(F)). Then

F*>27®(Z/w)® L.

PRrROOF. Let 7 be a uniformizer of vp and #(kp) = ¢g. Then by Corollary 11.9
F* = (m) - pg—1(F) - (1 +pr)-

Since Zj, is a principal ideal domain the ring OF is a free Z,-module of rank d. For
n sufficiently large the map log: 1 + p% — p% is an isomorphism of Z,-modules
(Theorem 11.21). So 1 +p% = 7"Ofp = Op = ZZ. The index of 1 +p’% in 1+ pp is
finite, so the Z,-module 1 + pr is of rank d as well. Its torsion subgroup consists
of the roots of unity of F' of order a power of p. By Theorem 11.8 this subgroup is
the kernel of Ap: u(F) — pig—1(F). O

EXERCISES

1. Let p be a prime number. By Corollary 11.9
Qp = (1 +pZp) - prp—1 - (p).

(i) Show that (1 + pZy)? = 1 + pZ, if p is odd.

(ii) Show that for odd p the group Qj /@;2 is noncyclic of order 4, its elements
being represented by 1, p, u and pu, where u € Z represents a generator of
the cyclic group Fj,.
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Exercises

(iii) Show that (1 4+ 2Z2)? has index 2 in 1 + 2Z,.

. Let p be a prime number, r € N*, K = Q({,) and p the prime of K above p.
Compute p(K) and p(Ky).

. Let E : F be a totally tamely ramified Galois extension of local fields, v the discrete
valuation of F and [E : F] = n. Show that there is a 7 € E with v(7) = 1 and
n™ € F. (Use exercise 17 of chapter 7.)

. Let m and n be different squarefree integers # 1. Put k = mn/ gcd(m, n)? and let p
be an odd prime such that p | m, p | n and (%) = —1. Show that the completions of
the fields Q(1/m) and Q(1/n) with respect to the prime above p are not isomorphic.
(i) Let p be an odd prime. Show that the group 1 + pZ, is a subgroup of the
group Qf of squares in Qj.
(ii) Show that Q;/Q;? is a noncyclic group of order 4.
(iii) Prove that inside a given algebraic closure of Q, there are exactly 3 quadratic
extensions of Q.
(i) Show that the group 1+ 8Z, is a subgroup of the group Q32 of squares in Qj.
(ii) Show that Q3/Qj3? is 2-clementary group of order 8.

(iii) Prove that inside a given algebraic closure of Q2 there are exactly 7 quadratic
extensions of Q.

(iv) Give for each of the seven quadratic extensions of Q2 a primitive element.
Which one is unramified?
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12 Galois Modules

Galois theory is a powerful tool when investigating field extensions. The Galois
group of a Galois extension L : K is a group of automorphisms of L and as such
it acts on the field L. The Galois group acts on many structures associated to
L as well, e.g. it acts on the multiplicative group L*, the ring Op, the group
O3 and the group I(L) of fractional ideals. Group cohomology applies in these
cases and is usually referred to as Galois cohomology. It will be used in the next
chapters, however, not in full generality. Only the special case of the cohomology
of cyclic groups will be used. It is described in section 12.2. In section 12.3 many
examples of Galois cohomology groups for cyclic number field extensions are given.
These examples will be used in later chapters. The action of a Galois group often
comes with extra structure. This is formalized in section 12.4 and is particularly
interesting when dealing with noncyclic Galois groups. Special cases are studied
in the last two sections.

12.1 Modules over a group

Modules over a group are essentially modules over the group ring of the group.

12.1 Terminology. Let G be a group. If G operates on an abelian group A via
automorphisms of A, then A, equipped with this action, is called a G-module.
Equivalently, a G-module A consists of an abelian group A together with a group
homomorphism G — Aut(A). If, more generally, for a commutative ring R the
group G acts on an R-module A via R-automorphisms, the action corresponds to
a group homomorphism G — Autg(A), where Autp stands for the group of R-
automorphisms. For K a field and V' a K-vector space, a group homomorphism
G — Autg (V) is usually called a representation over K of G. If V is of finite
dimension, then the dimension of V' is called the degree of the representation.

In section 18.4 representations over C will be used for Artin’s generalization of the
L-functions as defined for abelian number fields in chapter 9.

Using the multiplicative notation for G and the additive notation for A, a G-action
on A comes down to a map

GxA— A, (0,a)—o0a
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12 Galois Modules

such that for all a,b € A and 0,7 € G:
(o7)a = o(Ta),
o(a+0b) =oca+ ob,
la = a.

12.2 Definition. Let G be a (multiplicative) group. The group ring Z[G] of G is
the free abelian group with G as basis equipped with the multiplication induced
by the group multiplication in G:

g ngcr~g mTng NgM-OT,
o T o,T

where n,,m, € Z. More generally, the group algebra R[G] over a commutative
ring R is the free R-module on G equipped with the ring multiplication induced
by the group multiplication on the basis elements. Its elements are ) _a,0 with
a, € R for all o0 € G.

For A a G-module, the group homomorphism G — Aut(A) extends to a ring
homomorphism Z[G] — End(A), where End(A) is the ring of endomorphisms of
the abelian group A. Thus A becomes a Z[G]-module. On the other hand a Z[G]-
module A is a G-module by restriction of the operations to the basis G of Z[G].
We will switch freely between the notions of G-module and Z[G]-module. A Z[G]-
module homomorphism f: A — B corresponds to a G-module homomorphism in
the sense that it is a homomorphism of abelian groups satisfying

floa) =0cf(a) foralla € Aand o € G.

For R a commutative ring R[G]-modules A are R-modules equipped with an action
of G on A by R-linear maps. In particular, representations over C of a group G
correspond to C[G]-modules.

12.3 Definitions and notations.

a) The norm element of a finite group G is the element ) . o of Z[G]. Tt is
denoted by N¢g. If G is generated by a subset X of G, then also the notation
Nx is used and if X = {0}, a one element set, then we may write N,.

b) Let A be a G-module. Then the G-module of G-invariants of A is the G-
submodule

A9 ={acA|loa=aforalloce G} = ﬂKer(l—a:A%A).
oeG

It is the largest G-submodule with trivial G-action. Notations like AX and
A° for X and o as above are used as well.
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12.1 Modules over a group

c) Let A be a G-module. Then the G-module of G-co-invariants of A is the
quotient G-module of A by the G-submodule generated by all a — oa with

a€AandoeG:
Ang/Z(l—o)A.

oeG

It is the largest quotient G-module with trivial G-action. The classof a € A in
the quotient module Ag will often be denoted by @. Again we have notations
Ax and A,.

Trivial but important identities for norm elements are:
12.4 Lemma. Let H, H; and Hs be subgroups of a finite group G. Then:
(i) If Hy < Hs, then Ny, Ny, = #(H1) - Ng,.
(i) (Ng)? = #(H) Ny
(i) If H1Hs is a subgroup of G, then Ny, Ny, = #(H1 N Hs) - Ny, o, .

ProOOF. (ii) follows from (i), and (i) follows from oNp, = Np, for all 0 € Hy,
or, alternatively, apply (iii) to H; < HyH,. For (iii) note that the #(H;)#(Hs)
terms in Ny, Np, correspond to the elements of Hy x Ha, whereas Ker(H; x Hy —
HiHy) = H, N Hy. O

The following will be frequently used when studying group actions on abelian
groups.

12.5 Lemma. Let G be a group of order n acting on an abelian group A. Then
multiplication by Ng induces a homomorphism

Ng: A — A%, @ Nga

of abelian groups. The kernel and the cokernel of this homomorphism are killed!
by n. In particular the homomorphism is an isomorphism if multiplication by n is
an automorphism of A.

Proor. It follows from cNg = Ng = Ngo that multiplication by Ng induces a
homomorphism Ag — A®. For @ € Ag with Nga = 0 one has ma = Nga = 0.
And for a € A® we have na = Nga. O

Associated to a group module are series of abelian groups: the homology groups
and the cohomology groups. Here a short description in terms of derived functors
is given. In this book no use is made of the full theory of group (co)homology.

Let G be a group. The functor A — Ag is a right exact functor from G-modules to
abelian groups. For m € N its m-th left derived functor is denoted by H.n. (G, —).

ITerminology: an abelian group A is killed by n if na = 0 for all a € A; a not necessarily abelian
multiplicative group G has exponent n if g =1 for all g € G.
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12 Galois Modules

The group H,, (G, A) is called the m-th homology group of G with coefficients in A.
In particular we have Ho(G, A) = Ag.

The functor A — A is a left exact functor from G-modules to abelian groups. For
m € N its m-~th right derived functor is denoted by H™ (G, —). The group H™ (G, A)
is called the m-th cohomology group of G with coefficients in A. In particular we
have H°(G, A) = A°.

The Tate cohomology groups H™ (G, A) of a finite group G with coefficients in a
G-module A are defined for all m € Z:

H™(G, A) ifm > 1,
NG G .
S Coker(Ag — A¥) if m =0,
H™(G,A) = Mo
Ker(Ag =% A%) if m= -1,
H_pm1(G, A) if m < —2.

By definition we have the exact sequence

0— H7HG, A) — Ac S8 A 5 (H°(G, A) — 0.

By Lemma 12.5 the groups H™ (G, A) are killed by n = #(G) for m = —1,0. In fact
this holds fqr all m € Z. In particular, if multiplication by n is an automorphism
of A, then H™(G,A) =0 for all m € Z.

For G cyclic one shows that H™(G,A) = H™*?(@G, A), so for such G the above
exact sequence can be written as

0— AYG,A) — Ac Y& A 5 (%G, A) — 0

and can be used as a definition of H°(G, A) and H'(G, A), as will be done in the
next section. In this context it is customary to delete the " in the notation.

12.2 Cohomology of cyclic groups

The Tate cohomology groups of a cyclic group have a simple description. This
description is taken here to be their definition. The general notion of group coho-
mology is not used in this book.

12.6 Definition and notation. Let G be a cyclic group of order n generated by o.
Then elements A and N of Z[G] are defined as follows

A=1-o0 and N=1l4+o+---+0"%
For A a G-module the homomorphisms a — Aa and a — Na are denoted by A4

and N 4 respectively. So N = N and in the notation N 4 the group G is understood.
Similarly for A, in which case, moreover, the generator o is not specified.
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12.2 Cohomology of cyclic groups
12.7 Lemma. Let G be a finite cyclic group and A a G-module. Then Im(A ) C
Ker(N4) and Im(N4) C Ker(Ay).
ProoOF. This follows from NA=AN=1-0¢" =0. O

12.8 Definition. Let G be a cyclic group, generated by an element o of order
n. Then the 0-th and the 1-st cohomology group of a G-module A are defined
respectively as follows:
HY(A) =Ker(A4)/Im(N,) and H'Y(A) =Ker(Ny)/Im(Ay).
(Clearly, these groups do not depend on the choice of the generator ¢.)
There is some variation in the terminology. For cyclic G, the ‘i-th cohomology

group (for i = 0,1) of A’ stands for the ‘-th Tate cohomology group of G with
values in A’. Here the emphasis is on the module, not on the group.

A direct consequence of the definition is the following.

12.9 Proposition. Let G be a cyclic group of order n gemerated by o and A a
G-module. Then we have exact sequences

0 — H'(A) —s Coker(Aa) X4 Ker(A4) —s HO(A) — 0

and

0 — H°(A) —> Coker(N4) 24 Ker(N4) — H(A) — 0. 0
The first exact sequence is the same sequence as
0— H'(A) — Ac Ne, g6, H°(A) — 0,

which shows that indeed the cohomology groups are the Tate cohomology groups
H°(G; A) and H™'(G; A), see the remarks at the end of section 12.1.

Cohomology theories give rise to long exact sequences of cohomology groups. Due

to the fact that in the cyclic case the cohomology is periodic with period 2, these
long exact sequences wind up as a hexagon.

12.10 Theorem (The Exact Hexagon). Let G be a finite cyclic group and let

0—A-L B 2% c—o0

be a short exact sequence of G-modules. Then an exact hexagon of cohomology
groups is induced:
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12 Galois Modules

HO(A) — HO(B)
/N
H'(C) HO(C)
N/

A)

HY(B) +— H(

PrOOF. The Snake Lemma applied to the commutative diagram

yields an exact sequence of kernels and cokernels

0 — Ker(A4) — Ker(Ap) — Ker(A¢)
— Coker(A4) — Coker(Apg) — Coker(A¢g) — 0.

There is a similar exact sequence for N instead of A. Applying the Snake Lemma
to the commutative diagram

Coker(N4) — Coker(Np) — Coker(N¢g) — 0

S

0 — Ker(Ny) —— Ker(Np) —— Ker(N¢)

yields an exact sequence
H°(A) — H°(B) — H°(C) — H'(A) — H'(B) — H'(C).

Interchanging the role of N and A yields a similar exact sequence and these two
together form the exact hexagon. O
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12.2 Cohomology of cyclic groups

A tool for making computations is the Herbrand quotient:

12.11 Definition. Let G be a finite cyclic group and A a G-module such that
HY(A) and H'(A) are finite. Then the Herbrand quotient of A is the rational
number

12.12 Proposition. Let G be a finite cyclic group and 0 - A - B — C — 0 a
short exact sequence of G-modules. If for two of the three modules the Herbrand
quotient is defined, then so for the third and

Proor. The associated exact hexagon leads to a diagram with exact sequences:

0 O\m A) — H°(B) H/O 0
VAR,
\ Hﬂ/

N/
0/ \0

If the Herbrand quotient of two of the modules A, B and C' is defined, then four
of the six abelian groups in the exact hexagon are finite and so are the remaining
two. Because the alternating product of the orders in an exact sequence equals 1,
we have

9(A)q(C) _ #H'(A)) - #(H°(B)) - #(H'(C)) _ #(I1) - #(I) - #(I1T)
0(A4)) - # # 1) - #4(T)

(EO(C)) ~ -2 - #0) C
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12 Galois Modules

12.13 Proposition. Let G be a finite cyclic group and A a finite G-module. Then
q(A) =1

Proor. From the exact sequence

0 — Ker(Ny) — A LN Coker(N4) — 0

follows that #(Ker(N4)) = #(Coker(N4)) and together with the exactness of

0 — HO(A) — Coker(N4) 24 Ker(N4) — HY(A) — 0
this implies that #(H(A)) = #(H°(4)). O

12.14 Corollary. Let G be a finite cyclic group and let A be a G-submodule of finite
index in the G-module B. If one of the Herbrand quotients of A and B is defined,
then so is the other and, moreover, q(A) = q(B).

ProOF. Apply Proposition 12.12 to the short exact sequence 0 - B — A —
B/A — 0 and use that ¢(B/A) = 1 by Proposition 12.13. O

The following proposition describes the cohomology of a type of module which will
occur frequently.

12.15 Proposition. Let G = (o) be a cyclic group of order n and d a divisor of n,
say n =dm. Let B be a torsion free abelian group and A = @gzl B the G-module
with the G-action

J(bl,...,bd) = (bg,...,bd,bl).

Then HY(A) =0 and H°(A) = B/mB.
PrROOF. We have for a = (by,...,bq):
Aa:(bl—bg,bg—b37...,bd—b1),
Na=m(by + -+ +bgy...,b1 + -+ bg)
and an easy calculation shows that
Ker(Ag)={(b,...,b) |be B} = B,
Im(Aa) = {(b1,...,ba) € A| Y b =0} = Ker(Ny),
Im(Ny) ={m(b,...,b) | b€ B} 2 mB. O

12.3 Galois cohomology of cyclic groups

This section contains computations of cohomology groups of some modules over
the Galois group of a cyclic extension. Since the group is a Galois group it is
customary to speak of Galois cohomology in such cases.
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12.3 Galois cohomology of cyclic groups

The cohomology groups of L and L*

In this subsection L : K is a Galois extension of degree n with Gal(L : K) = G =
(o). The additive group L and the multiplicative group L* both are G-modules:
the action of o is given by ca = o(«).

12.16 Theorem. H°(L) =0 and H'(L) = 0.

PROOF. The action of A and N is given by
Aa=a—-oc(a) and Na=a+o(a)+- -+ 0" Ha)=Trk(a).

The maps Ap,Np: L — L are K-linear. The trace map Trf(: L — K is surjective
(Corollary 1.30). So by the Main Theorem of Galois Theory

K =Im(Trk) = Im(N.) C Ker(AL) = L° = K.

It follows that H°(L) = 0 and also that Ker(N;) = Im(Ay), since both are of
dimension n — 1. O

Alternatively, by the Normal Basis Theorem of Galois theory there is an a € L such
that o, (), ...,0" *(a) is a K-basis of L. Apply Proposition 12.15. For fields of
characteristic 0 the theorem follows directly from the fact that the map Lo — L€
induced by Ny, is an isomorphism.

12.17 Theorem. H°(L*) = K*/NL(L*) and HY(L*) = 1.

PrOOF. The action of A and N is given by

Aa:%a) and Na=a-o(a) 0" 1(a) = Ni(a).

We have, again by the Main Theorem of Galois Theory
Ker(Ap-)={ae€L*|o(a)=a}=L"NLY =L*"NK = K*,
Im(Np-) = NE(L").
Hence HO(L*) = K*/NL(L*).

The group Im(Ap+) consists of all % with 8 € L* and the group Ker(Np«) is
the subgroup of all a € L* with N (a) = 1. We have to show that each such « is
of the form % Let o € L* such that N (a) = 1. For v € L* we consider the

element

6= "_1(0'%) 11~ (@) =" () + "f(a’“(w) I o (a))
k=0 j=0 k=0 §=0
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12 Galois Modules

Apply o:

n—1

n—2 k k
o) =7+ 2 (F N Lo @) =7+ 3 (0" ) [T @),
k=0 j=0 k=1 J=1

So ao () = 5. Is there a « such that 8 # 0? Choose a ¥ € L such that L = K(¢)
and consider the elements 3 = §; for v = Wl for j =1,...,n. They form the
column vector Av, where

1 1 s 1 «
e 19 0(:19) e o | () i v 040.(04)
It o)t g ()l ac(a) 0" (a)

Since ¥ is primitive, the elements 9,0 (), ...,0" () are different. So the Van-
dermonde matrix A is invertible. Because v # 0 it follows that Av # 0. So §; # 0
B;
. ]
o(B;)

The formula H*(L*) = 1 is known as Hilbert’s Theorem 90.

for some j. Therefore, a =

The cohomology groups of 1(5)

Let R be a Dedekind domain, K the field of fractions of R, L : K a cyclic extension,
G = Gal(L : K) and S the integral closure of R in L. The discrete valuations v
on L constitute an isomorphism

I(S) = D, Bgjps Z

of G-modules, the direct sums being over the maximal ideals p of R and the maximal
ideals q of S dividing pS. By Proposition 12.15 we have

Hl(@q‘pSZ) =0 and HO(@qlpSZ):Z/epfp.

Hence
HY(I(S) =1 and HO(I(S)) = @, Z/ep -

For the norm NZ of fractional ideals we have by Proposition 7.67 a commutative
diagram
I(S) —— @pep ®q|p5 Z

Nk (fo)s

I(R) ——— @pepZ
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12.3 Galois cohomology of cyclic groups

where f,-: Z — Z is multiplication by f, for each p € Max(S). In particular we
have:

12.18 Proposition. H'(I(S)) = 1 and if no prime ideal of R ramifies in L, then
HO(I(S)) = I(R)/NL(1(S)) (identifying I(R) with a subgroup of 1(S)). O

So in the number field case we have in the terminology of section 6.4:

12.19 Corollary. Let L : K be a cyclic extension of number fields, P a collection
of nonzero prime ideals of O and Q the collection of prime ideals of O above
P. Then H'(Ig(L)) = 1. If P does not contain the in L ramifying primes, then
H°(Ig(L)) = Ip(K) /N (Ig(L)).

Proor. Take R=Op and S = Og. O

The cohomology groups of Oy and O}, (E a local field)

Let E : F be a cyclic Galois extension of local fields, p the characteristic of the
residue class fields, e the ramification index and f the residue class degree. Put
G =Gal(E: F) = (o). Then #(G) =n=ef.

12.20 Proposition. ¢(Opg) = 1.

PROOF. Choose a normal basis (3,0(83),...,0""1(B)) of E: F. We can assume
that 8 € Og. Put § = disc(B,0(B),...,0""1(3)). Then § € Op \ {0} and

1
T :=0pB+Opa(f)+-+0pa"HB) COp C 5T

So 60p CT C Op. The ideal 6OF of the ring O is of finite index: if vg(§) = m,
then Og/d0g = Og/p. By Corollary 12.14 ¢(Og) = ¢(T) and by Proposi-
tion 12.15 ¢(T') = 1. O

The exponential function defined in section 11.3 relates the multiplicative structure
to the additive structure.

12.21 Proposition. ¢(Oj}) = 1.

PrOOF. Putt= Lpflj + 1. By Theorem 11.21 we have an isomorphism

exp: pby 5 14 ph.
It is an isomorphism of G-modules:

exp(o(a)) = U(Q)] -0 (Z 3{) = o(exp ).

|
j=0 J: j=0

Because 1 + p’;, and p; are of finite index in respectively O3 and Og, we have

q(0p) = (1 +p%) = q(py) = ¢(Op) = 1. O
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12 Galois Modules

12.22 Theorem. F*/NE(E*) is of order n = [E : F).
ProoFr. Consider the following short exact sequence of G-modules
1— 0y —E 27 —0,
where Z has trivial G-action. Then ¢(Z) = 1 and
a(E*) = q(Op)e(Z) = 5.
Since H*(E*) = 1 (Hilbert’s Theorem 90), it follows that #(H°(E*)) = n. O
12.23 Theorem. #(H°(0%)) = #(H'(0%)) = e.

PrOOF. By Proposition 12.21 #(H%(0%)) = #(H(0%)), so it suffices to show
that #(H°(0%)) = e. We have

Ker(Ap;) = 0f and Im(No:) = NE(Op).

So H(0%) = 0% /NE(0%). The norm map N£ induces the following commutative
diagram with exact rows:

* VE

1 o B z 0
| o
v
1 o5 rr—r 7 0

The cokernels of the vertical maps form a short exact sequence. From Theo-
rem 12.22 it follows that the group O%/NE(O%) is of order e. O

The Herbrand quotient of O

Let L : K be a cyclic Galois extension of number fields of degree n. Put G =
Gal(L : K) = (o). The group G acts on the infinite primes of L via 7-0q = 04771,
where 7 € G and o4 a real or complex embedding corresponding to g. The orbits
of this action are the collections of primes above the same infinite prime of L. Let
p be an infinite prime of K. If p does not ramify in L, then the orbit of primes of L
above p has n elements, and if p does ramify it has n/2 elements. In the last case

the decomposition group of p in L is of order 2 with ¢”/2 as its nontrivial element.

The structure of the group Oj is given by the Dirichlet Unit Theorem. By
Lemma 5.32 there is for each infinite prime q of L a unit ¢ € O} such that
lleqllq > 1 and ||eq||q» < 1 for all infinite primes q" # q of L.

304



12.4 Galois modules and transfers

Now choose for each infinite prime p of K an infinite prime q of L above p and an
€4 as above. In case p does not ramify, define for each 7(q) in the same orbit a unit

Er(q) = T(Eq)-

Then
T(eq)llq = logT(eq)| = lor-1(q1(q)| > 1if ¢ = 7(q), and < 1 otherwise.

If p ramifies, replace €4 by EqO'n/ %(eq) and define €7(q) @s in the nonramifying case.
Thus we have a set of units 4, one for each of the r + s infinite primes of L,
which is invariant under the action of G and which by Proposition 5.34 is of rank
r+s—1. Let B be the subgroup of O} generated by the r + s units ¢4 and let A
be a free abelian group with r + s basis elements a4, one for each infinite prime g
of L. Since A is free of rank r + s and B is of rank r 4+ s — 1, we thus have a short
exact sequence of G-modules

0—Z—A—B—1
with Z a trivial G-module.

L:K
12.24 Theorem. ¢(O;) = [27t], where t is the number of infinite primes of K
that ramify in L.
PROOF. Because O3 /B is finitely generated and of rank 0, this group is finite.
So q(O3) = q(B). We compute ¢(B). Let A(p) be the free abelian group on the
aq with q above p. Then A = P, A(p), q(A(p)) = 1 if p does not ramify and

1 1
_ 1 . _ . _
q(A(p)) = 5 if p does ramify. So g(A) o and since ¢(Z) T K we have
_q(A)  [L:K]

12.4 Galois modules and transfers

If the Galois group G of a Galois extension L : K induces an action on an abelian
group A associated to L, the G-module is often referred to as a Galois module. Such
a Galois module often comes with extra structure. This situation is formalized in
the Definitions 12.26 and 12.34.

12.25 Notation. Let L : K be a Galois extension. The category of all intermediate
fields of L : K and their K-embeddings is denoted by 9 (L : K). (A K-embedding is
an embedding which fixes the elements of K.). Special morphisms in this category
are the elements of Gal(L : K) and the inclusion maps jfl : K' — L, one for each

intermediate field K’ of L : K. Also the notation j¥ will be used for ij LH S L
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12 Galois Modules

12.26 Definition. Let L : K be a Galois extension. A Galois module A associated
to L : K is a functor
A:9(L:K)— Ab.

Clearly we have:

12.27 Lemma. Let A be a Galois module associated to a Galois extension L : K
of degree n with Galois group G. Then A(L) is a G-module under

o-x=A(o)(z) foroceG andx e A(L).

The map A(j%): A(K) — A(L) is a G-homomorphism from the trivial G-module
A(K) to the G-module A(L). O

For H a subgroup of G, the extension L : L¥ is a Galois extension with Galois
group H and the category ¢ (L : L) is a subcategory of 4(L : K). So restriction
of a Galois module A: 4 (L : K) — Ab gives a Galois module associated to L : L.

12.28 Definition. A Galois module A related to a Galois extension L : K with
Galois group G is called a Galois module with descent if for each subgroup H of

G the map A(j¥): A(L¥) — A(L) induces an isomorphism A(j7): A(LH) &
A(L)H.

12.29 Examples. Let L : K be a Galois extension of degree n and G = Gal(L : K).
Examples of Galois modules A associated to L : K, given by A(K") for intermediate
fields K’ of L : K, are:

a) A(K') =K', b) A(K')=K'" and c) A(K') = u(K").
By the Main Theorem of Galois Theory these examples are Galois modules with
descent.

For number field extensions there are many interesting examples of Galois modules:

12.30 Examples. Let L : K be a Galois extension of number fields with Galois
group G. Examples of Galois modules A associated to L : K, given by A(K") for
intermediate fields K’ of L : K and A(f) for K-embeddings being understood:

a) A(K') = Ok, a Galois module with descent.
b) A(K') = O}, also with descent.

¢) A(K') =I(K'). If a prime p ramifies in L, then [[ .0, 9 € I(L)%, but is not
in the image of I(K) — I(L)?. Only if the extension L : K is unramified,
this Galois module is a Galois module with descent.
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12.4 Galois modules and transfers

d) A(K') = C¢(K'). We have seen that C/(K) — C/(L) is not injective in general,
so in these cases there is no descent.

12.31 Example. Let L : K be a Galois extension with G = Gal(L : K) = Cy x Cy,
say G = (0,7), o and 7 being two automorphisms of order 2. In Z[G] we have

Ne+N,+Nyr=3+0+7+07 =2+ Ng.

So for a G-module A this means that 2z € A7 + A™ + A°7 for all x € A. For a
Galois module A: 4(L : K) — Ab it implies that for each z € A(L) we have that
2z is in the subgroup generated by the images of A(L?), A(L™) and A(L°") in
A(L). If in particular L : K is a number field extension, this applies to the Galois
modules of Examples 12.30:

a) For each a € Oy, the integer 2« is in the subgroup Opo + Op- + Ope-. This
has been used in exercise 9 of chapter 1 for the computation of an integral
basis for a biquadratic number field.

b) For each v € O} the unit v? is in the subgroup O}, - O}, - O}... This has
been used for the computation of the unit groups of the biquadratic fields

Q(v~2,v/3) and Q(v/2,v/3) (Examples 5.37 and 5.38).

c¢) For each x € C/(L) the ideal class 22 is in the subgroup generated by the
images of C{(L7), C¢(L™) and CU(L°T).

12.32 Example. Let L : K be a Galois extension with G = Gal(L : K) & Ss,
say G = (0, 7), 0 an automorphism of order 3 and 7 an automorphism of order 2.
Then 707 = ¢~ ! and in Z[G] we have

N, + N, + Nyr + Ngy2r =3+ Ng.

For a G-module A this implies that 3z € A% + A™ + A7 + A% for all z € A.
For a Galois module A: ¢4(L : K) — Ab it follows that for each x € A(L), the
element 3z is in the subgroup generated by the images of A(L?), A(L™), A(L°")
and A(L"QT). So, in particular, if L : K is a number field extension:

a) For each a € Oy, the integer 3« is in the subgroup Ore + Opr + Opor +
O} o2,. This has been used for the computation of an integral basis of the
field Q(¥/«, ¢3) in Example 7.17.

b) For each v € O} the unit v* is in the subgroup O}, - Of, - O}or - 07,2,
This also has been used in Example 7.17.
c¢) For each x € C/(L) the ideal class 2 is in the subgroup generated by the
images of C/(L°), C/(L™), C{(L°™) and CL(L"T).
12.33 Example. The ideal class groups of the proper subfields of Q(V/2,(3)
are trivial. Since C/: 9(Q(v/2,¢3) : Q) — Ab is a Galois module, the group

Cl(Q(3/2,(3)) is a 3-elementary abelian group. In fact, the group is trivial, see
again Example 7.17.
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Transfers

In many interesting cases a Galois module is not a Galois module with descent.
However, there is a useful weaker notion.

12.34 Definition. Let A be a Galois module associated to a Galois extension L : K
with Galois group G and let H be a subgroup of G. A transfer trl of A is an
H-homomorphism

trfl: A(L) — A(L™)

such that the following diagram commutes

A(L) _ Nm A(L)

ALy — 5 A(LH)

where m and Ny stand for multiplication by m = #(H) and Ng in A(L¥) and
the Z[G]-module A(L) respectively. A Galois module A with transfers is a Galois
module A together with transfers of A for each subgroup H of G.

Note that the square in the above diagram commutes because tr? is an L¥-homo-
morphism. By the map A(j) the square is subdivided into two commutative
triangles.

12.35 Examples.

a) The examples given in Examples 12.29 are Galois modules with transfers.
The transfers are TT%H, N% gz and Nﬁ u respectively. In the last two cases the
transfer is the norm map restricted to L* and p(L) respectively.

b) The examples a) and b) given in Examples 12.30 are Galois modules with
transfers. The transfers are given by Ter and Nf -

¢) Example c) given in Examples 12.30 is a Galois module with transfers. Trans-
fers are the norm maps NfH described in Notations 7.71, see also Defini-
tion 7.65 and Proposition 7.69.

d) Example d) given in Examples 12.30 is a Galois module with transfers. The
transfers are described in Notations 7.71 and for their properties see Propo-
sition 7.69 and Corollary 7.70.
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12.4 Galois modules and transfers

12.36 Proposition. Galois modules with descent are Galois modules with transfers.

Proor. If the Galois module has transfers then the diagram in Definition 12.34
induces a commutative diagram

A(L)y _ Nw A(L)H

A(GH)
trf trfl

ALy — " A(LH)

So if the map A(j) is an isomorphism, then tr” has to be the composition

A(L) —s ALY 5 4y 220 4(py,

Let this be the definition of the transfer. Then the top triangle in the diagram
of Definition 12.34 commutes. The composition of the first two maps is just
Ng: A(L) — A(L)®. For the commutativity of the bottom triangle we have to
show that the composition tr? A(j) is multiplication by m. The image of A(j)
is contained in A(L)¥, so this composition is the composition of A(j) and the
restriction of tr to A(L)H. So we get

vy B —1
ALY M) Ay Ny gy A 4
and this is multiplication by m. O

12.37 Definition. Let A be a Galois module associated to a Galois extension L : K
of degree n and Galois group G. Then A is called acyclic if multiplication by n
is an automorphism of A(L)¥ for each subgroup H of G. Equivalently, A takes
values in the category of Z[+]-modules.

A partial converse of Proposition 12.36:

12.38 Proposition. Let A be an acyclic Galois module with transfers associated to
a Galois extension L : K with Galois group G of order n. Then A is a Galois
module with descent. Moreover, for each subgroup H of G the subgroup A(L)¥ of
A(L) is a direct summand.

PRrROOF. The horizontal maps in the diagram in the proof of Proposition 12.36 are
isomorphisms and as a consequence all the maps in the diagram are isomorphisms.
So, in particular, A is a Galois module with descent. The subgroups A(L)# of
A(L) are direct summands: a left inverse of the inclusion is given by multiplication
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12 Galois Modules

Of course, from a Galois module A an acyclic one can be obtained by tensoring with
Z[%], where n is the order of the Galois group: A is then replaced by the Galois
module Z[1] ® A(—). More generally, R ® A(—) is acyclic if n is invertible in the
ring R. Example 12.31 was about Galois modules associated to a Galois extension
with Galois group of type Cy x Cy. The Galois modules have transfers. The Galois
module given by K’ — Z[3] ® C/(K'), that is K’ — odd part of C/(K”) is acyclic.
It is not hard to show that the structure of the odd part of C/(L) is completely
determined by the odd parts of the ideal class groups of the proper intermediate
fields. This will be done in detail more generally for the group Cp, x C, with p a
prime in section 12.5.

The group S3, considered in Example 12.32, is an example of a metacyclic group.
In section 12.6 group modules are studied in detail for a class of metacyclic groups.

12.5 C, x C,-Modules

Let p be a prime number and G the elementary abelian p-group of rank 2: G =
Cp x Cp. This group has p + 1 subgroups of order p. Let T denote this collection
of subgroups. For the norm elements of the subgroups of G we have the relation

Z Ng =p+Ng.
Her

In Z[][G] this can be written as
—NG + 3 (—NH - —NG) (12.1)
HeY(G)

Using Lemma 12.4 the following is easily verified:

12.39 Proposition. The elements ey = Ny — 5 Ng, one for each subgroup H
P P
of order p, form together with ¢ = p%NG an orthogonal system of idempotents of

ZIL][G). O

As a result any Z[%][G]—module A splits as a direct sum

A=ccA® @ egA.
HeY

For each H of order p we have %NH =¢ecg +e¢ and so
A" =NyA=cyA®egA=cyAd AC.

Thus we have:
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12.5 Cp x Cp -Modules

12.40 Proposition. Let A be a Z[%][G]-module. Then
Ao @ A" /A4S = A O
HeY

Combining this result with Theorem 12.38 yields:

12.41 Theorem. Let p be a prime number, L: K a Galois extension with
Gal(L : K) = C, x Cp, and A an acyclic Galois module with transfers associated to

L: K. Then
A(L)JA(K) = @D A(L")/A(K) O
HeY

The Galois group of a biquadratic number field over Q is isomorphic to Cy x Cs. So
for a biquadratic number field K the odd part of the ideal class group is determined
by the ideal class groups of its three quadratic subfields. The class number formulas
for biquadratic number fields in 9.57 and 9.58 reduce the computation of the order
of the 2-primary part of the abelian group C/(K) to the computation of the full
unit group of Ok.

12.42 Example. Let’s again have a look at K = Q(v/—2,v/3). The odd parts of
the ideal class groups form an acyclic Galois module associated to K : Q. The
ideal class groups of Q(v/—2) and Q(v/3) are trivial and the ideal class group of
Q(v/6) is of order 2. So the odd part of C/(K) is trivial. This also follows from
the computation in Example 9.57, which tells even more: h(K) = Q(K). Since
Q(K) = 2 (Example 5.49), it follows that C/(K) is of order 2. The group C/(K)
has also been computed using the Minkowski bound in Example 5.23: C/(K) is of
order 2 and is generated by a prime ideal above 2.

A less trivial case of a biquadratic number field:

12.43 Example. Let K = Q(\/79,v/=3). Put K; = Q(v/79), K5 = Q(+/=3) and
K3 = Q(v/—237). The class number of Ko equals 1. The algorithms given in
chapter 4 for quadratic number fields can be used for the computation of the ideal
class groups of K and K3. The group C/(K) is of order 3 and is generated by
the class of a prime ideal above 3. The structure of C/(K3) is Cs x Ca. So by
Theorem 12.41 the structure of the odd part of C/(K) is C5 x C5. The problem is
to compute the 2-primary part. The formula

h(K) = Th(Kl)h(Kz)h(Ks)
in 9.57 yields h(K) = 18 - Q(K). We show by contradiction that Q(K) = 2.
Suppose that Q(K) = 1. Then there is a v € O} such that v?> = —¢, where ¢ is
the fundamental unit of K. Then K = K;(v). The discriminant of (1,v) over K;
is —4e. So 0k, (K) | 40k, . The prime ideals of Ok, above 3 ramify in K and are,
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12 Galois Modules

therefore, divisors of 9, (K). Contradiction. Hence h(K) = 36 and therefore, the
2-primary part of C/(K) is of order 4. The prime 3 splits completely in K; and
ramifies in Ky and Kj3. The prime 79 splits completely in Ky and ramifies in K,
and Ks. Let p be a prime ideal of Ok above 3 and q a prime ideal of Ok above 79.
The ideals Nfgg (p) and Nﬁg (q) represent ideal classes which generate the 2-primary
part of C/(K3). So the map trf, : C/(K) — C/(Ks3) is surjective. It follows that
Cg(K) = 06 X 06-

By relation (12.1) the element 1 € Z[%][G} can be written as a combination of Ng
and the Ny for H € T:

1 1
l=—"Ng+ =~ ZNH.
p HeY

In section 18.2 this will be generalized to arbitrary abelian groups G and it will
lead to a generalization of Proposition 12.40, see Corollary 18.32.

12.6 C, x C,-Modules

Let p be a prime number and W), the group generated by an element o of order
p and an element p of order p — 1 satisfying pop~! = 09, where g is a primitive
root modulo p. In this section we consider subgroups G of W), generated by o and
7 = p°, where s is a divisor of p — 1 different from p — 1. Then G is a metacyclic
group C), x Cy, where g = ps;l. For ¢ prime this is the unique nonabelian group of
order pq. In this section ¢ is not necessarily prime.

The group G has exactly p cyclic subgroups of order ¢: the groups (o'r) for i =
0,...,p— 1. As is easily seen, G is the disjoint union of (o) and these subgroups
minus their unity element, hence

p—1
No=-p+No+ > Nyir. (12.2)
1=0

For G-modules A it follows that A modulo the subgroup generated by the A for
nontrivial H < G has exponent p. In the remaining part of this section we will
study the way A is composed of these subgroups A when multiplication by p is
invertible. The element %Na is a central idempotent of the ring Z[%][G}. Hence, a
Z[%][G]-module A splits as the direct sum of N, A (= A7) and A/A?, which is a
Z[%][G] /a-module, where a is the (two-sided) ideal generated by N,.

The case G = W), will be considered first. Let B be a Z[%}[Wp]—module satisfying

N,B = B? = 0. Let b be the ideal of Z[%][Wp] generated by N,. Then B is an
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R = Z[%][Wp] /b-module. We will construct an orthogonal system consisting of

p — 1 idempotents of R. Since Ny, = N,N,, equation (12.2) for G = W), gives
p—1 1

> =Ny, =1 (mod b). (12.3)
i=0

Put ¥ = o'79. Then for all j € Z we have 0/poc™7 = oio799p = ¥p, and so

O'ijO'_j = Nyj,. For j=1,...,p—1 we define

e — %Nmp(l —ol) € ZIAW, ).

We will show that the £; modulo b form an orthogonal system of idempotents of
R. Note that these elements are not central:

p( p)p~t =99p
and so

_ 1 ;
pejp”t = ENﬁjgp(l —0’) =¢gjq.

Since g is a primitive root modulo p, conjugation by p induces a p — 1-cycle of the
set {e1,...,ep—1}. First a lemma.

12.44 Lemma. Foralli=1,...,p—1andallj =0,...,p—1 we have Ny; ,0' Ny, , =
—N,ngp (mod b)

ProoFr. Conjugation by a power of o shows that we can assume that j = 0 and
subsequent conjugation by p shows that we can assume that ¢ = 1. We have

p—1p—1 p—1p—1 p—1p—1
1 J o4 J
S D) DI B) DTALES B)
7=0 k=0 7=0k=0 j=01=0
p—1  p—1
= Zag] Zpl = (N, —1)N,=—-N, (mod b). O
7=0 =0

12.45 Proposition. The elements€; for j =1,...,p—1 form an orthogonal system
of idempotents of the ring R.

Proor. For proving that the g5 are idempotents conjugation by p shows that we
can assume that j = 1. By Lemma 12.4 and Lemma 12.44 we have

(Nuyp(1 = 0))* = (Ny, — Ny,0)? = N3, = Ny,oNy, — Nj 0 + Ny,0Ng,0
= (p—1)Ny, + Ny, — (p — 1)Ny,0 — Ny,0 = pNy,(1 — o) (mod b).
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Hence €2 = &7 (mod b). For 4,5 € {1,...,p — 1} with i # j we have also by
Lemma 12.44

Nyi,(1 — 0" )Nys, = Nyi, Ny, — Ngi,0'Nys, = 0'N,0/ "N,o ™7 — ¢'N,0'N, 077
= —0'N,07 +0'N,0/ =0 (mod b).

It follows that g,e; = p%ngip(l —0")Nyi,(1 —07) =0 (mod b). Finally, equation
(12.2) for G = W,, implies

p—1 p—1
ZNWP = ZN{,iP =p (mod b).
=0 =0

Since
p—1 p—1
0=N,N, = ZUZNP = ZNmpai (mod b),
=0 =0

it follows that
p—1 p—1 1 p—1 1 p—1 1
gi=9Y —Nyi,(1-0)=Y “Nyi,— > —Nyi,0'=1 (modb). O

Since the element ¢ is a central idempotent of Z[%][Wp} we have

12.46 Corollary. Let e = %NU € Z[%][Wp]. Then the elements
g, (1—¢e)er,...,(L—¢e)epaa

form a system of orthogonal idempotents of the ring Z[%][Wp]. O

The system of orthogonal idempotents gives a direct sum decomposition of
Z[%] [W,,]-modules and the submodules corresponding to the last p — 1 idempotents
in the system are isomorphic since these idempotents are conjugate. A further
simplification of the direct sum decomposition will be obtained using the following

well-known lemma for which we give here a direct proof.

12.47 Lemma. Let C be a cyclic group of order n generated by o and let A be a
Z[X][C]-module satisfying Nc A = 0. Then (1 —0)A = A.

n

n

satisfies (1 — 0)b = a. O

PrOOF. Clearly, (1—0)A C A. Let a € A. The element b = Z?:_ll (1 - i)ai_la

12.48 Proposition. Let B be a Z[}%][Wp}—module. Then we have an isomorphism
of abelian groups

~

B/B° 5 (N,B/Ny, B)P~'.
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Proor. By Corollary 12.46 we have a direct sum decomposition of the abelian
group B:
B=eB&(l—¢)e1B®-- - (1 —¢)ep_1B.
The subgroup (p) of W, acts on {(1 —¢)e; | ¢« = 1,...,p — 1} by conjugation.
Therefore, we have
B 5 B @ ((1—¢)eiB)P 1.

It remains to show that &1(1 —&)B = N,B/Ny, B. The inclusion of (1 —¢)B in B
induces an isomorphism of Z[%][Wp]-modules (1—e)B = B/eB = B/B°. Because
N,(B/B?) =0, we have by Lemma 12.47 (1 — ¢)(B/B?) = B/B°. Hence,

e1(1—¢)B 3 ¢)(B/B°) = Ny, (1 — 0)(B/B°) = Ny,(B/B°)
%% Ny,B/Ny,N,B = Ny,B/Nw. B > N,B/Nw, B,

where the last isomorphism is induced by multiplication with o—1. O
Next we consider the general case.

12.49 Proposition. Let G be the subgroup of W, is generated by o and an element

of order q | p— 1 with ¢ # 1, say the element T = p®, where s = %. Let A be a

Z[p—lq][G]-module. Then we have isomorphisms of abelian groups

AS :> (Ao)s o (AT/AG);D—1.

and

(AJAS)* 5 (A7 JA9)* @ (AT JAC)P—L,

Proor. Let B be the Wj-module induced by the G-module A, that is

s—1
B=7Z[W,] ®zc A= ® A
i=0

It is in fact a Z[i][Wp]—module and so are eB (= B°) and (1 —¢)B (& B/B°).
By Proposition 12.48 we have

~

B5 B°@®B/B° = B & (N,B/Ny, B)P~ 1.

Since B = A° and B? = (A?)° as abelian groups, it remains to prove that
N,A/NgA 5 N,B/ Nw, B. Consider the injective group homomorphism

s—1

f:A—>B,ab—>ij®a.

Jj=0
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For any a € A the element N,a maps under f to E;;é P ON a = Z;;é PN, ®a =
N, ® a. So f restricts to an injective homomorphism

f:N;A—=N,B, N.a— N,®a.

This map is also surjective: N,(p'®a) = N,p'®a = N,®a = f(N,a). Furthermore,
f(NgA) = Ny, B: for any a € A we have f(Nga) = f(N;Nsa) = N, ® Nya =
N,N; ® a = Ny, ® a = Ny, (1 ® a) and NWp(pi ®a) = Npri ®a=Nwy, ®a=
f(NGa). U

Since the ideal class groups of fields in a Galois extension of number fields form
a Galois module with transfers, we now have for the ideal class group of a Galois
extension with Galois group the metacyclic group G the following.

12.50 Theorem. Let L : K be a Galois extension of number fields with Galois
group G = Cp, x Cy. Then for each prime  { pq

CE(L)y/ CU(K ) = CU(L7 )i/ CL(K ) x (CU(LT )i/ CL(K 1), Cl

12.51 Example. Let f € Z[X] be a monic irreducible polynomial of degree 3
and a € R a zero of f. Put K = Q(«). Assume that d = disc(f) is not a square.
Then K : Q is not a Galois extension. Its normal closure is the splitting field of
f. Let L be this splitting field. Then Gal(L : Q) = S3. For primes p # 2,3 the p-
components of the ideal class groups form an acyclic Galois module with transfers
associated to L : Q. By Theorem 12.50 we have

CUL)p = CUQ(VA))y x CUK).

So the structure of the group C/(L) is up to 2- and 3-torsion determined by the
the ideal class groups of K and Q(v/d). Furthermore, since [L : Q(v/d)] = 3, the
2-component of ¢/(Q(+/d)) maps injectively into C/(L). Similarly, the 3-component
of C/(K') maps injectively into C/(L).

EXERCISES

1. (i) Let L : K be a quadratic Galois extension and a € L with @ # —1 and
N%(a) = 1. Let o € Gal(L : K) be of order 2. Show that 8 = a + 1 satisfies

- B
o= ;G-
(i) Let (z,y,2) € N** be a Pythagorean triple. Use (i) applied to Q(i) : Q to

show that there are u,v € N* such that (z:y: 2) = (u® —v? : 2uv : u? +0?).

2. Let G be a cyclic group of order n and A a G-module. Prove that the groups H°(A)
and H'(A) are killed by n.
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. Let G be a cyclic group and A a finite G-module such that ged(#(G), #(A)) = 1.
Show that H°(A) = H'(A) = 0.

. Let A and B be as in Proposition 12.15, but without the condition of B being
torsion free. Show? that H'(A) = ,,B and H°(A) = B/mB.

. Let E : F be an unramified extension of local fields. Show that the map NE: E — F
induces a surjective homomorphism Of — O%.

. Let L = Q(c, (3), where a = V7 € R. Put K = Q(a).
(i)
(i) Show that § := 22%) € O, I = Q(6) and §* € Z[a].

(iii) Show that disc(L) = —3*7* for some k € N*.

(iv) Compute the minimal polynomial f of 6 over Q.

(v) Prove that k=17.

(vi) Show that C/(L) is an elementary abelian 3-group of 3-rank > 1.

Show that the prime number 3 totally ramifies in in L.

. Let p be an odd prime number, K = Q({,), G = Gal(K : Q) and p the unique
prime of L above p.

(i) Which of the cohomology groups of the following G-modules are finite?

K: K*a OK: O;{W ]I(K)7 KP7 K;: O;

(ii) Determine the order of each of the finite cohomology groups.

(iii) Show that each of the finite cohomology groups is cyclic.

. Let K be a quadratic number field of discriminant D. Let r be the number of finite
primes which ramify in K. So r equals the number of prime divisors of D. In this
exercise we show that the 2-rank of the narrow ideal class group C¢ (K) is equal to
r — 1. See exercise 9 of chapter 6 for the definition of the narrow ideal class group.

Or, specifically for quadratic number fields, see exercise 17 of chapter 4. We will
use the following notations:

Kt ={aec K" |N§(a)>0},
Of ={ve O |N§(a) >0} =0xNKT,
AK)={ae K" | a0k € I(K)*}.

Furthermore, a group homomorphism ¢: A(K) — C1(K) is defined by ¢(a) =
[a]T, where aOk = a®.

(i) Show that Im(p) = ,C/(K)™.
(ii) Show that Ker(¢) = O% - (K1)
(iii) Let o: O — A(K)/(K™)? be the homomorphism induced by the inclusion
Of CA(K). Soy(v) =v - (KT)? for v € Of. Show that Ker(y) = (OF%)%.

2Notation: for A an abelian group and n € N*, the subgroup killed by n is denoted by , A.
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12 Galois Modules

(iv) Conclude that we have a short exact sequence
1= 0% /(0%) — AK)/(K')? — 20" (K) — 1.

(v) Show that OL/(OF%)? is of order 2.

(vi) Let a € A(K). Show that N§ (o) = *, where t € Q.

(vii) Let o be the nontrivial automorphism of K. Show that there is an element
B € K* such that ¢ = % Conclude that a = ¢ (mod (KT)?) for a unique
squarefree g € N*.

(viii) Prove that A(K)/(KT)? is an elementary abelian 2-group of rank 7.

(ix) Finally, show that ko (C0T(K)) = r — 1.

9. In section 4.9 the 2-rank of the ideal class group of a quadratic number field has
been computed using the algorithms for the ideal class groups given in the same
chapter. Show that the formula for the 2-rank also follows from the computation
in the previous exercise.
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13 Ray Class Groups and Dirichlet
Characters

Global class field theory is about abelian extensions of global fields. In this book
mainly number fields are considered. In chapter 9 the absolute case was studied:
abelian extensions of Q. In this special case much can be done without class field
theory in full generality. The description of class field theory in this book is from the
ideal-theoretic viewpoint, which is in a sense the classical one. In a more modern
approach one proceeds from local to global, starting with class field theory for local
fields. Then for the global theory all completions of a number field, archimedean
and p-adic, are considered simultaneously. In our approach local class field theory
will follow from the global theory and finally, in the last chapter, the relation with
the modern global theory will be established.

In case of an abelian number field the splitting behavior of a prime number is
determined modulo some N € N*  the conductor of the field. The splitting of a
nonramifying prime number is described by its values under Dirichlet characters.
If the base field K is an arbitrary number field, the situation is much more com-
plicated: its ring of integers need not to be a principal ideal domain and generally
there is more than one infinite prime. Nevertheless, there is a similar regularity:
there is a conductor and there are Dirichlet characters. The ‘ray class groups’ take
over the role of the groups (Z/N)*. They are described in the first section. Char-
acters on the ray class groups will determine the (generalized) Dirichlet characters,
which in this context are defined on the monoid of nonzero ideals. Our goal will
be the Classification Theorem, which describes a correspondence between abelian
extensions of a number field and finite groups of Dirichlet characters of this num-
ber field. Associated to an abelian extension of number fields we have two abelian
groups: the Galois group and a group of Dirichlet characters. Moreover, we have a
homomorphism of one group to the dual of the other, but the problem is to show
that it is an isomorphism. In section 13.4 we make a first step: it will be shown
by analytical means that the order of the group of Dirichlet characters is less than
or equal to the order of the Galois group. In section 13.5 the map between these
groups is described. The next chapter is devoted to the proof that it is actually
an isomorphism. This is known as Artin’s Reciprocity Theorem. In chapter 15 the
classification is completed with a proof of the existence theorem: each finite group
of Dirichlet characters corresponds to an abelian extension.
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13 Ray Class Groups and Dirichlet Characters

13.1 Ray class groups

In chapter 14 we will see that there is regularity in the splitting of primes in
an abelian extension of a number field K. This is what Artin’s reciprocity is
about. The description of this regularity uses ray class groups Cf/y, (K), defined in
Definition 13.3. They depend on a ‘modulus’ m, just as the groups (Z/N)* depend
on N. It turns out that, in this context, it is convenient to use the more general
notion of prime: not only prime ideals but also the infinite primes as described in
section 10.4.

13.1 Definitions and notations. Let K be a number field. A modulus of K is
a formal product of primes of K, the finite ones can have an exponent > 1. The
exponent of an infinite prime is 0 or 1. The collection of moduli of K is denoted by
M(K). Via unique factorization of ideals the products of finite primes correspond
to nonzero ideals of Og. Products of infinite primes correspond to collections of
infinite primes of K. So: a modulus m of K is determined by an ideal my # (0) of
Ok and a collection my, of infinite primes. Notation: m = mgme..

The collection M(K') of moduli of K is an abelian monoid in an obvious way: the
product of moduli m and n is mpngmeyone, Wwhere mgng is the product of ideals and
MooNoo the union of the collections of infinite primes. The neutral element 1 of
this monoid is the unit ideal Og. The notion of divisor comes with this monoid
structure. Moreover the relation ‘is a divisor of’ is an ordering of the set of moduli.
This ordering is such that we have the notions of greatest common divisor (gcd)
and least common multiple (lem).

The notation M(K) will be used for the monoid, the ordered set as well as for the
category determined by the ordered set.

13.2 Notation. Let K be a number field and m € M(K). Then
I"(K) :={aecl(K)|vp(a) =0 for all p | mg }.

The group I™(K) depends only on the finite part mg of the modulus m. In the
notation of section 6.4: I™(K) = Ig(K), where Q = {p € Max(Ok) | pfmo }. It is
a free abelian group on the set of finite primes not dividing mo:

™K) = P z,
PEPY(K)
pimo

where the maps I"™(K) — Z are the restrictions of the v,: I(K) — Z.
13.3 Definitions and notations. Let K be a number field and m € M(K). Then

Kyn:={aecK|vy(a)>0forall p|mg},
Kyi={a€ K} | vp(a—1) > vy(mg) for all p | mg },
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13.1 Ray class groups

and op(a) > 0 for all real p | m }
Sm(K) :={a0k € (K) |ac KL},
U (K) :=1"(K)/Sm(K).

The ring Ko, is the localization Kp of Ok, where P = {p € Max(Ok) | pjmg }. It
is a semi-local Dedekind domain; its group of units is

Ky ={ae K" |vy(a)=0forall p|mg}

and K, is a subgroup of this group. Elements of K[, are said to be 1 modulo m.
The group S, (K) is called the ray modulo m of K. The group (¢, (K) is called
the ray class group modulo m of the number field K.

For m = p, a finite prime, the ring K, is a discrete valuation ring. The notation
K, usually is reserved for the p-adic completion of K, but in this context it is
the valuation ring of the discrete valuation v,: K* — Z. For distinction we will
sometimes use the notation Ky, for this ring. For p real infinite we have

Ky ={a€K; |oy(a)>0}
and for p complex infinite
K, =K;.

The group Sm(K) is the group of principal fractional ideals of Ok generated by
elements 1 modulo m.

For the unit element (1) of the monoid M(K) we have K(;) = K, K<11> = K~
S(l)(K) = IP(K) and Cg(l)(K) = CK(K)

First we have a look at the structure of the groups K} /K.

13.4 Lemma. Let K be a number field and m a nonzero ideal of Ok (= a product
of finite primes of K ). Then the inclusion Og — Ky, induces an isomorphism

Ok fm)" = Ky [ Ky

ProoF. By Corollary 6.27(i) the inclusion O — K, induces a ring isomor-
phism Ok /m = Ky /mK, and hence also a group isomorphism (O /m)* =
(Km/mKy)*. Since Ky, is semi-local, the ring homomorphism K, — Ky /mK,
induces by the Chinese Remainder Theorem a surjective group homomorphism
K} — (Km/mKy)* and we have

Ky =Ker(K} = (Kn/(mKy))*) =1+ mKy. O

13.5 Lemma. Let K be a number field and m € M(K). Then we have a short
exact sequence

1— KL= KL — J[ e — 1,

plmoo
p real
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13 Ray Class Groups and Dirichlet Characters

where the maps K, — pa are given by a — sgn(oy(w)). (Here [] stands for the
direct product of groups.)

PROOF. The exactness at K~ follows directly from the definition of K. It

remains to show that the map Kiio — [] e is surjective, i.e. that Kiio contains

elements with prescribed signs under the real embeddings in m,,. Note that the
ideal my maps to a lattice in the real vector space R" x C® and that therefore the
subset 1 +mg of K, ~contains elements with prescribed signs. O

13.6 Proposition. Let K be a number field and m € M(K). Then we have an
isomorphism

Ky /Ky — (Ok /mg)* x H H2 (13.1)

plmog
p real

induced by the inclusion Kn — Kun, and the maps K — po, o — sgn(oy(a)) for
real p | M.

PROOF. The factor groups of K}, C K&lo C K} form the short exact sequence
1— ] pe — Ki/EKan — (Ok/mo)* — 1, (13.2)
plmos

p real

which is split in a natural way by the retract induced by the maps K, — po2, a+—
sgn(op(a)). O

13.7 Corollary. Let K be a number field and m,n € M(K) such that m | n. Then
the inclusion K} — K% induces a surjective homomorphism K /K} — K} /KJ.

Proor. In the commutative diagram with exact rows

1— ] w2 — K3/KY — (Ox/no) — 1

Plneo
A

1— [ pe — Ki/EL — (Ok/mo)* — 1

p real

the vertical maps on the left and on the right are surjective; the last one as a
consequence of the Chinese Remainder Theorem. O
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13.1 Ray class groups

13.8 Definitions. For K a number field a contravariant functor
F: M(K)— Ab

is called an arithmetic projective system of K. This means that for each pair
m,n € M(K) with m | n we have a group homomorphism f: F(n) — F(m) such
that

fo=1pm) for all m € M(K),
oz fmd = fa? for all my, my, mg € M(K) with m; | mg and my | ms.

An arithmetic projective system F' of K is called multiplicative if for all m,n €
M(K) with ged(m,n) = 1 the homomorphism

Fon) — F(m) @ F(n), == (fa"(2), [ (2))

is an isomorphism. An arithmetic projective system F of K is called quasi-
multiplicative if it preserves bicartesian squares, i.e. for all m,n € M(K) the
diagram

lem(m,n)
F(lem(m,n)) ——— F(n)

ftlé:m(m,n) fgcd(m,u) (133)
m
ged(m,n)
F(m) ———— F(ged(m,n))
is bicartesian.

13.9 Lemma. An arithmetic projective system F of a number field K is multiplica-
tive if and only if it is quasi-multiplicative and F(1) = 0.

Proor. For m = p” and n = p*, say with r > s, we have ged(m,n) = p® and
lem(m,n) = p”. So in this case the diagram (13.3) becomes

£

~
=,
g
5

—_
—_
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13 Ray Class Groups and Dirichlet Characters

which trivially is bicartesian. For multiplicative F' diagram (13.3) is a finite direct
sum of diagrams of this type. Hence such a system is quasi-multiplicative. For
m = n = 1 the bicartesian diagram yields a short exact sequence

0= F(1) = FQl)® F(1) — F(1) =0,
which shows that F'(1) = 0.

Conversely, let F' be quasi-multiplicative and such that F(1) = 0. Then for m,n €
M(K) with ged(m,n) =1 the following diagram is bicartesian

F(mn) L F(n)
m T
T

F(m) — F(1)

Since F(1) = 0 this means that the corresponding homomorphism F(mn) —
F(m) @ F(n) is an isomorphism. Hence F' is multiplicative. O

13.10 Proposition. The arithmetic projective system m + K /KL of a number
field K is multiplicative.

PROOF. For the modulus 1 we have K = K* = K{ and so K; /K7 is trivial. By
Lemma 13.9 it suffices to show that the system is quasi-multiplicative. Let m;, mq €
M(K) and put m = ged(my, mg) and n = lem(my, mg). Via the isomorphism (13.1)
the square

Ky /Ky —— K, [ K,

K /K, — K /Ky

1
is the direct product of two squares, one of them being

(Ok /ng)* — (Ok /ma0)*

(OK/mLo)* — ((’)K/mo)*
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13.1 Ray class groups
The groups in this square are the unit groups of the rings in

OK/UQ —_— OK/mQ’O

OK/mLo — OK/mO

and this square is bicartesian since ng = lem(m; g, mg ) = my g MMz and my =
ged(my g, mg o) = my g + myg. It follows that the square of groups of units is
cartesian as well and since the homomorphisms in this square are surjective, it
is bicartesian. The other of the two squares in the product is easily seen to be
bicartesian as well. O

By Proposition 13.6 the group K /K is finite. Its order is #(Ox /mo) -2, where t
is the number of real infinite primes in meo. Let’s define p(m) = #(Kj/Kx). Then
¢ is multiplicative in the following sense:

p(mn) = p(m)p(n) if ged(m,n) = 1.

The function ¢ generalizes the Euler totient function.

13.11 Example. Let m € N* with m > 3 and let oo be the unique real infinite
prime of Q. We compute Q7 /QL, where m = (m)oc. Note that Q% = Q* and
QL = Q*. We have

Qi /Qu = Q) /Qfy X QF/QT = (Z/m)* X . (13.4)

The class of an z € Z\ mZ in Q}, /QL maps under this isomorphism to (Z, sgn(z)).

13.12 Example. Let K be a number field. For K the modulus co denotes the
product of all infinite primes of K. We have K., = K and K}, = K7 in the
notation of exercise 10 of chapter 6. So K* /Kl = K*/Kt = ub, where r is
the number of real infinite primes of K. The ray S, (K) is the group of principal
fractional ideals generated by totally positive elements and the ray class group
[(K)/Se(K) is the narrow ideal class group ¢/ (K).

Let m be a modulus of a number field K. By Proposition 2.28 the restriction
I™(K) — C{(K) of the canonical map I(K) — C/(K) is surjective. If a € I™(K) is
in the kernel of this map, then a = aOg for an a € K*. Clearly o € K, so the
sequence

K; —I"K) —UK) —1

is exact. It follows that the ker-coker exact sequence of the triangle
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13 Ray Class Groups and Dirichlet Characters

Kl ]Im

\/

is the exact sequence
1— OxNKy — O — K /Ky — O (K) — CU(K) — 1. (13.5)

Since the groups K /KL and C/(K) are finite, the ray class group C/y (K) is finite
as well. More precisely, the exact sequence (13.5) implies:

13.13 Theorem. Let m be a modulus of the number field K. Then we have a short
exact sequence

1 — KL /Ky Oy — Cln(K) — CUK) — 1. O

13.14 Example. For the modulus (m)oo of Example 13.11 the isomorphism (13.4)
induces an isomorphism

Qn/Qupz = (Z/m)*
which maps the class of an # € Z \ mZ to |z|. By Theorem 13.13 we have an
isomorphism (Z/m)* = Cln(Q), which for a € Z \ mZ sends @ to the class of (a)
in (/,(Q). For the modulus (m) we have an isomorphism

Qi) /Qmy iz — (Z/m)* /(1)
and the isomorphism (Z/m)*/(=1) = Cl(;n)(Q) sends the class represented by an
a € Z\ mZ to the class of (a).

In chapter 9 a correspondence has been established between abelian number fields
and finite groups of Dirichlet characters. These characters are essentially characters
of groups (Z/N)*. In our approach to class field theory the groups Cly(K) will
play the role of the groups (Z/N)* in the absolute case. We derive some properties
for ray class groups which are similar to properties of the groups (Z/N)*.

13.15 Proposition. Let m and n be moduli of a number field K such that m | n.
Then the inclusion I"(K) — I™(K) induces a surjective homomorphism Cly(K) —
CUn(K).

Proor. We have a commutative diagram

1— K:/KlO3 — Cy(K) —— O(K) —— 1

|

1— K} /KLOW — U (K) —— C(K) —— 1
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13.1 Ray class groups

in which by Theorem 13.13 the rows are short exact sequences. By Corollary 13.7
the map K} — K /KO3 is surjective. So also Cly(K) — Cln(K) is surjective.
O

We will have a closer look at the arithmetic projective system m +— Cly, (K) of the
number field K. It’s convenient to convert bicartesian squares into short exact
sequences as described at the end of section 9.2.

13.16 Lemma. Let

0 A’ B’ c’ 0
RN
N I I A
| | |
0 A B C 0
ST
0 A B C 0

be a short exact sequence of commutative squares of abelian groups. If two of the
three commutative squares are bicartesian, then so is the third.

PRrROOF. The short exact sequence of commutative squares translates into a short
exact sequence of complexes (the columns in the diagram):

If two of these complexes are exact, then so is the third. The proposition follows
from this. O

There is an obvious notion of morphism of arithmetic projective systems:

13.17 Definition. Let F; and F5 be arithmetic projective systems of a number
field K. A morphism of arithmetic projective systems g: F; — F5 is a system
(9m)mem(k) of group homomorphisms gy : F1(m) — Fy(m) such that for all m,n €
M(K) with m | n the diagram
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13 Ray Class Groups and Dirichlet Characters

Fi(n) — 2 Fy(n)
fa fa
Gm
F1 (m) E— FQ (m)
commutes. (Or for short: ¢ is a morphism of functors.)

Since bicartesian squares correspond to short exact sequences as in the proof of
Lemma 13.16 we have for arithmetic projective systems:

13.18 Corollary. Let 0 — F' — F — F” — 0 a short exact sequence of arithmetic
projective systems of a number field K. If two of them are quasi-multiplicative,
respectively multiplicative, then so is the third.

ProoOF. For quasi-multiplicativity this is immediate and for multiplicativity it
follows from Lemma 13.9. O

13.19 Lemma. The arithmetic projective system m — KL of a number field K is
quasi-multiplicative.

Proor. For moduli m of K we have short exact sequences
1—>K;;—>K*—>@Z—>O
plmo

and
1— Ky — K — Ki /Ky — 1.

The arithmetic projective systems
me K, me @PZ and me KL /K
plmo

are quasi-multiplicative, the last one by Proposition 13.10. So by Corollary 13.18
the system m — K[ is quasi-multiplicative as well. O

13.20 Proposition. Let my and mg be moduli of a number field K. Then for
m = ged(my, mg) and n = lem(my, ms) the square

Cln(K) — Clny (K)

Ui, (K) —— U (K)
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of canonical projections is cocartesian.

Proor. By Lemma 13.19 we have a commutative diagram with exact rows

1 K} KL x KL, KL 1

n my

1 — IN(K) — 1™ (K) x ™ (K) — ["(K) — 1

and by taking cokernels of the vertical maps we obtain an exact sequence

Cn(K) — Ul (K) X Cliny (K) — oy (K) — 1. O

13.2 Dirichlet characters of a number field

Let K be a number field. Dirichlet characters of K are essentially characters
of ray class groups of K. They will generalize the Dirichlet characters defined in
section 9.3 for the field Q. There is, however, a subtle difference, see Example 13.28.

13.21 Definitions and notation. Let K be a number field and m a modulus of
K. A Dirichlet character modulo m of K is a map x: I (K) — C satisfying

(DC1) for all a € I*(K): x(a) #0 <= ged(a,mg) =1,
(DC2) x(ab) = x(a)x(b) for all a,b € IT(K),

(DC3) x(aO0k) = x(BOKk) for all o, 5 € Ok \ {0} with a = 8 (mod my)
and sgn(op(a)) = sgn(o,(8)) for all real primes p | mo.

If x is a Dirichlet character modulo m of K, then

CUn(K) — C*, % + x(a)x(b)~! (for a and b are ideals relatively prime to mg)

is a character of the ray class group modulo m. Conversely, a character
X: Cln(K) — C* determines a Dirichlet character modulo m of K:

if ged(a,mg) =1,

IMK)—=C, aw x(a) )
0 otherwise.

Thus Dirichlet characters modulo m of K correspond to characters of the ray class
group Cly(K). Since ray class groups are finite, Dirichlet characters take only 0
and roots of unity as values. In particular a Dirichlet character is an ideal character
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13 Ray Class Groups and Dirichlet Characters

in the sense of Definition 8.29. The set of Dirichlet characters modulo m of K is
denoted by Hun(K). It is a group under (x1x2)(a) = x1(a)x2(a); the conjugate

character Y: a — x(a) of a Dirichlet character x is the inverse of x. The group
Hm (K) is naturally isomorphic to ey (K)", the dual of the ray class group.

These Dirichlet characters were introduced by Hecke. That is why I have chosen for
the H-notation. Nowadays the name Hecke character is reserved for characters of
idele class groups, see section 20.2 for the notion of ideéle class group. The Dirichlet
characters then correspond to Hecke characters of finite order.

A Dirichlet character x modulo (1) is a multiplicative map x: 17 (K) — C with roots
of unity as values and x(a) = 1 for all principal ideals «. It induces a character x
of I(K') with x(a) =1 for all fractional principal ideals a.

As was the case for Dirichlet characters as defined in chapter 9, we can multiply
Dirichlet characters of a number field even if their moduli differ:

13.22 Definition. Let m; and my be moduli of a number field K, x1 € Hum, (K)
and x2 € Hm,(K). We define x1x2: IT(K) — C by

(x1x2)(a) = x1(a)x2(a)
for all a € I (K). Then x1x2 € Hicm(my,mz) (K).

Also for these Dirichlet characters we have the notions of induced and primitive
character, which we now will make precise. Let m and n be moduli of a number field
K such that m | n. Then by Proposition 13.15 we have a canonical surjective group
homomorphism C/,,(K) — Cln(K). This homomorphism induces an injective ho-
momorphism e (K)" — Cly(K)" and thereby an injective group homomorphism
iM: Hm(K) = Ha(K). For x € Hm(K) the Dirichlet character i () is given by

if ged(a,ng) =1,

0 otherwise.

(i

=3
=
S—
=
2
I
——
>0
—
a
S~—

13.23 Definition. Let m and n be moduli of a number field K such that m | n and
let x € Hwm(K). Then the Dirichlet character it (x) € Hn(K) is said to be induced
by x. A Dirichlet character modulo n of K is said to be a primitive Dirichlet
character modulo n of K if it is not induced by a Dirichlet character modulo a
proper divisor of n.

From Proposition 13.20 follows:

13.24 Proposition. Let m; and my be moduli of a number field K. Then for
m = ged(my, ma) and n = lem(my, ms) the square
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Ho (K) —— Hin, (K)

Hum, (K) —— Ho(K)

of canonical injections is cartesian. O

From this it follows that every Dirichlet character of K is induced by a unique
primitive Dirichlet character of K.

13.25 Definition. Let x be a Dirichlet character of the number field K. The
modulus of the unique primitive Dirichlet character by which y is induced is called
the conductor of x. Notation: f,.

13.26 Change of notation and terminology. From now on by a Dirichlet charac-
ter we always mean a Dirichlet character modulo its conductor: Dirichlet characters
are assumed to be primitive. They form a group H(K). The notation Hq (K) will
now be used for the subgroup of H(K) of all Dirichlet characters y of K with
fy | m. That means that in H, (K) as originally defined all characters are replaced
by primitive characters and that the multiplication is changed accordingly. Under
this convention it follows from Proposition 13.24 that

chd(ml,mz) (K) = Hml (K) N Hmz (K)

Henceforth, Dirichlet characters in the sense of Definition 13.21 will be referred to
as Dirichlet pre-characters.

13.27 Definition. Let K be a number field and X a finite subgroup of H(K).
The least modulus m of K for which X C H,(K) is called the conductor of X.
Notation: fx.

Obviously, the conductor of a finite group of Dirichlet characters is the least common
multiple of the conductors of the Dirichlet characters in this group.

13.28 Example. There is a one-to-one correspondence between Dirichlet charac-
ters as defined in chapter 9 and Dirichlet characters of Q as defined in this section.
It is induced by the bijection N* — I7(Q), n + nZ. Thus a Dirichlet character
X: Z — C corresponds to the Dirichlet character of Q defined on finite primes by
pZ +— x(p). A Dirichlet character x of Q determines a Dirichlet character in the
sense of chapter 9 determined by n — x(nZ) for n € N*. The conductor of the
Dirichlet character of Q corresponding to a Dirichlet character x is (INV,) if x is
even, i.e. if x(—1) = 1, and it is (V) )oo if x is odd. The monoid isomorphism
N* 5 I7(Q) induces a group isomorphism H(Q) = D and for m € N* it restricts
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Dirichlet characters are determined by their value on finite primes up to a finite
number of primes:

13.29 Lemma. Let x1 and x2 be Dirichlet characters of a number field K and m
a modulus of K. Suppose that x1(a) = x2(a) for all a € T"T(K). Then x1 = Xa2.

Proor. Choose a modulus n which is a multiple of f,,, fy, and m. Then the
Dirichlet characters 1 and 2 induce the same Dirichlet pre-character modulo n
and are therefore equal. O

The main theorem of class field theory is the Classification Theorem. It describes
finite abelian extensions of a number field K in terms of Dirichlet characters. Such
extensions will correspond to finite subgroups of H(K). We will conclude this
section by describing the group of Dirichlet characters that is going to correspond
to a given abelian extension. The description uses the notion of norm for fractional
ideals as described in section 7.6.

13.30 Notational convention. Let L : K be a number field extension. A modulus
m of K determines a modulus of L: the modulus with finite part jX (mg) = moOp,
and as infinite part all infinite primes of L above infinite primes in my,. This
modulus of L will also be denoted by m.

13.31 Proposition. Let L : K be a number field extension and m a modulus
of K. Then jE(I™(K)) C I™(L), NL(I™(L)) C I™(K), NL(LL) C KL and
N%(Sm(L)) C Su(K).

PrROOF. The first two inclusions follow directly from the definitions. The last
inclusion is, by Proposition 7.67, a direct consequence of the third, so it remains
to prove that N& (L1) C K.

Let M : K be the normal closure of L : K and o1,...,0, the embeddings of L
in M which leave the elements of K fixed. Choose prolongations—also named
01, ...,0,—of these embeddings to automorphisms of M. Then for each a € L we
have NL (o) = 01(a) - - - o1 ().

Since Ky, N Ky, = Kp o, if ged(my, my) = 1, it suffices to prove that N (Lj.,) C

mjpma

Kgr for primes p of K. We will do so separately for p finite and p infinite.

Let a € Ly, where p is a finite prime of K and r € N*. Then vq(a — 1) > ex(q)r

for all primes q of L above p. Hence for all primes v of M above p we have

ve(a—1) > e (v)exc(q)r = g,

where q is the prime of L under t. For each of the automorphisms o; and each of
the primes v of M above p we have

ve(oj(a) = 1) = ve(oj(a — 1)) = ’UU;I(t)(OK —-1) > e,(,M)T.
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13.2 Dirichlet characters of a number field

Put e = e{™ and let t be a prime of M above p. Then the above inequality means
that o;(a) € ML, and so

NE(a) =o1(a)---op(a) € ML,

that is v.(N&(a) — 1) > er. Since v.(Nk(a) — 1) = e v,(NE(a) — 1), it follows
that vy(N% (a) — 1) > r, meaning that N (o) € K,

Let a € L;l37 where p is the real infinite prime corresponding to an embedding
o: K — R. Choose a prolongation 7: M — C of o to M. Then the k embeddings
TO1,...,Tog: M — C have different restrictions to L: if 70;(8) = 70,(8) for all
B € L, then by injectivity of 7 we have ¢;(8) = 0;(8) for all § € L. Hence

o(Ng (@) = 7(NE (@) = To1(a) - Ton(a)

and this is a positive real number: 70;(«) > 0 for all real prolongations 7o; of o
and the factors 7o () for all complex prolongations 7¢; come in pairs, which are
complex conjugates. O

The notion of transfer for ideal class groups is now easily generalized to ray class
groups.

13.32 Definitions and notations. Let L : K be a number field extension and m
a modulus of K. By Proposition 13.31 the norm map N%: I(L) — I(K) induces a
homomorphism /(L) — Clm(K), the transfer, denoted by trk. The cokernel of
this map is denoted by Cly (L : K):

Clw(L : K) = I"(K) /N (I™(L))Sw (K).

As for ideal class groups we have:

13.33 Corollary. Let L : K be a Galois extension of number fields and m a modulus
of K. Then the ray class groups modulo m form a Galois module with transfers
associated to L : K. The transfer map being the map given in Definition 13.32. [

For an extension L : K of number fields and a modulus m of K the transfer
trl: (L) — Clm(K) induces a map from Hy(K) to Hm(L). Since for any m
this last map is induced by N&.: (L) — I(K), we have a map H(K) — H(L):

13.34 Definitions and notations. Let L : K be a number field extension. Then
the norm map N%: I(L) — I(K) induces a map vE: H(K) — H(L), the conorm
map. The kernel of vX is denoted by H(L : K); its elements are called Dirichlet
characters of L : K. The subgroup of H(L : K) consisting of Dirichlet characters
of L : K with conductor a divisor of a modulus m of K is denoted by Hun (L : K),
s0

Hon(L : K) = H(L : K) N Hu (K).

It is the kernel of the map Hy(K) — Hm (L) and so it is isomorphic to the dual of
Clw(L : K), the cokernel of Cly (L) — Cloy (K).
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13 Ray Class Groups and Dirichlet Characters

By Lemma 13.29 the Dirichlet character vX (x) of L is determined by v (x)(q) =
x(N%(q)) for all but finitely many primes q of L. The group H(L : K) consists
of all Dirichlet characters y € H(K) with the property that x(N%(a)) = 1 for all
a € (L), where f is the conductor of .

The groups H(L : K) for abelian L : K are important for class field theory. In
section 13.5 their role is explained. A direct consequence of the definition is the
following.

13.35 Lemma. Let Ly : K and Lo: Ly be number field extensions. Then
PROOF. The conorm map vy : H(K) — H(Lz) is the composition of the conorm

maps vj and 1/521 So for the kernels of the conorm maps we have H(L; : K) C
H(Ls : K). O

13.3 Counting ideals in ray classes

Let K be a number field of degree d. We have seen that the Dedekind zeta function
(k(s) is meromorphic on the halfplane R(s) > 1 — % with only a simple pole in
s = 1 (Theorem 8.20). The residue in s = 1 was computed by counting ideals in
ideal classes. Instead of ideal classes we now count, more generally, ideals in ray
classes.

13.36 Definition. Let K be a number field and m a modulus of K. The partial
zeta function of a ray class C' modulo m is defined by the Dirichlet series

= jc(n 1
((s,0) = Z:l jcn(s ) = Z N(a)*’

a€CnI+(K)

where jo(n) = #{a e CNIT(K)|N(a) =n}.

For the convergence of the Dirichlet series we consider
N
Jo(N) =#{aec CNIT(K)[N(@) <N} => jo(n).
n=1

We proceed as in section 8.2. Fix anideal b € C~!. Then we have a correspondence

. principal ideals (o) C b
} with |N6(o¢)\ < N -N(b), a =1 (modmy)

{ ideals a in C'
and o, (a) > 0 for all real p | my

with N(a) < N —
a +— ab
ab™ 1 (a)
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13.3 Counting ideals in ray classes

Choose an o« € Ok such that

)1 (modmyg)
Qp =
0 (mod b).
The last set can then described as follows:

the set of all principal ideals (o) with [N{§ (a)] < N - N(b),
a = o (modmgb) and oy (a) > 0 for all real p | mo.

So instead of counting ideals we can count principal ideals:

Jo(N) = #{(a) €T (K) | a = ap (modmgb), [N(a)| < N - N(b)
and op(a) > 0 for all real p | m }.

Choose a fundamental system ey, . .., .41 for the group of units O} N KL . Note
that by the exactness of sequence 13.5 and the finiteness of K, /K its rank is equal
to the rank of OF. Use this system of units instead of the fundamental system
used in section 8.2. It follows that we have to count the elements of (¢(c) +
Ap) N Dy .N(mop) Which are positive under the embeddings o, for real p | my,. Put
W = #(u(K) N KL). Then the computation in section 8.2 leads to

W - Jo(N) = kN + O(N' 1),
where, t being the number of real p | my,

VOl(Dl)N(b)

Wnm * KC = 2t5(Am0b) .
For the sake of obtaining simpler formulas the following notations will be used.

13.37 Definitions and notations. Let K be a number field and let m be a
modulus of K. Then, Reg(m), the regulator of m is defined as follows

Reg(m) = Reg(O5 N KL).
Furthermore, we write
N(m) = #(Kn/Ky) = 2'N(mp)
and call it the norm of m.
Thus we have L
(Ok : (O N Ky))
w(K)/wm

Reg(m) = Reg(K) (13.6)

and the formula for wy, - kK¢ becomes
_ 27Fvol(D)N(b)  2""™*7m®Reg(m)  2"(271)° Reg(m)
2tN(mgb)+/disc(K)|  2tN(mg)+/[disc(K)]  N(m)y/]disc(K)|

Wm * KC

335



13 Ray Class Groups and Dirichlet Characters

Let’s summarize this in a theorem:

13.38 Theorem. Let K be a number field of degree d, m a modulus of K and C a
ray class modulo m of K. Then the number Jo(N) of ideals a of Ok withN(a) < N
satisfies

Jo(N) = keN + O(N'~1),

where
27 () (27)5(K) Reg(m)
R = . O
#(u(K) N Ky )N(m)/| disc(K)]

For ((s,C) this implies the following.

13.39 Theorem. Let K, d, m and C be as in Theorem 13.58. Then ((s,C) has a
continuation to a meromorphic function on the half-plane o > 1 — % with only a
simple pole at s = 1 with residue k¢ . ]

Using equation (13.6) we get

o 210 @m) ) Reg(K) (O : (O N Kn))
T w(K)y/| disc(K)| N(m) '

This formula already follows from the fact alone that k¢ does not depend on C.
This can be seen as follows.

1 1 1
> 0= g === :<K<s>-H(1fN(p)s).

CEClm (K) aclm+ ptmg N(p)*® plmo

Put Am(K) = #(Cln(K)). Then for the residue in s = 1 we have:

b (K) - ke = h(K) - 2700 (2m) ™) Reg(K) H (1 _ i)

w(K)y/[dise(K)] ;i\ N(p)
— (K- 2700 (2m) ") Reg(K)  #((Ox /mo)*)
w(K)+/| disc(K)] N(mo)

and by the exactness of sequence (13.5)

WE) _ (O (OxkNKn) _ (Ok : (Ok N Kw))

ha (K) #(Kn/Kn) 2" #((Ox/mo)*)

So it follows that indeed

B 2T‘(K)(27r)$(K) Reg(K) - (0% : (0% ﬁKil))
w(K) |diSC(K ‘ ZtN(mO)
B 2r(K)(27r)S(K) Reg(K) (O3 : (0% NKL)

w(K)/[disc(K)] N(m)

RcC

~||—~

—

~
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13.4 Dirichlet L-series and the First Fundamental Inequality

13.4 Dirichlet L-series and the First Fundamental
Inequality
In this section we use the notion of Dirichlet density to show that for a Galois

extension L : K of number fields the group H(L : K) is finite and that its order is
at most [L : KJ.

13.40 Definition. Let K be a number field and x € H(K). The series

X

aE]I+(K)
is called the L-series of the Dirichlet character x.

The L-series of the trivial Dirichlet character is just the Dedekind zeta function of
K. Tt has a simple pole at s = 1. For the other Dirichlet characters we have the
following.

13.41 Proposition. Let x be a nontrivial Dirichlet character. The series L(s,x)
converges absolutely on the half- plane o > 1 and has a continuation to an analytic
function on the half-plane o > 1 — d, where d is the degree of K.

Proor. Put = f,. The L-series converges absolutely on the half-plane o > 1 as
does any Dirichlet series associated to an ideal character (Proposition 8.31). Since
X is a Dirichlet character, the value x(a) is zero if and only if ged(f, a) = 0, so

x(a) x(a)
() = 2 N(a)s’

aclfit(K)

aclt (K)

The value x(a) only depends on the ray class modulo f of a. So

1
W= XS [, 2 O ¥

Ccedt;(K) aeCnIt+ (K Cects (K) acCnI+(K)

ced;(K)

By Theorem 13.38 all ¢((s,C) have continuations to meromorphic functions on
o >1— % and have only a simple pole at s = 1. The residue rs of (s, C) doesn’t
depend on C'. So L(s, x) has a continuation to a meromorphic function on o > 1 fé
and has at most one simple pole at s = 1. But since x is nontrivial and

Y. x(Orj=r; Y x(©)=0,

CEC@f(K) CEC@f(K)

the continued function L(s,x) is analytic at s = 1 as well. O
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13 Ray Class Groups and Dirichlet Characters

As was the case for the Dirichlet characters in chapter 9, for nontrivial Dirichlet
characters the L-series has a continuation to an analytic function on the whole
complex plane. Neukirch gives a detailed exposition in [31] in which the complexity
is built up gradually by subsequently considering the Riemann zeta function, the
L-series of a Dirichlet character (in the sense of chapter 9), the Dedekind zeta
function of a number field and, finally, the L-series of a Dirichlet character of a
number field.

13.42 Proposition. Let K be a number field and X a finite group of Dirichlet
characters of K. Then the set

P={peMax(Ok) | x(p)=1 forall x € X}
has a Dirichlet density. Moreover §(P) < +, where h = #(X).

PRrROOF. Proposition 8.31 implies that Zp 131“((;)5 converges absolutely on the half-

plane o > 1 for each Dirichlet character x and

x(p)
log L(s, x) ~ N ZNp

where f is the conductor of X. We have

XP Xp _ h
2 2 Ny~ N(p)® __E;N@F'

XEX ptf pif x€X

Hence

Z L ZlogLsX —Elogs—l ZlogLsX

PGP XEX xGX
x#1

By Proposition 13.41 the functions L(s, x) are for x # 1 analytic at s = 1. So if we
knew that L(1, x) # 0 for these x (which is in fact the case, as we will see later),
we could conclude that §(P) = % For now, let n, be the multiplicity of the zero
at s = 1 of the function L(s, x) (possibly n, = 0, as in fact is the case), that is

L(s,x)
(s = 1)

does not vanish at s = 1. Then

log L(s, x) ~ ny log(s — 1)

and
n 1- n
Z L1 log(s — 1) + @ log(s—1) = —@ log(s — 1).
ey N(p)s h h h
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13.4 Dirichlet L-series and the First Fundamental Inequality

So we have =
§(P) = —=XFL X <
h h
Since the Dirichlet density cannot be negative, for at most one of the characters
X € X the function L(s, x) can have a zero at s = 1 and, moreover, it can only be a
simple root. Let x™ be this exceptional character in X. It must be a real character,
since otherwise the character x* would be exceptional as well. It will turn out that
this situation doesn’t occur.

O

The proof of Proposition 13.42 shows the following.

13.43 Corollary. In the notation of Proposition 15.42: if 6(P) = %, then L(1,x) #
0 for all x #1 in X. O

13.44 Theorem (The First Fundamental Inequality). Let L : K be a Galois
extension of number fields. Then the group H(L : K) is finite and #(H(L : K)) <
[L: K].

ProOF. Since H(L : K) is a torsion group it suffices to prove that the order of
each finite subgroup of H(L : K) is at most [L : K]. So let X be a finite subgroup

of H(L : K), say #(X) = h. Let P be as in Proposition 13.42. Then §(P) < +.
By Theorem 8.37 the set

Q = {p € Max(Ok) | p splits completely in L and p1{fx }

has Dirichlet density ﬁ If p € @, then for ¢ € Max(Op) above p we have
q € I'x (L) and N&(q) = p. From X C H(L : K) follows that x(p) = v5(x)(q) = 1.

So @ C P and as a consequence we have for the Dirichlet densities

. O

=96(Q) <4(P) <

==

[L: K]

The finiteness of H(L : K) makes the following definition possible.

13.45 Definition and notation. Let L : K be an abelian number field extension.
The conductor of the extension L : K is the conductor of the finite group H(L : K).
Notation for this conductor: fx (L).

For a Galois extension L : K of number fields and a modulus m of K we have
Hm(L: K)=H(L:K) < H(L: K) CHn(K) < fx(L)|m.

Therefore, for multiples m of fx (L) the groups (L : K) are all isomorphic. More
precisely:

13.46 Proposition. Let L : K be a Galois extension of number fields, § = fx (L)
and m a modulus of K such that f | m. Then the inclusion I™(K) C I'(K) induces
an isomorphism Clw (L : K) 5 C(L : K). O
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13 Ray Class Groups and Dirichlet Characters

13.5 The Artin map

The Artin map of an abelian number field extension is defined on the subgroup of
I(K) generated by the nonramifying prime ideals and takes values in the Galois
group of the extension:

13.47 Definition and notation. Let L : K be an abelian extension of number
fields. The subgroup of I(K) generated by all prime ideals of K which do not
ramify in L is denoted by I*(K). So

I“(K) = {a € I(K) | vy(a) = 0 for all in L ramifying p € Max(Of) }.
The Artin map of L : K is the map

O THK) - Gal(L: K), a— H (pSHye @),
peEMax(Ok)
egL)zl

The kernel of <p(KL) is called the Artin kernel of L : K.

Thus the Artin map is given on the basis elements p of the free abelian group I (K)

by mapping p to the Frobenius automorphism of p in Gal(L : K). The Artin map

3 £

¢y’ is also called the Artin symbol, in which case often a notation like ( is

used for apg? (a).

For each modulus m of K, which is divisible by all in L ramifying primes, the group
™ (L) is a subgroup of I”(K), so for such m the Artin map has a restriction to this
subgroup:
(L)| . qm . (L)
oy |m. I™(K) — Gal(L: K), aw~ ¢ (a).

13.48 Theorem. Let L : K be an abelian extension of number fields and m a
modulus of K which is a multiple of all in L ramifying finite primes of K. Then
the Artin map, restricted to I™(K),

P IM(K) — Gal(L : K)

18 surjective.

PROOF. According to the Frobenius Density Theorem for abelian extensions
(Theorem 8.39) each cyclic subgroup of Gal(L : K) is generated by the Frobe-
nius automorphism of some nonramifying finite prime p { m of K. O

In the next chapter it will be shown that, given an abelian extension L : K of
number fields, there exists a modulus m of K such that the ray Sy, (K) is contained
in the Artin kernel of L : K. This has far-going implications. It is the reason why
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13.5 The Artin map

ray class groups have been introduced. If for some modulus m the group Sy (K)
is in the Artin kernel, then the Artin map induces a surjective homomorphism
Cn(K) — Gal(L : K) of finite groups.

13.49 Definition. Let L : K be an abelian number field extension. A modulus m
of K is called a modulus for L : K if

(M1) all in L ramifying finite primes of K are divisors of m,
L
(M2) S (K) C Ker(}],)-

Note that (M1) is necessary for the Artin map to be defined. Later, in chapter 15,
we will see that the moduli for L : K are the multiples of the conductor fx (L).
It will be shown that the prime divisors of the conductor are just the ramifying
primes, finite and infinite. So far we do not even know whether moduli for abelian
number field extensions do exist.

For the determination of the Artin kernel it is important to realize that it contains
the norms of fractional ideals:

13.50 Proposition. Let L : K be an abelian number field extension and m a mod-
ulus of K which is a multiple of all finite ramifying primes. Then N&(I™(L)) C

L
Ker (o).
Proor. It suffices to show that go(KL) (NL£(q)) = 1 for every unramified finite prime
q of L. For such a q we have N&(q) = pflgL), where p = qN K. The order of cp,(aL)

equals féL) and hence NZ.(q) is in the kernel of the Artin map. O

If m is a modulus for the abelian extension L : K of number fields, then it are
precisely the ray classes represented by norms of fractional ideals which constitute
the Artin kernel:

13.51 Theorem. Let L : K be an abelian number field extension and m a modulus
for L : K. Then

Ker(¢%] ) = N (I™(L))Sn(K).

)
Proor. By Proposition 13.50 we have
NE (I (L))Swm (K) € Ker(],,)
and by Theorem 13.44
#I™ () /NE(I™(L)Sm(K)) = #(H(L : K) N Hw(K)) < [L: K].

By Theorem 13.48 the index of the Artin kernel in I™(K) is [L : K]. So the two
subgroups coincide. O
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13 Ray Class Groups and Dirichlet Characters

13.52 Corollary. Let L : K be an abelian number field extension and m a modulus
for L : K. Then the Artin map <p%) induces an isomorphism

I™(K)/NE (I™(L))Sw (K) = Gal(L : K).

Proor. This is a direct consequence of Theorem 13.48 and Theorem 13.51. [

Artin’s Reciprocity Theorem (Theorem 14.16) states that for every abelian number
field extension there exists a modulus and moreover, that for such a modulus it
suffices to be divisible by all ramifying primes, the finite ones to a sufficiently high
power.

The Artin map of a subextension is given by restriction of the automorphism to
the subfield:

13.53 Lemma (Consistency property). Let L : K be an abelian number field
extension and L' an intermediate field of L : K. Then @% )(a) = @%)(a) 5 for
all a € TH(K).

PROOF. A finite prime p of K that does not ramify in L, does not ramify in L’

either and for the Frobenius automorphisms we have @&L’) = @,SL) | I O

The behavior of the Artin map under a base field extension is as follows.

13.54 Lemma. Let K’ : K be a number field extension, L : K an abelian number
field extension, m a modulus of K divisible by all finite in L ramifying primes of
K and a € I™(K'). Then

S (@) = o (NE ().

PROOF. The maps a — @%/K/)(a)h and a — cp(KL) (NK'(a)) are both group ho-

momorphisms from I™(K”) to Gal(L : K), so it suffices to show that they coincide
on the generating prime ideals of I™(K"’). Let p’ € Max(Ok-) with p’  m and put
p=p NK and f = fx(p’). Then by Proposition 7.80 and the definition of the
norm of a fractional ideal (Definition 7.65)

P30 = 05N = (66 = 0l (b)) = i (NE (9)). O

For the existence of a modulus for abelian extensions it suffices to consider cyclic
extensions:

13.55 Proposition. If there are moduli for cyclic number field extensions, then
there is one for any abelian number field extension.
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13.5 The Artin map

PrROOF. Let L: K be an abelian number field extension. The dual of G =
Gal(L : K) is generated by its cyclic subgroups, so in G there is a collection of sub-
groups, say Hi, ..., H,, such that G/H; is cyclicfori = 1,...,rand (,_, H; = {1}.
Then L is the composite of the fields L7 and the extensions L : K are cyclic.
Choose for each i a modulus m; for L¥+ : K. A prime of K that does not ramify in
each of the L does not ramify in L. So the primes not dividing m = mjmy - - - m,
do not ramify in L. Restriction of automorphisms in G to the subfields L¥: yields
an injective group homomorphism

G—>G/H1 XG/HQ ><'~~XG/HT.
m (L) (D)
For a € I™(K) we have ¢}, ’'(a) = ¢y (a)’LHi by Lemma 13.53. DBecause

Sm(K) C Sy, (K) for all 4, the ray Sy (K) is in the Artin kernel of each of the
extensions L : L and is therefore in the Artin kernel of L : K. O

In chapter 14 we will prove Artin’s Reciprocity Law. According to Proposi-
tion 13.55 it suffices to prove it for cyclic extensions. A consequence will be that
the Artin map induces an isomorphism from Gal(L : K)" to H(L : K). Thus to
each abelian extension of K there is associated a finite subgroup of H(K). It will
be shown in section 15.3 that every finite subgroup is of the form H(Kx : K) for
a unique abelian extension Kx : K. This is the Existence Theorem.

Thus a classification of abelian extensions of a number field K is obtained. Its
proof will be completed in chapter 15. For a given number field K we will have a
correspondence between abelian number field extensions L : K and finite subgroups
of H(K):

abelian finite groups of
extensions of K Dirichlet characters of K
L:K ¢ H(L:K)
KX : K i X

The maps L — H(L : K) and X — Kx : K are inverses of each other and they
preserve the ordering given by inclusion. The field Kx is called the class field
for X: the prime divisors of the conductor of H(L : K) are just the ramifying
primes and the Artin map <p%)|f: I'(K) — Gal(L : K) induces an isomorphism
Gal(L: K)" 3 H(L: K).

Finite subgroups X of H(K) are contained in Hu(K) for some modulus m of K
and so determine a factor group of the ray class group Clm(K). The splitting of a
prime of K in Kx is determined by its class in this factor group. It was Weber
who introduced at the end of the nineteenth century the term ‘class field’.
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13 Ray Class Groups and Dirichlet Characters

The classification is both beautiful and deep. Our strategy for its proof is as follows.

1. In section 14.1 we show that for cyclic number field extensions L : K we have

£H(L:K)) =[L: K.

Though for cyclic extensions L : K the group H(L : K) has the right order,
it still has to be shown that there is a modulus for L : K. This is done in
section 14.3. As remarked above Artin’s Reciprocity Law follows from this
in full generality.

3. In section 15.3 the existence of class fields will be proved.

13.56 Examples. A special case of the Classification Theorem: the group H;(K)
of a number field K corresponds to the maximal nonramified abelian extension of
K. This is the so-called Hilbert class field of K. Properties of this extension will
be studied in section 15.8. The group 1 (K) is (isomorphic to) the dual of C/(K)
and the Artin map induces an isomorphism C/(K) = Gal(Ky, (k) : K).

a) The field Q(v/2,/5) is the Hilbert class field of Q(v/10). Actually, this is a

direct consequence of exercise 7 of chapter 7.

b) The field Q(a, /—23), where a® = a+1 is the Hilbert class field of Q(v/—23).

The extension is unramified (exercise 9 of chapter 7). Exercise 13 of chapter 3
was about the computation of the ideal class group of Q(1/—23). The groups
Gal(Q(a, v/—23) : Q(+/—23)) and C¢(Q(+/—23)) are indeed isomorphic. It is

far from obvious that the Artin map induces an isomorphism.

EXERCISES

1. Let K = Q(v/—2,v3) and let m be the modulus (2). An integral basis of K is
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(1,v/=2,v/3, ), where o = %. In Example 5.23 it is shown that C/(K) is
a group of order 2 generated by the class of the prime ideal p2 = (2, + 1) and in
Example 5.37 that Ok = (-1, a).

(i) Compute K7,/ K.
(ii) Compute Cln(K).

(iii) Determine the conductor of Hm (K).

Let K = Q(v/2,v3) and let m be the modulus co. An integral basis of K is
(1,v/2,V/3, ), where a = %. In Example 5.24 it is shown that the group
C/(K) is trivial and in Example 5.38 that O = (—=1,1+v/2,v/2 +/3,a).

(i) Compute K /Ky.
(ii) Show that Clw(K) is of order 2.
(iii) Determine the conductor of Hm(K).



10.

Exercises

Let K be a cubic number field with one real embedding. Show that Cloo(K) =
C/(K). What is the conductor of Heo(K)?

Let K = Q(¥/2). Then Ox = Z[V/2], a principal ideal domain (Example 5.18).
The unit group O} is generated by —1 and /2 — 1 (Example 5.42). The prime
number 3 totally ramifies in K, say (3) = p°.

(i) Compute Cln(K) for m = (3) and for m = poo.
(if) Determine the conductor of H (s (K).

Let p be a prime number = 1 (mod 4). Determine the number of Dirichlet characters
of Q(¢) having conductor (p).

Let p be a prime number and p the unique prime of Q(¢p) above p. Prove that
Clp(Q(¢p)) = CUQ(Cp))-

Let L : K be a number field extension. In 13.30 a map M(K) — M (L) is described.
Let’s denote this map as jX. Then

G (m) = 41 (mo)j1 (mao),

where the second 55 is the map defined in Definition 13.33 (restricted to IT(K)):
7K (mp) = meOr and j& (mw) is the product of all infinite primes above the primes
in ms,. Show that the map jf is injective.

Let L be an abelian number field and K a subfield of L. Show that there exists a
modulus for L : K. Prove that H(L : K) = D(L)/ D(K).

Let K be a number field and x a nontrivial Dirichlet character of K of odd order.
Show that the remark on page 339 implies that L(1,x) # 0.

Show that Q(i, v/5) is the Hilbert class field of Q(v/—5). Verify that the Artin map
induces an isomorphism C/(Q(v/=5)) = Gal(Q(4,v5) : Q(+/=5)).
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14 Artin’s Reciprocity Law

Let L : K be an abelian number field extension. In section 14.3 we will prove
that there exists, in the sense of Definition 13.49, a modulus m for L : K, which
by Theorem 13.51 means that the Artin map cp(KL)

isomorphism

|m is defined and induces an

I™(K) /N (I™(L))Sm (K) 2 Gal(L : K). (14.1)

This is Artin’s Reciprocity Law. We have already seen that it suffices to show
that such a modulus exists for cyclic extensions (Proposition 13.55). We first
prove in section 14.1 that for cyclic extensions the two groups in (14.1) are of
equal order. For this we use the Galois cohomology computations in section 12.3.
As a byproduct we obtain Hasse’s Principle for cyclic number field extensions in
section 14.2.

In section 14.4 we show that as a consequence of Artin’s Reciprocity Law the map

abelian finite groups of
extensions of K Dirichlet characters of K
L:K ¢ H(L: K)

is injective. In the next chapter we show that it is a bijection.

14.1 The Fundamental Equality

Let L : K be a cyclic Galois extension of number fields of degree n. Put G =
Gal(L : K) = (o). We show for a modulus m of K which is a multiple of all in L
ramifying primes, with the finite ones to a sufficiently high power in m, that the
group

Clmn(L : K) = I™(K) /NE (I™(L)) S ().

is of order n = [L : K]. By the First Fundamental Inequality (Theorem 13.44) we
already know that its order is at most n. Note that by Artin’s Reciprocity Law,
which will be proved in section 14.3, this group is for some modulus m isomorphic
to the Galois group G and that the isomorphism is induced by the Artin map.
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14 Artin’s Reciprocity Law

Here we only prove that it has the right order. This is just a step in the proof of
Artin’s Reciprocity Law.

We start with a modulus m of K which is a multiple of all in L ramifying finite
primes of K. In the computation we will need extra conditions on m.

Let the homomorphism f: L* — I™(L) be the composition of the homomorphism
L* - I(L), a — «aOp, and the projection I(L) — I™(L). The homomorphism
f induces a homomorphism f.: HY(L*) — H°(I™(L)). By Theorem 12.17 and
Corollary 12.19

HO(L*) = K*/NE (L) and  H°(I™(L)) = I™(K)/NE (I™(L)).

The group Clm(L : K) is a homomorphic image of I"™(K) /N (I™(L)), so we have
a commutative square

HY(L*) — K* /N (L*) Ky,
f« g

HO(I™(L)) —— Clu (L : K)

in which the vertical maps are induced by f. This square can be completed to
the diagram with exact rows and columns on top of the opposite page. The snake
lemma and the surjectivity of K — Sy (K) are used here. From Proposition 13.6
and the first two exact sequences in the proof of Lemma 13.19 follows that the
group K*/K], is finitely generated. The group K*/NL (L*) is a torsion group. So
K*/NE(L*)K}], is finite: it is a finitely generated torsion group. It follows that
Coker(f*) is finite and we will see that Ker(f,) is finite as well. The diagram then
shows that

#(Coker(f+))
#(Ker(f.))

We will compute the first two factors of the product on the right hand side. The
outcome will be that their product is [L : K.

#(Cln(L : K)) = # (K" /NE (L) Ky) - - #H(X). (14.2)

Computation of the order of K*/NL(L*)K]

In this computation the modulus m of K is an arbitrary one, but at the end it is
required that its finite prime divisors occur in m with sufficiently high powers.

14.1 Proposition. The arithmetic projective system m — K*/NL(L*)K] is mul-
tiplicative.
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14.1 The Fundamental Equality

1 1 )
1 X Ker(f.) —— Ker(g) —— 1
NE(L*) N Ky, L 1
I g
Sm(K) v |
L7 NE (D) N Su(K) HO(I™(L)) —— Clu(L: K) —— 1
1 ——— Coker(fy) _~ Coker(g) —— 1
1 1

PrROOF. Let m; and ms be moduli of K such that ged(my,my) = 1. Then to
prove that the map
K* /NE (L) Ky o, — K /N (L) Ky, < K* /N (LK, .

mimso mi

is an isomorphism. This means that we have to prove

NE(L) K, NNE(L) Ky, = Ni (L) K,

mjpmo
and
N (5 K N (1)K, = K
By Lemma 13.19 K K = K*, from which the last equality follows.

For the proof of the first equality let v = N&(a1)b; = N&(ag)by with a1, s €
L*, by € Ky, and by € K . From Ly, NL.L = L. . and L} L} = L*
(Lemma 13.19) follows that L*/L% . - L*/LL x L*/L} . So there exists an
« € L* such that @ = a; (mod Lj, ) and a = a (mod L;, ). Then by Proposi-
tion 13.31 v = N (a)N% (o™ taq)by € N&(a)K},, and similarly v € Nk (a) KL, .
Hence v € N& (o) K} So

mimso*

NE(L) K, NNE(L) Ky, © NE (LYK,

mimso-°

Equality holds because the other inclusion is obvious. O
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14 Artin’s Reciprocity Law

So the computation of the order of K* /N (L*) KL comes down to this computation
in case the modulus m has only one prime divisor. Completion at this prime will
be used for this computation. First note that in general global norms are local
normes:

14.2 Lemma. Let L : K be a Galois extension of number fields, p a prime of K, q
a prime of L above p and o € L. Then there is a 8 € L such that Ng(8) = NL ().

PrOOF. Put G = Gal(L: K) and Z = Zk(q). The restriction of automorphisms
in Gal(Lq : K,) to L induces an isomorphism Gal(Ly : K,) = Z (Theorem 10.45).
Let R be a system of right representatives of the right cosets of Z in G. Then

Ni(@) = [T o) = T TT rote) = [T Nate(e) = N3([] o). O

oG pERTEZ PER pPER

14.3 Lemma. Let p be a finite prime of K, q a prime of L above p and t € N*.
Then the inclusion K* — K induces an isomorphism

K* INE(L*) K — K /NJ(LE)(1+ ).
PROOF. By Lemma 14.2 we have N&(L*) C NJ(L;). The induced map is surjec-
tive since the map K* — K /(1 4 p*) is surjective. For injectivity we need
K*NNJ(Ly)(145") € Ng (LYK,
Let v = Nj(a)B with y € K*, a € Lj and § € 1 +p’. Since Ly = L*(1 +g),
where e = e,(JL), we can assume that « € L*. Then 8 € (1 +pH)NK* = K;t. Put

7Z = Zk(q) and let R be a system of representatives of the right cosets of Z in G.
Then pOy, =[] ,cx p(q)°. Take o’ such that

1
o = {a (mod Ly..),

1 (mod L}

p(q)m) for p ¢ Z.

Then p~1(a’) =1 (mod L}let) if p¢ Z and so

Ni(@) =] [I 7o' () = [] 7(¢) = Ni(a') = N(a) (mod L}..).

pERTEZ rez

Thus Ni(a) € N&(L*)(L}

LiNK*) = Ng(L)K}. Soy =Nj(a)B € NL(L*)K},.
O

14.4 Lemma. Let p be an infinite prime of K and q a prime of L above p. Then
the inclusion K* — Ky induces an isomorphism

K*NE (L") Ky — K} /N3(LY).
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14.1 The Fundamental Equality

PROOF. The group K,/ Ny (Ly) is trivial if p does not ramify and otherwise it is
of order 2. If p is complex, then Ké = K*. So let’s assume that p is real and
corresponds to an embedding o,: K — R. For 8 € L* we have

op(NE(8)) = [] oar(8),

T€G

where o4 is a fixed embedding of L in R or C above the embedding o,,. If p does
not ramify, choose 5 € L such that oq7(8) < 0 for exactly one of the embeddings
oq7: L — R. Then NL(3) ¢ K; and so also the group K*/N%((L*)K; is trivial.
If p ramifies, then there is a 79 € G of order 2 such that o479 = 74. In this case
op(NE(B)) is a product of elements o47(83) - 04770(8) = 0q7(8) - 047(B) > 0 and
so Ni(8) € K. O

14.5 Proposition. For sufficiently high exponents of the finite primes in the mod-
ulus m we have

# (K N (L) EL) = [T es” £

plm

PROOF. Let p be a finite prime of K and q a prime of L above p. By Theo-

rem 11.22 1+ p* C K" for t > vy(n) + 557, where p is the prime number under p
and e = eg:’“) = eg(p). For such ¢ we have by Lemma 14.3 an isomorphism

K* /N (L) Ky — K /NI(L?)

and by Theorem 12.22 the last group is of order egL) f,gL). So the proposition follows
from Proposition 14.1 and Lemma 14.4. O

It is only in this last proposition we need that m is a multiple of a sufficiently high
power of each of its finite prime divisors. The exponent t of such a prime p has to
be such that 1+ p* C NJ(Lj).

#(Coker(f.))
#(Ker(fy))

Computation of

This computation holds for all moduli m. Only at the very end of this computation
the modulus m is required to be a multiple of all ramifying primes.

Let @ be the set of finite primes of L which do not divide m. Then we have the
exact sequence of G-modules

1— L — L L 1™(1) — a(Lg) — 1.
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14 Artin’s Reciprocity Law

Let Y be the image of f: L* — I™(L). The above exact sequence splits into two
short exact sequences

1—>L22—>L*—>Y—>1

and
1—Y —1"(L) — U(Lg) — 1.

Because H!(L*) =1 and H*(I™(L)) = 1, the exact hexagons of cohomology groups
become exact sequences

1— HY(Y) — H°(Ly) — H°(L*) — H(Y) — H'(L}) — 1
and
1 — HYC(Lg)) — H°(Y) — H°(I™(L)) — H°(Cl(Lg)) — H'(Y) — 1.

These sequences fit in the diagram for the ker-coker exact sequence of HO(L*) —
HO(Y) — H°(T™(L)):

1 1
\H%Y) H1<Y>/
N /
HO( L*
/N / \
1 — Ker(f.) — H(L*) — H(I™(L)) — Coker(f,) —— 1

v
LN

H — HY( Ly)

/ \

1 1

Connecting head and tail of the exact sequence from the top left to the top right
yields an exact hexagon
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14.1 The Fundamental Equality

Ker(f.) Coker(f.)

e

HO(Ly) «— H°(CU(Lq))

Since (¢(Lgq) is finite, it follows that

#(Coker(f.))

FKer(f)) @) (143)

As at the end of section 6.3, the ker-coker exact sequence of L* — I(L) — I™(L)
is:
1—0; — L) — Pz — a0L) — CULg) — 1.
q/mo
Since C(Or) and C/(Lg) are finite, we have
a(Ly) = d(0}) - o (P 7).

q|mo
This leads to a formula for the Herbrand quotient of Lg,:
1
q(@Z) =11 q( D Z) =11 D £D)
qlmo plmo  q|pOL plmog P Jp
and so by Theorem 12.24
* . 1
oLy =[L: K- ] NPk
plmo  ©p o
or p infinite

We obtained the following:

14.6 Proposition. If the modulus m is a multiple of all ramifying primes, then

#(Coker(f.)) ) 1
Fway el b -

plm p
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14 Artin’s Reciprocity Law

Conclusion

Let L : K be an abelian number field extension. Choose a modulus m of K such
that the prime divisors of m are the in L ramifying primes and such that the finite
ones among these have in m a power such that Proposition 14.5 applies. Then by
this proposition and Proposition 14.6 the equation (14.2) becomes

#(ln(L: K))=[L: K] #(X).
So #(Clw(L : K)) > [L : K]. Hence we proved:

14.7 Theorem (The Second Fundamental Inequality). Let L : K be a cyclic
Galois extension of number fields and m a modulus of K divisible by all in L
ramifying primes, the finite ones to a sufficiently high power. Then

#(Clw(L: K)) > [L: K]. 0

The First Fundamental Inequality (Theorem 13.44) tells us that
H#Clu(L:K)=#H(L: K)NHy) <H(L:K)<[L:K].

So we proved the fundamental equality, which is stated here explicitly because of

its importance:

14.8 Theorem (The Fundamental Equality). Let L : K be a cyclic Galois
extension of number fields and m a modulus of K divisible by all in L ramifying
primes, the finite ones to a sufficiently high power. Then

#(Cn(L: K)) = [L: K] 0

For the m in the theorem we have in equation 14.2: #(X) = 1. A consequence is
a local-global principle of Hasse as formulated in the next section.

In more modern approaches the first and second inequality are called respectively
the second and the first inequality, in accordance with the order the inequalities
are proved.

For m as in the theorem we have H(L : K) C Hyn(K). In particular fgx(L) | m,
which implies that the prime divisors of fx (L) ramify in L. In terms of Dirichlet
characters we now have:

14.9 Corollary. Let L: K be a cyclic Galois extension of number fields. Then
#H(L:K))=[L: K].

and the prime divisors of the conductor of L : K ramify in L. O
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14.2 Hasse’s Principle

For a first indication of the strength of this theorem, let L : K be a cyclic unramified
number field extension. Then we can take m = (1), the trivial modulus, and we
obtain
#(L(K)/NE (I(L)P(K) = [L : K].

The group I(K)/N% (I(L))P(K) is a homomorphic image of I(K)/P(K) = C/(K). Tt
follows that [L : K] | #(C¢(K)). So the existence of an abelian unramified extension
of K has consequences for the ideal class group of K. Later, when we have the full
Classification Theorem, we will see that this works both ways.

14.2 Hasse’s Principle

Another consequence of the computation in the previous section is that X = 1,
which means that the map K\, — Sy (K) induces an isomorphism

K] - S (K)

m

NE(L) KL NE(I™(L)) N Su(K)

(14.4)

This leads to Hasse’s Principle for cyclic extensions: an element is a global norm
if and only if it is everywhere—i.e. at every prime—a local norm.

14.10 Theorem (Hasse’s Principle). Let L : K be a cyclic extension of number
fields and a € K*. Then

a € Ng(L*) <= a € NY(L}) for all primes p of K,

where for each p the q is a prime of L above p.
PrROOF. The =-part follows from Lemma 14.2.

Since the map (14.4) is an isomorphism, it follows from the diagram on page 349
that the following square is cartesian:

HO(L*) —— K*/NE(L*)K],

f*‘ g

HO(I™(L)) —— Cln(L : K)

Let a € K* be a local norm at a finite prime p of K, say a = Ng(ﬂp), where q is

a prime of L above p and 3, € Ly. Put f, = féL). By definition of the norm for
fractional ideals we have

vp(a) = Up(Ng(ﬁp)) = fo - vq(Bp).
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14 Artin’s Reciprocity Law

Let P be the collection of finite primes p of K with p { mg. Choose for every prime
p € P aprime q of L above p and let @ be the collection of these primes q of L. If
a € K* is a local norm at all primes in P, then

fla) =TT #7@ = T #fros %) = Ng (T a=%) € NE(™(L)).

peP pep a€q
So the image of a - N&.(L*) under f.: HO(L*) — H°(I™(L)) is trivial.

Let a be a local norm at every prime p of K. Then in particular a is a local norm
at the prime divisors of m. Lemma 14.3, Lemma 14.4 and Proposition 14.1 imply
that a € NE&(L*)K],, so also the image of a - N&(L*) under the horizontal map is
trivial. Since the square is cartesian it follows that a € N&(L*). O

Furtwangler proved the principle for cyclic extensions of prime order in 1902. Hasse
originally conjectured that this principle holds in general for abelian number field
extensions. In 1931 he proved that the principle holds for cyclic extensions in
general ([16]). In the same paper he gave a counterexample: 3 is a not a global norm
for the biquadratic extension Q(y/—3, \/ﬁ) : @, but is a local norm at every prime
of Q (exercise 3). In 1967 Tate gave, using ideéles and cohomology, in [7] another
counterexample as an exercise: Q(v/13,+/17) : Q. In [21] M. Keune has shown that,
using a method similar to Hasse’s, for prime numbers p and ¢ with p,¢ =1 (mod 4)

and (5) = 1 the biquadratic extension Q(/p,/q) : Q is a counterexample.

14.3 Artin’s Reciprocity Law

In this section we prove the existence of a modulus for any abelian number field
extension. The following propositions show that the existence of a modulus for
some abelian number field extensions implies the existence of a modulus for various
other extensions.

14.11 Proposition. Let m be a modulus for the abelian number field extension L : K
and let K' : K be any number field extension. Then m is a modulus for K'L : K’
as well.

PROOF. The ray Sy (K) is contained in the Artin kernel of L : K. By Proposi-
tion 13.31 NE (Sp(K') C Sm(K), so for a € Su(K’) we have, using Lemma 13.54,
K'L L ’
e (0) = ol (N (a) = 1.
So the ray Sy (K’) is in the Artin kernel of K'L : K. O

14.12 Proposition. Let m be a modulus for the abelian number field extension L : K

and let K' be an intermediate field of this extension. Then m is a modulus for both
L:K and K': K.
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14.3 Artin’s Reciprocity Law

PROOF. That m is a modulus for L : K’ follows from Proposition 14.11. Since
Ker(gprL)) C Ker(tp(ff )) the modulus m is a modulus for K’ : K as well. O

For cyclotomic extensions there is a modulus:

14.13 Proposition. Let K be a number field and L an intermediate field of a cy-
clotomic extension K((p) @ K. Then the modulus (m)oo (extended from Q) is a
modulus for L : K.

ProOOF. The modulus (m)oo is a modulus for for Q(¢;,) : Q. The proposition
follows from Proposition 14.11 and Proposition 14.12. O

For the proof of Artin’s Reciprocity Law we need a lemma which is a corollary of
the following lemma.

14.14 Lemma. Let a,n € N* and a > 2. Then infinitely many odd prime numbers
I have powers I such that n | o(a), where @ € (Z/1™)*.

ProOOF. First we show that there is a power [ of a prime number [ such that
a € (Z/I™)* is of order n.

The n-th cyclotomic polynomial is defined as

e,(X)= J] X-¢) ez
0<k<n
ged(k,n)=1

Because a > 2 we have |a—(*| > 1 and there is equality only if k¥ = 0 and a = 2. For
n > 2 it follows that |®,(a)| > 1. Let ! be a prime divisor of ®,,(a). Then @ € Fy
is of order nl="(). Since ®,(X) | X™ — 1 in Z[X], it follows that I | a” — 1. Put
m = v;(a™ — 1). Then o(@) | n, where @ € (Z/I"™)*. Because Ker((Z/I™)* — F})
is an I-group, o(@) = nl~* for a k with 0 < k < v;(n). Suppose k > 0. Then
™| a™' — 1 and in particular a”/! =1 (mod!). From

a” — 1= (an/l _ 1)(an(l—1)/l + CLn(l—2)/l T an/l + 1)

and "D/ gn(=2/L oo g/t 41 =0 (mod1) follows that v (™! — 1) < m,
contradicting I™ | a™! — 1. So k = 0, that is o(@) = n, where @ € (Z/I™)*.

Apply this construction with n replaced by pn, where p is a prime. Since the prime
divisors of #((Z/1™)*) for all powers of a single prime [ are divisors of I(I — 1),
infinitely many [ are obtained when p varies over all primes. Hence n | o(a) for a
modulo powers of infinitely many (odd) prime numbers. O

14.15 Lemma. Let L : K be a number field extension and p a finite prime of K.
Then there are powers q of infinitely many odd primes such that

ptqOk, [L:K]| o(gpéK(C"))) and  K((;)NL=K.
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14 Artin’s Reciprocity Law

PrOOF. The number field L has only finitely many subfields. Let Ki,..., K,
be the subfields of L which are contained in a cyclotomic field, say K; C Q((pm,;)-
Put m = mimso---m,. By Lemma 14.14 there are powers g of infinitely many
odd primes such that ged(g,m) = 1 and the order of @gK(Cq)) (= order of N(p)
in (Z/q)*) is a multiple of [L : K|. It remains to prove that K((;) N L = K.
The subfields of L contained in a cyclotomic field are all contained in Q((,,). So

LNQ(¢) € Q(¢m) NQ(¢y) = Q and also K N Q(¢,) = Q. By Galois theory
Gal(Q(¢q) : Q) = Gal(L(¢g) : L) = Gal(K ((q) : (LN K(¢)))
and
Gal(K ((,) : K) = Gal(Q(¢y) : Q).

Hence LN K({,) =K. O
14.16 Theorem (Artin’s Reciprocity Law). Let L : K be an abelian extension
of number fields. Then there is a modulus m of K having the ramifying primes as
its prime divisors, such that the Artin map gag(L): I5(K) — Gal(L : K) induces an

isomorphism
g I™(K)/NE(I™(L)Sn(K) — Gal(L : K).

PRrROOF. By Proposition 13.55 we may assume that L : K is cyclic. Let m be such
that the Fundamental Equality holds for L : K:

#(Clw(L : K)) = (I™(K) : N (I™(L))Sw(K)) = [L : K].
Choose a generator o of Gal(L : K). We will construct an a € I™(K) such that

go%) (a) = o and for all finite primes p { m the following property holds:
p

(P) if o) = 5*, then = € NL(I(L))Sm(K).

The proof will consist of three parts: the construction of a, the proof of property
(P) and finally the theorem will be proved using property (P).
Construction of a

By Lemma 14.15 there is an odd prime power ¢; such that
ng((hOKym):la [LK} [K(Qh) K} and K(qu)ﬂL:K

(Just take some finite prime p of K, choose ¢; such that ged(¢1 Ok, m) = 1 and note

that o(gpl(JK(qu))) | [K(Cq) @ K].) Let Gal(L(¢,,) : L) be generated by o1. Choose
prolongations of o and o1 to L((,, ) such that the restrictions to respectively K ((g, )
and L are the identity. Put K1 = L({g)??*. Choose a; € 19™(K;) such that

o5 (a)) = 00y and take a = NK (a;) € 1™ (K). Then

A @ =oorand @l (@) = o (@), =0
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14.3 Artin’s Reciprocity Law

L(Cqum)
/ ototoy !
L(Clh) KS L(qu)
g1 (o)
001 atol
o L o

Kl KQ

K(Clh) g K(C%)
o1 02

K

From

Gal(L(Cq,) : K1(Cqr)) = Gal(L(q, ) = K(Cqy)) N Gal(L(Cy,) = K1)
= (o) N(oo1) = {1}

follows that Ki(Cq,) = L((g,). So the extension L((, ) : K7 is cyclotomic and
therefore (¢g1)oo is a modulus for this extension.

Proof of property (P)

Now let p be a finite prime of K not dividing m. Then <p§,L) = ¢! for an integer t.

Again by Lemma 14.15 there exists an odd prime power gy such that
Ok, ged(g20k,m) =1, K L(¢,) =K and [L: K (lCaz))
pta20k, ged(@20k,m) =1, K((g,) NL(G,) = K and [L: K] O(‘Pp )

Fix a generator o2 of Gal(L((y,) : L) and choose the prolongation of o2 to L((g,)

which restricts to the identity on L. Then @f,K(C”)) = o5 for some integer s.
Because ¢§,L) o, we have @;L(qu)) = olos and so ZéL(CQQ)) = (olos). Put

Ky = L(CqQ)"t";. Again, from

Gal(L(Cg,) : K2(Cgo)) = Gal(L(gy ) : K(Cgy)) N Gal(L(Cy,) : Ko2)
= (o) N (o'o}) = {1}

follows that K2((y,) = L(Cg,)- So (g2)o0 is a modulus for the extension L((,,) : Ko.
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14 Artin’s Reciprocity Law

Finally, put K3 = L((g4,)° 7172, Then K3 D K, K». Choose by € 171%™ (k)

such that
(pgé(c“tm))(b?)) — O'tO'iO'S.
Then for by = N (bs) and by = N3 (b3) we have

(L(Cqy)) (L(Cqya5)) (L(Cq1a5))
YK, (bl) = %K, e (bl ‘L(qu = Pk ’ [33 ‘L(qu

)
s (L(Cqy))
= UtaiaﬂL(qu) =olol = O, (a})
and
L(¢ L(¢ ¢
@%2 q2))(b2) — ()Dg(z( qlqz)) ‘L(C ) ( ( qlqz)) 3 ‘L(CqQ)
s L(¢q L(¢q
_ O_to_iaé‘L(Cq : =olos = s0’(3 (Caz)) _ %(32(4 2))’

where po is a prime of K5 above p. Note that p splits completely in K. Hence

a% € Ker(py “ 1™ (K ) — Gal(L(¢y,) : K1)
1

and so, since (g1)oo is a modulus for L((y, ) : K3

b L q1 im L <I1 m
O € N (17 (LG, )8 () € NS (17 (LG )i ().
1
Similarly
b )
2 & Njeo) (I™(L(Cyy))Sin (K).
p2
Apply N? and N?:
b
7 2 € NE(I™(L))Sn(K)
and hence also
e NE(L)Sm(K)

The theorem follows from Property (P)

Let ¢ € I™(K) such that ¢ is in the Artin kernel: go(lf)(c) = 1. For each finite prime

pfmof K write go( ) = ot. Thus for each p we have b€ NE(I™(L))Sw(K).
Then

()0%)( ) H (L) Up Hatpvp(c) — ou

p
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14.4 The dual Artin isomorphism and class fields

where u = )" t,v,(c). Because ¢ is in the Artin kernel and o(c) = [L : K], this
implies that [L : K] | u. Now

¢

< H(%)UP(C) c N%((]Im(L))Sm(K)
p

a“:

and because [L : K] | u we have a* € NL(I™(L)). Hence ¢ € N&(I™(L))Sn(K).
Therefore, the Artin kernel is contained in N& (I™(L))Sy (K). Finally, since both
have index [L : K] in I™(K), they coincide. O

In particular, the trivial modulus (1) of a number field K is a modulus for any
unramified abelian extension L : K and the Artin map induces an isomorphism

I(K) /N (I(L)B(K) = G.

In other words, it induces a surjective homomorphism C/(K) — G and the kernel
of this homomorphism is trf (C/(L)).

14.17 Application. In Application 9.42 it was shown that for each finite abelian
group G there exists an extension L : K of abelian number fields such that
Gal(L : K) =2 G and no prime ideal of K ramifies in L. With a small adapta-
tion of the proof one can realize that the infinite primes do not ramify either:

Choose for ¢ = 1,...,r the prime numbers p; in the proof such that p; =
1 (mod 2n;). Then the Dirichlet characters y; are even. Choose x,+1 to be
an odd character. Then x = x1 - Xr4+1 is odd and as a result the field K is
complex.

So for any abelian G there exists an unramified extension with Gal(L : K) & G.
By Artin’s Reciprocity Theorem we have a surjective homomorphism C/(K) — G.
So for any abelian G there exists a number field K such that G is a homomorphic
image of its ideal class group, or, what amounts to the same, the ideal class group
contains a subgroup isomorphic to G. It is unknown whether any abelian G is
realizable as an ideal class group of some number field.

14.4 The dual Artin isomorphism and class fields

An abelian extension of a number field determines a finite group of Dirichlet char-
acters of the base field. We will show that each finite group of Dirichlet characters
is the group of Dirichlet characters of at most one abelian extension.

Let L : K be an abelian number field extension. By Artin’s Reciprocity Law the
Artin map gog{L): I5(K) — Gal(L : K) induces an isomorphism /(L : K) =
Gal(L : K) for some modulus m of K having the ramifying primes as its prime
divisors. Dual to this isomorphism is an isomorphism Gal(L : K)" 5 H(L : K).
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14 Artin’s Reciprocity Law

14.18 Definition and notation. Let L : K be an abelian number field extension.
Then the dual Artin isomorphism of L : K is the isomorphism

¢\ Gal(L: K)Y 3 H(L: K)

defined by ¢\ (€)(a) = £(p$F(a)) for all ¢ € Gal(L: K)¥ and all a € IX(K) N
I*(K).

By Lemma 13.29 the values of a Dirichlet character on all prime ideals but a fi-
nite number of them determine the Dirichlet character. So c,ZJEKL) is determined by

@%)(g)(p) = ,g((pgl‘)) for all ¢ € Gal(L : K)" and all nonramifying p € Max(Of).

14.19 Proposition. Let Ly : K and Lo : K be abelian number field extensions such
that Ly C Lo. Let p: Gal(Ly : K) — Gal(Ly : K) be induced by restriction of
automorphisms to L. Then the following square commutes

—_— H(LQ . K)

~

Pv[ /[g
(L1
SD( )

Gal(Ly : K)' £ 9/(L, : K)

PROOF. Let & € Gal(L; : K)" and p € Max(Ok) not ramifying in Ly. Then
B4 PV (€)(P) = B (€)= (™) = €6l = BV (O ).

Hence gbg(Lz)pV = cﬁg{Ll). Note that H(L; : K) C H(Ls2 : K) by Lemma 13.35. [
14.20 Corollary. Let Ly : K and Lo : K be abelian number field extensions. Then

H(leLQZK) :H(LlK)ﬂH(LQK)

and
H(LlLQ : K) = H(Ll K)H(LQ . K)

Proor. By Galois theory the square

Gal(LyLs : K) —2— Gal(Ls : K)
b p

Gal(L; : K) —s Gal((Ly N Ly) : K)
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of surjective homomorphisms is bicartesian. By Proposition 14.19 the following
square of inclusions is bicartesian as well.

-
H(Ll ﬂLg : K) — H(L2 : K)
< c

-
H(Ly : K) —— H(Li Ly : K) O

14.21 Definition. Let K be a number field and X a finite group of Dirichlet char-
acters of K. If L : K is an abelian number field extension such that H(L : K) = X,
then L is called a class field for X.

Class fields are unique. This is a consequence of:
14.22 Proposition. Let Ly : K and Lo : K be abelian number field extensions.

L1 C Ly <— H(Ll K) - H(LQ : K)

PrOOF.
=: This is Lemma 13.35.

<: If H(L; : K) C H(Ly : K), then by Corollary 14.20 H(L1Ls : K) =
H(Ly : K). This implies [L1Ly : K] = [Ly : K| and since Ly C LqLo,
we have Ly = L1Lso, that is Ly C Ls. O

For an abelian extension of number fields we now have a correspondence between
intermediate fields and groups of Dirichlet characters of the extension.

14.23 Corollary. Let L : K be an abelian number field extension. Then the map
L' — H(L' : K) is an inclusion preserving bijection from the set of intermediate
fields of L : K to the set of subgroups of H(L : K).

ProOOF. The dual Artin map @%) is an isomorphism and induces an inclusion pre-
serving bijection from the set of subgroups of Gal(L : K)v to the set of subgroups
of H(L : K). O

In section 9.1 an elaborate but relatively elementary proof was given of the theorem

of Kronecker and Weber. The proof involved a detailed study of various ramifica-
tion groups. The following proof illustrates the strength of class field theory.
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14 Artin’s Reciprocity Law

14.24 Theorem (Kronecker-Weber). Let K be an abelian number field. Then
K is a subfield of a cyclotomic field.

PrOOF. The conductor fg(K) is either of the form (m) or (m)oo for some m €
N*. So for such m we have H(K : Q) € H(m)oo(Q) = H(Q((m) : Q). Hence
K C Q(Gm)- 0

The Translation Theorem describes the behavior of the group of Dirichlet char-
acters of an abelian extension under a change of the base field. It is based on
Lemma 13.54. In the notation of this lemma, we have a commutative square

S
™K' —2 s Gal(LK' : K')

K' :
Ng 1

e
I™(K) — % Gal(L : K)

where 7 is the restriction of automorphisms to L. Divide by the Artin kernels:

(LK)
P
Clu(LK' : K') — 2 Gal(LK" : K”)

NE' i
o
Cla(L: K) — = Gal(L : K)
Dually,

50

Gal(L : K)¥ X H(L : K)

iV vE,

J(K'L)

Gal(K'L: K")Y — 2 %(K'L: K')

and this proves the following theorem.
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Exercises

14.25 Translation Theorem. Let K' : K be a number field extension and L : K
an abelian number field extension. Then

H(K'L: K') = vE, (H(L : K)).

In particular, if K’ is an intermediate field of L : K, then

H(L: K') =vE,(H(L : K)). O

EXERCISES

1. Show that the proof of formula (14.3) simplifies if we assume that m is such that
Lg is a principal ideal domain.

2. Let m be a squarefree integer # 1.

(i)
(i)

Show that there exists an a € Q(y/m) such that Q(y/m,/a) : Q is not a

Galois extension.

Show that there exists an abelian extension L : Q(y/m) which is not contained
in a cyclotomic extension of Q(y/m).

3. ([16]) Let L = Q(v/—=3,v13) and K = Q(v/=39). Let Gal(L : Q) = (0, 7) with ¢
and 7 such that o(v/=3) = v/=3 and 7(v/=39) = v/—39.

(i)
(i)
(iii)

(iv)

(viii)

Show that 3 is a local norm of L : Q at every prime of Q.

Show that L : K is unramified.

Let po = (2, 24=22). Prove that C/(K) is cyclic of order 4 and that this
group is generated by the class of pa.

Let o = 3=v=39 V4_39. Prove that 3 is a norm of L : Q if and only if there exists a
B € K* such that 22 is a norm of L : K.

a(B)
Let 8 € K* and ps the unique prime of K above 3. Show that
aB . _ P3 PP
a(B) o(fp2)
Show that for p € Max(Ox) the ideal class of % is of order < 2. It is of

order 2 if and only if the class of p is of order 4.
Prove that there is a p € Max(Ox) such that the class of p is of order 4 and

Vp (%) is odd.

Conclude that 3 is not a norm of L : Q.

4. Let p be an odd prime number and ¢ an odd prime divisor of p—1. Let K = Q(¢/p)
and L the subfield of Q(¢p) of degree ¢ over Q.

(i)

Show that p totally ramifies both in K and L.
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14 Artin’s Reciprocity Law

(ii) Let p be a prime ideal of K L above p and let p’ and p” be the primes under
p of respectively K and L. Show that both K,/ : Q, and L, : Q, are Galois
extensions.

(iii) Show that there is an a € L;» such that L,» = Q,(a) and o € Q,.

(iv) Show that p does not totally ramify in KL.

(v) Prove that KL : K is an unramified Galois extension. Conclude that C/(K)
contains an element of order g.

5. ([23], Theorem 1) Let L : K be an unramified cyclic extension of number fields. Set
G =Gal(L: K).
(i) Prove that the homomorphism L* — P(L), a — aOr of G-modules induces
an injective homomorphism H®(L*) — H°(P(L)). (Hint: Hasse’s Principle)
(i) Prove that H°(0O3) = H'(P(L)).
(iii) Show that the inclusion P(L) — I(L) induces a short exact sequence

1 — I(L)°/P(L)Y — (L) — H'(P(L)) — 1.

(iv) Show that
G p()¢) = HAEK))
(0 F) = By b))

and
#(CUK))

#(CUL)T) =
(v) Show that the inclusion O7 — L* induces a short exact sequence
1 — P(K) — P(L)Y — H'(0}) — 1.

(vi) Prove that
oy _ #(CAUK))
(vii) Let L : K be an unramified cyclic extension of number fields. Show that the
order of the kernel of j5 : C/(K) — C/(L) is at least [L : K].

For [L : K] a prime number the final result in the last exercise is known as Hilbert’s
Theorem 94. It is Satz 94 in [18], also known as Hilbert’s Zahlbericht. Translation:
[19].
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15 The Classification Theorem

The Classification Theorem relates finite groups of Dirichlet characters of a num-
ber field to abelian extensions of this number field. What is so far still missing is
the existence of an abelian extension corresponding to a given group of Dirichlet
characters. This existence problem will be reduced in section 15.1 to the case in
which the base field contains sufficiently many roots of unity. Then the extension
looked for is a Kummer extension. Kummer extensions are treated in general in
section 15.2. The full Classification Theorem is proved in section 15.3. A direct
consequence is Chebotarev’s Density Theorem for Galois extensions of number
fields (section 15.4). Dirichlet characters describe the splitting behavior of primes
in an abelian extension of number fields. In the sections 15.5 and 15.6 this descrip-
tion is completed with the Complete Splitting Theorem and a description of the
conductor.

In section 15.6 an isomorphism 19§,L): K, /NJ(Ly) 5 Gal(Lq : Ky), the local Artin
map for the completion of an abelian number field extension L : K, is constructed.
The so-called Hilbert symbols are based on this map. These symbols are treated in
the next chapter. In this chapter the local Artin map is used for a description of
the conductor of abelian number field extensions.

In section 15.8 we have a look at the special case of unramified abelian extensions
of a number field. The maximal one among these is known as the Hilbert class field.
An important property of Hilbert class fields is the Principal Ideal Theorem: ideals
in the base field become principal in the Hilbert class field. Using a generalization
of Artin maps to Galois extensions of number fields in general, not just the abelian
ones, as described in section 15.7, the Principal Ideal Theorem is reduced to pure
group theory. The proof is in the last section.

15.1 Reduction steps

In this section reduction steps toward the Existence Theorem (Theorem 15.27) are
made. We have to show that for any finite group X of Dirichlet characters of a
number field K there exists a class field. Here is an outline of the proof:

1. First we note that if for a group X’ > X a class field exists, then so there
exists one for X. This is Proposition 15.1.
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15 The Classification Theorem

2.

Next it is shown that, if there is a class field for the group v%, (X) of Dirichlet
characters of K’, where K’ : K is abelian, then there is one for X as well.
This is Theorem 15.7. The result of step 1 is used here.

We will show that, if K contains p,,, then there is a modulus m of K such that
the group ,,Hm(K) has a class field." This is Theorem 15.26. The required
extension is a an n-Kummer extension. As explained in section 15.2 such
extensions of K are classified by subgroups of K* containing the subgroup
K*" of n-th powers as a subgroup of finite index.

By the result of step 2 we may assume that the field contains u,,, where n
is an exponent for the group X. Finally, by the steps 1 and 3, it suffices to
choose the modulus m such that also X < , Hpm(K).

The first reduction step:

15.1 Proposition. Let K be a number field and let X1 and Xy be finite groups of
Dirichlet characters of K such that X1 C Xo. If there is a class field for Xo, then

there

is a class field for Xy as well.

PrOOF. This is just a reformulation of Corollary 14.23. O

The Classification Theorem describes a correspondence between abelian extensions
of a number field K and finite subgroups of H(K). This proposition is the part of
the theorem that describes the correspondence between subextensions of a given
abelian extension L : K and subgroups of H(L : K).

15.2 Lemma. Let L : K be a number field extension and o: L — C an embedding.

Then

the following squares commute.
N o
(L) ——— I(K) H(o(K)) H(o (L))
~ | Ox ~ | O ~ O.* ~ O_*
N”(L) K
o(K) VL
I(o(L)) — I(0(K)) H(K) ——— H(L)

PROOF. For the commutativity of the first square it suffices to show that the maps

a(L)
NO’(K)

Put f

0. and 0, NL agree on finite primes of L. Let q € Max(Or) and p = qN K.
= f¥). Then o(q) € Max(O,(z)) and o(q) N o(K) = a(p). Therefore,

(NZ(R o)(@) = NI o (a) = o (p) = o(p”) = o(Nk(0) = (0.N%)(@).

!Notation: For n € N* and A a (multiplicative) group ,, A is the subgroup of a € A with a™ = 1.
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The commutativity of the second square follows from the commutativity of the
first. Let ¢ € H(o(K)). Then (vKo*)(€) = vE (¢0.) and o071 (€) = 17U ()0

(L) \S) 7 o (L)
If m is the conductor of &, then the Dirichlet characters v (£0.) and VZ((f)) (&)os
coincide on I7 (™) (K) and so, by Lemma 13.29, they are equal. O

15.3 Corollary. Let L : K be a number field extension. Then an embedding o: L =
o(L) C C induces an isomorphism

o*: H(o(L) : 0(K)) > H(L: K), €& Eo,. O

15.4 Notation. Let L : K be a Galois extension of number fields, o: L — C an
embedding and 7 € Gal(L : K). Then we have a group isomorphism

fo: Gal(L: K) = Gal(o(L) : 0(K)), 7+ oro L.
15.5 Lemma. Let L : K be an abelian number field extension, o: L — C an

embedding and m a modulus for L : K. Then the following squares of isomorphisms
commute.

S0
Clu(L: K) —— 5 Gal(L : K)

~ | 0% Nfo

Clo(my(o(L) : 0(K)) ——— Gal(o(L) : 0(K))

v Po(K)
Gal(o(L) : 0(K)) — (o(L) : 0(K))
’ (L)
Gal(L: K)Y — % 5 H(L: K)

PROOF. Let a € I™(L). Then

L L — o(L
fo03 (@) = 0 (@) = {755 (o).

The commutativity of the second square follows from the commutativity of the
first. O

369



15 The Classification Theorem

15.6 Proposition. Let K : Ky be a Galois extension of number fields and L : K
an abelian number field extension. Then L : Ky is a Galois extension if and only
if T (H(L: K)) =H(L: K) for all T € Gal(K : Ky).

If L : Ky is a Galois extension, then the action of Gal(K : Ky) on H(L : K) is
compatible with the action of this group on Gal(L : K), i.e. for 7 € Gal(K : Kj)
the following diagrams commute (m is a modulus for L : K ):

(L) (L)

@ @
Cla(L: K) —— Gal(L : K) Gal(L: K)' —=— (L : K)
~ | T ~ fT ~ f‘r\'/ ~|T*

(L) 20
Cla(L: K) —— Gal(L : K) Gal(L: K)' —=— (L : K)

where the T in fr is a prolongation of T to L.

PrROOF. Let an embedding o: L — C satisty o(a) = a for all a € Ky. Then
o(K) = K because K : Ky is a Galois extension and so by Corollary 15.3
o*(H(o(L) : K)) = H(L : K). Hence the following are equivalent:

L : Ky is a Galois extension;
o(L) =L for all 0: L — C with o(a) = a for all a € Ko;
H(o(L): K)=H(L: K) for all o: L — C with o(a) = a for all a € Ky;
(") Y H(L: K))=H(L: K) forall 0: L — C with o(a) = a for all a € Ko;
oc*(H(L: K))=H(L: K) for all 0: L — C with o(a) = a for all a € Ko;
P(H(L: K)) = H(L : K) for all 7 € Gal(K : Ky).

The last equivalence follows from the fact that every o: L — C fixing elements of

Ky is a prolongation of some 7 € Gal(K : Ky). The commutativity of the diagrams
follows from Lemma 15.5. O

15.7 Theorem. Let K’ : K be an abelian number field extension and X a finite
group of Dirichlet characters of K such that there is a class field for vE, (X) C
H(K'). Then there is a class field for X.

Proor. First we prove the theorem under the extra condition that the extension
K': K is cyclic. So let K’ : K be cyclic and L’ the class field for v, (X). Let 7
be a generator of Gal(K’ : K). Then NE'7, = NE" and so 71K, (X) = v, (X).
By Proposition 15.6 the extension L’ : K is a Galois extension. The identity
NE'7, = NE" also implies that the action of 7 on v, (X) = H(L' : K') is trivial
and so by the same proposition the action of 7 on Gal(L’ : K') is trivial. Since
Gal(K' : K) is cyclic this implies that L’ : K is abelian: the group Gal(L’ : K) is
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15.2 Kummer extensions

generated by the abelian subgroup Gal(L’ : K') and a prolongation of 7 to L’. From
vE(X) = H(L : K') = Ker(vE') follows that X C Ker(vE vE,) = Ker(vK) =
H(L': K). Hence by Proposition 15.1 there is a class field for the group X.

For the general case take a chain of cyclic extensions
K=KyCK,C---CK; 1CK,;C---CK,=K"
There is a sequence of finite groups of Dirichlet characters:
X, v (X), oo vi, (X)), v (X)), o, vE (X)) = via(X).
Since Vligj (X)= ugj_lyﬁ_l (X), we have by the cyclic case, that if there is a class

field for v (X), then there is one for v (X). This proves that there is a class
field for X. O

This theorem makes it possible to assume in the proof of the Existence Theorem
that the base field contains a primitive n-th root of unity, where n is an exponent of
this finite group of Dirichlet characters: adjunction of a root of unity is an abelian
extension. Then the class field extension has to be a Kummer extension. This
was the second step in the proof. In the next section we consider first Kummer
extensions in general.

15.2 Kummer extensions

In the previous section the proof of the Existence Theorem was reduced to the case
in which the base field has enough roots of unity. The meaning of ‘enough’ in this
context is made precise in the following definition.

15.8 Definition. Let n € N*. An abelian extension L : K is called an n-Kummer
extension if Gal(L : K) has exponent n and K contains a primitive n-th root of
unity.

For Kummer extensions the intermediate fields correspond to certain subgroups of
the multiplicative group of the base field. This explains their relevance for class
field theory. The theory of Kummer extensions is purely algebraic, it is a part of
Galois theory.

15.9 Proposition. Let K be a field containing a primitive n-th root of unity and
L : K a cyclic Galois extension of degree n. Then there is an o € L such that
L=K(a) and o™ € K.

Proor. Let ( € K be a primitive n-th root of unity and o a generator of
Gal(L : K). Then N£(¢) = ¢" = 1. So by Hilbert’s Theorem 90 (Theorem 12.17)
there is an a € L* such that £ = ¢. Then olaf)=af <= n|k. Soa” e K

and L = K(«). O
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15 The Classification Theorem

15.10 Proposition. Let L : K be an n-Kummer extension. Then there are
at,...,op € L such that o € K forj=1,...,r and L = K(aq,...,q;.).

ProoF. The group Gal(L: K )V is generated by a finite number of elements of

order a divisor of n. So by Galois theory there are intermediate fields L1, ..., L, of
L : K such that each Gal(L; : K) is cyclic of order a divisor of n and L = Ly - - - L,.
Now the proposition follows from Proposition 15.9. O

15.11 Proposition. Let L : K be an n-Kummer extension and L = K(aq,. .., ap)
with of ,...,af € K*. Then L** N K* = K*"(af,...,al).

r

Proor. Put L; = K(a,...,«a;) for j = 1,...,r. The extensions L; : K are
n-Kummer extensions. Clearly, K*"(af,...,a}) C L3" N K*. We show that
LI"NK* = K™(af,...,aj) forj=1,...r (15.1)

Let § € Lj such that g™ € K*. The group Gal(L; : K) is generated by an
automorphism ¢ with o(a;) = Caq, where ¢ is a, not necessarily primitive, n-th
root of unity. Then ¢(8) = ¢*3 for some integer k. From o(Ba;*) = Ba;* follows
that € K*(ay) and so " € K*™{(a}).

Assume that L3 NK* = K™ (a},...,a}_;) for some j <r. Let 3 € L} such that
B™ € K*. The extension L; : L;j_; is a cyclic n-Kummer extension, so as above
LN L = L™ (of). So g™ = y"af*, where v € L}, and k € Z. Because
ﬂ”aj_”k € Li" NK* = K™(af,...,a} ), we have " € K*"(af,...,a}). So
identity (15.1) holds for all j and in particular for j = 7.

A classification theorem for Kummer extensions:

15.12 Theorem. Let K be a field containing a primitive n-th root of unity. Then
there is a one-to-one correspondence between n-Kummer extensions of K and sub-
groups A of K* containing K*™ such that A/K*" is finite:

n-Kummer subgroups of K* containing K*"
extensions of K as a subgroup of finite index
L:K LN K*

K(V/A) A

(The extensions of K are assumed to be inside a fized algebraic closure of K.)
Proor. We will prove:

a) If L : K is an n-Kummer extension, then for A = L** N K* we have L =
K(¥/A) and A/K*™ is finite.
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15.2 Kummer extensions

b) If A is a subgroup of K* containing K*" and such that A/K*" is finite,
then K({/A) : K is an n-Kummer extension and A = L** N K*, where
L= K(/A).

For a proof of a) let L : K be an n-Kummer extension. Then by Proposition 15.10
there are ay, ..., a; € L* such that L = K(a1,...,a,)and o} € K forj =1,...,7.
By Proposition 15.11 L = K(ay,...,a,) = K(3/A). The group L** N K*/K*" is
generated by the classes of af, ..., o] and these are of finite order. So the group
A/K*" is finite. We have aq,...,a, € VA C L* and L = K(ay,...,a,), so
L =K({/A).

Now let A be a group with K** C A C K* and A/K*" finite. Then A =
K*™"(ai,...,a,) with aj,...,a, € A and K(V/A) = K(a,...,a,) : K, where
af =ajforj=1,...,r. Put L = K(ai,...,a,). Then L : K is an n-Kummer
extension and, as we have seen, L** N K* = K*"*(al,...,al") = A. O
Theorem 15.14 describes the connection between the Galois group of a Kummer
extension and the corresponding subgroup of the multiplicative group of the base
field. The main tool is the following.

15.13 Lemma. Let L : K be an n-Kummer extension and 8 € L* such that g™ €
K*. Then the map

Gal(L: K) = pbn, o ——
is a group homomorphism.

PROOF. Let 0,7 € Gal(L : K). Put % =( € ptn,. Then

o7(8) _ o(¢h) _ ColB) _ o(B) 7(8) -

B B B g B

15.14 Theorem. Let L : K be an n-Kummer extension. Then the map

L'"NK* = Gal(L:K)", a— (al—> 0({);/;))

induces an isomorphism (L** N K*)/K** 5 Gal(L : K)".

Proor. By Lemma 15.13 we have a bilinear map

Gal(L: K) x (L' N K*)/K*™ — pn,  (0,aK"™) 0({;\?)-

The theorem follows from the nondegeneracy of this pairing.
If o(/a) = {/a for all o € Gal(L : K), then /a € K* and so a € K*™.

If o({/a) = ¥/a for all a € L*™ N K*, then it follows from Proposition 15.11
that o = 1. O
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15.3 The Existence Theorem

As indicated at the end of section 15.1 we can assume that the class field extension
we are looking for is a Kummer extension. We need some results on the splitting
behavior of primes in a Kummer extension of number fields. The first such property
is given by the following lemma.

15.15 Lemma. Let F be a local field containing a primitive n-th root of unity and
a € F* such that v(a) = v(n) = 0. Then the n-Kummer extension F(/a) : F of
local fields is unramified.

PrOOF. The minimal polynomial of v = {/aris X — 3 for some d | n and 3 = 7.
Put E = F(v). By Definition 7.22

disc(1,7,...,7v ) € 0p(E).
Since d | n and 8" = a?, we also have v(3) = v(d) = 0. Then from
disc(1,7,...,74 1) = £NE(dy?1) = +d9p71

follows that vp(disc(1,7,...,741)) = 0. So 0p(E) = Op. Therefore, E : F is
unramified (Theorem 7.28). O

15.16 Corollary. Let K be a number field containing p,, a € K* and p a finite
prime of K satisfying vy(a) = vy(n) = 0. Thenp does not ramify in the n-Kummer
extension K({/a) : K.

PROOF. Take the g-adic completion of K({/a), where q is a prime above p, and
apply Lemma 15.15. O

The n-Kummer extensions of a field K correspond to finite subgroups of K*/K*".
For local fields this group is finite:

15.17 Proposition. Let I be a local field. Assume that F' contains a primitive n-th

root of unity. Then
#(E*/F™) = n®N(pp)'r ™.

PrOOF. We will use group cohomology in a rather trivial setting. Let G be a
cyclic group of order n and consider F™* as a G-module with trivial G-action. Then
HO(F*) = F*/F*" and H*(F*) = i,,. So #(F*/F*") =n-q(F*)~*. We have the
short exact sequence of G-modules

1— O — F* 57— 0.

So q(F*) = q(03)q(Z) = q(O%)n~"! and it remains to compute ¢(O%). For suffi-
ciently large r we have

#(H'(OF)) 1

1) =L +9") = aP") = 4(Or) = S550,)) = HOr/mOr)
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_ 1 _ N(pp)_”F(”).

 #Or/py ™)
Hence #(F*/F*n) —-n. q(F*)71 — RQQ(OF)71 _ n2N(pp)”F(”). 0

We will use the following lemma, which is similar to Proposition 14.1 and so is its
proof.

15.18 Lemma. Let n € N*. The arithmetic projective system m — K* /K™ KL of
a number field K is multiplicative.

PrOOF. Let m; and my be moduli of K with ged(my,my) = 1. The identity
K‘LIK&,LQ = K* implies that K*"K,}HK*"K1 = K", so it remains to prove that

mo

K*nK,-lnl ) K*HK;Z _ K*TLKl

mymsz*

Let ¢ = a'by = ajby with a1,a0 € K*, b1 € K&u and by € K&IQ. There is an
a € K* such that a™'ay € K}, and a™'ay € K, . Then ¢ = a™(a ta)"by =

a™(a"tag)"by and so (a~ta1)"by = a"(a"taz)"by € K, NKy, = K .. Hence
ce KK . 0

15.19 Proposition. Let K be a number field containing p, and m a modulus of
K divisible by the prime divisors of nOk and all infinite primes of K, the finite
prime divisors with a sufficiently large exponent. Let S be the set of prime divisors
of m. Then

#(K*/K*nKrln) — n2s7

where s = #(9).

PROOF. By Lemma 15.18 #(K*/K*"K}) is the product of all #(K*/K*"K}.)
over p € S. For p real infinite necessarily n = 2 and since K*? C K;, we have
#(K*/K*?K,) = #(K*/K,) = 2. For p complex infinite #(K*/K*"K,) = 1.

For finite p € S we have K*/K*" K}, & K, /K" for r sufficiently large. So by
Proposition 15.17 #(K*/K*"K;T) = n2N(p)vp(n)_

Let s¢ be the number of finite primes in S and s, the number of infinite primes.
Then for n # 2 by Lemma 15.18:

#(K*/K*nKI}l) _ H n2N(p)vp(n) _ n250N<H pup(n)) _ TLQSON(TLOK)
plmo plmo

— HQSOH[K:Q] — nQSOnQSOO — n2s.

For n = 2 let r, be the number of real infinite primes. Then

#(K*/K»QK]L) _ 22501\1(2(/)1()2rOC — 9280 2roo+2(soofrw) . QTeo
— 22504—280@ — 225. D
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15.20 Definition. A collection S of primes of a number field K is called saturated
if it contains P (K). The collection Py (K) is the smallest saturated collection of
primes and is often denoted by So.

15.21 Definition and notations. Let K be a number field, S a finite saturated
collection of primes of K. Then I°(K) denotes the subgroup of I(K) of all a with
vp(a) = 0 for all finite primes p € S. An element v € K* is called an S-unit of K
if vy(a) = 0 for all finite primes p ¢ S. The group of S-units of K is denoted by
K5,

Note that K is the same the group as K% described in Notations 6.30, where P
is the complement of S in P(K). So K is the unit group of the Dedekind domain
Kp. The exact sequence (6.1) on page 140 becomes

1— 05 — K% — P Z— QAUK) — & (K) — 1,

peS
p finite

where C/°(K) is the ideal class group of Kp.

15.22 Definition. The group C/°(K) described above is called the S-ideal class
group of K.

By the above exact sequence (¢°(K) is isomorphic to the factor group of C/(K)
obtained by killing the classes of the finite primes in S.

Theorem 6.31 can be reformulated as follows:

15.23 Theorem. Let S be a finite saturated collection of primes of K and #(S) = s.
Then K3 /u(K) is a free abelian group of rank s — 1. O

Here we will need the following consequence.

15.24 Corollary. Let the number field K contain a primitive n-th root of unity
and let S be a finite saturated collection of primes of K. Then KS/(KS)" =
(Z/n)#(3), O

15.25 Proposition. Let the number field K contain ., and let S be a finite sat-
urated collection of primes of K containing all prime divisors of nOg. Then the
extension K(VKS) : K is an n-Kummer extension with Gal(K(VKS) : K)
(Z/n)#3) and the ramifying primes are all in S.

PrOOF. By Theorem 15.23 the group K* is finitely generated, so K(VK?S) : K
is an n-Kummer extension. By Theorem 15.14, Theorem 15.12 and Corollary 15.24
we have

Gal(K(VKS): K) >~ KSK*™/K*" = K5 /(KSNK*") = K /(K" = (Z/n)#(9).

For each a € K° and p € P it follows from Corollary 15.16 that p does not ramify
in K({/a). Hence none of the p ¢ S ramify in K(VK?). O
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15.26 Theorem. Let the number field K contain u, and let S be a finite saturated
collection of primes of K containing all prime divisors of nOg and such that
C€S(K) is trivial. Then for m a modulus of K with prime divisors the primes in
S, the finite ones with a sufficiently large exponent, the field K ( W) is the class
field for , Hm(K).

Proor. Put L = K( W) By Proposition 15.25 all in L ramifying primes of
K are in S. Artin’s Reciprocity Law (Theorem 14.16) implies that H(L : K) C
Hwm(K). Because n is an exponent of Gal(L : K), and therefore of H(L : K) as
well, we have H(L : K) C , Hw(K). By Proposition 15.25 #(H(L : K)) = n#(5),
So it suffices to show that #(, Hm(K)) = n#(5),

The modulus m is such that I™(K) = I9(K). Let the map f: K* — I™(K) be
the composition of K* — I(K), a — aOk and the projection I(K) — I"™(K). For
a € K* write aOg = aay with a € I™(K) and vp(ay) = 0 for all p € P, where
again P is the complement of S in P(K). Then f(a) = a. The cokernel of f is
isomorphic to CU(Kp) (= C¢°(K)), a trivial group because Kp is a principal ideal
domain. So f is surjective.

Consider the following commutative diagram with exact rows

IS (K) ™ (K) I™(K) )
I (K" I (K™ I (K)"Sm (K)

in which the vertical maps are induced by f. Note that they are surjective. In
particular the left most vertical map is surjective and from this it follows that we
can complete the diagram to the diagram with exact rows and columns on top of
the next page. For the middle vertical exact sequence note that the cohomology
groups of a cyclic group of order n acting trivially the short exact sequence

1 - K S K" —I"(K)—1
yields the exactness of
1 — HYK®) — H°(K*) — H°(I™(K)) — 1.

Furthermore, we have K*"K*/K*" = K%/K° N K** = K /(K)".
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15 The Classification Theorem

1 1 1
* S *n 771 * S *n 178 171
| KmES KKy K"K K*"KSKL 1
L M) Sw(K) ™ (K) () X
I (K)" Im (K )™ I (K)"Sm(K)
1 1 1

So for the order of , Hm(K) we have, using Proposition 15.19 and Corollary 15.24

o (K)) = () () S ) = 5 L )
A (K (KR K

=n® #(K"KSNK™KL)/K™).

It suffices to show that K*"K° N K*"K} C K*" or, what amounts to the same,
KSNK™KL C K. Let b€ KSNK*"K}. We show that the extension K (/b) :
K is unramified. For p € P we have v,(b) = 0 (because b € K*) and vy(n) = 0
(because p ¢ S). By Corollary 15.16 p does not ramify in K (/b). For finite p € S
we have b € K*" K, C K™(1+p") = K;™ and therefore, p splits completely in
K (¥/b). Finally for real infinite p and n = 2 we have b € K*QK{lp} C KK, =K,
and from this it follows that p does not ramify.

Since K(/b) : K is an unramified abelian extension, Artin’s Reciprocity Law
implies that its conductor is trivial. Hence the group

I(K) /NI (1(K (3/8)))P(K)

is of order [K'(/b) : K]. Let a € I(K). Since Kp is a principal ideal domain we can
write a = ag - cOk with ¢ € K* and a¢ € I(K) such that v,(ag) = 0 for all p € P.
All finite p in S split completely in K(3/b), so we have ag € Nﬁ( o) (I(K(/D))).
Therefore, [K({/b) : K] = 1, that is ¥/b € K*. Hence b € K*". O
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15.27 Existence Theorem. For cvery finite group of Dirichlet characters of a
number field there is a class field.

PrOOF. Let K be a number field and X a finite group of Dirichlet characters of
K. Let n be an exponent of X. Put K’ = K((,). Then Y := v, (X) is a finite
group of Dirichlet characters of K’ and n is an exponent of this homomorphic image
of X as well. Let § be the conductor of Y. Choose a finite saturated collection .S
of primes of K’ such that

a) S contains all prime divisors of nOg-,
b) €% (K') is trivial,
c) S contains all prime divisors of f.

By Theorem 15.26 for moduli m with prime divisors the primes in S and the finite
ones with sufficiently large exponents in m, there is a class field for the group
2 Hm (K'). Let, moreover, the exponents of the finite prime divisors of m be such
that f | m. Then Y C ,,Hn(K'). By Proposition 15.1 there is a class field for Y’
and, finally, there is a class field for X by Theorem 15.7. O

15.28 Notation. Let X be a finite group of Dirichlet characters of a number field
K. The class field for X is denoted by Kx.

The Existence Theorem was the main still missing part of the Classification The-
orem announced in section 13.5.

15.29 Classification Theorem. Let K be a number field. The following maps
form a one-to-one correspondence between abelian number field extensions L : K
and finite subgroups of H(K):

abelian finite groups of
extensions of K Dirichlet characters of K
L:K ¢ H(L: K)
Kx: K X

The maps L — H(L : K) and X — Kx : K are inverses of each other and they
preserve the ordering given by inclusion. The prime divisors of the conductor of
H(L : K) are ramifying primes. For m a modulus divisible by the conductor of

H(L : K) and all ramifying primes, the Artin map w%): I™(K) — Gal(L : K)
induces an isomorphism @%): Gal(L: K)' S5 H(L: K).
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PROOF. The groups H(L : K) were defined in Definition 13.34 and according to
Theorem 13.44 they are finite. Lemma 14.22 implies that the map (L : K) —
H(L : K) is injective. The existence of class fields now shows that it is a bijection.
From Lemma 13.35 it follows that the maps preserve the ordering by inclusion.
The statement concerning the Artin map is Artin’s Reciprocity Law. O

The first proof of the Classification Theorem was by Takagi in 1920. However, he
had a different notion of class field: L is the class field of /(L : K) if L : K
is abelian and #(Clw(L : K)) = [L : K]. Later, Artin introduced the Artin map
and proved the Artin Reciprocity Law: the Artin map induces an isomorphism
Cln(L : K) 5 Gal(L : K).

The values of Dirichlet characters of an abelian extension on nonramifying primes
describe their splitting behavior in the extension. Theorems in the sections 15.6 and
15.5 give extra information, especially for the ramifying primes.

15.30 Example. In section 4.9 the 2-rank of the ideal class group of a quadratic
number field K has been computed (Theorems 4.73 and 4.81). This was done by
counting the number of elements of ,(/(O ) using the theory behind the algorithms
for the computation of the ideal class group of a quadratic number field. Here we
use C/(K)/ C/(K)? instead. This group corresponds to the group s H(K). Let’s first
consider H o, (K). The nontrivial elements of this group correspond to quadratic
extensions L : K in which the finite primes do not ramify. Since Gal(K : Q)
acts on Clo (K) by inversion, the action of Gal(K : Q) on s Hoo(K) is trivial. By
Proposition 15.6 this means that the extensions L : Q are Galois extensions. By
Corollary 7.49 they are noncyclic. Set K = Q(y/m) with m € Z squarefree # 0, 1.

/\
\/

where, since finite primes of K do not ramify in L, ged(D,,, D) = 1. This means
that D,, = D,,Dj. So the number of quadratic extensions of K which are unrami-
fied outside oo is equal to the number of ways D,, is the product of two nontrivial
discriminants. This number is 2"(Pm)=1 — 1 where 7(D,,) is the number of prime
divisors of D,,. It follows that the 2-rank of Cl(K) is equal to 7(D,,) — 1. For
m < 0 we have C/(K) = Cloo(K), so this is the 2-rank of C/(K) as well.
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Now let m be positive. For the 2-rank of C/(K) there is the extra condition that
D,, and D have to be positive. For this use Lemma 4.10. The discrimimant D,,
is positive if and only if the number of prime divisors = 3 (mod 4) of n is even. If
m has no such prime divisors, that is if m is the sum of two squares, then there
is no extra condition needed. So in this case the 2-rank of C/(K) is r(D,,) — 1.
Otherwise the 2-rank is r(D,,) — 2.

15.4 Chebotarev’s Density Theorem

In section 13.4 we considered the L-series of a Dirichlet character x of a number
field K. The series converges absolutely on the half-plane R(s) > 1 and it was
shown that it has a prolongation to a meromorphic function on R(s) > 1 — ﬁ
For x the principal character it is the Dedekind zeta function of K, which has
a simple pole at s = 1. For y # 1 the function is analytic on R(s) > 1 — ﬁ
(Proposition 13.41). As was the case with nonprincipal Dirichlet characters of Q,
its nonvanishing at z = 1, which we are able to prove at this stage, has many

consequences.

15.31 Theorem. Let x be a nonprincipal Dirichlet character of a number field K.
Then L(1,x) # 0.

PROOF. Let X be the nontrivial group (x) of Dirichlet characters of K. Put
L =Kx. Then X = H(L : K). Let P be the set of prime ideals of K which split
completely in L. Then by Theorem 8.37 we have §(P) = 1, where n = [L: K] =
#(X) = o(x). By Artin’s Reciprocity Theorem P is the set of nonramifying primes
p of K satisfying x(p) = 1. So by Corollary 13.43 we have L(1,y) # 0. O

This implies a generalization of Dirichlet’s theorem on primes in an arithmetic
progression. We need a generalization of Lemma 9.51.

15.32 Lemma. Let X be a finite group of Dirichlet characters of a number field
K, § the conductor of X and a € I'(K). Then

0 otherwise.

S x(a) = {#(X) if x(@) =1 for all x € X,

x€X

PrOOF. For all y € X we have y(a) # 0, since a € I'(K). If x1(a) # 1 for some
x1 € X, then from

xi(@) Y x(@) = > xix(@) = > x(a)

x€X xeX xX€X

follows that ° .y x(a) =0. O
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15.33 Theorem. Let X be a finite group of Dirichlet characters of a number field
K, | the conductor of X, a € I'(K) and P the set of finite primes of K with

X(p) = x(a) for all x € X. Then 6(P) = -

Proor. By Proposition 8.31
x(p
log L(s, x) ~ Z N(p))s
P
for all x € X. Now apply Lemma 15.32:

Z x(a)log L(s, x) ~ ZZX p Ep:

XEX XEX p

x(@)x(p) #(X)
N(p)® 2 N(p)*

X€X peEP

By Theorem 15.31

> x(a)log L(s, x) =log Cx (s) + Y x(a)log L(s, x) ~ log {k (s).
XEX Xi)lf
X

Finally by Proposition 8.33

I logCx(s)  —log(s—1)
2 NGy~ HD #X)

peP

Hence §(P) = O

#(X )"
A direct consequence is Chebotarev’s Density Theorem for abelian extensions,

which is a stronger version of the Frobenius Density Theorem for abelian extensions
(Theorem 8.31).

15.34 Theorem. Let L : K be an abelian number field extension, o € Gal(L : K)
and P be the collection of nonramifying finite primes p of K for which <p§,L) =o0.
Then 6(P) = ﬁ

PROOF. Let a € I'(K), where f is the conductor of L : K, such that <p(KL)(a) =o.

Then by Artin’s Reciprocity Theorem ga( ) = o if and only if x(p) = x(a) for all

X € H(L : K). By Theorem 15.33 we have 5(P) = [L—lK] O

Chebotarev’s Density Theorem applies to Galois extensions of number fields in
general.

15.35 Theorem (Chebotarev). Let L : K be a Galois extension of number fields,
G =Gal(L : K), 0 € G, C the conjugacy class in G of o and P the collection
of monramifying finite primes p of K above which there is a prime q of L with

3 (q) = 0. Then 6(P) = #1%.
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PROOF. Let p € Max(Of) nonramifying in L and q € Max(Op) such that gqNK =
p and w%)(q) = 0. Put Z = (o). As was shown in the proof of Proposition 7.54
the primes of L7 above p of residue class degree 1 over K correspond to right cosets

Z7 with 7Z7~! = Z. For such a T we have
L L L L _ _

o = 2 (r(@) = 8 (r(a) = 7l (@) = 7o,
(L) _
p/
o is equal to the number of cosets (o)r with To77' = o. This is the number
[Ca(o) : (o)], where Cg(o) = {7 € G | o7 = 70 }. Hence for P’ the set of primes
p’ of L? above a prime p € P such that fx(p’) =1 and cp;],:) = o we have

§(P") = [Ca(o) : (a)] - 6(P).

Hence the number of primes p’ of L7 above p such that fx(p’) =1 and ¢
1

(L)

For @ the set of primes p’ of L? which do not ramify in L and satisfy N

have by Theorem 15.34

= 0 we

1 1

= T ooy

Because P’ C @ and @ \ P’ consists, apart from some ramified primes, of primes
p’ with fx(p’) > 1, the sets P’ and @ have equal Dirichlet density. So finally
5(P") 6(Q)
5(P) = =
)= Colo): @] ~ [Calo): @]
o(o) - [Calo) : (o)]  #(Calo)) [L:K]

15.5 The Complete Splitting Theorem

Dirichlet characters of Q describe the splitting behavior of prime numbers in abelian
number fields. The analogy for Dirichlet characters of a number field K is not yet
fully established: a prime p of K not in the conductor of an abelian extension
L : K might ramify in L. For such a prime we would have x(p) # 0 for all
X € H(L : K). We will see that this cannot happen. A crucial step in the proof
is the Complete Splitting Theorem, which we will prove in this section by first
proving it for Kummer extensions, in which case it is a consequence of the following
refinement of Theorem 15.26.

15.36 Theorem. Let the number field K contain p, and let S be a finite saturated
collection of primes of K containing all prime divisors of nOg and such that
Cl5(K) is trivial. Let S be the disjoint union of Sy and Sy. For j = 1,2 let m;
be a modulus of K with prime divisors the primes in S;, the finite ones with a
sufficiently large exponent in m;. Put

Wy =K"K*NK*"K), —and Wy=K"K°NK"K, .
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Then the fields Ly = K(3Y/W1) and Lo = K(3/Ws) are the class fields for respec-
tively

X1 ={x €, Hm (K)|x(p) =1 for all finite p in Sz}
and
Xo={x€  Hm,(K) | x(p) =1 for all finite p in S }.

Moreover, the splitting behavior of the primes in S in the fields L1 and Lo is as
follows:

a) The primes in Sy split completely in Ly and the primes which ramify in Lo
belong to Ss.

b) The primes in So split completely in Ly and the primes which ramify in Ly
belong to S1.

Proor. The extensions L; : K are n-Kummer extensions:
and the index of K*" in K*"K¥ is finite.

First we prove the assertions about the splitting behavior of the primes in S in the
fields Ly and Lo. Let p € S; and a € W,. Then in particular a € K*"K‘}ll. We will
show that p splits completely in K({/a). From this the complete splitting in Lo
follows, because this field is the composite of such fields K({/a). We can assume
that a € K,Ll. In case p is finite take the exponent k of p in m; large enough such
that in the completion K, we have: K;k C1+pkcC K". This is possible by
Theorem 11.22. Since a € K;k, it follows that for a prime q of K (/a) above p we
have

K(¥/a)q = Ky (Va) = K,.

Hence ZéK( Vo) — Gal(K({/a)q : Ky) = {1}. For p infinite we only have to
consider p real and n = 2. In this case it follows from R(y/a) = R. By symmetry
the primes in Sy split completely in L;.

The field L; is a subfield of the field K(¥/ K*%), so by Proposition 15.25 the primes
which ramify in L; belong to S and since the primes in Sy split completely in Ly,
they belong to S;. Again by symmetry the primes which ramify in Ly belong to
Ss.

Since Ly : K is an n-Kummer extension and because all primes which ramify in
Ly are contained in Sy, by Artin’s Reciprocity Law we can assume that m; is a
modulus for L; : K. Then H(L; : K) C ,, Hm, (K) and since all finite primes in S,
split completely in Ly, we have H(Ly : K) C X;. By symmetry H(Ly : K) C Xo.
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We have to show that equality holds and for this it suffices to show that [L; : K] =
#(X;) for j =1,2.

Put m = mymy and let, as in the proof of Theorem 15.26, f: K* — I™(K) be
the composition of K* — I(K) and the projection I(K) — I™(K). For b € K,
write bOx = bobs with by € I92(K) and by € I™(K). Then f(b) = by =
bOk - by' € (Sm, (K)I%2. Tt follows that f induces a map from KK JK*"
to (I™ (K)"Sm, (K)I2) N I™(K))/T™(K)™. So we have a commutative diagram
with exact rows

K, s I
K*n K#*n K*"K%ll

1 (I™)"Sp, 192 N I™ I I .
(Hm)n (I[m)n (]Iml )nSml TS2 N Im

in which the vertical maps are induced by f. In the bottom row the notation is
simplified by deleting (K) in all cases. The middle vertical map is surjective and so
is the one on the right. We show that also the vertical map on the left is surjective.
For this let a € I™(K), b € K and ¢ € I2(K) such that a™ - bOk - ¢ € I™(K).
Write a = azaz and bOk = bobs, where as, by € 52 (K) and ag, bz € Hm(K) Then
a” - bOg - ¢ = afbyc- afbsg and since this is an element of I™(K) we have ajbsc = 1
and a" - bO - ¢ = albz. Write a3 = a;2-aOf with a;5 € I(K) and a € K*. Then
a"bOk = (aOk)"™ - bOk = afaj, babs. Hence f(a™b) = afbs.

It follows that we can complete the diagram to the diagram with exact rows and
columns on top of the next page. The group X; is the bottom right entry in the
diagram and K*" K5 N K*"K&11 = Ws. So, as in the proof of Theorem 15.26, for
the orders of the groups we have

#(X1) = #I™(K)/(I™ (K)"Sm, (K)I (K) NI"(K)))

) pwacemy = FIE ) g
where s = #(S). By symmetry we have an analogous formula for #(X5). Hence
p = TR | UG

RS SOV
:ﬁ@%gEEWMquym:mymthq
Since [L; : K] < #(X;) for j = 1,2, it follows that [L; : K] = #(X;). O

385



15 The Classification Theorem

1 1 1
| l !

L, KK 0 KR K KS KKKy, )
) K*"KL K* K~ )
K K*n KK,

1 (I"™1)" S, 1% 0™ m m 1
(Hm)n (Hm)n (Hml )nSm1H52 N Im

| | |
1 1 1

From this the Complete Splitting Theorem follows for the special case of a Kummer
extension:

15.37 Proposition. Let L : K be an n-Kummer extension of number fields and p a
finite prime of K such that x(p) =1 for all x € H(L : K). Then p splits completely
in L.

PROOF. We use the notations of Theorem 15.36. Take Sy = {p}. Since p 1 fx (L)
we can take S; and m; such that fx (L) | my. Then

H(L: K) C{x € Hm (K)[x(p) =1} = X1 =H(L: : K)

and therefore L C L. By Theorem 15.36 the prime p splits completely in L; and
hence it does so in L. O

For infinite primes:

15.38 Proposition. Let L : K be an n-Kummer extension of number fields and p
an infinite prime of K such that p{ fx(L). Then p does not ramify in L.

PrOOF. Similar to the proof of Theorem 15.37. Here we have
H(L:K)C, Hm, (K)=X; =H(L; : K).

Again it follows that p splits completely in L, that is it does not ramify in L. O

We generalize these two propositions to abelian number field extensions in general.

15.39 Complete Splitting Theorem. Let L : K be an abelian extension of number
fields and p a finite prime of K such that x(p) =1 for all x € H(L : K). Then p
splits completely in L.
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15.6 Local Artin maps

PrOOF. By induction on [L : K. If [L : K] > 1, there is an intermediate field K’
such that L : K’ is of prime degree, say [L : K'] = ¢. Since H(K': K) C H(L : K),
we may assume that p splits completely in K’. Let p’ be any prime of K’ above
p. The extension L((,) : K'(¢;) is a ¢-Kummer extension. Let p” be a prime
of K'({,) above p’. By the Translation Theorem 14.25 Dirichlet characters of
L(¢y) : K'(¢,) are of the form l/fg(Cq)(X'), where X' € H(L : K'). By the same

theorem x' = v¥,(x) for a x € H(L : K). The value of Vf((,/(cq)(x’) on p” is trivial
K'(Cq
(put f = f “):

i) CONB") = X () = 0O = x()f = 1.

By Proposition 15.37 the prime p” splits completely in L({,). Since [K'(¢,] : K]
is a divisor of ¢ — 1, the prime p’ splits completely in L. It follows that p splits
completely in L. O

For infinite primes:

15.40 Theorem. Let L : K be an abelian extension of number fields and p an
infinite prime of K such that pt fx(L). Then p does not ramify in L.

PrROOF. By induction on [L : K. If [L : K] > 1, there is an intermediate field K’
such that L : K’ is of prime degree, say [L : K'] = q. Since H(L : K') C H(L : K),
we may assume that p does not ramify in K’. If ¢ is an odd prime, infinite primes
of K’ do not ramify in L. If ¢ = 2, the extension L : K’ is a 2-Kummer extension.
For p’ any prime of K’ above p we have p’ t fx/(L). By Proposition 15.38 the prime
p’ does not ramify in L. So p does not ramify in L. O

Otherwise put: if p is an in L ramifying infinite prime of K, the prime p is a divisor
of the conductor fx(L). We will see that this holds for finite primes as well. This
will be shown in the next section.

15.6 Local Artin maps

In this section L : K is an abelian number field extension, p a prime of K and
q a prime of L above p. We fix a modulus n for L : K such that p | n and write
n = p'm, where p { m.

The Artin map @%) will be used for the construction of a homomorphism

O K - 28,

the local Artin map at the prime p. Thus we have a map 19,(JL) t Ky — Gal(Lg : Ky)
for the abelian extension Lq : K, of local fields. In the next chapter it will be
shown that it depends only on the local field extension. Local Artin maps behave
in local class field theory as Artin maps do in the global theory.
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15.41 Notation. The homomorphism

w%)(ap_vp(a))_l if p is finite,

KL — Gal(L:K), aw~
" ( b {QD%)(GOK)l if p is infinite

is denoted by 9X). Tt is the composition of
it K - 1T™(K), aw aOk,

the projection
p: I'"'(K) - I"(K),

the Artin map
O [o: I"(K) — Gal(L : K)

and inversion in Gal(L : K).

For infinite p the order of the automorphism 19(L>(a) is at most 2; it can only be 2
for p real infinite.

15.42 Theorem. 91 (K1) = z{".

PROOF. First we show that 91 (K}) C ZéL). Let a € K. Put Z = ZISL). The
modulus m is a modulus for LZ : K. Since aOf € Sy (K) we have for infinite p

zZ
9P (a)| s = i (@0K) e = o (a0k) ™ =110
and for finite p

7

PP @]z = o (@™ @) oz = o (@0R) el () = 1.
Put A = 9(X)(K}) and consider the extension L* : K. We will show that p splits
completely in L. This will imply that L4 C L? and hence A = Z.

First the case of an infinite prime p. We have to show that it does not ramify in
LA Let a € Su(K) NI"(K) = Sw(K), say a = aOx with a € K. Then

(@) pa = 9B (@) pa = 1pa.

This holds for all a € Sy, (K), so
Sm(K) NIM(K) C N (I"(L4))Sa (K),

which implies that H(L? : K) C Hn(K). In particular fx(L?)|m and so
p 1 §x(LA). By Theorem 15.40 the infinite prime p does not ramify in L4.
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Now let p be finite and a € (p)Sp(K)NI"(K), say a = aOxp* with a € K. Then
e (@)]pa =9 (@) pa = 1pa.
This holds for all a € (p)S,(K) NI*(K) and hence
(p)Sm(K) NT"(K) € Nz (I"(L4))Sa(K),

which now implies that H(LA : K) C {x € Hm(K) | x(p) = 1}. It follows that
fre(LA) | m and x(p) = 1 for all x € H(LA : K), which by Theorem 15.39 implies
that p splits completely in L4. O
The isomorphism K*/K} & K* /KL x K*/K;t induces an isomorphism KL /K}! =
K*/K ;,, and the inclusion K* — K induces for finite p an isomorphism
K*/Ky = K;/(L+§"),
and for p real infinite
K*/K) & K} /K],
where K;” = {a € K | op(a) > 0}. The composition of these two isomorphisms
is an isomorphism
n: Ky /Ky — K;/(1+9"), respectively n: Ky /K, — K!/K[.
For a € K} we have 9(")(a) = @%) (aOr)~t = 1z, so 9 induces a map
I KL /KL -z,
15.43 Definition. The composition

. -1 (L)
Ky — K; /(14 o KL /KL 2 2P for p finite,

respectively

-1 (L)
Ky — K /KF 2 KL /K55 237 for p real infinite,

is called the local Artin map at p and is denoted by 19,(,L). It is a surjective map,
because 9 (KL) = Z,gL) (Theorem 15.42).

In the construction of the map ¥*) the modulus n has been used. The map &)
is defined on K, so its domain depends on n. It is easily seen however that 19,E.L)
does not depend on the choice of the modulus n (exercise 7).

If a finite prime p does not ramify in L, the decomposition group ZISL) is generated

by cng), the Frobenius automorphism of p in Gal(L : K). So in this case 19,(3L) (a)

is a power of gpéL) for each a € K:
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15.44 Proposition. Let p be a finite prime of K which does not ramify in L. Then
Jor each a € K we have

95 (@) = (o).

PROOF. Since p does not ramify we can choose n = mp with m a modulus for
L:K. Let a € K. There is a b € K* with b =a (mod 1+ p). Take ¢ € K* such

that
1 (mod K}),
c=
b (mod K,).

Then v, (c) = vp(b) = vp(a) and cOx € Su(K). By the construction of 19,(3L) we
have

,ngL)(a) — 19(L) (C) — (p%)(cpfvp(c))fl _ @%)(COK)71<P%)(]3)%(C) — (@;L))Up(a)-
O

The consistency property of the (global) Artin map implies a consistency property
for the local Artin map:

15.45 Proposition (Consistency property). Let L' be an intermediate field of
L: K and p’ the prime of L' below q. Then 19,(JL )(a) = 19,(31’)(04)|L/ forall a € K.
PROOF. The modulus n for L : K is a modulus for L’ : K as well. Let a € K} and
put a0 = pta with a € I"(K). Then by the consistency property (Lemma 13.53)
9(@) = o (@7 = (o @) =P (@) O

The behavior of the local Artin map under base field extensions follows from the
behavior of the global Artin map:

15.46 Proposition. Let K’ : K be a number field extension, q' a prime of LK’
above q and p’ the prime of K' below q'. Then

ﬁg,LK,)(OzHL = ﬁLL)(NE/(a)) forall a € K.

PrOOF. The modulus n for L : K is a modulus for LK’ : K’ as well (Proposi-
tion 14.11). Let a € K'y,. Put e = ex(p’) and f = fx(p’). Choose a § € K" such
that 8 =« (mod 1 + ﬁ’te). Choose a v € K'* such that
1 (mod K'L),
v =< B (mod K'pue),
1 (mod K'}iee))  for all v # p’ above p (where e(t) = ex (¢)).

Then NE'(y) € K} and NE'(y) = NE'(8) (mod K,.). By definition of 19§JL) we
have 19,(3L) (Ngl (a)) = 9E)(NEK (7). By construction of v we have 7O = p’*a
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with a € I"(K’) and s € Z. Then NX'(v) = p/*NX'(a) and NE'(a) € I"(K). By
definition of the local Artin map:

I (@) = o8& (@)™ and PP (NE (@) = 3P (NE (@) L.

By Lemma 13.54 ¢{& ()| = i (N (a)) and so 95" (o) = 95" (NE ().
O

15.47 Proposition. (K : N}(L3)) = [Lq : Ky].

Proor. If L # K, choose an intermediate field M # K of L : K such that M : K
is cyclic and put v = ¢ N M. Then Ng = N;NiI and so the following sequence of
cokernels is exact

ME/NULy) — Ky /NJ(Ly) — Ky /Ny (M) — 1.

By Theorem 12.22 the order of the third group is [M, : K], because M, : K, is
cyclic. By induction we may assume that the order of the first group is [Lq : M].
It follows that the order of Kj/N}(Ly) equals [Lq : K], because it is at least
[Lq: Ky O

15.48 Theorem. Ker(d§") = N3(L).

PrROOF. Because 19'(3L): K, — ZéL) is surjective, ZéL) = Gal(Lq : Kp) and
(K - Np(Ly))] = [Lq = Ky, it suffices to show that NJ(L;) C Ker(ﬁém). For
this, take K’ = L in Proposition 15.46: for each a € L we have 19,(3L) (Np(a)) =1
and so Nj(a) € Ker(ﬁ'(,L)). O

15.49 Theorem. Let M be an intermediate field of L : K and v the prime of M
below q. Then the local Artin maps induce an isomorphism of short exact sequences

T

1— Mt*/Nﬁ(L;) LN K;/NS(L:) — Ky /NR(M]) — 1

N}%L) N}g'(JL) NlﬁgM)

C |
11— 78 A ZM 1

PROOF. The vertical maps are isomorphisms by Theorem 15.48. Commutativity
of the diagram follows from Proposition 15.45. 0
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15.50 Lemma. A finite prime p does not ramify in L if and only if Oy € N}(Ly).

Proor. If p does not ramify, then the group Gal(Lq : K,) = ZéL) is cyclic. By
Theorem 12.23 H°(O;) = 1. Let a € O;. Then

a € Ker(Ap;) = Im(No;) = N}(Og).

Conversely, assume Op C Ny (Ly), put e = e,(JL) and f = f,gL) and consider the
following commutative diagram with exact rows:

Vq

1 03 Ly Z 0
lNS lNE Jf
* « U
1 O; Ky Z 0

The map Nyj: Op — O; is surjective: if a € Oy and a = Nj(a) with a € L,
then 0 = vy(a) = vy(Np(@)) = fvg() and so vq(a) = 0. The diagram shows that
ef = #(K;/NJ(Ly)) = f. Hence e = 1. O

Now we can show that the prime divisors of the conductor are the ramifying primes.
This generalizes this property for the base field Q (Proposition 9.39).

15.51 Theorem. If p ramifies in L, then p | fx(L).
PrOOF. For infinite p this is Theorem 15.40. Suppose p is finite and p t fx (L).
Then H(L : K) C Hu(K) and so

Sm(K) NI'(K) © N (I(L))Sa(L) = Ker(p ).

It follows that Ky N Kf,, C Ker(d9(1). Hence by Theorem 15.48

OF C Ker(0§") = N3(LY).
So by Lemma 15.50 p does not ramify in L. O
As a consequence of this theorem we can generalize Theorem 9.48:
15.52 Theorem. Let L : K be an abelian extension of number fields. Then

als) = I L.

XEH(L:K)

PrOOF. The proof is a direct generalization of the proof of Theorem 9.48. It uses
the product representations of the Dirichlet series and that a finite prime p of K
ramifies in L if and only if x(p) = 0 for some x € H(L : K). O
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The following proposition identifies the exponent of finite prime divisors of the
conductor.

15.53 Proposition. Let p be finite and ramifying in L. Then v,(fx (L)) = s, where
s € N* is the least integer with 14 p* C NJ(L}).

PrOOF. The following are equivalent:
p* [ Fx (L),
H(L: K) C Hpsm(K),
Spem(K) € N&(I"(L))Sa (K),
Spem (K) C Ker(@%”n),
Kpom C Ker(9(1)),
14 p* C Ker(9i"),
L+ p® CNJ(Ly). O

So the conductor is determined locally. The following notation is useful for a
characterization of the conductor.

15.54 Notation. Let n € N. The open subgroup Uén) of K is defined by

0y if n =0 and p is finite,

Ky if n =0 and p is infinite,
U,Sn) =41+p" ifn >0 and p is finite,
KJ  ifn=1 and p is real infinite
K, if n =1 and p is complex infinite.

15.55 Definition and notation. For p a prime of K and s the least integer such
that Ués) C Np(L;) the modulus p* of K is called the local conductor at p of L : K.
Notation f, (L) = p®.

So the conductor is the product of the local conductors:

15.56 Theorem. fx (L) = [[,cp(x) Fo(L)- O

15.7 Generalized Artin maps and the group transfer

Let K’ : K be a number field extension and x € H(K’). There is a modulus
m of K such that, as a modulus of K’ it is a multiple of the conductor of ¥.
The Dirichlet character y is equivalent to a Dirichlet pre-character ¥’ modulo m.
Then xj%, is a Dirichlet pre-character modulo m of K. Thus the injective map
jK,: I*(K) — I (K’) induces a homomorphism from the group of pre-characters
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modulo m of K’ to those of K. For Dirichlet characters we use the following
notation:

15.57 Notation. Let K’ : K be a number field extension. The homomorphism
H(K') — H(K) induced by injective map j%£,: IT(K) — IT(K’) is denoted by (% .

For abelian extensions L : K of number fields we have the Fundamental Equality
#MH(L : K)) = [L : K] = #(Gal(L : K)). The following application of the
Existence Theorem tells us in particular that #(H (L : K)) < [L : K] for nonabelian
Galois extensions L : K.

15.58 Proposition. Let L : K be a Galois extension of number fields, G =
Gal(L : K) and X = H(L : K). Then Kx = L%, or equivalently H(L : K)
H(LY : K).

PrOOF. The fields L¢ and K x both are intermediate fields of L : K and since
Kx : K is abelian we have Kx C LS . Hence

X=HKx:K)CHLY :K)CH({L:K)=X
and so Kx = LY. O

For L : K a Galois extension of number fields, G = Gal(L : K), p € Max(Og) not
ramifying in L, up to conjugation the Frobenius automorphism ¢x(q) € G does
not depend on the choice of a q € Max(Op,) above p (Proposition 7.75):

oK (1(q9)) = 7’<,0K(q)7'71 for all 7 € G.

So in this situation we can define a generalized version of the Artin map:

15.59 Definition. The generalized Frobenius automorphism <pI(JL) € G/G" is defined

by
L
op) = orc(a),
where q € Max(Op) above p. (Under the isomorphism G/G' 5 Gal(L¢ : K)
it maps to gol(gLG ).) The prime ideals of Ok which do not ramify in L form a

basis of the group I*(K). The generalized Artin map @(I?) is the group homo-

morphism determined by sending the basis elements to the generalized Frobenius
automorphisms:

w(]?): ]IL(K) - G/G, ar H(gpém)”p(a).
pla
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By definition we have a commutative triangle

) G/G

YK
15 (K) / ~

o

YK Gal(LE" : K)

Let § be the conductor of H(LE : K) = H(L : K) and m a modulus divisible by f
and all in L ramifying primes of K. Then the commutative triangle induces

) G/G
2
e (LE - K) ~

(Lk

Y Gal(L¢ : K)

and subsequently

y GY
r-
H(L: K)=H(LY : K) ~

Y Gal(LY : K)

Y

The isomorphism gb(ff) thus defined is determined by @%)(f)(p) = &(pK(q)) for all
¢ € G and all nonramifying p € Max(Ok) and q € Max(Op) above p.

15.60 Definition. The map ¢\~ : Gal(L : K)" =5 #(L : K) defined above is called
the generalized dual Artin map of the Galois extension L : K.

Now let L : K be a Galois extension of number fields and K’ an intermediate field
of this extension. Put G = Gal(L : K) and H = Gal(L : K'). The inclusion map
K — K’ induces an injective homomorphism of fractional ideals

JETHK) - T5(K'), aw aOg.
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We will show that there is a homomorphism V§: G/G’ — H/H', depending only
on the group G and the subgroup H of G, which is via the generalized Artin maps
compatible with j%, (Theorem 15.63). This group homomorphism is well-known
in group theory. It is known as the transfer from G to H.

First we define this group transfer. Let G be a group and H a subgroup of finite
index n in G. The group G acts from the right on the set of right cosets of H in
G:

(Ht)-0=Hro.

Let T be a set of representatives of the right cosets. For 7 € T and ¢ € G there is
a unique 7, € T such that Hro = H7,. Thus the action of G on the right cosets
induces a right action of G on the set T

T-0="T,.
Since Hro = HT,, we have To7, ! € H.
15.61 Lemma. The map
G— H/H', o~ H e
reT

s a group homomorphism and does not depend on the system T of representatives
of the right cosets of H in G.

PrOOF. Let also R be a system of representatives of the right cosets. For each
p € R there is a unique 7 € T such that Hp = H7. So we have a bijection
f: R— T given by Hp = H f(p). Let 0 € G. For each p it follows from

Hf(po) = Hps, = Hpo = Hf(p)o = Hf(p)s
that f(ps) = f(p)o. Modulo H' we have
[ 7o' = I] fofe)st = T £(p)o " vy o0 flp)s"

TeT pPER pER

- (H f(p)p‘l) (H popgl) (H paf(pa)‘l))
PER PER PER

The products in these formulas are well defined because modulo H’ the group
is abelian. For the last congruence above the equality {p, | p € R} = R is
used. Hence the map does not depend on the choice of the representatives. Let
01,09 € G. Foreach 7 €T

I por.

pER

HTquz = Hro102 = HTU102 = H(T01)02

and s0 75,5, = (T4, )o,- Then from

-1 -1
H TO102T, s, H TOV1T, 70, 02(Toy )y = (H TOLT, ) (H To102(To1 ) o, )

TET TeT TET TeT
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= (H 7017‘,—11) (H 7027'0__21)

TeT TeT
follows that the map is a group homomorphism. O
This lemma justifies the following definition.

15.62 Definition. Let GG be a group, H a subgroup of G of finite index and T a
set of representatives of the right cosets of H in G. The homomorphism

V§:G/G' - H/H', & H ToTy !
TeT

is called the transfer from G to H. (Verlagerung is German for transfer.)

15.63 Proposition. Let L : K be a Galois extension of number fields, K' an inter-
mediate field of L: K, G = Gal(L : K) and H = Gal(L : K'). Then the following
diagram commutes:

1M(K') —~— H/H'

(L)
¥
LK) —=— G/G

PrROOF. Let p € Max(Og) be such that p does not ramify in L and let
q € Max(QOp,) be above p. Put 0 = ¢ (q). Then @SKL) (p) =7 and jE, (p) = pOx-.
We have to prove that go(KL,) (pOx+) = V(7). Theorem 7.53 describes the prime
ideals of Ok above p. The group Z = Zk(q) = (o) acts from the right on the
set of right cosets of H in G. Let r be the number of orbits of this action and
Hry,...,H7, a system of representatives of these orbits. Then the prime ideal
factorization of pOg- is

POK = (ma(a) N K") - (70(a) N K7)

and fx(7;(q) N K') = #([HT;]). Put f; = #([H7;]). Then

fi r

P (pOx) = HsoK, (r(@) N K =[] (75(0) " = [[(rjor; )%

j=1 j=1
_ 1
—HTJUf]Tj

j=1
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The collection of right cosets of H in G is the union of the r orbits under the action
of Z. The orbits are:

Hr, Hmno, ., Hnoh-1
Hrmy, Hmyo, ., Hmnol271
Hr., Hr.o, -, Hrolr1.

The TjOi with 1 < j <rand 0 <i < f; —1 form a system of representatives of
the right cosets of H. For 0 <i < f; — 2 the representative 7;0" maps under right
multiplication by o to the representative 7;0°"!, so for these representatives there
is no contribution to the product that defines the transfer of . Therefore,

r

V§ (@) = H (rjofi-lo)r ! = H miolit . O
j=1

j=1

It follows that for the generalized dual Artin maps we have:

15.64 Theorem. In the notation of Proposition 15.63: the following square is com-
mutative:

(1)
P/
HY —= 5 H(L: K)

(V)" o
S0
QY — = S H(L:K) O

The homomorphism L? is determined by

e (00 (p) = x(pOk)

for all x € H(L : K') and all p € Max(Og) which do not ramify in L. It is a map
from a finite subgroup of H(K') to H(K). For a given x € H(K'), one can take
L : K to be the normal closure of K} : K, where K7 is the class field for (x) over
K'. Then x € (x) = H(K} : K') CH(L : K'). So the map K H(K) = HK)
is via the generalized dual Artin maps closely related to normal extensions L : K
having K’ as an intermediate field.
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15.8 The Hilbert class field

15.8 The Hilbert class field

Let K be a number field. Unramified abelian extensions L : K are the extensions
having the trivial modulus (1) as conductor. By the Classification Theorem the
maximal one among these corresponds to H;)(K) and via Artin’s Reciprocity
Theorem to the ideal class group of K.

15.65 Definition. Let K be a number field. The ray class field for H ) (K) is
called the Hilbert class field of K.

Thus, if K7 is the Hilbert class field of K, we have isomorphisms
e oK) S Gal(K, - K) and @5 Gal(K 2 K)Y 5 Hpy(K).

The following proposition illustrates the use of the existence of Hilbert class fields.

15.66 Proposition. Let p be an odd prime. The group C¢(Q(¢, + Cp_l)) is a homo-
morphic image of CL(Q(Cp)). In particular byt | hy.

PrROOF. Put K = Q((, + ¢, '), Let K be
the Hilbert class field of K and p the prime of _—
K above p. Then p does not ramify in K7 and
totally ramifies in Q((,) = K({p). It follows K1(Gp)
that K(¢,) N K1 = K and that K1(¢) : K(¢p) —
is an unramified abelian extension with Q(¢)
Gal(K1(¢p) : K(¢p)) = Gal(K; : K) = U(K).
Let Ly be the Hilbert class field of K((,). Then - K
K1((p) is an intermediate field of Ly : K((p). ]
So C/(K) is a homomorphic image of C/(K((p)). Qe +6¢7)
O

Using the transfer map for ideal class groups it is clear that the odd part of
Cl(Q(¢ + ¢ ")) is a homomorphic image of the odd part of C/(Q(¢p)). So the
extra information given by this proposition concerns the 2-primary parts of these
groups.

The action of a Galois group on the ideal class group translates into an extension
of Galois groups:

15.67 Proposition. Let K : Ky be a Galois extension of number fields and K;
the Hilbert class field of K. Then Ki : Ky is a Galois extension. The action of

Gal(K : Ky) on Gal(K; : Ko) is via cp%(l) compatible with the action on C(K).

PROOF. This follows directly from Proposition 15.6: for each 7 € Gal(K : Kj)
we have 7 (H 1) (K)) = H ) (K). O
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15 The Classification Theorem

The strength of the Classification Theorem is illustrated by the following compu-
tation of the 2-rank of the ideal class groups of quadratic number fields. A much
more elementary computation was given in chapter 4. Another proof, using more
algebraic number theory, but no class field theory, is in the exercises 8 and 9 of
chapter 12.

15.68 Application. Let K be a quadratic number field, 7 its nontrivial auto-
morphism and K; its Hilbert class field. Unramified quadratic extensions of K
correspond to elements of order 2 in H1)(K). The 2-rank of C/(K) is equal to the
2-rank of H(;)(K). By Proposition 15.67 K; : Q is a Galois extension. The action
of 7 on H(1)(K) is by inversion, so for each unramified quadratic extension L : K
we have 7*(H(L : K)) = H(L : K) and, as a consequence, the extension L : Q
is abelian. Since a prime number dividing disc(K) ramifies in such L, the groups
Gal(L : K) and the inertia group of this prime number are different subgroups of
order 2 of Gal(L : Q). On the other hand each prime number which ramifies in K
also ramifies in exactly one of the two other quadratic number fields contained in
L. Prime numbers which do not ramify in K, do not ramify in the other subfields
as well. Put D = disc(K) and

D=u- H p*a

p|D odd

where the product is over the odd prime divisors of D and u € {1,—4,8, —8}.
Consider the set

_J{p* | p odd prime divisor of D } if u=1,
~ | {p* | p odd prime divisor of D} U {u} ifu # 1.

Set r = #(P) and let s be the number of negative elements of P. The quadratic
field is real if and only if s is even. If either s is odd or s = 0, then the number
of unramified quadratic extensions of K is equal to the number of bipartitions of
P. In this case #(yH1)(K)) = 2771, that is the 2-rank of C/(K) is r — 1. For s
even and s > 0 the number of unramified quadratic extensions of K is equal to the
number of bipartitions of P into two subsets, both containing an even number of
negative elements. In this special case the 2-rank of C/(K) is r — 2.

The Principal Ideal Theorem

Let Ky be the Hilbert class field of the number field K. The Principal Ideal
Theorem (Theorem 15.74) states that for every ideal a of Ok the induced ideal
jﬁl (a) = aOk, is a principal ideal. Alternatively: the homomorphism

i, s CUK) — CU(Ky)
is trivial. Let K5 be the Hilbert class field of K.
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15.8 The Hilbert class field

15.69 Proposition. The extension Ko : K is a Galois extension and KzGl = Ki,
where G = Gal(K> : K).

PRrROOF. By Proposition 15.67 K5 : K is a Galois extension. The extension Ky : K
is unramified and hence K§ : K is both abelian and unramified. So K§' C Kj,
that is G’ O Gal(K» : K7). Because K; : K is abelian, we also have Gal(K5 : K7) D
G'. O

By Theorem 15.64 and Proposition 15.58 we have a commutative square

V&) i
V%(Z)
GV ——— H(Ky: K) = H(KS' : K) = H(K, : K) = H,(K)

Thus the Principal Ideal Theorem is translated into pure group theory: the transfer
V& G/G" — G'/G" has to be the trivial homomorphism.

We will show that indeed the transfer from a finite group to its commutator
subgroup is trivial (Theorem 15.73). In the remaining part of this section G
is a finite group. We will use the group ring Z[G] and its augmentation ideal
I(G) = Ker(Z|G] — 7).

15.70 Lemma. The map 6: G — I(G), o — o — 1 induces an isomorphism

~

5,: G/G' 3 I(G)/(I(G))2.
Proor. The identity
0'10'2—1:(01—1)+(02—1)+(U1—1)(02—1) (152)

in I(G) shows that § induces a homomorphism G — I(G)/I(G)? and since
I(G)/1(G)? is abelian, we have a homomorphism

5.0 GIG — I(G)/I(G)?, T o—1,

where & denotes the coset G’o and o — 1 the residue class of o — 1 modulo I(G)?.
The set G is a Z-basis of Z|G] and so {0 — 1| o € G\ {1} } is a Z-basis of I(G).
Clearly 0, is surjective and by identity (15.2) the homomorphism I(G) — G/G’
determined by ¢ — 1 — & induces an inverse. O

Now let H be a subgroup of G and R a set of representatives of the right cosets of
H in G such that 1 € R.
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15 The Classification Theorem

15.71 Lemma. The inclusion map I(H) — I(H) + I(H)I(G) induces an isomor-
phism
I(H)/I(H)? = (I(H) + I(H)I(G))/I(H)I(G).

Proor. First we show that
{r=Dplrec H\{1},pc R}
is a Z-basis of I(H) + I(H)I(G). From 1 € R and the identity
(r=Dp=@F -1+ -1p-1)

follows that the elements (7 — 1)p are in I(H) + I(H)I(G). They generate it as a
Z-module:

(m—1D(p—-1)=(mmn-1p—(r—1p— (1 —1). (15.3)

Classes of I(H)+I(H)I(G) modulo I(H)I(G) are represented by elements of I(H).
So we have a surjective homomorphism

I(H)/I(H)* — (I(H) + I(H)I(G))/I(H)I(G)

and from identity (15.3) follows that the homomorphism I(H) + I(H)I(G) —
I(H), (1 —1)p— 7 —1 induces an inverse:
(7'1 — ].)(Tgp — ].) — (7'17'2 — ].) — (7'2 — ].) — (Tl — 1)
= (n —1)(r2 — 1) € I(H)*. -

The transfer translates via the isomorphisms given by the lemmas into a homo-
morphism f: I(H)/I(H)? — (I(H) + (I(H)I(G))/I(H)I(G):

G
GG Vi H/H
~ I(H)/I(H)?

f -

1(G)/I(G)* ———— (I(H) + I(H)I(G))/I(H)I(G)

The transfer is given by Vi (7) = Hp cR POP 1 and so

flo=T)=> pops' —1.

PER
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15.8 The Hilbert class field

Modulo I(H)I(G) we have

D (popt = 1) =D (pop,' = Dpo =D po—> pg=> po—> p

PER pPER PER pPER PER PER
= E ploc—1).
pER
Hence:

15.72 Proposition. The homomorphism f in the commutative diagram above is
given by

fle=T)=> plo—1). O

PER

15.73 Theorem. The transfer VS : G/G' — G'/G" is the trivial homomorphism.

PrROOF. Let 01,...,0, generate the group G. Then the homomorphism Z" —
G/G' given by e; — 7; for i = 1,...,n is surjective and we have a short exact
sequence

mix)

0 zn Tk 7" — G/G — 1,

where the (m;y) stands for left multiplication by a matrix (m;x) € M, (Z). Then
det(m;x) = +4#(G/G’) and by replacing one of the generators by its inverse we can
assume that det(m;) = #(G/G’). Then for k=1,...,n:

n

Mik __ /
Hoi =1, e€qG.
i=1

From the identities

o109 — 1= (0'1 — 1) +0’1(O’2 — 1)

ct—1=-0"Yo-1)

follows that in Z[G]

(ﬁ g;’“k) -1= iﬂm(ai —1)

i=1
with g;x = my, (mod I(G)) and since 7, € G’

Tk — 1= Zaik(ai — 1)
i=1

with a;, =0 (mod I(G)). So we can assume that

(

=.

ag’”k) 1= aloi —1) =0
=1

=1
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15 The Classification Theorem

with pir = mir (mod I(G)). The group ring Z[G/G’] is commutative and G —
G/G' induces an isomorphism Z[G]/I(G')Z[G]. Let (Ay;) € M,(Z[G]) be such
that (Ar;) € M, (Z[G)/I(G")Z]G)) is the adjoint matrix of (jzz) and let u € Z[G]
be such that det(f;x) = & € Z[G]/I(G')Z|G]. The transpose of the adjoint is the
adjoint of the transpose:

Y _ 1 (mod I(GNZIG) if i = j,
;)\kﬂ”k:{o (mod I(G')Z|G]) otherwise.

Then for j=1,...,n

—1) = Apir(oi = 1) =0 (mod I(G")I(G))

and so u(o — 1) = 0 (mod I(G")I(Q)) for all o € G. The element & € Z[G/G']
is invariant under right multiplication by elements of G/G’ and therefore @ =
a) ,epP € Z|G/G'] for an a € Z. Application of the augmentation e: Z[G/G'] —
Z yields

e(7) = a- #(R) =a-[G: G'].

By definition of pu we also have
7 = det(fi;r) = det(m) =[G : G']  (mod I(Q)).
Hence a = 1 and so by Proposition 15.73 with H = G’ for every o € G:
JE=D =) plo—1) =ulo—1) =0.
PER
So f is the zero map. O
As remarked above this implies the main result of this section:

15.74 Principal Ideal Theorem. For every number field K and every ideal a of
Ok, the ideal aOk, of the ring of integers of the Hilbert class field K1 of K is a
principal ideal. [

Starting with a number field K one can form the class field tower

in which each field is followed by its Hilbert class field. Philipp Furtwangler posed
the question whether this tower stabilizes: is there an n such that K, = K,,?
For such n all ideals of Ok, are principal, not only those coming from K. In
1964 Golod and Shafarevich showed (in [13]) that the tower does not stabilize for
number fields K in which sufficiently many prime numbers ramify.
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Exercises

EXERCISES

10.

. Show that Q(i,v/5) is the Hilbert class field of Q(+/=5).

The extension Q(+/7,4) : Q(v/7) corresponds to a group of Dirichlet characters of
Q(\ﬁ ) of order 2. Determine the quadratic Dirichlet character in this group.

Let K = Q(V/7),9 = ¢+ ¢ " and L = Q(9).
(i) Show that 7 totally ramifies in both K and L.

(ii) Let p and q be the unique primes of respectively K and L above 7. Show that
Ky : Q7 and L : Q7 are 3-Kummer extensions.

(iii) Prove that K, = Lg. (Hint: use q = (¢ — 2) and ¢* = (7).)
(iv) Show that K(9) is the Hilbert class field of K. (See exercise 4 of chapter 14
and Example 5.22.)

(i) Compute Q/Q3°.
(ii) How many Galois extensions K : Q7 of degree 3 are there? For each of them
give an a € K such that K = Q7(a) and o® € Qs.

Determine the number of Galois extensions K : Q7 of degree 5.

Let a € Rsuch that o® = a+1. As remarked in Example 13.56 the field Q(c, v/—23)
is the Hilbert class field of Q(v/—23). Show that 2 splits in Q(a,/—23) as the
product of two principal prime ideals.

Show that the local Artin map 19§L> does not depend on the choice of the modulus
n used in its construction.

Show that the extensions K, : K in the class field tower (15.4) are Galois extensions.
([9], Theorem 1) Let K; and K> be number fields with disc(K1) and disc(K3)

relatively prime. Suppose that K; : Q and K5 : Q are Galois extensions.

(i) Prove that the map
(bt 2 trgl 72) 0 QUK Ka) — CU(K1) x CO(K3)

is surjective. (Hint: look at the Hilbert class fields of K1 and K>.)

(ii) Let m1, ma € N* be relatively prime and put m = mims. Show that the ideal
class group of Q((m) contains a subgroup isomorphic to the product of the
ideal class groups of Q(Cm,) and Q((m,)-

([9], Theorem 2) Let K be a complex biquadratic field and let K, K2 and K3
be its quadratic subfields, say K; is the real quadratic subfield. Assume that
ged(disc(K1),disc(K2)) = 1. Set H = Gal(K : K3). Prove that the following
sequence is exact

K K
(trK1 AR, )

1 — (KT — (K1) x C(K>) CUK) —1
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15 The Classification Theorem

and that the Hasse index of K equals 1. (Hints: exercise 9, Example 9.57 and
exercise 5 of chapter 14)
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16 Local Class Fields and Symbols

Classical reciprocity laws involve power residue symbols such as the Legendre sym-
bol in the quadratic case for Q. Reciprocity laws for power residue symbols can be
obtained from product formulas for Hilbert symbols. In section 16.3 Hilbert sym-
bols are treated and in the last section some classical reciprocity laws are derived.

Hilbert symbols are based on the local Artin maps for Kummer extensions. Local
Artin maps have been defined in section 15.6. In section 16.1 it is shown that they
depend only on the extension of the local fields. Their role in local class field theory
is similar to the role of Artin maps in global class field theory (see Theorem 16.15).
Local Artin maps can be interpreted as norm residue symbols and in section 16.2
it is shown that for a given abelian extension of number fields their product over
all primes of the base field is trivial (Theorem 16.22). The product formula for
Hilbert symbols is a consequence of this.

16.1 Local class fields

In this section we fix a prime number p. In section 15.6 the local Artin map
(L), gor=* (L)
vy Ky = 7

has been constructed for an abelian number field extension L : K and a prime p of
K above p. For a prime q of L above p we have
~ (L)
Gal(Lq : Kp) — Zk(q) = Z, 7,
where the map is the restriction of automorphisms of Lg to L. Via this isomorphism

we have a map
9 Kp = Gal(Lg : Ky),

also denoted by 19§,L), for the abelian extension Lg : K, of local fields. For its
construction the number field extension L : K has been used. First we will show
that each finite abelian extension of local fields is of this type and that the map
does not depend on the choice of the number field extension.
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16 Local Class Fields and Symbols

@p Let’s fix an algebraic closure @p of Qp. For a number field K
and a prime p above p, we can assume that the completion
Ky has Q, as a subfield. The extension Ky : Q) is finite, so

K, we can also assume that K, is contained in Q.
K - In this section all number fields are assumed to be subfields
of a fixed algebraic closure Q, of Q,. Thus every number
Qp field has a designated prime p above p. Its completion K, is
Q - assumed to be a subfield of Q, as well.

16.1 Notation. We write K for the completion of a number field K contained in
Q, with respect to its designated prime p above p. So K = K.

The completion of the composite of number fields is the composite of their com-
pletions:

16.2 Lemma. Let K; and K5 be number fields. Then I?l-f?g = K, K>.

PROOF. From K1, K» C K1 K> follows that K1, K» C K;K». On the other hand
K1, Ky C K1K» and so K1 K> C K1 K», which implies K1 K> C Ky Ko. O

Though completion commutes with composition, it does not commute with inter-
section: 3 remains prime in Q(4) and also in Q(+/2). Their intersection is @, but
their completions both equal the unique unramified extension of Q, of degree 2.

The next lemma shows in particular that abelian extensions of local fields are
obtained by completing abelian number field extensions:

16.3 Lemma. Let E : F be a finite Galois extension of local fields. Then there
is a Galois extension L : K of number fields such that E = L, FF = K and
Gal(E: F) > Gal(L : K).

ProOOF. Let E be a finite extension of Q, for a prime number p. By Corollary 11.5
E = M for some number field M. Set G = Gal(E : F) and let L be the composite
of the fields o(M) for all 0 € G. Then E D L O M and so FE = L. Put K = LC.
Then K C Fandso [E: F]<[L:K|<I[L:K]=#(G)=|[E:F]. Hence F = K
and Gal(E : F) = Gal(L : K). O

The local Artin map does not depend on the choice of the number field extension:

16.4 Proposition. Let E : I’ be an abelian extension of local fields and Ly : K1 and
Lo : Ko abelian number field extensions such that E = L1 = Lo and F = K1 = K.

Let p1 and po be the designated primes of K1 respectively Ko. Then 19;(,?1) = 19,(322).
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16.1 Local class fields

PrOOF. Consider the diagram below of number field extensions. The extensions
L1 K5 : K1 Ky and KLy : K1 K5 are abelian and so is their composite Ly Lo : K1 Ks.
Let p1o be the designated prime of K7 K5. Then for all o € F' = K K5 we have:

LlKQ/Lle\Kng
NG

NSNS

It (@) = 95 ()| (LK, = E)
= 19](52 1K) (a) (Proposition 15.45)
_79;%2](2 ()3, (Li=E=L Kz)
= 9 (NB12(a)) (Proposition 15.46)
= 95 (o) (K1 Kz = K1 = F).
By symmetry 9471 () = 9477 (a). O

So the following definition is justified:

16.5 Definition and notation. Let E : I’ be an abelian extension of local fields.
Then the Artin map

9E) . F* 5 Gal(E : F)

of E : I is defined to be the local Artin map ﬁf,L), where L : K is any abelian

number field extension such that L = E, K = F and p is the designated prime of
K.

The local Artin map 19,(JL) C Ky — ZISL) is surjective and its kernel is Nj(Ly). So we
have:

16.6 Theorem. Let E : I be an abelian extension of local fields. Then ﬁ%E) induces
an isomorphism F* /NE(E*) 5 Gal(E : F). O

The consistency property for local Artin maps and their behavior under base field
extensions (Propositions 15.45 and 15.46) are easily translated:
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16 Local Class Fields and Symbols

16.7 Proposition. Let E : F' be an abelian extension of local fields.
(i) Let E' an intermediate field of the extension E : F. Then for all o € F*

E' E
(ii) Let F': F be an extension of local fields. Then for all a« € F'™

99 () =99 (NE (a)).

PROOF.

(i) Take L such that L = E and subsequently the subfields K and L’ of L which
are invariant under Gal(E : F') and Gal(E : E') respectively. Then F' = K,
E' = K’ and

957 (@) = 05" (@) = 0§ (@) |z = 957 (@) |-

(ii) Take an abelian number field extension L : K such that L = F and K = F.

Let K’ be a number field such that K’ = F'. Then EF' = LK’ = LK’
(Lemma 16.2) and so

EF' LK’ L) (nrp’ E '
O )l = 0" (@) = 07 (N} () = 0 (N (@), O
16.8 Notation. Because of the consistency property (Proposition 16.7(i)) we will

often replace the upper index of ¥ in ﬂ%E)(a) (8) by (%): * stands for any E such
that E : F is an abelian extension with 8 € E. In chapter 19 we will omit the
upper index: ¥p(c) is there interpreted as an automorphism of Q, : F.

For unramified extensions the local Artin map is given by the Frobenius automor-
phism. This is a direct consequence of Proposition 15.44.

16.9 Proposition. Let E : F be an unramified abelian extension of local fields.
Then ﬂ%E)(a) = (@%E))”(O‘) for all a € F*. In particular, O3 C Ker(ﬁ‘%E)). O

Local class field theory is about a one-to-one correspondence between abelian ex-
tensions of a local fields F' and subgroups of F* of finite index. Each abelian
extension E : F' determines the subgroup NE(E*) of index [E : F].

16.10 Proposition. Let F' be a local field and Eq : F and Es : F abelian extensions.
Then
E, C By «— NEY(E}) DNE(E3).

PRrROOF.

=>: This follows from NZ]?IN% = Ngz.
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16.1 Local class fields

<: Put E = E1Fy and B/ = E; N E,. Let a € Ker(ﬂ(El)) N Ker(ﬁ(Ez)). Then
by the consistency property (Proposition 16.7(i)) we have:
95 (@)p =95 (@ =1 and 957 (a)lm, = 95 (@) = 1.

It follows that Ker(ﬁ(E) = Ker( ) N Ker (9 9 ), that is NE(E*) =
NE(Bf) N NE2(E3). Suppose N& (Ef) ) NE2(E2) Then NE(E*) =

N£2(E%) and so by Theorem 16.6 [E : F] = [Ey : F]. Tt follows that E = E,
that is El g EQ. O
So the map
abelian subgroups of F™*
extensions of F of finite index

E:F ———— NE®E

is injective. We will show its surjectivity: the existence theorem for local class field
theory. The proof is along the lines of the proof in the global case, but is much
simpler.

16.11 Definition. Let X be a subgroup of F'* of finite index. If E : I is an abelian
extension of F such that NE(E*) = X, then E is called the class field for X.
Notation: £ = Fx.

16.12 Lemma. Let E : F be an abelian extension of local fields and X a subgroup
of F* such that NE(E*) C X C F*. Then there is a class field for X.

Proor. Put H = 9% (X) C G = Gal(E : F) and E' = EX. It will follow that
E’ is the class field for X. For o« € F'* we have:

aeX e ) el = 9P )p =1 <= 9 ) =1
= o€ Ker(ﬁ%El)) — aeNE(E™). O
16.13 Lemma. Let F' : F be an abelian extension of local fields and X a subgroup
of F* of finite index. Assume that there is a class field for the subgroup
X'=(NE)HX) ={a € F" N[ (a) € X}
of F'*. Then there is a class field for X.

Proor. Let E be the class field for X’. From

NE(E*) = NE'NE,(B") = NE/(X') € X
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16 Local Class Fields and Symbols

and Lemma 16.12 follows that it suffices to show that E : F'is an abelian extension.
Let o be an embedding of E in the chosen algebraic closure of F' such that its re-
striction to F is the identity. Put H = Gal(E : F'). Then cHo~! = Gal(o(E) : F')
and o(F) is the class field for o(X’): for o € E* we have

NG (@) = [T oro (@) = o(I] 7(@) = o(NE (@) € o(X).

TEH TEH

Because F' : F is a Galois extension we have ¢(F') = F' and therefore, NE (a) =
NII::/ (o(a)) foralla € F'. Soo(8) = B forall § € X'. In particular o(X’) = X’ and
by Proposition 16.10 o(E) = E. It follows that E : F' is a Galois extension and
that Gal(F': F) operates trivially on Gal(E : F'). For F': F cyclic this means
that Gal(E : F') is abelian. The general case of F’: F being abelian follows by
induction in the same way as in the proof of Theorem 15.7. O

16.14 Local Existence Theorem. Let F' be a local field and X a subgroup of F*
of finite index. Then there is a class field for X.

PROOF. Let n be an exponent of the finite group F*/X. By Lemma 16.13 we may
assume that F' contains a primitive n-th root of unity. By Corollary 11.23 the index
(F* : F*™) is finite. By Lemma 16.12 it suffices to prove that there is a class field for
F*™. Let E be the n-Kummer extension corresponding to F*". By Theorem 15.14
we have (F*: F*") = [E : F] and by Theorem 12.22 (F* : NE(E*)) = [E : F].
Since F*" C NEZ(E*)), it follows that F*" = NE(E*). So E is the class field for
F*. O

Summarizing we have:

16.15 Local Classification Theorem. For F a local field we have a one-to-one
correspondence

abelian subgroups of F*
extensions of F of finite index

E:F +——— NEEY

inF 1 X

The local Artin map ﬁ(FX F* — Gal(Fx : F) induces an isomorphism F*/X =
Gal(Fx : F). O

We have seen in section 15.6 that the conductor of an abelian number field extension
is the product of local conductors (Theorem 15.56). Now it is clear that these local
conductors are conductors in the sense of local class field theory.
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16.1 Local class fields

16.16 Notation. Let F' be a local field and ¢ € N. The open subgroup U}i) of F*
is defined by

o Jop  ifi=o,
+p% ifi>0.

So for the p-adic completion K, of a number field K we have Uf((ll = Uéi). See
Notation 15.54.

16.17 Definition and notation. Let £ : F' an abelian extension of local fields.
There is a least s € N such that UI(,S) C NZ(E*). The ideal p% of Op is called the
conductor of E : F. Notation: fg(E).

For L : K an abelian extension of number fields, p a finite prime of K and q a prime
of L above p we have fx, (Lq) N K = fy(L). See Definition 15.55.

16.18 Proposition. Let E : F be an unramified abelian extension of local fields of
degree n. Then
NE(E*) = OpF*™,

Proor. By Proposition 16.9 we have O} C Ker(ﬂ%E)) = NE(E*) and hence
OnF* C NE(E*). Equality holds because both groups are of index n in F*. O

We have already seen that for each n € N* there is a unique unramified abelian
extension of degree n of a given local field F' (Corollary 11.13). The proposition
tells us to which subgroup of index n of F* this extension corresponds.

16.19 Proposition. Let E : F be an abelian extension of local fields. Then E : F
is totally ramified if and only if NE(E*) contains a uniformizer of vp.

PrROOF. We have a commutative square

vE
E*—7Z

vp

F*— 7

The map vg is surjective, so the composition UFNfg is surjective if and only if
(E) _q O
=1

Our construction of the local Artin map is based on the (global) Artin map for a
number field extension. In modern approaches it is the other way round using a
direct construction in the local situation. The local Artin maps do not depend on
the construction: they are unique in the following sense.
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16 Local Class Fields and Symbols

16.20 Theorem. Let I be a local field and (1 F)) a collection of maps

Y B F* 5 Gal(E : F) (one for each abelian extension E : F)

satisfying
a) reciprocity: For each abelian extension E : F the homomorphism B
nduces an isomorphism

F*/NE(E*) =5 Gal(E : F).

b) consistency: For each abelian extension E : F and each intermediate field

E of E:F
for all o € F*.

V(@) = 1) (a)

El
¢) frobenius: For each unramified abelian extension E : F

V) () = (@%E))W(a) for each o € F*.

Then () = 19%E) for all abelian extensions E : F.

PROOF. Let m € F* be a uniformizer of vp and E : F' an abelian extension of

degree n and conductor pt.. The group X = (1 + p%) - (z") C F* is contained in
NE(E*) and is of finite index in F*. It is the intersection of two subgroups of F*

of finite index:
X:leXQ with X1:(1+ptF)<7T> and X2 OF < >
Then X1 X, = OF - () = F*. So we have the following diagram of abelian field

extensions

/\\
\\/

with Gal(Fx : F) = Gal(Fx, : F) x Gal(Fx, : F). By a) and c)
PP (m) = 1= 05 () and ) (m) = o) =97 ().

So by b)
WO () = (m)] p = 957 ()| = 05 ().
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16.2 Norm residue symbols

It follows that ¢(®) and ﬂ%E) agree on uniformizers. The group F* is generated by
uniformizers: for o € F* we have

o= (Om_—v(a)—i-l)ﬂ_v(a)—l.

Hence (&) = 19%]3) for all abelian extensions F : F. O

16.2 Norm residue symbols

For a given abelian number field extension L : K any local Artin map can be
applied to the nonzero elements of the base field K and take values in the Galois
group of L : K. In this section it is shown that the product of these values over
all primes of K is trivial. This result is independent of the previous section. Only
section 15.6 is used.

16.21 Definition. Let L : K be an abelian number field extension and p a prime
of K. The composition

e
K-S Kp 2o 730 S qal(L: K)

is called the norm residue symbol at p. The following notation is often used: for

ac K*
<a,Lp: K> _ 19§,L)(a).

So by Theorem 15.48 we have

L: K *
(ap> =1 < aeN}(L)),

where q is a prime of L above p. An a € K™ is said to be a local norm at p if
a € Np(Ly).

The construction of the local Artin maps ﬂf,L) leads to a product formula for norm
residue symbols:
16.22 Theorem. Let L : K be an abelian extension of number fields and a € K*.

Then
a, L : K
H( ):1.
p

p

PRrROOF. The product is a finite one: for finite nonramifying p with v,(a) = 0 we
have (%) = 1. Choose a modulus m for L : K such that p | m for all finite
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16 Local Class Fields and Symbols

primes p of K with vy(a) # 0. Let m = p§* - p¥ where py,...,p, are different

s

primes of K and put m; = mpi_ki. By Lemma 13.19 there are a; € K* such that

{a (mod K%,)),
a; = p;

1 (mod K&l?)'
Then
ay---as =a (mod K).

Let

a0 aip;%"(a) if p; is finite,

’ a; 0k if p; is infinite.
Then . . .

95 (a) = 057 (a;) = 9P (ar) = @3¢ (a)
and
al"'asOK = aloK"'asOK :pql)pl(a) .‘,ng‘s(a) s Qg =a-ag---dg.

Hence w“-a

Ay = 2Ok € Su(K)
and so

a,L: K o > _ _
IT(“55) =TT @ = [T ) = w0y =1 O
b i=1 i=1

16.3 Hilbert symbols

In this section local fields with residue class fields of characteristic a prime number
p are considered to be subfields of a fixed algebraic closure Q, of the p-adic field

Qp. In section 16.1 we defined Artin maps ?9%13) : E* — Gal(E : F) by considering
number fields with designated prime ideals.

For infinite primes p we fix the algebraic closure Q4 to be the field C. A number
field with a designated infinite prime is then just a subfield of C. For the extension
C : R we have a map

1 ifa>0,

9 R* = Gal(C : R), Ou—>{ :
T ifa<0,

where 7 is complex conjugation. Then for an abelian extension L : K of number
fields and p a real infinite prime of K we have ﬁ,gL)(a) = Uglﬁ]g%c)(ap(a))aq, where
q is a prime of L above p.
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16.3 Hilbert symbols

In general, if K is a field containing a primitive n-th root of unity and b € K*,
then the extension K (/b) : K is a Galois extension and

Cal(K (VD) : K) = pin, 0+ (16.1)

is an injective group homomorphism. (The group u, is the cyclic group of n-th
roots of unity of K.) We use this for the construction of a symbol on a local field.

16.23 Definition. Let F' be a local field with u,, C F. The map

95 (a) (/B)
F* X F* = i, (o, ) vy L0 NVE)
A
is called the n-th Hilbert symbol on F'. Notation:
19(*) o n /B
(o, = QWD)
VB
(See Notation 16.8 for the 195.;5) notation.) Similarly, for the field R we have
(@
95 () (VB)

R* X R* = po, (a,f8) — =: (o, B)a2.

VB

16.24 Definition. Let K be a number field containing p,,. For p a prime of K, the
n-th Hilbert symbol on the completion K, restricts to a symbol on K, the n-th
Hilbert symbol on K at p:

(%) n
K x K" — Hons (avb) = (avb)n = ﬁp(i\/)g(\/g),

where * stands for a number field containing K'({/b). This symbol will be denoted

a,b
b : )
y(P>n

16.25 Proposition. Hilbert symbols on C are trivial. For the quadratic Hilbert
symbol on R we have for a, f € R*

(a,8)2 =—1 <= a<0and 5 <0.

Proor. Equivalent are:
(avﬁ)2 = _]-7
19]%*)(04) #1 and o ¢ R*T,
8 <0and a<0. O
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16 Local Class Fields and Symbols

The dependency on n is as one might expect:

16.26 Proposition. Let F' be a local field with p, C F and let m | n. Then for all

a,peF*:
(aaﬁ)m = (avﬁ)z/m
ProoR. (0, B)1/™ — W (@) (¥/B)™ _ 97 (@)(VB) _ (@ 8 -

(/B) e
The product formula for local Artin maps (Theorem 16.22) yields a product formula
for Hilbert symbols:

16.27 Theorem. Let K be a number field containing the n-th roots of unity and

let a,b € K*. Then
(a, b)
11 =1
p P n

where the product is over all primes of K.

Proor. The product formula for local Artin maps for the Galois extension

K(Wb) : K
HIQ V))

is via the group homomorphism (16.1) translated into a product formula for Hilbert
symbols. O

16.28 Proposition. Hilbert symbols are bilinear.

PROOF. Let F be a local field containing u,,. Because for each 5 € F* the map

ﬂ%F( V) is a homomorphism, the Hilbert symbol is linear in the first variable:

(041042, /B)n = (ahﬂ)n(a?zﬁ)n-

For 81,82 € F* take E = F({/B1, V/B2). Since 19( (@) is an automorphism of FE
for each o € F*, the Hilbert symbol is linear in the second variable:

(Of, ﬂlﬂ?)n = (a7 ﬂl)n(a7 52)77,
For the symbol («, 8)2 on R bilinearity is easily verified. O

16.29 Proposition. Let F' be a local field containing p,. Then (1—a,a), =1  for
all a € F*\ {1}.

Proor. Puty= {/a and E = F(v). The homomorphism

Gal(E: F) = pp = (), o+ USY)

418



16.3 Hilbert symbols

is injective. Let d = #(Gal(F : F)) and choose o € Gal(E : F) such that o(v) =
Cay- From

n

X" —a=][(X-¢)

i=1
follows that 1 — « is a norm:
n 4 n/d d ‘ n/d
L-a=]Ja-¢yn=TTTI0 - = [TNEa - v
i=1 k=1j=1 k=1

n/d

=NE(TTa-¢m).

~

=~
Il
—

The proposition follows from Theorem 15.48:

1—a € NE(F(y)")) = Ker(0'?) m}

Clearly, for the symbol («, 8)2 on R we also have (1 — «, ) = 1: the real numbers
«a and 1 — a cannot be both negative.

For fields K bilinear pairings on K* satisfying the identity of this proposition occur
frequently. They have a special name.

16.30 Definition. Let K be a field and A a (multiplicative) abelian group. A
Steinberg symbol on K with values in A is a mapping s: K* x K* — A satisfying

(SS1) s(ajaz,b) = s(ai,b)s(ag,b) for all a1, a2,b € K*,
(SS2) s(a,bibs) = s(a,b1)s(a,bs) for all a,by, by € K*,
(SS3) s(1—a,a)=1foralla € K*\ {1}.

Steinberg symbols arise in algebraic K-theory, a part of algebra that started around
1970. A central part of algebraic K-theory is about abelian groups K, (R) for n € N
and R a ring. For n < 2 good references for this theory are [29], [2] (for n = 0,1)
and [26]. It’s a theorem of Matsumoto that for a field F', the group K2(F') has a
presentation given by generators

{a, b} (a,b e F")

(the notation {a, b} is a ‘symbol’ notation, not the set-notation) and relations
{a1,b}{az,b} = {a1a2,b} for all a1,a2,b € F*,
{a,bib2} = {a,bi1}{a, bz} for all a,b1,bs € F*,

{1—a,a} =1forallac F*\{1}.
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16 Local Class Fields and Symbols

(For an obvious reason in algebraic K-theory one tends to denote fields by F' rather
than K.) So the map (a,b) — {a,b} is a Steinberg symbol on F, in fact it is the
‘universal’ Steinberg symbol on F. By the way, the groups Ko(F) and Ki(F) are

Z and F* respectively.

Consequences of the axioms for Steinberg symbols:

16.31 Theorem. Let s be a Steinberg symbol on a field K with values in an abelian

group A. Then

PRrROOF.

(SS4) For a =1 this follows from (SS2). For a # 1 use —a =

s(—a,a) = s(=¢,a) = s(1 —a,a)s(1 — 1,a)7"

s(b,a) = s(b,a)s(—a,a)”*
= s(b,a)s(—1,a)
— 5(=2,0)
=s(—¢,a)s(—¢,2)
= 5(-2.b)
= s(—b,b)s(a,b)*
= s(a,b)"

(SS6)
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16.3 Hilbert symbols

(SS7) Put ¢ =a+b. Then

1=s(2,2) (SS3)
= s(a,b)s(a,c) ts(c,b) " ts(c, ) (SS1) and (SS2)
= s(a,b)s(a,c) " s(c,b) (e, —1)7* (SS2) and (SS6). O

16.32 Definition. Let F' be a field with a discrete valuation v, valuation ring R
and maximal ideal p. The tame symbol on the discretely valued field F' is the map

F* x F* = (R/p)*: (a,b) = (a,b)y = (—1)"@2O)pp@=00) | o

Since v(b*@a=v®) = v(a)v(b) — v(b)v(a) = 0, we have
(_1)v(a)v(b)bv(a)a7v(b) c R*

and so (a,b), € (R/p)* = R*/(1+p).
16.33 Proposition. Tame symbols are Steinberg symbols.

PrROOF. Tame symbols are obviously bilinear, so it remains to show that they
satisfy (SS3). Let F be a discretely valued field as in Definition 16.32 and a,b € F™*
such that a + b = 1. The proof of (a,b), =1 is by case distinction.

v(a) >0: Then v(b) = 0, so (=1)"@®) = 1 and p(@g=v®) = p=vl@) =
(1—a)" =1 (mod p).

v(b) > 0: As the case v(a) > 0.

v(a) <0: Then v(b) = v(l —a) = ( ) and so b*(@g=v(®) = (pg~1)v(@) =
(a™t = 1)@ = (=1)v(@) = (=1)v(@) = (=1)*@v®) (;mod p).

v(b) < 0: As the case v(a) < 0.

v(a) = v(b) = 0: In this case the condition is trivially satisfied. O

Tame symbols on a local field are essentially Hilbert symbols:

16.34 Theorem. Let F' be a local field. Under the isomorphism jiq—1 5 (kr)*, ¢
¢ (= C+p), where ¢ = #(kr), the Hilbert symbol (c, §)4—1 maps to the tame symbol

(a, B)y.

PROOF. Choose 7 € F with v(r) = 1. Both symbols are Steinberg symbols, so
by bilinearity and anti-symmetry it suffices to consider the cases (¢, 8), (, 8) and
(m,m), where o, 5 € O3. By (SS4) the last case can be replaced by (m, —1). Thus
only two cases remain. In both cases put F = F(*%/B). By Lemma 15.15 the
extension E : F' is unramified. Hence by Proposition 16.9 ﬁ%E) (v) = ((p%E))U('Y) for
all v € F*.
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16 Local Class Fields and Symbols

(o, B) with o, 8 € OF:
By definition of the tame symbol (a,3), = 1. Since v(a) = 0, we have

95 () = 15 and so 97 (a)(/B) = /B. Hence (v, B)q—1 = 1.

(m,B) with 8 € O3 B
Again by definition of the tame symbol (m, 3), = 5. The Hilbert symbol is
defined by

9 ()" B) = (7, B)g-1 "/ B.

Modulo pg we have

I (@) (YB) = o (/B) = /B (mod pg).

Hence .

VB = (m,B)g-1 /B (mod pp)
and division by ?+/f yields:

B=(mB)y-1 (modpgnF). O

In the notation introduced on page 282:

(OZ, 5)(171 = WF((avﬂ)v)’

So the Hilbert symbols on a local field F' are all powers of the Hilbert symbol

(e, B)m, where m = #(u(F')) (Proposition 16.26) and («, B)E corresponds to the
tame symbol. Let’s call Hilbert symbols («, 8),, with n | ¢—1 tame Hilbert symbols,
and the others wild Hilbert symbols. So tame Hilbert symbols are essentially
powers of tame symbols:

16.35 Corollary. In the notation of Theorem 16.34: forn | q—1 the Hilbert symbol
(a, B)y, is related to the tame symbol («, 8), by

(o, B)n = (a,ﬂ);%l (modpp) forall a,f € F*.

In particular for a number field K, a finite prime p of K and n | #(u(K)):

a, b N(p)—1
= (a,b)v, " foralla,be K* O
P/
In algebraic K-theory one has the following short exact sequence for a number field
F:
1 — K(0r) — Ko (F) 28 @D (0r/p) — 1, (16.2)
pEMax(OFp)

where the 7, are given by the tame symbols (a,b) — (a,b)s,. The group K2(OF)
is finite by a theorem of Garland. It is known as the tame kernel of F'. It measures
how far Steinberg symbols differ from tame symbols. At each of the three places
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16.4 Power residue symbols

in the short exact sequence the exactness is far from trivial when starting from the
elementary definitions of K-groups as given in [29] or [26]. Hilbert symbols are
more general than tame symbols. For these we have an exact sequence

Ka(F)— @ u(F) — u(F) — 1,

p finite or
real infinite

This is known as Moore’s Reciprocity Uniqueness Theorem, see [29], §16. The kernel
of the first map is called the wild kernel of the number field F', it is a subgroup
of the tame kernel since every tame symbol is essentially a Hilbert symbol. The
groups Ko(OF) and K;(OF) are respectively Z x C¢(F') and OF. The last is far
from obvious, it is a theorem of Bass, Milnor and Serre [1] and is equivalent to the
surjectivity of (), in the short exact sequence (16.2).

16.4 Power residue symbols

For the number field Q we have the Legendre symbol and its generalization, the
Jacobi symbol. These notions will be generalized for number fields containing
sufficiently many roots of unity.

16.36 Lemma. Let K be a number field with ¢, € K and let p € Max(O) such
that ptn. Then the map

pn = (Cn) — (Ok /p)",
induced by the canonical map O — Ok [p, is injective.

Proor. Divide both sides of X" —1 =[], (X —() by (X —1) and substitute

1 for X:
n=[0-0.
CEHn
(#1
Since p ¥ n, We have ¢ # 1 (modp) for all ¢ # 1. O

16.37 Definition. Let K be a number field containing pu,, p a finite prime of K
N(p)-1

and «a € Ok such that ptn,«. Then @~ = is an n-th root of unity of O /p. So
there is a unique ¢ € pu,, such that

N(p)—1

a~n  =( (modp).
This unique ¢ is denoted by (i) and the map

(07

OK\P—>Mn7 aH(p)

is called the n-the power residue symbol.
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16 Local Class Fields and Symbols

The power residue symbol is closely connected to a tame Hilbert symbol:

16.38 Lemma. Let K be a number field containing p,, p a finite prime of K,
a, B € Ok relatively prime to each other and ptn,«. Then

ﬂ,a a vp (B)
(55,6,

Proor. By Corollary 16.35:

_ vp (B)
, o N(p)—1 on () N1 AN
<Bp) =(Ba),” =« p(B)TH = <p) (mod p) O

The power residue symbol is a generalization of the Legendre symbol.

16.39 Proposition. In the notations of the definition we have:

(i) <C:) = (f) for all a, p € Ok \ p with « = B (mod p).

(ii) <O;ﬂ>n = (z>n<f>n for all a, B € Ok \ p.

(iii) (g) = (W for all ¢ € py,.

(iv) (3) =1 <= « is an n-th power modulo p.

PRrROOF. (i), (ii) and (iii) follow directly from the definition of the power residue
symbol. For (iv) note that, because the group (O /p)* is cyclic of order ¢ — 1, the

n-th powers form a subgroup of order % and this subgroup is the kernel of
* * — __ N1
(Ok/p)* — (Ok/p)", @—a » . 0

We have the following generalization of the Jacobi symbol.
16.40 Definition. Let K be a number field containing ,,, b a nonzero ideal of O

relatively prime to n and a € O \ {0} relatively prime to b. The symbol (?)

(). -16).

plb

is defined as follows "

For b a principal ideal, say b = (3), we will write (g) for <a> .
n n
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16.4 Power residue symbols

16.41 Proposition. In the notation of the definition we have:

(1) (Z) = <f) for all o, 8 € Ok relatively prime to b and a = 8 (mod b).
(ii) (OZB) = (:) (f) for all a, B € O relatively prime to b.

(iii) (a) = (i) (i) for all a,b € 1" (K) relatively prime to a.

N(b)—1

(iv) () =( " forall € py.

PRrROOF. (i), (ii) and (iii) follow directly from the definition of the symbol. (iv)
is easily proved by induction on the number of prime ideal factors of b. For the
induction step use

0= (N(a) — 1)(N(b) — 1) = N(ab) — 1 —N(a) + 1 = N(b) +1 (mod n?),
which implies

N(ab) —1 _ N(a)

N(b) — 1

-1 + (mod n). O

Hilbert’s reciprocity

The product formula for Hilbert symbols leads to Hilbert’s reciprocity:

16.42 Hilbert’s Reciprocity Theorem. Let K be a number field containing pi,
and a, B € Ok prime to each other and to n. Then

(5.2, - 1L ().

p|noo

PrROOF. The product formula yields

(5, I,

pla plB

(), -6 - (). :

(%) =+

plnoo

By lemma 16.38
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16 Local Class Fields and Symbols

For roots of unity we have:

16.43 First supplement to Hilbert’s Reciprocity Theorem. Let K be a number
field containing i, ¢ € un, and B € Ok prime to n. Then

OV Ly (SB) e
5)-I(5), -+

p[noo
PROOF. In this case the product formula yields

() () =

»lB p|noo

Apply Lemma 16.38 and Proposition 16.41(iv). O
For divisors of n:

16.44 Second supplement to Hilbert’s Reciprocity Theorem. Let K be a num-
ber field containing p, and X\, € Ok such that X | n and B € Ok prime to n.

Then
(). -I(5).

p|noo

PRrROOF. As for the first supplement the formula follows from the product formula
and Lemma 16.38. O

16.5 Some classical reciprocities

The classical reciprocities for power residue symbols follow from Hilbert’s Reci-
procity Theorem. In this section this is done for quadratic, cubic and quartic
reciprocity. Also a reciprocity of Eisenstein for the [-th power residue symbol is
derived from Hilbert’s theorem. These classical n-th power reciprocities are re-
ciprocities in the cyclotomic field Q(¢p,).

Quadratic reciprocity

We have seen already two proofs: one using extensions of finite fields, the other the
splitting behavior of primes in a cyclotomic field. The proof given here indicates
how one can proceed in other cases. Hilbert’s reciprocity for the field Q and n = 2:
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16.45 Proposition.

(1) (Z) (Z) = (Z’f) (aéb> for all relatively prime odd a,b € Z.
2 2 2 2

(i) <_bl> = (_; b) = (=1)*=" for all odd b € Z.
2 2

(iii) (2) = <2’ b> for all odd b € Z. O
b/, 2/

The subindex 2 will be omitted in this subsection. Note that % with b > 0 is the

b
Jacobi symbol and that (Z) = (;) The symbol (2) is the following symbol
on R:

(“’b)_l — a<0andb<0.
o0

b
We compute the Hilbert symbol <a,2> for relatively prime nonzero a,b € Z.

16.46 Lemma. For odd a € Z there are unique j, k € {0,1} such that
a=(-1)75" = (=1)(1 + 4k) (mod 8)

and j and k are determined by

a—1 a?—1

5 (mod?2) and k=

J= (mod 2).

PROOF. (—1)7a =1 (mod4) for a unique j € {0,1} and subsequently (—1)7a =
1+ 4k (mod 8) for a unique k € {0,1}. Clearly, j = %5* and a® = 1+ 8k (mod 16)
implies % = k (mod 8). O

16.47 Proposition. Let a and b be odd integers. Then

0 (%) = o=
i) (T57) = (0=
(iid) (2’2b> — (-1

Proor. We will use the Proposition 16.45, Lemma 16.46, the inclusion 1+ 8Zs C
32 given by Theorem 11.22 and the fact that a Hilbert symbol is a Steinberg

symbol. Put j = 431, s = b1 | = —“25;1 and t = —b2g1.
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16 Local Class Fields and Symbols

2 ) 2 B 2
5,5\ _ (—L5Y _ (L5 _ (=1) _,
2) \2 ) \5 ) \5)
and (_1’_1) = (_1’_1) =—1.

2 %)
(ii) This is Proposition 16.45(ii).
e (2,b 2, (—1)*5 2, -1\*/2,5\" /2,5\"
(iii) = = =
2 2 2 2 2
2.5 2,5 2
d ! = ? = — :—1. D
w (3)-(5)-6)
Quadratic reciprocity follows from the Propositions 16.45 and 16.47:
16.48 Theorem.

- 2 2

0 a,b (—1)35%, (=1)*5! -1, —1)” (—1,5)““ 5,5) M

(i) The Quadratic Reciprocity Law:

<a) (b) = (-1)*T"F fora,b € N odd and relatively prime.

-1 1
(ii) The first supplement: () = (—1)bT for odd b € N*.

(iii) The second supplement: () =(-1) = for odd b € N*. O

Cubic reciprocity

Put A = 1 — (3. Then (3) = (A)? in Z[(3]. Hilbert’s reciprocity for the field Q((3)
and n = 3:

16.49 Proposition.

(07

-1
(i) <a) (B> = <a, 5) for all relatively prime a, 8 € Z[(3] with A { «, B.
B 3 3 A 3

(i) (CB) = <43’ﬁ) = (=1)" 3" for all B € Z|C3] with M B.
5 3 A 3

(iii) (A) = (A’ 5) for all B € Z[(3] with Xt 8. O
B/ A3

For simplicity of notation in this subsection the subindex 3 is often omitted.
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16.50 Lemma. Let o € Z[(] such that At . Then there is a unique root of unity
¢ € (—¢) = Z[C]* such that
¢a =1 (mod 3).

PRrROOF. The canonical map Z[¢] — Z[(]/3 induces an isomorphism
(=C) = (Z[¢]/3)". O

16.51 Definition. An « € Z[(] is called primary if « =1 (mod 3).
16.52 Lemma. For primary o € Z[(] there are unique j,k € {—1,0,1} such that

a=(1+30)(-2-30% = (143j¢) (1 +3k(-1 =) =1 -3k +3(j + k)¢ (mod 9).

PrOOF. The group (1 + 3Z[¢])/(1 + 9Z[()) = Ker((Z[(]/9)* — (Z[¢]/3)*) is a 3-
elementary abelian group of rank 2. The classes represented by 1+ 3¢ and —2 — 3¢
form a basis. O

16.53 Proposition. Let o and 8 be primary elements of Z[(], where in particular
B =1+ 3m+ 3nl with m,n € Z. Then

o (%) -1
(i) <_€\’ﬁ> e
(iif) (A’Aﬂ ) =(m,

PROOF. We use the Proposition 16.49, Lemma 16.52, the inclusion 1 + 9Z[(]x C
Q(¢)3? given by Theorem 11.22 and Steinberg relations. Let j, k, s,t € Z be such
that

a=(1+30)7(-2-3¢0)" (mod9) and B=(1+3¢)%(-2-30)"
Then
B=(1+3s)(1—3t(1+¢)=1+3(—t+ (t — 5)¢) (mod9),
so s =n —m (mod3) and ¢t = —m (mod 3).
(i) The ideals (1+3¢) and (—2 —3(¢) are the two prime ideals above 7. We have
(mﬁ) _ ((1 +3¢)7(=2 - 3¢)*, (1 +3¢)* (-2 — 3C)t)
A A
_ <1 +3¢,—2 — 3()”’“

A

429



16 Local Class Fields and Symbols

and
14+3¢,-2-3¢C\ [ 1+3C\[-2-3\"" (1430 [(-2-30\""
(5= (G5 ) - (GRG0
<—8><—8)11
T \B+¢/\2—-¢)
(ii) This is Proposition 16.49(ii).
o (NBY N3O =230\ A\ A
a (%)= (5) () = () (63
B _1 s 4 t_ C t_ P
_(2—c> <3+<) _<3+c) == .

Cubic Reciprocity follows from the Propositions 16.49 and 16.53:
16.54 Theorem.
(i) The Cubic Reciprocity Law:

(Z) = <B) for all primary o, f € Z[(3] which are relatively prime.
3 a/3

(ii) The first supplement: (é) = CSL%)A for all B € Z[G3) with A1 B.
3

(iil) The second supplement: (2) =3 for all primary B € Z[(3] with m given
3

by B=1+3(m+nls), mn € Z. O

Quartic Reciprocity

Put A =1+1i. Then (i) = (\)? in the ring Z[i]. Hilbert’s Reciprocity for Q(i) and
n=4

16.55 Proposition.

-1
(i) <a) (B> = (%)4 for all relatively prime a8 € Z[i] with At «, 5.
4 4

15} «

(i) <’) _ (i’*B) — Y97 for all B € 2] with M B,
B 4 A 4

(iii) (A) = (A’ B) for all B € Z[i] with A1 6. O
B)4 Ay
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16.5 Some classical reciprocities

In the notation we suppress in this subsection the use of the subindex 4.

16.56 Lemma. Let o € Z[i] such that At a. Then there is a unique root of unity
¢ € (i) = Z[i]* such that
Ca=1 (mod\?).

PROOF. The canonical map Z[i] — Z[i]/A® induces an isomorphism
(i) = (Z[i]/X°)". O

16.57 Definition. An « € Z[i] is called primary if « = 1 (mod A®). So the primary
elements of Z[i] are the elements 1 + 2a + 2bi with a = b (mod 2).

16.58 Lemma. For primary o € Z[i] there are unique j,k € {0,1,2,3} such that
a=(1+X)7(1+AH* (mod \7).

PROOF. The abelian group (1 + A3Z[i])/(1 + A"Z[i]) is of order 16. The classes

of 1+ A3 and 1 + A\* are of order 4:

(T+X)2 =142+ A =14+ 22 = N+ A0 =14\,
A+A)?=14221=14+2X5 = A5 =14 A% (mod \7),
(1+X)2=1+2%2 =1 (mod\"). O

By Theorem 11.22, the subgroup 1 + A7Z[i] of Q(i)} consists of 4-th powers.

16.59 Proposition. Let o and B be primary elements of Z[i], where in particular
B =14 2a+ 2bi with a,b € Z and a = b (mod 2). Then

0 (af) = (—1)TE e
(ii) (2’)\5) _ e,

(iii) (A’A’B ) — e

PROOF.

(i) The maps

(L4 XZ[]) x (1 + NZ[E]) — pa, (., 8) = <O‘Aﬂ)

and

N(a)—1 N(8)—1
4 4

(1+NZ[i]) x (1 4+ NZ[i]) — s, (a,B) = (=1)
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16 Local Class Fields and Symbols

(iii)

432

are both bimultiplicative, so by Lemma 16.58 it suffices to verify the formula
for o, B € {1+ X3,1 + A*}. We have by Proposition 16.55(i)

T+A T+ (—14+2,-3) [ =3 \ ' /—1+2
A B A S \1-2i 3 ‘

N(1 —2¢) =5 and N(3) =9, so by definition of the power residue symbol

(1 :32i> = (-3)"T = -3 = —i (mod 1 — 2i)

and

3

(W) = (i) (=) =1=(-1)"2

By the Steinberg relations and Proposition 16.55(ii)

T+ A 1423 (—1,1+ A3 _
A N A N

and we have W =1 and W = 0. Also

L4+ 251+ 0 —1,14 A% 9
— =(-1)?%=1
(5) - (55) -

and W = 2.

(1 — 22) =(-1+ 22’)?%1 =-3—4i=—i (mod3).

hence

The first identity is Proposition 16.55(ii). For the second note that

N(B)—1  (1+2a)?+4b*—1
4 4

=a+a’+b*=(a+b)?*—a=—a(mod4).

First we show that the map

a—b—2b?

1+ NZ[i] — Z/4, 1+ 2(a+ bi) — class of 5

is a homomorphism. For a,b,c,d € Z with a = b (mod 2) and ¢ = d (mod 2)
we have

(1+2(a+bi))(1+2(c+di)) =142((a+c+2ac—2bd) + (b+ d + 2ad + 2bc)i
and

(a4 ¢+ 2ac — 2bd) — (b + d + 2ad + 2bc) — 2(b + d + 2ad + 2bc)?



16.5 Some classical reciprocities

(a+ c+ 2ac —2bd) — (b+ d + 2ad + 2bc) — 2b* — 4bd — 2d*
(a—b—2b%) + (¢ —d — 2d%) + 2(a — b)(c — d)
(@ —b—2b*) 4 (c — d — 2d*) (mod 8).

Division by 2 shows that the map is a homomorphism. The subgroup 1 +
A"Z[i] (the case a = b = 0 (mod 2)) is in the kernel. It suffices to verify the
formula for § = —1 4 2i and 8 = —3. By Proposition 16.55(iv)

A, —=1+20\ A N .
( 3 )-(_1_’_%):/\_ 1 (mod —1 + 23)

<A,A3) _ <_A3> = A2 = —i (mod3).

Indeed, the images of =1 +2i =1+ 2(—1+4) and —3 = 1 + 2(—2) are the
classes of 2 and —1 respectively. O

Eisenstein’s Reciprocity Theorem

Now let [ be an odd prime. We will show that a reciprocity theorem of Eisenstein
(Theorem 16.62) concerning the I-th power residue symbol on the cyclotomic field
Q(¢;) is a consequence of the product formula for Hilbert symbols as well.

The prime [ totally ramifies in Q({;) and the prime ideal above [ is principal:
(1) = (1—¢)"=t. Put A=1— (. The prime ideal [ = (\) is of norm I.

16.60 Lemma. Let o € Z[(j] such that At a. Then there are unique ¢ € p; and
a€{l,...,1 —1} such that
Ca = a (mod \?).

PROOF. Since A { a, the element « is invertible modulo A2, that is @ € (Z[¢]/\?)*.
The group (Z[(;]/A?)* is of order (I — 1). The group homomorphism

= (ZIG/A) (e

is injective: (; # 1. On the other hand, the inclusion Z — Z[(;] induces an injection
Fr — (Z[¢]/A?)*. The images of these injections are of order [ and [ —1 respectively
and hence (Z[(;]/A?)* is the direct product of these two subgroups. O

16.61 Definition. An o € Z[()] with [ { « is called primary if o = a (mod \?) for
a (necessarily) unique a € {1,...,1 —1}.

Note that for [ = 3 we took a = 1 in the definition of primary. For [ = 3 this,
however, does not make a big difference.
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16 Local Class Fields and Symbols

By Lemma 16.60 for each S € Z[(;] with A { 8 there are unique ¢ € y; and a
primary « € Z[(;] such that 8 = {«. By Proposition 16.41 we then have

()= GG =),

16.62 Eisenstein’s Reciprocity Theorem. Let o be primary in Z[(] and b € Z
relatively prime to | and . Then

().~ (),

b
By Theorem 16.42 the theorem is equivalent to (a,

3 ) = 1. According to The-
!

orem 11.22 the subgroup U = 1 + "1 of Q(¢)? is contained in Q(¢)it. A
consequence is again that it it will suffice to verify the theorem for a finite number
of cases.

For the proof of the theorem we use the following lemma.

16.63 Lemma. Let o € Z[()] such that o =2 1 (mod A\?). Then there are unique
ag,...,a; € {0,...,1 — 1} such that

a=(1-X)%21=X2)%...(1-X)% (mod A'T1).

ProoF. The multiplicative group (1 + A?Z[¢])/(1 + AF1Z[(]) is an elementary
l-group: for a = 1+ A28 with 3 € Z[(;] we have

l
l
l_ 2k gk — 1+1
a =1+ A =1 (mod A ,
57 ()28 =1 tmod

because vi((})A?*) > 1 —1+2k>1+1for 1 <k <land v(A\?)=20>1+1.

The group is of order I(I — 1) and the classes of 1 — A2, ..., 1 — A! form a basis
since they are independent: suppose (1 — AF)% ... (1 — Al)@ =1 (mod A!*1), then
(1= M) =1 — g A =1 (mod A**1) and so a = 0 (mod ). O

PROI?F OF THEOREM 16.62. As mentioned above the theorem will follow from
a7

A/
for Steinberg symbols. Raising o and b to the power [ — 1 yields

Oél_l, bl—l (e b (1-1)? (e b
A l B A l B A l.

= 1. Since Hilbert symbols are Steinberg symbols, we can use the identities

434



Exercises

Since « is primary, a = a (mod A\?) for some a € Z. Because a'~! = 1 (mod!)
and (1) = (A\)"!, we have o/~! = 1 (mod A\?). Therefore, we can assume that a =
1 (mod A\?) and b = 1 (mod!). By Lemma 16.63 there exist as,...,a;,¢;_1,¢; € N
and $3,v € Z[(;] such that 8,7 =1 (mod A1),

a=(1-X)2...(1-X\)"y and b= (1-MN"Hea-1(1-xHag.
Because 8 and ~ are [-th powers in the [~adic completion, we have
a,b) - (1—)\",1—)\1)“”"
< A l i:];.l A l .
j=l—-1,

1M 1—\
A
(SS7) using the identity M (1 — \?) + (1 — M) =1 — \iTi:

(Aj(l - A;)J— )\j>l

S e AN A P S P AN A B !

Since i + j > I + 1 each factor of the right hand side equals 1, whereas for the left
hand side we have by (SS3):

N1 =AY, 1T=N\ N T=N (1=X1T-N)  (1T—X,1-\
A li A l A li A l'

EXERCISES

So it suffices to prove that < ) =1fori>2and j>1—1. Apply
l

1. Let F : F be an abelian extension of local fields and Z its decomposition group.
Prove that for the decomposition field E' = EZ we have

NF (") = NE(E")OF:
and that ramification index of E : F is equal to the index of NE(E*) in NE(E*)O5..

2. Let F be a finite field and a a generator of the cyclic group F*.
(i) Prove that Ky (F) is generated by the element {—1,a} of order 1 or 2.
(ii) Prove that the group K> (F) is trivial for F' of characteristic 2.

(iii) For F of odd characteristic show that there exist a,b € F* such that a+b =1,
a a square of F' and b a nonsquare of F. (Hint: consider the map F'\{0,1} —
F\{0,1}:a—1—a.)

(iv) Show that the group K»2(F) is trivial for F' of odd characteristic as well.
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16 Local Class Fields and Symbols

3. Let F' be a local field containing a primitive n-th root of unity. Show that the n-th
Hilbert symbol on F' induces a homomorphism

K>(F) — pn,
given on generators by {a, 8} — (o, B)n.
4. Prove that {—1,5} =1 in the K> of any field.
5. Prove that {14 3(3,—2 — 3¢} =1 in K2(Q({3)).

6. Let ! be an odd prime number and a € Z[(].
(i) Let p a finite prime of Z[(;] such that p { [, . Show that

().

(ii) Assume that a € R and that [ # 3. Prove that (g) = 1 for all prime

l
numbers # [.

7. Let | be an odd prime and p a prime # [.

(i) Show that
Q _ <l}ypflfl
r), ’

where f is that order of p € F;.

(ii) Show that p'~! =1 (mod [?) if <§;> =1.
1
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17 Conductor and Discriminant

The conductor and the discriminant of an abelian number field extension have much
in common: their finite prime divisors are the ramifying primes. The Conductor-
Discriminant Formula describes how they are related for an abelian number field

extension L : K:
k(L) = H fx.0
XEH(L:K)

(Fy,0 is the finite part of the conductor of x.) The formula will be proved in the last
section. The Classification Theorems of local and global class field theory are used
in the proof. A link between the discriminant and the conductor is the different:
an ideal of Op, the prime divisors of which are the over K ramified primes of L.
The different is closely connected to the ramification groups. For an understanding
of this connection a detailed study of the ramification groups of a ramifying prime
will be necessary.

17.1 Ramification groups of a subextension

In section 7.5 ramification groups were introduced. They were used in chapter 9
for a proof of the Kronecker-Weber Theorem. Here we will study the behavior of
the ramification groups of a Galois extension F : F' of local fields under restriction
to a Galois subextension E’ : F. It will be shown that by another indexation of the
ramification groups the index is not changed when passing from F : F to E' : F.

We will fix for this section the following notations:

E . F a Galois extension of local fields of characteristic 0,

G the Galois group of E : F,

n = [E : F] = #(G), the degree of E : F,

D the characteristic of kp,

E' an intermediate field of E : F such that E : F' is a Galois extension,
H the Galois group of E : E’, a normal subgroup of G,

G’ the Galois group of E' : F,so G/H = G’

(not the commutator subgroup),
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17 Conductor and Discriminant

v v

, the i-th ramification group of E : F,

K2

v/ ng/), the i-th ramification group of E' : F,

v/ Vggf, the i-th ramification group of E : E’.

7

The ramification groups with index 0 are the inertia groups. Let’s write V_; for the
Galois group. It coincides with the decomposion group. In G we have a descending
chain of ramification groups

V(=GB Vo Vi>- V(= {1}.
For each o # 1 in G there is a unique ¢ > —1 such that o € V;\ V;11. By definition
o €V if and only if vg(o(a) —a) > i+ 1 for all « € Op.

17.1 Notation.  If o # 1, then there is a least i € N such that o does not
induce the identity on Og/ pgl. This least 4 is denoted by i(0). For the identity
automorphism 1 we put i(1) = oco. So we have

Viaa\Vi={o€Gli(o)=j}.

Now we start comparing the ramification groups of E : F and E’ : F'. For this the
following proposition fundamental. It tells us for a ¢/ € G’ how the number i(o”’)
is determined by the numbers i(o) for the o € G with o|g = o’

17.2 Proposition. Let o' € G'. Then
. 1 Z )
Z(O'/) = m Z(O')

€rr oeG
o|gr=0’

PRrROOF (Tate). For o’ = 1 we have co on both sides. So we assume that ¢’ # 1.
Choose a fixed o € G such that o|g: = ¢’. Then the automorphisms in G which
restricted to E’ are equal to ¢’ are the o7 with 7 € H. By Proposition 11.15 there
are v € Og and 7' € Ops such that Op = Op[y] and O = Op[y']. The formula
to be shown becomes

vp(0(y) =) =Y velor(r) = 7)-

TEH

Let f be the minimal polynomial of v over E’. Then

FX) =T[X =7(3) and f7(X) =[] (X —o7(7).

TEH T€H

The polynomial f7 is the minimal polynomial of o () over E’:

[[&x —or(m) = [[ (X —oro™ () = [ (X = 70(7)).

TEH TEH TEH
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17.1 Ramification groups of a subextension

The coefficients of f are elements of Op:. So vg/(0'(a) — ) > i(o’) for each
coefficient of f. Hence

o) =" 1) = fv) = (),

that is
vp(e(y) =) S ve(f7(7) = > ve(y—or(y)).

TEH

For the proof of equality put v/ = g(vy) with g € Op[X]. Then v is a root of the
polynomial g(X) — " € Op/[X]. Hence f | g(X) — 7/, say g(X) — 7" = f(X)h(X)
with h € E'[X]. Then ¢°(X) — o(7y') = f7(X)h?(X) and so

Y =o(y)=9(y) —o()=97(v) —o(?') = fF7 (MR (7),

from which follows f(v) | o(v') —«'. H

We will compare the images V;H/H of V; under the isomorphism G/H = G’
with the groups V. Let’s denote V;H/H by W;. These subgroups of G’ form a
descending chain

W_i(=G)Wo(=V) W >Wy B> -

For ¢/ € G’ with ¢’ # 1 there is a unique j € N such that ¢/ € W;_1 \ W;,
or equivalently, for ¢ € G with o|g = ¢, 0 € V;_1H \ V;H. This j is also
characterized by cHNV;_; # 0 and H NoV; = 0.

For o ¢ H let iZ(c) be the greatest j € N for which cH NV;_; # (). For 0 € H
we put i (o) = oo.

We will denote the characteristic function of a subset X of G by dx, so for o € G:

1 ifeoeX
dx(0) = ’
x(@) {o ifod X.

Then
i(0) =Y dv,(0). (17.1)
1=0

17.3 Lemma. Let 0 € G and o' = o|g/. Then

ig(o)—-1

i(o’) = !
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17 Conductor and Discriminant

Proor. By Lemma 17.2

By equation (17.1) we have

Z i(or) = Z 25% (o7) = Z Z oy, (o7) = Z #(cHNV).

reH TEH i=0 i=0 r€H i=0
Let cHNV; # (), say 79 € H such that o9 € V;. Then for 7 € H:

cT€ecHNV, — UTOT(;ITEUHﬂVi
—= lreHNV, <= Tn(HNV,).

So multiplication by 7y yields a bijection from H NV, to ¢ H N'V;. In particular we
have #(cH NV;) = #(HNV;) = #(V/). Tt follows that

il (0)-1
dilor) = D #VY).
reH i=0
. .. (E) 7
Finally, divide by e}’ = #(Vy’). O

We extend the indexing set for the ramification groups from integers > —1 to all
reals:

17.4 Definition. Let x € R. Then

V. = Vi) ?f.’L‘ > —1,
G if ¢ < —1.

([z] is the least integer > z.)

The indexing set for the groups W; is extended accordingly: for € R the group
W, is the image of V, under the restriction G — G'.

Now for real x we still have the equivalence:
ceV, < i(o)>x+1.

The real function

#(Vz)
#(Vo)

is a step function with value f;-,E) for x < —1. For m € N the value on the interval
(m—1,m)is 1/(Vo : Vi,). Tt has a jump in m exactly when V11 # V.

T —
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17.1 Ramification groups of a subextension

17.5 Definition. The function ¢ = pg: R — R is defined by
T H#(V,)d
p(z) = / #Hl)dy,
o #(W)
The graph of this function connects the points

#(W1) Doy # (Vi)
(—1,-1), (0,0), (1,#(‘/(1))), ,(m, W)

with straight lines and for z < —1 it has a slope f IEE). In other words, it is the real
function ¢ with p(z) = f}(;E) (z+1)—1for x < -1, p(x) =z for x € [-1,0] and
for x € [m,m + 1] with m € N:

1

2) = —~FHW)+ -+ #Vn) +(@—m) - #(Vp ,
e(z) #(Vo)(#( 1) #(Vin) + ( ) - #(Vit1))
_ . _#) . . )
where for m = 0 this means p(z) = e )m Obviously it is a continuous func-
0
tion. On the interval (m,m + 1) the derivative is % So in m € N the
0

left derivative ] takes the value #(Vm) and for the right derivative we have
#(Vo)
’ _ #(Vm—H) . s . . . . . . .
oL(m) = V) The function ¢ is strictly increasing and piecewise linear with
0

only finitely many breaks: it has a break in z if the left derivative ¢j(x) differs
from the right derivative ¢..(z). If the function has a break in z, the z is said to be
a break point of the function. The break points are the m € N with V,,411 # Vi,.
The map ¢ is a homeomorphism from R to itself.

Using the function ¢ Lemma 17.3 can be reformulated as follows:
i(0") = ou (il (0) — 1) + 1, for 0 € G such that o[ = o’

By this identity the ramification groups in G’ are related to the images of the
ramification groups in G:

17.6 Proposition. W, = V;H(I) for all x € R.
PROOF. Let ¢/ € G’ and o € G such that o| = 0. Then for all x € R:
o' € V;H(x) — (o)) > pp(x) +1 <= op(i(c) —1) > ou(z)

— ifo)-1>2 <= o€ V,H < o cW,. O

The inverse of the homeomorphism ¢ will be frequently used. Therefore, a special
notation is introduced:
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17 Conductor and Discriminant

17.7 Notation. The homeomorphism ¥ = ¥¢: R — R is the inverse of ¢¢.

Obviously, the function v is continuous, piecewise linear, strictly increasing and

%
convex. For m € Z its derivative on the interval (p(m), p(m+1)) is j:((VO))’ which
is an integer > 1 for m > —1. For the left and the right derivative of 9 in ¢(m)
we have 4(V) 4(V)
wl 0 w,'/ﬁ m _ 0 .

Their quotient ﬁl,((g((z)))) is an integer:
L

Prlpm)) _ #(Vim)
Uilpm)) — #(Vinga)
x)

The function ¢ has a break in z if ¢, ,;(z) # 1. It has a break in = if and only if
¢ has a break in ¢(x), that is if z = ¢(m) for some break point m of ¢. So there
can only be a break in x if x € p(N). Moreover, we have:

17.8 Lemma. Let v € N. Then ¢(v) € N
PrROOF. Take m = [¢(v)]. Then ¢(v) € [m,m + 1] and

v-#(Vo) = p((v)) - #(Vo) = #(V1) + -+ #(Vin) + (¥ (0) = m) - #(Vins1).

Because V41 is a bubgroup of each of the groups Vp,...,V,,, it follows that
H#(Vig1) | #(V;) for i =0,...,m. So ¢(v) —m € Z and therefore, ¥(v) € Z. O

wl/l(w(m)) = € N*.

Using v, Proposition 17.6 can be reformulated as

Ve =Wy, (s foralazeR.

17.9 Proposition. For all x € R we have
vc(@) = per(pr(z)) and Ya(z) =vn(be (2)).

PrROOF. The second identity follows from the first. The functions ¢ and pg g
both are continuous and piecewise linear. They are not differentiable in only finitely
many real numbers. Let z € R such that both functions are differentiable. Then

d / / _ #(VSILH(I)) (V”)
o Porvn) (@) = ¢o (or(2))n () = 700 # W,

RLH) #enH) #HV)

#(oH) #VonH)  #() "¢

Because the functions are continuous at the finitely many points they are not

differentiable, they are equal. O
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17.1 Ramification groups of a subextension

For the ramification groups we now introduce upper indices:

17.10 Definition. For z € R:

(Ba) _ 1 (E)
Ve = Ve ()

These upper indices are compatible with the passage from an extension to a subex-
tension:

17.11 Theorem. The restriction G — G’ induces for all x € R an isomorphism

VIEDH H S vE),

Proor. By Proposition 17.9 we have

(E'z) _ 1-(E") . B
VF - VF7'¢G/($) - Wd)H (har(z)) — ch(x)
Hence V}SE/J) is the image of V}%)Gm = VlgE@)_ O

17.12 Example. Let m € Z be squarefree and = 2 (mod4). Then 2 ramifies in the
quadratic number field Q(y/m). The local field E = Q2(y/m) is of degree 2 over
F = Qs and O = Zs[y/m]. Let o be the generator of Gal(E : F'). Then

i(0) = vp(o(vVm) — vm) = vp(-2v/m) = 3.
So #(V;) =2 for i <2 and Vj is trivial for ¢ > 3. We have

T ife <2 T ifx<2
o) {;;Hl o> V) {2:c2 if x> 2.

Both functions have a break in = 2. (For m = 3 (mod 4) the break is in z = 1.)

17.13 Example. The prime 2 totally ramifies in K = Q(v/2,v/3). See Exam-

ple 5.24. Put E = Q(v/2,v/3) and a = M Then a + 1 is a uniformizer of
vg and O = Zo[a + 1] = Zs]a]. The extension E : Qg is biquadratic. The Galois
group G is generated by o and 7 given by

o(v2) = V2, (V2) = —V2,
o(V3) = —V3, 7(V3) = V3.

We have
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p(x) ()

Figure 17.1: Graphs of the functions ¢ and 1 for the splitting of 2 in Q(v/2,v/3)

So the jumps of #(V,) are at 1 and 3. We have
Vi=G and Vz={(7).

The functions ¢ and v are

T if z <1, x if x <1,
plr)=qsz+3 if1<x<3, P(r) =42 —1 ifl<z<2,
1z+32 ifz>3. 4z —5 ifz>2.

See Figure 17.1. The break points of ¢ are 1 and 3. The break points of i are 1
and 2. The ramification groups with break points as upper index:

VD =y, =G and V® =V3 = ().

17.14 Example. The same field K as in the previous example, but now we consider
the splitting of the prime 3. Put £ = Q3(v/2,v3). Then E7 = Q3(V2), E™ =
Q3(v/3) and E°™ = Q3(v/6). The extension Q3(v/2) : Q3 is unramified and F : E°
totally ramifies. So Op = Og-[V3]. The extensions E : E™ and E : E°7 are
unramified. Tt follows that i(0) = ve(c(v3) — V3) = ve(—2v3) = 1 and i(1) =
i(o7) = 0. The jumps of #(V;) are at —1 and 0. The functions ¢ and ¢ are

2c4+1 ifx < -1, %x—% if v < —1,
plr)=q=x if —1<x<0, Y(x)=<=z if -1 <x<0,
ta if z > 0. 2 if 2> 0.

See Figure 17.2. The functions ¢ and 1 both have breaks in —1 and 0. We have
VEY =V, =G and VO =V, = (o).
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17.1 Ramification groups of a subextension

p(z) Y()
1 0 T 1 0 T
1 —1

Figure 17.2: Graphs of the functions ¢ and 1 for the splitting of 3 in Q(v/2,v/3)

17.15 Example. Let K = Q(%,i). Put o = v/2. The extension K : Q is a Galois
extension with G = Gal(K : Q) = Dy, the 4-th dihedral group D4. This group is
generated by automorphisms ¢ and 7:

o(a) =i 7(a) =«

o(i)=1 7(1) = 1.
The field K has five subfields of degree 4:

K77 =Q(i,v2) = Q(Gs), K7 =Q((i +1)a) = QGsa), K™ =Q(a),
K77 =Q((i ~ 1)a) = Q¢ ') and K7 = Qia).

The prime 2 totally ramifies in K = Q(+/2,4) since it ramifies in each of these
subfields. Let p be the unique prime ideal of Ok above 2. Both the numerator and
the denominator of 5 = Chal generate the ideal p2. A simple elementary calculation
shows that f(X) = X8 —4X6+8X*—4X?+1 is the minimal polynomial of 3 over
Q. From f(1) = 2 follows that p = (5 — 1). Completion at p yields the extension
Q2(a,4) : Qg of local fields. Put F = Qz(«,4). The element 8—1 is a uniformizer of
vg. Since 2 totally ramifies, we have O = Z3[8 — 1] = Z3[3]. Hence for generators
of the cyclic subgroups of G we have:

—Cst1l _ Cs+1) — vE((l_ino)((l_i)) =2+4+4-2=4,

ST ) s ep(-2) =842-2=8,
1
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17 Conductor and Discriminant

-1
i(or) = wp(Za L Getly — (o) 4 2 =2

i(0%7) = vp( St Gt Gty — o p( (6 4 2)a) = 2.

[e3

So #(V,) jumps at 1, 3 and 7. The ramification groups with lower index at these
values:

Vi=G, Vs=(0o) and V;=(0?).
The functions ¢ and :

x if z <1, T ifx <1,

1 1 . .

sx+s  ifl1<z <3, 2c—1 if1<z<2,
plr)y=<¢7 ¢ . Y(z) = .

7T+ 3 if3<ae <7, 4qr—5 if2<x <3,

éx—l—% ifx>7. r— 17 if z > 3.

The function ¥ has breaks in 1, 2 and 3. The ramification groups with these values
as upper index:

VO =V =G, V@ =V3=(0) and VO =V; = (o?).

For any Galois extension of local fields the break points of ¢ are integers by con-
struction. In the examples given above the break points of 1 are integers as well.
Later we will see that this is the case for any abelian extension (Theorem 17.46,
the Hasse-Arf Theorem). In the last example the Galois group is nonabelian, but
nevertheless the break points of ¢ are integral. In the next example the Galois
group is the smallest nonabelian group S3 and the function ¢ has a nonintegral
break point.

17.16 Example. Let K = Q(+/2,(3). Put a = V/2. Many computations in this
field have been done in Example 7.17. We use the same notations. The prime 3
totally ramifies in K. The prime ideal p of Ok above 3 is a principal ideal: p = (),
where § = 1+2<3 . Completion at p yields the extension Qs(a, (3) : Q3 of local fields.
Put F = Qg(a Cg) The element ¢ is a uniformizer of vg. We have O = Zs[d].
For generators of cyclic subgroups of G = Gal(E : Q3) we have:

(1+2C a(l—¢3)y\ __ _

2C3C 1)) 3_9-1

9

(1—Co)(a—2(a) y _ _
Collatal) —=34+2-2-2=1,

(A=C3)(@=2¢3)y _ _9_9_
(a+13)(csa+f))*3+2 2-2=1

The last three outcomes just verify what we already know: in a quadratic extension
the prime tamely ramifies. So #(V;) jumps at 0 and 1. We have V, = G and
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/

p(x) ¥(x)

o Ni-

[=)
Wl
—

Figure 17.3: The graphs of the functions ¢ and v for the splitting of 3 in Q(+/2, (3)

V1 = (o). The functions ¢ and ¥:

T if z <0, T if z <0,
o(z) =4 iz ifo<az<l, Y(z) =4 2 if0<z<l,
fr+y ifx>1 6r—2 ifz> 3.

See Figure 17.3. The function 3 breaks at 0 and % The ramification groups with
these values as upper index:

VO =1y=G and V&) =V, = (o).

17.17 Example. Let p be an odd prime and r € N*. In Example 7.64 the ramifi-
cation groups of the prime p in Q({,r) have been computed:

Vj= Gal(@(@:r) : Q(Cp’")) if pm_l <j<p" -1

The jumps in the descending chain of ramification groups are at p™ — 1 for m =
0,...,7 — 1. These groups coincide with the ramification groups of Q,((pr) : Qp.
For m > 1 the slope of ¢ on [p™~! —1,p™ — 1] is equal to

#(Vprnfl) prm ].

#Vo)  pip-1) prip-1)
So
mo__ 1) _ (pm—l _ 1)
ptp—1)
This implies that the function 1 breaks at 0,...,r — 1:

7 m— (p
e R VS =1L

VO =1y=G and VO =V, | =Gal(Q(¢r) : Q((pi)) fori=1,...,r
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17 Conductor and Discriminant

17.2 The different

In this section the different of a field extension is introduced and for Galois exten-
sions its relation to the ramification groups is studied. The following notations are
used in this section:

R a Dedekind domain,

K the field of fractions of R,

L: K a finite separable field extension,
n the degree of L : K,

S the integral closure of R in L.

In this section both localization and completion occur. In case of localization at a
single maximal ideal p the following notations are used:

Ryyy  the localization of R at the maximal ideal p,
K, the completion of K with respect to the discrete valuation vy,

R, the valuation ring of K,
and in case of a number field K
Kypy  the localization of O at the maximal ideal p, so Ky = (Ok)(p}-

All residue fields R/p, where p € Max(Opg) are assumed to be finite. In section 1.5
we considered the nondegenerate symmetric bilinear map

LxL—K, (af)—Trk(ap).

17.18 Definition. Let a € I(L). Then
*a={p€eL|Trk(Ba) C R}

is called the dual of a with respect to R.
17.19 Lemma. The dual of a fractional ideal is a fractional ideal.

PrOOF. Let a € I(L). Clearly, *a is an S-submodule of L. So it suffices to show
that there is an a € L* such that - *a C S. Let aq,...,a, € S be a K-basis of L
and d = disc(ay, . . ., ay,) = det(Trk (a;a;)). Let B € *a, say 8 = bjag + -+ by
with by,...,b, € K. Take a nonzero a € aNR. Let B1,..., S, be the dual basis of
ai,...,0qn. For af we have

aB = Trk (afon)By + - - + Trk (aBan) B
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17.2 The different

and for j=1,...,n

Tri (afaj) = Z Tri (abjogaj).

i=1

In matrix notation:

aby Trf((aﬁoq)
(Tri(aiay)) | 2 | = :

aby, Tr%( (aBan)

Because af3,a; € S, we have Trf((aﬂaj) € Randsodabj € Rfor j=1,...,n. It
follows that daf3 € S. Hence da - *a C S. O

17.20 Definition. The dual of S with respect to R is called the complementary
fractional ideal of S over K. Note that the ring S is determined by R and L. This
is reflected in the notation for the complementary fractional ideal:
CR(L) =*S.
Its inverse in the group I(L) is called the different of L over R. Notation:
Or(L) = (cr(L)) .

For a number field extension L : K we define the different of L over K to be the
different of L over Ok:

Ok (L) = Doy (L)-

Note that, since cr(L) is a fractional ideal of S, we have Tr(cr(L)) =
Trk (ca(L)S) C R.

17.21 Lemma. The different of L over R is an ideal of S.

PrROOF. Clearly S C ¢z(L): for all &« € S we have oS C S and so Trk (aS) C R.
Hence, Og(L) C S~! = 8. O

The different under localization:

17.22 Proposition. Let P be a collection of mazximal ideals of R and Q the collec-
tion of mazimal ideals of S above P. Then

Irp (L) = Or(L)Sq-

PRrROOF. We prove that ¢, (L) = cr(L)Sq.
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17 Conductor and Discriminant

DO: Let a € cg(L), p € P and B € Sg. Choose t € R such that v,(t) = 0 and
tB € S. Then tTr(af) = Tri(atB) C R and v, (Trk (afB)) = vy(Tr(atB)).
Hence, Tri (aSg) C Rypy. Tt follows that

Tric(Sg) € () Ripy = Rp
peP

and so ¢g(L) C cg,(L)Sg and for the fractional Sg-ideal cg(L)Sq we have
¢rp(L) Ccr(L)Sq.
Let o € ¢g,. (L). By Proposition 6.25

In

a € cr(L)Sg <= vq(a) > vg(cr(L)) for all g € Q.

Let g € Q and qNK = p. Choose t € R such that v, (t) = 0 and ta € S. Then
Trk (taS) C Tri(S) € R. So ta € cg(L) and, therefore, vg(ta) > vq(cr(L)).
Because t ¢ q, we have vq(a) > vq(cr(L)). O

The different is an ideal of S. Its norm in K is the discriminant. More precisely:
17.23 Theorem. di(L) = NL(Or(L)).

PROOF. The Propositions 7.23 and 17.22 allow us to localize: let p € Max(R)
and Q = {q € Max(S) | v4(pS) > 0}. Set p’ = pRypy and q’ = qSq. Then

vp(Qr(L)) = vp(Qry,, (L)) and  v4(9x(S)) = vq' (IR, (L))-

We may assume that R is a discrete valuation ring. Then S is a free R-module
of rank n, say S = Rag + -+ + Ra,,. Thus 0r(L) = disck(ai,...,a,)R. Let
(B1,-..,Bn) be the dual basis of the basis (a1,...,a,). We have for v € L:

yecg(l) —= Tra(yS)C R
— Tr(yay;) € Rfori=1,...,n
< y€RB+ -+ Rb,.

So ¢g(L) = RB1 + -+ + RB,. The R-module c¢g(L) is a fractional ideal of S. By
Proposition 2.21 the ring S is a principal ideal domain, so there is a v € L* such
that cg(L) = Svy. We have

disci (B, . . ., Bn)R = disci (yay, . .., yan)R = Nk (v)* disck (a1, . .., )R
= Ng()*r(L) = Ng(cr(L)*0r(L).
The different dr(L) is the inverse of c¢r(L), so
discr(B1, ..., Ba)NEK (Or(L))?* = dg(L).
By Proposition 1.32 we have discx (81, - - -, 3,) = discg (a1, ..., a,)"!. Hence

NE(Or(L))? =or(L) disck (v, ..., an) = 0r(L)2. O
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17.2 The different

So the prime ideals of S which divide the different dr(L) all lie above ramify-
ing prime ideals of K. They are in fact all over K ramified prime ideals (Theo-
rem 17.26).

The different under completion:

17.24 Proposition. Let q € Max(S) and p =qN K. Then

Or, (Lq) = Or(L)S,.

Proor. We will prove that cg,(Lq) = cg(L)Sy. By Proposition 17.22 we may
assume that R is a discrete valuation ring.

X

N

Let a € ¢cg(L), B € Sq and Q the set of prime ideals of S above p. Put
ng = max(—vq (a),0) for all ¢ € Q. Choose v € S such that

L {B (mod §")
0 (mod(q')") for 4" € Q\ {a}.

By Corollary 10.47

Tr%(ory) = Trg (ay) + Z Trg’(ory).
9’€Q\{q}

From v € S and o € cg(L) follows that Trk(ay) € R C R,. For q' €
Q \ {q} we have vy (ay) = vy (a) +vq/(7) > 0. So ya € Sy and therefore,

Try () € Rp. By the above formula for the traces we have Trp(ay) € Ry.
From vg(8 — v) > nq follows that vg(af — ay) > ng + v4(a) > 0. So

Trp(af) = Trj(ay) + Tr}(af — ay) € Ry.

It follows that Try(aSy) C Ry, that is a € ¢, (Lq)-

: Let a € cg, (Lg). Put m = max(0,v4(cr(L))). Choose 3 € L such that

vg(B—a)>m and vy >0 forall €@\ {q}.

Let v € S. Then Trj(8v) = Trg(8y —ay) +Try(ay) € Ry and Trg/(ﬁ’y) €R,
for g € Q\ {q}. So again by the formula in Corollary 10.47: Trk(8y) €
R, N K = R. Hence 3 € cg(L). Because vq(f — o) > vq(cgr(L)), we have
[OAS CR(L)Sq. O

So the different is the product of the local differents, more precisely:

17.25 Corollary. 9r(L) = [ 0rgox(Lq) NS,

qeMax(S)
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17 Conductor and Discriminant

ProoF. For q € Max(S), put vq(9r(L)) = kq and p = qN K. Then by Proposi-
tion 17.24 g, (Lq) = G and Og, (Lq) NS = gFa. O

17.26 Theorem. For all q € Max(Op) we have

q is ramified over K <= q| Or(L).

PrRoOOF. Let q € Max(Opr) and q N K = p. Then by Propositions 17.24 and
Theorem 17.23:
Lq
vp(bRp (Lq)) = UP(NKp (BRp (Lq))) = pr (qu) ' Uq(aRp (Lq))
= Ik, (a5q) - vq(Or(L)). O

As far as the prime divisors of the different and of the discriminant are concerned,
the discriminant contains less information than the different. The different tells us
which prime ideals are ramified over the base field, whereas the discriminant only
tells us over which prime ideals of the base field they lie.

For a tower of extensions:

17.27 Proposition. Let M : L be a separable field extension and T the integral
closure of R in M. Then

Or(M) = 0s(M)Or(L).

PROOF. We prove that cg(M) = cg(M)cr(L).

BE
Ty (es(M)er(L)) = Try Tri (es(M)er(L)) = Tr (cr(L)Try (es(M)))
C Tr& (cgr(L)S) C R.
Hence, ¢cs(M)cr(L) C cr(M).
C: From TrkTr (cg(M))) = Tri(cr(M)) C R follows that Tr} (cgr(M)) C

cr(L). So
Try ((cr(L)'er(M)) = (cr(L) T}l (cr(M)) C S.

Therefore, (¢cg(L))"ter(M) C cg(M), that is cr(M) C cs(M)cr(L). O

For number field extensions this formula reads as
O (M) = 0r,(M)0k (L).

As a consequence we obtain a formula for the discriminant for a tower of extensions.
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17.2 The different

17.28 Theorem. Let M : L be a finite separable field extension and T the integral
closure of R in M. Then

Op(M) = (p(L)MH . NE (05(M)).

PrROOF. By Proposition 17.25 Or(M) = 0s(M)0r(L) = 0s(M) - Or(M)T'. Ap-
plication of N¥ yields by Theorem 17.23:
Or(M) = N¥ (9r(M)) = NEN}(9s(M)) - NE N7 (9r(L)T)
= N% (25(M)) - NE(Op(L)*H) = Nk (05(M)) - @r(L)MH. D

For number field extensions:
O (M) = (0xc(L)MH - N (o, (M),

For discriminants of extensions L : K the discriminants of K-bases of L are of
importance. Likewise, for differents we have differents of elements.

17.29 Definition. Let o € L and let f be the characteristic polynomial of o over
K. The different 0% (a) of a over K is defined by

0 (a) = f'(a).

If v is not a primitive element of the extension, say [L : K(a)] = m > 1, then the
roots of f have multiplicity m and, therefore, f'(a) = 0. Furthermore, if o € 9,
then f € R[X] and f'(a) € S.

A special case, particularly interesting in case of extensions of local fields:

17.30 Proposition. If there is an o € L such that S = Rla], then 0x(S) =
(0% (a)).-

PrOOF. Let f(X)=X"+a, 1 X" !+ .--+ag be the characteristic polynomial
of a over K. Put

f(X)

X_—a Bnaa X" 4 Baa X" 4+ By = g(X) € S[X].

Let a1,...,a, be the roots of f in a splitting field of f over L. Let’s assume
o = ;. For each 0 < i <n —1 there is a unique polynomial h (over the splitting
field of f over L) of degree < n — 1 such that k() = o for j =0,...,n —1. It
obviously is the polynomial X* and Lagrange’s interpolation formula yields

n 7

afX)
2 Ty —ay
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17 Conductor and Discriminant

Since By, ..., Bn_1 € L, we can rewrite this as

:Z:;l”ﬂrf( (o/ f/ﬁ(g))xj =X,

Hence

T (of fﬂ(;)) =0y

and this means that
/80 6n—1
fla) 77 f(a)
is the dual basis of 1,a,...,a" . Let v € L. Then
50 577,71
f'(@) fre)’
Because S = R[], we have v € c¢g(L) if and only if Trk(ya’) € R for i =
0,...,n — 1. This means that

+o T (va™ )

v =Trg(7)

50 _’_.”_’_Rﬂnfl

f'(a) fre)

CR(L) =R

From f(X) = (X — a)g(X) follows

ﬂn—l =1

Bn—2 —afn_1 = an_1

Bo — afr =am
and this leads to
Bn—l =1
5n72 =a+tap—

2
Bn-z=a"+a,_1x

Bo=a"""+an 10" P+ Fay
It follows that R[a] = RfBg + --+ + RB,_1. Hence cg(L) = ﬁS, and thus
Or(L) = f'(a)S. O
Since the different is the product of the local differents and our main interest is
the case of a number field extension, we will now consider local field extensions. It
turns out that the different is completely determined by the ramification groups of
the extension (Theorem 17.34).
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17.31 Definition and notation. Let F : F be an extension of local fields. The
different Op(E) of E over F is defined to be the different of Og over F:

Or(E) = 00, (F).

It is, as an ideal of O, a power of the maximal ideal pg.

17.32 Proposition. Let E : F' be an extension of local fields. There exists a v € O
such that O = Op[y]. Let f be the minimal polynomial of v over F. Then

o (E) = (f'(7))-

PROOF. The existence of 7 is Proposition 11.15 and the formula 9 (E) = (f'(v))
follows from Proposition 17.30. O

17.33 Definition and notation. Let E : F be a Galois extension of local fields.
The i-th ramification group of E : F is the i-th ramification group of pr in E and
is denoted by Vg ;(E), that is

Vii(E) =Vei(pE).

17.34 Theorem. Let E : I be a Galois extension of local fields and V; the i-th
ramification group of E over F: V; = Vp,(E). Then

oo

ve(0p(E)) =Y (#(Vi) - 1).

=0

PROOF. Let v and f be as in Proposition 17.32 and put G = Gal(E : F). Then
by Proposition 17.32 we have dp(E) = (f'(7)). Choose ¢t € N such that V; = {1}.

From
F=1]m-v
25
and

o€ Vi\Viy1 < vg(o(y)—7)=i+1

then follows

vp(0r(E) =ve(f'(v) =Y _vele) -1 =>_ > vele(y)—7)

o#l i=0 o€ V;\Viq1
=3 Y G0 =G+ DHW) - #(Vin)
1=0 0€V;\ Vi1 =0
t t t t+1
=D+ DFV) =Y i+ D#Vigr) =Y (i + D#VE) = Y i# (Vi)
=0 =0 i=0 i=1
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17 Conductor and Discriminant

t

=#(Vo) = (t+ D#Vagr) + D #(Vi) = #(Vo) — 1 —t+ Y _ #(Vi)
1=1

i=1

= (#(Vi) - 1). =
1=0

For a number field extension we obtain:

17.35 Corollary. Let L : K be a Galois extension of number fields and q €
Max(Opr). Then

oo

vg (O (L)) = > (#(Vk.i(a) — 1).

=0

Proor. Let p=qN K and choose K} to be a subfield of L;. Then restriction of
automorphisms yields an isomorphism

Gal(Lq : Ky) — Zk(q)
and for each i € N an isomorphism

Vi, (@) — Vi.i(q).

So
vq(0x (L)) = vq(0k,.i(Lq)) = Y (#(Vi, (@) — 1) = > _(#(Vk.i(a) —1). O
i=0 i=0

17.36 Example. Let’s verify the formula of the last theorem for (the completion
of) the extension Q(v/2,1) : Q considered in Example 17.15. We will use the same
notations. The minimal polynomial of 3 € Or, over Qis f(X) = X8 —4X04+8X*—
4X? +1 and B —1 generates the prime ideal p above 2. Since only 2 ramifies in K,
the discriminant of K : Q is a power of 2. Moreover, since 2 totally ramifies, one
has Ox = Z[g — 1] = Z[f]. So

disc(K) = N§ (f'(8)) = N§ (8587 — 246° + 325° — 80)
— 224Ng(ﬂ6 _ 3/84 +4ﬁ2 _ 1) — 224U,
where v is odd, since 3% —33* +482 —1 ¢ p = (8—1). In fact, u = 1 as remarked

before. From Theorem 17.34 it follows that the p-valuation of 9z(K) is equal to
2(8—1)+2(4—1)+4(2—1) =24 and this is the 2-valuation of disc(K) as well.

Theorem 17.34 relates the different to the orders of the ramification groups given
by lower indices. In case the function 1 has only breaks at integral arguments
we obtain by grouping lower indices a formula in terms of orders of ramification
groups given by upper indices.
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17.37 Theorem. Let E : F be a Galois extension of local fields with Galois group
G. Suppose that the function Vg has only breaks at integral arguments. Then

ve(OF —eF)Z<1—V(Z())).

PrOOF. Put V; = Vi(E) and V) = Vfgi)(E). By assumption the function
1) = g has no breaks between integers ¢ — 1 and i. This means the function
© = ¢ has no breaks between ¢(i — 1) and (¢). Start with the formula of
Theorem 17.34:

oo P (4)

vp(Or(E) =Y #WV)-1)=>" Y (#V)-1)
=0

i i=0 j=y(i—1)+1

(# (V@) — 1)

=1(i—1)+1

1=0 i=0 90;(77[](7’))
— #(V0) > 1
=2 F Wy H 0 7 = e%E);( - Fvo)

17.3 Local Artin maps and ramification groups

Let E : F be an abelian extension of local fields of characteristic 0, G = Gal(E : F)

and n = [E : F]. By local Artin reciprocity the local Artin map ﬁ%E) -G

induces an isomorphism

9B P NE(EY) S G

17.38 Notation. In 16.16 the notation Ul(,i) was introduced for F' a local field and
1 € N. Now we also allow ¢ = —1 in this notation by putting

viY=F
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The groups Ul(f ) form a descending chain of subgroups of F™*:
% =
5
Taking products with the subgroup NZ(E*) yields the descending chain

NE(E*)U;:U > NE(E*)U;,O) > ... > NII?:(E*)US) >
I
F*

Let j be the least integer such that Ug) C NE(E*). Then the conductor fr(E)
of E: F equals p%. So N%(E*)U;f) = NE(E*) if and only if i > j. By setting
Wl(f)(E) = ﬂg,E) (N%(E*)Ul(f)) = ﬁ%E)(Uff)), we obtain a corresponding descending
chain of subgroups of the Galois group:

wihmE = w@®) = o > wE)

I
G

and we have Wl(pi) (E) = {1} if and only if i > j.

17.39 Example. Let p be an odd prime and r € N*. The cyclotomic field Q(¢,r)
is as an abelian field the class field of D, and in the general class field theory it is
the class field of H ;) (Q). In the first sense its conductor is p” and in the second
it is (p)"oo. Its local conductor at the prime p is the ideal (p)” of Z. This implies
that the conductor of Q,((,r) : Qp is the ideal (p)” of Z,. Put E = Q,((,r). Since
p is the norm of 1 — (,» we have

NE (B =UY" - (p) = (1+ (0)") - ().
It follows with Example 17.17 that W (E) = V§?(E) for i =0,...,7.
The main result in this section is that in general Wl(f)(E) = Vfgi)(E) for all i > —1.

This is Theorem 17.48. For its proof a detailed study of the function 1 is needed,
to start with cyclic extensions of prime degree. This is done in a series of lemmas.

17.40 Lemma. Let E : F be cyclic of prime degree l, s € N* and v € E such that
ve(y) > s. Then

NE(1+79)=1+Trg(7) + NE(y)  (mod Tr(p3))-
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17.3 Local Artin maps and ramification groups

PROOF. The norm of 1+ 7 is the product over its conjugates and we expand this
product:

N+ = [Ta+rn =TI =2 (>7) 7= 8
T€G I rel I Tel I

where the sum is taken over all subsets I of G and r = (3_.; 7) - 7. The group
G operates on the set of subsets of G by ¢l = {o7 | 7 € I'}. Only 0 and G are
fixed under this operation: By = v and B¢ = Ng - v = NE(y). The other subsets
are in orbits of length [. For a proper nonempty subset I we have

S bt = 3 = 3 (Sor) 1= X I ort)

ceG oeG ceG T€l ceGrel
=> o(II7n) = mE(I] )
oeG Tel Tel

In particular for the orbit of one element sets we have
> Bo = Trp().
ceG
For 1 < #(I) < I:
op (T ([T 7)) = ve(TeEwE)).
Tel
Hence

NF(1479) =1+ Trp(7) + N&(7)  (mod Tr(pE)). O

17.41 Lemma. Let E : F be ramified and cyclic of prime degree I, s € N* and
m =vg(0p(E)). Then

() = | 7 .

ProoFr. For ¢t € N we have

Tri(py) Cph < pp'Tre(py) € Op < Tr(pp'py) € Op
= pT Cep(BE) <= Or(E) Cpli™ <= m>1t—s

e g mEs

This proves the lemma. O

For E : F a cyclic extension of prime degree [ and Galois group G, let ¢ be the
unique jump in the chain of ramification groups:

G =Vi_1(E) = Vio(E) = = Viy(E)
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17 Conductor and Discriminant

p(z) ()

Figure 17.4: The functions ¢ and 9 for a cyclic extension of degree 3 with breaks
respectively —1 and 2

{1} = Vrs1(E) = Vo (E) = -+
Then by Theorem 17.34 vp(dp(E)) = S, —1) = (t + 1)(I - 1).

17.42 Lemma. Let E: F be cyclic of prime degree | with Galois group G. If
t =—1, that is E : F is unramified, then

a) = {}(m+1)—1 if v < -1,

T if v > —1.

Ift > 0, then

_Jz ifx <t
vie) = {l(x—t)+t if x>t

ProOF. Put V; = Vg,;(F). By Definition 17.5 we have for ¢t = —1

o) = {l(x—l—l)—l ifr <1,

T if x > —1.
and for t > 0
(2) x if z <,
xTr) =
4 Hoz—t)+t ifz>t
See Figure 17.4. The function v is the inverse function of ¢. O

The function 3 has one break, namely for x = ¢:

#(V2)

=1.
#(Vit1)

Yrpi(t) =
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17.3 Local Artin maps and ramification groups

17.43 Lemma. Let E : F be cyclic of prime degree . Then for each integeri > —1:
NEUSD) C U and NEQEOW) C U

and
1 ifi#t,

(U}i) . U§+1)N5(U(Ew(i)))) < w;/l(i) = {l il
ifi=t.

PROOF. The proof is by distinction of cases.

i=—1: We have ¢(—1) = —1, USY = F~, = O}. Obviously, NE(E*) C F*
and Ng((’)*E) C 0% Furthermore by Theorem 12.22

1 ift=—1,

E (= (E)
(O« NE(E") = {l o1

By Lemma 15.50
0L CNE(EY) = t=-1

and, therefore,

1 ift# -1,

(U URINE(UR") = (F": OpNE(E")) = { R

i =0: We have ¢(0) = 0, Ug)) = 0% and Ug) =1+4+pp. From ppNF = pp follows
that for a € pg we have NE(1 + ) = [[,cqo(l+a) = [[,ea(l +0(a)) €
(1+pE) NF =14 pr and so Ng(1+pE) Cl+pp.

For the computation of the index (O% : (1 + pr)NE(O%)) use:

(0% : (L+prINE(OR)) | (OF : (L +pr)) = #(kp)
(OF : (14 pr)NE(OR)) | (O : NE(OF)) = i
If t = —1, then e(E) 1.

Ift >0, then e =1.

If ¢t > 0, then char(kr) = and so [ { #(k}).

1> 0:
t =—1: Then ¢(i) =4 and Op(F) = Op. For all j € N

Trp(pl) Cpp <= Trp(py”) Cop(E) <= Op Cpy' < j<i
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17 Conductor and Discriminant

462

t >

and so Tr%:(p]g) = pi. Replacing i by i + 1 and 2i respectively yields
Tep(p ') = pp! and Tef(p3) = p3 C pi'. Moreover, NE(pf) =
pli C p?‘l. By Lemma 17.40 we have for all v € p&;:

NE(+9) =1+ Trg(y)  (mod pi).
So Ug)NE(Ug)) C Ugﬂ). On the other hand let 5 € pg“ and choose
aye pgﬂ) such that Trz(y) = 8. Then
NE(L+79) =148 (mod pi"),

that is 145 -

NE(+) <
It follows that 1+ 8 € Us T NEUWY).
By Lemma 17.42 (i) = i. For v € p%, we have by Lemma 17.40

NE(L+9) = 1+ Trg(y) + NE(y)  (mod Tri(pk)).

By Lemma 17.41 vp(TrE(pt)) = ¢ and we have (t + 1)(1 — 1) +i >
(t+1)(I—-1)+i =dl+1—-1, that is (t+1)({—1)+i > il+1. Therefore, also
by Lemma 17.41, vp(TrE(pl)) > i + 1 and, moreover, vp(Tr(p%)) >
vr(TrE(p%)) > i + 1. Hence for v € p&,

NZ(1+7) =1+NE(y)  (mod p)
and, in particular for v € p;, respectively v € pg‘l:

NE(1+7) =1 (modp%), respectively NE(14++) =1 (modpii?).
So NE(UY) c UR, NEWwGHY) c UdtY and URTINEWUY) c U
Now let 3 € p% and choose a v € p%; such that NE(v) = 8. Then as in
the previous case it follows that 1 + g € UI(TZH)Ng(Ug)).

i: By Lemma 17.42 we have 9(t) =t¢. Since (t + 1) — 1)+t =l +1—-1

and L%J = t, we have by Lemma 17.41

Tr(pl) = pho.

Similarly TrE (p!*!) = piit and TrE (p%) = p% C pi'. By Lemma 17.40
for all v € pt;:

NE(L+7) = 1+ Tri(y) + NE(y) (mod pi)

and
NE(1++) =1 (modp).



t<i:

17.3 Local Artin maps and ramification groups

Moreover, if v € pE+1) then NE(147) =1 (mod pHt). So N induces
a group homomorphism

N: U jugtt ol juity.

The cokernel of N is U(t)/U(tJrl NE(U(t)) Choose uniformizers 7p and
7p of E and F respectively. Then Trk (7)) = ant and NE(xt)) = brt,,
where a,b € OF. The residue class field kg is equal to the residue class
field kr. We have isomorphisms

kg =kp QUS)/U](;H), z— 1+ art,

and
kp SUD USY 2o Tt ot

their domain being the additive group of the residue field. Via these
isomorphisms the homomorphism N translates into a homomorphism
N: kr — kp. For x € O we have

NE(1 4+ zrty) = 14 2Trk(ng) + 2'NE(7g) (mod pi?)
=1+ bort, + az'nl (mod pitt)

=1+ (bx + az')rt (mod pift).
So the corresponding homomorphism kp — kp is the map
N:kp—)k‘p, y»—>5y+ayl.

The order of the kernel of N is at most . So the order of the cokernel
is at most [ as well. This proves that

UW  USINEWUD)) < 1.

By Lemma 17.42 we have (i) = t+1(i —t). Since (t+1)(I—1) +9 (i) =
t+ 1) -1 +t+1(i—t)=1li+1—1and =] =i we have by
Lemma 17.41

TrE(py ) = P
Also by Lemma 17.41
T () ) = i

From (i) =t +1(i —t) > t + (i —t) = ¢ follows that Ng(pﬁ(i)) -
(pgl) = p}“ Hence by Lemma 17.40 for v € p}é(z)

NE(149) =1+ TrE(y) (modpi!) and NE(1+44) =1 (modph).
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17 Conductor and Discriminant

So NE(WU") € U and U INEW™)) C UL, For the opposite
inclusion let 3 € p%.. There is a v € pjé(z) such that Tr&(y) = 8. Then

NE(1+7)=1+8 (modpi?)

and it follows that 1+ 8 € USTINE@W D). O
We generalize the lemma to the case of a Galois extension of local fields.
17.44 Lemma. Let F : F be a Galois extension of local fields. Then for each
integer 1 > —1:

Ng(ng(i))) C Uéf) and Ng(Uéw(i)+1)) C U1($i+1),

and
7 1+1 7 .
(UL UGTINEWUE D)) <yl ().

PrROOF. The proof is by induction on the degree of the extension. For degree
1 it is trivially true and for prime degree it is the previous lemma. Since Galois
groups of local field extensions are solvable, for composite degree there exists an
intermediate field E’ such that F’ : F is a Galois extension and E # E' # F.
By induction we assume the statements in the theorem to be true for the Galois
extensions ' : E' and E’ : F.

Put G=Gal(E: F), H=Gal(E : E') and G' = Gal(E' : F). We will use
NEZ = NE'NE, and ¢ = ¥yie (Proposition 17.9).
The verification of the inclusion statements is straightforward:
NEWUg ™) = NENE U ) C NE (W) c Uy,
Ng(U(Ewc(i)H)) - N%N?(U?’Hlﬁc’(i)“)) c N%(Ugf’c’“)) C U}Hl).
For the last statement use the inclusions

NE Uy e @y cupe'™  and NE (U @)y cuith

(U? : U}Hl)Ng(Ugc(i)))
= (Ugi) : Up N (U ) - (U TINE (U ) U TINR(UE ™)
< W p0) - (UgTINE (U D) s U INENG (U e )
<o p i) - (U TINE (U D) s U TINE (Ugre O ING (g e D))
< W opi) - U U TINE (U e )
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_ V(1) ' Vi, (Ve iy) _ b (1) )
w,G/,l(i) QML[J('I/JG/(?;)) QZJ’GJ(Z) G,r/I\")-

<Y (0) - (War i)
The 1-functions have only finitely many breaks, so the chain rule for the left and

right derivatives applies. O

17.45 Lemma. Let F : F be an abelian extension of local fields. Then for each
integer ¢ > —1:

T

(UYNE(E*)  USTONE(E) = (U - USTINEWUE D) = v, ().

PROOF. There is an integer ¢ such that UI(;) C NZ(E*) and ¢ has no break for
all x > t. Consider the chain

ULONE(ET) B UPNE(ET) B oo B UPNE(EY).
I I
I NE(E")

By Lemma 17.44

(UWNE(E*) : USTINE(E) < (U - USTINE@WE) <ol (). (17.2)

So we have
t—1
[B: F] = (F*:NE(B) = [] WRNEE) : UFINE(E)
i=—1
t—1 t—1 t—1
, ¥ (4) 1 Yi-1)
< = ~1
_zglwr/l(z) ll_;[l l/(l) 1}[};(71) }:!; l/(Z) wr(t )
<P =B P,
Pl (i—1)

where O] < 1 because of the function i being concave. It follows that the
1
inequalities in (17.2) are actually equalities. O

The proof also shows that /(i — 1) = ¢;(4) for all integers ¢. This proves:

17.46 Theorem (Hasse-Arf). Let E : F an abelian extension of local fields. Then
the function ¢ = Y has only breaks at integral arguments. O

17.47 Lemma. Let E : F be an abelian extension of local fields. Then for each
integer t > —1:

wh =1} = v ={1}.
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17 Conductor and Discriminant

PrROOF. We have:
W = (1} = UYNE(EY) = NUE*) < (F*: UONE(E?)) = [E: F]

t—1
= [[ WPNEE"): UFTINENE(EY) = [E: F]

i=—1

= [[ ¥.,6)=[E:F]  (Lemma 17.45)

1 for all x € [t, 00)
= () = i(t) = #(Vro(E)) <= Vryw(E) ={1}
= V(B ={1}. O

17.48 Theorem. Let E : F' be an abelian extension of local fields. Then WS)(E) =
VNE) for alli > —1.

PrROOF. Let ¢ be an integer > —1. For each subgroup H of Gal(E : F'):
Wi (B) S H = 9 (UF) € H
ﬁ(EH) U(i) -1
— vy ‘(Up’)={1}
Wi (B") = {1}

—
— Vbii)(EH = {1} (Lemma 17.47)
—
Therefore, W}Z)(E) = V}“(E). O

17.4 The Conductor-Discriminant Formula

17.49 Notations. Let E : F be an abelian extension of local fields and x €
Gal(E : F)". Then the field F}, is the intermediate field of E : F corresponding to
the subgroup Ker(x) of Gal(E : F):

Fy = EXer(0,

The conductor of F) : F' is denoted by f,.

466
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17.50 Theorem (Local Conductor-Discriminant Formula). Let E : F be an
abelian extension of local fields and G = Gal(E : F). Then

vrr(E)) = Y vr(fy).

xXEGY
ProOOF. Let x € GV. Then for i € N:
vp(fy) <i < UY CNEX(F))

— W(F) = {1}
= V ( ) = {1} (Lemma 17.47)
— VI(E)C Gal(E: F,) (Theorem 17.11)
— V) C Ker(x).

We have for each ¢

2 )= {S&(V“RE)) i KF E ; ’ Ei
oevi(B) 4

So

= (Vi () = ey X(0)

; g #(VE(B))

Summation over all x gives:
 n#(VE(E)) = Yyear Lyevio s X(0)
Z UF(fx) = a X(ei)G )
XEGY =0 #(Vp' (E))
> n#(V, ( ) — dew N (E) ZXGGV x(o)

_Z #(V (E))
> n V(i) E))—n i 1
_ 5 ) 3 )

Q =70
i #(Vp'(B)) =0 #(Vp' (E))
By Theorem 17.37
_ B (g _mmN~ Ly
or@r(E) = 1 vp(0p(B) = 0P 3 (1 - —os)- O

So for an abelian extension F : F' of local fields with Galois group G' we obtain

:HfX'

xEGY
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17 Conductor and Discriminant

The discriminant of a number field extension is the product of its local discrimi-
nants. As a consequence we obtain a global formula:

17.51 Theorem (Global Conductor-Discriminant Formula). Let L : K be an
abelian extension of number fields. Then

w(@) = [ fro
XEH(L:K)
where §, o denotes the finite part of the modulus f, .

PrROOF. The identity can be interpreted as an identity of ideals of O. Let
p € Max(Ok). We will show that

vp(0k (L)) = Z Op (Fy)-

XEH(L:K)
Fix aq € Max(OL) above p. Put G = Gal(L : K) and Z = Z\"). By Theorem 17.28
0 (L) = ((LZ)#D  NE (04 (L)) = NE (012(L)).

So vp(0k (L)) = (G : Z) - vqz(0p2(L)). From Theorem 17.50 follows via the dual
Artin isomorphism

vaz (0p2(L)) = Y vgz(fy).

XEZY
The number of characters of G which coincide on Z is (G : Z). Hence

Yoo w0 =(G:2) Y vaz(fy) = (G : Z)vgz(0p2(L)) = vk (L). O

XEGY XEZV

This theorem leads to connections between the discriminant of a noncyclic abelian
extension of number fields and the discriminant of its subextensions. In full gen-
erality this connection is explained in section 18.3. Here is a special case:

17.52 Corollary. Let p be a prime number and L : K an abelian extension of
number fields with an elementary p-group of rank 2 as Galois group. Then

p+1
i=1
where Ly, ..., Lyy1 are the intermediate fields of degree p over K.

PrROOF. The group H(L : K) is an elementary p-group of rank 2. The interme-
diate fields of degree p over K correspond subgroups of H(L : K) of order p. The
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Exercises

subsets H(L : K;)\{1} form a partition of H(L : K)\{1}. Hence, by Theorem 17.51
and since f1 9 = (1),

p+1 p+1

w@) =[] I fno= HDK(LZ-). O

i=1 xEH(L;:K)

This generalizes the formula obtained in exercise 9 of chapter 1.

EXERCISES
1. Verify Theorem 17.11 for the three quadratic subfields of the biquadratic field in
Example 17.13

2. In Example 17.17 the ramification groups V@ for an odd prime p in Q(¢pr) have
been computed. Compute the different of the extension Q,(¢pr) : @, using Theo-
rem 17.37. Compare the answer with the formula of Proposition 1.54.

3. Show that Theorem 7.28 follows from Theorem 17.23 and Theorem 17.26.
4. Show that Proposition 9.91 follows from Theorem 17.51.
5. Show that Proposition 7.30 follows from Theorem 17.23 and Theorem 17.25.

6. Let £ : F be an abelian extension of local fields. Prove that E : F is tamely
ramified if an only if fr(E) | pr. (Hint: use Theorem 17.48.)

7. Let L : K be a tamely ramified abelian extension of number fields. Prove that
fr (L) is squarefree, i.e. not divisible by the square of a finite prime of K.

469






18 Zeta Function Relations

In algebraic number theory various structures associated to a number field come up:
ideal class group, unit group, ray class group, zeta function and many more. In this
chapter we study for a Galois extension of number fields relations between these
structures for the intermediate fields of the extension. This is done by studying
norm relations, relations of norm elements in the group ring of the Galois group. In
section 18.1 norm relations of a finite group are introduced and it is shown how they
are related to the noncyclic subgroups of the group. For a finite abelian group a
special norm relation is obtained using the characters of the group. For modules A
over a finite abelian group G group having the property that multiplication by #(G)
is an isomorphism, a norm relation leads to a relation between the submodules AY
for subgroups U of G. This is shown in section 18.2. In section 18.3 it is shown
that a norm relation leads to a relation between the zeta functions of intermediate
fields as well as for the discriminants of these fields.

The relations are especially interesting if in the group ring the element 1 is a
combination of norm elements of nontrivial subgroups. If such a norm relation
does not exist the group is called strongly exceptional. In the last section it is
shown that a group is strongly exceptional if and only if all subgroups of order
pq with p and g not necessarily distinct prime numbers, are cyclic. Modules over
noncyclic groups of order pg with p and ¢ prime have been studied in the sections
12.5 and 12.6.

18.1 Norm relations

The argument used in Example 5.37 is based on the following relation for the
elements Ng, N, N, and N, in Z[G], where G = {0, 7) = C3 x Ca:

2=N,+ N, + N, — Ng¢.
For example for v € O}, this implies
V2 € (05)7(0%)(05)7(05)F = (~1,2+ V3).

In this section this kind of relations will be studied. The following notations will
be used for various collections of subgroups.
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18 Zeta Function Relations

18.1 Notations. Collections of subgroups of a finite group G:
Q(@G): the collection of cyclic subgroups of G,
Q0 (G): the collection of nontrivial cyclic subgroups of G,
Q' (G): the collection of noncyclic subgroups of G,
Y(G): the collection of subgroups of G,
Yo(G): the collection of nontrivial subgroups of G,

T(G): the collection of normal subgroups H of G such that G/H is a finite
cyclic group,

To(G): the collection of H in T(G) with H # G.

The free abelian group on a set X will be denoted by ZX or occasionally, for
reasons of clarity, by Z - X. For a group G the abelian group ZG has in a natural
way the structure of a ring. With this ring structure it is the group ring Z|[G].

18.2 Definition. Let G be a finite group. A norm relation of G is an element of
the kernel of the homomorphism

ma: ZN(G) = ZIG), > myUr— > nyNy

Ues(G) Uex(G)

The kernel of 7¢ is the group of norm relations of G and is denoted by NR(G). So
EUGE(G) nyU is a norm relation of G if and only if ZUez(G) nyNy = 0.

18.3 Lemma. Let G be a finite group and let the homomorphism mg: ZX(G) —
ZQ(G) be defined by m(U) = > pgequy H on basis elements U € X(G). Then
Ker(my) = NR(G).

Proor. For H € Q(G) put
[H] ={oceG|(o)=H}.
It is an equivalence class of the equivalence relation in G defined by
o~T <= (0)=(1).

For H € Q(G) put

SH: ZO’.
]

o€[H

Then

Ny = Z Sy.

HeQU)
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Let the homomorphism g : ZQ(G) — Z[G] be defined by vo(H) = Sy on basis
elements H € Q(G). Then for each U € X(G):

Yo (U —7@( Z H) Z Sy = Ny.

HeQ(U) HeQ(U)

So vgm = ma. Since 7y is injective, it follows that Ker(ny) = Ker(yany) =
Ker(mg) = NR(G). O

18.4 Lemma. Let G be a finite group and let the homomorphism g : ZQ(G) —
ZX(G) be defined by Ya(H) = 3 pcqmy #(H + H*)H* on basis elements H €
Q(G). Then mipe is the identity on ZQ(G).

The coefficient pu(H : H*) is the Mobius function applied to the index (H : H*), so
u(H : H") = p((H : H")).

PrOOF. Let H € Q(G) and n = #(H). For each d | n there is a unique subgroup
H, of H with #(Hy) = d. We have

Yera(H) =Yg (Z Hd) = va(Ha)
d|n d|n
=> > wHH,=> > ut)H,=H, = H. O

dln s|d sln t|%

As a consequence a Z-basis of NR(G) is formed by the elements

U —yerg(U - > ve(H - > >

HeQ(U) HeQU) H*€Q(H)

PIEDS

H*eQU) HeQ(U)
HDH*

where U € Q'(G). This leads to the following definition.

18.5 Definition. Let G be a finite group. For each H € Q(G) the norm coefficient
de(H) of H in G is the integer defined as follows:

do(H)= > p(H*: H).
H*eQ(G)
H*DH
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We have shown:

18.6 Theorem. Let G be a finite group. Then the abelian group NR(G) is freely
generated by the elements

U- Y dy(H)H,

HeQ(U)
where U € Y (G). O

18.7 Definition. Let G be a finite group. The element G — 3~ ;) da(H)H €
NR(G) is called the principal norm relation of G.

Nontrivial norm relations of a group G may have consequences for the structure of
G-modules.

18.8 Notation. Let G be a nontrivial finite group and A a G-module. The sub-
module of A generated by all AV for U € $y(G) is denoted by Ag. So

Ag= Y AV

UeSy(G)

18.9 Lemma. Let G' be a nontrivial finite group, A a G-module and )", nyU a
norm relation of G. Then
n{l}A c AQ.

PROOF. The identity ny;y = — ZUeZO(G) nyNy implies

’I’L{l}A g Z ’fLUNUA g Z nUAU g Ao. ]
Ueso(G) UeXo(@)

18.10 Definition. Let G be a finite group. The coefficient dg({1}) is called the
trivial norm coefficient of G.

18.11 Example. Let p be a prime number and G an elementary abelian p-group
of rank r > 2. There are ’;%11 nontrivial cyclic subgroups, each of order p. In this
case dg(H) = 1 for each H € Qy(G) and dg({1}) =1 — % = —’;:%1”. So we
have the identity

For r = 2 we get

In section 12.5 this identity was easily obtained by direct computation. The trivial
norm coefficient of this group is —p. For r > 2 there are more noncyclic subgroups
and, therefore, more norm relations.
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18.12 Example. Let G be the group considered in section 12.6. We use the
notation of that section. Let’s for simplicity assume that ¢ is prime. Then G is
the unique nonabelian group of order pq. The group G has exactly p subgroups of
order ¢: the groups (o'7) for i =0,...,p — 1. By Theorem 18.6

p—1
No=-p+No+> Ngir.
=0

The same identity was obtained in section 12.6 by direct computation. The trivial

norm coefficient is —p.

18.13 Example. The group G = A4 of even permutations of four elements has
two noncyclic subgroups: Ay itself and a subgroup V' of order 4. There are three
subgroups B, By and Bs of order 2 and four subgroups C;, C3, C5 and Cy of
order 3. The group NR(G) is of rank 2 and is generated by

RG:G—Bl—32—33—01—02—03—044-6{1},
RV:V—Bl—BQ—Bg+2{1}.

The norm relation Rg — Ry = G —V — C; — Cy — C5 — Cy 4+ 4{1} shows that a
finite G-module A is up to 2-torsion generated by the submodules AV and A% (i =
1,...,4).

18.14 Example. Let G be the symmetric group S,, with n > 4. Then G has a
subgroup isomorphic to Cs x Cy and also a subgroup isomorphic to S3. The norm
coeflicients of these groups are —2 and —3 respectively. So a finite G-module is the
sum of submodules A¥ with H nontrivial.

A norm relation of a group induces a norm relation of each of its subgroups:

18.15 Proposition. Let G be a finite group, V a subgroup of G and ZUGZ(G) nyU
a norm relation of G. Then

> ng(UNV) e NR(V).
Ues(G)

PROOF. Let my : Z|G] — Z[V] be the homomorphism determined by

my (o) =

o ifoeV,
0 foeG\V.

Then for each U € ZX(G):

v (Ny) :WV(Z 0) = ZWV(U) = Z o =Nynv.

oceU oeU ceUNV
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Application of my to ZUeZ(G) nyNy = 0 yields

Z nUNUﬁV =0. O
UeX(G)

18.16 Proposition. Let G be a finite group and ZUeE(U) nyU a norm relation of

G. Then
Z nuy#U) =0 and Z ny =

Ues(G) Ues(G)
PRrROOF. For the first identity apply the augmentation to ZUGE(G) nyNy = 0.
For the second take V' = {1} in Proposition 18.15. O

We conclude this section with functorial properties of the group of norm rela-
tions. A group homomorphism f: G; — G5 determines a ring homomorphism
f«: Z[G1] = Z[G2] by f.(0) = f(0) on basis elements. For U a subgroup of G; we
have f,(Ny) = #(U NKer(f)) - Nf). Define f,: ZX(G1) — ZX(G2) by

fe(U) = #U NKer(f)) - f(U)

on basis elements U € %(G1). Then the following square of abelian groups com-
mutes:

Z5(Gh) — s 7[Gy]

e e

7TG2

So f: G1 — G4 induces by restriction of f,: ZX(G1) — ZX(G2) a homomorphism
fx =NR(f): NR(G1) — NR(G>):

f*< 5 nUU>: S ne kU NKe(f) - F0)
)

Uex(G, Uex(Gy)

= Z Z nu#(U NKer(f)) | U'.

U'ex(Gs) \ Uex(Gr)
fo)=uv’
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18.17 Proposition. NR is a functor from finite groups to abelian groups.

ProOF. Clearly NR(1g) = Inr(q)- Let f: Gi — Ga and g: G2 — G3 be ho-
momorphisms of finite groups. It suffices to show that for U € ¥(G;1) we have
(9f)«(U) = g«(f«(U)). For this consider the following commutative triangle of
surjective group homomorphisms:

flu

U——f(U)

9flu gl
gf(U)

The kernels form a short exact sequence:
0 — UnZKer(f) — UnKer(f'f) — f(U)NKer(f') — 0.

Therefore, #(U NKer(gf)) = #(U NKer(f)) - #(f(U) NKer(g)). O

18.2 Norm relations for abelian groups

In this section G is a finite abelian group of order n and R a commutative ring in
which n is a unit: n € R*. We will derive for a finite abelian group G an orthogonal
system of idempotents of the group algebra Z[1][G] and consider its consequences
for the structure of R[G]-modules. The idempotents will correspond to subgroups
H € Y(G). It leads to both a norm relation for these subgroups and a relation
for the submodules A¥ of an R[G]-module A. Note that there is a unique ring

homomorphism Z[1] — R.

18.18 Definition and notation. Let y € G¥. Then an element &, of the group
algebra of G over Z[1, (,] is defined as follows:

o= Y xlo)o ™ € 1A GG

ceG

18.19 Lemma. The collection (ey)yeqv is a collection of orthogonal idempotents
of the group algebra Z[%, ¢a)[G-
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PrOOF. Let x,n € GV. Then

nzsxgn = (Z X(U)Uil) (Z 77(7')7'71) = Z x(@)n(r)o~trt

oeCG TEG o,7TeG
= > x@ne )t =D xnHomp)p!
o,peG o,peG
= (Z xn‘l(a)) (Z n(p)p‘l) = (Z xn‘l(a)) ey,
oeG peG ceG
For x # n the first factor equals 0 and for y = 7 it equals n. O

18.20 Lemma. The e, form a basis of the free Z[, (,]-module Z[1, (,][G].

1
n
PROOF. For x € G¥ and 0 € G we have

€x0 = % Z x(r)T7le = % Z x(op)p~t = %X(U) Z X(p)p™t = x(0)zy.

TEG peG peG

So for a =Y . avo € Z[E, (]G]
o= ( Z EX> (Z ago) = Z (Z agx(o))sx.
xX€EGY oceG X€EGY oeG

If Y cqv ayey = 0 with ay € Z[+, (], then for all n € G¥
0=¢, Z AxEx = Apy
XEGY

and so a,, = 0 for all x € GV. So the ¢, generate the group algebra as Z[%, Cnl-
module and, moreover, they are independent. O

18.21 Notations. Subgroups V € %(GV) correspond to subgroups U € X(G) as
follows:

Vi={oeG|x(o)=1forall y eV}
and
Ut={xeG"|x(o)=1forallo cU}.

The collection of subgroups H of a finite abelian group G with G/H cyclic is
denoted by T(G). Groups in Y(G) correspond to groups in Q(GY).

Summation over the characters vanishing on a subgroup U € X(G) yields the ob-
vious idempotent:
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18.2 Norm relations for abelian groups

18.22 Lemma. Let U € X(G). Then

_ N oo
XGZUL = 7 € )

PROOF. Characters vanishing on U correspond to characters of G/U, so

o ifog¢U
XGEU:LX(J)_ {(G:U) if o€ H.

Using this identity:

Sa=r Y et = (X xo)o!

x€UL x€UL oeCG oceG yeU+
1 _ 1 Ny
:—§ G:U)o'=2(G:U)Ny = . O

18.23 Definition. For H € YT(G) the idempotent ey is defined by

EHg = E Ex-

xEGY
()*t=H

18.24 Proposition. Let H € T(G). Then

* NH*
H*eY(G)
H*CH

In particular ey € Z[1][G].
ProoF. For each d | (G : H) let Hy € T(G) be the unique group Hy satisfying
H < Hy<Gand (H;: H) =d. By Lemma 18.22 we have

and by Mobius inversion

Ng
en =Y pld) O
d|(G:H) #(Ha)
Since the e are actually elements of Z[+][G] we have:

18.25 Theorem. The system (cu)pcy () is a system of orthogonal idempotents of
the group algebra Z[+][G]. O

1
n
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Norm relations

In order to avoid confusion let’s denote the standard basis elements of the group
algebra Z[(,, ][GY] by [x]. From Lemma 18.20 it follows that we have an isomor-
phism

ZlGn, 31IGY] — Z[Ga, 11IG], [X] = & (18.1)
of Z[¢, £]-modules. This isomorphism induces a bijection NR(GY) = NR(G):

18.26 Theorem.

Y myVENRGY) <= Y (G:U)ny.U € NR(G).
Vex(GY) Uex(G)

PROOF. The isomorphism (18.1) maps

Z nvNV

Ves(GV)
to
Ny o Ny
2 owdas X wamm s 3 gy =0
Ves(GVY) XEV Ves(GY) UeS(G)
Hence,
> Ny =0 <= > (G:U)nyNy=0. O
VeX(GY) UeX(G)

In particular, the principal norm relation for GV,

leads to a norm relation for G. For its formulation we use the following notation.

18.27 Notation. For H € Y(G) put d(H) = dgv(H*) € Z. So

dG(H) = S pH Tt EY = S p(H:HY).

H*eY(G) H"eY(G)
H*CH H*CH
18.28 Corollary.
#(@) = Y (G:H)dsH)Ng O
HEY(G)
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18.2 Norm relations for abelian groups

18.29 Example. Let p be a prime number and, as in Example 18.11, G an ele-
mentary abelian p-group of rank r > 1. The collection To(G) consists of the ’; __11
subgroups of order p"~!. For each H € T¢(G) we have d%(H) = 1. The formula

of Corollary 18.28 gives, after division by p:

1 prfl -1
Tl = Ny — ——Ng.
p Z H -1 G
HeYo(G)

For r = 2 the group NR(G) is free of rank 1 and, indeed, this identity is essentially
the same as the one in Example 18.11.

Module structures

Since the ey for H € T(G) form an orthogonal system of idempotents of the group
algebra Z[1][G] (Theorem 18.25), we obtain a decomposition for each R[G]-module:

18.30 Theorem. Let G be a finite abelian group of order n and A an R[G]-module.

Then
A= @ egA and A = @ eg+A
HeY(G) H*eY(G)
H*DH

as R-modules.

This tells us how the R-module A is determined by its R-submodules AH for
H e Y(G):

18.31 Theorem. Let G be a finite abelian group of order n and A an R[G]-module.

Then
A= hﬂ A
HEY(G)
where the direct limit is over the groups H € Y(G) ordered by 2. O

This h_r>n is the direct limit in the categorical sense. The limit above can be con-

structed as the direct sum of the R-modules A7 modulo the relation which identifies
the summand A®2 with the R-submodule A¥2 of the summand A™' if H, > H>.
In terms of generators and relations it is the R-module with

generators: [a, H] with H € T(G) and a € A™,
relations: [a, H1] = [a, H2] if Hi > Hy and a € A™,
r-[a, H) = [ra, H] if a e A",

[al,H}+[a2,H]:[a1+a2,H] ifal,GQEAH.

For abelian G we have the following proposition, due to Nehrkorn [30], and redis-
covered by Frohlich [11].
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Proposition. Let G be an abelian group and A an abelian l-group with | { #(G).
Then A =A™ where H ranges over all subgroups of G such that G/H is cyclic.

Cornell and Rosen [10] gave a simplified version of Frohlich’s proof. By Theo-
rem 18.31 the group structure of A is determined in terms of the subgroups A”.
This is not the case for Nehrkorn’s proposition. Note that in the theorem the direct
limit is over H € Y(G) ordered by D, which is stronger than the direct limit over
the subgroups A ordered by C, in which case we only have

A= Z A
HeY(Q)

For A an abelian [-group this is Nehrkorn’s proposition.

In particular, we have the following generalization of Proposition 12.40.

18.32 Corollary. Let p be a prime number and G an elementary abelian p-group
of rank r. Then for Z[%}[G]-modules A we have
AJAG = @ ATjAC.
HEY(G)
H#G

PrROOF. T(G) consists of G and % subgroups of order p"~!. By Theorem 18.30

A=ceqAa P enA,

HeY(G)
H#G

A¢ =egA and AP = e A@ e A for each H of index p. O

For A an R[G]-module each norm relation for G leads to a relation for the R-
submodules AY with U € £(G). The following lemma will be used:

18.33 Lemma. Let G be a finite group, H € Y(G) and 3 e (qynulU € NR(G).
Then for each d | (G : H)

Z ny#(U) = 0.
Ues(@)
(U:UNH)=d

In particular, for d =1

> n#(U) =0.

UeS(H)
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18.2 Norm relations for abelian groups

PRrROOF. Let f: G — G/H be the canonical homomorphism. For each d | (G : H)
let Hy be the unique subgroup of G which contains H such that (Hy : H) = d.
The homomorphism NR(f) maps the norm relation  y;cs ) noU to:

Z ( Z nU#(UﬂH)>(Hd/H) € NR(G/H).
dl(G:H) \ Uex(Q)
(UH:H)=d

The cyclic group has no nontrivial norm relations, so for each d | (G : H) we have

> n#UNH)=0.
Ues(G)
(UH:H)=d
The groups UH/H and U/(U N H) are isomorphic, so if (UH : H) =d, then
(U:UNH)=dand #(UNH) =#(U)/d. O

18.34 Theorem. Let A be an R-module and e gynuU € NR(G). For each
U € 3(G) write ny = ky — ly with ky,ly € N. Then

@ (AU)kru#(U)g @ (AU)lu#(U) (18.2)

Ues(G) Ues(G)
as R-modules.

PROOF. On both sides we have R[G]-modules. They are isomorphic if they have

isomorphic components in the decompositions given by the system (ex)ger(q) of
orthogonal idempotents of R[G]. For H € T(G), U € ¥(G) and n € G such that
(n) = H* we have

2D ILED D P

otherwise
xeU+ xeU+

and so

NU - _ J&m lfHQU,
) EX{O

neGY eUL otherwise.
(my=H"

The number of components e A on the left hand and the right hand sides of (18.2)
is respectively

> ku#(U) and > l#(U).

Ues(H) Ues(H)

These numbers are equal by Lemma 18.33. O
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A sharper result is easily obtained by taking ky = ny for ny > 0 and ly = —ny
for ny < 0. Let d = gedyesygy (Ru#(U)). Then the above proof shows that

D “”) = P @)

Uexn(@) Uex(G)

ky#U) ly#U)
d a .

In particular for the norm relation of Corollary 18.28:

18.35 Corollary. Let A be an R-module and let for each H € Y(G) the numbers
ki,lg € N be such that df,(H) = kg — lg. Then

A® @ (AH)ng @ (AH)lH

HeY(G) HeY(G)
as R-modules. O

18.36 Example. For G an elementary abelian p-group of rank » > 1 and A a

Z[%} [G]-module we obtain the relation for submodules described in Corollary 18.32:

Ao (A%)5T = P At
HGT()(G)

18.3 Relations for Dedekind zeta functions

A norm relation of the Galois group of a Galois extension of number fields deter-
mines a relation for the zeta functions of the intermediate fields (Theorem 18.38).
As a result it also determines a relation for their residues at the pole s = 1. This
is even more interesting since the same relation holds for the discriminants (Theo-
rem 18.45).

We will use the Euler product of the Dedekind zeta function. The relation for the
zeta functions will follow from the same relation for each of the Euler factors. For
this we need the splitting behavior of a prime in an intermediate field. It has been
described in section 7.4. We will use the following lemma.

18.37 Lemma. Let G be a finite group, Z € X(G), T € Y(Z) and 3 yexqynulU €
NR(G). Then for each d | (Z : T)

> nu#ZnU)=0.
Uex(G)
(ZNU:TNU)=d
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Proor. By Proposition 18.15
> ny(ZnU) € NR(Z).
Ues(G)
Application of Lemma 18.33 yields the required formula. O

18.38 Theorem. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and ZUEE(G) nyU a norm relation for G. Then

T Gools)ye#® =1,

Uex(G)

ProOOF. For U € 3(G) let py stand for maximal ideals of Opv. We have the
Euler product

CLU(S):Hli_HH HH ’

pU N(pv)*® P pulp N(PU)S P PUIP N(p)fK(nU)s

where the product is over all p € Max(Of). It suffices to show that for each p

H H ( )nu#(U) _ 1

UEeS(G) pulp N(p)’K“’U“

This will be done by showing that for each given d the net number of factors with
fx(pu) = d vanishes. In other words we will prove that

o) w#U)=0. (18.3)

Uex(@) pulp
fx(pu)=d

We use the description in section 7.4 of the splitting of a prime in a subextension
of a Galois extension. Let q be a fixed maximal ideal of O, above p, Z = Zx(q),
T = Tk(q) and f = fk(q). The group Z acts from the right on the collection
U\ G of left cosets of U in G. The collection of orbits of the action of Z on U\ G
is denoted by (U \ G)z. Thus we have a partition of G into orbits of cosets. By
Theorem 7.53 and Lemma 7.52 the map

G — Max(Opv), o+ o(q)NLY

induces a bijection from the collection of orbits to the set of maximal ideals py

above p:
(U\G)Z — {]JU S MaX(OLU) ‘ prNK :p}

The length of an orbit is equal to

ex(o(a) N LY) fr(o(a) N LY) = (Z: (ZNno"'Ua)),
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where ¢ is an element of one of the cosets in the orbit. Furthermore,
ex(o(@NLY)=(T:(TNo'Us))
and so

(Z:(Zno'U0)) f
frlo(@nLY) = (T:(TNo Us)) (ZNoWo)):(TNo o))

In each coset C' € U \ G choose a o¢ and for each orbit X choose a ox in one of
its cosets. The number in equation (18.3) multiplied by #(Z) is equal to

> > nu#(U)#(2)

Uex(G) Xe(U\G)z
((Zﬂo';(lUﬂx)Z(TﬁU;{lde)):f/d
= > > nu#(U)#(Z Nog'Uoc)
Uex(G) Ce(U\G)

((ZNog'Uoc):(TNog Uac))=f/d

= Y > nu#(ZNo Vo)

Uex(G) oceG
((Zno~'Uo):(TNo " Us))=f/d

=> > nu#(0Zo~NU)

oceG Uex(G)
((6Zo™'NU):(eTo NU))=f/d

and by Lemma 18.37 this equals 0. O

For the splitting of a prime p in L the group Tp(L) is a normal subgroup of ZéL) and
the quotient group is cyclic. Only this has been used in the proof. No use is made
of the special structure of the group ZSL).

For the principal norm relation of the Galois group we get ([4],[24]):

18.39 Corollary (Brauer-Kuroda). Let L : K be a Galois extension of number
fields with Galois group G. Then

() D= [ Cuu(s)?etD#U, 0
HeQ(Q)

In particular for a metacyclic Galois group as described in section 12.6 we get:

18.40 Corollary. Let L : K be a Galois extension with G = Gal(L : K) =2 C, x C,

where p and q are prime numbers, C the subgroup of G of order p and D one of
the subgroups of order q. Then

Gule) _ Goe) (Goo ()
Cels) ~ Crls) \Crs) )
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PROOF. Note that conjugate subgroups determine isomorphic subfields. The
principal norm relation yields

Cr(8)P" = Cu(s) PCre ()P [ Comls)® = Culs) PCre ()Pl (s)P2.
HeQ(G)
#(H) =q

Dedekind zeta functions have real values in real arguments. So in the field of
meromorphic functions we get

Cr(s)P = Cr(s) " Cro(s)Cro(s)?. O

For an elementary abelian p-group of rank 2:

18.41 Corollary. Let L : K be a Galois extension with G = Gal(L : K) = C), x C,

where p is a prime number. Then

H CLH

HeQo

Proor. The principal norm relation yields

sy =Co(s)™” T Cuns O
HeQo
For an abelian extension:
18.42 Corollary. Let L : K be an abelian extension of number fields with Galois
group G. Then
H Cpu(s)te ), 0
HEY(Q)
Division by (x(s) in the formulas of the Corollaries 18.39 and 18.42 yields

H (CCL;(S))dG(H>#(H) 1

HEQ(G)

and
Co(s) _ Crm(s)\ 96U
Cr(s) 1] Cr(s) ) '

HeY(G)

The formula for the zeta functions implies a similar formula for their residues at

s=1:
r(LY) s(LY) U U\ ru#U)
H (2 (2m) h(LY)Reg(L )) _1 (18.4)
G)

U w(LV)4/|disc(LY)]

‘We will consider some of the factors in this formula. First the numbers of real and
complex infinite primes.
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18.43 Proposition. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and ZUEZ(G) nyU a norm relation for G. For U < G let ry be the

number of real infinite primes of LV and sy the number of complex infinite primes
of LY. Then
Z nU#(U)TU = Z TLU#(U)SU =0.

Uex(G) Uex(G)

Proor. Set [L: K] =n. For U € ¥(G) put ny = ky — ly, where ky,ly € N.
The additive group of L is a K[G]-module. So by Theorem 18.34

@ (LU)ICU#(U) ) @ (LU>lU#(U)
Ues(G) Uen(G)
as K-vector spaces. Taking dimensions over K yields:
S ku#U)ru+2s0) = > WwH#U)(ru +2s0)
Ues(G) Ues(Q)

and so

Z TLU#(U)(TU + 28U) =0.

Ues(q)
Similarly for the R[G]-module with the set Py(L) of finite primes of L as an R-basis
(the ‘logarithmic space’ of L):

Z TLU#(U)(TU + SU) =0. O

Uex(G)
Next the discriminants disc(LY) in formula (18.4). For this we will use the following
relation for the differents over the intermediate fields:
18.44 Proposition. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and ZUEZ(G) nyU a norm relation for G. Then

IT 0@ =o..
)

Ues(G

PROOF. Let q € Max(Or). We will prove that
vq( I1 aLU(L)"u) —0.
Ues(@)

Let N € N be large enough such that Vi ;(q) = {1}. Use Corollary 17.35 and
Proposition 7.5:

v I oe@™) = 3 (#Ow0@L)no

Ues(G) Uex(G)
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Il
1+

#(Vi.i(q) ﬂU))nU ~(N+1) > ny=0. O
i=0 UEx(G) Ues(Q)

18.45 Theorem. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and ZUeE(G) nyU a norm relation for G. Then

[T a(ty# oy
Ues(@)

Proor. Using Theorem 17.23, Theorem 17.28, Proposition 18.16 and Proposi-
tion 18.44:

U
[T owter = T on(tyNi 0

Uex(G) Uex(G
=aK<L>ZU62<G> o I NK (NE(Opu (L)
Uex(aQ)
= ] Nk(@we@y™ :Nf(( 11 aLU(L)*”U>
Uex(G) Uex(G)
=NL(Op)™! = Ok. O

For the absolute discriminants this implies:

18.46 Theorem. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and ZUez(G) nyU a norm relation for G. Then

H |disc(LY) [ #U) = 1,
UeX(G)

PrROOF. By Theorem 17.28

0g(L) = 0g(K)*9 - N (0x (L))
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and so for the generators in N* of these ideals of Z:
|disc(L)| = |disc(K)[#(@) - N(og(L)).
Also for each subgroup U of G:
|disc(LY)| = |disc(K)|(FY) - N(ox (LY)).
Apply Theorem 18.45 and Proposition 18.16:

H |disc(LY)|mv#U)
Ues(G)

[ Idisc(r)(@Ome# @ TT N(@g(LY))me# )

Uen(G) UES(G)
= dise(K) @ Treso e N( ] k(@A) =1 O
UeS(G)

Combining equation (18.4), Theorem 18.46 and Proposition 18.43:

18.47 Theorem. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and ZUEZ(G) nyU a norm relation for G. Then

ny#(U)
1 (h(LU)Reg(LU)) L -

w(LY)
Ues(a)
From the functional equation for the Dedekind zeta function follows that

, 1-r(i)—s(k) _ h(K)Reg(K)
ig%cK(s)s o T wkK)

This also leads to Theorem 18.47, see [8] Theorem 4.9.12.

For the principal norm relation of the Galois group we get:
18.48 Corollary. Let L : K be a Galois extension of number fields with Galois
group G. Then
(PUORESUR) #€) 7 (L) Reg(L) e
w(K) B w(LH) ‘
HEN(Q)

For an abelian extension:
18.49 Corollary. Let L : K be a abelian extension of number fields with Galois
group G. Then

h(L)Reg(L) _ H h(LH) Reg(LH) )dé(H). .

WD) e W
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In particular for an elementary abelian p-group:

18.50 Proposition. Let L : K an abelian extension of number fields with G =
Gal(L : K) an elementary abelian p-group of rank r. Then

h(L)Reg(L)(h([()Reg(K))p;:f’: I h(L") Reg(L")

w(L) w(K) HETO(G) w(LA)

18.51 Example. For a biquadratic extension L : K of number fields with Lq, Lo
and L3 the three intermediate fields of degree 2 over K the formula becomes

h(L)Reg(L) (h(K >Reg H h(L Reg i)
w(L) ( w( ) bl '

For a biquadratic number field we retrieve the formulas of Example 9.57 (the real

case) and Example 9.58 (the complex case). In chapter 9 these formulas have been

derived using L-functions of Dirichlet characters. The formula for the discriminants

was verified by direct computation (Exercise 9 of chapter 1). Here the formula is

obtained as an application of Theorem 18.38 and Theorem 18.46.

For L : K abelian proofs of Theorem 18.38 and Theorem 18.46 can be given using
(generalized) Dirichlet characters. However, such proofs are based on detailed
knowledge of the ramification of primes in an abelian extension: Theorem 15.52
and Theorem 17.51.

By Corollary 18.40 we have for Galois groups isomorphic to C, x Cy:

18.52 Proposition. Let L : K be a Galois extension with G = Gal(L : K) =
Cp x Cy, where p and q are prime numbers, C' the subgroup of G of order p and D
one of the subgroups of order q. Then

h(L) Reg(L)(h(K) Reg(K))* = h(L®) Reg(L) (h(L”) Reg(L"))".

ProOF. Note that u(L) = u(LC) and u(LP) = u(K). Use that conjugate fields
are isomorphic. O

18.53 Example. Let K be a cubic number field with one real prime and let d be its
discriminant. Then d < 0 and the normal closure of K is the field L = K (v/d). We
have Gal(L : Q) = S3 and Gal(L : Q) = (o, 7), where o and T generate respectively
Gal(L : Q(v/d)) and Gal(L : K). Since h(Q) = Reg(Q) = Reg(Q(+d)) = 1, we
have by Proposition 18.52:

h(L) Reg(L) = h(Q(Vd))h(K)* Reg(K)*.
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18 Zeta Function Relations

Let € be the fundamental unit of K. Then Reg(K) = loge and (e, 0(¢)) is of finite
index in O7 and so

Reg(L) = (OF : (e, 0(¢))) - Reg(e, 0 (¢))-

Since |o ()| = |o?(g)| and eo(e)o?(e) = 1, we have loge = —2log(c(¢)) and so
Reg(e,0(g)) is the absolute value of

2loge 2loglo(e)]

— _ 2
2loglo(e)|  2loglo®(e)] = —3log’e.

__|2loge —loge
" |-loge —loge

It follows that
(0% : (e,0(¢),—1)) - Reg(L) = 3log® ¢ = 3 - Reg(K)?
and so
3-h(L) = h(Q(Vd)) - h(K)* - (Of : (e,0(c), ~1)). (18.5)

For L = Q(v/2,(3) we have K = Q(+v/2) and d = —3. In Example 5.18 and
Example 5.42 the groups C(/(K) and Oj have been computed. Example 7.17
contains computations of Op, and Of. We have h(K) = h(L) = 1 and indeed
(O3 : (e,o(e),—1)) = 3 as shown by direct computation in Example 7.17.

Finally for G = A4 using the norm relation described in Example 18.13 we get :

18.54 Proposition. Let L : K be a Galois extension of number fields with Galois
group isomorphic to Ay. Then

Gule) _ o (2) (e ()¢
Crels) ~ Crls) \ () /)

where V' is the noncyclic group of order 4 and C is one of the subgroups of order
3. O

18.4 Some remarks on Artin L-functions

A powerful tool in class field theory is the L-series of a Dirichlet character. Artin
introduced a generalization: an L-function determined by a representation of the
Galois group of a Galois extension of number fields. In particular the main theo-
rem of this section, Theorem 18.38, is easily proved using Artin L-functions. For
L : K an abelian extension of number fields a Dirichlet character x € H(L : K)
corresponds to a character of the group Gal(L : K), i.e. a group homomorphism

Gal(L: K) — C™.
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18.4 Some remarks on Artin L-functions

The L-series of a Dirichlet character is defined as a Dirichlet series and since a
Dirichlet character is multiplicative it is also representable by an infinite product,
the Euler product.

The Artin L-function is defined as an infinite product (Definition 18.56) and it is
unknown whether it is in all cases the Euler product of a Dirichlet series.

Let L : K be a Galois extension of number fields, G = Gal(L : K), V a finite
dimensional C-vector space and p: G — Autc(V) a representation of G. Thus V
is a C[G]-module of finite complex dimension.

A representation p determines a map
x:G—=C, o~ Tr(p(o)),

which is called the character of the representation p. It generalizes the notion of
character in the degree 1 case. A basic result in the theory of group representations
is that the character determines the representation up to isomorphism. Characters
of G are central functions on G, meaning that

x(ror™h) = x(0) forall 0,7 € G.

Central functions of G are functions on G which are constant on conjugacy classes.

The character of the trivial representation G — C*, o — 1 is called the principal
or trivial character of G. Notation for the trivial character: 14 or simply 1. The
corresponding C[G]-module is C with the trivial action of G. The representation
corresponding to the group algebra C[G] maps a group element o to the automor-
phism of C[G] induced by the permutation 7 — o7 of G. It is called the regular
representation of G. The character of the regular representation of G is denoted

by rq. Clearly,
) #(G) ifo=1,
ralo) = {O otherwise.

A representation p: G — Autc (V) is called irreducible if the G-module V' has no
nontrivial proper G-submodule. Accordingly, the G-module V is called irreducible.
Irreducible representations of abelian groups G are representations of degree 1. The
character of an irreducible representation is called an irreducible character. The ir-
reducible characters of G form a basis of the C-vector space of central functions on
G. Every G-module is a direct sum of irreducible C-modules and so the characters
of representations of G are combinations of irreducible characters with the coeffi-
cients in N. Every irreducible G-module is a G-submodule of the regular G-module

C[G):
ro =Y x(x, (15.6)

where the sum is over all irreducible characters of G.
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18 Zeta Function Relations

18.55 Notation. Let V be a finite dimensional complex vector space and
p: G — Autc(V) a representation over C of a finite group G. For z € C[G]
we put

dety (z) = det(p(x)).

So dety is the composition C[G] - End¢ (V) 4 .

18.56 Definition. Let L: K be a Galois extension of number fields and
p: Gal(L : K) — Autc(V) a representation of Gal(L : K) with character x. Then
the Artin L-function attached to p is

1
L(s,x,L:K)= ,
(S X ) H dethp (1 _ N(Pp S)
pEMax(Ok) (p)

where T}, = Tk (q) for some q € Max(Or) above p and ¢, € Zx(q) restricted to
L™ is the Frobenius of q7» over K. The infinite product converges absolutely for
R(s) > 1 as will be shown below.

The definition is independent of the choice of ¢, since T, acts trivially on V7.
Note also that det =, (1 - %) does not depend on the choice of q: for any
o € Gal(L : K) we have Tx(0(q)) = 0Tyo 1, acppa_l\LdTp{,_l = pr(o(q) K@)

TPp o1
N(p)®

and the action of 1 — on V"T"‘f1 has the same determinant as the action

® T
of 1 — N(p")s on V¥,

Let ¢ > 1. Since ¢, € Gal(L : K) acts on V¥ as an automorphism of finite order,
the eigenvalues €; of this automorphism are roots of unity. Let n the dimension of
V. Then for R(s) >t

ety (1= 7o) =TI~ s

-1

< (1+@)”.

The infinite product [T, (1 + ﬁ) converges absolutely for R(s) > ¢, because so
does the infinite sum Zp ﬁ. It follows that the infinite product in the definition
converges absolutely in the half-plane R(s) > 1.

Dirichlet L-functions are Artin L-functions:

18.57 Proposition. Let L : K be an abelian extension of number fields and x €
H(L: K). Then L(s,x,L: K) = L(s,x). In particular for the trivial character we
have L(s,1,L : K) = (k(s).

PRrROOF. The character x € H(L : K) corresponds in a natural way to a character
x: Gal(L : K) — C*, a representation of degree 1. For each p € Max(Ok) we

have detc(1 — ﬁ) =1- 1\?((5))5. O

The sum of characters is the character of the direct sum of the representations:
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18.4 Some remarks on Artin L-functions
18.58 Proposition. Let L : K be a Galois extension of number fields and x and x’
characters of Gal(L : K). Then
L(s,x +x',L:K)=L(s,x,L:K)L(s,x',L: K).
PrOOF. Let p: Gal(L : K) — Aute(V) and p': Gal(L : K) — Autc (V') be

representations with characters x and x’ respectively. Then p @ p': Gal(L : K) —
Autc(V @ V') is a representation with character x + x’, and for each p € Max(Ok)

det(y gy (1 — N()(D]:)S) = dety 7, (1 — Nz:)s) - dety, 1, (1 B N()(O:)S).

Extending Galois extensions to larger Galois extensions has no effect on the Artin
L-function:

18.59 Proposition. Let L : K be a Galois extension of number fields and L' an
intermediate field such that also L' : K is a Galois extension. Let X' be a character
of Gal(L' : K) and x the composition Gal(L : K) — Gal(L' : K) % C. Then

L(s,x,L:K)=L(s,X', L' : K).

PROOF. Let p: Gal(L' : K) — Autc(V) be a representation with character x’.
Then x is the character of the representation Gal(L : K) — Gal(L' : K) %
Autc (V). Let g € Max(Or) above p. Put T, = Tk (q) and T, = Tx (g N L'). The
Frobenius of p in (L/)7% is the restriction of the Frobenius of p in LT». So the

action of ¢ (q7%) coincides with the action of ¢ (q N L)% on VT = V75, O
Proposition 18.57 follows from this proposition. It is the special case L’ = K:

L(s,1,L: K)=L(s,1,K : K) = Ck(s).

For L : K a Galois extension of number fields and K’ an intermediate field, the
Artin L-function attached to a representation of Gal(L : K’) is equal to the an
Artin L-function attached to the induced representation of Gal(L : K). This
will be proved below. It is Theorem 18.61. In its proof two lemmas concerning
representations will be used. First some generalities on induced representations
are described.

18.60 Induced representations and induced characters. Let H be a subgroup
of a finite group G and p: H — Autc(W) a representation of H in the group of
automorphisms of a finite dimensional C vector space W with character y. The
C[H])-module W determines a C[G]-module V via extension of scalars:

V =C[G] QcH] w.
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18 Zeta Function Relations

The corresponding presentation p,: G — Autc(V) is called the by p induced rep-
resentation of G. It is customary to identify W and 1@ W C V viaz — 1 ® z.
Thus W is an H-submodule of V' and for a system oy, ..., o, of representatives of
G/H (the set of left cosets of H in G) one has

V=oWe&- - &o.W,

a direct sum of H-submodules. The character y, of V is called the by x induced
character of G. It is given by

1 -1
(0) = ——— 7 o) forall o € G,
x«(0) ) TEZG x( )
T loreH

see section 7.2 of [34].
The following theorem is the main theorem on Artin L-functions.

18.61 Theorem. Let L : K be a Galois extension of number fields, K' an interme-
diate field of L : K and x a character of Gal(L : K'). Then for x., the character
of Gal(L : K) induced by x, we have

L(s,x«,L:K)=L(s,x,L:K").
PRrROOF. The proof is a bit technical, though not really difficult. Here too Theo-
rem 7.53 is used. Well-written proofs are in e.g. [12] and [31]. O

The Artin L-function of the regular character is the Dedekind zeta function of the
extension field:

18.62 Corollary. Let L : K be a Galois extension of number fields with Galois
group G. Then
L(s,ng,L: K)=/{_L(s).

PRrROOF. The character 1, induced by the trivial character 1 of the subgroup {1}
of G is the regular character of G. So

L(s,1,,L:K)=L(s,1,L:L)={¢p(s). O

By equation (18.6)

L(s,ng,L:K)= Hﬁ(&XaL L KXW
X

and so:
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18.5 Strongly exceptional groups

18.63 Corollary. Let L : K be a Galois extension of number fields. Then
Co(s) = Ce(s) [] £(six, L+ KX,
x#1
where the product is over all irreducible characters of Gal(L : K). O
This generalizes the formula for L-functions of an abelian number field extension.

The character of a finite group G induced by the trivial character of a subgroup
U of G is denoted by xy. A norm relation of a finite group leads to a relation
between these induced characters.

18.64 Theorem. Let } ;v gy nuU be a norm relation of G. Then

> nu#U)xu =0.

Uex(G)
PrOOF. The induced characters xy are given by

XU(U):M 7; 1 foralloed.

r~loreU
So for each 0 € G we have by Lemma 18.37 (with Z = (r7lo7), T = {1} and
d =o(0)):

Z nu#(U)xv = Z Z ”U:Z Z ny = 0. O

Ues(@) Ues(G) req rEG Ues(Q)
7 loreU UD(r~Llor)

A relation between characters induced by trivial characters leads to a relation
between Dedekind zeta functions: for U a subgroup of G we have by Theorem 18.61
L(s,xv,L : K) = L(s,15,L : LY) = (v (s) and by Theorem 18.64 and the
Propositions 18.57 and 18.58

H CLU(S)nU#(U) =1L

Ues(G)

This again proves Theorem 18.38.

18.5 Strongly exceptional groups

If the trivial norm coefficient dg({1}) of the Galois group G of a nontrivial Galois
extension L : K of number fields is nonzero, then by Corollary 18.39 the Dedekind

497



18 Zeta Function Relations

zeta function of L is determined by the Dedekind zeta functions of intermediate

fields # L of the extension. Clearly, this holds as well for each nontrivial subgroup
of G.

18.65 Definitions. Let G be a nontrivial finite group. Then G is called exceptional
if da({1}) = 0. It is called strongly exceptional if all nontrivial subgroups are
exceptional.

18.66 Lemma. Let G be a finite group of order n > 1. Then the following holds.

a) da({1}) = X_g), #(d)ec(d), where e (d) is the number of cyclic subgroups of
order d.

b) If G = G1 x Gy with #(G1) and #(G2) relatively prime, then dg({1}) =
da, ({1}) ’ dGz({l})

PRrROOF.
a) de({1}) = > p#HE) =Y > pld) =) pdea(d).
HeQ(G) din ;z(eéz)(:c;o)l din

b) Put #(G1) = n1 and #(G2) = na. Because ged(ny,n2) = 1, we have a

bijection
Q(G) = Q(Gl) X Q(Gg), Hi x Hy — (H17H2)
and so
de({1}) = > w#H) = Y p(#(H x Hy))
HeQ(G) Hy x Hy€Q(G)
= Y HH) ()
H,eQ(Gy)
HoeQ(G2)
= Y u#H)- ) p#(H)) = de, ({1}) - de, ({1}). O
H,eQ(Gh) H>eQ(G2)

This lemma implies:

18.67 Proposition. Let G1 and Gs be nontrivial finite groups with #(G1) and
#(Go) relatively prime. Then G1 X Gy is nonexceptional if and only if G1 and G
both are nonexceptional. O

18.68 Proposition. Let p be a prime number and G a nontrivial p-group. Then G
is exceptional if and only if G has a unique subgroup of order p. If G is exceptional,
it is strongly exceptional.
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18.5 Strongly exceptional groups

PROOF. Let m be the number of subgroups of order p. Then by Lemma 18.66a)
the trivial norm coefficient dg({1}) of G is equal to 1 —m. So G is exceptional
if and only if m = 1. If G has a unique subgroup of order p, then so has each
nontrivial subgroup of G. O

For p an odd prime p-groups have a unique subgroup of order p if and only if they are
cyclic. For 2-groups it is a bit more complicated: a 2-group has a unique subgroup
of order 2 if and only if the group is either cyclic or (generalized) quaternion, see

below for the definition of quaternion groups. Proofs are in many books on group
theory, e.g. [15] Theorem 12.5.2 or [6] Theorem (4.3).

18.69 Definition. Let n > 3. A generalized quaternion group of order 2" is gen-
erated by two elements, an element o of order 2"~ ! and an element 7 of order 2,

such that

n—2
o2 " =7% and To=0"'7.

For n = 3 the group is the well known quaternion group of order 8. Generalized
quaternion groups are often called just quaternion groups for short.

We will show that in some cases the existence of a collection of exceptional sub-
groups implies that the group itself is exceptional.

18.70 Definition. Let G be a finite group and let {G;} be a collection of subgroups
of G indexed by a finite set I. For J C I we write

G,=()Gj
jedJ
where it is understood that Gy = G. The collection {G;} is called exceptional if
a) G=Ue;Gi,
b) G is exceptional for all J # (.

18.71 Theorem. Let {G;} be an exceptional collection of subgroups of a finite group
G. Then G is exceptional.

PrOOF. For i € I and J C I we write ; for Q(G;) and Q; for Q(G;). From
condition a) it follows that

oG =%

iel
For § C Q(G) the characteristic function on Q(G) corresponding to S is denoted
by X We have

_ _ — _ _ _ _1\#J
0= XQ\UQi B Xn(mszi) B HXQ\SL- o H(l sti) o Z( 1) H stj

i JCI jeJ
N #
—;{Dxm
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and so

L==> (-D*x,, .

JCI
JZ0

that is for each H € Q)
- _ _1\#/
1= S ()#x,, (H).
JCI
J#0
Multiply by u(#H):
- _ _1\#J
p#H) = = Y (D), (H)u(#H).
JCI
JZ0
Summation over all H € € yields

do({1h) = = S (-1* 3 x, (M) = = S (-1 3 u(#H)

JCI HeQ JCI HeQy
J#0D J#D
==Y (-)*dg,({1}) = 0. O
JCI
J#0

18.72 Notation. By D(G) we denote the intersection of all maximal cyclic
subgroups of a finite group G. The collection of all maximal cyclic subgroups is
exceptional if D(G) is nontrivial: the intersections of such subgroups are cyclic
and nontrivial since they contain D(G). On the other hand, every element of G is
contained in some maximal cyclic subgroup.

18.73 Corollary. A finite group G is exceptional if D(G) is nontrivial. O

18.74 Lemma. The subgroup D(G) of a finite group G is contained in the center
of G.

PROOF. Let h € D(G) and g € G. Choose a maximal cyclic subgroup M of G
such that g € M. Since h and g both are elements of the cyclic group M, they
commute. O

18.75 Proposition. Let G be a finite group, p a prime number and g € G of order
p. Then g € D(G) if and only if (g) is the only subgroup of G of order p and g is
in the center of G.

PROOF. Suppose g € D(G). By Lemma 18.74 g is in the center of G. Let h € G
be of order p. Choose a maximal cyclic subgroup M of G such that h € M. Then
(h) and (g) both are subgroups of the cyclic group M. They coincide because their
orders are equal.
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18.5 Strongly exceptional groups

Conversely, suppose (g) is the only subgroup of order p and g is in the center of
G. Let M be a cyclic subgroup of G. If p t #(M), then (M, g) is a larger cyclic
subgroup. So the order of every maximal cyclic subgroup is a multiple of p. Since
(g) is the only subgroup of order p, it follows that g is an element of all maximal
cyclic subgroups. O

So by this proposition and Corollary 18.73:

18.76 Proposition. Let p be a prime number and G be a finite group. If G has
a unique subgroup of order p and this subgroup is in the center of G, then G is
exceptional. O

Noncyclic groups of order pg with p and ¢ prime are nonexceptional (Examples
18.11 and 18.12). They cannot occur as subgroups of a strongly exceptional group.
If a group is not strongly exceptional it must have such subgroup:

18.77 Theorem. A finite group is strongly exceptional if and only if it has no
noncyclic subgroup of order pq with p and q prime numbers.

ProOOF. It suffices to prove that a nonexceptional finite group for which all non-
cyclic proper subgroups are exceptional is a noncyclic group of order pg with p and
q prime. Let G be such a group. Since G nonexceptional, its Sylow subgroups
are proper subgroups and are therefore exceptional. By Proposition 18.68 they are
cyclic or quaternion. If they are all cyclic, then G is metacyclic, in the sense that
the commutator subgroup G’ and the factor group G/G’ are both cyclic. ([15],
Theorem 9.4.3). In this case G must be a noncyclic group of order pg with p and
q prime numbers.

So we now assume that a Sylow 2-subgroup of G is quaternion. This assumption has
to lead to a contradiction. Let N be a nontrivial normal subgroup of G such that
G/N is noncyclic. Consider the collection {G;} of proper subgroups of G containing
N. These subgroups correspond via G; — G;/N to proper subgroups of G/N and
since G/N is noncyclic, G/N is the union of the G;/N. Hence G is the union of the
G;. Tt follows that the collection {G;} is an exceptional collection of subgroups of
G. By Theorem 18.71 G is exceptional. This shows that for all nontrivial normal
subgroups the factor group is cyclic. The commutator subgroup G’ is nontrivial.
If G’ = G, then factor groups of proper normal subgroups are not cyclic either.
This means that G is simple. However, it is shown by Brauer and Suzuki in [5]
that simple groups do not have such a Sylow 2-subgroup. Contradiction. O

18.78 Corollary. Let G a finite group which is not strongly exceptional and let A
be a G-module. Then either A = Ay or pA C Ay for some unique prime p.

PRrROOF. Assume that A # Ag. The group G has a noncylic subgroup of order pq
with p and ¢ < p prime. Its trivial norm coefficient equals —p. For this p we have
pA C Ag. If A # Ay, then there is no such a subgroup with a different trivial norm
coefficient. O
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18.79 Corollary. Let L : K be a Galois extension of number fields and suppose that
its Galois group is not strongly exceptional. Then (r(s) is in the group generated
by the Dedekind zeta functions of intermediate fields # L.

PrOOF. By Theorem 18.77 the Galois group has a noncyclic subgroup U of order
pq with p and ¢ prime. From Corollary 18.40 and Corollary 18.41 follows that
¢r(s) is in the group generated by the Dedekind zeta functions of the intermediate
fields # L of the extension L : LY. O

EXERCISES

1. Let H be a normal subgroup of a finite group G. The subgroups of G/H correspond
to subgroups U of G containing H.

(i) Show that the homomorphism ZX(G/H) — ZX(G) given by
U/H— U for U € ¥(G) such that U O H

induces a homomorphism NR(G/H) — NR(G).

(ii) Show that this homomorphism is injective.

2. Let be given

G a finite abelian group,
ZUEE(G) nuU a norm relation for G,
B a (multiplicative) abelian group,
f a map from G to B.

Prove that the map
F:2(G) =B, Ve [] 0

xeV

satisfies
[ rwyv# @ =1
Ues(Q)
(Hint: use Lemma 18.33.)

3. By Artin’s Reciprocity Theorem the dual Artin map cﬁ%) of an abelian extension
L : K of number fields is an isomorphism Gal(L : K)¥ = H(L : K). In this case
we can use Dirichlet characters instead of group characters and the correspondence
between subgroups V € H(L : K) and subgroups U € X(G) is given by

Vi =Cal(L:Ky) and U"=%H(LY:K).

Using this terminology, show that exercise 2 can be translated into the following:
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Exercises

let be given

L: K an abelian extension of number fields,
G the Galois group of L : K,

ZUGE(G) nyU a norm relation for G,

B a (multiplicative) abelian group,

f a map from H(L : K) to B.

Then the map
F:S(M(L:K)) =B, Ve []f0
xXeV

satisfies
[ FoHy#© =1

UES(G)

. Let L : K be an abelian extension of number fields, G the Galois group of L : K
and 3y 5y nuU a norm relation for G. Show that

[ ¢o@™# =1
Ues(Q)
by applying exercise 3 to the map
f: H(L:K)—C*, x~ L(s,x).

. Let L : K be an abelian extension of number fields, G the Galois group of L : K
and ;e x(q) nuU a norm relation for G. Show that

H DK(LU)nu#(U) =1
Ues(G)
by applying exercise 3 to the map
f: HL:K)—=C", x> L(s,x)-

. Let ¢ be an odd prime power. Show that SL(2,F,) is exceptional. (Hint: the group
has a unique element of order 2.) Verify: for ¢ > 4 the group is nonsolvable, because
the group PSL(2,F,) is perfect.

. Let g be an odd prime power. Show that a Sylow 2-subgroup of SL(2,F,) is quater-
nion.

. Prove that the ideal class group of Q(+/7) is of order 3. (Hint: exercise 6 of
chapter 12 and Example 18.53.)

. Let m,n,r € N* be such that gcd(m,n(r — 1)) =1 and ™ = 1 (mod m). Prove
that the metacyclic group (g, ) given by o(g) = m, o(h) = n and hgh™' = ¢" is
strongly exceptional.
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19 Infinite Extensions of Number
Fields

Number fields are finite extensions of Q. They are all embeddable in the algebraic
closure Q, the field of algebraic numbers. The notion of Galois extension is, if not
yet done so, easily extended to infinite algebraic extensions. For a generalization
of Galois theory the Galois groups have to be endowed with a topology. This will
be done in section 19.5. For this we need some generalities on topological groups
and more generally on topological spaces (sections 19.1 up to 19.4). Galois groups
turn out to be compact and totally separated, so in these sections there is special
attention to compactness and total separateness.

The union K2P of all finite abelian extensions (inside C) of a number field K is an
example of an infinite Galois extension. Its Galois group is a totally separated com-
pact abelian group. Totally separated compact groups (so-called profinite groups)
are treated in section 19.4. The dual of an abelian profinite group is the group of
its continuous characters. Pontryagin’s Duality Theorem (section 19.6) describes
a self duality of the category of abelian topological groups. Under this duality
abelian profinite groups correspond to abelian torsion groups. In section 19.6 this
part of the theorem is proved. Class field theory gives us an isomorphism

~

Gal(K* : K)" =5 H(K)
induced by the dual Artin maps of the finite abelian extensions of K. It is an
isomorphism of abelian torsion groups.

19.1 Infinite products of topological spaces

The main theorem of this section is Tykhonov’s Theorem: a (possibly infinite)
product of compact spaces is a compact space. We review the notion of infinite
product of spaces, show furthermore that the product of Hausdorff spaces is a
Hausdorff space and that also total disconnectedness is preserved under taking
products. For completeness the definitions of these topological notions are given.

A topological space X = (X, T) is a set Xy together with the collection T of
its open sets. Usually in the notation no distinction is made between X and its
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19 Infinite Extensions of Number Fields

underlying set Xy. If X is a topological space, its topology may be denoted by Tx.
A collection T of subsets of a set X is said to be a topology on X if T is closed
under (possibly infinite) unions and under finite intersections.

19.1 Definition. Let (X;);c; be a collection of topological spaces indexed by the
set I. The product X of the X; is the product in the categorical sense: there are
continuous maps p;: X — X; and for each collection (f;);cr of continuous maps
fi: Y — X, there is a unique continuous map f: Y — X such that p; f = f; for all
1€ 1.

This definition implies that the product is unique up to a canonical isomorphism,
but its existence still has to be shown. We will use the notions of base and subbase
of a topology. Let’s fix the terminology.

19.2 Definitions and notations. Let X be a topological space with topology
T. A base of T is a subcollection S of 7 such that every U € T is the union
of a subcollection of S. A subbase of T is a subcollection S of T such that the
intersections of finite subcollections of S form a base of 7. This base is denoted
by S7.

Every collection S of subsets of a set X defines a topology on X by declaring S to
be a subbase. The base S# then consists of all intersections of finite subcollections
of S and the topology is the collection of all unions of subcollections of S#. (Here
it is understood that an empty intersection is the whole set X.)

19.3 Proposition. Let (X;);cr be a collection of topological spaces indexed by the
set I. Let X be the topological space having the cartesian product []..; X; as
underlying set and the sets

el

H U, withU; € Tx, and U; # X, for only finitely many i € I,

il
as a base of its topology. Then the projections p;: X — X; are continuous and X
(with these projections) is the product of the X;.

ProoF. For U € Tx, the set p{l(U) is open in X. So the maps p; are continuous.
Let (f;)ier be a collection of continuous maps f;: Y — X;. Since X as a set is the
product of the sets X;, there is a unique map f: Y — X such that p; f = f; for all

i € I. Tt remains to show that f is continuous. For base elements U = [[,.; U; of
Tx we have
o=y = () 7w,
el i€l
Ui #X;
an intersection of finitely many open sets. O

Note that the so-called cylinder sets p; ' (U) with U open in X; form a subbase of
the topology of []..; Xi. The base it determines is the one described in the above
proposition.

icl
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19.1 Infinite products of topological spaces

In various important cases properties of the factors carry over to the product space:
Tykhonov’s Theorem 19.7 and Propositions 19.5 and 19.10.

19.4 Definition. A topological space X is called a Hausdorff space if for all z,y € X
with z # y there exist U,V € Tx such that t e U,y € Vand UNV = ().

19.5 Proposition. The product of a collection of Hausdorff spaces is a Hausdorff
space.

PrROOF. Let X = [[;c; Xi, where the X; are Hausdorff spaces. If z,y € X
with x # y, then p;(x) # p;(y) for some j € I. Let UV € Ty, such that
pj(x) € U, pjly) € Vand UNV = 0. Then x € p(U), y € p~'(V) and
pHU)Np 1 (V) = 0. O

In the proof of Tykhonov’s Theorem Alexander’s Subbase Theorem will be used:
for open covers to have finite subcovers it suffices that covers by sets of a given
subbase have this property.

19.6 Alexander’s Subbase Theorem. Let X be a topological space with a subbase
S of open sets. Suppose that each subcover of S has a finite subcover. Then X is
compact.

PRrROOF. Suppose X is not compact. Then there are open covers of X without
finite subcovers. By Zorn’s Lemma there is a maximal such open cover C. By
assumption on S, the collection C NS does not cover X. Let x € X \ Uycens U-
Since C covers X, there is a U € C such that x € U and, because S is a subbase,
there is a finite subcollection F of S such that x € [,V C U. By the choice
of x we have F US = (. By maximality of C for each V' € F the collection
{V} UC has a finite subcover {V} U Fy, where Fy is a finite subcollection of C.
Put 7* = Uy ¢z Fv. Then also F U F* is a finite cover of X. If 2 ¢ V, where
Ve F, then € Uper, W. So also {(N,czV}UF* is a cover of X. Since
NyverV C U, the collection {U} U F* is a cover of X. This is a finite subcover of
C. Contradiction. O

19.7 Tykhonov’'s Theorem. The product of a collection of compact spaces is a
compact space.

PrROOF. Let X be the product of a collection (X;);ecs of compact spaces X; and
S the subbase of Tx consisting of the sets pi_l(U) with U open in X;. Let C C S
be an open cover of X. It determines for each i a collection C; of open sets of X:

Ci={UeTx, |p;'(U)ecC}.

Suppose that for all ¢ the collection C; does not cover X;. Then there is an & € X
such that p;(z) ¢ Upee, U for all i, that is = ¢ p; 1(U) for all i and all U € Ty, .
Since C covers X, such an x does not exist. So there is an i such that C; covers X;.
Since X; is compact the collection C; has a finite subcover F;. Then the collection

F={p;'(U)|UeF}
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19 Infinite Extensions of Number Fields

is a finite subcover of C. By Alexander’s Subbase Theorem X is compact. O
Finally we consider total separateness.

19.8 Definition. Two points of a topological space are said to be separated if there
is an open and closed set containing one of them and not the other. A topological
space is totally separated if any two points are separated.

A related notion is total disconnectedness: X is totally disconnected if the empty
set and the one point subspaces are the only connected subspaces. A space being
connected if the empty set and the total space are the only subsets which are both
open and closed. Totally separated spaces are totally disconnected, but the converse
does not hold. However, for locally compact Hausdorff spaces the two notions are
equivalent (exercise 1). In this book only total separateness is used.

19.9 Example. The subset Q of the topological space R with the relative topology
is totally separated. For a,b € Q with a < b choose an irrational A in the interval
(a,b). The open set (—oo, A\) NQ contains a, does not contain b and its complement
is the open set (A, 00) N Q.

19.10 Proposition. Totally separated spaces are Hausdorff spaces. The product of
a collection of totally separated spaces is totally separated.

PRrROOF. The first part of the proposition is trivially true. For the second part let
(Xi)ier be a collection of totally separated spaces. Let x and y be two different
points of [[, X;, then there is an i € I such that p;(x) # p;(y). Since X; is totally
separated, it contains an open and closed set U such that p;(z) € U and p;(y) ¢ U.
Then z is in the open and closed subset p{l(U) of [], Xi, whereas y is not. O

19.2 Topological groups

19.11 Definition. A topological group G is both a group and a topological space
in such a way that the group operations are continuous, that is the maps

GxG—=G, (v,y) —~ay and G—G, x>z !

are continuous.
19.12 Examples.

a) Well-known topological groups are the additive group R, the multiplicative
group R* and the circle group S! = {z € C | |z| = 1}, all with the ordinary
topology. The topological group R/Z is isomorphic to the circle group via
T > e2TiT,

b) Subgroups of topological groups are topological groups as well: Q, Q*, u(C).
These subgroups are examples of totally separated topological groups.
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19.2 Topological groups

c) Every absolute value on a field determines a topology on that field. For a
number field K and p a prime of K, the additive group of the completion K,
is a topological group and so is the multiplicative group K.

19.13 Lemma. Let G be a topological group and g € G. Then the map G —
G,  — gx is a homeomorphism.

PrROOF. The map is the composition of the continuous maps G — G x G, = —

z) and G x G — G, (z,y) — zy. Its inverse is the map = — ¢~ 'z. O
(9,7) ; (,y Y P g

As a consequence open subgroups in a compact group are quite special:

19.14 Lemma. Let H be a subgroup of a compact group G. Then H is open if and
only if it is closed and of finite indez.

Proor. If H is open, then by Lemma 19.13 the left cosets of H form an open
covering of G. Since G is compact, it is covered by finitely many of these cosets.
So the index of H is finite and since its complement is the union of open sets, H
is also closed. Conversely, if H is closed and of finite index, it is the complement
of finitely many closed sets. O

A compact topological group is totally separated if and only if the open subgroups
form a base for the neighborhoods of 1:

19.15 Proposition. Let G be a compact topological group and N the collection of
open normal subgroups of G. Then

G is totally separated <= ﬂ N ={1}.
NeN

PROOF.

=: We will show that for every g € G with g # 1, there exists an N € A such
that g ¢ N. For a given g € G with g # 1 by total separateness there exists
an open and closed set U with 1 € U and g ¢ U. Let h € U. The image
of U x U under the multiplication map G x G — G will be denoted by UZ.
The restriction of this map to U x U — U? is continuous and maps (h, 1) to
h. Since U is an open neighborhood of h in U?, there are open sets V}, and
W, of U such that h € V},, 1 € W), and that the image VW), of V}, x W), is
contained in U.

The collection (V)rer is an open cover of the compact set U, so there is
a finite subset F' C U such that U = (J,cp Va. Set W = (,cp Wi and
X =WnW-1 where W= = {71 | z € W}. Then W, and hence also X,
is an open neighborhood of 1 contained in U. We have

UX=JwxclJwwec |Jww,cU
heF heF heF
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19 Infinite Extensions of Number Fields

and by induction UX* C U for all i € N*. Set H = |J;-; X*. It is an open
subset of U and clearly a subgroup of G. By Lemma 19.14 H is of finite index
in G. Finally, set N =, xHz~!. Then N is a normal subgroup contained
in U. Because H is of finite index, it has only finitely many conjugates and
so N is open as well. Since N C U, the element g is not in N.

<: Let g1,90 € G such that g1 # go. From (ycu N = {1} follows that
Nyen 91N = {g1}. Hence there is an N € N such that g» ¢ g1V, that
is g1 N # goIN. Since N is open, the cosets g1 N and go N are open. O

19.3 Inductive and projective limits

In category theory one defines inverse limits (= colimits) and direct limits (=
limits) of functors D: & — €, where .# is a small category, the index category. If
they exist they are defined up to a canonical isomorphism. If .# has only identity
morphisms, the direct limit is called a sum and the inverse limit a product. The
product of topological spaces in section 19.1 is the product in the categorical sense.
In this section we consider another special case, the case where .# comes from a
directed set.

19.16 Definition. Let I be a set and < an ordering of I. Then the ordered set [
is called a directed ordered set if for each pair i,7 € I there is a k € I such that
i1 <k and j < k. It corresponds to a category .# with I as the set of objects and
one morphism ¢ — j for each pair i,j € I with i < j.

19.17 Examples.
a) The sets N and Z with the usual ordering < are directed ordered sets.
b) The set N* with the ordering | (= divisor of).
¢) The set M(K) of all moduli of a number field K with the ordering |.

Inductive limits

19.18 Definition. Let I be a directed ordered set and % a category. An inductive
system in € indexed by I is a functor . — %, where .# is the with I corresponding
category. More concretely, it is a collection (X;);cr of objects in € together with
morphisms f;;: X; — X, for 4,j € I with ¢ < j such that

(ISl) fii = 1Xi foralliel,
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19.3 Inductive and projective limits

19.19 Example. Let C be a collection of subsets of a given set X such that
UUuV eCif U,V € C. Under the ordering C they form a directed ordered set and
together with the inclusion maps they form an inductive system of sets indexed by
themselves.

19.20 Definition. The direct limit of an inductive sys-

tem is called an inductive limit. Specifically: let I be be 9i

. . . i——Y
a directed ordered set and (X;);c; an inductive system -
in a category % indexed by I. The inductive limit X of
the inductive system is an object X of € together with i S h
morphisms ¢;: X; — X such that X

qifij=q foralli,j el withi<j

with the property that given an object Y of ¥ together with morphisms g;: X; — Y
such that
gjfij =0 for all 1,7€l with 7 < 7y

there is a unique morphism h: X — Y such that hq; = g; for all « € I. Notation:

19.21 Example. For the system % described in Example 19.19 we have
lim U= |J U,
vec vec

where for V' € C the map qv: V — Jyee U is the inclusion map.

In the next proposition the inductive limit of any inductive system of sets is con-
structed.

19.22 Proposition. Let I be a directed ordered set and (X;);cr an inductive system
of sets indexed by I. Its inductive limit can be constructed as the set

i
where [ [, stands for disjoint union and ~ for the equivalence relation
iy~ x; = fij(x;) =2; (forxieX;, xj € X; andi<j),

together with the maps q;: X; — (]_L Xi) /N induced by the inclusion maps
gi: Xi = 11, Xi. (In this description the X; are assumed to be disjoint.)

PrROOF. Let Y and ¢g; be as in the definition. The required unique map
h: X — Y is the map induced by the g;: X; = Y. O
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19 Infinite Extensions of Number Fields

The advantage of inductive systems over arbitrary systems is that in many impor-
tant cases the inductive limit has an underlying set which is the inductive limit of
the underlying sets. Of course this makes sense only in cases where the objects do
have underlying sets. We consider three special cases.

19.23 Proposition. Let (G;)icr be an inductive system of groups with group ho-
momorphisms fi;: G; = G;. Then

iy~ ([[e)

as a set. In particular it is the union of the subsets f;(G;). The product of q;(g;)
and q;(g;) (with g; € G; and g; € G;) is defined by

4i(9i) - 45(95) = @ (fir(94) - fir(g5)),
where k € I is such that v, < k.

PrOOF. Straightforward. Note that the multiplication is defined by choosing
representatives in a single ¢x(Gy), which is possible because the index set is di-
rected. O

19.24 Example. The symmetric group S, is the group of permutations of the
set {1,...,n}. The set N* is ordered by the usual ordering < and obviously this
ordering is directed. For m < n we have a group homomorphism f,,,: S;, — S
defined by

o(i) ifi <m,

(fmn(0))(2) = {

) otherwise.

The groups S,, together with these maps form an inductive system of groups. For
the inductive limit we can take the group S, of all permutations o of N* with
o (1) # ¢ for only finitely many q.

19.25 Example. Let AV be the collection of all number field extensions of a given
number field K. Under C they form a directed ordered set and together with the
inclusion maps we have an inductive system in the category of rings. The inductive
limit of this system is the field Q, the algebraic closure in C of any number field.

For topological spaces we have similarly:

19.26 Proposition. Let (X;)icr be an inductive system of topological spaces with
continuous maps fi;: X; — X;. Then

lng X; = (]_[ X;) [~

as a set. The space []; X; is the disjoint union of spaces and the topology of the
inductive limit is given by the quotient topology. O
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19.3 Inductive and projective limits

19.27 Example. As for sets (Example 19.21) the inductive limit of an inductive
system of subspaces of a topological space is the union of these subspaces.

Inductive limits in the category of topological groups are as for groups and for
topological spaces. They just have the combined structure.

19.28 Proposition. Inductive systems in the category of topological groups have an
inductive limit in this category. Their underlying set is the inductive limit of the
underlying sets. The group structure is as for inductive limits of groups and the
topology is the topology for the inductive limit of topological spaces.

PROOF. Let (G;)icr be an inductive system of topological groups. Then the set
G =lim, G is a group as well as a topological space. The map G — G, = — ztis
continuous since all maps G; — G;,  — z~! are continuous and limi is a functor
from inductive systems of topological spaces to topological spaces. The system
(Gi x G;)ier with the maps G x G; — G; x G; componentwise is inductive and its
inductive limit is G x G. The map G x G — G, (x,y) — zy is continuous because
all maps G; x G; — Gy, (z,y) — xy are. O

19.29 Examples.

a) The system (Dy)nen+ of groups of (ordinary) Dirichlet characters is an in-
ductive system of finite abelian groups indexed by the directed set N*, ordered
by |. The group of Dirichlet characters is its inductive limit:

D =limDy .
v

b) Similarly for groups of Dirichlet characters of a number field K. The induc-
tive system is (Hm)mer (k) and its inductive limit is the group of Dirichlet
characters of K:

H(K) = lim Hum (K).

—
m

The index set is M(K) ordered by |.

In both cases the inductive limit is an abelian torsion group. If the finite abelian
groups are given the discrete topology, then the inductive limit has the discrete
topology as well.

Projective limits

A projective system is an inductive system in the dual category.
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19 Infinite Extensions of Number Fields

19.30 Definition. Let I be a directed ordered set and € a category. A projective
system in € indexed by I is a functor #° — €, where .# is the with I cor-
responding category; in other words it is a contravariant functor from . to €.
More concretely, it is a collection (X;);ecr of objects in € together with morphisms
fij: Xj = X, for 4,7 € I with ¢ < j such that

(PS1) fii =1x, foralli eI,
(PSQ) fijfjk = fik for all i,j,k € I with ¢ <j< k.

19.31 Examples. Let X be a set and C a collection of subsets of X such that
UNV e€C for all U,V € C. With the ordering O the collection C is a directed
ordered set. Together with the inclusion maps the subsets in C form a projective
system.

19.32 Definition. The inverse limit of a projective sys-

Yy 9i X, tem is called a projective limit. Specifically: let I be a
B directed ordered set and (X;);es a projective system in
a category ¥ indexed by I. The projective limit X of

h . Di the projective system is an object X of € together with

X morphisms p;: X — X, such that
pijfj =pi foralli,j el withi<j

with the property that given an object Y of ¢ together with morphisms g;: ¥ — X;
such that
fijg; =g; foralli,j el withi < j,

there is a unique morphism h: Y — X such that p;h = g; for all i € I. Notation:

In the next proposition the projective limit of a projective system of sets is con-
structed.

19.33 Proposition. Let I be a directed ordered set and (X;)icr a projective system
of sets indexed by I. Its projective limit can be constructed as the set

X = { (Ti)ier € HXi

fij(x;) = foralli,j € I withi < j}
together with the maps p;: X — X; induced by the projections p;: [, X; — X;.

PROOF. LetY and g; be as in the definition. The required unique map h: X — Y
is the map induced by the g;: X; — Y. O
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19.3 Inductive and projective limits

Again in many important cases in which the objects of the category € are sets
together with extra structure, the projective limit exists and its underlying set is
the projective limit of the underlying sets. In fact this often holds more in general
for inverse limits in such categories.

19.34 Example. Let K be a discretely valued field, R its valuation ring and p
the maximal ideal of R. In section 10.5 we considered the p-adic completion K of
K. It is a discretely valued field as well and its residue class field is canonically
isomorphic with the residue class field of K. In 10.37 an alternative construction
for the valuation ring R was given. It is a projective limit:

R= lim R/p’.
iEN*
The projective system is
- R/ S R/p' = - = R/p,

where the maps R/p*! — R/p’ are induced by the identity on R. See also Nota-
tions 10.38 for the notations used in the number field case. In particular for K a
number field and p € Max(Ok) we have

O = lim Oxc/p'.
1EN*
For K = Q and p a prime number this is the ring Z, of p-adic integers:

Z, = lim Z/p'".

1EN*

In the next section projective limits of groups are considered and these limits will
be endowed with a topology. Therefore, we first have a look at projective limits of
topological spaces.

19.35 Proposition. Let (X;);er be a projective system of topological spaces with
continuous maps fij: X; — X;. Then

I'&HXi = { (wi)ier € HXi

fij(xj) = x; for alli,j € I withi < j}

as a set. The topology of @Z X; is the topology relative to the product topology of
[T X

ProoOF. The maps p;: 1'&11, X; — X, are compositions of continuous maps:
1'&11, X; — [[; Xi and the projection [[, X; — X;. The defining properties for
a projective limit are easily verified. O

19.36 Proposition. Let (X;);er be a projective system of Hausdorff spaces. Then
Liili X; is a Hausdorff space and is closed in []; X;.
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ProOF. By Proposition 19.5 the product [[, X; is a Hausdorff space, so the sub-
space @i X; is a Hausdorff space as well. We will prove that @l X; is closed
in [[, X;. Let a = (a;); € [ Xi \ im, X;. Then there are j,k € I such that
Jj < k and fjr(ar) # a;. Since X; is a Hausdorff space, there are disjoint open
neighborhoods U and V of a; and fj,(ax) respectively. Set V'’ = fﬁcl (V). It is an
open neighborhood of ay in Xj. Then pj_l(U) Np;, ' (V') is an open neighborhood
of a in [], X; disjoint from l&nZ X;. O

19.37 Theorem. The projective limit of a projective system of compact Hausdorff
spaces is a compact Hausdorff space.

PrROOF. Let (X;);cr be a projective system of nonempty compact Hausdorff
spaces. By Proposition 19.36 @i X; is closed in [], X;, which by Tykhonov’s
Theorem (Theorem 19.7) is compact. So I&Hl X; is compact. O

19.38 Proposition. The projective limit of totally separated spaces is a totally sep-
arated space.

ProoOF. This follows from Proposition 19.10. O

19.39 Example. The ring O, in Example 19.34 is the projective limit of a system
of finite rings O /p’. Endowing these finite rings with the discrete topology results
in a compact totally separated topology on O,. It is in fact the topology which
comes from the metric ||.||,. In the next section we will have a closer look at
projective limits of systems of finite groups.

For topological groups we again have the combination of both structures and the
situation is as for inductive limits.

19.40 Proposition. Projective systems in the category of topological groups have a
projective limit in this category. Their underlying set is the projective limit of the
underlying sets. The group structure is as for projective limits of groups and the
topology is the topology for the projective limit of topological spaces.

PrROOF. The proof is almost identical to the proof for the inductive limit of topo-
logical groups. 0

The inductive limit of nonempty sets obviously is nonempty. For projective limits
the situation is different. The following example is from the short note [38].

19.41 Example. The finite subsets of R form a directed ordered set under inclu-
sion. The sets
Xs={f:9—7Z]| f is injective }

indexed by the finite sets form a projective system of sets: for S C T a (surjective)
map X7 — Xg is given by restriction. An element f of @ s Xg is a collection
(fs)s of injections fs: S — Z such that fs = fr|g for all finite S,7 C R with
S C T. This would mean that we have an injection of R into Z. So there are no
elements in the projective limit.
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19.3 Inductive and projective limits

Projective limits of compact spaces are nonempty:

19.42 Theorem. Let (X;);cr be a projective system of nonempty compact spaces.
Then lim, X; is nonempty.

Proor. Forl e I put
Y = { (wi)icr € Hqu

Then lim X; = ﬂleIY and J[; X = U,c;Yi- The set Y; is closed in []; X;.
The proof of this is almost identical to the proof of Proposition 19.36. Suppose
I&H X; = 0. Then, since [], X; is compact, there is a finite index set J C I such
that ﬂ c;Y; = 0. Since the index set is a directed ordered set, there is an [ € I
such that j<lforall jeJ Takea z€ X; (the sets X; are nonempty) and define
an (z;); € [[, X; as follows

(@) =z foralli,jelwithigjgl}.

_ {fu(zx if i <1,

any element of X;, otherwise.

The element thus defined is an element of ¥; and hence of all Y; with j € J because
j <l for all j € J. This contradicts ﬂjeJ Y; = 0, which was a consequence of the
projective limit being empty. O

19.43 Corollary. The projective limit of a projective system of nonempty finite sets

18 nonempty.

ProOOF. Finite sets can be regarded as discrete topological spaces. As such they
are compact Hausdorff spaces. It follows that a projective limit of nonempty finite
sets is nonempty. Of course a proof of this might be given not using topology. [

Cofinal subsets

19.44 Definition. Let I be a directed set. A subset J of I is called cofinal if for
each ¢ € I thereis a j € J with ¢ < j.

Clearly, a cofinal subset of a directed set is a directed set as well. We will show
that inductive and projective limits are unchanged when restricting the directed
set to a cofinal subset. We will use the categorical definitions, so it suffices to prove
this for inductive systems.

19.45 Theorem. Let I be a directed set, (X;);cr an inductive system in a category
€ and J a cofinal subset of I. Then

limg X; > lim X,

jeJ i€l
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Proor. The morphisms ¢;: X; — ligniel X; induce a morphism
@: ij — @XZ
JjeJ el
For each i € I choose an ¢* € J such that ¢ < i*. For ¢ € I define morphisms
fi=qifirr: Xi — ligjej X;. They induce a morphism
iel jeT

The categorical definition of inductive limit shows in a direct manner that ¢y and
1 are the identity morphisms. O

For inductive systems of sets it also follows directly from Proposition 19.22:

[Tx <X

jed il
and since the relation ~ in the subset is the restriction of ~ it follows that
(O x) /~ < (x) /~-
jeJ iel
Equality is a direct consequence of the cofinality.

Because of its importance we formulate the property for projective limits separately.

19.46 Theorem. Let I be a directed set, (X;)icr a projective system in a category
€ and J a cofinal subset of I. Then

1€l Je€J

In the case of a projective system in the category of sets it also follows directly
from the description of the projective limit (Proposition 19.33). The projection

[Lic; Xi — ;e s X; induces by cofinality a bijection on the subsets: fm,_ Xi —
<—jeJ

19.47 Examples.
a) Cofinal subsets of (N, <) are the unbounded subsets.
b) The subset {n! | n € N*} is cofinal in (N*,|).
c¢) For I a directed set and k € I the subset {i € I | k <} is cofinal.

19.48 Example. Let p be a prime number. The inductive limit MnGN* Fpn =
Unens Fpnt is the algebraic closure of I,
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19.3 Inductive and projective limits

19.49 Example. Let L : K be an extension of number fields. The groups
Clin(L + K) = I™(K) /N (I™ (L)) Sm (K)

form a projective system of finite abelian groups indexed by the directed set M (K).
The maps Cly (L : K) — Cly(L : K) for m | n are isomorphisms if m is a multiple of
the conductor fx(L). The multiples of § = fx (L) form a cofinal subset of M(K)
and so

@@m(L (K) = @@m(L tK)=04(L: K).

m m

flm

Exactness

For a fixed directed set I we consider functors from inductive (respectively projec-
tive) systems of topological groups indexed by I to topological groups. As usual
we call a sequence

RN RNy
of group homomorphisms ezact if Im(p) = Ker(v). Note that this implies that
Im(y) is a normal subgroup of G. We show that for inductive systems of topological

groups the functor is exact. The projective limit is exact when restricted to compact
groups.

19.50 Theorem. Let I be a directed set and let (y;);: (G))i — (Gi)i and
()i (Gi)i — (GY)i be morphisms of inductive systems of topological groups such
that the sequences
G 25 Gy s G
are exact for all i € I. Then the induced sequence
. ;P 1. Y. "
lim G — lig G; — lim G;

1 1 1
is also exact.

PrOOF. Clearly ¥y is the trivial homomorphism. Now let x € Ker (), say = =
¢i(z;) for some i € I (in the notation of Definition 19.20). Then g;(¢;i(z;)) =
Y(gi(z)) = ¥(x) = 1. So there exists a j > i such that f;;(qi(vi(2:))) =1 € G,
that is ;(fij(z:)) = 1. Hence there exists a y; € G/ such that ¢;(y;) = fij(z:).
Then

©(a;(y5)) = a;(0j(y;)) = a;(fiz (%)) = qi(z:) = . O

19.51 Example. Let L : K be an extension of number fields. The groups
Hw(L : K) =H(L: K) N Hy are the kernels of the conorm:

1 H(L 2 K) — Hon (K) 25 Moo (L)
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19 Infinite Extensions of Number Fields

Then, because Hw(L : K) = H{(L : K) = H(L : K) for all multiples m of the
conductor f, by Theorem 19.50 we have an exact sequence

1—-H(L:K)— hﬂHm(K) — hg?—lm(L)

and thus, since M(K) is a cofinal subset of M(L), we have an exact sequence
1—>H(L:K)— H(K) — H(L),
which agrees with the given definition of H(L : K).

19.52 Theorem. Let I be a directed set and let (v;);: (Gi)i — (Gi)i and
()i (Gi)i = (GY)i be morphisms of projective systems of compact groups such
that the sequences

G e B ay

are exact for all i € I. Then the induced sequence
lim G} % lim G; > Jim G

s also an exact sequence of compact groups.

PROOF. We consider projective limits as subspaces of products. Let z = (z;); €
Ker(y). Then t;(z;) = 1 for all i« € I. By continuity of the maps ¢; the sets
X; = ;' ({;}) € G’ form a projective system of nonempty closed subsets of the
Gj. Since G is compact, the subset X; is compact. By Theorem 19.42 lim X; C G’
is nonempty. The homomorphism ¢ maps every element of ]glz X, to z. O

19.53 Example. Let L : K be an extension of number fields. Then the groups
Clw(L : K) are cokernels of the transfer:

L
try

(L) —= Cp(K) — Cln(L: K) — 1.

The groups in this sequence are finite, so when endowed with the discrete topology
they are compact. Hence by Theorem 19.52 and Example 19.49 we have an exact
sequence

lim o (L) — Jim Gl (K) — C5(L 2 K) — 1,

where f is the conductor of L : K.

19.4 Profinite groups

In the next section we consider infinite Galois extensions. Their Galois groups
are easily seen to be projective limits of finite Galois groups. Here we study pro-
jective limits of finite groups in general. The finite groups are regarded as finite
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19.4 Profinite groups

discrete topological groups and as a consequence the projective limits are topolog-
ical groups. The groups that arise this way can be characterized intrinsically by
their topology, independent of their construction as a projective limit.

19.54 Definition. Totally separated compact groups are called profinite groups.
19.55 Theorem. Projective limits of finite discrete groups are profinite groups.

Proor. Finite discrete sets are totally separated compact spaces. The theorem
follows from Proposition 19.30 and Theorem 19.37. O

Conversely:

19.56 Theorem. Let G be a profinite group and N the collection of open normal
subgroups of G. Then G = @NGN G/N. So profinite groups are projective limits
of finite discrete groups.

PROOF. The collection N is a directed ordered set under D, so we have a pro-
jective system of groups G/N with N € A and for N, No € N with N1 2 Ny a
canonical homomorphism fn, n,: G/N2 — G/N;. The canonical homomorphisms
G — G/N, z — zN induce a homomorphism of topological groups

h: G — lim G/N, x+ (zN)n.
NeN

By Lemma 19.14 the groups G/N are finite. We will show that h is an isomorphism
of topological groups. By Lemma 19.15 we have Ker(h) = (\yco N = {1}, so h
is injective. For surjectivity let (zxyN)nyen € l.&nNeN G/N. Then to prove that

Nyen NN # 0. Suppose (\yep v N = 0. Since G is compact and the sets zx N
are closed, there is a finite subcollection Ny of N such that ﬂNeNa avN = 0.
Choose M € N such that N 2 M for all N € Ny, e.g. M = (\ycp, N- Then
NN D ayM = zp M for all N € Ny and so mNeNU NN D zp M. Contradic-
tion: xpr M is nonempty. O

In general in a profinite group closed subgroups are intersections of open subgroups:

19.57 Theorem. Let H be a subgroup of a profinite group G. Then
a) H is open if and only if H is closed and of finite indez,
b) H is closed if and only if H is an intersection of open subgroups,

c) H is normal and closed if and only if H is an intersection of open normal
subgroups.

PROOF.

a) This follows from Lemma 19.14 since profinite groups are compact.
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19 Infinite Extensions of Number Fields

b) Open subgroups are closed and so is their intersection. Let H be closed
and A the collection of open normal subgroups of G. For each N € N the
subgroup HN is the union of the open sets hIN with h € H and is therefore
an open subgroup. We will show that H = (., HN. By Lemma 19.15 we

have
N HNQH( N N) — H.

NeN NeN

Let g € (\yen HN and suppose that g ¢ H. Then 1 ¢ Hg and so

N (NnHg) = ( N N)ﬁHg:{l}ﬁng(Z).

Ne~N Ne~N

Because G is compact, there is a finite subcollection Ny of N such that

0= (NmHg):( N N)mHg.

NEeNy NeNy

Hence g ¢ H(ﬂNeNo N). However, the subgroup (\yc; IV is open and
therefore g ¢ (ycar HN. Contradiction.

c¢) This follows from b): if H is a normal subgroup, then so are the groups
HN. O

Next we consider dense subsets of a profinite group. A subset of a topological space
X is dense if X is its closure. This is equivalent to: each nonempty open subset of
X contains an element of S. We will use the following lemma.

19.58 Lemma. Let (G;)icr be a projective system of finite discrete groups and
G = yLni G;. Then the cosets of Ker(p;: G — G;) form a base of the topology of
G.

PrOOF. A subbase B for the topology of G is the collection of sets p{l(aci) with
i € I and ; € G;. The set p; *(x;) is a coset of Ker(p;). For k < i in I, the set
p; *(x;) is a union of (a finite number of) cosets of Ker(py). The intersection of
a coset of Ker(p;) and a coset of Ker(p;) is the union of cosets of Ker(py), where
k € I such that 7,5 < k. So the subbase B is actually a base. O

19.59 Theorem. Let (G;)icr be a projective system of finite discrete groups and
G = ]&nZ G;. Then a subset S of G is dense in G if and only if p;(S) = p;(G) for
alli € I.

PROOF. Suppose S is dense. For z; € p;(G), the set p{l(mi) is open in G. Hence it
contains an element y of S and so x; = p;(y) € p;(S). Conversely, if p;(S) = p;(G)
for all 7 € I, then the nonempty open sets p{l (x;) with 2; € G; contain an element
of S. These open sets form by Lemma 19.58 a base of the topology of G. O
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19.4 Profinite groups

19.60 Examples.

2)

b)

Let p be a prime number. The maps Z — Z/p’ are surjective. The subset Z
of the ring Z, of p-adic integers is dense.

The finite rings Z/n form a projective system indexed by (N*,|). For m | n we
have ring homomorphisms f,,: Z/n — Z/m. Its projective limit is denoted
by Z and is sometimes referred to as the Prifer ring:

Z =1lim Z/n.

n

It follows from the Chinese Remainder Theorem that we have an isomorphism
of profinite groups
75 1]z

P
where the product is over all prime numbers (exercise 2). Here too the subring

Z is dense in Z.

The finite groups (Z/n)*, the units of Z/n, form a projective system indexed
by (N*,]). For m | n we have group homomorphisms f,,,,: (Z/n)* — (Z/m)*,
the restrictions of the f,,, of the previous example. We have

lim (Z/n)" = 2"

Some generalities on subgroups, quotient groups and homomorphisms of profinite
groups.

19.61 Theorem.

()

(i)

Let G be a profinite group and H a subgroup of G with the relative topology.
Then H 1is profinite if and only if H is closed.

Let G be a profinite group and N a normal subgroup of G. Then G/N with
the quotient topology is a profinite group if and only if N is closed.

PROOF.

(i)
(i)

H is totally separated. H is compact if and only if it is closed in G.

G/N is compact. Let M be the collection of open normal subgroups contain-
ing N. Then by Theorem 19.57 N is closed if and only if (), M = N.
This is equivalent to (,;c ¢ M/N = {N}, which by Lemma 19.15 is equiva-
lent to G/N being totally separated. O
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19 Infinite Extensions of Number Fields

Finally we consider the abelianization of profinite groups.

19.62 Definition and notation. Let G be a profinite group. The commutator
subgroup G’ of G is a normal subgroup and so is its closure G’. The factor group
G /G is called the abelianization of G and is denoted by G®P. It clearly is the largest
profinite group under the factor groups G/N with G/N profinite and abelian.

19.63 Proposition. Let (G;)ier be a projective system of finite discrete groups
and G = @z G;. Assume that the projections p;: G — G; are surjective. Then
G = @i G2b.

PrROOF. The short exact sequences

1 —G,— G —G® —1

form a short exact sequence of projective systems of finite discrete groups indexed
by I. By Theorem 19.52 a short exact sequence

1 —1lmG; — G — lmGP — 1
i i
of profinite groups is induced. Since @11 G2P is abelian we have G’ C h(LnZ G). The
maps G’ — G are surjective because the G — G; are. By Theorem 19.59 G’ is
dense in lim, G}. Hence G’ = lim, G} and consequently G* = lim, G?". O

19.5 Infinite Galois extensions

19.64 Definition. An algebraic field extension L : K is called a Galois extension if

it is normal and separable. The group of K-algebra automorphisms of L is called
the Galois group of L : K. Notation: Gal(L : K).

So far Galois extensions were assumed to be finite. This notion is now extended
to algebraic extensions. Many of the properties of finite Galois extensions clearly
hold for Galois extensions in general as well.

19.65 Proposition. Let L : K be a Galois extension and M an intermediate field
of L: K. Then L: M is a Galois extension.

PROOF. The minimal polynomial of an « € L over M is a divisor in M[X] of the
minimal polynomial over K. U

19.66 Notation. For a Galois extension L : K the collection of intermediate fields
M such that M : K is a finite Galois extension is denoted by F(L : K). It is an
inductive system, ordered by C.

19.67 Proposition. Let L : K be a Galois extension and F = F(L : K). Then
L=ling, M =Uper M.
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19.5 Infinite Galois extensions

PrROOF. Let o € L. The extension is normal, so the minimal polynomial of «
over K splits in L. Hence L contains a splitting field M of this minimal polynomial
over K and by separability M : K is a Galois extension. O

19.68 Corollary. Let K be an algebraic closure of a field K, L an intermediate
field of K : K such that L : K is a Galois extension and o an embedding of L in
K fizing K. Then o(L) = L.

PrOOF. In the notation of Proposition 19.67:

U(L):U(U M):UG(M):UM:L. O

MeF MeF MeF

19.69 Proposition. Let L : K be an algebraic field extension, M an intermediate
field of L : K, K an algebraic closure of K and o: M — K an embedding fizing
K. Then there exists a prolongation 7: L — K of o.

PrROOF. Let ® be the ordered set of all pairs (IV, p) consisting of an intermediate
field N of L : M and a prolongation p of o to N. Clearly, a linearly ordered subset
of ® has an upper bound, so by Zorn’s Lemma there is a maximal element in ®,
say (N,7) is maximal. Then N = L, since otherwise there is an « € L'\ M and a
prolongation of 7 to N(a): send « to a zero of f™ € K[X]. O

19.70 Proposition. Let L : K be a Galois extension, M an intermediate field of
L: K such that M : K is a Galois extension. Then the restriction of automor-
phisms in Gal(L : K) to the subfield M induces a group isomorphism

Gal(L : K)/Gal(L : M) = Gal(M : K).

Proor. By Proposition 19.69 every ¢ € Gal(M : K) has a prolongation 7 of
o to L and by Corollary 19.68 (L) = L. Hence restriction of automorphisms
is a surjective group homomorphism Gal(L : K) — Gal(M : K). The kernel is
Gal(L : M). O

19.71 Theorem. Let L : K be a Galois extension and G = Gal(L : K). Then
L =K.

PrOOF. For each M € F = F(L : K) by Proposition 19.70 the group G acts on
M via Gal(M : K). Hence MY = K and

LG:(U M)G:UMG:K. O
MeF MeF

19.72 Theorem. Let L : K be a Galois extension and M an intermediate field of

L: K. Then M : K is a Galois extension if and only if Gal(L : M) is a normal
subgroup of Gal(L : K).
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19 Infinite Extensions of Number Fields

Proor. If M : K is a Galois extension, then by Proposition 19.70 the group
Gal(L : M) is a normal subgroup of Gal(L : K). For the converse suppose that
Gal(L : M) is a normal subgroup of Gal(L : K). Let o € M. Then Gal(L : M) C
Gal(L : K(«)) and for each o € Gal(L : K):

Gal(L: K(o(a)) =0 Gal(L: K(a))o ™' Do Gal(L : M)o~! = Gal(L : M).

So o(a) € M for all @« € M and all o € Gal(L : K). Hence M : K is a Galois
extension. O

For a Galois extension L : K the groups Gal(M : K) with M € F = F(L : K) form
a projective system indexed by F. The maps fyn: Gal(L : N) — Gal(L : M) in
this system are the restrictions of automorphisms to M.

19.73 Theorem. Let L: K be a Galois extension. Then the restrictions
Yy Gal(L: K) — Gal(M : K) of automorphisms induce a group isomorphism

¥ Gal(L: K) =5 lim Gal(M : K).
MeF

PrOOF. As a group homomorphism ) is given by the definition of projective
limit. We have

Ker()) = (] Ker(yns) = () Gal(L: M).

MeF MeF

The restriction of a o € Ker(¢)) to an M € F is the identity on M. Since L =
Unrer M, it follows that o = 1. Hence ¢ is injective. For a (o) € Jm Gal(M :
K) define a 0 € Gal(L : K) by

ola) =om(a) faeM.

Thus o is a well defined embedding of L in L. It is an isomorphism: the embedding
given by o+ o3/ (o) for a € M is its inverse. O

By Theorem 19.55 the Galois group of an infinite Galois extension is a profinite
group. By Lemma 19.58 a base of its topology is the collection of the inverse images
under s of automorphisms in Gal(L : M), where M € F. Such an inverse image
is a coset o Gal(L : M). This topology is known as the Krull topology of Gal(L : K).

The Main Theorem of Galois Theory generalizes to general (possibly infinite) Galois
extensions:

19.74 Theorem. Let L : K be a Galois extension and G = Gal(L : K). Then we
have a one-to-one correspondence
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19.5 Infinite Galois extensions

intermediate fields of L : K +———  closed subgroups of G

N Gal(L : N)

L7 i H

PRrROOF. First we show that for intermediate fields N the groups Gal(L : N) are
closed. For @ € L choose an M € F such that « € M. Then Gal(L : M) is
a subgroup of finite index of Gal(L : K(«)). So Gal(L : K(«a)) is the union of
finitely many cosets of Gal(L : M). These cosets are open and closed. So also
Gal(L : K(«)) is open and closed. Let N be an intermediate field of L : K. Then
N = Uyen K(a) and so Gal(L : N) = [ ey Gal(L : K(«)), an intersection of
closed subgroups.

For N an intermediate field by Proposition 19.65 L : N is a Galois extension and
so by Theorem 19.71 NGal(L:N) — N

Let H be a subgroup of G. The extension L : L is a Galois extension and its
Galois group is a profinite group:
.THY 1 T M
Gal(L: L") = L%jn(}al(L : LY,

where M € F(L : L*). The map of H to Gal(M : L) is surjective by the
Main Theorem of Galois Theory for finite Galois extensions. Hence H is dense in
Gal(L : L*). If H is closed, then H = Gal(L : L). O

19.75 Example. Let p be a prime number. For each n € N* there is a unique
subfield F,» of the algebraic closure I,,. We have

Gal(F, : Fp) = lim Gal(Fpn : F,)) = limZ/n = Z.

19.76 Example. Let Q®" be the union of the collection A of all abelian number
fields. They form a directed set. By the Kronecker-Weber Theorem the cyclotomic
fields form a cofinal subset of A. Hence

Gal(Q™: Q) = lim Gal(K : Q) = lim Gal(Q(¢,) : Q) — lim(Z/n)* = 2",

KeA
19.77 Definitions and notations. Let K be an algebraic closure of the field K.
The separable closure of K (in K) is the intermediate field

K*P = {a € K | a is separable over K }.

The extension K*P : K is a Galois extension and its Galois group is called the
absolute Galois group of K. Notation: Gal(K) = Gal(K*P : K). The collection
F(K : K)=F(K*P : K) is denoted by Fk.
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19 Infinite Extensions of Number Fields

19.78 Example. Let K be a number field. Then K% = K = Q and

Gal(K) = Gal(@: K) = lim Gal(L: K),
LeFk

where F is the collection of number fields L containing K and L : K a Galois
extension.

Abelian extensions are subfields of the separable closure.

19.79 Definition and notations. Let K be a field. The intermediate field of
K% : K corresponding to Gal(K)’ is denoted by K?". It is the maximal abelian
extension of K. Clearly Gal(K* : K) = Gal(K)*. The collection F(K* : K) is

denoted by Ag.

19.80 Theorem. Let K be a field. For L € Fi denote the subfield of L corre-
sponding to Gal(L : K)' by L'. Then

Gal(K*: K) = lim Gal(L:K) and Gal(K™:K)= lim Gal(L':K).
LeAk LeFk

PrOOF. The first identity follows from Theorem 19.73 and the second from Propo-
sition 19.63. O

19.81 Example. For an abelian extension of number fields by Artin’s Reciprocity
Theorem we have isomorphisms

QUL : K) = (L : K) =5 Gal(L : K) (F = fx (L))

induced by the Artin maps gog(L): I'(K) — Gal(L : K). Thus we have an isomor-
phism of profinite groups

lim C/(L:K) - lim Gal(L : K) = Gal(K®*" : K).
LeAk LeAK

The class fields K3, for the groups Hpym = Hm(K) form a cofinal subset of Ag:
lim (i (K) = lim Gal(Ky,, : K) = Gal(K™ : K).
m m
19.82 Example. Let F' be a local field. In section 16.1 for each E € Ap a
local Artin map 19%}3) : F* — Gal(E : F) has been constructed. By the consistency
property for these maps (Proposition 16.7(i)) they combine to a local reciprocity
map

Op: F* — lim Gal(E: F) = Gal(F™ : F).
EeARr
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19.6 Duality

Pontryagin duality is an equivalence of the category of abelian Hausdorff locally
compact groups with its dual. The category of abelian torsion groups and the
category of abelian profinite groups are both full subcategories of this category
and by Pontryagin duality it follows that the first is equivalent to the dual of the
second. In this section only this equivalence is constructed, not the full Pontryagin
duality.

19.83 Notations. For G and H topological groups, the set of continuous homo-
morphisms of G to H is denoted by Homcon (G, H). The category of all abelian
discrete torsion groups is denoted by .7 and the category of all abelian profinite
groups with the continuous homomorphisms is denoted by &?. Both these cate-
gories are full subcategories of the category of abelian Hausdorff locally compact
groups.

The group Homcont (G, H) may be endowed with the compact open topology. A
subbase for this topology consists of all subsets

V(K,U) = { f € Homeont (G, H) | f(K) CU },

where K is a compact subset of G and U an open subset of H. Since we will
consider only special types of topological groups G and H, this generality is not
needed here.

19.84 Definition. The circle group S' is the group of complex numbers of norm 1
endowed with the topology relative to the standard topology of C:

St={zeC]| |z|=1}.

19.85 Lemma. Let (A;)ier be an inductive system of finite abelian groups. Then
hﬂie] A; is an abelian torsion group.

PROOF. The inductive limit is a homomorphic image of the abelian torsion group
D,cr Ai O

Let (A;)ier be an inductive system of finite abelian groups and

A =lim A;.
The homomorphisms fi;: A; — Aj; induce homomorphisms f%: AY — AY, thus
forming a projective system (A} )ier.
19.86 Proposition. Let (A4;);cr be an inductive system of finite abelian groups and
A the abelian torsion group ligniel A;. Then the homomorphisms q;: A; — A induce

an isomorphism
Hom(A,S') = I.&HA;/,
el
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19 Infinite Extensions of Number Fields

of abelian groups. In particular the group Hom(A,S') is a profinite group.

PrROOF. By the definition of inductive limit we have

Hom(A,S!) = Hom(li_n>1Ai,Sl> 5 lim Hom(4,,§") = lim AY. O
el el el

Similarly, if (A;);er is a projective system of finite abelian groups and

A:

fa—

@Ai7
el

N

then the homomorphisms f;;: A; — A; induce homomorphisms f}: A} — AJ.
19.87 Proposition. Let (A;)icr be an projective system of finite abelian groups and
A the profinite group @iel A;. Then the homomorphisms p;: A — A; induce an
isomorphism

@Aiv AN Homcont(A,Sl),

iel
of abelian groups.

PrROOF. The homomorphism p;: A — A; is continuous, so we have

ligA;/ = ligHomcom (A;,SY) = Homeons an A;, Sl) = Homeont (4,SY). O
I

i€l iel S

19.88 Definition. Let A be either a discrete abelian torsion group or a profinite
group. Then its dual AV is a topological group with underlying group

AY = Homeons (4, Sl)

For A an abelian torsion group AV is an abelian profinite group (Proposition 19.86)
and for A profinite the group is a discrete abelian torsion group (Proposition 19.87).
Taking the dual obviously is functorial.

Let A be a discrete abelian torsion group and F the inductive set of finite subgroups
of A. Then by the Propositions 19.86 and 19.87 we have functorial isomorphisms

\Y

A 25 (1im BY) 5 T BV,
BeF BeF

The functorial isomorphism
B—= B, b (x> x(b))

for finite abelian groups B shows that for discrete abelian torsion groups A we have
isomorphisms
ear A" AV ars (x e x(a)) (19.1)
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as well. Similarly, for A an abelian profinite group and N the inductive set of
subgroups of finite index we have by the same propositions

AW s (1 (4/B)Y) 5 1im (A/B)"".
—>(B§[</>) = Jm (4/5)

So also for abelian profinite groups we have isomorphisms as given in (19.1). Thus,
in categorical terms:

19.89 Theorem. The functors
P T° A= A and T — P°, A— AY.

establish an equivalence of the categories P and T °. O

19.90 Example. For an abelian extension L : K of number fields the Artin map
induces an isomorphism

ga(lf): C(L:K) = Gal(L: K).

By the consistency property for these maps they induce an isomorphism on the
projective limits:

pr: lim (LK) lim Gal(L: K) = Gal(K™ : K).
LeAg LeAk

Since the class fields Ky, (k) form a cofinal subset of Ay, another description is
it im Clw(K) — Gal(K®" : K).
m
The group Hq (K) is the dual of Cly (K). Therefore, the group H(K) is the dual of

the profinite group @m ey (K) and the dual Artin maps induce an isomorphism

~

G Gal(K™ : K)' 5 H(K).

In the last chapter the ‘idele class group’ C(K) will be constructed and a reciprocity
map

Ve : C(K) — Gal(K? : K)
which has properties similar to those of the local reciprocity map
Ip: F* — Gal(F* . F)

for a local field F'. As shown in the last chapter, the idele approach to class field
theory yields a firm link between the local and global reciprocity maps.
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19 Infinite Extensions of Number Fields

EXERCISES

1. (i) Prove that a totally separated topological space is totally disconnected.
(ii) Prove the converse of (i) for locally compact Hausdorff spaces.

(iii) A space which is totally disconnected but not totally separated is the so-called
Cantor teepee, which is the Krasner-Kuratowski fan with the top deleted. Do
an internet search for a description of this space and verify.

2. For n € N* we have by the Chinese Remainder Theorem isomorphisms

z/n = [[@/p**"™) and (Z/n)" = [](z/p"™)",

p p

where the product is over all prime numbers p. Show that in the limit (the projective
limit) we have
z-5 ]2, and z0 =[]z,
p P
isomorphisms of profinite groups.

3. (i) Let1 - A — B — C — 1 be ashort exact sequence of abelian torsion groups.
Show that 1 — CY — BY — AY — 1 is a short exact sequence of abelian
profinite groups.

11 et 1 — — — — e a short exact sequence of abelian profinite

ii) Let 1 A B C 1b h f abeli fini
groups. Show that 1 — C¥ — BY — AY — 1 is a short exact sequence of
abelian torsion groups.

(iii) Let A be an abelian torsion group. Establish a correspondence between sub-
groups of A and closed subgroups of the profinite group A".

4. Let K be a number field. Show that abelian extensions of K (inside Q) correspond
to subgroups of H(K).
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20 Idelic Class Field Theory

Chevalley introduced the ideéle group of a number field for a global class field theory
of infinite abelian extensions. Some years later he used this for constructing global
class field theory from local class field theory. In this theory all primes of a number
field are considered simultanuously. The basic notions are given in the first two
sections. Some topological algebra as described in the previous chapter is needed
here. Of particular importance is the idéle class group of a number field. Its
role is similar to the role of the multiplicative group in local class field theory.
In section 20.3 the relation to ray class groups is described and in section 20.4
the idelic global classification theorem is derived from the classification theorem of
chapter 15. Finally the close connection between local reciprocity and the idelic
global reciprocity is given in section 20.5.

20.1 The adele ring of a number field

In chapter 1 we embedded a number field K in the R-algebra R®g K =
Rr(E) x C(K) = [l;ep.. ) Kp and in chapter 5 it is shown that the subring Ok
maps under this embedding to a lattice Ax: a discrete subring of the R-algebra
and the quotient is a compact abelian group. In this section the field K will be
embedded in a locally compact ring A(K) such that (the image of) K itself is a
discrete subring of A(K) with compact quotient group A(K)/K.

20.1 Definition. Let S be a finite saturated collection of primes of K. Then the
topological ring
AS(K) =[] K x [] O»
pes pgs

is called the ring of S-adéles of K. (Its topology is the product topology.)

For S, we have

A= (K) =[] Ko x [] Os-
pl

pfoo

Here oo stands for the modulus of K induced by the modulus oo of Q.
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20 Idélic Class Field Theory

20.2 Lemma. The ring AS(K) of S-adéles of K is locally compact.

Proor. The completions K, are locally compact and so is a finite product of
them. For finite p the rings O, are compact and by Tykhonov’s Theorem (Theo-
rem 19.7) an infinite product of these rings is compact as well. O

The finite saturated collections of primes form a directed set under inclusion. For
S C T we have an inclusion map A%(K) — AT(K):

HKPX HOPXHOPQHKPX HKPXHOP'
peS peT\S pegT peS peT\S pgT
We take the direct limit.

20.3 Definition. The adéle ring of K is the topological ring
A(K) = lig AS(K) = | A5 (K),
S S

the limit taken over the finite saturated collections of primes of K.

So

AK) = { (ap)p € H K, ’ ap ¢ O, for only finitely many finite primes p }
p

It’s also called the restricted product of the groups K,. Notation:

AK) =] Ky.
p

20.4 Lemma. For each finite saturated collection S of primes of K the ring A%(K)
of S-adéles is open in A(K).

PROOF. A subset of A(K) is open if and only if its intersection with AT (K)
is open in AT(K) for each saturated collection T of primes. Let S and T be
saturated collections of primes. Then A®(K) N AT(K) = AST(K) and this is
open in AT(K). O

20.5 Lemma. The topological ring A(K) is locally compact.
PrOOF. This follows from Lemma 20.2 and Lemma 20.4. U

For each o € K we have a ¢ O, for only a finite number of finite primes p. So
a + (a), is an embedding of the field K in the adele ring A(K). We thus view K
as a subring of A(K).
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20.1 The adeéle ring of a number field

Be careful with the meaning of the notations: in the notation (a), for o € K we
already considered K as a subfield of K, and this so for every p. So we have many
incompatible identifications. The embedding K — A(K) projects to K — Hp‘oo K,
and this is the embedding ¢: K — R" x C* described in section 1.1, which we did
not define by ¢(a) = («,...,a). There we used the convention that number fields
are subfields of C. Later, in chapter 10 on completions we often considered number
fields as subfields of other fields, in particular of their completions.

20.6 Proposition. K is discrete in A(K).

ProoOF. The set
{ (ap)p | llaplly <1}

is open in each A®(K) and therefore also in A(K). The product formula (Propo-
sition 10.24), [],[lally =1 for all « € K*, implies that 0 is the only element of K
in this open set. 0

20.7 Proposition. A(K) = K + A%< (K).

PROOF. Let a = (ay), be a nonzero element of A(K). Take m € N* such that
may € Oy for all finite primes of K. Let S be the collection of finite primes p of
K with vy(m) > 0. Let N € N* such that N > v,(m) for each p € S. Take for
each p € S a By € Ok such that 8, = ma, (mod p?V). By the Chinese remainder
theorem there is a v € O such that

v = B, (modp”) forallp e S.

Then for each p € §

vp(L — ) = vy — may) — vy(m) = vy(y — ) — vy(m) = N — N =0

and for each finite prime q ¢ S
Uq(7; — @q) = vq(y — mayg) > 0.
Hence X — o € A%< (K). It follows that A(K) C K + A%< (K). O

20.8 Theorem. The additive topological group A(K)/K is compact. A fundamental
domain in A(K) for A(K)/K is

F x H Oy,
pfoo

where F is a fundamental parallelotope for the lattice Ak in R™ (as defined on
page 108).

PROOF. Because K N A%=(K) = Ok, by Proposition 20.7 the inclusion A%~ C
A(K) induces an isomorphism

AS=(K)/Ox = A(K)/K.
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20 Idélic Class Field Theory
The ker-coker sequence of

OKHAS )

\/

reduces to
0— JJOp — A (K)/Ox — R"/Ax — 0
ptoo
and from this the theorem easily follows. O

20.2 The idele group and the idele class group
Again we fix a number field K. The idele group of K is the unit group of its adele
ring. It is a topological group.

20.9 Definition. Let S be a finite saturated collection of primes of K. The topo-
logical group of S-idéles of K is

I(K)=AS(K) =[] K; x [] o;

peS pesS

endowed with the product topology. The idéle group of K, denoted by J(K), is
the injective limit of the groups of S-ideles:

J(K) = limg J°(K UJS

= { (ap)p € H K, ’ ay ¢ O, for only finitely many finite primes p }
p
- H K},
p
the restricted product in analogy to the one used for the adéle ring.

The topology of J(K) is not the topology induced by the inclusion J(K) C A(K).
In the induced topology inversion is in this case not continuous. In general for the
topology on the unit group of a topological ring R one takes the topology induced
by the injective map R* — R X R, © + (z,z7').
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20.2 The idele group and the idele class group

As for the adele ring we have for the idele group:

20.10 Lemma. For each finite saturated collection S of primes of K the group
J%(K) is open in J(K). O

The embedding K — A(K) restricts to an embedding K* — J(K) and we will view
K* as a subgroup of J(K). Clearly, K* N J¥<(K) = O} and more generally for S
a finite saturated collection of primes K* N J(K) = K?°, the group of S-units.

20.11 Proposition. K* is discrete in J(K).

Proor. The set
{(ap)p € IK) | floy — L[y <1}

is open in J(K), because its intersection with J°(K) is open in each J¥(K). Again
by the product formula, [, [lo — 1f|, = 1 for all & € K\ {1}, the only element of
K* in the open set is 1. O

20.12 Definition. The group J(K)/K* is called the idéle class group of K and is
denoted by C(K). For S a finite saturated collection of primes of K the group
J9(K)/K? is called S-idéle class group of K. The S-idele class group is denoted
by C%(K).

There is a natural map from the idéle group to the group of fractional ideals. This
map will be the link between the idele and the ideal approach to class field theory.
This will be made concrete in the next section. Here we show that the ideal class
group is a homomorphic image of the idele class group.

20.13 Notation. For a = (ay), € J(K) we write

(@) = [T @) e 1K),

pfoo

Thus we have a group homomorphism
(): I(K) = I(K), a(a)

and for « € K* the notation («) stands for the principal fractional ideal «Og. This
homomorphism is clearly surjective and its kernel is J°> (K, an open subgroup of
J(K). The subgroup K* of J(K) maps to P(K), the group of principal fractional
ideals. So we proved:

20.14 Proposition. The homomorphism (-): J(K) — I(K) induces an isomor-
phism
J(K)/K*J%= (K) = CU(K). m

In the next section we will show that not only the ideal class group is a homomorphic
image of the idele class group, but so is every ray class group.
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20 Idélic Class Field Theory

The absolute values on the various completions on a number field give rise to a
continuous group homomorphism from the ideéle class group to the positive reals.

20.15 Definition. Let o = (ap), € J(K). The p-value |||, of « is defined to be
the absolute value of ap € Kp:

lelly = llevpllp-

The content ||| of « is the product of its p-values:
llall = T Tl
p

The product is well defined since ||a||, # 1 for only finitely many p.

20.16 Lemma. The map J(K) — R>?, o+ ||a| is a surjective continuous group
homomorphism.

PrROOF. It clearly is a group homomorphism. For surjectivity take for each
a € R”? an element b € K for one of the infinite primes such that [|b], = a.
Then o € J(K) defined by a, = b and aq = 1 for all q # p satisfies ||a| = a.
Continuity: for (1 —e,1+¢) C R>? take for each p | co the open neighborhood

Up={ap | lloy = 1[Iy < ¥e}

of 1 € K,. Then the image of the open set [], . Up X [[;., Oy is contained in
(1—¢,1+¢). O

20.17 Notation.  The kernel of the map J(K) — R>?, a +~ ||a|| is denoted
by Jo(K). The product formula, [T, [lafl, =1 for o € K*, implies that the map

induces a surjective continuous homomorphism C(K) — R>°. The kernel of this
map is denoted by Co(K). Thus K* is a closed subgroup of Jo(K) and Jo(K)/K* =
Co(K).

We will show that the group Co(K) is compact. The proof uses the following
generalization of Proposition 5.31.

20.18 Proposition. Let for each prime p of K be given a ¢, € R>? such that ¢, # 1
for only finitely many primes p and

Ier = (2)" Vidsel®Tl.
b

Then there exists a B € K* such that

1Bllp < ¢p  for all primes p of K.
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20.2 The idele group and the idele class group

Proor. For each finite prime p let k, be the unique integer such that
N(p)~ "+ < e, <N(p)~*».

Then k, = 0 if and only if ¢, = 1, so in particular k, # 0 for only finitely many
p. Put a =], p~*» € I(K). By Proposition 2.28 there exists a b € I*(K) such
that ab is a principal fractional ideal and v, (b) = 0 for each finite prime p satisfying
ky, # 0. Let v € K* be such that ab = yOg. For each prime p put dp, = ¢, ||7][p-
Then for finite p with k, =0

dy = |l7llp = N(p)~» <1
and for finite p with k, # 0
dp = e N(p) ™" () = ¢, N(p)k» < 1.
Hence d, < 1 for all finite p and therefore
2 5(K) -
[T =TTds =TTesllle =[Tew = (2)  Vidise®L.
ploc p p p

By Proposition 5.31 there exists a nonzero 6 € Ok such that ||d]], < d, for all
infinite p. Since 6 € Ok we also have ||§]|, < 1 = d, for all finite p. Take
B = §v~L. Then for all primes p of K
1611 d
1Bllp = 11 < 7o = ¢ .
17l =l

20.19 Theorem. The topological group Co(K) is compact.

ProOOF. The group Co(K) is the kernel of the surjective continuous homomor-
phism
C(K) =R aw | (for a € J(K)).

The subgroup Cy(K) is homeomorphic to each of its cosets. So it suffices to prove
that it has a compact coset. Cosets are the subsets

Y, = {@|aeJ(K)and o] = p}

2\ s(K)

of C(K), where p € R>°. Let p > (7) /|disc(K)|. We show that Y, is
T

compact. For each prime p the subset

Xp={acK,|1<al, <p}

of K is compact. There are only finitely many finite primes p of K for which
N(p) < p. Let S be the collection of these primes together with the infinite primes.
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20 Idélic Class Field Theory

It is a finite saturated collection of primes of K. For p ¢ S we have X, = O;.

Hence the set
X =][x
p

is a subset of J9(K). It is compact, since all factors are compact. Let @ € Y,
where a € J(K) with [|af| = [],[|ally = p. By Proposition 20.18 there is a 3 € K*
such that

I18llp < llerf|p  for all primes p of K.
So [|Flp = 1 for all primes p. Since [], |5, = [ llally = p, we have [, < p
for each prime p. Hence § € X. It follows that the closed subset Y, of C(K) is

B
contained in the image of X under the canonical projection J(K) — C(K). Since

X is compact, this image is compact and so is Y,,.

20.3 Idele class groups and moduli

In idelic class field theory the role of the idele class group is similar to the role of
the multiplicative group of a local field in local class field theory.

20.20 Lemma. Let p be a prime of K. A subgroup of Ky is open if and only if it
contains Uén) for some n € N*.

PrROOF. The only open subgroup of C* is C* itself. The group R* has two open
subgroups: R* and R>°. For p finite the cosets of all Ué") form a basis for the

topology. So an open subgroup of K must contain Uén) for some n € N*. And if
a subgroup contains an open subgroup, then it is the union of cosets of this open
subgroup and so it is open as well. O

20.21 Definitions and notations.  Let m be a modulus of K. The subgroup
W (K) of J(K) is defined as follows:
T )
p

The cokernel of W, (K) — J(K)/K*(= C(K)) is called the idéle class group modulo
m of K and is denoted by Ci (K):

Con(K) = J(EK)/Win (K) K™

20.22 Lemma. The groups Wy (K) are open subgroups of J(K).

PROOF. The subgroup Wy, (K) of Wy (K) is open in J(K) since it is open in
J¥(K) for each finite saturated collection S of primes of K. Therefore, Wy, (K) is
open. ]
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20.3 Idéle class groups and moduli

20.23 Proposition. A subgroup of J(K) is open if and only if it contains a Wy, (K)
for some modulus m of K.

PROOF. If a subgroup of J(K) contains a Wy, (K), then it is open because W, (K)
is. Conversely, if H is an open subgroup of J(K), then H N J%~(K) is an open
subgroup of J%< (K, which is an infinite product and by definition of the product
topology and Lemma 20.20 it follows that it must contain a group Wy (K). O

We will show that the idele class group modulo a modulus m, Cy, (K), is in a natural
way isomorphic to the ray class group C/y (K) defined in chapter 13 (Definitions
and notations 13.1).

20.24 Definition. Let m be a modulus of K. A subgroup J™(K) of J(K) is defined
as follows

I™(K) = {a € J(K) | ap € Uévp(m)) for p | m} — HUévp(m)) > HK;
plm ptm

Restriction of the map (.): J(K) — I(K) to J™(K) yields a surjective homomor-
phism (.): J™(K) — I™(K). By the definitions of Wy, (K) and J™(K) we obviously
have

W (K) = Ker(J™(K) -5 I™(K)).
For any modulus m each idele class is represented by an idéle in J™(K):

20.25 Lemma. For any modulus m of K we have

JK)=]J"(K)K* and J"NK*=K_}.

PROOF. By the definitions of J™(K) and K, it is immediate that J"NK* = K.
Let o € J(K). For each p | m choose a 3, € K* such that 3, = «, (mod U;)‘“(m))).
Since the system m — K*/K]} is multiplicative, there is a 3 € K* such that
B =By (modK;Up(,,,>) for all p | m. Then 8 = ay (modU;J"(m)) and so S la €
J™(K). O

20.26 Lemma. For any modulus m of K the inclusion map J™(K) — J(K) induces
isomorphisms

J"K)/Kyp = J(K)/K* and J™(K)/Wa(K)Ky = J(K) /W (K)K*.

PROOF. The first map being an isomorphism is a consequence of the previous
lemma. The second isomorphism is in turn induced by the first. O
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20 Idélic Class Field Theory

The composition J™(K) — I™(K) — I™(K)/Su(K) is surjective and the group
W (K)KL is contained in its kernel. On the other hand for « in the kernel
one has (a) = (B) for some B3 € K}. Then (7'a) = (1), that is 37 la €
J™K) NJ%(K) = Wn(K)KL. Hence the inclusion J™(K) — J(K) induces an
isomorphism J™(K) /W (K)K} = I™(K)/Su(K). Thus we have isomorphisms

Con (K) = J(E) /Wi (K) K™ & I™(K) /Wi (K) K gy, = I™(K) /S (K) = Cln(K).
So all ray class groups are factor groups of the idéle class group:

20.27 Theorem. Let m be a modulus of K. Then (.): J™(K) — I™(K) induces an
isomorphism Cp(K) = Cl(K). O

So the map Cn(K) — Clm(K) is as follows: having an idele class, choose a repre-
sentative a € J™(K) of this class and take the class of the fractional ideal () in
the ray class group.

For m and n moduli of K satisfying m | n we have Wi, (K) 2O W, (K) and therefore
the diagram

of natural projections commutes. By the Classification Theorem of section 15.3
(Theorem 15.29) ray class groups (/m(K) correspond to ray class fields Ky (k)
and the Artin map induces an isomorphism C/w(K) = Gal(Ky,, (k) : K). For
m | n the diagram

Co(K) — Un(K)

Cm(K) — Cgm(K)

commutes. The vertical map on the right is compatible with the restriction of
automorphisms. We obtain a continuous map, the global reciprocity map,

Oxc: C(K) — Jim Cn (K) — lim Gl (K) — Gal(K™ : K).

The last isomorphism is given by the Classification Theorem (Theorem 15.29) of
global class field theory. Note that lim Cln, (K) is the Pontryagin dual of H(K).
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20.4 The Classification Theorem (idélic version)

20.28 Proposition. The map 9 is surjective.

PROOF. The maps C(K) — Cun(K) = Cln(K) = Gal(Ky,, (k) : K) are surjective,
so by Theorem 19.59 the image of C(K) is dense in Gal(K?P : K). The group Co(K)
is the kernel of C(K) — R>? and since the maps C(K) — Cyn(K) are continuous
maps to discrete groups, the restrictions Co(K) — limm Cm(K) are surjective. So
the image of Co(K) in lim Cn(K) is dense as well. Since Co(K) is compact its
image is compact and is therefore equal to the whole group lim Cm (K). O

Finite abelian extensions of K correspond to open subgroups of the profinite group
Gal(K?" : K) and by the Classification Theorem and Theorem 20.27 also to open
subgroups of lim Cu(K).

20.29 Theorem. Open subgroups of Gal(K® : K) correspond via 9k to open sub-
groups of C(K).

PrOOF. Let D(K) be the kernel of the map ¥ : C(K) — Gal(K®" : K) is equal
to the kernel of C(K) — lim Cw(K). So

D(K) = [|Wa(K)K*/K*.

The open subgroups of @]n Cm(K) correspond to the open subgroups of C(K)

which contain D(K). By Proposition 20.23 each open subgroup of C(K) contains
a subgroup Wy, (K)K*/K* for some modulus m of K. O

The correspondence in this theorem is obtained via the Artin isomorphism

lim Clw(K) = Gal(K®" : K).

Its formulation depends on the ideal-theoretic version of class field theory. In the
next section we translate this into a pure idelic version.

20.4 The Classification Theorem (idelic version)

In this section L : K is a number field extension of degree n. For q a prime of L
above a prime p of K, we can take K, to be a subfield of L;. Thus we have an
injective homomorphism

J(K) = I(L),

mapping a = (ap)p to @’ = (ay)q, where ay = ap if q [ p. The group J(K) is
often seen as a subgroup of J(L): an idele (aq)q € J(L) is in J(K) if and only if
aq = o € K, for all primes p of K and all q,q" above p.

543



20 Idélic Class Field Theory

An isomorphism o: L = (L) of number fields obviously respects absolute values:
lo(@)lloq) = llallq for all & € L and every prime p of K. So by definition of
completion it determines an isomorphism of the completions:

I g
J o

——o(L)
g — Lo(a)

This in turn determines an isomorphism of adeéle rings:
o A(L) = A(a(L)): (ag)q = (0(a) g (q))o(a)

and similarly for idele groups.
20.30 Notations. For p a prime of K we write

L, = H Ly

alp
and for p a finite prime of K
L
o =TJ ..
alp

For S a finite saturated collection of primes of K we write

AS(L) =[] o > [] 05"

pes pés
and
Py = ] Ly = []os""
peSs pé¢s
Then

A(L) =t A5(D) = | JAS(D) = [] L.
S S P

the restricted product consisting of all (o ),, where o, € L, such that o, € O'(JL)
for all but finitely many finite primes p. Each L, is via the diagonal embedding
K, — L, a commutative K,-algebra and as a Kj-vector space its dimension equals

aiplLa t Kol = Xqpp e,(DL)f,gL) = [L : K]. The diagonal embeddings K, — L,
induce an embedding

A(K) = A(L), (ap)p = (ap)yp
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20.4 The Classification Theorem (idélic version)

and since the ideles are the units of the adele ring by restriction we obtain again
the inclusion

J(K) = J(L).

If L: K is a Galois extension with Galois group G, then the L, and O,(JL) are G-
modules and so are A(L), J(L) and C(L). For the adele ring and the idele group
we have Galois descent:

20.31 Proposition. Let L : K be a Galois extension with Galois group G. Then
A(L)Y = A(K) and J(L)Y = J(K).

PrOOF. The second identity follows from the first. For S a finite saturated col-
lection of primes of K and we have

AS(L)S = [T £§ x [T =[] & x [] ©»-

pes pgs pes pes
Therefore, A(L)% = A(K). O

The behavior of idele class groups under field extensions differs considerably from
the behavior of the ideal class groups.

20.32 Proposition. The embedding K — L induces an injective homomorphism
C(K)—=C(L), a=aK"—al"=a.
PROOF. We have to show that J(K)NL* = K*. Let M : K be the normal closure
of L: K and G = Gal(M : K). Then
JK)NL* CHK)NM* C (J(K)NM*)Y =J(K)n(M*)° =J(K)NK* = K*. O
As a consequence we can view C(K) as the subgroup of C(L) consisting of all
a = alL* with a € J(K).

20.33 Theorem. Let L : K be a Galois extension of number fields with Galois
group G. Then C(L)¢ = C(K).

Proor. The short exact sequence
1-L"—=JL)—=CL)—1
induces an exact sequence

1 — (L") = J(L)¢ —c(L)“
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and since (LY)* = K* and J(L)¢ = J(K) the theorem will follow from the surjec-
tivity of J(L)¢ — C(L)®. Let a € J(L) such that @ € C(L)®. Then o(a) = @ for
all o € G. So @ € L* for all 0 € G. Take v € K* such that

6= Z%a(v) #0.

o

Then for each 7 € G

T(0) = Z rola) To(y) = c Z ro(e) To(a) = 2 s

7(a)

So 7(da) = da for all 7 € G and therefore da € J(L). Since § € L* we have
Sa=aeC(L)". O

20.34 Definition. The norm map N%: A(L) — A(K) is the map defined on the
components L, by

NE (), = HNg(aq) for a = (aq)q € L.
qlp

Its restriction to J(L) — J(K) is a group homomorphism.

By Corollary 10.47 the norm map N%.: J(L) — J(K) is compatible with the norm
map NL: L* — K*, so we can define a norm for idele classes:

20.35 Definition. The norm N4 : C(L) — C(K) is induced by the norm of ideles:

N% (@) = Nk(a) for a € J(L).

20.36 Definition. The cokernel of N% : C(L) — C(K) is called the idéle class group
associated with L : K. Notation: C(L : K). So we have an exact sequence

() X5 o(K) — C(L : K) — 0.

20.37 Proposition. Let L : K be abelian. The open subgroup of C(K) corresponding
via Vi to the open subgroup Gal(K?" : L) of Gal(K®" : K) is the group N&(C(L)).
PrOOF. Let m be a multiple of the conductor of L : K. We have the following

commutative diagram
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C(L) ——— lim_Cw(L) —— lim Clw(L) —— Gal(L : L)
Nk (N%)m (N%)m

C(K) ——— lim_Cu(K) —— lim Clu(K) — Gal(K* : K)

C(K)/NL(C(L) —— C(L: K) ——— C/(L : K) ——— Gal(L : K)

The composition of the maps in the two top rows are the reciprocity maps 9, and
k. The image of Gal(L® : L) in Gal(K®" : K) is Gal(K®" : L). We have to show
that C(K)/NL(C(L)) — C(L : K) is an isomorphism. By Theorem 20.29 the map

C(K) — @m Cm(K) is surjective. Because m is a multiple of the conductor, we
have

U™ CN3(Lg) for all p € P(K) and q € P(L) above p.
Hence
Wa(K) = [JUs"™ € NLI(L)
p

and for the images in C(K):
Ker(C(K) — C(L : K)) = Wy (K)K*/K* C Nk (C(L)).
Therefore, C(K)/N%(C(L)) — C(L : K) is injective. O

So the full idelic version of global class field theory becomes:

20.38 Classification Theorem. Let K be a number field. The map

finite abelian open subgroups of
extensions of K C(K)
L:K N%(C(L))

is a bijection. For L : K a finite abelian extension the global reciprocity map
Vi : C(K) — Gal(K?® : K) induces an isomorphism

C(K)/NLk(c(L)) = Gal(L : K). O
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20 Idélic Class Field Theory

20.5 Local and global reciprocity

The idelic approach to class field theory clarifies the relationship between local and
global class field theory considerably.

For a number field K we have local reciprocity maps for primes p of K
Vg, Ki — Gal(K§" : Ky)

and the global reciprocity map
Vi : C(K) — Gal(K? : K).

Let’s fix an abelian number field extension L : K. For a prime p of K and a prime
q of L above p the local reciprocity map yields a short exact sequence

ﬁ(Lq)
1= NI(LY) — Kp —% Gal(Lg : Ky) — 1

and via the natural isomorphism Gal(L, : K,) = ZéL) a short exact sequence

q * * ﬁi’L) (L)
1= Ni(Ly) — K, — 2,7 — 1.

For primes p of K there is a natural embedding

K, = J(K), aw—aP,
where P is given by

af =a and af, =1 for all p’ # p.

The composition with J(K) — C(K) is injective as well; it is the map

K, = C(K), awm [af],

where, as before, [aP] denotes the ideéle class of the idele aP.

20.39 Theorem. The square

9
Ky ————— 7"
-

)

C(K) —5— Gal(L : K)
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20.5 Local and global reciprocity

commutes. (The vertical map on the left is the map described above and 19%) is the
composition of O with the map Gal(K*" : K) — Gal(L : K) given by restriction
of automorphisms.)

PrROOF. Let o € L*. We have to show that ﬁ%)([ap]) = 19,(3” (o). First we
follow the definition of 19,(JL). Let n be a modulus for L : K. Put n = p'm with
p{m. Choose a f € K} such that 8 = a (mod Uét)). Then v, (8) = vp(e) and

9 () = o8 (a) Wherea—(ﬁ)p_vp(a) e I"(K).
We have (8~ 'aP) = g~ 1p»r(®) = q=1 € I"(K). Therefore,
(e ])=w;§)((ﬁ‘1a")>=@§?)( ) =9 (). O

Final remarks

A modern approach to class field theory is top down: start with local class field
theory, independent of the global one, and for global class field theory use the
approach with ideles. After that, one may translate the results into the language
of ideals. In our bottom up approach the use of ideles clarifies the definition of
local Artin maps (Proposition 20.39) and their relation to the global Artin map:

Conductor. Let L : K be an abelian number field extension. The conductor f of
L : K is the least modulus divisible by all ramifying primes such that S;(K)
is contained in the kernel of the Artin map ap%): I*(K) - Gal(L : K). By
Theorem 15.56 the conductor § is the product of all p™», where n, € N is the
least such that

U™ CN§(LY). (20.1)
The power p™r is the local conductor at p of the extension L : K. The
modulus f is the least one such that L is contained in its ray class field. In
terms of ideles this means W3(K) C N% (J(L)), which by definition of W;(K)
comes down again to condition (20.1).

Product formula. Let L : K be an abelian number field extension and o € K.
By Theorem 16.22 we have a product for norm residue symbols. In terms of
local Artin maps this is the formula

T »" =
pEP(K)

Using idelic class field theory this formula is easily obtained as follows. Let S
be a saturated collection of primes of K containing all primes p with v, (a) #
0. Let o be the idele defined by

S_{a ifpe S

ap ]
1 otherwise.
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20 Idélic Class Field Theory

Then a~'a® € W;(K) and so

[T97 @) = TT 05" (@) = T 95 (0") = 0 ([0%]) = 05l a)) = 1.
p peS pes

EXERCISES

1. Let L : K be a Galois extension of number fields. Show that
G(L:K)— Ab, K' — AK')/K'
is an acyclic Galois module.

2. Let K be a number field and p a prime number. Show that we have a Qp-algebra
isomorphism

Q @ K = [ K,

plp

where the product is over all primes of K above p. So Q, ®g K = K, (Nota-
tions 20.30).

3. Show that
JQ) = e xR7 x [ [ 2, x Pz,
P P
where the direct product and the direct sum are over all prime numbers p.

4. Show that A )
CQ =R°xZ* and Co(Q)=Z".
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Notations

ACB
ACB
#(A)
H<G
H<G
o(9)
(G:H)
NG
NaG
(91> 9n)

(91P(9))
N

N*
Z

A is a subset of B

A is a proper subset of B

the number of elements of a finite set A

H is a subgroup of G

H is a proper subgroup of G

the order of an element g in a group, p. ix

the index of the subgroup H in the group G

N is a normal subgroup of G

N is a proper normal subgroup of G

the subgroup of a given group generated by g1,...,9n

the subgroup of a given group generated by all g such that P(g)
the set {0,1,2,3,...} of natural numbers

the set {1,2,3,...} of natural numbers # 0

the ring of (rational) integers

the field of rational numbers

the field of real numbers

the field of complex numbers

the primitive m-th root of unity e27/™ of C

the group of roots of unity of a field K

= p(C), the group of roots of unity of C

the real part of z € C

the imaginary part of z € C

a field with ¢ elements

the ring of integers modulo n

the ideal of a given commutative ring generated by a,...,a,
the ideal of a given commutative ring generated by all a such that
P(a)

the group of invertible elements in the ring R

the degree of a polynomial f

27

the primitive n-th root of unity e

in C
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Notations

nA for A a (multiplicative) abelian group and n € N*: the subgroup
of all a € A with a™ =1

Cn the cyclic group of order n

Vy the Klein four group

D, the n-th dihedral group

Sh the n-th symmetric group: permutations of the set {1,...,n}

A, the n-th alternating group: even permutations of the set {1,...,n}

Ng(H) the normalizer of H in G, p. ix

[L: K] the degree of a field extension L : K

Gal(L : K) the Galois group of a Galois extension L : K

s"(X1,...,X,) the n-th elementary symmetric polynomial, p. ix

r, s for a number field K a standard notation: r is the number of real
embeddings of K and s the number of pairs of complex embed-
dings, p. 4

O the integral domain of integral algebraic numbers, p. 6

Win for m a squarefree integer # 1: /m if m = 2,3 (mod 4), 3 +3/m
if m =1 (mod4), p. 8

Ok the ring of integers of a number field K, p. 9

Ar(X) characteristic polynomial of a linear transformation T, p. 9

ALK (X) the characteristic polynomial of oo € L over K, where L : K is a
finite field extension, p. 9

Tri () the trace of a € L over K, where L : K is a finite field extension,
p-9

NE& (o) the norm of @ € L over K, where L : K is a finite field extension,
p-9

N the norm R” x C* — R, p. 12

disck (o, ..., ) the discriminant of a K-base of an extension field L, p. 15

alb the ideal a is a divisor of the ideal b, p. 34

Max(R) the set of the maximal ideals of a ring R, p. 35

Spec(R) the set of prime ideals of a ring R, p. 35

I"(R) the monoid of nonzero ideals of an integral domain R, p. 36

vp(a) the p-valuation of a (fractional) ideal a, p. 37

a~Db the nonzero ideals a and b of a Dedekind domain are equivalent,
p- 40

C/(R) the ideal class group of a Dedekind domain R, p. 41

[a] the ideal class of a nonzero ideal a of a Dedekind domain, p. 41

I(R) the group of fractional ideals of a Dedekind domain R, p. 42

P(R) the group of principal fractional ideals of a Dedekind domain R,
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Notations

the ramification index of p (over Q), p. 50
the residue class degree of p (over Q), p. 50

the ramification index of the prime number p in the number field
K, p. 56

the residue class degree of the prime number p in the number
field K, p. 56

the norm of a nonzero ideal a of a ring of integers of a number
field, p. 57

the ideal class group of the number field K, p. 59
the group of fractional ideals of the number field K, p. 59
the group of principal fractional ideal of the number field K, p. 59

the monoid of nonzero ideals of the ring of integers of the number
field K, p. 59

the Legendre symbol (a € Z and p an odd prime), p. 66
for odd n € Z, n* = (—1)%1", p. 67
the Jacobi symbol (a,b € Z and odd), p. 69

the discriminant of the quadratic number ~, p. 71
action of A € GLy(Z) on z € C\ Q, p. 72
equivalence of 21,20 € C\ Q, p. 72

continued fraction of length n, p. 79

numerator of continued fraction of length n, p. 80
denominator of continued fraction of length n, p. 80
infinite continued fraction, p. 82

tail equivalence of irrational numbers = and y, p. 87
the volume of a mesh of a lattice F' in R™, p. 106

the image of Ok under the embedding of a number field K in
R™ x C*, p. 108

— R"™"¢ the ‘logarithmic’ map, p. 115

l: K* = R

the embedding ¢ composed with the ‘logarithmic’ map L, p. 115
the map L restricted to O, p. 115

the subspace of R™ of vectors with coordinate sum 0, p. 116
Hasse index of a CM-field L, p. 125

.,€r+s—1) the regulator of a group of units, p. 128

the regulator of a number field K, p. 128
the regulator of a group of units X in a number field, p. 128
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SR
Ry
Rp

Kp

Zk(q)

556

the ring of fractions of an integral domain R with denominators
in a multiplicative system S of R, p. 134

the localization of an integral domain R at a prime ideal p of R,
p. 134

the localization of a Dedekind domain R at a set P of maximal
ideals of R, p. 137

for a number field K the localization of O at aset P C Max(Ok),
p- 141

for a number field K the subgroup of I(K) generated by P C
Max(Ok), p. 141

for a number field K the group C/(K) modulo all [p] € C/(K) with
pin P C Max(Ok), p. 141

the subroup of totally positive elements of a number field K,
p. 143

the narrow ideal class group of a number field K, p. 143
the ramification index of q over K, p. 146
the residue class degree of q over K, p. 146

the ramification index of p in L, p. 151

the residue class degree of p in L, p. 151

the R-discriminant of the extension field L of the field of fractions
of the Dedekind domain R, p. 155

the discriminant of the number field L over the number field K,
p- 159

the decomposition group of q over K, p. 160

the inertia group of ¢ over K, p. 161

the decomposition group of p in L, p. 162

the inertia group of p in L, p. 162

the i-th ramification group of q over K, p. 169

the norm of a € I(S) in I(R), p. 174

transfer of a C € C¢(S) in C¢(R), p. 175

the fractional ideal aOyp, p. 176

the norm of the fractional ideal a in I(K), p. 176

the ideal class [aOL], p. 176

the ideal class [N% (a)], p. 176

the Frobenius automorphism of q over K, p. 177

the Frobenius automorphism of p in Gal(L : K), p. 178
= #(u(K), the number of roots of unity in the field K, p. 188

the Riemann zeta function, p. 192
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the completed zeta function, p. 196
Dedekind zeta function of a number field K, p. 198

the partial Dedekind zeta function of an ideal class of a number
field, p. 198

Dirichlet density of a collection P of prime ideals of a number
field, p. 202

division represented by o, p. 207

the conductor of an abelian number field K, p. 214

the character group of a group G, p. 215

the dual of a group homomorphism f, p. 215

the group of Dirichlet characters modulo N, p. 218

inverse of a Dirichlet character y, p. 218

Dirichlet character modulo N induced by x € Dy, p. 219

the conductor of a Dirichlet character x, p. 221

the conductor of a finite group X of Dirichlet characters, p. 222

the group of Dirichlet characters associated to an abelian number
field K, p. 223

the number field associated to a finite group X of Dirichlet char-
acters, p. 223

the L series of a Dirichlet character, p. 226

the standard Gaufl sum of a Dirichlet character y, p. 232

a Gauf} sum of a Dirichlet character y, p. 232

the group of cyclotomic units in Q((,), p. 246

the group of cyclotomic units in Q(¢,, + ¢,1), p- 246

the absolute value given by the complex embedding o, p. 256
the absolute value determined by a discrete valuation, p. 256
the collection of primes of a number field K, p. 266

the collection of finite primes of a number field K, p. 266

the collection of infinite primes of a number field K, p. 266
the valuation ring of a complete discretely valued field F', p. 271
the valuation of a complete discretely valued field F', p. 271

the maximal ideal of the valuation ring of a complete discretely
valued field F, p. 271

the residue class field of a complete discretely valued field F,
p. 271

the completion of a discretely valued field K at a maximal ideal
p, p. 272
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the valuation ring of the completion of a discretely valued field
K at a maximal ideal p, p. 272

the valuation ring of the completion of a number field K at a
maximal ideal p, p. 272

the maximal ideal of O, p. 272
the field of p-adic numbers, p. 272
the ring of p-adic integers, p. 272

the ramification index of an extension of complete discretely val-
ued fields, p. 274

the residue class degree

of an extension of complete discretely valued fields, p. 274
exponential function on a local field, p. 285
logarithm on a local field, p. 287
the group ring of a group G, p. 294
the group algebra over a commutative ring R of a group G, p. 294
the norm element in the group ring of a finite group G, p. 294
the subgroup of invariants of a module A over a group G, p. 294

the factor group of invariants of a module A over a group G,
p- 295

the m-th homology group of G with coefficients in A, p. 296
the m-th cohomology group of G with coefficients in A, p. 296

m-th Tate cohomology group of a finite group G with coeflicients
in a G-module A, p. 296

multiplication by N¢g of elements of a G-module A, the group G
being understood, p. 296

multiplication by A = 1 — o of elements of a cyclic G-module,
the group G and its generator o being understood, p. 296

the 0-th cohomology group of a module A over a cyclic group,
p- 297

the 1-st cohomology group of a module A over a cyclic group,
p- 297

the Herbrand quotient of a module A over a cyclic group, p. 299

the category of all intermediate fields of a Galois extension L : K
and their K-embeddings, p. 305

the ordered monoid of moduli of a number field K, p. 320

the group of fractional ideals of a number field K ‘away’ from my,
p- 320

the localization of a number field K at the finite primes of a
modulus m, p. 320
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the subgroup of the multiplicative group of a number field K
consisting of elements congruent to 1 modulo a modulus m, p. 320

the ray modulo a modulus m of a number field K, p. 321

the ray class group modulo a modulus m of a number field K,
p- 321

Dirichlet character modulo n, induced by a character modulo m |
n, p. 330

the conductor of a Dirichlet character x of a number field, p. 331

the group of Dirichlet characters of a number field K with con-
ductor a divisor of m, p. 331

the conductor of a finite group X of Dirichlet characters, p. 331
transfer of a C € Cl (L) to Cly(K), p. 333

for L : K a number field extension and m a modulus of K: the
cokernel of the transfer from Cly (L) to Clw(K), p. 333

the conorm map of Dirichlet characters of number fields, p. 333

the group of Dirichlet characters of a number field extension L :
K, p. 333

for L : K a number field extension and a modulus m of K: the
Dirichlet characters of L : K with conductor dividing m, p. 333

the partial zeta function of a ray class C' of a number field, p. 334
the norm of a modulus m, p. 335

the regulator of a modulus m, p. 335

the L-series of a Dirichlet character of a number field, p. 337

the conductor of an abelian extension L : K of number fields,
p- 339

for L : K an abelian number field extension the subgroup of I( K)
generated by the nonramifying prime ideals of K, p. 340

the Artin map of an abelian number field extension L : K, p. 340
the class field for a finite group of Dirichlet characters of a number
field K, p. 343

the dual Artin isomorphism of an abelian number field extension
L: K, p. 362

the group of S-units of a number field K, p. 376

the S-ideal class group of a number field K of a saturated collec-
tion S of primes, p. 376

the class field for a finite group X of Dirichlet characters of a
number field K, p. 379

global description of the local Artin map, p. 388
the local Artin map at p, p. 389
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A
fo (L)

K/
K

L
< (L

Vi
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a subgroup of K, see Notation 15.54, p. 393

the local conductor of an abelian extension L : K of number fields
at a prime p of K, p. 393

the canonical map H(K’) — H(K) for a number field extension
K': K, p. 394

the generalized Artin map of a Galois extension L : K, p. 394

the generalized dual Artin map of a Galois extension L : K, p. 395

the transfer from a Group G to a subgroup H of finite index,
p- 397

the Artin map of an extension F : F' of local fields, p. 409

the class field for a subgroup of finite index of F* for a local field
F, p. 411

for F' a local field a subgroup of F* as described in 16.16, p. 413
the conductor of an extension E : F' of local fields, p. 413

the value in a of the norm residue symbol of an abelian number

field extension L : K at a prime p, p. 415
the n-th Hilbert symbol for «, 5 in a given local field, p. 417

the n-the Hilbert symbol at a prime p of a given number field,

p. 417
the tame symbol on a given discretely valued field, p. 421

the n-th power residue symbol, p. 423

generalizations of the Jacobi symbol, p. 424

for o an automorphism of a local field, the least exponent i such
that o does not induce the identity modulo the prime ideal to the
power %, p. 438

continuous piecewise linear function determined by the orders of
the ramification groups, p. 441

the inverse map of pg(x), p. 442

the dual of the fractional ideal a, p. 448

the complementary fractional ideal of L over R, p. 449
the different of L over R, p. 449

for a number field extension L : K the different of L over K,
p- 449

the different of o € L over K, p. 453
the different of an extension E : F' of local fields, p. 455
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Notations

the i-th ramification group of a Galois extension F : F' of local
fields, p. 455

the image of Uf,i) in the Galois group of a Galois extension of
local fields under the local Artin map, p. 458

the collection of cyclic subgroups of a finite group G, p. 472

the collection of nontrivial cyclic subgroups of a finite group G,
p. 472

the collection of noncyclic subgroups of a finite group G, p. 472
the collection of subgroups of a finite group G, p. 472
the collection of nontrivial subgroups of a finite group G, p. 472

the collection of normal subgroups H of G such that G/H is a
finite cyclic group, p. 472

the collection of H # G in T(G), p. 472

the free abelian group on a set X, p. 472

the group of norm relations of a finite group G, p. 472

the norm coefficient of a subgroup H of a finite group G, p. 473

idempotent related to x € GV in the group algebra over Z[X, (]
of an abelian group G, p. 477

the collection of subgroups H of an abelian group G with G/H
cyclic, p. 478

for V' a subgroup of the dual of a given abelian group G: the
subgroup of G on which all x € V' vanish, p. 478

for U a subgroup of a given abelian group G: the group of all
X € GV vanishing on U, p. 478

idempotent in the group ring of an abelian group G related to a
subgroup H with G/H cyclic, p. 479

trivial character of a group G, p. 493
Artin L-function of a Galois extension of number fields, p. 494
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