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Preface

This book is a textbook for algebraic number theory. It grew out of lecture notes
of master courses taught at the Radboud University over a period of more than
four decades. It is self-contained in the sense that it uses only mathematics of
a bachelor level, including some Galois theory, as for example treated in Galois
Theory [35]. To some extent the language of categories is used, especially in later
chapters.

Part I contains topics in basic algebraic number theory as they may be presented
in a beginning master course on algebraic number theory. The theory in Part II is
more advanced. It contains in particular full proofs of the main theorems of class
field theory using a ‘classical’ approach to class field theory, which is in a sense
a natural continuation of the basic theory in Part I. The advantage for students
is that no more prerequisites are needed. Each approach has its own advantages,
so for specialists in algebraic number theory it is advisable to have knowledge of
more than just one. For specialists of other areas of pure mathematics who want to
use it, the exposition as given here might very well suffice. The last two chapters
provide the connection to the more modern and more advanced idèlic version of
class field theory.

It is not the purpose of this book to present up to date information on the state
of the art. The section References is just what it says: it contains references made
in the text and is not an exposition of the vast literature on the subject.

Many students were so kind to report on typos. Merlijn Keune has read large parts
of the manuscript and I profited a lot of his dozens of comments. Undoubtedly,
several typos and errors remained undetected. Suggestions for improvements are
welcome: keune@math.ru.nl.

Nijmegen, February 2023 Frans Keune
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Introduction

Number theory is a part of mathematics and is as old as mathematics itself. Many
number problems come down to solving algebraic equations in integers. Their solu-
tions are algebraic numbers. This has led to the introduction of abstract algebraic
structures such as groups, rings, fields and modules. Abstract algebra dates from
the beginning of the nineteenth century and developed rapidly since then. As a
result the focus in number theory shifted from algebraic numbers to (algebraic)
number fields, finite extensions of the field of rational numbers. The study of
algebraic structures arising in number theory is known as algebraic number theory.

A deep and highly developed part of algebraic number theory is class field theory, a
theory of the abelian extensions of number fields. Its origin lies in the various reci-
procity laws discovered in the nineteenth century, the oldest being the well-known
quadratic reciprocity law of Gauß, which is strongly related to quadratic number
fields, quadratic extensions of the rationals. For the field of rational numbers as
the base field the theorem of Kronecker and Weber is fundamental: every abelian
number field is a subfield of a cyclotomic field. For an arbitrary number field as
base field the situation is much more complicated. How to generalize already is
a problem, proving the generalization is an even bigger problem. All of this was
realized by Takagi and Artin in the first half of the twentieth century. Later, new
insights have led to new and powerful approaches, especially via group cohomology.

For the transfer of mathematical knowledge to students choices have to be made
for the level of abstraction, especially in case of a subject with a long history.
Unlike other sciences, mathematics is cumulative: what has been shown to be
true remains true forever. Luckily however, the organization of mathematics does
change. New insights lead to new concepts and more efficient, more elegant proofs.
For a student this means that there is no need to digest the complete history of a
theory. On the other hand, to master a highly developed theory, it is advisable for
reasons of motivation to have it somehow based on its origins. At the same time
one can profit from knowledge of modern concepts as they are nowadays standard
in the mathematics curriculum of a university. This is the main idea behind the
organization of this textbook.

In developing a course choices have to be made at which stage to introduce new
concepts. For algebraic number theory this applies especially to notions of localiza-
tion, Dedekind domain, discriminant, different, completion, zeta function, group

xi



Introduction

cohomology and idèle. In this book a new concept is introduced at the moment it
makes a real difference to have it available. Further features are:

� In chapter 2 is chosen for a definition of a Dedekind domain which is directly
related to the unique factorization property of nonzero ideals.

� Quadratic number fields get special attention. In chapter 4 algorithms are
given for their ideal class groups as well as for the fundamental unit in the
real quadratic case. Based on these algorithms the formula for the 2-rank
of the ideal class group is derived. This computation is quite technical. A
second proof is in the exercises of chapter 12. Using class field theory the
formula is easily derived: a third proof is in chapter 15, showing the power
of class field theory.

� Localization of Dedekind domains is defined in chapter 6 using discrete val-
uations of the field of fractions. It is used in the next chapter when studying
the relative case of an extension of number fields: decomposition, inertia and
ramification groups, Frobenius automorphisms. This all will be used for the
theory of abelian number fields in chapter 9. For later use the theory is given
in a more general algebraic setting: extensions of Dedekind domains, not just
of rings of integers of number fields.

� Analytic methods are introduced in chapter 8, especially the theory of zeta
and L-functions. They are used for class number formulas for abelian number
fields in chapter 9. Analytic methods are used in later chapters on class field
theory as well.

� Chapter 9 is devoted to abelian number fields. It contains a proof of the
Kronecker-Weber Theorem: every abelian field is contained in a cyclotomic
field. The proof uses ramification groups and discriminants. In chapter 15
this theorem will be just an easy example in class field theory. Chapter 9
contains the classification of abelian number fields by finite groups of Dirichlet
characters. Class number formulas for abelian number fields are derived using
Gauß sums of Dirichlet characters.

� The chapters 10, 11 and 12 prepare for class field theory. In chapter 10 the
completion of valued fields is treated in a general setting and in chapter 11
local fields are studied. Chapter 12 is about the Galois cohomology for cyclic
groups. It contains computations needed in the proofs of the main theorems
of class field theory in later chapters. Only a small self-contained part of
group cohomology is needed for the proofs of the main theorems of class field
theory.

� Global class field theory is treated in the chapters 13, 14 and 15. Dirichlet
characters of number fields are defined as characters on the monoid of nonzero
ideals of the ring of integers. By focussing on primitive Dirichlet characters, it

xii



is often possible to suppress the choice of a modulus of the field. It generalizes
the use of Dirichlet characters of the field Q in chapter 9.

� Local class field theory is derived as a consequence of global class field theory.
Local fields are introduced in chapter 11, the local Artin map in chapter 15.
Local class field theory is treated in chapter 16, where it is applied to Hilbert
symbols. It is shown how classical reciprocity theorems follow from global
class field theory via Hilbert’s Reciprocity Theorem.

� In chapter 17 the behavior of ramification under restriction to a subextension
is treated. The close connection between ramification groups and local Artin
maps is described. It uses the different of an extension, which is defined for
this purpose in this chapter. The Conductor-Discriminant Formula for an
abelian extension is proved. It expresses the discriminant as the product of
the conductors of the associated Dirichlet characters.

� The Brauer-Kuroda formula is a relation between the Dedekind zeta functions
of the intermediate fields of a Galois extension of number fields. The formula
is derived in chapter 18 by direct computation using the Euler products
expressing the Dedekind zeta functions. It is based on a study of the relations
between the norms of subgroups in the group ring of a finite group. Though
Artin L-functions of Galois extensions of number fields are introduced, here
they are not used in the proof of the Brauer-Kuroda formula.

� In the last chapter, chapter 20, the idèlic Global Classification Theorem is
derived from the ideal-theoretic version in chapter 15. It is used to clarify the
connection between global and local reciprocity. The main tools used in the
theory based on idèles are treated in chapter 19: some topological algebra
and in particular profinite groups. Moreover, in this chapter results on finite
number field extensions are extended to infinite algebraic extensions.

Examples of excellent textbooks on algebraic number theory are Number Fields [28]
by D.A. Marcus and Algebraic number theory [12] by A. Fröhlich and M.J. Taylor.
In [28] localization and completion are avoided, whereas in [12] these concepts form
a fundamental part of the theory. Both [28] and [12] contain a treatment of zeta
functions and L-functions. The last chapters of these books contain an introduction
to respectively class field theory (in [28]) and an exposition of Artin L-functions (in
[12]). Algebraic Theory of Numbers [33], a translation from the French [32], by P.
Samuel is a well written concise introductionary text on algebraic number theory
and includes the necessary Galois theory. Another good textbook is Number Theory
[3] by Z.I. Borevich and I.R. Shafarevich, translated from the originally Russian
text. It contains a lot of interesting information on the subject.

There are various approaches to global class field theory, the theory of abelian
extensions of a number field. The modern way is by using idèles. This concept
was introduced by Chevalley and is especially useful for the passage from local to
global class field theory. The ‘classical’ approach of Tagaki and Artin is through
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rings of integers in number fields and their ideals. It is classical in the sense that
it came first. This is the approach taken for the textbook Algebraic Number Fields
by Janusz [20] as well as for this book. Essentially, the route to class field theory
taken in this book is also followed in the Parts One and Two of Lang’s Algebraic
Number Theory [25]. However, Lang’s exposition is quite different: new concepts
are introduced far earlier, the style is more compact, less self-contained and it does
not contain exercises other than leaving proofs to the reader as an exercise. Lang’s
book goes deeper into the subject: it has a Part Three on analytic methods. In
[20] the modern approach to class field theory is not explained. Textbooks on class
field theory usually start with a short overview of some standard algebraic number
theory. Neukirch’s Algebraic Number Theory [31] is organized this way. It gives
an excellent axiomatic treatment of class field theory and in the last chapters the
classical version of class field theory is deduced from the idèle-theoretic version.
For a clear introduction in the subject read A Brief Guide to Algebraic Number
Theory [36] by H.P.F. Swinnerton-Dyer.

Idèles are useful for theoretical purposes, for computation in concrete cases it is
usually more convenient to use the classical notions. Moreover, knowledge of the
classical approach is helpful for obtaining a better understanding of modern de-
velopments. This was also Hasse’s idea behind the publication [17] in 1967 of his
1932/33 lecture notes on class field theory.

Books suitable for further reading which go much deeper into the subject than this
textbook:

Algebraic Number Theory [31] by Neukirch, already mentioned above.

Algebraic Number Theory [7] by Cassels and Fröhlich (eds.), proceedings of an
instructional conference in 1965 in Brighton. It contains many expositions of new
developments in algebraic number theory. Contributions by Serre and Tate, among
others.

Introduction to Cyclotomic Fields [37] by Washington, the book for the theory of
abelian number fields.

Class Field Theory [14] by Gras. No proofs of the main theorems of class field
theory, but a lot on the consequences of these theorems.

Introduction to Modern Number Theory [27] by Manin and Panchishkin. From
the preface: ‘We present many precise definitions, but practically no complete
proofs.’ It is their interpretation of the word ‘introduction’. It is good for getting
an impression of the state of the art.

This book focusses on the abstract theory and not on the algorithmic aspects and
applications in cryptography. For algorithms consult A Course in Computational
Algebraic Number Theory [8] by Cohen. The reader is advised to use the free open-
source mathematics software system SageMath, https://www.sagemath.org, in
which implementations of many algorithms in number theory are available.

xiv
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1 Integers in a Number Field

Finite extensions of the field Q are called number fields and in each number field
there is a subring, the ring of integers of the number field. The idea is to do
arithmetic in a number field analogously to what we are used to in case of Q and its
subring Z. In this chapter number fields and their rings of integers are considered in
general, especially the additive group of the ring of integers is studied and ways to
compute this subgroup of the additive group of the number field are given. Ideally,
the ring of integers is a principal ideal domain, but it turns out that this is not the
case in general. However, rings of integers are Dedekind domains, rings in which
there is not necessarily a unique factorization of elements, but instead a unique
factorization of ideals. Dedekind domains are treated in general in chapter 2 and
in chapter 3 it is shown that rings of integers of number fields are indeed Dedekind
domains. Euclidean domains, integral domains with a norm that makes division
with remainder possible, are principal ideal domains. In the last section of this
chapter examples of quadratic number fields are given for which the ring of integers
is a euclidean domain.

1.1 Number fields

1.1 Definition. A field K of characteristic 0 of finite degree over its prime field Q
is called a number field. If [K : Q] = n, the number field is said to be of degree n.

Since C is algebraically closed, such fields are embeddable in C. In fact, number
fields are often given as subfields of C. Note that embedding in C may result
into different subfields: e.g. the field Q[X]/(X3 − 2) is isomorphic to two different
subfields of C.

The field Q is the only number field of degree 1. There are infinitely many number
fields of degree 2. They are parameterized by the squarefree integers m ̸= 1: such
an m corresponds to the field Q(

√
m). (This is exercise 1 of this chapter.)

1.2 Definition. A number field of degree 2 is called a quadratic number field. If it
is embeddable in R, it is called a real quadratic number field, otherwise it is called
an imaginary quadratic number field.
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1 Integers in a Number Field

So the real quadratic number fields are the fields Q(
√
m) with m squarefree > 1

and the imaginary ones those with m squarefree < 0. Note that a real quadratic
number field has two embeddings in R. An imaginary quadratic number field has
two embeddings in C and no embeddings in R. In the last case we rather speak
of a pair of embeddings since the embeddings are closely related: they interchange
under composition by complex conjugation.

The field Q is a subfield of R and the ring Z is a lattice in both in the sense of the
following definition.

1.3 Definition. Let V be an n-dimensional Q-vector space. A subgroup A of the
additive group of V is called a lattice in V if there is a basis (v1, . . . , vn) of V such
that A = Zv1 + · · ·+Zvn. Similarly for R-vector spaces. A subring R of a number
field K is called a number ring of K if R is also a lattice in the Q-vector space K.

Note that lattices in n-dimensional Q- or R-vector spaces are free abelian groups
of rank n. Conversely, a free abelian group A of rank n can be embedded in an
n-dimensional Q-vector space by extension of scalars: A→ Q⊗Z A, a 7→ 1⊗ a. In
the same manner A can be embedded as a lattice in a real vector space.

1.4 Examples.

a) The ring Z is a number ring of Q; it is the only one.

b) The ring Z[i] is a number ring of the imaginary quadratic number field Q(i).
We will see that it is maximal in the sense that all number rings of Q(i) are
contained in Z[i]. A simple example is Z[2i] (= Z+ Z2i), which is contained
in Z[i] with index 2.

c) The ring Z[ζ3] is a number ring of the imaginary quadratic number field
Q(
√
−3).

d) Let γ = 1+
√
5

2 , the ‘golden ratio’. The ring Z[γ] is a number ring of the real

quadratic field Q(
√
5).

Clearly, a number ring R of a number field K is an integral domain and its field
of fractions is the field K. We can embed a number field K of degree n into the
commutative R-algebra R⊗Q K of R-dimension n by extension of scalars:

ι′ : K → R⊗Q K, α 7→ 1⊗ α.

Under this embedding a Q-basis (α1, . . . , αn) of K is mapped to the R-basis
(1⊗ α1, . . . , 1⊗ αn) of R ⊗Q K. In particular, a number ring of K maps onto
a lattice in the real vector space R⊗Q K.

For the determination of the structure of the real algebra R⊗Q K we consider the
n embeddings of K in C. Let r be the number of embeddings in R (called real
embeddings); possibly r = 0. Then there are s = n−r

2 pairs of nonreal embeddings

4



1.1 Number fields

in C (called complex embeddings). Let σ1, . . . , σr : K → R be the real embed-
dings and τ1, τ1, . . . , τs, τs the complex embeddings. Then we have the following
embedding in the R-algebra Rr × Cs:

ι : K → Rr × Cs, α 7→ (σ1(α), . . . , σr(α), τ1(α), . . . , τs(α)).

This embedding ι we will frequently use. It depends on some choices: the or-
der of the embeddings and the choice of a complex embedding for each pair of
complex embeddings. It agrees with the embedding ι′ given earlier in the fol-
lowing sense: the R-algebra homomorphism φ : R ⊗Q K → Rr × Cs, given by
λ⊗ α 7→ (λσ1(α), . . . , λτs(α)), makes the following triangle commutative

K

R⊗Q K

Rr × Cs

ι′

ι

φ

and is actually an isomorphism: take a primitive element ϑ of the field extension
K : Q, that is K = Q(ϑ) and let f ∈ Q[X] be its minimal polynomial over Q.
Then σ1(ϑ), . . . , σr(ϑ) are the r real zeros of f and τ1(ϑ), τ1(ϑ), . . . , τs(ϑ), τs(ϑ)
the s pairs of complex zeros of f . Then over R the factorization of f is

f = f1 · · · frg1 · · · gs,

where fi = X − σi(ϑ) for i = 1, . . . , r and gj = X2− (τj(ϑ)+ τj(ϑ))X + τj(ϑ)τj(ϑ)
for j = 1, . . . , s. The map φ is the composition of the following isomorphisms of
R-algebras:

R⊗Q K
∼→ R⊗Q Q[X]/(f)

∼→ R[X]/(f)
∼→ R[X]/(f1)× · · · × R[X]/(fr)× R[X]/(g1)× · · · × R[X]/(gs)
∼→ Rr × Cs,

where for the third isomorphism the Chinese Remainder Theorem is applied and
the isomorphisms R[X]/(fi) → R and R[X]/(gj) → C are induced by X 7→ σi(ϑ)
and X 7→ τj(ϑ) respectively.

1.5 Examples.

a) An imaginary quadratic number field has one pair of complex embeddings.
The number rings Z[i] and Z[ζ3] are lattices in the R-vector space C.

b) A real quadratic number field has two real embeddings. For instance the
two embeddings of Q(

√
5) in R map

√
5 to

√
5 and −

√
5 respectively. The

number ring Z[γ] maps onto a lattice in R2.
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1 Integers in a Number Field

1

i

1

√
−3

ζ3

Figure 1.1: The lattices Z[i] and Z[ζ3] in C

1

√
5

γ

Figure 1.2: The lattice ι(Z[γ]) in R2

1.2 Algebraic integers

In this section the notion of integer in a number field is defined and it is shown that
the integers in a number field form a subring, the ring of integers of the number
field. For later use it is advantageous to introduce integrality in a somewhat more
abstract setting.

1.6 Definitions and notation. Let K be a field and R a subring of K. An α ∈ K
is called integral over R if there exists a monic polynomial f ∈ R[X] such that
f(α) = 0. The set of all α in K which are integral over R is called the integral
closure of R in K. An integral domain is called integrally closed if it coincides with
the integral closure of the domain in its field of fractions. An α ∈ C is called an
algebraic integer (or just an integer) if α is integral over Z. The subset of C of all
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1.2 Algebraic integers

algebraic integers is denoted by O. It is the integral closure of Z in C.

Integral closures are defined as subsets. It still has to be shown that they are in
fact subrings. To start with let’s compute the integers in Q and the integers in a
quadratic number field.

1.7 Proposition. Let α be an algebraic number and f ∈ Q[X] its minimal polyno-
mial over Q. Then

α is an algebraic integer ⇐⇒ f ∈ Z[X].

Proof. Clearly, it suffices to show that f ∈ Z[X] if α is an integer. Let α be
a zero of a monic g ∈ Z[X]. Then f | g in Q[X] and so by the Gauß Lemma
f ∈ Z[X].

In the proof we used:

Gauß Lemma. Let f ∈ Z[X] and f = gh, where g, h ∈ Q[X], then there exists an
r ∈ Q∗ such that rg, 1

r
h ∈ Z[X].

So if f is monic, then rg and 1
r
h are monic as well.

1.8 Corollary. O ∩Q = Z.

So the only integers in Q are the ordinary integers. Because of this, sometimes they
are called rational integers for being more specific.

1.9 Theorem (Integers of a quadratic number field). Let m ∈ Z be squarefree
and ̸= 1. The integers in Q(

√
m) are the numbers

a+ b
√
m with a, b ∈ Z

if m ≡ 2, 3 (mod 4) and in case m ≡ 1 (mod 4) the integers are the numbers

a+ b
√
m

2
with a, b ∈ Z and a ≡ b (mod 2).

Proof. Let α = r+ s
√
m with r ∈ Q and s ∈ Q∗. Then the minimal polynomial

of α over Q is X2 − 2rX + (r2 −ms2). By Proposition 1.7 we have

α is integral ⇐⇒ 2r ∈ Z and r2 −ms2 ∈ Z,

which in fact also holds when s = 0. If α is integral, then r = a
2 with a ∈ Z. Then

a2− 4ms2 ∈ 4Z and so 4ms2 ∈ Z. Since m is squarefree, it follows that s = b
2 with

b ∈ Z. Hence α = a+b
√
m

2 with a, b ∈ Z. Numbers a+b
√
m

2 with a, b ∈ Z are integral
exactly when 4 | a2−mb2. For m ≡ 2, 3 (mod 4) this is equivalent to a and b being
both even. For m ≡ 1 (mod 4) we have a2 −mb2 ≡ (a− b)(a+ b) (mod 4), and the
condition becomes a ≡ b (mod 2).
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1 Integers in a Number Field

1.10 Notation. For squarefree integers m ̸= 1 put

ωm =

{√
m if m ≡ 2, 3 (mod 4),

1
2 + 1

2

√
m if m ≡ 1 (mod 4).

1.11 Corollary. In the notation of Theorem 1.9: the integers in Q(
√
m) form the

subring Z[ωm].

The rings Z[i], Z[ζ3] and Z[γ] of Example 1.4 are the special cases m = −1, m = −3
and m = 5 respectively.

There are alternatives for the definition of integrality. They can be helpful when
establishing integrality in certain cases.

1.12 Proposition. Let R be a subring of a field K. For α ∈ K the following are
equivalent:

a) α is integral over R,

b) the subring R[α] is finitely generated as an R-module,

c) there exists a subring A of K which is finitely generated as R-module such
that α ∈ A,

d) there exists a finitely generated R-submodule B ̸= 0 of K such that αB ⊆ B.

Proof.

a)⇒b): If α is a zero of a monic f ∈ R[X] of degree n, then the subring R[α] of K is
generated by 1, α, . . . , αn−1 as an R-module.

b)⇒c): Take A = R[α].

c)⇒d): Take B = A.

d)⇒a): Suppose β1, . . . , βn generate B as an R-module. Then, since αβi ∈ B, we
have αβi = ri1β1 + · · ·+ rinβn with ri1, . . . , rin ∈ R, or in matrix notation

α

β1...
βn

 =M

β1...
βn

 with M = (rij).

This means that α is an eigenvalue of the matrix M . Therefore, it is a zero
of the characteristic polynomial of M , which is a monic polynomial over R
since all rij ∈ R.

1.13 Corollary. Let R be a subring of a field K. Then the integral closure R′ of R
in K is an integrally closed subring of K. In particular O is an integrally closed
subring of C and for a number field K the integers in K form an integrally closed
subring of K.
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1.3 Norm, trace and characteristic polynomial

Proof. Clearly 1,−1 ∈ R′, so for showing that R′ is a subring of K it suffices
to prove that R′ is closed under addition and multiplication. Suppose α, β ∈ R′,
say f(α) = 0 and g(β) = 0 with f, g ∈ R[X] monic of degree m and n respectively.
Then the subring R[α, β] of K is an R-submodule generated by the mn elements
αiβj with i = 0, . . . ,m − 1 and j = 0, . . . , n − 1. Since α + β, αβ ∈ R[α, β] it
follows from Proposition 1.12 that α+β, αβ ∈ R′. The field K contains the field of
fractions of R′; therefore, the ring R′ is integrally closed. The set O is the integral
closure of Z in C and for a number field K the subset O∩K is the integral closure
of Z in K.

1.14 Definition. The subring O ∩ K of a number field K is called the ring of
integers of K. It is denoted by OK .

Theorem 1.9 described the ring of integers in a quadratic number field K. It is a
number ring of K. In Section 1.6 we will see that this holds for the ring of integers
of any number field.

1.3 Norm, trace and characteristic polynomial

For finite field extensions we have the notions of norm and trace. General properties
of norms and traces are proved in this section.

1.15 Definitions and notations. Let L : K be a finite field extension, say
[L : K] = n. For each α ∈ L we have a K-linear transformation

Mα : L→ L, ξ 7→ αξ.

Let ∆Mα(X) ∈ K[X] be the characteristic polynomial of Mα, that is ∆Mα(X) =
det(X · 1−Mα), and let Tr(Mα) ∈ K be the trace of Mα. We define

a) the characteristic polynomial ∆L:K
α (X) of α over K:

∆L:K
α (X) = ∆Mα(X),

b) the trace TrLK(α) of α over K:

TrLK(α) = Tr(Mα),

c) the norm NLK(α) of α over K:

NLK(α) = det(Mα).

Thus TrLK and NLK are maps L→ K.

9



1 Integers in a Number Field

1.16 Example. Let m ∈ Z be squarefree ̸= 1. The characteristic polynomial of
α = r + s

√
m ∈ K = Q(

√
m), where r, s ∈ Q, is

∆K:Q
α (X) = X2 − TrKQ (α)X +NKQ (α) = X2 − 2rX + r2 − s2m.

This polynomial was used in the proof of Theorem 1.9 for the computation of the
ring OK .

Note that for [L : K] = n:

∆L:K
α (X) = Xn − TrLK(α)Xn−1 + · · ·+ (−1)nNL

K(α) ∈ K[X].

Clearly, in the quadratic case the characteristic polynomial is completely deter-
mined by the trace and the norm.

1.17 Proposition. Let L : K be a field extension of degree n. Then for all α, β ∈ L
and c ∈ K:

a) TrLK(α+ β) = TrLK(α) + TrLK(β),

b) TrLK(cα) = cTrLK(α),

c) TrLK(c) = nc,

d) NLK(αβ) = NLK(α)NLK(β),

e) NLK(c) = cn.

Proof. These rules follow directly from the following identities for linear trans-
formations: Mα+β =Mα +Mβ , Mcα = cMα, Mc = c · 1 and Mαβ =MαMβ .

So in particular we have a K-linear function TrLK : L→ K and a group homomor-
phism NL

K : L∗ → K∗.

The notions of trace and norm are defined for arbitrary finite field extensions. For
separable finite extensions we derive formulas for them in terms of the conjugates
of an element, i.e. in terms of the roots of its minimal polynomial.

1.18 Theorem. Let L : K be a finite separable field extension of degree n. Let
σ1, . . . , σn be the embeddings of L in a normal closure L of L : K fixing the elements
of K. Let α ∈ L, [K(α) : K] = d and f the minimal polynomial of α over K.
Then we have:

∆L:K
α (X) = f(X)n/d =

n∏
i=1

(X − σi(α)),

NLK(α) =

n∏
i=1

σi(α) and TrLK(α) =

n∑
i=1

σi(α).
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1.3 Norm, trace and characteristic polynomial

Proof. LetM ′
α be the restriction ofMα to K(α) and let f(X) = Xd+a1X

d−1+
· · · + ad be the minimal polynomial of α over K. The matrix of M ′

α with respect
to the basis 1, α, . . . , αd−1 is the companion matrix of f :

[M ′
α] =


0 0 . . . 0 −ad
1 0 . . . 0 −ad−1

0 1 . . . 0 −ad−2

...
...

. . .
...

...
0 0 . . . 1 −a1

 .

The polynomial f is the characteristic polynomial of its companion matrix:

det(X · 1−M ′
α) =

∣∣∣∣∣∣∣∣∣∣∣

X 0 . . . 0 ad
−1 X . . . 0 ad−1

0 −1 . . . 0 ad−2

...
...

. . .
...

...
0 0 . . . −1 X + a1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 X . . . Xd−2 Xd−1

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣

X 0 . . . 0 ad
−1 X . . . 0 ad−1

0 −1 . . . 0 ad−2

...
...

. . .
...

...
0 0 . . . −1 X + a1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0 f(X)
−1 X . . . 0 ad−1

0 −1 . . . 0 ad−2

...
...

. . .
...

...
0 0 . . . −1 X + a1

∣∣∣∣∣∣∣∣∣∣∣
= f(X).

Let β1, . . . , βn/d be a K(α)-basis of L. Then

(β1, αβ1 . . . , α
d−1β1, . . . , βn/d, αβn/d, . . . , α

d−1βn/d)

is a K-basis of L. The matrix of Mα with respect to this basis is in block form

[Mα] =


[M ′

α] 0 . . . 0
0 [M ′

α] . . . 0
...

...
. . .

...
0 0 . . . [M ′

α]


and so the characteristic polynomial of α ∈ L over K is

∆L:K
α (X) = ∆Mα(X) = (det(X · 1−M ′

α))
n/d = f(X)n/d =

n∏
i=1

(X − σi(α)).
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1 Integers in a Number Field

The coefficients of Xn−1 and X0 yield the expressions for the trace and the norm.

Note that we have (in the notations used above): NL
K(α) = (N

K(α)
K (α))n/d =

(−1)nan/d
d and TrLK(α) = n

d
Tr

K(α)
K (α) = −n

d
a1.

For a tower of field extensions the norm and the trace are transitive, that is they
satisfy the rules described in the following proposition. Here we prove this for
separable extensions only.

1.19 Proposition. Let K2 : K1 and K1 : K0 be finite separable field extensions.
Then for all α ∈ K2:

NK2

K0
(α) = NK1

K0
(NK2

K1
(α)) and TrK2

K0
(α) = TrK1

K0
(TrK2

K1
(α)).

Proof. Let L be the normal closure of K2 : K0. There are exactlym = [K1 : K0]
embeddings σ1, . . . σm of K1 in L fixing K0 elementwise and exactly n = [K2 : K1]
embeddings τ1, . . . , τn of K2 in L fixing K1 elementwise. Let σ1, . . . , σm, τ1, . . . , τn
be prolongations to automorphisms of L of the equally named embeddings. The
restrictions of the σiτj to K2 are just the mn embeddings of K2 in L fixing K0

elementwise. The formulas are by now easy consequences of Theorem 1.18.

1.4 The norm on a number field

LetK be a number field and α ∈ K with minimal polynomial f over Q. Since ∆K:Q
α

is a power of f we have that α ∈ OK if and only if ∆K:Q
α ∈ Z[X]. In particular, it

is clear that NKQ (α),TrKQ (α) ∈ Z if α ∈ OK . In section 1.6 we will show that OK
is a number ring in K using the Q-linear function TrKQ : K → Q. In this section

the homomorphism NKQ : K∗ → Q∗ is considered, especially in relation to O∗
K , the

group of units. In section 5.4 the Dirichlet Unit Theorem will be proved, a theorem
which fully describes the structure of this group.

We have embedded a number field K into the real algebra Rr × Cs, r being the
number of real embeddings of K and s the number of pairs of complex embed-
dings. The norm on K can be extended in a natural way to a multiplicative map
N: Rr × Cs → R.

1.20 Definition. The norm N on the R-algebra Rr × Cs is defined as follows

N: Rr × Cs → R, (x1, . . . , xr, z1, . . . , zs) 7→ x1 · · ·xrz1z1 · · · zszs.
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0 1

i

1
2
3
4
5
6
7
8

N: C→ R

(0, 0) (1, 0)

(0, 1)

0 0

1

2

3

4

−1
−2
−3
−4

1

2

3

4

−1
−2
−3
−4

N: R2 → R

Figure 1.3: The norm on C and on R2

The diagram

K Rr × Cs

Q R

ι

NKQ

⊆

N

clearly commutes: let σ1, . . . , σr be the real embeddings and let τ1, . . . , τs represent
the pairs of complex embeddings of K, then for all α ∈ K

Nι(α) = N(σ1(α), . . . , σr(α), τ1(α), . . . , τs(α))

= σ1(α) · · ·σr(α)τ1(α)τ1(α) · · · τs(α)τs(α) = NKQ (α).

1.21 Example. We have embedded imaginary and real quadratic number fields
in C and R2 respectively. Elements with a given norm in these R-algebras form
circles and hyperbolas respectively, see Figure 1.3.

Note that the restriction N: (R∗)r × (C∗)s → R∗ is a group homomorphism. For
the computation of units of a ring of integers the following is useful.

1.22 Proposition. Let K be a number field. Then for α ∈ OK we have

α ∈ O∗
K ⇐⇒ NKQ (α) = ±1.
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1

i

−1

−i

Z[i]∗

1

ζ6ζ3

−1

ζ−1
3 ζ−1

6

Z[ζ3]∗

−1

1

Z[
√
−2]∗

Figure 1.4: The units of Z[i], Z[ζ3] and Z[
√
−2]

Proof.

⇒: Since α, 1
α ∈ OK , we have NKQ (α),NKQ ( 1

α ) ∈ Z and NKQ (α)NKQ ( 1
α ) = 1.

⇐: The characteristic polynomial of α over Q is of the form Xg(X) ± 1, where
g(X) ∈ Z[X]. It follows that αg(α) = ±1.

1.23 Example. For K an imaginary quadratic number field we have O∗
K = {±1}

if K ̸= Q(i),Q(
√
−3), whereas Z[i]∗ = ⟨i⟩ and Z[ζ3] = ⟨ζ6⟩, see Figure 1.4.

1.24 Example. Let K be a real quadratic field, say K = Q(
√
m) with m ∈ Z,

m > 1 and squarefree. Suppose we have an ε ∈ O∗
K with ε > 1. Let σ be the

nontrivial automorphism of K. Then of the four units ε, −ε, σ(ε) and −σ(ε) the
unit ε is the greatest. Hence ε = a+ b

√
m with a, b > 0 and a, b ∈ Z · 12 (or a, b ∈ Z

if m ≡ 2, 3 (mod 4)). For such a unit ε the set of all c + d
√
m < ε with c, d > 0

and c, d ∈ Z · 12 is finite; therefore, in the interval (1, ε) there are only finitely many
units. It follows that, if there is a unit > 1, there also is a least one. If ε is the least
unit > 1 of OK , then O∗

K = ⟨−1, ε⟩. Later, in chapter 4 and again in chapter 5,
we will see that units ̸= ±1 do exist. The least one > 1 is called the fundamental
unit of the real quadratic field K. The number 1 +

√
2 is the fundamental unit of

Q(
√
2) and γ is the fundamental unit of Q(

√
5). See Figure 1.5.

1.5 The discriminant

For a finite field extension L : K the trace map TrLK : L→ K is a K-linear function
on L. It is used to define a K-bilinear form on L:

1.25 Lemma. Let L : K be a finite field extension. Then the map

L× L→ K, (α, β) 7→ TrLK(αβ)

is a symmetric K-bilinear form on L.

14



1.5 The discriminant
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Figure 1.5: The groups Z[
√
2]∗ and Z[γ]∗

A bilinear form on a finite dimensional vector space has a matrix with respect to a
basis of the vector space. In this case its determinant is called the discriminant:

1.26 Definition. Let L : K a field extension of degree n and let (α1, . . . , αn) be a
K-basis of L. The element

discK(α1, . . . , αn) = det(TrLK(αiαj))

of K is called the discriminant of the K-basis (α1, . . . , αn) of L. Usually it is clear
which field is the base field and then we often write disc instead of discK .

Discriminants of different bases differ by a factor which is a square:

1.27 Proposition. Let L : K be a field extension of degree n and let (α1, . . . , αn)
and (β1, . . . , βn) be K-bases of L. Then

disc(β1, . . . , βn) = det(T )2 disc(α1, . . . , αn),

where T is the transition matrix from (β1, . . . , βn) to (α1, . . . , αn).

Proof. This follows from

(TrLK(βiβj)) = T t(TrLK(αiαj))T.

If βi =
∑

j aijαj for i = 1, . . . , n, then T = (aji). It is called the transition matrix
from the β-basis to the α-basis since it satisfies T [x]β = [x]α, where [x]β ∈ Kn

stands for the column of β-coordinates of x ∈ L. Multiplication by T transforms
the β-coordinates to the α-coordinates.

For separable extensions there is another description of the discriminant:

15



1 Integers in a Number Field

1.28 Proposition. Let L : K be a separable field extension of degree n and let
σ1, . . . , σn be the n embeddings of L in a normal closure of L : K which leave the
elements of K fixed. Then for K-bases (α1, . . . , αn) of L we have

disc(α1, . . . , αn) = det(σi(αj))
2.

Proof. By Theorem 1.18 we have

(σj(αi))(σi(αj)) = (TrLK(αiαj))

and from this the proposition follows.

Powers of a primitive element of a finite field extension L : K form a K-basis of
L. The discriminant of such a basis is equal to the discriminant of the minimal
polynomial:

1.29 Proposition. Let K(ϑ) : K be a separable field extension of degree n and let
f be the minimal polynomial of ϑ over K. Then

disc(1, ϑ, ϑ2, . . . , ϑn−1) = disc(f) = (−1) 1
2n(n−1)N

K(ϑ)
K (f ′(ϑ)).

Proof. Let σ1, . . . , σn be the embeddings ofK(ϑ) in a normal closure ofK(ϑ) : K
which leave the elements of K fixed. (This normal closure is a splitting field of f
over K.) By Proposition 1.28 we have

disc(1, ϑ, ϑ2, . . . , ϑn−1) = det(σi(ϑ)
j−1)2

=
∏
i>j

(σi(ϑ)− σj(ϑ))2 (Vandermonde)

= (−1) 1
2n(n−1)

∏
i ̸=j

(σi(ϑ)− σj(ϑ)).

By definition disc(f) =
∏
i>j(σi(ϑ)− σj(ϑ))2. We also have

N
K(ϑ)
K (f ′(ϑ)) =

n∏
i=1

σi(f
′(ϑ)) =

n∏
i=1

f ′(σi(ϑ)) =
∏
i ̸=j

(σi(ϑ)− σj(ϑ)).

1.30 Corollary. Let L : K be a separable field extension of degree n and let
(α1, . . . , αn) be a K-basis of L. Then disc(α1, . . . , αn) ̸= 0.

Proof. Since the extension is separable, it has a primitive element ϑ. By
Proposition 1.29 we have disc(1, ϑ, . . . , ϑn−1) ̸= 0 and by Proposition 1.27 also
disc(α1, . . . , αn) ̸= 0.
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1.5 The discriminant

This corollary states that for a separable finite field extension L : K the K-bilinear
form (α, β) 7→ TrLK(αβ) is nondegenerate. This is equivalent to L→ Ldual, α 7→
TrLK(α−) being an isomorphism ofK-vector spaces, where the notation Ldual stands
for the dual vector space of theK-vector space L. In case of characteristic 0 we could
have proved the nondegeneracy also by showing directly that the map α 7→ TrLK(α−)
is injective: if α ̸= 0, then TrLK(α · 1

α
) = TrLK(1) = n ̸= 0.

1.31 Definition. Let L : K be a finite separable field extension of degree n. Then
the K-bilinear form L × L → K, (α, β) 7→ TrLK(αβ) is nondegenerate and so for
each K-basis (α1, . . . , αn) of L there exists a unique K-basis (β1, . . . , βn) of L such
that

TrLK(αiβj) =

{
1 if i = j,

0 if i ̸= j.

The basis (β1, . . . , βn) is called the dual basis of (α1, . . . , αn) (with respect to the
given bilinear form on L).

The discriminant of the dual of a basis is simply the inverse of the discriminant of
that basis:

1.32 Proposition. Let L : K be a finite separable field extension of degree n and
(β1, . . . , βn) the dual of a K-basis (α1, . . . , αn). Then

disc(β1, . . . , βn) = disc(α1, . . . , αn)
−1.

Proof. For α = x1β1 + · · · + xnβn ∈ L with x1, . . . , xn ∈ K we have for i =
1, . . . , n:

TrLK(ααi) = x1Tr
L
K(αiβ1)β1 + · · ·+ xnTr

L
K(αiβn) = xi.

So
α = TrLK(αα1)β1 + · · ·+TrLK(ααn)βn

and in particular for i = 1, . . . , n

αi = TrLK(αiα1)β1 + · · ·+TrLK(αiαn)βn.

So the matrix (TrLK(αjαi)) is the transition matrix from the α-basis to the β-basis.
Hence by Proposition 1.27

disc(α1, . . . , αn) = disc(α1, . . . , αn)
2 disc(β1, . . . , βn).

The following proposition is helpful when calculating discriminants.

1.33 Proposition. Let M : L and L : K be finite separable field extensions,
(α1, . . . , αn) a K-basis of L and (β1, . . . , βm) an L-basis of M . Then

discK(α1β1, . . . , αnβm) = discK(α1, . . . , αn)
m ·NLK(discL(β1, . . . , βm)).
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1 Integers in a Number Field

Proof. Let σ1, . . . , σn be the embeddings of L in a normal closure M of M : K
which leave the elements of K fixed and τ1, . . . , τm the embeddings of M in M
which leave the elements of L fixed. Extend the σi and τj to automorphisms in
Gal(M : K). Then the σiτj are the mn embeddings of M in M which leave the
elements of K fixed. Put B = (τi(βj))1≤i,j≤m and A = (σi(αj))1≤i,j≤n. Then
discL(β1, . . . , βm) = det(B)2 and discK(α1, . . . , αn) = det(A)2. The αiβj form a
K-basis of M and the discriminant of this basis is the square of the determinant
of 

σ1(B) 0 · · · 0
0 σ2(B) · · · 0
...

...
. . .

...
0 0 · · · σn(B)



σ1(α1)Im σ1(α2)Im · · · σ1(αn)Im
σ2(α1)Im σ2(α2)Im · · · σ2(αn)Im

...
...

. . .
...

σn(α1)Im σ1(α2)Im · · · σn(αn)Im

 .

The entries in these matrices are m×m-matrices.

1.6 The additive group of the ring of integers of a
number field

In this section the discriminant will be used to show that the ring of integers in a
number field is actually a lattice in the number field. This leads to the notion of
discriminant of a number field.

1.34 Lemma. Let R be an integral domain with field of fractions K and let K ′ : K
be a finite field extension. Then K ′ has a K-basis consisting of elements which are
integral over R.

Proof. Let α ∈ K ′∗ and let f(X) = Xd + a1X
d−1 + · · · + ad be the minimal

polynomial of α over K. Let r ∈ R be a common multiple of the denominators of
a1, . . . , ad, that is rai ∈ R for i = 1, . . . , d. Then

rdf(X) = (rX)d + ra1(rX)d−1 + · · ·+ rd−1ad−1rX + rdad.

The element rα is integral over R since it is a zero of

Xd + ra1X
d−1 + · · ·+ rd−1ad−1X + rdad ∈ R[X].

So given a K-basis (α1, . . . , αn) of K ′, choose r1, . . . , rn ∈ R such that riαi is
integral over R. Then (r1α1, . . . , rnαn) is a K-basis of K ′ as well and its elements
are integral over R.

1.35 Corollary. Let K be a number field of degree n. Then K has a Q-basis
(α1, . . . , αn) such that α1, . . . , αn ∈ OK .
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1.6 The additive group of the ring of integers of a number field

1.36 Proposition. Let R be an integrally closed domain with field of fractions K,
K ′ : K a finite separable field extension of degree n, R′ the integral closure of R in
K ′ and (α1, . . . , αn) a K-basis of K ′ such that α1, . . . , αn ∈ R′. Let (β1, . . . , βn)
be the dual basis of (α1, . . . , αn) with respect to the nondegenerate K-bilinear form

(α, β) 7→ TrK
′

K (αβ). Then

Rα1 + · · ·+Rαn ⊆ R′ ⊆ Rβ1 + · · ·+Rβn ⊆ 1
d (Rα1 + · · ·+Rαn),

where d = disc(α1, . . . , αn).

Proof. Let α ∈ R′. Then α = TrK
′

K (α1α)β1 + · · · + TrK
′

K (αnα)βn. Since R is

integrally closed, αiα ∈ R′ and TrK
′

K (αiα) ∈ K, it follows that TrK
′

K (αiα) ∈ R and
so α ∈ Rβ1 + · · ·+Rβn.

For M = (TrK
′

K (αiαj)) we haveα1

...
αn

 =M

β1...
βn


Multiplication by the adjoint of M yields

adj(M)

α1

...
αn

 = det(M)

β1...
βn

 .

Since adj(M) has entries in R and det(M) = disc(α1, . . . , αn) = d, we have
βi ∈ 1

d (Rα1 + · · ·+Rαn) for i = 1, . . . , n.

In general the ring R′ in the above proposition is not a free R-module of rank n.
But if R is a principal ideal domain, it is. For this we need the following lemma.

1.37 Lemma. Let R be a principal ideal domain, A a free R-module of rank n and
B an R-submodule of A. Then B is a free R-module of rank ≤ n.

Proof. We will use induction on n. For n = 0 it is trivially true and for n = 1
it is a reformulation of R being a principal ideal domain. Let n > 1 and a1, . . . , an
be an R-basis of A. Consider the projection

π : A→ R, r1a1 + · · ·+ rnan 7→ rn.

We have a short exact sequence of R-modules

0→ Ker(π) ∩B → B → π(B)→ 0

with π(B) free of rank ≤ 1 (case n = 1) and Ker(π) ∩B an R-submodule of a free
R-module of rank n− 1. The sequence splits and from this the lemma follows.
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1 Integers in a Number Field

1.38 Corollary. (Notation of Proposition 1.36). If R is a principal ideal domain,
then there exists a K-basis (α1, . . . , αn) of K

′ such that R′ = Rα1 + · · ·+Rαn.

Proof. If R is a principal ideal domain, an R-submodule of a free R-module of
rank n is a free R-module of rank ≤ n. Because the ring R′ is sandwiched between
free R-modules of rank n, it is itself a free R-module of rank n.

For the case R = Z we have in particular:

1.39 Corollary. Let K be a number field. Then the ring OK is a number ring of
K.

1.40 Lemma. Let A be a free abelian group of rank n and B a subgroup of A of
the same rank, (α1, . . . , αn) a basis of A and (β1, . . . , βn) a basis of B. Then for
the index of B in A we have

(A : B) = |det(T )|,

where T is the transition matrix from (β1, . . . , βn) to (α1, . . . , αn).

Proof. The matrix T has entries in Z and det(T ) ̸= 0. Since Z is a Euclidean
domain, the matrix T can be transformed by elementary operations to a diagonal
matrix without changing the determinant. So we can assume that T is a diagonal
matrix and for such a matrix the lemma clearly holds.

1.41 Proposition. Let (α1, . . . , αn) and (β1, . . . , βn) be Q-bases of a number field
K. Let the lattices Λ and Γ in K, generated by these Q-bases respectively, satisfy
Γ ⊆ Λ. Then

disc(β1, . . . , βn) = (Λ : Γ)2 · disc(α1, . . . , αn).

Proof. This follows from Proposition 1.27 and Lemma 1.40.

1.42 Definition. Let K be a number field. A Q-basis (α1, . . . , αn) of K which
satisfies Zα1 + · · ·+ Zαn = OK is called an integral basis of K. The discriminant
of K is defined as the discriminant of an integral basis of K. By Proposition 1.41
it is independent of the choice of the integral basis. Notation: disc(K). Note that
disc(K) ∈ Q ∩ O = Z.

Note that an integral basis of a number field K is not just a basis consisting of
integers of K, but is a Z-basis of OK .

Specializing the Q-basis (α1, . . . , αn) of Proposition 1.41 to the case of an integral
basis yields:

1.43 Theorem. Let (β1, . . . , βn) be a Q-basis of a number field K with β1, . . . , βn ∈
OK and let Γ be the lattice generated by this basis. Then

disc(β1, . . . , βn) = (OK : Γ)2 · disc(K).

20



1.6 The additive group of the ring of integers of a number field

In particular, if K = Q(ϑ) with ϑ ∈ OK , then

disc(f) = (OK : Z[ϑ])2 · disc(K),

where f is the minimal polynomial of ϑ over Q.

1.44 Example. Theorem 1.9 describes integral bases for quadratic number fields.
Let m be a squarefree integer ̸= 1. For m ≡ 2, 3 (mod 4) we have disc(Q(

√
m)) =

4m, whereas disc(Q(
√
m)) = m for m ≡ 1 (mod 4).

The discriminant of a number field is an integer. The following two propositions
give further restrictions.

1.45 Proposition (Stickelberger). Let K be a number field. Then disc(K) ≡
0 (mod 4) or disc(K) ≡ 1 (mod 4).

Proof. Let K be of degree n and let σ1, . . . , σn be the embeddings of K in
the normal closure L of K : Q. Let (α1, . . . , αn) be an integral basis of K. By
Proposition 1.28 the discriminant of K is the square of det(σi(αj)). We have

det(σi(αj)) =
∑
π

sgn(π)

n∏
i=1

σπ(i)(αi) =
∑
π

n∏
i=1

σπ(i)(αi)− 2
∑
π odd

n∏
i=1

σπ(i)(αi),

where the sums
∑
π are over all permutations π of {1, . . . , n}. Put

P =
∑
π

n∏
i=1

σπ(i)(αi) and Q =
∑
π odd

n∏
i=1

σπ(i)(αi).

If σ ∈ Gal(L : Q), then σi 7→ σσi permutes the embeddings σ1, . . . , σn and so
σ(P ) = P . By the Main Theorem of Galois Theory it follows that P ∈ Q. Since
P is integral we have P ∈ Z. Moreover,

disc(K) = (P − 2Q)2 = P 2 + 4(Q2 − PQ).

This implies that Q2−PQ ∈ Q and even Q2−PQ ∈ Z, since Q2−PQ ∈ O. Hence
disc(K) ≡ P 2 (mod 4).

1.46 Proposition. Let K be a number field and let s be the number of pairs of
complex embeddings of K. Then sgn(disc(K)) = (−1)s.

Proof. In the notation used in the proof of the previous proposition: if σ is com-
plex conjugation, then the permutation σi 7→ σσi of the embeddings is a product of
s disjoint transpositions. Therefore, det(σσi(αj)) = (−1)s det(σi(αj)). If s is even,
then det(σi(αj)) is real, and if s is odd, then det(σi(αj)) is purely imaginary.

For a given number field K it is usually not difficult to find a Q-basis consisting of
integers. By Theorem 1.43 the problem of finding an integral basis is then reduced
to checking integrality of a finite number of elements of K:
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1 Integers in a Number Field

1.47 Lemma. Let K be a number field of degree n and let (α1, . . . , αn) be a Q-basis
of K consisting of integers. If m ∈ N∗ and k1, . . . , kn ∈ Z satisfy

k1α1 + · · ·+ knαn
m

∈ OK and gcd(m, k1, . . . , kn) = 1,

then m2 | disc(α1, . . . , αn).

Proof. If ki ̸= 0, then

disc(α1, . . . , αi−1,
k1α1 + · · ·+ knαn

m
,αi+1, . . . , αn)

=
1

m2
disc(α1, . . . , αi−1, kiαi, αi+1, . . . , αn) =

k2i
m2

disc(α1, . . . , αn).

Hence m2 | k2i disc(α1, . . . , αn) for i = 1, . . . ,m. Since gcd(m, k1, . . . , kn) = 1 it
follows that m2 | disc(α1, . . . , αn).

The cyclotomic fields Q(ζm) form an important class of number fields. The field
Q(ζm) is of degree φ(m), the Euler totient ofm. The minimal polynomial of ζm over
Q is the cyclotomic polynomial Φm(X), the polynomial with the φ(m) primitive
m-th roots of unity as zeros. We will show that Z[ζm] is the ring of integers of
Q(ζm).

1.48 Lemma. Let m ∈ N∗. For the Q-basis (1, ζm, ζ
2
m, . . . , ζ

φ(m)−1
m ) of Q(ζm) we

have
disc(1, ζm, ζ

2
m, . . . , ζ

φ(m)−1
m ) | mφ(m).

Proof. We have Xm−1 = Φm(X) ·h(X) with h(X) ∈ Z[X] a monic polynomial.
Take the derivative:

mXm−1 = Φm(X) · h′(X) + Φ′
m(X) · h(X).

Evaluate at ζm:
mζm−1

m = Φ′
m(ζm)h(ζm)

and so
ζmh(ζm) · Φ′

m(ζm) = m.

Take norms:
N

Q(ζm)
Q (h(ζm)) ·NQ(ζm)

Q (Φ′
m(ζm)) = mφ(m).

From h(X) ∈ Z[X] it follows that h(ζm) is an integer of Q(ζm) and so

N
Q(ζm)
Q (h(ζm)) ∈ Z.

Now the lemma follows from Proposition 1.29.

First we consider cyclotomic fields Q(ζm) where m is a prime power.
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1.6 The additive group of the ring of integers of a number field

1.49 Proposition. Let p be a prime number and r ∈ N∗. Then Z[ζpr ] is the ring
of integers of the cyclotomic field Q(ζpr ).

Proof. Write ζpr = ζ and φ(pr) = n. By Lemma 1.48 p is the only prime
divisor of disc(1, ζ, . . . , ζn−1). Since Z[ζ] = Z[1 − ζ], we have by Proposition 1.41
disc(1, ζ, . . . , ζn−1) = disc(1, 1− ζ, . . . , (1− ζ)n−1). By Lemma 1.47 it suffices to
show that there are no a0, . . . , an−1 ∈ Z such that gcd(p, a0, . . . , an−1) = 1 and

a0 + a1(1− ζ) + · · ·+ an−1(1− ζ)n−1

p
∈ O.

Suppose such a0, . . . , an−1 do exist. Let i be the least index for which p ∤ ai. Then
the element

α =
ai(1− ζ)i + · · ·+ an−1(1− ζ)n−1

p

is integral. Since Φpr (1) = p we have∏
0≤k<pr
p∤k

(1− ζk) = p,

from which it follows that p
(1−ζ)i+1 is integral:

p

(1− ζ)i+1
= (1− ζ)n−i−1 p

(1− ζ)n
= (1− ζ)n−i−1

∏
0≤k<pr
p∤k

1− ζk

1− ζ
.

Multiply α by this element:

p

(1− ζ)i+1
α =

ai
1− ζ

+ (element of Z[ζ]).

It follows that ai
1−ζ is integral. Therefore,

N
Q(ζ)
Q

( ai
1− ζ

)
=
ani
p
∈ Z,

which contradicts p ∤ ai.

For the general case we will use the following theorem.

1.50 Theorem. Let K1 and K2 be number fields, K1 of degree n1 and K2 of degree
n2. Let d1 = disc(K1), d2 = disc(K2) and d = gcd(d1, d2). If, moreover, K1K2 is
of degree n1n2, then

d · OK1K2
⊆ OK1

OK2
.
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1 Integers in a Number Field

Proof. Let (α1, . . . , αn1
) be an integral basis of K1. Then the condition on

K1K2 implies that (α1, . . . , αn1
) is also a K2-basis of K1K2 consisting of integral

elements. We have OK2α1+· · ·+OK2αn1 ⊆ OK1K2 . Let λ1, . . . , λn1 be the Q-basis
of K1 satisfying TrK1

Q (αiλj) = δij . There are n1 embeddings of K1K2 in C leaving
elements of K2 fixed. Their restrictions to K1 are just the n1 embeddings of K1 in
C. So we have

TrK1K2

K2
(αiλj) = σ1(αiλj) + · · ·+ σn1(αiλj) = TrK1

Q (αiλj) = δij .

By Proposition 1.36 we have

OK1
OK2

= OK2
α1 + · · ·+OK2

αn1
⊆ OK1K2

⊆ 1
d1
(OK2

α1 + · · ·+OK2
αn1

)

= 1
d1
OK1
OK2

.

So d1 ·OK1K2
⊆ OK1

OK2
and similarly d2 ·OK1K2

⊆ OK1
OK2

. Since gcd(d1, d2) =
d, there are a1, a2 ∈ Z such that d = a1d1 + a2d2 and this implies

d · OK1K2
⊆ d1 · OK1K2

+ d2 · OK1K2
⊆ OK1

OK2
.

1.51 Theorem. For each m ∈ N∗ the ring Z[ζm] is the ring of integers of Q(ζm).

Proof. By induction on the number of prime divisors of m. The case of one
prime divisor is Proposition 1.49. If m has more than one prime divisor, write
m = m1m2 with gcd(m1,m2) = 1 and m1,m2 > 1. By assumption we have

OQ(ζm1
) = Z[ζm1

] and OQ(ζm2
) = Z[ζm2

].

Note that Q(ζm1)Q(ζm2) = Q(ζm1 , ζm2) = Q(ζm) and similarly Z[ζm1 ]Z[ζm2 ] =
Z[ζm]. Also note that

[Q(ζm) : Q] = φ(m) = φ(m1)φ(m2) = [Q(ζm1
) : Q] · [Q(ζm2

) : Q].

From Theorem 1.50 and Lemma 1.47 follows that OQ(ζm) = Z[ζm].

1.52 Corollary. Let m ∈ N∗ with m > 2 and ϑm = ζm + ζ−1
m . Then Z[ϑm] is the

ring of integers of the number field Q(ϑm).

Proof. Put n = φ(m)
2 . Then [Q(ϑm) : Q] = n and it is easily shown that

Q(ϑm) = Q+Qϑm +Qϑ2m + · · ·+Qϑn−1
m

= Q+Q · (ζm + ζ−1
m ) +Q · (ζ2m + ζ−2

m ) + · · ·+Q · (ζn−1
m + ζ−(n−1)

m )

and similarly

Z[ϑm] = Z+ Zϑm + Zϑ2m + · · ·+ Zϑn−1
m

= Z+ Z · (ζm + ζ−1
m ) + Z · (ζ2m + ζ−2

m ) + · · ·+ Z · (ζn−1
m + ζ−(n−1)

m ).
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1.6 The additive group of the ring of integers of a number field

The ring of integers of Q(ϑm) is Z[ζm] ∩Q(ϑm). Let α ∈ Z[ζm] ∩Q(ϑm), say

α = a0 + a1(ζm + ζ−1
m ) + · · ·+ an−1(ζ

n−1
m + ζ−(n−1)

m )

with a0, a1, . . . , an−1 ∈ Q. Then

ζn−1
m α = an−1 + an−2ζm + · · ·+ a1ζ

n−2
m + a0ζ

n−1
m + a1ζ

n
m + · · ·+ an−1ζ

2n−2
m

and since ζn−1
m α ∈ Z[ζm] it follows that a0, . . . , an−1 ∈ Z, that is α ∈ Z[ϑm].

The ring of integers of a number field K is an example of a number ring of K. It
is maximal among the number rings of K, since by Proposition 1.12 the elements
of a number ring are integral. We have seen examples of number rings which are
principal ideal domains. These examples were rings of integers of number fields. It
is easy to see that this is necessarily so. Let a number ring R of K be a principal
ideal domain and let α ∈ OK . We will show that α ∈ R. The field K is the field
of fractions of R, so there are β, γ ∈ R such that α = β

γ . Since R is a principal

ideal domain we can assume that gcd(β, γ) = 1. Since α is integral, it is a zero
of a monic polynomial f ∈ Z[X], say f(X) = Xn + a1X

n−1 + · · · + an. Then
βn + a1β

n−1γ + · · · + anγ
n = 0 and this implies that γ | βn. So an irreducible

divisor of γ is also a divisor of β. But gcd(β, γ) = 1. This means that γ has no
irreducible divisors, that is γ is a unit of R. It follows that α = βγ−1 ∈ R.

1.53 Example. The simplest example of a ring of integers which is not a principal
ideal domain is Z[

√
−5], the ring of integers of the imaginary quadratic number field

Q(
√
−5). In this ring we have: 6 = 2 · 3 = (1 +

√
−5)(1−

√
5). The elements 2, 3,

1+
√
−5 and 1−

√
−5 are irreducible: their norms are 4, 9, 6 and 6 respectively and

in Z[
√
−5] there are no elements of norm 2 or 3. So 6 has two different factorizations

as a product of irreducible elements. Hence Z[
√
−5] is not a principal ideal domain.

For future reference we compute the discriminants of Q(ζm) and Q(ζm + ζ−1
m ) for

m a prime power.

1.54 Proposition. Let p be a prime number, r ∈ N∗ and pr > 2. Then

disc(Q(ζpr )) = ±pp
r−1(pr−r−1).

The discriminant is negative when p ≡ 3 (mod 4) or pr = 4 and positive otherwise.

Proof. The cyclotomic polynomial Φpr (X) is the minimal polynomial of ζpr over
Q. Since

Φpr (X) =
Xpr − 1

Xpr−1 − 1
,

we have

Φ′
pr (X) =

(Xpr−1 − 1) · prXpr−1 − (Xpr − 1) · pr−1Xpr−1−1

(Xpr−1 − 1)2
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1 Integers in a Number Field

and so

Φ′
pr (ζpr ) =

prζ−1
pr

ζp − 1
.

Put n = φ(pr) = pr−1(p− 1). Then by Proposition 1.29:

disc(Q(ζpr )) = (−1) 1
2n(n−1)N

Q(ζpr )
Q

( prζ−1
pr

ζp − 1

)
= (−1) 1

2n(n−1) prn

pn/(p−1)
= (−1) 1

2n(n−1)pp
r−1(pr−r−1).

The number 1
2n(n− 1) is odd if and only if p ≡ 3 (mod 4) or pr = 4.

1.55 Proposition. Let p be a prime number, r ∈ N∗, pr > 4 and ϑpr = ζpr + ζ−1
pr .

Then

disc(Q(ϑpr )) =

{
(−1)

p−1
2 p

1
2 (p

r−1(pr−r−1)−1) if p is odd,

22
r−2(r−1)−1 if p = 2.

Proof. Put L = Q(ζpr ) and K = Q(ϑpr ). By Theorem 1.51 and Corollary 1.52
OL = Z[ζpr ] and OK = Z[ϑpr ]. So OL = Z[ζpr ] = Z[ϑpr ][ζpr ] = OK [ζpr ] and by
Proposition 1.33

disc(L) = disc(K)2 ·NKQ (discK(1, ζpr )).

The minimal polynomial of ζpr over K is X2 − ϑprX + 1. So

discK(1, ζpr ) = −NLK(2ζpr − ϑpr ) = −NLK(ζpr − ζ−1
pr )

and

|NKQ (discK(1, ζpr ))| = NLQ(ζpr − ζ−1
pr ) =

{
NLQ(ζ

2
pr − 1) = p if p is odd,

NLQ(ζ2r−1−1) = 4 if p = 2.

By Proposition 1.54

disc(K)2 =

{
pp

r−1(pr−r−1)−1 if p is odd,

22
r−1(r−1)−2 if p = 2.

The sign of disc(K) follows from Proposition 1.46.

1.7 Norm-Euclidean quadratic number fields

One way to prove that a ring is a principal ideal domain is by showing it is a
Euclidean domain. In this section we consider only quadratic number fields. Let

m be squarefree ̸= 1. The restriction of the norm N = N
Q(

√
m)

Q : Q(
√
m) → Q to
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1.7 Norm-Euclidean quadratic number fields

0 1

√
−2 1 +

√
−2

0 1

√
−5 1 +

√
−5

0 1

1+
√
−11
2

0 1

1+
√
−15
2

Figure 1.6: Points in C (inside a rectangle or a triangle) with distance < 1 from
Z[ωm] for m = −2, m = −5, m = −11 and m = −15

the ring of integers Z[ωm] takes values in Z. For which m is the map α 7→ |N(α)|
a Euclidean norm on Z[ωm] ? If it is, the number field Q(

√
m) is called norm-

Euclidean. We will see that for many m it is not.

We distinguish the imaginary and the real case.

Imaginary quadratic number fields

Let α, β ∈ Z[ωm] with β ̸= 0. Instead of α = κβ + ρ, where κ, ρ ∈ Z[ωm], we can
write α

β = κ+ ρ
β . The norm is Euclidean if elements α

β are the sum of an integral
element and an element of norm < 1. The question becomes: for which m can C
be covered by open discs with radius 1 and center in Z[ωm]?

Suppose m ≡ 2, 3 (mod 4). The distance of a complex number to Z[ωm] is at most√
−m+1

4 , the radius of the circumscribed circle of a rectangle with sides 1 and
√
−m. So the norm is a Euclidean norm if and only if −m+1

4 < 1, that is m > −3.
There are only two cases: m = −1 and m = −2.

Suppose m ≡ 1 (mod 4). The distance of a complex number to Z[ωm] is at most
−m+1
4
√
−m , the radius of the circumscribed circle of a triangle with sides 1,

√
−m+1

4

and
√

−m+1
4 . So the norm is a Euclidean norm if and only if m > −7− 4

√
3, that

is m ≥ −11. There are three cases: m = −3, m = −7 and m = −11.

Thus we have found five norm-Euclidean imaginary quadratic number fields. These
are in fact all imaginary quadratic number fields having a Euclidean ring of integers:

1.56 Theorem. For squarefree m < 0 we have:

Z[ωm] is a Euclidean domain ⇐⇒ m = −1,−2,−3,−7 or − 11.
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1 Integers in a Number Field

Proof. We still have to prove the implication ⇒. Suppose that for some m ̸=
−1,−2,−3,−7,−11 that there is a Euclidean norm ψ : Z[ωm] \ {0} → N. We will
derive a contradiction. Take in the set

{β ∈ Z[ωm] | β ̸= 0 and β /∈ Z[ωm]∗ }

an element β with ψ(β) minimal, i.e. β ̸= 0, 1,−1 with ψ(β) minimal. Note that
Z[ωm]∗ = {1,−1}, since m ̸= −1,−3. The residue class ring Z[ωm]/(β) consists of
2 or 3 elements:

Let α ∈ Z[ωm]. Then there are κ, ρ ∈ Z[ωm] with{
α = κβ + ρ

ψ(ρ) < ψ(β) if ρ ̸= 0.

So ρ = 0 or ρ ∈ Z[ωm]∗, that is ρ ∈ {0, 1,−1}, and this means that α ∈ (β)
or α ∈ 1 + (β) or α ∈ −1 + (β). Because β /∈ Z[ωm]∗, the ring has 2 or 3
elements.

It follows that N(β) = 2 or N(β) = 3. However, as is easily verified, for m ̸=
−1,−2,−3,−7,−11 such a β does not exist. Contradiction.

Five of the imaginary quadratic number fields have a Euclidean ring of integers.
These rings are principal ideal domains. But there are more: later we will see that
also Z[ω−19], Z[ω−43], Z[ω−67] and Z[ω−163] are principal ideal domains.

Real quadratic number fields

Let m ∈ Z be squarefree and > 1. The norm N = N
Q(

√
m)

Q : Q(
√
m) → Q now

also takes negative values, e.g. N(
√
m) = −m. Restriction to Z[ωm] yields a map

N: Z[ωm]→ Z. The question is: for which m is the map Z[ωm]→ N, α 7→ |N(α)|
a Euclidean norm on Z[ωm]? For which m are there for each α, β ∈ Z[ωm] with
β ̸= 0 numbers κ, ρ ∈ Z[ωm] such that

α = κβ + ρ and |N(ρ)| < |N(β)| ?

Via the embedding in R×R the ring Z[ωm] maps onto a lattice in R×R. The points
γ of R×R with |N(γ)| < 1 lie ‘inside’ the hyperbolas with equations xy = ±1. For
which m is the plane covered by all translations of this domain over the vectors of
the lattice? The following square, which is contained in this domain is easier to
handle

{ (x, y) | |x|+ |y| < 2 },

see Figure 1.7. Using this square instead already yields a number of Euclidean
domains. Translation of the square over (1, 1) does overlap with the original square.
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Exercises

(1, 1)

Figure 1.7: The domains |xy| < 1 and |x|+ |y| < 2 inside R× R

They also have to overlap under translation over (
√
m,−

√
m) for m ≡ 2, 3 (mod 4),

respectively over ( 1+
√
m

2 , 1−
√
m

2 ) for m ≡ 1 (mod 4). The first is the case if m < 4
and the second if m < 16. See Figure 1.8. So we have:

1.57 Theorem. The map Z[ωm]→ N, α 7→ |N(α)| is a Euclidean norm on Z[ωm]
for m = 2, m = 3, m = 5 and m = 13.

Here is a complete list of values of m for which Z[ωm] → N, α 7→ |N(α)| is a
Euclidean norm: −11, −7, −3, −2, −1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37,
41, 57, 73.

There are four negative m for which Z[ωm] is a non-Euclidean principal ideal do-
main. For positive m there are possibly infinitely many principal ideal domains; for
1 < m < 100 the values of m for which Q(

√
m) is not norm-Euclidean and Z[ωm]

is a principal ideal domain are: 14, 22, 23, 31, 38, 43, 46, 47, 53, 59, 61, 62, 67, 69,
71, 77, 83, 86, 89, 93 and 97.

Exercises

1. Show that there is a one-to-one correspondence between quadratic number fields
and squarefree integers ̸= 1, where such an integer m corresponds to the field
Q(
√
m).

2. Show that Z[
√
−6], Z[

√
−13], Z[ 1+

√
−15
2

] and Z[
√
10] are no principal ideal domains.
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1 Integers in a Number Field

Figure 1.8: Overlap of squares in R×R under translation over respectively (1, 1),

(
√
3,−
√
3), (
√
6,−
√
6), ( 1+

√
13

2 , 1−
√
13

2 ) and (1+
√
17

2 , 1−
√
17

2 )

3. Let K = Q(
√
m) withm a squarefree integer > 1. Let’s assume that O∗

K ̸= {1,−1}.
Then, as explained in Example 1.24, K contains a fundamental unit.

(i) Suppose m ≡ 2, 3 (mod 4). Let ν1, ν2 ∈ O∗
K such that ν2, ν1 > 1. Then

ν1 = x1 + y1
√
m, ν2 = x2 + y2

√
m and ν1ν2 = x3 + y3

√
m with xi, yi ∈ N∗ for

i = 1, 2, 3. Show that y3 > y1, y2.

(ii) For m ≡ 2, 3 (mod 4) there exists a least y ∈ N∗ such that my2±1 is a square,
say x2, in N∗. Show that x+ y

√
m is the fundamental unit of K.

(iii) Suppose m ≡ 1 (mod 4) and m ̸= 5. Let ν1, ν2 ∈ O∗
K such that ν2, ν1 > 1.

Then ν1 = 1
2
x1 +

1
2
y1
√
m, ν2 = 1

2
x2 +

1
2
y2
√
m and ν1ν2 = 1

2
x3 +

1
2
y3
√
m with

xi, yi ∈ N∗ for i = 1, 2, 3. Show that y3 > y1, y2.

(iv) For m ≡ 1 (mod 4) there exists a least y ∈ N∗ such that my2 ± 4 is a square
in N∗, say x2. Show that 1

2
x+ 1

2
y
√
m is the fundamental unit of K if m ̸= 5.

(v) Compute the fundamental units for m = 11, 13, 14, 15, 17. (This way of com-
puting fundamental units is slow. For m = 19 the least y is 39 and for m = 94
it is 221064. A fast algorithm based on continued fractions is described in
section 4.8.)

4. Show that for extensions L : K of finite fields the group homomorphism
NL

K : L∗ → K∗ is surjective.
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Exercises

5. Let p be an odd prime. Show that Q(ζp) contains a unique quadratic number field.
Which one?

6. (i) Let α ∈ R satisfy α3 = α+ 1. Show that Z[α] is the ring of integers of Q(α).

(ii) Let α ∈ R satisfy α3 = α+ 2. Show that Z[α] is the ring of integers of Q(α).

7. Determine an integral basis of Q
(√
−2 +

√
2
)
.

8. Let m ∈ Z be not a cube in Z. We determine an integral basis of the pure cubic
number field K = Q( 3

√
m).

(i) Show that there are h, k ∈ Z such that K = Q(
3
√
hk2), gcd(h, k) = 1, h and k

squarefree, hk ̸= 1, h ≡ 0, 1 (mod 3) and k ≡ 1 (mod 3).

Put α =
3
√
hk2 and β =

3
√
h2k.

(ii) Let γ = a+ bα+ cβ, where a, b, c ∈ Q. Verify:

∆γ = X3 − 3aX2 + 3(a2 − hkbc)X − (a3 − 3hkabc+ hk2b3 + h2kc3).

(iii) Let p be a prime divisor of h or k. Let γ = a+ bα+ cβ with a, b, c ∈ Z. Show
that γ

p
/∈ O if gcd(p, a, b, c) = 1.

(iv) Suppose h ≡ k ≡ 1 (mod 3). Let γ be as in (iii). Show that if γ
3
∈ O, then

a2 ≡ bc (mod 3) and a + b + c ≡ 0 (mod 3). Show that this implies that
a ≡ b ≡ c (mod 3).

(v) Suppose h ≡ k ≡ 1 (mod 3) and let γ = 1 + α+ β. Show that

γ

3
∈ O ⇐⇒ 1− 3hk + hk2 + h2k ≡ 0 (mod 27) ⇐⇒ h ≡ k (mod 9).

(vi) Conclude that (1, α, β) is an integral basis of K if h ̸≡ k (mod 9) and that
(1, α, 1+α+β

3
) is an integral basis if h ≡ k (mod 9).

(vii) Determine integral bases of Q( 3
√
m) for m = 2, 3, 5, 6, 7, 12, 17, 18, 19, 20, 44.

9. Let m,n ∈ Z be different and squarefree ̸= 1. We determine an integral basis of
the biquadratic field K = Q(

√
m,
√
n). Put k = mn

gcd(m,n)2
.

(i) Prove that 2OK ⊆ Z + Zωm + Zωn + Zωk. (Notation: see comment after
Theorem 1.9. Hint: use the traces from K to quadratic subfields.)

(ii) Let α ∈ K. Prove that α ∈ OK if and only if NK
Q(

√
m)(α),Tr

K
Q(

√
m)(α) ∈ O.

(iii) Show that there are essentially the following three cases:

(I) m ≡ 3 (mod 4) and n, k ≡ 2 (mod 4);

(II) m ≡ 1 (mod 4) and n ≡ k ̸≡ 1 (mod 4);

(III) m ≡ n ≡ k ≡ 1 (mod 4).

(iv) Show that an integral basis of K is for the above three cases as follows:

(I) (1,
√
m,
√
n,

√
n+

√
k

2
);

(II) (1, 1+
√
m

2
,
√
n,

√
n+

√
k

2
);

(III) (1, 1+
√
m

2
, 1+

√
n

2
, 1+

√
m

2
· 1+

√
k

2
).

31



1 Integers in a Number Field

(v) Prove that disc(K) = disc(Q(
√
m)) · disc(Q(

√
n)) · disc(Q(

√
k)).

(vi) Show that (OK : Z+ Zωm + Zωn + Zωk) = 2.

10. Diophantine equations of type y2 = x3 + k, where k ∈ Z and k ̸= 0, are called
Mordell equations. In this exercise we solve the equation for k = −1. Let x, y ∈ Z
satisfy y2 + 1 = x3.

(i) Show that x is odd and that y is even.

(ii) Prove that y + i is a cube in Z[i].
(iii) Solve the Diophantine equation.

11. The Mordell equation for k = −4. Let x, y ∈ Z satisfy y2 + 4 = x3.

(i) Show that y + 2i is a cube in Z[i].
(ii) Solve the equation.

12. Sometimes a Mordell equation can be solved using ordinary integers, for example
for k = 7. Let x, y ∈ Z satisfy y2 = x3 + 7.

(i) Show that x is odd and that y is even.

(ii) Prove that x3 + 8 has a prime divisor ≡ 3 (mod 4).

(iii) Derive a contradiction.

13. Let K and L be number fields such that [KL : Q] = [K : Q][L : Q] and moreover
gcd(disc(K),disc(L)) = 1. Prove that

disc(KL) = disc(K)[L:Q] disc(L)[K:Q].

14. Let m,n ∈ N∗ be relatively prime. Show that

disc(Q(ζmn)) = disc(Q(ζm))φ(n) disc(Q(ζn))
φ(m).
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2 Dedekind Domains

Principal ideal domains are unique factorization domains: in a principal ideal do-
main there is unique factorization of nonzero elements as products of irreducible
elements. Some rings of integers of number fields are principal ideal domains, but
many are not. E.g. the ring of integers of Q(

√
−5) is not a principal ideal domain,

see Example 1.53. The notion of Dedekind domain is more general than that of
principal ideal domain. In Dedekind domains there is a unique factorization not of
elements, but of nonzero ideals, namely as a product of prime ideals. In chapter 3
it will be shown that rings of integers of number fields are Dedekind domains. In
this chapter Dedekind domains are treated in general. In section 2.4 it is shown
that the isomorphism classes of nonzero ideals of a Dedekind domain form a group,
the ideal class group. This group is trivial if and only if the Dedekind domain is a
principal ideal domain.

2.1 Definition

The notion of product of ideals is essential for our approach to Dedekind domains.

2.1 Definition. Let a and b be ideals of a commutative ring R. Their product is
the ideal

ab = (ab | a ∈ a and b ∈ b),

the ideal of R generated by all products ab with a ∈ a and b ∈ b.

The ideals of a commutative ring R form under multiplication an abelian monoid,
in particular the multiplication is associative:

(ab)c = a(bc) (= abc = (abc | a ∈ a, b ∈ b and c ∈ c)).

The unity element is the ring R itself. For principal ideals we have (a)(b) = (ab).

The sum a+ b of the ideals a and b consists of all a+ b with a ∈ a and b ∈ b. The
union of systems of generators of the ideals a and b is a system of generators of
a+ b. Under addition the ideals form an abelian monoid as well. The ideal (0) is
the zero element. The multiplication is distributive over the addition:

a(b+ c) = ab+ ac.
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2 Dedekind Domains

2.2 Definition. Let a and b be ideals of an integral domain R. Then the ideal a is
said to divide the ideal b (notation: a | b) if there exists an ideal c of R such that
ac = b.

Note that for principal ideals we have:

(a) | (b) ⇐⇒ a | b ⇐⇒ b ∈ (a) ⇐⇒ (a) ⊇ (b).

2.3 Definition. An integral domain R is called a Dedekind domain if R is not a
field and for all ideals a, b of R we have

a | b ⇐⇒ a ⊇ b.

Note that “⇒” holds in general. If a is a principal ideal, then the converse is true
as well: assume a = (a) with a ̸= 0 (otherwise it is trivially true) and a ⊇ b; then
b consists of multiples of a and the ideal

1
a
b = { b

a
| b ∈ b }

satisfies
a · 1

a
b = b.

The collection of nonzero ideals of a Dedekind domain is a monoid with cancella-
tion:

2.4 Proposition (Cancellation). Let R be a Dedekind domain. Let a, c and c′ be
ideals of R, where a ̸= 0. Then

ac ⊆ ac′ =⇒ c ⊆ c′

and consequently
ac = ac′ =⇒ c = c′.

Proof. Since a ̸= (0), there is an a ∈ a with a ̸= 0. Because R is a Dedekind
domain, there is an ideal a′ such that (a) = aa′. We have (a)c = aa′c ⊆ a′ac′ =
(a)c′. Since R is an integral domain, it follows that c ⊆ c′.

In section 2.5 a characterization of Dedekind domains is given, which is based
on three properties of Dedekind domains, the Propositions 2.6, 2.8 and 2.9. In
Proposition 2.6 the following alternative for the definition of prime ideal will be
used.

2.5 Lemma. Let R be a commutative ring. Let a and b be ideals of R and let p be
a prime ideal of R. Then

p ⊇ ab =⇒ p ⊇ a or p ⊇ b.
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2.1 Definition

Proof. Suppose p ⊇ ab. If p ̸⊇ a, then there exists an a ∈ a\p. Then ab ∈ ab ⊆ p
for all b ∈ b. So b ∈ p for all b ∈ b, since p is prime. Hence p ⊇ b.

2.6 Proposition. Prime ideals ̸= (0) of a Dedekind domain are maximal ideals.

Proof. Let R be a Dedekind domain and p ̸= (0) a prime ideal of R. Let a be
an ideal of R with p ⊆ a. Because R is a Dedekind domain, there is an ideal b of
R such that ab = p. By Lemma 2.5 we have p ⊇ a or p ⊇ b. In the first case we
have p = a. In the second p = b and by Proposition 2.4 we have a = R. So p is
maximal.

2.7 Notation. For R a commutative ring, we denote the set of maximal ideals of
R by Max(R), and the collection of prime ideals of R by Spec(R).

On Spec(R) the so-called Zariski topology can be defined: the closed sets are the
intersections of the sets

V (r) = { p ∈ Spec(R) | r ∈ p },

where r ∈ R. The set of prime ideals of R equipped with the Zariski topol-
ogy is called the spectrum of R. For R a Dedekind domain we have Max(R) =
Spec(R) \ {(0)} (Proposition 2.6). The Krull dimension of a commutative ring R
is by definition the maximal length n of a chain

p0 ⊂ p1 ⊂ · · · ⊂ pn

of prime ideals of R. By Proposition 2.6 the Krull dimension of a Dedekind domain
equals 1. Note that we excluded fields in the definition. Fields have Krull dimension
0. If there is an infinite chain of prime ideals, the Krull dimension is said to be
infinite.

Ideals of a Dedekind domain are finitely generated: Dedekind domains are Noethe-
rian. Equivalently, infinite ascending chains of ideals stabilize, or nonempty collec-
tions of ideals have a maximal element (an ideal in the collection not contained in
any other ideal of the collection). The proof of these generalities is in many algebra
textbooks. Here the proof of these equivalences is left as an exercise (exercise 2).

2.8 Proposition. Dedekind domains are Noetherian.

Proof. Let a1 ⊆ a2 ⊆ a3 ⊆ · · · be a chain of ideals of a Dedekind domain R.
Then b =

⋃
i ai is an ideal of R. We can assume that that b ̸= 0. Since R is a

Dedekind domain, there are a b ∈ b \ {0} and an ideal b′ of R such that bb′ = (b).
Then (b) =

⋃
i aib

′. There is an N ∈ N∗ such that aNb′ = (b). Then anb
′ = (b) for

all n ≥ N and so by cancellation an = aN for all n ≥ N .

The far most important property of Dedekind domains is the unique factorization
of ideals: Theorem 2.11 in the next section. The definition of Dedekind domain
(Definition 2.3) as presented here is quite close to this factorization property. In
chapter 3 we will prove that the ring of integers of a number field is a Dedekind
domain. This will not be done directly from the definition, but by proving the
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2 Dedekind Domains

three properties which will characterize Dedekind domains. The third of these is
the following.

2.9 Proposition. Dedekind domains are integrally closed.

Proof. Let R be a Dedekind domain with field of fractions K and let a ∈ K
be a zero of a monic f ∈ R[X]. We will prove that a ∈ R. Put f(X) = Xn +
b1X

n−1 + b2X
n−2 + · · ·+ bn and a = a1

a2
with a1, a2 ∈ R. Then

an1 + b1a
n−1
1 a2 + b2a

n−2
1 a22 + · · ·+ bna

n
2 = an2f(a) = 0

and so

an1 ∈ (an−1
1 a2, . . . , a1a

n−1
2 , an2 ).

Put a = (an−1
1 , an−2

1 a2, . . . , a1a
n−2
2 , an−1

2 ). Then

a1a = (an1 , a
n−1
1 a2, . . . , a

2
1a
n−2
2 , a1a

n−1
2 ) ⊆ (an−1

1 a2, . . . , a
2
1a
n−2
2 , a1a

n−1
2 , an2 ) = a2a.

Since R is a Dedekind domain it follows that (a1) ⊆ (a2), that is
a1
a2
∈ R.

2.2 Factorization of ideals

In a principal ideal domain we have unique factorization of nonzero elements. For
a Dedekind domain we have unique factorization of nonzero ideals.

2.10 Notation. Let R be an integral domain. The set of nonzero ideals of R is
denoted by I+(R). Under the product of ideals it is an abelian monoid.

2.11 Theorem. Let R be a Dedekind domain and a ∈ I+(R). Then there are prime
ideals p1, . . . , pn such that a = p1 · · · pn. This factorization is unique up to order.
(We allow that n = 0: an empty product equals R.)

Proof. First we prove that every ideal a ̸= (0) is a product of prime ideals. If
a ̸= R, then there is a maximal ideal p1 ⊇ a. Then, since R is a Dedekind domain,
a = p1a1, where a1 is a nonzero ideal. If a1 ̸= R, then continue with a1: there
is a maximal ideal p2 ⊇ a1 such that a1 = p2a2, etc. Since R is Noetherian, we
thus obtain a strictly ascending chain a = a0 ⊂ a1 ⊂ a2 ⊂ · · · ⊂ an = R such that
aj−1 = pjaj with pj a prime ideal for j = 1, . . . , n. Then a = p1 · · · pn.

For the uniqueness of the factorization we use Lemma 2.5. Suppose that p1 · · · pn =
q1 · · · qm (pi, qj being prime ideals ̸= (0) of R). Then p1 | q1 · · · qm and so
q1 · · · qm ⊆ p1. So there is a qi ⊆ pi. We may assume: q1 ⊆ p1. Since R is a
Dedekind domain, the nonzero prime ideal q1 is maximal, so q1 = p1. By cancel-
lation: p2 · · · pn = q2 · · · qm. Proceed by induction.
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2.2 Factorization of ideals

2.12 Example. In Example 1.53 we saw that in the ring Z[
√
−5] there is no unique

factorization of elements: the element 6 can be factored as a product of irreducible
elements in two ways: 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5). In Z[

√
−5] we have ideals

p2 = (2, 1 +
√
−5), p3 = (3, 1 +

√
−5) and p′3 = (3, 1−

√
−5).

It is easily verified that the lattices Z2 + Z(1 +
√
−5), Z3 + Z(1 +

√
−5) and

Z3 +Z(1−
√
−5) are actually ideals of Z[

√
−5]. From this it follows that they are

the ideals p2, p3 and p′3 respectively. Because their indices in Z[
√
−5] are 2 or 3,

these ideals are maximal ideals. It is easily verified that

(2) = p22, (3) = p3p
′
3, (1 +

√
−5) = p2p3 and (1−

√
−5) = p2p

′
3.

So the irreducible elements do not generate prime ideals. The two factorizations
of the element 6 both lead to the same factorization of the ideal (6):

(6) = p22p3p
′
3.

In the next chapter we show that rings of integers of number fields are Dedekind
domains. In particular Z[

√
−5] is a Dedekind domain. For this example many

verifications were needed. Later, having many structure theorems for rings of
integers at our disposal, almost all of these computations become unnecessary.

2.13 Definition and notation. Let p be a prime ideal ̸= (0) of a Dedekind domain
R and let a be an ideal ̸= (0) of R. The number of factors p in the factorization
of a as a product of prime ideals is called the p-valuation of a and is denoted by
vp(a). So vp(a) ∈ N and this number is given by

pvp(a) | a and pvp(a)+1 ∤ a.

(Let’s agree that p0 = R.) Thus we have a monoid homomorphism

vp : I+(R)→ N, a 7→ vp(a)

from the multiplicative monoid I+(R) to the additive monoid N.

For a ∈ R \ {0} we have aR ∈ I+(R) and we define

vp(a) = vp(aR).

Note that
vp(a) = 0 ⇐⇒ p ∤ a.

For each ideal a ̸= (0) we have

a =
∏
p

pvp(a),
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2 Dedekind Domains

where the product is over all p ∈ Max(R). This formula makes sense: vp(a) ̸= 0
only for finitely many p and we can interpret the formula as the product over all p
with vp(a) ̸= 0.

The unique factorization property implies that the map

(vp)p : I+(R) −→
⊕

p∈Max(R)

N, a 7→ (vp(a))p (2.1)

is an isomorphism of abelian monoids: the product of a, b ∈ I+(R) is given by

vp(ab) = vp(a) + vp(b) for all p ∈ Max(R).

To put it differently: for a Dedekind domain R the monoid I+(R) is a free abelian
monoid on the set Max(R). The set I+(R) is ordered by the relation ⊇, which for
Dedekind domains is the same as |. Under the isomorphism (2.1) a | b translates
into

vp(a) ≤ vp(b) for all p ∈ Max(R).

In the next proposition we consider two other operations: addition ((a, b) 7→ a+b)
and intersection ((a, b) 7→ a ∩ b).

2.14 Proposition. Let p be a maximal ideal of a Dedekind domain R and let a, b ∈
I+(R). Then:

vp(a+ b) = min(vp(a), vp(b)) and vp(a ∩ b) = max(vp(a), vp(b)).

Proof. Note that a + b is the supremum of a and b in the ordering of I+(R),
whereas a ∩ b is the infimum.

In I+(R) we clearly have the notion of greatest common divisor and least common
multiple and the proposition tells us that gcd(a, b) = a + b and lcm(a, b) = a ∩ b.
For elements a, b in a principal ideal domain we have:

(a)(b) = (ab),

(a) + (b) = (gcd(a, b)),

(a) ∩ (b) = (lcm(a, b)).

The gcd and lcm of elements are defined up to units of the domain.

2.15 Definition. Nonzero ideals a and b of a Dedekind domain R are called rela-
tively prime if they are comaximal, that is if a+ b = R.

So ideals a and b of a Dedekind domain R are comaximal if and only if no p ∈
Max(R) is a common divisor of a and b. In general, comaximality of ideals of a
commutative ring has an important implication for the residue class rings:
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2.2 Factorization of ideals

2.16 Chinese Remainder Theorem. Let R be a commutative ring and let a and b
be comaximal ideals of R. Then the ring homomorphism R → R × R, x 7→ (x, x)
induces an isomorphism

R/ab
∼−→ R/a×R/b.

Proof. The kernel of the homomorphism

R −→ R/a×R/b, x 7→ (x, x)

is the ideal a∩b. By comaximality there are a ∈ a and b ∈ b such that a+b = 1. So
for each x ∈ a∩b one has x = xa+xb ∈ ab. Since trivially ab ⊆ a∩b, it follows that
ab = a∩b. Surjectivity of the homomorphism follows from ya+xb ≡ xb ≡ x (mod a)
and ya+ xb ≡ ya ≡ y (mod b).

Unique factorization of ideals in Dedekind domains has implications for the struc-
ture of their residue class rings.

2.17 Proposition. Let R be a Dedekind domain, a an ideal ̸= (0) of R and let p be
a prime ideal ̸= (0) of R. Then the kernel of the surjective ring homomorphism

φ : R/pa→ R/a, x+ pa 7→ x+ a,

is an R-module isomorphic to R/p.

Proof. Clearly Ker(φ) = a/pa. From pa ⊆ a and the unique factorization follows
that pa ⊂ a. Choose a ∈ a \ pa. Then there is an ideal b such that ab = aR. We
have p ∤ b, since otherwise pa | ab and so a ∈ pa. Note that ab ∩ pa = abp and
ab+ pa = a. The inclusion aR ⊆ a induces an R-module homomorphism

ψ : aR/ap→ a/pa.

We prove that ψ is an isomorphism:

Ker(ψ) = (aR ∩ pa)/ap = (ab ∩ pa)/ap = abp/ap = ap/ap = 0.

Im(ψ) = (aR+ pa)/pa = (ab+ pa)/pa = a/pa.

Clearly the R-module isomorphism R → aR, r 7→ ar induces an isomorphism
R/p

∼→ aR/ap. Hence,

R/p ∼= aR/ap ∼= a/pa = Ker(φ).

In terms of exact sequences: there is a short exact sequence

0 −→ R/p −→ R/pa −→ R/a −→ 0

of R-modules. Note that if p ∤ a, then by the Chinese Remainder Theorem we have
an isomorphism R/pa

∼→ R/p × R/a. In this case the short exact sequence splits
and the proposition follows in a direct manner. So the more interesting aspect of
the proposition is that it holds if p | a as well.
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2 Dedekind Domains

Ideals of a Dedekind domain may not be principal, but since the domain is Noethe-
rian, they are finitely generated. In fact at most two elements are needed for the
generation of an ideal. This will follow from:

2.18 Lemma. Let R be a Dedekind domain, P a finite collection of maximal ideals
of R and p ∈ P . Then there exists an x ∈ R satisfying vp(x) = 1 and vq(x) = 0
for all q ∈ P \ {p}.

Proof. Choose a π ∈ p \ p2. Such an element exists because p ̸= p2 by the
cancellation property. By the Chinese Remainder Theorem there exists an x ∈ R
such that

x ≡

{
π (mod p2),

1 (mod q) for each q ∈ P \ {p}.

Then x ∈ p, x /∈ p2 and x /∈ q for all q ∈ P with q ̸= p.

2.19 Proposition. Let R be a Dedekind domain and let a and b be nonzero ideals
of R such that a ⊆ b. Then there exists an x ∈ b such that b = a+ xR.

Proof. Let P be the collection of prime divisors of a. By Lemma 2.18 we can
choose for each p ∈ P an xp ∈ R such that vp(xp) = 1 and vq(xp) = 0 for all
q ∈ P \ {p}. Take

x =
∏
p∈P

x
vp(b)
p .

Then vp(x) = vp(b) for all p | a. By Proposition 2.14 we have a+ xR = b.

2.20 Corollary. Let a be an ideal of a Dedekind domain R. Then there are a, b ∈ R
such that a = (a, b).

Proof. We may assume that a ̸= 0. Take a ∈ a with a ̸= 0. By Lemma 2.19
there is a b ∈ R such that a = aR+ bR = (a, b).

Commutative rings with only finitely many maximal ideals are called semi-local.

2.21 Proposition. Semi-local Dedekind domains are principal ideal domains.

Proof. Let R be a Dedekind domain with Max(R) finite. It suffices to prove that
maximal ideals of R are principal. Let p be a maximal ideal of R. By Lemma 2.18
there is an x ∈ R such that vp(x) = 1 and vq(x) = 0 for all maximal ideals q ̸= p.
It follows that p = xR.

2.3 The ideal class group of a Dedekind domain

2.22 Definition. Let R be an integral domain and a, b ∈ I+(R). Then a and b
are called equivalent if there exist nonzero x, y ∈ R such that xa = yb. Notation:
a ∼ b.
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2.3 The ideal class group of a Dedekind domain

Note that xa ∈ I+(R). It can be seen as the product of the principal ideal (x) and
the ideal a.

2.23 Lemma. Equivalence of nonzero ideals of an integral domain R is an equiv-
alence relation in I+(R).

Proof. Obviously the relation is reflexive and symmetric. For transitivity it is
needed that the ring has no zero divisors.

For Dedekind domains we have the following property, which—as we will see—has
many consequences.

2.24 Lemma. Let R be a Dedekind domain and a ∈ I+(R). Then there is a
b ∈ I+(R) such that ab is a principal ideal.

Proof. Choose a ∈ a with a ̸= 0. Then a ⊇ (a) and hence a | (a), that is
(a) = ab for a b ∈ I+(R).

2.25 Proposition. Let R be a Dedekind domain. Multiplication in I+(R) induces
a group structure on the set I+(R)/∼ of equivalence classes.

Proof. Clearly, if a, a′, b, b′ ∈ I+(R) satisfy a′ ∼ a and b′ ∼ b, then a′b′ ∼ ab.
Let’s denote the class of a by [a]. It follows that I+(R)/∼ is an abelian monoid
under the operation [a] · [b] = [ab]. The unit element is [(1)], which is the class of
principal ideals. By Lemma 2.24 for each a ∈ I+(R) there is a b ∈ I+(R) such that
[a] · [b] = [ab] = [(a)] = [(1)], so the class [b] is the inverse of [a].

2.26 Definition and notation. Let R be a Dedekind domain. The equivalence
classes in I+(R) are called ideal classes and the group I+(R)/∼ is called the ideal
class group of R. Notation: Cℓ(R). The class of an a ∈ I+(R) is denoted by [a].

As remarked in the proof of Proposition 2.25 the unity element of the ideal class
group of a Dedekind domain consists of all principal ideals of that domain. So in
a sense the ideal class group tells us how much a Dedekind domain deviates from
a principal ideal domain:

2.27 Proposition. Let R be a Dedekind domain. Then R is a principal ideal domain
if and only if the group Cℓ(R) is trivial.

By Proposition 2.21 only Dedekind domains with infinitely many maximal ideals
can have a nontrivial ideal class group. In chapter 1 examples were given of rings of
integers of number fields which are no principal ideal domains. In the next chapter
it will be shown that rings of integers of number fields are Dedekind domains. So
each ring of integers which is not a principal ideal domain, is a Dedekind domain
with a nontrivial ideal class group.

Representing ideals of ideal classes of a Dedekind domain can be chosen to be
comaximal with a given nonzero ideal:
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2 Dedekind Domains

2.28 Proposition. Let R be a Dedekind domain and let a and b be nonzero ideals
of R. Then there is an ideal c of R such that c ∼ a and b+ c = R.

Proof. Take a ∈ a with a ̸= 0. Then aR = aa′ for an ideal a′ of R. From
Lemma 2.19 it follows that there is an x ∈ R such that a′ = a′b + xR. Then
aR = aa′ = aa′b+ xa = ab+ xR. So take c = x

aa.

2.4 Fractional ideals

Ideals in a commutative ring R are R-submodules of the R-module R. For an
integral domain R we consider a larger collection of R-modules isomorphic to ideals
of R.

2.29 Definition. Let R be an integral domain and K its field of fractions. A
nonzero R-submodule a of K is called a fractional ideal of R if there is an x ∈ K∗

such that xa ⊆ R. The set of fractional ideals of R is denoted by I(R). Fractional
ideals Ra with a ∈ K∗ are called principal fractional ideals. The set of principal
fractional ideals of R is denoted by P(R).

For Noetherian integral domains we have an alternative characterization:

2.30 Lemma. Let R be a Noetherian integral domain with field of fractions K and
let a be a nonzero R-submodule of K. Then:

a is a fractional ideal of R ⇐⇒ a is a finitely generated R-module.

Proof. Fractional ideals of R are isomorphic to ideals of R and these are by
definition finitely generated. On the other hand, if an R-submodule of K is finitely
generated, then there is a nonzero x ∈ R such that xa ⊆ R: for x one can take the
product of the denominators of the fractions generating a.

Fractional ideals are R-submodules of K and as such they can be added: a+ b =
{ a+ b | a ∈ a, b ∈ b }. Using the multiplication in the field of fractions there also
is a multiplication of fractional ideals as there is one for ideals of R:

2.31 Definition. Let R be a Noetherian integral domain with field of fractions
K and let a and b be fractional ideals of R. The product ab of a and b is the
R-submodule of K generated by all ab with a ∈ a and b ∈ b.

Note that if a and b are fractional ideals, say xa ⊆ R and yb ⊆ R, where x and y
are nonzero elements of R. Then xyab ⊆ R. Hence ab is indeed a fractional ideal.

2.32 Lemma. Let R be a Noetherian integral domain. Then the set I(R) is an
abelian monoid under the multiplication of fractional ideals. The ring R is the
unit element of the monoid. Moreover, the multiplication is distributive over the
addition.
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Proof. The proof is straightforward.

2.33 Definition. Let R be a Noetherian integral domain. A fractional ideal of R
is called invertible if it is an invertible element of the monoid I(R). If a ∈ I(R) is
invertible, then a−1 is also denoted by 1

a or R
a . More generally, a product a−1b is

also denoted by b
a .

2.34 Lemma. Let R be a Noetherian integral domain and a, b ∈ I(R) invertible.
Then:

a ⊇ b ⇐⇒ a−1 ⊆ b−1.

Proof. If a ⊇ b, then a−1 = a−1bb−1 ⊆ a−1ab−1 = b−1.

2.35 Theorem. Let R be a Noetherian integral domain. Then R is a Dedekind
domain if and only if the monoid I(R) is a group.

Proof. LetR be a Dedekind domain and a ∈ I(R). There is a nonzero x ∈ R such
that xa ⊆ R. Let y be a nonzero element of the ideal xa. Then yR ⊆ xa. Since R
is a Dedekind domain, there is an ideal b of R such that xa ·b = yR. It follows that
the fractional ideal xy b is the inverse of a. So all fractional ideals of R are invertible,

that is I(R) is a group. Conversely, suppose I(R) is a group and let a, b ∈ I+(R)
satisfy a ⊇ b. Then b = a(ba−1) and by Lemma 2.34 ba−1 ⊆ bb−1 = R. Hence
a | b.

2.36 Theorem. Let R be a Dedekind domain. Then I(R) is a free abelian group
with the set Max(R) as a basis.

Proof. The monoid I+(R) is freely generated by the maximal ideals of R. This
implies that the group I(R) is freely generated as an abelian group by the maximal
ideals.

We can now extend the definition of vp for nonzero ideals in a Dedekind domain
to the group I(R):

2.37 Definition. Let R be a Dedekind domain. The maps vp : I(R) → Z are the
coordinate maps corresponding to the basis of maximal ideals p of R. The map vp
is called the p-adic valuation of I(R). For a ∈ K∗ we put vp(a) = vp(Ra). Thus
we also have a group homomorphism vp : K

∗ → Z, the p-adic valuation on K.

So for a Dedekind domain R we have a group isomorphism

I(R) ∼−→
⊕

p∈Max(R)

Z, a 7→ (vp(a))p.

The abelian group
⊕

p Z is the group completion of the abelian monoid
⊕

p N and

the group I(R) of fractional ideals is the group completion of the monoid I+(R) of
nonzero ideals.

2.38 Lemma. Let R be a Dedekind domain. Then P(R) is a subgroup of I(R).

43
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Proof. For nonzero a, b in the field of fractions of R we have Ra ·Rb = Rab and
in particular Ra ·Ra−1 = R.

2.39 Proposition. Let R be a Dedekind domain. Then the inclusion I+(R)→ I(R)
induces an isomorphism Cℓ(R) ∼→ I(R)/P(R).

Proof. The map I+(R) → I(R)/P(R) is surjective. Ideals a, b ∈ I+(R) are
congruent modulo P(R) if and only if there is an a ∈ K∗ such that a = ab. Put
a = y

x with x, y ∈ R \ {0}. Then xa = yb, that is a ∼ b.

So for a Dedekind domain R with field of fractions K we have an exact sequence

1 −→ R∗ −→ K∗ −→ I(R) −→ Cℓ(R) −→ 1.

The map K∗ → I(R) sends a to Ra. The fractional ideal Ra is the unit element R
of the group I(R) if and only if a ∈ R∗. Alternatively, we have an exact sequence

1 −→ R∗ −→ K∗ (vp)p−→
⊕
p

Z −→ Cℓ(R) −→ 1. (2.2)

For each p the map Z→ Cℓ(R) sends 1 to [p].

2.5 Characterization of Dedekind domains

We have seen in section 2.1 that Dedekind domains are integrally closed Noetherian
domains in which nonzero prime ideals are maximal. In this section we prove the
converse. This converse (Theorem 2.43) is the main tool for identifying Dedekind
domains in many cases. A direct consequence is that the integral closure of a
Dedekind domain in a finite separable extension of its field of fractions is a Dedekind
domain as well (Theorem 2.45). This applies directly to the rings of integers of a
number field (Theorem 2.46), being the integral closure of Z in the number field.

2.40 Lemma. Let R be an integrally closed integral domain with field of fractions
K and let a ∈ K∗. Then a ∈ R if and only if there is a finitely generated nonzero
submodule A of K such aA ⊆ A.

Proof. This follows from Proposition 1.12.

2.41 Lemma. In a Noetherian ring every nonzero ideal contains a product of
nonzero prime ideals.

Proof. Let R be a Noetherian ring and suppose that there exists an ideal a ̸= (0)
of R that does not contain a product of prime ideals ̸= (0). Then the collection Φ
of such ideals is nonempty. Since R is Noetherian, the collection Φ has a maximal
element, say m. Then m clearly is not a prime ideal, so there are a, b ∈ R with
a, b /∈ m and ab ∈ m. We have m ⊂ m+(a) and m ⊂ m+(b). Since m is maximal in
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Φ, the ideals m+ (a) and m+ (b) both contain a product of nonzero prime ideals.
But then (m+ (a))(m+ (b)) contains such a product as well. However,

(m+ (a))(m+ (b)) = m2 + am+ bm+ (ab) ⊆ m,

in contradiction with m ∈ Φ.

2.42 Lemma. Let R be a Noetherian domain with the property that nonzero prime
ideals of R are maximal. Let a be an ideal of R with (0) ̸= a ̸= R. Then there
exists an element c ∈ K, the field of fractions of R, such that c /∈ R and ca ⊆ R.

Proof. Let a ∈ a with a ̸= 0. By Lemma 2.41 there are prime ideals p1, . . . , pr
of R such that p1 · · · pr ⊆ (a) and such that r is minimal. Let p be a maximal ideal
such that p ⊇ a. Then p ⊇ p1 · · · pr and so p ⊇ pi for some i, because maximal
ideals are prime. Say p ⊇ p1. Since nonzero prime ideals are maximal, we have
p = p1. The number r is minimal, so there exists a b ∈ p2 · · · pr with b /∈ (a). Then

ba ⊆ bp ⊆ p1 · · · pr ⊆ (a)

and so b
aa ⊆ R, whereas

b
a /∈ R. So take c = b

a .

2.43 Theorem. An integral domain R is a Dedekind domain if and only if

a) R is Noetherian,

b) nonzero prime ideals of R are maximal ideals,

c) R is integrally closed.

Proof. We have already seen that a Dedekind domain satisfies a), b) and c):
Propositions 2.8, 2.6 and 2.9. Now let R be an integral domain satisfying a), b)
and c), and let K be its field of fractions. Let Φ be the collection of ideals b of R
which contain an ideal a, whereas b ∤ a. We will prove that Φ is empty. Suppose
Φ ̸= ∅. Since R is Noetherian, Φ has a maximal element b and let a be an ideal of
R such that a ⊆ b and b ∤ a. By Lemma 2.42 there are nonzero a, b ∈ R such that
b
a ∈ K \R and b

ab ⊆ R. Put b
′ = 1

a (a, b)b. Then b′ = b+ b
ab ⊆ R, so the fractional

ideal b′ is actually an ideal of R. We have b′ ⊃ b, since otherwise b′ = b′ + b
ab

′,

that is b
ab

′ ⊆ b′ and because R is Noetherian this would imply by Lemma 2.40 that
b
a ∈ R. So we have b′ /∈ Φ and a ⊂ b′. Hence, there exists an ideal c′ of R such that
a = b′c′. Take c = 1

a (a, b)c
′. Then bc = 1

a (a, b)bc
′ = b′c′ = a and this contradicts

b ∈ Φ if c is an ideal of R, that is if c ⊆ R. For all c ∈ c we have cb ⊆ a ⊆ b and
so again by Lemma 2.40 indeed c ∈ R.

The integral closure of a Dedekind domain in a finite separable extension of its
field of fractions is again a Dedekind domain. For a proof we will use this char-
acterization of Dedekind domains. The following well-known lemma will be used.
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2.44 Lemma. Let R be a Noetherian ring, A a free R-module of finite rank and B
an R-submodule of A. Then B is a finitely generated R-module.

Proof. Let n denote the rank of A. For n = 0 it is trivially true. We proceed
by induction on n. Let n ≥ 1. We may assume that A = Rn. Let p : Rn → Rn−1

be the projection (r1, . . . , rn−1, rn) 7→ (r1, . . . , rn−1). For an R-submodule B of
Rn we have B/(Ker(p) ∩ B) ∼= p(B). The R-module p(B) is finitely generated by
induction hypothesis since it is a submodule of Rn−1. The R-module Ker(p) is
free of rank 1, so B ∩ Ker(p) is finitely generated because the ring is Noetherian.
Clearly B is generated by generators of B∩Ker(p) together with lifts of generators
of p(B).

2.45 Theorem. Let R be a Dedekind domain with field of fractions K and let
K ′ : K be a finite separable field extension. Then the integral closure R′ of R in
K ′ is a Dedekind domain.

Proof. We apply Theorem 2.43:

a) By Proposition 1.36 R′ is an R-submodule of a free R-module of finite rank
and so is each ideal of R′. Since R is Noetherian, it follows from Lemma 2.44
that each ideal of R′ is finitely generated as R-module and, therefore, also as
R′-module.

b) Let q be a nonzero prime ideal of R′. Then p = q ∩ R is a nonzero prime
ideal of R. Since R is a Dedekind domain, p is a maximal ideal. The ring
R′/q is both an integral domain and a finite-dimensional R/p-vector space.
It follows that R′/q is a field. So q is maximal.

c) The ring R′ is integrally closed by Corollary 1.13.

In particular:

2.46 Theorem. The ring of integers of a number field is a Dedekind domain.

Proof. Let K be a number field. Then OK is the integral closure of the principal
ideal domain Z in K.

In the next chapter we continue the study of number fields. Here we only give
an example of a Dedekind domain with a nontrivial ideal class group. Another
example is given in the exercises.

2.47 Example. The ring Z[
√
−5] is the ring of integers of the number fieldQ(

√
−5).

By Theorem 2.46 it is a Dedekind domain. It is not a principal ideal domain
(Example 1.53). The ideal p2 = (2, 1 +

√
−5) is not principal, see Example 2.12,

so p2 represents a nontrivial element of Cℓ(Z[
√
−5]). Since p22 = (2), we have

[p2]
2 = [(2)] = 1. So the element [p2] of the ideal class group is of order 2. For

p3 = (3, 1 +
√
−5) we have p2p3 = (1 +

√
−5) and so [p2] = [p3]. In the next

chapter it will be shown that the ideal class group of Z[
√
−5] is a group of order 2

(Example 3.27).
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Exercises

Exercises

1. (i) Let a, b and c be ideals of a Dedekind domain R. Show that a(b∩ c) = ab∩ac.
(ii) Give an example of an integral domain R and ideals a, b and c of R such that

a(b ∩ c) ̸= ab ∩ ac.

2. A commutative ring is called Noetherian if its ideals are finitely generated. Let R
be a commutative ring. Show the equivalence of:

(i) R is Noetherian.

(ii) Each nonempty collection Φ of ideals of R ordered by inclusion contains a
maximal element.

(iii) Each ascending chain a0 ⊆ a1 ⊆ · · · ⊆ an ⊆ · · · of ideals of R stabilizes, i.e.
there is an N ∈ N such that an = aN for all n ≥ N .

3. Let a be a nonzero ideal of the ring of integers of a quadratic number field. Show
that there exist a ∈ N∗ and α ∈ a such that a = Za+ Zα.

4. Let a be a nonzero ideal of the ring of integers of a quadratic number field. Show
that aa′ = (n) for some n ∈ N∗. (Use exercise 3; a′ is the conjugate ideal of a, that
is a′ = σ(a), where σ is the nontrivial automorphism of the number field.)

5. The ring of integers of a quadratic number field is a Dedekind domain. Show this
by applying the result in exercise 4.

6. Let m ∈ Z be squarefree ̸= 1 and congruent to 1 modulo 4. Show that Z[
√
m] is

not a Dedekind domain.

7. Let m ∈ Z be squarefree, negative and congruent to 2 modulo 4. Let p = (2,
√
m).

(i) Show that p is a prime ideal of Z[
√
m].

(ii) Prove that [p] ∈ Cℓ(Z[
√
m]) is of order 2.

8. The field K = R(X) is the field of fractions of the polynomial ring R = R[X]. Let
L = K(y) such that y2 = 1−X2.

(i) Show that [L : K] = 2 and that R[y] is the integral closure of R in L.

(ii) Show that the ideal (X, 1−y) of R[y] represents an ideal class of order 2 in the
ideal class group of the Dedekind domain R[y]. (In exercise 6 of chapter 10 it
is asked to compute the ideal class group.)
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3 Rings of Integers of Number Fields

In the previous chapter it was shown that rings of integers of number fields are
Dedekind domains (Theorem 2.46). In section 3.3 it will be shown that their
ideal class groups are finite. The argument used for this result enables us to
compute ideal class groups in simple cases. In chapter 5 a more powerful method
of computation is described and moreover in chapter 4 algorithms are given for the
quadratic case.

In chapter 1 we noted (on page 25) that a number ring which is a principal ideal
domain, necessarily is the ring of integers. In fact, the ring of integers of a number
field is the unique number ring of that field which is a Dedekind domain:

3.1 Proposition. Let K be a number field and let a number ring R of K be a
Dedekind domain. Then R = OK .

Proof. Since R is finitely generated as an abelian group, we have by Proposi-
tion 1.12 that R ⊆ OK . The field K is the field of fractions of R. Since R is a
Dedekind domain, it is integrally closed and so its integral closure in K is R itself.
Because Z ⊆ R, their integral closures in K satisfy OK ⊆ R.

The group of fractional ideals of a Dedekind domain is a free abelian group with
the set of nonzero prime ideals as basis. In section 3.1 it is shown that prime
ideals divide (the ideals generated by) prime numbers. A method is given for
the computation of the factorization of ideals generated by prime numbers, which
works up to a finite number of prime numbers. The last section is about ramifying
prime numbers: prime numbers divisible by a prime ideal with multiplicity greater
than 1.

3.1 Prime ideals

Let K be a number field. Since its ring of integers OK is a Dedekind domain,
we have in this ring unique factorization of nonzero ideals as products of maximal
ideals. What are the maximal ideals? Let p be a maximal ideal of OK . Then p∩Z
is a nonzero prime ideal of Z, say p∩Z = pZ, for a prime number p. The ideal pOK
is contained in p and, since OK is a Dedekind domain, we have p | pOK . Hence p
is a factor in the factorization of the ideal pOK .
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3.2 Definition. Let p be a maximal ideal of the ring of integers of a number field
K. The prime number p that generates p ∩ Z is said to be under p. The prime
ideal p is said to be above p.

3.3 Definition. Let K be a number field, p ∈ Max(OK) and p the prime number
under p. Then vp(p) = vp(pOK) ∈ N∗ is called the ramification index of p. No-
tation: e(p) = vp(p). The degree of the field extension OK/p : Fp is called the
residue class degree of p. Notation: f(p) = [OK/p : Fp].

So we have

pOK =
∏
p

pvp(p) =
∏

p|pOK

pe(p).

Often we will write the factorization as pOK = pe11 · · · perr , where the pi are the r
prime ideals above p and ei is the ramification index of pi. Accordingly, the residue
class degree of pi is then denoted by fi.

For a given number field the ramification indices and residue class degrees of the
prime ideals above a prime number satisfy a relation:

3.4 Theorem. Let K be a number field of degree n and let

pOK = pe11 · · · perr

be the factorization of pOK in OK . Then

e1f1 + · · ·+ erfr = n,

where fi is the residue class degree of pi.

Proof. Since OK is a free abelian group of rank n, the ring OK/pOK is an
Fp-vector space of dimension n. For each ideal a | pOK the ring OK/a is a homo-
morphic image of OK/pOK and, therefore, an Fp-vector space as well. Repeated
application of Proposition 2.17 yields that OK/pOK is an Fp-vector space of di-
mension e1f1 + · · ·+ erfr.

3.5 Definition. Let K be a number field of degree n and p a prime number. For
the factorization of pOK there are three special cases:

p totally ramifies in K: there is only one prime ideal p above p and its ramification
index is n: the factorization is pOK = pn.

p remains prime in K: the ideal pOK is a prime ideal; then the ideal pOK is the
only prime ideal above p and its residue class degree is n.

p splits completely in K: there are n prime ideals above p; then each of them hav-
ing ramification index 1 and residue class degree 1.
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3.1 Prime ideals

The three cases described in this definition are in a sense the three extreme cases.
For a quadratic number field they are obviously the only possible cases, see also
Theorem 3.7. In section 3.4 we will see that it are precisely the prime divisors of the
discriminant of the number field that ramify. So only finitely many primes ramify.
In chapter 5 it is shown that at least one prime number ramifies (Theorem 5.25).
Total ramification of a prime, however, does not need to occur. On the other hand
infinitely many primes split completely (exercise 16 of chapter 7). It depends on
the number field whether there are primes that remain prime. If there is such a
prime number, there are infinitely many of them.

In many cases it is not hard to factorize (the ideal generated by) a prime number
in the ring of integers of a number field. The main tool for computations is given
by the following theorem.

3.6 Theorem (Kummer-Dedekind). Let K be a number field and ϑ ∈ OK a
primitive element of K : Q. Let f ∈ Z[X] be the minimal polynomial of ϑ over Q.
Assume the prime number p satisfies p ∤ (OK : Z[ϑ]). Let

f = ge11 · · · gerr

be the factorization of the polynomial f ∈ Fp[X] as a product of irreducible poly-
nomials, where the gi ∈ Z[X] are taken to be monic. Then

pOK = (p, g1(ϑ))
e1 · · · (p, gr(ϑ))er

is the factorization of pOK as a product of prime ideals.

Proof. The ring homomorphism Z[X] → Fp[X] induces a ring isomorphism

Z[X]/(p, gi)
∼−→ Fp[X]/(gi) and the ring homomorphism Z[X] → Z[ϑ] induces an

isomorphism Z[X]/(p, gi)
∼−→ Z[ϑ]/(p, gi(ϑ)). Since Fp[X]/(gi) is a field, the ideal

(p, gi(ϑ)) of Z[ϑ] is maximal. The inclusion Z[ϑ] → OK induces a ring homomor-
phism

ψ : Z[ϑ]/(p, gi(ϑ))→ OK/(p, gi(ϑ)).

We will show that that the condition on the prime number p implies that it is an
isomorphism.

Surjectivity: Let α ∈ OK and put k = (OK : Z[ϑ]). Since p ∤ k there are x, y ∈ Z
such that xk+ yp = 1. Then α = xkα+ ypα ∈ Z[ϑ] + pOK and so ψ(xkα) =
xkα = α.

Injectivity: Z[ϑ]/(p, gi(ϑ)) is a field, so it suffices to show that ψ(1) ̸= 0. Suppose
ψ(1) = 0. Then 1 ∈ pOK + gi(ϑ)OK and so k ∈ pkOK + gi(ϑ)kOK ⊆
pZ[ϑ] + gi(ϑ)Z[ϑ], which means that k = 0 in the field Z[ϑ]/(p, gi(ϑ)). This
field is of characteristic p. Contradiction with p ∤ k.
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3 Rings of Integers of Number Fields

So the ideals (p, gi(ϑ)) of OK are maximal ideals of residue class degree deg(gi).
Next we show that they are different. Let i ̸= j. Then gi and gj are different
irreducible polynomials in Fp[X]. So there are u, v ∈ Z[X] such that u·gi+v·gj = 1,
that is ugi + vgj ∈ 1 + pZ[X]. It follows that u(ϑ)gi(ϑ) + v(ϑ)gj(ϑ) ∈ 1 + pZ[ϑ].
Therefore, 1 ∈ (p, gi(ϑ), gj(ϑ)) = (p, gi(ϑ)) + (p, gi(ϑ)). So the maximal ideals are
comaximal and in particular they are different. Finally we have

(p, g1(ϑ))
e1 · · · (p, gr(ϑ))er ⊆ (p, g1(ϑ)

e1 · · · gr(ϑ)er ) = (p, f(ϑ)) = (p)

and since the residue class degree of (p, gi(ϑ)) equals deg(gi), it follows from The-
orem 3.4 that we have equality here.

A straightforward application of this theorem yields the splitting of primes in a
quadratic number field. Let m be a squarefree integer ̸= 1. We will compute the
factorization of prime numbers in the quadratic number field K = Q(

√
m). The

ring of integers of K is Z[ωm]. Since the index of Z[
√
m] in Z[ωm] equals 1 or 2, we

can apply Theorem 3.6 for the factorization of prime numbers using the primitive
element

√
m if the prime number is odd or if the index equals 1.

Let p be a prime number. The polynomial X2 −m is the minimal polynomial of√
m over Q. The polynomial X2 − m ∈ Fp[X] is reducible if and only if m is a

square in Fp. We have the following cases for the factorization of (p) in Z[ωm] for
p odd or m ≡ 2, 3 (mod 4):

1. p ∤ m and m ∈ F∗
p is not a square. Then (p) is a maximal ideal. In this case

p remains prime.

2. p ∤ m and m ∈ F∗
p is a square, say m = n2 with n ∈ Z. Then (p) = pp′, where

p = (p, n−
√
m) and p′ = (p, n+

√
m). In this case p splits completely, unless

p = 2 and m ≡ 2 (mod 4), in which case p ramifies.

3. p | m. Then (p) = p2, where p = (p,
√
m). In this case p ramifies.

For the factorization of (2) in Q(
√
m) with m ≡ 1 (mod 4) we can use the minimal

polynomial of 1+
√
m

2 . This is the polynomial f(X) = X2 −X + 1−m
4 . There are

two cases:

1. m ≡ 1 (mod 8). Then f(X) = X2 − X ∈ F2[X] and so (2) = pp′, where

p = (2, 1+
√
m

2 ) and p′ = (2, 1−
√
m

2 ). In this case 2 splits completely.

2. m ≡ 5 (mod 8). Then f(X) = X2+X+1 ∈ F2[X], an irreducible polynomial.
In this case 2 remains prime.

Now we have a complete picture of the splitting behavior of primes in a quadratic
number field:

3.7 Theorem. Let m ∈ Z be squarefree ̸= 1 and let p be an odd prime. The
factorization of the ideal (p) in the ring of integers of the quadratic number field
Q(
√
m) is as follows.
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3.1 Prime ideals

a) If p ∤ m and m is not a square in Fp, then p remains prime.

b) If p ∤ m and m ≡ n2 (mod p), then p splits completely:
(p) = (p, n−

√
m)(p, n+

√
m).

c) If p | m, then p ramifies: (p) = (p,
√
m)2.

For the prime 2 we have:

d) If m ≡ 2 (mod 4), then 2 ramifies: (2) = (2,
√
m)2.

e) If m ≡ 3 (mod 4), then 2 ramifies: (2) = (2, 1 +
√
m)2.

f) If m ≡ 1 (mod 8), then 2 splits completely: (2) = (2, 1−
√
m

2 )(2, 1+
√
m

2 ).

g) If m ≡ 5 (mod 8), then 2 remains prime.

Note that this computation shows that a prime p ramifies in a quadratic number
field if and only if it is a divisor of the discriminant of that field. In section 3.4
we will see that this holds for any number field (Theorem 3.30). The splitting of
an odd prime number p in a quadratic number field Q(

√
m) is determined by the

residue class of m modulo p. The following terminology is often used.

3.8 Definition. Let p be a prime number and a ∈ Z such that p ∤ a. If a is a square
in F∗

p, the integer a is called a quadratic residue modulo p. Otherwise it is called a
quadratic nonresidue modulo p.

By squaring 1 up to p−1
2

and taking the residues of these outcomes by division by p
one obtains all quadratic residues modulo p. Figure 3.1 is a graphic representation
of the quadratic residues modulo the first twelve odd prime numbers. Because −1 is
a quadratic residue modulo a prime ≡ 1 (mod 4), for these primes the distribution
of the quadratic residues is symmetric with respect to the midpoint of the interval.
For primes ≡ 3 (mod 4) quadratic residues map to quadratic nonresidues under
reflection in the midpoint.

Problem. For the first twelve odd primes p the following holds

� for primes p ≡ 1 (mod 4) there are more quadratic residues in the first (and
fourth) quarter of the interval [0, p] than in the second (and third) quarter;

� for primes p ≡ 3 (mod 4) there are more quadratic residues in the first half of
the interval [0, p] than in the second half.

Is this generally true for all odd primes?

This is solved in chapter 9 using complex analytic methods. It is generally true
and surprisingly that the difference in these numbers depends on the orders of the
ideal class groups of Q(

√
−p).
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quadratic residue
quadratic nonresidue

0 1 2

quadratic residues modulo 3:

0 1 2 3 4

quadratic residues modulo 5:

0 1 2 3 4 5 6

quadratic residues modulo 7:

0 1 2 3 4 5 6 7 8 9 10

quadratic residues modulo 11:

0 1 2 3 4 5 6 7 8 9 10 11 12

quadratic residues modulo 13:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

quadratic residues modulo 17:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

quadratic residues modulo 19:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

quadratic residues modulo 23:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

quadratic residues modulo 29:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

quadratic residues modulo 31:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

quadratic residues modulo 37:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

quadratic residues modulo 41:

Figure 3.1: Quadratic residues modulo the first twelve odd primes
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3.9 Example. Z[ 3
√
5] is the ring of integers of Q( 3

√
5), see exercise 8 of chapter 1.

We factorize 2, 3, 5 and 7 in Q( 3
√
5) by factorizing X3 − 5 over F2, F3, F5 and F7

respectively, where α = 3
√
5:

(2) = (2, 1 + α)(2, 1 + α+ α2),

(3) = (3, 1 + α)3,

(5) = (5, α)3,

(7) is a prime ideal.

So: 7 remains prime, 3 and 5 totally ramify and 2 splits as a product of two prime
ideals having different residue class degrees.

3.10 Example. Let α ∈ R satisfy α3 = α+ 1. The ring of integers of Q(α) is Z[α]
(exercise 6 of chapter 1). Over F23 we have

X3 −X − 1 = (X − 10)2(X − 3).

So the factorization of 23 in Q(α) is

(23) = (23, α− 10)2(23, α− 3).

Note that the two prime ideals above 23 have different ramification indices.

These examples show that residue class degrees and ramification indices of prime
ideals above the same prime number may differ. For Galois extensions this does
not happen. It is a consequence of:

3.11 Theorem. Let K : Q be a Galois extension and p a prime number. Then
Gal(K : Q) operates transitively on the set of prime ideals of K above p.

Proof. Put G = Gal(K : Q) and X = { p ∈ Max(OK) | p ∩ Q = pZ }. Suppose
the action of G on X is not transitive: there are p1, p2 ∈ X such that σ(p1) ̸= p2
for all σ ∈ G. Then by the Chinese Remainder Theorem there is an α ∈ OK such
that

α ≡

{
0 modulo p2,

1 modulo σ(p1) for all σ ∈ G.

So σ−1(α) ≡ 1 (mod p1) for all σ ∈ G. It follows that NKQ (α) =
∏
σ∈G σ(α) /∈

p1 ∩Q = pZ. But since α ∈ p2, we have NKQ (α) = α ·
∏
σ ̸=1 σ(α) ∈ p2 ∩ Q = pZ.

Contradiction.

3.12 Corollary. Let K : Q be a Galois extension, p a prime number and p1, p2 ∈
Max(OK) above p. Then e(p1) = e(p2) and f(p1) = f(p2).

Proof. There is a σ ∈ Gal(K : Q) such that σ(p1) = p2. This automorphism σ
induces an automorphism of OK , which in turn induces an isomorphism OK/p1

∼→
OK/p2. Hence f(p1) = f(p2). For the ramification indices we have

e(p1) = vp1
(pOK) = vσ(p1)(σ(pOK)) = vp2

(pOK) = e(p2).
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3.13 Terminology and notation. Let K : Q be a Galois extension and p a prime
number. The number e(p), where p is any prime ideal of OK above p, is called the

ramification index of p in K and is denoted by e
(K)
p . Similarly we have the residue

class degree f
(K)
p of p in K.

For K : Q a Galois extension and p a prime number the formula in Theorem 3.4
simplifies to n = ref , where e is the ramification index of p in K, f the residue
class degree of p in K and r the number of prime ideals of OK above p.

Let’s compute the splitting behavior of a prime p in a cyclotomic field Q(ζm). The
minimum polynomial of ζm over Q is the m-th cyclotomic polynomial

Φm(X) =
∏

ζ∈µ(C)
o(ζ)=m

(X − ζ) =
∏

0≤k<m
gcd(k,m)=1

(X − ζkm).

Since Z[ζm] is the ring of integers, the splitting of p can be computed by factorizing
the m-th cyclotomic polynomial over Fp. First we consider the case p ∤ m.

3.14 Proposition. Let m ∈ N∗ and p a prime number with p ∤ m. Then p does not
ramify in Q(ζm) and the residue class degree of p in Q(ζm) is equal to the order of
p in the group (Z/m)∗.

Proof. Let f be the order of p ∈ (Z/m)∗. For p ∈ Max(Z[ζm]) above p, the
extension Z[ζm]/p : Fp is the m-th cyclotomic extension of Fp. It is a Galois
extension and its Galois group is generated by the Frobenius automorphism x 7→ xp.
This automorphism is of order f . So the polynomial Φm ∈ Fp[X] is a product of
φ(m)/f irreducible polynomials, each of degree f . It follows that pZ[ζm] is a
product of φ(m)/f prime ideals of residue class degree f .

For the general case we will use the following lemma.

3.15 Lemma. Let m,n ∈ N∗ and p a prime number. Then

(i) Φmn(X) | Φn(Xm),

(ii) Φn(X
p) =

{
Φpn(X) if p | n,
Φn(X)Φpn(X) if p ∤ n.

Proof.

(i) Φmn(X) is the minimal polynomial of ζmn and this root of unity is a zero of
Φn(X

m).

(ii) In both cases the right hand side divides the left hand side. For p | n this
follows from (i). For p ∤ n use that Φn and Φpn are different irreducible
monic polynomials which both divide Φn(X

p). Equality follows by comparing
degrees.
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3.16 Theorem. Let m ∈ N∗, p a prime number, r = vp(m), m = prm0 and
K = Q(ζm). Then

e(K)
p = φ(pr) and f (K)

p = the order of p ∈ (Z/m0)
∗.

Proof. The case r = 0 is dealt with in Proposition 3.14, so we assume that
r > 0. By Lemma 3.15

Φprm0
(X) = Φpr−1m0

(Xp) = · · · = Φpm0
(Xpr−1

) =
Φm0

(Xpr )

Φm0
(Xpr−1)

.

Hence in Fp[X]:

Φm(X) · Φm0(X
pr−1

) = Φm0(X
pr )

and so

Φm(X) =
Φm0

(Xpr )

Φm0
(Xpr−1)

=
Φm0

(X)p
r

Φm0
(X)pr−1

= Φm0
(X)p

r−1(p−1).

The theorem follows from the splitting behavior of Φm for the case p ∤ m.

3.2 The norm of an ideal

The rings of integers of number fields are lattices, and so are the nonzero ideals,
more precisely:

3.17 Lemma. Let K be a number field and a a nonzero ideal of OK . Then a is a
lattice in K and the residue class ring OK/a is finite.

Proof. Let a ∈ a with a ̸= 0. Then aOK is a lattice in K: if α1, . . . , αn is
an integral basis of K, then aα1, . . . , aαn is a Z-basis of aOK . The ideal a is
sandwiched between aOK and OK : aOK ⊆ a ⊆ OK . We can take a to be an
element of a ∩ N∗. Then, if n = [K : Q], the index of aOK in OK is equal to an.
The index of a in OK is a divisor of this number.

Since nonzero ideals are of finite index in the ring of integers, we can make the
following definition.

3.18 Definition. Let K be a number field and let a be a nonzero ideal of OK . The
number of elements of the residue class ring OK/a is called the norm of the ideal
a. Notation: N(a) = #(OK/a).

The norm is multiplicative in the following sense;

3.19 Proposition. Let K be a number field and a and b nonzero ideals of OK .
Then N(ab) = N(a)N(b).
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Proof. This follows from Proposition 2.17 by induction on the number of prime
ideal factors in the factorization of a.

Note that for a prime ideal p of OK above p we have N(p) = #(OK/p) = pf(p).
Applying the above proposition to pOK = pe11 · · · perr yields

pn = N(p1)
e1 · · ·N(pr)

er = pe1f1 · · · perfr = pe1f1+···+erfr .

Thus we have in this way another proof of Theorem 3.4, a proof that uses the
finiteness of residue class rings of rings of integers of number fields.

The norm of an element is related to the norm of the ideal it generates:

3.20 Proposition. Let K be a number field and α a nonzero element of OK . Then
N(αOK) = |NKQ (α)|.

Proof. Let (α1, . . . , αn) be an integral basis of K and M the matrix of the Q-
linear transformation x 7→ αx with respect to the basis (α1, . . . , αn). Then by
definition NKQ (α) = det(M). The matrix M is the transition matrix from the basis
(αα1, . . . , ααn) to the basis (α1, . . . , αn). Then by Lemma 1.40

(OK : αOK) = |det(M)| = |NKQ (α)|.

For Galois extensions K : Q we have:

3.21 Proposition. Let K : Q be a Galois extension and a a nonzero ideal of OK .
Then

N(a)OK =
∏

σ∈Gal(L:K)

σ(a).

Proof. It suffices to prove that N(p)OK =
∏
σ σ(p) for prime ideals p. Let p be

a prime ideal of OK above a prime number p. Put e = e
(K)
p and f = f

(K)
p . Then

by Corollary 3.12∏
σ

σ(p) =
( ∏
q|pOK

q
)ef

=
( ∏
q|pOK

qe
)f

= (pOK)f = pfOK = N(p)OK ,

where q varies over the prime ideals of OK above p.

In particular:

3.22 Corollary. Let K be a quadratic number field, a a nonzero ideal of OK and
a′ its conjugate. Then [a′] = [a]−1.

Proof. By Proposition 3.21 aa′ = N(a)OK and so [a] · [a′] = 1.
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3.3 The ideal class group of a number field

In this section it is shown that the ideal class group of the ring of integers of a
number field is finite.

The ring OK of integers of a number field K is determined by the field K. Because
of this circumstance, objects related to OK are often attributed to K instead of
OK and as a consequence notations are adapted accordingly.

3.23 Terminology and notations. The ideal class group of the ring of integers of a
number fieldK is also called the ideal class group ofK. Notation: Cℓ(K). Similarly,
the groups of fractional ideals and of principal fractional ideals are denoted by I(K)
and P(K) respectively. Moreover, the monoid of nonzero ideals of OK is denoted
by I+(K).

The finiteness of the ideal class group of a number field is based on the following
proposition.

3.24 Proposition. Let K be a number field. Then there is a λ ∈ R such that for
every nonzero ideal a of OK there is a nonzero α ∈ a with |NKQ (α)| ≤ λN(a).

Proof. Let (α1, . . . , αn) be an integral basis of K and σ1, . . . , σn the embeddings
of K in C and let m ∈ N∗ be such that mn ≤ N(a) < (m + 1)n. Consider the
following subset of OK :{ n∑

j=1

mjαj

∣∣∣ mj ∈ N and mj ≤ m
}
.

This set has (m + 1)n elements. Since OK/a has less elements, there must exist
two of these elements which are congruent modulo a. Their difference is an element
α =

∑n
j=1mjαj in a with |mj | ≤ m. We have

|NKQ (α)| =
n∏
i=1

|σi(α)| ≤
n∏
i=1

n∑
j=1

|mj | · |σi(αj)| ≤
n∏
i=1

m

n∑
j=1

|σi(αj)|

= mn
n∏
i=1

n∑
j=1

|σi(αj)| ≤ N(a)

n∏
i=1

n∑
j=1

|σi(αj)|.

So we can take

λ =

n∏
i=1

n∑
j=1

|σi(αj)|

For a nonzero α ∈ a we have a ⊇ αOK and since OK is a Dedekind domain a | αOK .
By multiplicativity of the norm it follows that |NK

Q (α)| is a multiple of N(a). So
the λ in the proposition can be taken to be in N∗ and, therefore, there is a least
such λ. The ring OK is a principal ideal domain if and only if this least λ equals 1.
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3.25 Corollary. Let K and λ be as in the proposition. Then every ideal class of
OK contains a nonzero ideal b satisfying N(b) ≤ λ.

Proof. Let C be an ideal class of OK and a ∈ C−1. By Proposition 3.24 there
is a nonzero α ∈ a such that |NKQ (α)| ≤ λN(a). We have αOK = ab for an ideal

b ∈ C. From |NKQ (α)| = N(a)N(b) follows that N(b) ≤ λ.

3.26 Theorem. The ideal class group of a number field is finite.

Proof. Let K be a number field and λ be as in Proposition 3.24. By Corol-
lary 3.25 the ideal classes of OK are represented by ideals a with N(a) ≤ λ. Since
there are only finitely many prime numbers ≤ λ, the number of prime ideals p of
OK with N(p) ≤ λ is finite as well. Ideals a with N(a) ≤ λ are products of these
prime ideals. It follows that there are only finitely many of such ideals.

3.27 Example. For d ∈ Z squarefree with d ≡ 2, 3 (mod 4) the ring of integers of
Q(
√
d) is Z[

√
d]. An integral basis is (1,

√
d). For this basis the number λ in the

proof of Theorem 3.24 equals (1+ |
√
d|)2. For d = −5 we have λ = (1+

√
5)2 < 11.

In Example 2.12 it is shown that Z[
√
−5] is not a principal ideal domain. The ideal

p2 = (2, 1 +
√
−5) represents an ideal class of order 2 (Example 2.47). Ideals of

norm less than 11 are products of prime ideals of norm < 11 and these are above
prime numbers < 11. Since (2) = p22, the ideal p2 is the only prime ideal of norm 2.
From (3) = p3p

′
3 follows that p3 and p′3 are the prime ideals of norm 3. The ideal

p5 = (
√
−5) is the unique prime ideal of norm 5: we have (5) = p25. The element

3 +
√
−5 has norm 14, so (3 +

√
−5) = p2p7 for some prime ideal p7 of norm 7. In

fact (7) = p7p
′
7 = (7, 3 +

√
−5)(7, 3 −

√
−5). The ideals of Z[

√
−5] of norm ≤ 10

are: (1), p2, p3, p
′
3, p

2
2 = (2), p5 = (

√
−5), p2p3 = (1 +

√
−5), p2p′3 = (1 −

√
−5),

p7, p′7, p32 = 2p2, p23, p3p
′
3 = (3) and p2p5. The ideal class group is generated

by the classes represented by the prime ideals among these. From p3p
′
3 = (3) it

follows that [p′3] = [p3]
−1 and similarly for the other prime ideals. So the group is

generated by [p2], [p3] and [p7] ([p5] = 1). Since p2p3 and p2p7 are principal ideals
the group is generated by [p2] alone and by Example 2.47 it is a group of order
2. The algorithm in chapter 4 will simplify the computation considerably. Apart
from this, in chapter 5 we will see on general grounds that we could have taken
λ = 2. Then p2 is the only prime ideal to consider.

3.4 Ramification

3.28 Definition. Let K be a number field. A p ∈ Max(OK) with ramification
index e(p) > 1 is called ramified. We also say that in that case the prime p under
p ramifies in K.

In this section it is shown that for a given number field it are just the prime divisors
of its discriminant which ramify. We will use the following lemma.
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3.29 Lemma. Let K be a number field, p a prime number and α1, . . . , αn ∈ OK
such that (α1, . . . , αn) is an Fp-basis of OK/pOK . Then p | disc(K) if and only if
p | disc(α1, . . . , αn).

Proof. Clearly (α1, . . . , αn) is a Q-basis of K. Let (β1, . . . , βn) be an integral
basis of K. Then disc(α1, . . . , αn) = det(T )2 disc(K), where T is the transition
matrix from (β1, . . . , βn) to (α1, . . . , αn). Since both (α1, . . . , αn) and (β1 . . . , βn)
are Fp-bases of OK/pOK , the transition matrix T is invertible. Hence det(T ) ̸= 0,
that is p ∤ det(T ). So p | disc(α1, . . . , αn) if and only if p | disc(K).

3.30 Theorem. Let K be a number field and p a prime number. Then p ramifies
in K if and only if p | disc(K).

Proof. Suppose that p does not ramify in K, say pOK = p1 · · · pr with p1, . . . , pr
the different maximal ideals of OK above p. Put fi = f(pi) for i = 1, . . . , r. Choose
for each i an Fp-basis (βi1, . . . , βifi) of OK/pOK , where βij ∈ OK for all ij. The
Chinese Remainder Theorem implies that there are αij ∈ OK such that

αij ≡

{
βij (mod pi),

0 (mod pk) for all k ̸= i.

Then

(α11, . . . , α1f1 , α21, . . . , α2f2 , . . . . . . , αr1, . . . , αrfr )

is modulo pOK an Fp-basis of OK/pOK , and, therefore, also a Q-basis of K. By
Lemma 3.29 it suffices to prove that p ∤ disc(α11, . . . , αrfr ). For i ̸= k we have

αijαkl ∈ pOK , and so TrKQ (αijαkl) ∈ pOK . The matrix A = (TrKQ (αijαkl)) has the
following shape:

A =



A1

A2 ∗

∗
. . .

Ar


,

where the Ai are the fi×fi-matrices (TrKQ (αijαil)) and in the matrix outside these
square matrices along the diagonal all entries are in pZ. It suffices to prove that
p ∤ det(Ai) for i = 1, . . . , r, because det(A) ≡ det(A1)·det(A2) · · · det(Ar) (mod p).
Since the αi1, . . . , αifi form modulo pi a basis of OK/pi, we have in Fp:

TrKQ (αijαik) = Tr
(
Mαijαik

)
= Tr

(
Mαijαik

)
.

So det(Ai) is the discriminant of the Fp-basis of OK/pi. By Corollary 1.30 it follows

that det(Ai) ̸= 0, that is p ∤ det(Ai).

61



3 Rings of Integers of Number Fields

For the converse suppose that p ramifies in K. Then there is a p ∈ Max(OK)
above p such that pOK = pa, where a is an ideal of OK with p | a. Choose
an α ∈ a \ pOK . Then α2 ∈ pOK . The ring OK/pOK is an Fp-vector space of
dimension n = [K : Q]. The image α of α in OK/pOK is not 0, so there are
α1, . . . , αn ∈ OK such that (α1, . . . , αn) is a basis of the Fp-vector space OK/pOK
and α1 = α. The discriminant of (α1, . . . , αn) is the determinant of the matrix
(TrKQ (αiαj)). We show that the entries in the first row of this matrix are all

multiples of p. The 1j-entry equals TrKQ (ααj). Modulo p this is Tr(Mααj
), the

trace of the Fp-linear transformation x 7→ ααjx of OK/pOK . Since (ααj)
2 ∈ pOK ,

the square of this linear transformation is the 0-map. It follows that Tr(Mααj
) = 0,

that is p | TrKQ (ααj). Therefore, disc(α1, . . . , αn) = det(Tr(αiαj)) ∈ pZ.

3.31 Example. Let α satisfy α3 = α+1. The discriminant of Q(α) is −23 and its
ring of integers is Z[α]. In Example 3.10 we saw that 23 ramifies in Q(α). Since
23 is the only prime divisor of the discriminant, it is the only ramifying prime.

3.32 Example. Let p be a prime number and r ∈ N∗ and, moreover, r ≥ 2 if
p = 2. The discriminant of the cyclotomic field Q(ζpr ) is a divisor of a power of p.
(Lemma 1.48). We have for ideals in the ring of integers (p) = (1− ζpr )φ(p

r). The
prime p totally ramifies in Q(ζpr ). Since φ(p

r) > 1 the field is not Q, so p ramifies.
By Theorem 3.30 it is the only ramifying prime.

Exercises

1. Let R be a number ring. Show that nonzero prime ideals of R are maximal.

2. Let m ∈ Z be squarefree and ̸= 1. Prove that Z[
√
m] is a Dedekind domain if and

only if m ≡ 2, 3 (mod 4).

3. Prove the following for ideals in Z[
√
3]:

(33, 7− 3
√
3) = (4 + 3

√
3),

(13, 7 + 5
√
3) = (4 +

√
3),

(1 +
√
3) = (1−

√
3),

(4 +
√
3) ̸= (4−

√
3).

4. Compute the norm of the following ideals of Z[
√
7]:

(
√
7), (8 + 3

√
7), (1 +

√
7), (3 +

√
7),

(2 +
√
7), (1 +

√
7, 3 +

√
7), (1 +

√
7) ∩ (3 +

√
7).
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Exercises

5. Let ω =
√
−14. Factorize the following ideals of Z[

√
−14] as a product of maximal

ideals:

(11− ω), (2− ω), (22− 22ω), (13− 2ω),
(1− ω), (13− 2ω)(1− ω), (11− ω, 2− ω), (11− ω, 1− ω),
(13− 2ω, 1− ω), (11− ω) ∩ (1− ω).

6. Compute all nonzero ideals a of Z[
√
10] with N(a) ≤ 17.

7. Prove that Z[ 1
2
+ 1

2

√
−19] is a principal ideal domain.

8. Prove that Z[
√
6] is a principal ideal domain. (It is even Euclidean.)

9. Prove that the ideal class group of Q(
√
−6) is of order 2.

10. Show that the ring of integers of Q(
√
m) is not a principal ideal domain for m

squarefree < 0, m ̸≡ 5 (mod 8) and m ̸= −1,−2,−7.

11. We will show that the Mordell equation for k = −5 has no solutions. (See exercise 10
of chapter 1.) Let x, y ∈ Z satisfy y2 + 5 = x3.

(i) Show that x is odd and that y is even.

(ii) Prove that the ideal (y +
√
−5) of Z[

√
−5] is the cube of an ideal.

(iii) Show that y +
√
−5 is a cube in Z[

√
−5] and this leads to a contradiction.

(iv) Also the identity (y2 + 4) = (x − 1)(x2 + x + 1) for x, y ∈ Z leads to a
contradiction. How? (Hint: show that x2 + x+ 1 ≡ 3 (mod 4).)

12. Let K be a number field of degree n and let (α1, . . . , αn) be a Q-basis of K with
α1, . . . , αn ∈ OK . Put d = disc(α1, . . . , αn). Show that a prime divisor p of d with
vp(d) odd ramifies in K.

13. (i) Show that for K = Q(
√
−23) we can take λ = 11 in Proposition 3.24.

(ii) Compute the prime ideal factorizations of the ideals (p) of Z[ω−23] for the
prime numbers p ≤ 11.

(iii) Compute the prime ideal factorization of the ideals (ω−23) and (1 + ω−23) of
Z[ω−23].

(iv) Compute the ideal class group of Q(
√
−23).

14. Let α ∈ R satisfy α3 = α + 2. The ring Z[α] is the ring of integers of Q(α)
(exercise 6(ii) of chapter 1).

(i) Compute all prime ideals p of Z[α] of norm ≤ 10.

(ii) What is the number of nonzero ideals a of Z[α] of norm ≤ 10 ?

(iii) Show that the nonzero ideals of Z[α] of norm ≤ 10 are principal.

(iv) Which prime numbers ramify in Q(α) ? Compute their factorization in Z[α].

15. Let K be a number field of degree n and suppose that p is a prime number less
than n which splits completely in K. Show that there is no α ∈ OK such that
OK = Z[α].
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16. Let K be the unique cubic subfield of Q(ζ31). Prove that there is no α ∈ OK such
that OK = Z[α].

17. (i) Show that the ideals (2), (3) and (7) of Z[ζ5] are prime.

(ii) Show that 5 totally ramifies in Z[ζ5] and that the prime ideal of Z[ζ5] above
5 is principal.

(iii) Show that 11 splits completely in Z[ζ5] and that (2 + ζ5) is a prime ideal of
Z[ζ5] above 11.

(iv) Show that 1 + ζ5, 1 + ζ5 + ζ25 and 1 + ζ5 + ζ25 + ζ35 are units of Z[ζ5].

18. Let α ∈ C be an algebraic integer with minimal polynomial f ∈ Z[X]. Let p be a
prime number with p ∤ disc(f). Show that p ∤ (OK : Z[α]).

19. Let α ∈ C be an algebraic integer with minimal polynomial f ∈ Z[X]. Let k ∈ Z
and p a prime number such that p | f(k) and p2 ∤ f(k). Prove that the ideal
(p, α− k) of OK is a prime ideal of norm p.

20. Let p be a prime number. Let’s call a polynomial

f = Xn + a1X
n−1 + · · ·+ an−1X + an ∈ Z[X]

an Eisenstein p-polynomial if p | a1, . . . , an and p2 ∤ an. Let K be a number field
of degree n.

(i) Suppose that p totally ramifies in K, say (p) = pn in OK . Let α ∈ p \ p2.
Show that the minimal polynomial of α over Q is an Eisenstein p-polynomial.

(ii) Let K = Q(α) with α ∈ OK . Suppose that the minimal polynomial of α over
Q is an Eisenstein p-polynomial. Prove that p totally ramifies in K.

(iii) Suppose that p totally ramifies in K. Prove that there is an α ∈ OK such
that p ∤ (OK : Z[α]).

21. Let p be a prime number, r a positive integer and ϑ = ζpr+ζ
−1
pr . Show that p totally

ramifies in Q(ϑ). Show that the unique prime ideal of Z[ϑ] above p is principal.
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Fractional ideals of quadratic number fields are lattices of rank 2. They are equiv-
alent to lattices having 1 as a first basis element. Such fractional ideals are deter-
mined by the second basis element. Thus equivalence of ideals is translated into
equivalence in the set of these second elements. This is the basis for algorithms
for ideal class groups of quadratic number fields. In the imaginary case the action
of SL2(Z) on the upper half of the complex plane is used, whereas in the real case
use is made of continued fractions. Continued fractions are also used to show the
existence of a fundamental unit for real quadratic number fields. Moreover, they
provide an easy computation of the fundamental unit (section 4.8).

In the last section the 2-rank of the ideal class group is determined. Especially
in the real case this is—though not difficult—quite elaborate because of the many
case distinctions that have to be made. Later, when the main theorems of class
field theory are available, it will be an easy application (Application 15.68).

Throughout this chapter m is a squarefree integer ̸= 1.

The discriminant of the quadratic number field Q(
√
m)) is denoted by Dm (so

Dm = m if m ≡ 1 (mod 4) and Dm = 4m otherwise). In the first section it is
shown that the splitting behavior of prime numbers in Q(

√
m) is determined by

their residue class modulo |Dm|. It is an application of the well-known Quadratic
Reciprocity Law.

4.1 The Quadratic Reciprocity Law

An interesting question is

Which primes remain prime in a given quadratic number field?

In the previous chapter we saw that an odd prime p remains prime in Q(
√
m) if

and only if m is not a square in Fp. So the question

In which quadratic number fields does a given prime remain prime?

is relatively easy: only a finite number of cases need to be considered. At first
sight the first question is difficult. However, the Quadratic Reciprocity Law makes
it accessible. The notation introduced in the following definition will be used in its
formulation.
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4.1 Definition. Let p be an odd prime and a ∈ Z. We define:

(
a

p

)
=


0 if p | a,
1 if p ∤ a and a is quadratic residue modulo p,

−1 if p ∤ a and a is a quadratic nonresidue modulo p.(
a

p

)
is called a Legendre symbol.

For a fixed odd prime p the Legendre symbol can be seen as a map

Z→ {0, 1,−1}, a 7→
(
a

p

)

and since

(
a

p

)
depends only on the residue class of a modulo p, it determines a

map

Fp → {0, 1,−1}, a 7→
(
a

p

)
.

The group F∗
p is cyclic of even order, so the squares in this group form a subgroup

of index 2. The image of the group homomorphism F∗
p → F∗

p, a 7→ a
p−1
2 is {1,−1}

and the unique subgroup of index 2 is its kernel. From this follows:

4.2 Proposition (Euler’s criterion). Let a ∈ Z and p an odd prime. Then(
a

p

)
≡ a

p−1
2 (mod p).

Easy consequences of this criterion are:

4.3 Corollary.

(
ab

p

)
=

(
a

p

)(
b

p

)
for all odd primes p and all a, b ∈ Z.

4.4 Corollary. Let p be an odd prime number. Then

(
−1
p

)
= (−1)

p−1
2 .

The first proofs of the Quadratic Reciprocity Law were given by Gauß. Here we
give a proof of the Quadratic Reciprocity Law using finite fields as described in [22].
Another proof, using the theory of splitting of primes in abelian number fields, will

be given in chapter 7. First we compute the Legendre symbol

(
2

p

)
.

4.5 Proposition. Let p be an odd prime. Then

(
2

p

)
= (−1)

p2−1
8 .
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Proof. Let L be the splitting field of X8 − 1 over Fp. Then L = Fp(ζ), where ζ
is a primitive 8-th root of unity. The element η = ζ + ζ−1 ∈ L satisfies

η2 = (ζ + ζ−1)2 = ζ2 + ζ−2 + 2 = ζ−2(ζ4 + 1) + 2 = 2.

So 2 is a square in Fp if and only if η ∈ Fp and this in turn is equivalent to ηp = η.
From ηp = ζp+ ζ−p it follows easily that ηp = η if and only if p ≡ ±1 (mod 8).

The sign of (−1)
p2−1

8 depends only on p modulo 8. We could also write(
2

p

)
=

{
1 if p ≡ 1, 7 (mod 8),

−1 if p ≡ 3, 5 (mod 8).

Prime numbers are positive by definition. Another choice for a system of repre-
sentatives of the irreducible integers modulo association is obtained by requiring
the odd ones to be congruent to 1 modulo 4. For p an odd prime, p∗ is the prime
associated to p which is congruent to 1 modulo 4. This notation is used in the
proof of the Quadratic Reciprocity Law below.

4.6 Notation. For odd n ∈ Z we write n∗ = (−1)n−1
2 n.

4.7 Theorem (Quadratic Reciprocity Law). Let p and q be different odd primes.
Then (

p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 .

Proof. Let L be the splitting field of f = Xq − 1 ∈ Fp[X] over Fp. Then
L = Fp(ζ), where ζ is a primitive q-th root of unity. The discriminant of f is easily
computed:

disc(f) = (−1)
q−1
2

q−1∏
k=0

f ′(ζk) = (−1)
q−1
2

q−1∏
k=0

qζq−1 = (−1)
q−1
2 qq = q∗qq−1 ∈ Fp.

The Galois group GalFp
(f) of the polynomial f is the group of permutations of

the set {1, ζ, . . . , ζq−1} induced by the automorphisms in Gal(L : Fp). The group
Gal(L : Fp) is generated by the automorphism given by ζ 7→ ζp. So GalFp(f) is the
cyclic group generated by the permutation σ : ζj 7→ ζjp of {1, ζ, . . . , ζq−1}. It is a
product of q−1

n disjoint cycles of length n, where n is the order of p in F∗
q . We have(

q∗

p

)
= 1 ⇐⇒ disc(f) is a square modulo p

⇐⇒ GalFp(f) consists of even permutations

⇐⇒ σ is an even permutation

⇐⇒ q − 1

n
is even ⇐⇒ n

∣∣∣ q − 1

2
⇐⇒

(
p

q

)
= 1.
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So we have (
p

q

)(
q∗

p

)
= 1

and since (
q∗

p

)
=

(
(−1)

q−1
2

p

)
=

(
−1
p

) q−1
2
(
q

p

)
= (−1)

p−1
2 · q−1

2

(
q

p

)
,

the Quadratic Reciprocity Law follows.

4.8 Application. Corollary 4.4 and Proposition 4.5 are called the Subsidiary Laws
for Quadratic Reciprocity. The Quadratic Reciprocity Law and its Subsidiary Laws
enable us to compute Legendre symbols; for example(

59

97

)
= −

(
97

59

)
= −

(
38

59

)
= −

(
2

59

)(
19

59

)
=

(
19

59

)
= −

(
59

19

)
= −

(
2

19

)
= 1.

Since in the computation numbers have to be factorized, for large numbers this is
an obstacle. See, however, the end of this section, especially Application 4.15.

4.9 Examples. For odd primes p we know that p remains prime in a quadratic

number field Q(
√
m) if and only if

(
m

p

)
= −1. So Corollary 4.4 implies

p remains prime in Q(i) ⇐⇒ p ≡ 3 (mod 4)

and by Proposition 4.5 we have

p remains prime in Q(
√
2) ⇐⇒ p ≡ 3, 5 (mod 8)

and
p remains prime in Q(

√
−2) ⇐⇒ p ≡ 5, 7 (mod 8).

From (
3

p

)
= (−1)

p−1
3

(
p

3

)
follows that

p remains prime in Q(
√
3) ⇐⇒ p ≡ 3, 7 (mod 12)

and
p remains prime in Q(

√
−3) ⇐⇒ p ≡ 2 (mod 3).

For the quadratic number fields K in the examples we see that there is an N ∈ N∗

such that the splitting behavior in K of a prime only depends on its residue class
modulo N . This is a consequence of the Quadratic Reciprocity Law and we will
see that this holds for quadratic number fields in general. The following lemma
will be used:
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4.1 The Quadratic Reciprocity Law

4.10 Lemma. Let n ∈ Z with n ̸= 0. Then n has a unique factorization

n = up∗1
k1 · · · p∗r

kr ,

where p1, . . . , pr are different odd primes, k1, . . . , kr ∈ N∗ and u ∈ {±2k|k ∈ N} .

Proof. This is just the unique factorization in the principal ideal domain Z with
another choice for the irreducible elements.

4.11 Proposition. For each odd prime p the Legendre symbol

(
m

p

)
only depends

on the residue class of p modulo |Dm|.

Proof. Use the factorization of the squarefree m as in the above lemma:

m = up∗1 · · · p∗r .

Then u ∈ {1,−1, 2,−2} and by quadratic reciprocity we have(
m

p

)
=

(
u

p

)(
p∗1
p

)
· · ·
(
p∗r
p

)
=

(
u

p

)(
p

p1

)
· · ·
(
p

pr

)
.

From this the proposition follows. Note that u = 1 if m ≡ 1 (mod 4), u = ±2 if
m ≡ 2 (mod 4), and u = −1 if m ≡ 3 (mod 4)

So for the splitting behavior of primes in a given quadratic number field only a
finite number of cases have to be considered:

4.12 Corollary. For odd prime numbers p, q with p ≡ q (mod |Dm|) we have

p remains prime in Q(
√
m) ⇐⇒ q remains prime in Q(

√
m).

In chapter 9 another proof of this phenomenon will be given.

The proof of Proposition 4.11 suggests that the following definition could be useful.

4.13 Definition. Let b ∈ N∗ with b odd and let a ∈ Z. We define:(
a

b

)
=
∏
p|b

(
a

p

)vp(b)
.

This symbol is called the Jacobi symbol.

What makes this symbol interesting is the following theorem, which is a general-
ization of the Quadratic Reciprocity Law and its Subsidiary Laws. The proof is
straightforward when using the following congruences:

b =
∏
p|b

(1 + (p− 1))vp(b) ≡
∏
p|b

(1 + vp(b)(p− 1)) ≡ 1 +
∑
p|b

vp(b)(p− 1) (mod 4).
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4 Quadratic Number Fields

and

b2 =
∏
p|b

(
1+(p2−1)

)vp(b) ≡∏
p|b

(
1+vp(b)(p

2−1)
)
≡ 1+

∑
p|b

vp(b)(p
2−1) (mod 16).

4.14 Theorem.

(i) Let b ∈ N∗ be odd and a1, a2 ∈ Z such that a1 ≡ a2 (mod b).

Then

(
a1
b

)
=

(
a2
b

)
.

(ii) Let b ∈ N∗ be odd. Then

(
−1
b

)
= (−1) b−1

2 .

(iii) Let b ∈ N∗ be odd. Then

(
2

b

)
= (−1) b2−1

8 .

(iv) Let a, b ∈ N∗ be odd such that gcd(a, b) = 1.

Then

(
a

b

)(
b

a

)
= (−1) a−1

2 · b−1
2 .

4.15 Application. Jacobi symbols can be computed without factorizing numbers.
As a result the computation is as fast as the well known Euclidean algorithm for
the computation of the greatest common divisor. Lets verify whether 1741 is a
square modulo the prime 3299:(

1741

3299

)
=

(
3299

1741

)
=

(
1558

1741

)
=

(
2

1741

)(
779

1741

)
= −

(
779

1741

)
= −

(
1741

779

)
= −

(
183

779

)
=

(
779

183

)
=

(
47

183

)
= −

(
183

47

)
= −

(
42

47

)
= −

(
2

47

)(
21

47

)
= −

(
21

47

)
= −

(
47

21

)
= −

(
5

21

)
= −

(
21

5

)
= −

(
1

5

)
= −1.

So 1741 is not a square modulo 3299.

4.2 Equivalence of quadratic numbers

A fractional ideal of the quadratic number field Q(
√
m) is a lattice Zγ1 + Zγ2 of

Q(
√
m). The fractional ideal is equivalent to Z + Zγ2

γ1
. Our first concern is: for

which γ ∈ Q(
√
m)\Q is Z+Zγ a fractional ideal of Q(

√
m)? The answer is simple.

We use the following terminology:
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4.2 Equivalence of quadratic numbers

4.16 Definition. A γ ∈ C is called a quadratic number if it is a zero of an irreducible
polynomial of degree 2 over Q. As is easily verified, a quadratic number is the zero
of a unique polynomial of the form aX2 + bX + c ∈ Z[X], where a > 0 and
gcd(a, b, c) = 1. The integer b2 − 4ac is called the discriminant of the quadratic
number γ. Notation: disc(γ).

4.17 Lemma. Let γ ∈ Q(
√
m)\Q be a zero of the polynomial aX2+bX+c ∈ Z[X],

where a > 0 and gcd(a, b, c) = 1. Then

(i) disc(γ) = disc(aγ) = disc(1, aγ), the last disc standing for the discriminant
of a Q-basis of Q(

√
m), and

(ii) (Za + Zaγ)(Za + Zaγ′) = a(Z + Zaγ), where the product is the product of
lattices.

(iii) Za+ Zaγ is an ideal of Z[ωm] if and only if Z+ Zaγ = Z[ωm].

Proof.

(i) The polynomial g = X2 + bX + ac is the minimal polynomial of aγ over Q.
We have disc(γ) = b2 − 4ac = disc(aγ) = disc(g) = disc(1, aγ).

(ii) A straightforward computation:

(Za+ Zaγ)(Za+ Zaγ′) = a(Za+ Zaγ + Zaγ′ + Zaγγ′)
= a(Za+ Zb+ Zc+ Zaγ) = a(Z+ Zaγ).

(iii) If Za+ Zaγ is an ideal, then by (ii) Z+ Zaγ is an ideal as well and since it
contains 1, it equals Z[ωm]. Conversely, if Z+ Zaγ = Z[ωm], then Za+ Zaγ
is an ideal: a2γ, (aγ)2 = −baγ − ca ∈ Za+ Zaγ.

4.18 Theorem. Let γ ∈ Q(
√
m) \Q. Then Z+Zγ is a fractional ideal of Z[ωm] if

and only if disc(γ) = Dm.

Proof. Let γ be a zero of aX2 + bX + c ∈ Z[X] with a > 0 and gcd(a, b, c) = 1.
Equivalent are the following:

Z+ Zγ is a fractional ideal.

Za+ Zaγ is an ideal.

Z+ Zωm = Z+ Zaγ. (Lemma 4.17(iii))

disc(1, ωm) = disc(1, aγ).

Dm = disc(γ). (Lemma 4.17(i))
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4 Quadratic Number Fields

4.19 Definition. Let z ∈ C \Q and A =
(
a b
c d

)
∈ GL2(Z) (that is A ∈ M2(Z) and

det(A) = ±1). We define

Az =
az + b

cz + d
.

4.20 Proposition. (A, z) 7→ Az is an action of the group GL2(Z) on the set C \Q.

Proof. Clearly Iz = z. Let A =
(
a b
c d

)
and let B = ( p qr s ). Then

A(Bz) =

(
a b
c d

)
pz + q

rz + s
=
apz+qrz+s + b

cpz+qrz+s + d
=
a(pz + q) + b(rz + s)

c(pz + q) + d(rz + s)

=
(ap+ br)z + (aq + bs)

(cp+ dr)z + (cq + ds)
= (AB)z.

4.21 Definition. Numbers z1, z2 ∈ C \ Q are called equivalent if there is an A ∈
GL2(Z) such that z2 = Az1. Notation: z1 ≃ z2. (So numbers are equivalent if they
are in the same orbit under the action of GL2(Z).)

4.22 Proposition. Let γ1, γ2 ∈ C \Q. Then

γ1 ≃ γ2 ⇐⇒ there is a β ∈ C∗ such that Z+ Zγ2 = Zβ + Zβγ1.

Proof.

⇒: Suppose γ1 ≃ γ2, say γ2 =
(
a b
c d

)
γ1 with

(
a b
c d

)
∈ GL2(Z). Then

Z+ Zγ2 = Z+ Z
aγ1 + b

cγ1 + d
∼ Z(cγ1 + d) + Z(aγ1 + b) = Z+ Zγ1,

where the last equality follows from ad− bc = ±1.

⇐: Suppose there is a β ∈ C∗ with Z + Zγ1 = Zβ + Zβγ2. Then there is an
A ∈ GL2(Z) such that (

γ2
1

)
= A

(
βγ1
β

)
.

Put A =
(
a b
c d

)
. Then

γ2 =
aβγ1 + bβ

cβγ1 + dβ
=
aγ1 + b

cγ1 + d
= Aγ1.

So for fractional ideals in a quadratic number field we have:

4.23 Corollary. Let γ1 and γ2 be elements of Q(
√
m) \Q with disc(γ1) = disc(γ2).

Then
Z+ Zγ1 ∼ Z+ Zγ2 ⇐⇒ γ1 ≃ γ2.
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4.3 Equivalence of lattices in C

Equivalent quadratic numbers have equal discriminants:

4.24 Proposition. Let γ1, γ2 ∈ Q(
√
m) \ Q such that γ1 ≃ γ2. Then disc(γ1) =

disc(γ2).

Proof. The group GL2(Z) is generated by the matrices ( 1 1
0 1 ),

(
0 −1
1 0

)
and

(−1 0
0 1

)
(exercise 6). So it remains to verify that disc(γ1) = disc(γ1 + 1) = disc(−γ−1

1 ) =
disc(−γ1) and this is straightforward.

4.3 Equivalence of lattices in C

In the imaginary quadratic case the field is (embedded as) a subfield of C. Thus
lattices in imaginary quadratic number fields are lattices in the 2-dimensional real
vector space C.

4.25 Definition. Let Λ and Γ be lattices in the real vector space C. Then Λ and
Γ are called equivalent if there is an α ∈ C such that αΛ = Γ.

A lattice in the real vector space C is equivalent to a lattice Z+Zγ with ℑ(γ) > 0:
a lattice Zα1 + Zα2 is equivalent to Z+ Zα2

α1
= Z+ Z−α2

α1
.

The group SL2(Z) acts on the upper half plane H = { z ∈ C | ℑ(z) > 0 }:

SL2(Z)×H → H, (
(
a b
c d

)
, z) 7→ az + b

cz + d
.

From

ℑ(Az) = detA · ℑ(z)
|cz + d|2

, (4.1)

where A =
(
a b
c d

)
, indeed it follows that Az ∈ H if z ∈ H and A ∈ SL2(Z). By

Proposition 4.22 and formula 4.1 we have:

4.26 Proposition. Let γ1, γ2 ∈ H. Then the lattices Z+Zγ1 and Z+Zγ2 in C are
equivalent if and only if there is an A ∈ SL2(Z) with γ2 = Aγ1.

4.27 Notation. A domain G in the upper half plane H is defined as follows:

G = { z ∈ C | ℑ(z) > 0, − 1
2 < ℜ(z) ≤

1
2 , |z| ≥ 1, |z| > 1 if ℜ(z) < 0 }.

See Figure 4.1.

This domain G is a fundamental domain for the action of SL2(Z) on H:

4.28 Theorem. G is a system of representatives of H/≃.
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4 Quadratic Number Fields

−1 − 1
2

0 1
2

1

ζ3
i

1 + ζ3

G

Figure 4.1: A fundamental domain for the action of SL2(Z) on H

Proof. Let z ∈ H. First we prove that there is an A ∈ SL2(Z) such that Az ∈ G.
For A =

(
a b
c d

)
we have

ℑ(Az) = ℑ(z)
|cz + d|2

.

Because c, d ∈ Z, the number of pairs (c, d) with |cz + d| less than a given number
is finite. From this it follows that there is an A ∈ SL2(Z) with ℑ(Az) maximal.
For T = ( 1 1

0 1 ) we have

ℑ(TAz) = ℑ(Az + 1) = ℑ(Az).

Now let n ∈ Z be such that

− 1
2 < ℜ(T

nAz) ≤ 1
2 .

Then ℑ(TnAz) is maximal as well. It follows that |TnAz| ≥ 1, since otherwise the
imaginary part of − 1

TnAz (=
(
0 −1
1 0

)
TnAz) would be greater than the imaginary

part of TnAz. If ℜ(TnAz) < 0 and |TnAz| = 1, then take
(
0 −1
1 0

)
TnAz. Hence

for each z ∈ H there is an A ∈ SL2(Z) with Az ∈ G.

Now suppose z1, z2 ∈ G with z1 ≃ z2, say z2 = Az1 with A =
(
a b
c d

)
. We may

assume that ℑ(z2) ≥ ℑ(z1), that is |cz1 + d| ≤ 1. Since z1 ∈ G this is only possible
if |c| ≤ 1: if |c| ≥ 2, then

|ℑ(cz1 + d)| = |c| · |ℑ(z1)| ≥ 2 · 12
√
3 > 1.

For c = 0: A = ( 1 b0 1 ) (if necessary replace A by −A) and so z2 = z1+b. Comparison
of the real parts yields b = 0, that is z2 = z1.

For c = 1: from |z1 + d| ≤ 1 follows that there are only two possibilities left:

74



4.4 Algorithm for the ideal class group of an imaginary quadratic number field

1. z1 = ω+1 and d = −1. Then b = −1− a and z2 = a(ω+1)−(a+1)
ω+1−1 = 1+ω+ a.

So a = 0 and z2 = z1.

2. |z1| = 1 and d = 0. Then b = −1 and z2 = a − z1. It follows that −z1 = i
and a = 0 (and then z2 = i = z1), or −z1 = ζ3 and a = 1 (and then
z2 = 1 + ζ3 = z1).

For c = −1: replacement of A by −A brings us to the case c = 1.

So for each z ∈ H there is a unique w ∈ G with w ≃ z.

4.4 Algorithm for the ideal class group of an
imaginary quadratic number field

In this section m is negative. Fractional ideals of an imaginary quadratic number
field are lattices in C and they are congruent modulo the subgroup of principal
fractional ideals if and only if they are equivalent as lattices in C.

4.29 Proposition. Let Gm = { γ ∈ G ∩Q(
√
m) | disc(γ) = Dm }. Then the map

Gm → Cℓ(Q(
√
m)), γ 7→ class of Z+ Zγ

is a bijection.

Proof. Suppose γ1, γ2 ∈ Gm. If Z + Zγ1 ∼ Z + Zγ2, then by Proposition 4.22
γ1 ≃ γ2. Because γ1, γ2 ∈ G, we have by Theorem 4.28 γ1 = γ2. So the map is
injective.

Now let γ ∈ Q(
√
m) with disc(γ) = Dm. Then to prove that there is a γ0 ∈ Gm

with Z + Zγ0 ∼ Z + Zγ. By Theorem 4.28 there is a γ0 ∈ G with γ0 ≃ γ. By
Proposition 4.24 we have disc(γ0) = disc(γ) = Dm, and so γ0 ∈ G ∩ Q(

√
m).

Finally by Proposition 4.22: Z+ Zγ0 ∼ Z+ Zγ.

So the fractional ideals Z + Zγ with γ ∈ Gm form a system of representatives of
the fractional ideals modulo the principal fractional ideals. The condition γ ∈ Gm
is easily translated into conditions on a triple (a, b, c) ∈ Z3:

4.30 Definition.

Vm = { (a, b, c) ∈ Z3 | a > 0, b2 − 4ac = Dm, −a ≤ b < a, c ≥ a, c > a if b > 0 }.

By definition of the discriminant of a quadratic number the map

Vm → Gm, (a, b, c) 7→ −b+
√
Dm

2a

is a bijection.
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2
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2
7
1

2
8
6

a

b
2

Figure 4.2: Computation of a system of representatives of Cℓ(Q(
√
−222))

4.31 Corollary. The map

(a, b, c) 7→ class of Za+ Z
−b+

√
Dm

2

from Vm to Cℓ(Q(
√
m)) is a bijection.

Again it follows that Cℓ(Q(
√
m)) is finite: let (a, b, c) ∈ Vm, then

4a2 ≤ 4ac = b2 −Dm ≤ a2 −Dm

and so
3a2 ≤ −Dm

that is

a ≤
√
−Dm

3
.
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Figure 4.3: Computation of a system of representatives of Cℓ(Q(
√
−491])

There are only finitely many such a. For each a there are finitely many b with
−a ≤ b < a, and for given a and b there is at most one c with b2 − 4ac = Dm.

Since an ideal Za + Z−b+
√
Dm

2
has norm a, for the λ in Proposition 3.24 we can

take:
⌊√

−Dm
3

⌋
. That is slightly better than ⌊ 2

π

√
−Dm⌋, the value that will follow

from estimates obtained in chapter 5 for number fields in general: Theorem 5.17,
see also Examples 5.12.

4.32 Example. m = −222. Then Dm = 4m = −888 and −Dm

3 = 296. So

a ≤ ⌊
√
296⌋ = 17. A system of representatives of the ideal class group is the set of

the following ideals (where ω =
√
−222):

Z+ Zω Z2 + Zω Z3 + Zω Z6 + Zω
Z7 + Z(3 + ω) Z7 + Z(−3 + ω) Z11 + Z(3 + ω) Z11 + Z(−3 + ω)
Z13 + Z(5 + ω) Z13 + Z(−5 + ω) Z14 + Z(4 + ω) Z14 + Z(−4 + ω)

See Figure 4.2. By Corollary 3.22 inversion in the ideal class group is induced by
(a, b, c) 7→ (a,−b, c), which in the diagram corresponds to the reflection in b = 0.
The classes of order ≤ 2 are represented by the ideals

Z+ Zω, Z2 + Zω, Z3 + Zω and Z6 + Zω.
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4 Quadratic Number Fields

So the ideal class group is an abelian group of order 12 and its 2-rank is 2: its
structure is C6 × C2.

4.33 Example. m = −491. Then Dm = m = −491 and a ≤
⌊√

491
3

⌋
= 12. From

b2 − 4ac = Dm follows that b is odd. A system of representatives of the ideal class

group is formed by the ideals (with ω = 1+
√
−491
2 ):

Z+ Zω Z3 + Zω Z3 + Z(−1 + ω)
Z5 + Z(1 + ω) Z5 + Z(−2 + ω) Z9 + Z(3 + ω)
Z9 + Z(−4 + ω) Z11 + Z(4 + ω) Z11 + Z(−5 + ω)

See Figure 4.3. The ideal class group is of order 9. The square of the class of
an ideal of norm 3 is the class of one of the ideals of norm 9, which is not the
inverse class of the ideal of norm 3. So the class of an ideal of norm 3 is of order
9. Therefore, the ideal class group is cyclic.

4.34 The product in { γ ∈ Q(
√
m) | disc(γ) = Dm }. Suppose γ1, γ2 ∈ Q(

√
m)

with disc(γ1) = disc(γ2) = Dm, i.e. Z + Zγ1 and Z + Zγ2 are fractional ideals of
Z[ωm] . How to determine γ3 such that

(Z+ Zγ1)(Z+ Zγ2) ∼ Z+ Zγ3 ?

Let the quadratic numbers γ1 and γ2 correspond to the triples (a1, b1, c1) and

(a2, b2, c2). We have γi =
−bi+

√
Dm

2ai
and Z+ Zγi ∼ Zai + Z−bi+

√
Dm

2 . The lattice

Zai + Z−bi+
√
Dm

2 is an ideal of Z[ωm] with norm ai. So(
Za1 + Z

−b1 +
√
Dm

2

)(
Za2 + Z

−b2 +
√
Dm

2

)
is an ideal with norm a1a2. As a lattice this ideal is spanned by

a1a2,
−a2b1 + a2

√
Dm

2
,
−a1b2 + a1

√
Dm

2
,
− b1b2+Dm

2 + b1+b2
2

√
Dm

2
.

Let d = gcd(a2, a1,
b1+b2

2 ) and let x, y, z ∈ Z be such that

xa2 + ya1 + z
b1 + b2

2
= d.

Then the lattice is

Za+ Z
−xa2b1 − ya1b2 − z b1b2+Dm

2 + d
√
Dm

2

where a ∈ Z. The norm is a1a2, so ad = a1a2. So γ3 corresponds to the triple
(a3, b3, c3) with

a3 =
a1a2
d2

, b3 =
xa2b1 + ya1b2 + z b1b2+Dm

2

d
.
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4.35 Computation of the representative in G. Suppose γ ∈ Q(
√
m) with

disc(γ) = Dm and ℑ(γ) > 0. How to find γ0 ∈ G with γ0 ≃ γ?

Consider the mapping γ
φ7→ − 1

γ + n, where n ∈ Z such that − 1
2 < ℜ(−

1
γ + n) ≤ 1

2 .

If γ corresponds to (a, b, c), then ℑ(γ) =
√
−Dm

2a and ℑ(− 1
γ +n) = ℑ(−

1
γ ) =

√
−Dm

2c .

We may assume that − 1
2 < ℜ(γ) ≤

1
2 . If γ /∈ G, then a > c, or a = c and b > 0.

If a > c, then ℑ(φ(γ)) =
√
Dm

2c >
√
Dm

2a . If a = c and b > 0, then φ(γ) ∈ G. If
(an, bn, cn) corresponds to φ

n(a), then an+1 = cn. There has to be an n such that
φn(γ) ∈ G, because otherwise we would have a strictly descending sequence in N:

a > c = a1 > c1 = a2 > c2 = a3 · · ·

So we have an algorithm for finding γ0.

The existence of a γ0 ∈ G with γ0 ≃ γ follows from Theorem 4.28. For imaginary
quadratic numbers it also follows from the above algorithm.

4.36 Example. We multiply in Example 4.32 the classes of

Z6 + Zω and Z14 + Z(−4 + ω).

We have: a1 = 6, b1 = 0, a2 = 14 and b2 = 8. Then d = gcd(6, 14, 4) = 2.
Take x = 0, y = 1 and z = −1. Then a3 = 6·14

4 = 21 and b3 = 48−444
2 = 246.

So γ3 = −123+
√
−222

21 ≃ 3+
√
−222
21 ≃ − 21

3+
√
−222

= −3+
√
−222

11 . The product is

represented by the ideal Z11 + Z(−3 + ω).

4.5 Continued fractions

This section contains the fundamentals of continued fractions. The main result is
the unique representation of irrational real numbers by infinite continued fractions
(Theorem 4.52).

4.37 Definition. Define rational functions

⟨x1, . . . , xn⟩ ∈ Q(x1, . . . , xn)

for n ∈ N∗ inductively by:

⟨x1⟩ = x1

⟨x1, x2⟩ = x1 +
1

x2
⟨x1, . . . , xn+2⟩ = ⟨x1, . . . , xn, ⟨xn+1, xn+2⟩⟩ (for all n ∈ N).

The function ⟨x1, . . . , xn⟩ is called the continued fraction of length n.
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4 Quadratic Number Fields

The field Q(x1, . . . , xn) of rational functions is the field of fractions of both the
polynomial rings Q[x1, . . . , xn] and Z[x1, . . . , xn]. The continued fractions can be
written as ordinary fractions:

⟨x1⟩ = x1 =
x1
1

⟨x1, x2⟩ = x1 +
1

x2
=
x1x2 + 1

x2

⟨x1, x2, x3⟩ = x1 +
1

x2 +
1
x3

=
x1x2x3 + x1 + x3

x2x3 + 1
.

We will define polynomials pn(x1, . . . , xn), qn(x1, . . . , xn) ∈ Z[x1, . . . , xn] and will
prove that they can be taken as numerator and denominator of ⟨x1, . . . , xn⟩.

4.38 Definition. Define for n ≥ −1 polynomials pn(x1, . . . , xn), qn(x1, . . . , xn) ∈
Z[x1, . . . , xn] inductively by
p−1 = 0,

p0 = 1,

pn = xnpn−1 + pn−2 for all n ≥ 1

and


q−1 = 1,

q0 = 0,

qn = xnqn−1 + qn−2 for all n ≥ 1.

Here pn is shorthand for pn(x1, . . . , xn). Analogously for qn.

4.39 Lemma. qn(x1, . . . , xn) = pn−1(x2, . . . , xn) for all n ≥ 0.

Proof. The terms of the sequences (pn)n≥−1 and (qn)n≥−1 are determined in
the same way by the two preceding terms, but the ‘initial values’ differ. The lemma
follows from q0 = 0 and q1 = 1.

4.40 Theorem. ⟨x1, . . . , xn⟩ =
pn(x1, . . . , xn)

qn(x1, . . . , xn)
for all n ∈ N∗.

Proof. By induction on n. Clearly p1
q1

= x1 and p2
q2

= x1 +
1
x2
. The induction

step: for n ≥ 0 we have

⟨x1, . . . , xn+2⟩ = ⟨x1, . . . , ⟨xn+1, xn+2⟩⟩ =
pn+1(x1, . . . , xn, ⟨xn+1, xn+2⟩)
qn+1(x1, . . . , xn, ⟨xn+1, xn+2⟩)

=
(xn+1 +

1
xn+2

)pn + pn−1

(xn+1 +
1

xn+2
)qn + qn−1

=
pn+1 +

1
xn+2

pn

qn+1 +
1

xn+2
qn

=
pn+2

qn+2

4.41 Theorem.

∣∣∣∣pn pn+1

qn qn+1

∣∣∣∣ = (−1)n for all n ≥ −1.

Proof. By induction on n. For n = −1 we have∣∣∣∣p−1 p0
q−1 q0

∣∣∣∣ = ∣∣∣∣0 1
1 0

∣∣∣∣ = −1 = (−1)−1.
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4.5 Continued fractions

Furthermore, for all n ≥ −1:∣∣∣∣pn+1 pn+2

qn+1 qn+2

∣∣∣∣ = ∣∣∣∣pn+1 xn+2pn+1 + pn
qn+1 xn+2qn+1 + qn

∣∣∣∣ = ∣∣∣∣pn+1 pn
qn+1 qn

∣∣∣∣ = − ∣∣∣∣pn pn+1

qn qn+1

∣∣∣∣ .
4.42 Lemma. ⟨x1, . . . , xn+1⟩ − ⟨x1, . . . , xn⟩ = (−1)n+1

qnqn+1
for all n ∈ N∗.

Proof. ⟨x1, . . . , xn+1⟩ − ⟨x1, . . . , xn⟩ = pn+1

qn+1
− pn

qn
= (−1)n+1

qnqn+1
.

4.43 Proposition. pn =
∏n
k=1⟨xk, . . . , xn⟩ for all n ∈ N∗.

Proof. By induction on n. For n = 1 it is clear: p1 = x1 = ⟨x1⟩. If pn =∏n
k=1⟨xk, . . . , xn⟩ for some n ∈ N∗, then by Lemma 4.39 and the induction hy-

pothesis

pn+1 = ⟨x1, . . . , xn+1⟩qn+1 = ⟨x1, . . . , xn+1⟩pn(x2, . . . , xn+1)

= ⟨x1, . . . , xn+1⟩
n+1∏
k=2

⟨xk, . . . , xn+1⟩ =
n+1∏
k=1

⟨xk, . . . , xn+1⟩.

Rational functions in n variables over Q can be interpreted as functions on Rn de-
fined outside the zero set of their denominator. The continued fraction ⟨x1, . . . , xn⟩
determines in particular a function

R× R>0 × · · · × R>0 → R, (a1, . . . , an) 7→ ⟨a1, . . . , an⟩,

because qn(a1, a2, . . . , an) > 0 (and so ̸= 0) for a2, . . . , an > 0.

4.44 Proposition. Let r ∈ Q. Then there are a1, . . . , an with a1 ∈ Z and
a2, . . . , an ∈ N∗ such that r = ⟨a1, . . . , an⟩. The length n of this continued fraction
can chosen to be of a given parity.

Proof. Assume r ̸= 0. Write r = p
q met p ∈ Z, q ∈ N∗, gcd(p, q) = 1. Euclid’s

algorithm applied to p and q gives

p = a1q + r1 or:
p

q
= a1 +

r1
q

q = a2r1 + r2
q

r1
= a2 +

r2
r1

r1 = a3r2 + r3
r1
r2

= a3 +
r3
r2

...
...

rn−2 = anrn−1 + rn
rn−2

rn−1
= an
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4 Quadratic Number Fields

with q > r1 > r2 > · · · > rn = 0 and so: p
q = ⟨a1, qr1 ⟩ = · · · = ⟨a1, . . . , an⟩. From

rn−2 > rn−1 follows an = rn−2

rn−1
> 1. We have an = ⟨an − 1, 1⟩. So also:

r = ⟨a1, . . . , an−1, an − 1, 1⟩.

4.45 Lemma. Let a1, a2, . . . be a sequence with a1 ∈ Z and a2, a3, · · · ∈ N∗. Then
limn→∞⟨a1, . . . , an⟩ exists.

Proof. From qn+1 = an+1qn + qn−1 follows that qn+1 > qn for n ≥ 2. By

Lemma 4.39 ⟨a1, . . . , an+1⟩ − ⟨a1, . . . , an⟩ = (−1)n+1

qnqn+1
. These differences form a

sequence with alternately positive and negative terms with absolute values de-
scending monotone to 0 for n→∞.

4.46 Definition. For a sequence a1, a2, . . . with a1 ∈ Z and a2, a2, · · · ∈ N∗ we
define the infinite continued fraction ⟨a1, a2, a3, . . . ⟩ as follows:

⟨a1, a2, a3, . . . ⟩ = lim
n→∞

⟨a1, . . . , an⟩.

4.47 Lemma. ⟨a1, a2, . . . ⟩ = ⟨a1, ⟨a2, . . . ⟩⟩.

Proof.

⟨a1, a2, . . . ⟩ = lim
n→∞

⟨a1, . . . , an⟩ = lim
n→∞

⟨a1, ⟨a2, . . . , an⟩⟩

= ⟨a1, lim
n→∞

⟨a2, . . . , an⟩⟩ = ⟨a1, ⟨a2, . . . ⟩⟩.

4.48 Lemma. ⌊⟨a1, a2, . . .⟩⌋ = a1.

Proof. We have ⟨a2, . . . ⟩ = a2 +
1

⟨a3,... ⟩ > a2 ≥ 1. So ⟨a2, . . . ⟩ > 1. Therefore,

⌊⟨a1, a2, . . .⟩⌋ = ⌊a1 + 1
⟨a2,... ⟩⌋ = a1.

4.49 Definition. A transformation φ of R \Q is defined by:

φ(x) =
1

x− ⌊x⌋
.

4.50 Lemma. φ(⟨a1, a2, . . . ⟩) = ⟨a2, a3, . . . ⟩.

Proof. φ(⟨a1, a2, . . . ⟩) = 1
⟨a1,a2,... ⟩−a1 = 1

1
⟨a2,... ⟩

= ⟨a2, a3, . . . ⟩.

4.51 Lemma. x = ⟨⌊x⌋, ⌊φ(x)⌋, . . . , ⌊φn−1(x)⌋, φn(x)⟩ for all n ∈ N.

Proof. From φ(x) = 1
x−⌊x⌋ follows x = ⟨⌊x⌋, φ(x)⟩, so:

x = ⟨⌊x⌋, φ(x)⟩ = ⟨⌊x⌋, ⌊φ(x)⌋, φ2(x)⟩ = · · ·
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4.5 Continued fractions

4.52 Theorem. The following maps are inverses of each other: sequences a1, a2, a3, . . .
with a1 ∈ Z
and a2, a3, · · · ∈ N∗

 −→
←−

R \Q

a1, a2, a3, . . . 7−→ ⟨a1, a2, a3, . . . ⟩
⌊x⌋, ⌊φ(x)⌋, ⌊φ2(x)⌋, . . . 7−→ x

Proof. For each n we have ⌊φn(⟨a1, . . . ⟩)⌋ = ⌊⟨an+1, . . . ⟩⌋ = an+1. On the other
hand

⟨⌊x⌋, ⌊φ(x)⌋, . . . ⟩ − x = ⟨⌊x⌋, ⌊φ(x), . . . ⟩ − ⟨⌊x⌋, . . . , ⌊φn−1(x)⌋, φn(x)⟩
= lim
n→∞

⟨⌊x⌋, . . . , ⌊φn−1(x)⌋⟩ − ⟨⌊x⌋, . . . , ⌊φn−1(x)⌋, φn(x)⟩

= lim
n→∞

(−1)n

qn+1(⌊x⌋, . . . , ⌊φn−1(x)⌋, φn(x))qn(⌊x⌋, . . . , ⌊φn−1(x)⌋)
= 0.

4.53 Definition. If x = ⟨a1, a2, . . . ⟩ with a1 ∈ Z and a2, a3, · · · ∈ N∗, the sequence
a1, a2, . . . is called the continued fraction expansion of x. If there is an n > 0 with
ak+n = ak for all k greater than some natural number, then the expansion is called
repeating. The least n for which this holds is called the period of the repeating
continued fraction expansion. If there is an n > 0 with ak+n = ak for all k ∈ N,
the expansion is called purely repeating. Notation:

⟨a1, . . . , ak, ak+1, . . . , ak+n⟩ = ⟨a1, . . . , ak, ak+1, . . . , ak+n, ak+1, . . . , ak+n, . . . ⟩.

In the next section we show that it are exactly the real quadratic numbers which
have repeating continued fraction expansions.

4.54 Example.
√
7 = 2 + (

√
7− 2)

1√
7− 2

=

√
7 + 2

3
= 1 +

√
7− 1

3

3√
7− 1

=

√
7 + 1

2
= 1 +

√
7− 1

2

2√
7− 1

=

√
7 = 1

3
= 1 +

√
7− 2

3

3√
7− 2

=
√
7 + 2 = 4 + (

√
7− 2)

So
√
7 = ⟨2, 1, 1, 1, 4⟩.
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4 Quadratic Number Fields

4.6 Continued fraction expansions of real quadratic
numbers

4.55 Proposition. If x ∈ R \Q has a repeating continued fraction expansion, then
x is a quadratic number.

Proof. Clearly x is quadratic if and only if φ(x) is. So we can assume that x
has a purely repeating continued fraction expansion. Set x = ⟨a1, . . . , an⟩. Then

x =
pn+1(a1, . . . , an, x)

qn+1(a1, . . . , an, x)
=
xpn(a1, . . . , an) + pn−1(a1, . . . , an−1)

xqn(a1, . . . , an) + qn−1(a1, . . . , an−1)
.

This yields a quadratic equation for x.

4.56 Proposition. Let x ∈ R \Q be quadratic. Then disc(φ(x)) = disc(x).

Proof. This follows from disc(x+ 1) = disc(x) and disc( 1x ) = x.

Let α ∈ R \Q be quadratic with disc(α) = D. Then α ∈ Q(
√
D). The embedding

of the real quadratic field in the algebra R× R restricts to an injective map

Q(
√
D) \Q→ (R \Q)× (R \Q), γ 7→ (γ, γ′).

From Proposition 4.56 follows that the transformation φ of R \ Q restricts to
a transformation of Q(

√
D) \ Q and this transformation is compatible with the

transformation (x, y) 7→ (x− ⌊x⌋, y − ⌊x⌋) 7→ ( 1
x−⌊x⌋ ,

1
y−⌊x⌋ ) of (R \Q)× (R \Q):

γ

φ(γ)

(γ, γ′)

(φ(γ), 1
γ′−[γ] ) = (φ(γ), φ(γ)′)

4.57 Theorem. Real quadratic numbers have repeating continued fraction expan-
sions.

Proof. Let γ be a real quadratic number and put disc(γ) = D. Then γ ∈
Q(
√
D). Consider the embedding Q(

√
D)→ R× R, α 7→ (α, α′). The images of

γ, φ(γ), φ2(γ), . . .

under the embedding in R \Q× R \Q are

(γ, γ′), (φ(γ), φ(γ)′), (φ2(γ), φ2(γ)′), . . .
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(0, 0) (1, 0)

(0, 1)

(0, 0) (1, 0)

(0, 1)

(0, 0) (1, 0)

(0, 1)

(0, 0) (1, 0)

(0, 1)

Figure 4.4: The course of points in (R \Q)2 outside {(x, y) | ⌊x⌋ = ⌊y⌋} under φ
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4 Quadratic Number Fields

If all elements of this sequence were in the domain { (x, y) | ⌊x⌋ = ⌊y⌋ }, then

⌊φn(γ)⌋ = ⌊φn(γ)′⌋ for all n ∈ N.

From

γ = ⟨⌊γ⌋, ⌊φ(γ)⌋, . . . , ⌊φn−1(γ)⌋, φn(γ)⟩,
γ′ = ⟨⌊γ⌋, ⌊φ(γ)⌋, . . . , ⌊φn−1(γ)⌋, φn(γ)′⟩,
γ′ = ⟨⌊γ′⌋, ⌊φ(γ′)⌋, . . . , ⌊φn−1(γ′)⌋, φn(γ′)⟩.

it then follows by induction on n that φn(γ′) = φn(γ)′. So the numbers γ and γ′

would have equal continued fraction expansions. By Theorem 4.52 these numbers
are equal. However, γ′ ̸= γ. So there is an n such that ⌊φn(γ)⌋ ≠ ⌊φn(γ)′⌋. As
indicated in Figure 4.4, we have for all k ≥ n+ 3

φk(γ) > 1 and − 1 < φk(γ)′ < 0.

Equivalently ⌊φk(γ)⌋ ≥ 1 and ⌊φk(γ)′⌋ = −1. The domain

{ (x, y) | x > 1, −1 < y < 0 }

contains only finitely many (γ, γ′) met disc(γ) = D: suppose the triple (a, b, c)
corresponds to such a γ, then c

a = γγ′ < 0 and there are only finitely many triples
(a, b, c) such that b2+a(−c) = D and c < 0. It follows that for a quadratic number
γ the sequence ⌊γ⌋, ⌊φ(γ)⌋, ⌊φ2(γ)⌋, . . . repeats.

4.58 Definition. A real quadratic number γ is called reduced if γ > 1 and −1 <
γ′ < 0.

4.59 Theorem. A real quadratic number is reduced if and only if its continued
fraction expansion is purely repeating.

Proof. First we show that the restriction of (x, y) 7→ ( 1
x−⌊x⌋ ,

1
y−⌊x⌋ ) to the do-

main { (x, y) | x > 1, −1 < y < 0 } is injective.

Suppose (x1, y1) and (x2, y2) are in this domain, x1 − ⌊x1⌋ = x2 − ⌊x2⌋ and
y1 − ⌊x1⌋ = y2 − ⌊x2⌋. The inequalities −1 < y1, y2 < 0 imply ⌊x1⌋ = ⌊x2⌋
and so also x1 = x2 and y1 = y2.

Let Γ be the set of reduced real quadratic numbers of discriminant D. The restric-
tion of φ to the finite set Γ is injective. So it is a permutation of Γ.

4.60 Theorem. If γ is a reduced real quadratic number, then so is − 1
γ′ . If γ =

⟨a1, . . . , an⟩, then − 1
γ′ = ⟨an, . . . , a1⟩.
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Proof. We have (where γn = φn−1(γ)):

γ = γ1 = a1 +
1

γ2
− 1

γ′2
= a1 + (−γ′1)

γ2 = a2 +
1

γ3
and so − 1

γ′3
= a2 + (−γ′2)

...
...

γn = an +
1

γ1
− 1

γ′
= − 1

γ′1
= an + (−γ′n).

For square roots we have in particular:

4.61 Proposition. Let d ∈ N∗ be not a square. Then

√
d = ⟨a1, a2, . . . , an, an+1⟩

with a2, . . . , an symmetric (a2 = an, a3 = an−1, . . . ) and an+1 = 2a1.

Proof. Put a1 = ⌊
√
d⌋. Then

√
d+a1 is reduced and so it has a purely repeating

continued fraction expansion:

√
d+ a1 = ⟨2a1, a2, . . . , an⟩

and then √
d = ⟨a1, a2, . . . , an, 2a1⟩.

We have
−1

(
√
d+ a1)′

=
1√

d− a1
= ⟨an, an−1, . . . , a2, 2a1⟩.

Hence also

√
d = a1 +

1

⟨an, an−1, . . . , a2, 2a1⟩
= ⟨a1, an, an−1, . . . , a2, 2a1⟩.

The proposition follows from the uniqueness of continued fraction expansions.

4.62 Definition. x, y ∈ R \ Q are called tail equivalent if their continued fraction
expansions have equal tails, notation: x ∼φ y. So:

x ∼φ y ⇐⇒ there are k, n ∈ N such that φk(x) = φn(y).

4.63 Proposition. Let x ∈ R\Q with x > 1 and let ( p rq s ) ∈ GL2(Z) with q > s > 0.
Then for y = ( p qr s )x there is an n ∈ N∗ such that φn(y) = x.
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Proof. Put p
q = ⟨a1, . . . , an⟩ with a1 ∈ Z and a2 . . . , an ∈ N∗ such that∣∣∣∣pn pn−1

qn qn−1

∣∣∣∣ = ∣∣∣∣p r
q s

∣∣∣∣ .
(Use Proposition 4.44.) Then

p

q
=
pn(a1, . . . , an)

qn(a1, . . . , an)

and so p = pn and q = qn. From pqn−1−qpn−1 = ps−qr follows that q | p(qn−1−s)
and so q | qn−1 − s. However, |qn−1 − s| < q, so qn−1 = s. And also pn−1 = r. We
then have (

p r
q s

)
x =

(
pn pn−1

qn qn−1

)
x =

pnx+ pn−1

qnx+ qn−1
= ⟨a1, . . . , an, x⟩.

So the numbers pn, pn−1, qn, qn−1 are those from the continued fraction expansion
of ( p rq s )x. Furthermore, we have φn(( p rq s )x) = φn(⟨a1, . . . , an, x⟩) = x.

4.64 Theorem. For all x, y ∈ R \Q we have:

x ≃ y ⇐⇒ x ∼φ y.

Proof.

⇐: It suffices to show that x ≃ φ(x). We have

φ(x) =
1

x− ⌊x⌋
=

(
0 1
1 −⌊x⌋

)
x.

So x ≃ φ(x).

⇒: Now suppose that x ≃ y. Say y = ( a cb d )x. For n ∈ N we have

x =

(
pn pn−1

qn qn−1

)
φn(x).

So

y =

(
a c
b d

)(
pn pn−1

qn qn−1

)
φn(x) =

(
apn + cqn apn−1 + cqn−1

bpn + dqn bpn−1 + dqn−1

)
φn(x).

We have |x− pn
qn
| < 1

q2n
, that is

pn = qnx+
δn
qn
, where |δn| < 1.
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4.7 Algorithm for the ideal class group of a real quadratic number field

We assume that bx+ d > 0. (If necessary take
(−a −c
−b −d

)
). We have:

bpn + dqn = (bx+ d)qn +
bδn
qn
→∞ if n→∞.

Take n so large that bpn−1 + dqn−1 > 0. Furthermore,

bpn + dqn − (bpn−1 + dqn−1) = (bx+ d)(qn − qn−1) +
bδn
qn
− bδn−1

qn−1
→∞

if n→∞. So there is an n with

bpn−1 + dqn−1 > 0

and, moreover, bpn + dqn > bpn−1 + dqn−1. By Proposition 4.63 there is a
k ∈ N such that φk(y) = φn(x). So x ∼φ y.

4.7 Algorithm for the ideal class group of a real
quadratic number field

Let m > 1. In section 4.2 we constructed a bijection from Cℓ(Q(
√
m)) to

{ γ ∈ Q(
√
m)\Q | disc(γ) = Dm }/≃.

From section 4.6 it follows that this is mapped bijectively to Γm/∼φ, where

Γm = { γ ∈ Q(
√
m)\Q | disc(γ) = Dm and γ reduced }.

Since the restriction of φ to Γm is a permutation, the ideal classes of Z[ωm] corre-
spond to orbits of this permutation.

Let γ ∈ Γm correspond to the triple (a, b, c), then

0 < b+
√
Dm < 2a < −b+

√
Dm

and so 0 < −b <
√
Dm. It follows that 2a < 2

√
Dm, that is a <

√
Dm. From

−4ac = Dm − b2 ≤ Dm follows that a < 1
2

√
Dm or −c < 1

2

√
Dm. So in the class

or in the inverse class of an ideal a there is an ideal with norm ≤ 1
2

√
Dm. Since

Na′ = Na, each class contains such an ideal. This λ for real quadratic number
fields is the same as the bound which will follow from Theorem 5.17, see also
Examples 5.12.

4.65 Example. We compute all reduced real quadratic numbers of discriminant
4 · 130. Let γ ∈ Γ130 correspond to the triple triple (a, b, c). Then

γ =
−b+

√
4 · 130

2a
=
− b

2 +
√
130

a
.
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(
b
2

)2
:

129

126

121

114

105

94

81

66

49

30

9

b
2

a

Figure 4.5: Computation of the reduced real quadratic numbers of discriminant
4 · 130

So γ is reduced if

0 <
√
130 +

b

2
< a <

√
130− b

2
.

⌊
√
130⌋ = 11, so −11 ≤ b

2 < 0. The reduced real quadratic numbers of discriminant

4 · 130 are (where ω =
√
130):

ω + 11
ω + 11

9

ω + 7

9
(orbit of length 3)

ω + 11

3

ω + 10

10

ω + 10

3
(orbit of length 3)

ω + 10

2

ω + 10

15

ω + 5

7

ω + 9

7

ω + 5

15
(orbit of length 5)

ω + 10

5

ω + 10

6

ω + 8

11

ω + 3

11

ω + 8

6
(orbit of length 5)

See Figure 4.5. So a system of representatives of Γ130/∼φ consists of the numbers:

ω + 11 = ⟨22, 2, 2⟩, ω + 11

3
= ⟨7, 2, 7⟩,

ω + 10

2
= ⟨10, 1, 2, 2, 1⟩, ω + 10

5
= ⟨4, 3, 1, 1, 3⟩.
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4.7 Algorithm for the ideal class group of a real quadratic number field

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗

∗

1 2 3 4 5 6 7 8 9 10 11

0

−1
−2
−3
−4
−5

36− b−1
2
· b+1

2
:

36

34

30

24

16

6

b+1
2

a

Figure 4.6: Computation of the reduced real quadratic numbers of discriminant
145

The ideal class group is of order 4. The elements are represented by the ideals

Z+ Z(ω + 11) (= Z+ Zω),
Z3 + Z(ω + 11) (= Z3 + Z(ω − 1)) or Z10 + Z(ω + 10) (= Z10 + Zω),
Z2 + Z(ω + 10) (= Z2 + Zω),
Z5 + Z(ω + 10) (= Z5 + Zω).

The map γ 7→ γ′ corresponds to inversion in Cℓ(Q(
√
130)), and since − 1

γ′ ≃ γ′, the
same holds for γ 7→ − 1

γ′ . This last map is a permutation of order 2 of Γm. This
permutation induces the trivial permutation of the set of four orbits. Hence every
element of Cℓ(Q(

√
130)) is its own inverse. So the group Cℓ(Q(

√
130)) is the Klein

fourgroup.

4.66 Example. We compute all reduced real quadratic numbers of discriminant
145. Let γ ∈ Γ145 correspond to the triple (a, b, c). Then

γ =
−b+

√
145

2a
=
− b+1

2 + 1+
√
145

2

a
.

So γ is reduced if

0 <
1 +
√
145

2
+
b− 1

2
< a <

1 +
√
145

2
− b+ 1

2
.
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⌊ 1+
√
145

2 ⌋ = 6, so −6 ≤ b−1
2 < 0. The reduced real quadratic numbers of discrimi-

nant 145 are (where ω = ω145 = 1+
√
145

2 ):

ω

6
ω + 5

ω + 5

6
(orbit of length 3)

ω + 3

3

ω + 5

2

ω + 4

8
(orbit of length 3)

ω + 3

8

ω + 4

2

ω + 5

3
(orbit of length 3)

ω + 2

5

ω + 2

6

ω + 3

4

ω + 2

4

ω + 3

6
(orbit of length 5).

See Figure 4.6.

So a system of representatives of Γ145/∼φ consists of the numbers:

ω + 5 = ⟨11, 1, 1⟩, ω + 5

2
= ⟨5, 1, 3⟩,

ω + 4

2
= ⟨5, 3, 1⟩, ω + 2

4
= ⟨2, 1, 1, 1, 2⟩.

The ideal class group is of order 4. The elements are represented by the ideals

Z+ Z(ω + 5) (= Z+ Zω),
Z2 + Z(ω + 5) (= Z2 + Z(ω + 1)),
Z2 + Z(ω + 4) (= Z2 + Zω),
Z4 + Z(ω + 2).

The map γ 7→ − 1
γ′ leaves invariant only two of the four orbits of φ in Γ145. So the

group Cℓ(Q(
√
145)) is cyclic of order 4.

4.8 Algorithm for the fundamental unit of a real
quadratic number field

4.67 Terminology. Let φ be a permutation of a finite set X, {x1, . . . , xn} an orbit
of φ of length n, φ(xi) = xi+1 for i = 1, . . . , n − 1 and φ(xn) = x1. This is
summarized as: (x1, . . . , xn) is an orbit of the permutation φ. Note that for n > 1
this means that (x1 · · · xn) is an n-cycle in the decomposition of φ as a product of
disjoint cycles.

In this section the squarefree integerm is greater than 1. Orbits of the permutation
induced by φ on Γm give rise to a nontrivial unit of Z[ωm]:

4.68 Theorem. Let (γ1, . . . , γn) be an orbit of the permutation φ of Γm. Then
γ1γ2 · · · γn ∈ Z[ωm]∗ and γ1γ2 · · · γn > 1.
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4.8 Algorithm for the fundamental unit of a real quadratic number field

Proof. From γi ∈ Γm follows that γi > 1 and so γ1 · · · γn > 1. We will prove
that γ1 · · · γn ∈ Z[ωm]∗ in two ways.

1. Z+Zγ1 = Z+Z(⌊γ1⌋+ 1
γ2
) = Z+Z 1

γ2
, so γ2(Z+Zγ1) = Z+Zγ2. Continuing

this way we obtain

γ1γnγn−1 · · · γ2(Z+ Zγ1) = Z+ Zγ1.

Proposition 1.12 implies that γ1 · · · γn, (γ1 · · · γn)−1 ∈ Z[ωm].

2. Let γ1 = ⟨a1, . . . , an, γ1⟩. Then

qn+1(a1, . . . , an, γ1) = pn(a2, . . . , an, γ1)

=

(
n∏
k=2

⟨ak, . . . , an, γ1⟩

)
· γ1 = γ1 · · · γn.

On the other hand qn+1(a1, . . . , an, γ1) = qnγ1 + qn−1 and γ1 = pnγ1+pn−1

qnγ1+qn−1
.

So γ1 satisfies qnγ
2
1 +(qn−1−pn)γ1−pn−1 = 0 and, therefore, γ1 corresponds

to a triple (a, b, c) with a | qn. We have Z+ Zaγ1 = Z[ωm], so qnγ1 + qn−1 ∈
Z[ωm], that is γ1 · · · γn ∈ Z[ωm]. Similarly, (− 1

γ′
1
) · · · (− 1

γ′
n
) ∈ Z[ωm] and so

1
γ1···γn ∈ Z[ωm].

Extra in the second proof is the identity qn+1(a1, . . . , an, γ1) = γ1 · · · γn, so the
continued fraction expansion of γ1, one of the elements in the orbit, can be used
for the computation of γ1 · · · γn.

As remarked in Example 1.24 the existence of a unit > 1 in a real quadratic
number field implies that the field has a fundamental unit. We now show that this
fundamental unit is the product of the elements in any of the orbits.

4.69 Theorem. Let (γ1, . . . , γn) be an orbit of the permutation φ of Γm and put
ε = γ1 · · · γn. Then for each ν ∈ Z[ωm]∗ with ν > 1 there exists an l ∈ N∗ such
that ν = εl.

Proof. Let γ = γ1 correspond to the triple (a, b, c). Then Z+Zaγ = Z[ωm] and
also Z+Zaγ′ = Z[ωm]. Put ν = p− qγ′. Then p, q ∈ Z and a | q. From ν − ν′ > 0
and ν − (−ν′) > 0 follows that p, q ∈ N∗. Put

A =

(
p −qN(γ)
q p− qTr(γ)

)
,

where N and Tr stand for N
Q(

√
m)

Q and Tr
Q(

√
m)

Q respectively. Then A ∈ M2(Z),
because N(γ) = c

a , Tr(γ) = −
b
a and a | q. Moreover,

detA = p2 − pqTr(γ) + q2N(γ) = N(p− qγ) = ±1.
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4 Quadratic Number Fields

So A ∈ GL2(Z). We have Aγ = pγ−qN(γ)
qγ+(p−qTr(γ)) = γ, because

γ(qγ + p− qTr(γ))− pγ + qN(γ) = q(γ2 − Tr(γ)γ +N(γ)) = 0.

We will show that there is a k ∈ N∗ such that

A =

(
pk pk−1

qk qk−1

)
,

where the pk etc. come from the continued fraction expansion of γ.
We have p − qTr(γ) = p − qγ − qγ′ = ν′ + q(−γ′). Since νν′ = ±1 and ν > 1
we have |ν′| < 1; moreover, 0 < −γ′ < 1. So −1 < p − qTr(γ) < q + 1, that is
0 ≤ p− qTr(γ) ≤ q. We distinguish three cases.

1. 0 < p− qTr(γ) < q. Then Proposition 4.63 applies.

2. 0 = p − qTr(γ). From

∣∣∣∣p −qN(γ)
q 0

∣∣∣∣ = ±1, q > 0 and N(γ) < 0 Follows that

q = 1 and N(γ) = −1. Then γ =
(
p 1
1 0

)
γ and so γ = ⟨p, γ⟩ = ⟨p⟩. In this case

A =

(
p1 p0
q1 q0

)
.

3. p − qTr(γ) = q. From

∣∣∣∣p −qN(γ)
q q

∣∣∣∣ = ±1 follows that q = 1 and N(γ) =

−(p ± 1). If N(γ) = −(p + 1), then γ = p + 1
γ+1 and so γ′ = p + 1

γ′+1 ,

contradictory to −1 < γ′ < 0. So N(γ) = −(p−1), and then γ = p−1+ γ
γ+1 =

⟨p− 1, 1, γ⟩ = ⟨p− 1, 1⟩. In this case

A =

(
p2 p1
q2 q1

)
.

So in each case there is a k ∈ N∗ such that A =

(
pk pk−1

qk qk−1

)
. And so γ = φk(γ),

which implies n | k, say k = ln. We have γ = ⟨a1, . . . , ak, φk(γ)⟩ with ai =
⌊φi−1(γ)⌋ and so

±1 =

∣∣∣∣pk pk+1(a1, . . . , ak, γ)
qk qk+1(a1, . . . , ak, γ)

∣∣∣∣ = ∣∣∣∣pk − γqk 0
qk qk+1(a1, . . . , ak, γ)

∣∣∣∣
= ε′ · qk+1(a1, . . . , ak, γ).

Hence qk+1(a1, . . . , ak, γ) = ν (since ν > 0) and, therefore, ν = pk(a2, . . . , ak, γ) =
φ(γ) · · ·φk(γ) = εl.

4.70 Corollary. Let (γ1, . . . , γn) be an orbit of the permutation φ of Γm. Then
γ1 · · · γn is the fundamental unit of Q(

√
m).
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4.9 The 2-rank of the ideal class group

From ε = γ1 · · · γn and N(γi) < 0 follows that N(ε) = (−1)n. So either all orbits of
φ are of even length or all are of odd length depending on the sign of N(ε).

4.71 Examples. In Example 4.65 we had two orbits of length 3 and two of
length 5. Using the remark following the proof of Theorem 4.68:

√
130 + 11 =

⟨22, 2, 2,
√
130 + 11⟩, so

5(
√
130 + 11) + 2 = 57 + 5

√
130.

is the fundamental unit of Q(
√
130).

Similarly, the fundamental unit of Q(
√
145) (Example 4.66) is

2(2ω145 + 5) + 1 = 3ω145 + 11 =
25 + 3

√
145

2
.

For m squarefree and > 1 units of the real quadratic number field Q(
√
m) corre-

spond to solutions of the Pell equation x2 −my2 = ±1 for m ≡ 2, 3 (mod 4) and
to solutions of x2 − my2 = ±4 for m ≡ 1 (mod 4). As indicated in exercise 3 of
chapter 1, the fundamental unit can be found in principle by looking for the least
y ∈ N for which my2 ± 1, respectively my2 ± 4, is a square, say x2. Then the
fundamental unit is x + y

√
m, respectively x

2
+ y

2

√
m. The algorithm described

in this section of course is by far better. It was already known in India in the
12th century. Bhāscarāchārya (1114–1185) found for example the least solution of
x2 − 109y2 = 1, namely y = 15 140424 455100.

4.9 The 2-rank of the ideal class group

A finite abelian group is isomorphic to a product Cd1 × Cd2 × · · · × Cdk of cyclic
groups of orders d1, . . . , dk. A classification of finite abelian groups is obtained by
requiring that di+1 | di for i = 1, . . . , k − 1 and dk ̸= 1. The d1, . . . , dk are called
the group invariants of the finite abelian group. The 2-rank of a finite abelian
group is the number of even group invariants. If r is the 2-rank of a finite abelian
group A, then 2r is the order of the subgroup 2A of A of elements of order ≤ 2
and also of the factor group A/A2. In this section a formula for the 2-rank of the
ideal class group of a quadratic number field is derived. We do this separately for
the imaginary and the real case.

Imaginary quadratic number fields

The transformation a 7→ a′ of I+(Q(
√
m)) induces inversion in the ideal class group

and corresponds to the transformation

γ 7→

{
−γ if |γ| > 1 and ℜ(γ) < 1

2 ,

γ if |γ| = 1 or ℜ(γ) = 1
2
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−1 − 1
2

0 1
2

1

ζ3
i

ζ6

Figure 4.7: Location of the elements of G which correspond to elements of
Cℓ(Q(

√
m)) of order 1 or 2

of G ∩ {γ ∈ Q(
√
m) | disc(γ) = Dm}. The elements of order 1 or 2 in Cℓ(Q(

√
m))

correspond to the numbers γ of discriminant Dm on the curve indicated in Fig-
ure 4.7. They correspond to triples (a, b, c) ∈ Vm with b = 0 or a = c or a = −b.

4.72 Example. In Example 4.32 the elements of order 1 of 2 are the classes repre-
sented by Z+Zω (order 1), Z2+Zω, Z3+Zω and Z6+Zω. So the group invariants
of the ideal class group are: 6, 2.

4.73 Theorem.

rk2(Cℓ(Q(
√
m))) = r(Dm)− 1,

where r(n) denotes the number of prime divisors of an n ∈ Z.

Proof. See Figure 4.8. Under the action of SL2(Z) corresponds to

etc. So the number of elements γ with disc(γ) = Dm on equals half of:

the number of elements on plus the number of elements on .

First we compute the number of (a, b, c) with a > 0, b2 − 4ac = Dm and b = 0.
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−1 0 1

ζ3
i

ζ6

Figure 4.8: See the proof of Theorem 4.73

� For m ≡ 1 (mod 4) we have Dm = m and in this case there are no a, c with
4ac = −m.

� For m ≡ 2, 3 (mod 4) we have ac = −m and then the number equals the
number of divisors of −m, and this equals 2r(m), because m is squarefree.

Next the number of (a, b, c) with a > 0, b2 − 4ac = Dm and a = c.

� Form ≡ 1 (mod 4): the number of (a, b) with a > 0 and (2a−b)(2a+b) = −m.
This is the number of divisors of −m.

� For m ≡ 2, 3 (mod 4): the number of (a, b0) with a > 0 and (a− b0)(a+ b0) =
−m. (We took b0 = 2b.) This number is 2r(m) if m is odd and 0 if m is even.

So, depending on m (mod 4), the number of elements of 2Cℓ(Q(
√
m)) is in the last

column of the following scheme:

m (mod 4) # with b = 0 # with c = a 1
2 × total

1 0 2r(m) 2r(m)−1

2 2r(m) 0 2r(m)−1

3 2r(m) 2r(m) 2r(m)

It can be summarized to rk2(Cℓ(Q(
√
m))) = r(Dm)− 1.

So the group Cℓ(Q(
√
m)) is of odd order (for m < 0) if and only if r(Dm) = 1.

This is the case if m = −1, m = −2 or m = −p (p a prime ≡ 3 (mod 4)). If p is
a prime ≡ 7 (mod 8), then 2 splits completely in Q(

√
−p), and for p > 7 the prime

ideal above 2 represent nontrivial elements of Cℓ(Q(
√
−p): they correspond to the

triples (2,±1, p+1
8

). So: if Cℓ(Q(
√
m)) is trivial, then m = −1, m = −2, m = −7
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or m = −p, where p is a prime ≡ 3 (mod 8). One easily verifies that Cℓ(Q(
√
m)) is

trivial for m = −3, m = −11, m = −19, m = −43, m = −67 and m = −163. In
1966 it was independently shown by A. Baker and H. Stark that there are no other
imaginary quadratic number fields with a trivial ideal class group.

Real quadratic number fields

The permutation γ 7→ − 1
γ′ of Γm corresponds to inversion in Cℓ(Q(

√
m)) and

induces a permutation of the set of orbits of φ in Γm. If γ = ⟨a1, . . . , an⟩, then
φ(γ) = ⟨a2, . . . , an, a1⟩, − 1

φ(γ)′ = ⟨a1, an, . . . , a2⟩. Hence

φ

(
− 1

φ(γ)′

)
= − 1

γ′
, or in a diagram:

φ(γ) − 1
φ(γ)′

− 1
γ′γ

The elements of 2Cℓ(Q(
√
m)) correspond to orbits in Γm of the action of φ which

under γ 7→ − 1
γ′ map to themselves. In these orbits we have elements of the

following types:

γ

Type A

N(γ) = −1

γ φ(γ)

Type B

Tr(γ) = ⌊γ⌋

In case an orbit consists of just one element, this element is both of type A and
of type B. In all other orbits there are exactly two elements of one of these types.
We distinguish three types of orbits which under γ 7→ − 1

γ′ map to themselves:
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4.9 The 2-rank of the ideal class group

Type I Type II Type III

one of type A two of type A none of type A
one of type B none of type B two of type B

An orbit of length 1 is of type I. We will count the number of elements of type A
and the number of type B. The sum of these numbers equals twice the number of
orbits of type I, II or III. Before doing so we first take a look at the role of the
fundamental unit.

The element ωm − ⌊ω′
m⌋ − 1 is of type B and is in the orbit corresponding to the

trivial element of Cℓ(Q(
√
m)). Put

Γ0
m = { γ ∈ Γm | γ ≃ ωm − ⌊ω′

m⌋ − 1 }

This is the set of elements in the ‘trivial’ orbit. So we have:

N(ε) = −1 ⇐⇒ Γ0
m contains an element of type A.

On the other hand we have:

4.74 Lemma. There is an element of type A if and only if m (and then also Dm)
is a sum of two squares.

Proof. Suppose γ is of type A, and suppose γ corresponds to the triple (a, b, c).
Then N(γ) = c

a = −1, and so Dm = b2 + (2a)2. Conversely, suppose Dm equals

b2 + (2a)2 with b < 0 and a > 0. Then take γ = −b+
√
Dm

2a .

4.75 Theorem. If N(ε) = −1, then m = p1 . . . pr or m = 2p1 . . . pr, where
p1, . . . , pr are different primes ≡ 1 (mod 4).

Proof. Suppose N(ε) = −1. Then Γ0
m contains an element of type A and so m

is a sum of two squares. Because m is squarefree, the theorem follows.

So the norm of the fundamental unit equals −1 if and only if the trivial orbit
contains an element of type A. It may happen that an element of type A exists, but
outside the trivial orbit. For example 34 is the sum of two squares and so there is
an element of type A in Γ34. The fundamental unit is of norm 1, so the element of
type A is not in the trivial orbit. In this case the trivial orbit is of length 4 and is
of type III. There is another orbit and this one is of length 6 and of type II.
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4 Quadratic Number Fields

First we determine the number of elements of type A.

4.76 Definition. Let n ∈ N∗. We define E(n) as a fourth of the number of ways n
is the sum of two squares. More precisely:

E(n) = 1
4 ·#({ (x, y) ∈ Z2 | x2 + y2 = n }).

4.77 Lemma. E(n) = #({ a | a is an ideal of Z[i] with N(a) = n }).

Proof.

E(n) = 1
4 ·#({ (x, y) ∈ Z2 | x2 + y2 = n }) = 1

4 ·#({α ∈ Z[i] | N(α) = n })
= #({ a | a is an ideal of Z[i] with N(a) = n }).

The splitting behavior of primes in Z[i] implies that for p a prime number and
r ∈ N∗ we have

E(pr) =


1 if p = 2,

1 if p ≡ 3 (mod 4) and r is even,

0 if p ≡ 3 (mod 4) and r is odd,

r + 1 if p ≡ 1 (mod 4),

and E(n) =
∏
p|nE(pvp(n)) for n ∈ N∗.

4.78 Proposition. Let m be the sum of two squares. Then the number of elements
of Γm of type A equals 2r(m)−1.

Proof.

#({ γ ∈ Γm | N(γ) = −1 })
= #({ γ ∈ Q(

√
m)\Q | γ > 1, disc(γ) = Dm, N(γ) = −1 })

= #({ (a, b, c) ∈ Z3 | a > 0, b2 − 4ac = Dm, b < 0 and c = −a })
= #({ (a, b) ∈ N∗2 | (2a)2 + b2 = Dm })

For m ≡ 1 (mod 4) this number equals

1
2E(m) = 1

2

∏
p|m

E(p) = 1
2 · 2

r(m) = 2r(m)−1

and for m ≡ 2 (mod 4)
E(m) = 2r(m)−1.

For the computation of the number of elements γ of type B we distinguish two
kinds of elements:
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Type B1: ⌊γ⌋ is even, Type B2: ⌊γ⌋ is odd.

4.79 Lemma. The number of elements of type B1 equals{
0 if m ≡ 1 (mod 4),

2r(m)−1 if m ≡ 2, 3 (mod 4).

Proof. Let γ be of type B1 and let it correspond to the triple (a, b, c). Then

⌊γ⌋ = Tr(γ) = − b
a
.

It follows that 2a | b. From b2−4ac = Dm follows that 4a | Dm. Form ≡ 1 (mod 4)
this is not possible. Now we assume that m ≡ 2, 3 (mod 4). Then a | m. If
conversely a ∈ N∗ is a divisor of m, then for

α =

√
m

a

we have disc(α) = 4m. Every γ corresponding to a triple (a, ∗, ∗) such that Tr(γ) ∈
2Z and γ > γ′ equals n+α for some n ∈ N∗. If we require that Tr(γ) = ⌊γ⌋, then γ
is unique: it is ⌊α⌋+α. Finally there is the condition γ > 1. We have ⌊γ⌋ = 2 · ⌊α⌋.
Hence:

γ > 1 ⇐⇒ ⌊γ⌋ ≥ 1 ⇐⇒ ⌊α⌋ ≥ 1
2 ⇐⇒ ⌊α⌋ ≥ 1 ⇐⇒ α > 1 ⇐⇒ m > a2.

Because m is not a square, the number of divisors a of m with a2 < m is half the
total number of divisors. So the number of elements of type B1 equals 2r(m)−1.

4.80 Lemma. The number of elements of type B2 equals{
0 if m ≡ 2 (mod 4),

2r(m)−1 if m ≡ 1, 3 (mod 4).

Proof. Let γ be of type B2 and let it correspond to the triple (a, b, c). From

⌊γ⌋ = Tr(γ) = − b
a

follows that a | b. We distinguish two cases.

First case: m ≡ 1 (mod 4). From b2 − 4ac = m follows that a | m. Conversely, if
a | m, then

α =
a+
√
m

2a
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has discriminant m. Every γ of discriminant m corresponding to a triple (a, ∗, ∗)
satisfying Tr(γ) ∈ Z and γ > γ′ equals n + α for some n ∈ N∗. If, moreover,
Tr(γ) = ⌊γ⌋, then γ = ⌊α⌋ − 1 + α. So the number of elements γ satisfying
these conditions equals the number of (positive) divisors of m, being 2r(m). The
condition γ > 1 will be considered further on.

Second case: m ≡ 2, 3 (mod 4). From b2−4ac = 4m follows that b is even. Because
b
a is odd, a is even. So ( b2 )

2 − 2 · a2 c = m with a
2 ,

b
2 ∈ Z. Since b

a is odd, a
2 and

b
2 have the same parity. It follows that m ≡ 2 (mod 4) is not possible. Now we
assume that m ≡ 3 (mod 4). We have a

2 | m. Conversely, suppose d | m. Put
a = 2d. The argument goes as in the case m ≡ 1 (mod 4), now using

α =
d+
√
m

a
.

The number of elements γ of discriminant 4m satisfying Tr(γ) = ⌊γ⌋ and γ > γ′

equals 2r(m).

In both cases we have α =
a+
√
Dm

2a
and γ = ⌊α⌋ − 1+α, and so ⌊γ⌋ = 2⌊α⌋ − 1.

So

γ > 1 ⇐⇒ ⌊γ⌋ ≥ 1 ⇐⇒ ⌊α⌋ ≥ 1 ⇐⇒ α > 1 ⇐⇒ Dm > a2.

Form ≡ 1 (mod 4) the number of elements of type B2 equals the number of divisors
a of m with m > a2, and for m ≡ 3 (mod 4) the number of even divisors d of m
with 4m > (2d)2, that is m > d2. In both cases this number is 2r(m)−1.

Summarizing,

m (mod 4) sum of 2 squares type A type B1 type B2 1
2 × total

1 yes 2r(m)−1 0 2r(m)−1 2r(m)−1

1 no 0 0 2r(m)−1 2r(m)−2

2 yes 2r(m)−1 2r(m)−1 0 2r(m)−1

2 no 0 2r(m)−1 0 2r(m)−2

3 no 0 2r(m)−1 2r(m)−1 2r(m)−1

So in particular:

4.81 Theorem. Let m be squarefree > 1. Then

rk2(Cℓ(Q(
√
m))) =

{
r(Dm)− 1 if m is the sum of two squares,

r(Dm)− 2 if m is not the sum of two squares.

4.82 Corollary. Let m > 1 be squarefree. Then #(Cℓ(Q(
√
m))) is odd if and only

if m is either a prime or a product of two primes ̸≡ 1 (mod 4).
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Exercises

It is unknown whether there are infinitely many m such that Z[ωm] is a principal
ideal domain.

For another, more advanced, computation of the 2-rank of the ideal class group see
exercises 8 and 9 of chapter 12. In chapter 15 this 2-rank will be computed using
class field theory. This computation is far less technical than the computation in
this section, thus showing the strength of class field theory (Example 15.30).

Exercises

1. Let m,n ∈ Z be different, squarefree and ̸= 1. Put k =
mn

gcd(m,n)2
.

(i) Let p be a prime number which splits completely in both Q(
√
m) and Q(

√
n).

Show that p splits completely in Q(
√
k) as well.

(ii) Let p be a prime number which remains prime in both Q(
√
m) and Q(

√
n).

What is its splitting behavior in Q(
√
k)?

(iii) Let p be a prime number which ramifies in both Q(
√
m) and Q(

√
n). Show,

by giving examples, what the splitting behavior of p in Q(
√
k) could be.

2. (i) Verify whether 255 is a quadratic residue modulo the prime number 1151.

(ii) Is 41 a square in Z/(225) ?
(iii) What is the splitting behavior of the prime number 10007 in Q(

√
7429) ?

3. For which prime numbers p is 5 a quadratic residue modulo p? And for which p is
7 a quadratic residue modulo p ?

4. Describe the splitting behavior of prime numbers in Q(
√
−15) and compute the

ideal class group of this field.

5. Let m ∈ Z be squarefree ̸= 1 and p a prime number which splits completely in
Q(
√
m). Let q be a prime number satisfying q ≡ −p (mod |Dm|). Show that q

splits completely in Q(
√
m) if m > 1 and that q remains prime if m < 0.

6. Show that the group GL2(Z) is generated by the matrices ( 1 1
0 1 ), (

0 −1
1 0 ) and (−1 0

0 1 ).
Also show that the first two generate the subgroup SL2(Z) of matrices of determi-
nant 1. Use that Z is Euclidean and also the identity ( 0 −1

1 0 ) ( 1 1
0 1 )

(
0 1
−1 0

)
=
(

1 0
−1 1

)
.

7. In the exercises 9 and 13 of chapter 2 the ideal class groups of Q(
√
−6) and Q(

√
−23)

have been computed. Compute them now using the algorithm described in sec-
tion 4.4.

8. Compute, using the algorithm in section 4.4, the ideal class group of Q(
√
−34),

giving for each ideal class a representative. Show that the group is cyclic.

9. Let m ∈ Z be squarefree ̸= 1. Prove that the quadratic number field Q(
√
m) is a

subfield of the cyclotomic field Q(ζN ), where N = |Dm|.
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4 Quadratic Number Fields

10. Compute the elements of Cℓ(Q(
√
−185)).

(i) Determine the 2-rank of this group.

(ii) Determine the group structure.

(iii) Determine the order of [p], where p is a prime ideal above 3.

11. (i) Compute the ideal class group of Q(
√
−41). Show that this group is cyclic.

Which element is of order 2?

(ii) Determine the prime ideal factorization of the ideals (2−
√
−41), (3+

√
−41),

(2−
√
−41, 3 +

√
−41) and (2−

√
−41) ∩ (3 +

√
−41) of Z[

√
−41].

(iii) Which elements of the ideal class group of Q(
√
−41) are of order 4?

12. In Example 4.32 the ideal class group of Q(
√
−222) has been computed.

(i) Determine the prime ideal factorization of the principal ideals (11 +
√
−222)

and (3 +
√
−222).

(ii) Which of the classes in Cℓ(Q(
√
−222)) are squares in this group?

13. Let n ∈ N∗. Determine the continued fraction expansion of
√
n2 + 1.

14. Let m and n be natural numbers. Compute ⟨n,m, 2n⟩.

15. (i) Prove that pn(x1, . . . , xn) = pn(xn, . . . , x1).

(ii) Let x = ⟨a1, a2, . . . , an⟩, where (a2, . . . , an−1) = (an−1, . . . , a2) and an = 2a1.
Prove using (i) that x2 ∈ Q. Show that this also follows from Theorem 4.60.

16. Determine all reduced quadratic numbers with discriminant 20.

17. Show that the ring of integers of Q(
√
7) is a principal ideal domain. Compute also

the narrow ideal class group of this field. (The narrow ideal class group of a real
quadratic number field K is the group I(K)/P+(K), where P+(K) is the group of
principal fractional ideals generated by an α ∈ K with NK

Q (α) > 0.)

18. (i) Compute the ideal class groups of the fields Q(
√
79) and Q(

√
111).

(ii) Compute the fundamental units of these fields.

(iii) Compute the narrow ideal class groups of these fields. (See exercise 17.)

19. (i) Compute Cℓ(Q(
√
58)).

(ii) Let a be an ideal of Z[
√
58] which is not a principal ideal. Show that there is

an α ∈ a such that |NK
Q (α)| = 2 ·N(a).

(iii) Which primes do ramify in Q(
√
58) ? The ideal of Z[

√
58] generated by such

a prime is the square of a prime ideal. Is this prime ideal principal?

(iv) Compute the fundamental unit of Q(
√
58).
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5 Geometric Methods

In chapter 1 we embedded a number field of degree n in a real n-dimensional vector
space Rr×Cs. For imaginary and real quadratic number fields we considered in the
chapters 1 and 4 the images in C, respectively R2, of their rings of integers. These
images are lattices in the 2-dimensional vector space. As was shown by Minkowski,
this approach leads to results, both computationally and theoretically, for number
fields in general.

The standard inner product on Rn determines a metric on Rn. Together with
this metric Rn is the n-dimensional Euclidean space, here also denoted by Rn.
The standard Lebesgue measure on this Euclidean space is denoted by vol. It is
a translation invariant metric (a Haar-measure) on Rn. Lattices in subspaces of
Rn can be characterized as discrete subgroups of the additive metric group Rn
(section 5.1). Minkowski theory (section 5.2) is about the existence of nonzero
lattice elements in a measurable subset of Rn. In a few occasions we will need to
compute vol(E) for some simple Lebesgue measurable subsets E.

In chapter 3 a bound λ, depending on the number field, was found such that every
ideal class of that number field contains an ideal of norm less than λ. In section 5.3,
as an application of Minkowski theory, a much sharper bound is obtained, the
Minkowski bound. Minkowski theory is also applied in section 5.4 in a proof of
Dirichlet’s theorem, a description of the structure of the group of units. The group
of units determines a positive real number, the regulator of the field. This number
will come up again in the chapters 9 and 13, where complex analytic methods will
be used. The regulator is defined in the last section.

5.1 Discrete subgroups of Rn

5.1 Definition. A subgroup Γ of the additive group Rn is called discrete if the
standard topology of Rn induces the discrete topology on Γ.

Later, in section 19.2 we will consider topological groups. Here the emphasis is on
the additive group Rn with its standard topology.

We will show that the discrete subgroups of Rn are lattices in linear subspaces of
Rn.
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5.2 Definition and notation. Let Λ be lattice in Rn. For a given Z-basis
(x1, . . . , xn) of Λ the subset

F =
{ n∑
i=1

tixi | 0 ≤ ti < 1 for i = 1, . . . , n
}

of Rn is called a fundamental parallelotope or a mesh of the lattice Λ. From
Lemma 1.40 it follows easily that the volume of F is independent of the choice of
the basis of Λ. We denote this volume by δ(Λ).

5.3 Proposition. Let Γ be a subgroup of the additive group Rn. Then the following
are equivalent:

a) Γ is discrete.

b) For all bounded subsets B of Rn the set B ∩ Γ is finite.

c) Γ is a lattice in an R-linear subspace of Rn.

Proof.

a)⇒b): Let B be a bounded set of Rn. Then its closure B is compact. Since Γ is
closed in Rn, the subset B ∩ Γ is both discrete and compact, which implies
that it is finite.

b)⇒c): Lattices in subspaces of Rn have rank ≤ n. Choose one in Γ of maximal
rank. Say it is Λ = Zv1 + · · · + Zvm, where (v1, . . . , vm) is R-independent.
Then Γ ⊆ Rv1 + · · · + Rvm: for each v ∈ Γ the collection (v, v1, . . . , vm)
is R-dependent by the maximality of Λ. We will show that Γ is a lattice
in Rv1 + · · · + Rvm. Let F be a mesh of Λ. Then every coset of Λ in Γ is
represented by an element of F . Since F is bounded, the set Γ∩F is finite. It
follows that Γ/Λ is finite, say of order r. Then rΓ ⊆ Λ. We have Λ ⊆ Γ ⊆ 1

rΛ.
Since Γ is sandwiched between two lattices in the subspace Rv1 + · · ·+Rvm,
it is itself a lattice in that subspace.

c)⇒a): Let Γ be a lattice in an m-dimensional subspace W of Rn. Then Γ = Zv1 +
· · ·+Zvm, where (v1, . . . , vm) is a basis of W . Extend (v1, . . . , vm) to a basis
(v1, . . . , vn) of Rn. Then for each v ∈ Γ

Bv = { v + t1v1 + · · ·+ tnvn | −1 < ti < 1 for i = 1, . . . , n }

is an open neighborhood of v such that Bv ∩ Γ = {v}.
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5.2 Minkowski theory

5.2 Minkowski theory

5.4 Proposition (Minkowski). Let Λ be a lattice in Rn and E a measurable subset
of Rn with vol(E) > δ(Λ). Then there exist u, v ∈ E such that u ̸= v and u−v ∈ Λ.

Proof. Let F be a mesh of Λ. Then Rn is the disjoint union of all x + F with
x ∈ Λ and so E is the disjoint union of all (x + F ) ∩ E with x ∈ Λ and for the
volume we have:

vol(E) =
∑
x∈Λ

vol((x+ F ) ∩ E) =
∑
x∈Λ

vol(F ∩ (−x+ E)).

Because vol(E) > vol(F ), the subsets F ∩(−x+E)) of F are not all disjoint of each
other, so there are x, y ∈ Λ with x ̸= y such that (F∩(−x+E))∩(F∩(−y+E)) ̸= ∅.
Say w is an element of this intersection. Take u = x+w and v = y+z, then u, v ∈ E,
u ̸= v and u− v = x− y ∈ Λ.

5.5 Definition. A subset E of Rn is called convex if for all x, y ∈ E and all t ∈ [0, 1]
also tx+(1−t)y ∈ E. The subset E is called symmetric if for all x ∈ E also −x ∈ E.

Crucial for this chapter is Minkowski’s Lattice Point Theorem:

5.6 Theorem (Minkowski). Let Λ be a lattice in Rn and let E be a convex,
symmetric, measurable subset of Rn such that

vol(E) > 2nδ(Λ).

Then E contains a nonzero element of Λ. If, furthermore, E is compact then the
condition vol(E) ≥ 2nδ(Λ) suffices.

Proof. Since vol( 12E) = 1
2n vol(E) > δ(Λ), it follows from Proposition 5.4 that

there are u, v ∈ 1
2E such that u ̸= v and u − v ∈ Λ. By symmetry −v ∈ 1

2E and
by convexity 1

2u+ 1
2 (−v) ∈

1
2E. So u− v ∈ E and u− v ∈ Λ \ {0}.

In case E is compact and vol(E) ≥ 2nδ(Λ): apply the above to (1 + 1
m )E for

m = 1, 2, . . . . There is a nonzero xm ∈ (1 + 1
m )E ∩ Λ for all m. The sequence

(xm) is contained in 2E∩Λ, which by Proposition 5.3 is a finite set. It follows that
there is an i such that xi ∈ (1 + 1

m )E for infinitely many m. For this i we have
xi ∈ E.

5.3 The Minkowski bound

In this section K is a number field of degree n. The ring of integers OK is a lattice
in the Q-vector space K (Corollary 1.39). In section 1.1 we embedded K into the
R-algebra Rr × Cs, which is a real vector space of dimension n = r + 2s:

ι : K → Rr × Cs, α 7→ (σ1(α), . . . , σr(α), τ1(α), . . . , τs(α)),
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5 Geometric Methods

where σ1, . . . , σr : K → R are the real embeddings of K and τ1, . . . , τs are (half of)
the complex embeddings of K. Via z 7→ (ℜz,ℑz) we identify this embedding with
an embedding in Rn:

ι : K → Rn, α 7→ (σ1(α), . . . , σr(α),ℜ(τ1(α)),ℑ(τ1(α)), . . . ,ℜ(τs(α)),ℑ(τs(α))).

The image of OK under ι is a lattice in Rn and we will denote this image by ΛK .

5.7 Proposition. δ(ΛK) = 1
2s

√
|disc(K)|.

Proof. Let α1, . . . , αn be an integral basis of K. Then the lattice ΛK is spanned
by ι(α1), . . . , ι(αn). The number δ(ΛK) is equal to the absolute value of the deter-
minant of the n× n-matrix having as i-th row

σ1(αi), . . . , σr(αi),ℜ(τ1(αi)),ℑ(τ1(αi)), . . . ,ℜ(τs(αi)),ℑ(τs(αi))

The effect on the determinant of replacing columnsℜ(τ1(α1))
...

ℜ(τ1(αn))

 and

ℑ(τ1(α1))
...

ℑ(τ1(αn))


by τ1(α1)

...
τ1(αn)

 and

τ1(α1)
...

τ1(αn)

 .

is a multiplication by (2i)s. By Proposition 1.28 the square of the determinant of
the matrix thus obtained equals disc(K).

For an ideal a ̸= 0 the image Λa := ι(a) is a lattice in Rn and since (ΛK : Λa) =
(OK : a) = N(a) we have:

5.8 Corollary. Let a be a nonzero ideal of OK . Then

δ(Λa) =
1

2s

√
|disc(K)| ·N(a).

In section 3.3 it was shown that the ideal class group of a number field is finite. The
main ingredient of the proof is the existence of a λ such that every nonzero ideal a
of OK contains a nonzero element α such that |NKQ (α)| ≤ λN(a). For computations
it is worthwhile to have a small λ with this property. We will apply Minkowski’s
Lattice Point Theorem.

5.9 Proposition. Let A be a compact, convex, symmetric, measurable subset of
Rr × Cs with vol(A) > 0. Suppose that

|N(a)| ≤ 1 for all a ∈ A.
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5.3 The Minkowski bound

Then every lattice Λ in Rr × Cs contains an x ̸= 0 such that

|N(x)| ≤ 2n

vol(A)
δ(Λ).

(N is the norm on Rr × Cs of Definition 1.20, which via the embedding ι is com-
patible with NKQ on the field K.)

Proof. Apply Theorem 5.6 to E = tA, where t is determined by

vol(tA) = tn vol(A) = 2nδ(Λ).

So take t = 2 · n

√
δ(Λ)
vol(A) . Then there is a nonzero x ∈ tA ∩ Λ. For this x we have

|N(x)| = tn|N(xt )| ≤ t
n =

2n

vol(A)
δ(Λ).

This implies that for a nonzero ideal a of OK there is a nonzero α in a such that

|NKQ (α)| ≤ 2n

2s vol(A)

√
|disc(K)| ·N(a) =

2r+s

vol(A)

√
|disc(K)| ·N(a). (5.1)

This means that we can take λ = 2r+s

vol(A)

√
|disc(K)|. For a small λ, we need, of

course, an A satisfying the conditions of Proposition 5.9 with vol(A) large.

5.10 Definition. For r, s ∈ N, not both equal to 0, we define

Ar,s =
{
(x1, . . . , xr, z1, . . . , zs) ∈ Rr×Cs

∣∣ |x1|+· · ·+|xr|+2|z1|+· · ·+2|zs| ≤ n
}
.

The domain Ar,s satisfies the conditions for A in Proposition 5.9:

5.11 Lemma. Ar,s is compact, convex, symmetric and measurable subset of Rn.
Furthermore, |N(a)| ≤ 1 for all a ∈ Ar,s.

Proof. Ar,s clearly is compact, convex and symmetric. It is also measurable:
what is more, we will compute vol(Ar,s) in Proposition 5.14. Let a ∈ Ar,s, say
a = (x1, . . . , xr, z1, . . . , zs). Consider the numbers

|x1|, . . . , |xs|, |z1|, |z1|, . . . , |zs|, |zs|.

Their geometric mean is n
√
|N(a)| and their arithmetic mean is at most 1. Since

the geometric mean of nonnegative reals is less than or equal to the arithmetic
mean, we have for all a ∈ Ar,s the inequality n

√
|N(a)| ≤ 1, that is |N(a)| ≤ 1.

5.12 Examples.

a) A1,0 = {x ∈ R | |x| ≤ 1 } and vol(A1,0) = 2. So for the field Q we obtain
λ = 1, which is not surprising.
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b) A0,1 = { z ∈ C | |z| ≤ 1 } and vol(A0,1) = π. So for an imaginary quadratic

number field K we get λ = 2
π

√
−disc(K).

c) A2,0 = { (x1, x2) | |x1|+ |x2| ≤ 2 } and vol(A2,0) = 8. Then λ = 1
2

√
disc(K)

for real quadratic K. See Figure 1.7 on page 29.

5.13 Example. Using the algorithm given in chapter 4 one easily verifies that the
ideal class group of Q(

√
m) is trivial for m = −43,−67,−163. This is also easily

shown using the bound λ in example b) above. For example the bound for K =
Q(
√
−43) is 2

π

√
43. Every ideal class contains an ideal b with N(b) ≤ 2

π

√
43 < 5.

The ideal (2) is the only prime ideal of norm < 5. So OK = Z[ 12 + 1
2

√
−43] is a

principal ideal domain.

The computation of vol(Ar,s) is done by standard techniques of calculus.

5.14 Proposition. vol(Ar,s) =
nn

n!
· 2r ·

(π
2

)s
, where n = r + 2s.

Proof. Put

Vr,s(t) = vol({ (x1, . . . , z1, . . . ) ∈ Rr×Cs | |x1|+ · · ·+ |xr|+2|z1|+ · · ·+2|zs| ≤ t }

Note that Vr,s(t) = tnVr,s(1) and vol(Ar,s) = Vr,s(n). We will show that

Vr,s(1) =
2r

n!

(π
2

)s
.

This will be done inductively. For this it suffices to show that

(i) V1,0(1) = 2 and V0,1 = π
4 ,

(ii) V0,s+1(1) =
π
2 ·

1
(2s+1)(2s+2) · V0,s(1) for all s ∈ N∗,

(iii) Vr+1,s(1) =
2

r+2s+1 · Vr,s(1) for all (r.s) ∈ N2 \ {(0, 0)}.

Proofs of (i), (ii) and (iii):

(i) This is clear, see also the examples a) and b) in 5.12.

(ii)

V0,s+1(1) =

∫∫
x2+y2≤ 1

2

V0,s
(
1− 2

√
x2 + y2

)
dxdy

=

∫ 2π

0

∫ 1
2

0

V0,s(1− 2ρ)ρdρdφ = 2π

∫ 1
2

0

(1− 2ρ)2sρdρ · V0,s(1)

= 2π

∫ 0

1

u2s · 12 (1− u)(−
1
2 ) du · V0,s(1)

=
π

2

∫ 1

0

(u2s − u2s+1) du · V0,s(1) =
π

2
· 1

(2s+ 1)(2s+ 2)
· V0,s(1).

110



5.3 The Minkowski bound

(iii)

Vr+1,s(1) = 2

∫ 1

0

Vr,s(1− x) dx = 2

∫ 1

0

(1− x)r+2s dx · Vr,s(1)

=
2

r + 2s+ 1
· Vr,s(1).

5.15 Corollary. Let Λ be a lattice in Rr×Cs. Then Λ contains an x ̸= 0 such that

|N(x)| ≤ n!

nn
·
( 8
π

)s
· δ(Λ),

where n = r + 2s.

Proof. Apply Proposition 5.9 to Ar,s given in Definition 5.10, and use Proposi-
tion 5.14: there is an x ̸= 0 in Λ such that

|N(x)| ≤ 2n

vol(Ar,s)
δ(Λ) =

n!

nn
· 2

r+2s

2r

( 8
π

)s
δ(Λ) =

n!

nn
·
( 8
π

)s
· δ(Λ).

In particular inequality (5.1) becomes:

5.16 Corollary. Let a ̸= 0 be an ideal of OK . Then a contains an α ̸= 0 such that

|N(α)| ≤ n!

nn

( 4
π

)s√
|disc(K)| ·N(a).

Now we have much a better λ than in the proof of Proposition 3.24, so Corol-
lary 3.25 now becomes:

5.17 Theorem. Every ideal class of OK contains a nonzero ideal b satisfying

N(b) ≤ n!

nn

( 4
π

)s√
|disc(K)|.

The number
n!

nn

( 4
π

)s√
|disc(K)| is called the Minkowski bound for the number

field K.

5.18 Example. Let K = Q( 3
√
2). Then OK = Z[ 3

√
2] (exercise 8 of chapter 1) and

disc(K) = −27·4. Every ideal class contains an ideal b with N(b) ≤ 8
9π ·2·3

√
3 < 3.

The only prime ideal with norm < 3 is ( 3
√
2) and this is a principal ideal. So Z[ 3

√
2]

is a principal ideal domain.
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5.19 Example. Let K = Q(ζ5). Then OK = Z[ζ5] and disc(K) = 53. Every ideal
class contains an ideal b with

N(b) ≤ 15
√
5

2π2
<

15
√
5

18
< 2.

So every ideal class contains the ideal (1). The ring Z[ζ5] is a principal ideal
domain.

5.20 Example. We will show that Z[ζ7] is a principal ideal domain. In every ideal
class there is an ideal b with

N(b) ≤ 6!

66

(
4

π

)3√
75 =

24 · 5 · 72
√
7

34 · π3
<

24 · 5 · 72
√
7

37
<

72
√
7

33
< 5.

The minimal polynomial Φ7 of ζ7 has over F2 two irreducible factors of degree 3
and these correspond to prime ideals of Z[ζ7] of norm 8. Over F3 the polynomial
is irreducible. So there are no prime ideals of norm less than 5.

For primes p the class number hp of the cyclotomic field Q(ζp) equals 1 only for
p ≤ 19. For p = 23 the class number is 3. Later, in chapter 7, we will see that the
class number h+

p of the subfield Q(ζp + ζ−1
p ) is a divisor of hp (Theorem 7.72). The

quotient hp/h
+
p is usually denoted by h−

p and is called the relative class number.
The relative class number h−

p has been computed for p < 521, e.g. h−
257 is equal to

the following product of three primes:

257 · 20738 946049 · 1 022997 744563 911961 561298 698183 419037 149697.

The class number h+
p is hard to compute. Kummer computed hp for p ≤ 67 and for

these primes we have h+
p = 1. Probably the smallest prime p with h+

p > 1 is 163 (it
depends on the so-called generalized Riemann hypothesis): h+

163 = 4. Kummer’s
results:

p hp p hp p hp p hp p hp

23 3 37 37 43 211 53 4889 61 41 · 1861
31 32 41 112 47 5 · 139 59 3 · 59 · 233 67 67 · 12739

Kummer solved Fermat’s Last Theorem for regular primes, primes p with p ∤ hp. It
has been shown, however, that there are infinitely many irregular primes, whereas it
is unknown whether the number of regular ones is infinite. Apparently, the primes
37, 59 and 67 are irregular. A well-known conjecture is Vandiver’s Conjecture:
p ∤ h+

p for all primes p.

5.21 Example. Let K = Q( 3
√
5). Then OK = Z[ 3

√
5] (exercise 8 of chapter 1) and

disc(K) = −27 · 52. The Minkowski bound for this field is

3!

33
· 4
π

√
27 · 52 =

8

9π

√
27 · 52 =

40

π
√
3
< 8.
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5.3 The Minkowski bound

The factorizations of (2), (3), (5) and (7) have been computed in Example 3.9.
The only prime ideals of norm less than 8 are

(2, 1 + α), (2, 1 + α+ α2), (3, 1 + α) and (5, α),

where α = 3
√
5. They are of norm 2, 4, 3 and 5 respectively. Clearly (5, α) = (α),

a principal ideal. From NKQ (α − 2) = 5 − 8 = −3 it follows that (3, 1 + α) =

(α − 2). So (3, 1 + α) is principal. From NKQ (α + 1) = 5 + 1 = 6 follows that
(α + 1) = (2, 1 + α)(3, 1 + α). Therefore, (2, 1 + α) is also principal and since
(2) = (2, 1 + α)(2, 1 + α + α2), the prime ideal of norm 4 is principal as well. So
Q( 3
√
5) has class number 1.

5.22 Example. We will show that the field K = Q( 3
√
7) has class number 3. We

have OK = Z[ 3
√
7]. Put α = 3

√
7. The Minkowski bound is less than 11, so we

factorize the ideals (2), (3), (5) and (7):

(2) = (2, α+ 1)(2, α2 + α+ 1),

(3) = (3, α− 1)3,

(5) = (5, α− 3)(5, α2 + 3α+ 2),

(7) = (7, α)3.

The prime ideals of norm less then 11 are

(2, α+ 1), (2, α2 + α+ 1), (3, α− 1), (5, α− 3) and (7, α).

Their norms are 2, 4, 3, 5 and 7 respectively. The ideal (7, α) is the principal ideal
generated by α. The identities

(2) = (2, α+ 1)(2, α2 + α+ 1) and (α− 2) = (2, α+ 1)(3, α− 1)

imply that (2, α2 + α + 1) and (3, α − 1) represent the same ideal class, i.e. the
inverse of the class represented by (2, α+ 1). Since NKQ (α+ 2) = 15, we have

(α+ 2) = (3, α− 1)(5, α− 3).

So (5, α − 3) is equivalent to (2, α + 1). Hence, the ideal class group is generated
by the class of (2, α+1). Its inverse is the class of (3, α−1) and since (3, α−1)3 is
principal, the ideal class group is either of order 1 or of order 3. We will show that
(2, α+1) is not principal. Suppose (2, α+1) is principal, then there is an element
of norm ±2. By direct computation

NKQ (x+ yα+ zα2) = x3 + 7y3 + 49z3 − 21xyz

and so
NKQ (x+ yα+ zα2) ≡ x3 (mod 7).

However, there is no x ∈ Z such that x3 ≡ ±2 (mod 7).
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5.23 Example. An integral basis of K = Q(
√
−2,
√
3) is (1,

√
3,
√
−2,

√
−6+

√
−2

2 )
(Exercise 9 of chapter 1). We have disc(K) = 28 · 32. The Minkowski bound is less

than 8. Put α =
√
−6+

√
−2

2 . Then α2 = −2−
√
3 and the minimal polynomial of α

over Q is X4 + 4X2 + 1. So

disc(1, α, α2, α3) = disc(X4 + 4X2 + 1) = NKQ (4α3 + 8α)

= 44NKQ (α)NKQ (α2 + 2) = 44NKQ (−
√
3) = 44 · 32 = 28 · 32.

It follows that OK = Z[α]. Hence we can use the polynomial X4 +4X2 +1 for the
factorization of prime numbers in K:

(2) = (2, α+ 1)4,

(3) = (3, α− 1)2(3, α+ 1)2,

(5) = (5, α2 − 2α− 1)(5, α2 + 2α− 1),

(7) = (7, α2 − α− 1)(7, α2 + α− 1).

There are three prime ideals of norm less than 8:

p2 = (2, α+ 1), p3 = (3, α+ 1) and p′3 = (3, α− 1).

The elements α+1 and α− 1 both are of norm 6. So (α+1) = p2p3 and (α− 1) =
p2p

′
3. Hence Cℓ(K) is generated by [p2] and from p42 = (2) it follows that the order

of the group is a divisor of 4. Since NKQ (
√
−2) = 4, we have (

√
−2) = p22 and so

[p2]
2 = 1. Suppose K contains an element β of norm ±2. Then from

NKQ (β) = N
Q(

√
−6)

Q (NKQ(
√
−6)

(β))

it would follow that Q(
√
−6) contains an element of norm ±2, which is not the

case. Hence Cℓ(K) is of order 2 and is generated by [p2].

5.24 Example. Let K = Q(
√
2,
√
3). Then (1,

√
2,
√
3,

√
2+

√
6

2 ) is an integral basis
of K. We have disc(K) = 28 · 33 and in the same way as in the previous example

we see that OK = Z[α], where α =
√
2+

√
6

2 . The Minkowski bound is less than 5.
The minimal polynomial X4 − 4X2 + 1 of α over Q can be used for the splitting
of primes. This way we find that p2 = (2, α+1) is the only prime ideal with norm
less than 5. We have NKQ (α + 1) = 1 − 4 + 1 = −2, so p2 is the principal ideal
generated by α+ 1. Hence Cℓ(K) is trivial.

From Theorem 3.30 together with the computation of the Minkowski bound it
follows that Q has no unramified extensions:

5.25 Theorem. Let K ̸= Q. Then there is a prime number which ramifies in K.
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5.4 Dirichlet’s Unit Theorem

Proof. Put [K : Q] = n and n = r+2s, where r is the number of real embeddings
and s the number of pairs of complex embeddings. We have n ≥ 2 and since norms
of ideals are ≥ 1, we have by Theorem 5.17:

√
|disc(K)| ≥ nn

n!

(
π

4

)s
.

We will use that
nn

n!
≥ 2n−1 for all n ≥ 2. This is easily proved by induction: for

n = 2 this is true and the induction step goes as follows

(n+ 1)n+1

(n+ 1)!
=
nn

n!
· (n+ 1)n+1

nn
· 1

n+ 1
=
nn

n!

(
1 +

1

n

)n
≥ 2n−1

(
1 +

1

n

)n
≥ 2n−1

(
1 + n · 1

n

)
= 2n.

Hence √
|disc(K)| ≥ 2n−1

(
π

4

)s
= 2r−1πs

and so

|disc(K)| ≥ 4r−1π2s = 1
44
rπ2s ≥ 1

4π
r+2s = 1

4π
n ≥ 1

4π
2 > 2.

It follows that |disc(K)| ≥ 3 and so there is a prime divisor of the discriminant of
K. By Theorem 3.30 this prime number ramifies in K.

5.4 Dirichlet’s Unit Theorem

In this section K is a number field. Dirichlet’s Unit Theorem gives a complete
description of the structure of the unit group O∗

K . We will use the embedding
ι : K → Rr × Cs. This ring homomorphism induces a group homomorphism

ι : K∗ → (Rr × Cs)∗(= R∗r × C∗s).

5.26 Notations. The map L : R∗r × C∗s → Rr+s is defined by

L : (x1, . . . , xr, z1, . . . , zs) 7→ (log |x1|, . . . , log |xr|, log z1z1, . . . , log zszs).

It is a homomorphism from the multiplicative group R∗r×C∗s to the additive group
Rr+s. For the real embeddings σi (1 ≤ i ≤ r) let λi : K∗ → R be the composition

K∗ σi−→ R∗ log|.|−→ R
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and for the complex embeddings τj : K → C (1 ≤ j ≤ s) the composition

K∗ τj−→ C∗ 2 log|.|−→ R

is denoted by λr+j . Thus the composition Lι : K∗ → Rr+s is the homomorphism

α 7→ (λ1(α), . . . , λr+s(α)).

This homomorphism will be denoted by l and its restriction to O∗
K by ψ. So we

have a commutative diagram

K∗ R∗r × C∗s

O∗
K Rr+s

ι

l

ψ

L⊂

We will determine the structure of O∗
K by studying the kernel and the image of

the group homomorphism ψ : O∗
K → Rr+s.

5.27 Lemma. Let B be a bounded subset of Rr+s. Then L−1(B) is a bounded
subset of Rr × Cs.

Proof. Since B is bounded, it is contained in a cube [−a, a]r+s for some positive
real a. The lemma follows from:

(i) The inverse image of [−a, a] under R∗ → R, x 7→ log |x| is [−ea,−e−a] ∪
[e−a, ea], which is contained in [−ea, ea].

(ii) The inverse image of [−a, a] under C∗ → R, z 7→ log zz is { z ∈ C | e− a
2 ≤

|z| ≤ e a
2 }. It is contained in the disc { z ∈ C | |z| ≤ e a

2 }.

5.28 Proposition. Ker(ψ) = µ(K).

Proof. The only element of finite order in the additive group Rr+s is 0. So ψ
maps elements of finite order to 0, that is µ(K) ⊆ Ker(ψ). Since {0} is a bounded
subset of Rr+s, by Lemma 5.27 its inverse image L−1({0}) = Ker(L) in R∗r ×C∗s

is a bounded subset of Rr × Cs. By Proposition 5.3 it contains only finitely many
elements of the lattice ΛK . So Ker(ψ) is a finite subgroup of K∗ and its elements
are, therefore, of finite order, that is they are roots of unity.

5.29 Notation. Let m ∈ N∗. The m− 1-dimensional subspace

{ (x1, . . . , xm) ∈ Rm | x1 + · · ·+ xm = 0 }

of the R-vector space Rm will be denoted by Hm.
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5.4 Dirichlet’s Unit Theorem

5.30 Lemma. ψ(O∗
K) is a discrete subgroup of Rr+s and is contained in Hr+s.

Proof. Put Γ = ψ(O∗
K). Let B be a bounded subset of Rr+s. Then by

Lemma 5.27 L−1(B) is a bounded subset of Rr × Cs. The inverse image of Γ ∩B
is contained in ΛK ∩ L−1(B), and is, since ΛK is a lattice in Rr × Cs, a finite set
by Proposition 5.3. So Γ ∩ B is finite. Hence by Proposition 5.3 the group Γ is a
discrete subgroup of Rr+s. It is contained in Hr+s: for ε ∈ O∗

K we have

NKQ (ε) = σ1(ε) · · ·σr(ε)τ1(ε)τ1(ε) · · · τs(ε)τs(ε) = ±1

and so

log |σ1(ε)|+ · · ·+ log |σr(ε)|+ log τ1(ε)τ1(ε) + · · ·+ log τ1(ε)τ1(ε) = 0.

We will show that ψ(O∗
K) is a lattice in Hr+s.

5.31 Proposition. Let c1, . . . , cr+s ∈ R>0 such that

r+s∏
i=1

ci ≥
( 2
π

)s√
|disc(K)|.

Then there exists a nonzero β in OK such that

|σi(β)| ≤ ci for i = 1, . . . , r

and
τj(β)τj(β) ≤ ci+j for j = 1, . . . s.

Proof. Let E be the subset of Rr × Cs of all (x1, . . . , xr, z1, . . . , zs) such that

|x1| ≤ c1, . . . , |xr| ≤ cr, z1z1 ≤ cr+1, . . . , zszs ≤ cr+s.

Then E is convex, symmetric and measurable, and for its volume we have

vol(E) = 2rc1 · · · cr · πscr+1 · · · cr+s ≥ 2r+s
√
|disc(K)| = 2nδ(ΛK).

By Theorem 5.6 there is a nonzero x ∈ ΛR ∩ E. Take β ∈ OK with ι(β) = x.

5.32 Lemma. Let k ∈ N∗ with 1 ≤ k ≤ r + s. Then there exists an ε ∈ O∗
K such

that λi(ε) < 0 for all i ̸= k.

Proof. Let α be a nonzero element of OK . Choose c1, . . . , cr+s ∈ R>0 such that
for all i ̸= k

ci < |σi(α)| if i ≤ r,
ci < |τi−r(α)|2 if i > r
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and

r+s∏
i=1

ci =
( 2
π

)2√
|disc(K)|.

By Proposition 5.31 there exists a nonzero β ∈ OK such that λi(β) < log ci for
i = 1, . . . , r + s. So λi(β) < λi(α) for all i ̸= k. Thus we can form a sequence
α1, α2, . . . of nonzero elements of OK such that for all m ∈ N∗

λi(αm+1) < λi(αm) for all i ̸= k

and

|NKQ (αm)| <
( 2
π

)2√
|disc(K)|.

Because there is an upperbound for the norm of the principal ideals (αm), there
are only finitely many of them. Hence there exist m1 and m2 such that m1 < m2

and (αm1
) = (αm2

). Take ε = α−1
m1
αm2

.

5.33 Lemma. Let (aij) be an m×m-matrix with entries in R such that

a) aii > 0 for i = 1, . . . ,m,

b) aij < 0 for i ̸= j,

c)
∑
j aij = 0 for i = 1, . . . ,m.

Then (aij) is a matrix of rank m− 1.

Proof. We show that the first m− 1 columns are independent. Suppose that to
the contrary

λ1

a11
...

am1

+ · · ·+ λm−1

a1,m−1

...
am,m−1

 =

0
...
0

 ,

where not all λi equal 0. Divide by λk with |λk| maximal: we may assume that
λk = 1 and λj ≤ 1 for j ̸= k. Consider the k-th row:

0 =

m−1∑
j=1

λjakj = akk +

m−1∑
j=1
j ̸=k

λjakj ≥ akk +
m−1∑
j=1
j ̸=k

akj =

m−1∑
j=1

akj >

m∑
j=1

akj = 0.

Contradiction.
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5.4 Dirichlet’s Unit Theorem

5.34 Proposition. ψ(O∗
K) is a lattice in Hr+s.

Proof. By Lemma 5.32 there exist ε1, . . . , εr+s ∈ O∗
K such that:

the i-th component of l(εk) is negative for all i, k with i ̸= k.

Write l(εk) = (ak1, . . . , ak,r+s). The matrix (aij) satisfies the conditions of
Lemma 5.33 (with m = r + s). So the rank of this matrix equals r + s − 1.
This means that the subgroup ψ(O∗

K) contains a lattice in Hr+s. Since ψ(O∗
K) is

a discrete subgroup of Rr+s, it follows from Proposition 5.3 that it is a lattice in
Hr+s.

From Proposition 5.28 it follows that we have a short exact sequence

1 −→ µ(K) −→ O∗
K

ψ−→ ψ(O∗
K) −→ 0

and since by Proposition 5.34 ψ(O∗
K) is a free abelian group of rank r+ s− 1, this

sequence splits and we can choose ε1, . . . , εr+s−1 ∈ O∗
K which map under ψ to a

Z-basis of ψ(O∗
K). This leads to Dirichlet’s Unit Theorem:

5.35 Theorem (Dirichlet). There are ε1, . . . , εr+s−1 ∈ O∗
K such that each ε ∈ O∗

K

can be written in a unique way as

ε = ζεk11 · · · ε
kr+s−1

r+s−1

with ζ a root of unity and k1, . . . , kr+s−1 ∈ Z.

5.36 Definition. A system ε1, . . . , εr+s−1 as in Theorem 5.35 is called a fundamen-
tal system of units of K.

5.37 Example. We compute O∗
K for the field K = Q(

√
−2,
√
3) of Example 5.23.

It is easily verified that −1 is the only nontrivial root of unity in K. By Dirichlet’s
Unit Theorem the group of units is of rank 1: O∗

K = ⟨−1, ε⟩ for some ε ∈ O∗
K .

For the quadratic subfields we have Z[
√
−2]∗ = Z[

√
−6]∗ = ⟨−1⟩ and Z[

√
3]∗ =

⟨−1, 2 +
√
3⟩. Let ν ∈ O∗

K . Let σ, τ ∈ Gal(K : Q) such that Kσ = Q(
√
−2) and

Kτ = Q(
√
3). Then Kστ = Q(

√
−6) and

ν · σ(ν) ∈ Z[
√
−2]∗ = ⟨−1⟩,

ν · τ(ν) ∈ Z[
√
3]∗ = ⟨−1, 2 +

√
3⟩,

ν · στ(ν) ∈ Z[
√
−6]∗ = ⟨−1⟩.

For the product of these elements we obtain

ν2 ·NKQ (ν) ∈ ⟨−1, 2 +
√
3⟩,

and so ν2 ∈ ⟨−1, 2+
√
3⟩. By the way, in this special case this result already implies

that the group O∗
K is of rank 1. It suffices to verify whether there exist k, l ∈ {0, 1}
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with k and l not both 0 such that (−1)k(2 +
√
3)l is a square in K. The number

−1 is not a square since i /∈ K. If 2 +
√
3 were a square, it would be the square of

a real number and, therefore, the square of a number in Q(
√
3). Since 2 +

√
3 is

the fundamental unit in this quadratic number field, it is not a square in that field.

In Example 5.23 we saw that for α =
√
−6+

√
−2

2 we have α2 = −2 −
√
3. Hence

O∗
K = ⟨−1, α⟩.

5.38 Example. We compute O∗
K for the field K = Q(

√
2,
√
3) of Example 5.24.

For the quadratic subfields we have Z[
√
2]∗ = ⟨−1, 1+

√
2⟩, Z[

√
3]∗ = ⟨−1, 2+

√
3⟩

and Z[
√
6]∗ = ⟨−1, 5+2

√
6⟩. Let ν ∈ O∗

K . As in the previous example we conclude
that

ν2 ∈ ⟨−1, 1 +
√
2, 2 +

√
3, 5 + 2

√
6⟩.

From this and also from Dirichlet’s Unit Theorem it follows that O∗
K is of rank 3.

Since the field is a subfield of R, ν2 is a positive real number. It suffices to look for
ν ∈ K with ν2 = (1 +

√
2)k(2 +

√
3)l(5 + 2

√
6)m, where k, l,m ∈ {0, 1}. The ideal

p2 = (α+1) is the unique ideal of norm 2. So p2 = (
√
2) = (1+

√
3) = (2+

√
6). The

number ν1 = 1+
√
3√

2
∈ O∗

K satisfies ν21 = 2 +
√
3 and the number ν2 = 2+

√
6√

2
∈ O∗

K

satisfies ν22 = 5 + 2
√
6. We have ν1 = α and ν2 =

√
2 +
√
3. Then

ν2 = (1 +
√
2)kν2l1 ν

2m
2

and so ( ν

νl1ν
m
2

)2
= (1 +

√
2)k.

The number 1+
√
2 is not a square in K: its image is negative under an automor-

phism which maps
√
2 to −

√
2. So k = 0 and ν = νl1ν

m
2 . Hence

O∗
K =

〈
−1, 1 +

√
2,
√
2 +
√
3,

√
2 +
√
6

2

〉
.

For the computation of the ideal class group knowledge of the group of units some-
times is helpful. The following is an example of this phenomenon.

5.39 Example. Let K = Q( 3
√
11). Put α = 3

√
11. Then OK = Z[α] and disc(K) =

−27·112 (exercise 9 of chapter 1). The Minkowski bound is 88
9π

√
3 < 6. We factorize

the primes less than 6 by factorizing X3 − 11 modulo these primes:

(2) = (2, α+ 1)(2, α2 + α+ 1)

(3) = (3, α+ 1)3

(5) = (5, α− 1)(5, α2 + α+ 1).

The ideal class group is generated by the classes of the prime ideals of norm less
than 6: p2 = (2, α + 1), p′2 = (2, α2 + α + 1), p3 = (3, α + 1) and p5 = (5, α − 1).
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The factorization of (2) implies that p′2 is in the inverse of the class of p2. From
NKQ (α − 1) = −(13 − 11) = 10 follows that (α − 1) = p2p5, so also p5 is in the

inverse of the class of p2. Furthermore, NKQ (α − 2) = −(23 − 11) = 3, so the class
of p3 is the unity element. From all this it follows that Cℓ(K) is generated by [p2].
The remaining problem is to determine the order of [p2]. We have NKQ (α2 − 5) =

−(53 − 121) = −4. Modulo p2 we have α2 − 5 ≡ (α+ 1)2 ≡ 0 and so p2 | (α2 − 5).
Hence (α2 − 5) = p22. So Cℓ(K) is of order 1 or 2. We will show that it is of order
2 by showing that the ideal p2 is not principal.

By Dirichlet’s Unit Theorem Z[α]∗ = ⟨−1, ε⟩, where ε is a unit > 1, the fundamen-

tal unit of K. The ideal p3 is principal and p33 = (3). So ν = (α−2)3

3 ∈ Z[α]∗. Since
ν > 0, it is a power of ε. We will show that it is an odd power of ε. From

3ν = (α− 2)3 ≡ (−1)3 ≡ 4 (mod p5)

follows that ν ∈ Z[α]/p5 = F5 is not a square. Therefore, ν is not a square in Z[α].
Hence ν is an odd power of ε, say ν = εk for an odd k ∈ Z. This will be used
to show that p2 is not principal. Later, in Example 5.44, we will see that in fact
k = −1.

Suppose p2 is principal, say p2 = (β). Then (β2) = p22 = (α2 − 5) and so for some
l ∈ Z

β2 = ±εl(α2 − 5).

Raising to the power k yields

β2k = ±νl(α2 − 5)k

and, since β2k > 0, α2 − 5 < 0 and k odd, we have in fact

β2k = −νl(α2 − 5)k.

The prime 19 splits completely in K: (19) = (19, α + 2)(19, α + 3)(19, α − 5).
Modulo p19 = (19, α− 5) we have

3ν = (α− 2)3 ≡ 33 (mod p19)

and so ν ≡ 32 (mod p19). Hence, since α2 − 5 ≡ 1 (mod p19),

β2k ≡ −32l (mod p19),

from which it follows that −1 is a square modulo 19. This, however, is not the case
since 19 ≡ 3 (mod 4). So p2 is not principal and Cℓ(K) is of order 2.
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Cubic fields with one real embedding

Let K be of degree 3 with one real embedding. Let’s assume that K is in fact
a subfield of R. Then the real embedding is just the inclusion map and K has
one pair (τ, τ) of complex embeddings. Examples of such fields are the pure cubic
fields; see exercise 8 of chapter 1. Since K is real, we have µ(K) = {±1}. By
Dirichlet’s Unit Theorem O∗

K is of rank 1. It follows that there is a ‘fundamental
unit’ ε > 1 such that O∗

K = ⟨−1, ε⟩. The following lemma of Artin is useful when
computing the fundamental unit, because it gives a lower bound for positive units.

5.40 Lemma. Let ν ∈ O∗
K with ν > 1. Then |disc(K)| < 4ν3 + 24.

Proof. We have NKQ (ν) = ντ(ν)τ(ν) > 0, so NKQ (ν) = 1. Since ν /∈ Q and
ν ∈ OK , we have that K = Q(ν) and that Z[ν] is a number ring of K. So
d = disc(1, ν, ν2) = m2 · disc(K), where m = (OK : Z[ν]). There are unique
ρ ∈ (0,∞) and ϑ ∈ (0, π) such that

ν = ρ2 and τ(ν) = ρ−1eiϑ

(assuming that τ(ν) has a positive imaginary part). We see d as a function of ϑ
(keeping ρ fixed):

√
d =

√
d(ϑ) =

∣∣∣∣∣∣
1 ρ2 ρ4

1 ρ−1eiϑ ρ−2e2iϑ

1 ρ−1e−iϑ ρ−2e−2iϑ

∣∣∣∣∣∣ = (ρ3 + ρ−3)(e−iϑ − eiϑ) + e2iϑ − e−2iϑ

= −2i((ρ3 + ρ−3) sinϑ− sin 2ϑ).

Set y = 1
2 (ρ

3 + ρ−3). Then

√
d = −4i(y sinϑ− sinϑ cosϑ)

and |d| has a maximum only when the derivative of y sinϑ − sinϑ cosϑ vanishes.
Say this is the case for ϑ = ϑ0. Then

y cosϑ0 − 2 cos 2ϑ0 = 0

and
|
√
d| = 4|(y − cosϑ) sinϑ| ≤ 4|(y − cosϑ0) sinϑ0|.

Put z = cosϑ0. Then

2z2 − yz − 1 = 0 and |d| ≤ 16(y − z)2(1− z2).

Hence,

|d| ≤ 16(y2 − 2yz + z2)(1− z2) = 16(y2 − 2yz + z2 − y2z2 + 2yz3 − z4)
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5.4 Dirichlet’s Unit Theorem

= 16(y2 − 2(2z2 − 1) + z2 − (2z2 − 1)2 + 2(2z2 − 1)z2 − z4) = 16(y − z2 − z4)
= 4(ρ6 + 6 + ρ−6 − 4z2 − 4z4).

So it suffices to show that ρ−6 < 4z2 + 4z4. The polynomial 2X2 − yX − 1 has
two zeros, one of them is z. One root is positive and, since y = 1

2 (ρ
3 + ρ−3) > 1,

in fact greater than 1:

y +
√
y2 + 8

4
>

1 +
√
9

4
= 1.

So z = cosϑ is the other zero. The quadratic polynomial takes in − 1
2ρ

−3 a negative
value:

2(− 1
2ρ

−3)2 − y(− 1
2ρ

−3)− 1 = 3
4 (ρ

−6 − 1) < 0.

Therefore, z < − 1
2ρ

−3 and so z2 > 1
4ρ

−6. This implies ρ−6 < 4z2 < 4z2 +4z4.

5.41 Corollary. Suppose |disc(K)| > 28. Let η ∈ O∗
K with η > 1, say η = εk.

Then k satisfies ( |disc(K)| − 24

4

)k
< η3.

Proof. By Lemma 5.40
|disc(K)| − 24

4
< ε3 and so

( |disc(K)| − 24

4

)k
< ε3k = η3.

Note that only finitely many k are possible:

k < 3 log η
log ρ

, where ρ = 1
4
(|disc(K)| − 24).

5.42 Example. The ring of integers of K = Q( 3
√
2) is Z[ 3

√
2] (exercise 8 of chap-

ter 1). Put α = 3
√
2. We have disc(K) = disc(1, α, α2) = −NKQ (3α2) = −33 · 4.

Clearly α−1 is a unit. Its inverse is α2+α+1, a unit > 1. We have (α2+α+1)3 <
(2 + 2 + 1)3 = 125 and for all k ≥ 2( |disc(K)| − 24

4

)k
= 21k ≥ 212 > 125.

By Corollary 5.41 α2 + α+ 1 is the fundamental unit.

5.43 Example. The ring of integers of K = Q( 3
√
7) is Z[ 3

√
7]. Put α = 3

√
7. We

have −1 = α3 − 8 = (α − 2)(α2 + 2α + 4), so α − 2 is a unit and −(α2 + 2α + 4)
is its inverse. Put η = α2 + 2α + 4. Then η ∈ O∗

K and η = 1
2−α > 1. We have

η = (α+ 1)2 + 3 < 32 + 3 = 12. For all k ≥ 2( |disc(K)| − 24

4

)k
=
(1299

4

)k
> 324k ≥ 3242 > 123 > η3.

By Corollary 5.41 η is the fundamental unit.

123



5 Geometric Methods

5.44 Example. In Example 5.39 the ideal class group of K = Q( 3
√
11) has been

computed. Now we compute its group of units. We use the notation of Exam-
ple 5.39. Put η = ν−1. Then η is a unit > 1. We know already that it is an odd
power of the fundamental unit ε. We have

|disc(K)| − 24

4
=

27 · 112 − 24

4
=

3243

4
> 810

and (using α < 9
4 )

η =
3

(α− 2)3
=

(α2 + 2α+ 4)3

9
= 18α2 + 40α+ 89 < 271

and so η3 < 2713. Since ( | disc(K)|−24
4 )3 > 8103 > 2713 > η3, by Corollary 5.41

η = εk, where 1 ≤ k < 3. Since k is odd, only k = 1 is possible and so η = ε.

Cyclotomic fields

Let m ∈ N with m > 2. The m-th cyclotomic field Q(ζm) is totally imaginary, i.e.
all embeddings are complex. Put L = Q(ζm). The rank of O∗

L is by Dirichlet’s

Unit Theorem equal to φ(m)
2 − 1. Let K = Q(ζm + ζ−1

m ). This field is totally real,

all its φ(m)
2 embeddings are real. So, again by Dirichlet’s Unit theorem, the groups

O∗
K and O∗

L have equal rank. Since they are finitely generated, the index of O∗
K in

O∗
L is finite and so is the index of O∗

Kµ(L) in O∗
L. In fact this index is at most 2.

This will be shown for a wider class of extensions. First a useful lemma.

5.45 Lemma. Let α be an algebraic integer, all of whose conjugates have absolute
value 1. Then α is a root of unity.

Proof. Let f = Xn−a1Xn−1+· · ·+(−1)nan ∈ Z[X] be the minimal polynomial
of α over Q. Then f = (X − α1) · · · (X − αn) with α1, . . . , αn the conjugates of α.

We have ak = s
(n)
k (α1, . . . , αn) for k = 1, . . . , n, where s

(n)
k is the k-th elementary

symmetric polynomial in n variables. The condition |αk| = 1 for k = 1, . . . , n yields
a bound for the ak:

|ak| = |s(n)k (α1, . . . , αn)| ≤ s(n)k (1, . . . , 1) =

(
n

k

)
.

It follows that only finitely many algebraic integers of degree ≤ n over Q satisfy
the condition in the lemma. So the set of all powers of α is finite. This means that
α is of finite order in C∗, that is α is a root of unity.

5.46 Definition. A totally complex number field which is a quadratic extension of
a totally real field is called a CM-field. (CM stands for Complex Multiplication.)
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5.4 Dirichlet’s Unit Theorem

Let the CM-field L be a quadratic extension of the totally real field K. Then by
Dirichlet’s Unit Theorem O∗

K and O∗
L are finitely generated abelian groups of equal

rank. So the index of µ(L)O∗
K in O∗

L is finite.

5.47 Definition. Let L be a CM-field and K the totally real subfield of L with
[L : K] = 2. The index (O∗

L : µ(L)O∗
K) is called the Hasse index or unit index of

L. Notation: Q(L).

Let L : Q be a Galois extension and τ the automorphism of L induced by complex
conjugation. We assume that τ is of order 2—so L has only complex embeddings—
and also that τ is central in Gal(L : Q). This last condition implies that K := Lτ is
totally real. So L is a CM-field with the property that L : Q is a Galois extension.
For each ν ∈ O∗

L and all σ ∈ Gal(L : Q)∣∣∣σ( ν

τ(ν)

)∣∣∣ = |σ(ν)|
|στ(ν)|

=
|σ(ν)|
|τσ(ν)|

= 1.

By Lemma 5.45 we have ν
τ(ν) ∈ µ(L). Thus we have a map

f : O∗
L → µ(L), ν 7→ ν

τ(ν)
.

This map clearly is a group homomorphism.

5.48 Proposition. Let L be a CM-field such that L : Q be a Galois extension and
let K = Lτ , where τ is induced by complex conjugation. Then

µ(L)O∗
K = {ν ∈ O∗

L | ν
τ(ν) ∈ µ(L)

2}

and hence Q(L) ≤ 2.

Proof. We show that the kernel of the homomorphism f ′ : O∗
L → µ(L)/µ(L)2

induced by f as described above is the group µ(L)O∗
K . Clearly µ(L) and O∗

K are
contained in the kernel of f ′. Let ν ∈ Ker(f ′), that is ν

τ(ν) ∈ µ(L)
2, say ν

τ(ν) = ζ2

for a ζ ∈ µ(L). Then ν
ζ = τ

(
ν
ζ

)
and so ν

ζ ∈ O
∗
K . Since µ(L)/µ(L)2 is of order 2, it

follows that Q(L) ≤ 2.

Here we considered CM-fields which are Galois extensions of Q. with a little more
effort it can be shown that this proposition holds in fact for CM-fields in general.

5.49 Example. The biquadratic number field K = Q(
√
−2,
√
3) is a CM-field. Its

real subfield is the quadratic number field Q(
√
3). From the computation of O∗

K

in Example 5.37 follows that Q(K) = 2.

We compute the Hasse index of a cyclotomic field Q(ζm) with m > 2. It is a
CM-field with Q(ζm + ζ−1

m ) as its totally real subfield. For m not a prime power
we will use the following Lemma.

5.50 Lemma. Let m ∈ N∗ be not a prime power. Then 1− ζm ∈ Z[ζm]∗.
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Proof. For each k ∈ N∗ the cyclotomic polynomial Φk is the minimal polynomial

of ζk over Q. We will prove that Φm(1) = ±1 and so N
Q(ζm)
Q (1− ζm) = ±1.

Let r(k) denote the number of prime divisors of k ∈ N∗. We have Xm − 1 =∏
d|m Φd(X) and write this as follows

Xm − 1

X − 1
=

∏
d|m

r(d)=1

Φd(X) ·
∏
d|m

r(d)>1

Φd(X).

So for the values in 1:

m =
∏
d|m

r(d)=1

Φd(1) ·
∏
d|m

r(d)>1

Φd(1) =
∏
p|m

pvp(m) ·
∏
d|m

r(d)>1

Φd(1) = m ·
∏
d|m

r(d)>1

Φd(1).

It follows that Φm(1) = ±1.

In fact Φm(1) = 1 ifm is not a prime power, because the norm of a nonreal algebraic
integer is positive. It also follows by induction from the product given in the proof
of this lemma.

5.51 Theorem. Let m ∈ N with m > 2 and m ̸≡ 2 (mod 4). Then

Q(Q(ζm)) =

{
1 if m is a prime power,

2 otherwise.

Proof. Put L = Q(ζm) and K = Q(ζm + ζ−1
m ). We distinguish three cases.

Case 1: m is a power of an odd prime p. Let ν ∈ O∗
L. We have to show that ν

τ(ν) ∈
µ(L)2. Put ν = a0+a1ζm+ · · ·+an−1ζ

n−1
m , where n = φ(m) and a0, . . . , an−1 ∈ Z.

We have ν ≡ a0 + · · · + an−1 (mod 1 − ζm). Also τ(ν) = a0 + a1ζ
−1
m + · · · +

an−1ζ
−(n−1)
m ≡ a0 + · · · + an−1 (mod 1 − ζm). So ν

τ(ν) ≡ 1 (mod 1 − ζm). On the

other hand ν
τ(ν) ∈ µ(L) = ⟨−ζm⟩. Since ν

τ(ν) ≡ 1 (mod 1 − ζm), it follows that
ν

τ(ν) ∈ ⟨ζm⟩ = µ(L)2.

Case 2: m is a power of 2, say m = 2r with r ≥ 2. Let ν ∈ O∗
L. Suppose

that ν
τ(ν) /∈ µ(L)2. We have µ(L) = ⟨ζ2r ⟩ and µ(L)2 = ⟨ζ2r−1⟩, so ν

τ(ν) is a

primitive m-th root of unity. Since N
Q(ζ

2k
)

Q(ζ
2k−1 )

(ζ2k) = ζ2k−1 for k = 2, . . . , r, we

have N
Q(ζ2r )
Q(i) (ζ2r ) = i. But N

Q(ζm)
Q(i) (ν) is a unit of Z[i], say N

Q(ζm)
Q(i) (ν) = it. Then

N
Q(ζm)
Q(i) ( ν

τ(ν) ) =
it

i−t = i2t = (−1)t ̸= i. Contradiction. So also in this case ν
τ(ν) ∈

µ(L)2.
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Case 3: m is not a prime power. By Lemma 5.50 we have 1 − ζm ∈ O∗
L. The

homomorphism f : O∗
L → µ(L) maps this unit to

1− ζm
τ(1− ζm)

=
1− ζm
1− ζ−1

m

= −ζ−1
m .

Since −ζ−1
m generates µ(L), the homomorphism f is surjective.

5.5 Regulators

Let K be a number field of degree n with r real embeddings σ1, . . . , σr and s pairs
{τ1, τ1}, . . . , {τs, τs} of complex embeddings. By Proposition 5.34 the image of

ψ : O∗
K → Rr+s, ε 7→ l(ε)

is a lattice in the subspace Hr+s of Rr+s. We consider Rr+s to be the standard
Euclidean space of dimension r + s and equipped with the standard Lebesgue
measure vol. Moreover, Hr+s is a Euclidean subspace of dimension r + s− 1. Let
(ε1, . . . , εr+s−1) be a system of units. Then (ψ(ε1), . . . , ψ(εr+s−1)) is a basis of
Hr+s if and only if ⟨ε1, . . . , εr+s−1⟩ is a free abelian group of rank r + s − 1, or
equivalently, if and only if this group is of finite index in O∗

K . It is a fundamental
system of units if and only if (ψ(ε1), . . . , ψ(εr+s−1) is a Z-basis of the lattice ψ(O∗

K)
in Hr+s. If ⟨ε1, . . . , εr+s−1⟩ is of rank r+ s− 1, the volume of a mesh of ψ(O∗

K) is
equal to the volume of the parallelotope in Rr+s spanned by

(ψ(ε1), . . . , ψ(εr+s−1), v),

where v = 1√
r+s

(1, . . . , 1), a vector of length 1 perpendicular to Hr+s. Thus this

volume is the absolute value of∣∣∣∣∣∣∣∣∣∣∣∣∣∣

log |σ1(ε1)| · · · log |σr(ε1)| 2 log |τ1(ε1)| · · · 2 log |τs(ε1)|
log |σ1(ε2)| · · · log |σr(ε2)| 2 log |τ1(ε2)| · · · 2 log |τs(ε2)|

...
...

...
...

...
...

...
...

log |σ1(εr+s−1)| · · · log |σr(εr+s−1)| 2 log |τ1(εr+s−1)| · · · 2 log |τs(εr+s−1)|
1√
r+s

· · · 1√
r+s

1√
r+s

· · · 1√
r+s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The sum of the column vectors is


0
0
...
0√
r + s

, so the volume equals
√
r + s times

the absolute value of the determinant of any of the (r+ s− 1)× (r+ s− 1)-minors
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of the matrix

log |σ1(ε1)| · · · log |σr(ε1)| 2 log |τ1(ε1)| · · · 2 log |τs(ε1)|
log |σ1(ε2)| · · · log |σr(ε2)| 2 log |τ1(ε2)| · · · 2 log |τs(ε2)|

...
...

...
...

...
...

...
...

log |σ1(εr+s−1)| · · · log |σr(εr+s−1)| 2 log |τ1(εr+s−1)| · · · 2 log |τs(εr+s−1)|

 .

5.52 Definition. The absolute value of the determinant of an (r+s−1)×(r+s−1)-
minor of the above matrix is called the regulator of ⟨ε1, . . . , εr+s−1⟩. Notation:
Reg(ε1, . . . , εr+s−1). For (ε1, . . . , εr+s−1) a fundamental system of units this num-
ber is called the regulator of the number field K. The notation for this number
is Reg(K). More generally, for X a subgroup of O∗

K of finite index we define the
regulator of X as the regulator of a maximal free subgroup of X. It is denoted by
Reg(X).

So by definition of the regulator:

δ(ψ(X)) =
√
r + s · Reg(X).

In particular
δ(ψ(O∗

K)) =
√
r + s · Reg(K)

and we have
Reg(X) = (ψ(O∗

K) : ψ(X)) · Reg(K).

Alternatively, Reg(ε1, . . . , εr+s−1) can be defined more symmetrically as the abso-
lute value of∣∣∣∣∣∣∣∣∣∣∣∣∣∣

log |σ1(ε1)| · · · log |σr(ε1)| 2 log |τ1(ε1)| · · · 2 log |τs(ε1)|
log |σ1(ε2)| · · · log |σr(ε2)| 2 log |τ1(ε2)| · · · 2 log |τs(ε2)|

...
...

...
...

...
...

...
...

log |σ1(εr+s−1)| · · · log |σr(εr+s−1)| 2 log |τ1(εr+s−1)| · · · 2 log |τs(εr+s−1)|
1
n · · · 1

n
2
n · · · 2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By analytic methods (chapter 8) so-called class number formulas are derived. These
formulas are in fact formulas for h(K)Reg(K), the product of the class number
h(K) = #(Cℓ(K)) and the regulator of a number field K.

5.53 Examples.

1. The regulator of Q and also of imaginary quadratic number fields is the
determinant of a 0× 0-matrix, which is taken to be equal to 1.

2. The regulator of a real quadratic number field equals the absolute value of
the logarithm of the fundamental unit. The same holds for cubic fields with
one real embedding.
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Exercises

Exercises

1. Let K = Q(
√
2,
√
−3). Show that OK is a principal ideal domain.

2. Show that Z[ζ7 + ζ−1
7 ] is a principal ideal domain.

3. Let α ∈ R be such that α3 = α+ 7. Show that Z[α] is a principal ideal domain.

4. Let K = Q( 3
√
17). Show that OK is a principal ideal domain.

5. Let K = Q( 3
√
19). Compute Cℓ(K).

6. Prove that Z[ζ9] and Z[ζ9 + ζ−1
9 ] are principal ideal domains.

7. Let K be a number field.

(i) Let a be a nonzero ideal of OK and m be the order of [a] in Cℓ(K). Then am

is a principal ideal of OK , say am = αOK . Put L = K( m
√
α). Show that aOL

is a principal ideal of OL.

(ii) Show that there is a finite extension L : K such that aOL is principal for
every ideal a of OK .

(iii) Let K = Q(
√
−21). Find a finite extension L : K such that aOL is principal

for every ideal a of OK .

8. Let K = Q(α), where α ∈ C such that α4 + 4α2 + 2 = 0. Compute

OK , Cℓ(OK), O∗
K and Reg(K).

9. Compute Z[ζ5]∗.

10. Let K = Q(i,
√
6). Put α =

√
6+

√
−6

2
.

(i) Show that the set { (5, σ(α) + 1) | σ ∈ Gal(K : Q) } consists of all four prime
ideals above 5.

(ii) Compute Cℓ(K).

(iii) Show that (i+ 1) = (2 +
√
6) = (2,

√
−6), the ideals being ideals of OK .

(iv) Compute O∗
K and Reg(K).

11. Compute the fundamental unit of Q( 3
√
3).

12. Let α ∈ R be such that α3 + α− 3 = 0. Compute the fundamental unit of Q(α).

13. Let α ∈ R be such that α3 − 2α+ 3 = 0. Compute the fundamental unit of Q(α).

14. Let K = Q(ϑ), where ϑ = ζ7 + ζ−1
7 .

(i) Show that ϑ and ϑ− 1 are units of Z[ϑ].
(ii) What is the image of Z[ϑ]∗ in (Z[ϑ]/(13))∗ ?
(iii) Show that the index of ⟨ϑ, ϑ− 1⟩ in Z[ϑ]∗ is finite.
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15. Show that the alternative definition of the regulator on page 128 agrees with the
definition given in Definition 5.52.

16. Let L be a CM-field and K its maximal real subfield. Show that Q(L)Reg(L) =
2r Reg(K), where r = [K : Q]− 1.
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6 Localization of Dedekind Domains

In commutative algebra localization forces given elements of a commutative ring
to become invertible. In section 6.3 for Dedekind domains a slightly more general
type of localization is described. The idea is to force maximal ideals to become the
unit ideal. For its formalization discrete valuations are used. A first application of
localization is a description of residue class rings of a Dedekind domain. In the last
section some terminology is introduced for the case of rings of integers of number
fields.

6.1 Discrete valuations

6.1 Definition. Let K be a field. A surjective group homomorphism v : K∗ → Z
is called a discrete valuation on K if

v(a+ b) ≥ min(v(a), v(b)) for all a, b ∈ K.

Here it is understood that v(0) =∞ and that∞ ≥ n for all n ∈ Z. So v is actually
seen as being a map K → Z ∪ {∞}.

Each maximal ideal of a Dedekind domain determines a discrete valuation on its
field of fractions:

6.2 Proposition. Let R be a Dedekind domain, K its field of fractions and p ∈
Max(R). The p-adic valuation vp : K

∗ → Z, defined in Definition 2.37, is a discrete
valuation on K.

Proof. Since p2 ̸= p, there is a π ∈ p \ p2. So the group homomorphism vp is
surjective: vp(π) = 1. Let a, b ∈ K∗ such that a+ b ̸= 0. There is a nonzero c ∈ R
such that ca, cb ∈ R. Then

(ca+ cb)R ⊆ caR+ cbR.

Hence by Proposition 2.14

vp(c) + vp(a+ b) = vp(c(a+ b)) = vp((ca+ cb)R) ≥ vp(caR+ cbR)

= min(vp(caR), vp(cbR)) = min(vp(c) + vp(a), vp(c) + vp(b))

= vp(c) + min(vp(a), vp(b)).
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So vp(a + b) ≥ min(vp(a), vp(b)). If one of the elements a, b and a + b equals 0,
then this inequality is trivially true.

The p-adic valuation of an element is by definition the p-adic valuation of the
fractional ideal it generates. On the other hand the p-adic valuation of a fractional
ideal is determined by the p-adic valuations of its elements.

6.3 Proposition. Let R be a Dedekind domain, K its field of fractions, p ∈ Max(R)
and a ∈ I(R). Then

vp(a) = min
a∈a

vp(a).

Proof. We can assume that a ∈ I+(R). Clearly, vp(a) ≤ vp(a) for all a ∈ a.
By Proposition 2.28 there is an ideal b in the inverse of the class of a such that b
and pa are comaximal. Then ab = cR for a c ∈ a and, since vp(b) = 0, we have
vp(a) = vp(ab) = vp(cR) = vp(c).

6.4 Proposition. Let R be a Dedekind domain with field of fractions K. Then

R = { a ∈ K | vp(a) ≥ 0 for all p ∈ Max(R) }.

and

R∗ = { a ∈ K | vp(a) = 0 for all p ∈ Max(R) }.

Proof. Because R is integrally closed and Noetherian, we have

R = { a ∈ K | aR ⊆ R } and R∗ = { a ∈ K | aR = R }.

6.5 Proposition. Let v be a discrete valuation on a field K. Then the valuation
ring

Rv := { a ∈ K | v(a) ≥ 0 }

is a local subring of K.

Proof. From the definition of discrete valuation it follows that Rv is a subring of
K and that the set m = { a ∈ K | v(a) > 0 } is an ideal of Rv. Since Rv \m = R∗

v,
it is a local ring with maximal ideal m.

6.6 Corollary. Let v be a discrete valuation on a field K and a, b ∈ K such that
v(a) ̸= v(b). Then

v(a+ b) = min(v(a), v(b)).

Proof. Let Rv and m be as in the proposition. Suppose that v(a) < v(b). Then
a ̸= 0 and v(a+ b) = v(a)v(1 + b

a ) = v(a), because 1 + b
a ∈ Rv \m = R∗

v.

6.7 Definition. An integral domain Rv as in Proposition 6.5 is called a discrete
valuation ring.
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6.2 Localization at a prime ideal

A more intrinsic characterization of a discrete valuation ring is given by:

6.8 Proposition. Let R be a local integral domain with maximal ideal m. Then the
following are equivalent:

a) R is a discrete valuation ring;

b) R is a principal ideal domain;

c) R is a Dedekind domain.

Proof.

a)⇒b) Let v be a discrete valuation on a field K such that R = Rv. Let a be a
nonzero ideal of R. Put k = mina∈a v(a) and let a0 ∈ a such that v(a0) = k.
Then for all nonzero a ∈ a we have v( aa0 ) = v(a)− v(a0) ≥ 0 and so a

a0
∈ R.

It follows that a ∈ a0R for all a ∈ a. Since a0 ∈ a, we have a = a0R.

b)⇒c) Principal ideal domains are Dedekind domains.

c)⇒a) Let K be the field of fractions of R. The maximal ideal m determines the dis-
crete valuation vm on K. By Proposition 6.4 we have that R is the valuation
ring of vm.

So an alternative definition for ‘discrete valuation ring’ is: a discrete valuation ring
is a local Dedekind domain.

The monoid I+(R) of nonzero ideals of a discrete valuation ring is isomorphic to
the additive monoid N: if p is the unique maximal ideal, then the nonzero ideals
are p0(= R), p1(= p), p2, p3, . . . . They are all principal: pn = (a) for any a ∈ R
with v(a) = n. In particular, if π ∈ R satisfies v(π) = 1, then pn = (πn).

6.9 Definition. Let v be a discrete valuation of a field K and let π ∈ K satisfy
v(π) = 1. Then π is called a uniformizer of the discrete valuation v.

So the uniformizer of a discrete valuation generates the unique maximal ideal of
its valuation ring.

6.2 Localization at a prime ideal

In commutative algebra we have the notion of localization. Here we consider only
localization for integral domains.

6.10 Definition. Let R be an integral domain. A multiplicative system in R is a
submonoid of the multiplicative monoid R \ {0}. I.e. a multiplicative system is a
subset of R \ {0} which is closed under multiplication and contains 1.
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6 Localization of Dedekind Domains

For S a multiplicative system in an integral domain R with field of fractions K we
can extend R by allowing elements of S as denominators. This yields the ring

S−1R =
{ a
s

∣∣∣ a ∈ R and s ∈ S
}
.

It is a subring of K and since R ⊆ S−1R ⊆ K, the field K is the field of fractions
of S−1R as well.

6.11 Examples. Let R be an integral domain. Examples of multiplicative systems
in R:

a) Submonoids S of the group R∗. For such S it is clear that S−1R = R.

b) S = R \ {0}. The ring S−1R is the field of fractions of R.

c) Let p be a prime ideal of R. Then S = R \ p is a multiplicative system by
definition of prime ideals.

Let’s have a closer look at the last example.

6.12 Definition and notation. Let R be an integral domain, p a prime ideal of R
and S = R \ p. Then the ring S−1R is called the localization of R at p. Notation:
S−1R = Rp.

The localization at a prime ideal is a local ring:

6.13 Proposition. Let R be an integral domain, p a prime ideal of R. Then:

(i) aRp = { as | a ∈ a and s /∈ p } for each ideal a of R;

(ii) Rp is a local ring with maximal ideal pRp;

(iii) Rp/pRp is the field of fractions of R/p.

Proof.

(i) Obviously, as = a · 1s ∈ aRp. The extended ideal aRp consists of finite sums
of elements a rs with a ∈ a, r ∈ R and s /∈ p. Such a sum clearly is equal to
an a

s with a ∈ a and s /∈ p.

(ii) From (i) it follows that

Rp \ pRp = { ts | t, s /∈ p } = (Rp)
∗.

This implies that pRp is the unique maximal ideal of the ring Rp.

(iii) The inclusion R ⊆ Rp induces a ring homomorphism

R/p −→ Rp/pRp.

From pRp ∩R = p follows that we have an embedding of the integral domain
R/p in the field Rp/pRp. An element of this field represented by r

s is the
quotient of the images of the classes represented by r and s.
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6.2 Localization at a prime ideal

For Dedekind domains the localization at a maximal ideal is a discrete valuation
ring:

6.14 Proposition. Let R be a Dedekind domain, p ∈ Max(R) and K the field of
fractions of R. Then Rp is the valuation ring of the discrete valuation vp of K.

Moreover, the inclusion R ⊆ Rp induces an isomorphism R/p
∼→ Rp/pRp.

Proof. For r ∈ R and s /∈ p we have vp(
r
s ) = vp(r) ≥ 0. So the localization at p

is contained in the valuation ring of vp. Let x ∈ K∗ be in the valuation ring of vp.
For the fractional ideal xR we have xR = ab−1, where a and b are nonzero ideals of
R and we may assume that p ∤ b. Take b ∈ b \ p. Then bR = bc for an ideal c of R.
We have ac = bab−1 = bxR. So bx ∈ R and xR = ab−1 = ac(bc)−1 = bx

b R. Hence
x ∈ Rp. SinceR/p is a field, the last assertion follows from Proposition 6.13(iii).

So the localization of a Dedekind domain at a prime ideal is a discrete valuation
ring; it is a local Dedekind domain. We will show that, conversely, a Noetherian
domain for which the localizations at the maximal ideals are discrete valuation rings
is a Dedekind domain. This is another characterization of Dedekind domains.

6.15 Lemma. Let R be an integral domain. Then R =
⋂

m∈Max(R)Rm.

Proof. Clearly, R ⊆
⋂

m∈Max(R)Rm. Let x ∈
⋂

m∈Max(R)Rm. To prove that

x ∈ R. We will assume that x ̸= 0. Consider the ideal b = { b ∈ R | bx ∈ R }. We
will prove that b = R. Let m ∈ Max(R). Because x ∈ Rm, there exists a b ∈ R \m
such that bx ∈ R, that is (R \ m) ∩ b ̸= ∅ and this means that b ⊈ m. This holds
for all m ∈ Max(R). So b = R.

6.16 Theorem. Let R be a Noetherian integral domain. Then R is a Dedekind
domain if and only if Rm is a discrete valuation ring for all m ∈ Max(R).

Proof. By Proposition 6.14 and Theorem 2.43 it remains to prove that if Rm is
a discrete valuation ring for all maximal ideals of R, the ring R is integrally closed
and that nonzero prime ideals are maximal. So assume that all localizations Rm

are discrete valuation rings. First we prove that R is integrally closed. Let a ∈ K∗

be integral over R. Then a is integral over Rm for all maximal ideals of R. Discrete
valuation rings are integrally closed, so a ∈

⋂
m∈Max(R)Rm. By Lemma 6.15 we

have a ∈ R. This means that R is integrally closed.

Let p be a nonzero prime ideal of R and m a maximal ideal such that m ⊇ p. Then
pRm is a prime ideal of Rm: if

a
s ·

b
t =

c
u with a, b ∈ R, c ∈ p and s, t, u ∈ R\m, then

abu = cst ∈ p and so a ∈ p or b ∈ p. The ideal mRm is the unique prime ideal of
the discrete valuation domain Rm. It follows that pRm = mRm. Let a ∈ m. Then
a ∈ pRm, so a = b

s with b ∈ p and s ∈ R \ m. From as = b ∈ p and s /∈ p follows
that a ∈ p. Hence p = m. So the nonzero prime ideal p is a maximal ideal.

We will have a closer look at the residue class ring R/a of a nonzero ideal a of a
Dedekind domain R. The Chinese Remainder Theorem implies that we can focus
on the case of a being the power of a maximal ideal: if a = pk11 · · · pkrr with p1, . . . , pr
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6 Localization of Dedekind Domains

different maximal ideals and k1, . . . , kr ∈ N∗, then the maps R→ R/pkii induce an
isomorphism

R/a
∼−→ R/pk11 × · · · ×R/pkrr .

So we consider R/pk for R a Dedekind domain, p ∈ Max(R) and k ∈ N∗. We will
construct a convenient system of representatives of R/pk.

6.17 Proposition. Let R be a Dedekind domain, p a maximal ideal of R and k ∈ N∗.
Then inclusion R→ Rp induces an isomorphism R/pk

∼→ Rp/(pRp)
k.

Proof. The induced ring homomorphism R/pk → Rp/(pRp)
k is an isomorphism

if and only if R ∩ (pRp)
k = pk and R + (pRp)

k = Rp. The first identity follows
from

R ∩ (pRp)
k = R ∩ {x ∈ K | vp(x) ≥ k} = {x ∈ R | vp(x) ≥ k}

and for the second let a
s ∈ Rp, where a ∈ R and s ∈ R \ p. Since vp(s) = 0, the

ideals (s) and pk of R are comaximal. So there are b ∈ R and c ∈ pk such that
a = bs+ c. Then a

s = b+ c
s ∈ R+ (pRp)

k.

Let’s consider first the special case of a discrete valuation ring.

6.18 Proposition. Let R be a discrete valuation ring with maximal ideal p, π ∈ R
such that p = πR, k ∈ N∗, x ∈ R and S ⊆ R a system of representatives of R/p.
Then there are unique s0, . . . , sk−1 ∈ S such that

x ≡ s0 + s1π + · · ·+ sk−1π
k−1 (mod pk).

Proof. For k = 1 this is trivially true. Suppose for some k ∈ N∗ there are unique
s0, . . . , sk−1 ∈ S such that

x ≡ s0 + s1π + · · ·+ sk−1π
k−1 (mod pk),

that is
x− (s0 + s1π + · · ·+ sk−1π

k−1) ∈ pk,

say
x− (s0 + s1π + · · ·+ sk−1π

k−1) = yπk

with y ∈ R. For the unique sk ∈ S with y ≡ sk (mod p) we have

x− (s0 + s1π + · · ·+ sk−1π
k−1) ≡ skπk (mod pk+1).

In general we have:

6.19 Theorem. Let R be a Dedekind domain, p ∈ Max(R), π ∈ R such that
vp(π) = 1, k ∈ N∗, x ∈ R and S ⊆ R a system of representatives of R/p. Then
there are unique s0, . . . , sk−1 ∈ S such that

x ≡ s0 + s1π + · · ·+ sk−1π
k−1 (mod pk).
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6.3 Localization at a collection of prime ideals

Proof. This follows from Proposition 6.18. Note that S is a system of represen-
tatives of Rp/pRp as well.

The class x is invertible in the local ring R/pk if and only if x /∈ p and this is
equivalent to s0 /∈ p. If the representative of p is chosen to be 0, then the condition
becomes s0 ̸= 0.

6.20 Example. Let p be a prime number and k ∈ N∗. Take S = { 0, 1, . . . , p− 1 }.
Then for each x ∈ Z there are unique s0, . . . , sk−1 ∈ S such that

x ≡ s0 + s1p+ · · ·+ sk−1p
k−1 (mod pk).

This unique way or representing classes modulo pk can be used for counting ar-
guments. For example the class of x is invertible in the ring Z/(pk) if and only if
s0 ̸= 0, from which it follows that #(Z/(pk))∗ = (p− 1)pk−1.

Theorem 6.19 provides alternative proofs of some of the results on Dedekind do-
mains in chapter 2, in particular of Proposition 2.17 and its consequences like the
multiplicativity of the norm of ideals in the case of number fields.

6.3 Localization at a collection of prime ideals

For p a maximal ideal of a Dedekind domain R, the valuation ring of vp is the
localization of R at the prime ideal p. The unique prime ideal of the Dedekind
domain Rp is the ideal pRp. In this section we generalize this to an arbitrary
collection P of maximal ideals of a Dedekind domain R: we will extend R inside
its field of fractions to a Dedekind domain RP with Max(RP ) = { pRP | p ∈ P }.

In this section R is a Dedekind domain, K the field of fractions of R and P is a
subset of Max(R).

6.21 Definition. The subring

RP = { a ∈ K | vp(a) ≥ 0 for all p ∈ P }

is called the localization of R at P .

Note that RP ⊆ RQ if P ⊇ Q. For any P the ring R is a subring of RP . Here are
some (extreme) examples:

6.22 Examples.

a) R∅ = K.

b) By Proposition 6.4: RMax(R) = R.

c) Let p ∈ Max(R). ThenR{p} = Rp, the valuation ring of the discrete valuation
vp.
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6 Localization of Dedekind Domains

Note that the localization of R at P is an intersection of discrete valuation rings:

RP =
⋂
p∈P

Rp.

We will compare ideals of R and ideals of RP . If a is an ideal of R, the ideal of RP
generated by a is aRP . If b is an ideal of RP , then b∩R is an ideal of R. Thus we
have extension and restriction of ideals:

ideals of R ideals of RP

a aRP

b ∩R b

extension

restriction

For the extension of the restriction we have:

6.23 Proposition. Let b be an ideal of RP . Then (b ∩R)RP = b.

Proof. We can assume that b is not the zero ideal. The ideal (b ∩ R)RP is the
ideal of RP generated by the subset b ∩ R of the ideal b. So (b ∩ R)RP ⊆ b. Let
b ∈ b. We will prove that b ∈ (b ∩ R)RP . The principal fractional ideal bR of
R can be written as a1a

−1
2 , where a1 and a2 are comaximal ideals of R. Since

a1 = a2 · bR ⊆ R · bR = bR ⊆ b, we have a1 ⊆ b ∩ R. For each p ∈ P we have
vp(a1) = vp(a2) + vp(b) ≥ vp(a2) and so vp(a2) = 0. It follows that a−1

2 ⊆ RP .
Thus b ∈ bR = a1a

−1
2 ⊆ (b ∩R)RP .

This can be used to show that the localization of a Dedekind domain is a Dedekind
domain:

6.24 Theorem. Let P be nonempty. Then RP is a Dedekind domain.

Proof. The ring RP is not a field since P is nonempty: for p ∈ P and π ∈ R
with vp(π) = 1 we have π ∈ RP and 1

π /∈ RP . Let b1 and b2 be nonzero ideals of
RP such that b1 ⊇ b2. We will prove that b1 | b2. For the ideals b1 ∩R and b2 ∩R
of the Dedekind domain R we have b1 ∩R ⊇ b2 ∩R. There is an ideal a of R such
that (b1 ∩R)a = b2 ∩R. It follows that (b1 ∩R)RP · aRP = (b2 ∩R)RP and so by
Proposition 6.23: b1 · aRP = b2. In particular b1 | b2.

6.25 Proposition. Let a be a nonzero ideal of R. Then

aRP = {x ∈ K | vp(x) ≥ vp(a) for all p ∈ P }.

Proof. For x ∈ K the following are equivalent:

x ∈ aRP ,
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6.3 Localization at a collection of prime ideals

xR ⊆ aRP ,

xa−1 ⊆ RP ,
vp(y) ≥ 0 for all y ∈ xa−1 and all p ∈ P ,
vp(xa

−1) ≥ 0 for all p ∈ P (Proposition 6.3),

vp(x) ≥ vp(a) for all p ∈ P .

So for the restriction of the extension we have:

6.26 Corollary. Let a be a nonzero ideal of R. Then

aRP ∩R =
∏
p∈P

pvp(a).

Proof. By Proposition 6.25

aRP ∩R = {x ∈ R | vp(x) ≥ vp(a) for all p ∈ P }.

Two special cases are worth mentioning:

6.27 Corollary. Let a be a nonzero ideal of R.

(i) If p ∈ P for all p | a, then aRP ∩ R = a and the inclusion R → RP induces
an isomorphism R/a

∼→ RP /aRP .

(ii) If p /∈ P for all p | a, then aRP = RP .

Proof.

(i) By Corollary 6.26 aRP ∩ R = a, so the homomorphism R/a → RP /aRP is
injective. For surjectivity we need RP = R + aRP . Let b ∈ RP with b ̸= 0.
It suffices to prove that bR ⊆ R + aRP . Write bR = a1a

−1
2 with a1 and a2

comaximal ideals of R. Since bR ⊆ RP , we have vp(a2) = 0 for all p ∈ P . It
follows that a2 + a = R and from this bR = ba2 + ba = a1 + ba ⊆ R+ aRP .

(ii) By Corollary 6.26 aRP ∩R = R, so R ⊆ aRP and hence 1 ∈ aRP .

The following proposition describes the maximal ideals of a localization of a
Dedekind domain R at a set P of maximal ideals.

6.28 Proposition. The map

Max(RP )→ Max(R), q 7→ q ∩R

is injective and its image equals P . The maximal ideals of RP are the ideals pRP
with p ∈ P .
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6 Localization of Dedekind Domains

Proof. By Proposition 6.23 (q ∩ R)RP = q for all q ∈ Max(RP ). In particular
q ∩ R is a nonzero prime ideal of R, that is q ∩ R ∈ Max(R). It also follows that
the map Max(RP )→ Max(R) is injective.

For p /∈ P by Corollary 6.27 we have pRP = RP . Let q ∈ Max(RP ). Then
q ∩ R ∈ P , since otherwise q = (q ∩ R)RP = RP . So the image of the map
Max(RP ) → Max(R) is contained in P . For p ∈ P and a maximal ideal q ⊇ pRP
of RP we have by Corollary 6.27 q∩R ⊇ pRP ∩R = p and so q∩R = p, since p is
maximal. By Proposition 6.23 we have in fact q = pRP .

6.29 Proposition. Let x ∈ K∗. Then vq(x) = vp(x) for p ∈ P and q = pRP .

Proof. Since vp and vq are homomorphisms from K∗ to Z we may assume that
x ∈ R. By Corollary 6.26

xRP ∩R =
∏
p∈P

pvp(x)

and so by Proposition 6.23

xRP = (xRP ∩R)RP =
∏
p∈P

(pRP )
vp(x).

So the exact sequence (2.2) on page 44 for the Dedekind domain RP is the sequence

1 −→ R∗
P −→ K∗ (vp)p−→

⊕
p∈P

Z −→ Cℓ(RP ) −→ 1.

Therefore, the ker-coker exact sequence of the commutative triangle

K∗
⊕

p∈Max(R) Z

⊕
p∈P Z

(vp)

(vp)

is as follows:

1 −→ R∗ −→ R∗
P −→

⊕
p/∈P

Z −→ Cℓ(R) −→ Cℓ(RP ) −→ 1. (6.1)

The effect of localizing at P is that the group of units becomes larger and that the
ideal class group becomes smaller in the sense that the ideal classes represented by
prime ideals outside P are killed.
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6.4 Localizations of rings of integers of number fields

6.4 Localizations of rings of integers of number fields

For the ring of integers of a number field K we use special notations. We already
introduced in section 2.3 the notations Cℓ(K), I+(K), I(K) for Cℓ(OK), I+(OK),
I(OK) respectively.

6.30 Notations. Let K be a number field and P ⊆ Max(OK). The following
notations are used:

KP the localization (OK)P ,

IP (K) the subgroup of I(K) generated by all p ∈ P .

By Proposition 6.28 the map IP (K)→ I(KP ) given by p 7→ pKP on base elements,
is an isomorphism. The exact sequence (6.1) on page 140 becomes

1 −→ O∗
K −→ K∗

P −→
⊕
p/∈P

Z −→ Cℓ(K) −→ Cℓ(KP ) −→ 1.

The group Cℓ(K) is finite and O∗
K is an abelian group of finite rank. So the group

K∗
P is of finite rank if and only if the group

⊕
p/∈P Z is, that is if the complement of

P in Max(OK) is finite. Dirichlet’s Unit Theorem leads to the following theorem
on the structure of K∗

P .

6.31 Theorem. Let K be a number field and P ⊆ max(OK) such that the comple-
ment of P in Max(OK) is finite. Then K∗

P is a finitely generated abelian group of
rank r + s+#(Max(OK) \ P )− 1.

In this chapter our starting point was a Dedekind domain R. The maximal ideals
of R correspond to discrete valuations of the field of fractions K of R. The local-
izations of R correspond to subsets of this set of discrete valuations. In chapter 10
we will see that for a number field there are no more discrete valuations than those
coming from maximal ideals of the ring of integers. In this case its ring of integers
is a convenient starting point because a maximal collection of discrete valuations
of the number field is involved.

Exercises

1. Let K be a number field, p ∈ Max(OK) and k ∈ N∗.

(i) Prove that N(pk) = N(p)k using Theorem 6.19. Show that this implies that
N is multiplicative: N(a)N(b) = N(ab) for nonzero ideals a and b of OK .

(ii) Prove that #((OK/p
k)∗) = N(p)k

(
1− 1

N(p)

)
.
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6 Localization of Dedekind Domains

(iii) Let a be a nonzero ideal of OK . Show that

#((OK/a)
∗) = N(a) ·

∏
p|a

(
1− 1

N(p)

)
.

2. Let k be a field. The polynomial ring k[T ] is a Euclidean domain and the rational
function field k(T ) is the field of fractions of k[T ]. For f ∈ k(T )∗ the degree deg(f)
of f and the leading coefficient lc(f) are defined as follows: put f = g/h with
g, h ∈ k[T ], then

deg(f) = deg(g)− deg(h) and lc(f) = lc(g)/ lc(h).

(i) Show that the map

v∞ : k(T )∗ → Z, f 7→ − deg(f)

is a discrete valuation on k(T ).

(ii) Let R be the valuation ring of v∞, m its maximal ideal and f ∈ R\{0}. Show
that f ≡ lc(f) (modm).

(iii) Prove that the inclusion k ⊆ R induces an isomorphism k
∼→ R/m.

3. Let K be a number field. Show that there is a subset P of Max(OK) such that
Max(OK) \ P is finite and the localization OP is a principal ideal domain.

4. In Example 4.32 it was shown that structure of the ideal class group of K =
Q(
√
−222) is C6 × C2. Let S be a finite set of maximal ideals of Z[

√
−222] such

that for P = Max(Z[
√
−222]) \ S the ideal class group CℓP (K) is trivial.

(i) Show that #(S) ≥ 2.

(ii) Find two prime ideals p and q such that for S = {p, q} the ideal class group
Cℓ(KP ) is trivial. (Use exercise 12 of chapter 4.)

5. Let p be the maximal ideal (3, 1 +
√
−5) of K = Q(

√
−5).

(i) Show that Kp is a principal ideal domain.

(ii) Show that K∗
p = ⟨−1, 2−

√
−5⟩.

6. Let p be the maximal ideal (6 +
√
−5) of K = Q(

√
−5).

(i) Show that Kp is not a principal ideal domain.

(ii) Show that K∗
p = ⟨−1, 6 +

√
−5⟩.

(iii) Prove that the Dedekind domain Kp is not the integral closure of a principal
ideal domain.

7. Show that there are Dedekind domains with all maximal ideals nonprincipal.

8. Let R be a Dedekind domains which is not a principal ideal domain. Show that
there are infinitely many nonprincipal prime ideals of R.

9. Let R be a Dedekind domain such that each ideal class of R contains a prime ideal.
Show that for any nonempty P ⊆ Max(R) nonprincipal ideal classes of RP contain
prime ideals.
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Exercises

10. Let K be a number field. An element α ∈ OK is called totally positive if σ(α) > 0
for every embedding σ : K → R. Let K+ denote the subgroup of K∗ of all totally
positive elements ofK. Let P+(K) be the subgroup of I(K) of all principal fractional
ideals αOK with α totally positive. The factor group Cℓ+(K) := I(K)/P+(K) is
called the narrow ideal class group of K. So we have an exact sequence

1 −→ O∗
K ∩K+ −→ K+ −→ I(K) −→ Cℓ+(K) −→ 1.

Let [a]+ denote the class of a ∈ I(K) in Cℓ+(K) and [a] its class in Cℓ(K).

(i) Show that the group homomorphism

Cℓ+(K)→ Cℓ(K), [a]+ 7→ [a]

is surjective and that its kernel is an elementary abelian 2-group.

(ii) Show that O∗
K ∩K+ is a free abelian group of rank r+ s− 1 if K has at least

one real embedding.

11. Let K be a real quadratic number field and ε the fundamental unit of K. Show
that

#(Cℓ+(K)) =

{
2 ·#(Cℓ(K)) if ε is totally positive,

#(Cℓ(K)) otherwise.

In the following exercises the localization of a Dedekind domain in the sense of commuta-
tive algebra is compared with the localization as defined in this chapter (Definition 6.21).

12. Let R be a Dedekind domain with field of fractions K and S a multiplicative system
of R with 0 /∈ S. Let P be the collection of maximal ideals of R disjoint from S:

P = { p | p ∩ S = ∅ }.

(i) Show that S−1R ⊆ RP .

(ii) Let b an ideal of R satisfying p ∤ b for all p ∈ P . Prove that there exists a
b ∈ b such that b /∈ p for all p ∈ P .

(iii) Show that RP ⊆ S−1R.

13. Let R be a Dedekind domain, P a finite nonempty collection of maximal ideals of
R and S = R \

⋃
p∈P p. Prove that S is a multiplicative system in the ring R and

that RP = S−1R.

14. Let R be a Dedekind domain, P a nonempty collection of maximal ideals of R and
S = R \

⋃
p∈P p. Assume that Cℓ(R) is a torsion group. Prove that RP = S−1R.

15. Let R be a Dedekind domain such that Cℓ(R) contains elements of infinite order.

(i) Show that there exists a p ∈ Max(R) such that [p] ∈ Cℓ(R) is of infinite order.

(ii) Let P = Max(R)\{p}, where p is as in (i). Assume there exists a multiplicative
system S in R such that S−1R = RP . Show that q ∩ S = ∅ for all maximal
ideals q ̸= p of R.

(iii) Show that p ∩ S = ∅.
(iv) Show that there is no multiplicative set S such that S−1R = RP .
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7 Extensions of Dedekind Domains

In chapter 3 the splitting behavior of prime numbers in the ring of integers of a
number field K was studied. This ring OK is the integral closure of Z in K. More
generally we can consider extensions L : K of number fields, the so-called relative
extensions, extensions K : Q being called absolute. In the relative case the ring
OL is the integral closure of OK in L. Our point of view in this chapter is even
more general: we start with just a Dedekind domain R and consider the splitting
behavior of prime ideals of R in the integral closure of R in a finite separable
extension of the field of fractions of R. Results of chapter 3 will be generalized,
using more general notions of norm and discriminant. Many examples are given,
most of them concern number field extensions.

Particularly important are the Galois extensions. The action of the Galois group
on the set of prime ideals above a given prime ideal of the base field determines
subgroups of the Galois group and hence, by the Galois correspondence, interme-
diate fields of the extension. This is studied in the sections 7.3 and 7.5. In this
last section a chain of subgroups of the Galois group related to a ramifying prime
is considered. This will be used in chapter 9 in a proof of the Kronecker-Weber
Theorem. Further on, in chapter 17, these groups are of fundamental importance.
In section 7.7 the Frobenius automorphism of a prime ideal is introduced. This is
a first step towards class field theory: in the abelian case it connects an ideal to
an automorphism of the extension.

7.1 Ramification index, residue class degree

Our aim is to generalize Theorem 3.4 to the relative case: for L : K an extension
of number fields an analogous theorem on the splitting of a p ∈ Max(OK) in L. In
fact, we will consider the even more general situation of an extension of a Dedekind
domain.

For this section we fix the following:

R a Dedekind domain,

K the field of fractions of R,

L : K a finite separable field extension,
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7 Extensions of Dedekind Domains

n the degree of L : K,

S the integral closure of R in L.

By Theorem 2.43 the ring S is a Dedekind domain. So for each p ∈ Max(R) the
ideal pS of S has a unique decomposition as a product of prime ideals of S.

7.1 Lemma. Let q ∈ Max(S) and p = q ∩R. Then p ∈ Max(R) and q | pS.

Proof. Since q is a prime ideal of S, the ideal p is a prime ideal of R. It is not
the zero ideal: for 0 ̸= α ∈ q we have NLK(α) ∈ q ∩ K∗. Because q ⊇ p we have
q ⊇ pS and so, since S is a Dedekind domain, q | pS.

7.2 Definitions. A q ∈ Max(S) is said to be above p if q ∩K = p. It is then also
said that p is below q. For q ∈ Max(S) above p ∈ Max(R) the number vq(pS) is
called the ramification index of q over K. By Proposition 1.36 and Lemma 2.44
S is a finitely generated R-module, so the field extension S/q : R/p is finite. Its
degree is called the residue class degree of q over K. Notations: eK(q) = vq(pS)
and fK(q) = [S/q : R/p].

Thus the ideal pS of the Dedekind domain S has a factorization

pS =
∏
q|pS

qeK(q), (7.1)

where the product is taken over the q ∈ Max(S) above p.

For a tower of field extensions it follows directly from the definitions that we have
the following (exercise 3).

7.3 Proposition. Let also M : L be a finite separable field extension and T the
integral closure of R in M . Then M : K is a finite separable field extension and T
is the integral closure of S in M . Let q ∈ Max(T ). Then

eK(q) = eL(q)eK(q ∩ S) and fK(q) = fL(q)fK(q ∩ S).

For P a collection of maximal ideals of R, the ring RP is a Dedekind domain and
so is its integral closure in L. For the collection Q of all maximal ideals of S above
the maximal ideals in P the ring SQ is a Dedekind domain and is the obvious
candidate to be the integral closure of RP in L, but this still requires a proof. First
some lemmas.

7.4 Lemma. Let p be a maximal ideal of R and γ ∈ S such that γ /∈ q for all
maximal ideals q of S above p. Then NLK(γ) /∈ p.

Proof. Let M : K be the normal closure of L : K and T the integral closure
of S in M . Then γ is not in any of the maximal ideals of T above p. Because
NMK (γ) = NLK(γ)[M :L], we may assume that L : K is a Galois extension. In that
case we have NLK(γ) =

∏
σ σ(γ), where the product is over all σ ∈ Gal(L : K).
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7.1 Ramification index, residue class degree

Suppose NLK(γ) ∈ p. Then for any q above p we have NLK(γ) ∈ q. This implies that
σ(γ) ∈ q for some σ. But then γ ∈ σ−1(q). Contradiction.

7.5 Lemma. Let p be a maximal ideal of R and Q the collection of primes of S
above p. Then SQ = RpS.

Proof. From Rp, S ⊆ SQ follows that RpS ⊆ SQ. Let γ ∈ SQ. Then γS = a
b for

ideals a, b of S such that vq(b) = 0 for all q ∈ Q. By Lemma 2.28 there exists an
ideal c of R such that c is in the inverse ideal class of b and vq(c) = 0 for the finitely
many q in Q. Then ac and bc are principal ideals, say ac = αS and bc = βS with
α, β ∈ S. Then γS = a

b = ac
bc = α

βS and vq(β) = 0 for all q ∈ Q. Hence γ = αν
β

with ν ∈ S∗. Let σ1, . . . , σn be the K-embeddings of L in a normal closure of L : K
and take σ1 to be the identity on L. Then NLK(β) = βδ, where δ = σ2(β) · · ·σn(β).
So

γ =
αν

β
=

ανδ

NLK(β)
.

Then ανδ ∈ S and by Lemma 7.4 NLK(β) /∈ p. Hence γ ∈ RpS.

7.6 Lemma. Let A and B be R-submodules of L such that RpA ⊆ RpB for all
p ∈ Max(R). Then A ⊆ B.

Proof. Let α ∈ A. For each p ∈ Max(R) there exists an rp ∈ R \ p such that
rpα ∈ B. The ideal of R generated by all rp is the unit ideal. So there are xp ∈ R
such that all but a finite number of them ̸= 0 and 1 =

∑
p xprp. Multiplying by α

yields

α =
∑
p

xprpα ∈ B.

7.7 Theorem. Let P be a collection of maximal ideals of R and Q the collection of
all maximal ideals of S above the maximal ideals in P . Then SQ = RPS. Moreover,
SQ is the integral closure of RP in L.

Proof. We apply Lemma 7.6, using the Dedekind domain RP instead of R. Both
SQ and RPS are RP -submodules of L. The maximal ideals of RP are the ideals
pRP with p ∈ P . Note that the localization of RP at pRP coincides with the
localization of R at p. Denote the collection of maximal ideals of S above p by Qp.
By Lemma 7.5 we have RpS = SQp

. Let p ∈ P . Then

RpSQ = RpSSQ = SQp
SQ = SQp

= RpS = RpRPS.

The ring SQ is integrally closed and the elements of RPS are integral over RP . So
SQ is the integral closure of Rp in L.
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7 Extensions of Dedekind Domains

A generalization of Theorem 3.4:

7.8 Theorem. ∑
q|pS

eK(q)fK(q) = [L : K],

the sum being taken over all maximal ideals q of S above p.

Proof. Let Q be the set of maximal ideals of S above p. By Theorem 7.7 (or
Lemma 7.5) the ring SQ is the integral closure of Rp in L. The factorization (7.1)
becomes

pSQ =
∏
q|pS

(qSQ)
eK(q). (7.2)

By Corollary 6.27(i) we have commutative squares with horizontal ring isomor-
phisms

R/p Rp/pRp

S/q SQ/qSQ

∼

∼

R/p Rp/pRp

S/pS SQ/pSQ

∼

∼

From the first square it follows that the dimension of the Rp/pRp-vector space
SQ/qSQ is equal to the dimension of the R/p-vector space S/q. The second square
tells us that the dimension of the Rp/pRp-vector space SQ/pSQ is equal to the
dimension of the R/p-vector space S/pS. The ring Rp is a discrete valuation ring
and in particular a principal ideal domain, so by Corollary 1.38 the latter dimension
equals n.

For every ideal a | pSQ the ring SQ/a is an Rp-module and also a homomorphic
image of the Rp/pRp-vector space SQ/pSQ. Therefore, SQ/a is an Rp/pRp-vector
space as well. The theorem follows by repeated application of Proposition 2.17
using the identity (7.2).

7.9 Definitions.

� p is said to remain prime in L if fK(q) = n for some q ∈ Max(S) above p.
By Theorem 7.8 q is the unique prime ideal of S above p.

� p is said to ramify in L if eK(q) > 1 for some q ∈ Max(S) above p. It totally
ramifies in L if eK(q) = n for some q ∈ Max(S) above p. If this is the case,
then by Theorem 7.8 q is the unique prime ideal of S above p.

� p splits completely in L if eK(q) = fK(q) = 1 for all q ∈ Max(S) above p. By
Theorem 7.8 there are exactly n such prime ideals q.
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7.1 Ramification index, residue class degree

� For R/p of characteristic p ̸= 0: a q ∈ Max(S) above p is said to be wildly
ramified over K if p | eK(q). Otherwise q is called tamely ramified over K.

Note that with this definition unramified implies tamely ramified. As this ter-
minology suggests, wild ramification is much more difficult to handle than tame
ramification.

Next we derive a generalization (Theorem 7.12) of the Kummer-Dedekind Theorem
(Theorem 3.6).

7.10 Lemma. Let R be a discrete valuation ring. Suppose there is a ϑ ∈ S such that
S = R[ϑ] and let f ∈ R[X] be the minimal polynomial of ϑ over K. Let g ∈ R[X]
be a monic polynomial such that g ∈ (R/p)[X] is an over R/p irreducible divisor
of f ∈ (R/p)[X]. Then q = pS + g(ϑ)S is a maximal ideal of S above p.

Proof. The surjective ring homomorphisms

(R/p)[X] R[X] S

h h h(ϑ)

induce isomorphisms

(R/p)[X]/(g) R[X]/(pR[X] + gR[X]) S/q.
∼ ∼

Since g is irreducible over R/p, the ring on the left is a field. It follows that S/q is
a field and hence q is a maximal ideal of S.

7.11 Proposition. Under the assumptions and in the notations of Lemma 7.10: let
f = ge11 · · · gerr be the factorization of f , where the polynomials gi ∈ R[X] are monic
such that gi is irreducible over R/p. Then the factorization of pS into maximal
ideals of S is

pS = qe11 · · · qerr ,
where qi = pS + gi(ϑ)S. The residue class degree of qi over R equals deg(gi).

Proof. By Lemma 7.10 the qi are maximal ideals of S. Their residue class degree
equals [(R/p)[X]/(gi) : R/p] = deg(gi). We have

qe11 · · · qerr = (pS + g1(ϑ)S)
e1 · · · (pS + gr(ϑ)S)

er

⊆ pS + g1(ϑ)
e1 · · · gr(ϑ)erS = pS + f(ϑ)S = pS.

For i ̸= j the maximal ideals qi and qj are different: take a(X), b(X) ∈ R[X] such
that a(X)gi(X)+b(X)gj(X) = 1 ∈ (R/p)[X]. Then a(ϑ)gi(ϑ)+b(ϑ)gj(ϑ) ∈ 1+pS
and so 1 ∈ qi+qj . Since e1f1+ · · ·+erfr = e1 deg(g1)+ · · ·+er deg(gr) = deg(f) =
[L : K], by Theorem 7.8 we actually have an equality: pS = qe11 · · · qerr .
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7 Extensions of Dedekind Domains

7.12 Theorem. Let ϑ ∈ S be such that L = K(ϑ) and p ∈ Max(R) such that Rp[ϑ]
is the integral closure of Rp in L. Let f be the minimal polynomial of ϑ over K and
f = ge11 · · · gerr the factorization of f ∈ (R/p)[X] with g1, . . . , gr monic polynomials
over R. Put qi = pS + gi(ϑ)S for i = 1, . . . , r. Then the ideals q1, . . . , qr are
different maximal ideals of S and the factorization of the ideal pS in the Dedekind
domain S is

pS = qe11 · · · qerr .

The residue class degree of qi over R is equal to deg(gi).

Proof. Let Q be the set of maximal ideals of S above p. Then SQ = Rp[ϑ]. By
Proposition 7.11 the factorization of pSQ is

pSQ = (pSQ + g1(ϑ)SQ)
e1 · · · (pSQ + gr(ϑ)SQ)

er .

Restriction of the ideals to the ring S yields

pS = qe11 · · · qerr ,

where qi = (pSQ + gi(ϑ)SQ) ∩ S = (pS + gi(ϑ)S)SQ ∩ S = pS + gi(ϑ)S.

Of course it depends on the element ϑ ∈ S to which of the maximal ideals p of R
the theorem is applicable. In any case the theorem is applicable to all but a finite
number: for d = disc(f) ∈ R we have by Proposition 1.36 that d ·R[ϑ] ⊆ S, so the
theorem applies to all p ∈ Max(R) with d /∈ p, i.e. all p for which f ∈ R/p[X] has
no multiple roots. It is possible that there is no ϑ ∈ S such that S = R[ϑ], or even
for a given p that there is no ϑ ∈ S such that SQ = Rp[ϑ] (exercise 5).

For L : K a Galois extension the following generalizes Theorem 3.11. The proof is
a straightforward generalization.

7.13 Theorem. Let L : K be a Galois extension. Then the group Gal(L : K)
operates transitively on the set of prime ideals of S above p.

Proof. Put G = Gal(L : K). Let q and q′ be a prime ideals of S above p.
Suppose σ(q) ̸= q′ for all σ ∈ G. By the Chinese Remainder Theorem there is an
α ∈ S such that

α ≡

{
0 (mod q′),

1 (modσ(q)) for all σ ∈ G.

Then α /∈ σ(q), that is σ−1(α) /∈ q, for all σ ∈ G. So NLK(α) =
∏
σ∈G σ(α) /∈ q ⊇ p.

However, NLK(α) ∈ q′ ∩K = p.

Again we have:

7.14 Corollary. Let L : K be a Galois extension. Then all prime ideals of S above
p have the same ramification index over K and they also have the same residue
class degree over K.

For Galois extensions the following terminology will be used.
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7.1 Ramification index, residue class degree

7.15 Definitions and notations. Let L : K be a Galois extension. The ramifi-
cation index of p in L is the ramification index eK(q) of any of the q ∈ Max(S)

above p. Notation: e
(L)
p = eK(q). Similarly we have the residue class degree f

(L)
p

of p in L. The number of q above p is often denoted by r
(L)
p . Then Theorem 7.8

reads r
(L)
p e

(L)
p f

(L)
p = [L : K].

Q(ζpr ) Q(ζm0
)

Q

Q(ζm)7.16 Example. In chapter 3 the splitting behavior of
prime numbers in cyclotomic fields was studied (Theo-
rem 3.16). Proposition 7.4 provides an alternative way
for this. Let m ∈ N∗ with m > 2, p a prime number
and m = prm0 with p ∤ m0. The prime p totally ram-

ifies in Q(ζpr ), so e
(Q(ζpr ))
p = [Q(ζpr ) : Q] = φ(pr). By

Proposition 3.14 f
(Q(ζm0 ))
p = f , where f is the order of

p in (Z/m0)
∗. The prime number p does not ramify in

this subfield and the number of prime ideals of Z[ζm0
] above p is φ(m0)/f . By

Proposition 7.4 and Corollary 7.14

r
(Q(ζm0

))
p | r(Q(ζm))

p f
(Q(ζm0

))
p | f (Q(ζm))

p and e
(Q(ζpr ))
p | e(Q(ζm))

p ,

and because

φ(m) =
φ(m0)

f
· φ(pr) · f | r(Q(ζm))

p e(Q(ζm))
p f (Q(ζm))

p = [Q(ζm) : Q]

we have equality in all three cases.

7.17 Example. Let L = Q(α, ζ3), where α = 3
√
2. Then Gal(L : Q) ∼= S3. It is

generated by σ and τ defined by{
σ(α) = ζ3α,

σ(ζ3) = ζ3
and

{
τ(α) = α,

τ(ζ3) = ζ23 .

By the Galois correspondence L has a unique quadratic subfield and three (pure)
cubic subfields:

Lσ = Q(ζ3), Lτ = Q(α), Lστ = Q(ζ23α) and Lσ
2τ = Q(ζ3α).

Application of relative traces to a γ ∈ OL yields:

γ + σ(γ) + σ2(γ) ∈ Z[ζ3],
γ + τ(γ) ∈ Z[α],
γ + στ(γ) ∈ Z[ζ23α],
γ + σ2τ(γ) ∈ Z[ζ3α].
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7 Extensions of Dedekind Domains

So 3γ+NLQ(γ) ∈ Z[ζ3]+Z[α]+Z[ζ3α]+Z[ζ23α] and hence 3γ ∈ Z[ζ3, α]. The prime
number 3 totally ramifies in both Q(ζ3) and Q(α). Since the degrees of these fields
are relatively prime, the prime number 3 totally ramifies in Q(ζ3, α) = L, say
(3) = p6, where p is the unique prime ideal of OL above 3. From p3 = (1 + 2ζ3)
and p2 = (α+ 1) follows that p is the principal ideal generated by δ := 1+2ζ3

α+1 .

We compute OL. Let β = β0

3 + β1

3 ζ3 with β0, β1 ∈ Z[α]. From

β ∈ OL ⇐⇒ TrLQ(α)(β),N
L
Q(α)(β) ∈ Z[α]

follows that β ∈ OL if and only if

2β0 − β1 ∈ 3Z[α] and β2
0 − β0β1 + β2

1 ∈ 9Z[α].

Let β1 = 2β0 − 3γ with γ ∈ Z[α]. Then

β2
0 − β0β1 + β2

1 = 3β2
0 − 9β0γ + 9γ2.

So 3β2
0 ∈ 9Z[α] and hence β0 ∈ (α + 1)2Z[α] and β1 = 2β0 − 3γ ∈ (α + 1)2Z[α].

Put β0

3 = γ0
α+1 and β1

3 = γ1
α+1 with γ0, γ1 ∈ Z[α]. Then

β =
γ0

α+ 1
+

γ1
α+ 1

ζ3 =
γ0

α+ 1
+

2γ0
α+ 1

ζ3 − γζ3 = γ0δ − γζ3.

Hence, (δ, αδ, α2δ, ζ3, αζ3, α
2ζ3) is an integral basis of L. The identities

αδ = 1 + 2ζ3 − δ and α2δ = α+ 2αζ3 − αδ

imply that also (1, α, δ, ζ3, αζ3, α
2ζ3) is an integral basis. Since

3δ = (α2 − α+ 1)(1 + 2ζ3) = 1− α+ 2ζ3 − 2ζ3α+ 2ζ3α
2,

we have for the discriminant of L (using Proposition 1.33):

disc(L) = disc(1, α, δ, ζ3, αζ3, α
2ζ3) =

1
9 disc(1, α, α

2, ζ3, αζ3, α
2ζ3)

= 1
9 disc(Q(α))2 disc(Q(ζ3))

3 = 1
9 (−4 · 27)

2(−3)3 = −24 · 37.

Because the discriminant of this field of degree 6 is small, the Minkowski bound
is (very) small, i.e. less than 6. The only prime ideal of norm ≤ 5 is the principal
ideal p, so the ring OL is a principal ideal domain.

Let’s compute O∗
L. Taking relative norms instead of relative traces yields:

(O∗
L)

3 ⊆ Z∗ · Z[ζ3]∗ · Z[α]∗ · Z[ζ3α]∗ · Z[ζ23α]∗ = ⟨−ζ3, α− 1, ζ3α− 1⟩.

Let ν ∈ O∗
L. Then

ν3 = (−ζ3)k0(α− 1)k1(ζ3α− 1)k2

with k0, k1, k2 ∈ Z. We look for units ν /∈ ⟨−ζ3, α− 1, ζ3α− 1⟩. So we can assume
that k0, k1, k2 ∈ {−1, 0, 1}. Clearly µ(L) = ⟨−ζ3⟩, so k1 and k2 are not both 0.
Using the action of the Galois group on O∗

L together with x 7→ x−1 it suffices to
consider four cases:
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7.1 Ramification index, residue class degree

(1) ν3 = α − 1. There is no such ν, since otherwise α − 1 would not be a
fundamental unit of Q(α).

(2) ν3 = ζ3(α − 1). Then (ντ(ν))3 = (α − 1)2 and this also contradicts the fact
that α− 1 is a fundamental unit of L.

(3) ν3 = α−1
ζ3α−1 . The elements α + 1 and ζ3α + 1 both generate the ideal p2 of

OL. So ζ3α+1
α+1 ∈ O

∗
L. We compute its cube:

(ζ3α+ 1

α+ 1

)3
=

3ζ23α
2 + 3ζ3α+ 3

3α2 + 3α+ 3
=

α− 1

ζ3α− 1
.

(4) ν3 = ζ3
α−1
ζ3α−1 . This is not possible in L, since in combination with (3) it

would lead to the existence of a primitive 9-th root of unity in L.

So the group generated by the units of proper subfields is of index 3 in O∗
L and

O∗
L =

〈
−ζ3, α− 1,

ζ3α+ 1

α+ 1

〉
.

In this example the prime 3 totally ramifies in L: (3) = p6. For δ we have vp(δ) = 1
(and even p = (δ)). Its minimal polynomial over Q is easily computed:

δ2 =
(1 + 2ζ3)

2

(α+ 1)2
= − 3

(α+ 1)2
= −3 α+ 1

(α+ 1)3
= − α+ 1

α2 + α+ 1

= −(α+ 1)(α− 1) = −α2 + 1

and so

(δ2 − 1)3 = −α6 = −4.

Hence the minimal polynomial of δ over Q is

X6 − 3X4 + 3X2 + 3.

It is an Eisenstein polynomial:

7.18 Definition. A polynomial

f(X) = Xn + a1X
n−1 + · · ·+ an−1X + an ∈ R[X]

is called a p-polynomial if a1, . . . , an ∈ p and an Eisenstein p-polynomial if, more-
over, an /∈ p2.

Eisenstein polynomials are irreducible. More precisely:

7.19 Lemma. Let f be an Eisenstein p-polynomial. Then f is irreducible over K.
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Proof. Let L be a splitting field of f overK. The zeros of f in L are integral and
so they are elements of S. It follows that monic divisors in K[X] of f have coeffi-
cients in R. By reduction modulo p it is easily seen that divisors of p-polynomials
are p-polynomials as well. The constant term of a product of two p-polynomials is
divisible by p2 and is, therefore, not an Eisenstein p-polynomial.

For total ramification we have the following characterization in terms of a minimal
polynomial:

7.20 Theorem. The maximal ideal p totally ramifies in L if and only if there
exists a ϑ ∈ S such that L = K(ϑ) and the minimal polynomial of ϑ over K is an
Eisenstein p-polynomial.

Proof. Assume that p totally ramifies in L, say pS = qn with q ∈ Max(S). Take
ϑ ∈ S such that vq(ϑ) = 1 and let

f(X) = Xn + a1X
n−1 + · · ·+ an−1X + an ∈ R[X]

be the characteristic polynomial of ϑ over K. Then

ϑn = −(a1ϑn−1 + · · ·+ an−1ϑ+ an)

and for 1 ≤ j ≤ n with aj ̸= 0 we have

vq(ajϑ
n−j) = n · vp(aj) + n− j ≡ −j (modn),

all different modulo n. So by Corollary 6.6

vq(a1ϑ
n−1 + · · ·+ an−1ϑ+ an) = min

1≤j≤n
n · vp(aj) + n− j.

If vp(aj) = 0 for some j, then vq(a1ϑ
n−1 + · · · + an) < n − j < n. However,

vq(ϑ
n) = n. It follows that vp(aj) > 0 for all j, that is f is a p-polynomial. Since

vq(ϑ
n + an) = vq(a1ϑ

n−1 + · · ·+ an−1ϑ) = min
1≤j<n

n · vp(aj) + n− j > n

we have vq(an) = n, that is vp(an) = 1. So f is an Eisenstein p-polynomial.

Conversely, let L = K(ϑ) with ϑ ∈ S and let the minimal polynomial

f(X) = Xn + a1X
n−1 + · · ·+ an−1X + an ∈ R[X]

of ϑ over K be an Eisenstein p-polynomial. Let q be a prime ideal of S above p.
Then ϑ ∈ q because

ϑn = −(a1ϑn−1 + · · ·+ an−1ϑ+ an) ∈ pS.

Put e = eK(q). We have to prove that e = n. Since vq(ϑ) ≥ 1, we have
vq(ajϑ

n−j) ≥ e+ 1 for 1 ≤ j < n. The identity

ϑn + an = −(a1ϑn−1 + · · ·+ an−1ϑ)

yields vq(ϑ
n + an) ≥ e + 1 and since vq(an) = e, because f is an Eisenstein p-

polynomial, it follows that vq(ϑ
n) = e. So n | e and, therefore, e = n.
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Note that the ϑ in the Theorem can be any element of S with vq(ϑ) = 1, where q
is the prime ideal above p.

Locally we have:

7.21 Theorem. Let R be a discrete valuation ring. Suppose that p totally ramifies
in L. Then S = R[ϑ] for any ϑ ∈ S with vq(ϑ) = 1 for q the prime ideal of S above
p.

Proof. By (the proof of) Theorem 7.20: L = K(ϑ). Clearly R[ϑ] ⊆ S. Let
c0, . . . , cn−1 ∈ K such that

c0 + c1ϑ+ · · ·+ cn−1ϑ
n−1 ∈ S.

Then to prove that vp(ci) ≥ 0 for i = 0, . . . , n − 1. Suppose that vp(ci) < 0 for
some i. Let i be the least such that vp(ci) < 0. Then

ciϑ
i + · · ·+ cn−1ϑ

n−1 ∈ S.

Since i < n, we have π
ϑi+1 ∈ S and multiplication by this element yields

ci
π

ϑ
+ ci+1π + ci+2πϑ+ · · · ∈ S

and so ci
π
ϑ ∈ S. However,

vq

(
ci
π

ϑ

)
= vq(ai) + n− 1 ≤ −n+ n− 1 = −1.

7.2 Ramification and discriminant

This section is about a generalization of Theorem 3.30. In this section

R is a Dedekind domain,

K the field of fractions of K,

L : K a finite separable field extension,

S the integral closure of R in L.

Since R is in general not a principal ideal domain we need a more general notion
of discriminant. The discriminant of S over R will not be an element of R, but an
ideal of R:

7.22 Definition. The discriminant of S over R (or the R-discriminant of L) is the
ideal of R generated by all disc(α1, . . . , αn), where (α1, . . . , αn) is a K-basis of L
with α1, . . . , αn ∈ S. Notation: dR(L).
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7 Extensions of Dedekind Domains

Note that the ring S is determined by R and L. This is reflected in the notation
dR(L). The discriminant of a number fieldK is disc(α1, . . . , αn), where (α1, . . . , αn)
is an integral basis of K. The Z-discriminant of K is the ideal (disc(α1, . . . , αn)) of
Z. In the terminology for number fields, as will be explained in Terminology 7.31:
dQ(K) = (disc(K)).

Under localization the discriminant behaves as expected:

7.23 Proposition. Let P ⊆ Max(R) Then

dR(L)RP = dRP
(L).

Proof. Let Q be the set of maximal ideals of S above maximal ideals in P .
The ring SQ is the integral closure of RP in L (Theorem 7.7). If the elements
of a K-basis of L are in the subring S, then they are in SQ, so the generators of
the ideal dR(S) of R form a subset of the generators of the ideal dRP

(L) of RP .
Hence dR(L)RP ⊆ dRP

(L). Let α1, . . . αn be a K-basis of L with α1, . . . , αn ∈ SQ.
We have to show that disc(α1, . . . , αn) ∈ dR(L)RP . By Proposition 6.25 this is
equivalent to vp(disc(α1, . . . , αn)) ≥ vp(dR(L)) for all p ∈ P . For a given p ∈ P
take t ∈ R such that vp(t) = 0 and tα1, . . . , tαn ∈ S. Then disc(tα1, . . . , tαn) =
t2n disc(α1, . . . , αn) and, therefore, vp(disc(α1 . . . , αn)) = vp(disc(tα1, . . . , tαn)) ≥
vp(dR(L)).

It follows that the discriminant is determined locally:

7.24 Corollary. dR(L) =
∏

p∈Max(R)

dRp
(L) ∩R.

Proof. For p ∈ Max(R) denote pRp by p′. By Proposition 6.23, Corollary 6.26
and Proposition 7.23 we have for all p ∈ Max(R):

vp(dRp
(L) ∩R) = vp′((dRp

(L) ∩ (R)rp) = vp′(dRp
(L)) = vp′(dR(L)Rp)

= vp(dR(L)).

7.25 Theorem. Let (α1, . . . , αn) be a K-basis of L with α1, . . . , αn ∈ S. Then
(α1, . . . , αn) is an R-basis of S if and only if dR(L) = disc(α1, . . . , αn)R.

Proof. Suppose (α1, . . . , αn) is an R-basis of S. The ideal dR(L) is generated
by all disc(β1, . . . , βn) such that (β1, . . . , βn) is a K-basis of L and β1, . . . , βn ∈ S.
Let (β1, . . . , βn) be such a basis. Then by Proposition 1.27

disc(β1, . . . , βn) = det(M)2 disc(α1, . . . , αn),

where M is the transition matrix from (β1, . . . , βn) to (α1, . . . , αn). Because
(α1, . . . , αn) is an R-basis of S, the entries of M are in R. It follows that
disc(β1, . . . , βn) ∈ disc(α1, . . . , αn)R. Hence dR(L) = disc(α1, . . . , αn)R.
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7.2 Ramification and discriminant

For the converse suppose that dR(L) = disc(α1, . . . , αn)R. Let p ∈ Max(R) and
Q the set of prime ideals of S above p. Then by Proposition 7.23 dRp

(L) =
dR(L)Rp = disc(α1, . . . , αn)Rp. Since Rp is a discrete valuation ring, SQ has an
Rp-basis, say (β1, . . . , βn) and for this basis we have disc(β1, . . . , βn)Rp = dRp

(L).
Hence disc(α1, . . . , αn)Rp = disc(β1, . . . , βn)Rp. Again by Proposition 1.27

disc(α1, . . . , αn) = det(M)2 disc(β1, . . . , βn),

where M is the transition matrix from (α1, . . . , αn) to (β1, . . . , βn). It follows that
det(M) ∈ R∗

p. This implies that (α1, . . . , αn) is an Rp-basis of SQ. Let x ∈ S.
Then there are unique b1, . . . , bn ∈ K such that x = b1α1 + · · · + bnαn. Since
(α1, . . . , αn) is an Rp-basis of SQ, we have b1, . . . , bn ∈ Rp. This holds for all
p ∈ Max(R). Hence b1, . . . , bn ∈ R and so (α1, . . . , αn) is an R-basis of S.

In particular we have the following.

7.26 Corollary. Let ϑ ∈ S be a primitive element of L : K and f ∈ R[X] the
minimal polynomial of ϑ over K. Then dR(L) = disc(f)R if and only if S =
R[ϑ].

The following generalizes Lemma 3.29.

7.27 Lemma. Let p ∈ Max(R) and α1, . . . , αn ∈ S such that (α1, . . . , αn) is an
R/p-basis of S/pS. Then p | dR(L) if and only if disc(α1, . . . , αn) ∈ p.

Proof. Put vp(dR(L)) = k. Then dR(L)Rp = pkRp. Proposition 7.23, with
P = {p} gives

p | dR(L) ⇐⇒ pRp | dR(L)Rp ⇐⇒ pRp | dRp
(L).

Let Q be the set of maximal ideals of S above p. The ring Rp is a principal
ideal domain. So L has a K-basis (β1, . . . , βn) which is an Rp-basis of SQ and by
Theorem 7.25 we have

dRp
(L) = disc(β1, . . . , βn)Rp.

Let T be the transition matrix from (α1, . . . , αn) to (β1, . . . , βn). Then T ∈ Mn(Rp)
and

disc(α1, . . . , αn) = det(T )2 disc(β1, . . . , βn).

Since (α1, . . . , αn) and (β1, . . . , βn) both are Rp/pRp-bases of SQ/pSQ, we have
det(T ) ∈ R∗

p. So we have

dRp
(L) = disc(β1, . . . , βn)Rp = disc(α, . . . , αn)Rp.

Therefore,

p | dR(L) ⇐⇒ pRp | dRp
(L) ⇐⇒ disc(α1, . . . , αn) ∈ pRp ∩R = p.
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7 Extensions of Dedekind Domains

The proof of Theorem 3.30 now easily generalizes to a proof of the following theorem
using Lemma 7.27.

7.28 Theorem. Let p ∈ Max(R). Then

p ramifies in L ⇐⇒ p | dR(L).

Proof. First assume that p does not ramify in S, say pS = q1 · · · qr with
q1, . . . , qr the different maximal ideals of S above p. Put fi = fR(qi) for i = 1, . . . , r.
As in the proof of Theorem 3.30 one constructs a K-basis

(α11, . . . , α1f1 , α21, . . . , α2f2 , . . . . . . , αr1, . . . , αrfr )

of L consisting of elements of S such that (αi1, . . . , αifi) is an R/p-basis of S/qi for

i = 1, . . . , r; moreover, αijαkj ∈ pS, and so TrLK(αijαkl) ∈ p. Then again for the

matrix A = (TrLK(αijαkl)) we have det(A) ≡ det(A1) ·det(A2) · · · det(Ar) (mod p),

where the Ai are the fi × fi-matrices (TrLK(αijαil)). Since the αi1, . . . , αifi form
modulo p a basis of S/qi, we have in R/p:

TrLK(αijαik) = Tr
(
Mαijαik

)
= Tr

(
Mαijαik

)
.

So det(Ai) is the discriminant of the R/p-basis of S/qi. By Corollary 1.30 it follows
that det(Ai) ̸= 0, that is det(Ai) /∈ p. By Lemma 7.27 we have p ∤ dR(L).

Assume now that p ramifies in S. Then there is a q ∈ Max(S) above p such that
pS = qa, where a is an ideal of S with q | a. Choose an α ∈ a \ pS. The ring S/pS
is an R/p-vector space of dimension n = [L : K]. The image α of α in S/pS is not
0, so there are α1, . . . , αn ∈ S such that (α1, . . . , αn) is a basis of the R/p-vector
space S/qS and α1 = α. The discriminant of (α1, . . . , αn) is the determinant of
the matrix (TrLK(αiαj)). As in the proof of Theorem 3.30 the entries in the first
row of this matrix are all in p. Therefore,

disc(α1, . . . , αn) = det(Tr(αiαj)) ∈ p.

From Lemma 7.27 follows that p | dR(L).

7.29 Proposition. Let R be a principal ideal domain, L1 and L2 intermediate fields
of L : K such that L = L1L2 and [L : K] = [L1 : K][L2 : K]. Then

(dR(L1) + dR(L2))S ⊆ S1S2.

Proof. Let S1 and S2 be the integral closures of R in L1 and L2 respectively.
By Corollary 1.38 there are K-bases α1, . . . , αn1

and β1, . . . , βn2
of L1 and L2

respectively such that S1 = Rα1 + · · · + Rαn1 and S2 = Rβ1 + · · · + Rβn2 . Put
d1 = disc(α1, . . . , αn1) and d2 = disc(β1, . . . , βn2). By Theorem 7.25 dR(L1) = Rd1
and dR(L2) = Rd2. As in the proof of Theorem 1.50 we have

d1S ⊆ S1S2 and d2S ⊆ S1S2.
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7.30 Theorem. Let L1 and L2 intermediate fields of L : K such that L = L1L2

and [L : K] = [L1 : K][L2 : K]. Suppose that p ∈ Max(R) ramifies in L1 and does
not ramify in L2. Then

vp(dR(L)) = vp(dR(L1))
[L2:K].

Proof. Let S1 and S2 be the integral closures of R in L1 and L2 respectively.
First we prove the theorem under the extra assumption that R is a discrete valua-
tion ring and use the notations in the proof of Proposition 7.29. By Proposition 1.33
the discriminant d of the K-basis of the products αiβj equals dn2

1 dn1
2 . By Theo-

rem 7.28 dR(L2) = (1), so Proposition 7.29 implies that S = S1S2 and it follows
that the elements αiβj form an R-basis of S. We have

dR(L) = Rd = (Rd1)
n2(Rd2)

n1 = (dR(L1))
n2(dR(L2))

n1 = (dR(L1))
n2 .

The general case is done by localization. Let P = {p} and Q, Q1 and Q2 the sets of
prime ideals of respectively S, S1 and S2 above p. Then dRp

(L2) = dR(L2)Rp = Rp.
The ring Rp is a discrete valuation ring, so we have

dR(L)Rp = (dR(L1))
n2Rp.

The theorem follows from Proposition 6.29.

7.31 Terminology for number fields. For a number field extension L : K the
discriminant of L over K is the discriminant dOK

(L). Notation: dK(L). So we
have: p ∈ Max(OK) ramifies in L if and only if p | dK(L).

7.32 Example. In Example 7.17 it is shown that the prime number 3 totally
ramifies in L = Q(α, ζ3), where α = 3

√
2. The prime ideal of OL above 3 is the

principal ideal p = (δ). On page 153 the minimal polynomial f of δ over Q has
been computed: f = X6−3X4+3X2+3. By Theorem 7.21, Proposition 7.23 and
Corollary 7.26 we have

v3(disc(L)) = v3(disc(f)).

Indeed, by the computation in Example 7.17: v3(disc(L)) = 7 and

disc(f) = −NLQ(6δ5 − 12δ3 + 6δ) = 66 ·NLQ(δ) ·NLQ(δ4 − 2δ2 + 1)

= 66 · 3 ·NLQ(δ2 − 1)2 = 26 · 37 ·NLQ(δ − 1)2 ·NLQ(δ + 1)2 = 214 · 37.

(Of course 3 ∤ NLQ(δ4 − 2δ2 + 1), because δ4 − 2δ2 + 1 /∈ p.)

In Example 7.17 the discriminant of L was computed using the computation of an
integral basis. For a computation of the discriminant it is not necessary to have
an explicit integral basis. One can argue as follows. Since 2 and 3 are the only
prime numbers ramifying in L, the discriminant is of type ±2k3l. The sign is −1
by Proposition 1.46, the above computation shows that l = 7 and by Theorem 7.30
we have k = 2 · v2(disc(K)) = 4.
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7 Extensions of Dedekind Domains

7.3 Decomposition groups and inertia groups

We consider the splitting of a prime ideal in a Galois extension. For this section
we fix the following notations:

R a Dedekind domain with the property that

all its residue class fields are finite,

K the field of fractions of R,

L : K a Galois extension,

G = Gal(L : K) the Galois group,

S the integral closure of R in L,

q ∈ Max(S) a maximal ideal of S,

p = q ∩K the prime ideal of R under q,

Q the set of prime ideals of S above p,

f = f
(L)
p the residue class degree of p in L,

e = e
(L)
p the ramification index of p in L,

r = r
(L)
p the number of prime ideals of S above p,

G = Gal(S/q : R/p) the Galois group of the residue class field extension.

The extension S/q : R/p is a Galois extension since it is an extension of finite fields.
For R the ring of integers of a number field the condition of residue class fields being
finite is satisfied. Without this condition it still follows that this extension is normal
(exercise 1). Therefore, most of the results in this section hold under the weaker
condition of residue class fields being perfect. In section 7.7, however, it is essential
that the residue class fields are finite.

By Theorem 7.13 the group G operates transitively on Q. Consequently, we have
the equality of ramification indices and of residue class degrees of the prime ideals
in Q over K (Corollary 7.14).

7.33 Definition. The stabilizer of q under the action of G on the set Q is called
the decomposition group of q over K. Notation: Z = ZK(q). So,

ZK(q) = StabG(q).

The intermediate field LZ is called the decomposition field of q over K. (The Z
stands for Zerlegung, which is German for decomposition.)

7.34 Proposition. #(ZK(q)) = ef .

Proof. The map

G→ Q, σ 7→ σ(q)
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7.3 Decomposition groups and inertia groups

is surjective by the transitivity of the action of G. It induces a bijection from the
set of left cosets of ZK(q) in G to the set of primes above p. Hence,

(G : Z) = r.

From n = ref it follows that #(ZK(q)) = ef .

7.35 Proposition. r
(L)

qZ = 1, e
(L)

qZ = e
(L)
p and f

(L)

qZ = f
(L)
p . In a diagram:

K

LZ

L

p

qZ

q

r

ef

ramification index = 1
residue class degree = 1

ramification index = e
residue class degree = f

Proof. For all σ ∈ Z we have σ(q) = q. Since Z acts transitively on the set of

primes of L above qZ , it follows that r
(L)

qZ = 1. The proposition follows from

[L : LZ ] = #(Z) = ef, [L : LZ ] = e
(L)

qZ f
(L)

qZ , e
(L)

qZ | e and f
(L)

qZ | f.

The elements of ZK(q) are the automorphisms σ ∈ G which induce an automor-
phism of S/q. The map

ZK(q)→ G, σ 7→ σ

clearly is a group homomorphism. Its kernel consists of all σ ∈ Z with σ = 1, that
is σ(α) ≡ α (mod q) for all α ∈ S.

7.36 Definition. The subgroup of Z of all σ ∈ Z with

σ(α) ≡ α (mod q) for all α ∈ S

is called the inertia group of q over K. Notation: T = TK(q). (Trägheit is German
for inertia.)

Since T is the kernel of the group homomorphism Z → G, it is a normal subgroup
of Z. In Theorem 7.40 we will see that the homomorphism is surjective. Decom-
position groups and inertia groups of prime ideals above the same prime ideal of
the base field are related as follows.

7.37 Proposition. Let σ ∈ G. Then ZK(σ(q)) = σZK(q)σ−1 and TK(σ(q)) =
σTK(q)σ−1.
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7 Extensions of Dedekind Domains

Proof. For all τ ∈ G:

τ ∈ ZK(σ(q)) ⇐⇒ τσ(q) = σ(q) ⇐⇒ σ−1τσ(q) = q

⇐⇒ σ−1τσ ∈ ZK(q) ⇐⇒ τ ∈ σZK(q)σ−1

and

τ ∈ TK(σ(q)) ⇐⇒ τ(α) ≡ α (modσ(q)) for all α ∈ S
⇐⇒ σ−1τ(α) ≡ σ−1(α) (mod q) for all α ∈ S
⇐⇒ σ−1τσ(α) ≡ α (mod q) for all α ∈ S
⇐⇒ σ−1τσ ∈ TK(q) ⇐⇒ τ ∈ σTK(q)σ−1.

It follows that the decomposition group only depends on the prime ideal p if this
group is a normal subgroup of the Galois group. Similarly for the inertia group.

7.38 Definition and notations. If ZK(q) ⊴ G, the group ZK(q) is also called the

decomposition group of p in L. Notation Z
(L)
p . Similarly, if TK(q) ⊴ G, the group

TK(q) is also called the inertia group of p in L. Notation T
(L)
p .

7.39 Lemma. The prime qT of LT totally ramifies in L.

Proof. Since r
(L)

qT = 1 (Proposition 7.35), it remains to show that f
(L)

qT = 1, that

is [S/q : ST /qT ] = 1. Let α ∈ S and consider

∆α(X) =
∏
σ∈T

(X − σ(α)),

the characteristic polynomial of α over LT . From σ(α) ≡ α (mod q) for all σ ∈ T
it follows that

∆α(X) = (X − α)#(T ) ∈ (S/q)[X].

Since ∆α(X) ∈ ST [X] we have in fact

(X − α)#(T ) ∈ (ST /qT )[X].

The extension S/q : ST /qT , being an extension of finite fields, is separable. There-
fore, X − α is the minimal polynomial of α over ST /qT . Hence α ∈ ST /qT for all
α ∈ S.

7.40 Theorem. The group homomorphism Z → G induces an isomorphism

Z/T
∼→ G.

Proof. The homomorphism Z/T → G is injective by definition of T . By

Lemma 7.39 and Proposition 7.35 we have f
(LT )

qZ = f , and so #(Z/T ) = [LT : LZ ] ≥
f .
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Summarizing:

7.41 Theorem. For the primes p, qZ , qT and q we have:

K

LZ

LT

L

p

qZ

qT

q

ramification index = 1
residue class degree = 1

ramification index = 1
residue class degree = f

ramification index = e
residue class degree = 1

(qZ remains prime in LT )

(qT totally ramifies in L)

r

f

e

7.42 Example. Let L = Q(α, ζ3) and K = Q, where α = 3
√
2, see also Exam-

ple 7.17. There OL, disc(L) and O∗
L have been computed. Only the primes 2 and

3 ramify in L. Since G = Gal(L : Q) is not cyclic no prime number remains prime
in L. Let’s look at the factorization of the primes 2, 3, 5 and 7.

p = 2: 2 totally ramifies in Q(α): (2) = (α)3. So 3 | e(L)2 . On the other hand 2
remains prime in Q(ζ3). Hence the prime ideal factorization in L is (2) = p32,

where p2 = (α). Since #(T ) = e
(L)
2 = 3, we have LT = Q(ζ3). Clearly Z = G

and so LZ = Q. The prime 2 remains prime in Q(ζ3) and subsequently totally
ramifies in L.

p = 3: In Example 7.16 it was shown that 3 totally ramifies in L: (3) = (δ)6. In
this case G = Z = T and so LT = LZ = Q.

p = 5: The prime ideal factorization of (5) in Q(α) is:

(5) = (5, α+ 2)(5, α2 − 2α− 1).

This implies that 2 | f (L)5 and f
(L)
5 ̸= 6. So f

(L)
5 = 2. Take a prime q above the

prime (5, α+2) ofQ(α). Then #(T ) = e
(L)
5 = 1, #(Z) = #(Z/T ) = f

(L)
5 = 2.

Therefore, LT = L and, since τ ∈ G with τ(α) = α and τ ̸= 1 satisfies
τ(q) = q, we have Z = ⟨τ⟩, that is LZ = Q(α). So the prime (5, α + 2) of
Q(α) remains prime in L. Note that, however, 5 does not split completely in
LZ .

p = 7: 7 remains prime in Q(α) and splits completely in Q(ζ3). So for any of the
two prime ideals of OL above 7 we have LT = L and LZ = Q(ζ3).

7.43 Example. Let L = Q(ζm), p a prime number and m = prm0 with p ∤ m0.

According to Theorem 3.16 (or Example 7.16) we have e
(L)
p = φ(pr). Since p does

not ramify in Q(ζm0), prime ideals of Z[ζm0 ] above p totally ramify in L and it
follows that LT = Q(ζm0

).
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7 Extensions of Dedekind Domains

For K ′ an intermediate field of L : K, the decomposition group and the inertia
group of q over K ′ are the intersections of respectively Z and T with Gal(L : K ′):

7.44 Proposition. Let H be a subgroup of G. Then ZLH (q) = H ∩ ZK(q) and
TLH (q) = H ∩ TK(q).

Proof. For a σ ∈ G we have:

σ ∈ ZLH (q) ⇐⇒ σ ∈ H and σ(q) = q ⇐⇒ σ ∈ H and σ ∈ ZK(q)

and

σ ∈ TLH (q) ⇐⇒ σ ∈ H and σ(α) ≡ α (mod q) for all α ∈ S
⇐⇒ σ ∈ H and σ ∈ TK(q).

K

LZ

LT

K ′

LZ
′

LT
′

L 7.45 Corollary. Let K ′ be an intermediate field of L : K.
Then for Z ′ = ZK′(q) and T ′ = TK′(q) we have

LZ
′
= LZK ′ and LT

′
= LTK ′.

Proof. Apply Proposition 7.44 for H = Gal(L : K ′) and
use the Galois correspondence.

For L′ an intermediate field of L : K such that L′ : K is a Galois extension, the
decomposition group and the inertia group of q ∩ L′ over K are the images of
respectively Z and T in Gal(L′ : K). More precisely:

7.46 Proposition. Let N be a normal subgroup of G. Then the isomorphism

G/N
∼→ Gal(LN : K), σN 7→ σ|LN

induces isomorphisms

ZK(q)/(N ∩ ZK(q))
∼→ ZK(qN ) and TK(q)/(N ∩ TK(q))

∼→ TK(qN ).

Proof. Under the group homomorphism

f : G→ Gal(LN : K), σ 7→ σ|LN

the subgroups ZK(q) and TK(q) are mapped to ZK(qN ) and TK(qN ) respectively.
Indeed, if σ ∈ ZK(q), then σ(q) = q and hence σ(qN ) = σ(q) ∩ σ(LN ) = q ∩ LN =
qN , that is f(σ) ∈ ZK(qN ), and similarly, if σ ∈ TK(q), then σ(α) ≡ α (mod q) for
all α ∈ S, and so also σ(α) ≡ α (mod qN ) for all α ∈ SN , that is f(σ) ∈ TK(qN ).
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7.3 Decomposition groups and inertia groups

It suffices to show that the induced homomorphisms

ZK(q)→ ZK(qN ), σ 7→ σ|LN

TK(q)→ TK(qN ), σ 7→ σ|LN

are surjective.

Surjectivity for the decomposition groups. Let τ ∈ ZK(qN ). Then there is a σ ∈ G
such that σ|LN = τ . Choose σ′ ∈ Gal(L : LN ) = N such that σ′(q) = σ(q). Then

(σ′)−1σ(q) = q and (σ′)−1σ|LN = τ.

Surjectivity for the inertia groups. Let τ ∈ TK(qN ). Since we have surjectivity
for the decomposition groups, there is a σ ∈ ZK(q) such that σ|LN = τ . This
automorphism σ induces a σ ∈ G with σ|SN/qN = τ = 1. It follows that σ ∈
Gal(S/q : SN/qN ). Choose a σ′ ∈ N such that σ′ = σ. Then

(σ′)−1σ ∈ TK(q) and (σ′)−1σ|LN = τ.

K

(L′)Z
′

(L′)T
′

L′

LZ

LT

L7.47 Corollary. Let L′ be an intermediate field of L : K such
that L′ : K is a Galois extension. Then for Z ′ = ZK(q∩L′)
and T ′ = TK(q ∩ L′) we have

(L′)Z
′
= LZ ∩ L′ and (L′)T

′
= LT ∩ L′.

Proof. For N = Gal(L : L′) we have

(L′)Z
′
= (LN )Z

′
= LNZ = LZ ∩ LN = LZ ∩ L′,

and similarly for the inertia groups.

Decomposition groups and inertia groups are convenient tools when studying the
splitting behavior of a prime ideal in an extension.

7.48 Theorem. Suppose Z ⊴ G. Let K ′ be an intermediate field of L : K. Then

p splits completely in K ′ ⇐⇒ K ′ ⊆ LZ .

Proof. LZ : K is a Galois extension. By Theorem 7.41 we have e
(LZ)
p = f

(LZ)
p =

1. Hence r
(LZ)
p = [LZ : K]. So p splits completely in LZ and it does so in any

intermediate field of LZ : K.

Conversely, suppose p splits completely in K ′. Put H = Gal(L : K ′). Then

e
(L)

qH = e and f
(L)

qH = f.

Hence,
#(ZLH (q)) = #(Z).

By Proposition 7.44 we have H ⊇ Z, that is K ′ ⊆ LZ .

165



7 Extensions of Dedekind Domains

7.49 Corollary. Suppose Z ⊴ G and T ⊴ G. Then p splits completely in LZ into
primes that remain prime in LT and which subsequently totally ramify in L.

7.50 Theorem. Let L1 and L2 be intermediate fields of L : K. Then:

a) If p does not ramify in both L1 and L2, then p does not ramify in L1L2.

b) If p splits completely in both L1 and L2, then p splits completely in L1L2.

Proof.

a) PutH1 = Gal(L : L1) andH2 = Gal(L : L2). Then Gal(L : L1L2) = H1∩H2.
Let p′ ∈ Max(SH1∩H2) be any prime ideal above p and choose q ∈ Max(S)

above p′. Then eK(qH1) = 1 and eK(qH2) = 1. Hence e
(L)

qH1
= e and e

(L)

qH2
= e.

Therefore,

#(TLH1 (q)) = #(T ) and #(TLH2 (q)) = #(T ).

By Proposition 7.44 we have H1 ⊇ T and H2 ⊇ T . Hence H1 ∩H2 ⊇ T . It
follows that TL1L2

(q) = T and so eK(p′) = 1.

b) As (i) with Z instead of T .

7.51 Corollary. Let L : K be the normal closure of a field extension K ′ : K. Then

a) p does not ramify in K ′ ⇐⇒ p does not ramify in L,

b) p splits completely in K ′ ⇐⇒ p splits completely in L.

Proof. The field L is the composition of the fields σ(K ′), where σ ∈ G.

7.4 The splitting of a prime ideal in an extension

In this section we consider the splitting of a prime ideal in a finite separable ex-
tension. The results will be used in the chapters 8, 15 and 18. A finite separable
extension is a subextension of a Galois extension. So let’s fix for this section the
following notations:

R a Dedekind domain,

K the field of fractions of R,

L : K a Galois extension,

K ′ : K an intermediate field of L : K,

S the integral closure of R in L,

G = Gal(L : K) the Galois group,

H = Gal(L : K ′) the subgroup of G corresponding to K ′,

R′ = SH the integral closure of R in K ′,
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q ∈ Max(S) a prime ideal of S,

Z = ZK(q) the decomposition group of q over K,

T = TK(q) the inertia group of q over K,

p = q ∩K the prime ideal of R under q.

The splitting behavior of p in K ′ will be described in terms of the subgroups H
and Z of G. The group G acts on the right on the set {Hσ | σ ∈ G } of right
cosets of H in G by

(Hσ, τ) 7→ Hστ.

A group homomorphism f : G → S(X) from a group G to the group S(X) of
permutations of a setX corresponds to a left action ofG onX: define g·x = f(g)(x).
A left action is a map

G×X → X, (g, x) 7→ g · x
such that g · (h · x) = (gh) · x and 1 · x = x for all g, h ∈ G and x ∈ X. A right
action of G on X is a map

X ×G→ X, (x, g) 7→ x · g

such that (x · g) · h = x · (gh) and x · 1 = x for all g, h ∈ G and x ∈ X. A right
action of a group can be seen as a left action of the opposite group. When we say
that a group acts (or operates) on a set, we will mean, unless indicated otherwise,
that it acts on the left.

The group Z, being a subgroup of G, acts on the right on the right cosets of H in
the same way. Let {Hσ | σ ∈ G }Z denote the set of orbits of this action of Z.
The orbit of Hσ is denoted by [Hσ].

7.52 Lemma. #([Hσ]) = (Z : (Z ∩ σ−1Hσ)).

Proof. The map Z → [Hσ], which sends ρ to Hσρ, is surjective and for ρ1, ρ2 ∈
Z we have Hσρ1 = Hσρ2 if and only if σ−1Hσρ1 = σ−1Hσρ2. So the number of
elements in the orbit of Hσ under Z equals the number of left cosets of Z∩σ−1Hσ
in Z.

7.53 Theorem. The map

G −→ Max(R′), σ 7→ σ(q) ∩K ′

induces a bijection

{Hσ | σ ∈ G }Z
∼−→ { q′ ∈ Max(R′) | q′ ∩K = p }

and for each σ ∈ G we have

eK(σ(q) ∩K ′)fK(σ(q) ∩K ′) = (Z : (Z ∩ σ−1Hσ)) = #([Hσ])

and

eK(σ(q) ∩K ′) = (T : (T ∩ σ−1Hσ)).
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Proof. The map defined on G factors through {Hσ | σ ∈ G }Z : for τ ∈ H and
ρ ∈ Z we have

τσρ(q) ∩K ′ = τσ(q) ∩K ′ = τ(σ(q) ∩K ′) = σ(q) ∩K ′.

Surjectivity of the induced map follows from the transitivity of the action of G on
the set of prime ideals of S above p. For the proof of injectivity, let σ1, σ2 ∈ G
satisfy σ1(q) ∩K ′ = σ2(q) ∩K ′. The prime ideals σ1(q) and σ2(q) of S are above
the same prime ideal of R′, so there is a τ ∈ H such that τσ1(q) = σ2(q). Then
σ−1
2 τσ1 ∈ Z. So τσ1 = σ2ρ with ρ ∈ Z. Therefore, Hσ1 = Hσ2ρ, which implies

that [Hσ1] = [Hσ2].

Finally we compute eK(σ(q) ∩ K ′)fK(σ(q) ∩ K ′). It is equal to the quotient
eK(σ(q)fK(σ(q))/eK′(σ(q))fK′(σ(q)). By Proposition 7.44 we have

eK′(σ(q))fK′(σ(q)) = #ZK′(σ(q)) = #(ZK(σ(q)) ∩H) = #(σZσ−1 ∩H)

= #(Z ∩ σ−1Hσ)

and similarly

eK′(σ(q)) = #(T ∩ σ−1Hσ).

So by Lemma 7.52

eK(σ(q) ∩K ′)fK(σ(q) ∩K ′) =
eK(σ(q))fK(σ(q))

eK′(σ(q))fK′(σ(q))
=

#(Z)

#(Z ∩ σ−1Hσ)

= #([Hσ])

and

eK(σ(q) ∩K ′) =
eK(σ(q))

eK′(σ(q))
=

#(T )

#(T ∩ σ−1Hσ)

The prime ideal qZ of SZ has residue class degree 1 over K. If LZ : K is a Galois
extension, that is if Z is a normal subgroup of G, then p splits completely in LZ .
So in that case the number of prime ideals of SZ above p with residue class degree
1 is equal to [LZ : K] = #(G/Z) = (G : Z). In the following proposition this is
generalized.

7.54 Proposition. The number of prime ideals of SZ above p with residue class
degree 1 is equal to (NG(Z) : Z).

The group NG(Z) is the normalizer of Z in G:

NG(Z) = {σ ∈ G | σZσ−1 = Z },

the largest subgroup of G having Z as a normal subgroup.
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Proof. By Theorem 7.53 the splitting behavior of p in LZ is given by the action
of Z from the right on the right cosets of Z in G. The primes of LZ above p of
residue class degree 1 over K correspond to right cosets Zσ fixed by the action of
Z on the right. By Theorem 7.53 and Lemma 7.52 this is precisely the case when
σZσ−1 = Z. So this number of right cosets is (NG(Z) : Z).

7.5 Ramification groups

Ramification groups are subgroups of the inertia group and provide information
on the structure of the inertia group. They will be used in chapter 9 and also
in chapter 17. In chapter 9 in the proof of the Kronecker-Weber Theorem, which
states that abelian number fields are subfields of cyclotomic fields; in chapter 17
for the proof of the Conductor-Discriminant Formula of class field theory. The
notations used in this section are the same as in section 7.3. In this section the
residue class fields are assumed to be finite.

7.55 Definition. Let q ∈ Max(S) be above p ∈ Max(R) and let i ∈ N. The
subgroup

Vi = Vi(q) = VK,i(q) = {σ ∈ ZK(q) | σ(α) ≡ α (mod qi+1) for all α ∈ S }

is called the i-th ramification group of q overK. (Note that V0 is the inertia group.)

7.56 Proposition. For all i ∈ N we have Vi(q) ⊴ ZK(q) and Vi+1 ⊴ Vi. There is
an i0 ∈ N such that Vi0 = {1}.

Proof. Clearly Vi ⊴ Z, since Vi is the kernel of a homomorphism:

Vi = Ker(Z → Aut(S/qi+1)).

The inclusion Vi+1 ⊆ Vi follows directly from the definition. Since G is finite, there
is an i0 ∈ N such that Vi = Vi0 for all i ≥ i0. Let σ ∈ Z with σ ̸= 1. Then there is
an α ∈ S such that σ(α) ̸= α. Let k = vq(σ(α)−α). Then σ(α)−α /∈ qk+1, which
implies that σ /∈ Vk. Therefore, σ /∈ Vi0 . Hence Vi0 = {1}.

So we have a chain of groups

Z ⊵ T ⊵ V1 ⊵ V2 ⊵ · · · ⊵ Vi0 = {1}.

We will study the factor groups Vi−1/Vi for i ∈ N∗. Theorem 6.19 on the unique
representation of residue classes modulo powers of q will be used. Let π ∈ S
with vq(π) = 1 and let X be a system of representatives of ST /qT . Since the

inclusion ST → S induces an isomorphism ST /qT
∼→ S/q, the set X is a system

of representatives of S/q as well. For each α ∈ S and each i ∈ N there are unique
a0, . . . , ai in X such that

α ≡ a0 + a1π + · · ·+ aiπ
i (mod qi+1).
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Furthermore we assume that 0 ∈ X, that is 0 is the representative of q. Then for
k with 0 ≤ k ≤ i and α ∈ S we have

vq(α) = k ⇐⇒ a0 = · · · = ak−1 = 0 and ak ̸= 0.

For σ ∈ T the element σ(π) alone determines to which ramification group σ belongs:

7.57 Proposition. Let σ ∈ T . Then

σ ∈ Vi ⇐⇒ σ(π) ≡ π (mod qi+1).

Proof. Suppose σ(π) ≡ π (mod qi+1) and let α ∈ S. Then there are unique
a0, . . . , ai ∈ X such that

α ≡ a0 + a1π + · · ·+ aiπ
i (mod qi+1).

We have

σ(α) ≡ σ(a0 + a1π + · · ·+ aiπ
i) (mod qi+1) (since σ(q) = q)

≡ a0 + a1σ(π) + · · ·+ aiσ(π)
i (mod qi+1) (since ai ∈ X ⊆ ST )

≡ a0 + a1π + · · ·+ aiπ
i (mod qi+1) (since σ(π) ≡ π)

So σ(α) ≡ α (mod qi+1) for all α ∈ S, that is σ ∈ Vi.

7.58 Proposition. T/V1 is isomorphic to a subgroup of (S/q)∗.

Proof. Let σ ∈ T . Then σ(π) ∈ q and there is a unique a ∈ X \ {0} such that

σ(π) ≡ aπ (mod q2).

So we have a map
f : T → (S/q)∗, σ 7→ a.

We will show that f is a group homomorphism. Suppose f(σ) = a and f(τ) = b
with a, b ∈ X. Then

τ(π) ≡ bπ (mod q2)

στ(π) ≡ σ(bπ) (mod q2) (since σ(q) = q)

≡ bσ(π) (mod q2) (since b ∈ ST )
≡ baπ (mod q2) (since f(σ) = a).

If c ∈ X with στ(π) ≡ cπ (mod q2), then ab = c and so f(στ) = f(σ)f(τ).
Furthermore Ker(f) = V1, since σ ∈ Ker(f) ⇐⇒ σ(π) ≡ π (mod q2).

7.59 Proposition. Let i ≥ 2. Then Vi−1/Vi is isomorphic to a subgroup of the
additive group S/q.
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Proof. Let σ ∈ Vi−1. Then σ(π) ≡ π (mod qi). There is a unique a ∈ X such
that

σ(π)− π ≡ aπi (mod qi+1).

So we have a map
g : Vi−1 → S/q, σ 7→ a.

We will show that it is a group homomorphism. Suppose f(σ) = a and f(τ) = b
with a, b ∈ X. Then

τ(π)− π ≡ bπi (mod qi+1),

στ(π)− σ(π) ≡ σ(bπi) (mod qi+1) (since σ(q) = q)

≡ bσ(π)i (mod qi+1) (since b ∈ ST )
στ(π)− π − aπi ≡ b(π + aπi)i (mod qi+1)

≡ bπi (mod qi+1) (since i ≥ 2).

If c ∈ S with στ(π) ≡ π + cπi (mod qi+1), then a+ b = c and so f(στ) = f(σ) +
f(τ). Furthermore Ker(f) = Vi, since σ ∈ Ker(f) ⇐⇒ σ(π) ≡ π (mod qi+1).

The maps f and g in the proofs of the propositions 7.58 and 7.59 can also be defined
by mapping σ to the residue classes of respectively σ(π)

π
and σ(π)−π

πi in the discrete
valuation ring Sq modulo its maximal ideal qSq.

In case the group Z/V1 is abelian, Proposition 7.58 can be strengthened to the
following.

7.60 Proposition. Let Z/V1 be abelian. Then T/V1 is isomorphic to a subgroup of
(R/p)∗.

Proof. We will prove that the image of the map f : T → (S/q)∗ constructed in
the proof of Proposition 7.58 is contained in the subgroup (R/p)∗. Let σ ∈ T and
put N = #(R/p). Then to prove that f(σ)N = f(σ), that is aN ≡ a (mod p),
where a ∈ X is such that σ(π) ≡ aπ (mod q2).

For all β ∈ q we have σ(β) ≡ aβ (mod q2): if β ≡ bπ (mod q2) for a b ∈ X, then

σ(β) ≡ σ(bπ) = bσ(π) ≡ abπ ≡ aβ (mod q2).

The map Z → G is surjective. Take φ ∈ Z such that its image in G is the generator
x 7→ xN of G. Since φ ∈ Z, we have φ−1(π) ∈ q and therefore

σ(φ−1(π)) ≡ a · φ−1(π) (mod q2).

Application of φ yields

(φσφ−1)(π) ≡ φ(a)π ≡ aNπ (mod q2).

Since Z/V1 is abelian we have (φσφ−1)(π) ≡ σ(π) (mod q2) and so

aN ≡ a (mod p).
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The propositions in this section have consequences for the structure of the groups
Z, T and V1:

7.61 Theorem. Let p be the characteristic of R/p. Then

(i) The group V1 is a p-group.

(ii) The group V1 is the Sylow p-subgroup of T .

(iii) The group Z is solvable.

Proof.

(i) This follows from Proposition 7.59: the group S/q is a p-group.

(ii) By (i) and Proposition 7.58: p ∤ #(S/q)∗.

(iii) The factor groups of the chain

Z ⊵ T ⊵ V1 ⊵ V2 ⊵ · · · ⊵ Vi0 = {1}

are all abelian.

In particular we have:

7.62 Corollary. The prime ideal q of S is wildly ramified over K if and only if the
group V1 is nontrivial.

The group V1 is also known as the wild inertia group of q over K.

For K ′ an intermediate field of L : K, the ramification groups of q over K ′ are
simply the intersections of the ramification groups over K with Gal(L : K ′):

7.63 Proposition. Let H be a subgroup of Gal(L : K) and i ∈ N. Then VLH ,i(q) =
VK,i(q) ∩H.

Proof. For σ ∈ ZK(q) we have

σ ∈ VLH ,i(q) ⇐⇒ σ ∈ H and σ(α) ≡ α (mod qi+1) for all α ∈ S
⇐⇒ σ ∈ H and σ ∈ VK,i(q).

7.64 Example. Let p be an odd prime and r ∈ N∗. The prime p is the unique prime
which ramifies in the cyclotomic field L = Q(ζpr ). In fact, p totally ramifies in L
and the unique prime ideal of OL = Z[ζpr ] is the ideal p = (1− ζpr ). We compute
the ramification groups of p over Q. The group G = Gal(L : Q) is isomorphic to
the cyclic group (Z/pr)∗ of order φ(pr) = pr−1(p − 1). Let a ∈ Z be such that
a ∈ (Z/pr)∗ is of order p − 1. The element 1 + p ∈ (Z/pr)∗ is of order pr−1. It
generates the subgroup 1 + (p). A descending chain of subgroups is

(Z/pr)∗ ▷ 1 + (p) ▷ 1 + (p)2 ▷ · · · ▷ 1 + (p)r−1 ▷ 1 + (p)r (= {1}).
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The corresponding chain of subgroups of the Galois group G is

G ▷Gal(L : Q(ζp)) ▷Gal(L : Q(ζp2)) ▷ · · · ▷Gal(L : Q(ζpr−1)) ▷ {1}.

For m ∈ N∗ the kernel of the ring homomorphism Z/pm+1 → Z/pm is the ideal
(pm)/(pm+1). For the multiplicative groups of these local rings we have the short
exact sequence

1 −→ (1 + (p)m)/(1 + (p)m+1) −→ (Z/pm+1)∗ −→ (Z/pm)∗ −→ 1.

The group (1 + (p)m)/(1 + (p)m+1) is of order p and is generated by 1 + pm. Put
Vj = VQ,j(p). Since p totally ramifies, we have V0 = G. The Propositions 7.58 and
7.59 imply that V1 = Gal(L : Q(ζp)) and that for j ≥ 2 the indices (Vj−1 : Vj)
are either 1 or p. Let m < r. The group Gal(L : Q(ζpm)) is generated by the

automorphism σ1+pm : ζpr 7→ ζ1+p
m

pr . We have

σ1+pm(ζpr )− ζpr = ζ1+p
m

pr − ζpr = ζpr (ζ
pm

pr − 1) = ζpr (ζpr−m − 1).

It follows that vp(σ1+pr (1 − ζpr ) − (1 − ζpr )) = vp(σ1+pr (ζpr ) − ζpr ) = pm. By
Proposition 7.57

σ1+pm ∈ Vpm−1 \ Vpm .

This implies

Vj = Gal(L : Q(ζpm)) if pm−1 ≤ j ≤ pm − 1.

So the jumps in the descending chain of ramification groups are at pm − 1 for
m = 0, . . . , r − 1. (A jump at j meaning that Vj+1 ̸= Vj .)

7.6 Norms of fractional ideals

For rings of integers of number fields we have the notion of norm of a nonzero ideal.
This easily generalizes to a notion of norm of a fractional ideal. It will take values
in the group of positive rational numbers. This group is isomorphic to the group
of fractional ideals of Z. We generalize this further. In this section

R is a Dedekind domain,

K the field of fractions of R,

L : K a finite separable field extension,

S the integral closure of R in L.
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7.65 Definitions and notations. We have homomorphisms

jRS : I(R)→ I(S) and NSR : I(S)→ I(R).

The first one is defined by jRS (a) = aS, the second one is called a norm map and is
defined on basis elements q ∈ Max(S) by NSR(q) = (q∩K)f , where f = fK(q), the
residue class degree of q over K. The inclusion K∗ → L∗ will be denoted by jKL .

Clearly, the map jRS is injective, because for each p ∈ Max(R) the homomorphism
⟨p⟩ → ⟨q | q above p⟩, p 7→ pS is injective:

⟨p⟩

Z

⟨q | q above p⟩

⊕
q|pS Z

∼ ∼

For a tower of extensions we have:

7.66 Lemma. Let also M : L be a finite separable field extension and T the integral
closure of R in M . Then

jST j
R
S = jRT : I(R)→ I(T ) and NSRN

T
S = NTR : I(T )→ I(R).

7.67 Proposition. The following diagrams commute:

L∗

K∗

I(S)

I(R)

jKL jRS

L∗

K∗

I(S)

I(R)

NLK NSR

The horizontal maps are the homomorphisms which map an element to the principal
fractional ideal it generates.

Proof. It is obvious from the definition that the first square commutes. For the
second let’s assume first that L : K is a Galois extension. Let α ∈ L∗. Then to
prove that NSR(αS) = NLK(α)R. This means that vp(N

S
R(αS)) = vp(N

L
K(α)) for all

p ∈ Max(R). So let p ∈ Max(R). We have

vp(N
S
R(αS)) = vp

(
NSR

(∏
q

qvq(α)
))

= vp

(∏
q

(q ∩K)fK(q)vq(α)
)
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= vp

( ∏
q|pS

pf
(L)
p vq(α)

)
=
∑
q|pS

f
(L)
p vq(α) = f

(L)
p

∑
q|pS

vq(α).

Let q ∈ Max(S) above p. Put G = Gal(L : K) and Z = {σ ∈ G | σ(q) = q}. Then
σ(q) = τ(q) if and only if σ and τ are in the same left coset of Z in G. Therefore,

vq(N
L
K(α)) = vq

(∏
σ∈G

σ(α)
)
=
∑
σ∈G

vq(σ(α)) =
∑
σ∈G

vσ−1(q)(α) =
∑
σ∈G

vσ(q)(α)

=
∑

C∈G/Z

∑
σ∈C

vσ(q)(α) =
∑
q|pS

#(C) · vq(α) = e
(L)
p f

(L)
p

∑
q|pS

vq(α).

Hence, vp(N
L
K(α)) = f

(L)
p

∑
q|pS vq(α). So indeed vp(N

L
K(αS)) = vp(N

L
K(α)).

In general, let M : K be the normal closure of L : K. Put t = [M : L] and let T
be the integral closure of R in M . Since M : K is a Galois extension, by the above
we have NTR(αT ) = NMK (α)R for all α ∈M∗. So in particular for α ∈ L∗:

NTR(αT ) = NSR(N
T
S (αT )) = NSR(N

M
L (α)S) = NSR(α

tS) = NSR(αS)
t

and

NMK (α)R = NLK(αt)R = (NLK(α)R)t.

Since the group I(R) is torsion free, it follows that NSR(αS) = NLK(α)R.

7.68 Definition and notations. In the notation of Proposition 7.67: the map
NSR induces a homomorphism Cℓ(S) → Cℓ(R), [b] 7→ [NSR(b)]. It is called the
transfer from Cℓ(S) to Cℓ(R) and is denoted by trSR. The inclusion map jRS induces
a homomorphism Cℓ(R)→ Cℓ(S), [a] 7→ [aS]. It is denoted by jRS as well.

For a ∈ K∗ we have NLK(a) = a[L:K]. In other words the composition NLKj
K
L is

raising to the power [L : K]. For fractional ideals we have:

7.69 Proposition. Let a ∈ I(R). Then NSRj
R
S (a) = a[L:K]. If L : K is a Galois

extension with Galois group G, then jRSN
S
R(b) =

∏
σ∈G σ(b) for all b ∈ I(S).

Proof. It suffices to prove that the composition NSRj
R
S raises base elements p ∈

Max(R) to the power [L : K]. For such p we have by Theorem 7.8

NSRj
R
S (p) = NSR

(∏
q|pS

qeK(q)
)
=
∏
q|pS

peK(q)fK(q) = p[L:K].

The second assertion follows directly from the splitting behavior of prime ideals in

case of a Galois extension: for q ∈ Max(S), p ∈ Max(R) under q and f = f
(L)
p we

have

jRSN
S
R(q) = jRS (p

f ) = (pS)f =
∏
σ∈G

σ(q).
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7.70 Corollary. trSR j
R
S ([a]) = [a][L:K] for all a ∈ I+(R).

Number fields are the fields of fractions of their rings of integers. This is reflected
in the terminology and notation in the number field case.

7.71 Notations. Let L : K be a number field extension. The maps jOK

OL
and NOL

OK

are denoted by jKL and NLK respectively. Thus we have homomorphisms

jKL : I(K)→ I(L) and NLK : I(L)→ I(K)

and similarly

jKL : Cℓ(K)→ Cℓ(L) and trLK : Cℓ(L)→ Cℓ(K).

Though the maps jKL : K∗ → L∗ and jRS : I(R) → I(S) are injective, the induced
map jRS : Cℓ(R)→ Cℓ(S) need not to be so. The following theorem gives a class of
extensions for which this map is injective.

7.72 Theorem. Let m ∈ N∗ with m > 2, L = Q(ζm) and K = Q(ζm+ ζ−1
m ). Then

the map
jKL : Cℓ(K)→ Cℓ(L), [a]→ [aOL]

is injective.

Proof. We may assume that m ̸≡ 2 (mod 4). Let a ∈ I+(K) such that aOL is
principal. Then to show that a is a principal ideal of OK . Complex conjugation
induces an automorphism τ of L and we have Lτ = K. Let α ∈ OL generate aOL.
Then

αOL = aOL = τ(a)OL = τ(aOL) = τ(αOL) = τ(α)OL.
Hence α

τ(α) ∈ O
∗
L. For each σ ∈ Gal(L : Q) we have∣∣∣σ( α

τ(α)

)∣∣∣ = ∣∣∣ σ(α)
στ(α)

∣∣∣ = |σ(α)|
|τσ(α)|

= 1.

So by Lemma 5.45 α
τ(α) ∈ µ(L). We distinguish two cases.

Case 1: m is not a prime power. The proof of Theorem 5.51 shows that in this
case the map O∗

L → µ(L), ν 7→ ν
τ(ν) is surjective. So there is a ν ∈ O∗

L such

that α
τ(α) = ν

τ(ν) . For β = ατ(ν) we have τ(β) = τ(α)ν = ατ(ν) = β. Therefore,

β ∈ OK . So
jKL (a) = αOL = βOL = jKL (βOK).

Since jKL : I(K)→ I(L) is injective, it follows that a = βOK .

Case 2: m is a prime power, say m = pr. From τ(1− ζm) = −ζ−1
m (1− ζm) follows

that 1−ζm
τ(1−ζm) generates µ(L). Since α

τ(α) is a root of unity, there is a k ∈ Z such

that
α

τ(α)
=

(1− ζm)k

τ(1− ζm)k
.
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7.7 The Frobenius automorphism of a prime ideal

So ατ(1− ζm)k ∈ OK . The prime p totally ramifies in L. Put q = (1− ζm)OL and
let p be the prime of K under q. Then pOL = (1 − ζm)nOL = qn and pOL = q2,
where n = [L : Q] = φ(m). Because ατ(1− ζm)k ∈ OK , we have

vq(ατ(1− ζm)k) = 2 · vp(ατ(1− ζm)k)

and
vq(α) = vq(aOL) = 2 · vp(a).

hence 2 | vq(τ(1− ζm)k) = k · vq(1− ζm) = k. We have

jKL (ατ(1− ζm)kOK) = ατ(1− ζm)kOL = αOL · qk = jKL (a)jKL (pk/2) = jKL (apk/2).

Hence, by injectivity of jKL , α(1− ζm)kOK = apk/2. Because q is a principal ideal,
so is p:

p = NLK(q) = NLK((1− ζm)OL) = NLK(1− ζm)OK .

So also in this case a is a principal ideal of OK .

For an arbitrary quadratic extension of number fields by Corollary 7.70 the com-
position trLK jKL : Cℓ(K) → Cℓ(K) sends each class to its square, so the kernel of
jKL : Cℓ(K) → Cℓ(L) is contained in the subgroup 2Cℓ(K) of classes having trivial
squares. On the ‘odd parts’ of the ideal class groups the map jKL is injective. So
the extra information in the theorem is that ideal classes of order 2 of Q(ζm + ζ−1

m )
do not vanish in Cℓ(Q(ζm)).

7.7 The Frobenius automorphism of a prime ideal

We will use the notations of section 7.3. Note that in particular the residue class
fields are finite. In this section there is the extra assumption:

q is unramified over K.

This means that the map ZK(q)→ G is an isomorphism. Because the residue class
field R/p is finite, the group G is generated by the automorphism x 7→ x#(R/p) of
S/q. In other words:

7.73 Proposition. There is a unique φ ∈ Gal(L : K) such that

φ(α) ≡ αN (mod q) for all α ∈ S,

where N = #(R/p). This φ generates ZK(q).

7.74 Definition. The unique φ in Proposition 7.73 is called the Frobenius auto-
morphism of q over K. Notation: φK(q). (So we have ZK(q) = ⟨φK(q)⟩.)

Let σ : L
∼→ L′ be a field isomorphism and put S′ = σ(S). Then L′ is the field of

fractions of the Dedekind domain S′ and the following are equivalent:
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7 Extensions of Dedekind Domains

φK(q)(α) ≡ αN (mod q) for all α ∈ S,
(σφK(q))(α) ≡ σ(α)N (modσ(q)) for all α ∈ S,
(σφK(q)σ−1)(β) ≡ βN (modσ(q)) for all β ∈ S′.

So we have:

7.75 Proposition. Let σ : L
∼→ L′ be an isomorphism of fields. Then

φσ(K)(σ(q)) = σφK(q)σ−1.

In particular if σ ∈ Gal(L : K), then

φK(σ(q)) = σφK(q)σ−1.

7.76 Corollary. If, moreover, L : K is abelian, then φK(q) satisfies

φK(q)(α) ≡ αN (mod pS) for all α ∈ S.

Proof. By Proposition 7.75 and the transitivity of the action of Gal(L : K) on
the set of prime ideals of S above p:

φK(q′) = φK(q) for all q′ ∈ Max(S) above p.

Since p does not ramify in L, the ideal pS is the product of the prime ideals above
p.

For abelian extensions a Frobenius automorphism of a prime ideal q depends only
on the prime ideal below q in the base field. In this case we use a special notation.

7.77 Definition and notation. For L : K abelian and p ∈ Max(R) unramified in

L put φ
(L)
p = φK(q). The automorphism φ

(L)
p ∈ Gal(L : K) is called the Frobenius

automorphism of p in Gal(L : K).

7.78 Example. Let m ∈ N∗ and p a prime number with p ∤ m. Then p does not
ramify in the cyclotomic field Q(ζm). The automorphism of Q(ζm) with ζm 7→ ζpm
is the Frobenius automorphism of p in Gal(Q(ζm) : Q), since∑

aiζ
i
m 7→

∑
aiζ

pi
m ≡

(∑
aiζ

i
m

)p
(mod pZ[ζm]).

In particular f
(L)
p is equal to the order of p in (Z/m)∗.

7.79 Quadratic Reciprocity Law. The splitting behavior of primes in a cyclotomic
field leads to another proof of the Quadratic Reciprocity Law. Let p be an odd
prime number. Put p∗ = (−1)p−1/2p. Then K = Q(

√
p∗) is the unique quadratic
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7.7 The Frobenius automorphism of a prime ideal

subfield of Q(ζp). Let q be a prime number ̸= p and let f be the order of q in F∗
p.

Let Z be the decomposition group of q in Q(ζp). Then(
q

p

)
= 1 ⇐⇒ q is a square modulo p ⇐⇒ f

∣∣∣ p− 1

2
⇐⇒ 2

∣∣∣ p− 1

f

⇐⇒ K ⊆ Q(ζp)
Z ⇐⇒ q splits completely in K.

For q ̸= 2 this is equivalent to

(
p∗

q

)
= 1. Hence, for odd q

(
p∗

q

)(
q

p

)
= 1 and so

(
p

q

)(
q

p

)
=

(
−1
q

) p−1
2

= (−1)
p−1
2 · q−1

2 .

For q = 2 we get:(
2

p

)
= 1 ⇐⇒ 2 splits completely in K ⇐⇒ p∗ ≡ 1 (mod 8)

⇐⇒ p ≡ 1, 7 (mod 8) ⇐⇒ p2 − 1

8
is even.

So

(
2

p

)
= (−1)

p2−1
8 .

Finally, for future reference we consider the behavior of Frobenius automorphisms
under a change of the base field. We do so only in the number field case.

7.80 Proposition. Let L : K be a Galois extension of number fields and K ′ : K a
number field extension. Let q be an over K unramified prime ideal of OL and q′

a prime ideal of OLK′ above q. Then q′ is unramified over K ′ and φK′(q′)|L =
φK(q)f , where f = fK(q′ ∩K ′).

Proof. By Galois theory restriction of automorphisms in Gal(LK ′ : K ′) to L
yields an isomorphism

Gal(LK ′ : K ′)
∼−→ Gal(L : L ∩K ′) ⊆ Gal(L : K).

By definition of inertia and decomposition groups this restricts to isomorphisms

ZK′(q′)
∼−→ ZL∩K′(q) ⊆ ZK(q) and TK′(q′)

∼−→ TL∩K′(q) ⊆ TK(q).

Since TK(q) is trivial, so is TK′(q′), that is q′ is unramified overK ′. Put p′ = q′∩K ′

and p = q′ ∩K(= q ∩K). The Frobenius automorphism of q′ over K ′ satisfies

φK′(q′)(α) ≡ αN(p′) (mod q′) for all α ∈ OLK′ .

In particular this holds for all α ∈ OL. The Frobenius automorphism of q over K
is characterized by

φK(q)(α) ≡ αN(p) (mod q) for all α ∈ OL.

The proposition follows from N(p′) = N(p)f .
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7 Extensions of Dedekind Domains

In particular for abelian extensions we have the following.

7.81 Corollary. Let K ′ : K be a number field extension, L : K an abelian extension
of number fields, p a prime ideal of OK which does not ramify in L and p′ a prime

ideal of OK′ above p. Then φ
(LK′)
p′ |L =

(
φ
(L)
p

)f
, where f = fK(p′).

7.8 Galois groups of polynomials and reduction
modulo a prime ideal

In chapter 5 it was shown that in every number field there is a prime ideal which
is ramified over Q, or in other words: there are no unramified extensions of Q. In
this section we show that for other base fields the situation can be quite differ-
ent: in Example 7.82 an unramified extension of a quadratic number field will be
constructed with Galois group A5, the symmetric group on 5 elements.

Let K be a number field and f ∈ OK [X] a monic polynomial of degree n without
multiple roots. Then disc(f) is a nonzero element of OK . Let L be the splitting
field of f over K, say f = (X − α1) · · · (X − αn) with α1, . . . , αn ∈ OL. Then
L = K(α1, . . . , αn) and L : K is a Galois extension of number fields. The Galois
group G = Gal(L : K) acts by restriction on the set A = {α1, . . . , αn} and since
an automorphism of L : K is determined by its action on A, this restriction is an
injective group homomorphism

κ : G→ S(A), σ 7→ σ|A,

where S(A) is the full permutation group of A. The subgroup κ(G) of S(A) is by
definition the Galois group GalK(f) over K of the polynomial f .

Let p ∈ Max(OK) and assume that disc(f) /∈ p. Choose q ∈ Max(OL) above p.
For α ∈ OL its class in the residue field OL/q is denoted by α. In (OL/q)[X] we
have

f = (X − α1) · · · (X − αn),
and since disc(f) = disc(f) ̸= 0, the polynomial f has no multiple roots as well.
The subfield F = (OK/p)(α1, . . . , αn) of OL/q is a splitting field of f over OK/p.
The composition

ZK(q)→ G→ Gal(F : OK/p)
of surjective homomorphisms is injective: if σ ∈ ZK(q) induces the identity on A =
{α1, . . . , αn}, then also on A. Therefore, both homomorphisms are isomorphisms
and this implies that q is unramified over K (and since L : K is a Galois extension,
p doesn’t ramify in L) and that OL/q is a splitting field of f over OK/p.

The group G is generated by the automorphism x 7→ xN(p). It induces a per-
mutation of A and the Frobenius automorphism of q over K induces the ‘same’
permutation of A: if αi

N(p) = αj , then φK(q) : αi 7→ αj .
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7.82 Example. Let f = X5−X+1 and let F be a splitting field of f over F5. Then
F : F5 is a Galois extension and Gal(F : F5) is generated by the automorphism
x 7→ x5. A root x ∈ F of f is mapped to x5 = x − 1. So the automorphism is
of order 5. This means that f is irreducible over F5. From this it follows that
f is irreducible over Q. Let A = {α1, . . . , α5} be the set of roots in C and put
K = Q(α), where α = α1. Let L : Q be the normal closure of K : Q, that is L is
the splitting field of f over K. The group Gal(L : Q) is isomorphic to GalQ(f), a
subgroup of S(A). Since [L : Q] is a multiple of [K : Q] = 5, the group GalQ(f)
contains an element of order 5, which must be a 5-cycle of the set A. For instance,
the Frobenius automorphism of a q ∈ Max(OL) above 5 induces such a 5-cycle.

We have

disc(f) = NKQ (5α4 − 1) = −NKQ (5α5 − α) = −NKQ (4α− 5) = −45NKQ (α− 5
4 )

= 45 · (( 54 )
5 − 5

4 + 1) = 55 − 44 = 2869 = 19 · 151.

Since disc(f) is squarefree, it follows that OK = Z[α]. Only the primes 19 and 151
ramify in K. The factorization of f ∈ F2[X] is

f = (X2 +X + 1)(X3 +X2 + 1).

So GalQ(f) contains a permutation which is the disjoint product of a 2-cycle and
a 3-cycle. The third power of this permutation is a 2-cycle (a transposition).
Because the subgroup Gal(f) of S(A) contains a 5-cycle and a 2-cycle, we have
Gal(f) = S(A) ∼= S5, in particular [L : Q] = 5 ! = 120. The group S5 has a
unique subgroup of index 2, the group A5 of even permutations. So L has a unique
quadratic subfield, and since

√
disc(f) ∈ L, it is the field K ′ = Q(

√
19 · 151). The

extension L : K ′ is a Galois extension of number fields and its Galois group is
isomorphic to A5. We show that it is an unramified extension. Since only the
primes 19 and 151 ramify in K, these are also the only primes which ramify in the
normal closure L. It follows that prime ideals of OK′ different from (19,

√
19 · 151)

and (151,
√
19 · 151) do not ramify in L. We have to show that e

(L)
19 = e

(L)
151 = 2.

Since OK = Z[α], the factorization of 19 and 151 in OK can be computed by
factorizing f modulo 19 and 151 respectively. The factorization as product of
maximal ideals is as follows:

(19) = (19, α− 6)2(19, α3 − 7α2 − 6α+ 9)

(151) = (151, α− 39)2(151, α− 9)(151, α2 − 64α+ 61).

The prime ideals p = (19, α − 6) and q = (151, α − 39) have ramification index 2
over Q. We will show that they do not ramify in L. The field L is a splitting field of
f over K and also a splitting field of f2 = f

X−α ∈ OK [X] over K. This polynomial

has no multiple roots. The discriminant of f2 is the product of all (αi − αj)2 with
i, j ∈ {2, 3, 4, 5}, i > j. It follows that

disc(f2) =
disc(f)∏5

i=2(αi − α1)2
=

19 · 151
f ′(α)2

=
19 · 151
4α− 5

∈ Z[α].
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7 Extensions of Dedekind Domains

Since NKQ (4α− 5) = 19 · 151, the ideal (4α− 5) of OK = Z[α] is the product of an
ideal of norm 19 and an ideal of norm 151. We have

4α− 5 ≡ 4 · 6− 5 ≡ 19 ≡ 0 (mod p),

4α− 5 ≡ 4 · 39− 5 ≡ 151 ≡ 0 (mod q).

Hence (4α − 5) = pq. It follows that disc(f2) /∈ p, q. So p and q do not ramify in
K(α2); therefore, they do not ramify in the splitting field L of f2 over K.

Exercises

1. Let R be a Dedekind domain, K its field of fractions, L : K a Galois extension, S
the integral closure of R in L, q ∈ Max(S) above p ∈ Max(R).

(i) Let α ∈ S. Show that the characteristic polynomial of α over K is a monic
polynomial over R which splits over L.

(ii) Prove that S/q : R/p is a normal extension.

2. Let R be a Dedekind domain, K its field of fractions, L : K a Galois extension, S
the integral closure of R in L, q ∈ Max(S) and p ∈ Max(R). Show that

q ∩K = p ⇐⇒ q ∩R = p ⇐⇒ q | pS.

3. Prove Proposition 7.3.

4. Let L : K be an extension of number fields and let a and b be nonzero ideals of OK

such that aOL | bOL. Show that a | b.

5. (i) Give an example of a biquadratic number field in which 2 splits completely
and also one in which 3 splits completely.

(ii) Let K be a biquadratic field in which 2 or 3 splits completely. Show that
there is no α ∈ OK such that OK = Z[α].

6. Let R be a Dedekind domain, K its field of fractions, L : K a finite separable field
extension and S the integral closure of R in L.

(i) Let (α1, . . . , αn) be a K-basis of L with α1, . . . , αn ∈ S. Show that

vp(disc(α1, . . . , αn)) ≡ vp(dR(S)) (mod 2)

for all p ∈ Max(R).

(ii) Prove that the ideal class of dR(S) is a square in Cℓ(R).

7. (i) Show that the extension Q(
√
2,
√
5) : Q(

√
10) is unramified.

(ii) Prove that p ∈ Max(Z[
√
10]) splits completely in Q(

√
2,
√
5) if and only if p

is a principal ideal.
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Exercises

8. Let L be a biquadratic number field. Suppose that 2 ramifies in each of the quadratic
subfields. Show that 2 totally ramifies in L.

9. Let α ∈ R such that α3 = α+ 1. Show that the extension Q(α,
√
−23) : Q(

√
−23)

is unramified.

10. Let L : K be a Galois extension of number fields. Assume there is a p ∈ Max(OK)
which remains prime in L. Show that the group Gal(L : K) is cyclic.

11. Let L : K be a Galois extension of number fields with Galois group G. Suppose
p ∈ Max(OK) ramifies in L, but does not ramify in intermediate fields ̸= L.

(i) Prove that there is a unique smallest nontrivial subgroup H of G.

(ii) Show that #(G) is a prime power.

(iii) Prove that H is a normal subgroup of G.

(iv) Show that #(H) is a prime number and that H is a central subgroup of G.

12. Let L : K be a Galois extension of number fields with Galois group G. Suppose
p ∈ Max(OK) does not split completely in L, but does so in every intermediate
field ̸= L. Prove the same (i), (ii), (iii) and (iv) as in the previous exercise.

13. Let L : K be a Galois extension of number fields with Galois group G. Suppose
p ∈ Max(OK) does not remain prime in L, but does so in every intermediate field
̸= L. Prove that G is cyclic of prime power order.

14. Give a detailed proof of Corollary 7.49.

15. Let K be a quadratic number field. Show that odd prime divisors of disc(K) ramify
tamely in K and that 2 ramifies wildly if and only if 2 | disc(K).

16. An elementary proof of a weaker version of Theorem 8.37 of the next chapter.

(i) Let f = a0X
m + · · ·+ a1X + am ∈ Z[X] be of degree m ≥ 1. Show that there

are infinitely many primes p such that f ∈ Fp[X] has a root in Fp. (Consider
f(n!) in case am = 1. For the general case look at f(amX)/am.)

(ii) Let K be a number field. Prove that there are infinitely many p ∈ Max(OK)
such that fQ(p) = 1.

(iii) Let L : K be an extension of number fields. Prove that there are infinitely
many p ∈ Max(OK) which split completely in L.

17. Let R be a Dedekind domain with finite residue fields, K its field of fractions,
L : K a Galois extension of degree n and S the integral closure of R in L. Suppose
p ∈ Max(R) totally tamely ramifies in L: pS = qn with q ∈ Max(S).

(i) Show that R/p∗ contains a primitive n-th root of unity and that the group
Gal(L : K) is cyclic.

Assume that also K contains a primitive n-th root of unity. Then by some Galois
theory one shows that there exists a β ∈ L such that L = K(β) and βn ∈ K. See
also Proposition 15.9 in the section on Kummer extensions.

(ii) Put vq(β) = k and write β = πkγ, where vq(π) = 1. Prove that k ≡ 1 (modn).
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7 Extensions of Dedekind Domains

(iii) Show that there is a β ∈ L such that L = K(β), βn ∈ K and vq(β) = 1.

18. Let L : K be a Galois extension of number fields and p a maximal ideal of OK

which totally ramifies in L. Let q be the prime ideal of OL above p and π ∈ OL

such that vq(π) = 1. Show that vp(N
L
K(π)) = 1.

19. Let p be an odd prime and K the unique subfield of degree p of Q(ζp2). Compute
disc(K).

20. Let K be a quadratic number field in which the prime number 2 ramifies. Put
K = Q(

√
m) with m ∈ Z squarefree. Then m ≡ 3 (mod 4) or m ≡ 2 (mod 4). Let

q ∈ Max(OK) be above 2. There is a unique t ∈ N such that Vt(q) \ Vt+1(q) is
nonempty. Compute t for both cases.

21. Let K = Q(
√
−2,
√
3). The prime 2 totally ramifies in K, see Example 5.23. Let p

be the prime ideal of OK above 2. Compute VQ,i(p) for all i ∈ N.

22. Let K = Q( 3
√
2, ζ3). The prime 3 totally ramifies in K, see Example 7.17. Let p be

the prime ideal of OK above 3. Compute VQ,i(p) for all i ∈ N.

23. In Example 7.64 the ramification groups of an odd prime p in Q(ζpr ) have been
computed. Compute the ramification groups of 2 in Q(ζ2r )
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8 Analytic Methods

The splitting behavior of primes in a number field K determines a complex analytic
function, the Dedekind zeta function ζK(s). It is defined by an infinite series (a
Dirichlet series) determined by the sequence (jK(n))n≥1, where jK(n) denotes the
number of ideals of OK of norm n. For the convergence properties we will need the
asymptotic behavior of sequences like these and this is studied in section 8.2. It is
based on estimates in section 8.1 for the number of lattice points inside a bounded
domain in a real vector space. It is remarkable that deep properties of a number
field are hidden in its Dedekind zeta function and, therefore, are determined by
the splitting behavior of primes in the number field alone. Dirichlet series are
considered in general in section 8.3. An important example is the Riemann zeta
function, the Dedekind zeta function of the number field Q. In section 8.5 the
notion of Dirichlet density is introduced. It is a measure for collections of prime
ideals in a number field. A positive density implies that the collection contains
infinitely many of them.

8.1 Counting lattice points in a bounded domain

Let D be a bounded measurable domain in the standard Euclidean space Rn and
let the boundary ∂D be not too wild: lets assume that it is covered by the images
of a finite number of Lipschitz maps f1, . . . , fk : [0, 1]

n−1 → Rn.

A map f : [0, 1]n−1 → Rn is a Lipschitz map if there is an upper bound for the
quotients ||f(x) − f(y)||/||x − y||. The condition on the boundary prevents it to
have a complicated fractal structure, i.e. to have a fractal dimension > n− 1.

Let, furthermore, Λ be a lattice in Rn. Since D is bounded, by Proposition 5.3 the
set D ∩ Λ is finite. Our aim is to estimate the number of elements of D ∩ Λ, more
precisely to give an estimate of #(aD ∩ Λ) as a function of a ∈ [1,∞). Note that
#(aD ∩ Λ) = #(D ∩ 1

aΛ). Since D is measurable, it will follow that

lim
a→∞

δ( 1aΛ) ·#(D ∩ 1
aΛ) = vol(D).

So an estimate for the number #(aD∩Λ) is vol(D)
δ(Λ) a

n. We will see that the condition

on the boundary of D implies the following for the error term.
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8.1 Proposition. Let D, a and Λ be as above. Then for #(aD ∩ Λ) as a function
of a we have

#(aD ∩ Λ)− vol(D)

δ(Λ)
an = O(an−1).

Proof. Let F be the mesh of Λ determined by a Z-basis (v1, . . . , vn) of Λ and
let v be the center of F : v = 1

n (v1 + · · ·+ vn). The Euclidean space is covered by

the translates of F centered at lattice points:

Rn =
⋃
x∈Λ

(x− v + F ).

For a ∈ [1,∞) put

S−(a) = {x ∈ Λ | x− v + F ⊆ aD }, N−(a) = #(S−(a)),

S+(a) = {x ∈ Λ | (x− v + F ) ∩ aD ̸= ∅ }, N+(a) = #(S+(a)),

S(a) = Λ ∩ aD, N(a) = #(S(a)).

Then
S−(a) ⊆ S(a) ⊆ S+(a).

and so N−(a) ≤ N(a) ≤ N+(a). We have

N−(a)δ(Λ) ≤ N(a)δ(Λ) ≤ N+(a)δ(Λ) and N−(a)δ(Λ) ≤ vol(aD) ≤ N+(a)δ(Λ).

Therefore,
|N(a)δ(Λ)− vol(aD)| ≤ (N+(a)−N−(a))δ(Λ).

For x ∈ Λ we have

x ∈ S+(a) \ S−(a) ⇐⇒ (x− v + F ) ∩ ∂(aD) ̸= ∅.

This and the condition for ∂D will be used for estimating (N+(a)−N−(a))δ(Λ).
Let ∂D be covered by Lipschitz maps f1, . . . , fk : [0, 1]

n−1 → Rn. Take λ > 0
such that ||fi(x) − fi(y)|| ≤ λ||x − y|| for i = 1, . . . , k and for all x, y ∈ [0, 1]n−1.
Divide [0, 1] into ⌊a⌋ segments of equal length 1/⌊a⌋. The n-cube [0, 1] is sub-
divided into ⌊a⌋n−1 cubes with edges of length 1/⌊a⌋. The boundary ∂(aD) is
covered by the images of the maps af1, . . . , afk. Let c be any of these cubes. Put
d = diam([0, 1]n−1) =

√
n− 1. Then diam(c) = d/⌊a⌋ and so diam(afi(c)) ≤

aλd/⌊a⌋ ≤ 2λd for i = 1, . . . , k. It follows that afi(c) is contained in an n-ball
with radius λd. Let r be the radius of an n-ball with center v and contained in
F . Comparison of volumes yields that the number of disjoint n-balls with radius
r contained in an n-ball with radius λd is less than (λd/r)n. It follows that the
number of x ∈ Λ with afi(c) ∩ (x− v + F ) ̸= ∅ is less than (λd/r)n. The number
of small cubes is k(⌊a⌋)n−1, so

N+(a)−N−(a) ≤ k(⌊a⌋)n−1 ·
(λd
r

)n
≤ k

(λd
r

)n
· an−1.
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8.2 The distribution of ideals over the ideal classes

Hence N(a)δ(Λ)− vol(aD) = O(an−1), i.e.

#(aD ∩ Λ)− vol(D)

δ(Λ)
an = O(an−1).

8.2 The distribution of ideals over the ideal classes

Given an ideal class of a number field K and an N ∈ N∗, in this section we estimate
the number of ideals of OK of norm ≤ N in the given ideal class.

8.2 Notations. Let K be a number field of degree d. It determines an arithmetic
function

jK : N∗ → N ⊆ C, n 7→ #{ a | a is an ideal of OK with N(a) = n }

and a corresponding sequence of partial sums (JK(N))N≥1:

JK(N) =

N∑
n=1

jK(n) = #{ a ∈ I+(K) | 1 ≤ N(a) ≤ N }.

This counting of ideals will be done for ideal classes separately. For that purpose
we introduce the following notations, where C is an ideal class of K:

jC(n) = #{ a ∈ C | N(a) = n } and JC(N) =

N∑
n=1

jC(n).

Clearly

jK(n) =
∑
C

jC(n) and JK(N) =
∑
C

JC(N).

We will see that JC(N) tends for N → ∞ asymptotically to a constant times N ,
the constant being equal for all ideal classes, see Theorem 8.3. Moreover, the error
term will be of order N1− 1

d . For JK(N) it follows that asymptotically it tends
with an error term of the same order to a constant times N as well, the constant
being the constant for JC(N) multiplied by the class number.

Fix b ∈ C−1. Then we have a correspondence{
ideals a in C
with N(a) ≤ N

}
−→
←−

{
principal ideals (α) ⊆ b

with |NKQ (α)| ≤ N ·N(b) and α ̸= 0

}
a 7−→ ab

αb−1 7−→ (α)
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8 Analytic Methods

So instead of counting ideals we can count principal ideals:

JC(N) = #{ a | a a nonzero principal ideal, a ⊆ b, N(a) ≤ N ·N(b) }.

Generators of principal ideals are determined up to a unit factor. The idea is
to have a domain in Rr × Cs, the R-vector space in which OK is embedded as
a lattice, containing exactly one generator for each nonzero principal ideal. The
group O∗

K embeds as a subgroup of (Rr × Cs)∗ = (R∗)r × (C∗)s and acts on it by
multiplication. In principle we want a fundamental domain for this action. It is,
however, easier to use the subgroup of O∗

K generated by a fundamental system of
units. It is a free abelian group of rank r+ s− 1, mapped under ψ isomorphically
to the lattice ψ(O∗

K) in the subspace H of Rr+s. A fundamental domain of its
action on R∗r × C∗s contains exactly w(K) := #(µ(K)) elements of ι(O∗

K).

Choose a fundamental system (ε1, . . . , εr+s−1) of units and let F be the fun-
damental parallelotope spanned by ψ(ε1), . . . , ψ(εr+s−1). Put vk = ψ(εk) for
k = 1, . . . , r + s− 1, then

F =
{r+s−1∑

k=1

tkvk

∣∣∣ 0 ≤ tk < 1
}
.

Let v = (

r︷ ︸︸ ︷
1, . . . , 1,

s︷ ︸︸ ︷
2, . . . , 2) ∈ Rr+s. Then v /∈ H and

D = L−1(F + Rv) ⊆ R∗r × C∗s

is a fundamental domain for the action of ⟨ε1, . . . , εr+s−1⟩ on R∗r × C∗s. For
positive reals a put Da = {x ∈ D | |N(x)| ≤ a }. The advantage of the particular
choice of v is the homogeneity of Da in the sense that

Da = d
√
a ·D1,

which implies that vol(Da) = a · vol(D1). The counting of ideals of norm ≤ N in
a given ideal class comes down to counting lattice points in a bounded domain:

w(K) · JC(N) = #(Λb ∩DN ·N(b)).

We will apply Proposition 8.1. A parameterization of D′ := D1 ∩ ((0,∞)r ∩ Cs)
will be given. It will show that ∂D′, and by symmetry also ∂D1, is Lipschitz
parameterizable. The parameterization will be used for a calculation of vol(D′).
Then again by symmetry vol(D1) = 2r vol(D′). Thus we have

w(K) · JC(N) =
vol(D1)N(b)

δ(Λb)
N +O(N1− 1

d )
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xy = 1

xy = −1xy = 1

xy = −1

x = yx = −y

x = ε2yx = −ε2y D′

Figure 8.1: D1 and D′ for real quadratic number fields

and by Corollary 5.8

JC(N) =
2r+s vol(D′)

w d
√
|disc(K)|

+O(N1− 1
d ). (8.1)

The vk are vectors in Rr+s. We will use the notation

vk = (v
(1)
k , . . . , v

(r+s)
k ).

Then (x1, . . . , z1, . . . ) ∈ D′ if and only if there are t1, . . . , tr+s ∈ [0, 1) and u ∈
(−∞, 0] such that

log x1 =
(r+s∑
k=1

tkv
(1)
k

)
+ u

...

log xr =
(r+s∑
k=1

tkv
(r)
k

)
+ u

2 log z1 =
(r+s∑
k=1

tkv
(r+1)
k

)
+ 2u

...

2 log zs =
(r+s∑
k=1

tkv
(r+s)
k

)
+ 2u.
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8 Analytic Methods

Now put zj = ρje
iϑj and tr+s = eu. Then for

(x1, . . . , xr, ρ1e
iϑ1 , . . . , ρse

iϑs) ∈ D′

we have

xj = tr+se
∑
tkv

(j)
k (for 1 ≤ j ≤ r),

ρj = tr+se
1
2

∑
tkv

(j)
k (for r + 1 ≤ j ≤ r + s),

ϑj = 2πtr+j (for r + 1 ≤ j ≤ r + s).

Thus we have a parameterization of the interior of D′ and for the computation of
vol(D′) it can best be seen as the composition:

(0, 1)d
A1−→ Rr+s × Rs A2−→ Rr+s × Rs A3−→ Rr × (0,∞)s × Rs A4−→ Rr × Cs.

These maps are defined as follows:

A1(t1, . . . , td) = (t1, . . . , tr+s−1, log(tr+s), tr+s+1, . . . , tr+2s),

A2(u1, u2) = (u1M,u2),where M is the (r + s)× (r + s)-matrix


v1
...

vr+s−1

v

 ,

A3(a1, . . . , ar, b1, . . . , bs; c1, . . . , cs) = (ea1 , . . . , ear ; eb1/2, . . . , ebs/2; 2πc1, . . . , 2πcs),

A4(x1, . . . , xr; ρ1, . . . , ρs;ϑ1, . . . , ϑs) = (x1, . . . , xr, ρ1e
iϑ1 , . . . , ρse

iϑs).

The volume of D′ can be computed by standard calculus techniques. In the com-
putation occurs a Jacobian determinant

J(t1, . . . , td) =
πsx1 · · ·xrρ1 · · · ρs

tr+s
det(M).

Also note that log x1 + · · ·+ 2 log ρ1 + · · · = ru+ 2su = d · u and so x1 · · · ρ21 · · · =
ed·u = (eu)d = tdr+s. Furthermore, for the matrix M we have by the formula on
page 128: |det(M)| = d · Reg(K).

vol(D′) =

∫
D′
ρ1 · · · ρs dx1 · · · dxrdρ1 · · · dρsdϑ1 . . . dϑs)

=

∫
[0,1]d

ρ1 . . . ρs|J(t1, . . . , td)|dt1 · · · dtd

= πs|det(M)|
∫
[0,1]d

x1 · · ·xrρ21 · · · ρ2s
tr+s

dt1 · · · dtd

= πs|det(M)|
∫
[0,1]d

td−1
r+s dt1 · · · dtd = 1

dπ
s|det(M)| = πsReg(K).
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8.3 Dirichlet series

8.3 Theorem. Let K be a number field of degree d. Then for every ideal class C
of K we have

JC(N) =
2r(2π)sReg(K)

w(K)
√
|disc(K)|

·N +O(N1− 1
d )

and hence

JK(N) =
2r(2π)sh(K)Reg(K)

w(K)
√
|disc(K)|

·N +O(N1− 1
d ),

where h(K) = #(Cℓ(K)), the class number of K.

Proof. The parameterization of D′ satisfies a Lipschitz condition because the
partial derivatives are bounded. Restriction to the 2d faces of the d-cube is a
Lipschitz parameterization of ∂D′. So the formula for JC(N) follows from the
above computation of vol(D′) and formula (8.1).

In particular the number of ideals of a given norm N tends asymptotically to a
constant times N for N →∞:

JK(N) ∼ 2r(2π)sh(K)Reg(K)

w(K)
√
| disc(K)|

·N for N →∞.

8.4 Examples.

1. For K imaginary quadratic, say K = Q(
√
m) with m < −3 and squarefree,

we have

JK(N) =
πh(K)√
−Dm

·N +O(
√
N).

2. For K real quadratic, K = Q(
√
m) with m > 1 and squarefree

JK(N) =
2h(K) log ε√

Dm

·N +O(
√
N),

where ε is the fundamental unit of K.

8.3 Dirichlet series

Power series can be seen as generating functions of sequences of numbers. Another
type of generating function is the Dirichlet series. This type of function is espe-
cially useful in case we are dealing with a multiplicative arithmetic function, see
Definition 8.15.
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δ

δ

0

Figure 8.2: Domain used in the proof of Proposition 8.8

8.5 Definition. A series of type
∞∑
n=1

an
ns

with an ∈ C and s ∈ C is called a Dirichlet series. The terms an
ns (= ane

−s logn) of
such a series are functions in the complex variable s.

8.6 Notation. When dealing with Dirichlet series one traditionally denotes the
complex variable by s instead of z. One also writes s = σ + it with σ, t ∈ R: the
real and imaginary part are denoted by σ and t respectively.

8.7 Example. An important example of a Dirichlet series is
∑∞
n=1

1
ns (= ζ(s)),

the Riemann zeta function. Since | 1ns | = 1
nσ , it converges on the half-plane σ > 1,

and—as we will see—to an analytic function on this half-plane.

8.8 Proposition. Let the Dirichlet series
∑ an

ns converge for s = s0. Then it con-
verges on the half-plane ℜ(s) > ℜ(s0) to an analytic function.

Proof. Under translation a Dirichlet series transforms into a Dirichlet series:
replacement of s by s + s0 in a term an

ns gives ann
−s0

ns . So we may assume that
s0 = 0, meaning that

∑
an converges. Then to prove the convergence for all s

with σ > 0. We will prove that
∑ an

ns converges uniformly on the domain

{ s | | arg(s)| ≤ π
2 − δ }

for arbitrary small δ, see Figure 8.2. Then it follows that the sum is an analytic
function on this domain and, since δ was arbitrary, it is so on the half-plane σ > 0.
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8.3 Dirichlet series

Put

AN =

N∑
n=1

an and AM,N =

N∑
n=M

an (= 0 if M > N).

Let ε > 0. Choose N0 such that |AM,N | ≤ ε for all N ≥ M ≥ N0. Such an N0

exists because the series
∑∞
n=1 an converges. For N ≥M ≥ N0 we then have

N∑
n=M

an
ns

=

N∑
n=M

AM,n −AM,n−1

ns
=

N∑
n=M

AM,n

ns
−

N−1∑
n=M−1

AM,n

(n+ 1)s

=
AM,N

Ns
+

N−1∑
n=M

AM,n

(
1

ns
− 1

(n+ 1)s

)
.

From ∫ n+1

n

sdx

xs+1
=

[
−1
xs

]n+1

n

=
1

ns
− 1

(n+ 1)s

follows:∣∣∣∣ 1ns − 1

(n+ 1)s

∣∣∣∣ ≤ ∫ n+1

n

|s|dx
xσ+1

=
|s|
σ

∫ n+1

n

σ dx

xσ+1
=
|s|
σ

(
1

nσ
− 1

(n+ 1)σ

)
.

If | arg s| ≤ π
2 − δ, then

|s|
σ ≤ C for some constant C. So:∣∣∣∣∣

N∑
n=M

an
ns

∣∣∣∣∣ ≤ |AM,N |
|Ns|

+

N−1∑
n=M

|AM,n|
∣∣∣∣ 1ns − 1

(n+ 1)s

∣∣∣∣
≤ ε

Nσ
+ εC

N−1∑
n=M

(
1

nσ
− 1

(n+ 1)σ

)
=

ε

Nσ
+ εC

(
1

Mσ
− 1

Nσ

)
<

ε

Nσ
+ εC

1

Mσ
≤ ε(C + 1).

8.9 Corollary. There is a unique σ0 ∈ R∪{−∞,∞} such that
∑ an

ns converges for
all s with ℜ(s) > σ0 and diverges for all s with ℜ(s) < σ0.

8.10 Definition. The unique σ0 in Corollary 8.9 is called the abscissa of conver-
gence of the Dirichlet series

∑ an
ns .

8.11 Example. The series ζ(s) =
∑

1
ns diverges for s = 1, so σ0 ≥ 1. It converges

for all real s with s > 1. So the abscissa of convergence is 1.

8.12 Theorem. Let α ∈ R with α ≥ 0 such that
∑N
n=1 an = O(Nα). Then the

abscissa of convergence σ0 of the Dirichlet series
∑ an

ns satisfies σ0 ≤ α.
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Proof. It suffices to show convergence for σ ∈ R with σ > α. Put AN =∑N
n=1 an. Then |AN | ≤ BNα for some B > 0. For partial sums of the Dirichlet

series we have

N∑
n=1

an
nσ

=

(
N−1∑
n=1

An

(
1

nσ
− 1

(n+ 1)σ

))
+
AN
Nσ

.

Since σ > 0 we have∣∣∣∣An( 1

nσ
− 1

(n+ 1)σ

)∣∣∣∣ = |An|( 1

nσ
− 1

(n+ 1)σ

)
≤ Bnασ

∫ n+1

n

dx

xσ+1

≤ Bσ 1

nσ+1−α .

Convergence now follows from σ > α :∣∣∣ N∑
n=1

an
nσ

∣∣∣ ≤ BNα−σ +Bσ

N∑
n=1

nα−σ−1.

8.13 Theorem. limσ↓1(σ − 1)ζ(σ) = 1.

Proof. The function fσ : x 7→ 1
xσ is monotone decreasing on the interval (0,∞).

So, see Figure 8.3:
∞∑
n=2

1

nσ
<

∫ ∞

1

dx

xσ
<

∞∑
n=1

1

nσ
.

It follows that ζ(σ) − 1 < 1
σ−1 < ζ(σ), and so 1 < (σ − 1)ζ(σ) < σ. Therefore,

limσ↓1 (σ − 1)ζ(σ) = 1.

The Riemann zeta function has a continuation to a meromorphic function on C,
also denoted by ζ(s). Here we confine to a simple proof that shows it has a
continuation to the half-plane ℜ(s) > 0. This suffices for our purposes: we will
focus on its behavior near s = 1.

8.14 Theorem. The Riemann zeta function has a continuation to a meromorphic
function on ℜ(s) > 0 which is analytic for all s ̸= 1 and has a simple pole in s = 1.
Its residue in s = 1 equals 1.

Proof. The series ζ2(s) = 1− 1
2s +

1
3s −

1
4s + · · · converges for all s with ℜ(s) > 0,

because
∑N
n=1 an = O(1). There is absolute convergence in the half-plane ℜ(s) > 1.

In this domain we have

ζ2(s) = ζ(s)− 2

(
1

2s
+

1

4s
+ . . .

)
= ζ(s)− 1

2s−1
ζ(s).

So

ζ(s) =
ζ2(s)

1− 1
2s−1

.
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x

fσ(x) =
1
xσ

0 1 2 3

1

2

Figure 8.3: Proof of Theorem 8.13

The function 1 − 1
2s−1 is analytic on C and ζ2(s) is analytic on the half-plane

σ > 0. Thus we have continued ζ(s) to a meromorphic function on this half-plane.
By Theorem 8.13 it is clear that it has a pole of first order in s = 1 with residue
1. We will show that there are no other poles. Poles can only occur in the zeros
of 1 − 1

2s−1 , so if 2s−1 = 1, that is s − 1 = 2kπi
log 2 with k ∈ Z. If we also consider

ζ3(s) = (1 + 1
2s −

2
3s ) + ( 1

4s + 1
5s −

2
6s ) + · · · , then we get

ζ(s) =
ζ3(s)

1− 1
3s−1

.

This is another description of the (unique) continuation of ζ(s) to a meromorphic
function on the half-plane σ > 0. We have 1− 1

3s−1 = 0 for s−1 = 2lπi
log 3 with l ∈ Z.

If s with ℜ(s) > 0 is a pole, then s− 1 = 2kπi
log 2 = 2lπi

log 3 , that is 3
k = 2l. Then k = 0

and so s = 1. So the meromorphic function ζ(s) on the half-plane σ > 0 is analytic
for all s ̸= 1.

As remarked above ζ(s) has a continuation even to a meromorphic function on
C, analytic for all s ̸= 1. The construction uses the gamma function Γ (s), a
meromorphic function on the complex plane extending the function (n− 1)! on N∗;
for ℜ(s) > 0 it is defined by

Γ (s) =

∫ ∞

0

e−yys
dy

y
.

The gamma function has no zeros and the only poles are simple poles at s = −n
with n ∈ N. The residue at s = −n is − 1

n!
. The function

Z(s) = π− s
2 Γ ( s

2
)ζ(s) (8.2)
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is called the completed zeta function. It is a meromorphic function satisfying the
functional equation Z(s) = Z(1 − s) and its only poles are simple poles at s = 0
and s = 1. The residues at these poles are −1 and 1 respectively. The Riemann
zeta function has ‘trivial’ zeros in −2,−4,−6, · · · . The famous Riemann Conjecture
states that all other zeros are located on the line σ = 1

2
. See section VII.1 of [31]

for details.

8.15 Definition. A sequence a : N∗ → C is also called an arithmetic function. Such
a function is called multiplicative if a(mn) = a(m)a(n) for all m,n ∈ N∗ with
gcd(m,n) = 1. If a(mn) = a(m)a(n) holds for all m,n ∈ N∗ it is said to be
completely multiplicative.

For a multiplicative arithmetic function its Dirichlet series is an infinite product,
known as the Euler product of the Dirichlet series:

8.16 Theorem (Euler product). Let a : N∗ → C be multiplicative and let the

Dirichlet series
∑ a(n)

ns be absolute convergent for an s ∈ C. Then for this s the
series is representable by an infinite product:

∞∑
n=1

a(n)

ns
=
∏
p

∞∑
k=0

a(pk)

pks
.

(The product is over all prime numbers p.)

Proof. Note that for each prime p the series
∑∞
k=0

a(pk)
pks converges absolutely:

∞∑
k=0

∣∣∣a(pk)
pks

∣∣∣ ≤ ∞∑
n=1

∣∣∣a(n)
ns

∣∣∣ <∞.
The first term (for k = 0) of the series

∑∞
k=0

a(pk)
pks is 1. The infinite product

converges absolutely. This follows from

∑
p

∣∣∣ ∞∑
k=1

a(pk)

pks

∣∣∣ ≤∑
p

∞∑
k=1

∣∣∣a(pk)
pks

∣∣∣ ≤ ∞∑
n=1

∣∣∣a(n)
ns

∣∣∣ <∞.
An infinite product

∏∞
n=1 bn is said to converge if the sequence

∏n
k=1 bk of partial

products converges to a number ̸= 0. If the partial products converge to 0 the
infinite product is said to diverge to 0.

An infinite product
∏∞

n=1(1 + an) with 1 + an ̸= 0 for all n is said to be absolute
convergent if

∏∞
n=1(1 + |an|) converges and this is equivalent to

∑∞
n=1 |an| being

convergent. Absolute convergence implies convergence.

Let R be the set of all maps

m : {prime numbers} → N, p 7→ mp
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with mp ̸= 0 for only finitely many primes p. By unique factorization the map
n 7→ (p 7→ vp(n)) is bijection from N∗ to R. In the domain of absolute convergence

of the Dirichlet series
∑ a(n)

ns we then have

∞∑
n=1

a(n)

ns
=
∑
m∈R

a(
∏
p p

mp)

(
∏
p p

mp)s
=
∑
m∈R

∏
p a(p

mp)∏
p p

mps
=
∑
m∈R

∏
p

a(pmp)

pmps
.

Now let N ∈ N∗. Then for RN the set of all maps

m : {prime numbers ≤ N} → N, p 7→ mp

and AN = {n ∈ N∗ | vp(n) = 0 for all p > N } we have∑
n∈AN

a(n)

ns
=

∑
m∈RN

∏
p≤N

a(pmp)

pmps
=
∏
p≤N

∞∑
k=0

a(pk)

pks
.

From ∣∣∣ ∞∑
n=1

a(n)

ns
−
∑
n∈AN

a(n)

ns

∣∣∣ = ∣∣∣ ∑
n/∈AN

a(n)

ns

∣∣∣ ≤ ∑
n/∈AN

∣∣∣a(n)
ns

∣∣∣ ≤ ∑
n>N

∣∣∣a(n)
ns

∣∣∣
and the convergence of

∑∞
n=1 |

a(n)
ns | it then follows that

∏
p

∞∑
k=0

a(pk)

pks
= lim
N→∞

∏
p≤N

∞∑
k=0

a(pk)

pks
= lim
N→∞

∑
n∈AN

a(n)

ns
=

∞∑
n=1

a(n)

ns
.

8.17 Corollary. Let a be a completely multiplicative arithmetic function and s ∈ C
such that

∑ a(n)
ns converges absolutely. Then

∞∑
n=1

a(n)

ns
=
∏
p

1

1− a(p)
ps

.

Proof. For each p the series

∞∑
k=0

a(pk)

pks
=

∞∑
k=0

(a(p)
ps

)k
is a converging geometric series. Its sum is 1

1− a(p)
ps

.

8.18 Corollary. For the Riemann zeta function ζ(s) we have for σ > 1:

ζ(s) =
∏
p

1

1− 1
ps

.

In particular, ζ(s) does not vanish in the half-plane σ > 1.
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The factor π− s
2 Γ ( s

2
) in (8.2) can be seen as the ‘Euler factor’ at the prime ∞.

As we know since Euclid, there are infinitely many prime numbers. This is also
implied by this product representation of the Riemann zeta function: if there were
only finitely many, then ζ(s) would not have a pole at s = 1. This is of course
a far from elementary way of reasoning. However, it will be helpful when looking
at special collections of prime numbers or prime ideals. The first steps in this
direction will be made in section 8.5.

8.4 The Dedekind zeta function of a number field

With each number field we associate a Dirichlet series which contains a lot of
information on the number field.

Since in the context of Dirichlet series a complex variable is denoted
by s, the notations for the numbers of real and complex primes of a
number field K will be r(K) and s(K) instead of simply r and s.

8.19 Definition. Let K be a number field. The Dirichlet series of the arithmetic
function

jK : N∗ → N ⊆ C, n 7→ #{ a | a is an ideal of OK with N(a) = n },

considered in section 8.3, is called the Dedekind zeta function of K; notation:
ζK(s). So

ζK(s) =

∞∑
n=1

jK(n)

ns
.

Given an ideal class C of K we have the partial Dedekind zeta function of the ideal
class C

ζC(s) =

∞∑
n=1

jC(n)

ns
.

determined by the function jC which only counts ideals in the class C. Obviously,

ζK(s) =
∑

C∈Cℓ(K)

ζC(s).

The Dedekind zeta function generalizes the Riemann zeta function: ζ(s) = ζQ(s).

By Theorem 8.3
∑N
n=1 jC(n) = O(N), so by Theorem 8.12 the series converge

for σ > 1. Theorem 8.3 contains more detailed information on the asymptotic
behavior of JC(N) and JK(N). This leads to:
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8.20 Theorem. Let K be a number field of degree d with r real embeddings and s
pairs of complex embeddings. Then for each ideal class C the partial zeta function
ζC(s) has a continuation to a meromorphic function on the half-plane ℜ(s) > 1− 1

d
with one simple pole in s = 1 and so has the Dedekind zeta function ζK(s). The
residue of ζC(s) at s = 1 equals

2r(K)(2π)s(K) Reg(K)

w(K)
√
|disc(K)|

and the residue of ζK(s) at s = 1 equals

2r(K)(2π)s(K)h(K)Reg(K)

w(K)
√
|disc(K)|

.

Proof. Put κ =
2r(K)(2π)s(K) Reg(K)

w(K)
√
|disc(K)|

and consider the Dirichlet series

∞∑
n=1

jC(n)− κ
ns

.

By Theorem 8.3 we have

N∑
n=1

(jC(n)− κ) = JC(N)− κN = O(N1− 1
d ).

So by Theorem 8.12 the Dirichlet series converges to an analytic function on ℜ(s) >
1− 1

d . On the other hand we have

ζC(s) =

∞∑
n=1

jC(n)

ns
=

∞∑
n=1

jC(n)− κ
ns

+

∞∑
n=1

κ

ns
=
( ∞∑
n=1

jC(n)− κ
ns

)
+ κ · ζ(s).

The theorem now follows from Theorem 8.14.

The real number

g(K) = log
w(K)

√
|disc(K)|

2r(K)(2π)s(K)

is, motivated by an analogy with function fields, known as the genus of the number
field K. So, with this notation, the residue at s = 1 of the Dedekind zeta function
is

h(K)Reg(K)

eg(K)
.

As for the Riemann zeta function, there is a completed Dedekind zeta function

ZK(s) = Z∞(s)ζK(s)
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satisfying the functional equation ZK(s) = ZK(1−s). It is a meromorphic function
with only poles at s = 0 and s = 1. These are simple poles with residues

−2r(K)h(K)Reg(K)

w(K)
and

2r(K)h(K)Reg(K)

w(K)
.

The factor Z∞(s) depends on a higher-dimensional gamma function ΓK(s):

Z∞(s) = |disc(K)|
s
2 π−ns

2 ΓK( s
2
).

For details see the sections 4 and 5 of Chapter VII of [31].

8.21 Definition and notation. For σ > 1 the Dedekind zeta function converges
absolutely. It easily follows that for such σ there is no ambiguity in writing

ζK(s) =
∑

a∈I+(K)

1

N(a)s
.

More generally, for a given b : I+(K) → C we have an arithmetic function a given
by

a(n) =
∑

a∈I+(K)
N(a)=n

b(a)

and we define the Dirichlet series of the function b : I+(K)→ C by

∑
a∈I+(K)

b(a)

N(a)s
=

∞∑
n=1

a(n)

ns
.

If the Dirichlet series
∑
n
a(n)
ns is absolutely convergent, the Dirichlet series of b is

absolutely convergent with respect to any ordering of its terms. In this case it is
said to be absolutely convergent as well.

The next theorem is a straightforward generalization of Theorem 8.16. First we
generalize the definitions of multiplicative and completely multiplicative.

8.22 Definition. Let K be a number field. We call a function b : I+(K) → C
multiplicative if for all comaximal a1, a2 ∈ I+(K) we have b(a1a2) = b(a1)b(a2).
The function is called completely multiplicative if b(a1a2) = b(a1)b(a2) for all a, b ∈
I+(K).

8.23 Theorem. Let K be a number field, b : I+(K) → C multiplicative and s ∈ C
such that the series ∑

a∈I+(K)

b(a)

N(a)s
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converges absolutely. Then the series is representable by an infinite product:∑
a∈I+(K)

b(a)

N(a)s
=
∏
p

∞∑
k=0

b(pk)

N(p)ks
,

where the infinite product is over all p ∈ Max(OK).

Proof. As in the proof of Theorem 8.16 use unique factorization. In this situa-
tion the unique factorization of nonzero ideals as a product of prime ideals.

8.24 Corollary. Let K be a number field and let b : I+(K) → C be completely

multiplicative. If the series
∑

a
b(a)
N(a)s converges absolutely in s ∈ C, then for this s

we have ∑
a

b(a)

N(a)s
=
∏
p

1

1− b(p)
N(p)s

.

8.25 Corollary. For the Dedekind zeta function of a number field K we have

ζK(s) =
∏
p

1

1− 1
N(p)s

for ℜ(s) > 1.

The formula

Res
s=1

ζK(s) =
2r(K)(2π)s(K)h(K)Reg(K)

w(K)
√
|disc(K)|

is known as the class number formula. Especially in connection with Corollary 8.25
it gives information on the product h(K)Reg(K).

We have continued the Dedekind zeta function of a number field K to a meromor-
phic function on the half-plane ℜ(s) > 1 − 1

[K:Q] . For our purposes this suffices,

but more is possible: it has a continuation to a meromorphic function on the entire
complex plane. Also this continuation has just one pole, the simple pole at s = 1.

8.5 Dirichlet density

For P a collection of nonzero prime ideals of the ring of integers of a number field
K consider the series ∑

p∈P

1

N(p)s
.

It is the Dirichlet series of the function

I+(K)→ C, a 7→

{
1 if a is a maximal ideal,

0 otherwise.
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The series converges absolutely in the half-plane σ > 1:∑
p∈P

∣∣∣ 1

N(p)s

∣∣∣ = ∑
p∈P

1

N(p)σ
≤

∑
a∈I+(K)

1

N(a)σ
.

The Dirichlet density of the collection P is determined by its behavior near s = 1:

8.26 Definition. Let K be a number field and P a set of nonzero prime ideals of
OK . The set P is said to have Dirichlet density δ(P ) if

δ(P ) = lim
s↓1

∑
p∈P

1
N(p)s∑

p
1

N(p)s

,

provided that the limit exists.

Rules for a density are satisfied by the Dirichlet density:

8.27 Proposition. Let K be a number field and let P, P ′ ⊆ Max(OK) both have a
Dirichlet density. Then:

(i) δ(Max(OK)) = 1.

(ii) δ(P ) ∈ R and 0 ≤ δ(P ) ≤ 1.

(iii) If P ∩ P ′ = ∅, then δ(P ∪ P ′) = δ(P ) + δ(P ′).

(iv) If P ⊆ P ′, then δ(P ) ≤ δ(P ′).

Proof. (i) and (iii) are obvious and for (ii) restrict the domain to (1,∞). For
(iv) apply (iii) to P ′ \ P and P .

8.28 Notation. The notation f ∼ g is used to express that the difference f − g of
functions f, g defined on σ > 1 is bounded in a neighborhood of s = 1.

8.29 Definition. Let K be a number field. A function χ : I+(K)→ C is called an
ideal character of K if

1. χ(ab) = χ(a)χ(b) for all a, b ∈ I+(K),

2. |χ(a)| = 1 or χ(a) = 0 for all a ∈ I+(K).

So an ideal character of K is a completely multiplicative map χ : I+(K) → C in
the sense of Definition 8.22 which satisfies the second condition above. An ideal
character is determined by the values χ(p) for p ∈ Max(OK).

An ideal character χ determines a set P = { p ∈ Max(OK) | χ(p) = 0 } and induces
a group homomorphism

χ′ : IP (K)→ C∗,

where IP (K) = {a ∈ I(K) | vp(a) = 0 for all p ∈ P}. The homomorphism χ′ is a
character of the group IP (K) with values in the unit circle in C.
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8.30 Convention. The complex function log always stands for the principal branch
of the logarithm: for r, ϑ ∈ R, r > 0 and −π < ϑ ≤ π we have log(reiϑ) = log r+iϑ,
where the last log denotes the real natural logarithm.

8.31 Proposition. Let K be a number field and χ an ideal character of K. Then

the series
∑

a
χ(a)
N(a)s converges absolutely for ℜ(s) > 1 and in this half-plane the

series is representable by an infinite product∑
a

χ(a)

N(a)s
=
∏
p

1

1− χ(p)
N(p)s

.

Moreover,
∑

p
χ(p)
N(p)s converges absolutely on the half-plane ℜ(s) > 1 and

log
(∑

a

χ(a)

N(a)s

)
∼
∑
p

χ(p)

N(p)s
.

Proof.
∑

a

∣∣ χ(a)
N(a)s

∣∣ and∑p

∣∣ χ(p)
N(p)s

∣∣ both are dominated by the Dedekind zeta func-

tion of K, a series converging absolutely on the half-plane ℜ(s) > 1. The product
representation on ℜ(s) > 1 follows from Corollary 8.24.

In a neighborhood of s = 1 we have

log
(∑

a

χ(a)

N(a)s

)
= log

(∏
p

1

1− χ(p)
N(p)s

)
∼
∑
p

log
1

1− χ(p)
N(p)s

= −
∑
p

log
(
1− χ(p)

N(p)s

)
=
∑
p

∞∑
k=1

χ(p)k

kN(p)ks

=
∑
p

χ(p)

N(p)s
+
∑
p

∞∑
k=2

χ(p)k

kN(p)ks

and for each p

∣∣∣ ∞∑
k=2

χ(p)k

kN(p)ks

∣∣∣ ≤ ∞∑
k=2

1

kN(p)kσ
≤

∞∑
k=2

1

2N(p)kσ
=

1
2N(p)2σ

1− 1
N(p)σ

≤ 1

N(p)2σ

Hence ∣∣∣∑
p

∞∑
k=2

χ(p)k

kN(p)ks

∣∣∣ ≤∑
p

1

N(p)2σ

and this is bounded for σ > 1
2 .

In particular we have:
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8.32 Corollary. Let K be a number field. Then

log ζK(s) ∼
∑
p

1

N(p)s
.

8.33 Proposition. Let K be a number field. Then

lim
s↓1

∑
p

1
N(p)s

− log(s− 1)
= 1.

Proof. For the Dedekind zeta function of K we have by Theorem 8.20

lim
s→1

(s− 1)ζK(s) = κ ̸= 0,

where κ is the residue of ζK(s) at s = 1. The last identity implies that

log ζK(s) ∼ log(s− 1).

By Corollary 8.32 the function f(s) =
∑

p
1

N(p)s + log(s − 1) is bounded in a

neighborhood of s = 1. So we have∑
p

1
N(p)s

− log(s− 1)
=
f(s)− log(s− 1)

− log(s− 1)
= 1− f(s)

log(s− 1)
→ 1 for s ↓ 1.

8.34 Corollary. Let K be a number field and P ⊆ Max(OK). Then

lim
s↓1

∑
p∈P

1
N(p)s∑

p
1

N(p)s

= lim
s↓1

∑
p∈P

1
N(p)s

− log(s− 1)
.

(If one of the limits exists, then so does the other.)

So an alternative definition of the Dirichlet density is

δ(P ) = lim
s↓1

∑
p∈P

1
N(p)s

− log(s− 1)
.

8.35 Corollary. Let K be a number field. Finite sets of nonzero prime ideals of
OK have Dirichlet density 0.

Proof. For P finite
∑

p∈P
1

N(p)s is a finite sum of functions which are analytic
in s = 1.

The Dirichlet density is often used to show the existence of infinitely many prime
ideals that satisfy certain conditions: if a collection of prime ideals has a nonzero
Dirichlet density, the collection is infinite.

204
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The absolute residue class degree of a prime ideal of a number field is its residue
class degree over Q. It equals 1 if and only if the norm of the prime ideal is a prime
number. Prime ideals of absolute residue class degree > 1 do not contribute to the
Dirichlet density. This follows from the following proposition.

8.36 Proposition. Let K be a number field and P1 the set of prime ideals of OK
of absolute residue class degree 1. Then δ(P1) = 1.

Proof. Let Q be the set of all prime ideals of K of absolute residue class degree
> 1. It suffices to prove that

∑
p∈Q

1
N(p)s ∼ 0. For p ∈ Q we have N(p) ≥ p2,

where p is the prime number below p. For each prime number p there are at most
[K : Q] prime ideals of OK above p. Therefore, for σ > 1 we have∣∣∣∑

p∈Q

1

N(p)s

∣∣∣ ≤∑
p

∑
p∈Q

above p

1

N(p)σ
≤
∑
p

∑
p∈Q

above p

1

p2
≤
∑
p

[K : Q]

p2

≤ [K : Q]

∞∑
n=1

1

n2
= [K : Q]ζ(2).

8.37 Theorem (Kronecker). Let L : K be a Galois extension of number fields
and P the collection of prime ideals of OK which split completely in L. Then
δ(P ) = 1

[L:K] .

Proof. Let Q be the set of prime ideals of OL above prime ideals in P and
Q1 the set of prime ideals of L having absolute residue class degree 1. Prime
ideals in Q1 \ Q are ramified over K and so they are finite in number. Hence
δ(Q ∩Q1) = δ(Q1) = 1 and since Q ⊇ Q ∩Q1 it follows that δ(Q) = 1, that is

lim
s↓1

∑
q∈Q

1
N(p)s

− log(s− 1)
= 1.

Because∑
q∈Q

1

N(q)s
=
∑
p∈P

∑
q∈Q

q∩K=p

1

N(p)s
=
∑
p∈P

[L : K]

N(p)s
= [L : K]

∑
p∈P

1

N(p)s
,

we now have

δ(P ) = lim
s↓1

∑
p∈P

1
N(p)s

− log(s− 1)
=

1

[L : K]
.

8.38 Corollary. Let L1 : K and L2 : K be Galois extensions of number fields and
Pi the collection of prime ideals of OK which split completely in Li (for i = 1, 2).
Then L1 ⊆ L2 ⇐⇒ P1 ⊇ P2.
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Proof. If L1 ⊆ L2, then clearly P1 ⊇ P2. So assume P1 ⊇ P2 and consider the
extension L1L2 : K. By Theorem 7.50 the prime ideals which split completely in
L1L2 are precisely the prime ideals which split completely in both L1 and L2, so
this set of prime ideals is P1 ∩ P2 = P2. By Theorem 8.37 we have

[L1L2 : K] =
1

δ(P2)
= [L2 : K]

and hence L1L2 = L2, that is L1 ⊆ L2.

This is an interesting result: Galois extensions of a number field K are determined
by the collection of prime ideals of OK which split completely in the extension field.
It was conjectured by Kronecker and proved by M. Bauer in 1903. It does not tell,
however, which are the prime ideal collections that occur as such collections. For
abelian extensions the solution of this problem is given by class field theory. It is
described in chapter 13 and the proof is completed in chapter 15.

8.6 Frobenius Density Theorem

There are various theorems on the Dirichlet density of collections of prime ideals
with a given splitting behavior in a field extension. The simplest, but important,
one is Theorem 8.37 in the previous section. Much more advanced is Chebotarev’s
Density Theorem proved in section 15.4. A weaker version of this theorem is the
Frobenius Density Theorem. First we consider the case of an abelian extension.

8.39 Theorem. Let L : K be an abelian number field extension. Let Z be a cyclic
subgroup of Gal(L : K) of order n and P the collection of nonramifying prime

ideals of OK which satisfy ⟨φ(L)
p ⟩ = Z. Then δ(P ) = φ(n)

[L:K] .

Proof. The proof is by induction on n. For n = 1 the theorem reduces to
Theorem 8.37. So let’s assume that n > 1 and that the theorem is true for smaller
cyclic subgroups of the Galois group. The collection P consists of nonramifying
prime ideals with their Frobenius automorphism in Z, but not in a proper subgroup
of Z. Subgroups of Z correspond to divisors of n. Let Zd be the subgroup of

Z of order d and Pd the collection of nonramifying primes p with ⟨φ(L)
p ⟩ = Zd.

Then Zn = Z and Pn = P . Let Q be the collection of nonramifying primes p

with φ
(L)
p ∈ Z. Then p ∈ Q if and only if p splits completely in LZ . Hence by

Theorem 8.37 δ(Q) = 1
[LZ :K]

= n
[L:K] . The set Q is the disjoint union of all Pd

with d | n. By induction hypothesis all Pd with d ̸= n have a Dirichlet density, so
P has a Dirichlet density as well and we have

δ(P ) = δ(Q)−
∑
d|n
d ̸=n

δ(Pd) =
n

[L : K]
−
∑
d|n
d̸=n

φ(d)

[L : K]
=

φ(n)

[L : K]
.
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If there is a prime ideal which remains prime in a Galois extension, then the Galois
group of this extension is cyclic. We now have:

8.40 Corollary. Let L : K be a cyclic extension of number fields of degree n and

P the set of prime ideals of OK which remain prime in L. Then δ(P ) = φ(n)
n . In

particular infinitely many prime ideals of OK remain prime.

We generalize Theorem 8.39 to the case of a Galois extension of number fields.

8.41 Definition. An equivalence relation ≃ in G is defined by

σ1 ≃ σ2 ⇐⇒ ⟨σ1⟩ = σ⟨σ2⟩σ−1 for some σ ∈ G.

The equivalence classes are called divisions of G and the division represented by
σ ∈ G is denoted by JσK.

8.42 Lemma. Let G be a finite group, σ ∈ G of order n and Z = ⟨σ⟩. Then
#(JσK) = φ(n)(G : NG(Z)).

Proof. The number of subgroups of G conjugate to Z is (G : NG(Z)). Gen-
erators of different subgroups conjugate to Z differ and each of them has φ(n)
generators.

8.43 Frobenius Density Theorem. Let L : K be a Galois extension of number
fields, G = Gal(L : K), D a division in G and P the collection of prime ideals p
of OK for which there is a prime ideal q of OL above p with φK(q) ∈ D. Then

δ(P ) = #(D)
[L:K] .

Proof. Let p ∈ P and q a prime ideal of OL above p with φK(q) ∈ D. Put
σ = φK(q) and Z = ⟨σ⟩. By Proposition 7.54 the number of prime ideals of OLZ

above p with residue class degree 1 is equal to (G : NG(Z)). For the set P
′ of prime

ideals p′ of OLZ above a prime ideal p ∈ P with fK(p′) = 1 we have

δ(P ′) = (NG(Z) : Z) · δ(P ).

For the set Q of prime ideals p′ of OLZ which do not ramify in L and satisfy

φ
(L)
p′ ∈ D we have by Theorem 8.39

δ(Q) =
φ(n)

n
,

where n = o(σ). Because P ′ ⊆ Q and Q \ P ′ consists of prime ideals with residue
class degree over K equal to 1 and a finite collection of ramified primes, the sets
P ′ and Q have equal Dirichlet density. Hence by Lemma 8.42

δ(P ) =
δ(P ′)

(NG(Z) : Z)
=

δ(Q)

(NG(Z) : Z)

=
φ(n)

n · (NG(Z) : Z)
=

φ(n)

#(NG(Z))
=
φ(n) · (G : NG(Z))

#(G)
=

#(D)

[L : K]
.
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Exercises

1. Compute the residue at s = 1 of the Dedekind zeta functions of the fields

Q(
√
−2,
√
3), Q(

√
2,
√
3) and Q(i,

√
6).

2. Compute at s = 1 the residue of the Dedekind zeta functions of the fields

Q(
3
√
2), Q(

3
√
7) and Q(

3
√
11).

3. Compute the residue at s = 1 of the Dedekind zeta function of the field Q(ζ5).

4. The class number formula is based on counting ideals in ideal classes. What is the
effect on the formula if narrow ideal classes are used? Narrow ideal classes were
introduced in exercise 10 of chapter 6.

5. Determine the Dirichlet density of the set of prime numbers for which 2 is a square
modulo p. What about 2 a cube modulo p? And 2 a fourth power modulo p?

6. Let K be a number field, g ∈ OK [X] monic and irreducible over K, L the splitting
field of g over K and α ∈ L such that g(α) = 0.

(i) Prove that for all but finitely many p ∈ Max(OK) the following are equivalent:

g has a root modulo p,

fK(p′) = 1 for some p′ ∈ Max(OK(α)) above p,

ZK(q) ⊆ Gal(L : K(α)) for some q ∈ Max(OL) above p.

(ii) Assume that deg(g) > 1. Prove that g has no roots modulo p for infinitely
many p ∈ Max(OK).

7. Let K be a number field and f ∈ OK [X] monic, irreducible over K and of prime
degree. Prove that f is irreducible modulo p for infinitely many p ∈ Max(OK).
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9 Abelian Number Fields

In section 9.1 the Kronecker-Weber Theorem is proved: every abelian number field
is contained in a cyclotomic field. As we have seen in the previous chapter, for the
splitting of primes in cyclotomic fields there is a simple description. As a conse-
quence the same is true for any abelian number field. This leads in section 9.3 to
the notion of Dirichlet character. These characters describe the splitting behavior
of primes in an abelian number field. In section 9.4 it is shown that abelian number
fields correspond to finite groups of Dirichlet characters. Since Dedekind zeta func-
tions of abelian number fields are determined by this splitting behavior, Dirichlet
characters are particularly useful in the study of these zeta functions. A Dirichlet
character determines a Dirichlet series, the L-series of the character (section 9.5).
Via Gauß sums of Dirichlet characters this leads to applications concerning class
numbers of abelian number fields and units of cyclotomic fields, described in the
last section.

In this chapter and later chapters the terminology of categories and functors is
used. However, more advanced category theory is avoided.

9.1 The Kronecker-Weber Theorem

The first complete proof of the Kronecker-Weber Theorem was Hilbert’s in 1896. It
made use of the theory of ramification groups, here described in section 7.5. Let p be
an odd prime and r ∈ N∗. The cyclotomic field Q(ζpr+1) contains a unique subfield
K of degree pr. The prime p is the only prime that ramifies in K. We will see that
this is the only number field of degree pr with this property (Proposition 9.5). For
the prime 2 we will derive a similar result (Proposition 9.8). The main ingredient
for the odd prime case is the next proposition. The Kronecker-Weber Theorem
will follow by reduction to these special cases.

9.1 Lemma. Let p be an odd prime and K an abelian number field of degree p
in which p is the only ramifying prime: pOK = pp with p ∈ Max(OK). Then
V2(p) = {1} and disc(K) = p2(p−1).

Proof. There is a unique t ∈ N∗ such that Vt(p) = Gal(K : Q) and Vt+1(p) =
{1}. We will prove that t = 1. Take π ∈ OK with vp(π) = 1 and let f ∈ Z[X] be
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the minimal polynomial of π over Q. Then deg(f) = p. Let σ be a generator of
Gal(K : Q). Then

f(X) = (X − π)(X − σ(π)) · · · (X − σp−1(π)) (9.1)

and so
f ′(π) = (π − σ(π))(π − σ2(π)) · · · (π − σp−1(π)).

We have Vt\Vt+1 = {σ, σ2, . . . , σp−1} and so vp(π−σi(π)) = t+1 for i = 1, . . . , p−1.
Hence

vp(f
′(π)) = (t+ 1)(p− 1).

Put f(X) = Xp+a1X
p−1+a2X

p−2+ · · ·+ap−1X +ap with a1, . . . , ap ∈ Z. From
identity (9.1) it follows that

f(X) = Xp ∈ (OK/p)[X].

(In fact, by exercise 20(i) of chapter 3 the polynomial f is an Eisenstein p-poly-
nomial; see also Theorem 7.20.) We have a1, . . . , ap ∈ p ∩ Z = pZ, say vp(ai) = ni
with ni ∈ N∗ or ni =∞. Then vp(ai) = nip. Apply vp to

f ′(π) = pπp−1 + a1(p− 1)πp−2 + · · ·+ ap−1.

The valuations of terms on the right hand side are subsequently

p+ (p− 1), n1p+ (p− 2), n2p+ (p− 3), . . . , np−1p.

Some, but not all, of these might equal ∞. The others are all different, because
they differ modulo p. It follows that

(t+ 1)(p− 1) = min(2p− 1, n1p+ (p− 2), . . . , np−1p) ≤ 2p− 1,

that is (t− 1)p ≤ t and so, since p ≥ 3, we have 2t ≤ 3. Hence, t = 1.

By Proposition 7.21 (OK)p = Z{p}[π]. SinceK is totally real and p is the only rami-
fying prime, we haveOK = Z[π] and disc(K) = disc(1, π, . . . , πp−1) = NKQ (f ′(π)) =

pN , where N = vp(N
K
Q (f ′(π)) = vp(f

′(π)) = 2(p− 1).

9.2 Lemma. Let p be a prime and L an abelian number field of degree p2 in
which p totally ramifies. Let K be a subfield of L of degree p. Then vp(dK(L)) =
vp(disc(L))− p · vp(disc(K)), where p is the unique prime ideal of OK above p.

Proof. Let q be the unique prime ideal of OL above p and ρ ∈ OL such that
vq(ρ) = 1. Put π = NLK(ρ) ∈ OK . By Proposition 7.67 vp(π) = 1. Then by
Theorem 7.21 (OL)q = (OK)p[ρ] and (OK)p = Z{p}[π]. So (OL)q = Z{p}[π, ρ].
This means that the elements πiρj with i = 0, . . . , p− 1 and j = 1, . . . , p− 1 form
a Z{p}-basis of (OL)q. From Proposition 7.23 and Theorem 7.25 follows that

vp(disc(L)) = vp(disc(. . . , π
iρj , . . . )), vp(disc(K)) = vp(disc(1, π, . . . , π

p−1))
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9.1 The Kronecker-Weber Theorem

and vp(dK(L)) = vp(discK(1, ρ, . . . , ρp−1)).

By Proposition 1.33

disc(. . . , πiρj , . . . ) = (disc(1, π, . . . , πp−1))p ·NLK(discK(1, ρ, . . . , ρp−1)).

So

vp(dK(L)) = vp(disc(1, ρ, . . . , ρ
p−1)) = vp(N

L
K(disc(1, ρ, . . . , ρp−1)))

= vp(disc(. . . , π
iρj , . . . ))− p · vp(disc(1, π, . . . , πp−1)

= vp(disc(L))− p · vp(disc(K)).

9.3 Lemma. Let p be an odd prime and L an abelian number field of degree p2 in
which p is the only ramifying prime. Then Gal(L : Q) is cyclic.

Proof. The prime p totally ramifies in L, since otherwise there would be an
unramified extension of Q of degree p. Let K be a subfield of degree p of L, q the
prime ideal of OL above p and p = q∩K. By Lemma 9.1 we have disc(K) = p2(p−1).
Put N = vp(disc(L)). Then by Lemma 9.2

dK(L) = pN−2p(p−1).

Let ρ ∈ OL such that vq(ρ) = 1. Then, since p is the only prime ideal of OK which
ramifies in L, we have OL = OK [ρ]. Let σ be a generator of the group Gal(L : K)
and t ∈ N∗ such that VK,t(q) = Gal(L : K) and VK,t+1(q) = {1}. For the minimal
polynomial f of ρ over K we have

f ′(ρ) = (ρ− σ(ρ))(ρ− σ2(ρ)) . . . (ρ− σp−1(ρ)).

Because VK,t(q) \ VK,t+1(q) = {σ, σ2, . . . , σp−1}, we have

vp(dK(L)) = vp(N
L
K(f ′(ρ))) = vq(f

′(ρ)) = (t+ 1)(p− 1).

Hence (t+ 1)(p− 1) = N − 2p(p− 1). In particular the value of t is the same for
all subfields K of degree p. Let s ∈ N∗ be such that VQ,s(q) = Gal(L : Q) and
VQ,s+1(q) ̸= Gal(L : Q). Then by Proposition 7.59 VQ,s+1(q) is of order p. For
subfields K of degree p of L we have by Proposition 7.63

VK,s+1(q) = VQ,s+1(q) ∩Gal(L : K) =

{
Gal(L : K) if Gal(L : K) = VQ,s+1(q),

{1} otherwise.

Since t does not depend on K, there is only one such subfield. This means that
Gal(L : Q) has a unique subgroup of order p.

9.4 Lemma. Let p be an odd prime. The subfield K of Q(ζp2) of degree p is the
unique abelian number field of degree p in which p is the only prime that ramifies.
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Proof. Suppose there is another abelian number field L of degree p in which p
is the only prime that ramifies. Then KL is a noncyclic abelian number field of
degree p2 and by Theorem 7.50 only the prime p ramifies in KL. This contradicts
Lemma 9.3.

9.5 Proposition. Let p be an odd prime and r ∈ N∗. The subfield K of Q(ζpr+1)
of degree pr is the unique abelian number field of degree pr in which p is the only
prime that ramifies.

Proof. Let L be another abelian number field of degree pr in which only p
ramifies. Then Gal(KL : Q) is a noncyclic abelian p-group of order > pr. By
Theorem 7.50 only the prime p ramifies in KL. For H a subgroup of Gal(KL : Q)
of index p, the field (KL)H is an abelian number field of degree p in which p is the
only prime that ramifies. By Lemma 9.4 the subgroup H is the unique subgroup
of index p. It follows that Gal(KL : Q) is cyclic. Contradiction.

9.6 Lemma. The only quadratic number fields in which only the prime 2 ramifies
are Q(

√
2), Q(i) and Q(

√
−2).

Proof. These are the only quadratic number fields having a discriminant without
odd prime divisors.

9.7 Proposition. Let r ∈ N∗. The field K = Q(ζ2r+2 + ζ−1
2r+2) is the unique real

abelian number field of degree 2r in which 2 is the only prime that ramifies.

Proof. Let L be another real abelian number field of degree 2r in which only
2 ramifies. Then Gal(KL : Q) is a noncyclic abelian 2-group of order > 2r. By
Theorem 7.50 only the prime 2 ramifies in KL. For H a subgroup of Gal(KL : Q)
of index 2, the field (KL)H is a real quadratic number field in which 2 is the
only prime that ramifies. This is the field Q(

√
2). So Gal(KL : Q) has a unique

subgroup of index 2. Therefore, Gal(KL : Q) is cyclic. Contradiction.

9.8 Proposition. Let r ∈ N∗. The only complex abelian number fields of degree 2r

in which only the prime 2 ramifies are

Q(ζ2r+1) and Q(ζ2r+2 − ζ−1
2r+2).

Proof. Let K be a complex abelian number field of degree 2r in which only the
prime 2 ramifies. Let τ be complex conjugation. If i ∈ K, then by Proposition 9.7

K = Kτ (i) = Q(ζ2r+1 + ζ−1
2r+1)(i) = Q(ζ2r+1).

If i /∈ K, then apply this to K(i):

K(i) = Q(ζ2r+2).

The subfield fixed under the automorphism given by ζ2r+2 7→ −ζ−1
2r+2 :

K = Q(ζ2r+2 − ζ−1
2r+2).
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We have determined all abelian number fields of prime power degree in which this
prime is the only ramifying prime. In particular they are subfields of cyclotomic
fields. Now we consider a more general case.

9.9 Proposition. Let p be a prime. Let K be an abelian number field such that
Gal(K : Q) is a p-group. Then K is contained in a cyclotomic field.

Proof. The proof will be by induction on the number of primes ̸= p which
ramify in K. If this number is 0, we know by the Propositions 9.5 and 9.8 that K
is contained in a cyclotomic field.

Put [K : Q] = pr. Suppose q is a prime ̸= p which ramifies in K. Let q ∈ Max(OK)
be above q and consider the ramification group V1 = V1(q) of q over Q. By
Theorem 7.61 V1 is a q-group. Because V1 is a subgroup of the p-group Gal(K : Q),
we have V1 = {1}, that is q tamely ramifies in K. Now consider the inertia group
T = TQ(q). Being a subgroup of Gal(K : Q) it is a p-group, say #(T ) = pt, where
t ≤ r. By Proposition 7.60 pt | q − 1. Let L be the unique subfield of Q(ζq) of
degree pt. The prime q totally ramifies in L, because it does so in Q(ζq). Since q is
the only prime which ramifies in Q(ζq), it also is the only one which ramifies in L.

Consider the abelian number fieldKL and let q′′ ∈ Max(OKL) be above q. Because
[KL : Q] is a power of p, again we have V1(q

′′) = {1}. So T ′′ = TQ(q
′′) is a cyclic

p-group. The restriction to T ′′ of the injective group homomorphism

Gal(KL : Q)→ Gal(K : Q)×Gal(L : Q), σ 7→ (σ|K , σ|L)

yields an injective group homomorphism

T ′′ → T ×Gal(L : Q).

The group on the right hand side is isomorphic to Cpt ×Cpt . The order of T ′′ is a
multiple of pt, the order of the inertia group of q in L. It follows that T ′′ is cyclic
of order pt.

By Theorem 7.50 the primes which ramify in KL are the same as those which
ramify in K. Now consider the field

K ′ = (KL)T
′′
.

Prime numbers which ramify in K ′ also ramify in KL. However, q does not ramify
in K ′. Hence the number of primes ramifying in K ′ is less than the number of
primes ramifying in K. So we can assume that K ′ is contained in a cyclotomic
field, say K ′ ⊆ Q(ζm). We have: q does not ramify in K ′ ∩ L (it does not in K ′)
and q totally ramifies in K ′ ∩ L (it does in L). It follows that K ′ ∩ L = Q and
therefore,

[K ′L : Q] = [K ′ : Q][L : Q] = [K ′ : Q][KL : K ′] = [KL : Q].

213



9 Abelian Number Fields

So K ′L = KL, because K ′ ⊆ KL and L ⊆ KL. Hence

K ⊆ KL = K ′L ⊆ Q(ζm)Q(ζq) = Q(ζm′)

with m′ = lcm(m, q).

Finally we have:

9.10 Theorem (Kronecker-Weber). Let K be an abelian number field. Then K
is contained in a cyclotomic field.

Proof. The Galois group G is a direct product of p-groups, say

G = G1 · · ·Gr,

where Gi is say a Sylow pi-subgroup. Put Hi = G1 · · ·Gi−1Gi+1 · · ·Gr. Then

K = K(1) = K
⋂
Hi = KH1 · · ·KHr

and we have
Gal(KHi : Q) ∼= G/Hi

∼= Gi.

By Proposition 9.9 each of the KHi is contained in a cyclotomic field and so the
same holds for their composite K.

The intersection of cyclotomic fields is a cyclotomic field as well: Q(ζm)∩Q(ζn) =
Q(ζd), where d = gcd(m,n). So for an abelian number field K there is a least m
such that K is contained in Q(ζm). This justifies the following definition.

9.11 Definition. Let K be an abelian number field. The least m ∈ N∗ for which
K ⊆ Q(ζm) is called the conductor of K. The conductor of K is denoted by NK .

For a conductor N of an abelian number field we have N ̸≡ 2 (mod 4), because for
N ≡ 2 (mod 4) we have Q(ζN/2) = Q(ζN ).

Composition and intersection of cyclotomic fields yield cyclotomic fields, i.e. for
m,n ∈ N∗, d = gcd(m,n) and k = lcm(m,n):

Q(ζm)Q(ζn) = Q(ζk) and Q(ζm) ∩Q(ζn) = Q(ζd).

This implies:

9.12 Proposition. Let K1 and K2 be abelian number fields. Then

NK1K2 = lcm(NK1 , NK2) and NK1∩K2 = gcd(NK1 , NK2).

For quadratic number fields we have:

9.13 Proposition. For m ∈ Z squarefree ̸= 1 the conductor of Q(
√
m) is |Dm|.

Proof. Write m = up∗1 · · · p∗r , where u ∈ {±1,±2} and p1,. . . ,pr are different
odd primes. The conductor of Q(

√
n) for n = −1, 2, −2, p∗i is respectively 4, 8,

8 and p. It follows that Q(
√
m) ⊆ Q(ζN ), where N = |Dm|. Because all prime

divisors of Dm ramify in Q(
√
m), this field is not contained in a smaller cyclotomic

field.
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9.2 Characters of finite abelian groups

9.2 Characters of finite abelian groups

In the next section Dirichlet characters are introduced. They describe the splitting
behavior of primes in abelian number fields and are essentially characters of a group
(Z/N)∗ for some N ∈ N∗. We will need some generalities on characters of groups,
in particular characters of finite abelian groups.

9.14 Definition. Let G be an abelian group. A character χ of G is a group homo-
morphism χ : G→ C∗. The character ε : G→ C∗ defined by ε(g) = 1 for all g ∈ G
is called the trivial or principal character on G.

If G is a torsion group, which means that each element of G is of finite order, then
χ(G) ⊆ µ(C) ∼= Q/Z for each character χ of G. So for such groups, e.g. finite
abelian groups, we could take characters to be homomorphisms of G to Q/Z.

9.15 Definition. Let χ1 and χ2 be characters of a group G. Then their product
χ1χ2 is defined by:

(χ1χ2)(g) = χ1(g)χ2(g) for all g ∈ G.

Clearly this imposes an abelian group structure on the set of characters of G. This
group we denote by G∨ and is called the character group of G or also the dual of
G. The trivial character ε is the unit element of G∨.

9.16 Definition. Let f : G1 → G2 be a homomorphism of groups. The group
homomorphism

f∨ : G2
∨ → G1

∨, χ 7→ χf

is called the dual of f .

One easily verifies that 1G
∨ = 1G∨ and (gf)

∨
= f∨g∨. Thus G 7→ G∨ is a

contravariant functor from the category of groups to the category of abelian groups.

For any abelian group C we have a contravariant functor HomZ(−, C) from the
category of abelian groups (= Z-modules) to itself. Such a functor is left exact ,
which means that it maps a short exact sequence 0 → A′ → A → A′′ → 0 to
an exact sequence 0 → HomZ(A

′′, C) → HomZ(A,C) → HomZ(A
′, C). If it maps

short exact sequences to short exact sequences the functor is said to be exact and
the group C is then by definition an injective Z-module. Injective Z-modules are
just the divisible abelian groups: abelian groups C with the property that for each
x ∈ C and each n ∈ N∗ there is a y ∈ C such that ny = x. Note that in the
multiplicative notation this reads: yn = x.

9.17 Proposition. Let 1→ A′ → A→ A′′ → 1 be a short exact sequence of abelian
groups (in the multiplicative notation). Then the induced sequence of the duals
1→ A′′∨ → A∨ → A′∨ → 1 is exact as well.

Proof. A∨ = HomZ(A,C∗) and the group C∗ is divisible.
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9.18 Corollary. Let A1 and A2 be abelian groups. Then (A1 ×A2)
∨ ∼= A1

∨×A2
∨.

Proof. Apply Proposition 9.17 to the split short exact sequence 1 → A1 →
A1 ×A2 → A2 → 1.

9.19 Proposition. Let Cn be a cyclic group of order n ∈ N∗. Then Cn
∨ is also

cyclic of order n.

Proof. Let t be a generator of Cn. For each character χ of Cn, χ(t) is an n-th
root of unity. The homomorphism χ 7→ χ(t) of Cn

∨ to the cyclic group µn of n-th
roots of unity is an isomorphism. (A generator of the dual group is the character
which maps t to ζn.)

9.20 Theorem. Let A be a finite abelian group. Then A∨ ∼= A.

Proof. A finite abelian group is a product of cyclic groups. So the theorem is a
consequence of Corollary 9.18 and Proposition 9.19.

The theorem merely states that an isomorphism exists. It depends on the factor-
ization of the group as a product of cyclic groups and the isomorphisms from these
cyclic groups to their duals. There is however a natural isomorphism from A to
A∨∨: a 7→ (χ 7→ χ(a)).

The finiteness of A is crucial:

Z∨ = Hom(Z,C∗) ∼= C∗,

and ( ∞⊕
n=1

Z/2
)∨
∼= Hom

( ∞⊕
n=1

Z/2,Q/Z
)
∼=

∞∏
n=1

Hom(Z/2,Q/Z) ∼=
∞∏

n=1

Z/2.

(
∏∞

n=1An consists of sequences (a1, a2, . . . ) with an ∈ An for all n ∈ N∗, whereas⊕∞
n=1An consists of such sequences which satisfy an extra condition: an ̸= 0 only

for finitely many n ∈ N∗.)

In the next section we will need the following propositions:

9.21 Proposition. Let p : A→ B be a surjective homomorphism of abelian groups.
Then its dual p∨ : B∨ → A∨ is injective and

p∨(B∨) = {χ ∈ A∨ | Ker(p) ⊆ Ker(χ)}.

Proof. The dual of the short exact sequence

1 −→ Ker(p)
i−→ A

p−→ B −→ 1

is the short exact sequence

1 −→ B∨ p∨−→ A∨ i∨−→ Ker(p)
∨ −→ 1.
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We have

p∨(B∨) = Ker(i∨) = {χ ∈ A∨ | χi = ε }
= {χ ∈ A∨ | χ(Ker(p)) = {ε} } = {χ ∈ A∨ | Ker(p) ⊆ Ker(χ) }.

A commutative diagram

A1 B

C A2

f1

f2

g2

g1

of homomorphisms of abelian groups is called a cartesian square if for each pair
h1 : X → A1, h2 : X → A2 of homomorphisms of abelian groups such that g1h1 =
g2h2, there exists a unique h : X → C such that f1h = h1 and f2h = h2. This
comes down to: for each (a1, a2) ∈ A1 × A2 such that g1(a1) = g2(a2), there is a
unique c ∈ C such that f1(c) = a1 and f2(c) = a2. The square is cartesian if and
only if the following sequence is exact:

0 −→ C
(f1f2)−→ A1 ⊕A2

(g1 −g2)−→ B.

Dually, in the categorical sense, the square is called cocartesian if for each pair
k1 : A1 → Y , k2 : A2 → Y of homomorphisms of abelian groups such that k1f1 =
k2f2 there exists a unique k : B → Y such that kg1 = k1 and kg2 = k2. The square
is cocartesian if and only if the following sequence is exact:

C
(f1f2)−→ A1 ⊕A2

(g1 −g2)−→ B −→ 0.

The square is called bicartesian if it is both cartesian and cocartesian. It follows
that the square is bicartesian if and only if the sequence

0 −→ C
(f1f2)−→ A1 ⊕A2

(g1 −g2)−→ B −→ 0

is a short exact sequence.

9.22 Proposition. The dual of a bicartesian square of abelian groups is bicartesian.

Proof. According to Proposition 9.17 the dual of a short exact sequence is a
short exact sequence.
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9.3 Dirichlet characters

Dirichlet characters are essentially characters of groups (Z/N)∗. In the next section
it is shown that they describe the splitting behavior of primes in abelian number
fields.

Let N ∈ N∗. A character χ′ of (Z/N)∗ induces a map χ : Z→ C as follows:

χ(n) =

{
χ′(n) if gcd(n,N) = 1,

0 if gcd(n,N) > 1.

As is easily verified the map χ satisfies for all m,n ∈ Z:

(D1) χ(n) = 0 ⇐⇒ gcd(n,N) > 1,

(D2) χ(mn) = χ(m)χ(n),

(D3) m ≡ n (modN) =⇒ χ(m) = χ(n).

9.23 Definitions and notation. Let N ∈ N∗. A map χ : Z → C satisfying (D1),
(D2) and (D3) above is called a Dirichlet character modulo N . The N is called
the modulus of the Dirichlet character. If χ1 and χ2 both are Dirichlet characters
modulo N , then so is χ1χ2, the map defined by

(χ1χ2)(n) = χ1(n)χ2(n) for all n ∈ Z,

The set of Dirichlet characters modulo N will be denoted by DN . Under the
multiplication given above it is a group naturally isomorphic to (Z/N)∗

∨
. Dirichlet

characters of order 2 are called quadratic. Only 0, 1 and −1 are values of a quadratic
Dirichlet character.

Since DN
∼→ (Z/N)∗

∨ ∼= (Z/N)∗, we have in particular #(DN ) = φ(N).

If χ is a Dirichlet character modulo N , then its inverse χ−1 is is given by

χ−1(n) =

{
χ(n)−1 if gcd(n,N) = 1

0 if gcd(n,N) > 1.

So χ−1(n) = χ(n) for all n ∈ N. For this reason the inverse of a Dirichlet character
χ is usually denoted by χ.

9.24 Example. Let p be an odd prime. The Legendre symbol determines a char-
acter of the group F∗

p:

F∗
p → C∗, n 7→

(
n

p

)
.

It corresponds to a quadratic Dirichlet character

Z→ C, n 7→
(
n

p

)
.
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Since all Dirichlet characters have the same domain and the same codomain, they
can be multiplied, even if their moduli differ, and the result is again a Dirichlet
character:

9.25 Definition. Let χ1 ∈ DN1
and χ2 ∈ DN2

. We define χ1χ2 : Z→ C by

(χ1χ2)(n) = χ1(n)χ2(n)

for all n ∈ Z. Clearly χ1χ2 ∈ Dlcm(N1,N2).

Let N ∈ N∗ and M ∈ N∗ be such that M | N . The canonical surjective ring
homomorphism Z/N → Z/M induces a surjective group homomorphism (Z/N)∗ →
(Z/M)∗ and so also an injective group homomorphism (Z/M)∗

∨ → (Z/N)∗
∨
, which

in turn induces an injective group homomorphism iMN : DM → DN . For χ ∈ DM
the Dirichlet character iMN (χ) is then given by

(iMN (χ))(n) =

{
χ(n) for all n ∈ Z with gcd(n,N) = 1,

0 for all n ∈ Z with gcd(n,N) > 1.

Note that the surjectivity of (Z/N)∗ → (Z/M)∗ follows from the Chinese Remain-
der Theorem: given an n ∈ Z with gcd(n,M) = 1, there exists an n′ ∈ Z such
that

n′ ≡

{
n (modM)

1 (mod pvp(N)) for all primes p with p | N and p ∤M.

For this n′ we have gcd(n′, N) = 1 and n′ ≡ n (modM).

9.26 Definition. Let M,N ∈ N∗ such that M | N and let χ ∈ DM . Then the
Dirichlet character iMN (χ) ∈ DN is said to be induced by χ. A Dirichlet character
modulo N is said to be a primitive Dirichlet character modulo N if it is not induced
by a Dirichlet character modulo M with M a proper divisor of N .

9.27 Examples.

1. For each N ∈ N∗ there is the trivial or principal Dirichlet character χ1; it is
the unit element of the group DN :

χ1(n) =

{
1 if gcd(n,N) = 1,

0 if gcd(n,N) > 1.

Only for N = 1 it is primitive.

2. For N = 3, 4, 6 the group DN is of order 2. It contains one quadratic char-
acter.
For N = 3:

n 7→


1 if n ≡ 1 (mod 3),

−1 if n ≡ 2 (mod 3),

0 if n ≡ 0 (mod 3).
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For N = 4:

n 7→


1 if n ≡ 1 (mod 4),

−1 if n ≡ 3 (mod 4),

0 if n ≡ 0 (mod 2).

For N = 6:

n 7→


1 if n ≡ 1 (mod 6),

−1 if n ≡ 5 (mod 6),

0 if n ≡ 0, 2, 3, 4 (mod 6).

The first two are primitive; the last one is not: it is induced by the first.

3. For p a prime there are p−1 Dirichlet characters modulo p and p− 2 of them
are primitive. The group Dp is cyclic of order p − 1. For p odd there is a
unique quadratic Dirichlet character modulo p: the character given by the
Legendre symbol, see Example 9.24.

9.28 Lemma. Let M1,M2, N ∈ N∗ be such that M1,M2 | N . Let χ ∈ DN be
induced by a Dirichlet character modulo M1 as well as by a Dirichlet character
modulo M2. Then χ is induced by a Dirichlet character modulo M , where M =
gcd(M1,M2).

Proof. We can assume that N = lcm(M1,M2). From (M1) ∩ (M2) = (N) and
(M1) + (M2) = (M) it follows that the square

Z/M1 Z/M

Z/N Z/M2

is a bicartesian square of surjective ring homomorphisms. Taking units yields a
bicartesian square

(Z/M1)
∗ (Z/M)∗

(Z/N)∗ (Z/M2)
∗

of surjective group homomorphisms. By Proposition 9.21 the dual square is bicarte-
sian. In the dual square the group homomorphisms are injective. It is canonically
isomorphic to the square
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9.3 Dirichlet characters

DM1 DN

DM DM2

Because the homomorphisms are injective, we have

iM1

N (DM1
) ∩ iM2

N (DM2
) = iMN (DM ). (9.2)

Since both χ ∈ iM1

N (DM1
) and χ ∈ iM1

N (DM2
), it follows that χ ∈ iMN (DM ), which

means that χ is induced by a Dirichlet character modulo M .

An important consequence is:

9.29 Corollary. Let χ be a Dirichlet character modulo N . Then there is a unique
M | N such that χ in induced by a primitive Dirichlet character modulo M .

9.30 Definition. Let χ be a Dirichlet character modulo N . The modulus of the
unique primitive Dirichlet character which induces χ is called the conductor of χ.
Notation: Nχ.

Induction of Dirichlet characters generates an equivalence relation: Dirichlet char-
acters being equivalent if there is a Dirichlet character that induces both of them.
The product of Dirichlet characters induces a product of equivalence classes. Each
equivalence class contains a unique primitive Dirichlet character. Thus the prod-
uct of equivalence classes induces a product of the representing primitive Dirichlet
characters.

9.31 Definition and notation. The set of all primitive Dirichlet characters is
denoted by D. It is a group under the following multiplication. Let χ1 and χ2 be
primitive Dirichlet characters. Then the product χ1χ2 as in Definition 9.25 is a
Dirichlet character modulo lcm(Nχ1

, Nχ2
). The product of χ1 and χ2 in D is the

unique primitive Dirichlet character by which it is induced.

9.32 Change of notation. Henceforth all Dirichlet characters are assumed to
be primitive. The notation DN will now be used for the subgroup of D of all
Dirichlet characters χ with Nχ | N . That means that in DN as originally defined
all characters are replaced by primitive characters and that the multiplication is
changed accordingly. Under this convention identity 9.2 in the proof of Lemma 9.28
becomes

Dgcd(M1,M2) = DM1
∩DM2

.

Dirichlet characters as originally defined will be referred to as Dirichlet pre-char-
acters.
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Now the notion of conductor reads: the conductor Nχ of χ ∈ D is the least N ∈ N∗

for which χ ∈ DN . More generally we define:

9.33 Definition. Let X be a finite group of Dirichlet characters. Then the conduc-
tor of X is the least N such that X ⊆ DN . Notation NX .

9.4 Classification of abelian number fields

The splitting behavior of a nonramifying prime number in an abelian number field
is given by its Frobenius automorphism. The ramifying primes in a cyclotomic
field Q(ζm) with m ̸≡ 2 (mod 4) are the prime divisors of m. The Frobenius
automorphism of a prime p ∤ m is the automorphism given by ζm 7→ ζpm. So the
splitting behavior of such p depends only on its residue class modulo m. Since an
abelian number field K is a subfield of a cyclotomic field Q(ζm) and the Frobenius
automorphism of p in Gal(K : Q) is the restriction of its Frobenius automorphism
in Gal(Q(ζm) : Q), we have the same regularity for the splitting behavior in K.

There is a one-to-one correspondence between abelian number fields and finite
groups of Dirichlet characters. This correspondence is as follows. For a fixed
N ∈ N∗ it is a correspondence between subfields of Q(ζN ) and subgroups of DN .
Up to natural isomorphisms it comes from the correspondence between subgroups
of GN := Gal(Q(ζN ) : Q) and the duals of their factor groups. The last ones are
naturally isomorphic to subgroups of DN . For X a finite subgroup of DN define

Ker(X) = {σ ∈ GN | χ(σ) = 1 for all χ ∈ X }.

Note that χ ∈ DN determines a character on GN via the isomorphism (Z/N)∗
∼→

GN , a 7→ σa, σa being the automorphism given by ζN 7→ ζaN . For H a subgroup
of GN define

Dir(H) = {χ ∈ DN | χ(σ) = 1 for all σ ∈ H }.

Thus we have short exact sequences

1 −→ Ker(X) −→ GN −→ X∨ −→ 1

and

1 −→ Dir(H) −→ DN −→ H∨ −→ 1.

Taking duals yields

Dir(Ker(X)) = X and Ker(Dir(H)) = H.
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9.34 Definitions.

a) Let K be an abelian number field and N ∈ N∗ such that K ⊆ Q(ζN ). The
group of Dirichlet characters associated to K is the group

D(K) := Dir(Gal(Q(ζN ) : K)).

(Note that this group does not depend on the choice of N .)

b) Let X be a finite subgroup of D and N such that X ⊆ DN . The abelian
number field associated to X is the field

QX := Q(ζN )Ker(X).

(This field does not depend on the choice of N .)

Now we have a one-to-one correspondence between abelian number fields and finite
groups of Dirichlet characters:

9.35 Classification Theorem for Abelian Number Fields. The maps

abelian
number fields

finite groups of
Dirichlet characters

K

QX

D(K)

X

are inverses of each other and they preserve the ordering given by inclusion.

This implies:

9.36 Proposition.

(i) Let K1 and K2 be abelian number fields. Then D(K1K2) = D(K1)D(K2)
and D(K1 ∩K2) = D(K1) ∩ D(K2).

(ii) Let X1 and X2 be finite groups of Dirichlet characters. Then QX1X2
=

QX1QX2 and QX1∩X2 = QX1 ∩QX2 .

(iii) The conductor of an abelian number field K is equal to the conductor of
D(K).

9.37 Definition. A Dirichlet character χ is called even if χ(−1) = 1. Otherwise,
so if χ(−1) = −1, it is called odd.

9.38 Proposition. An abelian number field is real if and only if the corresponding
group of Dirichlet characters contains only even characters.
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Proof. Let the abelian number field K be contained in a cyclotomic field Q(ζN ).
Then K is real if and only if K ⊆ Q(ζN + ζ−1

N ), which is the case if and only if
σ−1 ∈ Gal(Q(ζN ) : K). This is equivalent to χ(−1) = 1 for all χ ∈ D(K).

The group D(K) is isomorphic to the dual of Gal(K : Q). It describes the splitting
of primes in the field K.

9.39 Proposition. Let K be an abelian number field and let p be a prime. Then p
ramifies in K if and only if there is a χ ∈ D(K) with χ(p) = 0.

Proof. Let N ∈ N∗ be such that K ⊆ Q(ζN ). Write N = ptM with p ∤ M .
Consider the following diagram, where K ′ = Q(ζpt) ∩K(ζM ).

K(ζM )

K ′

Q

Q(ζM )K

Q(ζpt)

Q(ζN )

Since Q(ζpt) ∩ Q(ζM ) = Q, it follows that K ′(ζM ) = K(ζM ). Therefore, the
extensions K(ζM ) : K and K(ζM ) : K ′ are both extensions with an M -th root of
unity. So the primes above p in K and K ′ do not ramify in K(ζM ). It follows that

eKp = eK(ζM )
p = eK

′

p = [K ′ : Q].

So p ramifies in K if and only if K ′ ̸= Q. Since χ(p) = 0 if and only if χ ̸= ε
for all χ ∈ Dpt , we have that K ′ ̸= Q if and only if there is a χ ∈ D(K ′) with
χ(p) = 0. From K ′(ζM ) = K(ζM ) it also follows that D(K)DM = D(K ′)DM .
Since χ(p) ̸= 0 for all χ ∈ DM , there is a χ ∈ D(K) with χ(p) = 0 if and only if
there is a χ ∈ D(K ′) with χ(p) = 0.

9.40 Theorem. Let K be an abelian number field and let p be a prime. Put Z =

Z
(K)
p and T = T

(K)
p . Then

(i) KT is associated to the group Y = {χ ∈ D(K) | χ(p) ̸= 0 };

(ii) KZ is associated to the group Y ′ = {χ ∈ D(K) | χ(p) = 1 }.
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Proof. For all χ ∈ Y we have χ(p) ̸= 0, so by Proposition 9.39 p does not
ramify in QY . Since Y is the largest subgroup of D(K) with this property, QY is
the largest subfield of K in which p does not ramify: QY = KT .

Since p does not ramify in KT , the field KT is a subfield of Q(ζN ) for some N ∈ N∗

with p ∤ N . For Z ′ = Z
(Q(ζN ))
p = ⟨σp⟩ we have

Dir(Z ′) = {χ ∈ DN | χ(σ) = 1 for all σ ∈ Z ′ }
= {χ ∈ DN | χ(σp) = 1 } = {χ ∈ DN | χ(p) = 1 }.

Put Z ′′ = Z
(KT )
p . By Corollary 7.47 (KT )Z

′′
= K ∩ Q(ζN )Z

′
and (KT )Z

′′
=

KT ∩KZ = KZ . Hence by Proposition 9.36 we have

D(KZ) = D(K) ∩ D(Q(ζN )Z
′
) = D(K) ∩Dir(Z ′) = Y ′.

9.41 Corollary. In the notation of Theorem 9.40: D(K)/Y ∼= T , D(K)/Y ′ ∼= Z
and Y/Y ′ ∼= Z/T .

9.42 Application. We will use Dirichlet characters to show that for each finite
abelian group G there exists an extension L : K of abelian number fields such that
Gal(L : K) ∼= G and no prime ideal of K ramifies in L.

Let G be a finite abelian group. Then G is a product of cyclic groups, say G ∼=
Cn1
× · · · × Cnr

with ni > 1 for all i. Choose r different primes p1, . . . , pr such
that pi ≡ 1 (modni) for i = 1, . . . , r. For each i there is a χi ∈ Dpi of order ni.
Choose another prime pr+1 such that pr+1 ≡ 1 (modn1 · · ·nr) and a χr+1 ∈ Dpr+1

of order n1 · · ·nr. For each i the conductor of χi is pi. Let X = ⟨χ1, . . . , χr+1⟩ and
X ′ = ⟨χ⟩, where χ = χ1 · · ·χr+1. Take L = QX and K = QX′ . Then K ⊆ L and

Gal(L : K) ∼= X/X ′ ∼= ⟨χ1, . . . , χr⟩ ∼= G.

The primes which ramify in L are p1, . . . , pr+1. From Corollary 9.41 it follows that

for each i we have e
(K)
p = e

(L)
p :

T (L)
pi
∼= X/⟨χ1, . . . , χi−1, χi+1, . . . , χr+1⟩ ∼= ⟨χi⟩ ∼= Cni

T (K)
pi
∼= ⟨χ⟩/⟨χni⟩ ∼= Cni .

So e
(L)
p = 1 for all p ∈ Max(OK).

Quadratic number fields

Quadratic number fields correspond to subgroups of D of order 2 and hence to
quadratic Dirichlet characters. Say the field Q(

√
m) with m squarefree ̸= 1 corre-

sponds to the quadratic Dirichlet character χm. We will describe this character.
By Proposition 9.13 the conductor of Q(

√
m) is |Dm|. So by Proposition 9.36(iii)

Nχm
= |Dm|.
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9.43 Proposition. Let K be a quadratic number field. Then D(K) is of order 2
and generated by a quadratic Dirichlet character with conductor |disc(K)|.

The character χm describes the splitting behavior of primes in Q(
√
m):

χm(p) =


0 if p ramifies,

1 if p splits completely,

−1 if p remains prime.

The field Q(
√
m) is real if and only if m > 0, so

χm(−1) = sgn(m).

These values determine χm, because it is completely multiplicative. The value of
χm in odd primes p is given by the Legendre symbol:

χm(p) =

(
m

p

)
.

Therefore, the value in odd n ∈ N∗ is given by the Jacobi symbol:

χm(n) =

(
m

n

)
.

9.5 Dirichlet L-series

A Dirichlet character is an arithmetic function. Because it is completely multi-
plicative, it is worthwhile to study the associated Dirichlet series.

9.44 Definition. The L-series of χ ∈ D is the Dirichlet series

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

The L-function of the trivial Dirichlet character is the Riemann zeta function.
Unlike the Riemann zeta function the L-function of a nontrivial Dirichlet character
is analytic at s = 1. For this we need the following simple lemma.

9.45 Lemma. Let χ be a nontrivial Dirichlet character. Then
∑Nχ

n=1 χ(n) = 0.

Proof. Since χ is nontrivial, there is a k ∈ Z such that χ(k) /∈ {0, 1}. Then

χ(k)

Nχ∑
n=1

χ(n) =

Nχ∑
n=1

χ(kn) =

Nχ∑
n=1

χ(n).

Because χ(k) ̸= 0, this implies
∑Nχ

n=1 χ(n) = 0.
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9.5 Dirichlet L-series

9.46 Proposition. Let χ be a nontrivial Dirichlet character. Then the L-series
converges to an analytical function on the half-plane ℜ(s) > 0.

Proof. By Lemma 9.45 we have
∑N
n=1 χ(n) = O(1). The proposition follows

from Theorem 8.12.

For χ ̸= 1 the function L(s, χ) has a continuation to an analytic function on the
whole plane. The completed L-series is given by

Λ(s, χ) = L∞(s, χ)L(s, χ) for ℜ(s) > 1,

where

L∞(s, χ) =
(Nχ

π

) s
2
Γ
(s+ k

2

)
,

the number k depending on the sign of χ:

k =

{
0 if χ is even,

1 if χ is odd.

The completed L-series for nontrivial χ admit analytic continuations to the whole
plane and satisfy the functional equations

Λ(s, χ) =
g(χ)

ik
√
Nχ

Λ(1− s, χ).

The g(χ) in this equation is the Gauß sum of the character. For the gauß sum see
the next section. For the continuation of L(s, χ) see section VII.2 of [31].

Since χ is completely multiplicative, by Corollary 8.17 the L-series has a product
representation. Note that the series converges absolutely for ℜ(s) > 1.

9.47 Proposition. Let χ ∈ D. Then for ℜ(s) > 1:

L(s, χ) =
∏
p

1

1− χ(p)
ps

The group D(K) associated to an abelian number field K describes the splitting
behavior of primes in K (Proposition 9.39 and Theorem 9.40). This leads to a
relation between the L-series of the Dirichlet characters in D(K) and the Dedekind
zeta function of K.

9.48 Theorem. Let K be an abelian number field. Then

ζK(s) =
∏

χ∈D(K)

L(s, χ).
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Proof. The Dirichlet series ζK(s) and all L(s, χ) have a product representation
for ℜ(s) > 1. We prove the equality by comparing these product representations.

Let p be a prime and put e = e
(K)
p and f = f

(K)
p . Then [K : Q] = ref , where r is

the number of p ∈ Max(OK) above p. We have to prove that∏
p|pOK

1

1− 1
N(p)s

=
∏

χ∈D(K)

1

1− χ(p)
ps

.

For the left hand side we have∏
p|pOK

1

1− 1
N(p)s

=
( 1

1− 1
pfs

)r
and for the right hand side, using the notation of Theorem 9.40,

∏
χ∈D(K)

1

1− χ(p)
ps

=
∏
χ∈Y

1

1− χ(p)
ps

=

f−1∏
a=0

∏
χ∈Y

χ(p)=ζaf

1

1− χ(p)
ps

=

f−1∏
a=0

(
1

1− ζaf
ps

)r

=

(
f−1∏
a=0

1

1− ζaf
ps

)r
=
( 1

1− 1
pfs

)r
.

We have a product of meromorphic functions on ℜ(s) > 0:

ζK(s) = ζ(s) ·
∏

χ∈D(K)
χ ̸=1

L(s, χ),

where the two zeta functions have only one single pole at s = 1. The L-functions
for χ ̸= 1 are analytic in the half-plane. So we can express for abelian K the
residue of ζK(s) at s = 1 in terms of values of L-series for s = 1:

9.49 Corollary. Let K be an abelian number field. Then

Res
s=1

ζK(s) =
∏

χ∈D(K)
χ ̸=1

L(1, χ).

For a given χ ∈ D of order n ̸= 1 we have in particular

Res
s=1

ζQχ(s) =

n−1∏
a=1

L(1, χa).

The left hand side is nonzero by the class number formula for the number field Qχ,
so the L-functions of nontrivial Dirichlet characters χ do not have a zero at s = 1:
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9.50 Theorem. Let χ be a nontrivial Dirichlet character. Then L(1, χ) ̸= 0.

An application is a well-known theorem of Dirichlet on primes in an arithmetic
progression. In its proof we will use the following lemma.

9.51 Lemma. Let N ∈ N∗ and a ∈ Z such that gcd(a,N) = 1. Then

∑
χ∈DN

χ(a) =

{
φ(N) if a ≡ 1 (modN),

0 if a ̸≡ 1 (modN).

Proof. For a ≡ 1 (modN) we have χ(a) = 1 for all χ ∈ DN . So assume that
a ̸≡ 1 (modN). Then there exists a χ0 ∈ DN such that χ0(a) ̸= 0, 1 and we have

χ0(a)
∑
χ∈DN

χ(a) =
∑
χ∈DN

(χ0χ)(a) =
∑
χ∈DN

χ(a).

Since χ0(a) ̸= 1 it follows that
∑
χ∈DN

χ(a) = 0.

9.52 Theorem (Dirichlet). Let N ∈ N∗, a ∈ Z such that gcd(a,N) = 1. Then the
set of primes p ≡ a (modN) has Dirichlet density 1

φ(N) . In particular there are

infinitely many of these primes.

Proof. Let χ ∈ DN . By Proposition 8.31 we have

logL(s, χ) ∼
∑
p

χ(p)

ps
.

Therefore, using Lemma 9.51

∑
χ∈DN

χ(a) logL(s, χ) ∼
∑
χ∈DN

∑
p

χ(a)χ(p)

ps
=
∑
p

∑
χ∈DN

χ(a)χ(p)

ps

=
∑

p≡a (modN)

φ(N)

ps
.

On the other hand by Theorem 9.50∑
χ∈DN

χ(a) logL(s, χ) = ζ(s) +
∑
χ∈DN
χ ̸=1

χ(a) logL(s, χ) ∼ ζ(s).

Hence ∑
p≡a (modN)

1

ps
∼ 1

φ(N)
ζ(s) ∼ − 1

φ(N)
log(s− 1).

So by Corollary 8.34 we have δ(P ) = 1
φ(N) for P the set of primes p ≡ a (modN).
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9 Abelian Number Fields

Another consequence of Theorem 9.48 is that it leads to formulas for class numbers.
From this theorem and Theorem 8.20 follows:

9.53 Theorem. Let K be an abelian number field of degree n. Then

∏
χ∈D(K)
χ ̸=1

L(1, χ) =


2n−1h(K)Reg(K)√

disc(K)
, if K is totally real,

(2π)n/2h(K)Reg(K)

#(µ(K))
√
|disc(K)|

, if K is totally imaginary.

.

In particular for quadratic number fields we have:

9.54 Corollary. Let m ∈ Z be squarefree ̸= 1. Put hm = h(Q(
√
m)). Then

L(1, χ−1) =
π
4h−1, L(1, χ−3) =

π
√
3

9 h−3 and

L(1, χm) =


πhm√
−Dm

if m < −3,

2 log εm · hm√
Dm

if m > 0.

(εm is the fundamental unit of the real quadratic number field Q(
√
m).)

The next examples show how in principle L(1, χm) can be calculated for a given
m. Later in this chapter a better technique will be described.

9.55 Example. For m = −1 we have

L(1, χ−1) = 1− 1
3 + 1

5 −
1
7 + · · · =

∫ 1

0

(1− x2 + x4 − · · · ) dx

=

∫ 1

0

dx

1 + x2
= arctan 1 =

π

4
.

So indeed h−1 = 1.

9.56 Example. For m = 5 we have h5 =
√
5

2 log 1+
√

5
2

L(1, χ5) and

L(1, χ5) = (1− 1
2 −

1
3 + 1

4 ) + ( 16 −
1
7 −

1
8 + 1

9 ) + · · ·

=

∫ 1

0

((1− x− x2 + x3) + (x5 − x6 − x7 + x8) + · · · ) dx

=

∫ 1

0

(1− x− x2 + x3)(1 + x5 + x10 + · · · ) dx

=

∫ 1

0

1− x− x2 + x3

1− x5
dx =

∫ 1

0

1− x2

1 + x+ · · ·+ x4
dx
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= −
∫ 1

0

1− 1
x2

1
x2 + 1

x + 1 + x+ x2
dx =

∫ ∞

2

dy

y2 + y − 1
=

∫ ∞

5
2

dz

z2 − 5
2

=
1

2
√

5
2

log
5
2 + 1

2

√
5

5
2 −

1
2

√
5
=

2√
5
log

√
5 + 1

2
.

So h5 = 1.

9.57 Example: complex biquadratic number fields. Let K be a complex bi-
quadratic number field and K1, K2 and K3 its quadratic subfields, say K1 is the
real quadratic subfield and ε its fundamental unit. By Theorem 9.53 we have

4π2h(K)Reg(K)

w(K)
√
|disc(K)|

=
2h(K1) log ε√
|disc(K1)|

· 2πh(K2)

w(K2)
√
|disc(K2)|

· 2πh(K3)

w(K3)
√
|disc(K3)|

.

It is shown in exercise 9 of chapter 1 that

disc(K) = disc(K1) · disc(K2) · disc(K3).

So for #(µ(K)) ̸= 4, 6, 8, 12 the formula reduces to

h(K)Reg(K) = h(K1)h(K2)h(K3) log ε.

Inspection shows that this formula holds for #(µ(K)) = 4, 6, 12 as well, so K =
Q(ζ8) = Q(i,

√
2) is the only exception. Hence for K ̸= Q(ζ8):

h(K) = 1
2Q(K)h(K1)h(K2)h(K3),

where Q(K) is the Hasse index of K. By Theorem 5.48 the Hasse index is 1 or 2.

9.58 Example: real biquadratic number fields. Let K be a real biquadratic
number field, K1, K2 and K3 its quadratic subfields with fundamental units ε1, ε2
and ε3 respectively. By Theorem 9.53 we now have

24h(K)Reg(K)

2
√
|disc(K)|

=
22h(K1) log ε1

2
√
|disc(K1)|

· 2
2h(K2) log ε2

2
√
|disc(K2)|

· 2
2h(K3) log ε3

2
√
|disc(K3)|

.

This reduces to

h(K)Reg(K) = h(K1)h(K2)h(K3) log ε1 log ε2 log ε3.

The fundamental units of the quadratic subfields are units of K. The regulator
of K is defined using a fundamental system of units of K. Taking the system
(ε1, ε2, ε3) instead leads to

Reg(ε1, ε2, ε3) =

∣∣∣∣∣∣
log ε1 log ε1 − log ε1
log ε2 − log ε2 log ε2
log ε3 − log ε3 − log ε3

∣∣∣∣∣∣ = 4 log ε1 log ε2 log ε3.
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From

(O∗
K : O∗

K1
O∗
K2
O∗
K3

) =
Reg(ε1, ε2, ε3)

Reg(K)

then follows

h(K) = 1
4 (O

∗
K : O∗

K1
O∗
K2
O∗
K3

)h(K1)h(K2)h(K3).

9.6 The Gauß sum of a Dirichlet character

In one of his proofs of the Quadratic Reciprocity Law Gauß expressed square roots
of odd primes as sums of roots of unity, nowadays called Gauß sums.

9.59 Definition. Let χ ∈ D. We define

g(χ) =

Nχ∑
n=1

χ(n)ζnNχ
.

The number g(χ) is called the (standard) Gauß sum of the Dirichlet character χ.
More generally we define for k ∈ Z:

gk(χ) =

Nχ∑
n=1

χ(n)ζknNχ
.

(Thus g(χ) = g1(χ).)

The sum is over the numbers 1 up to Nχ. Of course any system of representatives
of Z/Nχ will do. The Gauß sum of a χ ∈ D is an element of the m-th cyclotomic
field for m = lcm(o(χ), Nχ).

9.60 Lemma. Let χ ∈ D and k ∈ Z such that gcd(k,Nχ) > 1. Then gk(χ) = 0.

Proof. Put Nχ = dN1 and k = dk1, where d = gcd(k,Nχ). Then

gk(χ) =

N∑
n=1

χ(n)ζk1nN1
=

N1∑
m=1

(
ζk1mN1

∑
n≡m (modN1)

1≤n≤N

χ(n)

)
.

It suffices to show that

sm :=
∑

n≡m (modN1)
1≤n≤N

χ(n) = 0.
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9.6 The Gauß sum of a Dirichlet character

There is a t ∈ Z such that t ≡ 1 (modN1), gcd(t,N) = 1 and χ(t) ̸= 1. We have

χ(t)sm =
∑

n≡m (modN1)
1≤n≤N

χ(nt) = sm.

So sm = 0, because χ(t) ̸= 1.

9.61 Proposition. Let χ ∈ D and k ∈ Z. Then gk(χ) = χ(k)g(χ).

Proof. Put N = Nχ. If gcd(k,N) > 1, then χ(k) = 0 and by Lemma 9.60
gk(χ) = 0. So we assume that gcd(k,N) = 1. Take an l ∈ Z such that kl ≡
1 (modN). Then

gk(χ) =

N∑
n=1

χ(n)ζknN =

N∑
n=1

χ(nl)ζnN = χ(l)

N∑
n=1

χ(n)ζnN = χ(k)g(χ).

9.62 Corollary. Let χ ∈ D. Then g(χ) = χ(−1)g(χ).

Proof. g(χ) =
∑N
n=1 χ(n)ζ

−n
N = g−1(χ) = χ(−1)g(χ).

9.63 Theorem. Let χ ∈ D. Then g(χ)g(χ) = Nχ.

Proof. Put N = Nχ. We compute
∑N
k=1 gk(χ)gk(χ) in two ways.

N∑
k=1

gk(χ)gk(χ) =

N∑
k=1

g(χ)g(χ)χ(k)χ(k) = g(χ)g(χ)

N∑
k=1

χ(k)χ(k)

= g(χ)g(χ) · φ(N)

and, using Lemma 9.45,

N∑
k=1

gk(χ)gk(χ) =

N∑
k=1

( N∑
l=1

χ(l)ζklN

)( N∑
m=1

χ(m)ζ−kmN

)
=

N∑
k=1

N∑
l=1

N∑
m=1

χ(l)χ(m)ζ
(l−m)k
N =

N∑
l=1

N∑
m=1

χ(l)χ(m)

N∑
k=1

ζ
(l−m)k
N

=

N∑
l=1

χ(l)χ(l)

N∑
k=1

1 = φ(N) ·N.

Hence g(χ)g(χ) = N .

233



9 Abelian Number Fields

9.7 The Gauß sum of a quadratic Dirichlet character

By the results in the previous section the Gauß sum of a quadratic Dirichlet char-
acter is determined up to sign:

9.64 Proposition. Let χm be the quadratic Dirichlet character corresponding to the
quadratic number field Q(

√
m), where m is squarefree. Then g(χm)2 = Dm.

Proof. By Theorem 9.63, Corollary 9.62 and Proposition 9.43 we have

g(χm)2 = g(χm)g(χm) = χm(−1)g(χm)g(χm) = χm(−1)|Dm| = Dm.

We will show that in fact g(χm) =
√
Dm (with the usual convention for the square

root of a real number). First the computation will be reduced to the case m = p∗

for p an odd prime. The character χp∗ is the character given by the Legendre
symbol a 7→

(
a
p

)
. Examples strongly suggest that the formula g(χp∗) =

√
p∗ is

indeed the right one, see the Figures 9.1 and 9.2, which are in fact just a variation
on the graphical representation given in Figure 3.1. It took Gauß many years to
establish this result.

9.65 Definition. For a, b ∈ R∗ define

[a, b] =

{
−1 if a < 0 and b < 0,

1 otherwise.

9.66 Lemma. For a, b ∈ R∗ we have
√
a ·
√
b = [a, b]

√
ab.

9.67 Proposition. Let m1,m2 ∈ Z be squarefree ̸= 1 such that gcd(Dm1
, Dm2

) = 1.
Then g(χm1

)g(χm2
) = [m1,m2]g(χm1m2

).

Proof. Put N1 = |Dm1
| and N2 = |Dm2

|. We have

g(χm1)g(χm2) =

(
N1∑
k=1

χm1(k)ζ
k
N1

)(
N2∑
l=1

χm2(l)ζ
l
N2

)

=

N1∑
k=1

N2∑
l=1

χm1(k)χm2(l)ζ
kN2+lN1

N1N2

=

N1N2∑
s=1

χm1(s)χm2(s)ζ
(N1+N2)s
N1N2

(Chinese Remainder Theorem)

= gN1+N2(χm1m2) = χm1m2(N1 +N2)g(χm1m2)

= χm1(N1 +N2)χm2(N1 +N2)g(χm1m2)

= χm1(N2)χm2(N1)g(χm1m2)

= χm1(sgn(m2))χm2(sgn(m1))χm1(m2)χm2(m1)g(χm1m2)
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k : term ζkp
k : term −ζkp
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Figure 9.1: Terms of the Gauß sum for the first six odd primes
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k : term ζkp
k : term −ζkp

p = 19

1

2

3
45

6

7

8

9

10

11

12

13
14 15

16

17

18

p = 23

1

2

3

4
567

8

9

10

11

12

13

14

15
16 17 18

19

20

21

22

p = 29

1

2

3

4
5

6789
10

11

12

13

14

15

16

17

18
19

20 21 22 23
24

25

26

27

28

p = 31

1

2

3

4
5

6789
10

11
12

13

14

15

16

17

18

19
20

21
22 23 24 25

26
27

28

29

30

p = 37
1

2

3
4

5
6

7891011
12

13
14

15

16

17

18

19

20

21
22
23

24
25

26 27 28 29 30
31

32
33
34

35

36

p = 41
1

2
3

4
5

6
7

8910111213
14

15
16

17
18
19

20

21

22
23
24
25
26

27
28 29 30 3132 33

34
35

36
37
38
39

40

Figure 9.2: Terms of the Gauß sum for the next six odd primes
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9.7 The Gauß sum of a quadratic Dirichlet character

= χm1
(m2)χm2

(m1)g(χm1m2
). (χm1

(sgn(m2)) = [m1,m2])

So it remains to prove that

χm1
(m2)χm2

(m1) = [m1,m2].

If m1 = n1n2 such that gcd(Dn1
, Dn2

) = 1, then

χm1
(m2)χm2

(m1) = χn1
(m2)χn2

(m2)χm2
(n1)χm2

(n2)

= χn1
(m2)χm2

(n1) · χn2
(m2)χm2

(n2)

and also

[m1,m2] = [n1,m2] · [n2,m2].

So it suffices to verify the formula for m1 = p∗ and m2 = q∗ with p and q different
odd primes, and also for m1 = p∗ (with p an odd prime) and m2 ∈ {−1, 2,−2}.

1. χp∗(q
∗) = [p∗, q∗]

(
p∗

q

)
= [p∗, q∗]

(
q
p

)
, so χp∗(q

∗)χq∗(p
∗) =

(
q
p

)(
p
q

)
= [p∗, q∗].

2. χp∗(−1)χ−1(p
∗) = sgn(p∗) = [p∗,−1].

3. χp∗(2)χ2(p
∗) = (−1)

p2−1
8 χ2(p) = 1 = [p∗, 2].

4. χp∗(−2)χ−2(p
∗) = sgn(p∗)χp∗(2)χ2(p

∗)χ−1(p
∗) = sgn(p∗) = [p∗,−2].

This proposition and the lemma will enable us to reduce the computation of the
sign of the Gauß sum of the character χm to the case where m = p∗, where p is an
odd prime and the cases m = −1, m = 2 and m = −2.

9.68 Proposition. g(χ−1) =
√
−4, g(χ2) =

√
8 and g(χ−2) =

√
−8.

Proof. g(χ−1) = ζ4 − ζ34 = 2i =
√
−4, g(χ2) = ζ8 − ζ38 − ζ58 + ζ78 = 2

√
2 and

g(χ−2) = ζ8 + ζ38 − ζ58 − ζ78 = 2
√
−2.

9.69 Theorem. Let p be an odd prime. Then g(χp∗) =
√
p∗.

Proof. Put ζp = ζ. Let T be the linear transformation of the complex vector
space CFp of all maps Fp → C defined by

(Tf)(j) =

p−1∑
k=0

f(k)ζk,

for all f ∈ CFp . (T is a ‘Fourier transformation’.) We will compute the deter-
minant of this transformation T using two bases: the canonical basis and a basis
of characters. Comparison of the results of the two computations will lead to a
computation of the Gauß sum of the quadratic character on Fp.
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First computation

On the canonical basis e0, . . . , ep−1, where ei(j) = δij , the matrix of T is of Van-
dermonde type:

(ζ(i−1)(j−1))1≤i≤p
1≤j≤p

.

The square of this matrix is

p 0 0 · · · 0 0
0 0 0 · · · 0 p
0 0 0 · · · p 0
...

...
...

...
...

0 0 p · · · 0 0
0 p 0 · · · 0 0


.

So (det(T ))2 = (−1)
p−1
2 pp, hence

|det(T )| = p
p−1
2
√
p.

(Alternatively, det(T )2 = disc(Xp − 1) = (−1)
p−1
2

∏p−1
k=0 pζ

k
p .)

On the other hand we can use the formula for the determinant of a Vandermonde
matrix:

det(T ) =
∏
i>j

0≤i,j≤p−1

(ζi − ζj).

The factors in this product can be grouped in the following way:

det(T ) =
∏
i>j

1≤i,j≤ p−1
2

(ζi − ζj)(ζp−j − ζp−i)(ζp−i − ζj)(ζp−j − ζi)·

·

p−1
2∏
i=1

(ζi − 1)(ζp−i − 1) ·

p−1
2∏
i=1

(ζp−i − ζi).

All factors in the first and in the second product are positive reals, while the factors
in the third product are equal to −i times a positive real. So we have

det(T ) = (−i)
p−1
2 pp−1√p.

Second computation

For each of the p− 1 multiplicative characters χ of the field Fp we have

(Tχ)(j) =

p−1∑
k=1

χ(k)ζjk = χ(j)g(χ).
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9.7 The Gauß sum of a quadratic Dirichlet character

So
Tχ = g(χ)χ.

Let ω be a character of Fp of order p− 1. Then the p− 1 powers

ω0, ω, ω, ω2, ω2, . . . , ω
p−3
2 , ω

p−3
2 , ω

p−1
2 ,

of ω span a linear subspace CFp of dimension p − 1. These functions all take the
value 0 in 0, except ω0, which takes the value 1. So a basis of CFp is

e0, ω
0, ω, ω, ω2, ω2, . . . , ω

p−3
2 , ω

p−3
2 , ω

p−1
2 .

The character ω
p−1
2 is the unique quadratic character χp∗ of Fp. On this basis the

transformation T has the matrix

0 p
1 0

0 g(ω)
g(ω) 0

0 g(ω2)
g(ω2) 0

. . .

0 g(ω(p−3)/2)
g(ω(p−3)/2) 0

g(ω(p−1)/2)


.

So

det(T ) = (−p)(−g(ω)g(ω))(−g(ω2)g(ω2)) · · · (−g(ω(p−3)/2)g(ω(p−3)/2))g(ω(p−1)/2).

For the p− 2 nontrivial characters χ we have

g(χ)g(χ) = χ(−1)g(χ)g(χ) = χ(−1)p.

Hence

det(T ) = p
p−1
2 (−1)

p−1
2 g(ω(p−1)/2)

(p−3)/2∏
k=1

ωk(−1)

= p
p−1
2 (−1)

p−1
2 g(ω(p−1)/2)(−1)

p−1
2 · 12 ·

p−1
2 · p−3

2 .

The two computations together yield

g(ω
p−1
2 ) = i(

p−1
2 )2√p =

√
p∗.

Finally,

239



9 Abelian Number Fields

9.70 Theorem (Gauß). Let m ∈ Z be squarefree ̸= 1. Then

g(χm) =
√
Dm.

Proof. Letm = up∗1 · · · p∗r with u ∈ {±1,±2} and p1, . . . , pr different odd primes.
Then

χm = χuχp∗1 · · ·χp
∗
r ,

a product of r (or r − 1 if u = 1) Dirichlet characters for which the theorem
has shown to hold (Proposition 9.68 and Theorem 9.69). The theorem follows by
induction using Lemma 9.66 and Proposition 9.67: let m1,m2 ∈ Z be squarefree
̸= 1 such that gcd(Dm1 , Dm2) = 1, then

g(χm1m2) = [m1,m2]g(χm1)g(χm2) = [m1,m2]
√
Dm1

√
Dm2

= [m1,m2][Dm1
, Dm2

]
√
Dm1m2

=
√
Dm1m2

.

An equivalent formulation is: for quadratic χ ∈ D we have g(χ) =
√
χ(−1)Nχ.

9.8 Class number formulas

We compute L(1, χ) for a χ ∈ D. Put N = Nχ. By Proposition 9.61

χ(k) =
1

g(χ)

N∑
n=1

χ(n)ζ−knN .

So we have

L(1, χ) =

∞∑
k=1

χ(k)

k
=

1

g(χ)

∞∑
k=1

1

k

N−1∑
n=1

χ(n)e−
2kπin

N =
1

g(χ)

N−1∑
n=1

χ(n)

∞∑
k=1

e−
2πink

N

k
.

9.71 Lemma. Let ϑ ∈ R such that 0 < ϑ < 2π. Then
∞∑
k=1

eikϑ

k
= − log

(
2 sin

ϑ

2

)
+ i
(π
2
− ϑ

2

)
.

Proof. The power series
∑

zk

k converges for |z| ≤ 1 and z ̸= 1 to the principal
value of − log(1− z). For |z| < 1 the argument of 1− z is between −π2 and π

2 . We
have

|1− eiϑ| = |e iϑ
2 − e− iϑ

2 | =
∣∣∣2i sin ϑ

2

∣∣∣ = 2 sin
ϑ

2
and

arg(1− eiϑ) = arg(e
iϑ
2 − e− iϑ

2 ) + arg(e−
iϑ
2 ) =

π

2
− ϑ

2
.

Since − log(1− z) = − log |1− z| − i arg(1− z), the lemma follows.
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9.72 Theorem. Let χ ∈ D and N = Nχ. Then

L(1, χ) = − 1

g(χ)

N−1∑
n=1

χ(n) log sin
nπ

N
+

iπ

Ng(χ)

N−1∑
n=1

χ(n)n.

Proof. By the lemma

∞∑
k=1

e−
2πink

N

k
= − log

(
2 sin

nπ

N

)
+ i
(π
2
+
nπ

N

)
= − log 2 +

iπ

2
− log sin

nπ

N
+
iπ

N
n.

Class number formulas for quadratic number fields

The Gauß sum of χm has been computed in section 9.6 (Theorem 9.70). It is purely
imaginary for m < 0 and real for m > 0. So for the quadratic case Theorem 9.72
yields the following.

9.73 Theorem. Let m ∈ Z be squarefree and ̸= 1. Then

L(1, χm) =
π

Dm

√
−Dm

−Dm−1∑
n=1

χm(n)n

if m < 0, and

L(1, χm) = − 1√
Dm

Dm−1∑
n=1

χm(n) log sin
πn

Dm

if m > 0.

Now we have two computations of L(1, χm). In one of them (Corollary 9.54) the
class number occurs. Equating the two outcomes yields formulas for the class
numbers.

9.74 Theorem. Let m ∈ Z be squarefree and ̸= 1. Then for m < 0

hm =
wm
2Dm

−Dm−1∑
n=1

χm(n)n

and for m > 0

hm = − 1

2 log εm

Dm−1∑
n=1

χm(n) log sin
πn

Dm
.
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9.75 Examples.

h−3 = −6

6

2∑
n=1

χ−3(n)n = −(1− 2) = 1,

h−1 = −4

8

3∑
n=1

χ−1(n)n = −1

2
(1− 3) = 1,

h−7 = − 2

14

6∑
n=1

χ−7(n)n = −1

7
(1 + 2− 3 + 4− 5− 6) = 1,

h−5 = − 2

40

19∑
n=1

χ−5(n)n = − 1

20
(1 + 3 + 7 + 9− 11− 13− 17− 19) = 2.

9.76 Example. For m > 0 the formula can be put in the following form:

ε2hm
m =

Dm−1∏
n=1

(
sin

πn

Dm

)−χm(n)

.

For m = 5:

ε2h5
5 =

sin 2π
5 sin 3π

5

sin π
5 sin 4π

5

=

(
sin 2π

5

sin π
5

)2

=
(
2 cos

π

5

)2
=

(
1 +
√
5

2

)2

= ε25,

so h5 = 1.

9.77 Example. For m > 0 a somewhat different formula is often easier to handle.
From

L(1, χm) = − 1√
Dm

Dm−1∑
n=1

χm(n) log(1− ζnDm
)

and Corollary 9.54 follows

ε2hm
m =

Dm−1∏
n=1

(1− ζnDm
)−χm(n) =

∏
χm(n)=−1(1− ζnDm

)∏
χm(n)=1(1− ζnDm

)
.

For example

ε2h2
2 =

(1− ζ38 )(1− ζ58 )
(1− ζ8)(1− ζ78 )

=
2− ζ38 − ζ−3

8

2− ζ8 − ζ−1
8

=
2 +
√
2

2−
√
2
= 3 + 2

√
2 = ε22.

So h2 = 1.

Finally for m < 0 we further simplify the class number formula. For m ≡
2, 3 (mod 4) will use the following.
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9.78 Lemma. Let m < 0 with m ≡ 2, 3 (mod 4) and m squarefree. Then

χm(n− 2m) = −χm(n)

for all n ∈ Z.

Proof. We may assume that n ≥ 0. For n with gcd(n, 4m) > 1 this is trivially
the case. So we assume that ggd(n, 4m) = 1. Then for m ≡ 3 (mod 4):

χm(n) =

(
m

n

)
=

(
−1
n

)(
−m
n

)
= χ−1(n)χ−m(n).

and so χm(n − 2m) = χ−1(n − 2m)χ−m(n − 2m) = −χ−1(n)χ−m(n) = −χm(n).
For m ≡ 2 (mod 4) we put m = −2m0. Then

χm(n) =

(
−2
n

)(
m0

n

)
= χ−2(n)χm0(n).

So χm(n− 2m) = χ−2(n− 2m)χm0
(n− 2m) = −χ−2(n)χm0

(n) = −χm(n).

9.79 Theorem. Let m < 0 with m ≡ 2, 3 (mod 4) and m squarefree. Then

hm =

−m∑
n=1

χm(n).

Proof. For m = −1 the formula is correct. We assume that m ̸= −1. Then

−4m−1∑
n=1

χm(n)n =

−2m−1∑
n=1

χm(n)n+

−4m−1∑
n=−2m+1

χm(n)n

=

−2m−1∑
n=1

χm(n)n+

−2m−1∑
n=1

χm(n− 2m)(n− 2m)

=

−2m−1∑
n=1

χm(n)n−
−2m−1∑
n=1

χm(n)(n− 2m) = 2m

−2m−1∑
n=1

χm(n)

= 2m

(−m−1∑
n=1

χm(n) +

−2m−1∑
n=−m+1

χm(n)

)

= 2m

(−m−1∑
n=1

χm(n)−
−1∑

n=m+1

χm(n)

)

= 2m

(−m−1∑
n=1

χm(n) +

−1∑
n=m+1

χm(−n)

)
= 4m

−m−1∑
n=1

χm(n).

Next we look at the case m ≡ 1 (mod 4).
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9.80 Theorem. Let m < −3 with m ≡ 1 (mod 4) and m squarefree. Then

hm =
1

2− χm(2)

−m−1
2∑

n=1

χm(n).

Proof. We have

−m−1∑
n=1

χm(n)n =

−m−1
2∑

n=1

χm(2n) · 2n+

−m−1
2∑

n=1

χm(2n− 1)(2n− 1)

= 2χm(2)

−m−1
2∑

n=1

χm(n)n+

−m−1∑
n=−m+1

2

χm(2n+m)(2n+m)

= 2χm(2)

−m−1∑
n=1

χm(n)n+mχm(2)

−m−1∑
n=−m+1

2

χm(n)

= 2χm(2)

−m−1∑
n=1

χm(n)n−mχm(2)

−m−1
2∑

n=1

χm(n).

Hence
−m−1∑
n=1

χm(n)n =
m

2− χm(2)

−m−1
2∑

n=1

χm(n).

9.81 Examples.

h−5 = χ−5(1) + χ−5(3) = 1 + 1 = 2,

h−19 = 1
3 (χ−19(1) + χ−19(2) + χ−19(3) + χ−19(4) + χ−19(5) + χ−19(6)

+ χ−19(7) + χ−19(8) + χ−19(9))

= 1
3 (1− 1− 1 + 1 + 1 + 1 + 1− 1 + 1) = 1.

Now we have solved the problem on the distribution of quadratic residues men-
tioned in chapter 3 on page 53 for primes ≡ 3 (mod 4).

9.82 Corollary. Let p ̸= 3 be a prime with p ≡ 3 (mod 4). Then

p−1
2∑

n=1

(
n

p

)
=

{
h−p if p ≡ 7 (mod 8),

3h−p if p ≡ 3 (mod 8).

Proof. This follows from χ−p(n) =
(
n
p

)
for all n ∈ Z.
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9.8 Class number formulas

Among the numbers 1, . . . , p− 1 there are as many quadratic residues as there are
nonquadratic residues. For p ≡ 3 (mod 4) in the first half of these numbers the
quadratic residues outnumber the nonquadratic residues by h−p or 3h−p, depending
on p modulo 8. Note that for this we needed the sign of the quadratic Gauß sum:
the Gauß sum is a factor in the class number formula. For m ≡ 3 (mod 4) we
further simplify the class number formula.

9.83 Theorem. Let m < 0 be squarefree and m ≡ 3 (mod 4). Then

hm = 2 ·

−m−1
4∑

k=1

χ−m(k).

Proof.

hm =

−m−1∑
k=1

χm(k) =

−m−1
2∑
l=1

χm(2l − 1) =

−m−1
2∑
l=1

(
−1

2l − 1

)
χ−m(2l − 1)

=

−m−1
4∑
l=1

(
−1

2l − 1

)
χ−m(2l − 1) +

−m−1
2∑

l=−m+3
4

(
−1

2l − 1

)
χ−m(2l − 1)

=

−m−1
4∑
l=1

(
−1

2l − 1

)
χ−m(2l − 1) +

−m−1
4∑
s=1

(
−1

m− 2s

)
χ−m(2s)

=
∑

1≤t≤−m−1
2

t≡0,1 (mod 4)

χ−m(t)−
∑

1≤t≤−m−1
2

t≡2,3 (mod 4)

χ−m(t) = 2 ·
∑

1≤t≤−m−1
2

t≡0,1 (mod 4)

χ−m(t)

= 2 ·

( ∑
1≤a≤−m−1

8

χ−m(a) +
∑

−m+1
8 ≤b≤−m−1

4

χ−m(b)

)
= 2 ·

−m−1
4∑

k=1

χ−m(k).

Now we have a solution for the problem in chapter 3 for primes ≡ 1 (mod 4) as
well.

9.84 Corollary. Let p be a prime with p ≡ 1 (mod 4). Then

p−1
4∑

k=1

(
k

p

)
= 1

2h−p.

Proof. This follows from χp(n) =
(
n
p

)
for all n ∈ Z.
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9 Abelian Number Fields

For primes p with p ≡ 1 (mod 4) we now have

h−p = 2 ·

p−1
4∑

k=1

(
k

p

)
≡ 2 · p− 1

4
(mod 4).

So h−p ≡ p−1
2 (mod 4). Further note that the 2-rank of Cℓ(O−p) equals 1. For

p ≡ 1 (mod 8) we have h−p ≡ 0 (mod 4) and for p ≡ 5 (mod 8) we have h−p ≡
2 (mod 4). So for p ≡ 1 (mod 8) the 2-primary part of Cℓ(O−p) is cyclic of order at
least 4. For p ≡ 5 (mod 8) the 2-primary part of Cℓ(O−p) is of order 2.

9.9 Cyclotomic units

Let L = Q(ζm) and K = Q(ζm + ζ−1
m ), where m ∈ N∗ with m ̸≡ 2 (mod 4) and

m ̸= 1.

9.85 Definition. A ν ∈ O∗
L is called a cyclotomic unit if

ν ∈ ⟨−1, ζm, 1− ζm, 1− ζ2m, . . . , 1− ζm−1
m ⟩.

The group of cyclotomic units in Q(ζm) is denoted by Cm and its subgroup of
cyclotomic units in K by C+m.

From now on we assume that in this section m is a prime power, say m = pr

with p a prime. By Theorem 5.51 a fundamental system of units of K is also a
fundamental system of units of L. We will show that C+m is of finite index in O∗

K .

9.86 Lemma.

Cm = ⟨−1, ζm, 1− ζam | a ∈ Z \ pZ ⟩ ∩ O∗
L =

〈
−1, ζm,

1− ζam
1− ζm

∣∣∣ a ∈ Z \ pZ
〉
.

Proof. For k, b ∈ N∗ with k < r and p ∤ b we have

1− ζbp
k

m =

pk−1∏
j=0

(1− ζbmζ
j
pk
) =

pk−1∏
j=0

(1− ζb+jp
r−k

m ).

Because p ∤ b + jpr−k, the first identity in the lemma follows from this. For the
second identity use the fact that all 1 − ζam with p ∤ a generate the same ideal of
Z[ζm].

9.87 Notation. For a ∈ Z \ pZ put

ξa = ζ1−a2m

1− ζam
1− ζm

=
ζa2m − ζ−a2m

ζ2m − ζ−1
2m

=
sin aπ

m

sin π
m

.
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9.9 Cyclotomic units

9.88 Lemma. Let a ∈ Z \ pZ. Then

ξa ∈ C+m , ξa+m = −ξa and ξ−a = −ξa.

Proof. For p odd ζ2m ∈ ⟨−1, ζm⟩ ⊆ Cm and for p = 2 we have ζa−1
2m = ζ

(a−1)/2
m .

So ξa ∈ Cm and from ξa = ξa follows that ξa ∈ C+m. The identity ξa+m = −ξa follows
from ζ−m2m = −1 and since ζ−a2m − ζa2m = −(ζa2m − ζ−a2m), we have ξ−a = −ξa.

9.89 Proposition.

Cm = ⟨−1, ζm, ξa | 1 < a < m
2 , p ∤ a⟩ and C+m = ⟨−1, ξa | 1 < a < m

2 , p ∤ a⟩.

Proof. The second identity follows from the first. The first is a direct conse-
quence of the Lemmas 9.86 and 9.88.

The ξa with 1 < a < m
2 and p ∤ a form a system of φ(m)

2 − 1 units of O∗
K . We will

prove that C+m is of finite index in O∗
K by showing that this system has a nonzero

regulator. The following lemma on the computation of determinants will be used.

9.90 Lemma. Let G be a finite abelian group and f a map from G to C. Then

(i) det
(
f(στ−1)

)
σ,τ∈G =

∏
χ∈G∨

∑
σ∈G

χ(σ)f(σ),

(ii) det
(
f(στ−1)− f(σ)

)
σ,τ∈G
σ,τ ̸=1

=
∏
χ∈G∨

χ̸=1

∑
σ∈G

χ(σ)f(σ),

(iii) if
∑
σ f(σ) = 0, then det

(
f(στ−1)

)
σ,τ∈G
σ,τ ̸=1

=
1

#(G)

∏
χ∈G∨

χ ̸=1

∑
σ∈G

χ(σ)f(σ).

Proof.

(i) Consider the C-linear transformation T : CG → CG defined by

T (h)(τ) =
∑
σ∈G

f(σ)h(στ) for all h ∈ CG and τ ∈ G.

On the canonical basis (eσ)σ∈G, where eσ(τ) = δσ,τ , the transformation T
acts as follows

(Teσ)(τ) =
∑
ρ

f(ρ)eσ(ρτ) = f(στ−1).

So the matrix of T on the canonical basis is
(
f(στ−1)

)
σ,τ∈G. The transfor-

mation T maps a character χ ∈ G∨ to T (χ) ∈ CG defined by

T (χ)(τ) =
∑
σ

f(σ)χ(στ) =
∑
σ

f(σ)χ(σ)χ(τ).

247



9 Abelian Number Fields

It follows that χ is an eigenvector of T with eigenvalue
∑
σ f(σ)χ(σ). The

characters of G form a basis of CG. On this basis the matrix of T is diagonal.
Therefore,

det
(
f(στ−1)

)
σ,τ∈G = det(T ) =

∏
χ∈G∨

∑
σ∈G

χ(σ)f(σ).

(ii) Let V be the linear subspace of CG of all h with
∑
σ(h) = 0. The transfor-

mation T induces a transformation T ′ of V : for h ∈ V we have∑
τ

T (h)(τ) =
∑
σ,τ

f(σ)h(στ) =
∑
σ,ρ

f(σ)h(ρ) =
(∑

σ

f(σ)
)(∑

ρ

h(ρ)
)
= 0.

The e′τ = eτ − 1
#(G) with τ ̸= 1 form a basis of V . The matrix of T ′ on this

basis is (
f(στ−1)− f(σ)

)
σ,τ∈G
σ,τ ̸=1

.

The nontrivial characters form a basis of V . The formula follows from this.

(iii) Given some ordering on the set G\{1}, we have the following for determinants
of matrices:

det
(
f(στ−1)− f(σ)

)
σ,τ∈G
σ,τ ̸=1

=

∣∣∣∣∣∣∣∣∣
1 0 · · · · · · · · · · · · 0

f(σ)
...

f(σ)

(
f(στ−1)− f(σ)

)
σ,τ∈G
σ,τ ̸=1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 1 · · · · · · 1

f(σ)
...

f(σ)

(
f(στ−1)

)
σ,τ∈G
σ,τ ̸=1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
#(G) 1 · · · · · · 1
0
...
0

(
f(στ−1)

)
σ,τ∈G
σ,τ ̸=1

∣∣∣∣∣∣∣∣∣ .

The regulator of the system (ξa)a, where the a satisfy 1 < a < 1
2p
r and p ∤ a, is

the absolute value of the determinant with entries log|τ(ξa)| with τ ∈ Gal(K : Q).
For these entries we have

log|τ(ξa)| = log|1− τ(ζm)a| − log|1− τ(ζm)|
= log|1− τσa(ζm)| − log|1− τ(ζm)|.

Apply lemma 9.90(ii) to f(σ) = log|1− σ(ζ)|:

Reg((ξa)a) = abs det
(
log|τ(ξa)|

)
a,τ ̸=1

= abs det
(
log|1− τ(ζm)a| − log|1− τ(ζm)|

)
a,τ ̸=1
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= abs det
(
log|1− στ−1(ζm)| − log|1− σ(ζm)|

)
σ,τ ̸=1

= abs
∏
χ∈G∨

χ ̸=1

∑
σ∈G

χ(σ) log|1− σ(ζm)|

= abs
∏

χ∈D(K)
χ ̸=1

∑
1≤a<m/2

χ(a) log|1− ζam|

= abs
∏

χ∈D(K)
χ ̸=1

1
2

m∑
1

χ(a) log|1− ζam|.

For Nχ = pk it follows from

1− ζapk =

pr−k−1∏
t=0

(1− ζtpr−kζ
a
pk) =

pr−k−1∏
t=0

(1− ζtp
k+a

pr )

that
m∑
1

χ(a) log|1− ζam| =
pk∑
a=1

χ(a) log|1− ζapk |.

For χ ∈ D(K) even and Nχ = pk we have by Theorem 9.72

L(1, χ) = − 1

g(χ)

pk∑
a=1

χ(a) log|1− ζapk |

and so
pk∑
a=1

log|1− ζapk | = −g(χ)L(1, χ) = −g(χ)L(1, χ).

Hence
Reg((ξa)a) = abs

∏
χ∈D(K)
χ ̸=1

1
2g(χ)L(1, χ) ̸= 0.

This implies that the cyclotomic units in K form a subgroup of O∗
K of finite index.

Since K is totally real, by Theorem 9.53

Reg((ξa)a) =
1

2(φ(m)/2)−1

∏
χ∈D(K)
χ ̸=1

|g(χ)| ·
∏

χ∈D(K)
χ ̸=1

|L(1, χ)|

=
h(K)Reg(K)√

disc(K)
·
∏

χ∈D(K)

√
Nχ

and this can be further simplified using the following proposition.
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9.91 Proposition. disc(K) =
∏

χ∈D(K)

Nχ and disc(L) = (−1)φ(m)/2
∏

χ∈D(L)

Nχ.

More generally for every abelian number field K

|disc(K)| =
∏

χ∈D(K)

Nχ.

This is the Conductor-Discriminant Formula for abelian number fields, a special
case of the Conductor-Discriminant Formula for abelian number field extensions.
A proof of this formula will be given in chapter 17.

Proof. The sign of the discriminant is given by Proposition 1.46. In chapter 1
disc(K) and disc(L) have been computed (Propositions 1.55 and 1.54):

disc(K) =

{
(−1)

p−1
2 p

1
2 (p

r−1(pr−r−1)−1) if p is odd,

22
r−2(r−1)−1 if p = 2.

and

disc(L) = (−1)φ(m)/2pp
r−1(pr−r−1).

For N ∈ N∗ put a(N) = #{χ ∈ D | Nχ = N }. Then

a(pk) = #(Dpk)−#(Dpk−1) = φ(pk)− φ(pk−1) =

{
pk−2(p− 1)2 if k > 1,

p− 2 if k = 1.

For L we have∏
χ∈D(L)

Nχ =
∏

χ∈Dm

Nχ =

r∏
k=1

pk·a(p
k) = pp−2+(p−1)2

∑r
k=2 kp

k−2

= pp
r−1(pr−r−1),

where the equality of the exponents of p is easily verified by induction on r. For
the field K we need the number of even characters of a given conductor:

b(N) = #{χ ∈ D | Nχ = N and χ(−1) = 1 }.

The number b(pk) is related to a(pk) by

b(pk) =


1
2a(p

k) if k > 1,
1
2 (p− 3) if k = 1 and p odd,

0 if pk = 2.

Now the Conductor-Discriminant Formula for K easily follows from the formula
for L.
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Exercises

By the formula for disc(K) we have

Reg((ξa)a) = h(K)Reg(K)

and so we obtain the following remarkable theorem.

9.92 Theorem. [O∗
K : C+pr ] = h(K).

The abelian groups O∗
K/C

+
pr and Cℓ(K) are of the same order. However, it is

unknown whether they are isomorphic.

Exercises

1. Let p be an odd prime and K the unique abelian number field of degree p. Let p
be the prime ideal of OK above p. There is a unique t ∈ N∗ such that VK,t+1(q) ̸=
VK,t(q). Compute t. (This t occurs in the proof of Lemma 9.2. See also exercise 19
of chapter 7.)

2. (i) Describe all characters of C8. Which of them are induced by a character of a
proper factor group?

(ii) As part (i), but now for the group C4 × C2.

3. Let G be a finite abelian group. Show that each character of G is induced by a
character of a proper subgroup of G if and only if G is not a cyclic group.

4. Describe a character of
⊕∞

i=1 Z/2 which is not induced by a character of a proper
factor group.

5. Give all Dirichlet pre-characters modulo 7, and also all Dirichlet pre-characters
modulo 8, modulo 15 and modulo 24. Write each Dirichlet pre-character χ modulo
24 as a product of Dirichlet pre-characters with a conductor less than Nχ.

6. Determine the conductor of the quadratic Dirichlet character χ−1χ−73.

7. Determine the number of Dirichlet pre-characters with conductor 260. How many
of them are quadratic?

8. Let m,n ∈ Z be different and squarefree ̸= 1. Show that the conductor of
Q(
√
m,
√
n) is equal to the least common multiple of the conductors of the quadratic

number fields Q(
√
m) and Q(

√
n).

9. Verify the conductor-discriminant formula for quadratic and biquadratic number
fields.

10. Let K be an abelian number field and p a prime number. Show that p | NK if and
only if p ramifies.

11. Compute the class number of Q(
√
−29) using Corollary 9.84.
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9 Abelian Number Fields

12. (i) Compute the ideal class group of Q(
√
−55).

(ii) For how many n ∈ N with 1 ≤ n ≤ 27 do we have χ−55(n) = −1 ? Find the
answer without computing character values.

13. Let χ be one of the two Dirichlet characters with conductor 5 and of order 4.
Compute |L(1, χ)| using Theorem 9.73.

14. Let χ be one of the two Dirichlet characters with conductor 7 and of order 3.
Compute |L(1, χ)| using Theorem 9.73.

15. Let K = Q(
√
−2,
√
3). Compute h(K)Reg(K) using Example 9.57. Compare with

the calculations in Example 5.23 and Example 5.37.

16. Let K = Q(
√
2,
√
3). Compute h(K)Reg(K) using Example 9.58. Compare with

the calculations in Example 5.24 and Example 5.38.

17. Prove:

Z[ζ9]∗ = ⟨−1, ζ9, 1 + ζ9, 1 + ζ29 ⟩ and Z[ζ9 + ζ−1
9 ]∗ = ⟨−1, ζ9 + ζ−1

9 , ζ29 + ζ−2
9 ⟩.
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10 Completions of Number Fields

Absolute values on a field determine a metric on the field. So we have the notion
of limit of a sequence of elements. Completion yields complete fields. In the
proofs of the main theorems of class field theory completions of number fields
are often used. There are two types of (nontrivial) absolute values: archimedean
and nonarchimedean. For number fields a full classification of absolute values is
derived. The archimedean absolute values are essentially the real and pairs of
complex embeddings of the number field, the nonarchimedean ones correspond to
prime ideals of the ring of integers, or, what amounts to the same, to discrete
valuations of the number field. The archimedean absolute values of number fields
are thought of corresponding to primes at infinity. This in analogy to fields of
algebraic functions, for which all absolute values are nonarchimedean.

10.1 Absolute values

An absolute value on a field determines a ‘distance’ in the field, the absolute value
being the distance to 0. It satisfies a triangle inequality with respect to addition
and it respects multiplication.

10.1 Definitions. Let K be a field. A function ∥.∥ : K → R is called an absolute
value on K if

(AV1) ∥x∥ ≥ 0 for all x ∈ K,

(AV2) ∥x∥ = 0 ⇐⇒ x = 0 for all x ∈ K,

(AV3) ∥xy∥ = ∥x∥ · ∥y∥ for all x, y ∈ K,

(AV4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ K.

The pair (K, ∥.∥) is called a valued field . An embedding σ : (K, ∥.∥) → (L, ∥.∥) of
valued fields is a field embedding σ : K → L which respects the absolute value:
∥σ(x)∥ = ∥x∥ for all x ∈ K.

Usually, when we call K a valued field, the absolute value on K is understood and
∥.∥ will be used as a standard notation for this absolute value.

Note that (AV2) implies that an absolute value ∥.∥ : K → R can be restricted to a
map ∥.∥ : K∗ → R∗ and so by (AV3) this map is a group homomorphism.
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10.2 Examples.

1. The ‘ordinary’ absolute value |.| on Q, R and C.

2. An embedding σ : K → C determines an absolute value ∥.∥σ on the field K:

∥x∥σ = |σ(x)| for all x ∈ K.

Since |σ(x)| = |σ(x)|, the absolute values ∥.∥σ and ∥.∥σ are equal.

3. Let v be a discrete valuation of a field K. It determines an absolute value on
K in the following way. Fix some c ∈ R with 0 < c < 1. Then an absolute
value ∥.∥v on K is defined by

∥x∥v = cv(x).

(It is understood that v(0) =∞ and accordingly ∥0∥v = 0.) Here a stronger
version of (AV4) holds:

∥x+ y∥v ≤ max(∥x∥v, ∥y∥v).

4. Let R be a Dedekind domain and K the field of fractions of R. A maximal
ideal p of R determines a discrete valuation vp of K and so, by the previous
example, also an absolute value on K. This absolute value is denoted by
∥.∥p. The absolute value ∥.∥p is called the p-adic absolute value on K.

5. For a number field K and p ∈ Max(OK) one usually takes c = 1
N(p) in the

previous example. Thus in particular for K = Q and p a prime number:

∥x∥p = p−vp(x).

6. Every field K has a trivial absolute value:

∥x∥ =

{
1 if x ̸= 0,

0 if x = 0.

There are no interesting absolute values on finite fields:

10.3 Proposition. Let ∥.∥ be an absolute value on a finite field K. Then ∥.∥ is the
trivial absolute value.

Proof. For all x ∈ K∗ the value ∥x∥ ∈ R∗ is of finite order and positive.
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10.1 Absolute values

An absolute value ∥.∥ on a field K determines a metric d on K:

d(x, y) = ∥x− y∥.

This metric defines a topology on K. Absolute values are considered to be equiv-
alent if they induce the same topology. This comes down to: ∥.∥1 and ∥.∥2 are
equivalent if

∥x∥1 < ∥y∥1 ⇐⇒ ∥x∥2 < ∥y∥2

and by (AV2) and (AV3) we can reduce this to the following definition.

10.4 Definition. Let ∥.∥1 and ∥.∥2 be absolute values on a field K. Then ∥.∥1 and
∥.∥2 are called equivalent if:

∥x∥1 < 1 ⇐⇒ ∥x∥2 < 1 for all x ∈ K.

An equivalence class of nontrivial absolute values on a field K is called a place of
K.

A trivial absolute value determines the discrete topology and this absolute value is
only equivalent to itself.

10.5 Proposition. Let ∥.∥1 and ∥.∥2 be equivalent nontrivial absolute values on a
field K. Then there exists a positive real number a such that

∥x∥a1 = ∥x∥2 for all x ∈ K.

Proof. Fix a y ∈ K such that ∥y∥1 > 1. We can do so because ∥.∥1 is nontrivial.
If there exists an a as asserted, then necessarily

a =
log ∥y∥2
log ∥y∥1

.

We will show that the proposition holds for this a. Let x ∈ K∗. Then ∥x∥1 = ∥y∥b1
for some b ∈ R. Now choose a monotone decreasing sequence mi

ni
(i = 1, 2, 3, . . . )

in Q, where mi ∈ Z, ni ∈ N∗ and such that limi→∞
mi

ni
= b. Then

∥x∥1 = ∥y∥b1 < ∥y∥
mi/ni

1 for all i.

Hence ∥∥∥ xni

ymi

∥∥∥
1
< 1 for all i

and, because the absolute values are equivalent, also∥∥∥ xni

ymi

∥∥∥
2
< 1 for all i,
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or equivalently

∥x∥2 < ∥y∥mi/ni

2 for all i

and this implies
∥x∥2 ≤ ∥y∥b2.

Similarly, using an ascending sequence in Q, we have ∥x∥2 ≥ ∥y∥b2. Hence

a =
log∥y∥2
log∥y∥1

=
log∥x∥2
log∥x∥1

for all x ∈ K∗,

and so ∥x∥a1 = ∥x∥2 for all x ∈ K.

The p-adic absolute value on the field of fractions of a Dedekind domain satisfies
a stronger version of the triangle inequality. This property depends only on the
behavior of the absolute value on the least subring of the field:

10.6 Proposition. Let ∥.∥ be a nontrivial absolute value on a field K. Then the
following are equivalent:

a) ∥n · 1∥ ≤ 1 for all n ∈ Z;

b) there is an n ∈ N with n ≥ 2 such that ∥n · 1∥ ≤ 1;

c) ∥x+ y∥ ≤ max(∥x∥, ∥y∥) for all x, y ∈ K.

Proof.

a)⇒b) Trivial.

b)⇒a) Suppose that some n ≥ 2 satisfies ∥n · 1∥ ≤ 1. Let m ∈ N∗ and represent m
n-adically:

m = a0 + a1n+ a2n
2 + · · ·+ arn

r

with ai ∈ N, ai < n and ar ̸= 0. For all a ∈ N with a < n we have

∥a · 1∥ = ∥
a︷ ︸︸ ︷

1 + · · ·+ 1∥ ≤
a︷ ︸︸ ︷

∥1∥+ · · ·+ ∥1∥ = a < n.

So

∥m · 1∥ ≤ ∥a0 · 1∥+ ∥a1 · 1∥∥n · 1∥+ · · ·+ ∥ar · 1∥∥n · 1∥r ≤ n(r + 1).

Since nr ≤ m, we have r ≤ logm
logn and so for all m ∈ N∗:

∥m · 1∥ ≤ n
(
1 +

logm

log n

)
.

Replace m by ms, where s ∈ N∗:

∥m · 1∥s ≤ n
(
1 +

s logm

log n

)
for all s,m ∈ N∗.
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Hence

∥m · 1∥ ≤ s
√
n · s

√
1 + s

logm

log n
→ 1 if s→∞.

Therefore,

∥m · 1∥ ≤ 1 for all m ∈ N∗

and thereby for all m ∈ Z as well.

c)⇒a) This follows from

∥n · 1∥ = ∥1 + · · ·+ 1∥ ≤ ∥1∥ = 1 for all n ∈ N∗.

a)⇒c) We may assume that ∥x∥ ≥ ∥y∥. Then to prove that ∥x+ y∥ ≤ ∥x∥. For all
n ∈ N∗ we have

∥x+ y∥n = ∥(x+ y)n∥ =
∥∥∥ n∑
k=0

(
n

k

)
xn−kyk

∥∥∥ ≤ n∑
k=0

∥∥∥(n
k

)
· 1
∥∥∥∥x∥n−k∥y∥k

≤
n∑
k=0

∥x∥n−k∥y∥k ≤ (n+ 1)∥x∥n.

So for all n ∈ N∗ we have ∥x+y∥ ≤ n
√
n+ 1·∥x∥, which implies ∥x+y∥ ≤ ∥x∥,

because limn→∞
n
√
n+ 1 = 1.

10.7 Definition. An absolute value ∥.∥ on a field K is called archimedean if there
is an n ∈ N∗ such that ∥n · 1∥ > 1. An absolute value ∥.∥ is called nonar-
chimedean if it is nontrivial and ∥n · 1∥ ≤ 1 for all n ∈ Z. A place of K is called
(non)archimedean if it consists of (non)archimedean absolute values.

Thus we have three types of absolute values: trivial, archimedean and nonarchime-
dean.

The field Q has a unique archimedean place:

10.8 Theorem. Let ∥.∥ be an archimedean absolute value on Q. Then ∥.∥ is equiv-
alent to the ordinary absolute value |.| on Q.

Proof. By Proposition 10.6 we have ∥n∥ > 1 for all n ≥ 2. Let m,n be integers
≥ 2. Represent m n-adically:

m = a0 + a1n+ a2n
2 + · · ·+ arn

r with 0 ≤ ai < n and ar ̸= 0.

Then

∥m∥ ≤ n(1 + ∥n∥+ · · ·+ ∥n∥r) ≤ n(r + 1)∥n∥r ≤ n
(
1 +

logm

log n

)
∥n∥

log m
log n .
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Replace m by ms, where s ∈ N∗:

∥m∥ ≤ s
√
n · s

√
1 +

s logm

log n
· ∥n∥

log m
log n → ∥n∥

log m
log n if s→∞.

Hence

∥m∥
1

log m ≤ ∥n∥
1

log n for all m,n ≥ 2

and so by symmetry

∥m∥
1

log m = ∥n∥
1

log n for all m,n ≥ 2.

So there is an a ∈ R such that ∥n∥
1

log n = ea for all n ≥ 2, that is

∥n∥ = ea logn = na for all n ≥ 2.

It follows that ∥x∥ = |x|a for all x ∈ Q.

In section 10.3 a classification of the archimedean places of a number field will be
derived: they correspond to real and (pairs of) complex embeddings of the number
field. In this section we derive a classification of the nonarchimedean places of a
number field. For discrete valuations we have the notion of discrete valuation ring.
More generally, we have for a nonarchimedean absolute value a valuation ring:

10.9 Proposition. Let ∥.∥ be a nonarchimedean absolute value on a field K. Then

R = {x ∈ K | ∥x∥ ≤ 1 }

is a local ring with

m = {x ∈ K | ∥x∥ < 1 }

as its maximal ideal.

Proof. From Proposition 10.6 follows that R is a subring of K and also that m
is an ideal of R. Clearly R \ m = {x ∈ K | ∥x∥ = 1 } = R∗ and this implies that
R is a local ring with maximal ideal m.

10.10 Definition. Let ∥.∥ be a nonarchimedean absolute value on a field K. The
the local ring R described in Proposition 10.9 is called the valuation ring of ∥.∥.

10.11 Proposition. Let ∥.∥ be a nonarchimedean absolute value on a number field
K. Then ∥.∥ is equivalent to the p-adic absolute value ∥.∥p for some p ∈ Max(OK).

Proof. Consider

R = {x ∈ K | ∥x∥ ≤ 1 } and m = {x ∈ K | ∥x∥ < 1 }.

By Proposition 10.9 R is a local ring with maximal ideal m.
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First we prove that OK ⊆ R. Choose a Z-basis (α1, . . . , αn) of OK . Then for
a1, . . . , an ∈ Z:

∥a1α1 + · · ·+ anαn∥ ≤ max
i
∥aiαi∥ ≤ max

i
∥αi∥.

It follows that the set { ∥α∥ | α ∈ OK } is a bounded and multiplicatively closed
subset of R≥0. So this subset is contained in [0, 1]. This means that OK ⊆ R.

Put p = OK ∩ m. Then p is a prime ideal of OK . Also the localization (OK)p
is contained in R: for α ∈ OK and β ∈ OK \ p we have ∥αβ ∥ = ∥α∥ ≤ 1, since

β ∈ R \ m. The prime ideal p of OK differs from the zero ideal, since otherwise
(OK)p = K and this would imply that the absolute value is trivial.

Now choose π ∈ OK with vp(π) = 1. It follows from (OK)∗p ⊆ R∗ = R \m that for
all α ∈ K∗

∥α∥ = ∥απ−vp(α)∥∥π∥vp(α) = ∥π∥vp(α).

Since also

∥α∥p = ∥π∥vp(α)p ,

we have ∥α∥c = ∥α∥p for all α ∈ K∗, where c is determined by ∥π∥c = ∥π∥p.

Now it follows easily that we have a classification of the nonarchimedean places of
a number field.

10.12 Theorem. Let K be a number field. Then the map p 7→ class of ∥.∥p from
Max(OK) to the set of nonarchimedean places of K is a bijection.

Proof. By Proposition 10.11 the map is surjective. For injectivity, let p1, p2 ∈
Max(OK) with p1 ̸= p2. Then there is an α ∈ p1 \ p2. This implies ∥α∥p1

̸= 0 and
∥α∥p2

= 0.

So for Q we have now a classification of its places.

10.13 Theorem (Ostrowski). The nontrivial places of Q are its archimedean
place and the p-adic places, one for each prime p.

10.2 Completions

An absolute valuation on a fieldK determines a metric onK and there is a standard
way to complete the metric space. Since the metric comes from an absolute value,
the completion will be a field as well.
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10.14 Definitions. Let K be a field with an absolute value ∥.∥ on K. A sequence
(an) in K is called a Cauchy sequence with respect to ∥.∥ if for each ε > 0 there
is an N ∈ N such that ∥am − an∥ < ε for all m,n ≥ N . The sequence is said to
converge to a ∈ K if for each ε > 0 there is an N ∈ N such that ∥a − an∥ < ε
for all n > N , that is if limn→∞∥a − an∥ = 0. If a sequence (an) converges to
a, the (necessarily unique) element a is called the limit of the sequence; notation:
a = limn→∞ an. Sequences converging to 0 are called null sequences.

As is well-known, converging sequences are Cauchy sequences, but not necessarily
visa versa.

10.15 Definition. Let K be a field with an absolute value ∥.∥. Then K is called
complete (w.r.t. ∥.∥) if every Cauchy sequence with respect to ∥.∥ in K converges.

10.16 Definition. The completion of a valued field K is an embedding ι : K → K̂
of the valued field K into a complete valued field K̂ such that for each valued field
embedding σ : K → L with L complete there is a unique valued field embedding
σ̂ : K̂ → L such that the diagram

L

K K̂

σ σ̂

ι

commutes.

This definition of the completion is a definition by a universal construction. The
completion is thus defined up to a canonical isomorphism. Such a definition guar-
antees uniqueness, but not existence. For the existence usually an explicit con-
struction is needed.

10.17 Construction of the completion of a valued field. Let K be a valued
field, C the set of Cauchy sequences in K and N the set of null sequences in K.
By standard arguments we see that C is a ring under termwise operations and N
is an ideal of C, in fact a maximal ideal: a Cauchy sequence which is not a null
sequence is modulo N congruent to an invertible Cauchy sequence. Define K̂ to
be the field C/N. Let’s write the class of a Cauchy sequence (an) temporarily as
[(an)]. The embedding ι : K → K̂ is defined by sending a ∈ K to the class of the
constant sequence (a), so ι(a) = [(a)]. The absolute value ∥.∥ is extended to K̂ by

∥[(an)]∥ = lim
n→∞

∥an∥.

Note that the ∥an∥ form a Cauchy sequence in the complete valued field R. We
now have an embedding ι : K → K̂ of valued fields. It remains to prove that K̂ is
complete and that ι : K → K̂ satisfies the definition of completion.
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10.3 Complete archimedean fields

10.18 Proposition. Let K be a valued field. Then the valued field K̂ as constructed
in 10.17 is complete.

Proof. Let (an)n be a Cauchy sequence in K. Then for each ε > 0 there is an
N such that ∥am − an∥ ≤ ε for all m,n ≥ N . Let α = [(an)] ∈ K̂. For fixed m we
have [(am − an)n] = ι(am)− α. So ∥ι(am)− α∥ < ε for each m ≥ N . This means
that the sequence (ι(am)m) converges to α.

Now let (αn)n be a Cauchy sequence in K̂. For each n choose a bn ∈ K such that
∥αn − ι(bn)∥ < 1

n . Then (bn)n is a Cauchy sequence in K and it follows that the

sequence (αn)n converges to [(bn)n] ∈ K̂.

10.19 Theorem. Let K be a valued field. Then ι : K → K̂ as defined in 10.17 is a
completion of K.

Proof. Let L be a complete valued field and σ : K → L an embedding of valued
fields. Then define an embedding σ̂ : K̂ → L as follows. Let (an) be a Cauchy
sequence in K. Then (σ(an)) is a Cauchy sequence in L. Since L is complete, this
sequence converges to an element β ∈ L. Define σ̂(α), where α = [(an)], to be β.
One easily verifies that σ̂ is an embedding of valued fields.

So each valued field has a completion and since equivalent absolute values determine
the same completion, the completions of a field K correspond to the places of K.

We will often identify a valued field K with its image in K̂. Thus, K̂ is a complete
valued field and its elements are limits of Cauchy sequences in K: for each α there
is a sequence (an) in K such that

α = lim
n→∞

an

and such sequences differ by a null sequence.

10.3 Complete archimedean fields

Theorem 10.12 classifies the nonarchimedean places of a number field. The classi-
fication of the archimedean places of a number field follows from another theorem
of Ostrowski (Theorem 10.21) which states that R and C are essentially the only
complete archimedean fields.

10.20 Lemma. Let ∥.∥ be an absolute value on C, whose restriction to R is equiv-
alent to the absolute value |.| on R. Then ∥.∥ is equivalent to the absolute value |.|
on C.
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10 Completions of Number Fields

Proof. There is a c > 0 such that ∥a∥ = |a|c for all a ∈ R. We will prove that
∥α∥ = |α|c for all α ∈ C. From i2 = −1 it follows that ∥i∥ = 1. For α = a+ bi ∈ C
with a, b ∈ R we have

∥α∥ = ∥a+ bi∥ ≤ ∥a∥+ ∥b∥ = |a|c + |b|c ≤ |α|c + |α|c = 2|α|c.

For α ∈ C∗ put f(α) = ∥α∥/|α|c. Then 0 < f(α) ≤ 2. For a fixed α ∈ C∗ we then
have for all n ∈ N∗: f(α)n = f(αn) ≤ 2, and so f(α) ≤ n

√
2. Hence f(α) ≤ 1. Since

f(α−1) = f(α)−1, also f(α) ≥ 1. Therefore, f(α) = 1. It follows that ∥α∥ = |α|c
for all α ∈ C∗.

10.21 Theorem (Ostrowski). Let K be a field, complete with respect to an
archimedean absolute value ∥.∥ on K. Then K ∼= R or K ∼= C and ∥.∥ is equivalent
to the ordinary absolute value |.| on R or C.

Proof. Since ∥.∥ is archimedean, K is of characteristic 0. So we can assume
that Q is a subfield of K. The restriction of ∥.∥ to Q is an archimedean absolute
value on Q and is, by Theorem 10.8, equivalent to the ordinary absolute value on
Q. Since K is complete we can assume, by the universal property for completions,
that R is a subfield of K and that the restriction of ∥.∥ to R is equivalent to the
ordinary absolute value on R.

We will show that each α ∈ K is the zero of a polynomial over R of degree 2. If
α ∈ R for all α ∈ K, thenK = R. Otherwise there is an α such that K = R(α) = C
and by Lemma 10.20 the absolute value ∥.∥ is equivalent to the ordinary absolute
value on C.

Let α ∈ K. Consider the function

ψ : C→ R, z 7→ ∥α2 + (z + z)α+ zz∥.

This is a continuous function and limz→∞ ψ(z) = ∞. It follows that the subset
{ψ(z) | z ∈ C } of R has a least element a ≥ 0. If a = 0, then α is a zero of a
polynomial over R of degree 2.

Suppose a > 0 and let ε ∈ R with ∥ε∥ = a
2 . Let A = { z ∈ C | ψ(z) = a } = ψ−1(a).

This is a nonempty compact subset of C. Take z0 ∈ A with |z0| maximal. Consider
the following polynomials over R:

f(X) = X2 + (z0 + z0)X + z0z0 + ε,

g(X) = (f(X)− ε)n − (−ε)n.

Since disc(f) = (z0 + z0)
2 − 4z0z0 − 4ε = (z0 − z0)2 − 4ε ≤ −4ε < 0, the zeros

of f are not real. Let w ∈ C such that f(w) = 0, then the other zero of f is w
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and ww = z0z0 + ε. So |w| > |z0|. Therefore, w /∈ A, that is ψ(w) > a. Put

g(X) =
∏2n
i=1(X − wi) with w1, . . . , w2n ∈ C and w1 = w. Then

∥g(α)∥2 =
( 2n∏
i=1

∥α− wi∥
)2

=

2n∏
i=1

∥α− wi∥ ·
2n∏
i=1

∥α− wi∥

=

2n∏
i=1

∥(α− wi)(α− wi)∥ =
2n∏
i=1

ψ(wi) = ψ(w)

2n∏
i=2

ψ(wi) ≥ ψ(w)a2n−1

and

∥g(α)∥ ≤ ∥f(α)− ε∥n + ∥ε∥n = ψ(z0)
n + ∥ε∥n = an +

an

2n
= an

(
1 +

1

2n

)
.

It follows that

1 <
ψ(w)

a
≤ ∥g(α)∥

2

a2n
≤
(
1 +

1

2n

)2
for all n ∈ N∗. Contradiction.

10.22 Corollary. Let ∥.∥ be an archimedean absolute value on a number field K.
Then there is an embedding σ : K → C such that ∥.∥ is equivalent to the absolute
value K → R, α 7→ |σ(α)|.

Proof. Let ι : K → K̂ be a completion of the valued field K. Then K̂ is a
complete archimedean valued field. So either there is an isomorphism τ : K̂

∼→ R
or an isomorphism τ : K̂

∼→ C. Hence the absolute value ∥.∥ on K is equivalent to
α 7→ |τι(α)|.

So the archimedean places of a number field K are the places represented by the
archimedean absolute values described in the second item of Examples 10.2.

10.4 Primes of a number field

For a number field K we have a classification of its places:

a) Nonarchimedean places represented by ∥.∥p, where p ∈ Max(OK) (Theo-
rem 10.12).

b) Archimedean places represented by ∥.∥σ, where σ is a real or complex em-
bedding (Corollary 10.22).

Number fields have much in common with finite extensions of the field k(T ) of
rational functions over a finite field k. The field k(T ) is the field of fractions of the
polynomial ring k[T ], which is a Euclidean domain. Places of k(T ) correspond to
the discrete valuations of k(T ). There is one discrete valuation on k(T ) which does
not come from a prime ideal of k[T ]: the valuation v∞ given by v∞(f) = −deg(f),
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see exercise 2 of chapter 6. The field k(T ) is the field of fractions of k[ 1T ] as well
and the valuation v∞ comes from the prime ideal ( 1

T ). The ‘infinite’ places for
this type of function fields are not of a special kind. For number fields, however,
the situation is different. Their archimedean places are thought of being infinite
places of the number field. More on the places of a function field k(T ) in the
exercises 1–5. For another example, the function field of rational functions on a
circle, see exercise 6.

10.23 Definitions and notations. Places of a number field are called primes of
the number field. The nonarchimedean places are called finite primes and the
archimedean ones infinite primes. The infinite prime determined by a real or
complex embedding σ will be denoted by pσ. It is called a real infinite prime if
σ is a real embedding and a complex infinite prime if σ is a complex embedding.
The collection of primes of a number field K will be denoted by P(K). It is the
disjoint union of P0(K), the collection of finite primes, and P∞(K), the collection
of infinite primes of K. Each p ∈ P(K) comes with an embedding σp : K → Kp,
where Kp is the completion of K with respect to p. It is customary to refer to
nonzero prime ideals as being finite primes, although formally a finite prime is an
equivalence class of absolute values. For p ∈ P∞(K) we always take Kp to be
either R or C. For a complex infinite prime p the embedding σp : K → C is one of
the corresponding pair of embeddings. For finite primes p we choose

∥α∥p =
1

N(p)vp(α)
,

see Examples 10.2. We also use the notation ∥.∥p for infinite primes p. For α ∈ K
the real number ∥α∥p is defined as follows

∥α∥p =

{
∥α∥σp

if p is real,

∥α∥2σp
if p is complex.

Note that for p a complex infinite prime ∥.∥p is not an absolute value; however,
its square root is one. The choices for the ∥.∥p are such that the following product
formula holds.

10.24 Proposition. Let K be a number field and α ∈ K. Then∏
p

∥α∥p = 1,

where the product is over all primes p of K.

Proof. Since ∥α∥p ̸= 1 for only a finite number of primes p, the infinite product
makes sense. The product over the infinite primes:∏

p infinite

∥α∥p =
∏
p real

|σp(α)| ·
∏

p complex

|σp(α)|2 =
∏
σ

|σ(α)| = |NKQ (α)|,
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where the last product is over all embeddings of K in C. This product is the inverse
of the product over the finite primes:∏

p finite

∥α∥p =
∏

p∈Max(OK)

N(p)−vp(α) = N
( ∏
p∈Max(OK)

p−vp(α)
)

= N(αOK)−1 = |NKQ (α)|−1.

For the splitting of finite primes in a number field extension we have the notions of
ramification index and residue class degree. We extend these notions to the infinite
case.

10.25 Definition. Let L : K be a number field extension, q an infinite prime of L
and p an infinite prime of K, say q = pτ and p = pσ, where τ and σ are embeddings
in C of respectively L and K. Then q is said to be above p if τ is a prolongation of
σ. The residue class degree fK(q) of q over K is defined to be 1 in all cases. The
ramification index of q over K is defined by

eK(q) =

{
2 if q is complex and p is real,

1 otherwise.

If a complex infinite prime lies above a real infinite prime, the complex infinite
prime of L is said to be ramified over K and the real infinite prime of K is said to
ramify in L.

The definitions of the ramification index and the residue class degree for infinite
primes are such that the relation with the degree of the field extension is the same
as in the finite case:

10.26 Proposition. Let L : K be a number field extension and q1, . . . , qr the dif-
ferent infinite primes of L above a given infinite prime of K. Then

r∑
i=1

eK(qi)fK(qi) = [L : K].

Proof. There are [L : K] prolongations to L of an embedding of K in C. The
number on the left hand side is precisely the number of prolongations.

The formula also holds when we interchange here the notions of ramification index
and residue class degree. The choice is somehow a matter of taste. In the classifi-
cation of abelian extensions of number fields, as described in chapter 15, there is an
important role for the ramifying primes, including the infinite ramifying primes as
defined above. If the other choice is made, as is done in [31], this leads to another,
but equivalent, description of the classification.
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The action of the Galois group of a Galois extension L : K on the collection of
primes should be compatible with its action on the corresponding embeddings in
the completions, meaning that the following diagram commutes:

L

L Lq

Lρ(q)

σq

σρ·q

ρ

The vertical map on the right is the map induced by the embedding σρ·qρ. For
q ∈ P∞(L) we take the map on the right to be the identity on R or C. This
determines the action of the Galois group on infinite primes:

10.27 Definition. Let L : K be a Galois extension of number fields, q an infinite
prime of L and ρ ∈ Gal(L : K). The action of ρ on q is given by

σρ·q = σqρ
−1.

As in the finite case the Galois group acts transitively on the primes above a given
prime.

10.28 Proposition. Let L : K be a Galois extension of number fields and p an
infinite prime of K. Then Gal(L : K) acts transitively on the set of primes above
p.

Proof. The action of Gal(L : K) on the set of prolongations to L of an em-
bedding σ of K in C is transitive. Hence the induced action on the set of infinite
primes above pσ is transitive as well.

Also the notions of inertia group and decomposition group can be extended to
include the case of infinite primes.

10.29 Definition. Let L : K be a Galois extension of number fields and q an infinite
prime of L. The decomposition group of q over K is the stabilizer of q:

ZK(q) = { ρ ∈ Gal(L : K) | ρ · q = q }.

The inertia group is defined to be equal to the decomposition group:

TK(q) = ZK(q).

10.30 Proposition. Let L : K be a Galois extension of number fields, q an infinite
prime of L and ρ ∈ Gal(L : K). Then ZK(ρ · q) = ρZK(q)ρ−1.
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Proof. For τ ∈ Gal(L : K) the following are equivalent:

τ ∈ ZK(ρ · q),
σρ·qτ

−1 = σρ·q,

σqρ
−1τ−1 = σqρ

−1,

σqρ
−1τ−1ρ = σq,

ρ−1τρ ∈ ZK(q),

τ ∈ ρZK(q)ρ−1.

10.31 Notation. Let L : K be an abelian extension of number fields and p an

infinite prime of K. Then Z
(L)
p denotes the decomposition group over K of any of

the infinite primes of L above p.

For an infinite prime p the group Z
(L)
p is nontrivial if and only if p is real and the

infinite primes of L above p are complex. In this case this group is of order 2.

10.5 Completions of discretely valued fields

In this sectionK is a field with a discrete valuation v. We fix a positive real number
c < 1. The discrete valuation determines a nonarchimedean absolute value ∥.∥:

∥x∥ = cv(x) for x ∈ K.

The field K is the field of fractions of the discrete valuation ring

R = {x ∈ K | v(x) ≥ 0 } = {x ∈ K | ∥x∥ ≤ 1 }.

The maximal ideal of R is

p = {x ∈ K | v(x) > 0 } = {x ∈ K | ∥x∥ < 1 }

and its group of units is

R∗ = {x ∈ K | v(x) = 0 } = {x ∈ K | ∥x∥ = 1 }.

Let K̂ be the completion of the valued field K. The elements of K̂ are limits of
sequences in K.

Let α ∈ K̂. Then α = limn→∞ an for a Cauchy sequence (an) in K and ∥α∥ =
limn→∞∥an∥. If α ̸= 0, then there is an N such that ∥an∥ ≠ 0 for all n ≥ N . Since
{∥α∥ | α ∈ K∗} = ⟨c⟩, a discrete subgroup of R∗, there is an m ∈ Z such that
eventually ∥an∥ = cm. This defines

v : K̂∗ → Z, α 7→ m.
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10 Completions of Number Fields

It easily follows that v is a discrete valuation of K̂ and that this v is a prolongation
of the discrete valuation of K. Accordingly, for the prolongation of ∥.∥ to K̂ we
have

∥α∥ = cv(α) for α ∈ K̂.
We now have a discrete valuation ring

R̂ = {x ∈ K̂ | v(x) ≥ 0 } = {x ∈ K̂ | ∥x∥ ≤ 1 }

with maximal ideal

p̂ = {x ∈ K̂ | v(x) > 0 } = {x ∈ K̂ | ∥x∥ < 1 }.

10.32 Terminology. Let F be a complete discretely valued field and v the discrete
valuation on F . A uniformizer of F is a π ∈ F such that v(π) = 1. (So the
uniformizer of F is the uniformizer of the discrete valuation v in the sense of
Definition 6.9.)

Completion doesn’t affect the residue class rings:

10.33 Proposition. The inclusion R→ R̂ induces for each n ∈ N an isomorphism
R/pn

∼→ R̂/p̂n.

Proof. Let n ∈ N∗. The kernel of the composition R→ R̂→ R̂/p̂n is R ∩ p̂n =
{x ∈ R | v(x) ≥ n } = pn. So the homomorphism R/pn → R̂/p̂n is injective. For
each α ∈ R̂ there is an a ∈ R such that v(α− a) ≥ n. Hence R̂ = R+ p̂n and this
implies surjectivity.

In particular the residue class fields are canonically isomorphic: R/p
∼→ R̂/p̂.

If a series
∑∞
n=1 an converges in a valued field, then the terms form a null sequence:

lim
n→∞

an = lim
n→∞

(
n∑
i=1

ai −
n−1∑
i=1

ai

)
= lim
n→∞

n∑
i=1

ai − lim
n→∞

n−1∑
i=1

ai = 0.

If limn→∞ an = 0 the series may diverge even when the field is complete, e.g. the
series in R given by an = 1

n . In a complete discretely valued field, however, the
converse holds as well:

10.34 Proposition. Let F be a complete discretely valued field and (an) a null
sequence in F . Then the series

∑∞
n=1 an converges in F .

Proof. The series is a Cauchy sequence: for n < m we have∥∥∥ m∑
i=n+1

ai

∥∥∥ ≤ max
n<i≤m

∥ai∥

and ∥an∥ → 0 for n→∞.
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10.5 Completions of discretely valued fields

The completion K̂ of the discretely valued field K is a complete discretely valued
field, so this proposition applies in particular to such a completion.

10.35 Theorem. Let F be a complete discretely valued field, R its valuation ring, p
the maximal ideal of R, π a uniformizer of F and S ⊆ R a system of representatives
of R/p. Then for each x ∈ R there is a unique sequence (sn)n≥0 in S such that

x =

∞∑
n=0

snπ
n.

Proof. By Proposition 6.18 for each k ∈ N∗ there are unique s0, . . . , sk−1 ∈ S
such that

x ≡
k−1∑
n=0

snπ
n (mod pk).

10.36 Corollary. Let F be a complete discretely valued field, R its valuation ring
and p the maximal ideal of R, π a uniformizer of F and S ⊆ R a system of
representatives of R/p. Then for each x ∈ F ∗ there is a unique N ∈ Z and a
unique sequence (sn)n≥N in S such that

x =

∞∑
n=N

snπ
n and sN /∈ p.

The number N is equal to the valuation of x.

Proof. F is the field of fractions of R. Apply the Theorem 10.35 to xπ−v(x).

10.37 Alternative construction. A more algebraic way of constructing the com-
pletion of a discretely valued field is as follows. First construct the valuation ring
R̂. It is the inverse limit of the R/pn. More precisely, it is the inverse limit of the
diagram

· · · → R/pn+1 → R/pn → · · · → R/p,

where the maps R/pn+1 → R/pn are induced by the identity on R. So we can take

R̂ = {( . . . , xn+1, xn, . . . , x1) | xn ∈ R/pn and xn+1 7→ xn for all n ∈ N∗ }.

This kind of limits is treated in general in chapter 19. The connection with
the construction in this chapter is as follows: put xn = bn with bn ∈ R, then
bn+1 − bn ∈ pn, so (bn) converges and the element ( . . . , xn+1, xn, . . . , x1) corre-
sponds to limn→∞ bn. The field K̂ is then obtained as the field of fractions of
R̂.

10.38 Notations.

1. For a complete discretely valued field F the discrete valuation is often denoted
by vF , the valuation ring by OF and the residue class field by kF .
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10 Completions of Number Fields

2. Let K be a discretely valued field, R its valuation ring with maximal ideal
p. The completion of K will be denoted by Kp. It is a complete discretely
valued field. Its valuation ring will be denoted by Rp. The notation p̂ for the
maximal ideal of Rp will be used for distinction from p. It is the ideal of Rp

generated by p: for π ∈ p \ p2 we have

pRp = πRp = p̂.

3. For K a number field and p ∈ Max(OK), Kp is the completion of K with
respect to the discrete valuation vp. The valuation ring of Kp will be denoted
by Op.

10.39 Example. Let p be a prime number. The completion of Q w.r.t. the discrete
valuation vp : Q∗ → Z is the fieldQp of p-adic numbers. The set S = {0, 1, . . . , p−1}
is a system of representatives of Z/p. The valuation ring is denoted by Zp and is
called the ring of p-adic integers. By Corollary 10.36 a nonzero p-adic number x
has a unique representation

x =

∞∑
n=N

snp
n

with sn ∈ S, N = vp(x) and sN ̸= 0. This representation, or the sequence of the
sn, is called the p-adic expansion of x. A p-adic integer x has a p-adic expansion

x =

∞∑
n=0

snp
n.

For x ̸= 0, the valuation of x is the least N ∈ N with sN ̸= 0.

10.6 Extensions of complete discretely valued fields

The main result in this section is that a finite extension of a complete discretely
valued field has again the structure of a complete discretely valued field (Theo-
rem 10.40). This will be used in the next chapter, where it is shown that a finite
extension of Qp is the completion of some number field (Corollary 11.5).

10.40 Theorem. Let F be a complete discretely valued field and E : F a finite sep-
arable field extension. Then the integral closure of OF in E is a discrete valuation
ring and E is complete with respect to the discrete absolute value determined by
the valuation.
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10.6 Extensions of complete discretely valued fields

Proof. Put d = [E : F ] and let S be the integral closure of OF in E. By
Theorem 2.45 the ring S is a Dedekind domain and since this ring is semi-local it
is a principal ideal domain (Proposition 2.21). Moreover, because OF is a principal
ideal domain, S is a free OF -module of rank d (Corollary 1.38). Let β1, . . . , βd be
an OF -basis of S. On the F -vector space E we have a norm ∥.∥ defined as follows:

∥a1β1 + · · ·+ adβd∥ = max
1≤j≤d

∥aj∥F (for a1, . . . ad ∈ F ).

Then for all indices j with 1 ≤ j ≤ d we have ∥aj∥F ≤ ∥a1β1 + · · · + adβd∥. So a
sequence (a1nβ1+ · · ·+adnβd)n with all ajn in F is a Cauchy sequence with respect
to ∥.∥ if and only if the sequences (ajn)n converge in F . Put aj = limn ajn. Then
(aj − ajn)n is a null sequence in F and we have

∥(a1 − a1n)β1 + · · ·+ (ad − and)βd∥ = max
j
∥aj − ajn∥F .

It follows that the sequence (a1nβ1 + · · ·+ adnβd)n converges to a1β1 + · · ·+ adβd
with respect to the norm ∥.∥. Hence the vector space E is complete with respect
to this norm.

Next we show that the Dedekind domain S has only one maximal ideal. Let q be a
maximal ideal of S. Then pFS = qea with e the ramification index of q over F and
q ∤ a. By the Chinese Remainder Theorem there exists for each n ∈ N an εn ∈ S
such that

εn ≡

{
1 (mod qen),

0 (mod an).

Then εn+1
n − εn ∈ qenan = pnFS = pnFβ1 + · · ·+ pnFβd. So εn is a Cauchy sequence

with respect to ∥.∥. Put ε = limn εn. Since ε
2
n− εn ∈ qenan is a null sequence with

respect to ∥.∥, it follows that ε2 = ε. The image of ε ∈ S in the residue field S/q
is 1, so ε ̸= 0 and since E is a field we have ε = 1. The image of ε in S/a is both 1
and 0, so a = S.

It remains to show that E is complete with respect to ∥.∥q. Let (αn)n be a Cauchy
sequence in E with respect to ∥.∥q. Then for each M ∈ N there is an N ∈ N such
that αn−αm ∈ qem = pMS for all m,n ≥ N . So (αn)n is a Cauchy sequence with
respect to ∥.∥. Put αn = a1nβ1 + · · · + adnβd with the ajn in F . The sequences
(ajn)n converge in F with respect to ∥.∥F as well as with respect to ∥.∥q. Hence
the sequence (αn)n converges with respect to ∥.∥q.

So a finite extension of a complete discretely valued field is in a unique way a
complete discrete valued field with the topology of the base field induced by the
topology on the extension. On the other had, such extensions are necessarily finite;
more precisely:
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10 Completions of Number Fields

10.41 Theorem. Let E : F be an extension of complete discrete valued fields such
that the absolute value on F induced by the absolute value on E is non-trivial
and that F is complete w.r.t. this absolute value. Let the extension of the residue
class fields be finite of degree f . Then OE is a free OF -module of rank ef and
[E : F ] = ef , where e = (Z : vE(F

∗)).

Proof. The second assertion follows from the first, so we prove the first. Let
β1, . . . , βf ∈ OE be such that β1, . . . , βf is a kF -basis of kE . Let ρ and π be
uniformizers of F and E respectively. We will show that the elements

βiπ
j (i = 1, . . . , f and j = 0, . . . , e− 1)

form an OF -basis of OE . Let X be a set of representatives of kF = OF /pF . Then
Y = Xβ1 + · · ·+Xβf is a set of representatives of kE = OE/pE . Instead of using
powers πk when representing elements of OE we can also use the elements ρiπj

with i ∈ N and 0 ≤ j < e. Note that vE(ρ
jπi) = ie + j. For elements of OE we

have the unique representation

α =

∞∑
i=0

e−1∑
j=0

γijρ
iπj ,

where the γij are unique elements of Y . Put γij =
∑f
k=1 cijkβk, where cijk ∈ X.

Then

α =

∞∑
i=0

e−1∑
j=0

γijρ
iπj =

∞∑
i=0

e−1∑
j=0

f∑
k=1

cijkβkρ
iπj =

e−1∑
j=0

f∑
k=1

( ∞∑
i=0

cijkρ
i

)
βkπ

j .

Since
∑∞
i cijkρ

i ∈ OF , the βkπj generate the OF -module OE . It is straightforward
to show their independence over OF . So OE is a free OF -module of rank ef .

10.42 Notation and terminology. Let E : F be as in the above theorem. The
ramification index of pE over F is called the ramification index of E : F and is

denoted by e
(E)
F . Similarly we have the residue class degree f

(E)
F of E : F .

10.7 Completions of field extensions

Completion of an extension of valued fields yields an extension of complete fields.
In case of discretely valued fields the result is an extension of complete discretely
valued fields as considered in the previous section. Here we study the connection
between the extension and its completion. In this section:
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10.7 Completions of field extensions

R a Dedekind domain,

K the field of fractions of R,

L : K a finite separable field extension,

n = [L : K], the degree of L : K,

S the integral closure of R in L,

p a maximal ideal of R,

q a maximal ideal of S above p,

e = eK(q), the ramification index of q over K,

f = fK(q), the residue class degree of q over K.

We study the effect of completing the field L with respect to the nonarchimedean
valuation ∥·∥q.

K

L

Kp

Lq

The discrete valuations with respect to p and q of K and L respec-
tively, are related by

vq(α) = e · vp(α) for all α ∈ K.

So the absolute value on L given by ∥·∥q = cvq(·) for some c with
0 < c < 1, satisfies

∥α∥q = ce·vp(α) = ∥α∥p for all α ∈ K,

where ∥·∥p is taken to be (ce)vp(·). It follows that we can assume
that the completion Kp of K is a subfield of Lq.

10.43 Proposition. KpL = Lq.

Proof. The composition KpL is a composition of subfields of Lq and so Lq ⊇
KpL. Choose ϑ ∈ L such that L = K(ϑ) and consider the subfield Kp(ϑ) of
Lq. Since ϑ is algebraic over Kp the extension Kp(ϑ) : Kp is finite and so by
Theorem 10.40 Kp(ϑ) is complete w.r.t. (the restriction of) the absolute value ∥.∥q
on Lq. The field Lq is the completion of L w.r.t. ∥.∥q and L is a subfield of Kp(ϑ).
Hence KpL = KpK(ϑ) = Kp(ϑ) ⊇ Lq.

10.44 Proposition. The ring Sq is a free Rp-module of rank ef and [Lq : Kp] = ef .

Proof. Apply Theorem 10.40: for E : F take the extension Lq : Kp. By Theo-
rem 7.7 the integral domain Sq is the integral closure of Rp in Lq. Note that p̂Sq =
pRpSq = pSq = pSSq = qeSq = q̂e and that [Sq/q̂ : Rp/p̂] = [S/q : R/p] = f .

For Galois extensions we have:

10.45 Theorem. Let L : K be a Galois extension. Then Lq : Kp is a Galois exten-
sion and the restriction of Kp-automorphisms of Lq to L induces an isomorphism

Gal(Lq : Kp)
∼→ ZK(q).
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K

Kp ∩ L

L

Kp

Lq

Z

Proof. From Lq = KpL follows that Lq : Kp is a Galois
extension and Gal(Lq : Kp) ∼= Gal(L : (Kp ∩ L)). Put Z =
ZK(q). If σ ∈ Z, then σ(q) = q and so ∥σ(α)∥q = ∥α∥q
for all α ∈ L. By the definition of completion σ extends
uniquely to an automorphism of Lq, its restriction to Kp

being the identity, because it is the unique extension of the
identity on K. From Lq = KpL follows that we thus have
an injective group homomorphism Z → Gal(Lq : Kp), which
is an isomorphism since the orders of both groups are equal.
Otherwise put: LZ = Kp ∩ L.

Finally, we relate the ‘global’ norm NLK and trace TrLK to the ‘local’ norm N
Lq

Kp

and trace Tr
Lq

Kp
. The last notations will be abbreviated to Nq

p and Trqp. We now

consider the extensions Lq : Kp for all q | pS together. The embeddings L → Lq

induce a homomorphism of Kp-algebras

ψp : Kp ⊗K L→
∏
q|pS

Lq, α⊗ β 7→ (αβ)q.

10.46 Proposition. The Kp-algebra homomorphism ψp is an isomorphism.

Proof. The map ψp is obtained by applying the exact functor Kp ⊗K − to
the diagonal embedding L →

∏
q|pS Lq. Hence ψp is injective. Since L is an n-

dimensional K-vector space, the algebra Kp ⊗K L is n-dimensional over Kp. The
Kp-dimension of

∏
q|p Lq is equal to n as well:

∑
q|pS eK(q)fK(q) = n.

10.47 Corollary. For α ∈ L and p a prime of K

NLK(α) =
∏
q|pS

Nq
p(α) and TrLK(α) =

∑
q|pS

Trqp(α).

Proof. By Proposition 10.46 for both algebras Kp⊗K L and
∏

q|pS Lq multipli-
cation by α has the same characteristic polynomial. So forKp⊗KL this polynomial
is ∆L:K

α . Hence

∆L:K
α (X) =

∏
q|pS

∆Lq:Kp
α (X).

The identities for the norms and the traces are obtained by comparing coefficients.
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Exercises

Exercises

1. Let k be a field and ∥.∥ a nontrivial absolute value on the field k(T ) of rational
functions such that its restriction to k is the trivial absolute value. Show that ∥.∥
is a nonarchimedean absolute value on k(T ).

2. Let k and ∥.∥ be as in exercise 1.

(i) Prove that ∥.∥ is equivalent to ∥.∥p for some p ∈ Max(k[T ]) if ∥T∥ ≤ 1.

(ii) Assume that ∥T∥ > 1. Prove that ∥.∥ is equivalent to the absolute value ∥.∥v∞
determined by the discrete valuation v∞ described in exercise 2 of chapter 6:

∥f∥v∞ = c− deg(f) for f ∈ k(T )∗,

where c such that 0 < c < 1.

(iii) Show that the vp with p ∈ Max(k[T ]) ∪ {∞} are all discrete valuations on
k(T ) which vanish on k∗.

The symbol ∞ can be thought of as an infinite prime of k(T ). However, this field
is the field of fractions of other Dedekind domains as well, including Dedekind
domains for which ∞ is one of the prime ideals, e.g. the Dedekind domain k[ 1

T
].

This is best understood when considering k(T ) geometrically as the field of rational
functions on the projective line.

3. Let k be a field and let V be the set of all discrete valuations on k(T ) which vanish
on k∗. So by part (iii) of exercise 2:

V = { vp | p ∈ Max(k[T ]) or p =∞}.

Denote the residue class field w.r.t. a valuation v by kv. Then kv : k is a finite
field extension: kv∞ = k and for v = vp with p ∈ Max(k[T ]) we have kv = k[T ]/p.
Define deg(v) = [kv : k].

(i) Prove that
∑

v∈V deg(v)v(f) = 0 for all f ∈ k(T )∗.
(ii) Show that we have an exact sequence

1 −→ k∗ −→ k(T )∗
(v)v−−−→

⊕
v∈V

Z (deg(v))v−−−−−−→ Z −→ 0.

4. Let k and V be as in exercise 3. Put V∞ = V \ {v(T )} and V0 = V \ {v∞}. Show
that for each subset W of V with ∅ ̸=W ̸= V the ring

{ f ∈ k(T ) | v(f) ≥ 0 for all v ∈W }

is a Dedekind domain: it is a localization of k[T ] or of k[ 1
T
].

5. Let k be a finite field.

(i) Show that the places of k(T ) correspond to the discrete valuations of k(T ).

(ii) For each discrete valuation v of k(T ) choose a cv with 0 < cv < 1. Then the
places of k(T ) are represented by the absolute values ∥.∥v defined by

∥f∥v = cv(f)v for f ∈ k(T )∗.
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Let kv be the residue class field of the discrete valuation v. Show that if we
choose cv = #(kv)

−1 the following product formula holds:∏
v

∥f∥v = 1 for all f ∈ k(T )∗.

6. Let k be a field in which −1 is not a square. Then k is not of characteristic 2.
Let R be the ring k[X,Y ]/(X2 + Y 2 − 1) = k[x, y]. (The elements x and y are the
classes of X and Y respectively and so x2 + y2 = 1.) Its field of fractions is k(x, y),
a quadratic extension of k(x).

(i) Show that intersecting the line y = t(x + 1) by the circle x2 + y2 = 1 yields
an isomorphism φ : k(x, y)

∼→ k(T ). Compute this isomorphism.

(ii) Let V be the set of all discrete valuations of k(T ) and put W = V \ {vq},
where q = (T 2 + 1).

(iii) Prove that
φ(R) = { f ∈ k(T ) | v(f) ≥ 0 for all v ∈W }.

So, in particular, by exercise 4 the ring R is a Dedekind domain.

(iv) Compute R∗ and Cℓ(R) for k = R.
(Use the ker-coker exact sequence of k(T )∗ →

⊕
v Z→

⊕
v∈V0

Z.)

7. Let p be a prime number and x a nonzero p-adic number. Show that x is a ratio-
nal number if and only if its p-adic expansion, as described in Example 10.39, is
eventually periodic. Determine the p-adic expansion of −1.

8. Let K1 and K2 be number fields. Put L = K1K2 and K = K1 ∩K2. Let q be a
prime of L and p1, p2, p the primes under q of respectively K1, K2, K.

(i) We can assume that the completions (K1)p1 , (K2)p2 and Kp are subfields of
Lq. Show that Lq = (K1)p1(K2)p2 .

(ii) Show that Kp ⊆ (K1)p1 ∩ (K2)p2 , but that equality does not hold in general.
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11 Local Fields

The completion of a number field with respect to a nonarchimedean absolute value
is a complete discretely valued field with a finite residue field. Such fields are
called local fields. In section 11.1 it is shown that all local fields of characteristic
zero are completions of number fields. A powerful property of local fields is the
similarity between (parts of) their additive and multiplicative structure given by
the logarithm and the exponential function. This is well-known for the complete
archimedean fields R and C. In section 11.4 the logarithm and exponential function
for the completions at finite primes are introduced.

11.1 Local fields of characteristic 0

The completion at a finite prime of a number field is a complete discretely valued
field of characteristic 0 with a finite residue class field. It will be shown that all
such fields are completions of some number field.

11.1 Definition. A complete discretely valued field with a finite residue class field
is called a local field.

The p-adic completion of a number field is a local field of characteristic 0. We
will show that conversely every local field of characteristic 0 is the completion at a
finite prime of some number field. The following lemma is crucial.

11.2 Krasner’s Lemma. Let p be a prime number, F : Qp a Galois extension and
let α, β ∈ F satisfy

∥α− β∥ < ∥σ(α)− α∥ for all σ ∈ Gal(F : Qp) with σ(α) ̸= α,

where ∥.∥ is the unique prolongation of ∥.∥p to F . Then α ∈ Qp(β).

Proof. Let τ ∈ Gal(F : Qp(β)). The uniqueness of ∥.∥ implies that automor-
phisms of F : Qp preserve the absolute value. So

∥τ(α)− β∥ = ∥α− β∥

and, therefore,

∥τ(α)− α∥ = ∥τ(α)− β + β − α∥ ≤ max(∥τ(α)− β∥, ∥α− β∥) = ∥α− β∥.
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11 Local Fields

The condition on α and β implies that τ(α) = α. Since this holds for all τ ∈
Gal(F : Qp(β)), we have α ∈ Qp(β).

11.3 Lemma. Let K be a field with absolute value ∥.∥ and α ∈ K a zero of f =
Xn + a1X

n−1 + · · ·+ an−1X + an ∈ K[X]. Then

∥α∥ ≤ max
(
1,

n∑
i=1

∥ai∥
)
.

Proof. If ∥α∥ ≥ 1, then

∥α∥ =
∥∥∥a1 + a2

α
+ · · ·+ an

αn−1

∥∥∥ ≤ n∑
i=1

∥ai∥.

11.4 Proposition. Let p be a prime number, F : Qp a finite field extension and
α ∈ F . Then Qp(α) = Qp(β) for some β ∈ F which is algebraic over Q.

Proof. By Theorem 10.40 F is a local field. Put n = [Qp(α) : Qp]. Let f ∈
Qp[X] be the minimal polynomial of α over Qp. Set f = Xn + a1X

n−1 + · · ·+ an
and C = max

(
1,
∑n
i=1∥ai∥

)
. Let ε > 0, to be specified later, and put

δ = εn
/ n−1∑

i=0

Ci.

Choose g = Xn + b1X
n−1 + · · · + bn ∈ Q[X] with ∥ai − bi∥ < δ for i = 1, . . . , n.

Then by Lemma 11.3

∥g(α)∥ = ∥g(α)− f(α)∥ ≤
n∑
i=1

∥bi − ai∥∥α∥n−i < δ

n−1∑
i=0

Ci = εn.

Let E be a splitting field of fg over F and ∥.∥ the unique prolongation of ∥.∥p to
E. Over E we have

g =

n∏
i=1

(X − βi) with β1, . . . , βn ∈ E.

From

∥g(α)∥ =
n∏
i=1

∥α− βi∥ < εn

follows that ∥α− β∥ < ε for some zero β of g. Take

ε = min
σ∈Gal(E:Qp)
σ(α)̸=α

∥σ(α)− α∥.

Then by Krasner’s Lemma α ∈ Qp(β) and so Qp(α) ⊆ Qp(β). Because n =
[Qp(α) : Qp] ≤ [Qp(β) : Qp] ≤ n, we have Qp(α) = Qp(β).
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11.2 The multiplicative group

11.5 Corollary. Let p be a prime number and F : Qp a finite field extension. Then
F is the local field of some number field K at a finite prime of K above p.

Proof. Choose a primitive element α of the extension F : Qp. By Proposi-
tion 11.4 there is a β ∈ Qp(α) which is algebraic over Q such that Qp(α) = Qp(β).
Take K = Q(β) ⊂ F and p = pF ∩ K ∈ Max(OK). Then Kp ⊆ F and
F = Qp(β) ⊆ Kp.

Summarizing, we have the following.

11.6 Theorem. Equivalent are:

a) F is a local field of characteristic 0,

b) F is a finite extension of Qp for some prime number p,

c) F is the p-adic completion of a number field at a finite prime p.

Proof.

a)⇒b) Since F is of characteristic 0, its prime field is Q. The discrete valuation
on F induces a discrete valuation on Q, which by Theorem 10.12 is the p-
adic valuation for some prime number p. So F is an extension of Qp. By
Theorem 10.41 the extension F : Qp is finite: take F : Qp for the extension
E : F in the theorem.

b)⇒c) Corollary 11.5.

c)⇒a) The p-adic completion of a number field is a complete discretely valued field
(cf. section 10.5) with a finite residue class field (Proposition 10.33).

11.2 The multiplicative group

In this section we study the multiplicative structure of a local field and, in partic-
ular, its roots of unity. It will be shown that the roots of unity of the residue field
of a local field can be lifted to the field itself in a canonical way. The completion
of a number field often has many more roots of unity than the number field itself.

11.7 Lemma. Let F be a local field. Then for α ∈ O∗
F and q = #(kF ) the sequence

(αq
n

)n converges to a (q − 1)-st root of unity congruent to α modulo pF .

Proof. Put αn = αq
n

. For the convergence of (αn)n it suffices by Proposi-
tion 10.34 to show that (αn+1 − αn)n is a null sequence. Since α ∈ O∗

F we have
∥α∥ = 1 and

∥αn+1 − αn∥ = ∥αq
n+1

− αq
n

∥ = ∥α(q−1)qn − 1∥.
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11 Local Fields

From

α(q−1)qn+1

− 1 =
(
α(q−1)qn − 1

)(
α(q−1)qn(q−1) + · · ·+ α(q−1)qn + 1

)
and αq−1 ≡ 1 (mod p) follows that

vF
(
α(q−1)qn+1

− 1
)
> vF

(
α(q−1)qn − 1

)
.

Hence (αn+1 − αn)n is a null sequence. All terms of the sequence (αn)n are con-
gruent to α modulo pF , so this holds for the limit as well. For ζ = limn→∞ αn we
have

ζ = lim
n→∞

αq
n+1

=
(
lim
n→∞

αq
n
)q

= ζq.

By this lemma we have for a local field F a map

λF : O∗
F → µq−1(F ), α 7→ lim

n→∞
αq

n

.

It clearly is a group homomorphism and for ζ ∈ µq−1(F ) the sequence (ζq
n

)n is
constant, so λF is a retract of O∗

F to its subgroup µq−1(F ). For α ≡ 1 (mod pF )
we have λF (α) = 1. Hence λF induces a homomorphism

ωF : k∗F → µq−1(F ), α 7→ λF (α).

The map λF is surjective and so is this induced map. Since both groups k∗F and
µq−1(F ) are of order q − 1, the homomorphism ωF is an isomorphism. It follows
that we have a split short exact sequence

1 −→ 1 + pF −→ O∗
F −→ k∗F −→ 1.

We have shown the first part of the following theorem.

11.8 Theorem. Let F be a local field and q = #(kF ), a power of a prime number
p. Then O∗

F is the direct product of the subgroups µq−1(F ) and 1+ pF . The kernel
of the restriction of λF to µ(F ) is the p-primary part of µ(F ).

Proof. Let ζ ∈ µ(F ). Write ζ = ηξ with η, ξ ∈ µ(F ), p ∤ o(ξ) and o(η) a power
of p. Let m be the order of ξ. The m-th cyclotomic polynomial splits over F and,
therefore, over kF as well. Since p ∤ m, the finite field kF has a primitive m-th root
of unity. Hence m | q − 1, that is ξ ∈ µq−1(F ). So we have

λF (ζ) = λF (η)λF (ξ) = λF (ξ) = ξ

and hence ζ = η, if λF (ζ) = 1.

If the local field is of nonzero characteristic, then it is of the same characteristic
as the residue class field. In this case the p-primary part of µ(F ) is trivial and so
µ(F ) ∼= k∗F .
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11.3 Extensions

The multiplicative group of a local field F is the direct product of O∗
F and and

the infinite cyclic subgroup generated by a uniformizer. So for this multiplicative
group we have:

11.9 Corollary. Let F be a local field, π a uniformizer of F and q = #(kF ). Then

F ∗ = (1 + pF ) · µq−1(F ) · ⟨π⟩,

a direct product of subgroups.

So for a determination of the multiplicative structure a local field F we can now
focus on the group 1 + pF . This will be done in section 11.5.

11.3 Extensions

For cyclotomic extensions of local fields we have:

11.10 Lemma. Let F be a local field of characteristic 0 with residue class field of
characteristic p, m ∈ N∗ and E : F the m-th cyclotomic extension of F . Suppose
that p ∤ m. Then:

(i) OE = OF [ζ], where ζ is a primitive m-th root of unity.

(ii) The extension E : F is unramified and the canonical map Gal(E : F ) →
Gal(kE : kF ) is an isomorphism. In particular E : F is a cyclic extension.

Proof.

(i) This follows from Corollary 7.26 as well as from Proposition 1.36.

(ii) We have E = F (ζ) for a primitive m-th root of unity. Let g be the minimal
polynomial of ζ over F . Then g | Xm−1 (inOF [X]). So disc(g) | disc(Xm−1)
in OF . Because p ∤ m, it follows that vF (disc(g)) = 0. So vF (dF (E)) = 0.

For a complete local field of characteristic p ̸= 0 the m-th cyclotomic extension is
the m′-th cyclotomic extension, where m = pkm′ with p ∤ m′. It easily follows that
in this case all cyclotomic extensions are unramified.

An extension of local fields is a totally ramified extension on top of an unramified
extension:

11.11 Theorem. Let E : F be an extension of local fields and q = #(kE). Then
E : F (µq−1) is a totally ramified extension and F (µq−1) : F is the maximal unram-
ified subextension of E : F .
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11 Local Fields

Proof. By Theorem 11.8 E contains a primitive (q− 1)-st root of unity ζ. Con-
sider the intermediate field F ′ = F (ζ) of the extension E : F . By Lemma 11.10
the extension F ′ : F is unramified. The residue class field of F ′ has a primitive

(q − 1)-st root of unity. So f
(E)
F ′ = 1 and hence [E : F ′] = e

(E)
F ′ f

(E)
F ′ = e

(E)
F ′ . By

Theorem 7.50 the composition of unramified extensions is unramified. So F ′ : F is
the maximal unramified subextension.

Let e be the ramification index and f the residue class degree. If α1, . . . , αf ∈ OF ′

are such that α1, . . . , αf is an kF -basis of kF ′ , then α1, . . . , αf is an F -base of F ′.
For π ∈ E with vE(π) = 1 the elements 1, π, . . . , πe−1 form an F ′-basis of E. Thus
we obtain an F -basis of E: all αiπ

j with 1 ≤ i ≤ f and 0 ≤ j ≤ e − 1. For
an extension of local fields this gives an extra meaning to the basis described in
Theorem 10.41.

11.12 Corollary. Let E : F be a finite extension of local fields and q = #(kE).
Then E : F is unramified if and only if it is contained in the (q − 1)-st cyclotomic
extension of F .

11.13 Corollary. Let F be a local field of characteristic 0 and F an algebraic closure
of K. Then for each n ∈ N∗ there is a unique intermediate field E of F : F with
E : F unramified of degree n.

Proof. Suppose the residue class field of F has q elements. Let n ∈ N∗ and
ζ ∈ F a primitive (qn − 1)-st root of unity. Take E = F (ζ). Then kE : kF is the
(qn − 1)-st cyclotomic extension of kF . By Lemma 11.3 E : F is cyclic of degree
n, the order of q in (Z/qn − 1)∗. If E′ : F is unramified and of degree n, then

f
(E′)
F = n. By Theorem 11.11 E′ : F is the (qn − 1)-st cyclotomic extension of
F .

11.14 Example. Let p be a prime. The field Qp has a unique unramified quadratic
extension E : Qp, the (p2 − 1)-st cyclotomic extension. For p = 2 we have E =
Q2(ζ3) = Q2(

√
−3). For odd p and a squarefree m ∈ Z such that

(
m
p

)
= −1, set

K = Q(
√
m) and p = pOK . Then E = Q(

√
m)p = Qp(

√
m).

Integral primitive elements

Let E : F be an extension of local fields. The following proposition will be used in
chapter 17 when studying further properties of higher ramification groups.

11.15 Proposition. There exists a γ ∈ OE such that OE = OF [γ].

Proof. Let α ∈ OE be such that α ∈ kE is a primitive element of kE : kF and
f ∈ OF [X] a monic polynomial such that f ∈ kF [X] is the minimal polynomial of
α over kF . Then f(α) ∈ pF and so vE(α) ≥ 1. If vE(α) = 1, then we can take
γ = α: by the proof of Theorem 10.41, or the remark following Theorem 11.11, OE
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11.4 Exponential function and logarithm

is generated by products αif(α)j and this implies OE = OF [α]. So we will assume
that vE(α) ≥ 2. Let π be a uniformizer of vE . Then by Taylor’s formula

f(α+ π) = f(α) + πf ′(α) + π2β,

where β ∈ OE . The irreducible polynomial f ∈ kF [X] has no multiple roots, so
f ′(α) ∈ O∗

E . It follows that vE(α+ π) = 1 and in this case γ = α+ π will do.

11.4 Exponential function and logarithm

In the sequel we will need more knowledge of the structure of the multiplicative
group of a local field than we already derived in the previous sections. For com-
plete archimedean fields the exponential function connects the additive structure
to the multiplicative structure: e.g. on R the exponential function is an isomor-
phism from the additive group R to the multiplicative group R>0, the logarithm
being its inverse. Usually the additive structure is easier to deal with than the
multiplicative structure. The German mathematician Hensel introduced the expo-
nential and logarithmic function on local fields. The starting points are the power
series representations of these functions just as they are in the archimedean case.

In this section F is a local field of characteristic 0 with a residue class field of
characteristic p. For simplicity we put v = vF , p = pF , e = v(p) = e

(F )
Qp

and

f = f
(F )
Qp

= [kF : Fp].

Over a field of characteristic 0 we have formal power series

expx =

∞∑
n=0

xn

n!
and log(1 + x) =

∞∑
n=1

(−1)n−1x
n

n
.

The following relations hold, say in the formal power series ring Q[[T ]], and where
x and y are formal power series in T with constant term 0:

exp(x+ y) = expx · exp y, exp log(1 + x) = 1 + x,
log(1 + x)(1 + y) = log(1 + x) + log(1 + y), log expx = x.

First we consider the exponential function.

11.16 Definition. The exponential function exp on F is given by a series:

exp(α) =

∞∑
n=0

αn

n!

for all α ∈ F for which the series converges.
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11 Local Fields

By Proposition 10.34 the series converges if and only if the valuation of the n-th
term tends to infinity for n → ∞. We need to know the valuation of n!. Hensel
gave a nice computation of its value. It goes as follows. Use the base p for a
representation of n:

n = a0 + a1p+ a2p
2 + · · ·+ akp

k with 0 ≤ ai < p and ak ̸= 0. (11.1)

Let sn be the p-adic digit sum of n, i.e. sn = a0 + a1 + · · ·+ ak.

11.17 Lemma. Let n ∈ N∗. Then vp(n!) =
n− sn
p− 1

.

Proof. Let the p-adic notation of n be as in (11.1). Then

vp(n!) =
⌊n
p

⌋
+
⌊ n
p2

⌋
+ · · ·+

⌊ n
pk

⌋
= (a1 + · · ·+ akp

k−1) + (a2 + · · ·+ akp
k−2) + · · ·+ (ak−1 + akp) + ak

= a1 + a2(1 + p) + a3(1 + p+ p2) + · · ·+ ak(1 + p+ · · ·+ pk−1)

= a1
p− 1

p− 1
+ a2

p2 − 1

p− 1
+ · · ·+ ak

pk − 1

p− 1

=
1

p− 1
(a0 + a1p+ a2p

2 + · · ·+ akp
k − (a0 + a1 + a2 + · · ·+ ak))

=
n− sn
p− 1

.

11.18 Proposition. Let α ∈ F . Then:

(i) the series

∞∑
n=0

αn

n!
converges if and only if v(α) >

e

p− 1
;

(ii) v(expα− 1) = v(α) for each α with v(α) >
e

p− 1
;

(iii) for each t >
e

p− 1
the map

exp: pt → 1 + pt

is an injective group homomorphism from the additive group pt to the multi-
plicative group 1 + pt.

It will turn out that the homomorphism in (iii) is in fact an isomorphism. The
logarithm will be its inverse.
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11.4 Exponential function and logarithm

Proof.

(i) By lemma 11.17

v
(αn
n!

)
= n · v(α)− e · vp(n!) = n · v(α)− e

p− 1
(n− sn)

= n
(
v(α)− e

p− 1

)
+
e · sn
p− 1

≥ n
(
v(α)− e

p− 1

)
.

So the n-th term tends to infinity if v(α) > e
p−1 . If v(α) ≤ e

p−1 , then the
series diverges, since sn = 1 for infinitely many n.

(ii) expα−1 = α+

∞∑
n=2

αn

n!
= α+α

∞∑
n=2

αn−1

n!
and for each n ≥ 2 we have sn ≥ 1.

So

v
(αn−1

n!

)
= (n− 1)v(α)− en− sn

p− 1
≥ (n− 1)

(
v(α)− e

p− 1

)
> 0.

(iii) By (ii) the map exp: pt → 1 + pt is defined. The formal properties of exp
imply that exp(α1 +α2) = expα1 · expα2 for α1, α2 ∈ pt. From (i) it follows
that exp(α) ̸= 1 for α ̸= 0, so the group homomorphism is injective.

The logarithm on F is defined as follows.

11.19 Definition. The logarithm on F is given by a series:

log(α) =

∞∑
n=1

(−1)n−1 (α− 1)n

n

for all α ∈ F for which the series converges.

11.20 Proposition. Let α ∈ F . Then

(i) the series

∞∑
n=1

(−1)n−1 (α− 1)n

n
converges if and only if α ∈ 1 + p;

(ii) v(logα) = v(α− 1) for each α ∈ F with v(α− 1) >
e

p− 1
.

(iii) the map
log : 1 + p→ F

is a homomorphism from the multiplicative group 1 + p to the additive group

F . For each t >
e

p− 1
it induces by restriction a homomorphism

log : 1 + pt → pt.
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11 Local Fields

Proof.

(i) v
( (α− 1)n

n

)
= n · v(α− 1)− v(n) ≥ n · v(α− 1)− e log n

log p
→∞ if n→∞.

(ii) logα = (α − 1) + (α − 1)

∞∑
n=2

(−1)n (α− 1)n−1

n
. It suffices to show that

v
( (α− 1)n−1

n

)
= (n − 1) · v(α − 1) − v(n) > 0 for n ≥ 2. For p ∤ n we

have v(n) = 0, so assume that p | n. Then n ≥ p and

v
( (α− 1)n−1

n

)
≥ (n− 1)v(α− 1)− e log n

log p
>
e(n− 1)

p− 1
− e log n

log p
.

We have to show that
n− 1

p− 1
≥ log n

log p
or, since n ≥ p and p ≥ 2, that

n− 1

log n
≥ p− 1

log p
. This follows from

x− 1

log x
being monotone increasing for x > 1,

which is easily seen by substitution of the monotonic increasing ey for x:

x− 1

log x
=
ey − 1

y
=

∞∑
n=1

yn−1

n!
.

(iii) By (ii) the map log : 1 + pt → pt is defined and the formal properties of log
imply that it is a homomorphism.

Since exp and log are formally inverses of each other, the preceding propositions
imply the following.

11.21 Theorem. Let t ∈ N with t >
e

p− 1
. The maps

log : 1 + pt → pt and exp: pt → 1 + pt

are group isomorphisms and inverses of each other.

The subgroups pt and 1+ pt of respectively OF and O∗
F are of finite index. So the

groups OF and O∗
F have much in common. An important consequence concerns

the group Fn of n-th powers of F ∗.

11.22 Theorem. Let n ∈ N∗. Then 1 + pt ⊆ F ∗n for t > e · vp(n) + e
p−1 .

Proof. Let α ∈ 1 + pt. Then logα ∈ pt because t > e
p−1 . So v( 1n logα) ≥

t − v(n) = t − e · vp(n) > e
p−1 and for β = exp( 1n logα) ∈ 1 + pt−v(n) we have

βn = exp(logα) = α. Hence α ∈ F ∗n.

11.23 Corollary. For each n ∈ N∗ the index of F ∗n in F ∗ is finite.
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11.5 The multiplicative group

Proof. Let n ∈ N∗. By the theorem there is a t ∈ N∗ such that 1 + pt ⊆
F ∗n ∩ O∗

F = O∗n
F . The split short exact sequence

1 −→ O∗
F −→ F ∗ v−→ Z −→ 1

induces a split short exact sequence

1 −→ O∗
F /O∗n

F −→ F ∗/F ∗n v−→ Z/n −→ 1.

So F ∗/F ∗n ∼= O∗
F /O∗n

F × Z/n. The index of 1 + pt in O∗
F is finite: O∗

F /(1 + pt) ∼=
(OF /pt)∗. From 1 + pt ⊆ O∗n

F ⊆ O∗
F follows that the index of O∗n

F in O∗
F is finite

as well.

11.5 The multiplicative group

Let F be a local field with kF of characteristic p and p = pF . First we show that
1 + p is a Zp-module in a natural way. Writing operators of this multiplicative
group as exponents, we will define αz for α ∈ 1+ p and z ∈ Zp. Its definition rests
on the following lemma.

11.24 Lemma. Let α ∈ 1 + p and z = limn→∞ zn with zn ∈ Z for all n ∈ N∗.
Then the sequence (αzn)n converges in 1 + p. If also z = limn→∞ z′n with z′n ∈ Z
for all n ∈ N∗, then

lim
n→∞

αz
′
n = lim

n→∞
αzn .

Proof. For each m ∈ N∗ the group (1+pm)/(1+pm+1) is of order q = #(kF /p).
It follows that for each m ∈ N∗ the group (1+ p)/(1+ pm+1) is of order qm, that is

αp
m

≡ 1 (mod pm+1) for all m ∈ N∗.

Put vp(zn+1 − zn) = an and vp(z
′
n − zn) = bn. Then limn→∞ an = ∞ and

limn→∞ bn =∞. Then

αzn+1

αzn
= αzn+1−zn ≡ 1 (mod pan+1) and

αz
′
n

αzn
= αz

′
n−zn ≡ 1 (mod pbn+1).

And so
αzn+1 ≡ αzn (mod pan+1) and αz

′
n ≡ αzn (mod pbn+1).

It follows that the sequence (azn)n converges and that the limit does not depend
on the choice of the sequence (zn)n.

11.25 Definition. Let F be a local field with kF of characteristic p, α ∈ 1 + pF
and z ∈ Zp. Then the power αz is defined by

αz = lim
n→∞

αzn ,

where (zn)n is a sequence in Z converging to z.

289



11 Local Fields

11.26 Lemma. For each m ∈ N∗ the abelian group 1 + pm is a Zp-module under

Zp × (1 + pm) −→ 1 + pm, (z, α) 7→ αz.

Proof. Let z = limn→∞ zn with zn ∈ Z and α ∈ 1+ pm. Then αzn ∈ 1+ pm for
all n, because 1+ pm is a subgroup of F ∗. Hence αz ∈ 1+ pm. Let also β ∈ 1+ pm

and w = limn→∞ wn with wn ∈ Z. Then for each n:

(αβ)zn = αznβzn , αzn+wn = αznαwn and αznwn = (αzn)wn .

So by the well-known rules for limits we obtain

(αβ)z = αzβz, αz+w = αzαw and αzw = (αz)w.

This means that under (z, α) 7→ αz the group 1 + pm is a Zp-module.

We can now determine the structure of the multiplicative group of a local field of
characteristic 0.

11.27 Theorem. Let F be a local field of characteristic 0 with kF of characteristic
p, [F : Qp] = d and w = #(µ(F )). Then

F ∗ ∼= Z⊕ (Z/w)⊕ Zdp.

Proof. Let π be a uniformizer of vF and #(kF ) = q. Then by Corollary 11.9

F ∗ = ⟨π⟩ · µq−1(F ) · (1 + pF ).

Since Zp is a principal ideal domain the ring OF is a free Zp-module of rank d. For
n sufficiently large the map log : 1 + pnF → pnF is an isomorphism of Zp-modules
(Theorem 11.21). So 1+ pnF

∼= πnOF ∼= OF ∼= Zdp. The index of 1+ pnF in 1+ pF is
finite, so the Zp-module 1 + pF is of rank d as well. Its torsion subgroup consists
of the roots of unity of F of order a power of p. By Theorem 11.8 this subgroup is
the kernel of λF : µ(F )→ µq−1(F ).

Exercises

1. Let p be a prime number. By Corollary 11.9

Q∗
p = (1 + pZp) · µp−1 · ⟨p⟩.

(i) Show that (1 + pZp)
2 = 1 + pZp if p is odd.

(ii) Show that for odd p the group Q∗
p/Q∗2

p is noncyclic of order 4, its elements
being represented by 1, p, u and pu, where u ∈ Z represents a generator of
the cyclic group F∗

p.
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Exercises

(iii) Show that (1 + 2Z2)
2 has index 2 in 1 + 2Z2.

2. Let p be a prime number, r ∈ N∗, K = Q(ζpr ) and p the prime of K above p.
Compute µ(K) and µ(Kp).

3. Let E : F be a totally tamely ramified Galois extension of local fields, v the discrete
valuation of E and [E : F ] = n. Show that there is a π ∈ E with v(π) = 1 and
πn ∈ F . (Use exercise 17 of chapter 7.)

4. Let m and n be different squarefree integers ̸= 1. Put k = mn/ gcd(m,n)2 and let p
be an odd prime such that p | m, p | n and

(
k
p

)
= −1. Show that the completions of

the fields Q(
√
m) and Q(

√
n) with respect to the prime above p are not isomorphic.

5. (i) Let p be an odd prime. Show that the group 1 + pZp is a subgroup of the
group Q∗2

p of squares in Q∗
p.

(ii) Show that Q∗
p/Q∗2

p is a noncyclic group of order 4.

(iii) Prove that inside a given algebraic closure of Qp there are exactly 3 quadratic
extensions of Qp.

6. (i) Show that the group 1+8Z2 is a subgroup of the group Q∗2
2 of squares in Q∗

2.

(ii) Show that Q∗
2/Q∗2

2 is 2-elementary group of order 8.

(iii) Prove that inside a given algebraic closure of Q2 there are exactly 7 quadratic
extensions of Q2.

(iv) Give for each of the seven quadratic extensions of Q2 a primitive element.
Which one is unramified?
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12 Galois Modules

Galois theory is a powerful tool when investigating field extensions. The Galois
group of a Galois extension L : K is a group of automorphisms of L and as such
it acts on the field L. The Galois group acts on many structures associated to
L as well, e.g. it acts on the multiplicative group L∗, the ring OL, the group
O∗
L and the group I(L) of fractional ideals. Group cohomology applies in these

cases and is usually referred to as Galois cohomology . It will be used in the next
chapters, however, not in full generality. Only the special case of the cohomology
of cyclic groups will be used. It is described in section 12.2. In section 12.3 many
examples of Galois cohomology groups for cyclic number field extensions are given.
These examples will be used in later chapters. The action of a Galois group often
comes with extra structure. This is formalized in section 12.4 and is particularly
interesting when dealing with noncyclic Galois groups. Special cases are studied
in the last two sections.

12.1 Modules over a group

Modules over a group are essentially modules over the group ring of the group.

12.1 Terminology. Let G be a group. If G operates on an abelian group A via
automorphisms of A, then A, equipped with this action, is called a G-module.
Equivalently, a G-module A consists of an abelian group A together with a group
homomorphism G → Aut(A). If, more generally, for a commutative ring R the
group G acts on an R-module A via R-automorphisms, the action corresponds to
a group homomorphism G → AutR(A), where AutR stands for the group of R-
automorphisms. For K a field and V a K-vector space, a group homomorphism
G → AutK(V ) is usually called a representation over K of G. If V is of finite
dimension, then the dimension of V is called the degree of the representation.

In section 18.4 representations over C will be used for Artin’s generalization of the
L-functions as defined for abelian number fields in chapter 9.

Using the multiplicative notation for G and the additive notation for A, a G-action
on A comes down to a map

G×A→ A, (σ, a) 7→ σa
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12 Galois Modules

such that for all a, b ∈ A and σ, τ ∈ G:

(στ)a = σ(τa),

σ(a+ b) = σa+ σb,

1a = a.

12.2 Definition. Let G be a (multiplicative) group. The group ring Z[G] of G is
the free abelian group with G as basis equipped with the multiplication induced
by the group multiplication in G:∑

σ

nσσ ·
∑
τ

mττ =
∑
σ,τ

nσmτστ,

where nσ,mτ ∈ Z. More generally, the group algebra R[G] over a commutative
ring R is the free R-module on G equipped with the ring multiplication induced
by the group multiplication on the basis elements. Its elements are

∑
σ aσσ with

aσ ∈ R for all σ ∈ G.

For A a G-module, the group homomorphism G → Aut(A) extends to a ring
homomorphism Z[G] → End(A), where End(A) is the ring of endomorphisms of
the abelian group A. Thus A becomes a Z[G]-module. On the other hand a Z[G]-
module A is a G-module by restriction of the operations to the basis G of Z[G].
We will switch freely between the notions of G-module and Z[G]-module. A Z[G]-
module homomorphism f : A → B corresponds to a G-module homomorphism in
the sense that it is a homomorphism of abelian groups satisfying

f(σa) = σf(a) for all a ∈ A and σ ∈ G.

For R a commutative ring R[G]-modules A are R-modules equipped with an action
of G on A by R-linear maps. In particular, representations over C of a group G
correspond to C[G]-modules.

12.3 Definitions and notations.

a) The norm element of a finite group G is the element
∑
σ∈G σ of Z[G]. It is

denoted by NG. If G is generated by a subset X of G, then also the notation
NX is used and if X = {σ}, a one element set, then we may write Nσ.

b) Let A be a G-module. Then the G-module of G-invariants of A is the G-
submodule

AG = { a ∈ A | σa = a for all σ ∈ G } =
⋂
σ∈G

Ker(1− σ : A→ A).

It is the largest G-submodule with trivial G-action. Notations like AX and
Aσ for X and σ as above are used as well.
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12.1 Modules over a group

c) Let A be a G-module. Then the G-module of G-co-invariants of A is the
quotient G-module of A by the G-submodule generated by all a − σa with
a ∈ A and σ ∈ G:

AG = A
/ ∑

σ∈G
(1− σ)A.

It is the largest quotientG-module with trivialG-action. The class of a ∈ A in
the quotient module AG will often be denoted by a. Again we have notations
AX and Aσ.

Trivial but important identities for norm elements are:

12.4 Lemma. Let H, H1 and H2 be subgroups of a finite group G. Then:

(i) If H1 ≤ H2, then NH1NH2 = #(H1) ·NH2 .

(ii) (NH)2 = #(H) ·NH .

(iii) If H1H2 is a subgroup of G, then NH1
NH2

= #(H1 ∩H2) ·NH1H2
.

Proof. (ii) follows from (i), and (i) follows from σNH2
= NH2

for all σ ∈ H1,
or, alternatively, apply (iii) to H1 ≤ H1H2. For (iii) note that the #(H1)#(H2)
terms in NH1

NH2
correspond to the elements of H1×H2, whereas Ker(H1×H2 →

H1H2) ∼= H1 ∩H2.

The following will be frequently used when studying group actions on abelian
groups.

12.5 Lemma. Let G be a group of order n acting on an abelian group A. Then
multiplication by NG induces a homomorphism

NG : AG −→ AG, a 7→ NGa

of abelian groups. The kernel and the cokernel of this homomorphism are killed1

by n. In particular the homomorphism is an isomorphism if multiplication by n is
an automorphism of A.

Proof. It follows from σNG = NG = NGσ that multiplication by NG induces a
homomorphism AG → AG. For a ∈ AG with NGa = 0 one has na = NGa = 0.
And for a ∈ AG we have na = NGa.

Associated to a group module are series of abelian groups: the homology groups
and the cohomology groups. Here a short description in terms of derived functors
is given. In this book no use is made of the full theory of group (co)homology.

Let G be a group. The functor A 7→ AG is a right exact functor from G-modules to
abelian groups. For m ∈ N its m-th left derived functor is denoted by Hm(G,−).

1Terminology: an abelian group A is killed by n if na = 0 for all a ∈ A; a not necessarily abelian
multiplicative group G has exponent n if gn = 1 for all g ∈ G.
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12 Galois Modules

The group Hm(G,A) is called the m-th homology group of G with coefficients in A.
In particular we have H0(G,A) = AG.

The functor A 7→ AG is a left exact functor from G-modules to abelian groups. For
m ∈ N itsm-th right derived functor is denoted byHm(G,−). The groupHm(G,A)
is called the m-th cohomology group of G with coefficients in A. In particular we
have H0(G,A) = AG.

The Tate cohomology groups Ĥm(G,A) of a finite group G with coefficients in a
G-module A are defined for all m ∈ Z:

Ĥm(G,A) =


Hm(G,A) if m ≥ 1,

Coker(AG
NG−→ AG) if m = 0,

Ker(AG
NG−→ AG) if m = −1,

H−m−1(G,A) if m ≤ −2.

By definition we have the exact sequence

0 −→ Ĥ−1(G,A) −→ AG
NG−→ AG −→ Ĥ0(G,A) −→ 0.

By Lemma 12.5 the groups Ĥm(G,A) are killed by n = #(G) form = −1, 0. In fact
this holds for all m ∈ Z. In particular, if multiplication by n is an automorphism
of A, then Ĥm(G,A) = 0 for all m ∈ Z.

For G cyclic one shows that Ĥm(G,A) = Ĥm+2(G,A), so for such G the above
exact sequence can be written as

0 −→ Ĥ1(G,A) −→ AG
NG−→ AG −→ Ĥ0(G,A) −→ 0

and can be used as a definition of Ĥ0(G,A) and Ĥ1(G,A), as will be done in the
next section. In this context it is customary to delete the ˆ in the notation.

12.2 Cohomology of cyclic groups

The Tate cohomology groups of a cyclic group have a simple description. This
description is taken here to be their definition. The general notion of group coho-
mology is not used in this book.

12.6 Definition and notation. Let G be a cyclic group of order n generated by σ.
Then elements ∆ and N of Z[G] are defined as follows

∆ = 1− σ and N = 1 + σ + · · ·+ σn−1.

For A a G-module the homomorphisms a 7→ ∆a and a 7→ Na are denoted by ∆A

and NA respectively. So N = NG and in the notation NA the group G is understood.
Similarly for ∆, in which case, moreover, the generator σ is not specified.
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12.2 Cohomology of cyclic groups

12.7 Lemma. Let G be a finite cyclic group and A a G-module. Then Im(∆A) ⊆
Ker(NA) and Im(NA) ⊆ Ker(∆A).

Proof. This follows from N∆ = ∆N = 1− σn = 0.

12.8 Definition. Let G be a cyclic group, generated by an element σ of order
n. Then the 0-th and the 1-st cohomology group of a G-module A are defined
respectively as follows:

H0(A) = Ker(∆A)/ Im(NA) and H1(A) = Ker(NA)/ Im(∆A).

(Clearly, these groups do not depend on the choice of the generator σ.)

There is some variation in the terminology. For cyclic G, the ‘i-th cohomology
group (for i = 0, 1) of A’ stands for the ‘i-th Tate cohomology group of G with
values in A’. Here the emphasis is on the module, not on the group.

A direct consequence of the definition is the following.

12.9 Proposition. Let G be a cyclic group of order n generated by σ and A a
G-module. Then we have exact sequences

0 −→ H1(A) −→ Coker(∆A)
NA−→ Ker(∆A) −→ H0(A) −→ 0

and

0 −→ H0(A) −→ Coker(NA)
∆A−→ Ker(NA) −→ H1(A) −→ 0.

The first exact sequence is the same sequence as

0 −→ H1(A) −→ AG
NG−→ AG −→ H0(A) −→ 0,

which shows that indeed the cohomology groups are the Tate cohomology groups
Ĥ0(G;A) and Ĥ−1(G;A), see the remarks at the end of section 12.1.

Cohomology theories give rise to long exact sequences of cohomology groups. Due
to the fact that in the cyclic case the cohomology is periodic with period 2, these
long exact sequences wind up as a hexagon.

12.10 Theorem (The Exact Hexagon). Let G be a finite cyclic group and let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of G-modules. Then an exact hexagon of cohomology
groups is induced:
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12 Galois Modules

H0(A) H0(B)

H0(C)

H1(A)H1(B)

H1(C)

Proof. The Snake Lemma applied to the commutative diagram

0 A B C 0

0 A B C 0

f

f

g

g

∆A ∆B ∆C

yields an exact sequence of kernels and cokernels

0 −→ Ker(∆A) −→ Ker(∆B) −→ Ker(∆C)

−→ Coker(∆A) −→ Coker(∆B) −→ Coker(∆C) −→ 0.

There is a similar exact sequence for N instead of ∆. Applying the Snake Lemma
to the commutative diagram

Coker(NA)

Ker(NA)

Coker(NB)

Ker(NB)

Coker(NC)

Ker(NC)0

0

∆A ∆B ∆C

yields an exact sequence

H0(A) −→ H0(B) −→ H0(C) −→ H1(A) −→ H1(B) −→ H1(C).

Interchanging the role of N and ∆ yields a similar exact sequence and these two
together form the exact hexagon.
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12.2 Cohomology of cyclic groups

A tool for making computations is the Herbrand quotient:

12.11 Definition. Let G be a finite cyclic group and A a G-module such that
H0(A) and H1(A) are finite. Then the Herbrand quotient of A is the rational
number

q(A) =
#(H1(A))

#(H0(A))
.

12.12 Proposition. Let G be a finite cyclic group and 0 → A → B → C → 0 a
short exact sequence of G-modules. If for two of the three modules the Herbrand
quotient is defined, then so for the third and

q(B) = q(A)q(C).

Proof. The associated exact hexagon leads to a diagram with exact sequences:

H0(A) H0(B)

H0(C)

H1(A)H1(B)

H1(C)

III0 II 0

0

I

0 0

0

If the Herbrand quotient of two of the modules A, B and C is defined, then four
of the six abelian groups in the exact hexagon are finite and so are the remaining
two. Because the alternating product of the orders in an exact sequence equals 1,
we have

q(A)q(C)

q(B)
=

#(H1(A)) ·#(H0(B)) ·#(H1(C))

#(H0(A)) ·#(H1(B)) ·#(H0(C))
=

#(II) ·#(I) ·#(III)

#(III) ·#(II) ·#(I)
= 1.
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12 Galois Modules

12.13 Proposition. Let G be a finite cyclic group and A a finite G-module. Then
q(A) = 1.

Proof. From the exact sequence

0 −→ Ker(NA) −→ A
NA−→ A −→ Coker(NA) −→ 0

follows that #(Ker(NA)) = #(Coker(NA)) and together with the exactness of

0 −→ H0(A) −→ Coker(NA)
∆A−→ Ker(NA) −→ H1(A) −→ 0

this implies that #(H1(A)) = #(H0(A)).

12.14 Corollary. Let G be a finite cyclic group and let A be a G-submodule of finite
index in the G-module B. If one of the Herbrand quotients of A and B is defined,
then so is the other and, moreover, q(A) = q(B).

Proof. Apply Proposition 12.12 to the short exact sequence 0 → B → A →
B/A→ 0 and use that q(B/A) = 1 by Proposition 12.13.

The following proposition describes the cohomology of a type of module which will
occur frequently.

12.15 Proposition. Let G = ⟨σ⟩ be a cyclic group of order n and d a divisor of n,

say n = dm. Let B be a torsion free abelian group and A =
⊕d

i=1B the G-module
with the G-action

σ(b1, . . . , bd) = (b2, . . . , bd, b1).

Then H1(A) = 0 and H0(A) ∼= B/mB.

Proof. We have for a = (b1, . . . , bd):

∆a = (b1 − b2, b2 − b3, . . . , bd − b1),
Na = m(b1 + · · ·+ bd, . . . , b1 + · · ·+ bd)

and an easy calculation shows that

Ker(∆A) = { (b, . . . , b) | b ∈ B } ∼= B,

Im(∆A) = { (b1, . . . , bd) ∈ A |
∑

bi = 0 } = Ker(NA),

Im(NA) = {m(b, . . . , b) | b ∈ B } ∼= mB.

12.3 Galois cohomology of cyclic groups

This section contains computations of cohomology groups of some modules over
the Galois group of a cyclic extension. Since the group is a Galois group it is
customary to speak of Galois cohomology in such cases.
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12.3 Galois cohomology of cyclic groups

The cohomology groups of L and L∗

In this subsection L : K is a Galois extension of degree n with Gal(L : K) = G =
⟨σ⟩. The additive group L and the multiplicative group L∗ both are G-modules:
the action of σ is given by σα = σ(α).

12.16 Theorem. H0(L) = 0 and H1(L) = 0.

Proof. The action of ∆ and N is given by

∆α = α− σ(α) and Nα = α+ σ(α) + · · ·+ σn−1(α) = TrLK(α).

The maps ∆L,NL : L→ L are K-linear. The trace map TrLK : L→ K is surjective
(Corollary 1.30). So by the Main Theorem of Galois Theory

K = Im(TrLK) = Im(NL) ⊆ Ker(∆L) = Lσ = K.

It follows that H0(L) = 0 and also that Ker(NL) = Im(∆L), since both are of
dimension n− 1.

Alternatively, by the Normal Basis Theorem of Galois theory there is an α ∈ L such
that α, σ(α), . . . , σn−1(α) is a K-basis of L. Apply Proposition 12.15. For fields of
characteristic 0 the theorem follows directly from the fact that the map LG → LG

induced by NL is an isomorphism.

12.17 Theorem. H0(L∗) = K∗/NLK(L∗) and H1(L∗) = 1.

Proof. The action of ∆ and N is given by

∆α =
α

σ(α)
and Nα = α · σ(α) · · ·σn−1(α) = NLK(α).

We have, again by the Main Theorem of Galois Theory

Ker(∆L∗) = {α ∈ L∗ | σ(α) = α } = L∗ ∩ LG = L∗ ∩K = K∗,

Im(NL∗) = NLK(L∗).

Hence H0(L∗) = K∗/NLK(L∗).

The group Im(∆L∗) consists of all β
σ(β) with β ∈ L∗ and the group Ker(NL∗) is

the subgroup of all α ∈ L∗ with NLK(α) = 1. We have to show that each such α is

of the form β
σ(β) . Let α ∈ L∗ such that NLK(α) = 1. For γ ∈ L∗ we consider the

element

β =

n−1∑
k=0

(
σk(γ)

k∏
j=0

σj(α)
)
= σn−1(γ) +

n−2∑
k=0

(
σk(γ)

k∏
j=0

σj(α)
)
.
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Apply σ:

σ(β) = γ +

n−2∑
k=0

(
σk+1(γ)

k∏
j=0

σj+1(α)
)
= γ +

n−1∑
k=1

(
σk(γ)

k∏
j=1

σj(α)
)
.

So ασ(β) = β. Is there a γ such that β ̸= 0? Choose a ϑ ∈ L such that L = K(ϑ)
and consider the elements β = βj for γ = ϑj−1 for j = 1, . . . , n. They form the
column vector Av, where

A =


1 1 · · · 1
ϑ σ(ϑ) · · · σn−1(ϑ)
...

...
...

ϑn−1 σ(ϑ)n−1 · · · σn−1(ϑ)n−1

 and v =


α

ασ(α)
...

ασ(α) · · ·σn−1(α)

 .

Since ϑ is primitive, the elements ϑ, σ(ϑ), . . . , σn−1(ϑ) are different. So the Van-
dermonde matrix A is invertible. Because v ̸= 0 it follows that Av ̸= 0. So βj ̸= 0

for some j. Therefore, α =
βj

σ(βj)
.

The formula H1(L∗) = 1 is known as Hilbert’s Theorem 90.

The cohomology groups of I(S)

Let R be a Dedekind domain, K the field of fractions of R, L : K a cyclic extension,
G = Gal(L : K) and S the integral closure of R in L. The discrete valuations vq
on L constitute an isomorphism

I(S) ∼−→
⊕

p

⊕
q|pS Z

ofG-modules, the direct sums being over the maximal ideals p ofR and the maximal
ideals q of S dividing pS. By Proposition 12.15 we have

H1
(⊕

q|pS Z
)
= 0 and H0

(⊕
q|pS Z

)
= Z/epfp.

Hence
H1(I(S)) = 1 and H0(I(S)) ∼=

⊕
p Z/epfp.

For the norm NLK of fractional ideals we have by Proposition 7.67 a commutative
diagram

I(R)

I(S)

⊕
p∈P Z

⊕
p∈P

⊕
q|pS Z

∼

∼

NLK (fp·)p
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12.3 Galois cohomology of cyclic groups

where fp· : Z → Z is multiplication by fp for each p ∈ Max(S). In particular we
have:

12.18 Proposition. H1(I(S)) = 1 and if no prime ideal of R ramifies in L, then
H0(I(S)) = I(R)/NLK(I(S)) (identifying I(R) with a subgroup of I(S)).

So in the number field case we have in the terminology of section 6.4:

12.19 Corollary. Let L : K be a cyclic extension of number fields, P a collection
of nonzero prime ideals of OK and Q the collection of prime ideals of OL above
P . Then H1(IQ(L)) = 1. If P does not contain the in L ramifying primes, then
H0(IQ(L)) = IP (K)/NLK(IQ(L)).

Proof. Take R = OP and S = OQ.

The cohomology groups of OE and O∗
E (E a local field)

Let E : F be a cyclic Galois extension of local fields, p the characteristic of the
residue class fields, e the ramification index and f the residue class degree. Put
G = Gal(E : F ) = ⟨σ⟩. Then #(G) = n = ef .

12.20 Proposition. q(OE) = 1.

Proof. Choose a normal basis (β, σ(β), . . . , σn−1(β)) of E : F . We can assume
that β ∈ OE . Put δ = disc(β, σ(β), . . . , σn−1(β)). Then δ ∈ OF \ {0} and

T := OFβ +OFσ(β) + · · ·+OFσn−1(β) ⊆ OE ⊆
1

δ
T.

So δOE ⊆ T ⊆ OE . The ideal δOE of the ring OE is of finite index: if vE(δ) = m,
then OE/δOE = OE/pmE . By Corollary 12.14 q(OE) = q(T ) and by Proposi-
tion 12.15 q(T ) = 1.

The exponential function defined in section 11.3 relates the multiplicative structure
to the additive structure.

12.21 Proposition. q(O∗
E) = 1.

Proof. Put t = ⌊ e
p−1⌋+ 1. By Theorem 11.21 we have an isomorphism

exp: ptE
∼→ 1 + ptE .

It is an isomorphism of G-modules:

exp(σ(α)) =

∞∑
j=0

σ(α)j

j!
= σ

( ∞∑
j=0

αj

j!

)
= σ(expα).

Because 1 + ptE and ptE are of finite index in respectively O∗
E and OE , we have

q(O∗
E) = q(1 + ptE) = q(ptE) = q(OE) = 1.
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12.22 Theorem. F ∗/NEF (E
∗) is of order n = [E : F ].

Proof. Consider the following short exact sequence of G-modules

1 −→ O∗
E −→ E∗ vE−→ Z −→ 0,

where Z has trivial G-action. Then q(Z) = 1
n and

q(E∗) = q(O∗
E)q(Z) = 1

n .

Since H1(E∗) = 1 (Hilbert’s Theorem 90), it follows that #(H0(E∗)) = n.

12.23 Theorem. #(H0(O∗
E)) = #(H1(O∗

E)) = e.

Proof. By Proposition 12.21 #(H0(O∗
E)) = #(H1(O∗

E)), so it suffices to show
that #(H0(O∗

E)) = e. We have

Ker(∆O∗
E
) = O∗

F and Im(NO∗
E
) = NEF (O∗

E).

So H0(O∗
E) = O∗

F /N
E
F (O∗

E). The norm map NEF induces the following commutative
diagram with exact rows:

O∗
F F ∗ Z

O∗
E E∗ Z

1

1

0

0
vE

vF

NEF f

The cokernels of the vertical maps form a short exact sequence. From Theo-
rem 12.22 it follows that the group O∗

F /N
E
F (O∗

E) is of order e.

The Herbrand quotient of O∗
L

Let L : K be a cyclic Galois extension of number fields of degree n. Put G =
Gal(L : K) = ⟨σ⟩. The group G acts on the infinite primes of L via τ ·σq = σqτ

−1,
where τ ∈ G and σq a real or complex embedding corresponding to q. The orbits
of this action are the collections of primes above the same infinite prime of L. Let
p be an infinite prime of K. If p does not ramify in L, then the orbit of primes of L
above p has n elements, and if p does ramify it has n/2 elements. In the last case
the decomposition group of p in L is of order 2 with σn/2 as its nontrivial element.

The structure of the group O∗
L is given by the Dirichlet Unit Theorem. By

Lemma 5.32 there is for each infinite prime q of L a unit εq ∈ O∗
L such that

∥εq∥q > 1 and ∥εq∥q′ < 1 for all infinite primes q′ ̸= q of L.
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12.4 Galois modules and transfers

Now choose for each infinite prime p of K an infinite prime q of L above p and an
εq as above. In case p does not ramify, define for each τ(q) in the same orbit a unit

ετ(q) = τ(εq).

Then

∥τ(εq)∥q′ = |σq′τ(εq)| = |στ−1(q′)(εq)| > 1 if q′ = τ(q), and < 1 otherwise.

If p ramifies, replace εq by εqσ
n/2(εq) and define ετ(q) as in the nonramifying case.

Thus we have a set of units εq, one for each of the r + s infinite primes of L,
which is invariant under the action of G and which by Proposition 5.34 is of rank
r + s− 1. Let B be the subgroup of O∗

L generated by the r + s units εq and let A
be a free abelian group with r + s basis elements aq, one for each infinite prime q
of L. Since A is free of rank r+ s and B is of rank r+ s− 1, we thus have a short
exact sequence of G-modules

0 −→ Z −→ A −→ B −→ 1

with Z a trivial G-module.

12.24 Theorem. q(O∗
L) =

[L : K]

2t
, where t is the number of infinite primes of K

that ramify in L.

Proof. Because O∗
L/B is finitely generated and of rank 0, this group is finite.

So q(O∗
L) = q(B). We compute q(B). Let A(p) be the free abelian group on the

aq with q above p. Then A =
⊕

pA(p), q(A(p)) = 1 if p does not ramify and

q(A(p)) = 1
2 if p does ramify. So q(A) =

1

2t
and since q(Z) =

1

[L : K]
, we have

q(B) =
q(A)

q(Z)
=

[L : K]

2t
.

12.4 Galois modules and transfers

If the Galois group G of a Galois extension L : K induces an action on an abelian
group A associated to L, the G-module is often referred to as a Galois module. Such
a Galois module often comes with extra structure. This situation is formalized in
the Definitions 12.26 and 12.34.

12.25 Notation. Let L : K be a Galois extension. The category of all intermediate
fields of L : K and their K-embeddings is denoted by G (L : K). (A K-embedding is
an embedding which fixes the elements of K.). Special morphisms in this category
are the elements of Gal(L : K) and the inclusion maps jK

′

L : K ′ → L, one for each

intermediate fieldK ′ of L : K. Also the notation jH will be used for jL
H

L : LH → L.
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12 Galois Modules

12.26 Definition. Let L : K be a Galois extension. A Galois module A associated
to L : K is a functor

A : G (L : K)→ Ab.

Clearly we have:

12.27 Lemma. Let A be a Galois module associated to a Galois extension L : K
of degree n with Galois group G. Then A(L) is a G-module under

σ · x = A(σ)(x) for σ ∈ G and x ∈ A(L).

The map A(jG) : A(K) → A(L) is a G-homomorphism from the trivial G-module
A(K) to the G-module A(L).

For H a subgroup of G, the extension L : LH is a Galois extension with Galois
group H and the category G (L : LH) is a subcategory of G (L : K). So restriction
of a Galois module A : G (L : K)→ Ab gives a Galois module associated to L : LH .

12.28 Definition. A Galois module A related to a Galois extension L : K with
Galois group G is called a Galois module with descent if for each subgroup H of
G the map A(jH) : A(LH) → A(L) induces an isomorphism A(jH) : A(LH)

∼→
A(L)H .

12.29 Examples. Let L : K be a Galois extension of degree n and G = Gal(L : K).
Examples of Galois modules A associated to L : K, given by A(K ′) for intermediate
fields K ′ of L : K, are:

a) A(K ′) = K ′, b) A(K ′) = K ′∗ and c) A(K ′) = µ(K ′).

By the Main Theorem of Galois Theory these examples are Galois modules with
descent.

For number field extensions there are many interesting examples of Galois modules:

12.30 Examples. Let L : K be a Galois extension of number fields with Galois
group G. Examples of Galois modules A associated to L : K, given by A(K ′) for
intermediate fields K ′ of L : K and A(f) for K-embeddings being understood:

a) A(K ′) = OK′ , a Galois module with descent.

b) A(K ′) = O∗
K′ , also with descent.

c) A(K ′) = I(K ′). If a prime p ramifies in L, then
∏

q|pOL
q ∈ I(L)G, but is not

in the image of I(K) → I(L)H . Only if the extension L : K is unramified,
this Galois module is a Galois module with descent.
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12.4 Galois modules and transfers

d) A(K ′) = Cℓ(K ′). We have seen that Cℓ(K)→ Cℓ(L) is not injective in general,
so in these cases there is no descent.

12.31 Example. Let L : K be a Galois extension with G = Gal(L : K) ∼= C2×C2,
say G = ⟨σ, τ⟩, σ and τ being two automorphisms of order 2. In Z[G] we have

Nσ +Nτ +Nστ = 3 + σ + τ + στ = 2 + NG.

So for a G-module A this means that 2x ∈ Aσ + Aτ + Aστ for all x ∈ A. For a
Galois module A : G (L : K) → Ab it implies that for each x ∈ A(L) we have that
2x is in the subgroup generated by the images of A(Lσ), A(Lτ ) and A(Lστ ) in
A(L). If in particular L : K is a number field extension, this applies to the Galois
modules of Examples 12.30:

a) For each α ∈ OL the integer 2α is in the subgroup OLσ +OLτ +OLστ . This
has been used in exercise 9 of chapter 1 for the computation of an integral
basis for a biquadratic number field.

b) For each ν ∈ O∗
L the unit ν2 is in the subgroup O∗

Lσ · O∗
Lτ · O∗

Lστ . This has
been used for the computation of the unit groups of the biquadratic fields
Q(
√
−2,
√
3) and Q(

√
2,
√
3) (Examples 5.37 and 5.38).

c) For each x ∈ Cℓ(L) the ideal class x2 is in the subgroup generated by the
images of Cℓ(Lσ), Cℓ(Lτ ) and Cℓ(Lστ ).

12.32 Example. Let L : K be a Galois extension with G = Gal(L : K) ∼= S3,
say G = ⟨σ, τ⟩, σ an automorphism of order 3 and τ an automorphism of order 2.
Then τστ = σ−1 and in Z[G] we have

Nσ +Nτ +Nστ +Nσ2τ = 3 + NG.

For a G-module A this implies that 3x ∈ Aσ + Aτ + Aστ + Aσ
2τ for all x ∈ A.

For a Galois module A : G (L : K) → Ab it follows that for each x ∈ A(L), the
element 3x is in the subgroup generated by the images of A(Lσ), A(Lτ ), A(Lστ )

and A(Lσ
2τ ). So, in particular, if L : K is a number field extension:

a) For each α ∈ OL the integer 3α is in the subgroup OLσ + OLτ + OLστ +
OLσ2τ . This has been used for the computation of an integral basis of the
field Q( 3

√
α, ζ3) in Example 7.17.

b) For each ν ∈ O∗
L the unit ν3 is in the subgroup O∗

Lσ · O∗
Lτ · O∗

Lστ · O∗
Lσ2τ

.
This also has been used in Example 7.17.

c) For each x ∈ Cℓ(L) the ideal class x3 is in the subgroup generated by the

images of Cℓ(Lσ), Cℓ(Lτ ), Cℓ(Lστ ) and Cℓ(Lσ2τ ).

12.33 Example. The ideal class groups of the proper subfields of Q( 3
√
2, ζ3)

are trivial. Since Cℓ : G (Q( 3
√
2, ζ3) : Q) → Ab is a Galois module, the group

Cℓ(Q( 3
√
2, ζ3)) is a 3-elementary abelian group. In fact, the group is trivial, see

again Example 7.17.
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Transfers

In many interesting cases a Galois module is not a Galois module with descent.
However, there is a useful weaker notion.

12.34 Definition. Let A be a Galois module associated to a Galois extension L : K
with Galois group G and let H be a subgroup of G. A transfer trH of A is an
H-homomorphism

trH : A(L)→ A(LH)

such that the following diagram commutes

A(LH) A(LH)

A(L) A(L)
NH

m

trH trH
A(jH)

where m and NH stand for multiplication by m = #(H) and NH in A(LH) and
the Z[G]-module A(L) respectively. A Galois module A with transfers is a Galois
module A together with transfers of A for each subgroup H of G.

Note that the square in the above diagram commutes because trH is an LH -homo-
morphism. By the map A(jH) the square is subdivided into two commutative
triangles.

12.35 Examples.

a) The examples given in Examples 12.29 are Galois modules with transfers.
The transfers are TrLLH , NLLH and NLLH respectively. In the last two cases the
transfer is the norm map restricted to L∗ and µ(L) respectively.

b) The examples a) and b) given in Examples 12.30 are Galois modules with
transfers. The transfers are given by TrLLH and NLLH .

c) Example c) given in Examples 12.30 is a Galois module with transfers. Trans-
fers are the norm maps NLLH described in Notations 7.71, see also Defini-
tion 7.65 and Proposition 7.69.

d) Example d) given in Examples 12.30 is a Galois module with transfers. The
transfers are described in Notations 7.71 and for their properties see Propo-
sition 7.69 and Corollary 7.70.
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12.4 Galois modules and transfers

12.36 Proposition. Galois modules with descent are Galois modules with transfers.

Proof. If the Galois module has transfers then the diagram in Definition 12.34
induces a commutative diagram

A(LH) A(LH)

A(L)H A(L)H
NH

m

trH trH
A(jH)

So if the map A(jH) is an isomorphism, then trH has to be the composition

A(L) −→ A(L)H
NH−→ A(L)H

A(jH)
−1

−→ A(LH).

Let this be the definition of the transfer. Then the top triangle in the diagram
of Definition 12.34 commutes. The composition of the first two maps is just
NH : A(L) → A(L)H . For the commutativity of the bottom triangle we have to
show that the composition trH A(jH) is multiplication by m. The image of A(jH)

is contained in A(L)H , so this composition is the composition of A(jH) and the
restriction of trH to A(L)H . So we get

A(LH)
A(jH)−→ A(L)H

NH−→
m

A(L)H
A(jH)

−1

−→ A(LH)

and this is multiplication by m.

12.37 Definition. Let A be a Galois module associated to a Galois extension L : K
of degree n and Galois group G. Then A is called acyclic if multiplication by n
is an automorphism of A(L)H for each subgroup H of G. Equivalently, A takes
values in the category of Z[ 1n ]-modules.

A partial converse of Proposition 12.36:

12.38 Proposition. Let A be an acyclic Galois module with transfers associated to
a Galois extension L : K with Galois group G of order n. Then A is a Galois
module with descent. Moreover, for each subgroup H of G the subgroup A(L)H of
A(L) is a direct summand.

Proof. The horizontal maps in the diagram in the proof of Proposition 12.36 are
isomorphisms and as a consequence all the maps in the diagram are isomorphisms.
So, in particular, A is a Galois module with descent. The subgroups A(L)H of
A(L) are direct summands: a left inverse of the inclusion is given by multiplication
by 1

mNH .
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12 Galois Modules

Of course, from a Galois module A an acyclic one can be obtained by tensoring with
Z[ 1n ], where n is the order of the Galois group: A is then replaced by the Galois
module Z[ 1n ] ⊗ A(−). More generally, R ⊗ A(−) is acyclic if n is invertible in the
ring R. Example 12.31 was about Galois modules associated to a Galois extension
with Galois group of type C2×C2. The Galois modules have transfers. The Galois
module given by K ′ 7→ Z[ 12 ] ⊗ Cℓ(K

′), that is K ′ 7→ odd part of Cℓ(K ′) is acyclic.
It is not hard to show that the structure of the odd part of Cℓ(L) is completely
determined by the odd parts of the ideal class groups of the proper intermediate
fields. This will be done in detail more generally for the group Cp × Cp with p a
prime in section 12.5.

The group S3, considered in Example 12.32, is an example of a metacyclic group.
In section 12.6 group modules are studied in detail for a class of metacyclic groups.

12.5 Cp × Cp -Modules

Let p be a prime number and G the elementary abelian p-group of rank 2: G =
Cp × Cp. This group has p+ 1 subgroups of order p. Let Υ denote this collection
of subgroups. For the norm elements of the subgroups of G we have the relation∑

H∈Υ

NH = p+NG.

In Z[ 1p ][G] this can be written as

1

p2
NG +

∑
H∈Υ(G)

(1
p
NH −

1

p2
NG

)
= 1. (12.1)

Using Lemma 12.4 the following is easily verified:

12.39 Proposition. The elements εH = 1
pNH −

1
p2NG, one for each subgroup H

of order p, form together with εG = 1
p2NG an orthogonal system of idempotents of

Z[ 1p ][G].

As a result any Z[ 1p ][G]-module A splits as a direct sum

A = εGA⊕
⊕
H∈Υ

εHA.

For each H of order p we have 1
pNH = εH + εG and so

AH = NHA = εHA⊕ εGA = εHA⊕AG.

Thus we have:
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12.5 Cp × Cp -Modules

12.40 Proposition. Let A be a Z[ 1p ][G]-module. Then

AG ⊕
⊕
H∈Υ

AH/AG
∼−→ A.

Combining this result with Theorem 12.38 yields:

12.41 Theorem. Let p be a prime number, L : K a Galois extension with
Gal(L : K) ∼= Cp×Cp and A an acyclic Galois module with transfers associated to
L : K. Then

A(L)/A(K) ∼=
⊕
H∈Υ

A(LH)/A(K)

The Galois group of a biquadratic number field over Q is isomorphic to C2×C2. So
for a biquadratic number field K the odd part of the ideal class group is determined
by the ideal class groups of its three quadratic subfields. The class number formulas
for biquadratic number fields in 9.57 and 9.58 reduce the computation of the order
of the 2-primary part of the abelian group Cℓ(K) to the computation of the full
unit group of OK .

12.42 Example. Let’s again have a look at K = Q(
√
−2,
√
3). The odd parts of

the ideal class groups form an acyclic Galois module associated to K : Q. The
ideal class groups of Q(

√
−2) and Q(

√
3) are trivial and the ideal class group of

Q(
√
6) is of order 2. So the odd part of Cℓ(K) is trivial. This also follows from

the computation in Example 9.57, which tells even more: h(K) = Q(K). Since
Q(K) = 2 (Example 5.49), it follows that Cℓ(K) is of order 2. The group Cℓ(K)
has also been computed using the Minkowski bound in Example 5.23: Cℓ(K) is of
order 2 and is generated by a prime ideal above 2.

A less trivial case of a biquadratic number field:

12.43 Example. Let K = Q(
√
79,
√
−3). Put K1 = Q(

√
79), K2 = Q(

√
−3) and

K3 = Q(
√
−237). The class number of K2 equals 1. The algorithms given in

chapter 4 for quadratic number fields can be used for the computation of the ideal
class groups of K1 and K3. The group Cℓ(K1) is of order 3 and is generated by
the class of a prime ideal above 3. The structure of Cℓ(K3) is C6 × C2. So by
Theorem 12.41 the structure of the odd part of Cℓ(K) is C3 × C3. The problem is
to compute the 2-primary part. The formula

h(K) =
Q(K)

2
h(K1)h(K2)h(K3)

in 9.57 yields h(K) = 18 · Q(K). We show by contradiction that Q(K) = 2.
Suppose that Q(K) = 1. Then there is a ν ∈ O∗

K such that ν2 = −ε, where ε is
the fundamental unit of K1. Then K = K1(ν). The discriminant of (1, ν) over K1

is −4ε. So dK1
(K) | 4OK1

. The prime ideals of OK1
above 3 ramify in K and are,
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therefore, divisors of dK1
(K). Contradiction. Hence h(K) = 36 and therefore, the

2-primary part of Cℓ(K) is of order 4. The prime 3 splits completely in K1 and
ramifies in K2 and K3. The prime 79 splits completely in K2 and ramifies in K1

and K2. Let p be a prime ideal of OK above 3 and q a prime ideal of OK above 79.
The ideals NKK3

(p) and NKK3
(q) represent ideal classes which generate the 2-primary

part of Cℓ(K3). So the map trKK3
: Cℓ(K) → Cℓ(K3) is surjective. It follows that

Cℓ(K) ∼= C6 × C6.

By relation (12.1) the element 1 ∈ Z[ 1p ][G] can be written as a combination of NG
and the NH for H ∈ Υ:

1 = −1

p
NG +

1

p

∑
H∈Υ

NH .

In section 18.2 this will be generalized to arbitrary abelian groups G and it will
lead to a generalization of Proposition 12.40, see Corollary 18.32.

12.6 Cp ⋊ Cq -Modules

Let p be a prime number and Wp the group generated by an element σ of order
p and an element ρ of order p − 1 satisfying ρσρ−1 = σg, where g is a primitive
root modulo p. In this section we consider subgroups G of Wp generated by σ and
τ = ρs, where s is a divisor of p − 1 different from p − 1. Then G is a metacyclic
group Cp⋊Cq, where q =

p−1
s . For q prime this is the unique nonabelian group of

order pq. In this section q is not necessarily prime.

The group G has exactly p cyclic subgroups of order q: the groups ⟨σiτ⟩ for i =
0, . . . , p − 1. As is easily seen, G is the disjoint union of ⟨σ⟩ and these subgroups
minus their unity element, hence

NG = −p+Nσ +

p−1∑
i=0

Nσiτ . (12.2)

For G-modules A it follows that A modulo the subgroup generated by the AH for
nontrivial H < G has exponent p. In the remaining part of this section we will
study the way A is composed of these subgroups AH when multiplication by p is
invertible. The element 1

pNσ is a central idempotent of the ring Z[ 1p ][G]. Hence, a

Z[ 1p ][G]-module A splits as the direct sum of NσA (= Aσ) and A/Aσ, which is a

Z[ 1p ][G]/a-module, where a is the (two-sided) ideal generated by Nσ.

The case G = Wp will be considered first. Let B be a Z[ 1p ][Wp]-module satisfying

NσB = Bσ = 0. Let b be the ideal of Z[ 1p ][Wp] generated by Nσ. Then B is an
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R := Z[ 1p ][Wp]/b-module. We will construct an orthogonal system consisting of

p− 1 idempotents of R. Since NWp
= NρNσ, equation (12.2) for G =Wp gives

p−1∑
i=0

1

p
Nσiρ ≡ 1 (mod b). (12.3)

Put ϑ = σ1−g. Then for all j ∈ Z we have σjρσ−j = σjσ−jgρ = ϑjρ, and so
σjNρσ

−j = Nϑjρ. For j = 1, . . . , p− 1 we define

εj =
1

p
Nϑjρ(1− σj) ∈ Z[ 1p ][Wp].

We will show that the εj modulo b form an orthogonal system of idempotents of
R. Note that these elements are not central:

ρ(ϑjρ)ρ−1 = ϑjgρ

and so

ρεjρ
−1 =

1

p
Nϑjgρ(1− σjg) = εjg.

Since g is a primitive root modulo p, conjugation by ρ induces a p− 1-cycle of the
set {ε1, . . . , εp−1}. First a lemma.

12.44 Lemma. For all i = 1, . . . , p−1 and all j = 0, . . . , p−1 we have Nϑjρσ
iNϑjρ ≡

−Nϑjρ (mod b).

Proof. Conjugation by a power of σ shows that we can assume that j = 0 and
subsequent conjugation by ρ shows that we can assume that i = 1. We have

NρσNρ =

p−1∑
j=0

p−1∑
k=0

ρjσρk =

p−1∑
j=0

p−1∑
k=0

σg
j

ρj+k =

p−1∑
j=0

p−1∑
l=0

σg
j

ρl

=

p−1∑
j=0

σg
j
p−1∑
l=0

ρl = (Nσ − 1)Nρ ≡ −Nρ (mod b).

12.45 Proposition. The elements εj for j = 1, . . . , p−1 form an orthogonal system
of idempotents of the ring R.

Proof. For proving that the εj are idempotents conjugation by ρ shows that we
can assume that j = 1. By Lemma 12.4 and Lemma 12.44 we have

(Nϑρ(1− σ))2 = (Nϑρ −Nϑρσ)
2 = N2

ϑρ −NϑρσNϑρ −N2
ϑρσ +NϑρσNϑρσ

≡ (p− 1)Nϑρ +Nϑρ − (p− 1)Nϑρσ −Nϑρσ ≡ pNϑρ(1− σ) (mod b).
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Hence ε21 ≡ ε1 (mod b). For i, j ∈ {1, . . . , p − 1} with i ̸= j we have also by
Lemma 12.44

Nϑiρ(1− σi)Nϑjρ = NϑiρNϑjρ −Nϑiρσ
iNϑjρ = σiNρσ

j−iNρσ
−j − σiNρσjNρσ−j

≡ −σiNρσ−j + σiNρσ
j ≡ 0 (mod b).

It follows that εiεj =
1
p2Nϑiρ(1− σi)Nϑjρ(1− σj) ≡ 0 (mod b). Finally, equation

(12.2) for G =Wp implies

p−1∑
i=0

Nϑiρ =

p−1∑
i=0

Nσiρ ≡ p (mod b).

Since

0 ≡ NσNρ ≡
p−1∑
i=0

σiNρ ≡
p−1∑
i=0

Nϑiρσ
i (mod b),

it follows that

p−1∑
i=1

εi =

p−1∑
i=1

1

p
Nϑiρ(1− σi) =

p−1∑
i=1

1

p
Nϑiρ −

p−1∑
i=1

1

p
Nϑiρσ

i ≡ 1 (mod b).

Since the element ε is a central idempotent of Z[ 1p ][Wp] we have

12.46 Corollary. Let ε = 1
pNσ ∈ Z[ 1p ][Wp]. Then the elements

ε, (1− ε)ε1, . . . , (1− ε)εp−1

form a system of orthogonal idempotents of the ring Z[ 1p ][Wp].

The system of orthogonal idempotents gives a direct sum decomposition of
Z[ 1p ][Wp]-modules and the submodules corresponding to the last p−1 idempotents
in the system are isomorphic since these idempotents are conjugate. A further
simplification of the direct sum decomposition will be obtained using the following
well-known lemma for which we give here a direct proof.

12.47 Lemma. Let C be a cyclic group of order n generated by σ and let A be a
Z[ 1n ][C]-module satisfying NCA = 0. Then (1− σ)A = A.

Proof. Clearly, (1− σ)A ⊆ A. Let a ∈ A. The element b =
∑n−1
i=1

(
1− i

n

)
σi−1a

satisfies (1− σ)b = a.

12.48 Proposition. Let B be a Z[ 1p ][Wp]-module. Then we have an isomorphism
of abelian groups

B/Bσ
∼→ (NρB/NWp

B)p−1.
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Proof. By Corollary 12.46 we have a direct sum decomposition of the abelian
group B:

B = εB ⊕ (1− ε)ε1B ⊕ · · · ⊕ (1− ε)εp−1B.

The subgroup ⟨ρ⟩ of Wp acts on {(1 − ε)εj | i = 1, . . . , p − 1} by conjugation.
Therefore, we have

B
∼→ Bσ ⊕ ((1− ε)ε1B)p−1.

It remains to show that ε1(1− ε)B
∼→ NρB/NWp

B. The inclusion of (1− ε)B in B

induces an isomorphism of Z[ 1p ][Wp]-modules (1− ε)B ∼→ B/εB = B/Bσ. Because

Nσ(B/B
σ) = 0, we have by Lemma 12.47 (1− σ)(B/Bσ) = B/Bσ. Hence,

ε1(1− ε)B
∼→ ε1(B/B

σ) = Nϑρ(1− σ)(B/Bσ) = Nϑρ(B/B
σ)

∼→ NϑρB/NϑρNσB = NϑρB/NWp
B

∼→ NρB/NWp
B,

where the last isomorphism is induced by multiplication with σ−1.

Next we consider the general case.

12.49 Proposition. Let G be the subgroup of Wp is generated by σ and an element
of order q | p − 1 with q ̸= 1, say the element τ = ρs, where s = p−1

q . Let A be a

Z[ 1
pq ][G]-module. Then we have isomorphisms of abelian groups

As
∼→ (Aσ)s ⊕ (Aτ/AG)p−1.

and

(A/AG)s
∼→ (Aσ/AG)s ⊕ (Aτ/AG)p−1.

Proof. Let B be the Wp-module induced by the G-module A, that is

B = Z[Wp]⊗Z[G] A =

s−1⊕
i=0

ρi ⊗A.

It is in fact a Z[ 1
pq ][Wp]-module and so are εB (= Bσ) and (1 − ε)B (

∼→ B/Bσ).
By Proposition 12.48 we have

B
∼→ Bσ ⊕B/Bσ ∼→ Bσ ⊕ (NρB/NWp

B)p−1.

Since B ∼= As and Bσ ∼= (Aσ)s as abelian groups, it remains to prove that
NτA/NGA

∼→ NρB/NWp
B. Consider the injective group homomorphism

f : A→ B, a 7→
s−1∑
j=0

ρj ⊗ a.
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For any a ∈ A the element Nτa maps under f to
∑s−1
j=0 ρ

j⊗Nτa =
∑s−1
j=0 ρ

jNτ⊗a =
Nρ ⊗ a. So f restricts to an injective homomorphism

f : NτA→ NρB, Nτa 7→ Nρ ⊗ a.

This map is also surjective: Nρ(ρ
i⊗a) = Nρρ

i⊗a = Nρ⊗a = f(Nτa). Furthermore,
f(NGA) = NWpB: for any a ∈ A we have f(NGa) = f(NτNσa) = Nρ ⊗ Nσa =
NρNσ ⊗ a = NWp

⊗ a = NWp
(1 ⊗ a) and NWp

(ρi ⊗ a) = NWp
ρi ⊗ a = NWp

⊗ a =
f(NGa).

Since the ideal class groups of fields in a Galois extension of number fields form
a Galois module with transfers, we now have for the ideal class group of a Galois
extension with Galois group the metacyclic group G the following.

12.50 Theorem. Let L : K be a Galois extension of number fields with Galois
group G ∼= Cp ⋊ Cq. Then for each prime l ∤ pq

Cℓ(L)l/ Cℓ(K)l ∼= Cℓ(Lσ)l/ Cℓ(K)l × (Cℓ(Lτ )l/ Cℓ(K)l)
q.

12.51 Example. Let f ∈ Z[X] be a monic irreducible polynomial of degree 3
and α ∈ R a zero of f . Put K = Q(α). Assume that d = disc(f) is not a square.
Then K : Q is not a Galois extension. Its normal closure is the splitting field of
f . Let L be this splitting field. Then Gal(L : Q) ∼= S3. For primes p ̸= 2, 3 the p-
components of the ideal class groups form an acyclic Galois module with transfers
associated to L : Q. By Theorem 12.50 we have

Cℓ(L)p ∼= Cℓ(Q(
√
d))p × Cℓ(K)2p.

So the structure of the group Cℓ(L) is up to 2- and 3-torsion determined by the
the ideal class groups of K and Q(

√
d). Furthermore, since [L : Q(

√
d)] = 3, the

2-component of Cℓ(Q(
√
d)) maps injectively into Cℓ(L). Similarly, the 3-component

of Cℓ(K) maps injectively into Cℓ(L).

Exercises

1. (i) Let L : K be a quadratic Galois extension and α ∈ L with α ̸= −1 and
NL

K(α) = 1. Let σ ∈ Gal(L : K) be of order 2. Show that β = α+ 1 satisfies
α = β

σ(β)
.

(ii) Let (x, y, z) ∈ N∗3 be a Pythagorean triple. Use (i) applied to Q(i) : Q to
show that there are u, v ∈ N∗ such that (x : y : z) = (u2 − v2 : 2uv : u2 + v2).

2. Let G be a cyclic group of order n and A a G-module. Prove that the groups H0(A)
and H1(A) are killed by n.
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Exercises

3. Let G be a cyclic group and A a finite G-module such that gcd(#(G),#(A)) = 1.
Show that H0(A) = H1(A) = 0.

4. Let A and B be as in Proposition 12.15, but without the condition of B being
torsion free. Show2 that H1(A) ∼= mB and H0(A) ∼= B/mB.

5. Let E : F be an unramified extension of local fields. Show that the map NE
F : E → F

induces a surjective homomorphism O∗
E → O∗

F .

6. Let L = Q(α, ζ3), where α = 3
√
7 ∈ R. Put K = Q(α).

(i) Show that the prime number 3 totally ramifies in in L.

(ii) Show that δ := 2(1+2ζ3)
α−1

∈ OL, L = Q(δ) and δ2 ∈ Z[α].

(iii) Show that disc(L) = −3k74 for some k ∈ N∗.

(iv) Compute the minimal polynomial f of δ over Q.

(v) Prove that k = 7.

(vi) Show that Cℓ(L) is an elementary abelian 3-group of 3-rank ≥ 1.

7. Let p be an odd prime number, K = Q(ζp), G = Gal(K : Q) and p the unique
prime of L above p.

(i) Which of the cohomology groups of the following G-modules are finite?

K, K∗, OK , O∗
K , I(K), Kp, K∗

p , O∗
p

(ii) Determine the order of each of the finite cohomology groups.

(iii) Show that each of the finite cohomology groups is cyclic.

8. Let K be a quadratic number field of discriminant D. Let r be the number of finite
primes which ramify in K. So r equals the number of prime divisors of D. In this
exercise we show that the 2-rank of the narrow ideal class group Cℓ+(K) is equal to
r− 1. See exercise 9 of chapter 6 for the definition of the narrow ideal class group.
Or, specifically for quadratic number fields, see exercise 17 of chapter 4. We will
use the following notations:

K+ = {α ∈ K∗ | NK
Q (α) > 0 },

O+
K = { ν ∈ O∗

K | NK
Q (α) > 0 } = O∗

K ∩K+,

∆(K) = {α ∈ K+ | αOK ∈ I(K)2 }.

Furthermore, a group homomorphism φ : ∆(K) → Cℓ+(K) is defined by φ(α) =
[a]+, where αOK = a2.

(i) Show that Im(φ) = 2Cℓ(K)+.

(ii) Show that Ker(φ) = O+
K · (K

+)2.

(iii) Let ψ : O+
K → ∆(K)/(K+)2 be the homomorphism induced by the inclusion

O+
K ⊆ ∆(K). So ψ(ν) = ν · (K+)2 for ν ∈ O+

K . Show that Ker(ψ) = (O+
K)2.

2Notation: for A an abelian group and n ∈ N∗, the subgroup killed by n is denoted by nA.
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12 Galois Modules

(iv) Conclude that we have a short exact sequence

1→ O+
K/(O

+
K)2 −→ ∆(K)/(K+)2 −→ 2Cℓ+(K)→ 1.

(v) Show that O+
K/(O

+
K)2 is of order 2.

(vi) Let α ∈ ∆(K). Show that NK
Q (α) = t2, where t ∈ Q+.

(vii) Let σ be the nontrivial automorphism of K. Show that there is an element
β ∈ K+ such that α

t
= β

σ(β)
. Conclude that α ≡ q (mod (K+)2) for a unique

squarefree q ∈ N∗.

(viii) Prove that ∆(K)/(K+)2 is an elementary abelian 2-group of rank r.

(ix) Finally, show that rk2(Cℓ+(K)) = r − 1.

9. In section 4.9 the 2-rank of the ideal class group of a quadratic number field has
been computed using the algorithms for the ideal class groups given in the same
chapter. Show that the formula for the 2-rank also follows from the computation
in the previous exercise.
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13 Ray Class Groups and Dirichlet
Characters

Global class field theory is about abelian extensions of global fields. In this book
mainly number fields are considered. In chapter 9 the absolute case was studied:
abelian extensions of Q. In this special case much can be done without class field
theory in full generality. The description of class field theory in this book is from the
ideal-theoretic viewpoint, which is in a sense the classical one. In a more modern
approach one proceeds from local to global, starting with class field theory for local
fields. Then for the global theory all completions of a number field, archimedean
and p-adic, are considered simultaneously. In our approach local class field theory
will follow from the global theory and finally, in the last chapter, the relation with
the modern global theory will be established.

In case of an abelian number field the splitting behavior of a prime number is
determined modulo some N ∈ N∗, the conductor of the field. The splitting of a
nonramifying prime number is described by its values under Dirichlet characters.
If the base field K is an arbitrary number field, the situation is much more com-
plicated: its ring of integers need not to be a principal ideal domain and generally
there is more than one infinite prime. Nevertheless, there is a similar regularity:
there is a conductor and there are Dirichlet characters. The ‘ray class groups’ take
over the role of the groups (Z/N)∗. They are described in the first section. Char-
acters on the ray class groups will determine the (generalized) Dirichlet characters,
which in this context are defined on the monoid of nonzero ideals. Our goal will
be the Classification Theorem, which describes a correspondence between abelian
extensions of a number field and finite groups of Dirichlet characters of this num-
ber field. Associated to an abelian extension of number fields we have two abelian
groups: the Galois group and a group of Dirichlet characters. Moreover, we have a
homomorphism of one group to the dual of the other, but the problem is to show
that it is an isomorphism. In section 13.4 we make a first step: it will be shown
by analytical means that the order of the group of Dirichlet characters is less than
or equal to the order of the Galois group. In section 13.5 the map between these
groups is described. The next chapter is devoted to the proof that it is actually
an isomorphism. This is known as Artin’s Reciprocity Theorem. In chapter 15 the
classification is completed with a proof of the existence theorem: each finite group
of Dirichlet characters corresponds to an abelian extension.
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13 Ray Class Groups and Dirichlet Characters

13.1 Ray class groups

In chapter 14 we will see that there is regularity in the splitting of primes in
an abelian extension of a number field K. This is what Artin’s reciprocity is
about. The description of this regularity uses ray class groups Cℓm(K), defined in
Definition 13.3. They depend on a ‘modulus’ m, just as the groups (Z/N)∗ depend
on N . It turns out that, in this context, it is convenient to use the more general
notion of prime: not only prime ideals but also the infinite primes as described in
section 10.4.

13.1 Definitions and notations. Let K be a number field. A modulus of K is
a formal product of primes of K, the finite ones can have an exponent > 1. The
exponent of an infinite prime is 0 or 1. The collection of moduli of K is denoted by
M(K). Via unique factorization of ideals the products of finite primes correspond
to nonzero ideals of OK . Products of infinite primes correspond to collections of
infinite primes of K. So: a modulus m of K is determined by an ideal m0 ̸= (0) of
OK and a collection m∞ of infinite primes. Notation: m = m0m∞.

The collectionM(K) of moduli of K is an abelian monoid in an obvious way: the
product of moduli m and n is m0n0m∞n∞, where m0n0 is the product of ideals and
m∞n∞ the union of the collections of infinite primes. The neutral element 1 of
this monoid is the unit ideal OK . The notion of divisor comes with this monoid
structure. Moreover the relation ‘is a divisor of’ is an ordering of the set of moduli.
This ordering is such that we have the notions of greatest common divisor (gcd)
and least common multiple (lcm).

The notationM(K) will be used for the monoid, the ordered set as well as for the
category determined by the ordered set.

13.2 Notation. Let K be a number field and m ∈M(K). Then

Im(K) := { a ∈ I(K) | vp(a) = 0 for all p | m0 }.

The group Im(K) depends only on the finite part m0 of the modulus m. In the
notation of section 6.4: Im(K) = IQ(K), where Q = { p ∈ Max(OK) | p ∤ m0 }. It is
a free abelian group on the set of finite primes not dividing m0:

Im(K)
∼−→

⊕
p∈P0(K)

p∤m0

Z,

where the maps Im(K)→ Z are the restrictions of the vp : I(K)→ Z.

13.3 Definitions and notations. Let K be a number field and m ∈M(K). Then

Km := {α ∈ K | vp(α) ≥ 0 for all p | m0 },
K1

m := {α ∈ K∗
m | vp(α− 1) ≥ vp(m0) for all p | m0 },
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13.1 Ray class groups

and σp(α) > 0 for all real p | m∞ }
Sm(K) := {αOK ∈ I(K) | α ∈ K1

m },
Cℓm(K) := Im(K)/Sm(K).

The ring Km is the localization KP of OK , where P = { p ∈ Max(OK)
∣∣ p|m0 }. It

is a semi-local Dedekind domain; its group of units is

K∗
m = {α ∈ K∗ | vp(α) = 0 for all p | m0 }

and K1
m is a subgroup of this group. Elements of K1

m are said to be 1 modulo m.
The group Sm(K) is called the ray modulo m of K. The group Cℓm(K) is called
the ray class group modulo m of the number field K.

For m = p, a finite prime, the ring Kp is a discrete valuation ring. The notation
Kp usually is reserved for the p-adic completion of K, but in this context it is
the valuation ring of the discrete valuation vp : K

∗ → Z. For distinction we will
sometimes use the notation K{p} for this ring. For p real infinite we have

K1
p = {α ∈ K∗

p | σp(α) > 0 }

and for p complex infinite
K1

p = K∗
p .

The group Sm(K) is the group of principal fractional ideals of OK generated by
elements 1 modulo m.

For the unit element (1) of the monoid M(K) we have K(1) = K, K1
(1) = K∗,

S(1)(K) = P(K) and Cℓ(1)(K) = Cℓ(K).

First we have a look at the structure of the groups K∗
m/K

1
m.

13.4 Lemma. Let K be a number field and m a nonzero ideal of OK (= a product
of finite primes of K). Then the inclusion OK → Km induces an isomorphism

(OK/m)∗
∼−→ K∗

m/K
1
m.

Proof. By Corollary 6.27(i) the inclusion OK → Km induces a ring isomor-
phism OK/m

∼→ Km/mKm and hence also a group isomorphism (OK/m)∗
∼→

(Km/mKm)
∗. Since Km is semi-local, the ring homomorphism Km → Km/mKm

induces by the Chinese Remainder Theorem a surjective group homomorphism
K∗

m → (Km/mKm)
∗ and we have

K1
m = Ker(K∗

m → (Km/(mKm))
∗) = 1 +mKm.

13.5 Lemma. Let K be a number field and m ∈ M(K). Then we have a short
exact sequence

1 −→ K1
m

⊆−→ K1
m0
−→

∏
p|m∞
p real

µ2 −→ 1,
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13 Ray Class Groups and Dirichlet Characters

where the maps K1
m0
→ µ2 are given by α 7→ sgn(σp(α)). (Here

∏
stands for the

direct product of groups.)

Proof. The exactness at K1
m0

follows directly from the definition of K1
m. It

remains to show that the map K1
m0
−→

∏
µ2 is surjective, i.e. that K1

m0
contains

elements with prescribed signs under the real embeddings in m∞. Note that the
ideal m0 maps to a lattice in the real vector space Rr × Cs and that therefore the
subset 1 +m0 of K∗

m0
contains elements with prescribed signs.

13.6 Proposition. Let K be a number field and m ∈ M(K). Then we have an
isomorphism

K∗
m/K

1
m

∼−→ (OK/m0)
∗ ×

∏
p|m∞
p real

µ2 (13.1)

induced by the inclusion Km → Km0
and the maps K∗

m → µ2, α 7→ sgn(σp(α)) for
real p | m∞.

Proof. The factor groups of K1
m ⊆ K1

m0
⊆ K∗

m form the short exact sequence

1 −→
∏

p|m∞
p real

µ2 −→ K∗
m/K

1
m −→ (OK/m0)

∗ −→ 1, (13.2)

which is split in a natural way by the retract induced by the maps K∗
m → µ2, α 7→

sgn(σp(α)).

13.7 Corollary. Let K be a number field and m, n ∈ M(K) such that m | n. Then
the inclusion K∗

n → K∗
m induces a surjective homomorphism K∗

n/K
1
n → K∗

m/K
1
m.

Proof. In the commutative diagram with exact rows

1

1

∏
p|n∞
p real

µ2

∏
p|m∞
p real

µ2

K∗
n/K

1
n

K∗
m/K

1
m

(OK/n0)∗

(OK/m0)
∗

1

1

the vertical maps on the left and on the right are surjective; the last one as a
consequence of the Chinese Remainder Theorem.
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13.1 Ray class groups

13.8 Definitions. For K a number field a contravariant functor

F :M(K)→ Ab

is called an arithmetic projective system of K. This means that for each pair
m, n ∈ M(K) with m | n we have a group homomorphism fnm : F (n)→ F (m) such
that

fmm = 1F (m) for all m ∈M(K),

fm2
m1
fm3
m2

= fm3
m1

for all m1,m2,m3 ∈M(K) with m1 | m2 and m2 | m3.

An arithmetic projective system F of K is called multiplicative if for all m, n ∈
M(K) with gcd(m, n) = 1 the homomorphism

F (mn) −→ F (m)⊕ F (n), x 7→ (fmn
m (x), fmn

n (x))

is an isomorphism. An arithmetic projective system F of K is called quasi-
multiplicative if it preserves bicartesian squares, i.e. for all m, n ∈ M(K) the
diagram

F (lcm(m, n)) F (n)

F (m) F (gcd(m, n))

f
lcm(m,n)
n

fmgcd(m,n)

f
lcm(m,n)
m

fngcd(m,n) (13.3)

is bicartesian.

13.9 Lemma. An arithmetic projective system F of a number field K is multiplica-
tive if and only if it is quasi-multiplicative and F (1) = 0.

Proof. For m = pr and n = ps, say with r ≥ s, we have gcd(m, n) = ps and
lcm(m, n) = pr. So in this case the diagram (13.3) becomes

F (pr) F (ps)

F (pr) F (ps)

fp
r

ps

fp
r

ps

1 1
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13 Ray Class Groups and Dirichlet Characters

which trivially is bicartesian. For multiplicative F diagram (13.3) is a finite direct
sum of diagrams of this type. Hence such a system is quasi-multiplicative. For
m = n = 1 the bicartesian diagram yields a short exact sequence

0→ F (1)
∼−→ F (1)⊕ F (1) −→ F (1)→ 0,

which shows that F (1) = 0.

Conversely, let F be quasi-multiplicative and such that F (1) = 0. Then for m, n ∈
M(K) with gcd(m, n) = 1 the following diagram is bicartesian

F (mn) F (n)

F (m) F (1)

fmn
n

fm1

fmn
m fn1

Since F (1) = 0 this means that the corresponding homomorphism F (mn) →
F (m)⊕ F (n) is an isomorphism. Hence F is multiplicative.

13.10 Proposition. The arithmetic projective system m 7→ K∗
m/K

1
m of a number

field K is multiplicative.

Proof. For the modulus 1 we have K∗
1 = K∗ = K1

1 and so K∗
1/K

1
1 is trivial. By

Lemma 13.9 it suffices to show that the system is quasi-multiplicative. Let m1,m2 ∈
M(K) and put m = gcd(m1,m2) and n = lcm(m1,m2). Via the isomorphism (13.1)
the square

K∗
n/K

1
n K∗

m2
/K1

m2

K∗
m1
/K1

m1
K∗

m/K
1
m

is the direct product of two squares, one of them being

(OK/m1,0)
∗ (OK/m0)

∗.

(OK/n0)∗ (OK/m2,0)
∗

324



13.1 Ray class groups

The groups in this square are the unit groups of the rings in

OK/m1,0 OK/m0

OK/n0 OK/m2,0

and this square is bicartesian since n0 = lcm(m1,0,m2,0) = m1,0 ∩ m2,0 and m0 =
gcd(m1,0,m2,0) = m1,0 + m2,0. It follows that the square of groups of units is
cartesian as well and since the homomorphisms in this square are surjective, it
is bicartesian. The other of the two squares in the product is easily seen to be
bicartesian as well.

By Proposition 13.6 the group K∗
m/K

1
m is finite. Its order is #(OK/m0) ·2t, where t

is the number of real infinite primes in m∞. Let’s define φ(m) = #(K∗
m/K

1
m). Then

φ is multiplicative in the following sense:

φ(mn) = φ(m)φ(n) if gcd(m, n) = 1.

The function φ generalizes the Euler totient function.

13.11 Example. Let m ∈ N∗ with m ≥ 3 and let ∞ be the unique real infinite
prime of Q. We compute Q∗

m/Q1
m, where m = (m)∞. Note that Q∗

∞ = Q∗ and
Q1

∞ = Q+. We have

Q∗
m/Q1

m
∼−→ Q∗

(m)/Q
1
(m) ×Q∗/Q+ ∼−→ (Z/m)∗ × µ2. (13.4)

The class of an x ∈ Z\mZ in Q∗
m/Q1

m maps under this isomorphism to (x, sgn(x)).

13.12 Example. Let K be a number field. For K the modulus ∞ denotes the
product of all infinite primes of K. We have K∞ = K and K1

∞ = K+ in the
notation of exercise 10 of chapter 6. So K∗

∞/K
1
∞ = K∗/K+ ∼→ µr2, where r is

the number of real infinite primes of K. The ray S∞(K) is the group of principal
fractional ideals generated by totally positive elements and the ray class group
I(K)/S∞(K) is the narrow ideal class group Cℓ+(K).

Let m be a modulus of a number field K. By Proposition 2.28 the restriction
Im(K)→ Cℓ(K) of the canonical map I(K)→ Cℓ(K) is surjective. If a ∈ Im(K) is
in the kernel of this map, then a = αOK for an α ∈ K∗. Clearly α ∈ K∗

m, so the
sequence

K∗
m −→ Im(K) −→ Cℓ(K) −→ 1

is exact. It follows that the ker-coker exact sequence of the triangle
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13 Ray Class Groups and Dirichlet Characters

K1
m Im(K)

K∗
m

is the exact sequence

1 −→ O∗
K ∩K1

m −→ O∗
K −→ K∗

m/K
1
m −→ Cℓm(K) −→ Cℓ(K) −→ 1. (13.5)

Since the groups K∗
m/K

1
m and Cℓ(K) are finite, the ray class group Cℓm(K) is finite

as well. More precisely, the exact sequence (13.5) implies:

13.13 Theorem. Let m be a modulus of the number field K. Then we have a short
exact sequence

1 −→ K∗
m/K

1
mO∗

K −→ Cℓm(K) −→ Cℓ(K) −→ 1.

13.14 Example. For the modulus (m)∞ of Example 13.11 the isomorphism (13.4)
induces an isomorphism

Q∗
m/Q1

mµ2
∼−→ (Z/m)∗

which maps the class of an x ∈ Z \ mZ to |x|. By Theorem 13.13 we have an
isomorphism (Z/m)∗

∼→ Cℓm(Q), which for a ∈ Z \mZ sends a to the class of (a)
in Cℓm(Q). For the modulus (m) we have an isomorphism

Q∗
(m)/Q

1
(m)µ2

∼−→ (Z/m)∗/⟨−1⟩

and the isomorphism (Z/m)∗/⟨−1⟩ ∼→ Cℓ(m)(Q) sends the class represented by an
a ∈ Z \mZ to the class of (a).

In chapter 9 a correspondence has been established between abelian number fields
and finite groups of Dirichlet characters. These characters are essentially characters
of groups (Z/N)∗. In our approach to class field theory the groups Cℓm(K) will
play the role of the groups (Z/N)∗ in the absolute case. We derive some properties
for ray class groups which are similar to properties of the groups (Z/N)∗.

13.15 Proposition. Let m and n be moduli of a number field K such that m | n.
Then the inclusion In(K)→ Im(K) induces a surjective homomorphism Cℓn(K)→
Cℓm(K).

Proof. We have a commutative diagram

K∗
n/K

1
nO∗

K

K∗
m/K

1
mO∗

K

Cℓn(K)

Cℓm(K)

Cℓ(K)

Cℓ(K)

1

1

1

1
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13.1 Ray class groups

in which by Theorem 13.13 the rows are short exact sequences. By Corollary 13.7
the map K∗

n → K∗
m/K

1
mO∗

K is surjective. So also Cℓn(K) → Cℓm(K) is surjective.

We will have a closer look at the arithmetic projective system m 7→ Cℓm(K) of the
number field K. It’s convenient to convert bicartesian squares into short exact
sequences as described at the end of section 9.2.

13.16 Lemma. Let

0 A′ B′ C ′ 0

0 A1 B1 C1 0

0 A2 B2 C2 0

0 A B C 0

be a short exact sequence of commutative squares of abelian groups. If two of the
three commutative squares are bicartesian, then so is the third.

Proof. The short exact sequence of commutative squares translates into a short
exact sequence of complexes (the columns in the diagram):

0 0 0

0 0

0 0

0 0

0 0 0

A′ B′ C ′

A1 ⊕A2 B1 ⊕B2 C1 ⊕ C2

A B C

If two of these complexes are exact, then so is the third. The proposition follows
from this.

There is an obvious notion of morphism of arithmetic projective systems:

13.17 Definition. Let F1 and F2 be arithmetic projective systems of a number
field K. A morphism of arithmetic projective systems g : F1 → F2 is a system
(gm)m∈M(K) of group homomorphisms gm : F1(m)→ F2(m) such that for all m, n ∈
M(K) with m | n the diagram
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13 Ray Class Groups and Dirichlet Characters

F1(n)

F1(m)

F2(n)

F2(m)

fnm fnm

gn

gm

commutes. (Or for short: g is a morphism of functors.)

Since bicartesian squares correspond to short exact sequences as in the proof of
Lemma 13.16 we have for arithmetic projective systems:

13.18 Corollary. Let 0→ F ′ → F → F ′′ → 0 a short exact sequence of arithmetic
projective systems of a number field K. If two of them are quasi-multiplicative,
respectively multiplicative, then so is the third.

Proof. For quasi-multiplicativity this is immediate and for multiplicativity it
follows from Lemma 13.9.

13.19 Lemma. The arithmetic projective system m 7→ K1
m of a number field K is

quasi-multiplicative.

Proof. For moduli m of K we have short exact sequences

1 −→ K∗
m −→ K∗ −→

⊕
p|m0

Z −→ 0

and
1 −→ K1

m −→ K∗
m −→ K∗

m/K
1
m −→ 1.

The arithmetic projective systems

m 7→ K∗, m 7→
⊕
p|m0

Z and m 7→ K∗
m/K

1
m

are quasi-multiplicative, the last one by Proposition 13.10. So by Corollary 13.18
the system m 7→ K1

m is quasi-multiplicative as well.

13.20 Proposition. Let m1 and m2 be moduli of a number field K. Then for
m = gcd(m1,m2) and n = lcm(m1,m2) the square

Cℓm1
(K) Cℓm(K)

Cℓn(K) Cℓm2(K)
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13.2 Dirichlet characters of a number field

of canonical projections is cocartesian.

Proof. By Lemma 13.19 we have a commutative diagram with exact rows

1

1

K1
n

In(K)

K1
m1
×K1

m2

Im1(K)× Im2(K)

K1
m

Im(K)

1

1

and by taking cokernels of the vertical maps we obtain an exact sequence

Cℓn(K) −→ Cℓm1(K)× Cℓm2(K) −→ Cℓm(K) −→ 1.

13.2 Dirichlet characters of a number field

Let K be a number field. Dirichlet characters of K are essentially characters
of ray class groups of K. They will generalize the Dirichlet characters defined in
section 9.3 for the field Q. There is, however, a subtle difference, see Example 13.28.

13.21 Definitions and notation. Let K be a number field and m a modulus of
K. A Dirichlet character modulo m of K is a map χ : I+(K)→ C satisfying

(DC1) for all a ∈ I+(K): χ(a) ̸= 0 ⇐⇒ gcd(a,m0) = 1,

(DC2) χ(ab) = χ(a)χ(b) for all a, b ∈ I+(K),

(DC3) χ(αOK) = χ(βOK) for all α, β ∈ OK \ {0} with α ≡ β (modm0)
and sgn(σp(α)) = sgn(σp(β)) for all real primes p | m∞.

If χ is a Dirichlet character modulo m of K, then

Cℓm(K)→ C∗,
a

b
7→ χ(a)χ(b)−1 (for a and b are ideals relatively prime to m0)

is a character of the ray class group modulo m. Conversely, a character
χ : Cℓm(K)→ C∗ determines a Dirichlet character modulo m of K:

I+(K)→ C, a 7→

{
χ(a) if gcd(a,m0) = 1,

0 otherwise.

Thus Dirichlet characters modulo m of K correspond to characters of the ray class
group Cℓm(K). Since ray class groups are finite, Dirichlet characters take only 0
and roots of unity as values. In particular a Dirichlet character is an ideal character
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13 Ray Class Groups and Dirichlet Characters

in the sense of Definition 8.29. The set of Dirichlet characters modulo m of K is
denoted by Hm(K). It is a group under (χ1χ2)(a) = χ1(a)χ2(a); the conjugate
character χ : a 7→ χ(a) of a Dirichlet character χ is the inverse of χ. The group
Hm(K) is naturally isomorphic to Cℓm(K)

∨
, the dual of the ray class group.

These Dirichlet characters were introduced by Hecke. That is why I have chosen for
the H-notation. Nowadays the name Hecke character is reserved for characters of
idèle class groups, see section 20.2 for the notion of idèle class group. The Dirichlet
characters then correspond to Hecke characters of finite order.

A Dirichlet character χmodulo (1) is a multiplicative map χ : I+(K)→ C with roots
of unity as values and χ(a) = 1 for all principal ideals α. It induces a character χ
of I(K) with χ(a) = 1 for all fractional principal ideals a.

As was the case for Dirichlet characters as defined in chapter 9, we can multiply
Dirichlet characters of a number field even if their moduli differ:

13.22 Definition. Let m1 and m2 be moduli of a number field K, χ1 ∈ Hm1(K)
and χ2 ∈ Hm2

(K). We define χ1χ2 : I+(K)→ C by

(χ1χ2)(a) = χ1(a)χ2(a)

for all a ∈ I+(K). Then χ1χ2 ∈ Hlcm(m1,m2)(K).

Also for these Dirichlet characters we have the notions of induced and primitive
character, which we now will make precise. Let m and n be moduli of a number field
K such that m | n. Then by Proposition 13.15 we have a canonical surjective group
homomorphism Cℓn(K) → Cℓm(K). This homomorphism induces an injective ho-
momorphism Cℓm(K)

∨ → Cℓn(K)
∨
and thereby an injective group homomorphism

imn : Hm(K)→ Hn(K). For χ ∈ Hm(K) the Dirichlet character imn (χ) is given by

(imn (χ))(a) =

{
χ(a) if gcd(a, n0) = 1,

0 otherwise.

13.23 Definition. Let m and n be moduli of a number field K such that m | n and
let χ ∈ Hm(K). Then the Dirichlet character imn (χ) ∈ Hn(K) is said to be induced
by χ. A Dirichlet character modulo n of K is said to be a primitive Dirichlet
character modulo n of K if it is not induced by a Dirichlet character modulo a
proper divisor of n.

From Proposition 13.20 follows:

13.24 Proposition. Let m1 and m2 be moduli of a number field K. Then for
m = gcd(m1,m2) and n = lcm(m1,m2) the square
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13.2 Dirichlet characters of a number field

Hm1(K)

Hm(K)

Hn(K)

Hm2(K)

of canonical injections is cartesian.

From this it follows that every Dirichlet character of K is induced by a unique
primitive Dirichlet character of K.

13.25 Definition. Let χ be a Dirichlet character of the number field K. The
modulus of the unique primitive Dirichlet character by which χ is induced is called
the conductor of χ. Notation: fχ.

13.26 Change of notation and terminology. From now on by a Dirichlet charac-
ter we always mean a Dirichlet character modulo its conductor: Dirichlet characters
are assumed to be primitive. They form a group H(K). The notation Hm(K) will
now be used for the subgroup of H(K) of all Dirichlet characters χ of K with
fχ | m. That means that in Hm(K) as originally defined all characters are replaced
by primitive characters and that the multiplication is changed accordingly. Under
this convention it follows from Proposition 13.24 that

Hgcd(m1,m2)(K) = Hm1
(K) ∩Hm2

(K).

Henceforth, Dirichlet characters in the sense of Definition 13.21 will be referred to
as Dirichlet pre-characters.

13.27 Definition. Let K be a number field and X a finite subgroup of H(K).
The least modulus m of K for which X ⊆ Hm(K) is called the conductor of X.
Notation: fX .

Obviously, the conductor of a finite group of Dirichlet characters is the least common
multiple of the conductors of the Dirichlet characters in this group.

13.28 Example. There is a one-to-one correspondence between Dirichlet charac-
ters as defined in chapter 9 and Dirichlet characters of Q as defined in this section.
It is induced by the bijection N∗ → I+(Q), n 7→ nZ. Thus a Dirichlet character
χ : Z → C corresponds to the Dirichlet character of Q defined on finite primes by
pZ 7→ χ(p). A Dirichlet character χ of Q determines a Dirichlet character in the
sense of chapter 9 determined by n 7→ χ(nZ) for n ∈ N∗. The conductor of the
Dirichlet character of Q corresponding to a Dirichlet character χ is (Nχ) if χ is
even, i.e. if χ(−1) = 1, and it is (Nχ)∞ if χ is odd. The monoid isomorphism

N∗ ∼→ I+(Q) induces a group isomorphism H(Q)
∼→ D and for m ∈ N∗ it restricts

to H(m)∞(Q)
∼→ Dm.
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13 Ray Class Groups and Dirichlet Characters

Dirichlet characters are determined by their value on finite primes up to a finite
number of primes:

13.29 Lemma. Let χ1 and χ2 be Dirichlet characters of a number field K and m
a modulus of K. Suppose that χ1(a) = χ2(a) for all a ∈ Im+(K). Then χ1 = χ2.

Proof. Choose a modulus n which is a multiple of fχ1
, fχ2

and m. Then the
Dirichlet characters χ1 and χ2 induce the same Dirichlet pre-character modulo n
and are therefore equal.

The main theorem of class field theory is the Classification Theorem. It describes
finite abelian extensions of a number field K in terms of Dirichlet characters. Such
extensions will correspond to finite subgroups of H(K). We will conclude this
section by describing the group of Dirichlet characters that is going to correspond
to a given abelian extension. The description uses the notion of norm for fractional
ideals as described in section 7.6.

13.30 Notational convention. Let L : K be a number field extension. A modulus
m of K determines a modulus of L: the modulus with finite part jKL (m0) = m0OL
and as infinite part all infinite primes of L above infinite primes in m∞. This
modulus of L will also be denoted by m.

13.31 Proposition. Let L : K be a number field extension and m a modulus
of K. Then jKL (Im(K)) ⊆ Im(L), NLK(Im(L)) ⊆ Im(K), NLK(L1

m) ⊆ K1
m and

NLK(Sm(L)) ⊆ Sm(K).

Proof. The first two inclusions follow directly from the definitions. The last
inclusion is, by Proposition 7.67, a direct consequence of the third, so it remains
to prove that NLK(L1

m) ⊆ K1
m.

Let M : K be the normal closure of L : K and σ1, . . . , σk the embeddings of L
in M which leave the elements of K fixed. Choose prolongations—also named
σ1, . . . , σk—of these embeddings to automorphisms of M . Then for each α ∈ L we
have NLK(α) = σ1(α) · · ·σk(α).

Since K1
m1
∩K1

m2
= K1

m1m2
if gcd(m1,m2) = 1, it suffices to prove that NLK(L1

pr ) ⊆
K1

pr for primes p of K. We will do so separately for p finite and p infinite.

Let α ∈ L1
pr , where p is a finite prime of K and r ∈ N∗. Then vq(α− 1) ≥ eK(q)r

for all primes q of L above p. Hence for all primes r of M above p we have

vr(α− 1) ≥ eL(r)eK(q)r = e
(M)
p r,

where q is the prime of L under r. For each of the automorphisms σj and each of
the primes r of M above p we have

vr(σj(α)− 1) = vr(σj(α− 1)) = vσ−1
j (r)(α− 1) ≥ e(M)

p r.
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13.2 Dirichlet characters of a number field

Put e = e
(M)
p and let r be a prime of M above p. Then the above inequality means

that σj(α) ∈M1
rer and so

NLK(α) = σ1(α) · · ·σk(α) ∈M1
rer ,

that is vr(N
L
K(α) − 1) ≥ er. Since vr(N

L
K(α) − 1) = e · vp(NLK(α) − 1), it follows

that vp(N
L
K(α)− 1) ≥ r, meaning that NLK(α) ∈ K1

pr .

Let α ∈ L1
p, where p is the real infinite prime corresponding to an embedding

σ : K → R. Choose a prolongation τ : M → C of σ to M . Then the k embeddings
τσ1, . . . , τσk : M → C have different restrictions to L: if τσi(β) = τσj(β) for all
β ∈ L, then by injectivity of τ we have σi(β) = σj(β) for all β ∈ L. Hence

σ(NLK(α)) = τ(NLK(α)) = τσ1(α) · · · τσk(α)

and this is a positive real number: τσi(α) > 0 for all real prolongations τσi of σ
and the factors τσj(α) for all complex prolongations τσj come in pairs, which are
complex conjugates.

The notion of transfer for ideal class groups is now easily generalized to ray class
groups.

13.32 Definitions and notations. Let L : K be a number field extension and m
a modulus of K. By Proposition 13.31 the norm map NLK : I(L)→ I(K) induces a
homomorphism Cℓm(L) → Cℓm(K), the transfer, denoted by trLK . The cokernel of
this map is denoted by Cℓm(L : K):

Cℓm(L : K) = Im(K)/NLK(Im(L))Sm(K).

As for ideal class groups we have:

13.33 Corollary. Let L : K be a Galois extension of number fields and m a modulus
of K. Then the ray class groups modulo m form a Galois module with transfers
associated to L : K. The transfer map being the map given in Definition 13.32.

For an extension L : K of number fields and a modulus m of K the transfer
trLK : Cℓm(L) → Cℓm(K) induces a map from Hm(K) to Hm(L). Since for any m
this last map is induced by NLK : I(L)→ I(K), we have a map H(K)→ H(L):

13.34 Definitions and notations. Let L : K be a number field extension. Then
the norm map NLK : I(L) → I(K) induces a map νKL : H(K) → H(L), the conorm
map. The kernel of νKL is denoted by H(L : K); its elements are called Dirichlet
characters of L : K. The subgroup of H(L : K) consisting of Dirichlet characters
of L : K with conductor a divisor of a modulus m of K is denoted by Hm(L : K),
so

Hm(L : K) = H(L : K) ∩Hm(K).

It is the kernel of the map Hm(K)→ Hm(L) and so it is isomorphic to the dual of
Cℓm(L : K), the cokernel of Cℓm(L)→ Cℓm(K).
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13 Ray Class Groups and Dirichlet Characters

By Lemma 13.29 the Dirichlet character νKL (χ) of L is determined by νKL (χ)(q) =
χ(NL

K(q)) for all but finitely many primes q of L. The group H(L : K) consists
of all Dirichlet characters χ ∈ H(K) with the property that χ(NL

K(a)) = 1 for all
a ∈ If+(L), where f is the conductor of χ.

The groups H(L : K) for abelian L : K are important for class field theory. In
section 13.5 their role is explained. A direct consequence of the definition is the
following.

13.35 Lemma. Let L1 : K and L2 : L1 be number field extensions. Then
H(L1 : K) ⊆ H(L2 : K).

Proof. The conorm map νKL2
: H(K)→ H(L2) is the composition of the conorm

maps νKL1
and νL1

L2
. So for the kernels of the conorm maps we have H(L1 : K) ⊆

H(L2 : K).

13.3 Counting ideals in ray classes

Let K be a number field of degree d. We have seen that the Dedekind zeta function
ζK(s) is meromorphic on the halfplane ℜ(s) > 1 − 1

d with only a simple pole in
s = 1 (Theorem 8.20). The residue in s = 1 was computed by counting ideals in
ideal classes. Instead of ideal classes we now count, more generally, ideals in ray
classes.

13.36 Definition. Let K be a number field and m a modulus of K. The partial
zeta function of a ray class C modulo m is defined by the Dirichlet series

ζ(s, C) =

∞∑
n=1

jC(n)

ns
=

∑
a∈C∩I+(K)

1

N(a)s
,

where jC(n) = #{ a ∈ C ∩ I+(K) | N(a) = n }.

For the convergence of the Dirichlet series we consider

JC(N) = #{ a ∈ C ∩ I+(K) | N(a) ≤ N } =
N∑
n=1

jC(n).

We proceed as in section 8.2. Fix an ideal b ∈ C−1. Then we have a correspondence

{
ideals a in C
with N(a) ≤ N

}
−→
←−


principal ideals (α) ⊆ b

with |NKQ (α)| ≤ N ·N(b), α ≡ 1 (modm0)
and σp(α) > 0 for all real p | m∞


a 7−→ ab

αb−1 7−→ (α)
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13.3 Counting ideals in ray classes

Choose an α0 ∈ OK such that

α0 ≡

{
1 (modm0)

0 (mod b).

The last set can then described as follows:

the set of all principal ideals (α) with |NKQ (α)| ≤ N ·N(b),
α ≡ α0 (modm0b) and σp(α) > 0 for all real p | m∞.

So instead of counting ideals we can count principal ideals:

JC(N) = #{ (α) ∈ I+(K) | α ≡ α0 (modm0b), |N(α)| ≤ N ·N(b)

and σp(α) > 0 for all real p | m∞ }.

Choose a fundamental system ε1, . . . , εr+s−1 for the group of units O∗
K ∩K1

m. Note
that by the exactness of sequence 13.5 and the finiteness ofK∗

m/K
1
m its rank is equal

to the rank of O∗
K . Use this system of units instead of the fundamental system

used in section 8.2. It follows that we have to count the elements of (ι(α0) +
Λb) ∩DN ·N(m0b) which are positive under the embeddings σp for real p | m∞. Put
wm = #(µ(K) ∩K1

m). Then the computation in section 8.2 leads to

wm · JC(N) = κCN +O(N1− 1
d ),

where, t being the number of real p | m∞,

wm · κC =
vol(D1)N(b)

2tδ(Λm0b)
.

For the sake of obtaining simpler formulas the following notations will be used.

13.37 Definitions and notations. Let K be a number field and let m be a
modulus of K. Then, Reg(m), the regulator of m is defined as follows

Reg(m) = Reg(O∗
K ∩K1

m).

Furthermore, we write

N(m) = #(K∗
m/K

1
m) = 2tN(m0)

and call it the norm of m.

Thus we have

Reg(m) =
(O∗

K : (O∗
K ∩K1

m))

w(K)/wm
Reg(K) (13.6)

and the formula for wm · κC becomes

wm · κC =
2r+s vol(D′)N(b)

2tN(m0b)
√
|disc(K)|

=
2r+sπsReg(m)

2tN(m0)
√
|disc(K)|

=
2r(2π)sReg(m)

N(m)
√
|disc(K)|

.
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13 Ray Class Groups and Dirichlet Characters

Let’s summarize this in a theorem:

13.38 Theorem. Let K be a number field of degree d, m a modulus of K and C a
ray class modulo m of K. Then the number JC(N) of ideals a of OK with N(a) ≤ N
satisfies

JC(N) = κCN +O(N1− 1
d ),

where

κC =
2r(K)(2π)s(K) Reg(m)

#(µ(K) ∩K1
m)N(m)

√
|disc(K)|

.

For ζ(s, C) this implies the following.

13.39 Theorem. Let K, d, m and C be as in Theorem 13.38. Then ζ(s, C) has a
continuation to a meromorphic function on the half-plane σ > 1 − 1

d with only a
simple pole at s = 1 with residue κC .

Using equation (13.6) we get

κC =
2r(K)(2π)s(K) Reg(K)

w(K)
√
| disc(K)|

· (O
∗
K : (O∗

K ∩K1
m))

N(m)
.

This formula already follows from the fact alone that κC does not depend on C.
This can be seen as follows.∑

C∈Cℓm(K)

ζ(s, C) =
∑

a∈Im+

1

N(a)s
=
∏
p∤m0

1

1− 1
N(p)s

= ζK(s) ·
∏
p|m0

(
1− 1

N(p)s

)
.

Put hm(K) = #(Cℓm(K)). Then for the residue in s = 1 we have:

hm(K) · κC = h(K) · 2
r(K)(2π)s(K) Reg(K)

w(K)
√
| disc(K)|

·
∏
p|m0

(
1− 1

N(p)

)
= h(K) · 2

r(K)(2π)s(K) Reg(K)

w(K)
√
| disc(K)|

· #((OK/m0)
∗)

N(m0)

and by the exactness of sequence (13.5)

h(K)

hm(K)
=

(O∗
K : (O∗

K ∩K1
m))

#(K∗
m/K1

m)
=

(O∗
K : (O∗

K ∩K1
m))

2t ·#((OK/m0)∗)
.

So it follows that indeed

κC =
2r(K)(2π)s(K) Reg(K)

w(K)
√
| disc(K)|

· (O
∗
K : (O∗

K ∩K1
m))

2tN(m0)

=
2r(K)(2π)s(K) Reg(K)

w(K)
√
| disc(K)|

· (O
∗
K : (O∗

K ∩K1
m))

N(m)
.
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13.4 Dirichlet L-series and the First Fundamental Inequality

13.4 Dirichlet L-series and the First Fundamental
Inequality

In this section we use the notion of Dirichlet density to show that for a Galois
extension L : K of number fields the group H(L : K) is finite and that its order is
at most [L : K].

13.40 Definition. Let K be a number field and χ ∈ H(K). The series

L(s, χ) =
∑

a∈I+(K)

χ(a)

N(a)s

is called the L-series of the Dirichlet character χ.

The L-series of the trivial Dirichlet character is just the Dedekind zeta function of
K. It has a simple pole at s = 1. For the other Dirichlet characters we have the
following.

13.41 Proposition. Let χ be a nontrivial Dirichlet character. The series L(s, χ)
converges absolutely on the half-plane σ > 1 and has a continuation to an analytic
function on the half-plane σ > 1− 1

d , where d is the degree of K.

Proof. Put f = fχ. The L-series converges absolutely on the half-plane σ > 1 as
does any Dirichlet series associated to an ideal character (Proposition 8.31). Since
χ is a Dirichlet character, the value χ(a) is zero if and only if gcd(f, a) = 0, so

L(s, χ) =
∑

a∈I+(K)

χ(a)

N(a)s
=

∑
a∈If+(K)

χ(a)

N(a)s
.

The value χ(a) only depends on the ray class modulo f of a. So

L(s, χ) =
∑

C∈Cℓf(K)

∑
a∈C∩I+(K)

χ(a)

N(a)s
=

∑
C∈Cℓf(K)

χ(C)
∑

a∈C∩I+(K)

1

N(a)s

=
∑

C∈Cℓf(K)

χ(C)ζ(s, C).

By Theorem 13.38 all ζ(s, C) have continuations to meromorphic functions on
σ > 1− 1

d and have only a simple pole at s = 1. The residue κf of ζ(s, C) doesn’t
depend on C. So L(s, χ) has a continuation to a meromorphic function on σ > 1− 1

d
and has at most one simple pole at s = 1. But since χ is nontrivial and∑

C∈Cℓf(K)

χ(C)κf = κf
∑

C∈Cℓf(K)

χ(C) = 0,

the continued function L(s, χ) is analytic at s = 1 as well.

337



13 Ray Class Groups and Dirichlet Characters

As was the case for the Dirichlet characters in chapter 9, for nontrivial Dirichlet
characters the L-series has a continuation to an analytic function on the whole
complex plane. Neukirch gives a detailed exposition in [31] in which the complexity
is built up gradually by subsequently considering the Riemann zeta function, the
L-series of a Dirichlet character (in the sense of chapter 9), the Dedekind zeta
function of a number field and, finally, the L-series of a Dirichlet character of a
number field.

13.42 Proposition. Let K be a number field and X a finite group of Dirichlet
characters of K. Then the set

P = { p ∈ Max(OK) | χ(p) = 1 for all χ ∈ X }

has a Dirichlet density. Moreover δ(P ) ≤ 1
h , where h = #(X).

Proof. Proposition 8.31 implies that
∑

p
χ(p)
N(p)s converges absolutely on the half-

plane σ > 1 for each Dirichlet character χ and

logL(s, χ) ∼
∑
p

χ(p)

N(p)s
=
∑
p∤f

χ(p)

N(p)s
,

where f is the conductor of X. We have∑
χ∈X

∑
p∤f

χ(p)

N(p)s
=
∑
p∤f

∑
χ∈X

χ(p)

N(p)s
=
∑
p∈P

h

N(p)s
.

Hence ∑
p∈P

1

N(p)s
∼ 1

h

∑
χ∈X

logL(s, χ) = − 1

h
log(s− 1) +

1

h

∑
χ∈X
χ ̸=1

logL(s, χ).

By Proposition 13.41 the functions L(s, χ) are for χ ̸= 1 analytic at s = 1. So if we
knew that L(1, χ) ̸= 0 for these χ (which is in fact the case, as we will see later),
we could conclude that δ(P ) = 1

h . For now, let nχ be the multiplicity of the zero
at s = 1 of the function L(s, χ) (possibly nχ = 0, as in fact is the case), that is

L(s, χ)

(s− 1)nχ

does not vanish at s = 1. Then

logL(s, χ) ∼ nχ log(s− 1)

and∑
p∈P

1

N(p)s
∼ − 1

h
log(s− 1) +

∑
χ ̸=1 nχ

h
log(s− 1) = −

1−
∑
χ ̸=1 nχ

h
log(s− 1).
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13.4 Dirichlet L-series and the First Fundamental Inequality

So we have

δ(P ) =
1−

∑
χ ̸=1 nχ

h
≤ 1

h
.

Since the Dirichlet density cannot be negative, for at most one of the characters
χ ∈ X the function L(s, χ) can have a zero at s = 1 and, moreover, it can only be a
simple root. Let χ∗ be this exceptional character in X. It must be a real character,
since otherwise the character χ∗ would be exceptional as well. It will turn out that
this situation doesn’t occur.

The proof of Proposition 13.42 shows the following.

13.43 Corollary. In the notation of Proposition 13.42: if δ(P ) = 1
h , then L(1, χ) ̸=

0 for all χ ̸= 1 in X.

13.44 Theorem (The First Fundamental Inequality). Let L : K be a Galois
extension of number fields. Then the group H(L : K) is finite and #(H(L : K)) ≤
[L : K].

Proof. Since H(L : K) is a torsion group it suffices to prove that the order of
each finite subgroup of H(L : K) is at most [L : K]. So let X be a finite subgroup
of H(L : K), say #(X) = h. Let P be as in Proposition 13.42. Then δ(P ) ≤ 1

h .
By Theorem 8.37 the set

Q = { p ∈ Max(OK) | p splits completely in L and p ∤ fX }

has Dirichlet density 1
[L:K] . If p ∈ Q, then for q ∈ Max(OL) above p we have

q ∈ IfX (L) and NLK(q) = p. From X ⊆ H(L : K) follows that χ(p) = νKL (χ)(q) = 1.
So Q ⊆ P and as a consequence we have for the Dirichlet densities

1

[L : K]
= δ(Q) ≤ δ(P ) ≤ 1

h
.

The finiteness of H(L : K) makes the following definition possible.

13.45 Definition and notation. Let L : K be an abelian number field extension.
The conductor of the extension L : K is the conductor of the finite group H(L : K).
Notation for this conductor: fK(L).

For a Galois extension L : K of number fields and a modulus m of K we have

Hm(L : K) = H(L : K) ⇐⇒ H(L : K) ⊆ Hm(K) ⇐⇒ fK(L) | m.

Therefore, for multiples m of fK(L) the groups Cℓm(L : K) are all isomorphic. More
precisely:

13.46 Proposition. Let L : K be a Galois extension of number fields, f = fK(L)
and m a modulus of K such that f | m. Then the inclusion Im(K) ⊆ If(K) induces
an isomorphism Cℓm(L : K)

∼→ Cℓf(L : K).
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13 Ray Class Groups and Dirichlet Characters

13.5 The Artin map

The Artin map of an abelian number field extension is defined on the subgroup of
I(K) generated by the nonramifying prime ideals and takes values in the Galois
group of the extension:

13.47 Definition and notation. Let L : K be an abelian extension of number
fields. The subgroup of I(K) generated by all prime ideals of K which do not
ramify in L is denoted by IL(K). So

IL(K) = { a ∈ I(K) | vp(a) = 0 for all in L ramifying p ∈ Max(OK) }.

The Artin map of L : K is the map

φ
(L)
K : IL(K)→ Gal(L : K), a 7→

∏
p∈Max(OK)

e
(L)
p =1

(φ
(L)
p )vp(a).

The kernel of φ
(L)
K is called the Artin kernel of L : K.

Thus the Artin map is given on the basis elements p of the free abelian group IL(K)
by mapping p to the Frobenius automorphism of p in Gal(L : K). The Artin map

φ
(L)
K is also called the Artin symbol , in which case often a notation like

(
L:K
a

)
is

used for φ
(L)
K (a).

For each modulus m of K, which is divisible by all in L ramifying primes, the group
Im(L) is a subgroup of IL(K), so for such m the Artin map has a restriction to this
subgroup:

φ
(L)
K

∣∣
m
: Im(K)→ Gal(L : K), a 7→ φ

(L)
K (a).

13.48 Theorem. Let L : K be an abelian extension of number fields and m a
modulus of K which is a multiple of all in L ramifying finite primes of K. Then
the Artin map, restricted to Im(K),

φ
(L)
K

∣∣
m
: Im(K)→ Gal(L : K)

is surjective.

Proof. According to the Frobenius Density Theorem for abelian extensions
(Theorem 8.39) each cyclic subgroup of Gal(L : K) is generated by the Frobe-
nius automorphism of some nonramifying finite prime p ∤ m of K.

In the next chapter it will be shown that, given an abelian extension L : K of
number fields, there exists a modulus m of K such that the ray Sm(K) is contained
in the Artin kernel of L : K. This has far-going implications. It is the reason why
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13.5 The Artin map

ray class groups have been introduced. If for some modulus m the group Sm(K)
is in the Artin kernel, then the Artin map induces a surjective homomorphism
Cℓm(K)→ Gal(L : K) of finite groups.

13.49 Definition. Let L : K be an abelian number field extension. A modulus m
of K is called a modulus for L : K if

(M1) all in L ramifying finite primes of K are divisors of m,

(M2) Sm(K) ⊆ Ker
(
φ
(L)
K

∣∣
m

)
.

Note that (M1) is necessary for the Artin map to be defined. Later, in chapter 15,
we will see that the moduli for L : K are the multiples of the conductor fK(L).
It will be shown that the prime divisors of the conductor are just the ramifying
primes, finite and infinite. So far we do not even know whether moduli for abelian
number field extensions do exist.

For the determination of the Artin kernel it is important to realize that it contains
the norms of fractional ideals:

13.50 Proposition. Let L : K be an abelian number field extension and m a mod-
ulus of K which is a multiple of all finite ramifying primes. Then NLK(Im(L)) ⊆
Ker(φ

(L)
K ).

Proof. It suffices to show that φ
(L)
K (NLK(q)) = 1 for every unramified finite prime

q of L. For such a q we have NLK(q) = pf
(L)
p , where p = q ∩K. The order of φ

(L)
p

equals f
(L)
p and hence NLK(q) is in the kernel of the Artin map.

If m is a modulus for the abelian extension L : K of number fields, then it are
precisely the ray classes represented by norms of fractional ideals which constitute
the Artin kernel:

13.51 Theorem. Let L : K be an abelian number field extension and m a modulus
for L : K. Then

Ker
(
φ
(L)
K

∣∣
m

)
= NLK(Im(L))Sm(K).

Proof. By Proposition 13.50 we have

NLK(Im(L))Sm(K) ⊆ Ker
(
φ
(L)
K

∣∣
m

)
and by Theorem 13.44

#(Im(K)/NLK(Im(L))Sm(K)) = #(H(L : K) ∩Hm(K)) ≤ [L : K].

By Theorem 13.48 the index of the Artin kernel in Im(K) is [L : K]. So the two
subgroups coincide.
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13 Ray Class Groups and Dirichlet Characters

13.52 Corollary. Let L : K be an abelian number field extension and m a modulus

for L : K. Then the Artin map φ
(L)
K induces an isomorphism

Im(K)/NLK(Im(L))Sm(K)
∼−→ Gal(L : K).

Proof. This is a direct consequence of Theorem 13.48 and Theorem 13.51.

Artin’s Reciprocity Theorem (Theorem 14.16) states that for every abelian number
field extension there exists a modulus and moreover, that for such a modulus it
suffices to be divisible by all ramifying primes, the finite ones to a sufficiently high
power.

The Artin map of a subextension is given by restriction of the automorphism to
the subfield:

13.53 Lemma (Consistency property). Let L : K be an abelian number field

extension and L′ an intermediate field of L : K. Then φ
(L′)
K (a) = φ

(L)
K (a)

∣∣
L′ for

all a ∈ IL(K).

Proof. A finite prime p of K that does not ramify in L, does not ramify in L′

either and for the Frobenius automorphisms we have φ
(L′)
p = φ

(L)
p

∣∣
L′ .

The behavior of the Artin map under a base field extension is as follows.

13.54 Lemma. Let K ′ : K be a number field extension, L : K an abelian number
field extension, m a modulus of K divisible by all finite in L ramifying primes of
K and a ∈ Im(K ′). Then

φ
(LK′)
K′ (a)|L = φ

(L)
K (NK

′

K (a)).

Proof. The maps a 7→ φ
(LK′)
K′ (a)|L and a 7→ φ

(L)
K (NK

′

K (a)) are both group ho-
momorphisms from Im(K ′) to Gal(L : K), so it suffices to show that they coincide
on the generating prime ideals of Im(K ′). Let p′ ∈ Max(OK′) with p′ ∤ m and put
p = p′ ∩ K and f = fK(p′). Then by Proposition 7.80 and the definition of the
norm of a fractional ideal (Definition 7.65)

φ
(LK′)
K′ (p′)|L = φ

(LK′)
p′ |L = (φ

(L)
p )f = φ

(L)
K (pf ) = φ

(L)
K (NK

′

K (p′)).

For the existence of a modulus for abelian extensions it suffices to consider cyclic
extensions:

13.55 Proposition. If there are moduli for cyclic number field extensions, then
there is one for any abelian number field extension.
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13.5 The Artin map

Proof. Let L : K be an abelian number field extension. The dual of G =
Gal(L : K) is generated by its cyclic subgroups, so in G there is a collection of sub-
groups, sayH1, . . . ,Hr, such thatG/Hi is cyclic for i = 1, . . . , r and

⋂r
i=1Hi = {1}.

Then L is the composite of the fields LHi and the extensions LHi : K are cyclic.
Choose for each i a modulus mi for L

Hi : K. A prime of K that does not ramify in
each of the LHi , does not ramify in L. So the primes not dividing m = m1m2 · · ·mr
do not ramify in L. Restriction of automorphisms in G to the subfields LHi yields
an injective group homomorphism

G −→ G/H1 ×G/H2 × · · · ×G/Hr.

For a ∈ Im(K) we have φ
(LHi )
K (a) = φ

(L)
K (a)

∣∣
LHi

by Lemma 13.53. Because
Sm(K) ⊆ Smi

(K) for all i, the ray Sm(K) is in the Artin kernel of each of the
extensions L : LHi and is therefore in the Artin kernel of L : K.

In chapter 14 we will prove Artin’s Reciprocity Law. According to Proposi-
tion 13.55 it suffices to prove it for cyclic extensions. A consequence will be that
the Artin map induces an isomorphism from Gal(L : K)

∨
to H(L : K). Thus to

each abelian extension of K there is associated a finite subgroup of H(K). It will
be shown in section 15.3 that every finite subgroup is of the form H(KX : K) for
a unique abelian extension KX : K. This is the Existence Theorem.

Thus a classification of abelian extensions of a number field K is obtained. Its
proof will be completed in chapter 15. For a given number field K we will have a
correspondence between abelian number field extensions L : K and finite subgroups
of H(K):

abelian
extensions of K

finite groups of
Dirichlet characters of K

L : K

KX : K

H(L : K)

X

The maps L 7→ H(L : K) and X 7→ KX : K are inverses of each other and they
preserve the ordering given by inclusion. The field KX is called the class field
for X: the prime divisors of the conductor of H(L : K) are just the ramifying

primes and the Artin map φ
(L)
K |f : If(K) → Gal(L : K) induces an isomorphism

Gal(L : K)
∨ ∼→ H(L : K).

Finite subgroups X of H(K) are contained in Hm(K) for some modulus m of K
and so determine a factor group of the ray class group Cℓm(K). The splitting of a
prime of K in KX is determined by its class in this factor group. It was Weber
who introduced at the end of the nineteenth century the term ‘class field’.
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13 Ray Class Groups and Dirichlet Characters

The classification is both beautiful and deep. Our strategy for its proof is as follows.

1. In section 14.1 we show that for cyclic number field extensions L : K we have
#(H(L : K)) = [L : K].

2. Though for cyclic extensions L : K the group H(L : K) has the right order,
it still has to be shown that there is a modulus for L : K. This is done in
section 14.3. As remarked above Artin’s Reciprocity Law follows from this
in full generality.

3. In section 15.3 the existence of class fields will be proved.

13.56 Examples. A special case of the Classification Theorem: the group H1(K)
of a number field K corresponds to the maximal nonramified abelian extension of
K. This is the so-called Hilbert class field of K. Properties of this extension will
be studied in section 15.8. The group H1(K) is (isomorphic to) the dual of Cℓ(K)
and the Artin map induces an isomorphism Cℓ(K)

∼→ Gal(KH1(K) : K).

a) The field Q(
√
2,
√
5) is the Hilbert class field of Q(

√
10). Actually, this is a

direct consequence of exercise 7 of chapter 7.

b) The field Q(α,
√
−23), where α3 = α+1 is the Hilbert class field of Q(

√
−23).

The extension is unramified (exercise 9 of chapter 7). Exercise 13 of chapter 3
was about the computation of the ideal class group of Q(

√
−23). The groups

Gal(Q(α,
√
−23) : Q(

√
−23)) and Cℓ(Q(

√
−23)) are indeed isomorphic. It is

far from obvious that the Artin map induces an isomorphism.

Exercises

1. Let K = Q(
√
−2,
√
3) and let m be the modulus (2). An integral basis of K is

(1,
√
−2,
√
3, α), where α =

√
−2+

√
−6

2
. In Example 5.23 it is shown that Cℓ(K) is

a group of order 2 generated by the class of the prime ideal p2 = (2, α+ 1) and in
Example 5.37 that O∗

K = ⟨−1, α⟩.
(i) Compute K∗

m/K
1
m.

(ii) Compute Cℓm(K).

(iii) Determine the conductor of Hm(K).

2. Let K = Q(
√
2,
√
3) and let m be the modulus ∞. An integral basis of K is

(1,
√
2,
√
3, α), where α =

√
2+

√
6

2
. In Example 5.24 it is shown that the group

Cℓ(K) is trivial and in Example 5.38 that O∗
K = ⟨−1, 1 +

√
2,
√
2 +
√
3, α⟩.

(i) Compute K∗
m/K

1
m.

(ii) Show that Cℓm(K) is of order 2.

(iii) Determine the conductor of Hm(K).
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Exercises

3. Let K be a cubic number field with one real embedding. Show that Cℓ∞(K) =
Cℓ(K). What is the conductor of H∞(K) ?

4. Let K = Q( 3
√
2). Then OK = Z[ 3

√
2], a principal ideal domain (Example 5.18).

The unit group O∗
K is generated by −1 and 3

√
2 − 1 (Example 5.42). The prime

number 3 totally ramifies in K, say (3) = p3.

(i) Compute Cℓm(K) for m = (3) and for m = p∞.

(ii) Determine the conductor of H(3)(K).

5. Let p be a prime number≡ 1 (mod 4). Determine the number of Dirichlet characters
of Q(i) having conductor (p).

6. Let p be a prime number and p the unique prime of Q(ζp) above p. Prove that
Cℓp(Q(ζp)) ∼= Cℓ(Q(ζp)).

7. Let L : K be a number field extension. In 13.30 a mapM(K)→M(L) is described.
Let’s denote this map as jKL . Then

jKL (m) = jKL (m0)j
K
L (m∞),

where the second jKL is the map defined in Definition 13.33 (restricted to I+(K)):
jKL (m0) = m0OL and jKL (m∞) is the product of all infinite primes above the primes
in m∞. Show that the map jKL is injective.

8. Let L be an abelian number field and K a subfield of L. Show that there exists a
modulus for L : K. Prove that H(L : K) ∼= D(L)/D(K).

9. Let K be a number field and χ a nontrivial Dirichlet character of K of odd order.
Show that the remark on page 339 implies that L(1, χ) ̸= 0.

10. Show that Q(i,
√
5) is the Hilbert class field of Q(

√
−5). Verify that the Artin map

induces an isomorphism Cℓ(Q(
√
−5)) ∼→ Gal(Q(i,

√
5) : Q(

√
−5)).
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14 Artin’s Reciprocity Law

Let L : K be an abelian number field extension. In section 14.3 we will prove
that there exists, in the sense of Definition 13.49, a modulus m for L : K, which

by Theorem 13.51 means that the Artin map φ
(L)
K

∣∣
m

is defined and induces an
isomorphism

Im(K)/NLK(Im(L))Sm(K)
∼−→ Gal(L : K). (14.1)

This is Artin’s Reciprocity Law. We have already seen that it suffices to show
that such a modulus exists for cyclic extensions (Proposition 13.55). We first
prove in section 14.1 that for cyclic extensions the two groups in (14.1) are of
equal order. For this we use the Galois cohomology computations in section 12.3.
As a byproduct we obtain Hasse’s Principle for cyclic number field extensions in
section 14.2.

In section 14.4 we show that as a consequence of Artin’s Reciprocity Law the map

abelian
extensions of K

finite groups of
Dirichlet characters of K

L : K H(L : K)

is injective. In the next chapter we show that it is a bijection.

14.1 The Fundamental Equality

Let L : K be a cyclic Galois extension of number fields of degree n. Put G =
Gal(L : K) = ⟨σ⟩. We show for a modulus m of K which is a multiple of all in L
ramifying primes, with the finite ones to a sufficiently high power in m, that the
group

Cℓm(L : K) = Im(K)/NLK(Im(L))Sm(K).

is of order n = [L : K]. By the First Fundamental Inequality (Theorem 13.44) we
already know that its order is at most n. Note that by Artin’s Reciprocity Law,
which will be proved in section 14.3, this group is for some modulus m isomorphic
to the Galois group G and that the isomorphism is induced by the Artin map.
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14 Artin’s Reciprocity Law

Here we only prove that it has the right order. This is just a step in the proof of
Artin’s Reciprocity Law.

We start with a modulus m of K which is a multiple of all in L ramifying finite
primes of K. In the computation we will need extra conditions on m.

Let the homomorphism f : L∗ → Im(L) be the composition of the homomorphism
L∗ → I(L), α 7→ αOL and the projection I(L) → Im(L). The homomorphism
f induces a homomorphism f∗ : H

0(L∗) → H0(Im(L)). By Theorem 12.17 and
Corollary 12.19

H0(L∗) = K∗/NLK(L∗) and H0(Im(L)) = Im(K)/NLK(Im(L)).

The group Cℓm(L : K) is a homomorphic image of Im(K)/NLK(Im(L)), so we have
a commutative square

K∗/NLK(L∗)K1
m

Cℓm(L : K)

H0(L∗)

H0(Im(L))

gf∗

in which the vertical maps are induced by f . This square can be completed to
the diagram with exact rows and columns on top of the opposite page. The snake
lemma and the surjectivity of K1

m → Sm(K) are used here. From Proposition 13.6
and the first two exact sequences in the proof of Lemma 13.19 follows that the
group K∗/K1

m is finitely generated. The group K∗/NLK(L∗) is a torsion group. So
K∗/NLK(L∗)K1

m is finite: it is a finitely generated torsion group. It follows that
Coker(f∗) is finite and we will see that Ker(f∗) is finite as well. The diagram then
shows that

#(Cℓm(L : K)) = #(K∗/NLK(L∗)K1
m) ·

#(Coker(f∗))

#(Ker(f∗))
·#(X). (14.2)

We will compute the first two factors of the product on the right hand side. The
outcome will be that their product is [L : K].

Computation of the order of K∗/NL
K(L

∗)K1
m

In this computation the modulus m of K is an arbitrary one, but at the end it is
required that its finite prime divisors occur in m with sufficiently high powers.

14.1 Proposition. The arithmetic projective system m 7→ K∗/NLK(L∗)K1
m is mul-

tiplicative.
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14.1 The Fundamental Equality

1

1

1

1

1

Ker(g)

K∗/NLK(L∗)K1
m

Cℓm(L : K)

Coker(g)

1

1

Ker(f∗)

H0(L∗)

H0(Im(L))

Coker(f∗)

1

1

X

K1
m

NLK(L∗) ∩K1
m

Sm(K)

NLK(Im(L)) ∩ Sm(K)

1

1

1

1

gf∗

∼

Proof. Let m1 and m2 be moduli of K such that gcd(m1,m2) = 1. Then to
prove that the map

K∗/NLK(L∗)K1
m1m2

−→ K∗/NLK(L∗)K1
m1
×K∗/NLK(L∗)K1

m2
.

is an isomorphism. This means that we have to prove

NLK(L∗)K1
m1
∩NLK(L∗)K1

m2
= NLK(L∗)K1

m1m2

and
NLK(L∗)K1

m1
NLK(L∗)K1

m2
= K∗.

By Lemma 13.19 K1
m1
K1

m2
= K∗, from which the last equality follows.

For the proof of the first equality let γ = NLK(α1)b1 = NLK(α2)b2 with α1, α2 ∈
L∗, b1 ∈ K1

m1
and b2 ∈ K1

m2
. From L1

m1
∩ L1

m2
= L1

m1m2
and L1

m1
L1
m2

= L∗

(Lemma 13.19) follows that L∗/L1
m1m2

∼−→ L∗/L1
m1
× L∗/L1

m2
. So there exists an

α ∈ L∗ such that α ≡ α1 (mod L1
m1

) and α ≡ α2 (mod L1
m2

). Then by Proposi-
tion 13.31 γ = NLK(α)NLK(α−1α1)b1 ∈ NLK(α)K1

m1
and similarly γ ∈ NLK(α)K1

m2
.

Hence γ ∈ NLK(α)K1
m1m2

. So

NLK(L∗)K1
m1
∩NLK(L∗)K1

m2
⊆ NLK(L∗)K1

m1m2
.

Equality holds because the other inclusion is obvious.
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14 Artin’s Reciprocity Law

So the computation of the order ofK∗/NLK(L∗)K1
m comes down to this computation

in case the modulus m has only one prime divisor. Completion at this prime will
be used for this computation. First note that in general global norms are local
norms:

14.2 Lemma. Let L : K be a Galois extension of number fields, p a prime of K, q
a prime of L above p and α ∈ L. Then there is a β ∈ L such that Nq

p(β) = NLK(α).

Proof. Put G = Gal(L : K) and Z = ZK(q). The restriction of automorphisms
in Gal(Lq : Kp) to L induces an isomorphism Gal(Lq : Kp)

∼→ Z (Theorem 10.45).
Let R be a system of right representatives of the right cosets of Z in G. Then

NLK(α) =
∏
σ∈G

σ(α) =
∏
ρ∈R

∏
τ∈Z

τρ(α) =
∏
ρ∈R

Nq
p(ρ(α)) = Nq

p

(∏
ρ∈R

ρ(α)
)
.

14.3 Lemma. Let p be a finite prime of K, q a prime of L above p and t ∈ N∗.
Then the inclusion K∗ → K∗

p induces an isomorphism

K∗/NLK(L∗)K1
pt

∼−→ K∗
p/N

q
p(L

∗
q)(1 + p̂t).

Proof. By Lemma 14.2 we have NLK(L∗) ⊆ Nq
p(L

∗
q). The induced map is surjec-

tive since the map K∗ → K∗
p/(1 + p̂t) is surjective. For injectivity we need

K∗ ∩Nq
p(L

∗
q)(1 + p̂t) ⊆ NLK(L∗)K1

pt .

Let γ = Nq
p(α)β with γ ∈ K∗, α ∈ L∗

q and β ∈ 1 + p̂t. Since L∗
q = L∗(1 + q̂et),

where e = e
(L)
p , we can assume that α ∈ L∗. Then β ∈ (1 + p̂t) ∩K∗ = K1

pt . Put
Z = ZK(q) and let R be a system of representatives of the right cosets of Z in G.
Then pOL =

∏
ρ∈R ρ(q)

e. Take α′ such that

α′ ≡

{
α (modL1

qet),

1 (modL1
ρ(q)et) for ρ /∈ Z.

Then ρ−1(α′) ≡ 1 (modL1
qet) if ρ /∈ Z and so

NLK(α′) =
∏
ρ∈R

∏
τ∈Z

τρ−1(α′) ≡
∏
τ∈Z

τ(α′) = Nq
p(α

′) ≡ Nq
p(α) (modL1

qet).

Thus Nq
p(α) ∈ NLK(L∗)(L1

qet ∩K∗) = NLK(L∗)K1
pt . So γ = Nq

p(α)β ∈ NLK(L∗)K1
pt .

14.4 Lemma. Let p be an infinite prime of K and q a prime of L above p. Then
the inclusion K∗ → K∗

p induces an isomorphism

K∗/NLK(L∗)K1
p

∼−→ K∗
p/N

q
p(L

∗
q).
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Proof. The group K∗
p/N

q
p(L

∗
q) is trivial if p does not ramify and otherwise it is

of order 2. If p is complex, then K1
p = K∗. So let’s assume that p is real and

corresponds to an embedding σp : K → R. For β ∈ L∗ we have

σp(N
L
K(β)) =

∏
τ∈G

σqτ(β),

where σq is a fixed embedding of L in R or C above the embedding σp. If p does
not ramify, choose β ∈ L such that σqτ(β) < 0 for exactly one of the embeddings
σqτ : L → R. Then NLK(β) /∈ K1

p and so also the group K∗/NLK(L∗)K1
p is trivial.

If p ramifies, then there is a τ0 ∈ G of order 2 such that σqτ0 = σq. In this case

σp(N
L
K(β)) is a product of elements σqτ(β) · σqττ0(β) = σqτ(β) · σqτ(β) > 0 and

so NLK(β) ∈ K1
p .

14.5 Proposition. For sufficiently high exponents of the finite primes in the mod-
ulus m we have

#(K∗/NLK(L∗)K1
m) =

∏
p|m

e
(L)
p f

(L)
p .

Proof. Let p be a finite prime of K and q a prime of L above p. By Theo-
rem 11.22 1 + p̂t ⊆ K∗n

p for t > vp(n) +
e
p−1 , where p is the prime number under p

and e = e
(Kp)
Qp

= eQ(p). For such t we have by Lemma 14.3 an isomorphism

K∗/NLK(L∗)K1
pt

∼−→ K∗
p/N

q
p(L

∗
q)

and by Theorem 12.22 the last group is of order e
(L)
p f

(L)
p . So the proposition follows

from Proposition 14.1 and Lemma 14.4.

It is only in this last proposition we need that m is a multiple of a sufficiently high
power of each of its finite prime divisors. The exponent t of such a prime p has to
be such that 1 + p̂t ⊆ Nq

p(L
∗
q).

Computation of
#(Coker(f∗))

#(Ker(f∗))

This computation holds for all moduli m. Only at the very end of this computation
the modulus m is required to be a multiple of all ramifying primes.

Let Q be the set of finite primes of L which do not divide m. Then we have the
exact sequence of G-modules

1 −→ L∗
Q −→ L∗ f−→ Im(L) −→ Cℓ(LQ) −→ 1.
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14 Artin’s Reciprocity Law

Let Y be the image of f : L∗ → Im(L). The above exact sequence splits into two
short exact sequences

1 −→ L∗
Q −→ L∗ −→ Y −→ 1

and

1 −→ Y −→ Im(L) −→ Cℓ(LQ) −→ 1.

Because H1(L∗) = 1 and H1(Im(L)) = 1, the exact hexagons of cohomology groups
become exact sequences

1 −→ H1(Y ) −→ H0(L∗
Q) −→ H0(L∗) −→ H0(Y ) −→ H1(L∗

Q) −→ 1

and

1 −→ H1(Cℓ(LQ)) −→ H0(Y ) −→ H0(Im(L)) −→ H0(Cℓ(LQ)) −→ H1(Y ) −→ 1.

These sequences fit in the diagram for the ker-coker exact sequence of H0(L∗) →
H0(Y )→ H0(Im(L)):

H0(Y )

H0(L∗) H0(Im(L))

H0(L∗
Q) H0(Cℓ(LQ))

H1(Y ) H1(Y )

Ker(f∗) Coker(f∗)

H1(Cℓ(LQ)) H1(L∗
Q)

1 1

1 1

1 1

Connecting head and tail of the exact sequence from the top left to the top right
yields an exact hexagon
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14.1 The Fundamental Equality

H1(Cℓ(LQ)) H1(L∗
Q)

Coker(f∗)

H0(Cℓ(LQ))H0(L∗
Q)

Ker(f∗)

Since Cℓ(LQ) is finite, it follows that

#(Coker(f∗))

#(Ker(f∗))
= q(L∗

Q). (14.3)

As at the end of section 6.3, the ker-coker exact sequence of L∗ → I(L) → Im(L)
is:

1 −→ O∗
L −→ L∗

Q −→
⊕
q|m0

Z −→ Cℓ(OL) −→ Cℓ(LQ) −→ 1.

Since Cℓ(OL) and Cℓ(LQ) are finite, we have

q(L∗
Q) = q(O∗

L) · q
(⊕
q|m0

Z
)
.

This leads to a formula for the Herbrand quotient of L∗
Q:

q
(⊕
q|m0

Z
)
=
∏
p|m0

q
( ⊕
q|pOL

Z
)
=
∏
p|m0

1

e
(L)
p f

(L)
p

and so by Theorem 12.24

q(L∗
Q) = [L : K] ·

∏
p|m0

or p infinite

1

e
(L)
p f

(L)
p

.

We obtained the following:

14.6 Proposition. If the modulus m is a multiple of all ramifying primes, then

#(Coker(f∗))

#(Ker(f∗))
= [L : K] ·

∏
p|m

1

e
(L)
p f

(L)
p

.
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Conclusion

Let L : K be an abelian number field extension. Choose a modulus m of K such
that the prime divisors of m are the in L ramifying primes and such that the finite
ones among these have in m a power such that Proposition 14.5 applies. Then by
this proposition and Proposition 14.6 the equation (14.2) becomes

#(Cℓm(L : K)) = [L : K] ·#(X).

So #(Cℓm(L : K)) ≥ [L : K]. Hence we proved:

14.7 Theorem (The Second Fundamental Inequality). Let L : K be a cyclic
Galois extension of number fields and m a modulus of K divisible by all in L
ramifying primes, the finite ones to a sufficiently high power. Then

#(Cℓm(L : K)) ≥ [L : K].

The First Fundamental Inequality (Theorem 13.44) tells us that

#(Cℓm(L : K)) = #(H(L : K) ∩Hm) ≤ H(L : K) ≤ [L : K].

So we proved the fundamental equality, which is stated here explicitly because of
its importance:

14.8 Theorem (The Fundamental Equality). Let L : K be a cyclic Galois
extension of number fields and m a modulus of K divisible by all in L ramifying
primes, the finite ones to a sufficiently high power. Then

#(Cℓm(L : K)) = [L : K].

For the m in the theorem we have in equation 14.2: #(X) = 1. A consequence is
a local-global principle of Hasse as formulated in the next section.

In more modern approaches the first and second inequality are called respectively
the second and the first inequality, in accordance with the order the inequalities
are proved.

For m as in the theorem we have H(L : K) ⊆ Hm(K). In particular fK(L) | m,
which implies that the prime divisors of fK(L) ramify in L. In terms of Dirichlet
characters we now have:

14.9 Corollary. Let L : K be a cyclic Galois extension of number fields. Then

#(H(L : K)) = [L : K].

and the prime divisors of the conductor of L : K ramify in L.
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14.2 Hasse’s Principle

For a first indication of the strength of this theorem, let L : K be a cyclic unramified
number field extension. Then we can take m = (1), the trivial modulus, and we
obtain

#(I(K)/NL
K(I(L))P(K) = [L : K].

The group I(K)/NL
K(I(L))P(K) is a homomorphic image of I(K)/P(K) = Cℓ(K). It

follows that [L : K] | #(Cℓ(K)). So the existence of an abelian unramified extension
of K has consequences for the ideal class group of K. Later, when we have the full
Classification Theorem, we will see that this works both ways.

14.2 Hasse’s Principle

Another consequence of the computation in the previous section is that X = 1,
which means that the map K1

m → Sm(K) induces an isomorphism

K1
m

NLK(L∗) ∩K1
m

∼−→ Sm(K)

NLK(Im(L)) ∩ Sm(K)
. (14.4)

This leads to Hasse’s Principle for cyclic extensions: an element is a global norm
if and only if it is everywhere—i.e. at every prime—a local norm.

14.10 Theorem (Hasse’s Principle). Let L : K be a cyclic extension of number
fields and a ∈ K∗. Then

a ∈ NLK(L∗) ⇐⇒ a ∈ Nq
p(L

∗
q) for all primes p of K,

where for each p the q is a prime of L above p.

Proof. The ⇒-part follows from Lemma 14.2.

Since the map (14.4) is an isomorphism, it follows from the diagram on page 349
that the following square is cartesian:

K∗/NLK(L∗)K1
m

Cℓm(L : K)

H0(L∗)

H0(Im(L))

gf∗

Let a ∈ K∗ be a local norm at a finite prime p of K, say a = Nq
p(βp), where q is

a prime of L above p and βp ∈ L∗
q. Put fp = f

(L)
p . By definition of the norm for

fractional ideals we have

vp(a) = vp(N
q
p(βp)) = fp · vq(βp).
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14 Artin’s Reciprocity Law

Let P be the collection of finite primes p of K with p ∤ m0. Choose for every prime
p ∈ P a prime q of L above p and let Q be the collection of these primes q of L. If
a ∈ K∗ is a local norm at all primes in P , then

f(a) =
∏
p∈P

pvp(a) =
∏
p∈P

pfp·vq(βp) = NLK

(∏
q∈Q

qvq(βp)
)
∈ NLK(Im(L)).

So the image of a ·NLK(L∗) under f∗ : H
0(L∗)→ H0(Im(L)) is trivial.

Let a be a local norm at every prime p of K. Then in particular a is a local norm
at the prime divisors of m. Lemma 14.3, Lemma 14.4 and Proposition 14.1 imply
that a ∈ NLK(L∗)K1

m, so also the image of a · NLK(L∗) under the horizontal map is
trivial. Since the square is cartesian it follows that a ∈ NLK(L∗).

Furtwangler proved the principle for cyclic extensions of prime order in 1902. Hasse
originally conjectured that this principle holds in general for abelian number field
extensions. In 1931 he proved that the principle holds for cyclic extensions in
general ([16]). In the same paper he gave a counterexample: 3 is a not a global norm
for the biquadratic extension Q(

√
−3,
√
13) : Q, but is a local norm at every prime

of Q (exercise 3). In 1967 Tate gave, using idèles and cohomology, in [7] another
counterexample as an exercise: Q(

√
13,
√
17) : Q. In [21] M. Keune has shown that,

using a method similar to Hasse’s, for prime numbers p and q with p, q ≡ 1 (mod 4)
and

(
p
q

)
= 1 the biquadratic extension Q(

√
p,
√
q) : Q is a counterexample.

14.3 Artin’s Reciprocity Law

In this section we prove the existence of a modulus for any abelian number field
extension. The following propositions show that the existence of a modulus for
some abelian number field extensions implies the existence of a modulus for various
other extensions.

14.11 Proposition. Let m be a modulus for the abelian number field extension L : K
and let K ′ : K be any number field extension. Then m is a modulus for K ′L : K ′

as well.

Proof. The ray Sm(K) is contained in the Artin kernel of L : K. By Proposi-
tion 13.31 NK

′

K (Sm(K ′) ⊆ Sm(K), so for a ∈ Sm(K ′) we have, using Lemma 13.54,

φ
(K′L)
K′ (a) = φ

(L)
K (NK

′

K (a)) = 1.

So the ray Sm(K ′) is in the Artin kernel of K ′L : K ′.

14.12 Proposition. Let m be a modulus for the abelian number field extension L : K
and let K ′ be an intermediate field of this extension. Then m is a modulus for both
L : K ′ and K ′ : K.
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14.3 Artin’s Reciprocity Law

Proof. That m is a modulus for L : K ′ follows from Proposition 14.11. Since

Ker(φ
(L)
K ) ⊆ Ker(φ

(K′)
K ) the modulus m is a modulus for K ′ : K as well.

For cyclotomic extensions there is a modulus:

14.13 Proposition. Let K be a number field and L an intermediate field of a cy-
clotomic extension K(ζm) : K. Then the modulus (m)∞ (extended from Q) is a
modulus for L : K.

Proof. The modulus (m)∞ is a modulus for for Q(ζm) : Q. The proposition
follows from Proposition 14.11 and Proposition 14.12.

For the proof of Artin’s Reciprocity Law we need a lemma which is a corollary of
the following lemma.

14.14 Lemma. Let a, n ∈ N∗ and a ≥ 2. Then infinitely many odd prime numbers
l have powers lm such that n | o(a), where a ∈ (Z/lm)∗.

Proof. First we show that there is a power lm of a prime number l such that
a ∈ (Z/lm)∗ is of order n.

The n-th cyclotomic polynomial is defined as

Φn(X) =
∏

0≤k<n
gcd(k,n)=1

(X − ζkn) ∈ Z[X].

Because a ≥ 2 we have |a−ζkn| ≥ 1 and there is equality only if k = 0 and a = 2. For
n ≥ 2 it follows that |Φn(a)| > 1. Let l be a prime divisor of Φn(a). Then a ∈ F∗

l

is of order nl−vl(n). Since Φn(X) | Xn − 1 in Z[X], it follows that l | an − 1. Put
m = vl(a

n − 1). Then o(a) | n, where a ∈ (Z/lm)∗. Because Ker((Z/lm)∗ → F∗
l )

is an l-group, o(a) = nl−k for a k with 0 ≤ k ≤ vl(n). Suppose k > 0. Then
lm | an/l − 1 and in particular an/l ≡ 1 (mod l). From

an − 1 = (an/l − 1)(an(l−1)/l + an(l−2)/l + · · ·+ an/l + 1)

and an(l−1)/l + an(l−2)/l + · · ·+ an/l + 1 ≡ 0 (mod l) follows that vl(a
n/l − 1) < m,

contradicting lm | an/l − 1. So k = 0, that is o(a) = n, where a ∈ (Z/lm)∗.

Apply this construction with n replaced by pn, where p is a prime. Since the prime
divisors of #((Z/lm)∗) for all powers of a single prime l are divisors of l(l − 1),
infinitely many l are obtained when p varies over all primes. Hence n | o(a) for a
modulo powers of infinitely many (odd) prime numbers.

14.15 Lemma. Let L : K be a number field extension and p a finite prime of K.
Then there are powers q of infinitely many odd primes such that

p ∤ qOK , [L : K]
∣∣ o(φ(K(ζq))

p

)
and K(ζq) ∩ L = K.
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Proof. The number field L has only finitely many subfields. Let K1, . . . ,Kr

be the subfields of L which are contained in a cyclotomic field, say Ki ⊆ Q(ζmi
).

Put m = m1m2 · · ·mr. By Lemma 14.14 there are powers q of infinitely many

odd primes such that gcd(q,m) = 1 and the order of φ
(K(ζq))
p (= order of N(p)

in (Z/q)∗) is a multiple of [L : K]. It remains to prove that K(ζq) ∩ L = K.
The subfields of L contained in a cyclotomic field are all contained in Q(ζm). So
L ∩Q(ζq) ⊆ Q(ζm) ∩Q(ζq) = Q and also K ∩Q(ζq) = Q. By Galois theory

Gal(Q(ζq) : Q) ∼= Gal(L(ζq) : L) ∼= Gal(K(ζq) : (L ∩K(ζq)))

and
Gal(K(ζq) : K) ∼= Gal(Q(ζq) : Q).

Hence L ∩K(ζq) = K.

14.16 Theorem (Artin’s Reciprocity Law). Let L : K be an abelian extension
of number fields. Then there is a modulus m of K having the ramifying primes as

its prime divisors, such that the Artin map φ
(L)
K : IL(K)→ Gal(L : K) induces an

isomorphism
Im(K)/NLK(Im(L))Sm(K)

∼−→ Gal(L : K).

Proof. By Proposition 13.55 we may assume that L : K is cyclic. Let m be such
that the Fundamental Equality holds for L : K:

#(Cℓm(L : K)) = (Im(K) : NLK(Im(L))Sm(K)) = [L : K].

Choose a generator σ of Gal(L : K). We will construct an a ∈ Im(K) such that

φ
(L)
K (a) = σ and for all finite primes p ∤ m the following property holds:

(P) if φ
(L)
p = σt, then

p

at
∈ NLK(Im(L))Sm(K).

The proof will consist of three parts: the construction of a, the proof of property
(P) and finally the theorem will be proved using property (P).

Construction of a

By Lemma 14.15 there is an odd prime power q1 such that

gcd(q1OK ,m) = 1, [L : K]
∣∣∣ [K(ζq1) : K] and K(ζq1) ∩ L = K.

(Just take some finite prime p ofK, choose q1 such that gcd(q1OK ,m) = 1 and note

that o(φ
(K(ζq1 ))
p ) | [K(ζq1) : K].) Let Gal(L(ζq1) : L) be generated by σ1. Choose

prolongations of σ and σ1 to L(ζq1) such that the restrictions to respectively K(ζq1)
and L are the identity. Put K1 = L(ζq1)

σσ1 . Choose a1 ∈ Iq1m(K1) such that

φ
(L(ζq1 ))

K1
(a1) = σσ1 and take a = NK1

K (a1) ∈ Iq1m(K). Then

φ
(L(ζq1 ))

K (a) = σσ1 and φ
(L)
K (a) = φ

(L(ζq1 ))

K (a)
∣∣
L
= σ.
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L(ζq1q2)

L(ζq1) K3 L(ζq2)

L

K1 K2

K(ζq1) K(ζq2)

K

σtσt1σ
s
2

σ2 σ1

σ1 σ2

σ σ
σσ1 σtσs2

σ

σ1 σ2

From

Gal(L(ζq1) : K1(ζq1)) = Gal(L(ζq1) : K(ζq1)) ∩Gal(L(ζq1) : K1)

= ⟨σ⟩ ∩ ⟨σσ1⟩ = {1}

follows that K1(ζq1) = L(ζq1). So the extension L(ζq1) : K1 is cyclotomic and
therefore (q1)∞ is a modulus for this extension.

Proof of property (P)

Now let p be a finite prime of K not dividing m. Then φ
(L)
p = σt for an integer t.

Again by Lemma 14.15 there exists an odd prime power q2 such that

p ∤ q2OK , gcd(q2OK ,m) = 1, K(ζq2) ∩ L(ζq1) = K and [L : K]
∣∣∣ o(φ(K(ζq2 ))

p

)
.

Fix a generator σ2 of Gal(L(ζq2) : L) and choose the prolongation of σ2 to L(ζq2)

which restricts to the identity on L. Then φ
(K(ζq2 ))
p = σs2 for some integer s.

Because φ
(L)
p = σt, we have φ

(L(ζq2 ))
p = σtσs2 and so Z

(L(ζq2 ))
p = ⟨σtσs2⟩. Put

K2 = L(ζq2)
σtσs

2 . Again, from

Gal(L(ζq2) : K2(ζq2)) = Gal(L(ζq2) : K(ζq2)) ∩Gal(L(ζq2) : K2)

= ⟨σ⟩ ∩ ⟨σtσs1⟩ = {1}

follows that K2(ζq2) = L(ζq2). So (q2)∞ is a modulus for the extension L(ζq2) : K2.
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Finally, put K3 = L(ζq1q2)
σtσt

1σ
s
2 . Then K3 ⊇ K1,K2. Choose b3 ∈ Iq1q2m(K3)

such that

φ
(L(ζq1q2

))

K3
(b3) = σtσt1σ

s
2.

Then for b1 = NK3

K1
(b3) and b2 = NK3

K2
(b3) we have

φ
(L(ζq1 ))

K1
(b1) = φ

(L(ζq1q2
))

K1
(b1)

∣∣
L(ζq1 )

= φ
(L(ζq1q2

))

K3
(b3)

∣∣
L(ζq1 )

= σtσt1σ
s
2

∣∣
L(ζq1 )

= σtσt1 = φ
(L(ζq1 ))

K1
(at1)

and

φ
(L(ζq2 ))

K2
(b2) = φ

(L(ζq1q2
))

K2
(b2)

∣∣
L(ζq2 )

= φ
(L(ζq1q2

))

K3
(b3)

∣∣
L(ζq2 )

= σtσt1σ
s
2

∣∣
L(ζq2 )

= σtσs2 = φ
(L(ζq2 ))
p = φ

(L(ζq2 ))
p2

,

where p2 is a prime of K2 above p. Note that p splits completely in K2. Hence

b1
at1
∈ Ker(φ

(L(ζq1 ))

K1
: Iq1m(K1)→ Gal(L(ζq1) : K1))

and so, since (q1)∞ is a modulus for L(ζq1) : K1

b1
at1
∈ N

L(ζq1 )

K1
(Iq1m(L(ζq1))Sq1m(K1) ⊆ N

L(ζq1 )

K1
(Im(L(ζq1))Sm(K1).

Similarly
b2
p2
∈ N

L(ζq2 )

K2
(Im(L(ζq2))Sm(K2).

Apply NK1

K and NK2

K :

b

at
,
b

p
∈ NLK(Im(L))Sm(K)

and hence also
p

at
∈ NLK(Im(L))Sm(K).

The theorem follows from Property (P)

Let c ∈ Im(K) such that c is in the Artin kernel: φ
(L)
K (c) = 1. For each finite prime

p ∤ m of K write φ
(L)
p = σtp . Thus for each p we have p

atp ∈ NLK(Im(L))Sm(K).
Then

φ
(L)
K (c) =

∏
p

(φ
(L)
p )vp(c) =

∏
p

σtpvp(c) = σu,
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where u =
∑
tpvp(c). Because c is in the Artin kernel and o(σ) = [L : K], this

implies that [L : K] | u. Now

c

au
=
∏
p

( p

atp

)vp(c)
∈ NLK(Im(L))Sm(K)

and because [L : K] | u we have au ∈ NLK(Im(L)). Hence c ∈ NLK(Im(L))Sm(K).
Therefore, the Artin kernel is contained in NLK(Im(L))Sm(K). Finally, since both
have index [L : K] in Im(K), they coincide.

In particular, the trivial modulus (1) of a number field K is a modulus for any
unramified abelian extension L : K and the Artin map induces an isomorphism

I(K)/NL
K(I(L))P(K)

∼−→ G.

In other words, it induces a surjective homomorphism Cℓ(K) → G and the kernel
of this homomorphism is trLK(Cℓ(L)).

14.17 Application. In Application 9.42 it was shown that for each finite abelian
group G there exists an extension L : K of abelian number fields such that
Gal(L : K) ∼= G and no prime ideal of K ramifies in L. With a small adapta-
tion of the proof one can realize that the infinite primes do not ramify either:

Choose for i = 1, . . . , r the prime numbers pi in the proof such that pi ≡
1 (mod 2ni). Then the Dirichlet characters χi are even. Choose χr+1 to be
an odd character. Then χ = χ1 · · ·χr+1 is odd and as a result the field K is
complex.

So for any abelian G there exists an unramified extension with Gal(L : K) ∼= G.
By Artin’s Reciprocity Theorem we have a surjective homomorphism Cℓ(K)→ G.
So for any abelian G there exists a number field K such that G is a homomorphic
image of its ideal class group, or, what amounts to the same, the ideal class group
contains a subgroup isomorphic to G. It is unknown whether any abelian G is
realizable as an ideal class group of some number field.

14.4 The dual Artin isomorphism and class fields

An abelian extension of a number field determines a finite group of Dirichlet char-
acters of the base field. We will show that each finite group of Dirichlet characters
is the group of Dirichlet characters of at most one abelian extension.

Let L : K be an abelian number field extension. By Artin’s Reciprocity Law the

Artin map φ
(L)
K : IL(K) → Gal(L : K) induces an isomorphism Cℓm(L : K)

∼→
Gal(L : K) for some modulus m of K having the ramifying primes as its prime
divisors. Dual to this isomorphism is an isomorphism Gal(L : K)

∨ ∼→ H(L : K).
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14.18 Definition and notation. Let L : K be an abelian number field extension.
Then the dual Artin isomorphism of L : K is the isomorphism

φ̌
(L)
K : Gal(L : K)

∨ ∼→ H(L : K)

defined by φ̌
(L)
K (ξ)(a) = ξ(φ

(L)
K (a)) for all ξ ∈ Gal(L : K)

∨
and all a ∈ IL(K) ∩

I+(K).

By Lemma 13.29 the values of a Dirichlet character on all prime ideals but a fi-
nite number of them determine the Dirichlet character. So φ̌

(L)
K is determined by

φ̌
(L)
K (ξ)(p) = ξ(φ

(L)
p ) for all ξ ∈ Gal(L : K)∨ and all nonramifying p ∈ Max(OK).

14.19 Proposition. Let L1 : K and L2 : K be abelian number field extensions such
that L1 ⊆ L2. Let p : Gal(L2 : K) → Gal(L1 : K) be induced by restriction of
automorphisms to L1. Then the following square commutes

Gal(L2 : K)
∨

H(L2 : K)

Gal(L1 : K)
∨

H(L1 : K)

φ̌
(L2)
K

∼

φ̌
(L1)
K

∼

p∨ ⊆

Proof. Let ξ ∈ Gal(L1 : K)
∨
and p ∈ Max(OK) not ramifying in L2. Then

φ̌
(L2)
K p∨(ξ)(p) = φ̌

(L2)
K (ξp)(p) = ξp(φ

(L2)
p ) = ξ(φ

(L1)
p ) = φ̌

(L1)
K (ξ)(p).

Hence φ̌
(L2)
K p∨ = φ̌

(L1)
K . Note that H(L1 : K) ⊆ H(L2 : K) by Lemma 13.35.

14.20 Corollary. Let L1 : K and L2 : K be abelian number field extensions. Then

H(L1 ∩ L2 : K) = H(L1 : K) ∩H(L2 : K)

and
H(L1L2 : K) = H(L1 : K)H(L2 : K).

Proof. By Galois theory the square

Gal(L1L2 : K) Gal(L2 : K)

Gal(L1 : K) Gal((L1 ∩ L2) : K)

p

p

p p
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of surjective homomorphisms is bicartesian. By Proposition 14.19 the following
square of inclusions is bicartesian as well.

H(L1 ∩ L2 : K) H(L2 : K)

H(L1 : K) H(L1L2 : K)

⊆

⊆

⊆ ⊆

14.21 Definition. Let K be a number field and X a finite group of Dirichlet char-
acters of K. If L : K is an abelian number field extension such that H(L : K) = X,
then L is called a class field for X.

Class fields are unique. This is a consequence of:

14.22 Proposition. Let L1 : K and L2 : K be abelian number field extensions.

L1 ⊆ L2 ⇐⇒ H(L1 : K) ⊆ H(L2 : K).

Proof.

⇒: This is Lemma 13.35.

⇐: If H(L1 : K) ⊆ H(L2 : K), then by Corollary 14.20 H(L1L2 : K) =
H(L2 : K). This implies [L1L2 : K] = [L2 : K] and since L2 ⊆ L1L2,
we have L2 = L1L2, that is L1 ⊆ L2.

For an abelian extension of number fields we now have a correspondence between
intermediate fields and groups of Dirichlet characters of the extension.

14.23 Corollary. Let L : K be an abelian number field extension. Then the map
L′ 7→ H(L′ : K) is an inclusion preserving bijection from the set of intermediate
fields of L : K to the set of subgroups of H(L : K).

Proof. The dual Artin map φ̌
(L)
K is an isomorphism and induces an inclusion pre-

serving bijection from the set of subgroups of Gal(L : K)
∨
to the set of subgroups

of H(L : K).

In section 9.1 an elaborate but relatively elementary proof was given of the theorem
of Kronecker and Weber. The proof involved a detailed study of various ramifica-
tion groups. The following proof illustrates the strength of class field theory.
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14 Artin’s Reciprocity Law

14.24 Theorem (Kronecker-Weber). Let K be an abelian number field. Then
K is a subfield of a cyclotomic field.

Proof. The conductor fQ(K) is either of the form (m) or (m)∞ for some m ∈
N∗. So for such m we have H(K : Q) ⊆ H(m)∞(Q) = H(Q(ζm) : Q). Hence
K ⊆ Q(ζm).

The Translation Theorem describes the behavior of the group of Dirichlet char-
acters of an abelian extension under a change of the base field. It is based on
Lemma 13.54. In the notation of this lemma, we have a commutative square

Im(K ′) Gal(LK ′ : K ′)

Im(K) Gal(L : K)

φ
(LK′)
K′

φ
(L)
K

NK
′

K i

where i is the restriction of automorphisms to L. Divide by the Artin kernels:

Cℓm(LK ′ : K ′) Gal(LK ′ : K ′)

Cℓm(L : K) Gal(L : K)

φ
(LK′)
K′

∼

φ
(L)
K

∼

NK
′

K i

Dually,

Gal(L : K)
∨ H(L : K)

Gal(K ′L : K ′)
∨ H(K ′L : K ′)

φ̌
(L)
K

∼

φ̌
(K′L)
K′

∼

i∨ νKK′

and this proves the following theorem.
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Exercises

14.25 Translation Theorem. Let K ′ : K be a number field extension and L : K
an abelian number field extension. Then

H(K ′L : K ′) = νKK′(H(L : K)).

In particular, if K ′ is an intermediate field of L : K, then

H(L : K ′) = νKK′(H(L : K)).

Exercises

1. Show that the proof of formula (14.3) simplifies if we assume that m is such that
LQ is a principal ideal domain.

2. Let m be a squarefree integer ̸= 1.

(i) Show that there exists an α ∈ Q(
√
m) such that Q(

√
m,
√
α) : Q is not a

Galois extension.

(ii) Show that there exists an abelian extension L : Q(
√
m) which is not contained

in a cyclotomic extension of Q(
√
m).

3. ([16]) Let L = Q(
√
−3,
√
13) and K = Q(

√
−39). Let Gal(L : Q) = ⟨σ, τ⟩ with σ

and τ such that σ(
√
−3) =

√
−3 and τ(

√
−39) =

√
−39.

(i) Show that 3 is a local norm of L : Q at every prime of Q.

(ii) Show that L : K is unramified.

(iii) Let p2 = (2, 1+
√
−39
2

). Prove that Cℓ(K) is cyclic of order 4 and that this
group is generated by the class of p2.

(iv) Let α = 3−
√
−39

4
. Prove that 3 is a norm of L : Q if and only if there exists a

β ∈ K∗ such that αβ
σ(β)

is a norm of L : K.

(v) Let β ∈ K∗ and p3 the unique prime of K above 3. Show that

αβ

σ(β)
OK =

p3 · βp2
σ(βp2)

.

(vi) Show that for p ∈ Max(OK) the ideal class of p
σ(p)

is of order ≤ 2. It is of
order 2 if and only if the class of p is of order 4.

(vii) Prove that there is a p ∈ Max(OK) such that the class of p is of order 4 and

vp
( αβ

σ(β)

)
is odd.

(viii) Conclude that 3 is not a norm of L : Q.

4. Let p be an odd prime number and q an odd prime divisor of p−1. Let K = Q( q
√
p)

and L the subfield of Q(ζp) of degree q over Q.

(i) Show that p totally ramifies both in K and L.
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14 Artin’s Reciprocity Law

(ii) Let p be a prime ideal of KL above p and let p′ and p′′ be the primes under
p of respectively K and L. Show that both Kp′ : Qp and Lp′′ : Qp are Galois
extensions.

(iii) Show that there is an α ∈ L∗
p′′ such that Lp′′ = Qp(α) and α

q ∈ Qp.

(iv) Show that p does not totally ramify in KL.

(v) Prove that KL : K is an unramified Galois extension. Conclude that Cℓ(K)
contains an element of order q.

5. ([23], Theorem 1) Let L : K be an unramified cyclic extension of number fields. Set
G = Gal(L : K).

(i) Prove that the homomorphism L∗ → P(L), α 7→ αOL of G-modules induces
an injective homomorphism H0(L∗)→ H0(P(L)). (Hint: Hasse’s Principle)

(ii) Prove that H0(O∗
L) ∼= H1(P(L)).

(iii) Show that the inclusion P(L)→ I(L) induces a short exact sequence

1 −→ I(L)G/P(L)G −→ Cℓ(L)G −→ H1(P(L)) −→ 1.

(iv) Show that

(I(L)G : P(L)G) = #(Cℓ(K))

(P(L)G : P(K))

and

#(Cℓ(L)G) = #(Cℓ(K))

(P(L)G : P(K))
·#(H0(O∗

L)).

(v) Show that the inclusion O∗
L → L∗ induces a short exact sequence

1 −→ P(K) −→ P(L)G → H1(O∗
L) −→ 1.

(vi) Prove that

#(Cℓ(L)G) = #(Cℓ(K))

[L : K]
.

(vii) Let L : K be an unramified cyclic extension of number fields. Show that the
order of the kernel of jKL : Cℓ(K)→ Cℓ(L) is at least [L : K].

For [L : K] a prime number the final result in the last exercise is known as Hilbert’s
Theorem 94. It is Satz 94 in [18], also known as Hilbert’s Zahlbericht. Translation:
[19].
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15 The Classification Theorem

The Classification Theorem relates finite groups of Dirichlet characters of a num-
ber field to abelian extensions of this number field. What is so far still missing is
the existence of an abelian extension corresponding to a given group of Dirichlet
characters. This existence problem will be reduced in section 15.1 to the case in
which the base field contains sufficiently many roots of unity. Then the extension
looked for is a Kummer extension. Kummer extensions are treated in general in
section 15.2. The full Classification Theorem is proved in section 15.3. A direct
consequence is Chebotarev’s Density Theorem for Galois extensions of number
fields (section 15.4). Dirichlet characters describe the splitting behavior of primes
in an abelian extension of number fields. In the sections 15.5 and 15.6 this descrip-
tion is completed with the Complete Splitting Theorem and a description of the
conductor.

In section 15.6 an isomorphism ϑ
(L)
p : Kp/N

q
p(L

∗
q)

∼→ Gal(Lq : Kp), the local Artin
map for the completion of an abelian number field extension L : K, is constructed.
The so-called Hilbert symbols are based on this map. These symbols are treated in
the next chapter. In this chapter the local Artin map is used for a description of
the conductor of abelian number field extensions.

In section 15.8 we have a look at the special case of unramified abelian extensions
of a number field. The maximal one among these is known as the Hilbert class field.
An important property of Hilbert class fields is the Principal Ideal Theorem: ideals
in the base field become principal in the Hilbert class field. Using a generalization
of Artin maps to Galois extensions of number fields in general, not just the abelian
ones, as described in section 15.7, the Principal Ideal Theorem is reduced to pure
group theory. The proof is in the last section.

15.1 Reduction steps

In this section reduction steps toward the Existence Theorem (Theorem 15.27) are
made. We have to show that for any finite group X of Dirichlet characters of a
number field K there exists a class field. Here is an outline of the proof:

1. First we note that if for a group X ′ ≥ X a class field exists, then so there
exists one for X. This is Proposition 15.1.
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15 The Classification Theorem

2. Next it is shown that, if there is a class field for the group νKK′(X) of Dirichlet
characters of K ′, where K ′ : K is abelian, then there is one for X as well.
This is Theorem 15.7. The result of step 1 is used here.

3. We will show that, ifK contains µn, then there is a modulus m ofK such that
the group nHm(K) has a class field.1 This is Theorem 15.26. The required
extension is a an n-Kummer extension. As explained in section 15.2 such
extensions of K are classified by subgroups of K∗ containing the subgroup
K∗n of n-th powers as a subgroup of finite index.

4. By the result of step 2 we may assume that the field contains µn, where n
is an exponent for the group X. Finally, by the steps 1 and 3, it suffices to
choose the modulus m such that also X ≤ nHm(K).

The first reduction step:

15.1 Proposition. Let K be a number field and let X1 and X2 be finite groups of
Dirichlet characters of K such that X1 ⊆ X2. If there is a class field for X2, then
there is a class field for X1 as well.

Proof. This is just a reformulation of Corollary 14.23.

The Classification Theorem describes a correspondence between abelian extensions
of a number field K and finite subgroups of H(K). This proposition is the part of
the theorem that describes the correspondence between subextensions of a given
abelian extension L : K and subgroups of H(L : K).

15.2 Lemma. Let L : K be a number field extension and σ : L→ C an embedding.
Then the following squares commute.

I(L) I(K)

I(σ(L)) I(σ(K))

NLK

N
σ(L)
σ(K)

σ∗∼ σ∗∼

H(σ(K)) H(σ(L))

H(K) H(L)

ν
σ(K)
σ(L)

νKL

σ∗∼ σ∗∼

Proof. For the commutativity of the first square it suffices to show that the maps

N
σ(L)
σ(K)σ∗ and σ∗N

L
K agree on finite primes of L. Let q ∈ Max(OL) and p = q ∩K.

Put f = f
(L)
p . Then σ(q) ∈ Max(Oσ(L)) and σ(q) ∩ σ(K) = σ(p). Therefore,

(N
σ(L)
σ(K)σ∗)(q) = N

σ(L)
σ(K)σ(q) = σ(p)f = σ(pf ) = σ(NLK(q)) = (σ∗N

L
K)(q).

1Notation: For n ∈ N∗ and A a (multiplicative) group nA is the subgroup of a ∈ A with an = 1.
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15.1 Reduction steps

The commutativity of the second square follows from the commutativity of the

first. Let ξ ∈ H(σ(K)). Then (νKL σ
∗)(ξ) = νKL (ξσ∗) and σ

∗ν
σ(K)
σ(L) (ξ) = ν

σ(K)
σ(L) (ξ)σ∗.

If m is the conductor of ξ, then the Dirichlet characters νKL (ξσ∗) and ν
σ(K)
σ(L) (ξ)σ∗

coincide on Iσ−1(m)(K) and so, by Lemma 13.29, they are equal.

15.3 Corollary. Let L : K be a number field extension. Then an embedding σ : L
∼→

σ(L) ⊂ C induces an isomorphism

σ∗ : H(σ(L) : σ(K))
∼−→ H(L : K), ξ 7→ ξσ∗.

15.4 Notation. Let L : K be a Galois extension of number fields, σ : L → C an
embedding and τ ∈ Gal(L : K). Then we have a group isomorphism

fσ : Gal(L : K)
∼−→ Gal(σ(L) : σ(K)), τ 7→ στσ−1.

15.5 Lemma. Let L : K be an abelian number field extension, σ : L → C an
embedding and m a modulus for L : K. Then the following squares of isomorphisms
commute.

Cℓm(L : K) Gal(L : K)

Cℓσ(m)(σ(L) : σ(K)) Gal(σ(L) : σ(K))

φ
(L)
K

∼

φ
(σ(L))
σ(K)

∼

σ∗∼ fσ∼

Gal(σ(L) : σ(K))
∨ H(σ(L) : σ(K))

Gal(L : K)
∨ H(L : K)

φ̌
(σ(L))
σ(K)

∼

φ̌
(L)
K

∼

f∨σ∼ σ∗∼

Proof. Let a ∈ Im(L). Then

fσφ
(L)
K (a) = σφ

(L)
K (a)σ−1 = φ

(σ(L))
σ(K) (σ(a)).

The commutativity of the second square follows from the commutativity of the
first.
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15 The Classification Theorem

15.6 Proposition. Let K : K0 be a Galois extension of number fields and L : K
an abelian number field extension. Then L : K0 is a Galois extension if and only
if τ∗(H(L : K)) = H(L : K) for all τ ∈ Gal(K : K0).

If L : K0 is a Galois extension, then the action of Gal(K : K0) on H(L : K) is
compatible with the action of this group on Gal(L : K), i.e. for τ ∈ Gal(K : K0)
the following diagrams commute (m is a modulus for L : K):

Cℓm(L : K) Gal(L : K)

Cℓm(L : K) Gal(L : K)

φ
(L)
K

∼

φ
(L)
K

∼

τ∗∼ fτ∼

Gal(L : K)
∨ H(L : K)

Gal(L : K)
∨ H(L : K)

φ̌
(L)
K

∼

φ̌
(L)
K

∼

f∨τ∼ τ∗∼

where the τ in fτ is a prolongation of τ to L.

Proof. Let an embedding σ : L → C satisfy σ(a) = a for all a ∈ K0. Then
σ(K) = K because K : K0 is a Galois extension and so by Corollary 15.3
σ∗(H(σ(L) : K)) = H(L : K). Hence the following are equivalent:

L : K0 is a Galois extension;

σ(L) = L for all σ : L→ C with σ(a) = a for all a ∈ K0;

H(σ(L) : K) = H(L : K) for all σ : L→ C with σ(a) = a for all a ∈ K0;

(σ∗)−1(H(L : K)) = H(L : K) for all σ : L→ C with σ(a) = a for all a ∈ K0;

σ∗(H(L : K)) = H(L : K) for all σ : L→ C with σ(a) = a for all a ∈ K0;

τ∗(H(L : K)) = H(L : K) for all τ ∈ Gal(K : K0).

The last equivalence follows from the fact that every σ : L→ C fixing elements of
K0 is a prolongation of some τ ∈ Gal(K : K0). The commutativity of the diagrams
follows from Lemma 15.5.

15.7 Theorem. Let K ′ : K be an abelian number field extension and X a finite
group of Dirichlet characters of K such that there is a class field for νKK′(X) ⊆
H(K ′). Then there is a class field for X.

Proof. First we prove the theorem under the extra condition that the extension
K ′ : K is cyclic. So let K ′ : K be cyclic and L′ the class field for νKK′(X). Let τ

be a generator of Gal(K ′ : K). Then NK
′

K τ∗ = NK
′

K and so τ∗νKK′(X) = νKK′(X).
By Proposition 15.6 the extension L′ : K is a Galois extension. The identity
NK

′

K τ∗ = NK
′

K also implies that the action of τ on νKK′(X) = H(L′ : K ′) is trivial
and so by the same proposition the action of τ on Gal(L′ : K ′) is trivial. Since
Gal(K ′ : K) is cyclic this implies that L′ : K is abelian: the group Gal(L′ : K) is
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15.2 Kummer extensions

generated by the abelian subgroup Gal(L′ : K ′) and a prolongation of τ to L′. From
νKK′(X) = H(L′ : K ′) = Ker(νK

′

L′ ) follows that X ⊆ Ker(νK
′

L′ νKK′) = Ker(νKL′) =
H(L′ : K). Hence by Proposition 15.1 there is a class field for the group X.

For the general case take a chain of cyclic extensions

K = K0 ⊆ K1 ⊆ · · · ⊆ Kj−1 ⊆ Kj ⊆ · · · ⊆ Kr = K ′.

There is a sequence of finite groups of Dirichlet characters:

X, νKK1
(X), . . . , νKKj−1

(X), νKKj
(X), . . . , νKKr

(X) = νKK′(X).

Since νKKj
(X) = ν

Kj−1

Kj
νKKj−1

(X), we have by the cyclic case, that if there is a class

field for νKKj
(X), then there is one for νKKj−1

(X). This proves that there is a class
field for X.

This theorem makes it possible to assume in the proof of the Existence Theorem
that the base field contains a primitive n-th root of unity, where n is an exponent of
this finite group of Dirichlet characters: adjunction of a root of unity is an abelian
extension. Then the class field extension has to be a Kummer extension. This
was the second step in the proof. In the next section we consider first Kummer
extensions in general.

15.2 Kummer extensions

In the previous section the proof of the Existence Theorem was reduced to the case
in which the base field has enough roots of unity. The meaning of ‘enough’ in this
context is made precise in the following definition.

15.8 Definition. Let n ∈ N∗. An abelian extension L : K is called an n-Kummer
extension if Gal(L : K) has exponent n and K contains a primitive n-th root of
unity.

For Kummer extensions the intermediate fields correspond to certain subgroups of
the multiplicative group of the base field. This explains their relevance for class
field theory. The theory of Kummer extensions is purely algebraic, it is a part of
Galois theory.

15.9 Proposition. Let K be a field containing a primitive n-th root of unity and
L : K a cyclic Galois extension of degree n. Then there is an α ∈ L such that
L = K(α) and αn ∈ K.

Proof. Let ζ ∈ K be a primitive n-th root of unity and σ a generator of
Gal(L : K). Then NLK(ζ) = ζn = 1. So by Hilbert’s Theorem 90 (Theorem 12.17)
there is an α ∈ L∗ such that α

σ(α) = ζ. Then σ(αk) = αk ⇐⇒ n | k. So αn ∈ K
and L = K(α).
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15 The Classification Theorem

15.10 Proposition. Let L : K be an n-Kummer extension. Then there are
α1, . . . , αr ∈ L such that αnj ∈ K for j = 1, . . . , r and L = K(α1, . . . , αr).

Proof. The group Gal(L : K)
∨
is generated by a finite number of elements of

order a divisor of n. So by Galois theory there are intermediate fields L1, . . . , Lr of
L : K such that each Gal(Lj : K) is cyclic of order a divisor of n and L = L1 · · ·Lr.
Now the proposition follows from Proposition 15.9.

15.11 Proposition. Let L : K be an n-Kummer extension and L = K(α1, . . . , αr)
with αn1 , . . . , α

n
r ∈ K∗. Then L∗n ∩K∗ = K∗n⟨αn1 , . . . , αnr ⟩.

Proof. Put Lj = K(α1, . . . , αj) for j = 1, . . . , r. The extensions Lj : K are
n-Kummer extensions. Clearly, K∗n⟨αn1 , . . . , αnj ⟩ ⊆ L∗n

j ∩K∗. We show that

L∗n
j ∩K∗ = K∗n⟨αn1 , . . . , αnj ⟩ for j = 1, . . . , r. (15.1)

Let β ∈ L∗
1 such that βn ∈ K∗. The group Gal(L1 : K) is generated by an

automorphism σ with σ(α1) = ζα1, where ζ is a, not necessarily primitive, n-th
root of unity. Then σ(β) = ζkβ for some integer k. From σ(βα−k

1 ) = βα−k
1 follows

that β ∈ K∗⟨α1⟩ and so βn ∈ K∗n⟨αn1 ⟩.

Assume that L∗n
j−1∩K∗ = K∗n⟨αn1 , . . . , αnj−1⟩ for some j ≤ r. Let β ∈ L∗

j such that
βn ∈ K∗. The extension Lj : Lj−1 is a cyclic n-Kummer extension, so as above
L∗n
j ∩ L∗

j−1 = L∗n
j−1⟨αnj ⟩. So βn = γnαnkj , where γ ∈ L∗

j−1 and k ∈ Z. Because

βnα−nk
j ∈ L∗n

j−1 ∩ K∗ = K∗n⟨αn1 , . . . , αnj−1⟩, we have βn ∈ K∗n⟨αn1 , . . . , αnj ⟩. So
identity (15.1) holds for all j and in particular for j = r.

A classification theorem for Kummer extensions:

15.12 Theorem. Let K be a field containing a primitive n-th root of unity. Then
there is a one-to-one correspondence between n-Kummer extensions of K and sub-
groups A of K∗ containing K∗n such that A/K∗n is finite:

n-Kummer
extensions of K

subgroups of K∗ containing K∗n

as a subgroup of finite index

L : K

K( n
√
A)

L∗n ∩K∗

A

(The extensions of K are assumed to be inside a fixed algebraic closure of K.)

Proof. We will prove:

a) If L : K is an n-Kummer extension, then for A = L∗n ∩ K∗ we have L =
K( n
√
A) and A/K∗n is finite.
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15.2 Kummer extensions

b) If A is a subgroup of K∗ containing K∗n and such that A/K∗n is finite,
then K( n

√
A) : K is an n-Kummer extension and A = L∗n ∩ K∗, where

L = K( n
√
A).

For a proof of a) let L : K be an n-Kummer extension. Then by Proposition 15.10
there are α1, . . . , αr ∈ L∗ such that L = K(α1, . . . , αr) and α

n
j ∈ K for j = 1, . . . , r.

By Proposition 15.11 L = K(α1, . . . , αr) = K( n
√
A). The group L∗n ∩K∗/K∗n is

generated by the classes of αn1 , . . . , α
n
r and these are of finite order. So the group

A/K∗n is finite. We have α1, . . . , αn ∈ n
√
A ⊆ L∗ and L = K(α1, . . . , αr), so

L = K( n
√
A).

Now let A be a group with K∗n ⊆ A ⊆ K∗ and A/K∗n finite. Then A =
K∗n⟨a1, . . . , ar⟩ with a1, . . . , ar ∈ A and K( n

√
A) = K(α1, . . . , αn) : K, where

αnj = aj for j = 1, . . . , r. Put L = K(α1, . . . , αn). Then L : K is an n-Kummer
extension and, as we have seen, L∗n ∩K∗ = K∗n⟨αn1 , . . . , αnr ⟩ = A.

Theorem 15.14 describes the connection between the Galois group of a Kummer
extension and the corresponding subgroup of the multiplicative group of the base
field. The main tool is the following.

15.13 Lemma. Let L : K be an n-Kummer extension and β ∈ L∗ such that βn ∈
K∗. Then the map

Gal(L : K)→ µn, σ 7→ σ(β)

β

is a group homomorphism.

Proof. Let σ, τ ∈ Gal(L : K). Put τ(β)
β = ζ ∈ µn. Then

στ(β)

β
=
σ(ζβ)

β
=
ζσ(β)

β
=
σ(β)

β
· τ(β)
β

.

15.14 Theorem. Let L : K be an n-Kummer extension. Then the map

L∗n ∩K∗ → Gal(L : K)
∨
, a 7→

(
σ 7→ σ( n

√
a)

n
√
a

)
induces an isomorphism (L∗n ∩K∗)/K∗n ∼→ Gal(L : K)

∨
.

Proof. By Lemma 15.13 we have a bilinear map

Gal(L : K)× (L∗n ∩K∗)/K∗n → µn, (σ, aK∗n) 7→ σ( n
√
a)

n
√
a

.

The theorem follows from the nondegeneracy of this pairing.

If σ( n
√
a) = n

√
a for all σ ∈ Gal(L : K), then n

√
a ∈ K∗ and so a ∈ K∗n.

If σ( n
√
a) = n

√
a for all a ∈ L∗n ∩K∗, then it follows from Proposition 15.11

that σ = 1.
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15 The Classification Theorem

15.3 The Existence Theorem

As indicated at the end of section 15.1 we can assume that the class field extension
we are looking for is a Kummer extension. We need some results on the splitting
behavior of primes in a Kummer extension of number fields. The first such property
is given by the following lemma.

15.15 Lemma. Let F be a local field containing a primitive n-th root of unity and
α ∈ F ∗ such that v(α) = v(n) = 0. Then the n-Kummer extension F ( n

√
α) : F of

local fields is unramified.

Proof. The minimal polynomial of γ = n
√
α is Xd − β for some d | n and β = γd.

Put E = F (γ). By Definition 7.22

disc(1, γ, . . . , γd−1) ∈ dF (E).

Since d | n and βn = αd, we also have v(β) = v(d) = 0. Then from

disc(1, γ, . . . , γd−1) = ±NEF (dγd−1) = ±ddβd−1

follows that vF (disc(1, γ, . . . , γ
d−1)) = 0. So dF (E) = OF . Therefore, E : F is

unramified (Theorem 7.28).

15.16 Corollary. Let K be a number field containing µn, a ∈ K∗ and p a finite
prime of K satisfying vp(a) = vp(n) = 0. Then p does not ramify in the n-Kummer
extension K( n

√
a) : K.

Proof. Take the q-adic completion of K( n
√
a), where q is a prime above p, and

apply Lemma 15.15.

The n-Kummer extensions of a field K correspond to finite subgroups of K∗/K∗n.
For local fields this group is finite:

15.17 Proposition. Let F be a local field. Assume that F contains a primitive n-th
root of unity. Then

#(F ∗/F ∗n) = n2N(pF )
vF (n).

Proof. We will use group cohomology in a rather trivial setting. Let G be a
cyclic group of order n and consider F ∗ as a G-module with trivial G-action. Then
H0(F ∗) = F ∗/F ∗n and H1(F ∗) = µn. So #(F ∗/F ∗n) = n · q(F ∗)−1. We have the
short exact sequence of G-modules

1 −→ O∗
F −→ F ∗ vF−→ Z −→ 0.

So q(F ∗) = q(O∗
F )q(Z) = q(O∗

F )n
−1 and it remains to compute q(O∗

F ). For suffi-
ciently large r we have

q(O∗
F ) = q(1 + pr) = q(pr) = q(OF ) =

#(H1(OF ))
#(H0(OF ))

=
1

#(OF /nOF )
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=
1

#(OF /pvF (n)
F )

= N(pF )
−vF (n).

Hence #(F ∗/F ∗n) = n · q(F ∗)−1 = n2q(OF )−1 = n2N(pF )
vF (n).

We will use the following lemma, which is similar to Proposition 14.1 and so is its
proof.

15.18 Lemma. Let n ∈ N∗. The arithmetic projective system m 7→ K∗/K∗nK1
m of

a number field K is multiplicative.

Proof. Let m1 and m2 be moduli of K with gcd(m1,m2) = 1. The identity
K1

m1
K1

m2
= K∗ implies that K∗nK1

m1
K∗nK1

m2
= K∗, so it remains to prove that

K∗nK1
m1
∩K∗nK1

m2
= K∗nK1

m1m2
.

Let c = an1 b1 = an2 b2 with a1, a2 ∈ K∗, b1 ∈ K1
m1

and b2 ∈ K1
m2

. There is an
a ∈ K∗ such that a−1a1 ∈ K1

m1
and a−1a2 ∈ K1

m2
. Then c = an(a−1a1)

nb1 =
an(a−1a2)

nb2 and so (a−1a1)
nb1 = an(a−1a2)

nb2 ∈ K1
m1
∩K1

m2
= K1

m1m2
. Hence

c ∈ K∗nK1
m1m2

.

15.19 Proposition. Let K be a number field containing µn and m a modulus of
K divisible by the prime divisors of nOK and all infinite primes of K, the finite
prime divisors with a sufficiently large exponent. Let S be the set of prime divisors
of m. Then

#(K∗/K∗nK1
m) = n2s,

where s = #(S).

Proof. By Lemma 15.18 #(K∗/K∗nK1
m) is the product of all #(K∗/K∗nK1

pr )
over p ∈ S. For p real infinite necessarily n = 2 and since K∗2 ⊆ K1

p , we have
#(K∗/K∗2K1

p) = #(K∗/K1
p) = 2. For p complex infinite #(K∗/K∗nK1

p) = 1.

For finite p ∈ S we have K∗/K∗nK1
pr

∼→ K∗
p/K

∗n
p for r sufficiently large. So by

Proposition 15.17 #(K∗/K∗nK1
pr ) = n2N(p)vp(n).

Let s0 be the number of finite primes in S and s∞ the number of infinite primes.
Then for n ̸= 2 by Lemma 15.18:

#(K∗/K∗nK1
m) =

∏
p|m0

n2N(p)vp(n) = n2s0N
(∏
p|m0

pvp(n)
)
= n2s0N(nOK)

= n2s0n[K:Q] = n2s0n2s∞ = n2s.

For n = 2 let r∞ be the number of real infinite primes. Then

#(K∗/K∗2K1
m) = 22s0N(2OK)2r∞ = 22s∞ · 2r∞+2(s∞−r∞) · 2r∞

= 22s0+2s∞ = 22s.
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15.20 Definition. A collection S of primes of a number field K is called saturated
if it contains P∞(K). The collection P∞(K) is the smallest saturated collection of
primes and is often denoted by S∞.

15.21 Definition and notations. Let K be a number field, S a finite saturated
collection of primes of K. Then IS(K) denotes the subgroup of I(K) of all a with
vp(a) = 0 for all finite primes p ∈ S. An element α ∈ K∗ is called an S-unit of K
if vp(α) = 0 for all finite primes p /∈ S. The group of S-units of K is denoted by
KS .

Note that KS is the same the group as K∗
P described in Notations 6.30, where P

is the complement of S in P(K). So KS is the unit group of the Dedekind domain
KP . The exact sequence (6.1) on page 140 becomes

1 −→ O∗
K −→ KS −→

⊕
p∈S

p finite

Z −→ Cℓ(K) −→ CℓS(K) −→ 1,

where CℓS(K) is the ideal class group of KP .

15.22 Definition. The group CℓS(K) described above is called the S-ideal class
group of K.

By the above exact sequence CℓS(K) is isomorphic to the factor group of Cℓ(K)
obtained by killing the classes of the finite primes in S.

Theorem 6.31 can be reformulated as follows:

15.23 Theorem. Let S be a finite saturated collection of primes of K and #(S) = s.
Then KS/µ(K) is a free abelian group of rank s− 1.

Here we will need the following consequence.

15.24 Corollary. Let the number field K contain a primitive n-th root of unity
and let S be a finite saturated collection of primes of K. Then KS/(KS)n ∼=
(Z/n)#(S).

15.25 Proposition. Let the number field K contain µn and let S be a finite sat-
urated collection of primes of K containing all prime divisors of nOK . Then the
extension K(

n
√
KS) : K is an n-Kummer extension with Gal(K(

n
√
KS) : K) ∼=

(Z/n)#(S) and the ramifying primes are all in S.

Proof. By Theorem 15.23 the group KS is finitely generated, so K(
n
√
KS) : K

is an n-Kummer extension. By Theorem 15.14, Theorem 15.12 and Corollary 15.24
we have

Gal(K(
n
√
KS) : K) ∼= KSK∗n/K∗n ∼= KS/(KS∩K∗n) = KS/(KS)n ∼= (Z/n)#(S).

For each a ∈ KS and p ∈ P it follows from Corollary 15.16 that p does not ramify
in K( n

√
a). Hence none of the p /∈ S ramify in K(

n
√
KS).
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15.26 Theorem. Let the number field K contain µn and let S be a finite saturated
collection of primes of K containing all prime divisors of nOK and such that
CℓS(K) is trivial. Then for m a modulus of K with prime divisors the primes in

S, the finite ones with a sufficiently large exponent, the field K(
n
√
KS) is the class

field for nHm(K).

Proof. Put L = K(
n
√
KS). By Proposition 15.25 all in L ramifying primes of

K are in S. Artin’s Reciprocity Law (Theorem 14.16) implies that H(L : K) ⊆
Hm(K). Because n is an exponent of Gal(L : K), and therefore of H(L : K) as
well, we have H(L : K) ⊆ nHm(K). By Proposition 15.25 #(H(L : K)) = n#(S).
So it suffices to show that #(nHm(K)) = n#(S).

The modulus m is such that Im(K) = IS(K). Let the map f : K∗ → Im(K) be
the composition of K∗ → I(K), a 7→ aOK and the projection I(K)→ Im(K). For
a ∈ K∗ write aOK = aa0 with a ∈ Im(K) and vp(a0) = 0 for all p ∈ P , where
again P is the complement of S in P(K). Then f(a) = a. The cokernel of f is
isomorphic to Cℓ(KP ) (= CℓS(K)), a trivial group because KP is a principal ideal
domain. So f is surjective.

Consider the following commutative diagram with exact rows

K∗

K∗n

Im(K)

Im(K)n

K∗

K∗nK1
m

Im(K)

Im(K)nSm(K)

K∗nK1
m

K∗n

Im(K)nSm(K)

Im(K)n

1

1

1

1

in which the vertical maps are induced by f . Note that they are surjective. In
particular the left most vertical map is surjective and from this it follows that we
can complete the diagram to the diagram with exact rows and columns on top of
the next page. For the middle vertical exact sequence note that the cohomology
groups of a cyclic group of order n acting trivially the short exact sequence

1 −→ KS −→ K∗ −→ Im(K) −→ 1

yields the exactness of

1 −→ H0(KS) −→ H0(K∗) −→ H0(Im(K)) −→ 1.

Furthermore, we have K∗nKS/K∗n ∼= KS/KS ∩K∗n = KS/(KS)n.
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K∗

K∗n

Im(K)

Im(K)n

K∗

K∗nK1
m

Im(K)

Im(K)nSm(K)

K∗nK1
m

K∗n

Im(K)nSm(K)

Im(K)n

1

1

1

1

1
K∗nKS ∩K∗nK1

m

K∗n
K∗nKS

K∗n

K∗nKSK1
m

K∗nK1
m

1

1 1 1

1 1 1

So for the order of nHm(K) we have, using Proposition 15.19 and Corollary 15.24

#(nHm(K)) = #(Im(K)/Im(K)nSm(K)) =
#(K∗/K∗nK1

m)

#(K∗nK∗
PK

1
m/K

∗nK1
m)

=
#(K∗/K∗nK1

m)

#(KS/(KS)n)
·#((K∗nKS ∩K∗nK1

m)/K
∗n)

= ns ·#((K∗nKS ∩K∗nK1
m)/K

∗n).

It suffices to show that K∗nKS ∩K∗nK1
m ⊆ K∗n or, what amounts to the same,

KS ∩K∗nK1
m ⊆ K∗n. Let b ∈ KS ∩K∗nK1

m. We show that the extension K( n
√
b) :

K is unramified. For p ∈ P we have vp(b) = 0 (because b ∈ KS) and vp(n) = 0

(because p /∈ S). By Corollary 15.16 p does not ramify in K( n
√
b). For finite p ∈ S

we have b ∈ K∗nK1
pr ⊆ K∗n

p (1 + p̂r) = K∗n
p and therefore, p splits completely in

K( n
√
b). Finally for real infinite p and n = 2 we have b ∈ K∗2K1

{p} ⊆ K
∗2
p K1

p = K1
p

and from this it follows that p does not ramify.

Since K( n
√
b) : K is an unramified abelian extension, Artin’s Reciprocity Law

implies that its conductor is trivial. Hence the group

I(K)/N
K(

n√
b)

K (I(K(
n
√
b)))P(K)

is of order [K( n
√
b) : K]. Let a ∈ I(K). Since KP is a principal ideal domain we can

write a = a0 · cOK with c ∈ K∗ and a0 ∈ I(K) such that vp(a0) = 0 for all p ∈ P .
All finite p in S split completely in K( n

√
b), so we have a0 ∈ N

K(
n√
b)

K (I(K( n
√
b))).

Therefore, [K( n
√
b) : K] = 1, that is n

√
b ∈ K∗. Hence b ∈ K∗n.
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15.27 Existence Theorem. For every finite group of Dirichlet characters of a
number field there is a class field.

Proof. Let K be a number field and X a finite group of Dirichlet characters of
K. Let n be an exponent of X. Put K ′ = K(ζn). Then Y := νKK′(X) is a finite
group of Dirichlet characters ofK ′ and n is an exponent of this homomorphic image
of X as well. Let f be the conductor of Y . Choose a finite saturated collection S
of primes of K ′ such that

a) S contains all prime divisors of nOK′ ,

b) CℓS(K ′) is trivial,

c) S contains all prime divisors of f.

By Theorem 15.26 for moduli m with prime divisors the primes in S and the finite
ones with sufficiently large exponents in m, there is a class field for the group

nHm(K
′). Let, moreover, the exponents of the finite prime divisors of m be such

that f | m. Then Y ⊆ nHm(K
′). By Proposition 15.1 there is a class field for Y

and, finally, there is a class field for X by Theorem 15.7.

15.28 Notation. Let X be a finite group of Dirichlet characters of a number field
K. The class field for X is denoted by KX .

The Existence Theorem was the main still missing part of the Classification The-
orem announced in section 13.5.

15.29 Classification Theorem. Let K be a number field. The following maps
form a one-to-one correspondence between abelian number field extensions L : K
and finite subgroups of H(K):

abelian
extensions of K

finite groups of
Dirichlet characters of K

L : K

KX : K

H(L : K)

X

The maps L 7→ H(L : K) and X 7→ KX : K are inverses of each other and they
preserve the ordering given by inclusion. The prime divisors of the conductor of
H(L : K) are ramifying primes. For m a modulus divisible by the conductor of

H(L : K) and all ramifying primes, the Artin map φ
(L)
K : Im(K) → Gal(L : K)

induces an isomorphism φ̌
(L)
K : Gal(L : K)

∨ ∼→ H(L : K).
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15 The Classification Theorem

Proof. The groups H(L : K) were defined in Definition 13.34 and according to
Theorem 13.44 they are finite. Lemma 14.22 implies that the map (L : K) 7→
H(L : K) is injective. The existence of class fields now shows that it is a bijection.
From Lemma 13.35 it follows that the maps preserve the ordering by inclusion.
The statement concerning the Artin map is Artin’s Reciprocity Law.

The first proof of the Classification Theorem was by Takagi in 1920. However, he
had a different notion of class field: L is the class field of Cℓm(L : K) if L : K
is abelian and #(Cℓm(L : K)) = [L : K]. Later, Artin introduced the Artin map
and proved the Artin Reciprocity Law: the Artin map induces an isomorphism
Cℓm(L : K)

∼→ Gal(L : K).

The values of Dirichlet characters of an abelian extension on nonramifying primes
describe their splitting behavior in the extension. Theorems in the sections 15.6 and
15.5 give extra information, especially for the ramifying primes.

15.30 Example. In section 4.9 the 2-rank of the ideal class group of a quadratic
number field K has been computed (Theorems 4.73 and 4.81). This was done by
counting the number of elements of 2Cℓ(OK) using the theory behind the algorithms
for the computation of the ideal class group of a quadratic number field. Here we
use Cℓ(K)/ Cℓ(K)2 instead. This group corresponds to the group 2H(K). Let’s first
consider 2H∞(K). The nontrivial elements of this group correspond to quadratic
extensions L : K in which the finite primes do not ramify. Since Gal(K : Q)
acts on Cℓ∞(K) by inversion, the action of Gal(K : Q) on 2H∞(K) is trivial. By
Proposition 15.6 this means that the extensions L : Q are Galois extensions. By
Corollary 7.49 they are noncyclic. Set K = Q(

√
m) with m ∈ Z squarefree ̸= 0, 1.

Then we have

L

Q(
√
n) Q(

√
k)

Q

Q(
√
m)

where, since finite primes of K do not ramify in L, gcd(Dn, Dk) = 1. This means
that Dm = DnDk. So the number of quadratic extensions of K which are unrami-
fied outside ∞ is equal to the number of ways Dm is the product of two nontrivial
discriminants. This number is 2r(Dm)−1 − 1, where r(Dm) is the number of prime
divisors of Dm. It follows that the 2-rank of Cℓ∞(K) is equal to r(Dm) − 1. For
m < 0 we have Cℓ(K) = Cℓ∞(K), so this is the 2-rank of Cℓ(K) as well.
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Now let m be positive. For the 2-rank of Cℓ(K) there is the extra condition that
Dn and Dk have to be positive. For this use Lemma 4.10. The discrimimant Dn

is positive if and only if the number of prime divisors ≡ 3 (mod 4) of n is even. If
m has no such prime divisors, that is if m is the sum of two squares, then there
is no extra condition needed. So in this case the 2-rank of Cℓ(K) is r(Dm) − 1.
Otherwise the 2-rank is r(Dm)− 2.

15.4 Chebotarev’s Density Theorem

In section 13.4 we considered the L-series of a Dirichlet character χ of a number
field K. The series converges absolutely on the half-plane ℜ(s) > 1 and it was
shown that it has a prolongation to a meromorphic function on ℜ(s) > 1− 1

[K:Q] .

For χ the principal character it is the Dedekind zeta function of K, which has
a simple pole at s = 1. For χ ̸= 1 the function is analytic on ℜ(s) > 1− 1

[K:Q]

(Proposition 13.41). As was the case with nonprincipal Dirichlet characters of Q,
its nonvanishing at z = 1, which we are able to prove at this stage, has many
consequences.

15.31 Theorem. Let χ be a nonprincipal Dirichlet character of a number field K.
Then L(1, χ) ̸= 0.

Proof. Let X be the nontrivial group ⟨χ⟩ of Dirichlet characters of K. Put
L = KX . Then X = H(L : K). Let P be the set of prime ideals of K which split
completely in L. Then by Theorem 8.37 we have δ(P ) = 1

n , where n = [L : K] =
#(X) = o(χ). By Artin’s Reciprocity Theorem P is the set of nonramifying primes
p of K satisfying χ(p) = 1. So by Corollary 13.43 we have L(1, χ) ̸= 0.

This implies a generalization of Dirichlet’s theorem on primes in an arithmetic
progression. We need a generalization of Lemma 9.51.

15.32 Lemma. Let X be a finite group of Dirichlet characters of a number field
K, f the conductor of X and a ∈ If(K). Then

∑
χ∈X

χ(a) =

{
#(X) if χ(a) = 1 for all χ ∈ X,

0 otherwise.

Proof. For all χ ∈ X we have χ(a) ̸= 0, since a ∈ If(K). If χ1(a) ̸= 1 for some
χ1 ∈ X, then from

χ1(a)
∑
χ∈X

χ(a) =
∑
χ∈X

χ1χ(a) =
∑
χ∈X

χ(a)

follows that
∑
χ∈X χ(a) = 0.
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15.33 Theorem. Let X be a finite group of Dirichlet characters of a number field
K, f the conductor of X, a ∈ If(K) and P the set of finite primes of K with
χ(p) = χ(a) for all χ ∈ X. Then δ(P ) = 1

#(X) .

Proof. By Proposition 8.31

logL(s, χ) ∼
∑
p

χ(p)

N(p)s

for all χ ∈ X. Now apply Lemma 15.32:

∑
χ∈X

χ(a) logL(s, χ) ∼
∑
χ∈X

∑
p

χ(a)χ(p)

N(p)s
=
∑
p

∑
χ∈X

χ(a)χ(p)

N(p)s
=
∑
p∈P

#(X)

N(p)s
.

By Theorem 15.31∑
χ∈X

χ(a) logL(s, χ) = log ζK(s) +
∑
χ∈X
χ̸=1

χ(a) logL(s, χ) ∼ log ζK(s).

Finally by Proposition 8.33∑
p∈P

1

N(p)s
∼ log ζK(s)

#(X)
∼ − log(s− 1)

#(X)
.

Hence δ(P ) = 1
#(X) .

A direct consequence is Chebotarev’s Density Theorem for abelian extensions,
which is a stronger version of the Frobenius Density Theorem for abelian extensions
(Theorem 8.31).

15.34 Theorem. Let L : K be an abelian number field extension, σ ∈ Gal(L : K)

and P be the collection of nonramifying finite primes p of K for which φ
(L)
p = σ.

Then δ(P ) = 1
[L:K] .

Proof. Let a ∈ If(K), where f is the conductor of L : K, such that φ
(L)
K (a) = σ.

Then by Artin’s Reciprocity Theorem φ
(L)
p = σ if and only if χ(p) = χ(a) for all

χ ∈ H(L : K). By Theorem 15.33 we have δ(P ) = 1
[L:K] .

Chebotarev’s Density Theorem applies to Galois extensions of number fields in
general.

15.35 Theorem (Chebotarev). Let L : K be a Galois extension of number fields,
G = Gal(L : K), σ ∈ G, C the conjugacy class in G of σ and P the collection
of nonramifying finite primes p of K above which there is a prime q of L with

φ
(L)
K (q) = σ. Then δ(P ) = #(C)

[L:K] .
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Proof. Let p ∈ Max(OK) nonramifying in L and q ∈ Max(OL) such that q∩K =

p and φ
(L)
K (q) = σ. Put Z = ⟨σ⟩. As was shown in the proof of Proposition 7.54

the primes of Lσ above p of residue class degree 1 over K correspond to right cosets
Zτ with τZτ−1 = Z. For such a τ we have

φ
(L)
τ(q)∩Lσ = φ

(L)
Lσ (τ(q)) = φ

(L)
K (τ(q)) = τφ

(L)
K (q)τ−1 = τστ−1.

Hence the number of primes p′ of Lσ above p such that fK(p′) = 1 and φ
(L)
p′ =

σ is equal to the number of cosets ⟨σ⟩τ with τστ−1 = σ. This is the number
[CG(σ) : ⟨σ⟩], where CG(σ) = { τ ∈ G | στ = τσ }. Hence for P ′ the set of primes

p′ of Lσ above a prime p ∈ P such that fK(p′) = 1 and φ
(L)
p′ = σ we have

δ(P ′) = [CG(σ) : ⟨σ⟩] · δ(P ).

For Q the set of primes p′ of Lσ which do not ramify in L and satisfy φ
(L)
p′ = σ we

have by Theorem 15.34

δ(Q) =
1

[L : Lσ]
=

1

o(σ)
.

Because P ′ ⊆ Q and Q \ P ′ consists, apart from some ramified primes, of primes
p′ with fK(p′) > 1, the sets P ′ and Q have equal Dirichlet density. So finally

δ(P ) =
δ(P ′)

[CG(σ) : ⟨σ⟩]
=

δ(Q)

[CG(σ) : ⟨σ⟩]

=
1

o(σ) · [CG(σ) : ⟨σ⟩]
=

1

#(CG(σ))
=

#(C)

[L : K]
.

15.5 The Complete Splitting Theorem

Dirichlet characters ofQ describe the splitting behavior of prime numbers in abelian
number fields. The analogy for Dirichlet characters of a number field K is not yet
fully established: a prime p of K not in the conductor of an abelian extension
L : K might ramify in L. For such a prime we would have χ(p) ̸= 0 for all
χ ∈ H(L : K). We will see that this cannot happen. A crucial step in the proof
is the Complete Splitting Theorem, which we will prove in this section by first
proving it for Kummer extensions, in which case it is a consequence of the following
refinement of Theorem 15.26.

15.36 Theorem. Let the number field K contain µn and let S be a finite saturated
collection of primes of K containing all prime divisors of nOK and such that
CℓS(K) is trivial. Let S be the disjoint union of S1 and S2. For j = 1, 2 let mj
be a modulus of K with prime divisors the primes in Sj, the finite ones with a
sufficiently large exponent in mj. Put

W1 = K∗nKS ∩K∗nK1
m2

and W2 = K∗nKS ∩K∗nK1
m1
.
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Then the fields L1 = K( n
√
W1) and L2 = K( n

√
W2) are the class fields for respec-

tively

X1 = {χ ∈ nHm1(K) | χ(p) = 1 for all finite p in S2 }

and

X2 = {χ ∈ nHm2
(K) | χ(p) = 1 for all finite p in S1 }.

Moreover, the splitting behavior of the primes in S in the fields L1 and L2 is as
follows:

a) The primes in S1 split completely in L2 and the primes which ramify in L2

belong to S2.

b) The primes in S2 split completely in L1 and the primes which ramify in L1

belong to S1.

Proof. The extensions Lj : K are n-Kummer extensions:

K∗n ⊆Wj ⊆ K∗nKS ⊆ K∗

and the index of K∗n in K∗nKS is finite.

First we prove the assertions about the splitting behavior of the primes in S in the
fields L1 and L2. Let p ∈ S1 and a ∈W2. Then in particular a ∈ K∗nK1

m1
. We will

show that p splits completely in K( n
√
a). From this the complete splitting in L2

follows, because this field is the composite of such fields K( n
√
a). We can assume

that a ∈ K1
m1

. In case p is finite take the exponent k of p in m1 large enough such
that in the completion Kp we have: K1

pk ⊆ 1 + p̂k ⊆ K∗n
p . This is possible by

Theorem 11.22. Since a ∈ K1
pk , it follows that for a prime q of K( n

√
a) above p we

have

K( n
√
a)q = Kp(

n
√
a) = Kp.

Hence Z
(K( n

√
a))

p = Gal(K( n
√
a)q : Kp) = {1}. For p infinite we only have to

consider p real and n = 2. In this case it follows from R(
√
a) = R. By symmetry

the primes in S2 split completely in L1.

The field L1 is a subfield of the field K(
n
√
KS), so by Proposition 15.25 the primes

which ramify in L1 belong to S and since the primes in S2 split completely in L1,
they belong to S1. Again by symmetry the primes which ramify in L2 belong to
S2.

Since L1 : K is an n-Kummer extension and because all primes which ramify in
L1 are contained in S1, by Artin’s Reciprocity Law we can assume that m1 is a
modulus for L1 : K. Then H(L1 : K) ⊆ nHm1

(K) and since all finite primes in S2

split completely in L1, we have H(L1 : K) ⊆ X1. By symmetry H(L2 : K) ⊆ X2.
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15.5 The Complete Splitting Theorem

We have to show that equality holds and for this it suffices to show that [Lj : K] =
#(Xj) for j = 1, 2.

Put m = m1m2 and let, as in the proof of Theorem 15.26, f : K∗ → Im(K) be
the composition of K∗ → I(K) and the projection I(K) → Im(K). For b ∈ K1

m1

write bOK = b2b3 with b2 ∈ IS2(K) and b3 ∈ Im(K). Then f(b) ≡ b3 =
bOK · b−1

2 ∈ (Sm1(K)IS2 . It follows that f induces a map from K∗nK1
m1
/K∗n

to (Im1(K)nSm1(K)IS2) ∩ Im(K))/Im(K)n. So we have a commutative diagram
with exact rows

K∗

K∗n

Im

(Im)n

K∗

K∗nK1
m1

Im

(Im1)nSm1
IS2 ∩ Im

K∗nK1
m1

K∗n

(Im1)nSm1IS2 ∩ Im

(Im)n

1

1

1

1

in which the vertical maps are induced by f . In the bottom row the notation is
simplified by deleting (K) in all cases. The middle vertical map is surjective and so
is the one on the right. We show that also the vertical map on the left is surjective.
For this let a ∈ Im1(K), b ∈ K1

m1
and c ∈ IS2(K) such that an · bOK · c ∈ Im(K).

Write a = a2a3 and bOK = b2b3, where a2, b2 ∈ IS2(K) and a3, b3 ∈ Im(K). Then
an · bOK · c = an2b2c · an3b3 and since this is an element of Im(K) we have an2b2c = 1
and an · bOK · c = an3b3. Write a3 = a12 ·aOK with a12 ∈ IS(K) and a ∈ K∗. Then
anbOK = (aOK)n · bOK = an3a

−n
12 b2b3. Hence f(anb) = an3b3.

It follows that we can complete the diagram to the diagram with exact rows and
columns on top of the next page. The group X1 is the bottom right entry in the
diagram and K∗nKS ∩K∗nK1

m1
= W2. So, as in the proof of Theorem 15.26, for

the orders of the groups we have

#(X1) = #(Im(K)/(Im1(K)nSm1
(K)IS2(K) ∩ Im(K)))

=
#(K∗/K∗nK1

m1
)

#(K∗nKS/K∗n)
·#(W2/K

∗n) =
#(K∗/K∗nK1

m1
)

ns
· [L2 : K],

where s = #(S). By symmetry we have an analogous formula for #(X2). Hence

#(X1) ·#(X2) =
#(K∗/K∗nK1

m1
)

ns
· [L2 : K] ·

#(K∗/K∗nK1
m2

)

ns
· [L1 : K]

=
#(K∗/K∗nK1

m1
) ·#(K∗/K∗nK1

m2
)

n2s
· [L1 : K] · [L2 : K]

=
#(K∗/K∗nK1

m)

n2s
· [L1 : K] · [L2 : K] = [L1 : K] · [L2 : K].

Since [Lj : K] ≤ #(Xj) for j = 1, 2, it follows that [Lj : K] = #(Xj).

385



15 The Classification Theorem

K∗

K∗n

Im

(Im)n

K∗

K∗nK1
m1

Im

(Im1)nSm1
IS2 ∩ Im

K∗nK1
m1

K∗n

(Im1)nSm1
IS2 ∩ Im

(Im)n

1

1

1

1

1
K∗nKS ∩K∗nK1

m1

K∗n
K∗nKS

K∗n

K∗nKSK1
m1

K∗nK1
m1

1

1 1 1

1 1 1

From this the Complete Splitting Theorem follows for the special case of a Kummer
extension:

15.37 Proposition. Let L : K be an n-Kummer extension of number fields and p a
finite prime of K such that χ(p) = 1 for all χ ∈ H(L : K). Then p splits completely
in L.

Proof. We use the notations of Theorem 15.36. Take S2 = {p}. Since p ∤ fK(L)
we can take S1 and m1 such that fK(L) | m1. Then

H(L : K) ⊆ {χ ∈ nHm1
(K) | χ(p) = 1 } = X1 = H(L1 : K)

and therefore L ⊆ L1. By Theorem 15.36 the prime p splits completely in L1 and
hence it does so in L.

For infinite primes:

15.38 Proposition. Let L : K be an n-Kummer extension of number fields and p
an infinite prime of K such that p ∤ fK(L). Then p does not ramify in L.

Proof. Similar to the proof of Theorem 15.37. Here we have

H(L : K) ⊆ nHm1
(K) = X1 = H(L1 : K).

Again it follows that p splits completely in L, that is it does not ramify in L.

We generalize these two propositions to abelian number field extensions in general.

15.39 Complete Splitting Theorem. Let L : K be an abelian extension of number
fields and p a finite prime of K such that χ(p) = 1 for all χ ∈ H(L : K). Then p
splits completely in L.
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15.6 Local Artin maps

Proof. By induction on [L : K]. If [L : K] > 1, there is an intermediate field K ′

such that L : K ′ is of prime degree, say [L : K ′] = q. Since H(K ′ : K) ⊂ H(L : K),
we may assume that p splits completely in K ′. Let p′ be any prime of K ′ above
p. The extension L(ζq) : K ′(ζq) is a q-Kummer extension. Let p′′ be a prime
of K ′(ζq) above p′. By the Translation Theorem 14.25 Dirichlet characters of

L(ζq) : K ′(ζq) are of the form νK
′

K′(ζq)
(χ′), where χ′ ∈ H(L : K ′). By the same

theorem χ′ = νKK′(χ) for a χ ∈ H(L : K). The value of νK
′

K′(ζq)
(χ′) on p′′ is trivial

(put f = f
(K′(ζq))
p′ ):

(νK
′

K′(ζq)
(χ′))(p′′) = χ′(p′)f = (νKK′(χ))(p′)f = χ(p)f = 1.

By Proposition 15.37 the prime p′′ splits completely in L(ζq). Since [K ′(ζq] : K
′]

is a divisor of q − 1, the prime p′ splits completely in L. It follows that p splits
completely in L.

For infinite primes:

15.40 Theorem. Let L : K be an abelian extension of number fields and p an
infinite prime of K such that p ∤ fK(L). Then p does not ramify in L.

Proof. By induction on [L : K]. If [L : K] > 1, there is an intermediate field K ′

such that L : K ′ is of prime degree, say [L : K ′] = q. Since H(L : K ′) ⊂ H(L : K),
we may assume that p does not ramify in K ′. If q is an odd prime, infinite primes
of K ′ do not ramify in L. If q = 2, the extension L : K ′ is a 2-Kummer extension.
For p′ any prime of K ′ above p we have p′ ∤ fK′(L). By Proposition 15.38 the prime
p′ does not ramify in L. So p does not ramify in L.

Otherwise put: if p is an in L ramifying infinite prime of K, the prime p is a divisor
of the conductor fK(L). We will see that this holds for finite primes as well. This
will be shown in the next section.

15.6 Local Artin maps

In this section L : K is an abelian number field extension, p a prime of K and
q a prime of L above p. We fix a modulus n for L : K such that p | n and write
n = ptm, where p ∤ m.

The Artin map φ
(L)
K will be used for the construction of a homomorphism

ϑ
(L)
p : K∗

p → Z
(L)
p ,

the local Artin map at the prime p. Thus we have a map ϑ
(L)
p : K∗

p → Gal(Lq : Kp)
for the abelian extension Lq : Kp of local fields. In the next chapter it will be
shown that it depends only on the local field extension. Local Artin maps behave
in local class field theory as Artin maps do in the global theory.
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15.41 Notation. The homomorphism

K1
m → Gal(L : K), a 7→

{
φ
(L)
K (ap−vp(a))−1 if p is finite,

φ
(L)
K (aOK)−1 if p is infinite

is denoted by ϑ(L). It is the composition of

i : K1
m → Im(K), a 7→ aOK ,

the projection

p : Im(K)→ In(K),

the Artin map

φ
(L)
K |n : I

n(K)→ Gal(L : K)

and inversion in Gal(L : K).

For infinite p the order of the automorphism ϑ(L)(a) is at most 2; it can only be 2
for p real infinite.

15.42 Theorem. ϑ(L)(K1
m) = Z

(L)
p .

Proof. First we show that ϑ(L)(K1
m) ⊆ Z

(L)
p . Let a ∈ K1

m. Put Z = Z
(L)
p . The

modulus m is a modulus for LZ : K. Since aOK ∈ Sm(K) we have for infinite p

ϑ(L)(a)|LZ = φ
(L)
K (aOK)−1|LZ = φ

(LZ)
K (aOK)−1 = 1LZ

and for finite p

ϑ(L)(a)|LZ = φ
(L)
K (ap−vp(a))−1|LZ = φ

(LZ)
K (aOK)−1φ

(LZ)
K (p)vp(a) = 1LZ .

Put A = ϑ(L)(K1
m) and consider the extension LA : K. We will show that p splits

completely in LA. This will imply that LA ⊆ LZ and hence A = Z.

First the case of an infinite prime p. We have to show that it does not ramify in
LA. Let a ∈ Sm(K) ∩ In(K) = Sm(K), say a = aOK with a ∈ K1

m. Then

φ
(L)
K (a)|LA = ϑ(L)(a)|LA = 1LA .

This holds for all a ∈ Sm(K), so

Sm(K) ∩ In(K) ⊆ NL
A

K (In(LA))Sn(K),

which implies that H(LA : K) ⊆ Hm(K). In particular fK(LA) | m and so
p ∤ fK(LA). By Theorem 15.40 the infinite prime p does not ramify in LA.
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15.6 Local Artin maps

Now let p be finite and a ∈ ⟨p⟩Sm(K)∩ In(K), say a = aOKpk with a ∈ K1
m. Then

φ
(L)
K (a)|LA = ϑ(L)(a)−1|LA = 1LA .

This holds for all a ∈ ⟨p⟩Sm(K) ∩ In(K) and hence

⟨p⟩Sm(K) ∩ In(K) ⊆ NL
A

K (In(LA))Sn(K),

which now implies that H(LA : K) ⊆ {χ ∈ Hm(K) | χ(p) = 1 }. It follows that
fK(LA) | m and χ(p) = 1 for all χ ∈ H(LA : K), which by Theorem 15.39 implies
that p splits completely in LA.

The isomorphismK∗/K1
n

∼→ K∗/K1
m×K∗/K1

pt induces an isomorphismK1
m/K

1
n

∼→
K∗/K1

pt and the inclusion K∗ → K∗
p induces for finite p an isomorphism

K∗/K1
pt

∼→ K∗
p/(1 + p̂t),

and for p real infinite
K∗/K1

p
∼→ K∗

p/K
+
p ,

where K+
p = {α ∈ K∗

p | σp(α) > 0 }. The composition of these two isomorphisms
is an isomorphism

η : K1
m/K

1
n

∼−→ K∗
p/(1 + p̂t), respectively η : K1

m/K
1
n

∼−→ K∗
p/K

+
p .

For a ∈ K1
n we have ϑ(L)(a) = φ

(L)
K (aOK)−1 = 1L, so ϑ(L) induces a map

ϑ̄(L) : K1
m/K

1
n → Z

(L)
p .

15.43 Definition. The composition

K∗
p −→ K∗

p/(1 + p̂t)
η−1

−→
∼

K1
m/K

1
n
ϑ̄(L)

−→ Z
(L)
p for p finite,

respectively

K∗
p −→ K∗

p/K
+
p

η−1

−→
∼

K1
m/K

1
n
ϑ̄(L)

−→ Z
(L)
p for p real infinite,

is called the local Artin map at p and is denoted by ϑ
(L)
p . It is a surjective map,

because ϑ(L)(K1
m) = Z

(L)
p (Theorem 15.42).

In the construction of the map ϑ(L) the modulus n has been used. The map ϑ(L)

is defined on K1
m, so its domain depends on n. It is easily seen however that ϑ

(L)
p

does not depend on the choice of the modulus n (exercise 7).

If a finite prime p does not ramify in L, the decomposition group Z
(L)
p is generated

by φ
(L)
p , the Frobenius automorphism of p in Gal(L : K). So in this case ϑ

(L)
p (a)

is a power of φ
(L)
p for each a ∈ K∗

p :
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15.44 Proposition. Let p be a finite prime of K which does not ramify in L. Then
for each a ∈ K∗

p we have

ϑ
(L)
p (a) = (φ

(L)
p )

vp(a).

Proof. Since p does not ramify we can choose n = mp with m a modulus for
L : K. Let a ∈ K∗

p . There is a b ∈ K∗ with b ≡ a (mod 1 + p̂). Take c ∈ K∗ such
that

c ≡

{
1 (mod K1

m),

b (mod K1
p).

Then vp(c) = vp(b) = vp(a) and cOK ∈ Sm(K). By the construction of ϑ
(L)
p we

have

ϑ
(L)
p (a) = ϑ(L)(c) = φ

(L)
K (cp−vp(c))−1 = φ

(L)
K (cOK)−1φ

(L)
K (p)vp(c) = (φ

(L)
p )

vp(a).

The consistency property of the (global) Artin map implies a consistency property
for the local Artin map:

15.45 Proposition (Consistency property). Let L′ be an intermediate field of

L : K and p′ the prime of L′ below q. Then ϑ
(L′)
p (α) = ϑ

(L)
p (α)|L′ for all α ∈ K∗

p .

Proof. The modulus n for L : K is a modulus for L′ : K as well. Let a ∈ K1
m and

put aOK = pta with a ∈ In(K). Then by the consistency property (Lemma 13.53)

ϑ(L
′)(a) = φ

(L′)
K (a)−1 =

(
φ
(L)
K (a)|L′

)−1
= ϑ(L)(a)|L′ .

The behavior of the local Artin map under base field extensions follows from the
behavior of the global Artin map:

15.46 Proposition. Let K ′ : K be a number field extension, q′ a prime of LK ′

above q and p′ the prime of K ′ below q′. Then

ϑ
(LK′)
p′ (α)|L = ϑ

(L)
p (Np′

p (α)) for all α ∈ K ′∗
p′ .

Proof. The modulus n for L : K is a modulus for LK ′ : K ′ as well (Proposi-
tion 14.11). Let α ∈ K ′∗

p′ . Put e = eK(p′) and f = fK(p′). Choose a β ∈ K ′∗ such

that β ≡ α (mod 1 + p̂′
te
). Choose a γ ∈ K ′∗ such that

γ ≡


1 (modK ′1

m),

β (modK ′1
p′te),

1 (modK ′1
rte(r)) for all r ̸= p′ above p (where e(r) = eK(r)).

Then NK
′

K (γ) ∈ K1
m and NK

′

K (γ) ≡ NK
′

K (β) (modK1
pt). By definition of ϑ

(L)
p we

have ϑ
(L)
p (Np′

p (α)) = ϑ(L)(NK
′

K (γ)). By construction of γ we have γOK′ = p′
s
a
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with a ∈ In(K ′) and s ∈ Z. Then NK
′

K (γ) = pfsNK
′

K (a) and NK
′

K (a) ∈ In(K). By
definition of the local Artin map:

ϑ
(LK′)
p′ (α) = φ

(LK′)
K′ (a)−1 and ϑ

(L)
p (Np′

p (α)) = φ
(L)
K (NK

′

K (a))−1.

By Lemma 13.54 φ
(LK′)
K′ (a)|L = φ

(L)
K (NK

′

K (a)) and so ϑ
(LK′)
p′ (α)|L = ϑ

(L)
p (Np′

p (α)).

15.47 Proposition. (K∗
p : Nq

p(L
∗
q)) = [Lq : Kp].

Proof. If L ̸= K, choose an intermediate fieldM ̸= K of L : K such thatM : K
is cyclic and put r = q ∩M . Then Nq

p = Nr
pN

q
r and so the following sequence of

cokernels is exact

M∗
r /N

q
r (L

∗
q) −→ K∗

p/N
q
p(L

∗
q) −→ K∗

p/N
r
p(M

∗
r ) −→ 1.

By Theorem 12.22 the order of the third group is [Mr : Kp], because Mr : Kp is
cyclic. By induction we may assume that the order of the first group is [Lq :Mr].
It follows that the order of K∗

p/N
q
p(L

∗
q) equals [Lq : Kp], because it is at least

[Lq : Kp].

15.48 Theorem. Ker(ϑ
(L)
p ) = Nq

p(L
∗
q).

Proof. Because ϑ
(L)
p : K∗

p → Z
(L)
p is surjective, Z

(L)
p
∼= Gal(Lq : Kp) and

[K∗
p : Nq

p(L
∗
q))] = [Lq : Kp], it suffices to show that Nq

p(L
∗
q) ⊆ Ker(ϑ

(L)
p ). For

this, take K ′ = L in Proposition 15.46: for each α ∈ L∗
q we have ϑ

(L)
p (Nq

p(α)) = 1

and so Nq
p(α) ∈ Ker(ϑ

(L)
p ).

15.49 Theorem. Let M be an intermediate field of L : K and r the prime of M
below q. Then the local Artin maps induce an isomorphism of short exact sequences

1 M∗
r /N

q
r (L

∗
q) K∗

p/N
q
p(L

∗
q) K∗

p/N
r
p(M

∗
r ) 1

1 Z
(L)
r Z

(L)
p Z

(M)
p 1

Nr
p

⊆ ·|M
ϑ
(L)
r

∼ ϑ
(L)
p

∼ ϑ
(M)
p

∼

Proof. The vertical maps are isomorphisms by Theorem 15.48. Commutativity
of the diagram follows from Proposition 15.45.
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15.50 Lemma. A finite prime p does not ramify in L if and only if O∗
p ⊆ Nq

p(L
∗
q).

Proof. If p does not ramify, then the group Gal(Lq : Kp) = Z
(L)
p is cyclic. By

Theorem 12.23 H0(O∗
q) = 1. Let a ∈ O∗

p. Then

a ∈ Ker(∆O∗
q
) = Im(NO∗

q
) = Nq

p(O∗
q).

Conversely, assume O∗
p ⊆ Nq

p(L
∗
q), put e = e

(L)
p and f = f

(L)
p and consider the

following commutative diagram with exact rows:

1 O∗
q L∗

q Z 0

1 O∗
p K∗

p Z 0

vq

vp

Nq
p Nq

p f

The map Nq
p : O∗

q → O∗
p is surjective: if a ∈ O∗

p and a = Nq
p(α) with α ∈ L∗

q,
then 0 = vp(a) = vp(N

q
p(α)) = fvq(α) and so vq(α) = 0. The diagram shows that

ef = #(K∗
p/N

q
p(L

∗
q)) = f . Hence e = 1.

Now we can show that the prime divisors of the conductor are the ramifying primes.
This generalizes this property for the base field Q (Proposition 9.39).

15.51 Theorem. If p ramifies in L, then p | fK(L).

Proof. For infinite p this is Theorem 15.40. Suppose p is finite and p ∤ fK(L).
Then H(L : K) ⊆ Hm(K) and so

Sm(K) ∩ In(K) ⊆ NLK(In(L))Sn(L) = Ker(φ
(L)
K |n).

It follows that K1
m ∩K∗

{p} ⊆ Ker(ϑ(L)). Hence by Theorem 15.48

O∗
p ⊆ Ker(ϑ

(L)
p ) = Nq

p(L
∗
q).

So by Lemma 15.50 p does not ramify in L.

As a consequence of this theorem we can generalize Theorem 9.48:

15.52 Theorem. Let L : K be an abelian extension of number fields. Then

ζL(s) =
∏

χ∈H(L:K)

L(s, χ).

Proof. The proof is a direct generalization of the proof of Theorem 9.48. It uses
the product representations of the Dirichlet series and that a finite prime p of K
ramifies in L if and only if χ(p) = 0 for some χ ∈ H(L : K).
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The following proposition identifies the exponent of finite prime divisors of the
conductor.

15.53 Proposition. Let p be finite and ramifying in L. Then vp(fK(L)) = s, where
s ∈ N∗ is the least integer with 1 + p̂s ⊆ Nq

p(L
∗
q).

Proof. The following are equivalent:

ps | fK(L),

H(L : K) ⊆ Hpsm(K),

Spsm(K) ⊆ NLK(In(L))Sn(K),

Spsm(K) ⊆ Ker(φ
(L)
K |n),

K1
psm ⊆ Ker(ϑ(L)),

1 + p̂s ⊆ Ker(ϑ
(L)
p ),

1 + p̂s ⊆ Nq
p(L

∗
q).

So the conductor is determined locally. The following notation is useful for a
characterization of the conductor.

15.54 Notation. Let n ∈ N. The open subgroup U
(n)
p of K∗

p is defined by

U
(n)
p =



O∗
p if n = 0 and p is finite,

K∗
p if n = 0 and p is infinite,

1 + p̂n if n > 0 and p is finite,

K+
p if n = 1 and p is real infinite

K∗
p if n = 1 and p is complex infinite.

15.55 Definition and notation. For p a prime of K and s the least integer such

that U
(s)
p ⊆ Nq

p(L
∗
q) the modulus ps of K is called the local conductor at p of L : K.

Notation fp(L) = ps.

So the conductor is the product of the local conductors:

15.56 Theorem. fK(L) =
∏

p∈P(K) fp(L).

15.7 Generalized Artin maps and the group transfer

Let K ′ : K be a number field extension and χ ∈ H(K ′). There is a modulus
m of K such that, as a modulus of K ′ it is a multiple of the conductor of χ.
The Dirichlet character χ is equivalent to a Dirichlet pre-character χ′ modulo m.
Then χjKK′ is a Dirichlet pre-character modulo m of K. Thus the injective map
jKK′ : I+(K) → I+(K ′) induces a homomorphism from the group of pre-characters
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modulo m of K ′ to those of K. For Dirichlet characters we use the following
notation:

15.57 Notation. Let K ′ : K be a number field extension. The homomorphism
H(K ′)→ H(K) induced by injective map jKK′ : I+(K)→ I+(K ′) is denoted by ιK

′

K .

For abelian extensions L : K of number fields we have the Fundamental Equality
#(H(L : K)) = [L : K] = #(Gal(L : K)). The following application of the
Existence Theorem tells us in particular that #(H(L : K)) < [L : K] for nonabelian
Galois extensions L : K.

15.58 Proposition. Let L : K be a Galois extension of number fields, G =
Gal(L : K) and X = H(L : K). Then KX = LG

′
, or equivalently H(L : K) =

H(LG′
: K).

Proof. The fields LG
′
and KX both are intermediate fields of L : K and since

KX : K is abelian we have KX ⊆ LG
′
. Hence

X = H(KX : K) ⊆ H(LG
′
: K) ⊆ H(L : K) = X

and so KX = LG
′
.

For L : K a Galois extension of number fields, G = Gal(L : K), p ∈ Max(OK) not
ramifying in L, up to conjugation the Frobenius automorphism φK(q) ∈ G does
not depend on the choice of a q ∈ Max(OL) above p (Proposition 7.75):

φK(τ(q)) = τφK(q)τ−1 for all τ ∈ G.

So in this situation we can define a generalized version of the Artin map:

15.59 Definition. The generalized Frobenius automorphism φ
(L)
p ∈ G/G′ is defined

by

φ
(L)
p = φK(q),

where q ∈ Max(OL) above p. (Under the isomorphism G/G′ ∼→ Gal(LG
′
: K)

it maps to φ
(LG′

)
p .) The prime ideals of OK which do not ramify in L form a

basis of the group IL(K). The generalized Artin map φ
(L)
K is the group homo-

morphism determined by sending the basis elements to the generalized Frobenius
automorphisms:

φ
(L)
K : IL(K)→ G/G′, a 7→

∏
p|a

(
φ
(L)
p

)vp(a)
.
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By definition we have a commutative triangle

IL(K)

G/G′

Gal(LG
′
: K)

φ
(L)
K

φ
(LG′

)
K

∼

Let f be the conductor of H(LG′
: K) = H(L : K) and m a modulus divisible by f

and all in L ramifying primes of K. Then the commutative triangle induces

Cℓm(LG
′
: K)

G/G′

Gal(LG
′
: K)

φ
(L)
K

φ
(LG′

)
K

∼
∼

and subsequently

H(L : K) = H(LG′
: K)

G∨

Gal(LG
′
: K)

∨

φ̌
(L)
K

φ̌
(LG′

)
K

∼
∼

The isomorphism φ̌
(L)
K thus defined is determined by φ̌

(L)
K (ξ)(p) = ξ(φK(q)) for all

ξ ∈ G∨ and all nonramifying p ∈ Max(OK) and q ∈ Max(OL) above p.

15.60 Definition. The map φ̌
(L)
K : Gal(L : K)

∨ ∼→ H(L : K) defined above is called
the generalized dual Artin map of the Galois extension L : K.

Now let L : K be a Galois extension of number fields and K ′ an intermediate field
of this extension. Put G = Gal(L : K) and H = Gal(L : K ′). The inclusion map
K → K ′ induces an injective homomorphism of fractional ideals

jKK′ : IL(K)→ IL(K ′), a 7→ aOK′ .
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15 The Classification Theorem

We will show that there is a homomorphism V GH : G/G′ → H/H ′, depending only
on the group G and the subgroup H of G, which is via the generalized Artin maps
compatible with jKK′ (Theorem 15.63). This group homomorphism is well-known
in group theory. It is known as the transfer from G to H.

First we define this group transfer. Let G be a group and H a subgroup of finite
index n in G. The group G acts from the right on the set of right cosets of H in
G:

(Hτ) · σ = Hτσ.

Let T be a set of representatives of the right cosets. For τ ∈ T and σ ∈ G there is
a unique τσ ∈ T such that Hτσ = Hτσ. Thus the action of G on the right cosets
induces a right action of G on the set T :

τ · σ = τσ.

Since Hτσ = Hτσ, we have τστ−1
σ ∈ H.

15.61 Lemma. The map

G→ H/H ′, σ 7→
∏
τ∈T

τστ−1
σ

is a group homomorphism and does not depend on the system T of representatives
of the right cosets of H in G.

Proof. Let also R be a system of representatives of the right cosets. For each
ρ ∈ R there is a unique τ ∈ T such that Hρ = Hτ . So we have a bijection
f : R→ T given by Hρ = Hf(ρ). Let σ ∈ G. For each ρ it follows from

Hf(ρσ) = Hρσ = Hρσ = Hf(ρ)σ = Hf(ρ)σ

that f(ρσ) = f(ρ)σ. Modulo H ′ we have∏
τ∈T

τστ−1
σ ≡

∏
ρ∈R

f(ρ)σf(ρ)−1
σ =

∏
ρ∈R

f(ρ)ρ−1ρσρ−1
σ ρσf(ρ)

−1
σ

≡
(∏
ρ∈R

f(ρ)ρ−1
)(∏

ρ∈R
ρσρ−1

σ

)(∏
ρ∈R

ρσf(ρσ)
−1)
)
≡
∏
ρ∈R

ρσρ−1
σ .

The products in these formulas are well defined because modulo H ′ the group
is abelian. For the last congruence above the equality { ρσ | ρ ∈ R } = R is
used. Hence the map does not depend on the choice of the representatives. Let
σ1, σ2 ∈ G. For each τ ∈ T

Hτσ1σ2
= Hτσ1σ2 = Hτσ1

σ2 = H(τσ1
)σ2

and so τσ1σ2
= (τσ1

)σ2
. Then from∏

τ∈T
τσ1σ2τ

−1
σ1σ2

=
∏
τ∈T

τσ1τ
−1
σ1
τσ1

σ2(τσ1
)−1
σ2
≡
(∏
τ∈T

τσ1τ
−1
σ1

)(∏
τ∈T

τσ1
σ2(τσ1

)−1
σ2

)
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15.7 Generalized Artin maps and the group transfer

≡
(∏
τ∈T

τσ1τ
−1
σ1

)(∏
τ∈T

τσ2τ
−1
σ2

)
follows that the map is a group homomorphism.

This lemma justifies the following definition.

15.62 Definition. Let G be a group, H a subgroup of G of finite index and T a
set of representatives of the right cosets of H in G. The homomorphism

V GH : G/G′ → H/H ′, σ 7→
∏
τ∈T

τστ−1
σ

is called the transfer from G to H. (Verlagerung is German for transfer.)

15.63 Proposition. Let L : K be a Galois extension of number fields, K ′ an inter-
mediate field of L : K, G = Gal(L : K) and H = Gal(L : K ′). Then the following
diagram commutes:

IL(K)

IL(K ′)

G/G′

H/H ′

φ
(L)
K

φ
(L)
K′

jKK′ V GH

Proof. Let p ∈ Max(OK) be such that p does not ramify in L and let

q ∈ Max(OL) be above p. Put σ = φK(q). Then φ
(L)
K (p) = σ and jKK′(p) = pOK′ .

We have to prove that φ
(L)
K′ (pOK′) = V GH (σ). Theorem 7.53 describes the prime

ideals of OK′ above p. The group Z = ZK(q) = ⟨σ⟩ acts from the right on the
set of right cosets of H in G. Let r be the number of orbits of this action and
Hτ1, . . . ,Hτr a system of representatives of these orbits. Then the prime ideal
factorization of pOK′ is

pOK′ = (τ1(q) ∩K ′) · · · (τr(q) ∩K ′)

and fK(τj(q) ∩K ′) = #([Hτj ]). Put fj = #([Hτj ]). Then

φ
(L)
K′ (pOK′) =

r∏
j=1

φ
(L)
K′ (τj(q) ∩K ′) =

r∏
j=1

(φ
(L)
K (τj(q))

fj

=

r∏
j=1

(τjστ
−1
j )fj

=

r∏
j=1

τjσfjτ
−1
j .
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The collection of right cosets of H in G is the union of the r orbits under the action
of Z. The orbits are:

Hτ1, Hτ1σ, · · · , Hτ1σ
f1−1

Hτ2, Hτ2σ, · · · , Hτ1σ
f2−1

...
Hτr, Hτrσ, · · · , Hτrσ

fr−1.

The τjσ
i with 1 ≤ j ≤ r and 0 ≤ i ≤ fj − 1 form a system of representatives of

the right cosets of H. For 0 ≤ i ≤ fj − 2 the representative τjσ
i maps under right

multiplication by σ to the representative τjσ
i+1, so for these representatives there

is no contribution to the product that defines the transfer of σ. Therefore,

V GH (σ) =

r∏
j=1

(τjσfj−1σ)τ−1
j =

r∏
j=1

τjσfjτ
−1
j .

It follows that for the generalized dual Artin maps we have:

15.64 Theorem. In the notation of Proposition 15.63: the following square is com-
mutative:

G∨

H∨

H(L : K)

H(L : K ′)

φ̌
(L)
K

∼

φ̌
(L)
K′

∼

(V GH )
∨

ιK
′

K

The homomorphism ιK
′

K is determined by

ιKK′(χ)(p) = χ(pOK′)

for all χ ∈ H(L : K ′) and all p ∈ Max(OK) which do not ramify in L. It is a map
from a finite subgroup of H(K ′) to H(K). For a given χ ∈ H(K ′), one can take
L : K to be the normal closure of K ′

χ : K, where K ′
χ is the class field for ⟨χ⟩ over

K ′. Then χ ∈ ⟨χ⟩ = H(K ′
χ : K ′) ⊆ H(L : K ′). So the map ιK

′

K : H(K ′) → H(K)
is via the generalized dual Artin maps closely related to normal extensions L : K
having K ′ as an intermediate field.
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15.8 The Hilbert class field

15.8 The Hilbert class field

Let K be a number field. Unramified abelian extensions L : K are the extensions
having the trivial modulus (1) as conductor. By the Classification Theorem the
maximal one among these corresponds to H(1)(K) and via Artin’s Reciprocity
Theorem to the ideal class group of K.

15.65 Definition. Let K be a number field. The ray class field for H(1)(K) is
called the Hilbert class field of K.

Thus, if K1 is the Hilbert class field of K, we have isomorphisms

φ
(K1)
K : Cℓ(K)

∼→ Gal(K1 : K) and φ̌
(K1)
K : Gal(K1 : K)

∨ ∼→ H(1)(K).

The following proposition illustrates the use of the existence of Hilbert class fields.

15.66 Proposition. Let p be an odd prime. The group Cℓ(Q(ζp + ζ−1
p )) is a homo-

morphic image of Cℓ(Q(ζp)). In particular h+p | hp.

Q(ζp + ζ−1
p )

Q(ζp)

K1

K1(ζp)

L1

Proof. Put K = Q(ζp + ζ−1
p ). Let K1 be

the Hilbert class field of K and p the prime of
K above p. Then p does not ramify in K1 and
totally ramifies in Q(ζp) = K(ζp). It follows
that K(ζp) ∩K1 = K and that K1(ζp) : K(ζp)
is an unramified abelian extension with
Gal(K1(ζp) : K(ζp)) ∼= Gal(K1 : K) ∼= Cℓ(K).
Let L1 be the Hilbert class field ofK(ζp). Then
K1(ζp) is an intermediate field of L1 : K(ζp).
So Cℓ(K) is a homomorphic image of Cℓ(K(ζp)).

Using the transfer map for ideal class groups it is clear that the odd part of
Cℓ(Q(ζp + ζ−1

p )) is a homomorphic image of the odd part of Cℓ(Q(ζp)). So the
extra information given by this proposition concerns the 2-primary parts of these
groups.

The action of a Galois group on the ideal class group translates into an extension
of Galois groups:

15.67 Proposition. Let K : K0 be a Galois extension of number fields and K1

the Hilbert class field of K. Then K1 : K0 is a Galois extension. The action of

Gal(K : K0) on Gal(K1 : K0) is via φ
(K1)
K compatible with the action on Cℓ(K).

Proof. This follows directly from Proposition 15.6: for each τ ∈ Gal(K : K0)
we have τ∗(H(1)(K)) = H(1)(K).
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15 The Classification Theorem

The strength of the Classification Theorem is illustrated by the following compu-
tation of the 2-rank of the ideal class groups of quadratic number fields. A much
more elementary computation was given in chapter 4. Another proof, using more
algebraic number theory, but no class field theory, is in the exercises 8 and 9 of
chapter 12.

15.68 Application. Let K be a quadratic number field, τ its nontrivial auto-
morphism and K1 its Hilbert class field. Unramified quadratic extensions of K
correspond to elements of order 2 in H(1)(K). The 2-rank of Cℓ(K) is equal to the
2-rank of H(1)(K). By Proposition 15.67 K1 : Q is a Galois extension. The action
of τ on H(1)(K) is by inversion, so for each unramified quadratic extension L : K
we have τ∗(H(L : K)) = H(L : K) and, as a consequence, the extension L : Q
is abelian. Since a prime number dividing disc(K) ramifies in such L, the groups
Gal(L : K) and the inertia group of this prime number are different subgroups of
order 2 of Gal(L : Q). On the other hand each prime number which ramifies in K
also ramifies in exactly one of the two other quadratic number fields contained in
L. Prime numbers which do not ramify in K, do not ramify in the other subfields
as well. Put D = disc(K) and

D = u ·
∏

p|D odd

p∗,

where the product is over the odd prime divisors of D and u ∈ {1,−4, 8,−8}.
Consider the set

P =

{
{ p∗ | p odd prime divisor of D } if u = 1,

{ p∗ | p odd prime divisor of D } ∪ {u} if u ̸= 1.

Set r = #(P ) and let s be the number of negative elements of P . The quadratic
field is real if and only if s is even. If either s is odd or s = 0, then the number
of unramified quadratic extensions of K is equal to the number of bipartitions of
P . In this case #(2H(1)(K)) = 2r−1, that is the 2-rank of Cℓ(K) is r − 1. For s
even and s > 0 the number of unramified quadratic extensions of K is equal to the
number of bipartitions of P into two subsets, both containing an even number of
negative elements. In this special case the 2-rank of Cℓ(K) is r − 2.

The Principal Ideal Theorem

Let K1 be the Hilbert class field of the number field K. The Principal Ideal
Theorem (Theorem 15.74) states that for every ideal a of OK the induced ideal
jKK1

(a) = aOK1 is a principal ideal. Alternatively: the homomorphism

jKK1
: Cℓ(K)→ Cℓ(K1)

is trivial. Let K2 be the Hilbert class field of K1.
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15.8 The Hilbert class field

15.69 Proposition. The extension K2 : K is a Galois extension and KG′

2 = K1,
where G = Gal(K2 : K).

Proof. By Proposition 15.67K2 : K is a Galois extension. The extensionK2 : K
is unramified and hence KG′

2 : K is both abelian and unramified. So KG′

2 ⊆ K1,
that is G′ ⊇ Gal(K2 : K1). BecauseK1 : K is abelian, we also have Gal(K2 : K1) ⊇
G′.

By Theorem 15.64 and Proposition 15.58 we have a commutative square

G∨ H(K2 : K) = H(KG′

2 : K) = H(K1 : K) = H1(K)

H(K2 : K1) = H1(K1)(G′)
∨

φ̌
(K2)
K

∼

φ̌
(K2)
K1

∼

(V GG′)
∨ ιK1

K

Thus the Principal Ideal Theorem is translated into pure group theory: the transfer
V GG′ : G/G′ → G′/G′′ has to be the trivial homomorphism.

We will show that indeed the transfer from a finite group to its commutator
subgroup is trivial (Theorem 15.73). In the remaining part of this section G
is a finite group. We will use the group ring Z[G] and its augmentation ideal
I(G) = Ker(Z[G]→ Z).

15.70 Lemma. The map δ : G → I(G), σ 7→ σ − 1 induces an isomorphism
δ∗ : G/G

′ ∼→ I(G)/(I(G))2.

Proof. The identity

σ1σ2 − 1 = (σ1 − 1) + (σ2 − 1) + (σ1 − 1)(σ2 − 1) (15.2)

in I(G) shows that δ induces a homomorphism G → I(G)/I(G)2 and since
I(G)/I(G)2 is abelian, we have a homomorphism

δ∗ : G/G
′ → I(G)/I(G)2, σ 7→ σ − 1,

where σ denotes the coset G′σ and σ − 1 the residue class of σ − 1 modulo I(G)2.
The set G is a Z-basis of Z[G] and so {σ − 1 | σ ∈ G \ {1} } is a Z-basis of I(G).
Clearly δ∗ is surjective and by identity (15.2) the homomorphism I(G) → G/G′

determined by σ − 1 7→ σ induces an inverse.

Now let H be a subgroup of G and R a set of representatives of the right cosets of
H in G such that 1 ∈ R.

401



15 The Classification Theorem

15.71 Lemma. The inclusion map I(H)→ I(H) + I(H)I(G) induces an isomor-
phism

I(H)/I(H)2
∼−→ (I(H) + I(H)I(G))/I(H)I(G).

Proof. First we show that

{ (τ − 1)ρ | τ ∈ H \ {1}, ρ ∈ R }

is a Z-basis of I(H) + I(H)I(G). From 1 ∈ R and the identity

(τ − 1)ρ = (τ − 1) + (τ − 1)(ρ− 1)

follows that the elements (τ − 1)ρ are in I(H) + I(H)I(G). They generate it as a
Z-module:

(τ1 − 1)(τ2ρ− 1) = (τ1τ2 − 1)ρ− (τ2 − 1)ρ− (τ1 − 1). (15.3)

Classes of I(H)+I(H)I(G) modulo I(H)I(G) are represented by elements of I(H).
So we have a surjective homomorphism

I(H)/I(H)2 −→ (I(H) + I(H)I(G))/I(H)I(G)

and from identity (15.3) follows that the homomorphism I(H) + I(H)I(G) →
I(H), (τ − 1)ρ 7→ τ − 1 induces an inverse:

(τ1 − 1)(τ2ρ− 1) 7→ (τ1τ2 − 1)− (τ2 − 1)− (τ1 − 1)

= (τ1 − 1)(τ2 − 1) ∈ I(H)2.

The transfer translates via the isomorphisms given by the lemmas into a homo-
morphism f : I(H)/I(H)2 → (I(H) + (I(H)I(G))/I(H)I(G):

I(G)/I(G)2 (I(H) + I(H)I(G))/I(H)I(G)

G/G′ H/H ′

I(H)/I(H)2∼

∼

∼
f

V GH

The transfer is given by V GH (σ) =
∏
ρ∈R ρσρ

−1
σ and so

f(σ − 1) =
∑
ρ∈R

ρσρ−1
σ − 1.
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Modulo I(H)I(G) we have∑
ρ∈R

(ρσρ−1
σ − 1) ≡

∑
ρ∈R

(ρσρ−1
σ − 1)ρσ =

∑
ρ∈R

ρσ −
∑
ρ∈R

ρσ =
∑
ρ∈R

ρσ −
∑
ρ∈R

ρ

≡
∑
ρ∈R

ρ(σ − 1).

Hence:

15.72 Proposition. The homomorphism f in the commutative diagram above is
given by

f(σ − 1) =
∑
ρ∈R

ρ(σ − 1).

15.73 Theorem. The transfer V GG′ : G/G′ → G′/G′′ is the trivial homomorphism.

Proof. Let σ1, . . . , σn generate the group G. Then the homomorphism Zn →
G/G′ given by ei 7→ σi for i = 1, . . . , n is surjective and we have a short exact
sequence

0 −→ Zn (mik)−→ Zn −→ G/G′ −→ 1,

where the (mik) stands for left multiplication by a matrix (mik) ∈ Mn(Z). Then
det(mik) = ±#(G/G′) and by replacing one of the generators by its inverse we can
assume that det(mik) = #(G/G′). Then for k = 1, . . . , n:

n∏
i=1

σmik
i = τk ∈ G′.

From the identities

σ1σ2 − 1 = (σ1 − 1) + σ1(σ2 − 1)

σ−1 − 1 = −σ−1(σ − 1)

follows that in Z[G] ( n∏
i=1

σmik
i

)
− 1 =

n∑
i=1

µik(σi − 1)

with µik ≡ mik (mod I(G)) and since τk ∈ G′

τk − 1 =

n∑
i=1

αik(σi − 1)

with αik ≡ 0 (mod I(G)). So we can assume that( n∏
i=1

σmik
i

)
− 1 =

n∑
i=1

µik(σi − 1) = 0
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with µik ≡ mik (mod I(G)). The group ring Z[G/G′] is commutative and G →
G/G′ induces an isomorphism Z[G]/I(G′)Z[G]. Let (λkj) ∈ Mn(Z[G]) be such
that (λkj) ∈ Mn(Z[G]/I(G′)Z[G]) is the adjoint matrix of (µik) and let µ ∈ Z[G]
be such that det(µik) = µ ∈ Z[G]/I(G′)Z[G]. The transpose of the adjoint is the
adjoint of the transpose:

n∑
k=1

λkjµik ≡

{
µ (mod I(G′)Z[G]) if i = j,

0 (mod I(G′)Z[G]) otherwise.

Then for j = 1, . . . , n

µ(σj − 1) =
∑
i,k

λkjµik(σi − 1) ≡ 0 (mod I(G′)I(G))

and so µ(σ − 1) ≡ 0 (mod I(G′)I(G)) for all σ ∈ G. The element µ ∈ Z[G/G′]
is invariant under right multiplication by elements of G/G′ and therefore µ =
a
∑
ρ∈R ρ ∈ Z[G/G′] for an a ∈ Z. Application of the augmentation ε : Z[G/G′]→

Z yields

ε(µ) = a ·#(R) = a · [G : G′].

By definition of µ we also have

µ = det(µik) ≡ det(mik) = [G : G′] (mod I(G)).

Hence a = 1 and so by Proposition 15.73 with H = G′ for every σ ∈ G:

f(σ − 1) =
∑
ρ∈R

ρ(σ − 1) = µ(σ − 1) = 0.

So f is the zero map.

As remarked above this implies the main result of this section:

15.74 Principal Ideal Theorem. For every number field K and every ideal a of
OK , the ideal aOK1 of the ring of integers of the Hilbert class field K1 of K is a
principal ideal.

Starting with a number field K one can form the class field tower

K = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn ⊆ Kn+1 ⊆ · · · , (15.4)

in which each field is followed by its Hilbert class field. Philipp Furtwängler posed
the question whether this tower stabilizes: is there an n such that Kn+1 = Kn?
For such n all ideals of OKn

are principal, not only those coming from K. In
1964 Golod and Shafarevich showed (in [13]) that the tower does not stabilize for
number fields K in which sufficiently many prime numbers ramify.
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Exercises

1. Show that Q(i,
√
5) is the Hilbert class field of Q(

√
−5).

2. The extension Q(
√
7, i) : Q(

√
7) corresponds to a group of Dirichlet characters of

Q(
√
7) of order 2. Determine the quadratic Dirichlet character in this group.

3. Let K = Q( 3
√
7), ϑ = ζ7 + ζ−1

7 and L = Q(ϑ).

(i) Show that 7 totally ramifies in both K and L.

(ii) Let p and q be the unique primes of respectively K and L above 7. Show that
Kp : Q7 and Lq : Q7 are 3-Kummer extensions.

(iii) Prove that Kp = Lq. (Hint: use q = (ϑ− 2) and q3 = (7).)

(iv) Show that K(ϑ) is the Hilbert class field of K. (See exercise 4 of chapter 14
and Example 5.22.)

4. (i) Compute Q∗
7/Q∗3

7 .

(ii) How many Galois extensions K : Q7 of degree 3 are there? For each of them
give an α ∈ K such that K = Q7(α) and α

3 ∈ Q7.

5. Determine the number of Galois extensions K : Q7 of degree 5.

6. Let α ∈ R such that α3 = α+1. As remarked in Example 13.56 the field Q(α,
√
−23)

is the Hilbert class field of Q(
√
−23). Show that 2 splits in Q(α,

√
−23) as the

product of two principal prime ideals.

7. Show that the local Artin map ϑ
(L)
p does not depend on the choice of the modulus

n used in its construction.

8. Show that the extensionsKn : K in the class field tower (15.4) are Galois extensions.

9. ([9], Theorem 1) Let K1 and K2 be number fields with disc(K1) and disc(K2)
relatively prime. Suppose that K1 : Q and K2 : Q are Galois extensions.

(i) Prove that the map

(trK1K2
K1

, trK1K2
K2

) : Cℓ(K1K2) −→ Cℓ(K1)× Cℓ(K2)

is surjective. (Hint: look at the Hilbert class fields of K1 and K2.)

(ii) Let m1,m2 ∈ N∗ be relatively prime and put m = m1m2. Show that the ideal
class group of Q(ζm) contains a subgroup isomorphic to the product of the
ideal class groups of Q(ζm1) and Q(ζm2).

10. ([9], Theorem 2) Let K be a complex biquadratic field and let K1, K2 and K3

be its quadratic subfields, say K1 is the real quadratic subfield. Assume that
gcd(disc(K1),disc(K2)) = 1. Set H = Gal(K : K3). Prove that the following
sequence is exact

1 −→ Cℓ(K)H −→ Cℓ(K1)× Cℓ(K2)
(trKK1

,trKK2
)

−−−−−−−−→ Cℓ(K) −→ 1
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15 The Classification Theorem

and that the Hasse index of K equals 1. (Hints: exercise 9, Example 9.57 and
exercise 5 of chapter 14)
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16 Local Class Fields and Symbols

Classical reciprocity laws involve power residue symbols such as the Legendre sym-
bol in the quadratic case for Q. Reciprocity laws for power residue symbols can be
obtained from product formulas for Hilbert symbols. In section 16.3 Hilbert sym-
bols are treated and in the last section some classical reciprocity laws are derived.

Hilbert symbols are based on the local Artin maps for Kummer extensions. Local
Artin maps have been defined in section 15.6. In section 16.1 it is shown that they
depend only on the extension of the local fields. Their role in local class field theory
is similar to the role of Artin maps in global class field theory (see Theorem 16.15).
Local Artin maps can be interpreted as norm residue symbols and in section 16.2
it is shown that for a given abelian extension of number fields their product over
all primes of the base field is trivial (Theorem 16.22). The product formula for
Hilbert symbols is a consequence of this.

16.1 Local class fields

In this section we fix a prime number p. In section 15.6 the local Artin map

ϑ
(L)
p : K∗

p → Z
(L)
p

has been constructed for an abelian number field extension L : K and a prime p of
K above p. For a prime q of L above p we have

Gal(Lq : Kp)
∼−→ ZK(q) = Z

(L)
p ,

where the map is the restriction of automorphisms of Lq to L. Via this isomorphism
we have a map

ϑ
(L)
p : K∗

p → Gal(Lq : Kp),

also denoted by ϑ
(L)
p , for the abelian extension Lq : Kp of local fields. For its

construction the number field extension L : K has been used. First we will show
that each finite abelian extension of local fields is of this type and that the map
does not depend on the choice of the number field extension.
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16 Local Class Fields and Symbols

Q

Qp

K

Kp

Qp Let’s fix an algebraic closure Qp of Qp. For a number field K
and a prime p above p, we can assume that the completion
Kp has Qp as a subfield. The extension Kp : Qp is finite, so
we can also assume that Kp is contained in Qp.

In this section all number fields are assumed to be subfields
of a fixed algebraic closure Qp of Qp. Thus every number
field has a designated prime p above p. Its completion Kp is
assumed to be a subfield of Qp as well.

16.1 Notation. We write K̂ for the completion of a number field K contained in
Qp with respect to its designated prime p above p. So K̂ = Kp.

The completion of the composite of number fields is the composite of their com-
pletions:

16.2 Lemma. Let K1 and K2 be number fields. Then K̂1K2 = K̂1K̂2.

Proof. From K1,K2 ⊆ K1K2 follows that K̂1, K̂2 ⊆ K̂1K2. On the other hand

K1,K2 ⊆ K̂1K̂2 and so K1K2 ⊆ K̂1K̂2, which implies K̂1K2 ⊆ K̂1K̂2.

Though completion commutes with composition, it does not commute with inter-
section: 3 remains prime in Q(i) and also in Q(

√
2). Their intersection is Q, but

their completions both equal the unique unramified extension of Qp of degree 2.

The next lemma shows in particular that abelian extensions of local fields are
obtained by completing abelian number field extensions:

16.3 Lemma. Let E : F be a finite Galois extension of local fields. Then there
is a Galois extension L : K of number fields such that E = L̂, F = K̂ and
Gal(E : F )

∼→ Gal(L : K).

Proof. Let E be a finite extension of Qp for a prime number p. By Corollary 11.5

E = M̂ for some number field M . Set G = Gal(E : F ) and let L be the composite
of the fields σ(M) for all σ ∈ G. Then E ⊇ L ⊇ M and so E = L̂. Put K = LG.
Then K̂ ⊆ F and so [E : F ] ≤ [L̂ : K̂] ≤ [L : K] = #(G) = [E : F ]. Hence F = K̂
and Gal(E : F )

∼→ Gal(L : K).

The local Artin map does not depend on the choice of the number field extension:

16.4 Proposition. Let E : F be an abelian extension of local fields and L1 : K1 and
L2 : K2 abelian number field extensions such that E = L̂1 = L̂2 and F = K̂1 = K̂2.

Let p1 and p2 be the designated primes of K1 respectively K2. Then ϑ
(L1)
p1

= ϑ
(L2)
p2

.
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16.1 Local class fields

Proof. Consider the diagram below of number field extensions. The extensions
L1K2 : K1K2 andK1L2 : K1K2 are abelian and so is their composite L1L2 : K1K2.

Let p12 be the designated prime of K1K2. Then for all α ∈ F = K̂1K2 we have:

K1K2

K1 K2

L1 L2

L1K2 K1L2

L1L2

ϑ
(L1L2)
p12

(α) = ϑ
(L1L2)
p12

(α)|
L̂1K2

(L̂1K2 = E)

= ϑ
(L1K2)
p12

(α) (Proposition 15.45)

= ϑ
(L1K2)
p12

(α)|L̂1
(L̂1 = E = L̂1K2)

= ϑ
(L1)
p1

(Np12
p1

(α)) (Proposition 15.46)

= ϑ
(L1)
p1

(α) (K̂1K2 = K̂1 = F ).

By symmetry ϑ
(L1L2)
p12

(α) = ϑ
(L2)
p2

(α).

So the following definition is justified:

16.5 Definition and notation. Let E : F be an abelian extension of local fields.
Then the Artin map

ϑ
(E)
F : F ∗ → Gal(E : F )

of E : F is defined to be the local Artin map ϑ
(L)
p , where L : K is any abelian

number field extension such that L̂ = E, K̂ = F and p is the designated prime of
K.

The local Artin map ϑ
(L)
p : K∗

p → Z
(L)
p is surjective and its kernel is Nq

p(L
∗
q). So we

have:

16.6 Theorem. Let E : F be an abelian extension of local fields. Then ϑ
(E)
F induces

an isomorphism F ∗/NEF (E
∗)

∼→ Gal(E : F ).

The consistency property for local Artin maps and their behavior under base field
extensions (Propositions 15.45 and 15.46) are easily translated:
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16 Local Class Fields and Symbols

16.7 Proposition. Let E : F be an abelian extension of local fields.

(i) Let E′ an intermediate field of the extension E : F . Then for all α ∈ F ∗

ϑ
(E′)
F (α) = ϑ

(E)
F (α)|E′ .

(ii) Let F ′ : F be an extension of local fields. Then for all α ∈ F ′∗

ϑ
(EF ′)
F ′ (α)|E = ϑ

(E)
F (NF

′

F (α)).

Proof.

(i) Take L such that L̂ = E and subsequently the subfields K and L′ of L which
are invariant under Gal(E : F ) and Gal(E : E′) respectively. Then F = K̂,
E′ = K̂ ′ and

ϑ
(E′)
F (α) = ϑ

(L′)
p (α) = ϑ

(L)
p (α)|K̂′ = ϑ

(E)
F (α)|E′ .

(ii) Take an abelian number field extension L : K such that L̂ = E and K̂ = F .

Let K ′ be a number field such that K̂ ′ = F ′. Then EF ′ = L̂K̂ ′ = L̂K ′

(Lemma 16.2) and so

ϑ
(EF ′)
F ′ (α)|E = ϑ

(LK′)
p′ (α)|L̂ = ϑ

(L)
p (Np′

p (α)) = ϑ
(E)
F (NF

′

F (α)).

16.8 Notation. Because of the consistency property (Proposition 16.7(i)) we will

often replace the upper index of ϑ in ϑ
(E)
F (α)(β) by (∗): ∗ stands for any E such

that E : F is an abelian extension with β ∈ E. In chapter 19 we will omit the
upper index: ϑF (α) is there interpreted as an automorphism of Qp : F .

For unramified extensions the local Artin map is given by the Frobenius automor-
phism. This is a direct consequence of Proposition 15.44.

16.9 Proposition. Let E : F be an unramified abelian extension of local fields.

Then ϑ
(E)
F (α) = (φ

(E)
F )v(α) for all α ∈ F ∗. In particular, O∗

F ⊆ Ker(ϑ
(E)
F ).

Local class field theory is about a one-to-one correspondence between abelian ex-
tensions of a local fields F and subgroups of F ∗ of finite index. Each abelian
extension E : F determines the subgroup NEF (E

∗) of index [E : F ].

16.10 Proposition. Let F be a local field and E1 : F and E2 : F abelian extensions.
Then

E1 ⊆ E2 ⇐⇒ NE1

F (E∗
1 ) ⊇ NE2

F (E∗
2 ).

Proof.

⇒: This follows from NE1

F NE2

E1
= NE2

F .
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16.1 Local class fields

⇐: Put E = E1E2 and E′ = E1 ∩ E2. Let α ∈ Ker(ϑ
(E1)
F ) ∩ Ker(ϑ

(E2)
F ). Then

by the consistency property (Proposition 16.7(i)) we have:

ϑ
(E)
F (α)|E1

= ϑ
(E1)
F (α) = 1 and ϑ

(E)
F (α)|E2

= ϑ
(E2)
F (α) = 1.

It follows that Ker(ϑ
(E)
F ) = Ker(ϑ

(E1)
F ) ∩ Ker(ϑ

(E2)
F ), that is NEF (E

∗) =

NE1

F (E∗
1 ) ∩ NE2

F (E∗
2 ). Suppose NE1

F (E∗
1 ) ⊇ NE2

F (E∗
2 ). Then NEF (E

∗) =

NE2

F (E∗
2 ) and so by Theorem 16.6 [E : F ] = [E2 : F ]. It follows that E = E2,

that is E1 ⊆ E2.

So the map

abelian
extensions of F

subgroups of F ∗

of finite index

E : F NEF (E
∗)

is injective. We will show its surjectivity: the existence theorem for local class field
theory. The proof is along the lines of the proof in the global case, but is much
simpler.

16.11 Definition. Let X be a subgroup of F ∗ of finite index. If E : F is an abelian
extension of F such that NEF (E

∗) = X, then E is called the class field for X.
Notation: E = FX .

16.12 Lemma. Let E : F be an abelian extension of local fields and X a subgroup
of F ∗ such that NEF (E

∗) ⊆ X ⊆ F ∗. Then there is a class field for X.

Proof. Put H = ϑ
(E)
F (X) ⊆ G = Gal(E : F ) and E′ = EH . It will follow that

E′ is the class field for X. For α ∈ F ∗ we have:

α ∈ X ⇐⇒ ϑ
(E)
F (α) ∈ H ⇐⇒ ϑ

(E)
F (α)|E′ = 1 ⇐⇒ ϑ

(E′)
F (α) = 1

⇐⇒ α ∈ Ker(ϑ
(E′)
F ) ⇐⇒ α ∈ NE

′

F (E′∗).

16.13 Lemma. Let F ′ : F be an abelian extension of local fields and X a subgroup
of F ∗ of finite index. Assume that there is a class field for the subgroup

X ′ = (NF
′

F )−1(X) = {α ∈ F ′∗ | NF
′

F (α) ∈ X }

of F ′∗. Then there is a class field for X.

Proof. Let E be the class field for X ′. From

NEF (E
∗) = NF

′

F NEF ′(E∗) = NF
′

F (X ′) ⊆ X
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16 Local Class Fields and Symbols

and Lemma 16.12 follows that it suffices to show that E : F is an abelian extension.
Let σ be an embedding of E in the chosen algebraic closure of F such that its re-
striction to F is the identity. PutH = Gal(E : F ′). Then σHσ−1 = Gal(σ(E) : F ′)
and σ(E) is the class field for σ(X ′): for α ∈ E∗ we have

N
σ(E)
F ′ (σ(α)) =

∏
τ∈H

στσ−1(σ(α)) = σ
(∏
τ∈H

τ(α)
)
= σ(NEF ′(α)) ∈ σ(X ′).

Because F ′ : F is a Galois extension we have σ(F ′) = F ′ and therefore, NF
′

F (α) =

NF
′

F (σ(α)) for all α ∈ F ′. So σ(β) = β for all β ∈ X ′. In particular σ(X ′) = X ′ and
by Proposition 16.10 σ(E) = E. It follows that E : F is a Galois extension and
that Gal(F ′ : F ) operates trivially on Gal(E : F ′). For F ′ : F cyclic this means
that Gal(E : F ) is abelian. The general case of F ′ : F being abelian follows by
induction in the same way as in the proof of Theorem 15.7.

16.14 Local Existence Theorem. Let F be a local field and X a subgroup of F ∗

of finite index. Then there is a class field for X.

Proof. Let n be an exponent of the finite group F ∗/X. By Lemma 16.13 we may
assume that F contains a primitive n-th root of unity. By Corollary 11.23 the index
(F ∗ : F ∗n) is finite. By Lemma 16.12 it suffices to prove that there is a class field for
F ∗n. Let E be the n-Kummer extension corresponding to F ∗n. By Theorem 15.14
we have (F ∗ : F ∗n) = [E : F ] and by Theorem 12.22 (F ∗ : NEF (E

∗)) = [E : F ].
Since F ∗n ⊆ NEF (E

∗)), it follows that F ∗n = NEF (E
∗). So E is the class field for

F ∗.

Summarizing we have:

16.15 Local Classification Theorem. For F a local field we have a one-to-one
correspondence

abelian
extensions of F

subgroups of F ∗

of finite index

E : F NEF (E
∗)

FX : F X

The local Artin map ϑ
(FX)
F : F ∗ → Gal(FX : F ) induces an isomorphism F ∗/X

∼→
Gal(FX : F ).

We have seen in section 15.6 that the conductor of an abelian number field extension
is the product of local conductors (Theorem 15.56). Now it is clear that these local
conductors are conductors in the sense of local class field theory.
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16.1 Local class fields

16.16 Notation. Let F be a local field and i ∈ N. The open subgroup U
(i)
F of F ∗

is defined by

U
(i)
F =

{
O∗
F if i = 0,

1 + piF if i > 0.

So for the p-adic completion Kp of a number field K we have U
(i)
Kp

= U
(i)
p . See

Notation 15.54.

16.17 Definition and notation. Let E : F an abelian extension of local fields.
There is a least s ∈ N such that U

(s)
F ⊆ NEF (E

∗). The ideal psF of OF is called the
conductor of E : F . Notation: fF (E).

For L : K an abelian extension of number fields, p a finite prime of K and q a prime
of L above p we have fKp(Lq) ∩K = fp(L). See Definition 15.55.

16.18 Proposition. Let E : F be an unramified abelian extension of local fields of
degree n. Then

NEF (E
∗) = O∗

FF
∗n.

Proof. By Proposition 16.9 we have O∗
F ⊆ Ker(ϑ

(E)
F ) = NEF (E

∗) and hence
O∗
FF

∗n ⊆ NEF (E
∗). Equality holds because both groups are of index n in F ∗.

We have already seen that for each n ∈ N∗ there is a unique unramified abelian
extension of degree n of a given local field F (Corollary 11.13). The proposition
tells us to which subgroup of index n of F ∗ this extension corresponds.

16.19 Proposition. Let E : F be an abelian extension of local fields. Then E : F
is totally ramified if and only if NEF (E

∗) contains a uniformizer of vF .

Proof. We have a commutative square

E∗

F ∗

Z

Z

vE

vF

NEF f
(E)
F

The map vE is surjective, so the composition vFN
E
F is surjective if and only if

f
(E)
F = 1.

Our construction of the local Artin map is based on the (global) Artin map for a
number field extension. In modern approaches it is the other way round using a
direct construction in the local situation. The local Artin maps do not depend on
the construction: they are unique in the following sense.
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16.20 Theorem. Let F be a local field and (ψ(E)) a collection of maps

ψ(E) : F ∗ → Gal(E : F ) (one for each abelian extension E : F )

satisfying

a) reciprocity: For each abelian extension E : F the homomorphism ψ(E)

induces an isomorphism

F ∗/NEF (E
∗)

∼−→ Gal(E : F ).

b) consistency: For each abelian extension E : F and each intermediate field
E′ of E : F

ψ(E′)(α) = ψ(E)(α)
∣∣
E′ for all α ∈ F ∗.

c) frobenius: For each unramified abelian extension E : F

ψ(E)(α) =
(
φ
(E)
F

)vF (α)
for each α ∈ F ∗.

Then ψ(E) = ϑ
(E)
F for all abelian extensions E : F .

Proof. Let π ∈ F ∗ be a uniformizer of vF and E : F an abelian extension of
degree n and conductor ptF . The group X = (1 + ptF ) · ⟨πn⟩ ⊆ F ∗ is contained in
NEF (E

∗) and is of finite index in F ∗. It is the intersection of two subgroups of F ∗

of finite index:

X = X1 ∩X2 with X1 = (1 + ptF ) · ⟨π⟩ and X2 = O∗
F · ⟨πn⟩.

Then X1X2 = O∗
F · ⟨π⟩ = F ∗. So we have the following diagram of abelian field

extensions

FX

FX1 FX2

F

E

with Gal(FX : F )
∼→ Gal(FX1 : F )×Gal(FX2 : F ). By a) and c)

ψ(FX1
)(π) = 1 = ϑ

(FX1
)

F (π) and ψ(FX2
)(π) = φ

(FX2
)

F = ϑ
(FX2

)

F (π).

So by b)

ψ(E)(π) = ψFX (π)
∣∣
E
= ϑ

(FX)
F (π)

∣∣
E
= ϑ

(E)
F (π).
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It follows that ψ(E) and ϑ
(E)
F agree on uniformizers. The group F ∗ is generated by

uniformizers: for α ∈ F ∗ we have

α = (απ−v(α)+1)πv(α)−1.

Hence ψ(E) = ϑ
(E)
F for all abelian extensions E : F .

16.2 Norm residue symbols

For a given abelian number field extension L : K any local Artin map can be
applied to the nonzero elements of the base field K and take values in the Galois
group of L : K. In this section it is shown that the product of these values over
all primes of K is trivial. This result is independent of the previous section. Only
section 15.6 is used.

16.21 Definition. Let L : K be an abelian number field extension and p a prime
of K. The composition

K∗ ⊂−→ K∗
p

ϑ
(L)
p−→ Z

(L)
p

⊆−→ Gal(L : K)

is called the norm residue symbol at p. The following notation is often used: for
a ∈ K∗ (

a, L : K

p

)
= ϑ

(L)
p (a).

So by Theorem 15.48 we have(
a, L : K

p

)
= 1 ⇐⇒ a ∈ Nq

p(L
∗
q),

where q is a prime of L above p. An a ∈ K∗ is said to be a local norm at p if
a ∈ Nq

p(L
∗
q).

The construction of the local Artin maps ϑ
(L)
p leads to a product formula for norm

residue symbols:

16.22 Theorem. Let L : K be an abelian extension of number fields and a ∈ K∗.
Then ∏

p

(
a, L : K

p

)
= 1.

Proof. The product is a finite one: for finite nonramifying p with vp(a) = 0 we

have
(
a,L:K

p

)
= 1. Choose a modulus m for L : K such that p | m for all finite
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16 Local Class Fields and Symbols

primes p of K with vp(a) ̸= 0. Let m = pk11 · · · pkss , where p1, . . . , ps are different

primes of K and put mi = mp−kii . By Lemma 13.19 there are ai ∈ K∗ such that

ai ≡

{
a (mod K1

p
ki
i

),

1 (mod K1
mi
).

Then
a1 · · · as ≡ a (modK1

m).

Let

ai =

{
aip

−vpi
(a)

i if pi is finite,

aiOK if pi is infinite.

Then
ϑ
(L)
pi

(a) = ϑ
(L)
pi

(ai) = ϑ(L)(ai) = φ
(L)
K (ai)

−1

and

a1 · · · asOK = a1OK · · · asOK = p
vp1

(a)
1 · · · pvps (a)

s · a1 · · · as = a · a1 · · · as.

Hence
a1 · · · as =

a1 · · · as
a

OK ∈ Sm(K)

and so∏
p

(
a, L : K

p

)
=

s∏
i=1

ϑ
(L)
pi

(a) =

s∏
i=1

φ
(L)
K (ai)

−1 = φ
(L)
K (a1 · · · as)−1 = 1.

16.3 Hilbert symbols

In this section local fields with residue class fields of characteristic a prime number
p are considered to be subfields of a fixed algebraic closure Qp of the p-adic field

Qp. In section 16.1 we defined Artin maps ϑ
(E)
F : E∗ → Gal(E : F ) by considering

number fields with designated prime ideals.

For infinite primes p we fix the algebraic closure Q∞ to be the field C. A number
field with a designated infinite prime is then just a subfield of C. For the extension
C : R we have a map

ϑ
(C)
R : R∗ → Gal(C : R), α 7→

{
1 if α > 0,

τ if α < 0,

where τ is complex conjugation. Then for an abelian extension L : K of number

fields and p a real infinite prime of K we have ϑ
(L)
p (α) = σ−1

q ϑ
(C)
R (σp(α))σq, where

q is a prime of L above p.
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In general, if K is a field containing a primitive n-th root of unity and b ∈ K∗,
then the extension K( n

√
b) : K is a Galois extension and

Gal(K(
n
√
b) : K)→ µn, σ 7→ σ( n

√
b)

n
√
b

(16.1)

is an injective group homomorphism. (The group µn is the cyclic group of n-th
roots of unity of K.) We use this for the construction of a symbol on a local field.

16.23 Definition. Let F be a local field with µn ⊂ F . The map

F ∗ × F ∗ → µn, (α, β) 7→
ϑ
(∗)
F (α)( n

√
β)

n
√
β

is called the n-th Hilbert symbol on F . Notation:

(α, β)n =
ϑ
(∗)
F (α)( n

√
β)

n
√
β

.

(See Notation 16.8 for the ϑ
(∗)
F notation.) Similarly, for the field R we have

R∗ × R∗ → µ2, (α, β) 7→
ϑ
(C)
R (α)(

√
β)√

β
=: (α, β)2.

16.24 Definition. Let K be a number field containing µn. For p a prime of K, the
n-th Hilbert symbol on the completion Kp restricts to a symbol on K, the n-th
Hilbert symbol on K at p:

K∗ ×K∗ → µn, (a, b) 7→ (a, b)n =
ϑ
(∗)
p (a)( n

√
b)

n
√
b

,

where ∗ stands for a number field containing K( n
√
b). This symbol will be denoted

by

(
a, b

p

)
n

.

16.25 Proposition. Hilbert symbols on C are trivial. For the quadratic Hilbert
symbol on R we have for α, β ∈ R∗

(α, β)2 = −1 ⇐⇒ α < 0 and β < 0.

Proof. Equivalent are:

(α, β)2 = −1,

ϑ
(∗)
R (α) ̸= 1 and α /∈ R∗+,

β < 0 and α < 0.
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The dependency on n is as one might expect:

16.26 Proposition. Let F be a local field with µn ⊂ F and let m | n. Then for all
α, β ∈ F ∗:

(α, β)m = (α, β)n/mn .

Proof. (α, β)n/mn =
(ϑ

(∗)
F (α)( n

√
β))n/m

( n
√
β)n/m

=
ϑ
(∗)
F (α)( m

√
β)

m
√
β

= (α, β)m.

The product formula for local Artin maps (Theorem 16.22) yields a product formula
for Hilbert symbols:

16.27 Theorem. Let K be a number field containing the n-th roots of unity and
let a, b ∈ K∗. Then ∏

p

(
a, b

p

)
n

= 1,

where the product is over all primes of K.

Proof. The product formula for local Artin maps for the Galois extension
K(
√
b) : K ∏

p

ϑ
(K(

n√
b))

p (a) = 1

is via the group homomorphism (16.1) translated into a product formula for Hilbert
symbols.

16.28 Proposition. Hilbert symbols are bilinear.

Proof. Let F be a local field containing µn. Because for each β ∈ F ∗ the map

ϑ
(F ( n

√
β))

F is a homomorphism, the Hilbert symbol is linear in the first variable:

(α1α2, β)n = (α1, β)n(α2, β)n.

For β1, β2 ∈ F ∗ take E = F ( n
√
β1,

n
√
β2). Since ϑ

(E)
F (α) is an automorphism of E

for each α ∈ F ∗, the Hilbert symbol is linear in the second variable:

(α, β1β2)n = (α, β1)n(α, β2)n.

For the symbol (α, β)2 on R bilinearity is easily verified.

16.29 Proposition. Let F be a local field containing µn. Then (1−α, α)n = 1 for
all α ∈ F ∗ \ {1}.

Proof. Put γ = n
√
α and E = F (γ). The homomorphism

Gal(E : F )→ µn = ⟨ζn⟩, σ 7→ σ(γ)

γ
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16.3 Hilbert symbols

is injective. Let d = #(Gal(E : F )) and choose σ ∈ Gal(E : F ) such that σ(γ) =
ζdγ. From

Xn − α =

n∏
i=1

(X − ζinγ)

follows that 1− α is a norm:

1− α =

n∏
i=1

(1− ζinγ) =
n/d∏
k=1

d∏
j=1

(1− ζjdζ
k
nγ) =

n/d∏
k=1

NEF (1− ζknγ)

= NEF

(n/d∏
k=1

(1− ζknγ)
)
.

The proposition follows from Theorem 15.48:

1− α ∈ NEF (F (γ)
∗)) = Ker(ϑ

(E)
F ) .

Clearly, for the symbol (α, β)2 on R we also have (1− α, α) = 1: the real numbers
α and 1− α cannot be both negative.

For fields K bilinear pairings on K∗ satisfying the identity of this proposition occur
frequently. They have a special name.

16.30 Definition. Let K be a field and A a (multiplicative) abelian group. A
Steinberg symbol on K with values in A is a mapping s : K∗ ×K∗ → A satisfying

(SS1) s(a1a2, b) = s(a1, b)s(a2, b) for all a1, a2, b ∈ K∗,

(SS2) s(a, b1b2) = s(a, b1)s(a, b2) for all a, b1, b2 ∈ K∗,

(SS3) s(1− a, a) = 1 for all a ∈ K∗ \ {1}.

Steinberg symbols arise in algebraic K-theory, a part of algebra that started around
1970. A central part of algebraic K-theory is about abelian groups Kn(R) for n ∈ N
and R a ring. For n ≤ 2 good references for this theory are [29], [2] (for n = 0, 1)
and [26]. It’s a theorem of Matsumoto that for a field F , the group K2(F ) has a
presentation given by generators

{a, b} (a, b ∈ F∗)

(the notation {a, b} is a ‘symbol’ notation, not the set-notation) and relations

{a1, b}{a2, b} = {a1a2, b} for all a1, a2, b ∈ F ∗,

{a, b1b2} = {a, b1}{a, b2} for all a, b1, b2 ∈ F ∗,

{1− a, a} = 1 for all a ∈ F ∗ \ {1}.
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16 Local Class Fields and Symbols

(For an obvious reason in algebraic K-theory one tends to denote fields by F rather
than K.) So the map (a, b) 7→ {a, b} is a Steinberg symbol on F , in fact it is the
‘universal’ Steinberg symbol on F . By the way, the groups K0(F ) and K1(F ) are
Z and F ∗ respectively.

Consequences of the axioms for Steinberg symbols:

16.31 Theorem. Let s be a Steinberg symbol on a field K with values in an abelian
group A. Then

(SS4) s(−a, a) = 1 for all a ∈ K∗,

(SS5) s(b, a) = s(a, b)−1 for all a, b ∈ K∗,

(SS6) s(a, a) = s(a,−1) for all a ∈ K∗,

(SS7) s(a, b) = s(a, a + b)s(a + b, b)s(a + b,−1) for all a, b ∈ K∗ with
a ̸= −b.

Proof.

(SS4) For a = 1 this follows from (SS2). For a ̸= 1 use −a = 1−a
1− 1

a

:

s(−a, a) = s
(
1−a
1− 1

a

, a
)
= s(1− a, a)s(1− 1

a , a)
−1 (SS1)

= s(1− 1
a ,

1
a ) (SS3) and (SS2)

= 1 (SS3).

(SS5) Apply (SS4) three times:

s(b, a) = s(b, a)s(−a, a)−1 (SS4)

= s(b, a)s(− 1
a , a) (SS1)

= s(− b
a , a) (SS1)

= s(− b
a , a)s(−

b
a ,

b
a ) (SS4)

= s(− b
a , b) (SS2)

= s(−b, b)s(a, b)−1 (SS1)

= s(a, b)−1 (SS4).

(SS6)

s(a, a) = s(a,−a)s(a,−1) (SS2)

= s(a,−1) (SS4).
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16.3 Hilbert symbols

(SS7) Put c = a+ b. Then

1 = s(ac ,
b
c ) (SS3)

= s(a, b)s(a, c)−1s(c, b)−1s(c, c) (SS1) and (SS2)

= s(a, b)s(a, c)−1s(c, b)−1s(c,−1)−1 (SS2) and (SS6).

16.32 Definition. Let F be a field with a discrete valuation v, valuation ring R
and maximal ideal p. The tame symbol on the discretely valued field F is the map

F ∗ × F ∗ → (R/p)∗ : (a, b) 7→ (a, b)v = (−1)v(a)v(b)bv(a)a−v(b) + p.

Since v(bv(a)a−v(b)) = v(a)v(b)− v(b)v(a) = 0, we have

(−1)v(a)v(b)bv(a)a−v(b) ∈ R∗

and so (a, b)v ∈ (R/p)∗ = R∗/(1 + p).

16.33 Proposition. Tame symbols are Steinberg symbols.

Proof. Tame symbols are obviously bilinear, so it remains to show that they
satisfy (SS3). Let F be a discretely valued field as in Definition 16.32 and a, b ∈ F ∗

such that a+ b = 1. The proof of (a, b)v = 1 is by case distinction.

v(a) > 0 : Then v(b) = 0, so (−1)v(a)v(b) = 1 and bv(a)a−v(b) = b−v(a) =
(1− a)v(a) ≡ 1 (mod p).

v(b) > 0 : As the case v(a) > 0.

v(a) < 0 : Then v(b) = v(1 − a) = v(a) and so bv(a)a−v(b) = (ba−1)v(a) =
(a−1 − 1)v(a) ≡ (−1)v(a) = (−1)v(a) = (−1)v(a)v(b) (mod p).

v(b) < 0 : As the case v(a) < 0.

v(a) = v(b) = 0 : In this case the condition is trivially satisfied.

Tame symbols on a local field are essentially Hilbert symbols:

16.34 Theorem. Let F be a local field. Under the isomorphism µq−1
∼→ (kF )

∗, ζ 7→
ζ (= ζ+p), where q = #(kF ), the Hilbert symbol (α, β)q−1 maps to the tame symbol
(α, β)v.

Proof. Choose π ∈ F with v(π) = 1. Both symbols are Steinberg symbols, so
by bilinearity and anti-symmetry it suffices to consider the cases (α, β), (π, β) and
(π, π), where α, β ∈ O∗

F . By (SS4) the last case can be replaced by (π,−1). Thus
only two cases remain. In both cases put E = F ( q−1

√
β). By Lemma 15.15 the

extension E : F is unramified. Hence by Proposition 16.9 ϑ
(E)
F (γ) = (φ

(E)
F )v(γ) for

all γ ∈ F ∗.
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16 Local Class Fields and Symbols

(α, β) with α, β ∈ O∗
F :

By definition of the tame symbol (α, β)v = 1. Since v(α) = 0, we have

ϑ
(E)
F (α) = 1E and so ϑ

(E)
F (α)( n

√
β) = n

√
β. Hence (α, β)q−1 = 1.

(π, β) with β ∈ O∗
F :

Again by definition of the tame symbol (π, β)v = β. The Hilbert symbol is
defined by

ϑ
(E)
F (π)( q−1

√
β) = (π, β)q−1

q−1
√
β.

Modulo pE we have

ϑ
(E)
F (π)( q−1

√
β) = φ

(E)
F ( q−1

√
β) ≡ q−1

√
β
q

(mod pE).

Hence
q−1
√
β
q
≡ (π, β)q−1

q−1
√
β (mod pE)

and division by q−1
√
β yields:

β ≡ (π, β)q−1 (mod pE ∩ F ).

In the notation introduced on page 282:

(α, β)q−1 = ωF ((α, β)v).

So the Hilbert symbols on a local field F are all powers of the Hilbert symbol

(α, β)m, where m = #(µ(F )) (Proposition 16.26) and (α, β)
m

q−1

q−1 corresponds to the
tame symbol. Let’s call Hilbert symbols (α, β)n with n | q−1 tame Hilbert symbols,
and the others wild Hilbert symbols. So tame Hilbert symbols are essentially
powers of tame symbols:

16.35 Corollary. In the notation of Theorem 16.34: for n | q−1 the Hilbert symbol
(α, β)n is related to the tame symbol (α, β)v by

(α, β)n ≡ (α, β)
q−1
n
v (mod pF ) for all α, β ∈ F ∗.

In particular for a number field K, a finite prime p of K and n | #(µ(K)):(
a, b

p

)
n

≡ (a, b)
N(p)−1

n
vp for all a, b ∈ K∗

In algebraic K-theory one has the following short exact sequence for a number field
F :

1 −→ K2(OF ) −→ K2(F )
(τp)p−→

⊕
p∈Max(OF )

(OF /p)
∗ −→ 1, (16.2)

where the τp are given by the tame symbols (a, b) 7→ (a, b)vp . The group K2(OF )
is finite by a theorem of Garland. It is known as the tame kernel of F . It measures
how far Steinberg symbols differ from tame symbols. At each of the three places
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16.4 Power residue symbols

in the short exact sequence the exactness is far from trivial when starting from the
elementary definitions of K-groups as given in [29] or [26]. Hilbert symbols are
more general than tame symbols. For these we have an exact sequence

K2(F ) −→
⊕

p finite or
real infinite

µ(Fp) −→ µ(F ) −→ 1.

This is known as Moore’s Reciprocity Uniqueness Theorem, see [29], §16. The kernel
of the first map is called the wild kernel of the number field F , it is a subgroup
of the tame kernel since every tame symbol is essentially a Hilbert symbol. The
groups K0(OF ) and K1(OF ) are respectively Z × Cℓ(F ) and O∗

F . The last is far
from obvious, it is a theorem of Bass, Milnor and Serre [1] and is equivalent to the
surjectivity of (τp)p in the short exact sequence (16.2).

16.4 Power residue symbols

For the number field Q we have the Legendre symbol and its generalization, the
Jacobi symbol. These notions will be generalized for number fields containing
sufficiently many roots of unity.

16.36 Lemma. Let K be a number field with ζn ∈ K and let p ∈ Max(OK) such
that p ∤ n. Then the map

µn = ⟨ζn⟩ −→ (OK/p)∗,

induced by the canonical map OK → OK/p, is injective.

Proof. Divide both sides of Xn − 1 =
∏
ζ∈µn

(X − ζ) by (X − 1) and substitute
1 for X:

n =
∏
ζ∈µn
ζ ̸=1

(1− ζ).

Since p ∤ n, We have ζ ̸≡ 1 (mod p) for all ζ ̸= 1.

16.37 Definition. Let K be a number field containing µn, p a finite prime of K

and α ∈ OK such that p ∤ n, α. Then α
N(p)−1

n is an n-th root of unity of OK/p. So
there is a unique ζ ∈ µn such that

α
N(p)−1

n ≡ ζ (mod p).

This unique ζ is denoted by

(
α

p

)
n

and the map

OK \ p −→ µn, α 7→
(
α

p

)
n

is called the n-the power residue symbol.
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16 Local Class Fields and Symbols

The power residue symbol is closely connected to a tame Hilbert symbol:

16.38 Lemma. Let K be a number field containing µn, p a finite prime of K,
α, β ∈ OK relatively prime to each other and p ∤ n, α. Then(

β, α

p

)
n

=

(
α

p

)vp(β)
n

Proof. By Corollary 16.35:(
β, α

p

)
n

≡ (β, α)
N(p)−1

n
vp ≡ αvp(β)

N(p)−1
n ≡

(
α

p

)vp(β)
n

(mod p)

The power residue symbol is a generalization of the Legendre symbol.

16.39 Proposition. In the notations of the definition we have:

(i)

(
α

p

)
n

=

(
β

p

)
n

for all α, β ∈ OK \ p with α ≡ β (mod p).

(ii)

(
αβ

p

)
n

=

(
α

p

)
n

(
β

p

)
n

for all α, β ∈ OK \ p.

(iii)

(
ζ

p

)
n

= ζ
N(p)−1

n for all ζ ∈ µn.

(iv)

(
α

p

)
n

= 1 ⇐⇒ α is an n-th power modulo p.

Proof. (i), (ii) and (iii) follow directly from the definition of the power residue
symbol. For (iv) note that, because the group (OK/p)∗ is cyclic of order q− 1, the

n-th powers form a subgroup of order N(p)−1
n and this subgroup is the kernel of

(OK/p)∗ −→ (OK/p)∗, α 7→ α
N(p)−1

n .

We have the following generalization of the Jacobi symbol.

16.40 Definition. Let K be a number field containing µn, b a nonzero ideal of OK
relatively prime to n and α ∈ OK \ {0} relatively prime to b. The symbol

(
α

b

)
n

is defined as follows (
α

b

)
n

=
∏
p|b

(
α

p

)vp(b)
n

.

For b a principal ideal, say b = (β), we will write

(
α

β

)
n

for

(
α

b

)
n

.
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16.4 Power residue symbols

16.41 Proposition. In the notation of the definition we have:

(i)

(
α

b

)
n

=

(
β

b

)
n

for all α, β ∈ OK relatively prime to b and α ≡ β (mod b).

(ii)

(
αβ

b

)
n

=

(
α

b

)
n

(
β

b

)
n

for all α, β ∈ OK relatively prime to b.

(iii)

(
α

ab

)
n

=

(
α

a

)
n

(
α

b

)
n

for all a, b ∈ In+(K) relatively prime to α.

(iv)

(
ζ

b

)
n

= ζ
N(b)−1

n for all ζ ∈ µn.

Proof. (i), (ii) and (iii) follow directly from the definition of the symbol. (iv)
is easily proved by induction on the number of prime ideal factors of b. For the
induction step use

0 ≡ (N(a)− 1)(N(b)− 1) = N(ab)− 1−N(a) + 1−N(b) + 1 (mod n2),

which implies

N(ab)− 1

n
≡ N(a)− 1

n
+

N(b)− 1

n
(mod n).

Hilbert’s reciprocity

The product formula for Hilbert symbols leads to Hilbert’s reciprocity :

16.42 Hilbert’s Reciprocity Theorem. Let K be a number field containing µn
and α, β ∈ OK prime to each other and to n. Then(

α

β

)
n

(
β

α

)−1

n

=
∏
p|n∞

(
α, β

p

)
n

.

Proof. The product formula yields∏
p|α

(
α, β

p

)
n

·
∏
p|β

(
α, β

p

)
n

·
∏
p|n∞

(
α, β

p

)
n

= 1.

By lemma 16.38 ∏
p|α

(
α, β

p

)
n

=
∏
p|α

(
β

p

)vp(α)
n

=

(
β

α

)
n

.
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16 Local Class Fields and Symbols

For roots of unity we have:

16.43 First supplement to Hilbert’s Reciprocity Theorem. Let K be a number
field containing µn, ζ ∈ µn and β ∈ OK prime to n. Then(

ζ

β

)
n

=
∏
p|n∞

(
ζ, β

p

)
n

= ζ
N(β)−1

n .

Proof. In this case the product formula yields

∏
p|β

(
ζ, β

p

)
n

·
∏
p|n∞

(
ζ, β

p

)
n

= 1.

Apply Lemma 16.38 and Proposition 16.41(iv).

For divisors of n:

16.44 Second supplement to Hilbert’s Reciprocity Theorem. Let K be a num-
ber field containing µn and λ, β ∈ OK such that λ | n and β ∈ OK prime to n.
Then (

λ

β

)
n

=
∏
p|n∞

(
λ, β

p

)
n

.

Proof. As for the first supplement the formula follows from the product formula
and Lemma 16.38.

16.5 Some classical reciprocities

The classical reciprocities for power residue symbols follow from Hilbert’s Reci-
procity Theorem. In this section this is done for quadratic, cubic and quartic
reciprocity. Also a reciprocity of Eisenstein for the l-th power residue symbol is
derived from Hilbert’s theorem. These classical n-th power reciprocities are re-
ciprocities in the cyclotomic field Q(ζn).

Quadratic reciprocity

We have seen already two proofs: one using extensions of finite fields, the other the
splitting behavior of primes in a cyclotomic field. The proof given here indicates
how one can proceed in other cases. Hilbert’s reciprocity for the field Q and n = 2:
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16.5 Some classical reciprocities

16.45 Proposition.

(i)

(
a

b

)
2

(
b

a

)
2

=

(
a, b

∞

)
2

(
a, b

2

)
2

for all relatively prime odd a, b ∈ Z.

(ii)

(
−1
b

)
2

=

(
−1, b
2

)
2

= (−1) b−1
2 for all odd b ∈ Z.

(iii)

(
2

b

)
2

=

(
2, b

2

)
2

for all odd b ∈ Z.

The subindex 2 will be omitted in this subsection. Note that

(
a

b

)
with b > 0 is the

Jacobi symbol and that

(
a

b

)
=

(
a

|b|

)
. The symbol

(
a, b

∞

)
is the following symbol

on R: (
a, b

∞

)
= −1 ⇐⇒ a < 0 and b < 0.

We compute the Hilbert symbol

(
a, b

2

)
for relatively prime nonzero a, b ∈ Z.

16.46 Lemma. For odd a ∈ Z there are unique j, k ∈ {0, 1} such that

a ≡ (−1)j5k = (−1)j(1 + 4k) (mod 8)

and j and k are determined by

j ≡ a− 1

2
(mod 2) and k ≡ a2 − 1

8
(mod 2).

Proof. (−1)ja ≡ 1 (mod 4) for a unique j ∈ {0, 1} and subsequently (−1)ja ≡
1 + 4k (mod 8) for a unique k ∈ {0, 1}. Clearly, j ≡ a−1

2 and a2 ≡ 1 + 8k (mod 16)

implies a2−1
8 ≡ k (mod 8).

16.47 Proposition. Let a and b be odd integers. Then

(i)

(
a, b

2

)
= (−1) a−1

2
b−1
2 .

(ii)

(
−1, b
2

)
= (−1) b−1

2 .

(iii)

(
2, b

2

)
= (−1) b2−1

8 .

Proof. We will use the Proposition 16.45, Lemma 16.46, the inclusion 1+8Z2 ⊂
Q∗2

2 given by Theorem 11.22 and the fact that a Hilbert symbol is a Steinberg

symbol. Put j = a−1
2 , s = b−1

2 , k = a2−1
8 and t = b2−1

8 .
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16 Local Class Fields and Symbols

(i)

(
a, b

2

)
=

(
(−1)j5k, (−1)s5t

2

)
=

(
−1,−1

2

)js(−1, 5
2

)jt+sk(
5, 5

2

)kt
,(

5, 5

2

)
=

(
−1, 5
2

)
=

(
−1, 5
5

)
=

(
−1
5

)
= 1

and

(
−1,−1

2

)
=

(
−1,−1
∞

)
= −1.

(ii) This is Proposition 16.45(ii).

(iii)

(
2, b

2

)
=

(
2, (−1)s5t

2

)
=

(
2,−1
2

)s(
2, 5

2

)t
=

(
2, 5

2

)t
and

(
2, 5

2

)
=

(
2, 5

5

)
=

(
2

5

)
= −1.

Quadratic reciprocity follows from the Propositions 16.45 and 16.47:

16.48 Theorem.

(i) The Quadratic Reciprocity Law:(
a

b

)(
b

a

)
= (−1)

a−1
2

b−1
2 for a, b ∈ N∗ odd and relatively prime.

(ii) The first supplement:

(
−1
b

)
= (−1) b−1

2 for odd b ∈ N∗.

(iii) The second supplement:

(
2

b

)
= (−1) b2−1

8 for odd b ∈ N∗.

Cubic reciprocity

Put λ = 1− ζ3. Then (3) = (λ)2 in Z[ζ3]. Hilbert’s reciprocity for the field Q(ζ3)
and n = 3:

16.49 Proposition.

(i)

(
α

β

)
3

(
β

α

)−1

3

=

(
α, β

λ

)
3

for all relatively prime α, β ∈ Z[ζ3] with λ ∤ α, β.

(ii)

(
ζ3
β

)
3

=

(
ζ3, β

λ

)
3

= (−1)
N(β)−1

3 for all β ∈ Z[ζ3] with λ ∤ β.

(iii)

(
λ

β

)
3

=

(
λ, β

λ

)
3

for all β ∈ Z[ζ3] with λ ∤ β.

For simplicity of notation in this subsection the subindex 3 is often omitted.
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16.5 Some classical reciprocities

16.50 Lemma. Let α ∈ Z[ζ] such that λ ∤ α. Then there is a unique root of unity
ξ ∈ ⟨−ζ⟩ = Z[ζ]∗ such that

ξα ≡ 1 (mod 3).

Proof. The canonical map Z[ζ]→ Z[ζ]/3 induces an isomorphism

⟨−ζ⟩ ∼→ (Z[ζ]/3)∗.

16.51 Definition. An α ∈ Z[ζ] is called primary if α ≡ 1 (mod 3).

16.52 Lemma. For primary α ∈ Z[ζ] there are unique j, k ∈ {−1, 0, 1} such that

α ≡ (1+ 3ζ)j(−2− 3ζ)k = (1+3jζ)(1+ 3k(−1− ζ)) ≡ 1− 3k+3(j+ k)ζ (mod 9).

Proof. The group (1 + 3Z[ζ])/(1 + 9Z[ζ]) = Ker((Z[ζ]/9)∗ → (Z[ζ]/3)∗) is a 3-
elementary abelian group of rank 2. The classes represented by 1+3ζ and −2−3ζ
form a basis.

16.53 Proposition. Let α and β be primary elements of Z[ζ], where in particular
β = 1 + 3m+ 3nζ with m,n ∈ Z. Then

(i)

(
α, β

λ

)
= 1.

(ii)

(
−ζ, β
λ

)
= ζ

N(β)−1
3 .

(iii)

(
λ, β

λ

)
= ζm.

Proof. We use the Proposition 16.49, Lemma 16.52, the inclusion 1 + 9Z[ζ]λ ⊂
Q(ζ)∗3λ given by Theorem 11.22 and Steinberg relations. Let j, k, s, t ∈ Z be such
that

α ≡ (1 + 3ζ)j(−2− 3ζ)k (mod 9) and β ≡ (1 + 3ζ)s(−2− 3ζ)t.

Then
β ≡ (1 + 3sζ)(1− 3t(1 + ζ)) ≡ 1 + 3(−t+ (t− s)ζ) (mod 9),

so s ≡ n−m (mod 3) and t ≡ −m (mod 3).

(i) The ideals (1+3ζ) and (−2− 3ζ) are the two prime ideals above 7. We have(
α, β

λ

)
=

(
(1 + 3ζ)j(−2− 3ζ)k, (1 + 3ζ)s(−2− 3ζ)t

λ

)
=

(
1 + 3ζ,−2− 3ζ

λ

)js−kt
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16 Local Class Fields and Symbols

and(
1 + 3ζ,−2− 3ζ

λ

)
=

(
1 + 3ζ

−2− 3ζ

)(
−2− 3ζ

1 + 3ζ

)−1

=

(
1 + 3ζ

3 + ζ

)(
−2− 3ζ

2− ζ

)−1

=

(
−8
3 + ζ

)(
−8
2− ζ

)−1

= 1.

(ii) This is Proposition 16.49(ii).

(iii)

(
λ, β

λ

)
=

(
λ, 1 + 3ζ

λ

)s(
λ,−2− 3ζ

λ

)t
=

(
λ

2− ζ

)s(
λ

3 + ζ

)t
=

(
−1
2− ζ

)s(
4

3 + ζ

)t
=

(
ζ

3 + ζ

)t
= ζ2t = ζm.

Cubic Reciprocity follows from the Propositions 16.49 and 16.53:

16.54 Theorem.

(i) The Cubic Reciprocity Law:(
α

β

)
3

=

(
β

α

)
3

for all primary α, β ∈ Z[ζ3] which are relatively prime.

(ii) The first supplement:

(
ζ

β

)
3

= ζ
N(β)−1

3
3 for all β ∈ Z[ζ3] with λ ∤ β.

(iii) The second supplement:

(
λ

β

)
3

= ζm3 for all primary β ∈ Z[ζ3] withm given

by β = 1 + 3(m+ nζ3), m,n ∈ Z.

Quartic Reciprocity

Put λ = 1+ i. Then (i) = (λ)2 in the ring Z[i]. Hilbert’s Reciprocity for Q(i) and
n = 4:

16.55 Proposition.

(i)

(
α

β

)
4

(
β

α

)−1

4

=
(
α,β
λ

)
4
for all relatively prime αβ ∈ Z[i] with λ ∤ α, β.

(ii)

(
i

β

)
4

=

(
i, β

λ

)
4

= i
N(β)−1

4 for all β ∈ Z[i] with λ ∤ β.

(iii)

(
λ

β

)
4

=

(
λ, β

λ

)
4

for all β ∈ Z[i] with λ ∤ β.

430



16.5 Some classical reciprocities

In the notation we suppress in this subsection the use of the subindex 4.

16.56 Lemma. Let α ∈ Z[i] such that λ ∤ α. Then there is a unique root of unity
ζ ∈ ⟨i⟩ = Z[i]∗ such that

ζα ≡ 1 (modλ3).

Proof. The canonical map Z[i]→ Z[i]/λ3 induces an isomorphism

⟨i⟩ ∼→ (Z[i]/λ3)∗.

16.57 Definition. An α ∈ Z[i] is called primary if α ≡ 1 (modλ3). So the primary
elements of Z[i] are the elements 1 + 2a+ 2bi with a ≡ b (mod 2).

16.58 Lemma. For primary α ∈ Z[i] there are unique j, k ∈ {0, 1, 2, 3} such that

α ≡ (1 + λ3)j(1 + λ4)k (modλ7).

Proof. The abelian group (1 + λ3Z[i])/(1 + λ7Z[i]) is of order 16. The classes
of 1 + λ3 and 1 + λ4 are of order 4:

(1 + λ3)2 = 1 + 2λ3 + λ6 = 1 + 2λ4 − λ5 + λ6 = 1 + λ5,

(1 + λ4)2 ≡ 1 + 2λ4 ≡ 1 + 2λ5 − λ6 ≡ 1 + λ6 (modλ7),

(1 + λ5)2 ≡ (1 + λ6)2 ≡ 1 (modλ7).

By Theorem 11.22, the subgroup 1 + λ7Z[i] of Q(i)∗λ consists of 4-th powers.

16.59 Proposition. Let α and β be primary elements of Z[i], where in particular
β = 1 + 2a+ 2bi with a, b ∈ Z and a ≡ b (mod 2). Then

(i)

(
α, β

λ

)
= (−1)

N(α)−1
4

N(β)−1
4 .

(ii)

(
i, β

λ

)
= i

N(β)−1
4 = i−a.

(iii)

(
λ, β

λ

)
= i

a−b−2b2

2 .

Proof.

(i) The maps

(1 + λ3Z[i])× (1 + λ3Z[i]) −→ µ4, (α, β) 7→
(
α, β

λ

)
and

(1 + λ3Z[i])× (1 + λ3Z[i]) −→ µ4, (α, β) 7→ (−1)
N(α)−1

4
N(β)−1

4
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16 Local Class Fields and Symbols

are both bimultiplicative, so by Lemma 16.58 it suffices to verify the formula
for α, β ∈ {1 + λ3, 1 + λ4}. We have by Proposition 16.55(i)(

1 + λ3, 1 + λ4

λ

)
=

(
−1 + 2i,−3

λ

)
=

(
−3

1− 2i

)−1(−1 + 2i

3

)
.

N(1− 2i) = 5 and N(3) = 9, so by definition of the power residue symbol(
−3

1− 2i

)
≡ (−3)

5−1
4 ≡ −3 ≡ −i (mod 1− 2i)

and (
1− 2i

3

)
≡ (−1 + 2i)

9−1
4 ≡ −3− 4i ≡ −i (mod 3).

hence (
1 + λ3, 1 + λ4

λ

)
= (−i)−1(−i) = 1 = (−1)1·2.

By the Steinberg relations and Proposition 16.55(ii)(
1 + λ3, 1 + λ3

λ

)
=

(
−1, 1 + λ3

λ

)
= −1

and we have N(−1+2i)−1
4 = 1 and N(−1)−1

4 = 0. Also(
1 + λ4, 1 + λ4

λ

)
=

(
−1, 1 + λ4

λ

)
= (−1)2 = 1

and N(−3)−1
4 = 2.

(ii) The first identity is Proposition 16.55(ii). For the second note that

N(β)− 1

4
=

(1 + 2a)2 + 4b2 − 1

4
= a+ a2 + b2 ≡ (a+ b)2 − a ≡ −a (mod 4).

(iii) First we show that the map

1 + λ3Z[i] −→ Z/4, 1 + 2(a+ bi) 7→ class of
a− b− 2b2

2

is a homomorphism. For a, b, c, d ∈ Z with a ≡ b (mod 2) and c ≡ d (mod 2)
we have

(1+2(a+ bi))(1+2(c+ di)) = 1+2((a+ c+2ac− 2bd)+ (b+ d+2ad+2bc)i

and

(a+ c+ 2ac− 2bd)− (b+ d+ 2ad+ 2bc)− 2(b+ d+ 2ad+ 2bc)2
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16.5 Some classical reciprocities

≡ (a+ c+ 2ac− 2bd)− (b+ d+ 2ad+ 2bc)− 2b2 − 4bd− 2d2

≡ (a− b− 2b2) + (c− d− 2d2) + 2(a− b)(c− d)
≡ (a− b− 2b2) + (c− d− 2d2) (mod 8).

Division by 2 shows that the map is a homomorphism. The subgroup 1 +
λ7Z[i] (the case a ≡ b ≡ 0 (mod 2)) is in the kernel. It suffices to verify the
formula for β = −1 + 2i and β = −3. By Proposition 16.55(iv)(

λ,−1 + 2i

λ

)
=

(
λ

−1 + 2i

)
≡ λ ≡ −1 (mod−1 + 2i)

and (
λ,−3
λ

)
=

(
λ

−3

)
≡ λ2 ≡ −i (mod 3).

Indeed, the images of −1 + 2i = 1 + 2(−1 + i) and −3 = 1 + 2(−2) are the
classes of 2 and −1 respectively.

Eisenstein’s Reciprocity Theorem

Now let l be an odd prime. We will show that a reciprocity theorem of Eisenstein
(Theorem 16.62) concerning the l-th power residue symbol on the cyclotomic field
Q(ζl) is a consequence of the product formula for Hilbert symbols as well.

The prime l totally ramifies in Q(ζl) and the prime ideal above l is principal:
(l) = (1− ζl)l−1. Put λ = 1− ζl. The prime ideal l = (λ) is of norm l.

16.60 Lemma. Let α ∈ Z[ζl] such that λ ∤ α. Then there are unique ζ ∈ µl and
a ∈ {1, . . . , l − 1} such that

ζα ≡ a (modλ2).

Proof. Since λ ∤ α, the element α is invertible modulo λ2, that is α ∈ (Z[ζl]/λ2)∗.
The group (Z[ζl]/λ2)∗ is of order l(l − 1). The group homomorphism

µl → (Z[ζl]/λ2)∗, ζ 7→ ζ

is injective: ζl ̸= 1. On the other hand, the inclusion Z→ Z[ζl] induces an injection
F∗
l → (Z[ζl]/λ2)∗. The images of these injections are of order l and l−1 respectively

and hence (Z[ζl]/λ2)∗ is the direct product of these two subgroups.

16.61 Definition. An α ∈ Z[ζl] with l ∤ α is called primary if α ≡ a (modλ2) for
a (necessarily) unique a ∈ {1, . . . , l − 1}.

Note that for l = 3 we took a = 1 in the definition of primary. For l = 3 this,
however, does not make a big difference.
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16 Local Class Fields and Symbols

By Lemma 16.60 for each β ∈ Z[ζl] with λ ∤ β there are unique ζ ∈ µl and a
primary α ∈ Z[ζl] such that β = ζα. By Proposition 16.41 we then have(

β

p

)
l

=

(
ζ

p

)
l

(
α

p

)
l

= ζ
N(p)−1

l

(
α

p

)
l

.

16.62 Eisenstein’s Reciprocity Theorem. Let α be primary in Z[ζl] and b ∈ Z
relatively prime to l and α. Then(

α

b

)
l

=

(
b

α

)
l

.

By Theorem 16.42 the theorem is equivalent to

(
α, b

λ

)
l

= 1. According to The-

orem 11.22 the subgroup U l+1
λ = 1 + l̂l+1 of Q(ζl)

∗
l is contained in Q(ζl)

∗l
l . A

consequence is again that it it will suffice to verify the theorem for a finite number
of cases.

For the proof of the theorem we use the following lemma.

16.63 Lemma. Let α ∈ Z[ζl] such that α ∼= 1 (modλ2). Then there are unique
a2, . . . , al ∈ {0, . . . , l − 1} such that

α ≡ (1− λ)a2(1− λ3)a3 · · · (1− λl)al (modλl+1).

Proof. The multiplicative group (1 + λ2Z[ζl])/(1 + λl+1Z[ζl]) is an elementary
l-group: for α = 1 + λ2β with β ∈ Z[ζl] we have

αl = 1 +

l∑
k=1

(
l

k

)
λ2kβk ≡ 1 (modλl+1),

because vl(
(
l
k

)
λ2k) ≥ l − 1 + 2k ≥ l + 1 for 1 ≤ k < l and vl(λ

2l) = 2l ≥ l + 1.

The group is of order l(l − 1) and the classes of 1 − λ2, . . . , 1 − λl form a basis
since they are independent: suppose (1− λk)ak · · · (1− λl)al ≡ 1 (modλl+1), then
(1− λk)ak ≡ 1− akλk ≡ 1 (modλk+1) and so ak ≡ 0 (mod l).

Proof of Theorem 16.62. As mentioned above the theorem will follow from(
α, b

λ

)
l

= 1. Since Hilbert symbols are Steinberg symbols, we can use the identities

for Steinberg symbols. Raising α and b to the power l − 1 yields(
αl−1, bl−1

λ

)
l

=

(
α, b

λ

)(l−1)2

l

=

(
α, b

λ

)
l

.
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Exercises

Since α is primary, α ≡ a (modλ2) for some a ∈ Z. Because al−1 ≡ 1 (mod l)
and (l) = (λ)l−1, we have αl−1 ≡ 1 (modλ2). Therefore, we can assume that α ≡
1 (modλ2) and b ≡ 1 (mod l). By Lemma 16.63 there exist a2, . . . , al, cl−1, cl ∈ N
and β, γ ∈ Z[ζl] such that β, γ ≡ 1 (modλl+1),

α = (1− λ2)a2 · · · (1− λl)alγ and b = (1− λl−1)cl−1(1− λl)clβ.

Because β and γ are l-th powers in the l-adic completion, we have(
α, b

λ

)
l

=
∏

i=2,...l
j=l−1,l

(
1− λi, 1− λj

λ

)aicj
l

.

So it suffices to prove that

(
1− λi, 1− λj

λ

)
l

= 1 for i ≥ 2 and j ≥ l − 1. Apply

(SS7) using the identity λj(1− λi) + (1− λj) = 1− λi+j :(
λj(1− λi), 1− λj

λ

)
l

=

(
λj(1− λi), 1− λi+j

λ

)
l

(
1− λi+j , 1− λj

λ

)
l

(
1− λi+j ,−1

λ

)
l

.

Since i+ j ≥ l + 1 each factor of the right hand side equals 1, whereas for the left
hand side we have by (SS3):(

λj(1− λi), 1− λj

λ

)
l

=

(
λj , 1− λj

λ

)
l

(
1− λi, 1− λj

λ

)
l

=

(
1− λi, 1− λj

λ

)
l

.

Exercises

1. Let E : F be an abelian extension of local fields and Z its decomposition group.
Prove that for the decomposition field E′ = EZ we have

NE′
F (E′∗) = NE

F (E
∗)O∗

F

and that ramification index of E : F is equal to the index of NE
F (E

∗) in NE
F (E

∗)O∗
F .

2. Let F be a finite field and a a generator of the cyclic group F ∗.

(i) Prove that K2(F ) is generated by the element {−1, a} of order 1 or 2.

(ii) Prove that the group K2(F ) is trivial for F of characteristic 2.

(iii) For F of odd characteristic show that there exist a, b ∈ F ∗ such that a+b = 1,
a a square of F and b a nonsquare of F . (Hint: consider the map F \{0, 1} →
F \ {0, 1} : a 7→ 1− a.)

(iv) Show that the group K2(F ) is trivial for F of odd characteristic as well.
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16 Local Class Fields and Symbols

3. Let F be a local field containing a primitive n-th root of unity. Show that the n-th
Hilbert symbol on F induces a homomorphism

K2(F ) −→ µn,

given on generators by {α, β} 7→ (α, β)n.

4. Prove that {−1, 5} = 1 in the K2 of any field.

5. Prove that {1 + 3ζ3,−2− 3ζ3} = 1 in K2(Q(ζ3)).

6. Let l be an odd prime number and α ∈ Z[ζl].
(i) Let p a finite prime of Z[ζl] such that p ∤ l, α. Show that(

α

p

)
l

=

(
α

p

)
l

.

(ii) Assume that α ∈ R and that l ̸= 3. Prove that

(
α

p

)
l

= 1 for all prime

numbers ̸= l.

7. Let l be an odd prime and p a prime ̸= l.

(i) Show that (
ζl
p

)
l

= ζ
l−1
f

· p
f−1
l

l ,

where f is that order of p ∈ Fl.

(ii) Show that pl−1 ≡ 1 (mod l2) if

(
ζl
p

)
l

= 1.
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17 Conductor and Discriminant

The conductor and the discriminant of an abelian number field extension have much
in common: their finite prime divisors are the ramifying primes. The Conductor-
Discriminant Formula describes how they are related for an abelian number field
extension L : K:

dK(L) =
∏

χ∈H(L:K)

fχ,0

(fχ,0 is the finite part of the conductor of χ.) The formula will be proved in the last
section. The Classification Theorems of local and global class field theory are used
in the proof. A link between the discriminant and the conductor is the different:
an ideal of OL, the prime divisors of which are the over K ramified primes of L.
The different is closely connected to the ramification groups. For an understanding
of this connection a detailed study of the ramification groups of a ramifying prime
will be necessary.

17.1 Ramification groups of a subextension

In section 7.5 ramification groups were introduced. They were used in chapter 9
for a proof of the Kronecker-Weber Theorem. Here we will study the behavior of
the ramification groups of a Galois extension E : F of local fields under restriction
to a Galois subextension E′ : F . It will be shown that by another indexation of the
ramification groups the index is not changed when passing from E : F to E′ : F .

We will fix for this section the following notations:

E : F a Galois extension of local fields of characteristic 0,

G the Galois group of E : F ,

n = [E : F ] = #(G), the degree of E : F ,

p the characteristic of kF ,

E′ an intermediate field of E : F such that E : F is a Galois extension,

H the Galois group of E : E′, a normal subgroup of G,

G′ the Galois group of E′ : F , so G/H
∼→ G′

(not the commutator subgroup),
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17 Conductor and Discriminant

Vi V
(E)
F,i , the i-th ramification group of E : F ,

V ′
i V

(E′)
F,i , the i-th ramification group of E′ : F ,

V ′′
i V

(E)
E′,i , the i-th ramification group of E : E′.

The ramification groups with index 0 are the inertia groups. Let’s write V−1 for the
Galois group. It coincides with the decomposion group. In G we have a descending
chain of ramification groups

V−1(= G) ⊵ V0 ⊵ V1 ⊵ · · · ⊵ Vt(= {1}.

For each σ ̸= 1 in G there is a unique i ≥ −1 such that σ ∈ Vi \Vi+1. By definition
σ ∈ Vi if and only if vE(σ(α)− α) ≥ i+ 1 for all α ∈ OE .

17.1 Notation. If σ ̸= 1, then there is a least i ∈ N such that σ does not
induce the identity on OE/pi+1

E . This least i is denoted by i(σ). For the identity
automorphism 1 we put i(1) =∞. So we have

Vj−1 \ Vj = {σ ∈ G | i(σ) = j }.

Now we start comparing the ramification groups of E : F and E′ : F . For this the
following proposition fundamental. It tells us for a σ′ ∈ G′ how the number i(σ′)
is determined by the numbers i(σ) for the σ ∈ G with σ|E′ = σ′:

17.2 Proposition. Let σ′ ∈ G′. Then

i(σ′) =
1

e
(E)
F ′

∑
σ∈G

σ|E′=σ′

i(σ).

Proof (Tate). For σ′ = 1 we have ∞ on both sides. So we assume that σ′ ̸= 1.
Choose a fixed σ ∈ G such that σ|E′ = σ′. Then the automorphisms in G which
restricted to E′ are equal to σ′ are the στ with τ ∈ H. By Proposition 11.15 there
are γ ∈ OE and γ′ ∈ OE′ such that OE = OF [γ] and OE′ = OF [γ′]. The formula
to be shown becomes

vE(σ(γ
′)− γ′) =

∑
τ∈H

vE(στ(γ)− γ).

Let f be the minimal polynomial of γ over E′. Then

f(X) =
∏
τ∈H

(X − τ(γ)) and fσ(X) =
∏
τ∈H

(X − στ(γ)).

The polynomial fσ is the minimal polynomial of σ(γ) over E′:∏
τ∈H

(X − στ(γ)) =
∏
τ∈H

(X − στσ−1σ(γ)) =
∏
τ∈H

(X − τσ(γ)).
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17.1 Ramification groups of a subextension

The coefficients of f are elements of OE′ . So vE′(σ′(α) − α) ≥ i(σ′) for each
coefficient of f . Hence

σ(γ′)− γ′ | fσ(γ)− f(γ) = fσ(γ),

that is

vE(σ(γ
′)− γ′) ≤ vE(fσ(γ)) =

∑
τ∈H

vE(γ − στ(γ)).

For the proof of equality put γ′ = g(γ) with g ∈ OF [X]. Then γ is a root of the
polynomial g(X)− γ′ ∈ OE′ [X]. Hence f | g(X)− γ′, say g(X)− γ′ = f(X)h(X)
with h ∈ E′[X]. Then gσ(X)− σ(γ′) = fσ(X)hσ(X) and so

γ′ − σ(γ′) = g(γ)− σ(γ′) = gσ(γ)− σ(γ′) = fσ(γ)hσ(γ),

from which follows fσ(γ) | σ(γ′)− γ′.

We will compare the images ViH/H of Vi under the isomorphism G/H
∼→ G′

with the groups V ′
i . Let’s denote ViH/H by Wi. These subgroups of G′ form a

descending chain

W−1(= G′) ⊵W0(= V ′
0) ⊵W1 ⊵W2 ⊵ · · ·

For σ′ ∈ G′ with σ′ ̸= 1 there is a unique j ∈ N such that σ′ ∈ Wj−1 \ Wj ,
or equivalently, for σ ∈ G with σ|E′ = σ′, σ ∈ Vj−1H \ VjH. This j is also
characterized by σH ∩ Vj−1 ̸= ∅ and H ∩ σVj = ∅.

For σ /∈ H let iHG (σ) be the greatest j ∈ N for which σH ∩ Vj−1 ̸= ∅. For σ ∈ H
we put iHG (σ) =∞.

We will denote the characteristic function of a subset X of G by δX , so for σ ∈ G:

δX(σ) =

{
1 if σ ∈ X,

0 if σ /∈ X.

Then

i(σ) =

∞∑
i=0

δVi
(σ). (17.1)

17.3 Lemma. Let σ ∈ G and σ′ = σ|E′ . Then

i(σ′) =

iHG (σ)−1∑
i=0

1

(V ′′
0 : V ′′

i )
.
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17 Conductor and Discriminant

Proof. By Lemma 17.2

i(σ′) =
1

e
(E)
E′

∑
τ∈H

i(στ).

By equation (17.1) we have

∑
τ∈H

i(στ) =
∑
τ∈H

∞∑
i=0

δVi(στ) =

∞∑
i=0

∑
τ∈H

δVi(στ) =

iHG (σ)−1∑
i=0

#(σH ∩ Vi).

Let σH ∩ Vi ̸= ∅, say τ0 ∈ H such that στ0 ∈ Vi. Then for τ ∈ H:

στ ∈ σH ∩ Vi ⇐⇒ στ0τ
−1
0 τ ∈ σH ∩ Vi

⇐⇒ τ−1
0 τ ∈ H ∩ Vi ⇐⇒ τ ∈ τ0(H ∩ Vi).

So multiplication by τ0 yields a bijection from H ∩ Vi to σH ∩ Vi. In particular we
have #(σH ∩ Vi) = #(H ∩ Vi) = #(V ′′

i ). It follows that

∑
τ∈H

i(στ) =

iHG (σ)−1∑
i=0

#(V ′′
i ).

Finally, divide by e
(E)
E′ = #(V ′′

0 ).

We extend the indexing set for the ramification groups from integers ≥ −1 to all
reals:

17.4 Definition. Let x ∈ R. Then

Vx =

{
V⌈x⌉ if x > −1,
G if x ≤ −1.

(⌈x⌉ is the least integer ≥ x.)

The indexing set for the groups Wi is extended accordingly: for x ∈ R the group
Wx is the image of Vx under the restriction G→ G′.

Now for real x we still have the equivalence:

σ ∈ Vx ⇐⇒ i(σ) ≥ x+ 1.

The real function

x 7→ #(Vx)

#(V0)

is a step function with value f
(E)
F for x ≤ −1. For m ∈ N the value on the interval

(m− 1,m) is 1/(V0 : Vm). It has a jump in m exactly when Vm+1 ̸= Vm.
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17.5 Definition. The function φ = φG : R→ R is defined by

φ(x) =

∫ x

0

#(Vy) dy

#(V0)
.

The graph of this function connects the points

(−1,−1), (0, 0),
(
1,

#(V1)

#(V0)

)
, . . . ,

(
m,

∑m
k=1 #(Vk)

#(V0)

)
, . . .

with straight lines and for x < −1 it has a slope f
(E)
F . In other words, it is the real

function φ with φ(x) = f
(E)
F · (x+ 1)− 1 for x ≤ −1, φ(x) = x for x ∈ [−1, 0] and

for x ∈ [m,m+ 1] with m ∈ N:

φ(x) =
1

#(V0)
(#(V1) + · · ·+#(Vm) + (x−m) ·#(Vm+1)),

where for m = 0 this means φ(x) =
#(V1)

#(V0)
x. Obviously it is a continuous func-

tion. On the interval (m,m + 1) the derivative is
#(Vm+1)

#(V0)
. So in m ∈ N the

left derivative φ′
l takes the value

#(Vm)

#(V0)
and for the right derivative we have

φ′
r(m) =

#(Vm+1)

#(V0)
. The function φ is strictly increasing and piecewise linear with

only finitely many breaks: it has a break in x if the left derivative φ′
l(x) differs

from the right derivative φ′
r(x). If the function has a break in x, the x is said to be

a break point of the function. The break points are the m ∈ N with Vm+1 ̸= Vm.
The map φ is a homeomorphism from R to itself.

Using the function φ Lemma 17.3 can be reformulated as follows:

i(σ′) = φH(iHG (σ)− 1) + 1, for σ ∈ G such that σ|L′ = σ′.

By this identity the ramification groups in G′ are related to the images of the
ramification groups in G:

17.6 Proposition. Wx = V ′
φH(x) for all x ∈ R.

Proof. Let σ′ ∈ G′ and σ ∈ G such that σ|L′ = σ. Then for all x ∈ R:

σ′ ∈ V ′
φH(x) ⇐⇒ i(σ′) ≥ φH(x) + 1 ⇐⇒ φH(iHG (σ)− 1) ≥ φH(x)

⇐⇒ iHG (σ)− 1 ≥ x ⇐⇒ σ ∈ VxH ⇐⇒ σ′ ∈Wx.

The inverse of the homeomorphism φ will be frequently used. Therefore, a special
notation is introduced:
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17 Conductor and Discriminant

17.7 Notation. The homeomorphism ψ = ψG : R→ R is the inverse of φG.

Obviously, the function ψ is continuous, piecewise linear, strictly increasing and

convex. For m ∈ Z its derivative on the interval (φ(m), φ(m+1)) is
#(V0)

#(Vm)
, which

is an integer ≥ 1 for m ≥ −1. For the left and the right derivative of ψ in φ(m)
we have

ψ′
l(φ(m)) =

#(V0)

#(Vm)
ψ′
r(φ(m)) =

#(V0)

#(Vm+1)
.

Their quotient
ψ′

r(φ(m))
ψ′

l(φ(m)) is an integer:

ψ′
r/l(φ(m)) :=

ψ′
r(φ(m))

ψ′
l(φ(m))

=
#(Vm)

#(Vm+1)
∈ N∗.

The function ψ has a break in x if ψr/l(x) ̸= 1. It has a break in x if and only if
φ has a break in ψ(x), that is if x = φ(m) for some break point m of φ. So there
can only be a break in x if x ∈ φ(N). Moreover, we have:

17.8 Lemma. Let v ∈ N. Then ψ(v) ∈ N.

Proof. Take m = ⌊ψ(v)⌋. Then ψ(v) ∈ [m,m+ 1] and

v ·#(V0) = φ(ψ(v)) ·#(V0) = #(V1) + · · ·+#(Vm) + (ψ(v)−m) ·#(Vm+1).

Because Vm+1 is a subgroup of each of the groups V0, . . . , Vm, it follows that
#(Vm+1) | #(Vi) for i = 0, . . . ,m. So ψ(v)−m ∈ Z and therefore, ψ(v) ∈ Z.

Using ψ, Proposition 17.6 can be reformulated as

V ′
x =WψH(x) for all x ∈ R.

17.9 Proposition. For all x ∈ R we have

φG(x) = φG′(φH(x)) and ψG(x) = ψH(ψG′(x)).

Proof. The second identity follows from the first. The functions φG and φG′φH
both are continuous and piecewise linear. They are not differentiable in only finitely
many real numbers. Let x ∈ R such that both functions are differentiable. Then

d

dx
(φG′φH)(x) = φ′

G′(φH(x))φ′
H(x) =

#(V ′
φH(x))

#(V ′
0)

· #(V ′′
x )

#(V ′′
0 )

=
#(VxH)

#(V0H)
· #(Vx ∩H)

#(V0 ∩H)
=

#(Vx)

#(V0)
= φ′

G(x).

Because the functions are continuous at the finitely many points they are not
differentiable, they are equal.
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17.1 Ramification groups of a subextension

For the ramification groups we now introduce upper indices:

17.10 Definition. For x ∈ R:

V
(E,x)
F = V

(E)
F,ψG(x).

These upper indices are compatible with the passage from an extension to a subex-
tension:

17.11 Theorem. The restriction G→ G′ induces for all x ∈ R an isomorphism

V
(E,x)
F H/H

∼→ V
(E′,x)
F .

Proof. By Proposition 17.9 we have

V
(E′,x)
F = V

(E′)
F,ψG′ (x)

=WψH(ψG′ (x)) =WψG(x).

Hence V
(E′,x)
F is the image of V

(E)
F,ψG(x) = V

(E,x)
F .

17.12 Example. Let m ∈ Z be squarefree and ≡ 2 (mod 4). Then 2 ramifies in the
quadratic number field Q(

√
m). The local field E = Q2(

√
m) is of degree 2 over

F = Q2 and OE = Z2[
√
m]. Let σ be the generator of Gal(E : F ). Then

i(σ) = vE(σ(
√
m)−

√
m) = vE(−2

√
m) = 3.

So #(Vi) = 2 for i ≤ 2 and Vi is trivial for i ≥ 3. We have

φ(x) =

{
x if x ≤ 2,
1
2x+ 1 if x ≥ 2

and ψ(x) =

{
x if x ≤ 2,

2x− 2 if x ≥ 2.

Both functions have a break in x = 2. (For m ≡ 3 (mod 4) the break is in x = 1.)

17.13 Example. The prime 2 totally ramifies in K = Q(
√
2,
√
3). See Exam-

ple 5.24. Put E = Q2(
√
2,
√
3) and α =

√
2+

√
6

2 . Then α + 1 is a uniformizer of
vE and OE = Z2[α+ 1] = Z2[α]. The extension E : Q2 is biquadratic. The Galois
group G is generated by σ and τ given by

σ(
√
2) =

√
2, τ(

√
2) = −

√
2,

σ(
√
3) = −

√
3, τ(

√
3) =

√
3.

We have

i(σ) = vE(σ(α)− α) = vE(−
√
6) = 2,

i(τ) = vE(τ(α)− α) = vE(−2α) = 4,

i(στ) = vE(στ(α)− α) = vE(−
√
2) = 2.
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1 3

1

2

x

φ(x)

1 2

1

3

x

ψ(x)

Figure 17.1: Graphs of the functions φ and ψ for the splitting of 2 in Q(
√
2,
√
3)

So the jumps of #(Vx) are at 1 and 3. We have

V1 = G and V3 = ⟨τ⟩.

The functions φ and ψ are

φ(x) =


x if x ≤ 1,
1
2x+ 1

2 if 1 ≤ x ≤ 3,
1
4x+ 5

4 if x ≥ 3.

ψ(x) =


x if x ≤ 1,

2x− 1 if 1 ≤ x ≤ 2,

4x− 5 if x ≥ 2.

See Figure 17.1. The break points of φ are 1 and 3. The break points of ψ are 1
and 2. The ramification groups with break points as upper index:

V (1) = V1 = G and V (2) = V3 = ⟨τ⟩.

17.14 Example. The same fieldK as in the previous example, but now we consider
the splitting of the prime 3. Put E = Q3(

√
2,
√
3). Then Eσ = Q3(

√
2), Eτ =

Q3(
√
3) and Eστ = Q3(

√
6). The extension Q3(

√
2) : Q3 is unramified and E : Eσ

totally ramifies. So OE = OEσ [
√
3]. The extensions E : Eτ and E : Eστ are

unramified. It follows that i(σ) = vE(σ(
√
3) −

√
3) = vE(−2

√
3) = 1 and i(τ) =

i(στ) = 0. The jumps of #(Vx) are at −1 and 0. The functions φ and ψ are

φ(x) =


2x+ 1 if x ≤ −1,
x if −1 ≤ x ≤ 0,
1
2x if x ≥ 0.

ψ(x) =


1
2x−

1
2 if x ≤ −1,

x if −1 ≤ x ≤ 0,

2x if x ≥ 0.

See Figure 17.2. The functions φ and ψ both have breaks in −1 and 0. We have

V (−1) = V−1 = G and V (0) = V0 = ⟨σ⟩.
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−1 0

−1

x

φ(x)

−1 0

−1

x

ψ(x)

Figure 17.2: Graphs of the functions φ and ψ for the splitting of 3 in Q(
√
2,
√
3)

17.15 Example. Let K = Q( 4
√
2, i). Put α = 4

√
2. The extension K : Q is a Galois

extension with G = Gal(K : Q) ∼= D4, the 4-th dihedral group D4. This group is
generated by automorphisms σ and τ :

σ(α) = iα τ(α) = α

σ(i) = i τ(i) = i.

The field K has five subfields of degree 4:

Kσ2,τ = Q(i,
√
2) = Q(ζ8), Kστ = Q((i+ 1)α) = Q(ζ8α), Kτ = Q(α),

Kσ3τ = Q((i− 1)α) = Q(ζ−1
8 α) and Kσ2τ = Q(iα).

The prime 2 totally ramifies in K = Q( 4
√
2, i) since it ramifies in each of these

subfields. Let p be the unique prime ideal of OK above 2. Both the numerator and
the denominator of β = ζ8+1

α generate the ideal p2. A simple elementary calculation
shows that f(X) = X8−4X6+8X4−4X2+1 is the minimal polynomial of β over
Q. From f(1) = 2 follows that p = (β − 1). Completion at p yields the extension
Q2(α, i) : Q2 of local fields. Put E = Q2(α, i). The element β−1 is a uniformizer of
vE . Since 2 totally ramifies, we have OE = Z2[β−1] = Z2[β]. Hence for generators
of the cyclic subgroups of G we have:

i(σ) = vE(
−ζ8+1
iα − ζ8+1

α ) = vE(
(1−iζ8)(1−i)

iα ) = 2 + 4− 2 = 4,

i(σ2) = vE(
ζ8+1
−α −

ζ8+1
α ) = vE(−2 ζ8+1

α ) = 8 + 2− 2 = 8,

i(τ) = vE(
ζ−1
8 +1
α − ζ8+1

α ) = vE(ζ
−1
8

1−i
α ) = 4− 2 = 2,

i(σ2τ) = vE(
ζ−1
8 +1
−α − ζ8+1

α ) = vE(−α(1 +
√
2)) = 2,
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17 Conductor and Discriminant

i(στ) = vE(
−ζ−1

8 +1
iα − ζ8+1

α ) = vE(
1−i
iα ) = 4− 2 = 2,

i(σ3τ) = vE(
−ζ−1

8 +1
α

ζ8+1
−α −

ζ8+1
α ) = vE(−(i+ 2)α) = 2.

So #(Vx) jumps at 1, 3 and 7. The ramification groups with lower index at these
values:

V1 = G, V3 = ⟨σ⟩ and V7 = ⟨σ2⟩.

The functions φ and ψ:

φ(x) =


x if x ≤ 1,
1
2x+ 1

2 if 1 ≤ x ≤ 3,
1
4x+ 5

4 if 3 ≤ x ≤ 7,
1
8x+ 17

8 if x ≥ 7.

ψ(x) =


x if x ≤ 1,

2x− 1 if 1 ≤ x ≤ 2,

4x− 5 if 2 ≤ x ≤ 3,

8x− 17 if x ≥ 3.

The function ψ has breaks in 1, 2 and 3. The ramification groups with these values
as upper index:

V (1) = V1 = G, V (2) = V3 = ⟨σ⟩ and V (3) = V7 = ⟨σ2⟩.

For any Galois extension of local fields the break points of φ are integers by con-
struction. In the examples given above the break points of ψ are integers as well.
Later we will see that this is the case for any abelian extension (Theorem 17.46,
the Hasse-Arf Theorem). In the last example the Galois group is nonabelian, but
nevertheless the break points of ψ are integral. In the next example the Galois
group is the smallest nonabelian group S3 and the function ψ has a nonintegral
break point.

17.16 Example. Let K = Q( 3
√
2, ζ3). Put α = 3

√
2. Many computations in this

field have been done in Example 7.17. We use the same notations. The prime 3
totally ramifies in K. The prime ideal p of OK above 3 is a principal ideal: p = (δ),
where δ = 1+2ζ3

α+1 . Completion at p yields the extension Q3(α, ζ3) : Q3 of local fields.
Put E = Q3(α, ζ3). The element δ is a uniformizer of vE . We have OE = Z3[δ].
For generators of cyclic subgroups of G = Gal(E : Q3) we have:

i(σ) = vE(
1+2ζ3
ζ3α+1 −

1+2ζ3
α+1 ) = vE(

(1+2ζ3)α(1−ζ3)
(ζ3α+1)(α+1) ) = 3 + 3− 2− 2 = 2,

i(τ) = vE(
1+2ζ23
α+1 −

1+2ζ3
α+1 ) = vE(

2ζ3(ζ−1)
α+1 ) = 3− 2 = 1,

i(στ) = vE(
1+2ζ23
ζ3α+1 −

1+2ζ3
α+1 ) = vE(

(1−ζ3)(α−2ζ3)
(α+1)(ζ3α+1) ) = 3 + 2− 2− 2 = 1,

i(σ2τ) = vE(
1+2ζ23
ζ23α+1

− 1+2ζ3
α+1 ) = vE(

(1−ζ3)(α−2ζ3)
(α+1)(ζ23α+1)

) = 3 + 2− 2− 2 = 1.

The last three outcomes just verify what we already know: in a quadratic extension
the prime tamely ramifies. So #(Vx) jumps at 0 and 1. We have V0 = G and
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0

1
2

1 x

φ(x)

0 1
2 1

x

ψ(x)

Figure 17.3: The graphs of the functions φ and ψ for the splitting of 3 in Q( 3
√
2, ζ3)

V1 = ⟨σ⟩. The functions φ and ψ:

φ(x) =


x if x ≤ 0,
1
2x if 0 ≤ x ≤ 1,
1
6x+ 1

3 if x ≥ 1.

ψ(x) =


x if x ≤ 0,

2x if 0 ≤ x ≤ 1
2 ,

6x− 2 if x ≥ 1
2 .

See Figure 17.3. The function ψ breaks at 0 and 1
2 . The ramification groups with

these values as upper index:

V (0) = V0 = G and V ( 1
2 ) = V1 = ⟨σ⟩.

17.17 Example. Let p be an odd prime and r ∈ N∗. In Example 7.64 the ramifi-
cation groups of the prime p in Q(ζpr ) have been computed:

Vj = Gal(Q(ζpr ) : Q(ζpm)) if pm−1 ≤ j ≤ pm − 1.

The jumps in the descending chain of ramification groups are at pm − 1 for m =
0, . . . , r − 1. These groups coincide with the ramification groups of Qp(ζpr ) : Qp.
For m ≥ 1 the slope of φ on [pm−1 − 1, pm − 1] is equal to

#(Vpm−1)

#(V0)
=

pr−m

pr−1(p− 1)
=

1

pm−1(p− 1)
.

So

φ(pm − 1)− φ(pm−1 − 1) =
(pm − 1)− (pm−1 − 1)

pm−1(p− 1)
= 1.

This implies that the function ψ breaks at 0, . . . , r − 1:

V (0) = V0 = G and V (i) = Vpi−1 = Gal(Q(ζpr ) : Q(ζpi)) for i = 1, . . . , r.
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17 Conductor and Discriminant

17.2 The different

In this section the different of a field extension is introduced and for Galois exten-
sions its relation to the ramification groups is studied. The following notations are
used in this section:

R a Dedekind domain,

K the field of fractions of R,

L : K a finite separable field extension,

n the degree of L : K,

S the integral closure of R in L.

In this section both localization and completion occur. In case of localization at a
single maximal ideal p the following notations are used:

R{p} the localization of R at the maximal ideal p,

Kp the completion of K with respect to the discrete valuation vp,

Rp the valuation ring of Kp

and in case of a number field K

K{p} the localization of OK at the maximal ideal p, so K{p} = (OK){p}.

All residue fields R/p, where p ∈ Max(OR) are assumed to be finite. In section 1.5
we considered the nondegenerate symmetric bilinear map

L× L→ K, (α, β) 7→ TrLK(αβ).

17.18 Definition. Let a ∈ I(L). Then

∗a = {β ∈ L | TrLK(βa) ⊆ R }

is called the dual of a with respect to R.

17.19 Lemma. The dual of a fractional ideal is a fractional ideal.

Proof. Let a ∈ I(L). Clearly, ∗a is an S-submodule of L. So it suffices to show
that there is an α ∈ L∗ such that α · ∗a ⊆ S. Let α1, . . . , αn ∈ S be a K-basis of L
and d = disc(α1, . . . , αn) = det(TrLK(αiαj)). Let β ∈ ∗a, say β = b1α1+ · · ·+ bnαn
with b1, . . . , bn ∈ K. Take a nonzero a ∈ a∩R. Let β1, . . . , βn be the dual basis of
α1, . . . , αn. For aβ we have

aβ = TrLK(aβα1)β1 + · · ·+TrLK(aβαn)βn

448



17.2 The different

and for j = 1, . . . , n

TrLK(aβαj) =

n∑
i=1

TrLK(abiαiαj).

In matrix notation:

(TrLK(αiαj))

ab1...
abn

 =

TrLK(aβα1)
...

TrLK(aβαn)

 .

Because aβ, αj ∈ S, we have TrLK(aβαj) ∈ R and so dabj ∈ R for j = 1, . . . , n. It
follows that daβ ∈ S. Hence da · ∗a ⊆ S.

17.20 Definition. The dual of S with respect to R is called the complementary
fractional ideal of S over K. Note that the ring S is determined by R and L. This
is reflected in the notation for the complementary fractional ideal:

cR(L) =
∗S.

Its inverse in the group I(L) is called the different of L over R. Notation:

∂R(L) = (cR(L))
−1.

For a number field extension L : K we define the different of L over K to be the
different of L over OK :

∂K(L) = ∂OK
(L).

Note that, since cR(L) is a fractional ideal of S, we have TrLK(cR(L)) =
TrLK(cR(L)S) ⊆ R.

17.21 Lemma. The different of L over R is an ideal of S.

Proof. Clearly S ⊆ cR(L): for all α ∈ S we have αS ⊆ S and so TrLK(αS) ⊆ R.
Hence, ∂R(L) ⊆ S−1 = S.

The different under localization:

17.22 Proposition. Let P be a collection of maximal ideals of R and Q the collec-
tion of maximal ideals of S above P . Then

∂RP
(L) = ∂R(L)SQ.

Proof. We prove that cRP
(L) = cR(L)SQ.
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17 Conductor and Discriminant

⊇: Let α ∈ cR(L), p ∈ P and β ∈ SQ. Choose t ∈ R such that vp(t) = 0 and

tβ ∈ S. Then tTrLK(αβ) = TrLK(αtβ) ⊆ R and vp(Tr
L
K(αβ)) = vp(Tr(αtβ)).

Hence, TrLK(αSQ) ⊆ R{p}. It follows that

TrLK(αSQ) ⊆
⋂
p∈P

R{p} = RP

and so cR(L) ⊆ cRP
(L)SQ and for the fractional SQ-ideal cR(L)SQ we have

cRP
(L) ⊆ cR(L)SQ.

⊆: Let α ∈ cRP
(L). By Proposition 6.25

α ∈ cR(L)SQ ⇐⇒ vq(α) ≥ vq(cR(L)) for all q ∈ Q.

Let q ∈ Q and q∩K = p. Choose t ∈ R such that vp(t) = 0 and tα ∈ S. Then
TrLK(tαS) ⊆ TrLK(S) ⊆ R. So tα ∈ cR(L) and, therefore, vq(tα) ≥ vq(cR(L)).
Because t /∈ q, we have vq(α) ≥ vq(cR(L)).

The different is an ideal of S. Its norm in K is the discriminant. More precisely:

17.23 Theorem. dR(L) = NLK(∂R(L)).

Proof. The Propositions 7.23 and 17.22 allow us to localize: let p ∈ Max(R)
and Q = { q ∈ Max(S) | vq(pS) > 0 }. Set p′ = pR{p} and q′ = qSQ. Then

vp(dR(L)) = vp′(dR{p}(L)) and vq(∂K(S)) = vq′(∂R{p}(L)).

We may assume that R is a discrete valuation ring. Then S is a free R-module
of rank n, say S = Rα1 + · · · + Rαn. Thus dR(L) = discK(α1, . . . , αn)R. Let
(β1, . . . , βn) be the dual basis of the basis (α1, . . . , αn). We have for γ ∈ L:

γ ∈ cR(L) ⇐⇒ TrSR(γS) ⊆ R
⇐⇒ Tr(γαi) ∈ R for i = 1, . . . , n

⇐⇒ γ ∈ Rβ1 + · · ·+Rβn.

So cR(L) = Rβ1 + · · · + Rβn. The R-module cR(L) is a fractional ideal of S. By
Proposition 2.21 the ring S is a principal ideal domain, so there is a γ ∈ L∗ such
that cR(L) = Sγ. We have

discK(β1, . . . , βn)R = discK(γα1, . . . , γαn)R = NLK(γ)2 discK(α1, . . . , αn)R

= NLK(γ)2dR(L) = NLK(cR(L))
2dR(L).

The different ∂R(L) is the inverse of cR(L), so

discR(β1, . . . , βn)N
L
K(∂R(L))

2 = dR(L).

By Proposition 1.32 we have discK(β1, . . . , βn) = discK(α1, . . . , αn)
−1. Hence

NLK(∂R(L))
2 = dR(L) discK(α1, . . . , αn) = dR(L)

2.
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So the prime ideals of S which divide the different ∂R(L) all lie above ramify-
ing prime ideals of K. They are in fact all over K ramified prime ideals (Theo-
rem 17.26).

The different under completion:

17.24 Proposition. Let q ∈ Max(S) and p = q ∩K. Then

∂Rp
(Lq) = ∂R(L)Sq.

Proof. We will prove that cRp
(Lq) = cR(L)Sq. By Proposition 17.22 we may

assume that R is a discrete valuation ring.

⊇: Let α ∈ cR(L), β ∈ Sq and Q the set of prime ideals of S above p. Put
nq′ = max(−vq′(α), 0) for all q′ ∈ Q. Choose γ ∈ S such that

γ ≡

{
β (mod q̂nq)

0 (mod(q′)nq′ ) for q′ ∈ Q \ {q}.

By Corollary 10.47

TrLK(αγ) = Trqp(αγ) +
∑

q′∈Q\{q}

Trq
′

p (αγ).

From γ ∈ S and α ∈ cR(L) follows that TrLK(αγ) ∈ R ⊆ Rp. For q′ ∈
Q \ {q} we have vq′(αγ) = vq′(α) + vq′(γ) ≥ 0. So γα ∈ Sq′ and therefore,

Trq
′

p (αγ) ∈ Rp. By the above formula for the traces we have Trqp(αγ) ∈ Rp.
From vq(β − γ) ≥ nq follows that vq(αβ − αγ) ≥ nq + vq(α) ≥ 0. So

Trqp(αβ) = Trqp(αγ) + Trqp(αβ − αγ) ∈ Rp.

It follows that Trqp(αSq) ⊆ Rp, that is α ∈ cRp
(Lq).

⊆: Let α ∈ cRp
(Lq). Put m = max(0, vq(cR(L))). Choose β ∈ L such that

vq(β − α) ≥ m and vq′ ≥ 0 for all q′ ∈ Q \ {q}.

Let γ ∈ S. Then Trqp(βγ) = Trqp(βγ−αγ)+Trqp(αγ) ∈ Rp and Trq
′

p (βγ) ∈ Rp

for q′ ∈ Q \ {q}. So again by the formula in Corollary 10.47: TrLK(βγ) ∈
Rp ∩ K = R. Hence β ∈ cR(L). Because vq(β − α) ≥ vq(cR(L)), we have
α ∈ cR(L)Sq.

So the different is the product of the local differents, more precisely:

17.25 Corollary. ∂R(L) =
∏

q∈Max(S)

∂Rq∩K
(Lq) ∩ S.
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17 Conductor and Discriminant

Proof. For q ∈ Max(S), put vq(∂R(L)) = kq and p = q ∩K. Then by Proposi-
tion 17.24 ∂Rp

(Lq) = q̂kq and ∂Rp
(Lq) ∩ S = qkq .

17.26 Theorem. For all q ∈ Max(OL) we have

q is ramified over K ⇐⇒ q | ∂R(L).

Proof. Let q ∈ Max(OL) and q ∩ K = p. Then by Propositions 17.24 and
Theorem 17.23:

vp(dRp
(Lq)) = vp(N

Lq

Kp
(∂Rp

(Lq))) = fKp
(qSq) · vq(∂Rp

(Lq))

= fKp
(qSq) · vq(∂R(L)).

As far as the prime divisors of the different and of the discriminant are concerned,
the discriminant contains less information than the different. The different tells us
which prime ideals are ramified over the base field, whereas the discriminant only
tells us over which prime ideals of the base field they lie.

For a tower of extensions:

17.27 Proposition. Let M : L be a separable field extension and T the integral
closure of R in M . Then

∂R(M) = ∂S(M)∂R(L).

Proof. We prove that cR(M) = cS(M)cR(L).

⊇:

TrMK (cS(M)cR(L)) = TrML TrLK(cS(M)cR(L)) = TrLK(cR(L)Tr
M
L (cS(M)))

⊆ TrLK(cR(L)S) ⊆ R.

Hence, cS(M)cR(L) ⊆ cR(M).

⊆: From TrLKTrML (cR(M))) = TrMK (cR(M)) ⊆ R follows that TrML (cR(M)) ⊆
cR(L). So

TrML ((cR(L))
−1cR(M)) = (cR(L))

−1TrML (cR(M)) ⊆ S.

Therefore, (cR(L))
−1cR(M) ⊆ cS(M), that is cR(M) ⊆ cS(M)cR(L).

For number field extensions this formula reads as

∂K(M) = ∂L(M)∂K(L).

As a consequence we obtain a formula for the discriminant for a tower of extensions.
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17.2 The different

17.28 Theorem. Let M : L be a finite separable field extension and T the integral
closure of R in M . Then

dR(M) = (dR(L))
[M :L] ·NLK(dS(M)).

Proof. By Proposition 17.25 ∂R(M) = ∂S(M)∂R(L) = ∂S(M) · ∂R(M)T . Ap-
plication of NMK yields by Theorem 17.23:

dR(M) = NMK (∂R(M)) = NLKNML (∂S(M)) ·NLKNML (∂R(L)T )

= NLK(dS(M)) ·NLK((∂R(L))
[M :L]) = NLK(dS(M)) · (dR(L))[M :L].

For number field extensions:

dK(M) = (dK(L))[M :L] ·NLK(dL(M)).

For discriminants of extensions L : K the discriminants of K-bases of L are of
importance. Likewise, for differents we have differents of elements.

17.29 Definition. Let α ∈ L and let f be the characteristic polynomial of α over
K. The different ∂LK(α) of α over K is defined by

∂LK(α) = f ′(α).

If α is not a primitive element of the extension, say [L : K(α)] = m > 1, then the
roots of f have multiplicity m and, therefore, f ′(α) = 0. Furthermore, if α ∈ S,
then f ∈ R[X] and f ′(α) ∈ S.

A special case, particularly interesting in case of extensions of local fields:

17.30 Proposition. If there is an α ∈ L such that S = R[α], then ∂K(S) =
(∂LK(α)).

Proof. Let f(X) = Xn + an−1X
n−1 + · · ·+ a0 be the characteristic polynomial

of α over K. Put

f(X)

X − α
= βn−1X

n−1 + βn−2X
n−2 + · · ·+ β0 = g(X) ∈ S[X].

Let α1, . . . , αn be the roots of f in a splitting field of f over L. Let’s assume
α = α1. For each 0 ≤ i ≤ n− 1 there is a unique polynomial h (over the splitting
field of f over L) of degree ≤ n − 1 such that h(αj) = αij for j = 0, . . . , n − 1. It

obviously is the polynomial Xi and Lagrange’s interpolation formula yields

n∑
j=1

αijf(X)

f ′(αj)(X − αj)
= Xi.
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17 Conductor and Discriminant

Since β0, . . . , βn−1 ∈ L, we can rewrite this as

n−1∑
j=1

TrLK

(
αi

βj
f ′(α)

)
Xj = Xi.

Hence

TrLK

(
αi

βj
f ′(α)

)
= δij

and this means that
β0
f ′(α)

, . . . ,
βn−1

f ′(α)

is the dual basis of 1, α, . . . , αn−1. Let γ ∈ L. Then

γ = TrLK(γ)
β0
f ′(α)

+ · · ·+TrLK(γαn−1)
βn−1

f ′(α)
,

Because S = R[α], we have γ ∈ cR(L) if and only if TrLK(γαi) ∈ R for i =
0, . . . , n− 1. This means that

cR(L) = R
β0
f ′(α)

+ · · ·+R
βn−1

f ′(α)
.

From f(X) = (X − α)g(X) follows

βn−1 = 1

βn−2 − αβn−1 = an−1

...

β0 − αβ1 = a1

and this leads to

βn−1 = 1

βn−2 = α+ an−1

βn−3 = α2 + an−1α

...

β0 = αn−1 + an−1α
n−2 + · · ·+ a1.

It follows that R[α] = Rβ0 + · · · + Rβn−1. Hence cR(L) = 1
f ′(α)S, and thus

∂R(L) = f ′(α)S.

Since the different is the product of the local differents and our main interest is
the case of a number field extension, we will now consider local field extensions. It
turns out that the different is completely determined by the ramification groups of
the extension (Theorem 17.34).
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17.2 The different

17.31 Definition and notation. Let E : F be an extension of local fields. The
different ∂F (E) of E over F is defined to be the different of OE over F :

∂F (E) = ∂OF
(E).

It is, as an ideal of OE , a power of the maximal ideal pE .

17.32 Proposition. Let E : F be an extension of local fields. There exists a γ ∈ OE
such that OE = OF [γ]. Let f be the minimal polynomial of γ over F . Then
∂F (E) = (f ′(γ)).

Proof. The existence of γ is Proposition 11.15 and the formula ∂F (E) = (f ′(γ))
follows from Proposition 17.30.

17.33 Definition and notation. Let E : F be a Galois extension of local fields.
The i-th ramification group of E : F is the i-th ramification group of pF in E and
is denoted by VF,i(E), that is

VF,i(E) = VF,i(pE).

17.34 Theorem. Let E : F be a Galois extension of local fields and Vi the i-th
ramification group of E over F : Vi = VF,i(E). Then

vE(∂F (E)) =

∞∑
i=0

(#(Vi)− 1).

Proof. Let γ and f be as in Proposition 17.32 and put G = Gal(E : F ). Then
by Proposition 17.32 we have ∂F (E) = (f ′(γ)). Choose t ∈ N such that Vt = {1}.
From

f ′(γ) =
∏
σ∈G
σ ̸=1

(σ(γ)− γ)

and
σ ∈ Vi \ Vi+1 ⇐⇒ vE(σ(γ)− γ) = i+ 1

then follows

vE(∂F (E)) = vE(f
′(γ)) =

∑
σ ̸=1

vE(σ(γ)− γ) =
∞∑
i=0

∑
σ∈Vi\Vi+1

vE(σ(γ)− γ)

=

∞∑
i=0

∑
σ∈Vi\Vi+1

(i+ 1) =

∞∑
i=0

(i+ 1)(#(Vi)−#(Vi+1))

=

t∑
i=0

(i+ 1)#(Vi)−
t∑
i=0

(i+ 1)#(Vi+1) =

t∑
i=0

(i+ 1)#(Vi)−
t+1∑
i=1

i#(Vi)
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17 Conductor and Discriminant

= #(V0)− (t+ 1)#(Vt+1) +

t∑
i=1

#(Vi) = #(V0)− 1− t+
t∑
i=1

#(Vi)

=

t∑
i=0

(#(Vi)− 1).

For a number field extension we obtain:

17.35 Corollary. Let L : K be a Galois extension of number fields and q ∈
Max(OL). Then

vq(∂K(L)) =

∞∑
i=0

(#(VK,i(q))− 1).

Proof. Let p = q∩K and choose Kp to be a subfield of Lq. Then restriction of
automorphisms yields an isomorphism

Gal(Lq : Kp)
∼−→ ZK(q)

and for each i ∈ N an isomorphism

VKp,i(q̂)
∼−→ VK,i(q).

So

vq(∂K(L)) = vq(∂Kp,i(Lq)) =

∞∑
i=0

(#(VKp,i(q̂))− 1) =

∞∑
i=0

(#(VK,i(q))− 1).

17.36 Example. Let’s verify the formula of the last theorem for (the completion
of) the extension Q( 4

√
2, i) : Q considered in Example 17.15. We will use the same

notations. The minimal polynomial of β ∈ OL over Q is f(X) = X8−4X6+8X4−
4X2+1 and β− 1 generates the prime ideal p above 2. Since only 2 ramifies in K,
the discriminant of K : Q is a power of 2. Moreover, since 2 totally ramifies, one
has OK = Z[β − 1] = Z[β]. So

disc(K) = NKQ (f ′(β)) = NKQ (8β7 − 24β5 + 32β3 − 8β)

= 224NKQ (β6 − 3β4 + 4β2 − 1) = 224u,

where u is odd, since β6− 3β4 +4β2− 1 /∈ p = (β − 1). In fact, u = 1 as remarked
before. From Theorem 17.34 it follows that the p-valuation of ∂Z(K) is equal to
2(8− 1) + 2(4− 1) + 4(2− 1) = 24 and this is the 2-valuation of disc(K) as well.

Theorem 17.34 relates the different to the orders of the ramification groups given
by lower indices. In case the function ψ has only breaks at integral arguments
we obtain by grouping lower indices a formula in terms of orders of ramification
groups given by upper indices.
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17.3 Local Artin maps and ramification groups

17.37 Theorem. Let E : F be a Galois extension of local fields with Galois group
G. Suppose that the function ψG has only breaks at integral arguments. Then

vE(∂F (E)) = e
(E)
F

∞∑
i=0

(
1− 1

#(V
(i)
F (E))

)
.

Proof. Put Vi = VF,i(E) and V (i) = V
(i)
F (E). By assumption the function

ψ = ψG has no breaks between integers i − 1 and i. This means the function
φ = φG has no breaks between ψ(i − 1) and ψ(i). Start with the formula of
Theorem 17.34:

vE(∂F (E)) =

∞∑
i=0

(#(Vi)− 1) =

∞∑
i=0

ψ(i)∑
j=ψ(i−1)+1

(#(Vj)− 1)

=

∞∑
i=0

ψ(i)∑
j=ψ(i−1)+1

(#(Vψ(i))− 1)

=

∞∑
i=0

(ψ(i)− ψ(i− 1))(#(Vψ(i))− 1)

=

∞∑
i=0

ψ′
l(i)(#(Vψ(i))− 1) =

∞∑
i=0

1

φ′
l(ψ(i))

(#(Vψ(i))− 1)

=

∞∑
i=0

#(V0)

#(Vψ(i))
(#(Vψ(i))− 1) = e

(E)
F

∞∑
i=0

(
1− 1

#(V (i))

)
.

17.3 Local Artin maps and ramification groups

Let E : F be an abelian extension of local fields of characteristic 0, G = Gal(E : F )

and n = [E : F ]. By local Artin reciprocity the local Artin map ϑ
(E)
F : F ∗ → G

induces an isomorphism

ϑ
(E)
F : F ∗/NEF (E

∗)
∼→ G.

17.38 Notation. In 16.16 the notation U
(i)
F was introduced for F a local field and

i ∈ N. Now we also allow i = −1 in this notation by putting

U
(−1)
F = F ∗.
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17 Conductor and Discriminant

The groups U
(i)
F form a descending chain of subgroups of F ∗:

U
(−1)
F ⊵ U

(0)
F ⊵ · · · ⊵ U

(i)
F ⊵ · · ·

∥
F ∗

Taking products with the subgroup NEF (E
∗) yields the descending chain

NEF (E
∗)U

(−1)
F ⊵ NEF (E

∗)U
(0)
F ⊵ · · · ⊵ NEF (E

∗)U
(i)
F ⊵ · · ·

∥
F ∗

Let j be the least integer such that U
(j)
F ⊆ NEF (E

∗). Then the conductor fF (E)

of E : F equals pjF . So NEF (E
∗)U

(i)
F = NEF (E

∗) if and only if i ≥ j. By setting

W
(i)
F (E) = ϑ

(E)
F (NEF (E

∗)U
(i)
F ) = ϑ

(E)
F (U

(i)
F ), we obtain a corresponding descending

chain of subgroups of the Galois group:

W
(−1)
F (E) ⊵ W

(0)
F (E) ⊵ · · · ⊵ W

(i)
F (E) ⊵ · · ·

∥
G

and we have W
(i)
F (E) = {1} if and only if i ≥ j.

17.39 Example. Let p be an odd prime and r ∈ N∗. The cyclotomic field Q(ζpr )
is as an abelian field the class field of Dpr and in the general class field theory it is
the class field of H(p)r∞(Q). In the first sense its conductor is pr and in the second
it is (p)r∞. Its local conductor at the prime p is the ideal (p)r of Z. This implies
that the conductor of Qp(ζpr ) : Qp is the ideal (p)r of Zp. Put E = Qp(ζpr ). Since
p is the norm of 1− ζpr we have

NEQp
(E∗) = U

(pr)
Qp
· ⟨p⟩ = (1 + (p)r) · ⟨p⟩.

It follows with Example 17.17 that W
(i)
Qp

(E) = V
(i)
Qp

(E) for i = 0, . . . , r.

The main result in this section is that in general W
(i)
F (E) = V

(i)
F (E) for all i ≥ −1.

This is Theorem 17.48. For its proof a detailed study of the function ψ is needed,
to start with cyclic extensions of prime degree. This is done in a series of lemmas.

17.40 Lemma. Let E : F be cyclic of prime degree l, s ∈ N∗ and γ ∈ E such that
vE(γ) ≥ s. Then

NEF (1 + γ) ≡ 1 + TrEF (γ) + NEF (γ) (mod TrEF (p
2s
E )).
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Proof. The norm of 1+ γ is the product over its conjugates and we expand this
product:

NEF (1 + γ) =
∏
τ∈G

(1 + τ(γ)) =
∑
I

∏
τ∈I

τ(γ) =
∑
I

(∑
τ∈I

τ
)
· γ =

∑
I

βI ,

where the sum is taken over all subsets I of G and βI = (
∑
τ∈I τ) · γ. The group

G operates on the set of subsets of G by σI = {στ | τ ∈ I }. Only ∅ and G are
fixed under this operation: β∅ = γ and βG = NG · γ = NEF (γ). The other subsets
are in orbits of length l. For a proper nonempty subset I we have∑

σ∈G
βσI =

∑
σ∈G

βσI =
∑
σ∈G

(∑
τ∈I

στ
)
· γ =

∑
σ∈G

∏
τ∈I

στ(γ)

=
∑
σ∈G

σ
(∏
τ∈I

τ(γ)
)
= TrEF

(∏
τ∈I

τ(γ)
)
.

In particular for the orbit of one element sets we have∑
σ∈G

βσ = TrEF (γ).

For 1 < #(I) < l:

vE

(
TrEF

(∏
τ∈I

τ(γ)
))
≥ vE

(
TrEF (p

2s
E )
)
.

Hence
NEF (1 + γ) ≡ 1 + TrEF (γ) + NEF (γ) (mod TrEF (p

2s
E )).

17.41 Lemma. Let E : F be ramified and cyclic of prime degree l, s ∈ N∗ and
m = vE(∂F (E)). Then

vF (Tr
E
F (p

s
E)) =

⌊
m+ s

l

⌋
.

Proof. For t ∈ N we have

TrEF (p
s
E) ⊆ ptF ⇐⇒ p−tF TrEF (p

s
E) ⊆ OF ⇐⇒ Tr(p−tF psE) ⊆ OF

⇐⇒ p−lt+sE ⊆ cF (E) ⇐⇒ ∂F (E) ⊆ plt−sE ⇐⇒ m ≥ lt− s

⇐⇒ t ≤ m+ s

l
.

This proves the lemma.

For E : F a cyclic extension of prime degree l and Galois group G, let t be the
unique jump in the chain of ramification groups:

G = VF,−1(E) = VF,0(E) = · · · = VF,t(E)
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0

−1

−1
x

φ(x)

0

2

2 x

ψ(x)

Figure 17.4: The functions φ and ψ for a cyclic extension of degree 3 with breaks
respectively −1 and 2

{1} = VF,t+1(E) = VF,t+2(E) = · · · .

Then by Theorem 17.34 vE(∂F (E)) =
∑t
i=0(l − 1) = (t+ 1)(l − 1).

17.42 Lemma. Let E : F be cyclic of prime degree l with Galois group G. If
t = −1, that is E : F is unramified, then

ψ(x) =

{
1
l (x+ 1)− 1 if x ≤ −1,
x if x ≥ −1.

If t ≥ 0, then

ψ(x) =

{
x if x ≤ t,
l(x− t) + t if x ≥ t.

Proof. Put Vi = VF,i(E). By Definition 17.5 we have for t = −1

φ(x) =

{
l(x+ 1)− 1 if x ≤ −1,
x if x ≥ −1.

and for t ≥ 0

φ(x) =

{
x if x ≤ t,
1
l (x− t) + t if x ≥ t.

See Figure 17.4. The function ψ is the inverse function of φ.

The function ψ has one break, namely for x = t:

ψr/l(t) =
#(Vt)

#(Vt+1)
= l.
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17.43 Lemma. Let E : F be cyclic of prime degree l. Then for each integer i ≥ −1:

NEF (U
(ψ(i))
E ) ⊆ U (i)

F and NEF (U
(ψ(i)+1)
E ) ⊆ U (i+1)

F ,

and

(U
(i)
F : U

(i+1)
F NEF (U

(ψ(i))
E )) ≤ ψ′

r/l(i) =

{
1 if i ̸= t,

l if i = t.

Proof. The proof is by distinction of cases.

i = −1: We have ψ(−1) = −1, U (−1)
F = F ∗, U

(0)
F = O∗

F . Obviously, NEF (E
∗) ⊆ F ∗

and NEF (O∗
E) ⊆ O∗

F . Furthermore, by Theorem 12.22

(O∗
F : NEF (E

∗)) = e
(E)
F =

{
1 if t = −1,
l if t ̸= −1.

By Lemma 15.50

O∗
F ⊆ NEF (E

∗) ⇐⇒ t = −1

and, therefore,

(U
(−1)
F : U

(0)
F NEF (U

(0)
E )) = (F ∗ : O∗

FN
E
F (E

∗)) =

{
1 if t ̸= −1,
l if t = −1.

i = 0: We have ψ(0) = 0, U
(0)
F = O∗

F and U
(1)
F = 1+ pF . From pE ∩F = pF follows

that for α ∈ pE we have NEF (1 + α) =
∏
σ∈G σ(1 + α) =

∏
σ∈G(1 + σ(α)) ∈

(1 + pE) ∩ F = 1 + pF and so NEF (1 + pE) ⊆ 1 + pF .

For the computation of the index (O∗
F : (1 + pF )N

E
F (O∗

E)) use:

(O∗
F : (1 + pF )N

E
F (O∗

E)) | (O∗
F : (1 + pF )) = #(k∗F )

(O∗
F : (1 + pF )N

E
F (O∗

E)) | (O∗
F : NEF (O∗

E)) = e
(E)
F

If t = −1, then e(E)
F = 1.

If t ≥ 0, then e
(E)
F = l.

If t > 0, then char(kF ) = l and so l ∤ #(k∗F ).

i > 0:

t = −1: Then ψ(i) = i and ∂F (E) = OE . For all j ∈ N

TrEF (p
i
E) ⊆ pjF ⇐⇒ TrEF (p

i−j
E ) ⊆ cF (E) ⇐⇒ OE ⊆ pj−iE ⇐⇒ j ≤ i
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and so TrEF (p
i
E) = piF . Replacing i by i + 1 and 2i respectively yields

TrEF (p
i+1
E ) = pi+1

F and TrEF (p
2i
E ) = p2iF ⊆ pi+1

F . Moreover, NEF (p
i
E) =

pliF ⊆ pi+1
F . By Lemma 17.40 we have for all γ ∈ piE :

NEF (1 + γ) ≡ 1 + TrEF (γ) (mod pi+1
F ).

So U
(i)
F NEF (U

(i)
E ) ⊆ U

(i+1)
F . On the other hand let β ∈ p

(i+1
F and choose

a γ ∈ p
(i+1)
E such that TrEF (γ) = β. Then

NEF (1 + γ) ≡ 1 + β (mod pi+1
F ),

that is
1 + β

NEF (1 + γ)
∈ U (i+1)

F .

It follows that 1 + β ∈ U (i+1)
F NEF (U

(i)
E ).

t > i: By Lemma 17.42 ψ(i) = i. For γ ∈ piE we have by Lemma 17.40

NEF (1 + γ) ≡ 1 + TrEF (γ) + NEF (γ) (mod TrEF (p
2i
E )).

By Lemma 17.41 vF (Tr
E
F (p

t)) = t and we have (t + 1)(l − 1) + i >
(i+1)(l−1)+i = il+l−1, that is (t+1)(l−1)+i ≥ il+l. Therefore, also
by Lemma 17.41, vF (Tr

E
F (p

i
E)) ≥ i + 1 and, moreover, vF (Tr

E
F (p

2i
E )) ≥

vF (Tr
E
F (p

i
E)) ≥ i+ 1. Hence for γ ∈ piE

NEF (1 + γ) ≡ 1 + NEF (γ) (mod pi+1
F )

and, in particular for γ ∈ piE , respectively γ ∈ pi+1
E :

NEF (1 + γ) ≡ 1 (mod piF ), respectively NEF (1 + γ) ≡ 1 (mod pi+1
F ).

So NEF (U
(i)
E ) ⊆ U

(i)
F , NEF (U

(i+1)
E ) ⊆ U

(i+1)
F and U

(i+1)
F NEF (U

(i)
E ) ⊆ U

(i)
F .

Now let β ∈ piF and choose a γ ∈ piE such that NEF (γ) = β. Then as in

the previous case it follows that 1 + β ∈ U (i+1)
F NEF (U

(i)
E ).

t = i: By Lemma 17.42 we have ψ(t) = t. Since (t+ 1)(l − 1) + t = lt+ l − 1
and ⌊ lt+l−1

l ⌋ = t, we have by Lemma 17.41

TrEF (p
t
E) = ptF .

Similarly TrEF (p
t+1) = pt+1

F and TrEF (p
2t
E ) = p2tF ⊆ pt+1

F . By Lemma 17.40
for all γ ∈ ptE :

NEF (1 + γ) ≡ 1 + TrEF (γ) + NEF (γ) (mod pt+1
F )

and
NEF (1 + γ) ≡ 1 (mod ptF ).
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17.3 Local Artin maps and ramification groups

Moreover, if γ ∈ p
(t+1)
E , then NEF (1 + γ) ≡ 1 (mod pt+1

F ). So NEF induces
a group homomorphism

N: U
(t)
E /U

(t+1)
E → U

(t)
F /U

(t+1)
F .

The cokernel of N is U
(t)
F /U

(t+1)
F NEF (U

(t)
E ). Choose uniformizers πE and

πF of E and F respectively. Then TrEF (π
t
E) = aπtF and NEF (π

t
E) = bπtF ,

where a, b ∈ O∗
F . The residue class field kE is equal to the residue class

field kF . We have isomorphisms

kE = kF
∼→ U

(t)
E /U

(t+1)
E , x 7→ 1 + xπtE

and
kF

∼→ U
(t)
F /U

(t+1)
F , x 7→ 1 + xπtF ,

their domain being the additive group of the residue field. Via these
isomorphisms the homomorphism N translates into a homomorphism
Ñ: kF → kF . For x ∈ OF we have

NEF (1 + xπtE) ≡ 1 + xTrEF (πE) + xlNEF (πE) (mod pt+1
F )

≡ 1 + bxπtF + axlπtF (mod pt+1
F )

≡ 1 + (bx+ axl)πtF (mod pt+1
F ).

So the corresponding homomorphism kF → kF is the map

Ñ: kF → kF , y 7→ by + ayl.

The order of the kernel of Ñ is at most l. So the order of the cokernel
is at most l as well. This proves that

(U
(t)
F : U

(t+1)
F NEF (U

(t)
E )) ≤ l.

t < i: By Lemma 17.42 we have ψ(i) = t+ l(i− t). Since (t+1)(l−1)+ψ(i) =
(t + 1)(l − 1) + t + l(i − t) = li + l − 1 and ⌊ li+l−1

l ⌋ = i, we have by
Lemma 17.41

TrEF (p
ψ(i)
E ) = piF .

Also by Lemma 17.41

TrEF (p
ψ(i)+1
E ) = pi+1

F .

From ψ(i) = t + l(i − t) > t + (i − t) = i follows that NEF (p
ψ(i)
E ) ⊆

NEF (p
i+1
E ) = pi+1

F . Hence by Lemma 17.40 for γ ∈ p
ψ(i)
E :

NEF (1 + γ) ≡ 1 + TrEF (γ) (mod pi+1
F ) and NEF (1 + γ) ≡ 1 (mod piF ).
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17 Conductor and Discriminant

So NEF (U
(ψ(i))
E ) ⊆ U

(i)
F and U

(i+1)
F NEF (U

(ψ(i))
E ) ⊆ U

(i)
F . For the opposite

inclusion let β ∈ piF . There is a γ ∈ p
ψ(i)
E such that TrEF (γ) = β. Then

NEF (1 + γ) ≡ 1 + β (mod pi+1
F )

and it follows that 1 + β ∈ U (i+1)
F NEF (U

(ψ(i))
E ).

We generalize the lemma to the case of a Galois extension of local fields.

17.44 Lemma. Let E : F be a Galois extension of local fields. Then for each
integer i ≥ −1:

NEF (U
(ψ(i))
E ) ⊆ U (i)

F and NEF (U
(ψ(i)+1)
E ) ⊆ U (i+1)

F ,

and
(U

(i)
F : U

(i+1)
F NEF (U

(ψ(i))
E )) ≤ ψ′

r/l(i).

Proof. The proof is by induction on the degree of the extension. For degree
1 it is trivially true and for prime degree it is the previous lemma. Since Galois
groups of local field extensions are solvable, for composite degree there exists an
intermediate field E′ such that E′ : F is a Galois extension and E ̸= E′ ̸= F .
By induction we assume the statements in the theorem to be true for the Galois
extensions E : E′ and E′ : F .

Put G = Gal(E : F ), H = Gal(E : E′) and G′ = Gal(E′ : F ). We will use

NEF = NE
′

F NEE′ and ψG = ψHψG′ (Proposition 17.9).

The verification of the inclusion statements is straightforward:

NEF (U
(ψG(i))
E ) = NEE′NE

′

F (U
(ψHψG′ (i))
E ) ⊆ NEE′(U

(ψG′ )
E′ ) ⊆ U (i)

F ,

NEF (U
(ψG(i)+1)
E ) = NEE′NE

′

F (U
(ψHψG′ (i)+1)
E ) ⊆ NEE′(U

(ψG′+1)
E′ ) ⊆ U (i+1)

F .

For the last statement use the inclusions

NEE′(U
(ψHψG′ (i))
E ) ⊆ UψG′ (i)

E′ and NE
′

F (U
(ψG′ (i)+1)
E′ ) ⊆ U (i+1)

F :

(U
i)
F : U

(i+1)
F NEF (U

(ψG(i))
E )

= (U
(
F i) : U

(i+1)
F NE

′

F (U
ψG′ (i)
E′ )) · (U (i+1)

F NE
′

F (U
ψG′ (i)
E′ ) : U

(i+1)
F NEF (U

(ψG(i))
E ))

≤ ψ′
G′,r/l(i) · (U

(i+1)
F NE

′

F (U
ψG′ (i)
E′ ) : U

(i+1)
F NE

′

F NEE′(U
(ψHψG′ (i))
E )

≤ ψ′
G′,r/l(i) · (U

(i+1)
F NE

′

F (U
ψG′ (i)
E′ ) : U

(i+1)
F NE

′

F (U
(ψG′ (i)+1)
E′ NEE′(U

(ψHψG′ (i))
E ))

≤ ψ′
G′,r/l(i) · (U

(ψG′ (i))
E′ : U

(ψG′ (i)+1)
E′ NEE′(U

(ψHψG′ (i))
E ))
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≤ ψ′
G′,r/l(i) · ψ

′
H,r/l(ψG′(i)) =

ψ′
G′,r(i)

ψ′
G′,l(i)

·
ψ′
H,r(ψG′(i))

ψ′
H,l(ψG′(i))

=
ψ′
G,r(i)

ψ′
G,l(i)

= ψ′
G,r/l(i).

The ψ-functions have only finitely many breaks, so the chain rule for the left and
right derivatives applies.

17.45 Lemma. Let E : F be an abelian extension of local fields. Then for each
integer i ≥ −1:

(U
(i)
F NEF (E

∗) : U
(i+1)
F NEF (E

∗)) = (U
(i)
F : U

(i+1)
F NEF (U

(ψ(i))
E )) = ψ′

r/l(i).

Proof. There is an integer t such that U
(t)
F ⊆ NEF (E

∗) and ψ has no break for
all x ≥ t. Consider the chain

U
(−1)
F NEF (E

∗) ⊵ U
(0)
F NEF (E

∗) ⊵ · · · ⊵ U
(t)
F NEF (E

∗).
|| ||
F ∗ NEF (E

∗)

By Lemma 17.44

(U
(i)
F NEF (E

∗) : U
(i+1)
F NEF (E

∗)) ≤ (U
(i)
F : U

(i+1)
F NEF (U

(ψ(i))
E )) ≤ ψ′

r/l(i). (17.2)

So we have

[E : F ] = (F ∗ : NEF (E
∗)) =

t−1∏
i=−1

(U
(i)
F NEF (E

∗) : U
(i+1)
F NEF (E

∗))

≤
t−1∏
i=−1

ψ′
r/l(i) =

t−1∏
i=−1

ψ′
r(i)

ψ′
l(i)

=
1

ψ′
l(−1)

·
t−1∏
i=0

ψ′
r(i− 1)

ψ′
l(i)

· ψ′
r(t− 1)

≤ f (E)
F e

(E)
F = [E : F ],

where
ψ′

r(i−1)
ψ′

l(i)
≤ 1 because of the function ψ being concave. It follows that the

inequalities in (17.2) are actually equalities.

The proof also shows that ψ′
r(i− 1) = ψ′

l(i) for all integers i. This proves:

17.46 Theorem (Hasse-Arf). Let E : F an abelian extension of local fields. Then
the function ψ = ψG has only breaks at integral arguments.

17.47 Lemma. Let E : F be an abelian extension of local fields. Then for each
integer t ≥ −1:

W
(t)
F = {1} ⇐⇒ V

(t)
F = {1}.
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17 Conductor and Discriminant

Proof. We have:

W
(t)
F = {1} ⇐⇒ U

(t)
F NEF (E

∗) = NEF (E
∗) ⇐⇒ (F ∗ : U

(t)
F NEF (E

∗)) = [E : F ]

⇐⇒
t−1∏
i=−1

(U
(i)
F NEF (E

∗) : U
(i+1)
F NEFN

E
F (E

∗)) = [E : F ]

⇐⇒
t−1∏
i=−1

ψ′
r/l(i) = [E : F ] (Lemma 17.45)

⇐⇒
∞∏
i=t

ψ′
r/l(i) = 1 ⇐⇒ ψ′

r/l(i) = 1 for all integers i ≥ t

⇐⇒ ψ′
r/l(x) = 1 for all x ∈ [t,∞)

⇐⇒ ψ′
r(t) = ψ′

l(t) = #(VF,0(E)) ⇐⇒ VF,ψ(t)(E) = {1}

⇐⇒ V
(t)
F (E) = {1}.

17.48 Theorem. Let E : F be an abelian extension of local fields. Then W
(i)
F (E) =

V
(i)
F (E) for all i ≥ −1.

Proof. Let i be an integer ≥ −1. For each subgroup H of Gal(E : F ):

W
(i)
F (E) ⊆ H ⇐⇒ ϑ

(E)
F (U

(i)
F ) ⊆ H

⇐⇒ ϑ
(EH)
F (U

(i)
F ) = {1}

⇐⇒ W
(i)
F (EH) = {1}

⇐⇒ V
(i)
F (EH) = {1} (Lemma 17.47)

⇐⇒ V
(i)
F (E) ⊆ H.

Therefore, W
(i)
F (E) = V

(i)
F (E).

17.4 The Conductor-Discriminant Formula

17.49 Notations. Let E : F be an abelian extension of local fields and χ ∈
Gal(E : F )

∨
. Then the field Fχ is the intermediate field of E : F corresponding to

the subgroup Ker(χ) of Gal(E : F ):

Fχ = EKer(χ).

The conductor of Fχ : F is denoted by fχ.
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17.50 Theorem (Local Conductor-Discriminant Formula). Let E : F be an
abelian extension of local fields and G = Gal(E : F ). Then

vF (dF (E)) =
∑
χ∈G∨

vF (fχ).

Proof. Let χ ∈ G∨. Then for i ∈ N:

vF (fχ) ≤ i ⇐⇒ U
(i)
F ⊆ N

Fχ

F (Fχ)

⇐⇒ W
(i)
F (Fχ) = {1}

⇐⇒ V
(i)
F (Fχ) = {1} (Lemma 17.47)

⇐⇒ V
(i)
F (E) ⊆ Gal(E : Fχ) (Theorem 17.11)

⇐⇒ V
(i)
F ⊆ Ker(χ).

We have for each i∑
σ∈V (i)

F (E)

χ(σ) =

{
0 if V

(i)
F (Fχ) ̸= {1},

#(V
(i)
F (E)) if V

(i)
F (Fχ) = {1}.

So

vF (fχ) =

vF (fχ)−1∑
i=0

1 =

∞∑
i=0

#(V
(i)
F (E))−

∑
σ∈V (i)

F (E)
χ(σ)

#(V
(i)
F (E))

.

Summation over all χ gives:

∑
χ∈G∨

vF (fχ) =

∞∑
i=0

n#(V
(i)
F (E))−

∑
χ∈G∨

∑
σ∈V (i)

F (E)
χ(σ)

#(V
(i)
F (E))

=

∞∑
i=0

n#(V
(i)
F (E))−

∑
σ∈V (i)

F (E)

∑
χ∈G∨ χ(σ)

#(V
(i)
F (E))

=
∞∑
i=0

n#(V
(i)
F (E))− n

#(V
(i)
F (E))

= n
∞∑
i=0

(
1− 1

#(V
(i)
F (E))

)
.

By Theorem 17.37

vF (dF (E)) = f
(E)
F · vE(∂F (E)) = f

(E)
F e

(E)
F

∞∑
i=0

(
1− 1

#(V
(i)
F (E))

)
.

So for an abelian extension E : F of local fields with Galois group G we obtain

dF (E) =
∏
χ∈G∨

fχ.
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17 Conductor and Discriminant

The discriminant of a number field extension is the product of its local discrimi-
nants. As a consequence we obtain a global formula:

17.51 Theorem (Global Conductor-Discriminant Formula). Let L : K be an
abelian extension of number fields. Then

dK(L) =
∏

χ∈H(L:K)

fχ,0.

where f′χ,0 denotes the finite part of the modulus fχ.

Proof. The identity can be interpreted as an identity of ideals of OK . Let
p ∈ Max(OK). We will show that

vp(dK(L)) =
∑

χ∈H(L:K)

vp(fχ).

Fix a q ∈ Max(OL) above p. PutG = Gal(L : K) and Z = Z
(L)
p . By Theorem 17.28

dK(L) = (dK(LZ))#(Z) ·NL
Z

K (dLZ (L)) = NL
Z

K (dLZ (L)).

So vp(dK(L)) = (G : Z) · vqZ (dLZ (L)). From Theorem 17.50 follows via the dual
Artin isomorphism

vqZ (dLZ (L)) =
∑
χ∈Z∨

vqZ (fχ).

The number of characters of G which coincide on Z is (G : Z). Hence∑
χ∈G∨

vp(fχ) = (G : Z)
∑
χ∈Z∨

vqZ (fχ) = (G : Z)vqZ (dLZ (L)) = vp(dK(L)).

This theorem leads to connections between the discriminant of a noncyclic abelian
extension of number fields and the discriminant of its subextensions. In full gen-
erality this connection is explained in section 18.3. Here is a special case:

17.52 Corollary. Let p be a prime number and L : K an abelian extension of
number fields with an elementary p-group of rank 2 as Galois group. Then

dK(L) =

p+1∏
i=1

dK(Li),

where L1, . . . , Lp+1 are the intermediate fields of degree p over K.

Proof. The group H(L : K) is an elementary p-group of rank 2. The interme-
diate fields of degree p over K correspond subgroups of H(L : K) of order p. The
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Exercises

subsetsH(L : Ki)\{1} form a partition ofH(L : K)\{1}. Hence, by Theorem 17.51
and since f1,0 = (1),

dK(L) =

p+1∏
i=1

∏
χ∈H(Li:K)

fχ,0 =

p+1∏
i=1

dK(Li).

This generalizes the formula obtained in exercise 9 of chapter 1.

Exercises

1. Verify Theorem 17.11 for the three quadratic subfields of the biquadratic field in
Example 17.13

2. In Example 17.17 the ramification groups V (i) for an odd prime p in Q(ζpr ) have
been computed. Compute the different of the extension Qp(ζpr ) : Qp using Theo-
rem 17.37. Compare the answer with the formula of Proposition 1.54.

3. Show that Theorem 7.28 follows from Theorem 17.23 and Theorem 17.26.

4. Show that Proposition 9.91 follows from Theorem 17.51.

5. Show that Proposition 7.30 follows from Theorem 17.23 and Theorem 17.25.

6. Let E : F be an abelian extension of local fields. Prove that E : F is tamely
ramified if an only if fF (E) | pF . (Hint: use Theorem 17.48.)

7. Let L : K be a tamely ramified abelian extension of number fields. Prove that
fK(L) is squarefree, i.e. not divisible by the square of a finite prime of K.
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18 Zeta Function Relations

In algebraic number theory various structures associated to a number field come up:
ideal class group, unit group, ray class group, zeta function and many more. In this
chapter we study for a Galois extension of number fields relations between these
structures for the intermediate fields of the extension. This is done by studying
norm relations, relations of norm elements in the group ring of the Galois group. In
section 18.1 norm relations of a finite group are introduced and it is shown how they
are related to the noncyclic subgroups of the group. For a finite abelian group a
special norm relation is obtained using the characters of the group. For modules A
over a finite abelian groupG group having the property that multiplication by #(G)
is an isomorphism, a norm relation leads to a relation between the submodules AU

for subgroups U of G. This is shown in section 18.2. In section 18.3 it is shown
that a norm relation leads to a relation between the zeta functions of intermediate
fields as well as for the discriminants of these fields.

The relations are especially interesting if in the group ring the element 1 is a
combination of norm elements of nontrivial subgroups. If such a norm relation
does not exist the group is called strongly exceptional. In the last section it is
shown that a group is strongly exceptional if and only if all subgroups of order
pq with p and q not necessarily distinct prime numbers, are cyclic. Modules over
noncyclic groups of order pq with p and q prime have been studied in the sections
12.5 and 12.6.

18.1 Norm relations

The argument used in Example 5.37 is based on the following relation for the
elements NG, Nσ, Nτ and Nστ in Z[G], where G = ⟨σ, τ⟩ ∼= C2 × C2:

2 = Nσ +Nτ +Nστ −NG.

For example for ν ∈ O∗
K this implies

ν2 ∈ (O∗
K)σ(O∗

K)τ (O∗
K)στ (O∗

K)G = ⟨−1, 2 +
√
3⟩.

In this section this kind of relations will be studied. The following notations will
be used for various collections of subgroups.
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18 Zeta Function Relations

18.1 Notations. Collections of subgroups of a finite group G:

Ω(G): the collection of cyclic subgroups of G,

Ω0(G): the collection of nontrivial cyclic subgroups of G,

Ω′(G): the collection of noncyclic subgroups of G,

Σ(G): the collection of subgroups of G,

Σ0(G): the collection of nontrivial subgroups of G,

Υ(G): the collection of normal subgroups H of G such that G/H is a finite
cyclic group,

Υ0(G): the collection of H in Υ(G) with H ̸= G.

The free abelian group on a set X will be denoted by ZX or occasionally, for
reasons of clarity, by Z ·X. For a group G the abelian group ZG has in a natural
way the structure of a ring. With this ring structure it is the group ring Z[G].

18.2 Definition. Let G be a finite group. A norm relation of G is an element of
the kernel of the homomorphism

πG : ZΣ(G)→ Z[G],
∑

U∈Σ(G)

nUU 7→
∑

U∈Σ(G)

nUNU

The kernel of πG is the group of norm relations of G and is denoted by NR(G). So∑
U∈Σ(G) nUU is a norm relation of G if and only if

∑
U∈Σ(G) nUNU = 0.

18.3 Lemma. Let G be a finite group and let the homomorphism π′
G : ZΣ(G) →

ZΩ(G) be defined by π′
G(U) =

∑
H∈Ω(U)H on basis elements U ∈ Σ(G). Then

Ker(π′
G) = NR(G).

Proof. For H ∈ Ω(G) put

[H] = {σ ∈ G | ⟨σ⟩ = H }.

It is an equivalence class of the equivalence relation in G defined by

σ ∼ τ ⇐⇒ ⟨σ⟩ = ⟨τ⟩.

For H ∈ Ω(G) put

SH =
∑
σ∈[H]

σ.

Then

NU =
∑

H∈Ω(U)

SU .
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18.1 Norm relations

Let the homomorphism γG : ZΩ(G) → Z[G] be defined by γG(H) = SH on basis
elements H ∈ Ω(G). Then for each U ∈ Σ(G):

γGπ
′
G(U) = γG

( ∑
H∈Ω(U)

H
)
=

∑
H∈Ω(U)

SH = NU .

So γGπ
′
G = πG. Since γG is injective, it follows that Ker(π′

G) = Ker(γGπ
′
G) =

Ker(πG) = NR(G).

18.4 Lemma. Let G be a finite group and let the homomorphism ψG : ZΩ(G) →
ZΣ(G) be defined by ψG(H) =

∑
H∗∈Ω(H) µ(H : H∗)H∗ on basis elements H ∈

Ω(G). Then π′
GψG is the identity on ZΩ(G).

The coefficient µ(H : H∗) is the Möbius function applied to the index (H : H∗), so
µ(H : H∗) = µ((H : H∗)).

Proof. Let H ∈ Ω(G) and n = #(H). For each d | n there is a unique subgroup
Hd of H with #(Hd) = d. We have

ψGπ
′
G(H) = ψG

(∑
d|n

Hd

)
=
∑
d|n

ψG(Hd)

=
∑
d|n

∑
s|d

µ(ds )Hs =
∑
s|n

∑
t|ns

µ(t)Hs = Hn = H.

As a consequence a Z-basis of NR(G) is formed by the elements

U − ψGπ′
G(U) = U −

∑
H∈Ω(U)

ψG(H) = U −
∑

H∈Ω(U)

∑
H∗∈Ω(H)

µ(H : H∗)H∗

= U −
∑

H∗∈Ω(U)

∑
H∈Ω(U)
H⊇H∗

µ(H : H∗)H∗,

where U ∈ Ω′(G). This leads to the following definition.

18.5 Definition. Let G be a finite group. For each H ∈ Ω(G) the norm coefficient
dG(H) of H in G is the integer defined as follows:

dG(H) =
∑

H∗∈Ω(G)
H∗⊇H

µ(H∗ : H).
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18 Zeta Function Relations

We have shown:

18.6 Theorem. Let G be a finite group. Then the abelian group NR(G) is freely
generated by the elements

U −
∑

H∈Ω(U)

dU (H)H,

where U ∈ Ω′(G).

18.7 Definition. Let G be a finite group. The element G −
∑
H∈Ω(G) dG(H)H ∈

NR(G) is called the principal norm relation of G.

Nontrivial norm relations of a group G may have consequences for the structure of
G-modules.

18.8 Notation. Let G be a nontrivial finite group and A a G-module. The sub-
module of A generated by all AU for U ∈ Σ0(G) is denoted by A0. So

A0 =
∑

U∈Σ0(G)

AU .

18.9 Lemma. Let G be a nontrivial finite group, A a G-module and
∑
U nUU a

norm relation of G. Then
n{1}A ⊆ A0.

Proof. The identity n{1} = −
∑
U∈Σ0(G) nUNU implies

n{1}A ⊆
∑

U∈Σ0(G)

nUNUA ⊆
∑

U∈Σ0(G)

nUA
U ⊆ A0.

18.10 Definition. Let G be a finite group. The coefficient dG({1}) is called the
trivial norm coefficient of G.

18.11 Example. Let p be a prime number and G an elementary abelian p-group
of rank r ≥ 2. There are pr−1

p−1 nontrivial cyclic subgroups, each of order p. In this

case dG(H) = 1 for each H ∈ Ω0(G) and dG({1}) = 1 − pr−1
p−1 = −p

r−p
p−1 . So we

have the identity

NG = −p
r − p
p− 1

+
∑

H∈Ω0(G)

NH .

For r = 2 we get

NG = −p+
∑

H∈Ω0(G)

NH .

In section 12.5 this identity was easily obtained by direct computation. The trivial
norm coefficient of this group is −p. For r > 2 there are more noncyclic subgroups
and, therefore, more norm relations.
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18.1 Norm relations

18.12 Example. Let G be the group considered in section 12.6. We use the
notation of that section. Let’s for simplicity assume that q is prime. Then G is
the unique nonabelian group of order pq. The group G has exactly p subgroups of
order q: the groups ⟨σiτ⟩ for i = 0, . . . , p− 1. By Theorem 18.6

NG = −p+Nσ +

p−1∑
i=0

Nσiτ .

The same identity was obtained in section 12.6 by direct computation. The trivial
norm coefficient is −p.

18.13 Example. The group G = A4 of even permutations of four elements has
two noncyclic subgroups: A4 itself and a subgroup V of order 4. There are three
subgroups B1, B2 and B3 of order 2 and four subgroups C1, C2, C3 and C4 of
order 3. The group NR(G) is of rank 2 and is generated by

RG = G−B1 −B2 −B3 − C1 − C2 − C3 − C4 + 6{1},
RV = V −B1 −B2 −B3 + 2{1}.

The norm relation RG − RV = G − V − C1 − C2 − C3 − C4 + 4{1} shows that a
finite G-module A is up to 2-torsion generated by the submodules AV and ACi (i =
1, . . . , 4).

18.14 Example. Let G be the symmetric group Sn with n ≥ 4. Then G has a
subgroup isomorphic to C2 ×C2 and also a subgroup isomorphic to S3. The norm
coefficients of these groups are −2 and −3 respectively. So a finite G-module is the
sum of submodules AH with H nontrivial.

A norm relation of a group induces a norm relation of each of its subgroups:

18.15 Proposition. Let G be a finite group, V a subgroup of G and
∑
U∈Σ(G) nUU

a norm relation of G. Then∑
U∈Σ(G)

nU (U ∩ V ) ∈ NR(V ).

Proof. Let πV : Z[G]→ Z[V ] be the homomorphism determined by

πV (σ) =

{
σ if σ ∈ V ,
0 if σ ∈ G \ V .

Then for each U ∈ ZΣ(G):

πV (NU ) = πV

(∑
σ∈U

σ
)
=
∑
σ∈U

πV (σ) =
∑

σ∈U∩V
σ = NU∩V .
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18 Zeta Function Relations

Application of πV to
∑
U∈Σ(G) nUNU = 0 yields∑

U∈Σ(G)

nUNU∩V = 0.

18.16 Proposition. Let G be a finite group and
∑
U∈Σ(U) nUU a norm relation of

G. Then ∑
U∈Σ(G)

nU#(U) = 0 and
∑

U∈Σ(G)

nU = 0.

Proof. For the first identity apply the augmentation to
∑
U∈Σ(G) nUNU = 0.

For the second take V = {1} in Proposition 18.15.

We conclude this section with functorial properties of the group of norm rela-
tions. A group homomorphism f : G1 → G2 determines a ring homomorphism
f∗ : Z[G1]→ Z[G2] by f∗(σ) = f(σ) on basis elements. For U a subgroup of G1 we
have f∗(NU ) = #(U ∩Ker(f)) ·Nf(U). Define f∗ : ZΣ(G1)→ ZΣ(G2) by

f∗(U) = #(U ∩Ker(f)) · f(U)

on basis elements U ∈ Σ(G1). Then the following square of abelian groups com-
mutes:

ZΣ(G1)

ZΣ(G2)

Z[G1]

Z[G2]

πG1

πG2

f∗ f∗

So f : G1 → G2 induces by restriction of f∗ : ZΣ(G1)→ ZΣ(G2) a homomorphism
f∗ = NR(f) : NR(G1)→ NR(G2):

f∗

( ∑
U∈Σ(G1)

nUU

)
=

∑
U∈Σ(G1)

nU#(U ∩Ker(f)) · f(U)

=
∑

U ′∈Σ(G2)

 ∑
U∈Σ(G1)
f(U)=U ′

nU#(U ∩Ker(f))

U ′.
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18.17 Proposition. NR is a functor from finite groups to abelian groups.

Proof. Clearly NR(1G) = 1NR(G). Let f : G1 → G2 and g : G2 → G3 be ho-
momorphisms of finite groups. It suffices to show that for U ∈ Σ(G1) we have
(gf)∗(U) = g∗(f∗(U)). For this consider the following commutative triangle of
surjective group homomorphisms:

U f(U)

gf(U)

f |U

gf |U g|f(U)

The kernels form a short exact sequence:

0 −→ U ∩Ker(f) −→ U ∩Ker(f ′f) −→ f(U) ∩Ker(f ′) −→ 0.

Therefore, #(U ∩Ker(gf)) = #(U ∩Ker(f)) ·#(f(U) ∩Ker(g)).

18.2 Norm relations for abelian groups

In this section G is a finite abelian group of order n and R a commutative ring in
which n is a unit: n ∈ R∗. We will derive for a finite abelian group G an orthogonal
system of idempotents of the group algebra Z[ 1n ][G] and consider its consequences
for the structure of R[G]-modules. The idempotents will correspond to subgroups
H ∈ Υ(G). It leads to both a norm relation for these subgroups and a relation
for the submodules AH of an R[G]-module A. Note that there is a unique ring
homomorphism Z[ 1n ]→ R.

18.18 Definition and notation. Let χ ∈ G∨. Then an element εχ of the group
algebra of G over Z[ 1n , ζn] is defined as follows:

εχ =
1

n

∑
σ∈G

χ(σ)σ−1 ∈ Z[ 1n , ζn][G].

18.19 Lemma. The collection (εχ)χ∈G∨ is a collection of orthogonal idempotents
of the group algebra Z[ 1n , ζn][G].
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18 Zeta Function Relations

Proof. Let χ, η ∈ G∨. Then

n2εχεη =
(∑
σ∈G

χ(σ)σ−1
)(∑

τ∈G
η(τ)τ−1

)
=
∑
σ,τ∈G

χ(σ)η(τ)σ−1τ−1

=
∑
σ,ρ∈G

χ(σ)η(σ−1ρ)ρ−1 =
∑
σ,ρ∈G

χη−1(σ)η(ρ)ρ−1

=
(∑
σ∈G

χη−1(σ)
)(∑

ρ∈G
η(ρ)ρ−1

)
=
(∑
σ∈G

χη−1(σ)
)
· nεη.

For χ ̸= η the first factor equals 0 and for χ = η it equals n.

18.20 Lemma. The εχ form a basis of the free Z[ 1n , ζn]-module Z[ 1n , ζn][G].

Proof. For χ ∈ G∨ and σ ∈ G we have

εχσ =
1

n

∑
τ∈G

χ(τ)τ−1σ =
1

n

∑
ρ∈G

χ(σρ)ρ−1 =
1

n
χ(σ)

∑
ρ∈G

χ(ρ)ρ−1 = χ(σ)εχ.

So for α =
∑
σ∈G aσσ ∈ Z[ 1n , ζn][G]

α =
( ∑
χ∈G∨

εχ

)(∑
σ∈G

aσσ
)
=
∑
χ∈G∨

(∑
σ∈G

aσχ(σ)
)
εχ.

If
∑
χ∈G∨ aχεχ = 0 with aχ ∈ Z[ 1n , ζn], then for all η ∈ G∨

0 = εη
∑
χ∈G∨

aχεχ = aηεη

and so aχ = 0 for all χ ∈ G∨. So the εχ generate the group algebra as Z[ 1n , ζn]-
module and, moreover, they are independent.

18.21 Notations. Subgroups V ∈ Σ(G∨) correspond to subgroups U ∈ Σ(G) as
follows:

V ⊥ = {σ ∈ G | χ(σ) = 1 for all χ ∈ V }

and

U⊥ = {χ ∈ G∨ | χ(σ) = 1 for all σ ∈ U }.

The collection of subgroups H of a finite abelian group G with G/H cyclic is
denoted by Υ(G). Groups in Υ(G) correspond to groups in Ω(G∨).

Summation over the characters vanishing on a subgroup U ∈ Σ(G) yields the ob-
vious idempotent:
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18.2 Norm relations for abelian groups

18.22 Lemma. Let U ∈ Σ(G). Then∑
χ∈U⊥

εχ =
NU
#(U)

∈ Z[ 1n ][G].

Proof. Characters vanishing on U correspond to characters of G/U , so∑
χ∈U⊥

χ(σ) =

{
0 if σ /∈ U
(G : U) if σ ∈ H.

Using this identity:∑
χ∈U⊥

εχ =
1

n

∑
χ∈U⊥

∑
σ∈G

χ(σ)σ−1 =
1

n

∑
σ∈G

( ∑
χ∈U⊥

χ(σ)
)
σ−1

=
1

n

∑
σ∈U

(G : U)σ−1 =
1

n
(G : U)NU =

NU
#(U)

.

18.23 Definition. For H ∈ Υ(G) the idempotent εH is defined by

εH =
∑
χ∈G∨

⟨χ⟩⊥=H

εχ.

18.24 Proposition. Let H ∈ Υ(G). Then

εH =
∑

H∗∈Υ(G)
H∗⊆H

µ(H∗ : H)
NH∗

#(H∗)

In particular εH ∈ Z[ 1n ][G].

Proof. For each d | (G : H) let Hd ∈ Υ(G) be the unique group Hd satisfying
H ≤ Hd ≤ G and (Hd : H) = d. By Lemma 18.22 we have

NH
#(H)

=
∑

d|(G:H)

εHd

and by Möbius inversion

εH =
∑

d|(G:H)

µ(d)
NHd

#(Hd)
.

Since the εH are actually elements of Z[ 1n ][G] we have:

18.25 Theorem. The system (εH)H∈Υ(G) is a system of orthogonal idempotents of

the group algebra Z[ 1n ][G].
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Norm relations

In order to avoid confusion let’s denote the standard basis elements of the group
algebra Z[ζn, 1

n ][G
∨] by [χ]. From Lemma 18.20 it follows that we have an isomor-

phism

Z[ζn, 1
n ][G

∨] −→ Z[ζn, 1
n ][G], [χ] 7→ εχ (18.1)

of Z[ζ, 1
n ]-modules. This isomorphism induces a bijection NR(G∨)

∼→ NR(G):

18.26 Theorem.∑
V ∈Σ(G∨)

nV V ∈ NR(G∨) ⇐⇒
∑

U∈Σ(G)

(G : U)nU⊥U ∈ NR(G).

Proof. The isomorphism (18.1) maps∑
V ∈Σ(G∨)

nVNV

to ∑
V ∈Σ(G∨)

nV
∑
χ∈V

εχ =
∑

V ∈Σ(G∨)

nV
NV ⊥

#(V ⊥)
=

∑
U∈Σ(G)

nU⊥
NU
#(U)

= 0.

Hence, ∑
V ∈Σ(G∨)

nVNV = 0 ⇐⇒
∑

U∈Σ(G)

(G : U)nU⊥NU = 0.

In particular, the principal norm relation for G∨,

G∨ −
∑

Z∈Ω(G∨)

dG∨(Z)Z,

leads to a norm relation for G. For its formulation we use the following notation.

18.27 Notation. For H ∈ Υ(G) put d∨G(H) = dG∨(H⊥) ∈ Z. So

d∨G(H) =
∑

H∗∈Υ(G)
H∗⊆H

µ(H∗⊥ : H⊥) =
∑

H∗∈Υ(G)
H∗⊆H

µ(H : H∗).

18.28 Corollary.

#(G) =
∑

H∈Υ(G)

(G : H)d∨G(H)NH .
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18.2 Norm relations for abelian groups

18.29 Example. Let p be a prime number and, as in Example 18.11, G an ele-
mentary abelian p-group of rank r > 1. The collection Υ0(G) consists of the

pr−1
p−1

subgroups of order pr−1. For each H ∈ Υ0(G) we have d∨G(H) = 1. The formula
of Corollary 18.28 gives, after division by p:

pr−1 =
∑

H∈Υ0(G)

NH −
pr−1 − 1

p− 1
NG.

For r = 2 the group NR(G) is free of rank 1 and, indeed, this identity is essentially
the same as the one in Example 18.11.

Module structures

Since the εH for H ∈ Υ(G) form an orthogonal system of idempotents of the group
algebra Z[ 1n ][G] (Theorem 18.25), we obtain a decomposition for each R[G]-module:

18.30 Theorem. Let G be a finite abelian group of order n and A an R[G]-module.
Then

A =
⊕

H∈Υ(G)

εHA and AH =
⊕

H∗∈Υ(G)
H∗⊇H

εH∗A

as R-modules.

This tells us how the R-module A is determined by its R-submodules AH for
H ∈ Υ(G):

18.31 Theorem. Let G be a finite abelian group of order n and A an R[G]-module.
Then

A = lim−→
H∈Υ(G)

AH ,

where the direct limit is over the groups H ∈ Υ(G) ordered by ⊇.

This lim−→ is the direct limit in the categorical sense. The limit above can be con-

structed as the direct sum of the R-modules AH modulo the relation which identifies
the summand AH2 with the R-submodule AH2 of the summand AH1 if H1 ≥ H2.
In terms of generators and relations it is the R-module with

generators: [a,H] with H ∈ Υ(G) and a ∈ AH ,

relations: [a,H1] = [a,H2] if H1 ≥ H2 and a ∈ AH1 ,

r · [a,H] = [ra,H] if a ∈ AH ,

[a1, H] + [a2, H] = [a1 + a2, H] if a1, a2 ∈ AH .

For abelian G we have the following proposition, due to Nehrkorn [30], and redis-
covered by Fröhlich [11].
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Proposition. Let G be an abelian group and A an abelian l-group with l ∤ #(G).
Then A =

∑
AH , where H ranges over all subgroups of G such that G/H is cyclic.

Cornell and Rosen [10] gave a simplified version of Fröhlich’s proof. By Theo-
rem 18.31 the group structure of A is determined in terms of the subgroups AH .
This is not the case for Nehrkorn’s proposition. Note that in the theorem the direct
limit is over H ∈ Υ(G) ordered by ⊇, which is stronger than the direct limit over
the subgroups AH ordered by ⊆, in which case we only have

A =
∑

H∈Υ(G)

AH .

For A an abelian l-group this is Nehrkorn’s proposition.

In particular, we have the following generalization of Proposition 12.40.

18.32 Corollary. Let p be a prime number and G an elementary abelian p-group
of rank r. Then for Z[ 1p ][G]-modules A we have

A/AG =
⊕

H∈Υ(G)
H ̸=G

AH/AG.

Proof. Υ(G) consists of G and pr−1
p−1 subgroups of order pr−1. By Theorem 18.30

A = εGA⊕
⊕

H∈Υ(G)
H ̸=G

εHA,

AG = εGA and AH = εGA⊕ εHA for each H of index p.

For A an R[G]-module each norm relation for G leads to a relation for the R-
submodules AU with U ∈ Σ(G). The following lemma will be used:

18.33 Lemma. Let G be a finite group, H ∈ Υ(G) and
∑
U∈Σ(G) nUU ∈ NR(G).

Then for each d | (G : H) ∑
U∈Σ(G)

(U :U∩H)=d

nU#(U) = 0.

In particular, for d = 1 ∑
U∈Σ(H)

nU#(U) = 0.
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Proof. Let f : G→ G/H be the canonical homomorphism. For each d | (G : H)
let Hd be the unique subgroup of G which contains H such that (Hd : H) = d.
The homomorphism NR(f) maps the norm relation

∑
U∈Σ(G) nUU to:

∑
d|(G:H)

( ∑
U∈Σ(G)

(UH:H)=d

nU#(U ∩H)

)
(Hd/H) ∈ NR(G/H).

The cyclic group has no nontrivial norm relations, so for each d | (G : H) we have∑
U∈Σ(G)

(UH:H)=d

nU#(U ∩H) = 0.

The groups UH/H and U/(U ∩ H) are isomorphic, so if (UH : H) = d, then
(U : U ∩H) = d and #(U ∩H) = #(U)/d.

18.34 Theorem. Let A be an R-module and
∑
U∈Σ(G) nUU ∈ NR(G). For each

U ∈ Σ(G) write nU = kU − lU with kU , lU ∈ N. Then⊕
U∈Σ(G)

(AU )kU#(U) ∼=
⊕

U∈Σ(G)

(AU )lU#(U) (18.2)

as R-modules.

Proof. On both sides we have R[G]-modules. They are isomorphic if they have
isomorphic components in the decompositions given by the system (εH)H∈Υ(G) of
orthogonal idempotents of R[G]. For H ∈ Υ(G), U ∈ Σ(G) and η ∈ G∨ such that
⟨η⟩ = H⊥ we have

εη
∑
χ∈U⊥

εχ =
∑
χ∈U⊥

εηεχ =

{
εη if η ∈ U⊥,

0 otherwise

and so

εH
NU
#(U)

=
∑
η∈G∨

⟨η⟩=H⊥

εη
∑
χ∈U⊥

εχ =

{
εH if H ⊇ U ,

0 otherwise.

The number of components εHA on the left hand and the right hand sides of (18.2)
is respectively ∑

U∈Σ(H)

kU#(U) and
∑

U∈Σ(H)

lU#(U).

These numbers are equal by Lemma 18.33.
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A sharper result is easily obtained by taking kU = nU for nU ≥ 0 and lU = −nU

for nU < 0. Let d = gcdU∈Σ(G)(nU#(U)). Then the above proof shows that

⊕
U∈Σ(G)

(AU )
kU#(U)

d ∼=
⊕

U∈Σ(G)

(AU )
lU#(U)

d .

In particular for the norm relation of Corollary 18.28:

18.35 Corollary. Let A be an R-module and let for each H ∈ Υ(G) the numbers
kH , lH ∈ N be such that d∨G(H) = kH − lH . Then

A⊕
⊕

H∈Υ(G)

(AH)kH ∼=
⊕

H∈Υ(G)

(AH)lH

as R-modules.

18.36 Example. For G an elementary abelian p-group of rank r ≥ 1 and A a
Z[ 1p ][G]-module we obtain the relation for submodules described in Corollary 18.32:

A⊕ (AG)
pr−p
p−1 ∼=

⊕
H∈Υ0(G)

AH .

18.3 Relations for Dedekind zeta functions

A norm relation of the Galois group of a Galois extension of number fields deter-
mines a relation for the zeta functions of the intermediate fields (Theorem 18.38).
As a result it also determines a relation for their residues at the pole s = 1. This
is even more interesting since the same relation holds for the discriminants (Theo-
rem 18.45).

We will use the Euler product of the Dedekind zeta function. The relation for the
zeta functions will follow from the same relation for each of the Euler factors. For
this we need the splitting behavior of a prime in an intermediate field. It has been
described in section 7.4. We will use the following lemma.

18.37 Lemma. Let G be a finite group, Z ∈ Σ(G), T ∈ Υ(Z) and
∑
U∈Σ(G) nUU ∈

NR(G). Then for each d | (Z : T )∑
U∈Σ(G)

(Z∩U :T∩U)=d

nU#(Z ∩ U) = 0.
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Proof. By Proposition 18.15∑
U∈Σ(G)

nU (Z ∩ U) ∈ NR(Z).

Application of Lemma 18.33 yields the required formula.

18.38 Theorem. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and

∑
U∈Σ(G) nUU a norm relation for G. Then∏

U∈Σ(G)

ζLU (s)nU#(U) = 1.

Proof. For U ∈ Σ(G) let pU stand for maximal ideals of OLU . We have the
Euler product

ζLU (s) =
∏
pU

1

1− 1
N(pU )s

=
∏
p

∏
pU |p

1

1− 1
N(pU )s

=
∏
p

∏
pU |p

1

1− 1
N(p)fK (pU )s

,

where the product is over all p ∈ Max(OK). It suffices to show that for each p∏
U∈Σ(G)

∏
pU |p

( 1

1− 1
N(p)fK (pU )s

)nU#(U)

= 1.

This will be done by showing that for each given d the net number of factors with
fK(pU ) = d vanishes. In other words we will prove that∑

U∈Σ(G)

∑
pU |p

fK(pU )=d

nU#(U) = 0. (18.3)

We use the description in section 7.4 of the splitting of a prime in a subextension
of a Galois extension. Let q be a fixed maximal ideal of OL above p, Z = ZK(q),
T = TK(q) and f = fK(q). The group Z acts from the right on the collection
U \G of left cosets of U in G. The collection of orbits of the action of Z on U \G
is denoted by (U \ G)Z . Thus we have a partition of G into orbits of cosets. By
Theorem 7.53 and Lemma 7.52 the map

G −→ Max(OLU ), σ 7→ σ(q) ∩ LU

induces a bijection from the collection of orbits to the set of maximal ideals pU
above p:

(U \G)Z
∼−→ { pU ∈ Max(OLU ) | pU ∩K = p }.

The length of an orbit is equal to

eK(σ(q) ∩ LU )fK(σ(q) ∩ LU ) = (Z : (Z ∩ σ−1Uσ)),
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where σ is an element of one of the cosets in the orbit. Furthermore,

eK(σ(q) ∩ LU ) = (T : (T ∩ σ−1Uσ))

and so

fK(σ(q) ∩ LU ) = (Z : (Z ∩ σ−1Uσ))

(T : (T ∩ σ−1Uσ))
=

f

((Z ∩ σ−1Uσ)) : (T ∩ σ−1Uσ)))
.

In each coset C ∈ U \ G choose a σC and for each orbit X choose a σX in one of
its cosets. The number in equation (18.3) multiplied by #(Z) is equal to∑

U∈Σ(G)

∑
X∈(U\G)Z

((Z∩σ−1
X UσX):(T∩σ−1

X UσX))=f/d

nU#(U)#(Z)

=
∑

U∈Σ(G)

∑
C∈(U\G)

((Z∩σ−1
C UσC):(T∩σ−1

C UσC))=f/d

nU#(U)#(Z ∩ σ−1
C UσC)

=
∑

U∈Σ(G)

∑
σ∈G

((Z∩σ−1Uσ):(T∩σ−1Uσ))=f/d

nU#(Z ∩ σ−1Uσ)

=
∑
σ∈G

∑
U∈Σ(G)

((σZσ−1∩U):(σTσ−1∩U))=f/d

nU#(σZσ−1 ∩ U)

and by Lemma 18.37 this equals 0.

For the splitting of a prime p in L the group T
(L)
p is a normal subgroup of Z

(L)
p and

the quotient group is cyclic. Only this has been used in the proof. No use is made
of the special structure of the group Z

(L)
p .

For the principal norm relation of the Galois group we get ([4],[24]):

18.39 Corollary (Brauer-Kuroda). Let L : K be a Galois extension of number
fields with Galois group G. Then

ζK(s)#(G) =
∏

H∈Ω(G)

ζLH (s)dG(H)#(H).

In particular for a metacyclic Galois group as described in section 12.6 we get:

18.40 Corollary. Let L : K be a Galois extension with G = Gal(L : K) ∼= Cp⋊Cq,
where p and q are prime numbers, C the subgroup of G of order p and D one of
the subgroups of order q. Then

ζL(s)

ζK(s)
=
ζLC (s)

ζK(s)

(ζLD (s)

ζK(s)

)q
.
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18.3 Relations for Dedekind zeta functions

Proof. Note that conjugate subgroups determine isomorphic subfields. The
principal norm relation yields

ζK(s)pq = ζL(s)
−pζLC (s)p

∏
H∈Ω(G)
#(H)=q

ζLH (s)q = ζL(s)
−pζLC (s)pζLD (s)pq.

Dedekind zeta functions have real values in real arguments. So in the field of
meromorphic functions we get

ζK(s)p = ζL(s)
−1ζLC (s)ζLD (s)q.

For an elementary abelian p-group of rank 2:

18.41 Corollary. Let L : K be a Galois extension with G = Gal(L : K) ∼= Cp×Cp,
where p is a prime number. Then

ζL(s

ζK(s)
=
∏
H∈Ω0

ζLH (s)

ζK(s)
.

Proof. The principal norm relation yields

ζK(s)p
2

= ζL(s)
−p

∏
H∈Ω0

ζLH (s).

For an abelian extension:

18.42 Corollary. Let L : K be an abelian extension of number fields with Galois
group G. Then

ζL(s) =
∏

H∈Υ(G)

ζLH (s)d
∨
G(H).

Division by ζK(s) in the formulas of the Corollaries 18.39 and 18.42 yields∏
H∈Ω(G)

(ζLH (s)

ζK(s)

)dG(H)#(H)

= 1

and
ζL(s)

ζK(s)
=

∏
H∈Υ(G)

(ζLH (s)

ζK(s)

)d∨G(H)

.

The formula for the zeta functions implies a similar formula for their residues at
s = 1: ∏

U∈Σ(G)

(
2r(L

U )(2π)s(L
U )h(LU )Reg(LU )

w(LU )
√
|disc(LU )|

)nU#(U)

= 1. (18.4)

We will consider some of the factors in this formula. First the numbers of real and
complex infinite primes.
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18 Zeta Function Relations

18.43 Proposition. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and

∑
U∈Σ(G) nUU a norm relation for G. For U ≤ G let rU be the

number of real infinite primes of LU and sU the number of complex infinite primes
of LU . Then ∑

U∈Σ(G)

nU#(U)rU =
∑

U∈Σ(G)

nU#(U)sU = 0.

Proof. Set [L : K] = n. For U ∈ Σ(G) put nU = kU − lU , where kU , lU ∈ N.
The additive group of L is a K[G]-module. So by Theorem 18.34⊕

U∈Σ(G)

(LU )kU#(U) ∼=
⊕

U∈Σ(G)

(LU )lU#(U)

as K-vector spaces. Taking dimensions over K yields:∑
U∈Σ(G)

kU#(U)(rU + 2sU ) =
∑

U∈Σ(G)

lU#(U)(rU + 2sU )

and so ∑
U∈Σ(G)

nU#(U)(rU + 2sU ) = 0.

Similarly for the R[G]-module with the set P0(L) of finite primes of L as an R-basis
(the ‘logarithmic space’ of L):∑

U∈Σ(G)

nU#(U)(rU + sU ) = 0.

Next the discriminants disc(LU ) in formula (18.4). For this we will use the following
relation for the differents over the intermediate fields:

18.44 Proposition. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and

∑
U∈Σ(G) nUU a norm relation for G. Then∏

U∈Σ(G)

∂LU (L)nu = OL.

Proof. Let q ∈ Max(OL). We will prove that

vq

( ∏
U∈Σ(G)

∂LU (L)nu

)
= 0.

Let N ∈ N be large enough such that VK,i(q) = {1}. Use Corollary 17.35 and
Proposition 7.5:

vq

( ∏
U∈Σ(G)

∂LU (L)nu

)
=

∑
U∈Σ(G)

(
#(∂LU (L)

)
nU
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18.3 Relations for Dedekind zeta functions

=
∑

U∈Σ(G)

∞∑
i=0

(
#
(
VLU ,i(q)

)
− 1
)
nU

=
∑

U∈Σ(G)

∞∑
i=0

(
#
(
VK,i(q) ∩ U

)
− 1
)
nU

=

N∑
i=0

∑
U∈Σ(G)

(
#
(
VK,i(q) ∩ U

)
− 1
)
nU

=

N∑
i=0

∑
U∈Σ(G)

(
#
(
VK,i(q) ∩ U

))
nU − (N + 1)

∑
U∈Σ(G)

nU = 0.

18.45 Theorem. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and

∑
U∈Σ(G) nUU a norm relation for G. Then∏

U∈Σ(G)

dK(LU )nu#(U) = OK .

Proof. Using Theorem 17.23, Theorem 17.28, Proposition 18.16 and Proposi-
tion 18.44:∏

U∈Σ(G)

dK(LU )nu#(U) =
∏

U∈Σ(G)

dK(L)nUNL
U

K (L)−nU

= dK(L)
∑

U∈Σ(G) nU
∏

U∈Σ(G)

NL
U

N (NLLU (∂LU (L))−nU

=
∏

U∈Σ(G)

NLK(∂LU (L))−nU = NLK

( ∏
U∈Σ(G)

∂LU (L)−nU

)
= NLK(OL)−1 = OK .

For the absolute discriminants this implies:

18.46 Theorem. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and

∑
U∈Σ(G) nUU a norm relation for G. Then∏

U∈Σ(G)

|disc(LU )|nU#(U) = 1.

Proof. By Theorem 17.28

dQ(L) = dQ(K)#(G) ·NKQ (dK(L))
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18 Zeta Function Relations

and so for the generators in N∗ of these ideals of Z:

|disc(L)| = |disc(K)|#(G) ·N(dK(L)).

Also for each subgroup U of G:

|disc(LU )| = |disc(K)|(G:U) ·N(dK(LU )).

Apply Theorem 18.45 and Proposition 18.16:∏
U∈Σ(G)

|disc(LU )|nU#(U)

=
∏

U∈Σ(G)

|disc(K)|(G:U)nU#(U) ·
∏

U∈Σ(G)

N(dK(LU ))nU#(U)

= |disc(K)|#(G)
∑

U∈Σ(G) nU ·N
( ∏
U∈Σ(G)

dK(LU )nU#(U)
)
= 1.

Combining equation (18.4), Theorem 18.46 and Proposition 18.43:

18.47 Theorem. Let L : K be a Galois extension of number fields, G the Galois
group of L : K and

∑
U∈Σ(G) nUU a norm relation for G. Then

∏
U∈Σ(G)

(
h(LU )Reg(LU )

w(LU )

)nU#(U)

= 1.

From the functional equation for the Dedekind zeta function follows that

lim
s→0

ζK(s)s1−r(K)−s(K) = −h(K)Reg(K)

w(K)
.

This also leads to Theorem 18.47, see [8] Theorem 4.9.12.

For the principal norm relation of the Galois group we get:

18.48 Corollary. Let L : K be a Galois extension of number fields with Galois
group G. Then(h(K)Reg(K)

w(K)

)#(G)

=
∏

H∈Ω(G)

(h(LH)Reg(LH)

w(LH)

)dG(H)#(H)

.

For an abelian extension:

18.49 Corollary. Let L : K be a abelian extension of number fields with Galois
group G. Then

h(L)Reg(L)

w(L)
=

∏
H∈Υ(G)

(h(LH)Reg(LH)

w(LH)

)d∨G(H)

.
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18.3 Relations for Dedekind zeta functions

In particular for an elementary abelian p-group:

18.50 Proposition. Let L : K an abelian extension of number fields with G =
Gal(L : K) an elementary abelian p-group of rank r. Then

h(L)Reg(L)

w(L)
·
(h(K)Reg(K)

w(K)

) pr−p
p−1

=
∏

H∈Υ0(G)

h(LH)Reg(LH)

w(LH)
.

18.51 Example. For a biquadratic extension L : K of number fields with L1, L2

and L3 the three intermediate fields of degree 2 over K the formula becomes

h(L)Reg(L)

w(L)
·
(h(K)Reg(K)

w(K)

)2
=

3∏
i=1

h(Li)Reg(Li)

w(Li)
.

For a biquadratic number field we retrieve the formulas of Example 9.57 (the real
case) and Example 9.58 (the complex case). In chapter 9 these formulas have been
derived using L-functions of Dirichlet characters. The formula for the discriminants
was verified by direct computation (Exercise 9 of chapter 1). Here the formula is
obtained as an application of Theorem 18.38 and Theorem 18.46.

For L : K abelian proofs of Theorem 18.38 and Theorem 18.46 can be given using
(generalized) Dirichlet characters. However, such proofs are based on detailed
knowledge of the ramification of primes in an abelian extension: Theorem 15.52
and Theorem 17.51.

By Corollary 18.40 we have for Galois groups isomorphic to Cp ⋊ Cq:

18.52 Proposition. Let L : K be a Galois extension with G = Gal(L : K) ∼=
Cp⋊Cq, where p and q are prime numbers, C the subgroup of G of order p and D
one of the subgroups of order q. Then

h(L)Reg(L)(h(K)Reg(K))q = h(LC)Reg(LC)(h(LD)Reg(LD))q.

Proof. Note that µ(L) = µ(LC) and µ(LD) = µ(K). Use that conjugate fields
are isomorphic.

18.53 Example. Let K be a cubic number field with one real prime and let d be its
discriminant. Then d < 0 and the normal closure of K is the field L = K(

√
d). We

have Gal(L : Q) ∼= S3 and Gal(L : Q) = ⟨σ, τ⟩, where σ and τ generate respectively
Gal(L : Q(

√
d)) and Gal(L : K). Since h(Q) = Reg(Q) = Reg(Q(

√
d)) = 1, we

have by Proposition 18.52:

h(L)Reg(L) = h(Q(
√
d))h(K)2 Reg(K)2.
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Let ε be the fundamental unit of K. Then Reg(K) = log ε and ⟨ε, σ(ε)⟩ is of finite
index in O∗

L and so

Reg(L) = (O∗
L : ⟨ε, σ(ε)⟩) · Reg(ε, σ(ε)).

Since |σ(ε)| = |σ2(ε)| and εσ(ε)σ2(ε) = 1, we have log ε = −2 log(σ(ε)) and so
Reg(ε, σ(ε)) is the absolute value of∣∣∣∣ 2 log ε 2 log|σ(ε)|

2 log|σ(ε)| 2 log|σ2(ε)|

∣∣∣∣ = ∣∣∣∣2 log ε − log ε
− log ε − log ε

∣∣∣∣ = −3 log2 ε.
It follows that

(O∗
L : ⟨ε, σ(ε),−1⟩) · Reg(L) = 3 log2 ε = 3 · Reg(K)2

and so

3 · h(L) = h(Q(
√
d)) · h(K)2 · (O∗

L : ⟨ε, σ(ε),−1⟩). (18.5)

For L = Q( 3
√
2, ζ3) we have K = Q( 3

√
2) and d = −3. In Example 5.18 and

Example 5.42 the groups Cℓ(K) and O∗
K have been computed. Example 7.17

contains computations of OL and O∗
L. We have h(K) = h(L) = 1 and indeed

(O∗
L : ⟨ε, σ(ε),−1⟩) = 3 as shown by direct computation in Example 7.17.

Finally for G ∼= A4 using the norm relation described in Example 18.13 we get :

18.54 Proposition. Let L : K be a Galois extension of number fields with Galois
group isomorphic to A4. Then

ζL(s)

ζK(s)
=
ζLV (s)

ζK(s)

(ζLC (s)

ζK(s)

)3
,

where V is the noncyclic group of order 4 and C is one of the subgroups of order
3.

18.4 Some remarks on Artin L-functions

A powerful tool in class field theory is the L-series of a Dirichlet character. Artin
introduced a generalization: an L-function determined by a representation of the
Galois group of a Galois extension of number fields. In particular the main theo-
rem of this section, Theorem 18.38, is easily proved using Artin L-functions. For
L : K an abelian extension of number fields a Dirichlet character χ ∈ H(L : K)
corresponds to a character of the group Gal(L : K), i.e. a group homomorphism

Gal(L : K) −→ C∗.
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The L-series of a Dirichlet character is defined as a Dirichlet series and since a
Dirichlet character is multiplicative it is also representable by an infinite product,
the Euler product.

The Artin L-function is defined as an infinite product (Definition 18.56) and it is
unknown whether it is in all cases the Euler product of a Dirichlet series.

Let L : K be a Galois extension of number fields, G = Gal(L : K), V a finite
dimensional C-vector space and ρ : G → AutC(V ) a representation of G. Thus V
is a C[G]-module of finite complex dimension.

A representation ρ determines a map

χ : G→ C, σ 7→ Tr(ρ(σ)),

which is called the character of the representation ρ. It generalizes the notion of
character in the degree 1 case. A basic result in the theory of group representations
is that the character determines the representation up to isomorphism. Characters
of G are central functions on G, meaning that

χ(τστ−1) = χ(σ) for all σ, τ ∈ G.

Central functions of G are functions on G which are constant on conjugacy classes.

The character of the trivial representation G → C∗, σ 7→ 1 is called the principal
or trivial character of G. Notation for the trivial character: 1G or simply 1. The
corresponding C[G]-module is C with the trivial action of G. The representation
corresponding to the group algebra C[G] maps a group element σ to the automor-
phism of C[G] induced by the permutation τ 7→ στ of G. It is called the regular
representation of G. The character of the regular representation of G is denoted
by rG. Clearly,

rG(σ) =

{
#(G) if σ = 1,

0 otherwise.

A representation ρ : G → AutC(V ) is called irreducible if the G-module V has no
nontrivial proper G-submodule. Accordingly, the G-module V is called irreducible.
Irreducible representations of abelian groups G are representations of degree 1. The
character of an irreducible representation is called an irreducible character. The ir-
reducible characters of G form a basis of the C-vector space of central functions on
G. Every G-module is a direct sum of irreducible C-modules and so the characters
of representations of G are combinations of irreducible characters with the coeffi-
cients in N. Every irreducible G-module is a G-submodule of the regular G-module
C[G]:

rG =
∑
χ

χ(1)χ, (18.6)

where the sum is over all irreducible characters of G.
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18.55 Notation. Let V be a finite dimensional complex vector space and
ρ : G → AutC(V ) a representation over C of a finite group G. For x ∈ C[G]
we put

detV (x) = det(ρ(x)).

So detV is the composition C[G] ρ−→ EndC(V )
det−→ C.

18.56 Definition. Let L : K be a Galois extension of number fields and
ρ : Gal(L : K)→ AutC(V ) a representation of Gal(L : K) with character χ. Then
the Artin L-function attached to ρ is

L(s, χ, L : K) =
∏

p∈Max(OK)

1

detV Tp

(
1− φp

N(p)s

) ,
where Tp = TK(q) for some q ∈ Max(OL) above p and φp ∈ ZK(q) restricted to
LTp is the Frobenius of qTp over K. The infinite product converges absolutely for
ℜ(s) > 1 as will be shown below.

The definition is independent of the choice of φp, since Tp acts trivially on V Tp .
Note also that detV Tp

(
1 − φp

N(p)s

)
does not depend on the choice of q: for any

σ ∈ Gal(L : K) we have TK(σ(q)) = σTpσ
−1, σφpσ

−1|
LσTpσ−1 = φK(σ(q)TK(σ(q)))

and the action of 1− σφpσ−1

N(p)s
on V σTpσ−1

has the same determinant as the action

of 1− φp

N(p)s
on V Tp .

Let t > 1. Since φp ∈ Gal(L : K) acts on V Tp as an automorphism of finite order,
the eigenvalues εi of this automorphism are roots of unity. Let n the dimension of
V . Then for ℜ(s) ≥ t∣∣∣detV Tp

(
1− φp

N(p)s

)∣∣∣−1

=
∏
i

∣∣∣1− εi
N(p)s

∣∣∣−1

≤
(
1 +

2

N(p)t

)n
.

The infinite product
∏

p

(
1 + 2

N(p)t

)
converges absolutely for ℜ(s) ≥ t, because so

does the infinite sum
∑

p
2

N(p)t . It follows that the infinite product in the definition

converges absolutely in the half-plane ℜ(s) > 1.

Dirichlet L-functions are Artin L-functions:

18.57 Proposition. Let L : K be an abelian extension of number fields and χ ∈
H(L : K). Then L(s, χ, L : K) = L(s, χ). In particular for the trivial character we
have L(s,1, L : K) = ζK(s).

Proof. The character χ ∈ H(L : K) corresponds in a natural way to a character
χ : Gal(L : K) → C∗, a representation of degree 1. For each p ∈ Max(OK) we

have detC(1− φp

N(p)s ) = 1− χ(p)
N(p)s .

The sum of characters is the character of the direct sum of the representations:
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18.58 Proposition. Let L : K be a Galois extension of number fields and χ and χ′

characters of Gal(L : K). Then

L(s, χ+ χ′, L : K) = L(s, χ, L : K)L(s, χ′, L : K).

Proof. Let ρ : Gal(L : K) → AutC(V ) and ρ′ : Gal(L : K) → AutC(V
′) be

representations with characters χ and χ′ respectively. Then ρ⊕ ρ′ : Gal(L : K)→
AutC(V ⊕V ′) is a representation with character χ+χ′, and for each p ∈ Max(OK)

det(V⊕V ′)Tp

(
1− φp

N(p)s

)
= detV Tp

(
1− φp

N(p)s

)
· detV ′Tp

(
1− φp

N(p)s

)
.

Extending Galois extensions to larger Galois extensions has no effect on the Artin
L-function:

18.59 Proposition. Let L : K be a Galois extension of number fields and L′ an
intermediate field such that also L′ : K is a Galois extension. Let χ′ be a character

of Gal(L′ : K) and χ the composition Gal(L : K)→ Gal(L′ : K)
χ→ C. Then

L(s, χ, L : K) = L(s, χ′, L′ : K).

Proof. Let ρ : Gal(L′ : K) → AutC(V ) be a representation with character χ′.

Then χ is the character of the representation Gal(L : K) → Gal(L′ : K)
ρ→

AutC(V ). Let q ∈ Max(OL) above p. Put Tp = TK(q) and T ′
p = TK(q ∩ L′). The

Frobenius of p in (L′)T
′
p is the restriction of the Frobenius of p in LTp . So the

action of φK(qTp) coincides with the action of φK(q ∩ L′)T
′
p on V Tp = V T

′
p .

Proposition 18.57 follows from this proposition. It is the special case L′ = K:

L(s, 1, L : K) = L(s, 1,K : K) = ζK(s).

For L : K a Galois extension of number fields and K ′ an intermediate field, the
Artin L-function attached to a representation of Gal(L : K ′) is equal to the an
Artin L-function attached to the induced representation of Gal(L : K). This
will be proved below. It is Theorem 18.61. In its proof two lemmas concerning
representations will be used. First some generalities on induced representations
are described.

18.60 Induced representations and induced characters. Let H be a subgroup
of a finite group G and ρ : H → AutC(W ) a representation of H in the group of
automorphisms of a finite dimensional C vector space W with character χ. The
C[H]-module W determines a C[G]-module V via extension of scalars:

V = C[G]⊗C[H] W.
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The corresponding presentation ρ∗ : G → AutC(V ) is called the by ρ induced rep-
resentation of G. It is customary to identify W and 1 ⊗W ⊆ V via x 7→ 1 ⊗ x.
Thus W is an H-submodule of V and for a system σ1, . . . , σr of representatives of
G/H (the set of left cosets of H in G) one has

V = σ1W ⊕ · · · ⊕ σrW,

a direct sum of H-submodules. The character χ∗ of V is called the by χ induced
character of G. It is given by

χ∗(σ) =
1

#(H)

∑
τ∈G

τ−1στ∈H

χ(τ−1στ) for all σ ∈ G,

see section 7.2 of [34].

The following theorem is the main theorem on Artin L-functions.

18.61 Theorem. Let L : K be a Galois extension of number fields, K ′ an interme-
diate field of L : K and χ a character of Gal(L : K ′). Then for χ∗, the character
of Gal(L : K) induced by χ, we have

L(s, χ∗, L : K) = L(s, χ, L : K ′).

Proof. The proof is a bit technical, though not really difficult. Here too Theo-
rem 7.53 is used. Well-written proofs are in e.g. [12] and [31].

The Artin L-function of the regular character is the Dedekind zeta function of the
extension field:

18.62 Corollary. Let L : K be a Galois extension of number fields with Galois
group G. Then

L(s, nG, L : K) = ζL(s).

Proof. The character 1∗ induced by the trivial character 1 of the subgroup {1}
of G is the regular character of G. So

L(s,1∗, L : K) = L(s,1, L : L) = ζL(s).

By equation (18.6)

L(s, nG, L : K) =
∏
χ

L(s, χ, L : K)χ(1)

and so:
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18.63 Corollary. Let L : K be a Galois extension of number fields. Then

ζL(s) = ζK(s)
∏
χ ̸=1

L(s, χ, L : K)χ(1),

where the product is over all irreducible characters of Gal(L : K).

This generalizes the formula for L-functions of an abelian number field extension.

The character of a finite group G induced by the trivial character of a subgroup
U of G is denoted by χU . A norm relation of a finite group leads to a relation
between these induced characters.

18.64 Theorem. Let
∑
U∈Σ(G) nUU be a norm relation of G. Then∑

U∈Σ(G)

nU#(U)χU = 0.

Proof. The induced characters χU are given by

χU (σ) =
1

#(U)

∑
τ∈G

τ−1στ∈U

1 for all σ ∈ G.

So for each σ ∈ G we have by Lemma 18.37 (with Z = ⟨τ−1στ⟩, T = {1} and
d = o(σ)):∑

U∈Σ(G)

nU#(U)χU =
∑

U∈Σ(G)

∑
τ∈G

τ−1στ∈U

nU =
∑
τ∈G

∑
U∈Σ(G)

U⊇⟨τ−1στ⟩

nU = 0.

A relation between characters induced by trivial characters leads to a relation
between Dedekind zeta functions: for U a subgroup of G we have by Theorem 18.61
L(s, χU , L : K) = L(s,1H , L : LU ) = ζLU (s) and by Theorem 18.64 and the
Propositions 18.57 and 18.58 ∏

U∈Σ(G)

ζLU (s)nU#(U) = 1.

This again proves Theorem 18.38.

18.5 Strongly exceptional groups

If the trivial norm coefficient dG({1}) of the Galois group G of a nontrivial Galois
extension L : K of number fields is nonzero, then by Corollary 18.39 the Dedekind
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zeta function of L is determined by the Dedekind zeta functions of intermediate
fields ̸= L of the extension. Clearly, this holds as well for each nontrivial subgroup
of G.

18.65 Definitions. Let G be a nontrivial finite group. Then G is called exceptional
if dG({1}) = 0. It is called strongly exceptional if all nontrivial subgroups are
exceptional.

18.66 Lemma. Let G be a finite group of order n > 1. Then the following holds.

a) dG({1}) =
∑
d|n µ(d)eG(d), where eG(d) is the number of cyclic subgroups of

order d.

b) If G = G1 × G2 with #(G1) and #(G2) relatively prime, then dG({1}) =
dG1({1}) · dG2({1}).

Proof.

a) dG({1}) =
∑

H∈Ω(G)

µ(#(H)) =
∑
d|n

∑
H∈Ω(G)
#(H)=d

µ(d) =
∑
d|n

µ(d)eG(d).

b) Put #(G1) = n1 and #(G2) = n2. Because gcd(n1, n2) = 1, we have a
bijection

Ω(G)
∼−→ Ω(G1)× Ω(G2), H1 ×H2 7→ (H1, H2)

and so

dG({1}) =
∑

H∈Ω(G)

µ(#(H)) =
∑

H1×H2∈Ω(G)

µ(#(H1 ×H2))

=
∑

H1∈Ω(G1)
H2∈Ω(G2)

µ(#(H1))µ(#(H2))

=
∑

H1∈Ω(G1)

µ(#(H1)) ·
∑

H2∈Ω(G2)

µ(#(H2)) = dG1
({1}) · dG2

({1}).

This lemma implies:

18.67 Proposition. Let G1 and G2 be nontrivial finite groups with #(G1) and
#(G2) relatively prime. Then G1 ×G2 is nonexceptional if and only if G1 and G2

both are nonexceptional.

18.68 Proposition. Let p be a prime number and G a nontrivial p-group. Then G
is exceptional if and only if G has a unique subgroup of order p. If G is exceptional,
it is strongly exceptional.
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18.5 Strongly exceptional groups

Proof. Let m be the number of subgroups of order p. Then by Lemma 18.66a)
the trivial norm coefficient dG({1}) of G is equal to 1 − m. So G is exceptional
if and only if m = 1. If G has a unique subgroup of order p, then so has each
nontrivial subgroup of G.

For p an odd prime p-groups have a unique subgroup of order p if and only if they are
cyclic. For 2-groups it is a bit more complicated: a 2-group has a unique subgroup
of order 2 if and only if the group is either cyclic or (generalized) quaternion, see
below for the definition of quaternion groups. Proofs are in many books on group
theory, e.g. [15] Theorem 12.5.2 or [6] Theorem (4.3).

18.69 Definition. Let n ≥ 3. A generalized quaternion group of order 2n is gen-
erated by two elements, an element σ of order 2n−1 and an element τ of order 2,
such that

σ2n−2

= τ2 and τσ = σ−1τ.

For n = 3 the group is the well known quaternion group of order 8. Generalized
quaternion groups are often called just quaternion groups for short.

We will show that in some cases the existence of a collection of exceptional sub-
groups implies that the group itself is exceptional.

18.70 Definition. Let G be a finite group and let {Gi} be a collection of subgroups
of G indexed by a finite set I. For J ⊆ I we write

GJ =
⋂
j∈J

Gj ,

where it is understood that G∅ = G. The collection {Gj} is called exceptional if

a) G =
⋃
i∈I Gi,

b) GJ is exceptional for all J ̸= ∅.

18.71 Theorem. Let {Gi} be an exceptional collection of subgroups of a finite group
G. Then G is exceptional.

Proof. For i ∈ I and J ⊆ I we write Ωi for Ω(Gi) and ΩJ for Ω(GJ). From
condition a) it follows that

Ω(G) =
⋃
i∈I

Ωi.

For S ⊆ Ω(G) the characteristic function on Ω(G) corresponding to S is denoted
by χ

S
. We have

0 = χ
Ω\

⋃
Ωi

= χ⋂
(Ω\Ωi)

=
∏
i

χ
Ω\Ωi

=
∏
i

(1− χ
Ωi

) =
∑
J⊆I

(−1)#J
∏
j∈J

χ
Ωj

=
∑
J⊆I

(−1)#Jχ
ΩJ
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18 Zeta Function Relations

and so

1 = −
∑
J⊆I
J ̸=∅

(−1)#Jχ
ΩJ

,

that is for each H ∈ Ω

1 = −
∑
J⊆I
J ̸=∅

(−1)#Jχ
ΩJ

(H).

Multiply by µ(#H):

µ(#H) = −
∑
J⊆I
J ̸=∅

(−1)#Jχ
ΩJ

(H)µ(#H).

Summation over all H ∈ Ω yields

dG({1}) = −
∑
J⊆I
J ̸=∅

(−1)#J
∑
H∈Ω

χ
ΩJ

(H)µ(#H) = −
∑
J⊆I
J ̸=∅

(−1)#J
∑
H∈ΩJ

µ(#H)

= −
∑
J⊆I
J ̸=∅

(−1)#JdGJ
({1}) = 0.

18.72 Notation. By D(G) we denote the intersection of all maximal cyclic
subgroups of a finite group G. The collection of all maximal cyclic subgroups is
exceptional if D(G) is nontrivial: the intersections of such subgroups are cyclic
and nontrivial since they contain D(G). On the other hand, every element of G is
contained in some maximal cyclic subgroup.

18.73 Corollary. A finite group G is exceptional if D(G) is nontrivial.

18.74 Lemma. The subgroup D(G) of a finite group G is contained in the center
of G.

Proof. Let h ∈ D(G) and g ∈ G. Choose a maximal cyclic subgroup M of G
such that g ∈ M . Since h and g both are elements of the cyclic group M , they
commute.

18.75 Proposition. Let G be a finite group, p a prime number and g ∈ G of order
p. Then g ∈ D(G) if and only if ⟨g⟩ is the only subgroup of G of order p and g is
in the center of G.

Proof. Suppose g ∈ D(G). By Lemma 18.74 g is in the center of G. Let h ∈ G
be of order p. Choose a maximal cyclic subgroup M of G such that h ∈M . Then
⟨h⟩ and ⟨g⟩ both are subgroups of the cyclic groupM . They coincide because their
orders are equal.
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18.5 Strongly exceptional groups

Conversely, suppose ⟨g⟩ is the only subgroup of order p and g is in the center of
G. Let M be a cyclic subgroup of G. If p ∤ #(M), then ⟨M, g⟩ is a larger cyclic
subgroup. So the order of every maximal cyclic subgroup is a multiple of p. Since
⟨g⟩ is the only subgroup of order p, it follows that g is an element of all maximal
cyclic subgroups.

So by this proposition and Corollary 18.73:

18.76 Proposition. Let p be a prime number and G be a finite group. If G has
a unique subgroup of order p and this subgroup is in the center of G, then G is
exceptional.

Noncyclic groups of order pq with p and q prime are nonexceptional (Examples
18.11 and 18.12). They cannot occur as subgroups of a strongly exceptional group.
If a group is not strongly exceptional it must have such subgroup:

18.77 Theorem. A finite group is strongly exceptional if and only if it has no
noncyclic subgroup of order pq with p and q prime numbers.

Proof. It suffices to prove that a nonexceptional finite group for which all non-
cyclic proper subgroups are exceptional is a noncyclic group of order pq with p and
q prime. Let G be such a group. Since G nonexceptional, its Sylow subgroups
are proper subgroups and are therefore exceptional. By Proposition 18.68 they are
cyclic or quaternion. If they are all cyclic, then G is metacyclic, in the sense that
the commutator subgroup G′ and the factor group G/G′ are both cyclic. ([15],
Theorem 9.4.3). In this case G must be a noncyclic group of order pq with p and
q prime numbers.

So we now assume that a Sylow 2-subgroup ofG is quaternion. This assumption has
to lead to a contradiction. Let N be a nontrivial normal subgroup of G such that
G/N is noncyclic. Consider the collection {Gi} of proper subgroups of G containing
N . These subgroups correspond via Gi 7→ Gi/N to proper subgroups of G/N and
since G/N is noncyclic, G/N is the union of the Gi/N . Hence G is the union of the
Gi. It follows that the collection {Gi} is an exceptional collection of subgroups of
G. By Theorem 18.71 G is exceptional. This shows that for all nontrivial normal
subgroups the factor group is cyclic. The commutator subgroup G′ is nontrivial.
If G′ = G, then factor groups of proper normal subgroups are not cyclic either.
This means that G is simple. However, it is shown by Brauer and Suzuki in [5]
that simple groups do not have such a Sylow 2-subgroup. Contradiction.

18.78 Corollary. Let G a finite group which is not strongly exceptional and let A
be a G-module. Then either A = A0 or pA ⊆ A0 for some unique prime p.

Proof. Assume that A ̸= A0. The group G has a noncylic subgroup of order pq
with p and q ≤ p prime. Its trivial norm coefficient equals −p. For this p we have
pA ⊆ A0. If A ̸= A0, then there is no such a subgroup with a different trivial norm
coefficient.

501



18 Zeta Function Relations

18.79 Corollary. Let L : K be a Galois extension of number fields and suppose that
its Galois group is not strongly exceptional. Then ζL(s) is in the group generated
by the Dedekind zeta functions of intermediate fields ̸= L.

Proof. By Theorem 18.77 the Galois group has a noncyclic subgroup U of order
pq with p and q prime. From Corollary 18.40 and Corollary 18.41 follows that
ζL(s) is in the group generated by the Dedekind zeta functions of the intermediate
fields ̸= L of the extension L : LU .

Exercises

1. Let H be a normal subgroup of a finite group G. The subgroups of G/H correspond
to subgroups U of G containing H.

(i) Show that the homomorphism ZΣ(G/H)→ ZΣ(G) given by

U/H 7→ U for U ∈ Σ(G) such that U ⊇ H

induces a homomorphism NR(G/H)→ NR(G).

(ii) Show that this homomorphism is injective.

2. Let be given

G a finite abelian group,∑
U∈Σ(G) nUU a norm relation for G,

B a (multiplicative) abelian group,

f a map from G∨ to B.

Prove that the map

F : Σ(G∨)→ B, V 7→
∏
χ∈V

f(χ)

satisfies ∏
U∈Σ(G)

F (U⊥)nU#(U) = 1.

(Hint: use Lemma 18.33.)

3. By Artin’s Reciprocity Theorem the dual Artin map φ̌
(L)
K of an abelian extension

L : K of number fields is an isomorphism Gal(L : K)∨
∼→ H(L : K). In this case

we can use Dirichlet characters instead of group characters and the correspondence
between subgroups V ∈ H(L : K) and subgroups U ∈ Σ(G) is given by

V ⊥ = Gal(L : KV ) and U⊥ = H(LU : K).

Using this terminology, show that exercise 2 can be translated into the following:
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Exercises

let be given

L : K an abelian extension of number fields,

G the Galois group of L : K,∑
U∈Σ(G) nUU a norm relation for G,

B a (multiplicative) abelian group,

f a map from H(L : K) to B.

Then the map

F : Σ(H(L : K))→ B, V 7→
∏
χ∈V

f(χ)

satisfies ∏
U∈Σ(G)

F (U⊥)nU#(U) = 1.

4. Let L : K be an abelian extension of number fields, G the Galois group of L : K
and

∑
U∈Σ(G) nUU a norm relation for G. Show that∏

U∈Σ(G)

ζLU (s)nu#(U) = 1

by applying exercise 3 to the map

f : H(L : K)→ C∗, χ 7→ L(s, χ).

5. Let L : K be an abelian extension of number fields, G the Galois group of L : K
and

∑
U∈Σ(G) nUU a norm relation for G. Show that∏

U∈Σ(G)

dK(LU )nu#(U) = 1

by applying exercise 3 to the map

f : H(L : K)→ C∗, χ 7→ L(s, χ).

6. Let q be an odd prime power. Show that SL(2,Fq) is exceptional. (Hint: the group
has a unique element of order 2.) Verify: for q > 4 the group is nonsolvable, because
the group PSL(2,Fq) is perfect.

7. Let q be an odd prime power. Show that a Sylow 2-subgroup of SL(2,Fq) is quater-
nion.

8. Prove that the ideal class group of Q( 3
√
7) is of order 3. (Hint: exercise 6 of

chapter 12 and Example 18.53.)

9. Let m,n, r ∈ N∗ be such that gcd(m,n(r − 1)) = 1 and rn ≡ 1 (mod m). Prove
that the metacyclic group ⟨g, h⟩ given by o(g) = m, o(h) = n and hgh−1 = gr is
strongly exceptional.
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19 Infinite Extensions of Number
Fields

Number fields are finite extensions of Q. They are all embeddable in the algebraic
closure Q, the field of algebraic numbers. The notion of Galois extension is, if not
yet done so, easily extended to infinite algebraic extensions. For a generalization
of Galois theory the Galois groups have to be endowed with a topology. This will
be done in section 19.5. For this we need some generalities on topological groups
and more generally on topological spaces (sections 19.1 up to 19.4). Galois groups
turn out to be compact and totally separated, so in these sections there is special
attention to compactness and total separateness.

The union Kab of all finite abelian extensions (inside C) of a number field K is an
example of an infinite Galois extension. Its Galois group is a totally separated com-
pact abelian group. Totally separated compact groups (so-called profinite groups)
are treated in section 19.4. The dual of an abelian profinite group is the group of
its continuous characters. Pontryagin’s Duality Theorem (section 19.6) describes
a self duality of the category of abelian topological groups. Under this duality
abelian profinite groups correspond to abelian torsion groups. In section 19.6 this
part of the theorem is proved. Class field theory gives us an isomorphism

Gal(Kab : K)
∨ ∼−→ H(K)

induced by the dual Artin maps of the finite abelian extensions of K. It is an
isomorphism of abelian torsion groups.

19.1 Infinite products of topological spaces

The main theorem of this section is Tykhonov’s Theorem: a (possibly infinite)
product of compact spaces is a compact space. We review the notion of infinite
product of spaces, show furthermore that the product of Hausdorff spaces is a
Hausdorff space and that also total disconnectedness is preserved under taking
products. For completeness the definitions of these topological notions are given.

A topological space X = (X0, T ) is a set X0 together with the collection T of
its open sets. Usually in the notation no distinction is made between X and its
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19 Infinite Extensions of Number Fields

underlying set X0. If X is a topological space, its topology may be denoted by TX .
A collection T of subsets of a set X is said to be a topology on X if T is closed
under (possibly infinite) unions and under finite intersections.

19.1 Definition. Let (Xi)i∈I be a collection of topological spaces indexed by the
set I. The product X of the Xi is the product in the categorical sense: there are
continuous maps pi : X → Xi and for each collection (fi)i∈I of continuous maps
fi : Y → Xi there is a unique continuous map f : Y → X such that pif = fi for all
i ∈ I.

This definition implies that the product is unique up to a canonical isomorphism,
but its existence still has to be shown. We will use the notions of base and subbase
of a topology. Let’s fix the terminology.

19.2 Definitions and notations. Let X be a topological space with topology
T . A base of T is a subcollection S of T such that every U ∈ T is the union
of a subcollection of S. A subbase of T is a subcollection S of T such that the
intersections of finite subcollections of S form a base of T . This base is denoted
by S#.

Every collection S of subsets of a set X defines a topology on X by declaring S to
be a subbase. The base S# then consists of all intersections of finite subcollections
of S and the topology is the collection of all unions of subcollections of S#. (Here
it is understood that an empty intersection is the whole set X.)

19.3 Proposition. Let (Xi)i∈I be a collection of topological spaces indexed by the
set I. Let X be the topological space having the cartesian product

∏
i∈I Xi as

underlying set and the sets∏
i∈I

Ui with Ui ∈ TXi
and Ui ̸= Xi for only finitely many i ∈ I,

as a base of its topology. Then the projections pi : X → Xi are continuous and X
(with these projections) is the product of the Xi.

Proof. For U ∈ TXi
the set p−1

i (U) is open in X. So the maps pi are continuous.
Let (fi)i∈I be a collection of continuous maps fi : Y → Xi. Since X as a set is the
product of the sets Xi, there is a unique map f : Y → X such that pif = fi for all
i ∈ I. It remains to show that f is continuous. For base elements U =

∏
i∈I Ui of

TX we have

f−1(U) =
⋂
i∈I

f−1
i (Ui) =

⋂
i∈I

Ui ̸=Xi

f−1
i (Ui),

an intersection of finitely many open sets.

Note that the so-called cylinder sets p−1
i (U) with U open in Xi form a subbase of

the topology of
∏

i∈I Xi. The base it determines is the one described in the above
proposition.
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19.1 Infinite products of topological spaces

In various important cases properties of the factors carry over to the product space:
Tykhonov’s Theorem 19.7 and Propositions 19.5 and 19.10.

19.4 Definition. A topological spaceX is called a Hausdorff space if for all x, y ∈ X
with x ̸= y there exist U, V ∈ TX such that x ∈ U , y ∈ V and U ∩ V = ∅.

19.5 Proposition. The product of a collection of Hausdorff spaces is a Hausdorff
space.

Proof. Let X =
∏
i∈I Xi, where the Xi are Hausdorff spaces. If x, y ∈ X

with x ̸= y, then pj(x) ̸= pj(y) for some j ∈ I. Let U, V ∈ TUj
such that

pj(x) ∈ U , pj(y) ∈ V and U ∩ V = ∅. Then x ∈ p−1(U), y ∈ p−1(V ) and
p−1(U) ∩ p−1(V ) = ∅.

In the proof of Tykhonov’s Theorem Alexander’s Subbase Theorem will be used:
for open covers to have finite subcovers it suffices that covers by sets of a given
subbase have this property.

19.6 Alexander’s Subbase Theorem. Let X be a topological space with a subbase
S of open sets. Suppose that each subcover of S has a finite subcover. Then X is
compact.

Proof. Suppose X is not compact. Then there are open covers of X without
finite subcovers. By Zorn’s Lemma there is a maximal such open cover C. By
assumption on S, the collection C ∩ S does not cover X. Let x ∈ X \

⋃
U∈C∩S U .

Since C covers X, there is a U ∈ C such that x ∈ U and, because S is a subbase,
there is a finite subcollection F of S such that x ∈

⋂
V ∈F V ⊆ U . By the choice

of x we have F ∪ S = ∅. By maximality of C for each V ∈ F the collection
{V } ∪ C has a finite subcover {V } ∪ FV , where FV is a finite subcollection of C.
Put F∗ =

⋃
V ∈F FV . Then also F ∪ F∗ is a finite cover of X. If x /∈ V , where

V ∈ F , then x ∈
⋃
W∈FV

W . So also {
⋂
V ∈F V } ∪ F∗ is a cover of X. Since⋂

V ∈F V ⊆ U , the collection {U} ∪ F∗ is a cover of X. This is a finite subcover of
C. Contradiction.

19.7 Tykhonov’s Theorem. The product of a collection of compact spaces is a
compact space.

Proof. Let X be the product of a collection (Xi)i∈I of compact spaces Xi and
S the subbase of TX consisting of the sets p−1

i (U) with U open in Xi. Let C ⊆ S
be an open cover of X. It determines for each i a collection Ci of open sets of Xi:

Ci = {U ∈ TXi
| p−1

i (U) ∈ C }.

Suppose that for all i the collection Ci does not cover Xi. Then there is an x ∈ X
such that pi(x) /∈

⋃
U∈Ci

U for all i, that is x /∈ p−1
i (U) for all i and all U ∈ TXi .

Since C covers X, such an x does not exist. So there is an i such that Ci covers Xi.
Since Xi is compact the collection Ci has a finite subcover Fi. Then the collection

F = { p−1
i (U) | U ∈ Fi }
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19 Infinite Extensions of Number Fields

is a finite subcover of C. By Alexander’s Subbase Theorem X is compact.

Finally we consider total separateness.

19.8 Definition. Two points of a topological space are said to be separated if there
is an open and closed set containing one of them and not the other. A topological
space is totally separated if any two points are separated.

A related notion is total disconnectedness: X is totally disconnected if the empty
set and the one point subspaces are the only connected subspaces. A space being
connected if the empty set and the total space are the only subsets which are both
open and closed. Totally separated spaces are totally disconnected, but the converse
does not hold. However, for locally compact Hausdorff spaces the two notions are
equivalent (exercise 1). In this book only total separateness is used.

19.9 Example. The subset Q of the topological space R with the relative topology
is totally separated. For a, b ∈ Q with a < b choose an irrational λ in the interval
(a, b). The open set (−∞, λ)∩Q contains a, does not contain b and its complement
is the open set (λ,∞) ∩Q.

19.10 Proposition. Totally separated spaces are Hausdorff spaces. The product of
a collection of totally separated spaces is totally separated.

Proof. The first part of the proposition is trivially true. For the second part let
(Xi)i∈I be a collection of totally separated spaces. Let x and y be two different
points of

∏
iXi, then there is an i ∈ I such that pi(x) ̸= pi(y). Since Xi is totally

separated, it contains an open and closed set U such that pi(x) ∈ U and pi(y) /∈ U .
Then x is in the open and closed subset p−1

i (U) of
∏
iXi, whereas y is not.

19.2 Topological groups

19.11 Definition. A topological group G is both a group and a topological space
in such a way that the group operations are continuous, that is the maps

G×G→ G, (x, y) 7→ xy and G→ G, x 7→ x−1

are continuous.

19.12 Examples.

a) Well-known topological groups are the additive group R, the multiplicative
group R∗ and the circle group S1 = {z ∈ C | |z| = 1}, all with the ordinary
topology. The topological group R/Z is isomorphic to the circle group via
x 7→ e2πix.

b) Subgroups of topological groups are topological groups as well: Q, Q∗, µ(C).
These subgroups are examples of totally separated topological groups.
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19.2 Topological groups

c) Every absolute value on a field determines a topology on that field. For a
number field K and p a prime of K, the additive group of the completion Kp

is a topological group and so is the multiplicative group K∗
p .

19.13 Lemma. Let G be a topological group and g ∈ G. Then the map G →
G, x 7→ gx is a homeomorphism.

Proof. The map is the composition of the continuous maps G → G × G, x 7→
(g, x) and G×G→ G, (x, y) 7→ xy. Its inverse is the map x 7→ g−1x.

As a consequence open subgroups in a compact group are quite special:

19.14 Lemma. Let H be a subgroup of a compact group G. Then H is open if and
only if it is closed and of finite index.

Proof. If H is open, then by Lemma 19.13 the left cosets of H form an open
covering of G. Since G is compact, it is covered by finitely many of these cosets.
So the index of H is finite and since its complement is the union of open sets, H
is also closed. Conversely, if H is closed and of finite index, it is the complement
of finitely many closed sets.

A compact topological group is totally separated if and only if the open subgroups
form a base for the neighborhoods of 1:

19.15 Proposition. Let G be a compact topological group and N the collection of
open normal subgroups of G. Then

G is totally separated ⇐⇒
⋂
N∈N

N = {1}.

Proof.

⇒: We will show that for every g ∈ G with g ̸= 1, there exists an N ∈ N such
that g /∈ N . For a given g ∈ G with g ̸= 1 by total separateness there exists
an open and closed set U with 1 ∈ U and g /∈ U . Let h ∈ U . The image
of U × U under the multiplication map G × G → G will be denoted by U2.
The restriction of this map to U × U → U2 is continuous and maps (h, 1) to
h. Since U is an open neighborhood of h in U2, there are open sets Vh and
Wh of U such that h ∈ Vh, 1 ∈ Wh and that the image VhWh of Vh ×Wh is
contained in U .

The collection (Vh)h∈U is an open cover of the compact set U , so there is
a finite subset F ⊂ U such that U =

⋃
h∈F Vh. Set W =

⋂
h∈F Wh and

X = W ∩W−1, where W−1 = {x−1 | x ∈ W}. Then W , and hence also X,
is an open neighborhood of 1 contained in U . We have

UX =
⋃
h∈F

VhX ⊆
⋃
h∈F

VhW ⊆
⋃
h∈F

VhWh ⊆ U
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19 Infinite Extensions of Number Fields

and by induction UXi ⊆ U for all i ∈ N∗. Set H =
⋃∞
i=1X

i. It is an open
subset of U and clearly a subgroup of G. By Lemma 19.14 H is of finite index
in G. Finally, setN =

⋂
x∈G xHx

−1. ThenN is a normal subgroup contained
in U . Because H is of finite index, it has only finitely many conjugates and
so N is open as well. Since N ⊆ U , the element g is not in N .

⇐: Let g1, g2 ∈ G such that g1 ̸= g2. From
⋂
N∈N N = {1} follows that⋂

N∈N g1N = {g1}. Hence there is an N ∈ N such that g2 /∈ g1N , that
is g1N ̸= g2N . Since N is open, the cosets g1N and g2N are open.

19.3 Inductive and projective limits

In category theory one defines inverse limits (= colimits) and direct limits (=
limits) of functors D : I → C , where I is a small category, the index category. If
they exist they are defined up to a canonical isomorphism. If I has only identity
morphisms, the direct limit is called a sum and the inverse limit a product. The
product of topological spaces in section 19.1 is the product in the categorical sense.
In this section we consider another special case, the case where I comes from a
directed set.

19.16 Definition. Let I be a set and ≤ an ordering of I. Then the ordered set I
is called a directed ordered set if for each pair i, j ∈ I there is a k ∈ I such that
i ≤ k and j ≤ k. It corresponds to a category I with I as the set of objects and
one morphism i→ j for each pair i, j ∈ I with i ≤ j.

19.17 Examples.

a) The sets N and Z with the usual ordering ≤ are directed ordered sets.

b) The set N∗ with the ordering | (= divisor of).

c) The setM(K) of all moduli of a number field K with the ordering |.

Inductive limits

19.18 Definition. Let I be a directed ordered set and C a category. An inductive
system in C indexed by I is a functor I → C , where I is the with I corresponding
category. More concretely, it is a collection (Xi)i∈I of objects in C together with
morphisms fij : Xi → Xj for i, j ∈ I with i ≤ j such that

(IS1) fii = 1Xi
for all i ∈ I,

(IS2) fjkfij = fik for all i, j, k ∈ I with i ≤ j ≤ k.
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19.3 Inductive and projective limits

19.19 Example. Let C be a collection of subsets of a given set X such that
U ∪ V ∈ C if U, V ∈ C. Under the ordering ⊆ they form a directed ordered set and
together with the inclusion maps they form an inductive system of sets indexed by
themselves.

X

Xi Y

qi h

gi
19.20 Definition. The direct limit of an inductive sys-
tem is called an inductive limit. Specifically: let I be
a directed ordered set and (Xi)i∈I an inductive system
in a category C indexed by I. The inductive limit X of
the inductive system is an object X of C together with
morphisms qi : Xi → X such that

qjfij = qi for all i, j ∈ I with i ≤ j

with the property that given an object Y of C together with morphisms gi : Xi → Y
such that

gjfij = gi for all i, j ∈ I with i ≤ j,

there is a unique morphism h : X → Y such that hqi = gi for all i ∈ I. Notation:

X = lim−→
i

Xi.

19.21 Example. For the system C described in Example 19.19 we have

lim−→
U∈C

U =
⋃
U∈C

U,

where for V ∈ C the map qV : V →
⋃
U∈C U is the inclusion map.

In the next proposition the inductive limit of any inductive system of sets is con-
structed.

19.22 Proposition. Let I be a directed ordered set and (Xi)i∈I an inductive system
of sets indexed by I. Its inductive limit can be constructed as the set(∐

i

Xi

) /
∼,

where
∐
i stands for disjoint union and ∼ for the equivalence relation

xi ∼ xj ⇐⇒ fij(xi) = xj (for xi ∈ Xi, xj ∈ Xj and i ≤ j),

together with the maps qi : Xi →
(∐

iXi

) /
∼ induced by the inclusion maps

qi : Xi →
∐
iXi. (In this description the Xi are assumed to be disjoint.)

Proof. Let Y and gi be as in the definition. The required unique map
h : X → Y is the map induced by the gi : Xi → Y .
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19 Infinite Extensions of Number Fields

The advantage of inductive systems over arbitrary systems is that in many impor-
tant cases the inductive limit has an underlying set which is the inductive limit of
the underlying sets. Of course this makes sense only in cases where the objects do
have underlying sets. We consider three special cases.

19.23 Proposition. Let (Gi)i∈I be an inductive system of groups with group ho-
momorphisms fij : Gi → Gj. Then

lim−→
i

Gi =
(∐

i

Gi

) /
∼

as a set. In particular it is the union of the subsets fi(Gi). The product of qi(gi)
and qj(gj) (with gi ∈ Gi and gj ∈ Gj) is defined by

qi(gi) · qj(gj) = qk(fik(gi) · fjk(gj)),

where k ∈ I is such that i, j ≤ k.

Proof. Straightforward. Note that the multiplication is defined by choosing
representatives in a single qk(Gk), which is possible because the index set is di-
rected.

19.24 Example. The symmetric group Sn is the group of permutations of the
set {1, . . . , n}. The set N∗ is ordered by the usual ordering ≤ and obviously this
ordering is directed. For m ≤ n we have a group homomorphism fmn : Sm → Sn
defined by

(fmn(σ))(i) =

{
σ(i) if i ≤ m,

i otherwise.

The groups Sn together with these maps form an inductive system of groups. For
the inductive limit we can take the group S∞ of all permutations σ of N∗ with
σ(i) ̸= i for only finitely many i.

19.25 Example. Let NK be the collection of all number field extensions of a given
number field K. Under ⊆ they form a directed ordered set and together with the
inclusion maps we have an inductive system in the category of rings. The inductive
limit of this system is the field Q, the algebraic closure in C of any number field.

For topological spaces we have similarly:

19.26 Proposition. Let (Xi)i∈I be an inductive system of topological spaces with
continuous maps fij : Xi → Xj. Then

lim−→
i

Xi =
(∐

i

Xi

) /
∼

as a set. The space
∐
iXi is the disjoint union of spaces and the topology of the

inductive limit is given by the quotient topology.
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19.3 Inductive and projective limits

19.27 Example. As for sets (Example 19.21) the inductive limit of an inductive
system of subspaces of a topological space is the union of these subspaces.

Inductive limits in the category of topological groups are as for groups and for
topological spaces. They just have the combined structure.

19.28 Proposition. Inductive systems in the category of topological groups have an
inductive limit in this category. Their underlying set is the inductive limit of the
underlying sets. The group structure is as for inductive limits of groups and the
topology is the topology for the inductive limit of topological spaces.

Proof. Let (Gi)i∈I be an inductive system of topological groups. Then the set
G = lim−→i

Gi is a group as well as a topological space. The map G→ G, x 7→ x−1 is

continuous since all maps Gi → Gi, x 7→ x−1 are continuous and lim−→i
is a functor

from inductive systems of topological spaces to topological spaces. The system
(Gi×Gi)i∈I with the maps Gj×Gj → Gi×Gi componentwise is inductive and its
inductive limit is G×G. The map G×G→ G, (x, y) 7→ xy is continuous because
all maps Gi ×Gi → Gi, (x, y) 7→ xy are.

19.29 Examples.

a) The system (DN )N∈N∗ of groups of (ordinary) Dirichlet characters is an in-
ductive system of finite abelian groups indexed by the directed set N∗, ordered
by |. The group of Dirichlet characters is its inductive limit:

D = lim−→
N

DN .

b) Similarly for groups of Dirichlet characters of a number field K. The induc-
tive system is (Hm)m∈M(K) and its inductive limit is the group of Dirichlet
characters of K:

H(K) = lim−→
m

Hm(K).

The index set isM(K) ordered by |.

In both cases the inductive limit is an abelian torsion group. If the finite abelian
groups are given the discrete topology, then the inductive limit has the discrete
topology as well.

Projective limits

A projective system is an inductive system in the dual category.
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19 Infinite Extensions of Number Fields

19.30 Definition. Let I be a directed ordered set and C a category. A projective
system in C indexed by I is a functor I ◦ → C , where I is the with I cor-
responding category; in other words it is a contravariant functor from I to C .
More concretely, it is a collection (Xi)i∈I of objects in C together with morphisms
fij : Xj → Xi for i, j ∈ I with i ≤ j such that

(PS1) fii = 1Xi
for all i ∈ I,

(PS2) fijfjk = fik for all i, j, k ∈ I with i ≤ j ≤ k.

19.31 Examples. Let X be a set and C a collection of subsets of X such that
U ∩ V ∈ C for all U, V ∈ C. With the ordering ⊇ the collection C is a directed
ordered set. Together with the inclusion maps the subsets in C form a projective
system.

X

Y Xi

pih

gi
19.32 Definition. The inverse limit of a projective sys-
tem is called a projective limit. Specifically: let I be a
directed ordered set and (Xi)i∈I a projective system in
a category C indexed by I. The projective limit X of
the projective system is an object X of C together with
morphisms pi : X → Xi such that

pijfj = pi for all i, j ∈ I with i ≤ j

with the property that given an object Y of C together with morphisms gi : Y → Xi

such that

fijgj = gi for all i, j ∈ I with i ≤ j,

there is a unique morphism h : Y → X such that pih = gi for all i ∈ I. Notation:

X = lim←−
i

Xi.

In the next proposition the projective limit of a projective system of sets is con-
structed.

19.33 Proposition. Let I be a directed ordered set and (Xi)i∈I a projective system
of sets indexed by I. Its projective limit can be constructed as the set

X =
{
(xi)i∈I ∈

∏
i

Xi

∣∣∣ fij(xj) = xi for all i, j ∈ I with i ≤ j
}

together with the maps pi : X → Xi induced by the projections pi :
∏
iXi → Xi.

Proof. Let Y and gi be as in the definition. The required unique map h : X → Y
is the map induced by the gi : Xi → Y .
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19.3 Inductive and projective limits

Again in many important cases in which the objects of the category C are sets
together with extra structure, the projective limit exists and its underlying set is
the projective limit of the underlying sets. In fact this often holds more in general
for inverse limits in such categories.

19.34 Example. Let K be a discretely valued field, R its valuation ring and p
the maximal ideal of R. In section 10.5 we considered the p-adic completion K̂ of
K. It is a discretely valued field as well and its residue class field is canonically
isomorphic with the residue class field of K. In 10.37 an alternative construction
for the valuation ring R̂ was given. It is a projective limit:

R̂ = lim←−
i∈N∗

R/pi.

The projective system is

· · · → R/pi+1 → R/pi → · · · → R/p,

where the maps R/pi+1 → R/pi are induced by the identity on R. See also Nota-
tions 10.38 for the notations used in the number field case. In particular for K a
number field and p ∈ Max(OK) we have

Op = lim←−
i∈N∗

OK/pi.

For K = Q and p a prime number this is the ring Zp of p-adic integers:

Zp = lim←−
i∈N∗

Z/pi.

In the next section projective limits of groups are considered and these limits will
be endowed with a topology. Therefore, we first have a look at projective limits of
topological spaces.

19.35 Proposition. Let (Xi)i∈I be a projective system of topological spaces with
continuous maps fij : Xj → Xi. Then

lim←−
i

Xi =
{
(xi)i∈I ∈

∏
i

Xi

∣∣∣ fij(xj) = xi for all i, j ∈ I with i ≤ j
}

as a set. The topology of lim←−iXi is the topology relative to the product topology of∏
iXi.

Proof. The maps pi : lim←−iXi → Xi are compositions of continuous maps:

lim←−iXi →
∏
iXi and the projection

∏
iXi → Xi. The defining properties for

a projective limit are easily verified.

19.36 Proposition. Let (Xi)i∈I be a projective system of Hausdorff spaces. Then
lim←−iXi is a Hausdorff space and is closed in

∏
iXi.
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19 Infinite Extensions of Number Fields

Proof. By Proposition 19.5 the product
∏
iXi is a Hausdorff space, so the sub-

space lim←−iXi is a Hausdorff space as well. We will prove that lim←−iXi is closed

in
∏
iXi. Let a = (ai)i ∈

∏
iXi \ lim←−iXi. Then there are j, k ∈ I such that

j ≤ k and fjk(ak) ̸= aj . Since Xj is a Hausdorff space, there are disjoint open
neighborhoods U and V of aj and fjk(ak) respectively. Set V

′ = f−1
jk (V ). It is an

open neighborhood of ak in Xk. Then p
−1
j (U) ∩ p−1

k (V ′) is an open neighborhood
of a in

∏
iXi disjoint from lim←−iXi.

19.37 Theorem. The projective limit of a projective system of compact Hausdorff
spaces is a compact Hausdorff space.

Proof. Let (Xi)i∈I be a projective system of nonempty compact Hausdorff
spaces. By Proposition 19.36 lim←−iXi is closed in

∏
iXi, which by Tykhonov’s

Theorem (Theorem 19.7) is compact. So lim←−iXi is compact.

19.38 Proposition. The projective limit of totally separated spaces is a totally sep-
arated space.

Proof. This follows from Proposition 19.10.

19.39 Example. The ring Op in Example 19.34 is the projective limit of a system
of finite rings OK/pi. Endowing these finite rings with the discrete topology results
in a compact totally separated topology on Op. It is in fact the topology which
comes from the metric ∥.∥p. In the next section we will have a closer look at
projective limits of systems of finite groups.

For topological groups we again have the combination of both structures and the
situation is as for inductive limits.

19.40 Proposition. Projective systems in the category of topological groups have a
projective limit in this category. Their underlying set is the projective limit of the
underlying sets. The group structure is as for projective limits of groups and the
topology is the topology for the projective limit of topological spaces.

Proof. The proof is almost identical to the proof for the inductive limit of topo-
logical groups.

The inductive limit of nonempty sets obviously is nonempty. For projective limits
the situation is different. The following example is from the short note [38].

19.41 Example. The finite subsets of R form a directed ordered set under inclu-
sion. The sets

XS = { f : S → Z | f is injective }

indexed by the finite sets form a projective system of sets: for S ⊆ T a (surjective)
map XT → XS is given by restriction. An element f of lim←−S XS is a collection

(fS)S of injections fS : S → Z such that fS = fT |S for all finite S, T ⊆ R with
S ⊆ T . This would mean that we have an injection of R into Z. So there are no
elements in the projective limit.
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19.3 Inductive and projective limits

Projective limits of compact spaces are nonempty:

19.42 Theorem. Let (Xi)i∈I be a projective system of nonempty compact spaces.
Then lim←−iXi is nonempty.

Proof. For l ∈ I put

Yl =
{
(xi)i∈I ∈

∏
i

Xi

∣∣∣ fij(xj) = xi for all i, j ∈ I with i ≤ j ≤ l
}
.

Then lim←−iXi =
⋂
l∈I Yl and

∏
iXi =

⋃
l∈I Yl. The set Yl is closed in

∏
iXi.

The proof of this is almost identical to the proof of Proposition 19.36. Suppose
lim←−iXi = ∅. Then, since

∏
iXi is compact, there is a finite index set J ⊂ I such

that
⋂
j∈J Yj = ∅. Since the index set is a directed ordered set, there is an l ∈ I

such that j ≤ l for all j ∈ J . Take a z ∈ Xl (the sets Xi are nonempty) and define
an (xi)i ∈

∏
iXi as follows

xi =

{
fil(z), if i ≤ l,
any element of Xi, otherwise.

The element thus defined is an element of Yl and hence of all Yj with j ∈ J because
j ≤ l for all j ∈ J . This contradicts

⋂
j∈J Yj = ∅, which was a consequence of the

projective limit being empty.

19.43 Corollary. The projective limit of a projective system of nonempty finite sets
is nonempty.

Proof. Finite sets can be regarded as discrete topological spaces. As such they
are compact Hausdorff spaces. It follows that a projective limit of nonempty finite
sets is nonempty. Of course a proof of this might be given not using topology.

Cofinal subsets

19.44 Definition. Let I be a directed set. A subset J of I is called cofinal if for
each i ∈ I there is a j ∈ J with i ≤ j.

Clearly, a cofinal subset of a directed set is a directed set as well. We will show
that inductive and projective limits are unchanged when restricting the directed
set to a cofinal subset. We will use the categorical definitions, so it suffices to prove
this for inductive systems.

19.45 Theorem. Let I be a directed set, (Xi)i∈I an inductive system in a category
C and J a cofinal subset of I. Then

lim−→
j∈J

Xj
∼−→ lim−→

i∈I
Xi.
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19 Infinite Extensions of Number Fields

Proof. The morphisms qj : Xj → lim−→i∈I Xi induce a morphism

φ : lim−→
j∈J

Xj −→ lim−→
i∈I

Xi.

For each i ∈ I choose an i∗ ∈ J such that i ≤ i∗. For i ∈ I define morphisms
fi = qi∗fii∗ : Xi → lim−→j∈J Xj . They induce a morphism

ψ : lim−→
i∈I

Xi −→ lim−→
j∈J

Xj .

The categorical definition of inductive limit shows in a direct manner that φψ and
ψφ are the identity morphisms.

For inductive systems of sets it also follows directly from Proposition 19.22:∐
j∈J

Xj ⊆
∐
i∈I

Xi

and since the relation ∼ in the subset is the restriction of ∼ it follows that(∐
j∈J

Xj

) /
∼ ⊆

(∐
i∈I

Xi

) /
∼ .

Equality is a direct consequence of the cofinality.

Because of its importance we formulate the property for projective limits separately.

19.46 Theorem. Let I be a directed set, (Xi)i∈I a projective system in a category
C and J a cofinal subset of I. Then

lim←−
i∈I

Xi
∼−→ lim←−

j∈J
Xj .

In the case of a projective system in the category of sets it also follows directly
from the description of the projective limit (Proposition 19.33). The projection∏

i∈I Xi −→
∏

j∈J Xj induces by cofinality a bijection on the subsets: lim←−i∈I
Xi

∼−→
lim←−j∈J

Xj .

19.47 Examples.

a) Cofinal subsets of (N,≤) are the unbounded subsets.

b) The subset {n! | n ∈ N∗ } is cofinal in (N∗, |).

c) For I a directed set and k ∈ I the subset { i ∈ I | k ≤ i } is cofinal.

19.48 Example. Let p be a prime number. The inductive limit lim−→n∈N∗ Fpn! =⋃
n∈N∗ Fpn! is the algebraic closure of Fp.
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19.3 Inductive and projective limits

19.49 Example. Let L : K be an extension of number fields. The groups

Cℓm(L : K) = Im(K)/NLK(Im(L))Sm(K)

form a projective system of finite abelian groups indexed by the directed setM(K).
The maps Cℓn(L : K)→ Cℓm(L : K) for m | n are isomorphisms if m is a multiple of
the conductor fK(L). The multiples of f = fK(L) form a cofinal subset of M(K)
and so

lim←−
m

Cℓm(L : K) = lim←−
m
f|m

Cℓm(L : K) = Cℓf(L : K).

Exactness

For a fixed directed set I we consider functors from inductive (respectively projec-
tive) systems of topological groups indexed by I to topological groups. As usual
we call a sequence

G′ φ−→ G
ψ−→ G′′

of group homomorphisms exact if Im(φ) = Ker(ψ). Note that this implies that
Im(φ) is a normal subgroup of G. We show that for inductive systems of topological
groups the functor is exact. The projective limit is exact when restricted to compact
groups.

19.50 Theorem. Let I be a directed set and let (φi)i : (G
′
i)i → (Gi)i and

(ψi)i : (Gi)i → (G′′
i )i be morphisms of inductive systems of topological groups such

that the sequences

G′
i
φi−→ Gi

ψi−→ G′′
i

are exact for all i ∈ I. Then the induced sequence

lim−→
i

G′
i

φ−→ lim−→
i

Gi
ψ−→ lim−→

i

G′′
i

is also exact.

Proof. Clearly ψφ is the trivial homomorphism. Now let x ∈ Ker(ψ), say x =
qi(xi) for some i ∈ I (in the notation of Definition 19.20). Then qi(ψi(xi)) =
ψ(qi(x)) = ψ(x) = 1. So there exists a j ≥ i such that fij(qi(ψi(xi))) = 1 ∈ G′′

j ,
that is ψj(fij(xi)) = 1. Hence there exists a yj ∈ G′′

j such that φj(yj) = fij(xi).
Then

φ(qj(yj)) = qj(φj(yj)) = qj(fij(xi)) = qi(xi) = x.

19.51 Example. Let L : K be an extension of number fields. The groups
Hm(L : K) = H(L : K) ∩Hm are the kernels of the conorm:

1→ Hm(L : K) −→ Hm(K)
νK
L−→ Hm(L)
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19 Infinite Extensions of Number Fields

Then, because Hm(L : K) = Hf(L : K) = H(L : K) for all multiples m of the
conductor f, by Theorem 19.50 we have an exact sequence

1→ H(L : K) −→ lim−→
m

Hm(K) −→ lim−→
m

Hm(L)

and thus, sinceM(K) is a cofinal subset ofM(L), we have an exact sequence

1→ H(L : K) −→ H(K) −→ H(L),

which agrees with the given definition of H(L : K).

19.52 Theorem. Let I be a directed set and let (φi)i : (G
′
i)i → (Gi)i and

(ψi)i : (Gi)i → (G′′
i )i be morphisms of projective systems of compact groups such

that the sequences

G′
i
φi−→ Gi

ψi−→ G′′
i

are exact for all i ∈ I. Then the induced sequence

lim←−
i

G′
i

φ−→ lim←−
i

Gi
ψ−→ lim←−

i

G′′
i

is also an exact sequence of compact groups.

Proof. We consider projective limits as subspaces of products. Let x = (xi)i ∈
Ker(ψ). Then ψi(xi) = 1 for all i ∈ I. By continuity of the maps φi the sets
Xi = φ−1

i ({xi}) ⊆ G′
i form a projective system of nonempty closed subsets of the

G′
i. Since G

′
i is compact, the subset Xi is compact. By Theorem 19.42 lim←−iXi ⊆ G′

is nonempty. The homomorphism φ maps every element of lim←−iXi to x.

19.53 Example. Let L : K be an extension of number fields. Then the groups
Cℓm(L : K) are cokernels of the transfer:

Cℓm(L)
trLK−→ Cℓm(K) −→ Cℓm(L : K)→ 1.

The groups in this sequence are finite, so when endowed with the discrete topology
they are compact. Hence by Theorem 19.52 and Example 19.49 we have an exact
sequence

lim←−
m

Cℓm(L) −→ lim←−
m

Cℓm(K) −→ Cℓf(L : K)→ 1,

where f is the conductor of L : K.

19.4 Profinite groups

In the next section we consider infinite Galois extensions. Their Galois groups
are easily seen to be projective limits of finite Galois groups. Here we study pro-
jective limits of finite groups in general. The finite groups are regarded as finite
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19.4 Profinite groups

discrete topological groups and as a consequence the projective limits are topolog-
ical groups. The groups that arise this way can be characterized intrinsically by
their topology, independent of their construction as a projective limit.

19.54 Definition. Totally separated compact groups are called profinite groups.

19.55 Theorem. Projective limits of finite discrete groups are profinite groups.

Proof. Finite discrete sets are totally separated compact spaces. The theorem
follows from Proposition 19.30 and Theorem 19.37.

Conversely:

19.56 Theorem. Let G be a profinite group and N the collection of open normal
subgroups of G. Then G = lim←−N∈N G/N . So profinite groups are projective limits

of finite discrete groups.

Proof. The collection N is a directed ordered set under ⊇, so we have a pro-
jective system of groups G/N with N ∈ N and for N1, N2 ∈ N with N1 ⊇ N2 a
canonical homomorphism fN1,N2

: G/N2 → G/N1. The canonical homomorphisms
G→ G/N, x 7→ xN induce a homomorphism of topological groups

h : G −→ lim←−
N∈N

G/N, x 7→ (xN)N .

By Lemma 19.14 the groups G/N are finite. We will show that h is an isomorphism
of topological groups. By Lemma 19.15 we have Ker(h) =

⋂
N∈N N = {1}, so h

is injective. For surjectivity let (xNN)N∈N ∈ lim←−N∈N G/N . Then to prove that⋂
N∈N xNN ̸= ∅. Suppose

⋂
N∈N xNN = ∅. Since G is compact and the sets xNN

are closed, there is a finite subcollection N0 of N such that
⋂
N∈N0

xNN = ∅.
Choose M ∈ N such that N ⊇ M for all N ∈ N0, e.g. M =

⋂
N∈N0

N . Then
xNN ⊇ xNM = xMM for all N ∈ N0 and so

⋂
N∈N0

xNN ⊇ xMM . Contradic-
tion: xMM is nonempty.

In general in a profinite group closed subgroups are intersections of open subgroups:

19.57 Theorem. Let H be a subgroup of a profinite group G. Then

a) H is open if and only if H is closed and of finite index,

b) H is closed if and only if H is an intersection of open subgroups,

c) H is normal and closed if and only if H is an intersection of open normal
subgroups.

Proof.

a) This follows from Lemma 19.14 since profinite groups are compact.
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19 Infinite Extensions of Number Fields

b) Open subgroups are closed and so is their intersection. Let H be closed
and N the collection of open normal subgroups of G. For each N ∈ N the
subgroup HN is the union of the open sets hN with h ∈ H and is therefore
an open subgroup. We will show that H =

⋂
N∈N HN . By Lemma 19.15 we

have ⋂
N∈N

HN ⊇ H
( ⋂
N∈N

N
)
= H.

Let g ∈
⋂
N∈N HN and suppose that g /∈ H. Then 1 /∈ Hg and so⋂

N∈N
(N ∩Hg) =

( ⋂
N∈N

N
)
∩Hg = {1} ∩Hg = ∅.

Because G is compact, there is a finite subcollection N0 of N such that

∅ =
⋂

N∈N0

(N ∩Hg) =
( ⋂
N∈N0

N
)
∩Hg.

Hence g /∈ H
(⋂

N∈N0
N
)
. However, the subgroup

⋂
N∈N0

N is open and
therefore g /∈

⋂
N∈N HN . Contradiction.

c) This follows from b): if H is a normal subgroup, then so are the groups
HN .

Next we consider dense subsets of a profinite group. A subset of a topological space
X is dense if X is its closure. This is equivalent to: each nonempty open subset of
X contains an element of S. We will use the following lemma.

19.58 Lemma. Let (Gi)i∈I be a projective system of finite discrete groups and
G = lim←−iGi. Then the cosets of Ker(pi : G → Gi) form a base of the topology of
G.

Proof. A subbase B for the topology of G is the collection of sets p−1
i (xi) with

i ∈ I and xi ∈ Gi. The set p−1
i (xi) is a coset of Ker(pi). For k ≤ i in I, the set

p−1
i (xi) is a union of (a finite number of) cosets of Ker(pk). The intersection of

a coset of Ker(pi) and a coset of Ker(pj) is the union of cosets of Ker(pk), where
k ∈ I such that i, j ≤ k. So the subbase B is actually a base.

19.59 Theorem. Let (Gi)i∈I be a projective system of finite discrete groups and
G = lim←−iGi. Then a subset S of G is dense in G if and only if pi(S) = pi(G) for
all i ∈ I.

Proof. Suppose S is dense. For xi ∈ pi(G), the set p−1
i (xi) is open inG. Hence it

contains an element y of S and so xi = pi(y) ∈ pi(S). Conversely, if pi(S) = pi(G)
for all i ∈ I, then the nonempty open sets p−1

i (xi) with xi ∈ Gi contain an element
of S. These open sets form by Lemma 19.58 a base of the topology of G.
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19.4 Profinite groups

19.60 Examples.

a) Let p be a prime number. The maps Z→ Z/pi are surjective. The subset Z
of the ring Zp of p-adic integers is dense.

b) The finite rings Z/n form a projective system indexed by (N∗, |). Form | n we
have ring homomorphisms fmn : Z/n→ Z/m. Its projective limit is denoted

by Ẑ and is sometimes referred to as the Prüfer ring :

Ẑ = lim←−
n

Z/n.

It follows from the Chinese Remainder Theorem that we have an isomorphism
of profinite groups

Ẑ ∼→
∏
p

Zp,

where the product is over all prime numbers (exercise 2). Here too the subring

Z is dense in Ẑ.

c) The finite groups (Z/n)∗, the units of Z/n, form a projective system indexed
by (N∗, |). Form | n we have group homomorphisms fmn : (Z/n)∗ → (Z/m)∗,
the restrictions of the fmn of the previous example. We have

lim←−
n

(Z/n)∗ = Ẑ∗.

Some generalities on subgroups, quotient groups and homomorphisms of profinite
groups.

19.61 Theorem.

(i) Let G be a profinite group and H a subgroup of G with the relative topology.
Then H is profinite if and only if H is closed.

(ii) Let G be a profinite group and N a normal subgroup of G. Then G/N with
the quotient topology is a profinite group if and only if N is closed.

Proof.

(i) H is totally separated. H is compact if and only if it is closed in G.

(ii) G/N is compact. LetM be the collection of open normal subgroups contain-
ing N . Then by Theorem 19.57 N is closed if and only if

⋂
M∈MM = N .

This is equivalent to
⋂
M∈MM/N = {N}, which by Lemma 19.15 is equiva-

lent to G/N being totally separated.
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19 Infinite Extensions of Number Fields

Finally we consider the abelianization of profinite groups.

19.62 Definition and notation. Let G be a profinite group. The commutator
subgroup G′ of G is a normal subgroup and so is its closure G′. The factor group
G/G′ is called the abelianization of G and is denoted by Gab. It clearly is the largest
profinite group under the factor groups G/N with G/N profinite and abelian.

19.63 Proposition. Let (Gi)i∈I be a projective system of finite discrete groups
and G = lim←−iGi. Assume that the projections pi : G → Gi are surjective. Then

Gab = lim←−iG
ab
i .

Proof. The short exact sequences

1 −→ G′
i −→ Gi −→ Gab

i −→ 1

form a short exact sequence of projective systems of finite discrete groups indexed
by I. By Theorem 19.52 a short exact sequence

1 −→ lim←−
i

G′
i −→ G −→ lim←−

i

Gab
i −→ 1

of profinite groups is induced. Since lim←−iG
ab
i is abelian we have G′ ⊆ lim←−iG

′
i. The

maps G′ → G′
i are surjective because the G → Gi are. By Theorem 19.59 G′ is

dense in lim←−iG
′
i. Hence G′ = lim←−iG

′
i and consequently Gab = lim←−iG

ab
i .

19.5 Infinite Galois extensions

19.64 Definition. An algebraic field extension L : K is called a Galois extension if
it is normal and separable. The group of K-algebra automorphisms of L is called
the Galois group of L : K. Notation: Gal(L : K).

So far Galois extensions were assumed to be finite. This notion is now extended
to algebraic extensions. Many of the properties of finite Galois extensions clearly
hold for Galois extensions in general as well.

19.65 Proposition. Let L : K be a Galois extension and M an intermediate field
of L : K. Then L :M is a Galois extension.

Proof. The minimal polynomial of an α ∈ L over M is a divisor in M [X] of the
minimal polynomial over K.

19.66 Notation. For a Galois extension L : K the collection of intermediate fields
M such that M : K is a finite Galois extension is denoted by F(L : K). It is an
inductive system, ordered by ⊆.

19.67 Proposition. Let L : K be a Galois extension and F = F(L : K). Then
L = lim−→M∈F M =

⋃
M∈F M .
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19.5 Infinite Galois extensions

Proof. Let α ∈ L. The extension is normal, so the minimal polynomial of α
over K splits in L. Hence L contains a splitting fieldM of this minimal polynomial
over K and by separability M : K is a Galois extension.

19.68 Corollary. Let K be an algebraic closure of a field K, L an intermediate
field of K : K such that L : K is a Galois extension and σ an embedding of L in
K fixing K. Then σ(L) = L.

Proof. In the notation of Proposition 19.67:

σ(L) = σ
( ⋃
M∈F

M
)
=
⋃
M∈F

σ(M) =
⋃
M∈F

M = L.

19.69 Proposition. Let L : K be an algebraic field extension, M an intermediate
field of L : K, K an algebraic closure of K and σ : M → K an embedding fixing
K. Then there exists a prolongation τ : L→ K of σ.

Proof. Let Φ be the ordered set of all pairs (N, ρ) consisting of an intermediate
field N of L :M and a prolongation ρ of σ to N . Clearly, a linearly ordered subset
of Φ has an upper bound, so by Zorn’s Lemma there is a maximal element in Φ,
say (N, τ) is maximal. Then N = L, since otherwise there is an α ∈ L \M and a
prolongation of τ to N(α): send α to a zero of fτ ∈ K[X].

19.70 Proposition. Let L : K be a Galois extension, M an intermediate field of
L : K such that M : K is a Galois extension. Then the restriction of automor-
phisms in Gal(L : K) to the subfield M induces a group isomorphism

Gal(L : K)/Gal(L :M)
∼−→ Gal(M : K).

Proof. By Proposition 19.69 every σ ∈ Gal(M : K) has a prolongation τ of
σ to L and by Corollary 19.68 σ(L) = L. Hence restriction of automorphisms
is a surjective group homomorphism Gal(L : K) → Gal(M : K). The kernel is
Gal(L :M).

19.71 Theorem. Let L : K be a Galois extension and G = Gal(L : K). Then
LG = K.

Proof. For each M ∈ F = F(L : K) by Proposition 19.70 the group G acts on
M via Gal(M : K). Hence MG = K and

LG =
( ⋃
M∈F

M
)G

=
⋃
M∈F

MG = K.

19.72 Theorem. Let L : K be a Galois extension and M an intermediate field of
L : K. Then M : K is a Galois extension if and only if Gal(L : M) is a normal
subgroup of Gal(L : K).
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19 Infinite Extensions of Number Fields

Proof. If M : K is a Galois extension, then by Proposition 19.70 the group
Gal(L : M) is a normal subgroup of Gal(L : K). For the converse suppose that
Gal(L : M) is a normal subgroup of Gal(L : K). Let α ∈ M . Then Gal(L : M) ⊆
Gal(L : K(α)) and for each σ ∈ Gal(L : K):

Gal(L : K(σ(α)) = σGal(L : K(α))σ−1 ⊇ σGal(L :M)σ−1 = Gal(L :M).

So σ(α) ∈ M for all α ∈ M and all σ ∈ Gal(L : K). Hence M : K is a Galois
extension.

For a Galois extension L : K the groups Gal(M : K) withM ∈ F = F(L : K) form
a projective system indexed by F . The maps fMN : Gal(L : N) → Gal(L : M) in
this system are the restrictions of automorphisms to M .

19.73 Theorem. Let L : K be a Galois extension. Then the restrictions
ψM : Gal(L : K)→ Gal(M : K) of automorphisms induce a group isomorphism

ψ : Gal(L : K)
∼−→ lim←−

M∈F
Gal(M : K).

Proof. As a group homomorphism ψ is given by the definition of projective
limit. We have

Ker(ψ) =
⋂
M∈F

Ker(ψM ) =
⋂
M∈F

Gal(L :M).

The restriction of a σ ∈ Ker(ψ) to an M ∈ F is the identity on M . Since L =⋃
M∈F M , it follows that σ = 1. Hence ψ is injective. For a (σM )M ∈ lim←−M Gal(M :

K) define a σ ∈ Gal(L : K) by

σ(α) = σM (α) if α ∈M.

Thus σ is a well defined embedding of L in L. It is an isomorphism: the embedding
given by α 7→ σ−1

M (α) for α ∈M is its inverse.

By Theorem 19.55 the Galois group of an infinite Galois extension is a profinite
group. By Lemma 19.58 a base of its topology is the collection of the inverse images
under ψM of automorphisms in Gal(L :M), where M ∈ F . Such an inverse image
is a coset σGal(L :M). This topology is known as the Krull topology of Gal(L : K).

The Main Theorem of Galois Theory generalizes to general (possibly infinite) Galois
extensions:

19.74 Theorem. Let L : K be a Galois extension and G = Gal(L : K). Then we
have a one-to-one correspondence
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19.5 Infinite Galois extensions

intermediate fields of L : K closed subgroups of G

N

LH

Gal(L : N)

H

Proof. First we show that for intermediate fields N the groups Gal(L : N) are
closed. For α ∈ L choose an M ∈ F such that α ∈ M . Then Gal(L : M) is
a subgroup of finite index of Gal(L : K(α)). So Gal(L : K(α)) is the union of
finitely many cosets of Gal(L : M). These cosets are open and closed. So also
Gal(L : K(α)) is open and closed. Let N be an intermediate field of L : K. Then
N =

⋃
α∈N K(α) and so Gal(L : N) =

⋂
α∈N Gal(L : K(α)), an intersection of

closed subgroups.

For N an intermediate field by Proposition 19.65 L : N is a Galois extension and
so by Theorem 19.71 NGal(L:N) = N .

Let H be a subgroup of G. The extension L : LH is a Galois extension and its
Galois group is a profinite group:

Gal(L : LH) = lim←−
M

Gal(L : LM ),

where M ∈ F(L : LH). The map of H to Gal(M : LH) is surjective by the
Main Theorem of Galois Theory for finite Galois extensions. Hence H is dense in
Gal(L : LH). If H is closed, then H = Gal(L : LH).

19.75 Example. Let p be a prime number. For each n ∈ N∗ there is a unique
subfield Fpn of the algebraic closure Fp. We have

Gal(Fp : Fp) = lim←−
n

Gal(Fpn : Fp)
∼−→ lim←−

n

Z/n = Ẑ.

19.76 Example. Let Qab be the union of the collection A of all abelian number
fields. They form a directed set. By the Kronecker-Weber Theorem the cyclotomic
fields form a cofinal subset of A. Hence

Gal(Qab : Q) = lim←−
K∈A

Gal(K : Q) = lim←−
n

Gal(Q(ζn) : Q)
∼−→ lim←−

n

(Z/n)∗ = Ẑ∗.

19.77 Definitions and notations. Let K be an algebraic closure of the field K.
The separable closure of K (in K) is the intermediate field

Ksep = {α ∈ K | α is separable over K }.

The extension Ksep : K is a Galois extension and its Galois group is called the
absolute Galois group of K. Notation: Gal(K) = Gal(Ksep : K). The collection
F(K : K) = F(Ksep : K) is denoted by FK .
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19 Infinite Extensions of Number Fields

19.78 Example. Let K be a number field. Then Ksep = K = Q and

Gal(K) = Gal(Q : K) = lim←−
L∈FK

Gal(L : K),

where FK is the collection of number fields L containing K and L : K a Galois
extension.

Abelian extensions are subfields of the separable closure.

19.79 Definition and notations. Let K be a field. The intermediate field of
Ksep : K corresponding to Gal(K)′ is denoted by Kab. It is the maximal abelian

extension of K. Clearly Gal(Kab : K) = Gal(K)
ab
. The collection F(Kab : K) is

denoted by AK .

19.80 Theorem. Let K be a field. For L ∈ FK denote the subfield of L corre-
sponding to Gal(L : K)′ by L′. Then

Gal(Kab : K) = lim←−
L∈AK

Gal(L : K) and Gal(Kab : K) = lim←−
L∈FK

Gal(L′ : K).

Proof. The first identity follows from Theorem 19.73 and the second from Propo-
sition 19.63.

19.81 Example. For an abelian extension of number fields by Artin’s Reciprocity
Theorem we have isomorphisms

Cℓ(L : K) := Cℓf(L : K)
∼−→ Gal(L : K) (f = fK(L))

induced by the Artin maps φ
(L)
K : If(K) → Gal(L : K). Thus we have an isomor-

phism of profinite groups

lim←−
L∈AK

Cℓ(L : K)
∼−→ lim←−

L∈AK

Gal(L : K) = Gal(Kab : K).

The class fields KHm
for the groups Hm = Hm(K) form a cofinal subset of AK :

lim←−
m

Cℓm(K)
∼−→ lim←−

m

Gal(KHm
: K) = Gal(Kab : K).

19.82 Example. Let F be a local field. In section 16.1 for each E ∈ AF a

local Artin map ϑ
(E)
F : F ∗ → Gal(E : F ) has been constructed. By the consistency

property for these maps (Proposition 16.7(i)) they combine to a local reciprocity
map

ϑF : F ∗ −→ lim←−
E∈AF

Gal(E : F ) = Gal(F ab : F ).

528



19.6 Duality

19.6 Duality

Pontryagin duality is an equivalence of the category of abelian Hausdorff locally
compact groups with its dual. The category of abelian torsion groups and the
category of abelian profinite groups are both full subcategories of this category
and by Pontryagin duality it follows that the first is equivalent to the dual of the
second. In this section only this equivalence is constructed, not the full Pontryagin
duality.

19.83 Notations. For G and H topological groups, the set of continuous homo-
morphisms of G to H is denoted by Homcont(G,H). The category of all abelian
discrete torsion groups is denoted by T and the category of all abelian profinite
groups with the continuous homomorphisms is denoted by P. Both these cate-
gories are full subcategories of the category of abelian Hausdorff locally compact
groups.

The group Homcont(G,H) may be endowed with the compact open topology. A
subbase for this topology consists of all subsets

V (K,U) = { f ∈ Homcont(G,H) | f(K) ⊆ U },

where K is a compact subset of G and U an open subset of H. Since we will
consider only special types of topological groups G and H, this generality is not
needed here.

19.84 Definition. The circle group S1 is the group of complex numbers of norm 1
endowed with the topology relative to the standard topology of C:

S1 = { z ∈ C | |z| = 1 }.

19.85 Lemma. Let (Ai)i∈I be an inductive system of finite abelian groups. Then
lim−→i∈I Ai is an abelian torsion group.

Proof. The inductive limit is a homomorphic image of the abelian torsion group⊕
i∈I Ai.

Let (Ai)i∈I be an inductive system of finite abelian groups and

A = lim−→
i∈I

Ai.

The homomorphisms fij : Ai → Aj induce homomorphisms f∨ij : A
∨
j → A∨

i , thus
forming a projective system (A∨

i )i∈I .

19.86 Proposition. Let (Ai)i∈I be an inductive system of finite abelian groups and
A the abelian torsion group lim−→i∈I Ai. Then the homomorphisms qi : Ai → A induce

an isomorphism
Hom(A,S1) ∼−→ lim←−

i∈I
A∨
i ,
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19 Infinite Extensions of Number Fields

of abelian groups. In particular the group Hom(A,S1) is a profinite group.

Proof. By the definition of inductive limit we have

Hom(A,S1) = Hom
(
lim−→
i∈I

Ai,S1
)

∼−→ lim←−
i∈I

Hom(Ai,S1) = lim←−
i∈I

A∨
i .

Similarly, if (Ai)i∈I is a projective system of finite abelian groups and

A = lim←−
i∈I

Ai,

then the homomorphisms fij : Aj → Ai induce homomorphisms f∨ij : A
∨
i → A∨

j .

19.87 Proposition. Let (Ai)i∈I be an projective system of finite abelian groups and
A the profinite group lim←−i∈I Ai. Then the homomorphisms pi : A → Ai induce an

isomorphism
lim−→
i∈I

A∨
i

∼−→ Homcont(A,S1),

of abelian groups.

Proof. The homomorphism pi : A→ Ai is continuous, so we have

lim−→
i∈I

A∨
i = lim−→

i∈I
Homcont(Ai,S1)

∼−→ Homcont

(
lim←−
i∈I

Ai,S1
)
= Homcont(A,S1).

19.88 Definition. Let A be either a discrete abelian torsion group or a profinite
group. Then its dual A∨ is a topological group with underlying group

A∨ = Homcont(A,S1)

For A an abelian torsion group A∨ is an abelian profinite group (Proposition 19.86)
and for A profinite the group is a discrete abelian torsion group (Proposition 19.87).
Taking the dual obviously is functorial.

Let A be a discrete abelian torsion group and F the inductive set of finite subgroups
of A. Then by the Propositions 19.86 and 19.87 we have functorial isomorphisms

A∨∨ ∼−→
(
lim←−
B∈F

B∨
)∨ ∼−→ lim−→

B∈F
B∨∨.

The functorial isomorphism

B
∼−→ B∨∨, b 7→ (χ 7→ χ(b))

for finite abelian groups B shows that for discrete abelian torsion groups A we have
isomorphisms

εA : A
∼−→ A∨∨, a 7→ (χ 7→ χ(a)) (19.1)
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as well. Similarly, for A an abelian profinite group and N the inductive set of
subgroups of finite index we have by the same propositions

A∨∨ ∼−→
(
lim−→
B∈N

(A/B)
∨
)∨ ∼−→ lim←−

B∈N
(A/B)

∨∨
.

So also for abelian profinite groups we have isomorphisms as given in (19.1). Thus,
in categorical terms:

19.89 Theorem. The functors

P → T ◦, A 7→ A∨ and T →P◦, A 7→ A∨.

establish an equivalence of the categories P and T ◦.

19.90 Example. For an abelian extension L : K of number fields the Artin map
induces an isomorphism

φ
(L)
K : Cℓ(L : K)

∼−→ Gal(L : K).

By the consistency property for these maps they induce an isomorphism on the
projective limits:

φK : lim←−
L∈AK

Cℓ(L : K)
∼−→ lim←−

L∈AK

Gal(L : K) = Gal(Kab : K).

Since the class fields KHm(K) form a cofinal subset of AK , another description is

φK : lim←−
m

Cℓm(K)
∼−→ Gal(Kab : K).

The group Hm(K) is the dual of Cℓm(K). Therefore, the group H(K) is the dual of
the profinite group lim←−m

Cℓm(K) and the dual Artin maps induce an isomorphism

φ̌K : Gal(Kab : K)
∨ ∼−→ H(K).

In the last chapter the ‘idèle class group’ C(K) will be constructed and a reciprocity
map

ϑK : C(K)→ Gal(Kab : K)

which has properties similar to those of the local reciprocity map

ϑF : F ∗ → Gal(F ab : F )

for a local field F . As shown in the last chapter, the idèle approach to class field
theory yields a firm link between the local and global reciprocity maps.
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19 Infinite Extensions of Number Fields

Exercises

1. (i) Prove that a totally separated topological space is totally disconnected.

(ii) Prove the converse of (i) for locally compact Hausdorff spaces.

(iii) A space which is totally disconnected but not totally separated is the so-called
Cantor teepee, which is the Krasner-Kuratowski fan with the top deleted. Do
an internet search for a description of this space and verify.

2. For n ∈ N∗ we have by the Chinese Remainder Theorem isomorphisms

Z/n ∼−→
∏
p

(Z/pvp(n)) and (Z/n)∗ ∼−→
∏
p

(Z/pvp(n))∗,

where the product is over all prime numbers p. Show that in the limit (the projective
limit) we have

Ẑ ∼−→
∏
p

Zp and Ẑ∗ ∼−→
∏
p

Z∗
p,

isomorphisms of profinite groups.

3. (i) Let 1→ A→ B → C → 1 be a short exact sequence of abelian torsion groups.
Show that 1 → C∨ → B∨ → A∨ → 1 is a short exact sequence of abelian
profinite groups.

(ii) Let 1 → A → B → C → 1 be a short exact sequence of abelian profinite
groups. Show that 1 → C∨ → B∨ → A∨ → 1 is a short exact sequence of
abelian torsion groups.

(iii) Let A be an abelian torsion group. Establish a correspondence between sub-
groups of A and closed subgroups of the profinite group A∨.

4. Let K be a number field. Show that abelian extensions of K (inside Q) correspond
to subgroups of H(K).
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20 Idèlic Class Field Theory

Chevalley introduced the idèle group of a number field for a global class field theory
of infinite abelian extensions. Some years later he used this for constructing global
class field theory from local class field theory. In this theory all primes of a number
field are considered simultanuously. The basic notions are given in the first two
sections. Some topological algebra as described in the previous chapter is needed
here. Of particular importance is the idèle class group of a number field. Its
role is similar to the role of the multiplicative group in local class field theory.
In section 20.3 the relation to ray class groups is described and in section 20.4
the idèlic global classification theorem is derived from the classification theorem of
chapter 15. Finally the close connection between local reciprocity and the idèlic
global reciprocity is given in section 20.5.

20.1 The adèle ring of a number field

In chapter 1 we embedded a number field K in the R-algebra R⊗Q K =
Rr(K) × Cs(K) =

∏
p∈P∞(K)Kp and in chapter 5 it is shown that the subring OK

maps under this embedding to a lattice ΛK : a discrete subring of the R-algebra
and the quotient is a compact abelian group. In this section the field K will be
embedded in a locally compact ring A(K) such that (the image of) K itself is a
discrete subring of A(K) with compact quotient group A(K)/K.

20.1 Definition. Let S be a finite saturated collection of primes of K. Then the
topological ring

AS(K) =
∏
p∈S

Kp ×
∏
p/∈S

Op

is called the ring of S-adèles of K. (Its topology is the product topology.)

For S∞ we have

AS∞(K) =
∏
p|∞

Kp ×
∏
p∤∞

Op.

Here ∞ stands for the modulus of K induced by the modulus ∞ of Q.
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20 Idèlic Class Field Theory

20.2 Lemma. The ring AS(K) of S-adèles of K is locally compact.

Proof. The completions Kp are locally compact and so is a finite product of
them. For finite p the rings Op are compact and by Tykhonov’s Theorem (Theo-
rem 19.7) an infinite product of these rings is compact as well.

The finite saturated collections of primes form a directed set under inclusion. For
S ⊆ T we have an inclusion map AS(K)→ AT (K):∏

p∈S
Kp ×

∏
p∈T\S

Op ×
∏
p/∈T

Op
⊆−→
∏
p∈S

Kp ×
∏

p∈T\S

Kp ×
∏
p/∈T

Op.

We take the direct limit.

20.3 Definition. The adèle ring of K is the topological ring

A(K) = lim−→
S

AS(K) =
⋃
S

AS(K),

the limit taken over the finite saturated collections of primes of K.

So

A(K) =
{
(αp)p ∈

∏
p

Kp

∣∣∣ αp /∈ Op for only finitely many finite primes p
}
.

It’s also called the restricted product of the groups Kp. Notation:

A(K) =
∏∐
p

Kp.

20.4 Lemma. For each finite saturated collection S of primes of K the ring AS(K)
of S-adèles is open in A(K).

Proof. A subset of A(K) is open if and only if its intersection with AT (K)
is open in AT (K) for each saturated collection T of primes. Let S and T be
saturated collections of primes. Then AS(K) ∩ AT (K) = AS∩T (K) and this is
open in AT (K).

20.5 Lemma. The topological ring A(K) is locally compact.

Proof. This follows from Lemma 20.2 and Lemma 20.4.

For each α ∈ K we have α /∈ Op for only a finite number of finite primes p. So
α 7→ (α)p is an embedding of the field K in the adèle ring A(K). We thus view K
as a subring of A(K).
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20.1 The adèle ring of a number field

Be careful with the meaning of the notations: in the notation (α)p for α ∈ K we
already considered K as a subfield of Kp and this so for every p. So we have many
incompatible identifications. The embedding K → A(K) projects to K →

∏
p|∞Kp

and this is the embedding ι : K → Rr × Cs described in section 1.1, which we did
not define by ι(α) = (α, . . . , α). There we used the convention that number fields
are subfields of C. Later, in chapter 10 on completions we often considered number
fields as subfields of other fields, in particular of their completions.

20.6 Proposition. K is discrete in A(K).

Proof. The set
{ (αp)p | ∥αp∥p < 1 }

is open in each AS(K) and therefore also in A(K). The product formula (Propo-
sition 10.24),

∏
p∥α∥p = 1 for all α ∈ K∗, implies that 0 is the only element of K

in this open set.

20.7 Proposition. A(K) = K + AS∞(K).

Proof. Let α = (αp)p be a nonzero element of A(K). Take m ∈ N∗ such that
mαp ∈ Op for all finite primes of K. Let S be the collection of finite primes p of
K with vp(m) > 0. Let N ∈ N∗ such that N ≥ vp(m) for each p ∈ S. Take for
each p ∈ S a βp ∈ OK such that βp ≡ mαp (mod p̂N ). By the Chinese remainder
theorem there is a γ ∈ OK such that

γ ≡ βp (mod pN ) for all p ∈ S.

Then for each p ∈ S

vp(
γ
m − αp) = vp(γ −mαp)− vp(m) = vp(γ − βp)− vp(m) ≥ N −N = 0

and for each finite prime q /∈ S

vq(
γ
m − αq) = vq(γ −mαq) ≥ 0.

Hence γ
m − α ∈ AS∞(K). It follows that A(K) ⊆ K + AS∞(K).

20.8 Theorem. The additive topological group A(K)/K is compact. A fundamental
domain in A(K) for A(K)/K is

F ×
∏
p∤∞

Op,

where F is a fundamental parallelotope for the lattice ΛK in Rn (as defined on
page 108).

Proof. Because K ∩ AS∞(K) = OK , by Proposition 20.7 the inclusion AS∞ ⊂
A(K) induces an isomorphism

AS∞(K)/OK
∼−→ A(K)/K.
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20 Idèlic Class Field Theory

The ker-coker sequence of

OK AS∞(K)

∏
p|∞Kp

reduces to

0 −→
∏
p∤∞

Op −→ AS∞(K)/OK −→ Rn/ΛK −→ 0

and from this the theorem easily follows.

20.2 The idèle group and the idèle class group

Again we fix a number field K. The idèle group of K is the unit group of its adèle
ring. It is a topological group.

20.9 Definition. Let S be a finite saturated collection of primes of K. The topo-
logical group of S-idèles of K is

JS(K) = AS(K)∗ =
∏
p∈S

K∗
p ×

∏
p/∈S

O∗
p

endowed with the product topology. The idèle group of K, denoted by J(K), is
the injective limit of the groups of S-idèles:

J(K) = lim−→
S

JS(K) =
⋃
S

JS(K)

=
{
(αp)p ∈

∏
p

K∗
p

∣∣ αp /∈ O∗
p for only finitely many finite primes p

}
= A(K)∗ =

∏∐
p

K∗
p ,

the restricted product in analogy to the one used for the adèle ring.

The topology of J(K) is not the topology induced by the inclusion J(K) ⊂ A(K).
In the induced topology inversion is in this case not continuous. In general for the
topology on the unit group of a topological ring R one takes the topology induced
by the injective map R∗ → R×R, x 7→ (x, x−1).
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As for the adèle ring we have for the idèle group:

20.10 Lemma. For each finite saturated collection S of primes of K the group
JS(K) is open in J(K).

The embedding K → A(K) restricts to an embedding K∗ → J(K) and we will view
K∗ as a subgroup of J(K). Clearly, K∗ ∩ JS∞(K) = O∗

K and more generally for S
a finite saturated collection of primes K∗ ∩ JS(K) = KS , the group of S-units.

20.11 Proposition. K∗ is discrete in J(K).

Proof. The set
{ (αp)p ∈ J(K) | ∥αp − 1∥p < 1 }

is open in J(K), because its intersection with JS(K) is open in each JS(K). Again
by the product formula,

∏
p∥α − 1∥p = 1 for all α ∈ K \ {1}, the only element of

K∗ in the open set is 1.

20.12 Definition. The group J(K)/K∗ is called the idèle class group of K and is
denoted by C(K). For S a finite saturated collection of primes of K the group
JS(K)/KS is called S-idèle class group of K. The S-idèle class group is denoted
by CS(K).

There is a natural map from the idèle group to the group of fractional ideals. This
map will be the link between the idèle and the ideal approach to class field theory.
This will be made concrete in the next section. Here we show that the ideal class
group is a homomorphic image of the idèle class group.

20.13 Notation. For α = (αp)p ∈ J(K) we write

(α) =
∏
p∤∞

pvp(αp) ∈ I(K).

Thus we have a group homomorphism

(·) : J(K)→ I(K), α 7→ (α)

and for α ∈ K∗ the notation (α) stands for the principal fractional ideal αOK . This
homomorphism is clearly surjective and its kernel is JS∞(K), an open subgroup of
J(K). The subgroup K∗ of J(K) maps to P(K), the group of principal fractional
ideals. So we proved:

20.14 Proposition. The homomorphism (·) : J(K) → I(K) induces an isomor-
phism

J(K)/K∗JS∞(K)
∼−→ Cℓ(K).

In the next section we will show that not only the ideal class group is a homomorphic
image of the idèle class group, but so is every ray class group.
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20 Idèlic Class Field Theory

The absolute values on the various completions on a number field give rise to a
continuous group homomorphism from the idèle class group to the positive reals.

20.15 Definition. Let α = (αp)p ∈ J(K). The p-value ∥α∥p of α is defined to be
the absolute value of αp ∈ Kp:

∥α∥p = ∥αp∥p.

The content ∥α∥ of α is the product of its p-values:

∥α∥ =
∏
p

∥α∥p.

The product is well defined since ∥α∥p ̸= 1 for only finitely many p.

20.16 Lemma. The map J(K) → R>0, α 7→ ∥α∥ is a surjective continuous group
homomorphism.

Proof. It clearly is a group homomorphism. For surjectivity take for each
a ∈ R>0 an element b ∈ K∗

p for one of the infinite primes such that ∥b∥p = a.
Then α ∈ J(K) defined by αp = b and αq = 1 for all q ̸= p satisfies ∥α∥ = a.
Continuity: for (1− ε, 1 + ε) ⊂ R>0 take for each p | ∞ the open neighborhood

Up = {αp | ∥αp − 1∥p < n
√
ε }

of 1 ∈ Kp. Then the image of the open set
∏

p|∞ Up ×
∏

p∤∞O∗
p is contained in

(1− ε, 1 + ε).

20.17 Notation. The kernel of the map J(K) → R>0, α 7→ ∥α∥ is denoted
by J0(K). The product formula,

∏
p∥α∥p = 1 for α ∈ K∗, implies that the map

induces a surjective continuous homomorphism C(K) → R>0. The kernel of this
map is denoted by C0(K). Thus K∗ is a closed subgroup of J0(K) and J0(K)/K∗ =
C0(K).

We will show that the group C0(K) is compact. The proof uses the following
generalization of Proposition 5.31.

20.18 Proposition. Let for each prime p of K be given a cp ∈ R>0 such that cp ̸= 1
for only finitely many primes p and∏

p

cp ≥
( 2
π

)s(K)√
|disc(K)|.

Then there exists a β ∈ K∗ such that

∥β∥p ≤ cp for all primes p of K.
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20.2 The idèle group and the idèle class group

Proof. For each finite prime p let kp be the unique integer such that

N(p)−(kp+1) < cp ≤ N(p)−kp .

Then kp = 0 if and only if cp = 1, so in particular kp ̸= 0 for only finitely many
p. Put a =

∏
p∤∞ p−kp ∈ I(K). By Proposition 2.28 there exists a b ∈ I+(K) such

that ab is a principal fractional ideal and vp(b) = 0 for each finite prime p satisfying
kp ̸= 0. Let γ ∈ K∗ be such that ab = γOK . For each prime p put dp = cp∥γ∥p.
Then for finite p with kp = 0

dp = ∥γ∥p = N(p)−vp(b) ≤ 1

and for finite p with kp ̸= 0

dp = cpN(p)−vp(a) = cpN(p)kp ≤ 1.

Hence dp ≤ 1 for all finite p and therefore∏
p|∞

dp ≥
∏
p

dp =
∏
p

cp∥γ∥p =
∏
p

cp ≥
( 2
π

)s(K)√
|disc(K)|.

By Proposition 5.31 there exists a nonzero δ ∈ OK such that ∥δ∥p ≤ dp for all
infinite p. Since δ ∈ OK we also have ∥δ∥p ≤ 1 = dp for all finite p. Take
β = δγ−1. Then for all primes p of K

∥β∥p =
∥δ∥p
∥γ∥p

≤ dp
∥γ∥p

= cp.

20.19 Theorem. The topological group C0(K) is compact.

Proof. The group C0(K) is the kernel of the surjective continuous homomor-
phism

C(K)→ R>0, α 7→ ∥α∥ (for α ∈ J(K)).

The subgroup C0(K) is homeomorphic to each of its cosets. So it suffices to prove
that it has a compact coset. Cosets are the subsets

Yρ = {α | α ∈ J(K) and ∥α∥ = ρ }

of C(K), where ρ ∈ R>0. Let ρ ≥
( 2
π

)s(K)√
|disc(K)|. We show that Yρ is

compact. For each prime p the subset

Xp = {α ∈ Kp | 1 ≤ ∥α∥p ≤ ρ }

of K∗
p is compact. There are only finitely many finite primes p of K for which

N(p) < ρ. Let S be the collection of these primes together with the infinite primes.
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20 Idèlic Class Field Theory

It is a finite saturated collection of primes of K. For p /∈ S we have Xp = O∗
p.

Hence the set
X =

∏
p

Xp

is a subset of JS(K). It is compact, since all factors are compact. Let α ∈ Yρ,
where α ∈ J(K) with ∥α∥ =

∏
p∥α∥p = ρ. By Proposition 20.18 there is a β ∈ K∗

such that
∥β∥p ≤ ∥α∥p for all primes p of K.

So ∥αβ ∥p ≥ 1 for all primes p. Since
∏

p∥
α
β ∥p =

∏
p∥α∥p = ρ, we have ∥αβ ∥p ≤ ρ

for each prime p. Hence α
β ∈ X. It follows that the closed subset Yρ of C(K) is

contained in the image of X under the canonical projection J(K) → C(K). Since
X is compact, this image is compact and so is Yρ.

20.3 Idèle class groups and moduli

In idèlic class field theory the role of the idèle class group is similar to the role of
the multiplicative group of a local field in local class field theory.

20.20 Lemma. Let p be a prime of K. A subgroup of K∗
p is open if and only if it

contains U
(n)
p for some n ∈ N∗.

Proof. The only open subgroup of C∗ is C∗ itself. The group R∗ has two open

subgroups: R∗ and R>0. For p finite the cosets of all U
(n)
p form a basis for the

topology. So an open subgroup of K∗
p must contain U

(n)
p for some n ∈ N∗. And if

a subgroup contains an open subgroup, then it is the union of cosets of this open
subgroup and so it is open as well.

20.21 Definitions and notations. Let m be a modulus of K. The subgroup
Wm(K) of J(K) is defined as follows:

Wm(K) =
∏
p

U
(vp(m))
p

The cokernel ofWm(K)→ J(K)/K∗(= C(K)) is called the idèle class group modulo
m of K and is denoted by Cm(K):

Cm(K) = J(K)/Wm(K)K∗.

20.22 Lemma. The groups Wm(K) are open subgroups of J(K).

Proof. The subgroup Wm∞(K) of Wm(K) is open in J(K) since it is open in
JS(K) for each finite saturated collection S of primes of K. Therefore, Wm(K) is
open.
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20.23 Proposition. A subgroup of J(K) is open if and only if it contains a Wm(K)
for some modulus m of K.

Proof. If a subgroup of J(K) contains aWm(K), then it is open becauseWm(K)
is. Conversely, if H is an open subgroup of J(K), then H ∩ JS∞(K) is an open
subgroup of JS∞(K), which is an infinite product and by definition of the product
topology and Lemma 20.20 it follows that it must contain a group Wm(K).

We will show that the idèle class group modulo a modulus m, Cm(K), is in a natural
way isomorphic to the ray class group Cℓm(K) defined in chapter 13 (Definitions
and notations 13.1).

20.24 Definition. Let m be a modulus of K. A subgroup Jm(K) of J(K) is defined
as follows

Jm(K) =
{
α ∈ J(K)

∣∣ αp ∈ U
(vp(m))
p for p | m

}
=
∏
p|m

U
(vp(m))
p ×

∏∐
p∤m

K∗
p .

Restriction of the map (.) : J(K) → I(K) to Jm(K) yields a surjective homomor-
phism (.) : Jm(K)→ Im(K). By the definitions of Wm(K) and Jm(K) we obviously
have

Wm(K) = Ker(Jm(K)
(.)−→ Im(K)).

For any modulus m each idèle class is represented by an idèle in Jm(K):

20.25 Lemma. For any modulus m of K we have

J(K) = Jm(K)K∗ and Jm ∩K∗ = K1
m.

Proof. By the definitions of Jm(K) and K1
m it is immediate that Jm∩K∗ = K1

m.

Let α ∈ J(K). For each p | m choose a βp ∈ K∗ such that βp ≡ αp (modU
vp(m))
p ).

Since the system m 7→ K∗/K1
m is multiplicative, there is a β ∈ K∗ such that

β ≡ βp (modK1
pvp(m)) for all p | m. Then β ≡ αp (modU

vp(m)
p ) and so β−1α ∈

Jm(K).

20.26 Lemma. For any modulus m of K the inclusion map Jm(K)→ J(K) induces
isomorphisms

Jm(K)/K1
m

∼→ J(K)/K∗ and Jm(K)/Wm(K)K1
m

∼→ J(K)/Wm(K)K∗.

Proof. The first map being an isomorphism is a consequence of the previous
lemma. The second isomorphism is in turn induced by the first.
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20 Idèlic Class Field Theory

The composition Jm(K) → Im(K) → Im(K)/Sm(K) is surjective and the group
Wm(K)K1

m is contained in its kernel. On the other hand for α in the kernel
one has (α) = (β) for some β ∈ K1

m. Then (β−1α) = (1), that is β−1α ∈
Jm(K) ∩ JS∞(K) = Wm(K)K1

m. Hence the inclusion Jm(K) → J(K) induces an
isomorphism Jm(K)/Wm(K)K1

m
∼→ Im(K)/Sm(K). Thus we have isomorphisms

Cm(K) = J(K)/Wm(K)K∗ ∼← Jm(K)/Wm(K)K1
m

∼→ Im(K)/Sm(K) = Cℓm(K).

So all ray class groups are factor groups of the idèle class group:

20.27 Theorem. Let m be a modulus of K. Then (.) : Jm(K)→ Im(K) induces an
isomorphism Cm(K)

∼→ Cℓm(K).

So the map Cm(K) → Cℓm(K) is as follows: having an idèle class, choose a repre-
sentative α ∈ Jm(K) of this class and take the class of the fractional ideal (α) in
the ray class group.

For m and n moduli of K satisfying m | n we have Wm(K) ⊇Wn(K) and therefore
the diagram

C(K)

Cn(K)

Cm(K)

of natural projections commutes. By the Classification Theorem of section 15.3
(Theorem 15.29) ray class groups Cℓm(K) correspond to ray class fields KHm(K)

and the Artin map induces an isomorphism Cℓm(K)
∼→ Gal(KHm(K) : K). For

m | n the diagram

Cn(K)

Cm(K)

Cℓn(K)

Cℓm(K)

commutes. The vertical map on the right is compatible with the restriction of
automorphisms. We obtain a continuous map, the global reciprocity map,

ϑK : C(K) −→ lim←−
m

Cm(K)
∼−→ lim←−

m

Cℓm(K)
∼−→ Gal(Kab : K).

The last isomorphism is given by the Classification Theorem (Theorem 15.29) of
global class field theory. Note that lim←−m

Cℓm(K) is the Pontryagin dual of H(K).
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20.4 The Classification Theorem (idèlic version)

20.28 Proposition. The map ϑK is surjective.

Proof. The maps C(K)→ Cm(K)
∼→ Cℓm(K)

∼→ Gal(KHm(K) : K) are surjective,

so by Theorem 19.59 the image of C(K) is dense in Gal(Kab : K). The group C0(K)
is the kernel of C(K) → R>0 and since the maps C(K) → Cm(K) are continuous
maps to discrete groups, the restrictions C0(K) → lim←−m

Cm(K) are surjective. So

the image of C0(K) in lim←−m
Cm(K) is dense as well. Since C0(K) is compact its

image is compact and is therefore equal to the whole group lim←−m
Cm(K).

Finite abelian extensions of K correspond to open subgroups of the profinite group
Gal(Kab : K) and by the Classification Theorem and Theorem 20.27 also to open
subgroups of lim←−m

Cm(K).

20.29 Theorem. Open subgroups of Gal(Kab : K) correspond via ϑK to open sub-
groups of C(K).

Proof. Let D(K) be the kernel of the map ϑK : C(K)→ Gal(Kab : K) is equal
to the kernel of C(K)→ lim←−m

Cm(K). So

D(K) =
⋂
m

Wm(K)K∗/K∗.

The open subgroups of lim←−m
Cm(K) correspond to the open subgroups of C(K)

which contain D(K). By Proposition 20.23 each open subgroup of C(K) contains
a subgroup Wm(K)K∗/K∗ for some modulus m of K.

The correspondence in this theorem is obtained via the Artin isomorphism

lim←−
m

Cℓm(K)
∼→ Gal(Kab : K).

Its formulation depends on the ideal-theoretic version of class field theory. In the
next section we translate this into a pure idèlic version.

20.4 The Classification Theorem (idèlic version)

In this section L : K is a number field extension of degree n. For q a prime of L
above a prime p of K, we can take Kp to be a subfield of Lq. Thus we have an
injective homomorphism

J(K)→ J(L),

mapping α = (αp)p to α′ = (α′
q)q, where α

′
q = αp if q | p. The group J(K) is

often seen as a subgroup of J(L): an idèle (αq)q ∈ J(L) is in J(K) if and only if
αq = αq′ ∈ Kp for all primes p of K and all q, q′ above p.
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20 Idèlic Class Field Theory

An isomorphism σ : L
∼→ σ(L) of number fields obviously respects absolute values:

∥σ(α)∥σ(q) = ∥α∥q for all α ∈ L and every prime p of K. So by definition of
completion it determines an isomorphism of the completions:

L σ(L)

Lq Lσ(q)

σ
∼

σ

This in turn determines an isomorphism of adèle rings:

σ : A(L) ∼→ A(σ(L)) : (αq)q 7→ (σ(α)σ(q))σ(q)

and similarly for idèle groups.

20.30 Notations. For p a prime of K we write

Lp =
∏
q|p

Lq

and for p a finite prime of K

O(L)
p =

∏
q|p

Oq.

For S a finite saturated collection of primes of K we write

AS(L) =
∏
p∈S

Lp ×
∏
p/∈S

O(L)
p

and
JS(L) =

∏
p∈S

L∗
p ×

∏
p/∈S

O(L)∗
p .

Then
A(L) = lim−→

S

AS(L) =
⋃
S

AS(L) =
∏∐
p

Lp,

the restricted product consisting of all (αp)p, where αp ∈ Lp such that αp ∈ O(L)
p

for all but finitely many finite primes p. Each Lp is via the diagonal embedding
Kp → Lp a commutative Kp-algebra and as a Kp-vector space its dimension equals∑

q|p[Lq : Kp] =
∑

q|p e
(L)
p f

(L)
p = [L : K]. The diagonal embeddings Kp → Lp

induce an embedding

A(K)→ A(L), (αp)p 7→ (αp)p
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and since the idèles are the units of the adèle ring by restriction we obtain again
the inclusion

J(K)→ J(L).

If L : K is a Galois extension with Galois group G, then the Lp and O(L)
p are G-

modules and so are A(L), J(L) and C(L). For the adèle ring and the idèle group
we have Galois descent:

20.31 Proposition. Let L : K be a Galois extension with Galois group G. Then
A(L)G = A(K) and J(L)G = J(K).

Proof. The second identity follows from the first. For S a finite saturated col-
lection of primes of K and we have

AS(L)G =
∏
p∈S

LGp ×
∏
p/∈S

(O(L)
p )G =

∏
p∈S

Kp ×
∏
p/∈S

Op.

Therefore, A(L)G = A(K).

The behavior of idèle class groups under field extensions differs considerably from
the behavior of the ideal class groups.

20.32 Proposition. The embedding K → L induces an injective homomorphism

C(K)→ C(L), α = αK∗ 7→ αL∗ = α.

Proof. We have to show that J(K)∩L∗ = K∗. LetM : K be the normal closure
of L : K and G = Gal(M : K). Then

J(K)∩L∗ ⊆ J(K)∩M∗ ⊆ (J(K)∩M∗)G = J(K)∩ (M∗)G = J(K)∩K∗ = K∗.

As a consequence we can view C(K) as the subgroup of C(L) consisting of all
α = αL∗ with α ∈ J(K).

20.33 Theorem. Let L : K be a Galois extension of number fields with Galois
group G. Then C(L)G = C(K).

Proof. The short exact sequence

1→ L∗ → J(L)→ C(L)→ 1

induces an exact sequence

1→ (L∗)G → J(L)G → C(L)G
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and since (LG)∗ = K∗ and J(L)G = J(K) the theorem will follow from the surjec-
tivity of J(L)G → C(L)G. Let α ∈ J(L) such that α ∈ C(L)G. Then σ(α) = α for

all σ ∈ G. So σ(α)
α ∈ L∗ for all σ ∈ G. Take γ ∈ K∗ such that

δ =
∑
σ

σ(α)

α
σ(γ) ̸= 0.

Then for each τ ∈ G

τ(δ) =
∑
σ

τσ(α)

τ(α)
τσ(γ) =

α

τ(α)

∑
σ

τσ(α)

α
τσ(α) =

α

τ(α)
δ.

So τ(δα) = δα for all τ ∈ G and therefore δα ∈ J(L)G. Since δ ∈ L∗ we have
δα = α ∈ C(L)G.

20.34 Definition. The norm map NLK : A(L) → A(K) is the map defined on the
components Lp by

NLK(α)p =
∏
q|p

Nq
p(αq) for α = (αq)q ∈ Lp.

Its restriction to J(L)→ J(K) is a group homomorphism.

By Corollary 10.47 the norm map NLK : J(L)→ J(K) is compatible with the norm
map NLK : L∗ → K∗, so we can define a norm for idèle classes:

20.35 Definition. The norm NLK : C(L)→ C(K) is induced by the norm of idèles:

NLK(α) = NLK(α) for α ∈ J(L).

20.36 Definition. The cokernel of NLK : C(L)→ C(K) is called the idèle class group
associated with L : K. Notation: C(L : K). So we have an exact sequence

C(L) NL
K−→ C(K) −→ C(L : K)→ 0.

20.37 Proposition. Let L : K be abelian. The open subgroup of C(K) corresponding
via ϑK to the open subgroup Gal(Kab : L) of Gal(Kab : K) is the group NLK(C(L)).

Proof. Let m be a multiple of the conductor of L : K. We have the following
commutative diagram
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C(L) lim←−m
Cm(L) lim←−m

Cℓm(L) Gal(Lab : L)

C(K) lim←−m
Cm(K) lim←−m

Cℓm(K) Gal(Kab : K)

C(K)/NLK(C(L)) C(L : K) Cℓ(L : K) Gal(L : K)

1 1 1 1

∼ ∼

∼ ∼

∼ ∼

NLK (NLK)m (NLK)m

The composition of the maps in the two top rows are the reciprocity maps ϑL and
ϑK . The image of Gal(Lab : L) in Gal(Kab : K) is Gal(Kab : L). We have to show
that C(K)/NLK(C(L))→ C(L : K) is an isomorphism. By Theorem 20.29 the map
C(K) → lim←−m

Cm(K) is surjective. Because m is a multiple of the conductor, we
have

U
vp(m)
p ⊆ Nq

p(Lq) for all p ∈ P(K) and q ∈ P(L) above p.

Hence
Wm(K) =

∏
p

U
vp(m)
p ⊆ NLK(J(L))

and for the images in C(K):

Ker(C(K)→ C(L : K)) =Wm(K)K∗/K∗ ⊆ NLK(C(L)).

Therefore, C(K)/NLK(C(L))→ C(L : K) is injective.

So the full idèlic version of global class field theory becomes:

20.38 Classification Theorem. Let K be a number field. The map

finite abelian
extensions of K

open subgroups of
C(K)

L : K NLK(C(L))

is a bijection. For L : K a finite abelian extension the global reciprocity map
ϑK : C(K)→ Gal(Kab : K) induces an isomorphism

C(K)/NLK(C(L)) ∼−→ Gal(L : K).
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20 Idèlic Class Field Theory

20.5 Local and global reciprocity

The idèlic approach to class field theory clarifies the relationship between local and
global class field theory considerably.

For a number field K we have local reciprocity maps for primes p of K

ϑKp
: K∗

p → Gal(Kab
p : Kp)

and the global reciprocity map

ϑK : C(K)→ Gal(Kab : K).

Let’s fix an abelian number field extension L : K. For a prime p of K and a prime
q of L above p the local reciprocity map yields a short exact sequence

1→ Nq
p(L

∗
q) −→ K∗

p

ϑ
(Lq)

Kp−→ Gal(Lq : Kp)→ 1

and via the natural isomorphism Gal(Lq : Kp)
∼→ Z

(L)
p a short exact sequence

1→ Nq
p(L

∗
q) −→ K∗

p

ϑ
(L)
p−→ Z

(L)
p → 1.

For primes p of K there is a natural embedding

K∗
p → J(K), α 7→ αp,

where αp is given by

αp
p = α and αp

p′ = 1 for all p′ ̸= p.

The composition with J(K)→ C(K) is injective as well; it is the map

K∗
p → C(K), α 7→ [αp],

where, as before, [αp] denotes the idèle class of the idèle αp.

20.39 Theorem. The square

K∗
p Z

(L)
p

C(K) Gal(L : K)

ϑ
(L)
p

ϑ
(L)
K

⊆
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20.5 Local and global reciprocity

commutes. (The vertical map on the left is the map described above and ϑ
(L)
K is the

composition of ϑK with the map Gal(Kab : K) → Gal(L : K) given by restriction
of automorphisms.)

Proof. Let α ∈ L∗. We have to show that ϑ
(L)
K ([αp]) = ϑ

(L)
p (α). First we

follow the definition of ϑ
(L)
p . Let n be a modulus for L : K. Put n = ptm with

p ∤ m. Choose a β ∈ K1
m such that β ≡ α (modU

(t)
p ). Then vp(β) = vp(α) and

ϑ
(L)
p (α) = φ

(L)
K (a)−1, where a = (β)p−vp(α) ∈ In(K).

We have (β−1αp) = β−1pvp(α) = a−1 ∈ In(K). Therefore,

ϑ
(L)
K ([αp]) = φ

(L)
K ((β−1αp)) = φ

(L)
K (a−1) = ϑ

(L)
p (α).

Final remarks

A modern approach to class field theory is top down: start with local class field
theory, independent of the global one, and for global class field theory use the
approach with idèles. After that, one may translate the results into the language
of ideals. In our bottom up approach the use of idèles clarifies the definition of
local Artin maps (Proposition 20.39) and their relation to the global Artin map:

Conductor. Let L : K be an abelian number field extension. The conductor f of
L : K is the least modulus divisible by all ramifying primes such that Sf(K)

is contained in the kernel of the Artin map φ
(L)
K : IL(K) → Gal(L : K). By

Theorem 15.56 the conductor f is the product of all pnp , where np ∈ N is the
least such that

U
(np)
p ⊆ Nq

p(L
∗
q). (20.1)

The power pnp is the local conductor at p of the extension L : K. The
modulus f is the least one such that L is contained in its ray class field. In
terms of idèles this means Wf(K) ⊆ NLK(J(L)), which by definition of Wf(K)
comes down again to condition (20.1).

Product formula. Let L : K be an abelian number field extension and α ∈ K.
By Theorem 16.22 we have a product for norm residue symbols. In terms of
local Artin maps this is the formula∏

p∈P(K)

ϑ
(L)
p (α) = 1.

Using idèlic class field theory this formula is easily obtained as follows. Let S
be a saturated collection of primes of K containing all primes p with vp(α) ̸=
0. Let αS be the idèle defined by

αSp =

{
α if p ∈ S
1 otherwise.
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20 Idèlic Class Field Theory

Then α−1αS ∈Wf(K) and so∏
p

ϑ
(L)
p (α) =

∏
p∈S

ϑ
(L)
p (α) =

∏
p∈S

ϑ
(L)
K ([αp]) = ϑ

(L)
K ([αS ]) = ϑ

(L)
K ([α−1αS ]) = 1.

Exercises

1. Let L : K be a Galois extension of number fields. Show that

G (L : K)→ Ab, K′ 7→ A(K′)/K′

is an acyclic Galois module.

2. Let K be a number field and p a prime number. Show that we have a Qp-algebra
isomorphism

Qp ⊗Q K
∼−→
∏
p|p

Kp,

where the product is over all primes of K above p. So Qp ⊗Q K
∼→ Kp (Nota-

tions 20.30).

3. Show that
J(Q)

∼−→ µ2 × R>0 ×
∏
p

Z∗
p ×

⊕
p

Z,

where the direct product and the direct sum are over all prime numbers p.

4. Show that
C(Q) ∼= R>0 × Ẑ∗ and C0(Q) ∼= Ẑ∗.
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Notations

A ⊆ B A is a subset of B

A ⊂ B A is a proper subset of B

#(A) the number of elements of a finite set A

H ≤ G H is a subgroup of G

H < G H is a proper subgroup of G

o(g) the order of an element g in a group, p. ix

(G : H) the index of the subgroup H in the group G

N ⊴ G N is a normal subgroup of G

N ◁ G N is a proper normal subgroup of G

⟨g1, . . . , gn⟩ the subgroup of a given group generated by g1, . . . , gn

⟨g | P (g)⟩ the subgroup of a given group generated by all g such that P (g)

N the set {0, 1, 2, 3, . . . } of natural numbers

N∗ the set {1, 2, 3, . . . } of natural numbers ̸= 0

Z the ring of (rational) integers

Q the field of rational numbers

R the field of real numbers

C the field of complex numbers

ζm the primitive m-th root of unity e2πi/m of C
µ(K) the group of roots of unity of a field K

µ = µ(C), the group of roots of unity of C
ℜ(z) the real part of z ∈ C
ℑ(z) the imaginary part of z ∈ C
Fq a field with q elements

Z/n the ring of integers modulo n

(a1, . . . , an) the ideal of a given commutative ring generated by a1, . . . , an

(a | P (a)) the ideal of a given commutative ring generated by all a such that
P (a)

R∗ the group of invertible elements in the ring R

deg(f) the degree of a polynomial f

ζn the primitive n-th root of unity e
2πi
n in C
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Notations

nA for A a (multiplicative) abelian group and n ∈ N∗: the subgroup
of all a ∈ A with an = 1

Cn the cyclic group of order n

V4 the Klein four group

Dn the n-th dihedral group

Sn the n-th symmetric group: permutations of the set {1, . . . , n}
An the n-th alternating group: even permutations of the set {1, . . . , n}
NG(H) the normalizer of H in G, p. ix

[L : K] the degree of a field extension L : K

Gal(L : K) the Galois group of a Galois extension L : K

sn(X1, . . . , Xn) the n-th elementary symmetric polynomial, p. ix

r, s for a number field K a standard notation: r is the number of real
embeddings of K and s the number of pairs of complex embed-
dings, p. 4

O the integral domain of integral algebraic numbers, p. 6

ωm for m a squarefree integer ̸= 1:
√
m if m ≡ 2, 3 (mod 4), 1

2 +
1
2

√
m

if m ≡ 1 (mod 4), p. 8

OK the ring of integers of a number field K, p. 9

∆T (X) characteristic polynomial of a linear transformation T , p. 9

∆L:K
α (X) the characteristic polynomial of α ∈ L over K, where L : K is a

finite field extension, p. 9

TrLK(α) the trace of α ∈ L over K, where L : K is a finite field extension,
p. 9

NLK(α) the norm of α ∈ L over K, where L : K is a finite field extension,
p. 9

N the norm Rr × Cs → R, p. 12
discK(α1, . . . , αn) the discriminant of a K-base of an extension field L, p. 15

a | b the ideal a is a divisor of the ideal b, p. 34

Max(R) the set of the maximal ideals of a ring R, p. 35

Spec(R) the set of prime ideals of a ring R, p. 35

I+(R) the monoid of nonzero ideals of an integral domain R, p. 36

vp(a) the p-valuation of a (fractional) ideal a, p. 37

a ∼ b the nonzero ideals a and b of a Dedekind domain are equivalent,
p. 40

Cℓ(R) the ideal class group of a Dedekind domain R, p. 41

[a] the ideal class of a nonzero ideal a of a Dedekind domain, p. 41

I(R) the group of fractional ideals of a Dedekind domain R, p. 42

P(R) the group of principal fractional ideals of a Dedekind domain R,
p. 42
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Notations

e(p) the ramification index of p (over Q), p. 50

f(p) the residue class degree of p (over Q), p. 50

e
(K)
p the ramification index of the prime number p in the number field

K, p. 56

f
(K)
p the residue class degree of the prime number p in the number

field K, p. 56

N(a) the norm of a nonzero ideal a of a ring of integers of a number
field, p. 57

Cℓ(K) the ideal class group of the number field K, p. 59

I(K) the group of fractional ideals of the number field K, p. 59

P(K) the group of principal fractional ideal of the number field K, p. 59

I+(K) the monoid of nonzero ideals of the ring of integers of the number
field K, p. 59(

a

p

)
the Legendre symbol (a ∈ Z and p an odd prime), p. 66

n∗ for odd n ∈ Z, n∗ = (−1)n−1
2 n, p. 67(

a

b

)
the Jacobi symbol (a, b ∈ Z and odd), p. 69

disc(γ) the discriminant of the quadratic number γ, p. 71

Az action of A ∈ GL2(Z) on z ∈ C \Q, p. 72

z1 ≃ z2 equivalence of z1, z2 ∈ C \Q, p. 72

⟨x1, . . . , xn⟩ continued fraction of length n, p. 79

pn(x1, . . . , xn) numerator of continued fraction of length n, p. 80

qn(x1, . . . , xn) denominator of continued fraction of length n, p. 80

⟨a1, a2, a3, . . .⟩ infinite continued fraction, p. 82

x ∼φ y tail equivalence of irrational numbers x and y, p. 87

δ(F ) the volume of a mesh of a lattice F in Rn, p. 106
ΛK the image of OK under the embedding of a number field K in

Rr × Cs, p. 108
L : R∗r × C∗s → Rr+s the ‘logarithmic’ map, p. 115

l : K∗ → Rr+s the embedding ι composed with the ‘logarithmic’ map L, p. 115

ψ : O∗
K → Rr+s the map L restricted to O∗

K , p. 115

Hm the subspace of Rm of vectors with coordinate sum 0, p. 116

Q(L) Hasse index of a CM-field L, p. 125

Reg(ε1, . . . , εr+s−1) the regulator of a group of units, p. 128

Reg(K) the regulator of a number field K, p. 128

Reg(X) the regulator of a group of units X in a number field, p. 128
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Notations

S−1R the ring of fractions of an integral domain R with denominators
in a multiplicative system S of R, p. 134

Rp the localization of an integral domain R at a prime ideal p of R,
p. 134

RP the localization of a Dedekind domain R at a set P of maximal
ideals of R, p. 137

KP for a number fieldK the localization ofOK at a set P ⊆ Max(OK),
p. 141

IP (K) for a number field K the subgroup of I(K) generated by P ⊆
Max(OK), p. 141

CℓP (K) for a number field K the group Cℓ(K) modulo all [p] ∈ Cℓ(K) with
p in P ⊆ Max(OK), p. 141

K+ the subroup of totally positive elements of a number field K,
p. 143

Cℓ+(K) the narrow ideal class group of a number field K, p. 143

eK(q) the ramification index of q over K, p. 146

fK(q) the residue class degree of q over K, p. 146

e
(L)
p the ramification index of p in L, p. 151

f
(L)
p the residue class degree of p in L, p. 151

dR(L) the R-discriminant of the extension field L of the field of fractions
of the Dedekind domain R, p. 155

dK(L) the discriminant of the number field L over the number field K,
p. 159

ZK(q) the decomposition group of q over K, p. 160

TK(q) the inertia group of q over K, p. 161

Z
(L)
p the decomposition group of p in L, p. 162

T
(L)
p the inertia group of p in L, p. 162

VK,i(q) the i-th ramification group of q over K, p. 169

NSR(a) the norm of a ∈ I(S) in I(R), p. 174
trSR(C) transfer of a C ∈ Cℓ(S) in Cℓ(R), p. 175
jKL (a) the fractional ideal aOL, p. 176
NLK(a) the norm of the fractional ideal a in I(K), p. 176

jKL ([a]) the ideal class [aOL], p. 176
trLK([a]) the ideal class [NLK(a)], p. 176

φK(q) the Frobenius automorphism of q over K, p. 177

φ
(L)
p the Frobenius automorphism of p in Gal(L : K), p. 178

w(K) = #(µ(K), the number of roots of unity in the field K, p. 188

ζ(s) the Riemann zeta function, p. 192
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Notations

Z(s) the completed zeta function, p. 196

ζQ(
√
m)(s) Dedekind zeta function of a number field K, p. 198

ζC(s) the partial Dedekind zeta function of an ideal class of a number
field, p. 198

δ(P ) Dirichlet density of a collection P of prime ideals of a number
field, p. 202

JσK division represented by σ, p. 207

NK the conductor of an abelian number field K, p. 214

G∨ the character group of a group G, p. 215

f∨ the dual of a group homomorphism f , p. 215

DN the group of Dirichlet characters modulo N , p. 218

χ inverse of a Dirichlet character χ, p. 218

iMN (χ) Dirichlet character modulo N induced by χ ∈ DM , p. 219

Nχ the conductor of a Dirichlet character χ, p. 221

NX the conductor of a finite group X of Dirichlet characters, p. 222

D(K) the group of Dirichlet characters associated to an abelian number
field K, p. 223

QX the number field associated to a finite group X of Dirichlet char-
acters, p. 223

L(s, χ) the L series of a Dirichlet character, p. 226

g(χ) the standard Gauß sum of a Dirichlet character χ, p. 232

gk(χ) a Gauß sum of a Dirichlet character χ, p. 232

Cm the group of cyclotomic units in Q(ζm), p. 246

C+m the group of cyclotomic units in Q(ζm + ζ−1
m ), p. 246

∥.∥σ the absolute value given by the complex embedding σ, p. 256

∥.∥v the absolute value determined by a discrete valuation, p. 256

P(K) the collection of primes of a number field K, p. 266

P0(K) the collection of finite primes of a number field K, p. 266

P∞(K) the collection of infinite primes of a number field K, p. 266

OF the valuation ring of a complete discretely valued field F , p. 271

vF the valuation of a complete discretely valued field F , p. 271

pF the maximal ideal of the valuation ring of a complete discretely
valued field F , p. 271

kF the residue class field of a complete discretely valued field F ,
p. 271

Kp the completion of a discretely valued field K at a maximal ideal
p, p. 272
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Notations

Rp the valuation ring of the completion of a discretely valued field
K at a maximal ideal p, p. 272

Op the valuation ring of the completion of a number field K at a
maximal ideal p, p. 272

p̂ the maximal ideal of Op, p. 272

Qp the field of p-adic numbers, p. 272

Zp the ring of p-adic integers, p. 272

e
(E)
F the ramification index of an extension of complete discretely val-

ued fields, p. 274

e
(E)
F the residue class degree

of an extension of complete discretely valued fields, p. 274

exp exponential function on a local field, p. 285

log logarithm on a local field, p. 287

Z[G] the group ring of a group G, p. 294

R[G] the group algebra over a commutative ring R of a group G, p. 294

NG the norm element in the group ring of a finite group G, p. 294

AG the subgroup of invariants of a module A over a group G, p. 294

AG the factor group of invariants of a module A over a group G,
p. 295

Hm(G,A) the m-th homology group of G with coefficients in A, p. 296

Hm(G,A) the m-th cohomology group of G with coefficients in A, p. 296

Ĥm(G,A) m-th Tate cohomology group of a finite group G with coefficients
in a G-module A, p. 296

NA multiplication by NG of elements of a G-module A, the group G
being understood, p. 296

∆A multiplication by ∆ = 1 − σ of elements of a cyclic G-module,
the group G and its generator σ being understood, p. 296

H0(A) the 0-th cohomology group of a module A over a cyclic group,
p. 297

H1(A) the 1-st cohomology group of a module A over a cyclic group,
p. 297

q(A) the Herbrand quotient of a module A over a cyclic group, p. 299

G (L : K) the category of all intermediate fields of a Galois extension L : K
and their K-embeddings, p. 305

M(K) the ordered monoid of moduli of a number field K, p. 320

Im(K) the group of fractional ideals of a number field K ‘away’ from m0,
p. 320

Km the localization of a number field K at the finite primes of a
modulus m, p. 320
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Notations

K1
m the subgroup of the multiplicative group of a number field K

consisting of elements congruent to 1 modulo a modulus m, p. 320

Sm(K) the ray modulo a modulus m of a number field K, p. 321

Cℓm(K) the ray class group modulo a modulus m of a number field K,
p. 321

imn (χ) Dirichlet character modulo n, induced by a character modulo m |
n, p. 330

fχ the conductor of a Dirichlet character χ of a number field, p. 331

Hm(K) the group of Dirichlet characters of a number field K with con-
ductor a divisor of m, p. 331

fX the conductor of a finite group X of Dirichlet characters, p. 331

trLK(C) transfer of a C ∈ Cℓm(L) to Cℓm(K), p. 333

Cℓm(L : K) for L : K a number field extension and m a modulus of K: the
cokernel of the transfer from Cℓm(L) to Cℓm(K), p. 333

νKL the conorm map of Dirichlet characters of number fields, p. 333

H(L : K) the group of Dirichlet characters of a number field extension L :
K, p. 333

Hm(L : K) for L : K a number field extension and a modulus m of K: the
Dirichlet characters of L : K with conductor dividing m, p. 333

ζ(s, C) the partial zeta function of a ray class C of a number field, p. 334

N(m) the norm of a modulus m, p. 335

Reg(m) the regulator of a modulus m, p. 335

L(s, χ) the L-series of a Dirichlet character of a number field, p. 337

fK(L) the conductor of an abelian extension L : K of number fields,
p. 339

IL(K) for L : K an abelian number field extension the subgroup of I(K)
generated by the nonramifying prime ideals of K, p. 340

φ
(L)
K the Artin map of an abelian number field extension L : K, p. 340

KX the class field for a finite group of Dirichlet characters of a number
field K, p. 343

φ̌
(L)
K the dual Artin isomorphism of an abelian number field extension

L : K, p. 362

KS the group of S-units of a number field K, p. 376

CℓS(K) the S-ideal class group of a number field K of a saturated collec-
tion S of primes, p. 376

KX the class field for a finite group X of Dirichlet characters of a
number field K, p. 379

ϑ
(L)
K global description of the local Artin map, p. 388

ϑ
(L)
p the local Artin map at p, p. 389
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Notations

U
(n)
p a subgroup of K∗

p , see Notation 15.54, p. 393

fp(L) the local conductor of an abelian extension L : K of number fields
at a prime p of K, p. 393

ιK
′

K the canonical map H(K ′) → H(K) for a number field extension
K ′ : K, p. 394

φ
(L)
K the generalized Artin map of a Galois extension L : K, p. 394

φ̌
(L)
K the generalized dual Artin map of a Galois extension L : K, p. 395

V GH the transfer from a Group G to a subgroup H of finite index,
p. 397

ϑ
(E)
F the Artin map of an extension E : F of local fields, p. 409

FX the class field for a subgroup of finite index of F ∗ for a local field
F , p. 411

U
(i)
F for F a local field a subgroup of F ∗ as described in 16.16, p. 413

fF (E) the conductor of an extension E : F of local fields, p. 413(
a, L : K

p

)
the value in a of the norm residue symbol of an abelian number

field extension L : K at a prime p, p. 415

(α, β)n the n-th Hilbert symbol for α, β in a given local field, p. 417(
a, b

p

)
n

the n-the Hilbert symbol at a prime p of a given number field,

p. 417

(a, b)v the tame symbol on a given discretely valued field, p. 421(
α

p

)
n

the n-th power residue symbol, p. 423(
α

b

)
n

,

(
α

β

)
n

generalizations of the Jacobi symbol, p. 424

i(σ) for σ an automorphism of a local field, the least exponent i such
that σ does not induce the identity modulo the prime ideal to the
power i, p. 438

φG continuous piecewise linear function determined by the orders of
the ramification groups, p. 441

ψG(x) the inverse map of φG(x), p. 442
∗a the dual of the fractional ideal a, p. 448

cR(L) the complementary fractional ideal of L over R, p. 449

∂R(L) the different of L over R, p. 449

∂K(L) for a number field extension L : K the different of L over K,
p. 449

∂LK(α) the different of α ∈ L over K, p. 453

∂F (E) the different of an extension E : F of local fields, p. 455
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VF,i(E) the i-th ramification group of a Galois extension E : F of local
fields, p. 455

W
(i)
F E the image of U

(i)
F in the Galois group of a Galois extension of

local fields under the local Artin map, p. 458

Ω(G) the collection of cyclic subgroups of a finite group G, p. 472

Ω0(G) the collection of nontrivial cyclic subgroups of a finite group G,
p. 472

Ω′(G) the collection of noncyclic subgroups of a finite group G, p. 472

Σ(G) the collection of subgroups of a finite group G, p. 472

Σ0(G) the collection of nontrivial subgroups of a finite group G, p. 472

Υ(G) the collection of normal subgroups H of G such that G/H is a
finite cyclic group, p. 472

Υ0(G) the collection of H ̸= G in Υ(G), p. 472

ZX the free abelian group on a set X, p. 472

NR(G) the group of norm relations of a finite group G, p. 472

dG(H) the norm coefficient of a subgroup H of a finite group G, p. 473

εχ idempotent related to χ ∈ G∨ in the group algebra over Z[ 1n , ζn]
of an abelian group G, p. 477

Υ(G) the collection of subgroups H of an abelian group G with G/H
cyclic, p. 478

V ⊥ for V a subgroup of the dual of a given abelian group G: the
subgroup of G on which all χ ∈ V vanish, p. 478

U⊥ for U a subgroup of a given abelian group G: the group of all
χ ∈ G∨ vanishing on U , p. 478

εH idempotent in the group ring of an abelian group G related to a
subgroup H with G/H cyclic, p. 479

1G trivial character of a group G, p. 493

L(s, χ, L : K) Artin L-function of a Galois extension of number fields, p. 494

D(G) the intersection of all maximal cyclic subgroups of a group G,
p. 500

S# the base of a topology generated by a subbase S, p. 506

lim−→i
Xi the inductive limit of an inductive system (Xi)i∈I , p. 511

lim←−iXi the projective limit of a projective system (Xi)i∈I , p. 514

Gab the abelianization of a profinite group G, p. 524

Ksep the separable closure of a field K, p. 527

Gal(K) the absolute Galois group of a field K, p. 527

FK the inductive system of finite Galois extensions of a fieldK, p. 527

Kab the maximal abelian extension of a field K, p. 528
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AK the inductive system of finite abelian extensions of a field K,
p. 528

ϑF the local reciprocity map for F a local field, p. 528

Homcont(G,H) the set of continuous homomorphisms from a topological group
G to a topological group H, p. 529

T the category of abelian discrete torsion groups, p. 529

P the category of abelian profinite groups, p. 529

S1 the circle group, p. 529

AS(K) the ring of S-adèles of a number field K for a saturated collection
S of primes, p. 533

A(K) the adèle ring of a number field K, p. 534∏∐
p
Kp the restricted product of the completions of a number field K (=

adèle ring of K), p. 534

JS(K) the S-idèle group of a number field K, p. 536

J(K)/K∗ the idèle class group of a number field K, p. 537

JS(K)/KS the S-idèle class group of a number field K for a saturated col-
lection S of primes, p. 537

∥α∥p the p-value of an idèle α, p. 538

∥α∥ the content of an id̀le α, p. 538

J0(K) the group of idèles with content 1 of a number field K, p. 538

J0(K) the group of idèles with content 1 of a number field K, p. 538

C0(K) the group of idèle classes of a number field K represented by
idèles of content 1, p. 538

Wm(K) the group of idèles of a number field K which are 1 modulo a
modulus m, p. 540

Cm(K) the idèles class group modulo a modulus m of a number field K,
p. 540

Lp for L : K a numberfield extension and p a prime ofK: the product
of all Lq, where q above p, p. 544

NLK(α) the norm of the adèle α ∈ A(L), p. 546
NLK(α) the norm of the class of the idèle α ∈ J(L), p. 546
C(L : K) idèle class group associated with a number field extension L : K,

p. 546
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abelian number field
associated to a group of Dirichlet

characters, 223
abelianization

of a profinite group, 524
abscissa of convergence, 193
absolute extension

of number fields, 145
absolute value, 255

archimedean, 259
equivalence, 257
nonarchimedean, 259
place, 257

action of GL2(Z) on C \Q, 72
adèle

of a number field, 533
ad̀le ring

of a number field, 534
Alexander’s Subbase Theorem, 507
algebraic integer, 6
algebraic K-theory, 419, 422
arithmetic function, 196

completely multiplicative, 196
multiplicative, 196

arithmetic projective system, 323
multiplicative, 323
quasi-multiplicative, 323

Artin L-function, 494
Artin kernel

of an abelian extension of num-
ber fields, 340

Artin map, 340
for local fields, 409
local, 389

Artin symbol, 340
Artin’s Reciprocity Law, 358

base
generated by a subbase, 506
of a topology, 506

bicartesian, 217

cancellation law, 34
cartesian square, 217
Cauchy sequence, 262
central function

on a group, 493
character

induced, 495
of a group, 215
of a representation, 493
principal, 215, 493
trivial, 215, 493

character group, 215
characteristic polynomial, 9
Chebotarev’s Density Theorem, 382
class field

for a finite group of Dirichlet char-
acters, 343, 363

class number
of a number field, 191

class number formula, 201
Classification Theorem

for abelian number fields, 223
global

idèlic version, 547
ideal-theoretic version, 379

local, 412
CM-field, 124
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cocartesian square, 217
cofinal subset, 517
cohomology group, 297
cohomology groups

of a group action, 296
comaximal ideals, 38
complementary fractional ideal, 449
complete field, 262
Complete Splitting Theorem, 386
completed zeta function, 196
completely multiplicative arithmetic

function, 196
completion of a valued field, 262

construction, 262
complex embedding, 5
complex infinite prime

of a number field, 266
conductor

of a Dirichlet character, 221, 222
of a Dirichlet character of a num-

ber field, 331
of a finite group of Dirichlet char-

acters, 222
of a finite group of Dirichlet char-

acters of a number field, 331
of an abelian number field, 214
of an extension of abelian num-

ber fields, 339
of an extension of local fields, 413

conductor of a quadratic number field,
214

Conductor-Discriminant Formula, 250
local, 467

Conductor-Discriminant Formula (global),
468

conorm map
for Dirichlet characters, 333

consistency property
for Artin maps, 342
for local Artin maps, 390

content
of an idèle, 538

continued fraction, 79
continued fraction expansion, 83

period of repeating, 83
purely repeating, 83
repeating, 83

convergent sequence, 262
limit, 262

converging infinite product, 196
convex subset of Rn, 107
cyclotomic unit, 246

decomposition field, 160
decomposition group, 160, 162

of an infinite prime, 268
Dedekind domain, 34
Dedekind zeta function, 198

partial, 198
degree

of a rational function, 142
of number field, 3

different, 449
of an element, 453
of an extension of local fields, 455

directed ordered set, 510
Dirichlet character, 218

associated to an abelian number
field, 223

conductor, 221
even, 223
inverse, 218
modulus, 218
odd, 223
of a number field, 329
primitive, 219, 330
principal, 219
product, 218, 219
quadratic, 218
trivial, 219

Dirichlet characters
product, 221

Dirichlet density, 202
Dirichlet pre-character, 221, 331
Dirichlet series, 192
Dirichlet’s Unit Theorem, 119
discrete subgroup

of Rn, 105
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discrete valuation, 131
discrete valuation ring, 132
discriminant, 155, 159

of a basis, 15
of a number field, 20
of a quadratic number, 71

divisible abelian group, 215
division

of a group, 207
of ideals, 34

dual
of a fractional ideal, 448
of a group, 215
of a group homomorphism, 215

dual Artin isomorphism, 362
dual basis, 17
dual group, 215

Eisenstein p-polynomial, 153
Eisenstein’s Reciprocity Theorem, 434
embedding

of valued fields, 255
equivalence

of ideals of a Dedekind domain,
40

of irrational numbers, 72
of lattices, 73

Euler product, 196
of a Dirichlet series, 196

Euler’s criterion, 66
exact hexagon, 297
exceptional collection of subgroups, 499
exceptional group, 498
Existence Theorem

local, 412
exponent of a group, 295
exponential function

on a local field, 285

finite prime
of a number field, 266

First Fundamental Inequality, 339
fractional ideal

invertible, 43

of a Dedekind domain, 42
of a number field, 59
principal, 42

Frobenius automorphism, 178
of a prime ideal, 177

Frobenius Density Theorem, 207
for abelian extensions, 206

functor, 215
contravariant, 215
left exact, 215

fundamental parallelotope, 106
fundamental unit, 14

Galois cohomology, 293
Galois extension

infinite, 524
Galois group

absolute, 527
Galois module, 305, 306

acyclic, 309
with descent, 306
with transfers, 308

Gauß Lemma, 7
Gauß sum

of a Dirichlet character, 232
generalized Artin map, 394
generalized dual Artin map, 395
generalized Frobenius automorphism,

394
genus

of a number field, 199
group action

co-invariants, 295
invariants, 294

group algebra, 294
group invariants, 95
group ring, 294

Hasse index, 125
Hasse’s Principle, 355
Hausdorff topological space, 507
herbrand quotient, 299
Hilbert class field, 344, 399
Hilbert symbol, 417
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tame, 422
wild, 422

Hilbert’s Reciprocity, 425
Hilbert’s Reciprocity Theorem, 425

First supplement, 426
Second supplement, 426

Hilbert’s Theorem 90, 302
homology groups

of a group action, 296

idèle
of a number field, 536

idèle class group
modulo a modulus of a number

field, 540
of a number field, 537

idèle class group associated with a num-
ber field extension, 546

ideal class
of a Dedekind domain, 41

ideal class group
of a Dedekind domain, 41
of a number field, 59

imaginary quadratic number field, 3
induced Dirichlet character, 219, 330
inductive limit, 511
inductive system

in a category, 510
inertia group, 161, 162

of an infinite prime, 268
infinite continued fraction, 82
infinite prime

of a number field, 266
injective module, 215
integer, 6
integers

of a quadratic number field, 7
integral basis, 20
integral closure, 6
integrally closed, 6
irreducible

character, 493
representation, 493

Jacobi symbol, 69

Krasner
lemma, 279

Kronecker-Weber
Theorem, 214

Kronecker-Weber Theorem, 364
Krull dimension

of a commutative ring, 35
Kummer extension, 371
Kummer-Dedekind Theorem, 51, 149

L-series
of a Dirichlet character, 226, 337

lattice
in a Q- or R-vector space, 4

leading coefficient
of a rational function, 142

Legendre symbol, 66, 218
Lipschitz map, 185
local Artin map, 389
Local Classification Theorem, 412
local conductor, 393
Local Existence Theorem, 412
local field, 279
local norm, 415
localization

at a prime ideal, 134
of a Dedekind domain, 137

logarithm
on a local field, 287

maximal abelian extension
of a field, 528

mesh
of a lattice in Rn, 106

Minkowski bound, 111
Minkowski’s Lattice Point Theorem,

107, 108
module

over a group, 293
modulus

for an abelian number field ex-
tension, 341
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of a number field, 320
Moore’s Reciprocity Uniqueness The-

orem, 423
Mordell equation, 32
morphism of arithmetic projective sys-

tems, 327
multiplicative arithmetic function, 196
multiplicative function

of ideals, 200
multiplicative system, 133

narrow ideal class group, 143
Noetherian ring, 35
norm

global, 276
local, 276
of a finite field extension, 9
of a modulus, 335
of an ideal, 57
of fractional ideal, 174
on Rr × Cs, 12

norm coefficient
of a subgroup of a finite group,

473
norm element, 294
norm map

for adèles, 546
for idèle classes, 546

norm relation
of a finite group, 472

norm residue symbol, 415
norm-Euclidean, 27
normalizer of a subgroup, 168
null sequence, 262
number field, 3

degree, 3
quadratic, 3
imaginary, 3
real, 3

ring of integers, 9
number ring, 4

Ostrowski
theorem, 261, 264

p-adic expansion, 272
p-adic numbers, 272
p-adic valuation

of a fractional ideal, 43
on a field of fractions of a Dedekind

domain, 43
p-polynomial, 153
p-valuation

of a ring element, 37
of an ideal, 37

p-value
of an idèle, 538

partial zeta function
of a ray class, 334

Pell equation, 95
place

of a field, 257
primary element

in Z[ζl], l an odd prime, 433
prime

of a number field, 266
principal character, 219, 493
principal fractional ideal, 42
principal norm relation

of a finite group, 474
product

of characters, 215
of Dirichlet characters, 219
of fractional ideals, 42
of ideals, 33
of topological spaces, 506

product formula
for absolute values of a number

field, 266
for norm residue symbols, 415

profinite group, 521
abelianization, 524

projective limit, 514
projective system

in a category, 514
pure cubic number field, 31

quadratic nonresidue, 53
quadratic number, 71
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reduced real, 86
quadratic number field, 3
Quadratic Reciprocity Law, 67, 178
quadratic residue, 53

ramification
of infinite primes, 267

ramification group, 169
of a Galois extension of local fields,

455
ramification index, 50, 56, 146, 151

of an extension of complete dis-
cretely valued fields, 274

of infinite primes, 267
ramify, 148
ray, 321
ray class group, 321
real embedding, 4
real infinite prime

of a number field, 266
real quadratic number field, 3
reduced real quadratic number, 86
regular representation, 493
regulator

of a group of units, 128
of a modulus, 335
of a number field, 128

relative extension
of number fields, 145

relatively prime
ideals of s Dedekind domain, 38

remain prime, 50, 148
representation

character, 493
degree, 293
induced, 495
irreducible character, 493
of a group, 293
principal character, 493
regular, 493

residue class degree, 50, 56, 151
absolute, 205
of an extension of complete dis-

cretely valued fields, 274

of infinite primes, 267
residue class index, 146
restricted product

of completions of a number field,
534

Riemann zeta function, 192
ring of integers

of a number field, 9

S-ideal class group, 376
S-unit, 376
saturated collection of primes, 376
Second Fundamental Inequality, 354
semi-local commutative ring, 40
separable closure

of a field, 527
separated points

of a topology, 508
spectrum

of a ring, 35
split completely, 50, 148
Steinberg symbol, 419
strongly exceptional group, 498
subbase

of a topology, 506
Subsidiary Law

for quadratic reciprocity, 68
sum

of ideals, 33
symmetric subset of Rn, 107

tail equivalence of numbers, 87
tame kernel

of a number field, 422
tame symbol, 421
tamely ramified, 149
Tate cohomology groups, 296
The Fundamental Equality, 354
topological group, 508
topological space

Hausdorff, 507
totally disconnected topology, 508
totally positive

element of a number field, 143
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totally ramify, 50, 148
totally separated topology, 508
trace

global, 276
local, 276
of a finite field extension, 9

transfer
for ray class groups, 333
of a Galois module, 308
of an ideal class, 175
of groups, 397

transition matrix, 15
Translation Theorem, 365
trivial absolute value, 256
trivial norm coefficient, 474
Tykhonov’s Theorem, 507

uniformizer
of a complete discretely valued

field, 270
of a discrete valuation, 133

unique factorization into prime ide-
als, 36

unit index
of a CM-field, 125

valuation ring
of a nonarchimedean absolute value,

260
valued field, 255

completion, 262
Vandiver’s Conjecture, 112

wild inertia group, 172
wild kernel

of a number field, 423

Zariski topology, 35
zeta function

completed, 196
of a ray class, 334
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