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Preface

Since their invention in the 1930s, particle accelerators have grown in size to
become the largest research tools at the disposal of the scientist—some even
visible from spacecraft. At particle physics laboratories: CERN in Geneva, FNAL
in Illinois, and DESY in Hamburg, teams of several hundred physicists and
engineers construct huge rings of electromagnets and microwave accelerating
cavities—each a densely packed mosaic of sophisticated components. There is
hardly a major engineering project, with the possible exception of space research,
which combines as many of today’s ongoing technologies.

Apart from a few of these large accelerators, whose principal purpose is to
further man’s quest to understand his origin and that of the universe, there is a
second and more numerous wave of smaller accelerators built for more practical
purposes. These are used in industrial processes, in medicine for diagnosis and
therapy, and to research into the physical and molecular structure of materials.

This book is intended to provide students with an understanding of the physics
of accelerators—large and small—and to convey the flavour of their technology
and applications. The first stumbling block for students of a new field is often
the lack of a simple introduction which reveals the physical principles and which
explains the concept and language of the subject. The book sets out to remedy
this. It does not pretend to be an exhaustive reference but follows a pattern
of learning which best matches the needs of a graduate engineer or physicist
confronting the subject for the first time.

The subject matter falls roughly into three parts. After a chapter on history
we find out how to design the patterns of bending and focusing magnets of a
synchrotron, to maintain a stable circulating beam and how to accelerate these
particles to a high energy. We then learn how to reach the highest possible inten-
sity in the face of the many instabilities which may afflict the beam and which
provide a formidable mathematical challenge. The last chapters are devoted to
present-day colliders, applications of accelerators and a discussion of prospects
for inventing new kinds of accelerators. There are many examples to help the
student through the more theoretical chapters.
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1
History of accelerators

1.1 Overview of the history

The years around 1930 were exciting times for the inventors of accelerators. It
was suddenly realized that the key to sustained acceleration was to use an elec-
tromagnetic field which varied in time. Particles might be accelerated indefinitely
if they circulated in a rising magnetic field or if they passed many times through
a relatively weak alternating potential difference between two electrodes. Three
basic accelerator types, the betatron, the linac, and the cyclotron were invented
opening up the possibility of almost indefinite acceleration. This led to the con-
struction of a series of magnetic rings of larger and larger diameter to accelerate
particles to energies which increased by an order of magnitude per decade.

We trace the progress of the field in Fig. 1.1, which shows how electron and
proton accelerators developed from modest beginnings to become the most pow-
erful tools available today for the study of physics. The motivation to strive
for higher energies came from quantum mechanics, which describes particles as
waves whose length is related to the momentum of the particle by De Broglie’s
expression:

A=—.
p

Higher momentum brings shorter wavelengths and the capability to reveal
ever finer detail in the structure of fundamental particles. Just as an electron
microscope has better resolution than its optical counterpart, so the particle
accelerator takes the quest to understand the finest details of sub-nuclear matter
a stage further. Hand-in-hand with the understanding of smaller and smaller
structures came the discovery of a whole series of ever more massive particles
requiring, according to Einstein’s E = mc?, more and more energetic particles
to produce them.

As particles are accelerated to energies many times their rest mass, the classi-
cal relations between velocity, momentum, and energy have to be abandoned in
favour of the definitions of special relativity. In this description, although veloc-
ity saturates asymptotically—always just below the velocity of light—momentum
and energy continue to increase as particles are accelerated. However, the radius
of the circular orbit which the particle can follow in a magnetic field also
increases. Each new accelerator has tended to be an order of magnitude larger
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Fig. 1.1 The development of high-energy accelerators labelled with the technological
advances which contributed to this progress.

in energy and radius than its predecessor, a machine which itself had often been
regarded by its constructors as the ultimate in size.

Early physics experiments used beams of accelerated particles to bombard
fixed targets. In such an encounter only a fraction of the energy is available to
create new and interesting particles; the rest, in the form of the kinetic energy
of the emerging particles, simply ensures that momentum is conserved. On the
other hand, if two beams of particles can be arranged to collide head-on, there
is no momentum to be conserved and all the energy of the incoming projectiles
is available for particle creation. Although this was understood from early days,
it was only latterly that two beams could be made dense enough to give a useful
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collision rate. But as beam instabilities were mastered, fixed target accelerators
gave way to storage rings in which two counter-rotating beams continuously meet
head-on.

The guide field of accelerators was limited to the 2T maximum field of
room-temperature magnets and accelerators grew to be several kilometres in
circumference. In more recent years superconducting magnets have allowed us
to increase the field to 4T, and more recently 8T, which gives a temporary
respite from the expansionist tendency. Let us now return to the earliest days of
accelerators.

1.2 Electrostatic accelerators

The reader is probably already familiar with the principle of the electrostatic
accelerator which forms the electron gun of an ordinary TV set (Fig. 1.2). Elec-
trons flow from a heated filament at earth potential at the cathode towards a
positive anode plate and shoot through a small hole towards the screen. They
acquire an energy (in joules) which is just their charge multiplied by the poten-
tial difference between cathode and anode. In the accelerator world this potential
difference is used as the measure of energy. If a kilovolt is applied to the gun, the
electron’s energy is simply one thousand electron volts, 1keV. To express this in
joules one simply multiplies by the electron’s charge.

In the years immediately after the end of the First World War, there were no
accelerators. The projectiles used in Rutherford’s pioneering scattering experi-
ments were alpha particles from radioactive decay. No doubt he would dearly
have liked to have had an accelerator of a few million electron volts, MeV, as a
controlled source, but although the nineteenth century had produced a number
of electrostatic high-voltage generators, they were unpredictable in performance
and electrical breakdown became a serious problem above a few tens of kV.

Among the first high-voltage generators to approach 1MeV was one built
by Cockcroft and Walton (1932, 1934) to accelerate particles for their fission
experiments. Their staircase of diode rectifiers is still used today to apply a

Fig. 1.2 An electron gun in a
— cathode ray tube.
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Fig. 1.3 Tandem van de Graaff accelerator.

high voltage to the ion or proton source at the beginning of many linacs and
synchrotrons.

The early 1930s, also saw the invention by R. J. van de Graaff (1931), when still
a Rhodes scholar at Oxford, of an electrostatic generator which used a moving
belt to carry charge to the high-voltage terminal until it reaches a potential of
several MV—rather as the sectors on the disc of a Wimshurst machine charge
up the spheres of the spark gap. van de Graaff accelerators have proved a useful
source of low-energy particles to this day but are inevitably limited by problems
of voltage breakdown.

It is possible in theory to chain together several electrostatic accelerators, each
with its cathode connected to the anode of the next, but each stage increases
the potential between the ends of the device and between the ends and ground.

The nearest we have come to building such a device is the ‘tandem’ van de
Graaff. Figure 1.3 shows two back-to-back machines sharing a common central
high-voltage terminal but with their entrance and exit ports at ground potential.
Positively charged ions become negative for the second half of their journey as
they are stripped of electrons by a foil inside the central terminal. The negative
ions are accelerated in the reversed field of the second stage from positive to
ground and reach twice the voltage of the central terminal.

1.3 The ray transformer

The first attempt to overcome the limitations of electrostatic acceleration came
from the inventive mind of Rolf Widerde. In 1919, while still at high school,
Widerée read of Rutherford’s scattering studies and later wrote (Widerde
1994).

‘It was clear to me that natural alpha rays were not really the best tools for
the task; many more particles with far higher energy were required to obtain
a greater number of nuclear fissions.’
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<
<

Fig. 1.4 Wideroe’s sketch of the ray transformer (from Wideroe 1928).

In 1923, as he started his studies at Karlsruhe Technical University, he began
wondering if electrons in an evacuated ring would flow in the same way as
the electrons in copper in the secondary winding of a transformer (Widerde
1923-1928) and hit upon the novel idea of the first circular accelerator. His
notebooks of that time contain sketches of this device which he called a ‘ray
transformer’, the precursor of the ‘betatron’.

These sketches show a toroidal beam tube, R, placed in the gap between
the parallel poles or faces of a small electromagnet (on the left in Fig. 1.4).
The magnet is in the form of a ‘C’ and the field between the poles, Bs, guides
particles in a circular orbit in the mid-plane between the poles. A circular hole
is cut in each pole through which the yoke of the transformer passes linking the
beam tube. The primary winding of the transformer, labelled Wi, is excited
with alternating voltage from the mains. The beam tube is placed where one
would normally expect the transformer’s secondary winding to be and the beam
of electrons within it carries the induced current. The windings of the C-magnet
and of the primary of the transformer W; give independent control of the guide
field and accelerating flux.

The ray transformer, unlike almost all accelerators that followed, relied entirely
upon the inductive effect of a varying magnetic field and it is the rate of change of
flux, ¢, in the yoke which induces an accelerating voltage around the beam’s path.

Widerée used FEinstein’s newly discovered theory of special relativity to
describe correctly the motion of particles close to the speed of light. He cal-
culated that electrons circulating in a ring of only 10 or 20 cm diameter could
reach several MeV within one quarter wave of the AC excitation of the trans-
former. He also found an important principle which ensures that the beam radius
does not change as it accelerates. The total flux linking the beam must be exactly
twice that enclosed by the beam circulating in a uniform dipole field. The extra
flux is carried by the transformer’s yoke which links the beam.

Unfortunately, Widerée was dissuaded from building the ray transformer by
difficulties with surface fields and by his professor who wrongly assumed the
beam would be lost because of gas scattering. However, his ray transformer and
the 2:1 ratio of accelerating to guide flux, now known as the Widerde principle,
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were important discoveries and were put into practice fifteen years later when
Kerst and Serber (1941) built a series of ray transformers which they renamed
‘betatrons’.

1.4 Linear accelerators

In 1927, Widerée was not to be discouraged from his quest to accelerate par-
ticles. He read a paper by Ising (1924), who had the idea of overcoming the
voltage breakdown problem of a single stage of acceleration by placing a series
of hollow cylindrical electrodes one after another in a straight line to form what
today we would call a ‘drift tube linac’ or linear accelerator. In Ising’s sketch a
pulsed waveform is applied to each drift tube in turn to set up an accelerating
field in each gap. The particles are shielded inside the drift tubes while the pulse
is applied. WiderGe’s contribution was to realize that an oscillating potential
applied to one drift tube flanked by two others which are earthed, would accel-
erate at both gaps provided the oscillator’s phase changes by 180° during the
flight time between gaps.

He built a three-tube model which accelerated sodium ions (Widerée 1928) and
this was accepted for his thesis. However, although he realized that one might
extend such a series of tubes indefinitely he did not take the idea any further as
he was due to start his professional employment designing high-voltage circuit
breakers. Between 1931 and 1934, D. Sloan and E. O. Lawrence at Berkeley took
up Widerée’s idea and constructed mercury ion linacs with as many as 30 drift
tubes but these were not used for nuclear research.

It was much later, in the mid-1940s, that L. W. Alvarez (1946) at the Radiation
Laboratory of the University of California started to build the first serious proton
linac. By this time suitable high-power, high-frequency oscillators had become
available to meet the needs of war-time radar development. Figure 1.5 shows
an Alvarez linac—a copper-lined cylinder excited by a radio transmitter. As in
Widerde’s linac, particles gain energy from the accelerating potential differences
between the ends of the drift tube, but the phase shift between drift tube gaps is
360°. Alternate tubes need not be earthed and each gap appears to the particle
to be an identical field gradient which accelerates particles from left to right.
The particles are protected from the decelerating phase while inside the metallic
drift tubes.

|| | | |
%&) o R — ) @ )

Ion source | ﬂ \

r.f. oscillator Copper envelope

Fig. 1.5 The concept of the Alvarez linac (from Livingood 1961).
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Fig. 1.6 Iris-loaded structure (from Lapostolle 1986). The ‘chimney’ is the input
waveguide.

As one might expect, the distance between gaps increases as the particle is
accelerated since it travels an ever-increasing distance during one swing of the
radiofrequency (r.f.) oscillation. At low energy we would expect this distance to
increase with the velocity or the root of the kinetic energy but when the energy
is large we find that the length of the drift tubes and their spacing no longer
increases—a consequence and everyday demonstration of special relativity. The
Alvarez structure is still widely used, especially for non-relativistic proton and
ion beams.

One may wonder why such a complex structure was used when it was well
known at the time that waves might be propagated along a smooth waveguide
and that some of the modes have an accelerating electric field in the direction
of propagation. We shall see in Chapter 10 that the stumbling block is that the
phase velocity of these modes is always greater than that of light and hence the
particle sees a field which alternately accelerates and decelerates. It was found
only later that the phase velocity could be reduced by a series of iris diaphragms
in the pipe. Such a structure (Fig. 1.6) is very popular in electron linacs and also
in storage rings when the particle is close to the velocity of light and cavities
need not be tuned.

But now we return to the early 1930s to trace the development of yet another
kind of accelerator, the cyclotron.

1.5 The cyclotron

Before the linac principle could be fully exploited, another revolutionary idea
arrived; that of making a particle follow a circular path in a magnetic field,
so that it passes repeatedly through the same accelerating gap. Unlike a linac,
whose length must be extended to reach a higher energy, the cyclotron, as it is
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000
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Fig. 1.7 The principle of the cyclotron (from Livingwood 1961).

called, is a relatively compact accelerator in which the energy is only limited by
the diameter and field strength of the magnet.

The idea first occurred to E. O. Lawrence (Lawrence and Edelfsen 1930) while
he was musing on the possibility of using a magnetic field to recirculate the
beam through two of Widerde’s drift tubes. It was published in 1930 and another
colleague, M. S. Livingston, who was also later to contribute much to the field,
was given the job of making a working model as his doctoral thesis.

In Fig. 1.7 the two ‘dee’s’ can be seen between the poles of the magnet. These,
like two halves of a cake-tin sawn along its diameter, are the positive and neg-
ative electrodes of the accelerating system. An r.f. generator excites them with
an alternating field of constant frequency. The potential difference between the
‘dee’s’ accelerates the ions as they pass the gap between the two halves of the
structure. The field oscillates at the particle’s circulation frequency and hence
the sign of the potential difference at each gap is always in the accelerating
direction.

Early cyclotrons were constructed to accelerate ions to modest energies where
classical, rather than relativistic mechanics, still applies. In Fig. 1.8, we see
the balance between centripetal acceleration of motion in a circle and the force
exerted by the vertical magnetic field:

2
evB = %, ifv<Ke

and, rearranging, we obtain the magnetic rigidity—the reluctance of the beam
to be bent in a curve:
v
Bp=—, ifv<e
e
This classical relation may be written in a form that applies also in the rel-

ativistic regime if we replace the classical momentum, mwv, by the relativistic
momentum, p:

p
Bp =-.
=%
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Fig. 1.8 Balance of forces in a cyclotron.

By good fortune the radius of the orbit in a cyclotron is proportional to the
velocity and the frequency of revolution:
v v eB eB
D e

2mp T2 mw 2mm

has a numerator and denominator which are both proportional to v. This fre-
quency remains constant as the particle is accelerated. Once the accelerating and
revolution frequencies remain in step, a continuous stream of ions injected in the
centre will follow a spiral path to reach their highest energy at the rim of the
poles. For multiply charged ions e becomes the total charges, g.

1.5.1 Focusing in cyclotrons

When cyclotrons were first developed, very little thought was given to why it was
that particles circulated for so many turns. There was clearly a possibility that
they might drift away from the mid-plane and hit the pole pieces, but people just
accepted this gift of nature and got on with the job of building them. Then one
day E. M. McMillan, another of Lawrence’s research students and, as we shall
see, destined to become famous for other discoveries, was experimenting with
ways of changing the radial field distribution by putting a few discs of magnetic
material as shims behind the yoke and pole pieces as shown in Fig. 1.9.

It is not clear why he chose to put shims in the middle of the pole, but the effect
was dramatic and the cyclotron began to accelerate much higher currents. In ret-
rospect we understand that enhancing the curvature of the fringe field near the
pole edge had strengthened horizontal field components which redirect wayward
particles heading towards the poles back towards the mid-plane. What is not as
graphically obvious is that there is a focusing effect in the horizontal plane too.
In order to understand this we must look more rigorously at the dynamics of way-
ward particles due to a ‘centrifugal’ focusing effect, but we shall leave this until
later. Field gradients are to this day fundamental to accelerator focusing systems.
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Fig. 1.9 The principle of vertical focusing in a cyclotron (from Livingston and Blewett
1962).

1.5.2 Relativity limits cyclotrons

Lawrence built a series of cyclotrons at Berkeley in the 1930s culminating in
a 184in diameter machine. The sheer size of the poles and return yoke of this
machine had reached the practical limit of that time but there was another effect
that threatened its successful operation.

Smaller cyclotrons had already experienced difficulty in surpassing the energy
of 30 MeV at which the proton begins to become relativistic. It had not occurred
to the builders that relativity would become important when the kinetic energy
was such a small percentage of the rest energy and it was, therefore, an unpleas-
ant surprise when they discovered their latest and most ambitious cyclotrons
were unable to accelerate. Earlier, we saw that the revolution frequency of a
cyclotron is constant—an argument that depends upon a cancellation of velocity
in numerator and momentum in the denominator and which relies on the clas-
sical relation between velocity and momentum. But as momentum and energy
continue to increase and the velocity of a particle approaches that of light, its
velocity ‘saturates’. When the velocity begins to increase less rapidly than the
root of the energy, the revolution frequency drops so that particles are no longer
synchronous with the accelerating potential.

With the benefit of hindsight, it did not take long for accelerator theorists to
find this explanation, but to find and apply a remedy required some ingenuity. In
theory, the proton’s circulation frequency might be restored by a positive radial
field gradient giving a stronger field, which would reduce the radius and the
circumference of the orbit at higher energy, but this would destroy the vertical
focusing. The alternative is to lower the r.f. frequency to match the sagging
revolution frequency. For this to work continuous acceleration would have to be
abandoned and the beam injected in regular pulses each following the change in
frequency as they are accelerated (Fig. 1.10).

Modifying the frequency of the high-power r.f. generator and maintaining res-
onance with the system of ‘dee’s’ is not an easy technological challenge but it
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Fig. 1.10 The variation of revolution and r.f. frequencies as a function of time in a
synchro-cyclotron.

was solved by tuning the system with a large rotating variable capacitor. In this
way the energy of synchro-cyclotrons, as this new version was called, could be
extended to many hundred MeV until the sheer mass of steel needed for the
poles and their return yokes became prohibitively expensive.

In the early 1940s, cyclotron builders in the US were reassigned to build
electromagnetic separators for fissile material and the first attempts to build
synchro-cyclotrons had to wait until the end of the war and the discovery of
phase stability (see later in this chapter). Lawrence’s pre-war 184 in cyclotron was
adapted as a synchro-cyclotron and in 1946 accelerated deuterons to 190 MeV
and He™™ to 380 MeV. Other machines followed in the US, in Canada at McGill,
in Europe at Harwell in 1949 and at Uppsala, and in Russia at Dubna in 1954.

Later still, thanks to the invention of strong focusing, cyclotron builders found
an alternative means to focus the beam rather than decrease the field with radius.
They were then able to return to the solution which they had previously rejected
of increasing the field radially to compensate the effect of relativity in order to
maintain a constant r.f. frequency. In this way cyclotrons again became a con-
tinuous source of accelerated particles. Hundreds of such cyclotrons are now
used throughout the world mainly for nuclear physics, industrial, and medi-
cal applications. But now we must return again to take up the story in the
1940s.

1.6 The betatron

Lawrence’s cyclotron programme had been directed to the acceleration of protons
and deuterons. To accelerate electrons, which at any useful energy are much too
relativistic for cyclotrons, Kerst and Serber reinvented Widerde’s beam trans-
former idea, renaming it the betatron. Its circular topology was not unlike the
cyclotron but it was pulsed and the beam did not spiral out but stayed at the
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same orbit radius. A short batch of electrons was injected and accelerated by
the rate of change of the magnetic flux linking the orbit. Kerst found that by
shaping the poles, a single magnet yoke and winding could provide both guide
field and an accelerating flux while still respecting Wideroe’s 2 : 1 ratio. Working
at the University of Illinois and later at General Electric Corporation Labo-
ratories in the USA, he constructed machines which surpassed the energies of
Lawrence’s cyclotrons. By the mid-1940s betatrons had begun to become as
bulky as cyclotrons. The magnet of a 300 MeV machine at the University of
Illinois weighed 275 ton.

1.7 The synchrotron

After the war, still higher energies were needed to pursue the aims of physics and
the stage was set for the discovery of the synchrotron principle opening the way
to the series of circular accelerators and storage rings which have served particle
physics up to the present day. It was Australian physicist Mark Oliphant, then
supervising uranium separation at Oak Ridge, who synthesized three old ideas
into a new concept—the synchrotron. The ideas were: accelerating between the
gaps of resonators, varying the frequency, and pulsing the magnet. In 1943, he
described his invention in a memo to the UK Atomic Energy Directorate:

‘Particles should be constrained to move in a circle of constant radius thus
enabling the use of an annular ring of magnetic field ... which would be varied
in such a way that the radius of curvature remains constant as the particles
gain energy through successive accelerations by an alternating electric field
applied between coaxial hollow electrodes.’

We see in Fig. 1.11 how, once a short pulse is injected at low field, the field
rises in proportion to the momentum of particles as they are accelerated and
this ensures that the radius of the orbit remains constant. Unlike cyclotrons and
betatrons, the synchrotron needs no massive poles to support a magnetic field

\
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> Fig. 1.11 Field and frequency rise
E together in a synchrotron.
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Fig. 1.12 The CERN 25 GeV proton synchrotron.

within the beam’s circular orbit. The guide field is instead provided by a slen-
der ring of individual magnets (see for example Fig. 1.12). The fact that the
machine is pulsed and the frequency must be controlled to track the increasing
speed of particles is a complication, but it solves the difficulty that isochronous
cyclotron builders had encountered in accelerating relativistic particles. Inci-
dentally, the flux linking the orbit is much too weak to provide any betatron
acceleration.

Acceleration is provided by fields within a hollow cylindrical resonator,
Fig. 1.13, excited by a radio transmitter. A particle passes from left to right as
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" Beam

E Fig. 1.13 A simple accelerating cavity.

it completes each turn of the synchrotron receiving another increment in energy
on each revolution.

1.7.1 Phase stability

Although Oliphant was confident that his synchrotron could be made to work, it
was by no means obvious to others that the circulating beam and the accelerat-
ing voltage would remain in step. There were those who thought that any slight
mistiming of the sine wave of accelerating voltage in the cavity might build
up over many turns until particles would begin to arrive within the negative,
decelerating, phase of the sine wave and be left behind. Even if one succeeded in
achieving synchronism for the ideal, synchronous particle, others of slightly differ-
ent energy would not have the same velocity and take a different time to circulate
around the machine. Would not these particles gradually get out of step until
they were lost? After all, particles had to make many hundred thousand turns
before reaching full energy and while transverse focusing was understood, there
was no apparent focusing available in the longitudinal direction. Fortunately,
the comforting principle of phase stability, which prevents this from happening,
was soon to be independently discovered by V. I. Veksler in Moscow in 1944 and
E. M. McMillan in Berkeley in 1945, opening the way to the construction of the
first synchrotrons.

In order to achieve phase stability, particles orbiting the synchrotron are timed
to ride, not on the peak, but on the flank of the voltage wave in the accelerating
cavity. They receive more or less energy than the synchronous particle so that
they oscillate about the stable or synchronous phase. For all particles, the time
average of their energy gain matches the rising magnetic field. We shall come to
discuss this principle of phase stability in Chapter 5.

1.7.2 The first synchrotrons

Before Oliphant’s synchrotron proposal had emerged from the classified files
of war-time Britain, McMillan had scooped the idea and written a letter to
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the editor of Physical Review announcing, not only the discovery of phase
stability, but proposing a ‘synchrotron’ defined as a machine in which both
frequency and magnetic field vary. McMillan was promptly given the green light
to construct an electron synchrotron of 300 MeV at the University of California,
but there were other enthusiasts in the field eager to be the first to prove the
principle.

At the Telecommunications Research Laboratory in Malvern UK, Frank
Goward and his colleague D. E. Barnes, hearing of McMillan’s work on the
synchrotron and phase stability, modified a small betatron to operate as a syn-
chrotron (Goward and Barnes 1946). By adding accelerating electrodes they were
able to prolong acceleration beyond the limit at which the 2 : 1 flux ratio broke
down because of saturation, to reach roughly twice the energy. This first proof
of the synchrotron principle took place in August 1946 just ahead of a team at
the General Electric Co. at Schenectady who were constructing a purpose-built
70MeV electron synchrotron (Elder et al. 1947). This machine, which had a
glass vacuum chamber, had the distinction of being the first to produce visible
synchrotron radiation, a phenomenon we shall come to discuss later.

These early synchrotrons were electron machines but projects for proton syn-
chrotrons aiming at energies above 1 GeV were not far behind. Oliphant, now
back at the University of Birmingham, had been the first to start a proton
synchrotron (1 GeV) but lack of funds and graduate labour delayed completion
(Oliphant 1967).

Meanwhile, in 1948, construction started on two huge proton synchrotrons.
The Bevatron, aimed at 6 GeV, or 6 billion electron volts in the US parlance,
was started at the University of California, Berkeley while on the East Coast,
the Brookhaven National Laboratory set about the 3 GeV Cosmotron. It was
the Cosmotron team who won the race and in May 1952 the New York Times
headlined their first ‘Billion Volt Shot’ (Fig. 1.14).

1.7.3 Weak focusing

Cyclotron builders had discovered that the beam could be prevented from hitting
the upper and lower pole pieces by adding vertical transverse focusing. A field
with a gradient in the range:

r 0B,
O<n=—-—— <1
" B or

was strong enough to provide vertical focusing but its inevitable defocusing effect
in the radial plane would not swamp the natural radial focusing from centrifu-
gal forces. Early synchrotron builders exploited this principle and magnet poles
were shaped to provide a constant gradient decreasing towards the outside. Such
focusing was weak and the excursions of the beam large (Livingston and Blewett
1962). Pole widths and gaps in some constant gradient machines were large
enough for people to crawl through (Judd private communication).
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Fig. 1.14 The Cosmotron (photo: Brookhaven National Laboratory).

1.7.4 Strong focusing

Strong focusing changed this. It was invented at the Cosmotron whose weak
focusing ‘C’-shaped magnet was open to the outside. The top energy of the
Cosmotron was limited by the extra fall-off in field caused by the effect of satura-
tion. Eventually, as saturation set in, n became greater than unity and cancelled
horizontal focusing. E. D. Courant, S. Livingston and H. S. Snyder wanted to
compensate this by re-installing some of the C-magnets with their return yokes
towards the outside. They were afraid of the variations in gradient around the
ring but were surprised to calculate that the focusing seemed to improve as the
strength of the alternating component of the gradient increased. Courant and
Snyder (1958) were able to explain this retrospectively with an optical analogy
of alternating focusing by equal convex and concave lenses which will transport
rays which pass through the centres of defocusing lenses.

They found to their disappointment that this idea had actually been patented
earlier by one of their colleagues Christofilos (1950). Alternating-gradient or
strong focusing, greatly reduces the beam’s excursions and the cross section of
the magnet gap can be reduced to become comparable with a hand rather than
a whole human body. Its discovery enabled Brookhaven and CERN to build the
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next generation of proton synchrotrons, the Alternating Gradient Synchrotron,
AGS, and the CERN Proton Synchrotron, CPS, to reach 30 GeV—five times the
energy of the Bevatron—yet use beam pipes of only a few centimetres height
and width.

1.7.5 Fixed field alternating gradient

There were further ripples created by the strong focusing discovery. Those work-
ing on cyclotrons in the Midwestern Universities Research Association (MURA),
centred in Chicago, realized that a gradually increasing radial field might be com-
bined with strong focusing to resemble a ridged polepiece idea proposed much
earlier by L. H. Thomas. Thomas had invented this alternative to the synchro-
cyclotron just before the war but his paper had been ignored as too difficult to
understand. Alternating-gradient focusing is so strong that the cyclotron’s guide
field can increase radially so that particles can remain in synchronism as they
are accelerated into the relativistic regime. The defocusing due to the positive
gradient is small in comparison to the alternating-gradient focusing. This cut the
Gordian knot that had meanwhile forced cyclotron designers to resort to pulsed
operation. The cyclotron again became a continuous source of particles.

By making the radial field gradient very strong and sweeping the ridges into a
spiral they proposed a fixed field alternating-gradient (FFAG) accelerator. The
r.f. frequency is varied to accelerate from injection to top energy within a narrow
band of radius without pulsing the magnet thus rivalling the pulsed synchrotron.

The study of the non-linear fields in FFAG machines laid the foundations
of the theory of field errors and stimulated tracking of particles by computer
simulation. MURA also studied tracking in the longitudinal direction as the
beam is accelerated. With this came the important realization that beams could
be accumulated side by side by phase displacement of the r.f.—a process known
as stacking. MURA workers and those at Novosibirsk had also to wrestle with
understanding the innumerable instabilities which threaten intense beams. This
work proved invaluable preparation for the construction of the accelerators and
colliders that were to follow.

Although the FFAG concept, eventually, gave birth to the modern sector-
focused cyclotron, it came rather too late to influence the plans to build powerful
synchrotrons in the US and at CERN which had already become firmly rooted
in their own version of strong focusing. However, one idea mentioned by Kerst
et al. (1956) when they published the FFAG concept was taken up eagerly by
others. They had pointed out that by joining two such machines in a figure
of eight, beams of particles might collide head-on. We mentioned earlier that
such head-on collisions are much more effective as much of the energy carried
by a particle in collision with a fixed target is ‘wasted’, taken away as kinetic
energy by the interaction products. It was not a new idea and had apparently
featured among physics examination questions in the 1930s, but Kerst’s paper
certainly served as a trigger to bring it to the attention of accelerator builders
in the US.
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The advantage of head-on collisions had occurred even earlier to Widerée but
it was Kerst who persuaded B. Touschek to construct the first storage ring in
which a beam of electrons, once accelerated, could circulate indefinitely colliding
with a counter rotating beam of positrons. Such storage rings and colliders have
dominated the recent use of particle accelerators for high-energy physics and we
shall chart their history in detail in Chapter 11. However, we should mention
the next large CERN project—the Intersecting Storage Rings (ISR) (Johnsen
1964). The energy of these beams—30 GeV—provided a huge leap in centre of
mass energy for physics and served as a test bed for the first large all-purpose
particle detectors. The ISR was followed by two, much larger fixed-target proton
accelerators. The first, completed in 1971, was the 400 GeV (later 500 GeV)
FNAL synchrotron with a circumference of more than 6 km (Wilson, R. R. 1971).
This was followed, five years later, by a similar machine, the Super Proton
Synchrotron (SPS) at CERN (Wilson, E. J. N. (ed.) 1972).

1.8 Superconducting magnets

The radius of a synchrotron is governed by the magnetic rigidity of the beam
which, as in a cyclotron, is proportional to its top energy (strictly its momen-
tum) and inversely to its magnetic field. As synchrotrons and proton colliders
have grown, their builders have sought stronger magnetic fields to reduce the real
estate they occupy and the cost of excavating the ring tunnel. Room-temperature
magnets have steel pole pieces which define the field shape which, together with
the return yoke, usually saturate at a field of about 2 T. One can, of course, imag-
ine air cored windings precisely shaped around a cylindrical pipe to produce a
uniform field without the need for iron. The ideal coil shape should mimic a pair
of intersecting ellipses as closely as possible. However, the field in such a magnet
is severely limited by the problem of cooling the coils which must carry a con-
siderable current density to generate a useful continuous field. Superconducting
coils, which in theory do not dissipate heat, offer a means to increase the current
density and have allowed modern synchrotron designers to exploit this geometry
and increase the guide field to 4T and recently, 8 T.

The first large machine to exploit superconducting technology was the
Tevatron—a superconducting ring nestling between the supports of Fermilab’s
6 km circumference main ring (Griffin 1980). The Tevatron extended the energy
of the facility to 1000 GeV and later became a proton—antiproton collider emulat-
ing the success of CERN’s SppS which in the early 1980s had pioneered colliding
beam physics with 350 GeV hadron beams.

In Europe, came DESY’s HERA which stored 820 GeV protons in a super-
conducting ring almost as big as the Tevatron and collided them with 30 GeV
electrons, and of course LEP, the 50 on 50 (later to become 100 on 100) GeV
electron positron collider at CERN. This machine, building on experience of
similar 30 GeV rings at SLAC and DESY, must surely be the ultimate size for
circular lepton colliders (CERN 1984). Higher energy electron rings would emit
too much synchrotron radiation.
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LEP has now reached the end of its useful life and once again the pendulum will
swing back from lepton to hadron accelerators at CERN. LEP will be dismantled
and in its place a Large Hadron Collider (LHC) installed. Exploiting the 27 km
LEP tunnel and using the most advanced superconducting magnet technology,
this machine will collide two 7TeV proton beams circulating in its twin-bore
superconducting magnets (Lefévre 1995). The intersecting geometry is not unlike
the ISR and once again shortage of antiprotons has prompted its builders to opt
for two proton beams. The magnetic field of 8 T is made possible by cooling the
superconductor down to 1.8 K where the liquid helium coolant is superfluid and
an almost perfect thermal conductor. For the first time, synchrotron radiation
from a proton beam must be taken into account in assessing the heat load to the
magnet and its cryostat—a factor which, though not critical for LHC, may limit
the luminosity of any larger circular hadron colliders that may follow. Another
use of the LHC will be to collide beams of heavy ions following up the studies
at RHIC, the Relativistic Heavy Ion Collider now starting at the Brookhaven
National Laboratory, USA.

One may speculate on the machine to follow LHC—perhaps a larger hadron
storage ring, a linear lepton collider or even a muon storage ring. Readers should
make up their own minds after reading Chapters 11 and 14!

1.9 Accelerators at work in medicine, industry,
and research

We have reviewed a history of accelerators which has been largely driven by the
needs of particle physics. We should not forget, however, that many thousands
of accelerators have been put to more practical use in other branches of scientific
research as well as in industry and medicine.

Small linear accelerators and betatrons are commonplace tools for cancer ther-
apy in the more advanced medical centres of the world. Many cyclotrons are at
work producing isotopes which can be used as radioactive tracers in industry as
well as isotopes which emit positrons and which can be attached to biochem-
ical molecules used in medicine. Computer analysis of the pattern of positron
emission coupled with body scans are a powerful diagnostic technique.

Recently, proton synchrotrons of a few hundred MeV have been built in the
US and in Japan to irradiate deep tumours. In Europe, the PSI cyclotron as well
as the ion accelerators at GSI, Darmstadt, have been put to this use and there
are plans to build a dedicated synchrotron facility in Italy.

In industry, electron beams of quite low energy are used to cure paint coatings,
polymerize plastics and to sterilize medical supplies and even foodstuffs. Heavy-
ion beams, such as those accelerated by GSI, are widely used to implant atoms
in the surfaces of semiconductors to ‘print’ the circuits of modern computer
chips. Other industrial uses are hardening metal surfaces for bearings and etching
silicon microcircuitry.

Recent years have witnessed a mushrooming growth of synchrotron radiation
sources all over the world and their highly collimated and tuneable radiation
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is put to a huge variety of applications. In research, X-ray diffraction tech-
niques reveal the structure of proteins and enzymes and the crystal lattices of
exciting new materials such as high-temperature superconductors. These appli-
cations of synchrotron radiation are complemented by neutrons from intense
proton machines—the so-called spallation sources—such as ISIS at RAL. Neu-
tron diffraction extends many of the research techniques of synchrotron light
sources and adds a new dimension in that the source may be pulsed to allow
time of flight identification techniques.

Even more impressive accelerators of only 1 GeV or so, but designed for very
high current, are under study to bring pellets of deuteron/tritium into the
conditions required for a self-sustained thermonuclear reaction. Intense linear
accelerators or cyclotrons would also allow transmutation of long-lived nuclear
waste into isotopes which rapidly decay to become harmless or alternatively pro-
vide the beam which ‘fans the flames’ of the ‘energy amplifier’—a fail-safe form
of nuclear reactor using relatively innocuous thorium fuel.

1.10 Moving from history to physics

This chapter was intended to provide an overview of the main features which
distinguish the different kinds of accelerators. It is now time to examine in a
more mathematical way the fundamental principles of these machines.

Exercises

1.1 In special relativity the rest energy of the particle is defined Ey = mgoc?,
where c is the velocity of light and myg is the rest mass. Write down the
expressions for the total energy F and the momentum p in terms of Fy and
kinetic energy, T

1.2 Using the notation of special relativity 3 = v/c and v = 1/4/1 — 32 show
that v = E/Ey and 8 = pc/E.

1.3 The kinetic energy T of a proton is 1GeV. If its rest mass m is
0.9383 GeV/c?, what is its total energy?

1.4 Given that the relation between relativistic momentum and total energy is
E? = (moc?) + (pe)?,

calculate its momentum (in GeV/c).

1.5 A betatron has a beam radius of 0.1 m and is powered from 50 Hz mains.
Its peak guide field is 1 T while the flux linking the orbit is twice that which
would result from a uniform field of this value. What will be the peak energy
of the electrons it accelerates?

1.6 Using classical mechanics show that the angular frequency of revolution of

a proton in a cyclotron is equal to B,(e/m). Calculate this frequency for a
field of 1-2T (e/m = 9.58 x 107 C/kg).
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1.7 A synchrotron of 25m radius accelerates protons from a kinetic energy of
50 to 1000 MeV in 1s. The dipole magnets saturate at 1000 MeV. What is
the maximum energy of deuteron (Z = 1, A = 2) that it could accelerate?
Hint: for protons use the expression derived in Section 2.2:

1.8 What is the revolution frequency for (a) protons and (b) deuterons?
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Transverse motion

2.1 Description of motion
2.1.1 Coordinate system

The bending fields of a synchrotron are usually vertically directed, causing the
particle to follow a curved path in the horizontal plane (Fig. 2.1). The force
acting on the particle is horizontal and is given by

F=evxB,

where v is the velocity of the charged particle in the direction tangential to its
path and B is the magnetic guide field.

If the guide field is uniform, the ideal motion of the particle is simply a circle
of radius of curvature p, but we can also define a local radius of curvature p(s)
to describe motion in a non-uniform field. We shall suppose that it is possible
to find an orbit or curved path for the particle which closes on itself around
the synchrotron, which we call the equilibrium orbit. The machine is usually
designed with this orbit at the centre of its vacuum chamber.

2.1.2 Displacement and divergence

Of course a beam of particles enters the machine as a bundle of trajectories spread
about the ideal orbit. At any instant a particle may be displaced horizontally

Local centre
of gyration

Central orbit

s (tangential to beam direction)

Fig. 2.1 Charged particle orbit in magnetic field.
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by x and vertically by z from the ideal position and may also have divergence
angles horizontally and vertically with respect to the central orbit:
dzx dz
/ !/
r=— and 2z =—.
ds ds
Such mis-steering would cause particles to leave the vacuum pipe were it not
for the carefully shaped field which restores them back towards the beam centre
so that they oscillate about the ideal orbit. The design of the restoring fields
determines the transverse excursions of the beam and the size of the cross section
of the magnets and is therefore of crucial importance to the cost of a project.

2.1.3 The betatron envelopes

A modern synchrotron consists of pure bending magnets and quadrupole magnets
or lenses which provide focusing. These are interspersed among the bending
magnets of the ring in a pattern called the lattice. In Fig. 2.2 we see an example
of such a magnet pattern which is one cell, or about 1% of the circumference, of
the 400 GeV SPS at CERN. Although the SPS is now considered a rather old-
fashioned machine, its simplicity leads us to use it frequently as an example in
this book. This focusing structure is called FODO which describes the sequence of
quadrupoles which focus or defocus the beam. The envelope of these oscillations
follows a function ((s) which has waists near each defocusing magnet and has a

B2 || Bl ]| Bl J?I— B1 | B1 [|B2 |[B2

pd B2
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|
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Fig. 2.2 One cell of the CERN SPS representing 1/108 of the circumference. The
pattern of dipole (B) magnets and quadrupole (F and D) lenses is shown above.
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maximum at the centres of F quadrupoles. Since F quadrupoles in the horizontal
plane are D quadrupoles vertically, and vice versa, the two functions 8, (s) and
By (s) are one half-cell out of register in the two transverse planes. The function 3
has the dimensions of length but the units bear no direct relation to the physical
beam size. The reader should be clear that particles do not follow the 3(s) curves
but oscillate within them in a form of modified sinusoidal motion whose phase
advance is described by ¢(s). The phase change per cell, in the example shown,
is close to /2 but the rate of phase advance is modulated throughout the cell.

We will develop the ideas behind this description in the following sections;
but let us first establish the concepts of the magnets which bend the beam in a
circle.

2.2 Bending magnets and magnetic rigidity

Suppose the particle has a relativistic momentum vector p and travels perpen-
dicular to a field B, which is into the plane of the diagram (Fig. 2.3). After
time dt it has followed a curved path of radius p whose length is ds and its new
momentum is p+dp. We may equate the force and rate of change of momentum:

p

B:
ev X i

and we see from resolution of momenta that

dlpl _ o _ || ds
dt dt  p dt’
p+dp
p dS
dp
p
p de
p+dp

Fig. 2.3 Vector diagram showing differential changes in momentum for a particle
trajectory.
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On the other hand, if the field and plane of motion are normal, the magnitude
of the force may be written:

d
elvx Bl = e|B|d—i.

Equating the right-hand sides of the two expressions above, we find that we can
define the quantity known as magnetic rigidity:

Strictly, we should use the units N's for p and express e in coulombs to give
Bp in Tm. However, in charged particle dynamics we often talk about the
‘momentum’ pc which has the dimensions of an energy and is expressed in units
of GeV. A useful rule of thumb formula based on these units is

Bp (Tm) = 3.3356p (GeV/c).

Figure 2.4 shows the trajectory of a particle in a bending magnet or dipole
of length [. Usually, the magnet is placed symmetrically about the arc of the
particle’s path. One may see from the geometry that

0 l B

sin — = =
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Fig. 2.4 Geometry of a particle trajectory in a bending magnet of length [.
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and, if 0 <« 7/2,

IB
0~ —.
Bp
The bending magnet aperture must be wide enough to contain the sagitta of the

beam, which is the distance between the apex of the arc and the chord:

0 0% 16
+ (1 - —) ANt —.
PAC 0%y 8 7%
The ends of bending magnets are often parallel but in some machines are designed

to be normal to the beam. There is a focusing effect at the end which depends
on the angle of these faces. We will come back to this in the next chapter.

2.3 Focusing
2.3.1 Quadrupole magnets

The principal focusing elements in modern synchrotrons are quadrupole mag-
nets. The poles are truncated rectangular hyperbolae and alternate in polarity.
Figure 2.5 shows a particle’s view of the fields and forces in the aperture of
a quadrupole as it passes through normal to the plane of the paper. The field
shape is such that it is zero on the axis of the device but its strength rises linearly
with distance from the axis. This can be seen from a superficial examination of
Fig. 2.5 if we remember that the product of field and length of a field line joining
the poles is a constant. Symmetry tells us that the field is vertical in the median
plane (and purely horizontal in the vertical plane of asymmetry). The field must
be downwards on the left of the axis if it is upwards on the right.

Fig. 2.5 Components of field and force in a magnetic quadrupole. Positive ions
approach the reader on paths parallel to the s-axis (Livingood 1961).
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This last observation ensures that the horizontal focusing force, evB,, has an
inward direction on both sides and, like the restoring force of a spring, rises
linearly with displacement, x. The strength of the quadrupole is characterized
by its gradient dB,/dx normalized with respect to magnetic rigidity:

1 4B,
- Bp dx’

The angular deflection given to a particle passing through a short quadrupole of
length [ and strength k at a displacement z is therefore:

_IB_(dB,/dx)x

AI: = — =
' =46 By Bp

lkx.

The use of 2’ to indicate the divergence angle of a trajectory is defined in Fig. 2.7.
Compare this with a converging lens in optics:

A
f
and we see that the focal length of a horizontally focusing quadrupole is
1
f=-2

The particular quadrupole shown in Fig. 2.5 would focus positive particles
coming out of the paper or negative particles going into the paper in the horizon-
tal plane. A closer examination reveals that such a quadrupole deflects particles
with a vertical displacement away from the axis—vertical displacements are
defocused. This can be seen if Fig. 2.5 is rotated through 90°.

2.3.2 The gutter analogy

It is important to start with a tangible concept of focusing and so we digress for
a moment to consider a focusing system which is much simpler. Let us ignore
vertical defocusing for a moment and consider the horizontal focusing of an
infinitely long quadrupole, this is in fact exactly the focusing system of the
weak-focusing synchrotron discussed in Chapter 1. A particle oscillates in this
focusing system like a small sphere rolling down a slightly inclined gutter with
constant speed. Figure 2.6 shows two views of this motion and from the right
hand we recognize the motion as a sine wave. Note too that the sphere makes
four complete oscillations along the gutter. In the language of accelerators, its
motion has a wavenumber Q) = 4.

Now let us extend this analogy by bending the gutter into a circle rather like
the brim of a hat. We provide the necessary instrumentation to measure the
displacement of the sphere from the centre of the gutter each time it passes a
given mark on the brim and we also have a means to measure its transverse
velocity. With the aid of a computer, we might convert this information into the
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Fig. 2.6 Two views of a sphere rolling down a gutter as it is focused by the walls.

divergence angle shown in Fig. 2.7:

= dr _ oL
ds U”

Suppose also that we make the brim of a hat out of a slightly different length
of gutter than is shown so that @) is not an integer. We can plot a point for each
arrival of the sphere in a diagram of x’ against x, which we call a ‘phase-space
diagram’ of transverse motion. The sphere has a large transverse velocity as it
crosses the axis of the gutter and has almost zero transverse velocity as it reaches
its maximum displacement.

The locus of the ‘observations’ will be an ellipse (Fig. 2.7) and the phase will
advance by @ revolutions each time the particle returns. Of course, only the
fractional part of @ may be deduced from our observations since we are blind
to what happens round the rest of the hat’s brim—a situation we shall find is
common in the real life of accelerators.

In order to establish concepts which will take us from the gutter analogy to
real synchrotrons, we have to define some of the transverse beam dynamical
quantities more rigorously. The area of the ellipse is a measure of how much the
particle departs from the ideal trajectory which, in the diagram, is represented
by the origin:

Area = me (mmrad).

In accelerator notation we use &, the product of the semi-axes of the ellipse, as
a measure of the area called the emittance. The emittance is usually quoted in
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Fig. 2.7 The elliptical locus of a particle’s history in phase space as it circulates in a
synchrotron.

units of # mmmrad. The maximum excursion in displacement, the major axis,
of the ellipse is defined as

hence,

&g

&
I
=

The quantity ( is a property of the gutter, not the beam. In the synchrotron
it varies around the ring and is the envelope function plotted in Fig. 2.2 and
again in Fig. 2.9. By analogy, the brim of the hat, which represents the alter-
nating gradient focusing system shown in this figure, will vary its width and
curvature around the crown and g will follow this variation in some way.
Note that the aspect ratio of the ellipse is just 8. We will return to these
quantities when we have studied more about the alternating-gradient focusing
systems.

2.3.3 Alternating-gradient focusing

We explained in Chapter 1 how the discovery of alternating-gradient focusing
(Courant and Snyder 1958) was a major breakthrough in the design of syn-
chrotrons which allowed designers to use quadrupoles in spite of their defocusing
property in one plane. It enables much stronger focusing systems to be used with
considerable savings in the space needed for the beam cross section.
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Fig. 2.8 Optical analogy of an alternating pattern of lenses.
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Fig. 2.9 The paths of particles within a FODO lattice are within the envelope of
betatron motion and, like the rays of Fig. 2.8, are always closer in the D quadrupoles
so they receive a net focusing effect. The phase-space ellipse is tall and narrow at the
D lens where the beam has a large divergence spread.
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The principle is illustrated in Fig. 2.8, which shows an optical system in which
each lens is concave in one plane while convex in the other. It is possible, even
with lenses of equal strength, to find a ray which is always on axis at the D
lenses in the horizontal plane and therefore sees only the F lenses. The spacing
of the lenses would then have to be 2f. If the ray is also central in the lenses
which are vertically defocusing, the same condition will apply simultaneously in
the vertical plane. At least one particular particle or trajectory corresponding to
this ray will be contained indefinitely.

The alternating-gradient idea will work even when the rays in the D lenses do
not pass dead centre and the lenses are not spaced by exactly 2f. In fact, it is
sufficient for the particle trajectories to tend to be closer to the axis in D lenses
than in F lenses as shown in Fig. 2.9.

By suitable choice of strength and spacing of the lenses the envelope function
B(s) can be made periodic in such a way that it is large at all F quadrupoles and
small at all D’s. Symmetry will ensure that this is true also in the vertical plane.
Particles oscillating within this envelope will always tend to be further away from
the axis in F quadrupoles than in D quadrupoles and there will, therefore, be a
net focusing action. We have already seen that 3 is the aspect ratio of the phase-
space ellipse. At F quadrupoles the ellipse will be squat and at D quadrupoles
it will be tall. In the next chapter we shall define this envelope or betatron
amplitude more rigorously and establish how to calculate it for a given lattice of
focusing magnets (see also Schmiiser 1987; Rossbach and Schmiiser 1992).

Exercises

2.1 The radius of the old ISR tunnel at CERN is 150 m. We wish to design a
new electron ring with this radius. Only 43% of the circumference can be
bending magnets; what will be the local radius of bend p in these magnets
if they all have the same strength?

2.2 The momentum of the electrons is to be 8 GeV/c. What is the Bp? From
this calculate the field in the dipoles.

2.3 The bore of the quadrupoles is 70 mm and the field at this radius is 0.42 T;
what is the maximum field gradient?

2.4 There are 144 quadrupoles and the focal length of each should be about 2/3
of their spacing. How long should they be? (See Fig. 2.2.)

2.5 We allow 0.5 m at one end of a dipole and 1.5 m at the other and we alternate
dipoles and quadrupoles. How long must the dipoles be?

2.6 How many bending magnets will there be and how many empty half-periods?

2.7 Now recalculate the bending radius and the filling factor.
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3.1 Betatron envelopes

During the design phase of an accelerator project a considerable amount of calcu-
lation and discussion centres around the choice of the transverse focusing system.
The pattern of bending and focusing magnets, called the lattice, has a strong
influence on the aperture of these magnets which are usually the most expensive
single system in the accelerator and which, in turn, can have an important effect
on the design of almost all other systems in the synchrotron. We have seen in
Fig. 2.2 the pattern of one cell of a simple synchrotron lattice which is repeated
many times around the circumference. Passing through this pattern of F and D
lenses, particles make betatron oscillations within the envelopes described by 3y
and [, or, more precisely, the square roots of these quantities.

3.2 The equation of motion

In the last chapter we derived an expression for the change in divergence of
a particle passing through the quadrupole. The strength of the quadrupole
is characterized by its gradient dB,/dx, normalized with respect to magnetic
rigidity:

_1dB,

- Bp dx’
If k is negative, the quadrupole is horizontally focusing and vertically defocusing.
We first look at the vertical plane. Therefore, the angular deflection given to a

particle passing through a short quadrupole of length ds and strength k at a
displacement z is

dz' = —kzds.
We can deduce from this a differential equation for the motion
2"+ k(s)z = 0.

This is Hill’'s equation, a second-order linear equation with a periodic coefficient
k(s), which describes the distribution of focusing strength around the ring. The
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above form of Hill’s equation applies to motion in the vertical plane; in the
horizontal plane,

"+ [p(i)Q - k(s)}x =0.

Here the sign before k(s) is reversed interchanging focusing and defocusing. We
include an extra focusing term due to the curvature of the orbit which can be
significant in small rings and which is the only form of focusing in a constant-
gradient synchrotron.

3.3 Solution of Hill's equation

Hill’s equation is reminiscent of simple harmonic motion but has a restoring
constant k(s) which varies around the accelerator. In order to arrive at a solution,
we first assume that k(s) is periodic on the scale of one turn of the ring. The
period can also be a smaller unit, the cell, from which the ring is built. The
solution, like the differential equation itself, is reminiscent of simple harmonic
motion:

z = \/B(s)e coslé(s) + dol.

In simple harmonic motion the amplitude is a constant but we see that in addition
to /€, which can be considered an arbitrary constant, there is another ampli-
tude component, a function 4/8(s). Another difference with harmonic motion
is that the phase ¢(s) does not advance linearly with time and with distance
s around the ring but is a seemingly arbitrary function. Both these functions
of s must have the same periodicity as the lattice and they are linked by the

condition
1 ds
== or ¢= / —.
P=F =) %

We shall later show that this condition is necessary if Hill’s equation is to be
satisfied, but for the moment let us just accept it. By simple differentiation we
can then find

x = \/B(s)e cos[p(s) + ¢o],

o == ey sl + ol + | 2] [ costots) + ol

If we look at this function where §5’(s) is zero and hence where the second term
in the divergence equation is zero, we find an ellipse with semi-axis /(¢ in the
x-direction and /e/03(s) in the a’-direction (Fig. 2.7). Its area is e, where ¢

is an invariant of the motion for a single particle or the emittance of a beam of
many particles.
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In older accelerators, constant-gradient machines like the Cosmotron and
Bevatron, simple harmonic motion is a very close approximation to reality. In
the vertical plane the particles obey the differential equation

d?z

@ + kz=0,
where k, the restoring force per unit displacement, is just related to the gradient
of the field, which is constant around the circumference (apart from a few gaps

between magnets). By analogy with the wave equation
d?z N (27r>2 0
- _ z = s
ds? A

we can write

5) -*-5%

The solution of such an equation is a wave whose length is A, namely:
. (2w .
z = zgsin (T)S = zg sin ¢.
We can see that the derivative of phase is
o
N
but we have already defined 1/8 to be equal to this derivative and can there-

fore argue that 3 is a local wavelength of the oscillation. This may help us to
understand the way in which § and ¢ vary in the cells of a FODO lattice.

¢/

3.3.1 @ value

In order to explore the physical significance of these quantities further, let us look
at the definition of the betatron wavenumber ). Suppose, we again consider a
constant-gradient machine. The particle with the largest amplitude in the beam,
\/Be, starts off with phase ¢, and after one turn its phase has increased by

ds 27R
20= 5 =5

It has been round the ellipse A¢/27 times. We define the number of such betatron
oscillations per turn to be Q. It is also the betatron wavenumber. Using the above
relation we see that, for a constant-gradient machine,

_L¢_E
Q=%:=3

or

R
B=5
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This is approximately true for alternating-gradient machines as well, and is
often used in juggling machine parameters at the design stage, since ) determines
B and hence the beam size.

We shall see later that it is very important that () is not an integer or a simple
fraction, otherwise, over one or more paths around the ellipse, the particle will
repeat its path in the machine and see the same field imperfections. These will
then build up into a resonant growth. The condition to be avoided is n@Q = p
(where n and p are integers). This can be done by tuning the restoring gradients
of the quadrupoles.

3.4 Matrix description

From now on we deal only with alternating-gradient machines in which the ring
is a repetitive pattern of focusing fields, the lattice. Each lattice element may be
expressed by a matrix.

Whole sections of the ring which transport the beam from place to place
may also be represented as a matrix. Any linear differential equation, like Hill’s
equation, has solutions which can be traced from one point, si, to another, so,
by a 2 X 2 matrix, the transport matrix:

() = (¢ ) () = (720

We shall see later that Ms; has a rather simple form for each focus-
ing quadrupole that the particle encounters and for the drift length between
quadrupoles and it is easy to compute the four elements numerically once we
define the length and focusing strength. We can trace particles by simply form-
ing the product of these elementary matrices. But there is also a general relation
between the elements a, b, ¢, and d and the amplitude and phase of transverse
motion between any two points. Each term in M>; must be a particular function
of B(s) and ¢(s). The functions 5(s) and ¢(s) may be calculated by comparing
the numerical result of multiplying the individual matrices for quadrupoles and
drift lengths with what we know must be the general form of each element. Our
first job is to derive the general form of a periodic transport matrix.

We shall simplify the notation by dropping the explicit dependence of # and
¢ on s from the expressions—we will just have to remember that they vary with
s. We also introduce a new quantity:

w= /B
In this new notation we can write the solution of the Hill equation:
y = cos(¢ + ¢o).
By taking the derivative and substituting ¢’ = 1/8 = 1/w?, we have

21/2
y/ = 61/211)' COS((b + ¢0) - T sin((b + ¢O)
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The next step is to substitute these explicit expressions for y and 3’ in both
sides of the matrix equation. We do this first with the initial condition ¢y = 0
(this is the so-called ‘cosine’ solution) and then again for the ‘sine’ solution
with o = 7/2. This is exactly equivalent to tracing the paraxial and central
rays through an optical lens. We write ¢o — ¢1 = ¢ for each case. Each of the
two conditions gives us two equations for y and 3y’ and thus we obtain four
simultaneous equations which can be solved for a, b, ¢, and d in terms of w, w’,
and . The result is the most general form of the transport matrix:

L2 oS ¢ — waw sin ¢ wiws sin ¢

wi
My =

/ /

w)  w w .
" ng— (=~ —2)cos¢p — cosd+wiwhsing
1wW2 wo w1 Wo

/ /
I+ wiwiwawy s

At first glance, this seems to have complicated the issue but we still have some
constraints to apply. The first of these is to restrict M to be between two identical
points in successive turns or cells of a periodic structure. This forces ws = wy,
wh = w}, and ¢ to become p, the phase advance per cell. Then,

cos i — ww' sin u w? sin p
= 2
14+ ww'® . , .
————% ——Slnj  COS i+ ww Sl
w

The next simplification is to invent some new functions of 3 or

!/

— oy = 2

o= —ww X

8 =uw?

14 (ww')? 14a?
Y= 'UJ2 - 6 N

These functions (which are nothing to do with special relativity!) are a complete
and compact description of the dynamics. The matrix now becomes even simpler:

M:<cos,u+asm,u Bsin p >:<a b>'

—ysin y cos it — asin c d

This is the Twiss matrix. It is the basic matrix for periodic lattices and should
be memorized.

3.4.1 Stability

Earlier, when describing the physical picture of alternating-gradient focusing, we
likened it to a gutter or the brim of a hat. Focusing and defocusing quadrupoles
correspond to concave and convex curvature of the brim, respectively. Parti-
cles would only remain focused if they were close to the axis when passing
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through defocusing quadrupoles. We are now in a position to define this condition
quantitatively. In the matrix terms, stability is only assured if the product,

{M(s)}V*

does not diverge after the N periods which make one turn, and the k& turns which
define an essentially infinite stable life.

Let us write Y as the vector (y,y’). Then the eigenvalues of the matrix M(s)
are numbers for which

MY =)\Y.
The eigenvalues are obtained by solving the determinant equation
det (M — AI) =0,
which gives
M- XNa+d) +1=0.
Here we have used the fact that det M = 1. Writing
cosp = 32Tr M= 1(a+d),
we find
A = cos p+isinpy = et
For stability u must be real and this implies both
AT <1
and
Al =1,

where A is complex. This test may be applied numerically on any computed value
of M for a period to probe stability.

It has been necessary to digress a little to treat this important concept of
stability but we now return to the alternative view of M as a sum of many
elemental matrices.

3.4.2 The Twiss matrix

Returning now to the Twiss matrix

M- cos it + asinpu Bsin p _fa b
a —sin cosp—asinp ) \c d)’
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if we can only find an independent way of computing the numerical values of a,
b, ¢, and d then we may compute u, 5, o, and ~

TTM a+d
COSp =5 = 5,
:sin,u ’
_a—d
- 2sinp’

c
Y=
sin p

The values of u, 8, a, and v are local and apply to the point chosen in
the period as a starting and finishing point. We shall see that each individual
component, quadrupole, dipole, or drift space in the ring, has its own matrix
and this provides the independent method of calculation. We must first choose
the starting point, the location, s, where we wish to know § and the other T'wiss
parameters. By starting at that point in the ring and multiplying the element
matrices together for one turn, we are able to find a, b, ¢, and d numerically for
that point. We can then apply the above four equations to find the Twiss matrix.
If the machine has a natural symmetry in which there are a number of identical
periods, it is sufficient to do the multiplication up to the corresponding point in
the next period. The values of «, 3, and v would be the same if we went on for
the whole ring. By choosing different starting points we can trace 3(s) and a(s).
We now give the matrices for these three different lattice elements.

3.4.3 Transport matrices for the components of a period

The simplest of these component matrices is that for an empty space or drift
length. Figure 3.1(a) shows the analogy between a particle trajectory and a
diverging ray in optics. The angle of the ray and the divergence of the trajectory
are related:

6 = tan"1(z").

The effect of a drift length in phase space is a simple horizontal translation from
(z,2") to (x 4+ l2’,2’) and can therefore be written as a matrix:

() =6 1) Gh):

The next simplest case is that of a thin quadrupole magnet of infinitely small
length but finite integrated gradient:
1 0B,
"~ Bp Oz’
Figure 3.1(b) illustrates the optical analogy of a thin quadrupole with a con-
verging lens. A ray, diverging from the focal point, arrives at the lens at a

lk
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Fig. 3.1 The effect of (a) a drift length and (b) a thin quadrupole seen in real space
as an optical ray and a particle trajectory, plotted in phase space and expressed as a
transport matrix.
displacement x, and is turned parallel by a deflection
1
0=--x.

f

In fact, this deflection will be the same for any ray at displacement x irrespec-
tive of its divergence. This behaviour can be expressed by a simple matrix, the

€z /2 1 /J 1 €z ;. ’

A quadrupole has a similar property. A particle arriving at a displacement x
obeys Hill’s equation:

2" +kx=0.
Hence the small deflection 6 is just
Az’ = —kxl.

We see that [k = 1/f is the power of the lens and that the matrix, for a thin
lens, can be written as
1 0
-kl 1)

The lenses of a synchrotron are not normally short compared to their focal
length. One must therefore use the matrices for a long quadrupole when one
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computes the final machine:

M _< cos IVk (1/\/E)sinl\/E>
F —VksinlVk cos Wk

and

M _< cosh IVk (1/\/E)sinhl\/E>
7 \VE sinh IVE cosh vk '

These correspond to the solutions of Hill’s equations in F and D cases:

1
— sin Vklzl,
vk ’

1 . ,
& = cosh Vklzy + NG sinh vklzj.

In this model we have ignored the bending that takes place in dipole magnets
and these are thought of as drift lengths in a first approximation. However, an
exact calculation must include the focusing effect of their ends. A pure sector
magnet, whose ends are normal to the beam will give more deflection to a ray
which passes at a displacement = away from the centre of curvature (Fig. 3.2).
This particle will have a longer trajectory in the magnet. The effect is exactly
like a lens which focuses horizontally but not vertically. The matrices for a sector
magnet are

Z = cos \/Elzo +

M — cosf psin @
b=\ —(1/p)sinf cosf |-

(1 pb
w=(; 7).

Most bending magnets are not sector magnets but have end faces which are
parallel. It is easier to stack laminations this way than on a curve. The entry and
exit angles are therefore §/2 and the horizontal focusing effect is reduced, but

Fig. 3.2 The focusing effect of tra-
jectory length in a pure sector dipole
magnet.
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there is an additional focusing effect for a particle whose trajectory is displaced
vertically. In the computer model, one may convert a pure sector magnet into a
parallel-faced magnet by simply adding two thin lenses at each face. They are
horizontally defocusing and vertically focusing and their strength is

_ tan(0/2)
==

ki

There are further effects from the azimuthal shape of end fields which can be
included analytically.

Fortunately, we have computers to help when we come to multiply these ele-
ments together to form the matrix for a ring or a period of the lattice (Servranckx
and Brown 1984; Garren et al. 1985; Schachinger and Talman 1985). A lattice
program such as MAD (Iselin and Grote 1991) does all the matrix multiplication
to obtain a, b, ¢, and d from each specified point s, and back again. It prints out
B and ¢ and other lattice variables in each plane, and we can plot the result
to find the beam envelope around the machine. This is the way machines are
designed. Lengths, gradients, and numbers of FODO normal periods are varied
to match the desired beam sizes and @ values.

3.5 Regular FODO lattice

The most convenient way of calculating the numbers a, b, ¢, and d, which yield
the Twiss functions, is to use one of the many computer codes written for the
purpose. However, any reader who aspires to become a lattice designer should
attempt at least once to solve such a problem analytically. The illustration we
shall use for this exercise is a simple FODO lattice (Fig. 3.3) consisting of thin
lenses with alternating focal length 1/(kl) and spaced by a distance L.

! -f !

Fig. 3.3 Thin lens FODO cell used in the analytical solution of the betatron function.
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The matrix for one period between mid-planes of F lenses is

M= <:F11/2f (1]> (é f) <ill/f (1]> <(1) f) <¢1l/2f (1)>

B 1—L%/2f2 2L(1 £ L/2f)
B <—l/2f2(1¢L/2f) 1-L2/2f? )

_ [cosp+asinp Bsin p
o —ysin p cosp —asinp )’

We multiply out the product and equate the terms to the T'wiss matrix derived
earlier. The upper sign is used for the matrix between mid-planes of F lenses
and the lower for mid-D. We then obtain,

LQ
cosu:l—ﬁ,
(R L
in(5) = 57
5 op [t sin(1/2)]
sin p
., = 0.

We see that a, which is proportional to the slope of the beta function, is zero
at the planes of symmetry. Also, since the FODO pattern in the h plane becomes
DOFO in the v plane, the two values of § can be thought of, as the maximum

B, =90°
!
, r
1 L
o
~
| B=0
N S, =90°
05 | -
|
|
#=0 | Fig. 3.4 Stability diagram
| (cross-hatched) for a FODO
0 | - lattice as a function of the
y Ll . .
| Iy | betatron functions. p is phase
0 0.5 fl 1 advance per cell.
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or minimum values in one plane,

B 1+sin(u/2)

E 1 —sin(p/2)’
or as the values of (3, and 3, at an F quadrupole. By repeating the multiplication
from the mid-point between two quadrupoles, one may show that

o= g - (5),

Such analytic expressions are not only useful in a preliminary survey of param-
eters but can be used to reveal the range of strengths for which the lattice is
stable. If we solve the more general matrix product for a horizontally focusing
quadrupole of focal length fi, and a defocusing quadrupole of focal length fs,
we can plot a stable range of f; and f5 for which sin u < 1. This is shown shaded
in Fig. 3.4.

Exercises

3.1 Solve Hill’s equation:
y'+EK(s)y=0
by substituting:
1
=a s) cos|p(s) + with ¢’ = ——,
y=aV/B) cosiols) + du] with o' = 5

demonstrating that a necessary condition is:
2
168" - 107 + Kp* = 1.
3.2 A quadrupole doublet consists of two lenses of focal length f; and fo sepa-

rated by a drift length of [ in m. Assume that the lenses are thin and show,
by writing the three matrices for the lenses, that the product matrix is

= (U )

1 1 n 1 l
f~ h fo ffe
3.3 A FODO cell may be considered to be one such matrix with f; = +2f
and fo = —2f followed (and multiplied) by another cell with f; = —2f
and fo = +2f. Using the result of the last question, write down these two
matrices and show that the product matrix for a half-cell from mid-F to
mid-D quadrupole is

B 1-12/2f2 20(1 +1/2f)
M= <—(l/2f2)(1 Cijaf) 1-12/2p ) ‘

where
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3.4 The matrix for a FODO period must have the form

M= cos it + asin Bsin i
o —ysin u cosp —asinu )’

You are given the following data:

Bp = 26.68,

Quadrupole length = 0.509 m,

Quadrupole gradient = 12T /m,

Distance between quadrupole centres = 6.545 m.

Take the trace of this matrix and equate it to the result of Question 3.2 to
obtain an expression for u, the phase advance per period. Substitute the
data to obtain a numerical value for u. Now use Mo = Bsinu to find G at
the mid-plane of the F quadrupole.

3.5 Without multiplying all the matrices together again, write down the
expression for § at a mid-D and evaluate.

3.6 A synchrotron consists of 24 FODO cells with the parameters defined in
Exercise 3.4. What will be the @ value? Use the smooth approximation to
estimate the mean value of f.

3.7 Use the relation Q = 27 to calculate the change in @ for a 1% error in
strength of all quadrupoles.



4
Circulating beams

4.1 Liouville’s theorem

Particle beams in an accelerator obey a conservation law of phase space known
as Liouville’s theorem. To understand this law we must think of a beam of
particles as a cloud of points within a closed contour in a transverse phase-space
diagram (Fig. 4.1). Liouville’s theorem tells us that the area within the contour,
A = [pdg, is conserved. The contour is usually, but not always, an ellipse. In
Chapter 2, Fig. 2.7 we came across such an elliptical contour—the locus of a
particle’s motion at a place where the § function is at a maximum or minimum
and where the major and minor axes of the upright ellipse are /€3 and \/e/8.
We could think of this ellipse as the locus of the particle in the beam which has
the maximum amplitude of betatron motion and call its area, me, the emittance.
We usually express emittance in units of 7 mm mrad. According to Liouville the
emittance area will be conserved as the beam circulates in a synchrotron or as it
passes down a transport line irrespective of the magnetic focusing or the bending

p Area = [ p dg = constant

Fig. 4.1 Liouville’s theorem
applies to this ellipse.
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Fig. 4.2 How the conserved phase space appears at different points in a FODO cell.
The development of a constant-emittance beam in phase space at (a) a narrow waist,
(b) and (c) places where the beam is diverging, and (d) at a broad maximum at the
centre of an F lens.

operation performed on the beam. Even though the ellipse may appear to have
many shapes around the accelerator, its phase-space area will not change (Fig.
4.2). Tts divergence will be large at a narrow waist, near a D quadrupole (a) in
Fig. 4.2, while in an F quadrupole (d), where the betatron function is maximum,
its divergence will be small. The beam is also shown at two points where the
beam is diverging.

In Fig. 4.3 we see how the various features of the ellipse are related to the
Twiss parameters. The equation of the ellipse, often called the Courant and
Snyder invariant, has the form

v(s)y? + 2a(s)yy’ + B(s)y"? = e.

The invariance of this quantity as we move to different points in the ring is an
alternative statement of Liouville’s theorem.
One word of caution—the strict version of Liouville’s theorem states that

‘In the vicinity of a particle, the particle density in phase space is constant if
the particles move in an external magnetic field or in a general field in which
the forces do not depend upon velocity.’
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and although this implies conservation of phase-space area, it rules out the appli-
cation of Liouville’s theorem to situations in which space-charge forces within the
beam play a role or when particles emit synchrotron light—a velocity-dependent
effect.

However, with these precautions in mind we may reliably apply Liouville the-
orem to proton beams which do not normally emit synchrotron light and to
electrons travelling for a few turns in a synchrotron. This is usually too short
a time for electrons to emit enough synchrotron light energy to affect their
transverse motion.

Now we must ask the question whether Liouville’s theorem applies as a proton
beam is accelerated. Observations suggest that this is not the case. The beam
appears to shrink. However, this is because the coordinates we have used so far,
y and y’, are not ‘canonical’ in the sense defined by Hamilton in his mechanics,
which is part and parcel of Liouville’s mathematical theory of dynamics. We
should therefore express emittance in Hamilton’s canonical phase space (g, p)
and relate this carefully to the coordinates, displacement y, and divergence y’,
which we have been using so far. We can then define an emittance which is
conserved as we accelerate.

In the arguments that follow we shall have to be particularly careful not to
confuse Twiss parameters [ and v with the parameters of special relativity,
which have the meaning v/c and E/Ey, that is, the velocity divided by that of
light, and the total energy divided by the rest energy. To be sure the reader will
have to examine the context. For readers who are not familiar with Hamiltonian
mechanics, it is sufficient to know that the canonical coordinates of relativistic
mechanics are

moy

v
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Here ¢ or y is a general transverse coordinate, p its conjugate momentum and
we define # and v when used in the context of special relativity to be

v
ﬁ =
c
_ 1

v T3 7 >
mg = rest mass,

¢ = velocity of light,
po = moc(B3Y).

where pg is the momentum in the direction of motion of the particle. We may
find the relationship between canonical momentum and divergence from the
substitution
o dq o ds dq — moc(By)y!
p= odt’Y— Odtdsfy_ 0C\PY)Y -
By simply writing down the Liouville equation in canonical coordinates we can
use the above expression to define a conserved quantity and relate it to the area

in (y,y’) space,
/pdq = moc(ﬁ’y)/y’dy =po/y’ dy.

Thus the conserved quantity is the emittance, €, of our transverse phase space
multiplied by pg, which is proportional to 8v. Accelerator physicists often call
this the invariant or ‘normalized’ emittance:

e* = (fvy)e (mmmmrad).

As acceleration proceeds in a synchrotron, the normalized emittance is con-
served and the physical emittance within the right-hand side of the equation
must fall inversely with momentum if the whole term is to be conserved.
Close to the velocity of light this implies that it is inversely proportional to
energy:

* 1
Emittance = me = /y' dy = (ﬂﬁ—g) o —.
v Po

We therefore expect the beam dimensions to shrink as 1/ pcl,/ ® (Fig. 4.4), a
phenomenon called ‘adiabatic damping’.

4.1.1 Chains of accelerators

Adiabatic damping implies that proton accelerators need their full aperture
at injection and it is then that their design is most critical. For this reason
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it is economical to split a single large ring into a chain of accelerators—the
smaller-radius rings having a large aperture while the higher-energy rings with
large radius can have smaller apertures. In these chains of proton accelera-
tors, such as the Linac, PS Booster, PS, the invariant emittance, determined
by the parameters of the beam as it leaves the ion source at the beginning
of the linac, may be conserved to several hundred GeV. Of course, one must
guard against mismatches between machines or non-linear fields which dilate the
emittance.

4.1.2 Exceptions to Liouville’s theorem

By now, a reader familiar with an electron synchrotron would begin to feel
a rising tide of protest. In fact, the invariance of normalized emittance and the
shrinking of physical emittance with energy is quite the opposite of what happens
in an electron machine. We have already warned that Liouville’s theorem applies
only to particles guided by external fields and not to electron machines where
particles emit some of their own energy. We shall see later in Chapter 8 that
electrons, being lighter than protons and hence more relativistic, emit quanta
of radiation as they are accelerated. This quantized emission causes particles to
jump around in momentum, and momentum changes couple into both planes
of transverse phase space. At the same time, there is a steady tendency for
particles near the edge of the emittance to lose transverse energy and fall back
towards the centre. In an electron machine the emittance is determined not by
the Liouville equation but by the equilibrium between these two effects. In fact,
it grows with E2.

4.2 Beam distribution in real space

Suppose we take a number of protons which have the maximum amplitude
present in the beam. They follow trajectories at the perimeter of the ellipse
but at any instant have a random distribution of initial phases ¢g. If we were
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able to measure y and y’ for each and plot them in phase space, they would lie
around the ellipse of area me and their coordinates would lie in the range of

—/Be <y < /B,
VeV <y < Ve

However, particles in a beam are usually distributed in a population which
appears Gaussian when it is projected on a vertical or horizontal plane (Fig. 4.5).
In a proton machine the emittance boundary is conventionally chosen to include
about 90% (strictly 87%) of a Gaussian beam at 20, where o is a parameter
describing a standard distribution. In an electron machine a 20 boundary would
be too close to the beam and an aperture stop placed at this distance would
rather rapidly absorb most of the beam as particles redistribute themselves,
moving temporarily into the tails due to quantum emission and damping. The
safe physical boundary for electrons depends on the lifetime required but is in
the region of 60 to 100. To save an argument about whether one needs 6o or
100, the emittance which is normally quoted for an electron beam corresponds
to the ¢ of the Gaussian projection. We are then free to choose the number of ¢’s

Protons

]

20
4~ Emittance
Electrons
o —
- Fig. 4.5 Definitions of emit-
tance for protons (above) and
Emittance  — electrons (below).
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we must allow. There is consequently a difference between emittance (a factor 4)
defined by electron and proton experts. Remembering that particles follow an
elliptical trajectory with axes

Ay ==+, Ay =+Ey

we can write

(20)

Eprotons = 6

and

o2

Eelectrons — ﬁ

Beware! Just to complicate matters, some proton specialists have of late taken
to using the same, 02 /3, definition of emittance used for electrons.

The reader is encouraged to consult a number of excellent textbooks for further
details or transverse particle dynamics (Steffen 1984; Conte and MacKay 1991;
Edwards and Syphers 1993; Bryant and Johnsen 1993).

4.3 Acceptance

In contrast, the acceptance A is unambiguous. It is the size of the hole which is
the vacuum chamber transformed into phase space (Fig. 4.6):

where r is the semi-axis of the chamber.

VA/B
~ Area=1VA/B X VAB

=TA

VAB

Fig. 4.6 Largest particle grazing an
obstacle defines acceptance.
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4.4 Measurement of emittance

The methods of observing particle beams are much more limited than the theory
might suggest. It is useful to bear this in mind and aim for simplicity in arriving
at a design rather than relying upon a complex procedure to tune the machine
once it is built. We cannot measure z’ and it is not easy to measure x, since
a simple capacitive pickup electrode would just give the average beam position
x = 0. This is because the particles have random phases and their motion is said
to be incoherent.

In electron machines, observations of beam size are made by refocusing the
synchrotron light emitted, though the beam dimensions can be so small that
special image-scanning techniques are needed to resolve the image. Of course,
this has no effect on the beam. On the other hand, the most reliable and straight-
forward way to measure proton beam size is to drive a scraper into the beam or
move the beam across the scraper and integrate the beam loss curve. Clearly,
this is destructive. Another diagnostic tool is a wire which is scanned across the
beam very rapidly. Secondary particles generated are counted with a scintilla-
tion telescope. Here one must be careful not to dilate the beam by scattering
(or burn the wire). One non-destructive instrument for protons, the ionization
beam scanner (IBS), produces a profile of the beam as in Fig. 4.7. It shows
the displacements of particles in a region about the beam centre and measures
V/Be, the half-width or envelope of the beam (Fig. 3.1). The principle is shown
in Fig. 4.8. A zero electrical potential scans across the beam, allowing electrons
to be collected from its surface as the beam ionizes the residual gas.

This IBS can also give a ‘mountain range’ display of the beam during acceler-
ation (Fig. 4.9) demonstrating adiabatic shrinkage. Its disadvantage is that the

A

Beam profile

/

No. of electrons collected

Scanning voltage & beam displacement

Fig. 4.7 Ideal ion beam scanner scope trace.
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Fig. 4.8 Diagram showing IBS principle of beam scanning.

Fig. 4.9 Mountain range display and horizontal profile; 1 cm/division horizontal profile
at 350 GeV.
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space-charge fields of an intense beam can distort the width of the peak which
represents the beam. For this reason it is rarely used nowadays except, as here,
for the pedagogical purposes of demonstrating adiabatic shrinkage.

4.5 (@ measurement

For a full understanding of transverse dynamics one needs an almost tactile
appreciation of the nature of the oscillations. The simple models of the last
sections are intended to help, but even more insight may be gained by under-
standing the methods for measuring @ values. A number of methods are possible
and each reveals a different aspect of the motion.

4.5.1 Measurement of ) by kicking

To measure () we may give the beam a sudden kick in divergence Az’ =
A(BIl)/(Bp), by switching on a deflecting dipole in a time less than one turn.
All the particles will jump to a position off centre but on the divergence axis of
the phase diagram and will trace out an ellipse, returning to a different point on
subsequent turns. Each turn, this coherent motion will give a different position
on a beam position monitor. From this we can deduce @, or at least its fractional
part AQ (Fig. 4.10).

To understand this, it helps to imagine a beam consisting of one short
longitudinal bunch. The current line density passing a detector is then a

A
‘)‘ }‘* Period of revolution (1 turn)

Envelope — x sin 2mAQf .t

Signal from beam position monitor

Fig. 4.10 Coherent motion following a sudden kick and observed on a beam position
monitor.
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Fourier series,

p(t) = Z ap, sin 27tn fot.
n

The beam position detector sees the betatron oscillations following the kick as

y(t) = yo cos 2m foQt

but modulated by p(t). An oscilloscope connected to the pickup will give a display
of the modulated signal, the product of p and y. We make use of the elementary
relation

sina cosb = 1[sin(a + b) + sin(a — b)]

and obtain
pLOuE) = 5 3 anulsin2n(n+ Q)fot-+sin2x(n — Q)ff:

The envelope of the oscilloscope signal is the slowest of these terms, in which
(n — Q) is the fractional part of @. The other terms in the series reconstruct
the spikes in the signal occurring once per turn. The fractional part of Q) is the
reciprocal of the number of spikes in one wavelength of the envelope.

4.5.2 Knockout and ) measurement

A very simple form of resonance can be induced by applying a deflecting field
with the frequency of a betatron sideband, as the frequencies (n + Q)fo are
called. We can invert the treatment above to show that if you apply a signal of
the form

sin[2m(n — Q) fot],

then the particle passing the electrodes of the deflector every turn experiences
a kick

sin[2mn fot] sin[27(n — Q) fot].

Using again the elementary trigonometry of the last section, we see that the
(a — b) component from mixing these two frequencies is in resonance with the
betatron motion

cos 27Q fot.

Once in resonance, the particle is deflected on each turn by a kick, which
increases its amplitude of transverse oscillations and is in phase with the exci-
tation so that it blows up the beam. Note that this, like the previous method,
gives a value of the fractional part of @) with respect to the nearest integer but
gives no information about which integer this is.
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Fig. 4.11 Transverse pickup seen on a spectrum analyser.

4.5.3 Measurement by analysing the frequencies
emitted by the beam

It is also possible nowadays to detect betatron frequencies in the statistical noise
signal detected by a simple transverse pickup, which can be just a pair of plates.
This is then displayed with an integrating spectrum analyser, which is really a
scanning radio receiver connected to an oscilloscope. Peaks appear as sidebands
to the revolution frequency in the display of response versus frequency (Fig. 4.11).
Their separation is 2AQ fo where AQ is the fractional part of Q.

Readers may wonder why the particles, evenly spread around the ellipse in
phase space, can generate such a signal. The answer is that they are finite in
number and the pickup samples but a small fraction of them. In a sample there
are always significant statistical fluctuations of the centre of charge, or mean
displacement, which the spectrum analyser picks up.

Exercises

4.1 The emittance of a proton beam at injection in the SPS is 27 mm mrad.
Calculate the half-width of the beam at an F quadrupole where 5 = 108 m.

4.2 What is the maximum value of the divergence in the beam if the § at a
defocusing quadrupole is 18 m and o = 07

4.3 What is the normalized emittance of this beam if the above data refer to a
proton momentum of 10 GeV/c?

4.4 TIf this normalized emittance is accelerated to 400 GeV/c, what will be the
half-width of the beam at an F quadrupole (8 = 109m)?
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4.5 A synchrotron has a mean radius of 1100m. Protons circulate at a
momentum of 10 GeV/c. What is the revolution frequency?

4.6 What is the separation (in Hz) of the two betatron sidebands nearest to the
seventh revolution frequency harmonic (Q = 6.47)?

4.7 A beam is disturbed by a transverse kick producing the signal on a transverse
pickup shown in Fig. 4.10. What is the fractional part of Q7



5
Longitudinal dynamics

5.1 Longitudinal motion

We shall devote the whole of Chapter 10 to a description of r.f. accelerating
cavities but, for the purposes of this chapter, we need only think of the acceler-
ating system as a simple resonant ‘pill-box’. We start by defining a few technical
terms.

5.1.1 Voltage per turn

This is the total potential difference experienced by the particle due to the r.f.
field across all the accelerating structures in the ring. It is just the integrated
voltage, or energy gained by the particle, as it passes through the cavities on one
turn of the machine.

5.1.2 The r.f. frequency programme and controls

The bending radius, p , should remain constant in a synchrotron as acceleration
proceeds. To achieve this the particle’s momentum must be incremented on each
turn by a precise voltage:

V =V, sin ¢

which is just sufficient to keep pace with the rate of rise of the magnetic guide field
B. The amplitude Vj is pre-programmed and controlled by automatic voltage
control in the low-level control circuitry of the transmitter which powers the
cavity. The synchronous phase ¢4 is controlled by another servo system which
compares the phase of the r.f. voltage with the passage of the bunch. The bunch
is detected with a beam monitor which must have a wide band of frequency
response to follow the changes in particle revolution frequency. The frequency of
the low-level oscillator which provides the input for the power amplifier feeding
the cavity must also be pre-programmed and controlled to follow the change
in the velocity of the particle. Finally, the radial position of the bunch in the
vacuum chamber is measured with a beam position monitor and yet another
servo system corrects the transmitter frequency from its programmed value if
the beam is found to be displaced from the central orbit.
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5.1.3 Harmonic number
A particle circulates around the machine with a period or frequency:
C Be

T = -, = )
Be 2R
where C = 27 R is the circumference and fc is the velocity. The synchronous
particle is defined as that particle which always arrives at the desired synchronous
phase lag ¢¢ behind the rising zero-crossing of the r.f. wave. For this to occur,
the r.f. frequency, f,, must be an integer multiple of f:

fa:hfa

where h is known as the harmonic number. The integer h is often chosen for
practical reasons: to make the r.f. frequency high, so that it falls in a band
where amplifiers and other components are readily available, or sometimes just
to keep the dimensions of the cavities and wave-guides reasonably small.

5.1.4 Bunches and buckets

In big modern synchrotrons, i may be very large. For example, for LEP, h =
31320 and there were 31 320 places on the circumference where a particle could
be located and arrive synchronously. The segments of the circumference centred
on these points are called buckets. The groups of particles in these buckets are
called bunches. Not all buckets need to be filled with bunches. For example, when
LEP operated as a collider, only four or eight equally spaced buckets were filled
in order to maximize the probability of collision.

Imagine the cylindrical coordinate system of Fig. 5.1, rotating with the velocity
of a bunch of particles. Some particles arrive after the zero-crossing and therefore
lag behind the r.f. wave by a phase angle ¢; others arrive before. The synchronous
particle is timed to arrive at ¢s = 0.

We may plot a particle’s motion in ‘longitudinal phase space’. One of the two
coordinates is the energy difference between the particle and the other, the ideal,
or synchronous, particle.

The other, plotted along the horizontal axis (Fig. 5.1) is the relative phase of
the particle and r.f. wave. Note that a particle outside the range —7 < ¢ < 7
falls in one of the other h segments of the circumference, and its phase can always
be redefined with respect to the nearest rising zero-crossing, to keep ¢ within
this range. Particles follow paths in this phase space that are either closed and
therefore stable, or open and unstable. Readers who are worried about the use of
¢ to describe a displacement in a phase-space diagram may reflect that a phase
advance is just the distance on our rotating cylinder between the proton and the
origin. Alternatively, we may think of it as the time of arrival.

5.1.5 Stability of the lagging particle

We suppose that the particle velocities are well below the velocity of light. A par-
ticle B which arrives late receives an extra energy increment, which will cause
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Fig. 5.1 The cylindrical coordinate system which rotates with beam demonstrating
the meaning of r.f. phase angle in longitudinal phase space.

it to speed up and overtake the synchronous particle, A. In doing so, its energy
defect AFE, grows and, provided the amplitude is not too large, its trajectory
will follow an ellipse in phase space. This describes its motion up and down the
r.f. wave (Fig. 5.2) and may remind readers of the representation of a simple
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Fig. 5.2 The limiting trajectory for a particle in a ‘moving’ or accelerating bucket
when the stable phase is not zero.

harmonic oscillator, or pendulum, when plotted in a phase-space diagram of
velocity versus displacement. The trajectory is closed and over many turns
the average deviation from the synchronous energy is zero. This phase stabil-
ity depends upon the fact that JF is positive when ¢ — ¢ is small and positive
(Montague 1977; Le Duff 1992).

Even if the oscillation is so large that the particle reaches the non-linear
part of the r.f. wave and over the top of the wave, it will still be restored
and oscillate about the stable phase provided it does not reach and pass the
point where it receives less voltage than the synchronous particle. On this non-
linear part of the curve the motion is no longer an ellipse but is distorted into
a fish-shape but its trajectory is still closed and stable. However, if a particle C
oscillates with such large amplitude that it falls below the synchronous voltage,
an increase in ¢ will cause a negative AFE, which causes ¢ to move further away
from the synchrotron particle. This particle is then clearly unstable and will be
continuously decelerated. There is a particle which, starting at ¢ = 7m — ¢s,
would trace out a limiting fish-shaped trajectory, which is the boundary or
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separatrix between stable and unstable motion. The region within this separatrix
is called the r.f. bucket and is shown in the lower half of Fig. 5.2. Formulae for
the calculation of the parameters of moving buckets are to be found in Bovet
et al. (1970).

5.1.6 Stationary buckets

The size of the bucket depends on how close the stable phase, ¢, is to the crest of
the sine wave. It shrinks to zero if ¢g = 90°. On the other hand, there is a special
case if ¢4 is zero, as may be the case as a beam is injected into a synchrotron
before acceleration has started. The bucket is then said to be ‘stationary’ stretch-
ing over all phases from —x to m. Its height is the range of energies 2A F which
the r.f. wave can constrain, and this turns out to be dependent on VV for a
given ¢g. If V' is reduced, the more energetic particles spill out of the bucket.

Very often the particles are injected into a synchrotron from a linear acceler-
ator or circular booster synchrotron in such a way that they do not all arrive
synchronously. In fact they may enter as a continuous ribbon (shaded in Fig. 5.3),
without any longitudinal structure. Usually acceleration has not yet started, B
is constant, and ¢y is zero. If V is increased slowly, the height of the stationary
bucket grows, and more and more of the energy spread in the beam, AF is
trapped. This is called ‘adiabatic trapping’.

5.2 The effect of momentum spread on transverse
dynamics—dispersion

We will return to the longitudinal dynamics of the particle in a later chapter.
Meanwhile, we are beginning to become too involved with technical matters and
should return to examine another fundamental principle of circular machines
which controls the motion of particles in the transverse direction. We, therefore,
pass now from a study of the motion of a particle with respect to the r.f. wave
to consider how its energy oscillations affect its orbit in transverse phase space.

5.2.1 Closed orbit

The bending field of a synchrotron is matched to some ideal (synchronous)
momentum pg. A particle of this momentum and of zero betatron amplitude will
pass down the centre of each quadrupole, be bent by exactly 27 by the bending
magnets in one turn of the ring, and remain synchronous with the r.f. frequency.
Its path is called the closed orbit of the central (or synchronous) momentum par-
ticle. In Fig. 2.9 this ideal orbit was the horizontal axis. We see particles executing
betatron oscillations about it but these oscillations do not replicate every turn.
In contrast, the synchronous orbit closes on itself so that  and z’ remain zero.

5.2.2 Gravitational analogy

Before attempting to explain what happens to a particle whose momentum is
slightly different from the ideal value, we digress to understand the influence of
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Fig. 5.3 Adiabatic trapping of coasting beam in growing stationary bucket.

another everyday force: gravity. Those new to the field are sometimes fascinated
by a question which they dare not ask, ‘Why do particles, stored sometimes for
days in a synchrotron, not gradually spiral down due to gravity and hit the lower
poles of the magnets and how therefore can the central orbit close on itself?’

Let us try to answer this by imagining for a moment that we were able to
‘switch on’ gravity slowly. The vertical closed orbit of the particle would adjust
itself to appear as in Fig. 5.4, an orbit which closes but is everywhere slightly
lower than the mid-plane. The vertical deflection from a quadrupole is

A7 = AUB) = klz.
Bp

The continuous force of gravity is then balanced by the vertical focusing forces
of the F quadrupoles (less the defocusing forces of the D’s).

We have not derived the shape of this orbit but clearly there can be such a
closed orbit for which gravity is balanced. This trajectory will be a particular
and unique solution of Hill’s equation. It is pretty clear from symmetry that the
shape of the orbit must be identical in all cells and must be closer to the axis in
vertically defocusing lenses. This will ensure that the net focusing is upwards.
We might define a ‘suspension’ function which defines its shape for a particle of
unit mass and magnetic rigidity. In practice, the suspended orbit function is only
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Fig. 5.4 The force of gravity is balanced by the net upward focusing force of the
quadrupoles. The trajectory is a new closed orbit defined by the ‘suspension’ function.
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Fig. 5.5 Orbits in a bending magnet.

very slightly different from the mid-plane and the difference may be ignored. Its
usefulness here is merely a prelude to the explanation of the quantity ‘dispersion’
which describes the behaviour of a particle whose momentum defect is Ap/p with
respect to the synchronous particle.

5.2.3 Orbit of a low-momentum particle

We now take a bird’s eye view and look at a closed orbit which is distorted in
the horizontal plane due to the particle having a momentum defect .

Figure 5.5 shows a particle with a lower momentum Ap/p < 0 and which,
therefore, is consistently bent horizontally more in each dipole of a FODO lattice.
Like the orbit due to gravity, we might argue that the total deflection, being more
than 27, would cause it to spiral in. But again we may argue that there is indeed
a closed orbit for this lower momentum in which the extra bending forces are
compensated by extra focusing forces as the orbit is displaced inwards in the
F quadrupoles and less so in the D’s. This is shown in Fig. 5.6. Just as in our



The effect of momentum spread on transverse dynamics—dispersion 05

Dipole Dipole

F D F
] ] ]
L] L] L]
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Fig. 5.7 The beam cross sections in real space for beams of three different momenta
at a point where the dispersion function is large.

gravitational analogy we may describe the shape of this new closed orbit for a
particle of unit Ap/p by a dispersion function D(s).

This clearly means the beam will be wider if it has momentum spread. In
Fig. 5.7 we see how the effect of dispersion for off-momentum orbits combines
with betatron motion.

The betatron motion of each of the three kinds of particles Ap/p < 0, =0,
and Ap/p > 0 is confined to an ellipse in physical (x, z) space. The ellipses for
each momentum are separated by a distance D(s)Ap/p. Hence, the minimum
semi-aperture required for the beam will be

A
ay = ﬁvgv» ah = v/ ﬂhgh + ‘D(S)?p‘
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5.2.4 Dispersion seen as a driven oscillator

One way to solve the problem of finding the shape of the function D(s), which
defines the position of the closed orbit of an off-momentum particle, is to think of
the extra bends suffered by a low-momentum particle in each dipole as a driving
term in Hill’s equation:

ds?

where p(s) is the local curvature in a dipole bending magnet.
We can transform this to the Floquet coordinates (7, ) defined in Chapter 6
and reduce the problem to that of a forced harmonic oscillator,

Q*5%(p) Ap

n 2
— 4 - — -
dy? @ ple) p 7

where f(¢) is finite in bending magnets and zero elsewhere. This has a periodic
solution:
w427

A
/ F(x) cosQ(m + ¢ — x) dx - 773,

@

n(e) = 2 sin @

which is related to the dispersion function

2(s) = /% = D<s>%,
with
y1/2
D(s) - 3 / Fx) cos Q(r + p(s) — x) dx.

Alternatively, we may compute D(s) using a 3 X 3 transport matrix operating
on a vector which has Ap/p as its third term:

x mi1 M1z M3 T
x’ = | ma1 maz mos A
Ap/p/, 0o 0 1 Ap/p/,

The four elements in the top-left corner are just the terms in the familiar 2 x 2
transport matrix. We can write down a matrix, including the new elements 713
and ms3 for all the magnetic elements of a period just as we did in the case
of 2 x 2 matrices. Choosing a starting point at azimuth s, we can multiply all
the matrices together until we have moved exactly one period onward. Just as
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we were able to deduce the value of 3, a, and v at s from the first four terms
mi1, M12, Moy, and Moy, we can now find the slope and value of the dispersion
function from

D/(s) = mi3mar + (1 — my1)mas
(1 —=mq1)(1 —maa) — maymya’

mag + maaD'(s)
D) ===

5.2.5 An example of a dispersion function

In Fig. 5.8 we see the way the dispersion function D(s) varies for one-sixth
(18 FODO periods) of the SPS. This ‘old-fashioned’ machine was designed at a
time when it was thought preferable, rather than complicate the pattern with
special quadrupoles, to keep a simple regular FODO focusing structure even in
the central part of the superperiod, where there had to be room for other machine
components. In this region bending magnets were just left out and the pattern of
missing bending magnets adjusted to make the right amount of Fourier harmonic
to reduce D close to zero.

4.0 |

D (m)

3.0 4

2.0 |

1.0

7 normal FODO periods 2 4 0 0 0 0 4 5 7 normal FODO periods.

<— Insertion —>

Fig. 5.8 The variation of the dispersion function in one sextant of the SPS centred on
the long straight section.
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The price one pays is that elsewhere, in the arcs, the Fourier components
combine to double the value of D. It illustrates how the Fourier pattern of
bending can drive waves in D(s). This was of little importance in a machine of
rather small energy spread and large horizontal aperture. In a modern machine,
gaps and inserts in the bending pattern would be introduced without exciting the
‘beating’ of D(s) in the arcs of the machine. A special focusing insertion can be
designed which acts rather like a telephoto lens of quadrupoles on either side of
the centre of the superperiod. With modern optical matching programs one can
make D(s) follow a regular pattern in the arcs where there are dipole magnets
and bring it down to zero in the centre of the superperiod, where modern colliders
usually require the smallest possible beam size (Brinkmann 1987; Bryant 1992).

5.2.6 Phase stability revisited

When we earlier described the principle of the phase stability of the lagging
particle, we used the argument that a particle, arriving late because of its lower
energy, would see a higher r.f. voltage from the rising waveform and, accelerated
to a higher velocity, would catch up with the synchronous particle. Now that
we understand dispersion, we begin to realize that the situation may be more
complicated. Giving the errant particle more energy will speed it up but may
also send it on an orbit of larger radius.

The path length that the errant particle must travel around the machine, or
more correctly, the change in path length with momentum, must depend upon
the dispersion function. The closed orbit will have a mean radius

_A
R:R0+D7p.

It can be argued that, close to the velocity of light where acceleration can
increase momentum but not velocity, the longer path length will more than
cancel the small effect of velocity and the particle, instead of catching up with
its synchronous partner, will arrive even later than it did on the previous turn.
This seems to defeat the whole idea of phase stability.

We shall see that, depending on how the synchrotron is designed and which
particles it accelerates, there can be a certain energy where our initial ideas of
phase stability break down. This is called the transition energy. There is also a
way of ensuring stability above transition.

5.3 Transition energy

The crucial factor in resolving the question of velocity versus path length is the
way in which the revolution time (or its reciprocal, the revolution frequency)
varies as the particle is given extra acceleration. The revolution frequency is

-2 (-9
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We see that f depends on two momentum-dependent variables, Einstein’s
B and R, the mean radius. The penultimate equation gives the change in the
radius. (Incidentally, both of the above equations are only strictly valid if the
average guide field in the synchrotron is constant over many turns but we allow
ourselves this assumption for the moment.) The momentum dependence of j is
determined by

e = Eop
S
We can best express the rate of ‘catching up’ upon which phase stability depends
by a ‘slip factor’ i, which is defined as logarithmic differential of frequency as a
function of momentum. The procedure of partial derivatives implies that there
must be two terms corresponding to the two variables which are momentum
dependent. Hence,

_Af/f _pd3 _pdR 1 D

M= Ap/p _ Bdp Rdp 4 Ro

The first term on the right-hand side describes the increase in speed with p and
the other, which is negative, how the path to be travelled increases with p.

Only the first of the two terms on the right-hand side varies as particles are
accelerated. At low energy, when v = 1, this is largest and # is usually positive.
But, since v = E/Ey, the first term shrinks with E and becomes smaller than
the second at high energy so that 1 changes sign from positive to negative. There
is a certain energy, the transition energy, at which 7 is momentarily zero. At this
transition energy the value of v satisfies

1
e R

In a conventional proton synchrotron, transition is usually encountered mid-
way through the acceleration cycle and can only be avoided with some ingenuity
in the design of the lattice. This was a considerable worry to the designers of
the CERN proton synchrotron (CPS) and AGS. These were the first proton syn-
chrotrons of high enough energy to encounter this problem during acceleration
and, using the new alternating-gradient focusing, had small values of D. Fortu-
nately, it was realized that one could almost instantaneously change the phase of
the voltage wave in the r.f. cavities to be falling rather than rising at the moment
of the synchronous particle’s arrival (Fig. 5.9). Above transition and with such
a reversed slope, particles arriving late are given less than their ration of energy
and take an inner circular path—a short cut—to arrive earlier next time.

There was still a worry about changing the phase rapidly enough and theo-
rists speculated about the regions on either side of this change from one phase
to another where they feared there would be insufficient phase stability of either
kind. It was therefore a great relief to the CPS builders to find that when accel-
eration was first tried a simple low-level r.f. circuit, built by W. Schnell inside a
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High energy Low energy

Fig. 5.9 Shows how changing the phase of the r.f. voltage waveform can give the
lagging particle, B, less energy rather than more and can lead to stability above
transition.

treacle tin to switch the phase, took the machine smoothly through this transition
with hardly a proton lost.

Electron machines are fortunate in that v, being 2000 times higher, ensures
that the first term may be neglected so that they always operate above
transition.

5.4 Synchrotron motion

We now come to the core of our discussion of longitudinal motion. If we consider
the motion of a particle on the linear part of the voltage wave of an r.f. cavity,
it is not difficult to imagine that it approximates rather closely to a harmonic
oscillator. The motion becomes more complicated when the particle’s amplitude
is larger and for part of its motion it finds itself over the crest of the wave, but
first let us focus on a small-amplitude solution.

It is not hard to deduce from special relativity that the momentum may be
written as

p = moc(B7).

We shall therefore use A(fy) as the momentum coordinate in longitudinal
phase space. The other coordinate is the particle’s arrival phase, ¢, with respect
to the zero-crossing of the r.f. voltage at the cavity. Let us consider the simplest
case of a small oscillation in a stationary bucket, ¢s = 0, when the particle is
not being accelerated.
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A particle with a small phase error will describe an ellipse in phase space which
one may write parametrically as

—

A(By) = A(By) sin 27 fit,
¢ = (ZASCOS 2 fst,

where fs is the frequency of execution of these oscillations in phase, which we
call the synchrotron frequency.

In order to find the differential equation corresponding to this motion, we must
first remember that the angular frequency 27 f of an oscillator is nothing other
than ¢, the rate of change of phase or, to be exact, —g. (The negative sign stems
from the fact that ¢ is a phase lag.) For example, a 5 Hz frequency changes phase
at a rate of 10rrads™!'. We may therefore relate the rate of change in arrival
phase to the difference in revolution frequency of the particle, compared to that
of the synchronous particle:

¢ = —2mh[f(ABy) — £(0)] = —2whAf.

Note that we have multiplied by A, the harmonic number of the r.f., since
¢ is the phase angle of the r.f. swing while f(ABv) refers to the revolution
frequency. Here we can use the definition of the slip factor n and then simply
use some standard relativistic relations to end up with Af as a function of AF,
the energy defect with respect to the synchronous particle:

ABy) _nfAy _ nf g
By) B2y Epy
where Ejy is the particle’s rest energy.

Having made the substitution, we differentiate once more to obtain a second-
order differential equation which, we hope, resembles a simple oscillator:

A
Af=nf7p=nf

. 2mhn f .
¢ =— AE).
Eo 3%y (BE)
We recall from the arguments of phase stability that per turn the extra energy
given to a particle whose arrival phase is ¢ will be

AE = eVjy(sin ¢ — sin @)

and that the rate of change of energy will therefore be AFE times f, the revolution
frequency. We can write
2meVonhf?
Eo3%y

This is actually a fundamental and exact description of the motion provided
the parameters change slowly (the adiabatic assumption). The practice now is

b= (sin ¢ — sin ¢).
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to simply integrate this to find its solution numerically. But to see an analytic
solution for small amplitudes we set ¢s = 0 and ¢ = sin ¢:

2meVonhf?
Eo32y

Clearly, the frequency of these synchrotron oscillations in longitudinal phase

space is
| InlheVo
fS 27TE0/62 f7

or, writing f.r = hf, we could also express it as

_ | InleVo
fs— QFEoﬁQ’)/hfrf.

We can also define a synchrotron tune, QJs, as the number of such oscillations
per revolution of the machine. This is analogous to @ in transverse phase space:

Q_JE_ [nlehVo
*f \ 2mEy By

In most machines Qg is of the order of 10% of the revolution frequency or less.
It sweeps down to zero at « transition where 7 is zero and then rises again. In
large proton machines it can be in the 0—100 Hz region and, but for the vacuum,
one might hear it! It can cause trouble when it crosses the harmonics of 50 Hz,
which occur in the power supply ripple, and the radial servo loop for r.f. cavity
voltage and frequency can cause a resonance.

Close to ¢ we cannot strictly assume that 3, v, i, and f vary slowly in com-
parison with the synchrotron oscillation which this equation describes. Hence,
we should have been more careful about obtaining the second derivative above
and the reader is advised to use a more exact form of the equation of motion and
approximate only when it seems that this is justified. (The texts which discuss
adiabaticity will prove comforting if rather tedious reading.) This more exact
form of the equation of motion is

d [Eof*yé
dt | 2enhf?

o+ ¢ = 0.

] +eWVo(sing —sings) =0

In a stationary bucket, when ¢5 = 0, this exact differential equation for large
amplitude motion is identical to that for a rigid pendulum. Such a pendulum—
a mass suspended on a weightless rigid rod—displaced by angle 6 will execute
oscillations according to

2

l((iif—l—gsme—o
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There is an extra term, sin¢sg, on the right-hand side of the synchrotron
equation which is not there in the pendulum case but it could be introduced for
the pendulum too by using a magnetic ‘bob’ and biasing its equilibrium position
to one side by placing a magnetic field in an asymmetric position.

One of the stumbling blocks to the beginner is the complicated shape of
the bucket (Fig. 5.2), which leads to a trivial but very lengthy calculation of
the area of the bucket as a function of ¢g, V, and 5. Briick (1966) gives a
good explanation of how one does this analytically. Nowadays we write numer-
ical integration routines to do this or track particles with the simple algorithm
AE = Vy(sin ¢ — sin ¢g) for each turn.

Exercises

5.1 Write down the expression for total energy in terms of rest energy and
momentum (pc) and thence derive an expression for «y as a function only of /.

5.2 Solve to give 3 as a function of v and then as a function of E and Ej.
5.3 Show that pc = Ey(57) .
5.4 Establish the following relationships:

E
dE = edp, L — 22,
E p
daf 1 dp dR/R
- =(— —a)—, wherea=—",
f <72 ) dp/p

f being the revolution frequency in a synchrotron in which the momentum
compaction is a. R is the physical radius (circumference = 27 R).

5.5 A 10GeV (kinetic energy) synchrotron, has a magnetic field which rises to
1.5T in 1s. Given that the mass of the proton is 0.9383 GeV: What is the
momentum at 1.5T? What is Bp? If 2/3 of the circumference is bending
magnets, what are p and R, the mean radius? What is the revolution fre-
quency at 10 GeV? What is the revolution frequency at 1 GeV? Assuming
the revolution frequency at 1 GeV, calculate the voltage per turn necessary
to provide a linear rate of rise of 9GeV/s. If sin ¢g = sin45°, what is the
peak voltage necessary in the cavity?

5.6 If the mean dispersion around the ring is 9m, what is (a) v.? (b)
momentum at transition? (c) 1 at 1 GeV and at 10 GeV?

5.7 If the harmonic number is 10, what is the synchrotron frequency at 1 GeV?

5.8 Write a small computer program to plot fs; in steps of 0.05GeV from
1 to 2GeV.
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Imperfections and
multipoles

6.1 A simplified treatment of betatron motion

The earlier chapters on focusing treat betatron motion in a rather rigorous way.
However, some readers who are new to the field might find the following sec-
tions too confusing if we carry through all the terms from the rigorous theory
into a study of imperfections, whose effect we can anyway only estimate. We
shall therefore introduce two models of the motion which are approximate but
graphic.

6.1.1 The circle diagram

In Fig. 6.1(b) we see the phase-space ellipse of a beam, plotted at a point near
an F quadrupole where the amplitude function 3 is large. The ellipse will be
very wide and not very high in divergence angle and it is in such positions that
a small angular kick has the greatest effect on the beam. Imagine, for example,
how little angular displacement is needed to move the ellipse by its own height
and increase the emittance by a factor of 2. Thus in a machine with a FODO

. ~

- -

(a) ()

Fig. 6.1 Phase-space diagram at (a) a @ minimum and (b) a § maximum.
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lattice, most of the damage is done to the beam by bad fields which cause angular
kicks near the F quadrupoles. .

So predominant are the effects of perturbations near § positions that one can
often do quite good ‘back of the envelope’ calculations by closing one’s eyes to
what happens to the protons in between the F quadrupoles. At F quadrupoles the
ellipse always looks the same, that is, upright, with displacement and divergence

semi-axes
€
\/Pe and -,
V 3

respectively. This can be reduced to a circle of radius /8¢, by using the new
coordinates

y=y, p=py.
Note that p is not related to our earlier use of the symbol while § is a Twiss
parameter again.
If the machine has, for example, 108 periods and a @ of 27.6, a proton will
advance in phase by 27Q)/108 from one period to the next; this is just the angle
subtended at the centre of the circle multiplied by Q. After one turn of the

machine, it has made 27 revolutions of the circle plus an angle of 27 multiplied
by the fractional part of @, see Fig. 6.2.

p=06x’'

2p(Q-27)

B
(one turn later)

Fig. 6.2 Circle diagram (locus at F quadrupoles).
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6.1.2 The (n,v) description of alternating-gradient focusing

This normalization of the phase space can be done in a more rigorous way by
choosing new variables (7, 1) which transform the distortion of the phase and
amplitude so that the motion becomes that of a harmonic oscillator. We must,
of course, transform back again to see physical displacements, but the math-
ematics in the new coordinates becomes more transparent. We will not dwell
on how this transformation—sometimes called Floquet’s transformation—was
found, but just state it. The transformed coordinates are related to the old by

n=p8""2,
_ [ ds _ H2733/2
" /Qﬁ, g() = Q2% F(s),

where 1 advances by 27 every revolution. It coincides with 6 at each location
where ( is maximum or minimum and does not depart very much from 6 in
between. The function g(1) is the transformation of an azimuthal perturbation
of the guide field,

F(s) =25 2.

which, in the ideal case, is everywhere zero. With this transformation, Hill’s
equation becomes the harmonic oscillator equation with a driving term on the
right-hand side:

d*n

dip?

This representation is not restricted to where the ellipse is upright but is
rigorous and valid at all points in the lattice.

+Q%n = g(¥).

6.2 Closed-orbit distortion

Imperfections in the guide field can distort the synchronous orbit so that it is
no longer the theoretical axis of the machine and yet it will still close on itself.
Even the best synchrotron magnets cannot be made absolutely identical and each
magnet will differ from the mean by some small error in integrated strength:

§(BI) = / Bdl— ( / Bdl)ideal

These and other machine imperfections, such as survey errors, which give rise
to field errors, are randomly spread around the ring. We can use the (7, 1) coor-
dinates to find out how this perturbs a particle which would otherwise have had
zero betatron amplitude. Such a particle no longer goes straight down the cen-
tre of the vacuum chamber but follows a perturbed closed orbit. The normal
betatron motion of the other protons is superimposed with undiminished ampli-
tude about this distorted closed orbit. One of the most important considerations
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in designing and later in setting up a machine is to keep the distortion of this
closed orbit to a minimum because it eats up available machine aperture. It
used to be conventional wisdom in designing a machine to make sure that the
vacuum chamber would accommodate twice the expectation value of distortion.
The probability of no particles making the first turn was thus reduced to a mere
2%. Designers of modern large machines cannot afford this luxury and must rely
on closed-orbit steering with correcting dipole magnets to thread the first turn.
Once a few turns are circulating round the machine these correctors can com-
pletely compensate the distortion. However, in order to design these corrector
magnets we must estimate the magnitude of the distortion to be corrected. As
a first step, let us consider the effect on the orbit of a small additional dipole
located at a position where 3 = Ok and observed at another position.

6.2.1 Distortion due to a single dipole

Suppose we gradually turn on a short dipole (we shall assume it is a delta function
in s) which makes a growing angular ‘kink’ in divergence in the trajectory of every
turn (Fig. 6.3):
o(Bl
5y OB,
Bp

The closed-orbit trajectory is perturbed by a cusp while, elsewhere, the tra-
jectory must obey the laws of betatron motion which, expressed in (7,1))
coordinates, are

d277 2
d02 +Qn=0,
n = 1o cos(Qy + N).

In Fig. 6.4 we have chosen the ¢ = 0 origin to be diametrically opposite to
the kick and, by symmetry, A = 0 and the ‘orbit’ starts and ends as a cosine
function.

&vﬂv / A £

Dipole

Fig. 6.3 Closed-orbit distortion as a dipole is slowly switched on.
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NAANNS
VA SV

2tan™! (dn/do)

Sy

0 g 2T

Fig. 6.4 Tracing the closed orbit for one turn in (n,1) space with a single kick at
1 = 7. (The Q value is about 4.6.)

We only consider a trajectory which is closed, and continuity therefore
demands that the kick dy’ matches the change in slope at ¥ = 7, the location of
the dipole.

Differentiating the orbit equation, we have

dn

Gy = QSN QY = —mQsinQr.

To relate this to the real kick we use

dy 1 dy
"0k @ - Vi

therefore,
Sy’ _6(Bl) _dy _ dndy o
o 2By s V@das T yETe
no = —Y 8 V.ﬂK(;y/.
2| sin Q)|

Returning to physical coordinates we can write the orbit’s equation

s 6(pBl
=BT cos Quls) = | Yo cos Qu)
The expression in square brackets is the maximum amplitude of the perturbation
or distortion at 3(s).

The above expression is rigorous but as an exercise we can also use the circle
approximation as an alternative method of solution. Consider the special case
where the kink and observation point are at the same value of 3. We see from
Fig. 6.5 how the trajectory of the distortion appears in phase space. Simple
trigonometric analysis reveals that the amplitude a is just the quantity in square
brackets.
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Kick
Ap = B &'

/

B @=m

Fig. 6.5 Tracing a closed orbit for one turn in the circle diagram with a single kick.
The path is ABCD.

6.2.2 Effect of many errors

In estimating the effect of a random distribution of dipole errors, we must take
the r.m.s. average, weighted according to the 3; values, over all of the kicks dy;
from the N magnets in the ring. The expectation value of the amplitude is

_ VBB N
<y(5)>—m ;515%2

B(s)B (ABI) s
2\/§sin7rQ\/N Bp

The factor v/2 comes from averaging over all the phases of distortion produced.

6.2.3 Sources of distortion

The principal imperfections in a synchrotron causing orbit distortion are shown
in Table 6.1. The first line in the table lists the random variations in the position
of quadrupole magnets with respect to their ideal location. A small transverse
displacement of a quadrupole gives an effective dipole perturbation, k[Ay. The
tilt of bending magnets in the second line causes a small resultant dipole in the
horizontal direction, which deflects vertically. Random errors in magnet gap,
length or in the coercivity of the steel yoke which determines remanent field,
contribute to the third line. Both remanent and stray fields in straight sections
tend to be constant and their effect scales as 1/B as the machine pulses. Their
effect should therefore be evaluated at injection where it is worst. In a mod-
ern superconducting machine the persistent current fields play the same role as
remanent effects.
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Table 6.1 Sources of closed-orbit distortion

Type of element Source of kick  r.m.s. value  (ABl/(Bp))rms Plane

Gradient magnet Displacement (Ay) kil (Ay) T,z

Bending magnet Tilt (A) 0:(A) z
(bending angle = 6;)

Bending magnet Field error (AB/B) 0:;(AB/B) x

Straight sections Stray field (ABy) di{ABg)/(Bp)inj z,z

(length = d;)

6.2.4 The Fourier harmonics of the error distribution

One of the physical insights gained by reducing the problem to that of a harmonic
oscillator in (7, %) coordinates is that perturbations can be treated as the driving
term of the oscillator. They may be broken down into their Fourier components
and the whole problem seen as the forced oscillations of a pendulum. The driving
term is put on the right-hand side of Hill’s equation:

Q= @YY S = QURS),
k=1

where F(s) is the azimuthal pattern of the perturbation AB/(Bp); and Q>332
comes from the transformation from physical coordinates to (7, 1) coordinates.
The Fourier amplitudes are defined by

F) = B**F(s) kae

where

2
fi = % / Fp)e R dyp — % ]{ BY2F(5)e= 0 ds.
0

We can then solve Hill’s equation as
n= Z % fk e (or its real part).

But be careful! Before doing the Fourier analysis, AB must be multiplied by
(3'/2 if the physical variable s is chosen as an independent variable, or 33/2 if v,
the transformed phase, is used and these are themselves functions of s.

Looking carefully at the above expression, we see that this differs from the
general solutions

0= noe ',

which describe the betatron motion about the equilibrium orbit, because the
wavenumber is an integer k. In fact this closed orbit is a particular solution of
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Fig. 6.6 FNAL main ring electrostatic pickups show closed orbit around the ring
(Q =19.2).

Hill’s differential equation, to which we must add the general solutions which
describe the betatron oscillations about it.

The function Q?/(Q? — k?) is called the magnification factor for a particular
Fourier component of AB. It rises steeply when the wavenumber & is close to
@, and the effect of the two Fourier components in the random error pattern
which have k values adjacent to Q) accounts for about 60% of the total distortion
due to all random errors. Figure 6.6 shows an uncorrected closed-orbit pattern
from electrostatic pickups in the old Fermilab Main Ring, whose @ is between 19
and 20. The pattern shows strong components with these wavenumbers. If @ is
deliberately tuned to an integer k, the magnification factor is infinite and errors
of that frequency make the proton walk out of the machine. This is in fact an
integer resonance driven by dipole errors.

6.2.5 Closed-orbit bumps

It is often important to make a closed-orbit bump deliberately at one part of the
circumference without affecting the central orbit elsewhere. A typical example of
this is to make the beam ride close to an extraction septum or within the narrow
jaws of an extraction kicker magnet placed just outside the normal acceptance
of the ring.

If one is lucky enough to find two positions for small dipole deflecting magnets
spaced by 7 in betatron phase and centred about the place where the bump is
required, the solution is very simple (Fig. 6.7). The distortion produced is

y(s) = 0v/B(s)Bisin(¢ — ¢o),
where ((s) is the beta function and fk at the deflector and

5 _ AB
-5
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Fig. 6.7 An exact half-wave bump using two dipoles.
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Fig. 6.8 A general bump using three dipoles.

Here ¢ is the betatron phase and ¢ at the dipole. This half-wave bump also has
a very simple configuration in normalized phase space. We see that the central
orbit (at the origin) is not disturbed elsewhere. Note that the magnitude of the
bump is not only proportional to the root of the local 3(s) but is proportional to
Ok, the value of 3 where the kick due to the dipole is applied. Since 3 is largest
at F quadrupoles, this is clearly where one should locate dipole bumpers.

Very often, F quadrupoles are not 7w apart in phase but separated by some
other phase interval, say 2w /3. This means the possible locations for dipoles are
slightly less effective (sin7/3 = v/3/2 in our example) and we must introduce a
third dipole to form a triad if the orbit perturbation is to be confined to within
the bump. The third dipole is best located near the peak of the bump.

Figure 6.8 shows how the three bumps add up in normalized phase space.
The case illustrated is the general one with dipoles of different strengths and
spaced differently in phase. In order to find an exact solution to the problem of
a triad bump we use the matrix which transforms a point in phase space from
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one location to another:

0)-

(VB/\/Bo)(cos Ad + ap sin Ag) BB sin Ad y
0
\/_ﬁiﬂ {(er— ao)cos Ag + (1 + aao) sin Ag} %(COS Ap —asinAg) | (y’)

It is the element which links y to yj which describes the trajectory. Following
the kick d1,

Y2 = 01/ Fa 1 sin(ga — ¢1).

The same argument can be used to describe the trajectory working back
from d3,

Y2 = —03+/ B2B3 sin(p2 — ¢3).
The kick d5 must be the change in the derivative:

dy = 51& cos(p2 — 1) + 53@ cos(p3 — ¢2).
Bo B2

We can rewrite these relations as
vV B161sin ¢12 = /303 sin ¢as,
\/ B202 = \/ 3161 cos P12 + 1/ B303 cos a3,

where
bij = Gi — ¢4

These relations are those that apply to a triangle of sides §1/3, and angles ¢,
which can be solved by the well-known symmetric relation

0ivBr  0av/Ba 03D

singoz  sings  singy’

6.2.6 The measurement and correction of closed orbits

Electrostatic plates with diagonal slots (Fig. 6.9) are commonly used to measure
the transverse position of a bunched beam. We have seen that the predominant
harmonic in the uncorrected orbit is close to @ and, to establish its amplitude and
phase, one really needs four pickups per wavelength. Given the present fashion
for FODO lattices with about 90° per cell and the need to measure in both planes,
the final solution is usually to place one pickup at each quadrupole. The ones at
F quadrupoles, where (3 is large horizontally, are the most accurate for the hor-
izontal plane, while others at D quadrupoles are best for the vertical correction.

Similar arguments lead us to have one horizontally defecting dipole at each
F quadrupole, where (3, is large, and one vertically deflecting dipole at each D
quadrupole, where 3, is large.
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Fig. 6.9 A beam position monitor with triangular electrodes gives an asymmetric
signal.

Clearly, many of these correcting dipoles would be unnecessary if only the
two principal harmonics are to be corrected and one method of correcting orbit
distortion is to apply a pattern of dipole correctors which excite an equal and
opposite Fourier component of error at an integer close to (). For example, one
can excite an odd harmonic such as Fermilab’s 19th with a single dipole, though
a pair in opposition are necessary if their average bending effect, which influences
the nominal momentum, is to cancel. Also, a further pair are needed in quadra-
ture to adjust the phase, making four per harmonic and per plane. Another
set will be needed for even harmonics. This is shown in Fig. 6.10. However,
instructive though this may be, it leaves about 40% of the distortion uncor-
rected. It is sometimes used as a last resort to find out what the integer part of
Q really is. We mention this because such harmonic techniques are used for the
correction of non-linear resonances, where one need only correct the principal
harmonics.

The more generally used method of correcting orbit distortion consists in
applying a set of superposed beam bumps, each formed along the lines cal-
culated above. Triads of correctors are selected from the regular pattern around
the lattice and each calculated to compensate the measured orbit position at its
centre. Given the power of modern computers, this kind of correction can be
calculated and applied all round the ring instantly.

Some machines do not have dipole correctors which are sufficiently strong
to correct an orbit at their top energy and quadrupole magnets must then be
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Fig. 6.10 Diagram showing the

sign of correction dipoles nec-
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even or odd Fourier components

of distortion around the ring of a
4o synchrotron.

displaced upwards or sideways a distance Ay to apply an effective dipole

A(Bl)

Such displacements are tedious to apply to all quadrupoles in large machines
and indeed the accumulated effect of errors in moving so many quadrupoles by
a few tenths of a millimetre might even make the orbit worse. An alternative
to moving all quadrupoles (or powering all dipoles) is to select those which are
most effective in correcting the orbit. Stored in the computer is a large matrix
G with as many rows as pickups and as many columns as correctors. Each term
describes the effect y; of a corrector A; at the ith pickup—the result of a beam
optics calculation or even a measurement (Autin and Bryant 1971):

" NN
e R N Y
Y3 = : :qu: : Ag
: I
" A

The matrix may be inverted to calculate the corrections for any set of mea-
surements Y. But since we first want to select the most effective correctors, we
include only those correctors which correspond to large matrix elements. The
method also has the advantage that it can be used if one or more of the pickups
are out of action.

One last comment is that while orbit correction was originally invented to
economize on magnet aperture, precise correction is now considered essential to
reduce the effects of non-linearities in the dynamics of synchrotrons. For example,
uncorrected orbit distortion in the sextupoles, which most machines have for



86 Imperfections and multipoles

correcting chromaticity, will generate a pattern of quadrupole gradient errors
and drive half-integer stopbands. We shall come to this again in the chapter on
non-linearities.

6.3 Gradient errors

Quadrupoles also have errors and understanding the effect of these gradient
errors is a useful preparation for the study of non-linear errors. We represent a
ring of magnets as a circle in Fig. 6.11 and the matrix for one turn starting at A as

Mo(s) = €os g + ag sin g Bo sin g
=) = —0 sin o cos g — agsinpg )

Now consider a small gradient error which afflicts a quadrupole in the lattice
between B and A. The unperturbed matrix for this quadrupole is

o = (—ko(ls) ds ?)

and, when perturbed, the quadrupole matrix

m = <—[k0(s) iék(s)] ds (1)> '

The unperturbed transfer matrix for the whole machine includes mg. To
find the perturbed transfer matrix we make a turn, backtrack through the

-1
g M

Fig. 6.11 Matrix representation of a small quadrupole, mg, subject to an error which
is a component of the matrix for the whole ring, M.
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small unperturbed quadrupole (mg 1), and then proceed through the perturbed
quadrupole (m). Translating this into matrix algebra, we have

M(s) = mmg ' M.

Now
-1 1 0
Mo = <—5k(3) ds 1> :
So,
M =
< cos ¢o + o sin ¢o Bo sin ¢o )
—k(s) ds(cos do + o sin ¢o) — ysingo  —0k(s) dsfo sin do + cos po — cvo sin do
Now Tr M = 2cos ¢. So the change in cos ¢ is
Afcosd) = —Adsin do = Smf" Bo(s) k(s) ds,
2rAQ = A = D) M) ds ‘5’;(5) a5

Since the betatron phase is not involved in this equation, we can just integrate
around the ring to obtain

AQ = %/ﬁ(s) 0k(s)ds.

This is a very useful result and is worth memorizing. It is perhaps surpris-
ing that the change is independent of the phase of the perturbation. Strictly,
this equation is only approximately true since, as we add each elemental focus-
ing error, it modifies 3(s) as well as @ so that there is a higher-order term
which should be included if one wants accurate numerical results (see Courant
et al. 1958, Eqs (4.32)—(4.37)). Nevertheless, used with discretion, it is suf-
ficiently accurate to explain the physical basis of the resonant phenomena
discussed in later sections, since these can usually only be estimated to within a
factor of 2.

6.4 Resonant conditions

The reason for our concern about the change in tune or phase advance which
results from errors is that we must steer () well away from certain fractional
values which can cause the motion to resonate and result in loss of the beam.
To understand how some @ values are dangerous, let us return to the case of
closed-orbit distortion. Earlier we found the orbit distortion amplitude

VB ABY)

v= 2sinwt@  Bp
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Clearly, this will become infinite if @ is an integer value. What happens phys-
ically is that the beam receives a kick at the same phase on every turn and just
spirals outwards. An error in gradient can have the same effect if the @ value is
close to one of the following lines:

2Qh:pa QQV:pa
Qh_QV:pv Qh+QV:p7

where p is an integer.

At this stage in the description of transverse dynamics we can only hint at the
explanation for this. Particles spiral outwards in phase space if the perturbation
has the same effect on each turn and this can only build up in this way if the
particle returns to the same point in phase space on each turn (Q = p). The
perturbation from a dipole is independent of the transverse displacement but a
quadrupole error has field proportional to = and if a particle makes half-turns
in phase space it will see alternately positive and negative kicks in divergence
but both will reinforce the growth. This can happen if @ is a half-integer. One
may extend this argument to understand why sextupole errors, which have a
quadratic x dependence, excite the so-called third-integer ‘resonances’ near the
following lines:

3Qu = p, 20w + Qv = p, Qn +2Qy =p,
3Qv:pa 2C?h_CQVZPa Qh_QQv:p

6.4.1 The working diagram

This is simply a diagram with Qn and Q) as its axes. The beam can be plotted
on it as a point but, because there is a certain @) spread among particles of
different momenta, we had better give the point a finite radius AQ (Fig. 6.12).

Figure 6.12 shows a mesh of lines which mark danger zones for the particles.
We have hinted above that if @ in either the vertical or the horizontal plane is
a simple fraction, then

nQ:pa

where n and p are integers and n < 5, a resonance takes over and walks the
proton out of the beam. In general this is true when

1Qn +mQy = p,

where || + |m| is the order of the resonance and p is the azimuthal frequency
which drives it. This equation just defines a set of lines in the @ diagram for
each order of resonance and for each value of the integer p. Figure 6.12 shows
these lines for the SPS.

Somehow, by careful adjustment of the quadrupoles in the lattice and by
keeping the @ spread (chromaticity) small, we must coax the beam up to full
energy without hitting the lines. To make things more difficult, each line has a
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Fig. 6.12 SPS working diamond.

finite width, proportional to the strength of the imperfection which drives it. In
some cases we must compensate the imperfections with correction multipoles to
reduce this width.

We will discuss resonances and their correction in more detail in Chapter 7
but first a word about chromaticity.

6.5 Chromaticity

The steering of () depends on careful regulation of quadrupole and dipole power
supplies. In fact, much of the time for setting up a large circular accelerator is
devoted to tuning @ to be constant as the fields and energy rise. Once beam has
been accelerated the problem becomes one of reducing all effects which produce a
spread in () among the particles in the beam. The limit to this is usually reached
when beam intensity is high enough to cause space-charge focusing effects, whose
strength varies with the local beam density and which modulate @ as particles
move up and down the bunch. Before reaching this limit, one must correct the
tune spread due to momentum, the chromaticity. This is exactly equivalent to
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the chromatic aberration in a lens. It is defined as a quantity Q':
A
AQ=q=E

The chromaticity (Guiducci 1992) arises because the focusing strength of a
quadrupole has Bp in the denominator and is therefore inversely proportional to
momentum:

1 dB,
Bp dx -’

A small spread in momentum in the beam, +Ap/p, causes a spread in focusing
strength:
Ak Ap

k p

An equation we derived earlier in the section on gradient errors

AQ = %/ﬁ(s) 0k(s)ds

enables us to calculate Q' rather directly:

AQ=$/ﬁ(s)5k(s)ds:[ /5 }Ap

The chromaticity @’ is just the quantity in square brackets. To be clear, this
is called the natural chromaticity. For most alternating-gradient machines, its
value is about —1.3Q. Of course, there are two @ values relating to horizontal
and vertical oscillations and therefore two chromaticities.

Chromaticity can be measured by changing the mean momentum of the beam
by offsetting the r.f. frequency and measuring ). Figure 6.13 shows such a mea-
surement. One may calculate the link between r.f. frequency and momentum
in a machine in which the bending field is held constant. Dispersion ensures
that a higher momentum beam follows a larger mean radius and, above transi-
tion, has a lower revolution frequency. The r.f. frequency is an exact multiple
of this higher revolution frequency. Conversely, if we change the r.f. frequency
with the control system of the low-level cavity amplifier, the whole beam will be
shifted to a different momentum at which the @ value will be different, thanks
to chromaticity.

Imagine the situation at injection where Ap/p can be £2 x 1073. In a syn-
chrotron with a @ about 25, this can make the working point in the @ diagram
into a line of length AQ = 0.15. This is too long to avoid the resonances and
must be corrected. In recent machines like LEP and LHC both Q and Q' are
even higher.

One way to correct this is to introduce some focusing which gets stronger
for the high-momentum orbits near the outside of the vacuum chamber—
a quadrupole whose gradient increases with radial position—is needed.
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Fig. 6.13 Measurement of variation of (Q made by changing the r.f. frequency with
mean radius.

A sextupole whose field is

B//
Bz = 71132

in a place where there is dispersion will introduce a normalized focusing
correction:
B"D A
Ak = 2p
Bp p

We use an earlier expression for the effect of this Ak on @ and obtain

1 B"(s)B(s)D(s)ds] Ap
4z / Bp ra

a0 |

To correct chromaticity we have to make the quantity in the square bracket
balance the chromaticity. There are of course two chromaticities, one affecting
Qn, the other @, and we must therefore arrange for the sextupoles to cancel both.
For this we use a trick which is common and will crop up again in other contexts.
Sextupoles near F quadrupoles, where (3, is large, affect mainly the horizontal
@, while those near D quadrupoles, where (3, is large, influence @), . The effects
of two families like this are not completely orthogonal but by inverting a simple
2 x 2 matrix one can find two sextupole sets which do the job.
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Position on each turn —=

Time —s

Fig. 6.14 Position pickup signal following a kick showing decay of coherent betatron
oscillation due to @ spread ~ 1/24.

Just to make matters worse, the value of the chromaticity one has to correct
may well be much greater than that due to the natural chromatic properties of
quadrupoles. The remanent field when the beam is injected into a large ring may
well be half a per cent of the guide field and can have the parabolic shape of a
sextupole which generates pure chromaticity. In a superconducting ring the sex-
tupole fields at injection stem from persistent currents and are much larger still.

Storage rings are usually designed with low-( sections with zero dispersion for
the interaction regions and the main low-3 quadrupoles, being very powerful,
make strong contributions to the chromaticity. Since the dispersion is zero at
the source of the error, the compensation can only be made elsewhere in the
lattice where the parameter D is large.

The correction of chromaticity is a subject on its own and there is a higher-
order term, a parabolic variation of () with momentum, which is not compensated
in this simple way. Sextupole patterns which minimize this, yet do not themselves
excite serious non-linear side effects, are not easy to find.

There are two ways to measure chromaticity apart from the radial steering
method shown in Fig. 6.13. The first of these is to observe the width of the beta-
tron sidebands in the spectrum from a transverse pickup (Fig. 4.11). Secondly,
we can measure the time it takes for a coherent betatron oscillation following a
small kick to disappear as the AQ smears out the phase relation between protons
of different momenta (Fig. 6.14). If the coherent oscillations persist for 200 turns,
we may deduce that AQ =~ 1/200 and is about the best we can hope for using
this rather crude method. In the chapter on instabilities, we shall return to the
concept of the decay of a coherent signal for it is the basis of Landau damping.

Exercises

6.1 Given that the SPS vacuum chamber half-height is 28 mm at a point where
the lattice 8 = 104 m: What emittance will just touch it? How big must the
vacuum chamber be at a vertically defocusing quadrupole where 8 = 20 m?
What is the maximum vertical divergence of the beam which just touches
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the chamber at 8 = 104 m? Given that the magnetic rigidity is 1334 T m at
400 GeV /¢, what magnetic field is needed in a 20 m long dipole designed to
deflect the whole beam into the wall of the vacuum chamber. (Hint: Deflect
the phase ellipse by its full spread in divergence.)

Two dipoles of equal strength are located at F quadrupoles 180° apart in ¢
in the SPS. Their purpose is to deflect the beam into the vacuum chamber as
they are slowly switched on. Draw a circle diagram to indicate the trajectory
of a particle as it passes between these magnets.

The tolerance on quadrupole misalignment in the SPS is 0.15 mm and the
Q@ is nominally 27.75. What amplitude of distortion will be produced for
Bp = 1334 (Tm) at a 8 of 108 m if: (a) One quadrupole, of length 3.22m
and normalized strength, & = 20 (T'm)/(Bp) is displaced by 0.15 mm at a 3
of 108 m. (b) There are 108 such quadrupoles with an r.m.s. displacement
of 0.15mm. How big do you expect the closed-orbit distortion to be before
correction (allow a factor of 2 for safety)? (c¢) How big would this be if you
also include the 108 D quadrupoles, where 8 = 20m? (d) What r.m.s. tilt
of the 744 dipoles is comparable to the quadrupoles’ effect (assume a mean
B value at the dipoles of 64m)?

The working point chosen for a proton storage ring is 27.61, 27.63. Discuss
the nearby resonance lines. If the natural chromaticity is 36 and uncorrected
how large a momentum spread would avoid touching the nearest lines.

Take the parameters of the synchrotron in Exercise 6.1 and assume there are
six equispaced sextupoles to correct a chromaticity of 10 units at injection.
They are placed at positions where D = 1.2m, 8 = 109 m. Each sextupole
is 0.3 m long. What would the sextupole gradient B be?

If the maximum field on the pole tip (at radius, a) is 0.8 T and the sextupole
aperture bore = 2 x 0.08 m, how high a Bp or momentum will they correct?

If we install a second set to correct Q! = 36 at D quads where 3, = 109
but D = 0.2m, how much smaller aperture must they have?
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Non-linearities and
resonances

7.1 Introduction

In our study of transverse dynamics so far, we have ignored non-linearities in
the guide field and assumed that the bending magnets have a pure dipole field
and gradient magnets or quadrupoles have a radial field which has a constant
linear slope. Non-linear fields due to higher-order multipole terms have not been
considered. However, if we were fixing the parameters of a real machine, we
could not go too far without considering the practical difficulties of designing
the magnets and determining the tolerances which can be reasonably written
into the engineering specification (Blewett 1977; Wilson 1984). Estimates of
the non-linear departures from pure dipole or gradient field shape, and of the
statistical fluctuation of these errors around the ring at each field level must be
made. We must take into consideration that the remnant field of a magnet may
have quite a different shape from that defined by the pole geometry; the steel
properties may vary during the production of laminations; the eddy currents
in vacuum chamber and coils may perturb the linear field shape. Mechanical
tolerances must be chosen to ensure that asymmetries do not creep in. At high
field, the linearity may deteriorate owing to saturation, and variations in packing
factor of laminations can become important. Superconducting magnets will have
strong error fields due to persistent currents in their coils whose effect can be
serious at injection and high-order multipoles due to conductor must be under
control.

When these effects have been reviewed, tolerances and assembly errors may
have to be revised and measures taken to mix or match batches of laminations
with different steel properties or coils made from different batches of supercon-
ductor. It may be necessary to place magnets in a particular order in the ring in
the light of production measurements of field uniformity or to shim some mag-
nets at the edge of the statistical distribution. Even when all these precautions
have been taken, non-linear errors may remain whose effect will have to be com-
pensated with auxiliary multipole magnets. We must have good estimates of the
effects of these errors to design the correcting magnets.

The principal reason for all this is not only to minimize closed-orbit distortion
but to reduce the influence of non-linear resonances on the beam. A glance at
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the working diagram shows why this is so. In Fig. 6.12 we saw that the working
diagram is traversed by a mesh of non-linear resonance lines or stopbands of first,
second, third, and fourth order. Each resonance line is driven by a particular
pattern of multipole field errors which can be present in the guide field. The
order, n, determines the spacing in the ) diagram; third-order stopbands, for
instance, converge on a point which occurs at every 1/3 integer @ value (including
the integer itself). The order n is also related to the order of the non-linearity or
multipole which drives the resonance. For example, fourth-order resonances are
driven by multipoles with 2n poles, that is, octupoles.

The strength of the non-linear resonances driven by non-linear multipoles is
amplitude dependent so they become more important as we seek to use more
and more of the machine aperture. We can think of them as defining a ‘dynamic’
aperture which, in general, is smaller than the beam tube. Theorists used
to discount resonances of fifth and higher order as harmless (self-stabilized),
but experience in large hadron storage rings indicates that this may not be
a good assumption when we want beams to circulate for more than a few
seconds.

The resonance lines have a finite width which depends directly on the strength
of the error. This width increases with amplitude. We must ensure that the errors
are small enough to leave some clear space between the stopbands to tune the
machine, otherwise particles will fall into the stopbands and will be ejected before
they have, even, been accelerated. The stopband widths are mainly influenced
by the random fluctuations in multipole error around the ring rather than the
mean multipole strength.

However, systematic or average non-linear field errors can also make life dif-
ficult. They cause @ to be different for the different particles in the beam,
depending upon their betatron amplitude or momentum defect. Such a @ spread
implies that the beam will need an even larger resonance-free window in the @
diagram. In the case of the large machines, SPS, HERA, LEP, and LHC, the win-
dow would not be large enough if we did not balance out the average multipole
component in the ring by powering multipole correction magnets in addition to
the sextupoles which control chromaticity.

Paradoxically, when a ‘pure’ machine has been designed and built, there is
often a need to impose a controlled amount of non-linearity to correct the momen-
tum dependence of @ or to introduce a @) spread among the protons to prevent
a high-intensity instability.

7.2 Multipole fields

Before we come to discuss the non-linear terms in the dynamics, we need to
describe the field errors which drive them. The magnetic vector potential of a
magnet with 2n poles in Cartesian coordinates is

A= ZAnfn(xaz)a
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Table 7.1 Cartesian solutions of magnetic vector potential

Multipole n Regular f, Skew f,

Quadrupole 2 2 — 22 2xz

Sextupole 3 3 _3z2? 3x%z — 22

Octupole 4 4 6a%2% + 2t 423z — 4x2®

Decapole 5 x® — 102322 4 baz? S5utz — 10222 + 2°
\_/

\ N
NG /S

Regular sextupole Skew sextupole

/
A

Fig. 7.1 Pole configurations for a regular sextupole and a skew sextupole.

S

where f, is a homogeneous function in z and z of order n. If the magnet is long
we can ignore end fields and assume that the vector potential is entirely parallel
to the magnet axis As.

Table 7.1 gives f,(x,z) for both regular and skew, low-order multipoles.
Figure 7.1 shows the distinction between regular and skew multipoles. We can
obtain the function for other multipoles from the binomial expansion of

fulz,2) = (x +1i2)".

The real terms correspond to regular multipoles, the imaginary ones to skew
multipoles.

Of course, we are interested in the field and, for a long regular magnet with a
purely paraxial potential,

B.(z=0) = —% =— ZnAnx"_l

n=1

oo

et
(n—D!'\ dan=t /,

n=1
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In the last line we have used a Taylor expansion to express the field, and, by
equating these expressions we find

1 /d"'B
fm L (08
n!\ dxn-1
0
A more modern convention (in Europe) is to speak of multipole coefficients b,
for normal components and a,, for skew components, where R, is some reference

radius (10 mm for the LHC), B; is the magnitude of the nominal dipole field B,
and Z = x + iz

n—1
B, +iB, = B ;(bn +ian) (Ri) :

The suffix n = 1 for the dipole, 2 for the quadrupole, and 3 for sextupole,
etc. Note that the US notation starts with n = 0 for the dipole and different
laboratories use other reference radii. In spite of the possibilities for confusion,
this has the advantage that the coefficients are a measure of the tolerated frac-
tion of field error inside the reference circle where the beam is supposed to
be stable. It is, therefore, much easier to compare the designs of the different
machines.

7.2.1 Field symmetry

We digress a little to discuss the sextupole errors in the main dipoles of a large
synchrotron as a practical example of how one may identify the multipole com-
ponents of a magnet by inspecting its symmetry. Let us consider a simple dipole
(Fig. 7.2). It is symmetric about the vertical axis and its field distribution con-
tains mainly even exponents of z, corresponding to odd n values in the vector
potential: dipole, sextupole, decapole, etc. We also see that cutting off the poles
symmetrically at a finite width can produce a virtual sextupole. Moreover, the
remanent field pattern is frozen in at high field where the flux lines leading
to the pole edges are shorter than those leading to the centre. The remanent
magnetomotive force,
/ H_.dl,

is weaker at the pole edges, and the field in the gap tends to sag into a parabolic
configuration. This too produces a sextupole.

Very similar sextupole effects are generated by the persistent currents in the
windings of a superconducting magnet. These eddy currents in the coils depress
the edges of the pure dipole field to produce strong six- and ten-pole effects.

Such sources of sextupole error are the principal non-linearities in a large
machine. Note that they have no skew component. However, before considering
the non-linearities further, let us examine a simple resonance which is strictly
linear.
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Fig. 7.2 The field in a simple dipole. The 6N and S5 poles superimposed on the
magnet poles give the effect of cutting off the poles to a finite width.

7.3 The second-order resonance

‘We shall use the circle approximation to solve the problem of the resonance driven
by quadrupoles. A small elementary quadrupole of strength 6(K1) is located

close to an F quadrupole where 8, = § (Fig. 7.3). Suppose a particle describes
a circular trajectory of radius a = /¢ and encounters the quadrupole at phase

e(s) = Q0,

where 6 is the azimuth which corresponds exactly to ¢ at the quadrupoles of a
FODO lattice.

The first step is to write down the unperturbed displacement at the small
quadrupole:

T = acos Q.
The particle receives a divergence kick (Fig. 7.3):

A(Bl)  A(Kl)z
Ay — _
v Bp  Bp

The small change in BA:L" ,
Ap = fAa,
perturbs the amplitude a by
Aa = Ap sin Q4.
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Kick Ap = ABx'

2wAQ

Y

Fig. 7.3 Circle diagram shows effect of kick at phase Q0. There is a small phase
advance.

Even more significantly, there is a small phase advance (Fig. 7.3):
A
2TAQ = TP cos Q6.

By successive substitution, we get

2rAQ = 8 cos2Q0.

A(IK)
Bp

Over one turn, the @ changes from the unperturbed @ by

PA(IK)
AQ=——"+ 2 1).
Q =(Bp) (cos2Q6 + 1)
On an average this shifts @) by
BA(IK)
AQ =—2.
@ 4w (Bp)
Similarly, the average perturbation in amplitude a is
& ~ 21AQ.
a

However, the phase Q8 on which the particle meets the quadrupole changes on
each turn by 27 times the fractional part of ) and hence the Q) value for each
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turn oscillates and it may lie anywhere in a band

_ BA(K)
Q= T (By)

about the mean value.

Suppose this band includes a half-integer @) value. Eventually, on a particular
turn, a particle will have exactly this half-integer @ value (Q = p/2). It has been
perturbed by the A(IK) error to a @ value where it ‘locks on’ to a half-integer
stopband. Once there, the particle repeats its motion every two turns, the small
amplitude increase from the perturbation Aa builds up coherently and extracts
the beam from the machine.

We can visualize this in another way by saying that the half-integer line in the
Q diagram, 2Q) = p (p = integer), has a finite width £AQ with respect to the
unperturbed @ of the particle. Any particle whose unperturbed @ lies in this
stopband width locks into resonance and is lost (Fig. 7.4).

In practice, each quadrupole in the lattice of a real machine has a small field
error. The A(KI)’s are chosen from a random distribution with an r.m.s. value
A(K)yms- If the N focusing quadrupoles at /3 have the main effect, we can see
that the r.m.s. expectation value for §Q is

N BA(K)ims
(0Qems =\ 5 "

The factor of v/2 comes from integrating over the random phase distribution.
The statistical treatment is similar to that used for estimating the closed-orbit
distortion.

Now let us use Fourier analysis to see which particular azimuthal harmonic
of the A(KI) pattern drives the stopband. Using the normalized strength k =
K/(Bp), we analyse the function §(5k) into its Fourier harmonics

Bk(s) = > Bhycos(ph + N),

and

2m

Bk, — % / ds 51Bk(s)] cos(pf + A).
0

In general, all harmonics, that is, all values of p, have equal expectation values
in the random pattern of errors. We substitute the pth term in the series into the
earlier expression for the increment in @ and work through the steps to obtain

2rAQ = / % cos(pd + A){cos2Q0 + 1} ds.
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Fig. 7.4 Alternative diagrams showing perturbed @ and a stopband.

The integration can be simplified by writing ds = R d#:
27

/cos 2Q0 cos(pd + A) db.
0

g Dt

The integral is finite only over many betatron oscillations when the resonant
condition is fulfilled:

20Q = p.

We have revealed the link between the azimuthal frequency p in the pattern of
quadrupole errors and the 2Q) = p condition which describes the stopband. For
example, in the SPS the half-integer stopband 2@ = 55 lies close to Q@ = 27.6.
The azimuthal Fourier component which drives this is p = 55. Similarly, a pattern
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of correction quadrupoles, powered in a pattern of currents which follows the
function

i = igsin(550 + \)

around the ring can be used to compensate the stopband by matching iy and
A empirically to the amplitude of the driving term in the error pattern. In
applying this technique, we look for a sudden beam loss due to a strong stop-
band at some point in the acceleration cycle, where Q' and Ap/p are large
and gradient errors important. This loss will appear as a downward step in
the beam current transformer signal. We then choose @ to lie in the stopband
at that point to enhance the effect and alter the phase and amplitude of the
azimuthal current patterns of the harmonic correctors to minimize the loss. We
may have to do this at various points in the cycle with different phase and
amplitude.

Two sets of such quadrupoles are needed: one set near F lattice quadrupoles
affecting mainly 2@y, = 55; the other set near D quadrupoles affecting 2Q), = 55.

7.4 The third-integer resonance

Third-integer stopbands are driven by sextupole field errors and are therefore
non-linear. Again we shall use the circle diagram. First let us imagine a single
short sextupole of length [, near a horizontal maximum beta location. Its field is

1d’B, 22 B_” 9

2 dx? 277
and it kicks a particle with betatron phase Q8 by

- 513// x2 _ BZB”aQ

2(Bp) 2(Bp)

inducing the following increments in phase and amplitude:

AB =

cos2Qb

& Ap sin Q4 = pLB cosQQG sin Q0,
a 2(Bp)
A¢ = % cosQf = ﬁéBp()l cos>Q0
_ fGiBa (cos 3Q0 + 3 cos Q).
~ 8(Bp)

Suppose @ is close to a third integer; then the kicks on three successive turns
appear as in Fig. 7.5. The second term averages to zero over three turns and we
are left with a phase shift

BlB"a cos3Q0

2rAQ = Ag = S(Bp)
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Turnl

Fig. 7.5 Phase-space traject-
ory on a third-order reso-
nance.

We can now guess how resonances arise. Close to Q = p/3, where p is an
integer, cos 3Q0 varies slowly, wandering within a band about the unperturbed
Qo as in Fig. 7.4:

ﬂlB//
167 (Bp)

/BlB//

6m(Bp)

As in the case of the half-integer resonance we call this the stopband width
but it really is a perturbation in the motion of the particle itself. We can write
the expression for amplitude perturbation

Aa  plB"a
a  8(Bp)

Qo — <Q< Q0+

sin 3Q4.

Suppose the third-integer @) value is somewhere in the band. Then, after a
sufficient number of turns, the perturbed @ of the machine will be modulated
to coincide with @ ~ p/3. On each subsequent revolution, this increment builds
up until the particle is lost. Growth is rapid and the modulation of Q) away from
the resonant line is comparatively slow.

Looking back at the expressions earlier in this analysis, we find that the res-
onant condition, 3Q) = integer, arises because of the cos>@# term, which in
turn stems from the 22 dependence of the sextupole field. This reveals the link
between the order of the multipole and that of the resonance. We see that the
a? leads to a linear dependence of the width on the amplitude. The equivalent
term was a' in the case of the half-integer resonance, which led to a width that
was independent of amplitude. The same term will become a® in the case of a
fourth-order resonance giving a parabolic dependence of width upon amplitude.
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It is worth noting that the cos Q€ term, which we can ignore when away from
an integer ) value, suggests that sextupoles can drive integer stopbands as well
as third integers. Inspection of the expansion of cos™8 suggests resonances, which
other multipoles are capable of driving.

Returning to the third-order stopbands, we note that both stopband width
and growth rate are amplitude dependent. If Qg is a distance AQ from the
third-integer resonance, particles with amplitude

16m(Bp)AQ
< BIB"

never reach a one-third integer @ and are in a central region of stability. Replac-
ing the inequality by an equality, we obtain the amplitude of the metastable
fixed points in phase space where the resonant condition occurs but the growth
is infinitely slow (Fig. 7.6). The symmetry of the circle diagram suggests that
there are three fixed points at § = 0, 27 /3, and 47 /3. For a resonance of order
n, there will be n such points. The fixed points are joined by a separatrix,
which is the boundary of stable motion. A more rigorous theory, which takes
into account the perturbation in amplitude, indicates that the separatrix shape
is triangular, with the three arms being those to which particles cling on their
way out of the machine.

Unstable

fixed points ~______——

\ Unstable

w=m/3

Separatrix

Y

Fig. 7.6 Third-order separatrix.
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We have seen how a single sextupole can drive the resonance. Suppose now we
have an azimuthal distribution of sextupoles which can be expressed as a Fourier
series:

B"(6) = Z By cos pb,

then

Ap = ﬂB}g 3Q0 0 do
¢_;/8(Bp) cos 3Q0 cos pb db.

This integral is large and finite if p = 3Q.

This reveals, as in the earlier case of the second-order resonances, why it is
a particular harmonic in the azimuthal distribution which drives the stopband.
Strictly it is not the Fourier spectrum of B”(8), but of 3B”(#) which is impor-
tant. Periodicities in the lattice reflected in the shape of 3(6) and the periodicity
of the multipole pattern can thus mix to drive the resonances. This is partic-
ularly important since some multipole fields, like the remanent field pattern of
dipole magnets, are inevitably distributed in a systematic pattern around the
ring. This pattern is rich in the harmonics of S, the superperiodicity. Even if the
errors are evenly distributed, any modulation of § which follows the pattern of
insertions can give rise to systematic driving terms. It is an excellent working
rule to keep any systematic resonance, that is,

3Q = S(superperiod number) x integer = p,

out of the half-integer square in which @ is situated. This is often not easy in
practice.

If we were prepared to wade through a more lengthy analysis (Guignard 1970;
1978), we would find that the resonant condition 3Q) = p can be generalized into
n@Q = p, where 2n is the number of poles in the driving field pattern. Moreover,
both @y, and Qs are involved and each multipole can drive 2n lines in the working
diagram corresponding to each value of p. These are

lQh + va =P,

where |l| + |m| = n. In the third-integer case these are

3Qh7 2Qh + QV? Qh =+ 2Qv7 3QV =D-

The positive sign defines ‘sum’ resonances and the negative sign the ‘difference’
resonances. These alternate between those driven by normal and skew multipoles
(Fig. 7.1).

As in the second-order case, the four third-order sum resonances can be com-
pensated with sets of multipoles powered individually to generate a particular
Fourier component in their azimuthal distributions. By permuting these two
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kinds of sextupoles with the two types of location, we can attack the four lines
more or less orthogonally.

7.4.1 Slow extraction using the third-order resonance

So far we have thought of resonances as a disease to be avoided, yet there is at
least one useful function that they can perform. Slow extraction, though rarely
needed in large synchrotron colliders, is used to deliver a steady beam from
medical synchrotrons.

We have seen that a third-order stopband extracts particles above a cer-
tain amplitude, the amplitude of the unstable fixed points which define a
separatrix between stability and instability (Fig. 7.6). The dimensions of the
separatrix characterized by a are determined by AQ, the difference between
the unperturbed @ and the stopband. As one approaches the third integer by,
say, increasing the focusing strength of the lattice quadrupoles, AQ shrinks,
the unstable amplitude a becomes smaller, and the particles are squeezed out
along the three arms of the separatrix. If we make AQ shrink to zero over
a period of a few hundred milliseconds, we can produce a rather slow spill
extraction.

At first sight, we might expect only one-third of the particles to migrate
to positive x values since there are three separatrices, but we must remem-
ber that a particle jumps from one arm to the next each turn, finally jumping
the extraction septum on the turn when its displacement is largest. The sep-
tum is a thin-walled deflecting magnet at the edge of the aperture. The growth
increases rapidly as particles progress along the unstable separatrix and, if the
stable area is small compared to the distance between the beam and the septum,
the growth per turn will be large and the probability of a particle striking the
septum rather than jumping over it is small. Clearly, it also helps to have a thin
septum.

The magnet or quadrupole ripple can cause an uneven spill, making @
approach the third integer in a series of jerks and modulating the rate at which
particles emerge. However, a spread in particle momentum will smooth this out
and, if the chromaticity is finite, we will have swept through a much larger range
of @ values before all separatrices for all momenta have shrunk to zero. The
change in @ caused by ripple is then much less significant.

7.5 Landau damping with octupoles

Another beneficial effect of multipoles is the use of octupoles to damp the
coherent transverse collective instabilities.

We shall later see in Chapter 9 that for a transverse instability to be dangerous,
the growth time must win over other mechanisms which tend to destroy the
coherent pattern and damp out the motion. One such damping mechanism is
the @ spread in the beam. Coherent oscillations decay, or become dephased, in a
number of betatron oscillations comparable to 1/AQ, where AQ is the Q spread
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in the beam. This corresponds to a damping time, expressed in terms of the
revolution frequency, wq/27:

27
H=——,
d woAQ

which is just the inverse of the spread in frequencies of the oscillating particles.
The threshold for the growth of the instability is exceeded when its time 7,
which increases with intensity, becomes faster than 74. This is an example of
Landau damping.

Unfortunately, as a result of improvements in single-particle dynamics and
as we correct chromaticity in our quest for a small AQ to avoid lines in the Q
diagram, we inevitably lower the threshold intensity for the instability. A pure
machine is infinitely unstable. Typically, as the optics is refined, suddenly the
beam begins to suffer from an instability and a large fraction is lost before sta-
bility is restored at a lower intensity. Octupoles, however, produce an amplitude
@-dependence which is more effective than the momentum-dependent ) spread
produced by sextupoles in damping instabilities. The sextupoles are less effective
because each particle changes in momentum during a synchrotron oscillation and,
in a time comparable to 7, all particles have the same mean momentum. Sex-
tupoles do not therefore spread the mean @ of the particles. Octupoles, producing
an amplitude @-dependence, do.

The circle diagram can be used to calculate the effect of an octupole which
gives a kick

A(Bl) _BIB"

Ap =5 Bp  3!Bp

cos®Q0.

The change in phase is

B _ BILB"a? cos Q0
QWAQ = A(]S = W,

which averages to

ﬁlB/”a2
AQ =——.
@ 32m(Bp)

Of course, if the octupoles are placed around the ring, they can also excite
fourth-order resonances. A good rule is to have as many of them as possible and
to distribute them at equal intervals of betatron phase. If there are S octupoles
distributed in this way, their Fourier harmonics are .S, 25, etc. and they can only
excite structure resonances near the @) values given by

4Q = S x an integer.
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Fig. 7.7 Beam survival impaired by resonances in the FNAL main ring.

Although these systematic resonances are very strong, it should not be difficult
to choose S so that @ is not in the same integer square as one of the values

of nS/4.

7.6 Injection studies at FNAL

As a cautionary tale to complete this analysis of resonant behaviour, we should
examine the contour model of beam survival in Fig. 7.7. This is the result of
an old but important experiment performed when the FNAL main ring was
first commissioned. It shows how uncorrected resonances can severely limit the
beam which is accelerated. The third-integer lines (v, the US nomenclature is
equivalent to European @) reduce beam survival to zero in some regions.

In this case, magnet ripple, another effect which scales adversely with ring
size, ensured that the resonances were broadened making it virtually impossible
to obtain full survival. It should be said that at the time this machine was
built, accelerator experts had been lulled into complacency about resonances by
experiences with smaller rings. Fortunately, it was possible to compensate the
resonances and the FNAL machine went on to break all intensity records.

Exercises

7.1 A synchrotron consists of 108 HF (horizontally focusing) quadrupoles
(k> 1) alternating with 108 HD quadrupoles. The gradient of the
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quadrupoles is 19.4T/m at 400 GeV/c momentum. They are 3.22m long.
The maximum horizontal § is at HF and is 108 m, and the minimum £ is
at HD and is 18 m. In the vertical plane the HF become defocusing and
HD become focusing. Hence, the same vertical maximum in 3 is at HD and
the same minimum at HF. Devise a 2 x 2 matrix which give the fractional
current change, in the separate circuits which feed HF and HD quadrupoles,
necessary for a small change in @}, and Q.

What is the chromaticity, dQ/d(Ap/p), of this machine?
A sextupole field can be expressed as
B/I 5

Derive an expression for the local quadrupole field about a particle whose
displacement is x in the horizontal plane.

Suppose there are 36 such magnets, 85 cm long with B” = 150 T/m?, placed
next to HF quadrupoles at a mean dispersion of 2.2 m. How much will this
change the horizontal @ for a 400 GeV/c particle with momentum error
of 1%o?

How much is the change in horizontal chromaticity introduced by these
sextupoles?

What happens to the vertical chromaticity?

How can you simultaneously correct

th dQV

v ___¥r 9

d(Ap/p) d(Ap/p)

What is the ‘n’ value for the magnet shown below?

Y

\N_) Q/(40= 3mw/2)
\S) (’N (40=m/2)
r
/4‘ >

v) G
D@
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7.9 Write down an expression for the magnetic scalar potential, ¢, in polar
co-ordinates for this magnet given that

B,=2 -2

m_%v y — ay
and that
%_ a_gb_siHG%
or % r 00’
d¢p . 0¢  cosfIp
8y_81n98r+ r 00’

Find simple expressions for B, and B, as a function of x and y. How would
you write ¢ as a function of x and y?

7.10 The magnet in exercise 7.8 has a horizontal variation of B, which is a simple
function of . What is that function? Use a circle diagram to find an expres-
sion for the stopband width and @ shift from an octupole remembering that

8cos* 0 = cos 49 + 4cosh + 3.

What is the essential difference in the physics of the behaviour of a particle
in an octupole in comparison with a quadrupole?
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8.1 Synchrotron radiation

One of the first decisions to be made in designing a synchrotron is to choose
the maximum field and its radius. We have seen how the product of these two
quantities, Bp, is proportional to the momentum of the particle and this, in
turn, to the energy of the particle, if it is close to the velocity of light. During
the history of the development of synchrotrons, these two limits have restricted
designers to a window of energy from roughly 1 GeV to a few TeV.

So far in this study we have not had to consider whether the synchrotron is
to accelerate electrons or protons. Indeed nearly all the theory which we have
presented applies equally to both kinds of particles. There is, however, one impor-
tant difference which we must examine in the context of synchrotron radiation.
The mass of the electron is roughly 2000 times smaller than that of the proton
and, therefore, for the same energy it has a v that is 2000 times larger. The
emission of synchrotron radiation depends on 4* and it turns out that across
the entire window of energy in which we build synchrotrons the v of electrons is
high enough to cause copious emission of radiation in the visible spectrum and
at higher frequencies. In contrast, it is only at the highest energies for which
proton synchrotrons have been designed that this radiation is at all significant.
Unfortunately, all the energy radiated by electrons must be restored to the beam
by the r.f. cavities or the particle will slow down and be lost. Electron machines
have powerful r.f. systems and much of the voltage per turn they apply is merely
to keep the beam from decelerating.

We shall see later that the radiation losses are proportional to the curvature
of the path and hence the designer of an electron machine often chooses not to
design for the highest magnetic field, which would merely aggravate this curva-
ture. The ring is much larger than the limit imposed by magnetic rigidity in order
to keep losses within acceptable bounds. There is little incentive to use super-
conducting magnets in high-energy electron machines since they only reduce the
radius. The extra cost of the longer circumference is more than offset by the
reduction of r.f. related costs.

We shall see that synchrotron emission also makes itself felt in determining
the energy spread and betatron emittances of the electron beam. The emission
of discrete quanta of synchrotron radiation is a random process which contin-
ually stirs up the beam, dilating its emittance in all three degrees of freedom.
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Fortunately, as we shall discover, higher-momentum particles within the bucket
emit much more radiation than their partners at lower energy; a process which, if
left to itself, would damp the beam to become monochromatic. The phase-space
area of such a beam is no longer determined by Liouville’s theorem as it would
be in a proton machine, but it results from an equilibrium between these two
effects, both of which are consequences of radiation.

8.1.1 Emission of radiation

The physical explanation of the emission of synchrotron radiation deserves a
detailed discussion. Further explanation can be found in Appendix 1 and for an
even more rigorous and general description the reader is referred to well-known
texts (Hiibner 1984; Jackson 1962; Walker 1992a,b).

Some readers may be familiar with bremsstrahlung, the so-called braking radi-
ation that is emitted as charged particles are slowed down in their interaction
with matter. Synchrotron emission is a related phenomenon, but while in the
case of bremsstrahlung the force is usually applied in opposition to the velocity
vector, in a synchrotron the bending force and the acceleration fare both normal
to the trajectory. There is nothing esoteric about synchrotron radiation—it is
just like the propagating electromagnetic wave set up by a moving charge such
as the charges oscillating up and down a dipole transmitting aerial. A classical
formula attributed to Larmor, and found in most physics text books, for the
power radiated by a moving charge is:

2
1 e 9

4dmeg 3

b

~

where f is the acceleration. For this to apply, the electron and the observer must
be moving with a relative velocity which is much less than c. It is not necessary
to invoke quantum mechanics to arrive at the above expression; one can apply
Maxwell’s equations and allow for the finite time for fields generated by the
moving charge to reach the observer.

The rigorous derivation for a relativistic particle circulating in a synchrotron
can be found in Appendix 1. The result is

1 €2f2

Y 6wey 3

Apart from a small numerical factor, the main difference between this and
the classical formula is through the quantity v*. To understand this, we must
examine the Lorentz transformation from the moving frame to the laboratory,
where we find that the acceleration normal to the direction of motion contains a
factor of 2.

8.1.2 Application to a synchrotron

Now we come to apply the expression to a beam circulating in an electron syn-
chrotron to see how it scales with energy and with the radius of curvature. We
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remember that for motion in a circle f is simply v?/p and since, in all important
cases, v & ¢,

2
1 ec 4

7= 67eg F o
In order to see how the power scales with the energy of the beam, we may
simply substitute v2 = E?/m2c* and use the expression for the classical radius

of the electron,

2
ro = 46—2 — 2.8179 x 1015 m;
TEYMQC
we have
P, = g TeC E_4

3 (moc®)® 72

One finds that for a large machine like LEP the power can be several MW.
This must be pumped into the beam through the r.f. cavities.

The above formula for the power applies to an electron circulating in the
synchronous orbit. It shows how the power varies among synchrotrons of different
energies and radii assuming that the electron is centred in the vacuum chamber.
The situation is different if we fix the mean radius and field of the synchrotron
and want to see how particles of different energies radiate. In this case B is
constant and p is a function of momentum. We can then substitute,

1 B2e? B2e2¢? B2e2¢?

P (e T E?
and obtain what we call the ‘constant field’ formula:
_2 7€ pops

T3 (moc)3

8.1.3 The energy lost per turn

The power radiated is important from the r.f. engineering point of view and one
must optimize lattice parameters with this in mind. To estimate the total voltage
required to keep the beam circulating, we should also know the energy radiated
by a particle on each turn. This is obtained by multiplying the power by the
revolution time (27 R/fc):
4 re E*
T
37 (moc?)? p

It can be seen from Table 8.1 that, as higher-energy electron rings become
important for particle physics, it becomes difficult to keep Uy within reasonable
bounds by increasing p. It is quite natural in a synchrotron to scale Uy and p
linearly with energy but in an electron machine there is an additional factor E3

to be compensated. This becomes impractical at energies above 100 GeV even
with a machine like LEP, whose radius of curvature has already been chosen to

Uy =
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Table 8.1 Synchrotron radiation from large synchrotrons

Uo P'y X Npeam
LEP at 50 GeV 126 MeV /turn 1.6 MW + 14 MW (ohmic)
LEP at 100 GeV 2.9 GeV/turn 18 MW + 224 MW (ohmic)
500 GeV in 250km ring 220 GeV /turn 100 MW

Y

0 0.5 1.0 1.5 2.0 2.5
§=wh, =u/u,

Fig. 8.1 Spectrum of synchrotron emission.

be about 16 times larger than one would normally choose for a proton machine
with warm iron magnets.

8.1.4 The spectrum of frequencies

To an observer somewhere on the circumference, a bunch of electrons circulating
in a synchrotron will appear as a delta function of charge and hence the spectrum
radiated (Fig. 8.1) is broad. This shows a universal curve, normalized by dividing

by the energy of a critical quantum:
3 hery?
=5,

Ue = c

At the same time, the spectral density, S(§) ~ 0.78¢1/2¢7¢, is normalized to
give a unit integral under the curve. Its shape is independent of both machine
parameters and the energy of the beam but, of course, the spectral density and
the breadth of the spectrum depend on the energy of a critical quantum.
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8.1.5 The rate of emission of quanta

One can get an idea of the number of photons emitted by each electron per
second by dividing the power by this critical quantum. More careful averaging
gives

wn
8w

N

8.2 Damping of synchrotron motion

Let us now turn to the virtues rather than the vices of electron machines. We
are already familiar with Liouville’s theorem which tells us that the normalized
emittance in a high-energy synchrotron can never be smaller than the first stage
of the linac that feeds it. However, we have learned that this theorem applies only
when the system is conservative—when there is no internal damping mechanism.
In an electron machine there is such a damping mechanism, provided by the
synchrotron radiation emission. The transverse emittance of an electron ring is
not subject to Liouville. In fact synchrotron emission ‘cools’ the beam, not only
in the longitudinal phase plane, but also in the transverse plane. At the same
time, the quantized nature of the emission of synchrotron light ‘warms’ the beam
and we find the emittances are determined by the equilibrium between heating
and cooling in each plane. Within limits we are free to influence the equilibrium
value by an appropriate choice of lattice configuration and parameters.

Figure 8.2(a) shows the familiar trajectory of a proton in longitudinal phase
space. At the risk of causing confusion by multiple notation, but for purely
historical reasons, we use ¢ for the difference in energy between our test particle
and the synchronous particle. In the case of protons, we have ignored the tiny
effect of synchrotron emission and we see that the particle, therefore, follows a
closed contour.

In Fig. 8.2(b) we see the effect of synchrotron radiation. We are tempted to
calculate the energy lost as the particle follows a trajectory in longitudinal phase
space with the following expression, which we derived earlier:

2rec  E*

P =——<_
T 3(moc?)? p?

but this would be wrong for it assumes that £ = ecBp, which may be true for
the synchronous particle but not when a particle changes its energy in a fixed
guide field. We had better use the ‘constant field’ formula:

2 ree?

P = E’B?.
T 3 (moc)3

However that there is still a quadratic dependence of power on energy, which
provides the damping. Of course, we must remember that all the time the energy
loss of the reference particle is being made up by the accelerating voltage in
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Fig. 8.2 Synchrotron motion in the case of (a) protons and (b) electrons.

the r.f. cavities and that the particle we are tracing also receives the same
‘topping up’.

Were it not for the quadratic dependence, both particles would neither lose
nor gain energy and the picture would be the same as for protons. However,
because of the quadratic dependence, a particle which follows the upper half of
the trajectory loses more energy than the reference or synchronous particle and
it migrates inwards in the phase diagram towards the origin. In the lower half of
the trajectory it also migrates inwards because now it loses less energy relative to
the synchronous particle, and the ‘topping up’ voltage applied indiscriminately
to both particles is too generous for the lower-energy electron.

Now let us be more quantitative. The power lost is

2

M

_g Te€
T3 (moc)3

g Te€
3 (mgc)?

B*(Ey +¢)’ =~ B*(E§ + 2Ege).

The first term in the brackets is the energy loss of the synchronous particle which
is compensated by the r.f. cavities. The rate of energy loss with respect to the
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synchronous particle is just the second term, and we can write the differential as
d 0P, 2P, .

@~ e T B

8.2.1 Behaviour of an electron with energy defect

As a particle follows the elliptical path of synchrotron motion, it loses more
energy on the upper half of the trajectory and gains more on the lower half than
does the synchronous particle. It, therefore, follows a spiral path,

e(t) = g9e™ cos O,

and the time constant of the exponential damping is

1|de P, 1
4= s‘ del <E0> ~ Time to lose all its energy’

We find that the damping time, the reciprocal of «, is simply the time it
would take for the particle to lose all its energy (linearly) and may be as short
as a few milliseconds. It is easy to imagine how such a fast damping time can
dominate the dynamics of an electron machine and make it much less prone to
instability. Single-particle instabilities due to high-order non-linear resonances
and many collective instabilities with longer growth times, may never get a
chance to develop.

The damping time we defined above refers to the linear dimensions of a longi-
tudinal phase-space diagram. We now want to compare this damping rate with
the rate of dilation of phase space due to the ‘graininess’ of emission of quanta
of synchrotron radiation. To make this comparison, we must use the damping
rate for the area of the longitudinal phase ellipse which is twice a.

8.2.2 Quantum emission

There must, of course, be some competing mechanism, otherwise the beam of
electrons would shrink rapidly and become perfectly monochromatic (Rees 1989).
The mechanism which causes the growth of the energy spread has its origins in
the fact that the emission occurs as discrete photons. Each photon takes away
some energy, and the point in longitudinal phase space which represents the
electron is displaced vertically downwards—a negative increment in . At first
glance, this looks as if it would have an equal probability of either increasing
or reducing the energy defect of the electron with respect to the synchronous
particle but let us look closer at the statistical nature of the phenomenon.

To make the problem more tractable, let us choose energy units for the ordi-
nates of our phase-space diagram such that the elliptical trajectory becomes a
circle of radius A. We have already established that the average rate of quantum
emission is given by

_nr
8w

N
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Each quantum reduces the electron energy by an average value of

3 hicy®
’U/C:h/.,UC:gT,Y.

8.2.3 Random walk

If we are allowed to be somewhat cavalier with the averaging process, just to
convince ourselves that emission dilates the beam, let us assume that the rate
is steady and each quantum has this value. The changes in energy are purely
one-dimensional and the problem is a classic random walk of n equal steps of
magnitude u. starting from a fixed initial point. The displacement grows as the
root of n:

AA = /nu..
The area grows as the square of the amplitude, the rate of change of A? being
d(A?) s

A more careful integration over distributions of energy and time gives the
logarithmic rate of growth of area:
1 d(A?) 11 N(u?)
A2 dt 21 A%

8.2.4 Equilibrium
We can now equate this to the emittance shrinkage rate in order to find the
equilibrium value of A. Recall that the growth is in equilibrium with the damping
when it is equal to the rate of damping of phase-space area, that is, twice the
natural damping rate for amplitude we calculated above:

ENU% _og = 4P7'

27 A2 Ey

Solving this to find the equilibrium amplitude, we obtain

E
— Nk 2
- N 4P

From earlier analysis we know that

ue  15v/3
P8
and

3 hery?

0—5 D
g2 1 15v3 1 3 !
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The fluctuations are statistical and result in a Gaussian distribution of energy
about the mean value. Taking the projected value of A on the energy axis, the o
of the distribution can be calculated and expressed as a relative energy spread:

2
(%) = seamels)

2
1.92 x 10-131,

Having said this, a word of warning to readers who are more familiar with
proton synchrotrons: the emission of quanta is continuously stirring up the soup
of electrons, and individual electrons from time to time find themselves in the
tails of the Gaussian. We shall see later that one may calculate how long it takes
for half the beam to have found itself at some time in its history as much as
60 in energy defect from the centre of the distribution. This is a time of only a
few hours and could be the major source of beam attenuation in a storage ring
unless we allow a free space about the beam of at least 60. In proton machines,
the usual allowance is only 20 excitation of betatron amplitudes.

8.3 Excitation of betatron amplitudes

Quite similar concepts of excitation, damping, and the establishment of an equi-
librium between them come into play in the transverse phase plane. Again, the
growth is due to quantum graininess. In Fig. 8.3 we see an electron approaching
from left to right, making betatron oscillations of amplitude x5 about a closed
orbit, which follows the dispersion function D(s) and whose displacement is,
therefore, . = D(s)dp/p ~ D(s)0E/E. When a quantum is emitted, there is a
sudden change in energy, which means that the particle begins to oscillate about
a different reference orbit. The energy of the photon of synchrotron radiation

>» =

Before

Off-energy orbit

Fig. 8.3 Changes in betatron amplitude at the point of emission.
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emitted is u, and from then on the electron’s closed orbit must be that of its new
energy. This is lower by u, and hence is instantaneously displaced towards the
centre of the ring by dx. = D(s)u/E. Of course, there can be no discontinuity in
the displacement or the divergence of the electron because the photon is emit-
ted tangential to its path. The reduction of the displacement due to the energy
change must be exactly balanced by an increase in the betatron amplitude to
leave the quantity:
oE

x5+ D(s) i
unchanged. Hence, we have the important physical link between the transverse
plane and the energy loss. The increment to its betatron amplitude is just the
fractional energy change multiplied by the local value of the dispersion:

U
0 = —D—e.
X EO

8.3.1 The effect on the emittance

Without enquiring too closely into the rigour of the expression, we can imagine
that the increase in the horizontal emittance or, for a single particle, of the

Courant and Snyder invariant, is

22
u*D
be = 8(2?) = ——.

Here we are using the standard relation between the square of the displacement,
betatron amplitude, and emittance (the other use of the symbol ¢) together with
our notion of a random walk. With a more care we may obtain

de = 6(va2 + 2aaa’ + Ba’’)
2

U
T2
EO

<7D2 +2aDD' + 3D"” )

H(s)
where H(s) is purely a property of the lattice and is usually calculated by the
program which computes the Twiss parameters.

We should be averaging this over all the bending fields in the ring, as the
emission has an equal probability of occurring anywhere in a ring of equal bends:

de  N@w?) 1

Notice that this excitation of horizontal betatron oscillations has no equiva-
lent in the vertical plane, though inevitably there is a certain amount of coupling
into the vertical plane via skew quadrupole fields which contributes to a vertical
beam size.



Damping of betatron oscillations 121

8.4 Damping of betatron oscillations

Now we must examine the damping mechanism which, with the excitation,
results in an equilibrium beam width. The photon emitted by the electron is
co-linear with the path of the electron within a very small angle which is of the
order 1/ and quantum emission does not change the local displacement and
divergence. Figure 8.4 shows the small resultant change dp in the momentum
vector. At first sight this does not seem to excite or damp the betatron motion,
at least in the vertical plane which we portray.

The damping mechanism arises, not because of what happens at the site
of emission, but because of the inability of the r.f. cavity to restore dp
exactly.

As soon as the electron loses energy, the principle of phase stability comes into
play so that the electron arrives at the r.f. cavity at a phase where it is given a
little extra energy to correct for the loss. But the r.f. cavity can only accelerate
the electron in the longitudinal direction, increasing p; without affecting pi
(Fig. 8.5).

If we reflect carefully, we can see that because the emission always reduces
the electron’s energy, the effect of the cavity can only be to decrease the
divergence,

;b PL ,< 5p)
7= ~Z(1l—-—),
py pytop p

leading to a steady damping of the betatron motion.
At first glance, the fractional change in divergence just seems to be the frac-
tional change in momentum and the damping time, the same as that for energy.

op

Y

Fig. 8.4 Change in momentum at the point of emission.



122 Electrons

op

Y

Fig. 8.5 Change in momentum at the r.f. cavity.

However, when we look at the average effect projected on the displacement axis,
the rate turns out to be half of that for energy.

8.4.1 The vertical plane

The observant reader would not have failed to notice that we have chosen
to explain the excitation of betatron oscillations in the horizontal plane but
described the damping in the vertical plane. Of course, the same damping mech-
anism applies in the horizontal plane. By discussing it in the vertical plane we
have tried to show that it is quite independent of the change in displacement and
divergence due to the energy loss. A complete treatment in both planes including
the coupling into the vertical plane can be found in other texts (Rees 1989).

Exercises

8.1 An electron storage ring has a circumference of 27 km. Calculate the energy
loss per turn for a 50 GeV electron and for a 100 GeV electron.

8.2 What will be the power dissipated for a 100 GeV beam of 1 mA current?

8.3 Calculate the characteristic quantum energy and wavelength at 100 GeV
(h = 6.6262 x 10734 Js)

8.4 Calculate the equilibrium energy spread at 50 and 100 GeV.

8.5 Use the following expression,

Uy — 4 To E4
* 7 3 o



Exercises 123

to calculate the energy loss per turn of a 4 TeV muon in a ring of 4 km radius
(muon mass is 105 MeV).

8.6 What would be the characteristic frequency of the synchrotron light
emitted?

8.7 Calculate the damping time.
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Space charge and
instabilities

9.1 Transverse space charge

Figure 9.1 shows a beam of cylindrical cross section. A proton located at (r, ¢)
experiences only the electrostatic fields from its neighbours:

* ,0 *
Ef=—
T 2€0 ’
and a radial defocusing force
[*=ek",

where the asterisk indicates the coordinate system moving with the proton.
Transforming this relativistically into the laboratory system, the protons
behave as line currents, producing magnetic fields and a mutually repelling radial

Density p

Fig. 9.1 Space-charge fields in
a cylindrical beam of uniform
density.
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defocusing force:

p p v

B = By =2

" 250T’ ¢ 250c2r7
L ep ) epr
Ofr =e(E X B) = —(1 — = .
Fr=elB+ox B = L0 Py = 2

We can equate this to the rate of change of transverse momentum, velocity
and, finally, the divergence:

epr B i B i mur
26072 0fr = dt(pT) Cdt <« /1— 52)

d*r o d?r
=my g = my(Bce) Pk

Using the classical proton radius

62

To =15%x107%m,

4dmegmoc?

to mop up a lot of constants, we arrive at

d27" 7‘0N
ds? { 32+3RS }’”’
where R is the radius of machine, S the beam cross-section, and N the number
of circulating protons.

Remembering that r can be either z or z in our Cartesian system for describing
betatron motion, we see that the equation is none other than Hill’'s equation with
k a defocusing term acting all round the circumference,

—7"0N

h= RS

As a consequence, in both the horizontal and the vertical planes, the @Q is
shifted downwards by an amount which can be calculated from the previous for-
mulae for the effect of gradient errors in Chapter 6 assuming the mean betatron
function is R/Q:

- —ToRN
T 2Q023S”

At first sight, this seems not to be a nuisance. Uncorrected, a 6Q of a few times
1072 can be accommodated between the stopbands and, if it gets larger, retuning
the lattice quadrupole strength will restore the working point. But there is a limit
to how far one can apply such compensation. In practice, for accelerators this is
usually taken as 6@) < 0.25. The difficulty is that protons near the edge of the r.f.
bunch find themselves, twice every synchrotron oscillation, in a region of rarefied
density at the head and tail of the bunch. The d@ is not the same for all protons
or even for the same proton at different points in the synchrotron motion.

0Q
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The intensity N, which gives a §Q of —0.25, is usually quoted as the space-
charge limit. Since 0Q) is strongly dependent on 3 and « and is most serious at
injection, the intensity limit it imposes can be considerably improved if a booster
synchrotron is used to raise the injection energy. It used to be about N = 102
for the CERN-PS until a booster was inserted to raise the energy of injection
from 50 to 800 MeV.

Readers are warned not to rely on the above formula for §@ in numerical
calculations. The full and accurate formula can be found in Laslett and Resegotti
(1967) and Hofmann (1992).

The more accurate formula takes into account that

(i) the beam is bunched and, therefore, concentrated by a factor of
B =(¢2 — ¢1)/2m;

(ii) the image forces in the walls of the vacuum chamber play an important role
in determining the absolute d@. In fact, the vacuum chamber size is more
important than S at high energy.

9.2 General features of collective instabilities

Once the trivial hardware faults are eliminated and an accelerator is brought into
operation with a circulating beam, we may expect the intensity to improve as cor-
rections are applied to compensate magnetic imperfections, the optics is tuned to
design values and non-linear behaviour compensated. Yet often, just as the mile-
stone of achieving the design intensity is in sight, the beam suddenly disappears
as if there were some critical intensity which cannot be exceeded. This can be a
symptom of collective instability in which the charge of the beam itself produces
an oscillating field strong enough to perturb the density distribution or displace-
ment of another part of the circulating beam. If the phase relation between the
field and the perturbation of density is in the right direction, it will reinforce the
oscillating field and the beam will behave like an amplifier with positive feedback.

We will not try to describe in detail the many different kinds of instabilities.
They may be caused by perturbing forces acting in either the longitudinal or
transverse phase planes which are often produced by resonating cavities or other
objects in the ring. In some cases, they can link the head to the tail of a single
bunch or couple oscillations in the centre of charge of one bunch to the motion of
another bunch. In this chapter, which is only an introduction to a vast subject,
we take only the simple example of a longitudinal instability excited by a resonant
cavity. However, before we study this, let us look at an even simpler instability
which does not require any resonant cavity but illustrates the important point
of how the conditions for instability change as we cross transition.

9.3 Negative-mass instability

Although this instability is not one of the most troublesome encountered in
modern synchrotrons, it is an excellent starting point in the understanding of
collective effects and how they grow.
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Fig. 9.2 Line charge density of
a circulating beam.

Figure 9.2 shows how the local line density of charge might vary around a
synchrotron once the instability begins to develop. One of the tricks we use in
understanding an instability is to postulate such a simple form for the perturba-
tion, analyse its effect on the beam distribution, and then test whether such a
pattern is self-sustaining. If the forces due to the field setup reinforce its shape,
it will grow exponentially from a random component of noise in the azimuthal
variation of A.

The azimuthal modulation is replotted in Cartesian form in Fig. 9.3. We first
examine the particle at A. This finds itself with a larger charge density behind
it, pushing it forward, while particle B will be decelerated by the mountain of
charge in front of it. The field due to this space-charge force may be written as
e ] oA

E:-[ yat

47egy?
The quantity in square brackets is a constant which includes the 1/4% factor
to be expected when we transform a purely electrostatic space-charge effect to
the laboratory frame in which we express the field. However, let us not become
mesmerized by relativity. The important physics is in the term 9A/ds. This
indicates that if the effect of the field on the particle distribution is to make
OM/0s larger, this will reinforce F and we may expect unstable growth.

At first sight, this appears not to be the case as we find that the particle A is
accelerated away from the hump and B decelerated backwards, thus flattening
out the perturbation. This is the picture below transition but we must not forget
that, above transition, accelerating a charge at A will not significantly increase
its speed but, more importantly, cause it to take a circular orbit of larger radius.
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2 A

Y

Fig. 9.3 Negative mass instability.

This will reduce A’s angular velocity, 9, so that A moves towards the summit.
Similarly, as B is ‘decelerated’ its angular velocity increases to join the summit.
Hence, as we pass through transition we enter a new regime where this kind of
‘negative mass’ instability can grow from noise. The reader may wonder how any
synchrotron can overcome this barrier and certainly this was a concern of the
builders of both AGS and CERN-PS, the first strong-focusing synchrotrons, as
they pushed up their intensities. Later in this chapter we will discuss a mechanism
of stabilizing or damping the growth of such an instability.

9.4 Longitudinal instability
9.4.1 Driving terms

In this study of instabilities we must first introduce a number of individual
concepts before we are able to piece the theory together. The first of these is the
concept of self-reinforcing growth discussed above. The second is Fourier analysis
of the periodic signal of the bunch as it circulates around the machine (Fig. 9.4).
In the frequency domain such a delta function produces a fundamental at the
machine’s revolution frequency and all its higher harmonics which are present
with equal amplitudes,

I=> I mt

Figure 9.5 shows this comb of frequencies and, superimposed, the response of
an r.f. cavity somewhere in the ring. It only needs one of the frequencies to fall
in the response curve of the cavity for it to become excited. The next step in
understanding instabilities is to calculate the fields such a bunch can set up in
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Observer
Fig. 9.4 A delta function of charge
passes an observer.
Response of an
A .
r.f. cavity
I, /
I T I 1 1
0 Wy 2w, 3w, 4w, 5w0 6w0
Frequency

Fig. 9.5 Spectrum from a bunch.

a passive cavity. It is these fields, acting back on the beam distribution, which
cause the instability to grow.

9.4.2 Exciting a cavity-like object

The cavity we consider need not be one of the r.f. cavities deliberately installed
to accelerate particles but any box or local enlargement in the beam tube which
can resonate. Figure 1.13 shows such a cavity-like object. Quite generally, we
can write the voltage, U, experienced by a particle in the cavity (approximately,
the voltage from one end to the other) in the same form as the current which
excites it:

I=1Ie ™ and U=Ue ™,
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and it is only natural (for everyone except perhaps Professor Ohm) to define an
impedance which is their ratio:

Z:X—H'Y:%.

This definition of impedance is crucial to our understanding of instabilities and
it is worth pausing for a moment to reflect on the physics. The impedance defined
in this way relates the force on the beam particles to the Fourier component of
the beam current which excites the force. It is a complex quantity and is only
real if the voltage and current are in phase. Here we have to be careful because
in our description of phase stability in Chapter 5 we assumed a zero-crossing of
the voltage wave as the bunch passed the cavity. On the other hand, in classical
AC circuit theory the phase angle is defined with respect to a voltage maximum.
The 90° difference in definition will be taken into account later by multiplying

Z by v—1=1.

9.4.3 Impedance of a cavity

We have glossed over the issue of whether the frequency in the above equations
is w, the frequency of excitation, or wy, the resonant frequency of the cavity.

Let us look more carefully at this using the analogy of a simple AC resonant
circuit (Fig. 9.6) and recall the elementary relations:

1 |C R
Wy = \/T_C and Q =R f = Lwr = Rer.

The differential equation for voltage and current is

.. Wy 9 R .
V+ V4wV =w—I,
Q Q
L 4 - 7T =
|
|
—

I R [— L 4

Fig. 9.6 AC resonant circuit.
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_ / 1
V =Vpe at og |:wr 1—r622t+¢]-

The damping coefficient

with the solution

=50
is the damping rate or, alternatively, the reciprocal of the decay time.

Text books on AC circuit theory show that if I = ITe=®* then the impedance
seen by the generator is

o

14+iQ(w? — w?) /ww;
1+ Q*((w? — w?) fwwr)? |

We write this as Z7 = X + 1Y and we can see that when w is less than w;
the reactive component, Y, is capacitive or negative while, after crossing zero at
w = wy, it becomes positive and inductive as the driving frequency rises above
the natural resonance of the oscillator.

Z(w)=R

9.4.4 Synthesis of the effect of a cavity

Now all the preparatory work is complete and we will soon be able to draw
the analogy between the effect of a cavity and the negative-mass instability. We
return to Fig. 9.2 and, instead of the line density A\, we consider the beam current

I=1+ Ilei(ne—ﬂt)'

Here n is the number of humps in the pattern around the ring, while €2 is simply
the angular frequency which an antenna in the wall of the vacuum chamber would
pick up. We may refer to n as the mode number of the instability. Note that
such a pattern is not frozen but will precess. We guess from our experience with
negative-mass instability that it is the gradient dI/ds which drives an instability
and, ignoring Iy, we write

I = Ilei(nO—Qt)'
Then for a ring of mean radius R,
dIl 1 dI m dI  n
_:___:I_’L(ne—ﬂt) d - e
ds R do 'R° e )

We rearrange this as

- 1.

Ilei(nO—Qt) _ Eﬁ
in ds
This seems a rather obscure relation but it enables us to substitute the gradient
of the current distribution for the current, I, in the next expression and draw

an analogy with the negative-mass instability.
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According to our definition of impedance, a cavity-like object (at 8 = 0) which
presents an impedance X + ¢Y at this frequency will produce an accelerating
voltage:

X +iY\dI
. —-Qt __
(X +iY) e _R( - )—ds
iR dal R o dl
=, W) =S¥ =X

This can be compared with the accelerating field for the negative-mass

instability:
(=) aA
Admegy?/ ds’

which, as we argued before, is unstable above transition and stable below it—a
result of the negative sign. The field due to the cavity has no minus sign before
it but when Y is negative, that is, capacitive, the right-hand side will become
negative and the cavity will have the same effect as negative mass on promoting
an instability—it will be unstable above the transition and stable below.

On the other hand, if we think through the logic of the negative-mass instabil-
ity again we will find that below transition an inductive impedance, for which Y
is positive, will decelerate the particle A, on the falling slope of the current wave
while accelerating B. This will enhance the ‘hump’ and cause instability in a
region where the negative-mass instability is stable. Just to complete the picture
an inductive impedance though unstable below will be stable above transition.

We can approximate the total effect of all the rather low-Q resonators which
comprise the large number of small changes in vacuum chamber cross-section by
a single cavity with @ =~ 1 and with w, close to the cutoff frequency of the beam
pipe (typically 1 MHz). Such an impedance is inductive in its response to beam
structure at lower frequencies than 1 MHz and hence is quite liable to provoke
an instability below transition.

9.4.5 A short cut to calculating an instability

The accelerating voltage due to the impedance of a cavity is no different in its
effect from the voltage imposed on the cavities installed to accelerate the beam.
This allows us to take a short cut around complex theory and arrive at a good
physical appreciation of instabilities by using the expressions we have already
developed for synchrotron motion. We recall the effect of a cavity voltage on the
longitudinal motion of a particle. The full equation describing the motion is

d [Eoﬁ27<15

P W] + eVo(sin ¢ — sin¢g) = 0.

However, for the purpose of demonstrating the growth of an instability, let
us first assume that the particles have initially a small phase excursion about
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¢s = 0, so that we may write

Eof%y 1+
V =
[27r77hf2]¢ +eVog =0
or
¢+0%p =0,
where

- [k

is the synchrotron frequency and wy is the angular-revolution frequency.
Here we take an imaginative leap and courageously replace Vyh, the voltage
of an r.f. cavity multiplied by its harmonic number, by

inZI,.

We have already defined Z in such a way that ZIj is the voltage reacting on
the beam, due to current Iy. In addition, we have included n as the effective
harmonic number (w/wg) and ¢ to reflect the 90° difference in the definition of
zero phase between AC circuit theory and cavities for acceleration. The next
step is to put this voltage as a driving term or force on the right-hand side of
the differential equation for ¢ above.

The reader may have reservations about this intuitive step yet it bypasses many
pages of analysis, gives a clear physical insight into the effect of a passive cavity
on the beam and leads immediately to the correct formula for the ‘frequency
shift’ from an impedance Z. More rigorous derivations can be found in Chao
(1993), Hofmann (1996), Laclare (1980, 1982, 1992), Sacherer (1972) and Zotter
(1976).

9.4.6 Effect of frequency shift

By now, the reader may be used to the concept of impedance we are using
but now we come across the term ‘frequency shift’ which can often also be a
stumbling block in our physical understanding. It may help to remember that a
force (in this case a voltage), driving an oscillation close to its natural frequency
and written as a term on the right-hand side of the differential equation for phase
oscillations:

b+ Q3¢ =F(t)

can be incorporated in the left-hand side as a change in frequency, strictly a
change in frequency squared:

¢+ (D0 + AQ)26 = 0.
We can drop £y if the r.f. is off.
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By incorporating the driving term in this way, we can define a change in the
synchrotron frequency (squared) due to the beam induced voltage:

o (%12 . Z
(AQ) _Z[2ﬂﬁ2E]n _2571’

Here € is just to replace the rather complicated square brackets. First let us
look at the capacitive (negative Y') case which we found, like the negative-mass
instability, was stable below transition (when 7 is positive). Indeed, (AQ)? being
positive there is merely a real shift in frequency. Above transition, (A2)? will be
negative and the frequency shift imaginary, and exponential growth can occur.
The argument is reversed as expected for a positive (inductive) Y.

However, even in this ‘stable’ case, as soon as Z has a resistive component,
imaginary terms appear in viZ and in AQ leading to unstable and exponential
growth.

Another way to understand this is to write down the solution of the differential
equation as

¢ — ¢Oe—iﬂt — ¢Oe—7)(a+7)ﬁ)t _ ¢Oeﬁte—7)o¢t.

The imaginary frequency is # and this, multiplied by ¢ and then —i, produces
positive exponential growth. But we must not fall into the trap of expecting a
simple relation between the imaginary frequency shift and the resistive compo-
nent X. The complex frequency shift « 4¢3 is not just proportional to X + Y
but above transition is proportional to y/—i(X +4Y).

To complete the understanding, it is best to go through the mathematical
analysis, solving for 3 in terms of only X and Y. There will be combinations
of X and Y which lead to a particular value of the growth rate (. This will
produce a contour map plotted in X and Y coordinates with 3 as the height of
the mountain. Following any contour line, we find that 3, the imaginary part of
AS) , is constant.

The solution above transition where n < 0 is as follows:

AQ)? = (a+ip)?,
A(Q)? = (o® = 5°) + 2iafp,
A(Q)? = —itZ = ¢Y — i€X.
We now equate the real and imaginary parts:
(a® - %) = ¢Y,
X = 200,
which may be rearranged as

X
-5
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Fig. 9.7 Contours of growth rate of a
I longitudinal instability without damping.

The next step is to eliminate « by substituting the right-hand side of this
expression in the first expression, which gives

ex?
Y = —
=t
and then
Yy p?
X = —+ =.
2/ ¢ + &

This equation describes contours in the (X, Y') diagram, which are a series of
parabolas with growth rate § as their parameter. They are symmetric about the
Y-axis and with a minimum at Y = —3%/¢ (Fig. 9.7).

The breadth of the parabolas increases with (3, representing stronger and
stronger growth as the beam impedance Z increases. The § = 0 contour, where
there is no growth, is simply an infinitely narrow parabola enclosing the Y -axis
from the origin to the positive infinity. Thus, above transition, only a purely
inductive impedance with absolutely no resistive component will be stable. Of
course, below transition, the figure is the same but the positive Y-axis corre-
sponds to a purely capacitive impedance. Capacitive impedance can then be
unstable in the presence of a resistive term. A small amount of resistance will
make any impedance unstable either above or below the transition. Fortunately,
the picture becomes less frightening when we include Landau damping.

9.5 Landau damping

The above treatment and the diagram make an important assumption that all
the particles in the beam oscillate with the same frequency Qg. However, if this
condition is relaxed to allow for a spread in natural oscillation frequency due to,
say, momentum spread in the beam, instability is suppressed for small values
of B. Any collective motion becomes confused because of the frequency spread
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Fig. 9.8 Decoherence of two particles.
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on a time scale which is shorter than the time it takes to develop instability
(Hereward 1976). Remember that we rely upon the motion of the centre of
charge of all the particles to excite the cavity. Figure 9.8 illustrates how two
particles of different revolution frequency get out of step.

The Landau damping effect considerably modifies the stability diagram. In
general, the contours close to the positive Y-axis are stable, or too weak to grow
in competition with the decoherence. We can think of the shaded area in Fig. 9.9
as a stable region. Thus, provided the impedance is inductive a modest resistive
component is tolerable, but beyond a certain X value a threshold in stability is
passed and growth occurs at a rate characterized by .

Very often, when an instability affects the beam, one can watch the amplitude
of the longitudinal motion grow by connecting an r.f. phase pickup to an oscillo-
scope. The rise time of the signal gives us 1/ directly and we can then make an
estimate of the modulus of Z and how much frequency spread would be needed
to damp the growth.
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9.5.1 Keil-Schnell criterion

We can get a rough idea of the threshold for instabilities by equating the
frequency spread in the beam,

Ap
AQ = |n|Q==,
] )

to the frequency shift AQ due to the forces driving the instability,

21,7 ) 1/2

A~ (2ﬂ'ﬁ2En

This gives us a rule of thumb for longitudinal instability; in Europe, it is termed
the Keil-Schnell criterion (1969):

Z| _ Fmoc®#ym ( Apy?
”I’L’ - I() ( P ) ’
where F'is a form factor close to unity.

Finally, as we warned the reader, this short cut to understanding longitudinal
instability does not pretend to treat the multitude of transverse, head—tail, and
multibunch instabilities which can affect the beam. For these the reader should
consult Chao (1993) and the other studies referred to in this chapter.

Exercises

9.1 A proton beam of 10'3 protons is injected into a synchrotron of radius
1100 m at 10 GeV. The normalized emittance in each plane is 107 mm mrad.
The @ of the machine is 27.4. The average betatron amplitude function is
60 m. Calculate the AQ due to space charge (r, = 1.534 x 10718).

9.2 The transition energy for the above accelerator is 24. Calculate the frequency
shift for an inductive impedance Z/n ~ 50 at 500 MHz.

9.3 What is the growth rate of the longitudinal instability from this frequency
shift without Landau damping?

9.4 Plot a parabola in x, y space corresponding to this growth rate.
9.5 Plot parabolas for half and double this growth rate.
9.6 What happens to this diagram above transition?

9.7 Use the Keil-Schnell criterion to calculate a momentum spread which will
stabilize the beam for Z/n = 50 (assume F = 1).
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Radiofrequency cavities

10.1 Waves and modes in guides and cavities

At the beginning of the 21st century we are at a turning point in the history of
accelerators. Circular machines which have dominated the high-energy collider
landscape are giving way to linear colliders. We, therefore, devote this chapter
to a detailed study of the accelerating cavities themselves.

10.1.1 Necessary conditions for acceleration

In Chapter 1 we saw how in the early 1930s two basic configurations of accelerator
were invented: the linear accelerator, or linac, conceived by Ising and Widerde,
and the cyclotron, invented by Lawrence. Both of these use electromagnetic
fields oscillating in resonant cavities to apply the accelerating force. In the linac
configuration, the particle follows a straight path through a series of cavities. In a
cyclotron, and its later development the synchrotron, the beam follows a circular
path in a magnetic field and the particles return to the same accelerating cavity
each time round. Both these basic configurations make use of oscillating fields
and it is instructive to reflect on why this is so. First, we consider Maxwell’s
equation
0B
VxE= TR

In its integral form, this becomes

j{E-ds:—i/B~nda.
dt
S

Suppose we invented a circular machine consisting of a ring of magnets and
an ‘electrostatic cavity’ consisting of an anode and cathode with holes for the
beam to pass through as it is accelerated. If the field is static with no time
derivative, the right-hand side of the equation must be zero. The integral of
the accelerating field for a path threading the cavity and passing round the ring
must also be zero. The accelerator does not work. The same is true if we make an
‘electrostatic’ linac from a chain of such cavities, each with its entry port at the
same potential, since in this case we may simply close the path by returning in
the field-free region alongside the cavities. There can, therefore, be no repetitive
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acceleration unless the magnetic field (and inevitably the electric field) varies
with time.

In the classical synchrotron or linac, the field oscillates in a resonant cavity
and particles enter and leave by holes in the end walls. In such a resonant cav-
ity, energy is continuously exchanged between the electric and magnetic fields,
which are entirely contained within its volume. The time-varying fields ensure a
finite energy increment at each passage through one or a chain of cavities. The
contribution to the acceleration due to each member of the chain adds up. Since
the cavities are all independent, they need not be connected in series electrically.
There is no build-up in voltage to ground. In principle, any time-varying electro-
magnetic field could be used, but for simplicity sine waves are used. The equip-
ment, which creates and applies the field to the charged particles, is known as the
r.f., and much of its hardware is derived from telecommunications technology.

In Chapter 1 we also met another class of accelerators, which includes induc-
tion linacs and the betatron, in which the magnetic field varies with time. These
are devices without r.f. cavities where the pulsed time variation of the magnetic
field is exploited directly to generate a change in energy along a path without
electric terminals or electrodes. Here again the accelerating force must come from
a time-varying field.

The reader may also wonder why electromagnetic fields launched in free space
from an antenna or laser, are not used for accelerators. There are two difficulties
with such schemes. The first is that the electric vector of a light wave is normal to
the direction of propagation. The second is that even a very high energy particle
will slip behind the accelerating phase of the field of a free-space wave which is
travelling at the velocity of light.

This leads us towards a discussion of the configuration of waves that can be
used for acceleration, but we will first briefly recall some of the essential theory
of electromagnetic waves.

10.1.2 Waves in free space

First we should examine the general properties of waves in free space.
Figure 10.1 shows a plane transverse electric and magnetic (TEM) wave
propagating in free space in the z-direction. Its velocity in vacuum is

1
\/50/10’

while in a medium of dielectric constant ¢, and magnetic permeability u, this
becomes

V=C=

1
VEoE Hofhr

v =

The ratio between the fields is

E ity
- _ 6./ )
7 376.6 -, (ohms)
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Fig. 10.1 Plane wave in free space.

To be complete, we should recall another useful concept, the Poynting flux or
local power flux:

P=(ExH) Wm2

10.1.3 Conducting surfaces

Since, from now on, we will only consider waves in metal boxes, we should recall
the boundary conditions of a wave at a perfectly conducting metallic surface.
The tangential component of the electric field must vanish and the component
of the magnetic field normal to the surface must also vanish. If this were not so,
currents would flow in the surface to ensure that it became so. Another quantity
associated with the surface is the skin depth. For a wave of frequency f, at a
surface of conductivity p, this is

1

0y = —o
VT f lopno

and the surface resistance
1
T ods

This will be useful later in calculating the quality of resonators.

Ry

10.1.4 Waveguides

Before we try to understand the modes set up in a cavity, let us consider electro-
magnetic waves in a uniform rectangular waveguide. The propagation along such
a guide may be thought of as the superposition of two sets of waves reflected
from the sides and interfering as they cross (Huxley 1943).
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Fig. 10.2 Two travelling waves in a guide (after Huxley 1943).

In Fig. 10.2 we see two plane waves as they might be reflected between two
parallel metal boundaries. The lines labelled v indicate their direction of prop-
agation. The solid lines are the crests and troughs of the waves and the dashed
lines indicate the zero-crossing. The arrows on the solid lines show the direction
of the E vector, which lies in the plane of the diagram. The circles with dots
and crosses indicate the direction of the H vector, which is normal to the plane
of the diagram. The dots show H pointing towards the reader and the crosses
away from the reader.

In Fig. 10.3 we have superimposed these waves to form loops of E field sand-
wiched between the horizontal lines indicating the walls of the guide that reflect
the waves. The loops of E field enter the conducting walls at right angles as
demanded by the boundary conditions for perfect conductivity. Both the com-
ponent waves of Fig. 10.2 have a velocity from left to right. One might naively
expect the velocity of the resulting field patterns along the guide to be vsin8,
but this would be a mistake. We are interested in the phase velocity of the wave.
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® H into the plane of the diagram

® H out of the plane of the diagram
A E direction

Crest or trough
_— Zero E and H

Fig. 10.3 Transverse magnetic (TM21) mode. We can move the lower bound to the
mid-plane to see the simplest mode TMj; (after Huxley 1943).

This is the speed with which a point in the pattern, such as the point of intersec-
tion of a wavefront and the wall of the guide, is forced to move along the wall. It
must keep pace with the velocity of the plane wave, v, at an angle 8 to the wall.
We see in the inset in Fig. 10.2 that the phase velocity along the guide is v/ sin §
and, therefore, faster than v. If v is the velocity of light, the phase velocity is
always greater than that of light. The loops of field must move from left to right
with this phase velocity since they are locked to their component waves. This is
exactly analogous to the surf boarder moving at a speed higher than that of the
waves as he transverses the beach, or a yacht, racing on a broad reach.

Figure 10.3 also shows the direction of H which enters and emerges from the
diagram forming loops which lie in transverse planes perpendicular to the axis
of the guide. The H field always points in the transverse direction—hence such
modes are called transverse magnetic (TM) modes. There is also a complemen-
tary set of modes in which the E field is purely transverse but these transverse
electric (TE) modes are clearly ruled out for acceleration along the axis of the
guide. A more detailed description of these modes can be found in Chao and
Tigner(1998).

The two crossing waves and the pattern they form travel faster than light
from left to right, yet they must pass an observer with the same frequency that
they would in free space. Their wavelengths, Ay, in the guide must, therefore,
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be longer than A, their wavelength in free space. The free-space wavelength, A,
of the two component free-space waves in Fig. 10.3 is less than the width of the
guide. If we increase A, there comes a point where it becomes comparable with
the width of the guide. There is a critical wavelength A, beyond which waves
cannot propagate and, below that value, Ay is determined by

It may help the reader to imagine a triangle whose sides are wavenumbers such
that k% = k7 + k2.

Fascinating as this may be, we cannot use waves travelling faster than c for the
sustained acceleration of particles which themselves are travelling slower than c.
We can see in Fig. 10.3 that the direction of E alternates along the axis of the
guide and particles accelerated by the fields from one loop would be decelerated
as the wave overtakes them and they fall into the decelerating fields of the next
loop. Nevertheless, let us pursue this discussion of waveguides for there is still
much to be learned that can be applied later to cavities.

10.1.5 Group velocity

The fact that the phase velocity of waves can be greater than that of light may
seem to contradict special relativity, but we should remember that neither energy
nor information is propagated with the phase velocity. Energy and information
travel with the group velocity of a wave. To understand how group velocity is
defined, let us consider Fig. 10.4. Here we see two continuous waves of slightly
different frequencies interfering. Their sum can be expressed by the product of
two waves:

E = Eysin|[(k + dk)x — (w + dw)t] + Eg sin[(k — dk)x — (w — dw)t]
= Eysin[kx — wt] cos[dkx — dwt]
= 2EOfl (IL‘, t)fg((l), t)'

e ™ M A
ﬁ’f'\‘;l u"x?‘i[ %\J\ \"&:’“Z‘ﬂ MV»L
WY

Fig. 10.4 A short wavelength disturbance travels with the phase velocity within an
envelope propagating with the group velocity.
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The first term in the last line is a continuous wave which has the mean
wavenumber of the two waves and their mean frequency. It has the form

fi(x,t) = sinlkr — wt].
Any given phase in this wave, such as when it crosses zero, is propagated so that
kx — wt remains constant. The phase velocity of the wave must then be
" _of(x,t)/ot _w
P Of(x,t) /0 k'
The second term in the product describes the envelope of the pattern in Fig. 10.4:

falx,t) = cosldk x — dwt].

Again, we can argue that any point in the envelope must propagate such that
rdk —tdw

is unchanged and hence its velocity, the group velocity, is
~ Ofa(z,t)/0t  dw
Ofy(x,t)/0x  dk’

In Fig. 10.4 the short-wavelength disturbance moves with the phase velocity
while the envelope travels with the group velocity. It is rather easy to see why
information, in the form of a meaningful modulation of the carrier can only
be transmitted with the group velocity. In order to appreciate why this also
applies to energy, it may help the reader to imagine the extreme example of such
modulation—an isolated wave packet or delta function in which all the energy
is localized. No information or energy can precede or follow its arrival.

’Ug:

10.1.6 Dispersion diagram for a waveguide

We can describe the propagation through a medium, or down a waveguide by
plotting a graph of frequency, w, against wavenumber k = 2w /A. We can even
imagine an experiment in which we inject signals of different frequencies down a
pipe and measure the wavelength of the modes transmitted. The ratio w/k at any
point in this plot will give the phase velocity for that frequency or wavenumber
and the slope of the tangent, the group velocity. In free space this ratio for each
point is just ¢, the velocity of light, and we can imagine that the graph is just a
straight line with slope ¢ the group velocity.

It is conventional to plot w divided by ¢ against k, so that the line representing
free-space propagation is at 45° to the axes.

We can guess already that the waveguide, in which wvpy is always greater than
¢, will produce a plot which is entirely above the diagonal and whose slope (group
velocity/c) is always less than unity. The hyperbola in Fig. 10.5 is just such a
curve. Indeed if we take the expression we stated for a waveguide, namely

1 1 1
222 Y
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\

k=2m/\

Fig. 10.5 Dispersion diagram for a waveguide.

we can write 2mc/w = A and 2mc/we = A, for the free space and cutoff wave-
lengths, respectively, and express the wavenumber in the guide as k = 27/A,
to give

If we rearrange this,

(5) =w+ (%),
c c
we see that it is clearly the hyperbola in Fig. 10.5.

Note that in this dispersion diagram a small &k indicates a very long wave-
length but, however small the k, the frequency is always greater than the cutoff
frequency. Another interesting point is that the longer the wavelength or lower
the frequency the slower is the group velocity and at cutoff frequency no energy
flows along the guide. One can show that vppvg = 2.

The reader may still wonder why we bother emphasizing these points for a
structure which cannot be used to accelerate. We shall soon see that it is pos-
sible to find structures which do accelerate and their properties show up as
modifications to the dispersion diagram.

10.1.7 Cavity resonators

Waveguide modes are unsuitable for acceleration because the phase of the wave
is faster than the particle. However, a simple resonant cavity in which there is a
standing wave can be used in a synchrotron provided the revolution frequency is
related to the r.f. frequency by an integer h. We now examine the general form
of the field in such a cavity.
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In general, the cavity could be filled with a linear dielectric material and losses
can occur in this material or in the walls of the cavity. Maxwell’s equations lead
to a general differential equation for the field:

O9E  °E
2B = po = 4 enZ 2
VB = o5t g

It is not unreasonable to assume that the solution of such a second-order
equation will be a number of modes each of which will be the product of a
spatial function and a time-varying function:

E.(z,y, z)a,(t).

Substituting this expression back in the differential equation, we find that E,
are the eigen-solutions of

V?E, + A2E, =0,

where A, are a set of real parameters related to the resonant frequencies of
the modes. Note that the solutions depend on the boundary conditions, and we
assume that the losses due to the finite conductivity, o, of the walls are small
enough that we can still assume that the E field is normal to the walls and that
no charges flow in the volume considered, that is,

nxE=0 and n-H=0,

where n is normal to the wall.
Substitution in the differential equation, with a finite and large ¢ yields the
differential equation for a,(t):

whose solution is
an(t) = e_t/T{Al cos Qnt + A, sin Qpt}.

Here A; and A, are constants of integration, which depend on the initial condi-
tion; €2, are the resonant frequencies of the lossy cavity related to the lossless
frequency w, and the eigenvalue A,:

A, 1o en)> 1
o=\ 4LAJ —emt g

Note also that the decay time 7 of the amplitude and the quality factor @ of the
lossy cavity are related as follows:

2 2Q
T=—="".
o wp
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10.2 The cylindrical cavity

We now consider the simplest r.f. cavity (see Fig. 10.6), the ‘pill-box’. The
accelerating modes of this cavity are TMyy,,,,, where the indices refer to the polar
coordinates ¢, r, and z. The modes with no ¢ variation are described as follows:

V2E 4+ A’E =0,

10/ 0E\ 10E E .,
m(’“a) 2or T TAESD

where Jy and J; are the Bessel functions of order zero and of order one, respec-
tively, while Py; is the argument, ¢, of the Bessel function, Jy(¢), when it crosses
zero for the [th time. Jy({) looks very much like the first quarter wavelength of
cos ¢ but falls to zero at ¢ = 2.405 and not /2.

Physically, this ensures that the electric field parallel at the wall is zero.
The second index, [, indicates the radial variation while the third, m, controls
the number of half-wavelengths in the z-direction. It is interesting to observe
that if [ = 1 and m = 0 (see Fig. 10.7(a)) then we have the fundamental
accelerating mode and the lines of force are straight, without any variation
along z, and the resonant frequency does not depend upon the length h of
the cavity. Because Py; = 2.405 we can write the solution of this mode for all

(@ (b)

Fig. 10.6 Cylindrical pill-box cavity. Holes for beam and a coupler are shown in (b).
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(@) (b)
Fig. 10.7 Lines of force for the electrical field as in modes (a) TMo10 and (b) TMo11.
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and

2.405
Hy = H0J1< r>.
To

Figure 10.7(b) shows the next mode with one half-wavelength in the z-direction.

10.3 Quality factor of a resonator

The quality factor of a resonator is defined as the ratio of the stored energy,
Wy and Wy, the energy dissipated per cycle divided by 2w. The power
dissipated is Py:

Ws Wi

Q:Wd :w?d.

The stored energy is given by the integral
W, = %O/|E|2dv or %/|H|2dv

over the volume of the cavity. The first integral applies at the time the energy
is all stored in the E field and the second integral as it oscillates back into the
H field. The second term on the right-hand side is a consequence of Maxwell’s
equations. Modern cavity design programs do these calculations for us. To cal-
culate the power dissipated, P4, and later Wy, we should first evaluate the linear
density (amperes per metre) of the current j along the walls of the selected struc-
ture as if the walls were lossless. The losses are then introduced by taking into
account the finite conductivity o of the walls.
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Since, for a perfect conductor, we have j = n x H, we can write

Rgur
Pa= 2t [P ds,
S

where s is the inner surface of the structure, Ryt = /7 fuopr/oc = 1/08 is the
surface resistance (for copper Rgys = 2.61 x 10~7y/w (ohms)) and 4 is the skin
depth. Again, the cavity design program can be used to give the surface integral
of field.

10.4 Shunt impedance

The commonly used figure of merit for an accelerating cavity is its shunt
impedance Rg. This is the parameter which relates the accelerating voltage to
the power P4 which has to be provided to balance the dissipation in the walls.
The voltage V can be defined along a path followed by the beam:

V= / . (2,y, =) dL.

path

This, of course, is at a fixed instant in time and does not include the transit-
time effect discussed below. Shunt impedance is defined, with the usual factor 2
consistent with peak, and not with r.m.s. voltage as follows:

VQ
Rs —_— m.

In the world of linear accelerators, the shunt impedance per unit length and
power dissipated per unit length are often quoted, frequently without the
factor 2.

10.5 The transit-time factor

The accelerating gap may be the space between drift tubes in a linac structure
or simply the entrance and exit orifices of a cavity resonator. In calculating the
increment of energy given to the particle as it crosses the gap we must take into
account that the field is varying as it does so. This makes the cavity less efficient
and the particle sees a resultant energy gain which is only a fraction of the
peak voltage between the electrodes. This fraction is known as the ‘transit-time
factor’. Let us now examine it for a simple accelerating gap (Fig. 10.8) supposing
that E, is, at a given instant, uniform along the axis of the gap but depends
sinusoidally upon the time:

E, = Ey cos(wt + ).

The phase ¢ is referred to that of the particle which is in the middle of the gap,
z=0,att=0.
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Fig. 10.8 The r.f. gap.

Normally, the energy imparted in a single pass is small compared to the kinetic
energy of the particle and we can assume that the speed of the particle does not
change during the transit. Consequently Z = B¢ and the energy gained over the
gap, G is

+G/2 .
Vv =_G//2 Eqcos(wt + ¢)dz = <%> EyG cos ¢.

The factor in the brackets is known as the transit-time or gap factor and may
be already familiar to some readers who have studied optical diffraction. We
define a transit angle, in terms of the free-space r.f. wavelength, \: § = wG/fBc =
27G/pBA. The transit-time factor then becomes

r— sin0/2.
6/2

At relativistic energies the dimensions of a cavity are comparable with half
the free-space wavelength and the reduction in efficiency due to the transit-time
factor is acceptable. However, at low energy this is not the case and the cavities
used often have a strange re-entrant configuration to keep G short compared to
the dimensions of its resonant volume.

Increasing the ratio of volume to surface area of the interior of the cavity
reduces ohmic losses and improves the ) factor. The shape shown in Fig. 10.9
represents a compromise between this and the need to minimize the gap factor.
For obvious reasons the indentations are called ‘nose-cones’. Naturally, the gap
dimension may also be limited by electrical breakdown.
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; Fig. 10.9 Field in a resonant cavity.

10.6 Iris-loaded structures

Accelerating systems for particles close to the velocity of light often consist of
a series of cavities in a single assembly. An example is shown in Fig. 1.6. We
may think of these structures as a number of pill-boxes, weakly coupled to each
other by the fields which lead through the beam aperture, or alternatively as a
cylindrical waveguide, loaded with a number of equidistant irises. Usually, power
from an amplifier is coupled into a cavity at one end and is either absorbed in a
load at the other end or reflected to set up a standing wave.

The effect of the irises is to slow down the phase velocity of the wave. We saw
in Fig. 10.5 that a cylindrical waveguide cannot be used for sustained accelera-
tion because all points in the dispersion curve lie above the diagonal and hence
the phase velocity is always greater than that of light. However, an iris-loaded
structure has quite a different dispersion diagram in which the function linking
the frequency w to wavenumber £ oscillates within a passband of frequencies and
replicates like a cosine function at intervals of wavenumber spaced by 2d (Fig.
10.10). Usually we are interested only in the first upward slope of this undulating
function in the interval 0 < k < 7/d but we see that much of this is below the
v = ¢ line, where the phase velocity may be matched to that of the particle by
a suitable choice of frequency.

The reason for this dramatic change in the diagram due to the irises is not
easy to explain rigorously. An array of oscillating independent pill-boxes can, of
course, have any arbitrary phase relation in z, with each other. We would not
expect the phase and group velocities of a disturbance travelling from one cell
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Fig. 10.10 Dispersion diagram for a loaded waveguide.

to the next to be closely related to our arguments about waves in parallel-sided
pipes. Waves launched at one end of the structure are no doubt scattered and
reflected from the irises and, it is not easy to predict how rapidly the resultant
of their interference pattern travels along the structure. There will certainly be
reflected paths within the structure that are much longer than the distance along
the axis and we might expect this to slow down the wave to ensure that parts of
the dispersion curves lie below the line v = c.

We may guess that k values of 0 and 7 /d are standing resonant waves in a single
cavity and would, therefore, correspond to the point of zero group velocity and
hence to points of inflection in the dispersion diagram. If we expect the waveguide
dispersion diagram to be unchanged when k& = 0 because the field lines are like
those in a pipe but distorted to produce a maximum at k = 7/d, it will have to
follow the sine-like path of Fig. 10.10. Inevitably, this crosses the line v = ¢ and
then the phase velocity becomes less than c.

If the reader is dissatisfied with these general arguments, we must resort to
mathematics. Consider an infinitely long chain of such cavities. Symmetry tells
us the function that describes their fields E(r, 6, z) must have the same form in
each cavity and can only differ from that in the next cavity by a simple phase
factor e~%%0#_ This is called Floquet’s theorem and may be written as

E(r,0,z) = e "2 f(r,0,z),

where fis periodic (f(r,0,z +d) = f(r,0,2)) and kg is the inverse wavelength
of the progression of phase of the wave along the structure and depends on the
frequency of the signal injected into the structure.

We can decompose f(r,0,z) into a harmonic series of functions which fit the
boundary conditions at the walls of a cell and represent a Fourier analysis of the
field pattern in a cell

f(r,0,z) = Z Falr, @)e=2minz/d,
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The terms of this series are called space harmonics and are equivalent to the
higher harmonics of an organ pipe in that n is related to the number of nodes
in the cell. We can now substitute the last equation in the one before:

E(n 0, Z) _ e—ikoz Z fn(r’ e)e—Qﬂinz/d
= 37 Falr gy b ST g (e,

and then by comparing exponents of the last two terms we define a k value for
each space harmonic:
ky, = ko + 27771-

This analysis shows that if we choose any frequency in the dispersion diagram
it will intersect the dispersion curve at k values spaced by 2nw/d. The curve
must, therefore, be periodic and extend to where the phase velocity is much less
than c.

In practice, it is only the first rising slope that is used for acceleration and
although the structure will transmit the higher space harmonics and these will
dissipate power in the surfaces, they are of little use.

10.7 Synchronizing the particle with cavities

Clearly, if an accelerator has two or more cavities, we want the bunch of particles
to arrive at the same phase with respect to the voltage at each cavity. The
simplest way to achieve this is to space the cavities by a distance L that a
particle travels in one r.f. period

L= pA,

where 3 = v/c and A = 27wc/w, the free-space wavelength of the r.f. excitations.
Alvarez achieved this in his linac structure by increasing the distance L between
the accelerating gaps along the structure. A snapshot of the fields across each
gap would show them all exactly in phase. Earlier, Wideroe had used a dif-
ferent structure in which alternate drift tubes were grounded and a snapshot
would show a field vector alternating in sign from gap to gap. The synchronism
condition for such a structure is

L = BA/2.

If we have a series of cavities forming an accelerating structure, the parti-
cle’s r.f. phase advance between cells can be 27, corresponding to the Alvarez
structure, or 7, corresponding to Widerée’s configuration.

Figure 10.11 shows snapshots of the fields in two adjacent cavities for (a) 7 and
(b) 27 modes. If we examine the directions of currents in the central partition of
(b) we find that they cancel and it is easy to see how, if this partition is omitted,
it becomes Alvarez’ structure shown in Fig. 10.12.
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Fig. 10.11 Adjacent single-gap cavities in (a) 7 mode and (b) 27 zero mode.

Fig. 10.12 Alvarez cavity.

Neither of these conditions is ideal when the structure consists of a large num-
ber of such cavities. The two modes correspond to all the cells oscillating in phase
or antiphase and correspond to the ends of the dispersion curve, where dw/dk is
zero. When the phase advance between cells is such a simple fraction it becomes
very difficult for power to propagate along the guide and small errors produce
serious distortions. See also Lapostolle and Septier (1970), Wilson (1982), and
Loew (1983).

10.8 Other modes of multicell cavities

We are not obliged to use standing-wave configuration and often in an electron
linac a wave travels from one end of a long chain of cavities to be absorbed
in a load at the other. In such a travelling wave scheme we may choose any
point on the dispersion curve. Alternatively we may excite a group of cavities
such that the wave pattern repeats every 1, 2, or more cells. The point on the
dispersion curve that we select is then linked to the number of cells in which the
field pattern repeats. In Fig. 10.13 we see patterns which repeat every one, two,
three, and four cavities corresponding to phase changes of 0, 7, 27/3, and 7/2
per cell, respectively. The frequencies accessible on the dispersion band which
preserve this phase advance will, respectively, be two, three, four, and five.

For example, if we choose the number of cavities to be a multiple of three
rather than two we can have field patterns which repeat every three cavities
with a k value of 27/3, safely on the sloping part of the dispersion curve. Here
the group velocity is finite and errors are not amplified. The structure has the
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Fig. 10.13 Modes of a multicell cavity.

disadvantage that one of the three cells has a very little effect on the beam but
structure designers modify its shape to be still matched in frequency but shorter,
or place it to lie alongside the other two cavities in order to economize in length.
Such ‘side-coupled’ structures are favoured at low energies where the distance
travelled by the particles per period tends to be short.

The design of acclerating cavities is a vast field and were commend the reader
to consult the many standard texts on the subject: Montgomery et al. (1948),
Moreno (1958), Collin (1961, 1966), Slater (1969), and Ramo et al. (1984).

10.9 The r.f. power generation

The sinusoidal power needed to drive the accelerating structures ranges between
a few kW and a few MW (continuous wave). The basic elements of most r.f.
power amplifiers are the triode or the tetrode with which it is possible to cover
a frequency range from a few MHz to a few hundred MHz. At higher frequencies
another device is preferred, the klystron. In order to maximize the output power,
the input and output circuits are themselves resonant.

10.9.1 Triode amplifier

In a triode, the current I, depends upon the plate and the grid voltages with
respect to the cathode. Let V. and Vg be those voltages. Roughly, the anode
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current obeys the ‘adapted’ Langmuir—Child law,
I, = k(vpk + ,Uvgk)g/Qa

where £k is the perveance of the tube and p is its amplification factor.

The power-handling capacity of triodes can be very large. For instance, assume
the typical values for large triodes p ~ 40 and k = 3 - 10~° (A4/V1%), then with
a minimum V,x = 2000V while the grid attains its maximum, say Vg = 300V,
the plate current is ~50 A and the instantaneous input power is 100 kW.

10.9.2 Klystron amplifier

While the triode is a wide-band generator which is used to make narrow or wide-
band tuned amplifiers, the klystron is a narrow-band, tuned amplifier capable
of delivering a very large amount of power with wavelength from about 1m to a
few cm. An intense electron beam is velocity modulated by a buncher cavity and
the subsequent density variations excite a catcher cavity. A simplified scheme of
a klystron amplifier is given in Fig. 10.14.

The r.f. signal to be amplified is sent to the buncher cavity which develops a
voltage at the gap. The continuous electron beam which comes from the cathode
enters the gap of the first cavity and the speed of the particles is slightly varied
according to the phase of the voltage at the entrance. In this way, averaged over
more than one cycle, the uniform beam comes out slightly modulated in velocity.
This operation does not involve an energy exchange between the cavity and the

Collector

_ Catcher

Output

Drift tube Buncher
-

Input

Anode -

77777

Cathode — Fig. 10.14 Schematic of a kly-
'ul Heater stron amplifier.
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beam as long as the entering beam is uniform, and the changes in the speed are
small. The emergent beam travels along the drift tubes and, due to the differences
in the speed of the particles, undergoes the process of bunching. (This is a very
complicated process, especially if the space-charge effects are taken into account.)

At some distance from the buncher, there is a particular position, the first
focus, where the electrons arrive in bunches which, theoretically, have infinite
longitudinal density. The gap of the second cavity, the catcher, is located at
this point and becomes excited by the train of bunches arriving at the r.f. fre-
quency. Output power is excited in the cavity and absorbed by a coupling loop.
In this process, part of the kinetic energy of the electrons coming from the cath-
ode is converted into r.f. power. Having lost the greatest part of their kinetic
energy, the bunches inside the catcher are finally absorbed by the water-cooled
collector.

Often two or three ‘idle’ cavities are inserted between the buncher and the
catcher as refinements to this simple design which improve the bunching action.
A focusing solenoid is placed along the bunching region.

The pulsed power from an industrial klystron can be as large as 50 MW. In
continuous-wave operation a power of over 1 MW has been reached at 350 MHz.

10.10 Coupling

It is beyond the scope of this book to discuss the many ways that power may
be coupled to the cavities, but we show two examples in Fig. 10.15 in which the
electrical power excites a loop that is coupled to the cavity. This means that the
magnetic field created by the loop should have a component in common with

Fig. 10.15 Two examples of loop coupling.
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the magnetic field of the mode we wish to excite in the cavity. As shown in
Fig. 10.15, the loops are placed in the region of the cavity where the magnetic
field is stronger.

Exercises

10.1

10.2
10.3

10.4

10.5

10.6

What is the fundamental resonant frequency of a pill-box cavity of length
50 cm and diameter 75 cm?

What is the resonant frequency of the next highest (TMp11) mode?

What kinetic energy of protons would be required to ensure a transit-time
factor of 41% for the fundamental mode of this cavity?

How would you modify the accelerating system to accelerate lower-energy
protons?

Assume a simple pill-box cavity. Use the expressions in Section 10.3 to
show that the quality factor is related to the surface S, volume V| and skin
depth

2V

PRl

where K is a form factor.

Using Fig. 10.10 and assuming a three-cell cavity, plot the points on
the first, n = 0, arm of the diagram which correspond to the appropri-
ate k value, estimate the phase and group velocities for these points by
inspection.
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11.1 Twin-ring colliders

In Chapter 1 we outlined the early history of colliders. Suggestions from the
MURA Group (Kerst et al. 1956) led immediately to the Stanford—Princeton
proposal for electron—electron collider rings, completed only in 1966 (Barber
et al. 1966), and the VEPP-I electron—electron collider at Novosibirsk, started
in 1962 (Budker 1964) and completed in 1965. These were all twin-ring schemes
in which collisions take place when the beams of two synchrotron rings, one
circulating clockwise, the other anticlockwise, meet at a crossing point common
to both rings. This was the configuration adopted later for the first large proton—
proton ring, the ISR (Johnsen 1964) completed in 1971 at CERN, and will also
be that for the LHC.

To achieve useful ‘event rates’, the beam current densities have to be very
high. To this end, the builders of these early machines and their colleagues at the
Cambridge (Mass.) Electron Accelerator strove to accelerate and store the high-
beam currents. They made many notable contributions to our understanding
of beam behaviour. The designers of the ISR continued in this tradition. In
the ISR the two 30 GeV rings were interlaced to cross at eight points around
the circumference. The ISR vacuum system had to be extremely good to avoid
phenomena in which the beam was adversely affected by residual ionized gas,
but even then there was more to be learnt when the ISR was switched on. A
‘brick wall’, due to local cancellation by space change of the chromaticity needed
to stabilise the beam, as well as the effect of ionisation in the vacuum chamber
had both to be understood. To achieve sufficient event rates, each beam had
to contain many amperes of current circulating without the help of r.f. buckets,
which would have only made the beam unstable. Small r.f. buckets were used
to nudge the beam by ‘phase displacement’ from its injection orbit to join the
accumulated stack of protons. Many of the ISR’s novel features later became
standard practice in other proton machines.

11.2 Single-ring colliders

These twin rings were not however the first colliders. The first collider
ring (Amaldi 1981) was built by Touchek. This predated the Stanford and
VEPP-1 collider and consisted of a single ring. The oppositely charged electrons
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and positrons circulated in opposite directions in the same guide field and, being
equal in mass but of opposite charge appeared to the magnetic bending and
focusing fields as identical currents, one bent to the left, the other to the right.

This idea was subsequently exploited in a number of larger colliders including
PEP at SLAC (Paterson 1980), PETRA at DESY (Degele 1980) and, of course,
LEP at CERN.

11.3 Proton—antiproton colliders

The single ring idea can be applied to protons and antiprotons, however antipro-
tons are much more difficult to produce than positrons and building the ISR as a
single-ring proton—antiproton machine would not have been technically feasible
at the time.

It takes a pulse of 10'3 protons to produce 10® antiprotons and it takes tens
of thousands of pulses of protons to produce enough antiprotons for a proton—
antiproton collider. Liouville’s theorem dictates that, if several antiproton pulses
are injected into an accumulator ring, they can only be placed side by side
rather than be superimposed. The ring would soon be full and the density
of the antiprotons be much too diffuse to produce a reasonable probability of
encounter in a collider. The discovery of a method of phase-space compres-
sion, or cooling, offered a way round this conservation theorem by reducing
the longitudinal and transverse oscillations of individual particles in the man-
ner of Maxwell’s Demon. Electron cooling was invented by Budker (1967) at
Novosibirsk, and stochastic cooling by van der Meer at CERN in 1968, to be
(published much later; van der Meer 1972). These methods made it possible
for antiproton beams to be concentrated and stacked in the vacuum cham-
ber of the ring, thus accumulating antiprotons harvested over many hours of
production.

The first antiproton accumulator was built at CERN and the 400 GeV SPS
pulsed synchrotron was converted into a proton—antiproton collider (Evans 1984).
This was followed several years later by Fermilab near Chicago, which built a
superconducting ring of 1 TeV (1000 GeV) nominal energy, the Tevatron, which
still operates as a proton—antiproton collider (Griffin 1980).

11.4 Electrons versus protons

Protons are complex objects consisting of three quarks held together by gluons.
In collision with other hadrons—protons or antiprotons—the interaction is dom-
inated by this strong force. However, only one quark in each of the colliding
hadrons is involved in the interaction and it is difficult or impossible to identify
which quarks or gluons have taken part in any given interaction. In addition,
the quarks which interact carry only about 10% of the total energy given to
the composite particles by the accelerator, so that a large fraction of the energy
is wasted. Nevertheless, hadrons are unique probes for the study of the strong
interaction.
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Electrons, on the other hand, are ideal probes for electromagnetic interactions
but unable to probe differences between quark flavours. On the other hand, the
point-like nature of the electron ensures that all its energy is put to good use in
producing particles of interest.

11.5 Recent circular colliders

It was principally this argument that led CERN to choose a 100 GeV electron—
positron machine LEP (CERN 1984) as the collider to follow the SPS. This has
four times the diameter of the SPS collider but only one-third of its energy per
beam. The reason for the drop in energy is that electrons, 2000 times less massive
than protons, have velocities closer to the speed of light than protons of the
same energy. Any charge circulating in an accelerator will emit electromagnetic
radiation but, when its velocity approaches that of light, the loss of energy by
the particle multiplied by the number of particles in the colliding beams rises
steeply. This represents a large power, often many MW, which must be replaced
from the electric supply via the r.f. cavities. This can be reduced by bending
with a large and gentle radius—hence the size of LEP. The whole topic of this
synchrotron radiation, as it is called, was discussed in Chapter 8.

While CERN constructed LEP, DESY in Hamburg built two rings to collide
30GeV electrons with 820 GeV protons which first operated in 1990 (HERA
1981). HERA was the first European machine to use superconducting accel-
erator magnet technology for the whole ring and is unique in its ability to
study the physics of hadron-lepton collisions (DESY 1981). The next step in
the quest for higher energies, this time to produce the massive Higgs particle, is
the construction of LHC, a 7TeV on 7TeV separate ring collider.

The magnet cross section of the 7 TeV hadron collider the LHC (Lefévre 1995),
is shown in Fig. 11.1. It makes use of CERN’s existing injector synchrotrons
and is to be installed in the existing LEP tunnel. At the end of 1994, the
CERN Council agreed to a ten-year programme to construct the machine. This
may be the last circular collider to be built, but hopefully not the ‘last great
machine’.

A potential problem in LHC and beyond is that at these high intensities and
energies even proton beams will radiate a significant flux of synchrotron light.
The power that loads the refrigerator for the whole ring is

47 4

Pyyn = (;) NfbrmeCQ(%)

This power is expensive to remove at superconducting temperatures.

11.6 Limits and how to overcome them

One of the challenges of experiments with any collider is the need to increase the
probability of collision, or luminosity. This is necessary in order to keep abreast
of the production rate of the interactions of interest to high-energy physicists.
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Fig. 11.1 Cross section of the LHC twin-bore dipole magnet in its cryostat.

Such cross sections fall as 1/M?, where M is the mass, see line labelled Ojet
in Fig. 11.2 from Amaldi (1987). Likening the accelerator to a microscope using
particles as de Broglie waves of short wavelength, A = h/p, to discern fine details
of structure, a higher energy produces a shorter wavelength to reveal smaller

objects but these smaller objects scatter less.

11.6.1 Luminosity

Let us define luminosity precisely. Take a probe particle in one beam which sees
the oncoming beam as a cloud of N particles, each a disc of cross section o
(Fig. 11.3). The probability of the rare process with cross section o occurring is

just the fraction of the beam’s area A that is occluded:

N
P=—0=lo.

A

In this trivial case of a single encounter of one particle passing through a beam,
I = N/A is a sort of luminosity for this one encounter. It is independent of the
cross section under study and depends only on the beam geometry. We may
think of it as a probability of producing an event normalized to unit interaction
cross section.

In practice, the probe beam has as many particles as its opposing target, and
such encounters occur as often as the many bunches in the circulating beams in a
storage ring meet each other. The luminosity for two such equal beams colliding
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Fig. 11.3 A probe particle encounters a target—a beam of particles with cross
sectional area A travelling in the opposite sense.

head on is

N2fp
L=—=,

where N is the number of particles per bunch, f}, is the bunch frequency, and

A is the transverse beam area at the crossing. A luminosity of 1033 cm=2s7!
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will produce one event per second from a process for which the cross section is
10733 cm—2.

11.6.2 Tune shift

The beam—-beam effect, a change in focusing due to the electromagnetic effect
of the oncoming beam, increases with the density of the colliding beams and
imposes an upper limit on luminosity given by

roB* N
v A’

dQ =

where -y is the usual relativistic factor, ry the particle’s classical radius, and 5* is
a measure of how tightly focused the beams are at the waist where they interact:
a small B* represents a narrow waist in the beam profile.

This @ shift must be no more than a few per cent for colliding electron beams,
and a factor 10 smaller for proton beams if they are to find a clear space in a
forest of potentially resonant conditions driven by guide field errors.

One can see from the above rather similar expressions for luminosity and tune
shift that the only route to improving luminosity without increasing d@ is to
squeeze the beams to make (3* as small as possible at the waist where beams
collide. One can also increase N to the limit imposed by the beam instability
and increase the number of bunches to have more frequent crossings since the
above considerations apply to each crossing.

11.7 Linear colliders

LEP has stretched the concept of the circular electron collider to the limit,
and any electron machine which follows LEP will almost certainly consist of
two linear accelerators facing each other. As a first essay in this configuration,
Stanford’s SLAC used a two-mile long 50 GeV linac to accelerate electron bunches
closely followed by positrons (Richter et al. 1980). The beams were guided around
opposite semicircular arcs to collide at a single interaction point, the final focus
shown in Fig. 11.4. The positrons are generated by colliding electrons on a target
near the end of the linac; they are then led back to the low-energy end of the
linac with a positron return line. Near the beginning of the linac, there are two
damping rings; one of these is for electrons and the other for positrons. As the
particles circulate in these rings, they radiate some of their energy as synchrotron
light in such a way that their emittance shrinks in all three dimensions. This
shrinkage is essential in order to make the colliding beams dense enough to give
the luminosity needed when they collide.

At the SLAC Linear Collider (SLC) energy of 50 GeV, it is economical to use
the arcs to bring the two beams into collision, rather than building a second
linac, but for a machine of several hundred GeV, the arcs would radiate too
much energy. In choosing parameters for a new machine, most designers make the
frequency and repetition rate of the linac much higher than at the SLC and aim
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for a luminosity that can compete with circular machines. The superconducting
TESLA project centered at DESY in the exception. The SLC demonstrated
that linear colliders are a practical way ahead for lepton physics. The mastery
of this new technique took longer than expected and, although SLC cannot
match LEP’s luminosity, its highly polarized leptons add another dimension to
its experiments.

The way forward for leptons has to be a linear collider in which electrons
from one linac collide with positrons from another, or perhaps a muon collider,
in which it is a race against time to collect, cool, accelerate, and store enough
muons for a ring collider before they decay and are lost.

There is an essential difference between linear and circular colliders. Parti-
cles once accelerated to high energy in a circular collider may be re-used almost
indefinitely, producing a new encounter each time they circulate, and the beam
power—the product of the number of particles, the charge they carry, and the
voltage to which they are accelerated—is not wasted. On the other hand, in a
linear collider a fresh batch of particles must be accelerated for each encounter.
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Fig. 11.5 Maximum allowable fields on a copper surface.

The beam power must be continuously renewed via the accelerating cavities
which form the linac and which must ultimately be powered from the electricity
supply to the site. Other restrictions come from the fact that the frequency of
encounter can only be as fast as the linac can cycle, and also the very intense
beams which must be accelerated are prone to instabilities. Not only must the
efficiency of the r.f. system which converts power from the wall plug into beam
power be high, but the voltage gradients in the accelerating cavities must be
exceptional if the linacs are to be only 10km or so in length. Higher-frequency
linac structures help, since the energy stored in their fields is smaller and they
can be run at higher accelerating field so that the total length of the linac may be
shorter. If we proceed in this direction, we have to miniaturize the accelerating
cavities to run them at a higher-voltage gradient. Figure 11.5 shows how almost
two orders of magnitude in GV/m are to be gained by reducing the r.f. wave-
length, which fixes the scale of the cavity dimensions (Weiland 1985). In the next
generation of linear colliders, TESLA excepted, the wavelength will be reduced
from the 10cm of present linear accelerators to even 1cm. However, we must
expect instability problems to arise because the walls are closer to the beam. For
the highest frequencies it will also be necessary to develop r.f. power sources at
frequencies far beyond the bands where power tubes for normal telecommunica-
tion use are available. CERN, as part of a world-wide collaboration, is studying
the design of a linear collider of at least 2 x 500 GeV, the minimum required for
a significant step into the future (Delahaye 1999).

It is not sufficient just to design an accelerating structure with maximum
MeV/m. The beam should sweep up as much as possible of the electrical energy
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stored in the cavity or the residual energy will be wasted on warming the copper
walls of the cavity. If the cavity energy stored per metre of cavity is W' and if
N electrons of charge e are accelerated by a field E when passing through the
cavity, the sweeping efficiency is

eNE
= <
The r.f. power needed is the power of the beam divided by the sweeping efficiency:
b Poan _ NJeU
' " "

Here U is the overall energy gain of the particles and f is the repetition rate
of the device. We can imagine that small high-frequency cavities are likely to
be a good idea because the number of joules, W, needed to fill the interior of
the cavity is minimized. In addition, there are the arguments for high frequency
based on reducing the overall length of the device. If we try to sweep too much
energy from the cavity, the sagging of energy loss between the head and tail of
the bunch will be large but this may be compensated to some extent by splitting
the bunch into a train of bunches and filling the cavity with energy as they pass.

The parameters fand N in the formula for power appear again in the expression
for the luminosity:

fN?

L=H .
dmo oy

Here H is the enhancement of the luminosity due to the electromagnetic forces in
the collision (it is unity at low intensity), an effect which is beyond the scope of
this description. Comparing the equations for efficiency and power, it looks as if
we are free to reach any luminosity by increasing N and reducing fin proportion
to keep a constant r.f. power. However, there is a limit to this, because not only
does L depend on N? but also on the energy spread in the electrons as they
radiate photons upon colliding with the bunch of positrons coming the other
way. This beamstrahlung, as it is called, is caused by the acceleration due to the
electromagnetic field of the oncoming bunch. If the fractional energy spread is
greater than 20-30%, it will be impossible to define the energy of the incoming
particles with the precision needed to interpret the event.

Teams in the USA, CERN, DESY, and Japan have arrived at essentially similar
parameter sets for a collider in the range of 0.5 to 1 TeV per beam. The differences
stem from a choice in frequency or, in the case of TESLA at DESY, in the use
of superconducting cavities. To reach high frequencies, the r.f. power source is
the crucial question. You cannot buy a tube that will power a 30 GHz linac
off the shelf or even design one. In CERN’s CLIC (Delahaye et al. 1999), the
main linac receives its power from an intense low-energy driver linac operating
at the LEP r.f. frequency at which klystrons are available. The drive linac beam
consists of very short and intense electron bunches. They must be only a few
millimetres long, for they transfer power to the main linac by virtue of their
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strong Fourier component at 30 GHz, which excites waves in a set of transfer
structures bridging the two linacs. These may be seen in Fig. 11.6, which also
shows the general layout.

11.8 Muon colliders

Recently, there has been a growing realization that muons might well be worthy
competitors to electrons. They have the same point-like property as electrons in
collision, yet are much further from any synchrotron radiation limitation because
of their higher mass. The short lifetime of muons at the energies we might wish
to store them has led us to dismiss them as projectiles in collision. However, at
higher energy they begin to become interesting if we can provide a copious supply
of muons and refill the collider much more frequently. Above a few hundred
GeV the Lorentz transformation of their decay is in our favour and one may
contemplate a collision time of tens of milliseconds—perhaps long enough for a
replenishment to be prepared in a series of rapid cycling accelerators.

There is still a race against time to collect and accelerate the muons. In the
low-energy regime, their decay length,

Ap(m) =6233p (GeV/c),

is short compared to the distance they have to travel to be accelerated. In a
synchrotron in which the beam circulates for many turns and is accelerated by
a relatively weak r.f. system, it takes too long to reach a given energy. At the
opposite extreme lies a plain muon linac but, although this is the most economic
in terms of the path length, it brings with it the problems of the linear collider.
It seems that the compromise of a recirculating linac is just rapid enough to
replenish the muons for good luminosity and is the best solution, limited only
by the scale of existing rings and laboratory sites.

The design energy of such a collider might well be as high as 4TeV and, to
be useful, we must aim for a correspondingly high luminosity. As in all colliders,
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the luminosity is strongly dependent on the beam—beam tune shift that may be
tolerated. The beam-beam tune shift limit for electron machines is about an
order of magnitude less severe than the proton machine limit because non-linear
effects, which are too slow to grow in the damping time of a few milliseconds,
will not appear. The muon collider, in which the beam circulates only for a few
tens of milliseconds, will be just as forgiving. Muon colliders will not suffer from
the energy spread due to beamstrahlung and, muons are more potent projectiles
for Higgs physics (Fig. 11.7).

The methods of production, collection, and cooling of muons have much in
common with the design of an antiproton source, yet there are some very impor-
tant differences. The final crop of antiprotons, from primary protons hitting a
target, yields only one antiproton per million protons. In the case of the muon
collider, this is closer to one-to-one. The antiprotons, collected as a 24 GeV pro-
ton beam hits a target, have a production peak at a momentum of several GeV
while the pions, parents of the muons, are almost all below 200 MeV. Low-energy
pions may be produced at a mercury jet or moving belt target. The proton beam,
focused on the target, has a mean beam power of several MW, and is produced
by a fast cycling synchrotron of typically 16 GeV beam power, similar to those
proposed for spallation sources. The low energy of the pions makes the design of
a magnetic focusing device to turn the production cone into a forward collimated
beam much easier than it was for antiprotons.

The pions are collected in superconducting solenoids with fields tapering from
20T around the target down to 1T in the decay channel. A paraxial particle
entering a solenoid at a distance ry receives an azimuthal momentum,

eBrg
2 k)

Py =

as it passes through the fringe field. It therefore executes a spiral path whose
radius of curvature in the transverse plane is R = ro/2, bringing the particle
onto the axis of the solenoid after one half turn of the spiral. Short solenoids of
appropriate length, therefore, act as lenses which focus in both planes, and from
these one can construct a FOFO lattice with

_ 2p.
ﬂJ__ eB’

which happens to be numerically equal to twice the radius of curvature of the
particle path in the field B.

11.8.1 Monochromator

Now follows the monochromator, which collects a large fraction of the pions as
they decay in flight to muons. This consists of a system of r.f. cavities which decel-
erate the particles that arrive early and accelerate the latecomers. At the same
time, it serves as a linac to accelerate and increase the decay length of the muons.
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Fig. 11.7 The overall scheme of a muon collider.

11.8.2 Cooling

In Chapter 12 we describe how muons may be cooled by a combination of ioniza-
tion cooling and emittance exchange and these methods, developed specifically
for the muon collider, are currently being studied intensively. Even more exotic
optical cooling methods are currently under study.
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11.8.3 Recirculating linacs and the collider ring

Recirculating linacs provide the most effective method to bring the muons to
high energy. They pass several times through the same linac structure, returning
each time through one of several bending arcs matched to their momentum. They
finally enter the collider ring itself.

Exercises

11.1 Calculate the luminosity for a beam of 10! protons per bunch circulat-
ing at 7.7TeV in a ring of 26.658km circumference, assuming £(8vy) =
3.75mmmrad and §* = 0.5 m. Emittance is defined for 1o and there are
4725 bunches per beam. (Assume A = 4702.)

11.2 Calculate the beam—beam tune shift per crossing for the above.

11.3 Assuming that AQy}, should be <0.00083, adjust the number of bunches
and intensity to maximize the luminosity within this limit. Assume N f},
remains constant.

11.4 A linear collider seeks to achieve a centre-of-mass energy of 1000 GeV.
Plot a curve of length versus field gradient and use Fig. 11.5 to decide the
frequency which fits a site of 25 km extent (assume a filling factor of 70%).

11.5 Assuming a repetition frequency of 200 Hz and a mean beam radius (o, =
oy = 60nm), what beam intensity does the linear collider require to reach
luminosity of 1034 cm=2s71?

11.6 What is the average beam power?

11.7 Calculate the lifetime of a muon (a) at 50 GeV circulating in a storage
ring and (b) at 4TeV. Calculate the leading parameters (bending radius
@, number of periods, etc.) for a 6 T superconducting ring to store the
muons.

11.8 What would be a reasonable repetition (filling) rate for a muon collider at
4TeV, assuming that a beam should be renewed when it has decayed by
one exponential lifetime?
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Cooling

12.1 The need for cooling in antiproton machines

In the early 1980s CERN, and later Fermilab, built and brought into operation
a completely novel kind of storage ring designed to accumulate and concen-
trate antiprotons. The SPS and Fermilab proton synchrotrons had originally
been constructed to accelerate protons, to extract them and then collide them
with fixed targets. It was argued that, if one could collect enough antipro-
tons, they might be injected into a storage ring and brought into collision with
a proton beam circulating in the opposite direction. The opposite charges of
the particles and antiparticles (as in electron—positron colliders) would ensure
that the opposing beams would see identical bending and focusing forces from
the magnets which provided the guide field. For hadrons at these energies
(300-900 GeV), the increase in available energy in the centre-of-mass frame
would be 20-30 times greater than in fixed-target collisions. It was argued
that this might produce enough energy in the centre-of-mass frame to create
W and Z particles, whose existence would verify the latest electroweak the-
ory, unifying the laws of electromagnetism and radioactivity—a discovery as
important as Maxwell’s unification of electricity and magnetism was in the last
century.

Antiprotons have always been a rare commodity. The threshold energy for pro-
ducing them by bombarding a fixed target with protons is just over 6 GeV and
protons accelerated to this energy in the Bevatron produced the first trickle of
antiprotons in the 1950s. More powerful accelerators, the AGS and PS, followed
but, even with primary protons of 25 GeV and above available, about a 1000
protons are needed to produce each antiproton. Moreover, of those produced,
only about one in a thousand falls in the narrow range of angles and momenta
which can be collected and transported by a beam line to an experiment. Nev-
ertheless, in the 1960s and 1970s, many successful fixed-target experiments were
carried out with the pulses of 10% antiprotons produced from the beams of 10'2
or 10" protons incident upon fixed metal targets.

A beam of 10° antiprotons colliding with a much more tenuous target, pre-
sented by a counter-rotating bunch of protons, would not be sufficient to produce
observable rates of W and Z’s. It takes at least a day, at the normal 2.4s rep-
etition rate of the PS, to accelerate enough pulses of 26 GeV protons to make
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enough antiprotons. Antiprotons have to be stored in a small storage ring—
a sort of magnetic bottle—for many hours. To collect as many antiprotons as
possible, the collector ring needs a large aperture, but its large aperture over-
flows in a few pulses. To stop this ‘bottle’ overflowing, its contents have to be
continuously concentrated—rather as steam is condensed into a smaller volume.
The condensing process is called ‘cooling’. Expressed in the six dimensions of
phase space, the factor of concentration has to be greater than 10°. In terms
of signal amplification, this is a task rather like detecting a match struck upon
the dark side of the moon. Each of the 20 000 antiproton bursts is collected in
a small storage ring, the Antiproton Accumulator (AA). CERN’s AA ring was
designed for 3.5 GeV—the best energy to collect the antiprotons produced by
26 GeV protons from CERN’s PS (Billinge 1984).

In the early 1980s a new technique, called stochastic cooling, became available
to make this possible (van der Meer 1972). Stochastic means ‘to aim for a target
and sometimes miss’ and this is the essence of the method. One must arrange
for the number of ‘misses’ to be statistically smaller than the number of ‘hits’.
Of course, the ‘hits’ are not physical collisions but manipulations in which the
amplitude of a particle’s motion is reduced. We shall explain the principles of
this process, but the reader is recommended to study van der Meer’s papers for
many of the details (van der Meer 1984).

12.2 Stochastic cooling
12.2.1 Transverse cooling of a single particle

Figure 12.1 shows a particle as it performs betatron oscillations about its closed
orbit. By now the reader is familiar with the elliptical trajectory in phase space
whose area is called its ‘emittance’. It passes between the parallel plates of a
fast beam position monitor whose output, proportional to its displacement at
the instant of passage, is amplified and sent across the ring to two deflecting
plates. These apply an angular divergence increment to realign the particle as it
crosses the closed orbit. This reduces its oscillation amplitude and the emittance
of the beam to zero. The particle is travelling almost with the velocity of light
but, even allowing for the speed of signal transmission in cables and delay in
the amplifier, the distance along the chord can be much shorter than the path
which the particle follows, and the signal and the particle can be made to arrive
together.

The betatron phase advance between the pickup and deflector should be close
to an odd multiple of 90°, so that the displacement is compensated by a diver-
gence increment. If the particle arrives at a phase in its motion which is not a
maximum, there will be a residual component after the first turn, but this can
be corrected on subsequent turns.

Now, of course, the particle will be accompanied by many neighbours and
it is not immediately obvious that their signal will not swamp that due to the
particle’s displacement.
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Fig. 12.1 Position pickup signal is amplified and used to deflect the particle.

12.2.2 Cooling a large number of particles

In Fig.12.2(a) we see a histogram of a sample of ten particles which pass through
the cooling pickup together. The horizontal coordinate is the displacement of
the particles at a pickup. One among the particles is a rogue and displaced far
to the right. The pickup produces a signal which is proportional to the mean
displacement—the centre of charge—which is inevitably biased in the direction
of the rogue.

On the next turn (Fig. 12.2(b)) the rogue has moved somewhat towards the
axis. However, the centre of charge has now been restored to the axis by the
kick and the resultant pickup’s signal is zero. The process develops no further,
as long as the same ten particles pass through the pickup together. Then the
cooling stops.

However, there are many other particles in the circulating beam and by virtue
of their different momenta and revolution frequencies, they can overtake the
rogue and leave or join the sample. Companions of the rogue on the first turn
may drift out of the sample seen by the pickup. This ‘mixing’ is essential if the
cooling is to continue. In Fig. 12.2(c), the rogue has another set of companions
whose centre of charge may be in its direction or in the opposite direction. At
first sight it might be thought that any further corrections applied would average
to zero without any cooling effect on the rogue but in Fig. 12.2(d) we see how
after a number of turns the rogue is progressively brought towards the centre of
distribution.

The rate of mixing of a rogue with its companions is determined by the slip
factor, n = (1/9? — 1/44,), and the ring’s lattice must be designed to make this
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large but not so large as to destroy coherence between the pickup and corrector.
A light-hearted analogy may help persuade the reader that this is not a happy
accident in the simulation. Suppose a brigade of soldiers, whose waist measure-
ments have a broad distribution, receive a set of uniforms which are all of medium
size. The commandant hits upon an ingenious solution. At the entrance to the
canteen he places a corporal who judges the weight of each soldier and sends
a signal to the serving counter to give that man double or half portions. After
some adjustment of the signalling delay, the message is synchronized with the
non-conforming soldier. However, inevitably his companions in the queue receive
the same, but often inappropriate, treatment. But so great is the scramble to ‘fall
out’ for meals that he is never with the same group of people. His companions
of the day can expect tomorrow to be with others who may be either fat or thin.
On an average their portions will be normal, but the fat man never escapes the
instructions from the orderly and every time gets less to eat. The thin soldiers
are also systematically fattened until one day they all fit the new clothes. The



176 Cooling

same argument, applied to the ensemble of particles, implies that the systematic
correction applied to the rogue particle is consistently in the correct direction
while the effect on the well-behaved particles is in a random direction.

12.2.3 Gain, noise, and the rate of cooling

The key to understanding the performance of the cooling system is to realize
that the length of the ‘sample’ seen by the pickup at any one time should be as
short as possible. The fewer the particles in the sample, the more one approaches
the ideal case in which each particle is corrected individually at the first pass.
A large number of particles in the sample will dilute the signal given by the
rogue particle and increase the time taken to cool. The sample size is universally
proportional to the bandwidth W of the amplifier driving the deflector because
the bandwidth, transformed into the time domain, becomes the time resolution
of the pickup. A resolution corresponding to delta function in time or an infinite
bandwith would detect every individual particle and give infinite cooling speed.
The expression for the rate of cooling is

2w

1 2w )
R A G

N

where g is the gain, gopy = 1/(1+p), p the noise/signal power, W the bandwidth,
and N the number of particles.

This indicates that the cooling rate is just inversely proportional to the number
of circulating particles. A million particles can be cooled in less than a second;
10'? particles, sufficient for useful collisions, take a day. The gain of the amplifier
will, of course, increase the rate of cooling but the g2 term in the square bracket
means that we must not be too impatient and use a gain approaching one. Noise
in the circuit, especially in the low-level stages of amplification, makes this an
even more severe limitation. Moreover, there is a practical limit to the product
of gain and bandwidth for amplifiers which constrains the cooling rate.

In general, the way in which the gain, bandwidth, and noise scale argues for
a frequency as high as possible yet consistent with the aperture of pickups and
kickers whose dimensions must be big enough for the beam to pass through.

12.2.4 The position detectors

Typical high-frequency pickups for cooling are slotted transmission lines working
in the GHz region (Fig. 12.3). The one shown has four rows of slots on each side
of a rectangle. Difference signals can be used to pick up betatron oscillations
and sum signals to detect momentum or arrival time changes. Kickers have a
configuration similar to the pickups. The correction of betatron motion is fed in
push—pull mode and that of momentum deviation is fed in common mode. Larger
aperture devices can be made with ferrite-loaded transmission line kickers, but
these are limited in frequency and used only for cooling weaker beams.
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Fig. 12.3 A high-frequency pickup for stochastic cooling.

12.2.5 Momentum cooling

We can measure the momentum of a particle by detecting its revolution fre-
quency and correct it by applying an accelerating voltage to a cavity. Naturally,
we need more than one turn to measure a revolution frequency, so the picture
is less obvious than the transverse case. It is probably easier to imagine what is
happening in the frequency domain. The pickup is continuously responding to
a spectrum of frequencies. Let us say for the moment that these are the revolu-
tion frequencies of individual particles of different momenta. We must filter its
output so that it is blind to particles with the correct revolution frequency. Any
particle with a lower momentum gives a higher-frequency signal (above transi-
tion), which escapes the filtering and, when applied to the accelerating cavity,
will accelerate and correct the particle’s momentum until it falls back into the
desired range defined by the filter. The filter must be designed so that signals
above its passband are 180° out of phase with those below. In fact, a simple res-
onant circuit has just this characteristic. This ensures that low-frequency signals
provoke an accelerating voltage while high-frequency signals decelerate. Again
the statistics of the parade ground apply and there must be the right amount of
mixing.

Of course, not only the fundamental revolution frequency is generated but
also a comb of higher harmonics, each of which is useful. Filters which deal
with a comb of frequencies can be constructed from resonant delay lines whose
electrical length corresponds to half a wavelength at the fundamental frequency
(Fig. 12.4).
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Fig. 12.4 A notch filter consisting of a low-loss transmission-line stub.

12.2.6 The life cycle of antiprotons in the AA

CERN'’s stochastic cooling ring, the AA, was really two machines in one—two
machines which Fermilab, in its subsequent scheme, chose to make physically
distinct. The injected beam, with as large an emittance and momentum spread
as can be accepted, rides in the outer half of the vacuum chamber. On the inside
of the vacuum chamber, circulating at a different momentum and radial position,
is the cooled stack of antiprotons which has been accumulated over many hours
of regular pulsing. The life cycle of antiprotons is shown in Fig. 12.5.

Liouville’s theorem prevents us from superimposing the injected particles
directly on the stack. In practice, an attempt to do so with the kicker which
inflects the new pulse onto its orbit would eject the stack.

There are three steps in bridging the gap between injection orbit and stack.
They are pre-cooling, r.f. deceleration, and stack-tail cooling. The pre-cooling is
designed to reduce drastically the momentum spread of the injected pulse by an
order of magnitude so that a rather weak r.f. system can capture, decelerate and
deposit it gently in the tail of the stack in time for a new pulse to take its place
after 2.4s.

Once in the tail, the ‘stack-tail’ cooling system takes over, detecting that the
particles have a lower frequency than the stack because their momentum and
mean radius are different, it applies a signal to a cooling kicker which decelerates
them towards the stack frequency. On their way their horizontal and vertical
betatron amplitudes are reduced by stack-tail transverse systems.

Once in the stack a third set of cooling systems take over: the high-frequency
core cooling systems designed for intense beams.

12.3 Electron cooling

Electron cooling was first developed at Novosibirsk under the aegis of Budker
(1967). A beam of heavy particles, antiprotons or ions, for example, travels
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The first pulse is injected into the vacuum chamber
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After 12 h, the core contains enough antiprotons to be ejected
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ig. 12.5 Sequence of cooling

The remaining antiprotons are used to start the next core ~ operations in the AA.

through a beam of electrons with the same velocity transferring its energy to
the electrons (Fig. 12.6). Seen in the co-moving system of the two species of
particles, this is simply an equipartition of energy as the two species experience
their mutual electromagnetic fields. It is a much faster process than stochastic
cooling but most effective when the proton or antiproton beam is circulating at
low energy.

Although the principle is akin to the equipartition of energy, the electron gas
is constantly renewed, and the ion temperature will converge on the electron
beam’s temperature.
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Tons

Fig. 12.6 Ions are cooled as they travel through an electron beam in a solenoidal field.

In the beginning of the cooling process, the spread in ion velocity is typically
larger than the electron velocity:

(vf) = (vd),

where the brackets signify averages in the frame of reference of the moving
particles. So initially the kinetic energy of the ion

Ty = i1M(f) > LM (02) =T,

1
2
since we only consider the electron cooling of heavy particles. In equilibrium,

TI:Te
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S0, finally, the velocity spread of the ions will be much smaller than the velocity
spread of the electrons.

The beam of electrons must be accelerated and focused into a precisely
parallel beam and decelerated in a collector after interacting with the ions
(Fig. 12.7).

Readers who wish to know more about electron cooling are recommended to
follow Mgller (1992), where one may find an expression for the cooling time.
Electron cooling is most effective at low energy and is used in a number of small
storage rings for ions and antiprotons: LEAR and AD at CERN. The need to
decelarate antiprotons before cooling ruled out its use in the CERN and Fermilab
antiproton sources.

and
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Fig. 12.7 Electron cooling apparatus.
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Fig. 12.8 Directional absorption and isotropic emission.

12.4 Laser cooling

This is a fascinating practical application of modern physics (Mgller 1992). The
idea can be applied to a beam of ions circulating in a storage ring. The ions must
be of a particular species and charged state chosen to have a ground state A and
upper energy level B, separated by an energy corresponding to a tuneable laser
(Fig. 12.8.) An example is a 100 keV 7Lit beam whose transition from 3S(1s2s)
to 3P(1s2s) can be excited by a laser of 5485 A. This is within the tuning range
of a continuous wave dye laser.

If the laser and the beam travel together in a straight section of a storage ring,
the Doppler-shifted frequency experienced by the ion is

W' =~yw(l — B cosh),

where 3 and « are Lorentz variables and 6 is the angle between the beams.



182 Cooling

Fig. 12.9 Three stages in sweeping the laser frequency through the beam’s velocity
distribution.

The ion’s energy must be chosen to shift the laser frequency w to exactly
correspond to the difference between energy levels.

If the laser and the ion are in resonance, a photon is absorbed and the ion
accelerated slightly in the direction of the beam. The upper state B must have
a short lifetime (42ns in our example) so that it decays before another photon
passes by. We want to avoid induced emission. When it decays, the photon
emitted has no preferred direction and the result is a random acceleration or
deceleration. However, the initial directionality of the recoil to the laser photon
ensures an overall acceleration.

So far we understand how the laser can accelerate, but how can it cool the beam
of ions? Although each ion in the beam has a narrow response, the beam’s energy
or velocity spread appears as a frequency spread when we apply the Doppler shift.
Figure 12.9 shows three frames of a movie as the narrow line of the laser is tuned
to sweep across the broad frequency spread of the beam. Sweeping all ions before
it, the acceleration from laser—ion interaction concentrates the distribution into
a narrow line. A reverse scan from above the distribution with an opposing laser
can re-centre the mean energy of the narrow distribution. Transverse cooling is
also possible if the laser beam impinges on the beam from the side but this is
inefficient.

Laser cooling can be extremely fast though the limited number of suitable
combinations of ions and lasers restricts its application to certain energies and
species of particles.

12.5 lonization cooling

Muon colliders today offer a route to extend circular lepton accelerating stor-
age rings to energies of several TeV without the annoying energy loss from
synchrotron radiation that presently limits LEP.

Muons, and their parent pions, must be collected and cooled in the fashion
of antiprotons but in a time which competes with their rapid decay. To reach
reasonable intensities, the cooling time has to be a few milliseconds. Single pass
cooling is the only solution. Particles passing through an energy absorbing plate
lose momentum in the direction of their trajectory in exactly the same way as a
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Fig. 12.10 Ionization cooling of a dispersed beam at an absorbing wedge followed by
re-acceleration.

relativistic particle emitting a quantum of synchrotron light. An r.f. cavity fol-
lowing the absorber replaces the longitudinal momentum but not the transverse.
This is just as portrayed in Figs 8.4 and 8.5, when we explained transverse damp-
ing for electron synchrotrons. The result is a reduction of transverse emittance.
Such ionization cooling would not work for electrons because of bremsstrahlung
and hadrons because of strong interaction with the absorber, but it works for
muons.

Longitudinal cooling may also be achieved with an absorber—the process is
called emittance exchange (see Fig. 12.10). If a beam’s energy or momentum dis-
tribution is spread by dispersion across a wedge of solid material, the high-energy
particles lose more energy from the wedge than their low-energy companions,
thus ‘cooling’ the energy spread. Unfortunately, the result is simply that the
energy spread is reduced at the expense of an inflation of transverse phase space,
but transverse cooling can be applied again to remove this.

In plans for a muon collider, now being strenuously studied in the US, many
alternating stages of wedge absorbers, ionization cooling and emittance exchange
are envisaged. Initial simulation studies give encouraging results.

Exercises

12.1 Use the following expression for the cooling rate:

1 2w

—="[29 -1+

=N 2991+,
and obtain an optimum value for the gain ¢ in the presence of a signal-
to-noise ratio p. Write down the expression for the cooling rate for this
optimum gain.



184 Cooling

12.2 A cooling system is designed with a central frequency of 300 MHz. What is
the sample time and how many particles will be in any one sample of 10¢ a
beam of particles circulating in a ring of 25 m radius? (Assume v/c = 0.96.)

12.3 An electron gun has a source potential of 60kV. Calculate the momentum
of protons with the same velocity.

12.4 We wish to cool a beam of protons 5cm in diameter to an emittance of
407 mm mrad. What is the acceptable alignment tolerance on the electron
beam?

12.5 Write a short computer program to simulate stochastic cooling with and
without mixing.

12.6 If the proton beam has a transverse emittance of 27 mm mrad, what would
be its transverse velocity at a 5 of 10m?

12.7 What does this represent in terms of temperature?

12.8 The transitional state of a 100 keV Lit beam is excited by a laser frequency
of 5485 A. What is the energy level difference which is excited?
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Applications of accelerators

13.1 Introduction

The reader will perhaps be surprised to hear that there are about 10000 acceler-
ators in the world and the vast majority are not built to study the fundamental
particles of matter but are put to more ‘practical’ purposes.

Table 13.1 is from a world-wide study by Scharf and Chomicki (1996) who list
a total of 112 accelerators of more than 1 GeV. Only one-third of these are dedi-
cated to high energy physics while the rest are mainly synchrotron light sources.
There are a further 5000 accelerators of lower energy for medical purposes: radio-
therapy, biomedical research, and isotope production. A comparable number is
deployed in industry, mainly as ion implanters and for surface treatment. In fact,
more than 99% of the world’s accelerators have been built for use outside the
discipline of particle physics.

13.2 Industrial processes using accelerators

Electron beams create electron showers which degrade to lower energy, where
they excite chemically active sites. These can break up biological molecules in
an organism, rendering it innocuous, or promote new bonds which polymerize

Table 13.1 Particle accelerators—world-wide (after Dearnaley 1987)

Category of accelerators Number in use
(1) High-energy accelerators of more than 1 GeV 112
Biomedical accelerators

(2) Radiotherapy >4000

(3) Research including biomedical research 800

(4) Medical radioisotope production ~200

(5) Accelerators in industry ~1500

(6) Ion implanters >2000

(7) Surface modification centres and research ~1000

(8) Synchrotron radiation sources ~50

Total in 1994 10000
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Table 13.2 Electron irradiation (after Dearnaley 1987)

Industries Processes Products
Chemical Cross-linking Polyethylene
Petrochemical Depolymerization Polypropylene
Grafting Co-polymers
Polymerization Lubricants
Electrical Cross-linking Building
Heat shrink memory Instruments

Semiconductor modification

Telephone wires, power cables,
insulating tapes, shielded cable
splices, Zener diodes, ICs, SCRs

Coatings adhesives Curing Adhesive tapes
Grafting Coated paper products
Polymerization Wood/plastic composites,

veneered panels, thermal barriers

Plastics Cross-linking Food shrink wrap

Polymers Foaming Plastic tubing and pipes
Heat shrink memory Moulded packaging forms

Rubber Vulcanization Tyre components

Green strength
Graded cure

Battery separators
Roofing membrane

and harden plastics. A large number of industrial processes make use of electron
beams; many everyday objects rely on electron beam hardening—among them
are computer disks, shrink packaging, motor car tyres, cables, and plastic hot-
water pipes. Table 13.2 lists these processes and the end products. The energy
and intensity of the beams required vary greatly. The energy is usually deter-
mined by the depth of penetration required and ranges from surface treatment,
needing only a few hundred keV, to treatment of bulk material, where a beam
of several MeV is needed to penetrate tens of centimetres of material.

13.2.1 Sterilization

Particle beams may be used for applications that include disinfecting drinking
water, treatment of solid wastes, removal of noxious substances, treatment of
waste gases, medical sterilization, and preservation of food.

Sterilization of foodstuffs is still one of those issues which the general public
finds difficult to accept, yet the potential benefits are impressive. Doses of a few
hundred Gy will render most insect pests sterile and lead to their death within a
few days (Fig. 13.1), preventing the deterioration of bulk grain, vegetables, and
fruits. A dose of 200 Gy will arrest their germination. Cooked food can be stored
almost indefinitely at room temperature if it is packed and irradiated with a few
hundred Gy and less benign artificial preservatives are no longer needed.
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Fig. 13.1 Weevil in a sack of grain.

There are also some sterilization processes where accelerators can be used
without exciting public debate. The accelerator is an alternative to the autoclave
to sterilize surgical instruments and laundry. Also the preservation of foodstuffs
for animals and the production of fertilizers for crops are generally perceived
to be sufficiently remote from human ingestion, at least as far as the effects of
radiation are concerned. Another unquestionably benign use of radiation is in
destroying the bacteria infesting the detritus of the operating theatre. Even the
sludge of sewage could be usefully incorporated in some products after radiation
to kill pathogenic micro-organisms, though recently public opinion has turned
against this. The required dose is of the order of 10 kGy.

13.2.2 Doses

The doses required for the various applications span a large range. In Table 13.3
we see that the current and power requirements for medical purposes are very low
but at the other end of the spectrum, disinfecting sewage and drinking water on
a large scale require quite powerful installations. A 12 MeV accelerator to treat
the drinking water for a town of 100000 people would have to deliver a beam
power of 600 kW.

13.2.3 Ion implantation in semiconductor manufacture

Most of the applications mentioned above use electrons, but simple DC accel-
erators are used in great numbers in industry to accelerate ion beams of low
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Table 13.3 Dose requirements for various radiation effects (after
M. R. Cleland)

Radiation effect Dose requirements
Radiography (film) 1.0-10.0mGy (0.1-1.0rad)
Human lethal dose (LDso) 0.4-0.5 Gy (400-500rad)
Sprout inhibition (potatoes, onions) 100-200 Gy (10-20krad)
Potable water cleanup 250-500 Gy (25-50krad)
Insect control (grains, fruits) 250-500 Gy (25-50 krad)
Waste water disinfecting 0.5-1kGy (50-100 krad)
Fungi and mould control 1-3kGy (100-300 krad)
Food spoilage bacteria 1-3kGy (100-300 krad)
Municipal sludge disinfecting 3-10kGy (300-100 krad)
Bacterial spore sterilization 10-30 kGy (1-3 Mrad)
Virus particle sterilization 1-30kGy (1-3 Mrad)
Smoke scrubbing (SO; and NO;) 10-30kGy (1-3 Mrad)
Ageing of rayon pulp 10-30kGy (1-3 Mrad)
Polymerization of monomers 10-50kGy (1-5Mrad)
Modification of polymers 50-250kGy (5-25 Mrad)
Degradation of cellulose materials 100-500kGy (10-50 Mrad)
Degradation of scrap Teflon® 0.5-1.5 MGy (50-150 Mrad)

energy and are an essential tool in the manufacture of semiconductors. A typ-
ical semiconductor production process might contain 140 operations, of which
70 involve the implantation of ions in the crystal lattice of the semiconductor.
The implantation of ions at specific lattice sites and the creation of defects is a
highly developed technology. The depth of the implant is controlled by choosing
the ion energy which is usually between 2 and 600 keV. The species of the ion is
selected by standard mass analysis techniques. Similar methods are now applied
for the manufacture of superconducting materials where implantation is used to
‘pin’ atomic planes.

13.2.4 Surface hardening with ions

Tons are also used for the surface treatment of metals in the engineering industry.
Tungsten, chromium, titanium, tantalum, nitrogen, boron, and other ions may
be implanted to harden the surface of steel components such as ball bearings
and cutting tools (Fig. 13.2), and to avoid corrosion (Grob et al. 1996).

Unlike more conventional surface-hardening techniques with chemicals and
high-temperature furnaces, ion beams do not heat the surface and further
annealing is not required. The ions can be of metallurgically ‘forbidden’ atoms
and can be implanted in a surface layer which will avoid subsequent fissures. Typ-
ical applications are in the manufacture of artificial hip and knee joints (Fig. 13.3)
and in the manufacture of control and fuel rods for nuclear reactors. The den-
sity of implantation for hardening purposes is about 100 times that used in the
manufacture of semiconductors and the accelerator must produce currents in the
range of 5-10mA at energies in the range 50-200 keV. The flux required for ion
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Fig. 13.2 Hardening gears with ions (artist’s impression).

implantation is considerable and the number of ions which are deposited is in
the range 10'°-10'7. The latter number represents as much as 10% of a layer of
material several thousand angstroms in thickness.

13.2.5 Precision machining and membrane manufacture

Ton beams may be used as precise tools for machining plastic surfaces to a depth
which far exceeds the transverse dimensions of the surface features. In Fig. 13.4
we see how ion track etching is used to produce an extremely fine filter from a
polymer foil. It is possible to make membranes with track diameters from 10 um

down to 10 nm and densities from 1 to 10 pores per cm?.

13.3 Types of accelerator used in industry
13.3.1 Electrostatic single-stage accelerators

We start at the low-energy end of the spectrum. Many of the accelerators used in
industry for surface treatment require only a low energy—often less than 750 keV.
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Fig. 13.3 Hardening an artificial knee joint (courtesy of GSI photo).

Fig. 13.4 Filter micro-machined with ions (courtesy of GSI photo).
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Fig. 138.6 Sterilization of surgical supplies (CERN courier photo).
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Accelerator

Fig. 13.7 An industrial sterilization facility (CERN courier photo).

This can be achieved by a simple electrostatic accelerator. A DC potential is
applied to a wire anode and electrons extracted through a slot in a co-axially
mounted cylindrical cathode. Such a strip treatment setup is shown in Fig. 13.5.
An alternative technique is where the beam emerging from a simple electrostatic
accelerator is swept over the surface of a moving belt.

Where low intensity is needed and when the energy must be high enough to
penetrate many grams of material, electron linear accelerators of a few MeV are
often the preferred solution. We need an electron beam energy of 5-10 MeV to
penetrate a significant thickness of material, say 20 cm of plastic. In Fig. 13.6
we see boxes of medical and surgical produce passing on a conveyor below the
accelerator. The beam, descending vertically, is swept from side to side with an
oscillating dipole to cover the target volume in the manner of Fig. 13.5. All of
this must take place in a well-shielded vault separated from the outside world
by chicanes (Fig. 13.7) (Drewell et al. 1996).

13.3.2 Ion accelerators

Ton sources usually involve the bombardment of a gas or vapour with electrons.
Often the electrons come from an arc discharge between two electrodes and the
ions emerge from a slit in a cathode aligned with the arc. Once through the slit,
the beam is accelerated towards a larger hole in an extraction electrode. This
beam must be neutralized with an ‘electron gas’ to minimize defocusing due to
space-charge forces. Usually, the ion source must be at the positive high-voltage
terminal of the accelerator so that the accelerated beam emerges at ground
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Fig. 13.8 The principle of a Cockcroft—Walton machine (after Scharf 1996).
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potential. This may be followed by r.f. quadrupoles and a linear accelerator
structure specially designed for low-velocity particles.

13.3.3 Cockcroft—Walton and Dynamitron®

Linacs, although favoured for electrons in the 1-5MeV range, become com-
plicated if they are to accelerate particles of different charge-to-mass ratios
at velocities below that of light. Protons or ions may be accelerated with
Cockceroft—Walton or Dynamitron® accelerators to higher energies than are possi-
ble with a simple electrostatic gun. These machines can also be used to accelerate
electrons. Figure 13.8 shows the principle of the Cockcroft—Walton circuit: a
chain of diodes which alternate in polarity and are capacitively coupled to each
other. A relatively modest alternating voltage, V, applied across the lower diode
is multiplied by the number of the diodes in the chain. Each cell acts as a full-
wave rectifier to the alternating voltage, and their DC voltages add up in series
across an accelerating column.

The dynamitron (Fig. 13.9) uses a similar diode column but the alternating,
r.f. potential is applied in parallel to each diode from a cylindrical capacitively
coupled r.f. electrode. Such DC accelerators are filled with insulating SFg gas
under pressure and large-dimension vessels separate the anode and cathode.

13.3.4 van de Graaff accelerators

Although Cockcroff-Walton and Dynamitron® accelerators are used extensively
up to a few MeV, a different kind of DC machine, invented by van de Graaff
in the early 1930s, takes over above this energy and may be used up to about
15MeV. In a van de Graaff accelerator, a moving belt transports charge to a
high-voltage terminal, which forms one end of an accelerating column. In a tan-
dem configuration, negative ions produced by adding loosely bound electrons
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to the neutral atom, may be accelerated from ground to a positive terminal,
stripped, and further accelerated as positively charged ions towards a ground
potential. This principle doubles the energy of the emerging beam for any given
terminal voltage. The pressure vessel is often filled with SF and the current is
typically in the range 0-100 pA. In Fig. 13.10 we see a horizontally mounted
van de Graaff machine from which two spectrometer arms emerge. This particu-
lar setup is used to activate trace elements in a sample and identify the elements
from their reaction products analysed in a mass spectrometer.

13.4 Medical applications
13.4.1 Isotope production

Accelerators, mainly cyclotrons, produce about 20% of the radio-pharmaceutical
materials injected into patients and about 35 of the 200 of the world-wide inven-
tory of cyclotrons are used for this purpose. Typically, these cyclotrons accelerate
protons in an energy range up to 40 MeV in beams of 50-400 pA. They must
be designed to be compact, reliable, and to produce high-intensity extracted
beams with a minimum of human intervention (Bechtold 1996; Lewis 1996).
Remote handling of the targets is essential at these intensities and must ensure a
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Fig. 13.10 Horizontally mounted van de Graaff (CERN courier photo).

speedy transfer into the often automated procedure for radiochemical extraction,
dispensing, labelling, packaging, and delivery of short-lived products.

The isotopes commonly have a half-life of about three days. When injected,
their activity should be low enough to keep the effective dose below 5mSv
(0-5rad) yet provide diagnostic information with optimal y-ray imaging in a
15-30 min session.

13.4.2 Positron emission tomography

This diagnostic technique uses short-lived isotopes in conjunction with imaging
systems based on particle detection techniques. The isotopes emit positrons,
which are detected as back-to-back +’s and which may be projected back to
locate the emission point. The isotopes can be incorporated into biochemical
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molecules which find their way to particular sites in the body, revealing a three-
dimensional picture of biochemical activity. So short is the half-life of these
positron emitters (~20min) that the small cyclotron which produces them and
the automated synthesis system have to be installed in the room next to the
patient.

13.4.3 Therapy

In the past, radiotherapy made extensive use of radium needles or 2 MeV ~v-rays
from cobalt ‘bombs’. Electron linear accelerators in the range of 15-20 MeV are
currently used to produce X-rays to reach deep tumours (Gahbauer and Wamber-
sie 1996). The beams must converge on the tumour from several directions if
healthy tissue is to be spared. The margin between a dose sufficient to destroy
malignant cells and that low enough to allow healthy tissue to regenerate is only
10% or 20%.

13.4.4 Proton therapy

Attempts to spare intervening tissues are not helped by the exponential decay of
X-ray intensity as it penetrates the body (Wilson 1946). Protons offer a better
solution since they deposit most of their energy in a sharp ‘Bragg’ peak, leaving
intervening tissue relatively unharmed and completely sparing sensitive organs
just beyond the tumour site (Sisteron 1996).

The ideal energy for protons is 200 MeV, sufficient to reach any internal
organ. Proton synchrotrons have been constructed for this purpose notably at
Loma Linda, PSI, San Diego, USA, and HIMAC in Japan. Others are planned
and the alternative of a superconducting cyclotron has led to new projects in
Massachusetts, USA, and NAC, South Africa. Cyclotrons with their continuous
beam of small emittance enable very precise control of dose and treatment zone.

13.4.5 Ion therapy

Recent research into the density of ionization as ions pass through cells sug-
gests that ions are better suited than protons in ‘taking out’ large sections of
DNA which cannot regenerate. Trials to verify this in a chemical situation are
underway at LBL, Berkeley, and HIMAC, Japan. Other synchrotron projects
which include the light-ion option are planned at GSI, Darmstadt, and TERA in
ITtaly.

13.4.6 Beam delivery

Millimetre precision is often needed to confine the dose to the tumour. The
beam energy may be modulated with a rotating disc of absorber of varying
thickness and the beam shape defined by fixed or movable leaf collimators. In
the simpler systems, the irradiated zone is made to conform to the tumour by
directing the beam from one side, then the other, and also perhaps from above.
Complex gantries have been built which direct a horizontal beam from the axis of
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a rotating wheel structure to the rim and then in, towards the patient at the turn
of the structure. These are favoured by proton therapy centres but represent a
large fraction of the cost of the facility. Gantries for ion beams are more difficult
because of the large emittance and magnetic rigidity.

13.5 Research applications
13.5.1 The high-energy frontier

We are all very familiar with the use of high-energy lepton and hadron colliders
for particle physics. The essential questions under study include the search for
the Higgs particle thought to be the origin of mass, the stability of protons, and
the mass of neutrinos. At the time of writing, accelerator builders are considering
using muon storage rings as a precise source of neutrinos as an alternative to
solar and atmospheric neutrinos. All this research has an intimate relation with
astrophysics and cosmology in re-creating the particles and interactions which
prevailed just after the Big Bang and before nuclei were formed from more fun-
damental particles. The data are essential in simulating cosmological models and
to help us understand the mystery of the missing mass in the universe.

13.5.2 Nuclear physics

Equally important, but a little later in the chain of events of creation, are the
measurement of interactions of protons, neutrons, and the nuclei as they began
to condense out from the primordial soup. Much of this information came, and
is still coming, from nuclear physics research with the low-energy van de Graaff
accelerators and cyclotrons, which were developed in the early days before and
after the Second World War. More recently, heavy ions have been used to probe
nuclear structures with the techniques of spectroscopy. Modern research focuses
upon nuclei which are unstable and lie far from the mainstream of stable nuclides
or which are anomalous in other respects such as superdeformed nuclei with very
high-angular momentum.

The availability of ion beams enables us to study nucleus—nucleus collisions,
and, with the aid of beams of both high energy and intensity the meson change
and quark structure of nucleons—work that is now actively being pursued at
CERN’s Isolde and at Ganil in France. Returning to even higher energy, there
is evidence that CERN’s heavy-ion source combined with the SPS collider have
been able to establish the conditions in which nucleons dissociate into gluons and
quark plasma. Such research will be a principle activity for RHIC at Brookhaven
Laboratory and RIKEN in Japan.

13.5.3 Techniques for the analysis of materials with
particle beams

The analysis of small samples of material is an essential requirement in many
fields of research and can prove useful in fields unrelated to science. Examples
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range from the dating of archaeological objects such as the Turin shroud, or
sequencing Galileo’s manuscripts to the detection of explosives and contraband
in freight cargoes rolling through the entrance to tunnels. The techniques (Bethge
1993; 1996a,b) are too numerous to describe in detail, but we list some of the
more important methods below.

13.5.3.1 Rutherford Backscattering (RBS)

Rutherford backscattering is a technique in which the energy of ions is measured
as they are backscattered from a sample by Coulomb interaction. Peaks in the
spectrum are a sensitive indicator of particular target nuclei. The cross section is
in fact proportional to the Z? of the sample. The sensitivity is quite phenomenal
and can be as high as 0.1 ppm. A typical probe beam consists of He™ ions at
2MeV per charge. The penetration depth, even for these light ions, is only
a few microns but heavier ions may be used to improve resolution when thin
films are under study. Higher-energy H™ " ions (4 MeV) can be scattered by the
nuclear potential to exhibit resonances which are characteristic of the target
nucleus.

13.5.3.2 Particle-Induced X-Ray Emission (PIXE)

In this technique, an ion beam, often protons, is used to excite target atoms so
that they emit characteristic X-rays. The method probes a bulk sample but may
be made to have high lateral resolution by focusing the incident beam down to a
few microns and enabling high-resolution maps of the surface composition to be
made and later compared with electron micrographs (Baglin et al. 1996). Like
RBS, its sensitivity may be as high as 0.1 ppm. To achieve both high resolution
and sensitivity, the brightness of the particle beam is crucial. The extreme sensi-
tivity of this technique with its non-destructive character leads to its popularity
for detecting anachronistic chemicals in ‘ancient’ artefacts.

13.5.3.3 Nuclear Reaction Analysis (NRA)

A general class of analytic methods makes use of narrow resonances in the cross
section of the reaction of the accelerated particles with different nuclei. A large
body of data tabulating these resonances grew up as accelerator beams were
used to probe nuclei, and now the more striking features can be used to identify
many specific constituent nuclei. Typically, scattering of a particles shows a
sudden enhancement at 3.045 MeV when 60 is present in the sample. This is
a technique that lends itself to heavy-metallic substrates and is much used in
investigating high-T;. superconductors.

13.5.3.4 Elastic Recoil Detection (ERD)

In a technique which complements RBS, one observes the recoil of the heavy
target nucleus. It is a well-known feature of the kinematics of such scattering
that the recoiling nucleus is scattered with a distribution which becomes more
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restricted in angle as the mass of the nucleus increases. Alternatively, the time
of flight (energy) of the recoil particle can be used to determine its nature.

13.5.3.5 Charged Particle Activation Analysis (CPAA)

This is the most sensitive of the activation analysis methods (1 ppb) for ele-
ments like boron, carbon, nitrogen, and oxygen, whose unstable isotopes are
positron emitters. Samples are irradiated for times of the order of several half-
lives and then, from the decay curves of the various excited nuclei, one may
extrapolate back to determine the relative composition at the time of irra-
diation. The sensitivity of this method lends itself to the study of wear and
corrosion. This technique is used to screen luggage and other goods in transit
for explosives or drugs.

13.5.3.6  Accelerated Mass Spectroscopy (AMS)

An even more sensitive method (107!%) for relative abundance of isotopes
consists in accelerating sample particles in a beam, stripping to remove contam-
ination, and then using momentum analysis to separate the spectrum of masses.
Only very small quantities of material need to be sacrificed and the method is
particularly appropriate for C'2, C' separation in age determination, replacing
the earlier 3 decay counting method (Jianjun et al. 1996). Recent years have
seen AMS used extensively in archaeology and in the history of art.

13.5.3.7 Extended X-ray Absorption Fine Structure
(EXAFS)

This is a technique that makes use of a monochromator to select and tune the
wavelength of synchrotron radiation. The resolution can be as small as 1eV in a
spectrum of 10keV. As the wavelength of the radiation is scanned, sharp rising
edges appear in the absorption spectrum as the energy threshold to excite, for
example, the electrons in the K shell of an atom, is reached. The technique is
sensitive enough not only to analyse the atomic and molecular constituents in
a material but also to deduce interatomic distances. It is extensively used in
research into the production of catalysts and the structure of the molecules of
biochemistry.

13.5.4 Techniques for revealing the structure of crystals
and molecules

13.5.4.1 Diffraction

Revealing the repetitive structure of a crystal by observing the diffraction pattern
produced when it is illuminated with monochromatic waves is a basic experimen-
tal technique of physics. Much of today’s rapid progress in understanding the
structure of materials and the composition and shape of the many complicated
biochemical molecules that control our bodies’ development and health results
from diffraction studies (Mutsaers et al. 1996).
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The more detail we seek, the shorter the wavelength of the probe, whether it is
a photon or neutron. Synchrotron light and neutron beams, having wavelengths
many orders of magnitude less than visible light, have become powerful probes for
this work. Accelerators to produce these probes are either electron synchrotrons
of a few GeV dedicated to produce synchrotron radiation, or proton synchrotrons
whose intense beams of a few hundred MeV produce neutrons when they hit a
metal target—a process referred to as spallation.

The ordered pattern of a crystal can act like a three-dimensional diffraction
grating producing a pattern which, when analysed, contains the information
necessary to reconstruct the scattering object’s shape. If the radiation is strong
enough, amorphous samples can also be used. Here one relies on the fact that the
few crystals which subtend the Bragg angle between the source and the observer
contribute to the pattern, rather as the rain drops make a rainbow. Of course,
the random orientation of the target results in circular haloes rather than the
clear spots that crystals produce, but these can be disentangled. Molecules, such
as proteins and viruses, are studied in this way as are the repetitive structures
in polymers and other large molecules. Synchrotron light and neutron beams are
used for today’s scattering experiments.

As these tasks become more challenging, brighter sources of radiation are
needed, but eventually there comes a point where the object to be studied is too
small to have repetitive features. It is then that one must turn to X-ray spec-
troscopy and, in particular, EXAFS described above, by which the interaction
of the electron with its surrounding atoms may be revealed. This has been used
to study such materials as catalysts and surface layers on industrial glass. Only
synchrotron light sources may be used for this. Neutrons do not interact with
the electronic structure of atoms.

As just one example of such research techniques applied to the development
of new polymers, Boeing replaced aluminium with glass-filled poly-ether—ether—
ketone resin developed through synchrotron light research which allowed them
to reduce the weight of a Boeing 757 by 30%.

The list of fields of research and application for synchrotron light and neutrons
is impressive (Table 13.4).

13.5.5 Synchrotron radiation sources

Electrons circulating at high energy in a synchrotron or storage ring emit a
tangential beam of synchrotron radiation over a wide range of frequencies from
visible wavelengths into the X-ray region. Many electron rings in the energy range
from 1.5 to 8 GeV have been built to serve a number of experiments arranged
around their circumference with beams of synchrotron light. One of the largest
is the 6 GeV machine, the ESRF at Grenoble. Wiggler magnets and undulators,
placed at the point of emergence, enhance the brilliance of the cone of radia-
tion, and monochromators are used to select narrow bands of wavelength where
required.
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Table 13.4 Fields of structure research

Crystal structure with large cells (proteins and enzymes)
Lattice dynamics

Phase transitions

Diffusion in solids

Metal-H, systems

Interfaces—bonding between semiconductors + insulation
High 7. materials

Magnetic materials

Polymers

Defect structures (stress and fatigue)

Fullerines

Liquids and quantum liquids

Soft matter

The many users who gather around the perimeter of these machines come
and go much more frequently than their high-energy physics colleagues. They
may be research workers in fields as diverse as the study of the structure of
materials such as the hardening of ceramics, or molecular biologists interested
in the structure of HIV protein or the SV4D virus, known to induce tumours.
This science of designing molecules to modify protein behaviour with new drugs
and configure enzymes to promote industrial processes is a rapidly growing field
in which experiments using synchrotron light play a crucial role.

Another industrial use of synchrotron light, yet to be fully exploited, is X-ray
lithography (Basrour et al. 1996). A pattern created on a mask is transferred by
X-rays onto a wafer coated with photoresist, which is then developed and the
surface etched away, allowing semiconducting circuits to be produced with even
greater precision than the conventional UV etching. The nominal present-day
precision of 0-5 um can be reduced by a factor of 5, leading to even faster and
compact computer chips. In Fig. 13.11 we see a portable synchrotron light source
built for IBM and in Fig. 13.12 the principle of lithography.

13.5.6 Spallation sources

Neutron beams complement synchrotron light as probes for the study of con-
densed matter and molecular structure. Although comparable in wavelength, the
intensity and brightness of neutron sources for scattering studies cannot compare
with synchrotron radiation. However, neutron beams penetrate deep into bulk
materials and interact principally with nuclei, while the electromagnetic interac-
tion of synchrotron radiation is mainly with atomic electrons. One advantage of
neutrons is that their weak interaction results in much less damage in the study
of biological material. Another is that when their wavelength is matched to the
dimension of the cells of a crystal their energy is comparable to that of the elastic
modes within the crystal. This is not the case for synchrotron radiation.
High-flux reactors provide fluxes of neutrons as high as 10 neutronscm =257,
but at the cost of very high power densities in the reactor core. In a fast neutron
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Fig. 13.12 Principle of lithography.

beam from a high-flux reactor, the wavelength is selected with a monochromator,
and inevitably the flux is wasted.

Only about one-fifth of the energy is involved when neutrons are produced
from a 1 GeV proton from a spallation source. The average number of neutrons
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produced is about 25 and they must be slowed down with a hydrogen-rich
moderator, from which they emerge as a white spectrum.

The beam from a synchrotron is pulsed, typically a short (<1 us) burst every
20ms. Over a flight path of 20m, fast neutrons of wavelengths between 0.1 and
0.4nm arrive at the detector spread over a 20ms interval and may be resolved
with a time (wavelength) precision of 1/2000. Whatever the accelerator used as
a source, the mean current is of paramount importance. This translates to power
(between 0.1 and 5 MW) delivered to the target. Spallation sources produce a
peak power in the pulse which exceeds that expected from a reactor.

Spallation sources under study hope to raise the power from 160 kW (world
record, presently held by ISIS) to 1 MW (ANC, SNS LAMPF, and AUSTRON),
and the ambitious ESS in Europe which aims for 5 MW. ESS injects ~600 turns
directly from a 1.33GeV linac into each of two accumulator rings (Lengeler
1990). The beam from each ring is extracted directly after the other to produce
the pulse on the target. These projects use H™ linacs with fast stripping injection
schemes. In order to inject many turns, vertical orbit bumps and the effect of
horizontal displacement are used to fill the phase space in the transverse plane.
Dispersion coupled via Ap/p fills the longitudinal phase space. SNS will inject
1200 injection turns into a single ring using both vertical and horizontal bumps.
The Japanese project JHF aims at 2700 turns.

13.6 Heavy-ion fusion

It is, of course, everyone’s dream to produce energy by fusion and, as a first step,
to demonstrate ‘ignition’ at the Lawson criterion

nr~ 10% cm™3 S,

where n is the density and 7 the confinement time. Firstly magnetic confine-
ment, then lasers, and finally the beams of heavy ions have been considered as
a means to achieve this. In the case of ions, as with lasers, first ideas—the so-
called direct method—envisaged a large number of beams hitting a tiny pellet
of frozen deuterium—tritium ‘fuel’ from all sides. It turns out that the synchro-
nism and uniformity of the beam distribution required is critical and, in modern
‘indirect-drive’ methods, ion beams coming from two or more sides convert
their energy into X-rays which, within a casing acting as a ‘Hohlraum’ or black
body enclosure, transfer the impact energy uniformly to the pellet (Fig. 13.13)
(Hofmann 1996).

The topology of an accelerator complex required to do this is, nevertheless,
formidable. In Fig. 13.14 we see a 10 GeV linear heavy-ion accelerator, fed by 16
ion sources of three distinct species of ions which pass through four funnelling
stages of RFQs. The 10GeV ions are stored in 12 storage rings (Prior 1998).
Each ring contains 12 bunches which are unloaded and synchronized before
acceleration in six induction linacs.

To further improve current concentration, the six induction linacs unload
simultaneously from quadrants, the path length to the target being made equal
rather like the exhaust manifold of a high-performance racing car. The final
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energy and the three likely candidates of heavy ions (Bi, Th, and Rh) are selected
so that their different masses allow them to catch up at the target. The space-
charge forces, which threaten to defocus the beam in the last few metres as it
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converges on the target, argue for the highest possible energy while the require-
ment that the ions deposit all their energy within the small thickness of the
pellet assembly requires that the energy is low enough to lie high on the steep
side of the energy loss versus energy curve. The compromise is much easier to
achieve for heavy ions. At each stage, the limits of accelerator technology are
challenged.

13.7 Waste transmutation and the energy amplifier

The hope of obtaining limitless electricity from nuclear power has been dampened
in the last few decades by the realization that power stations generate a legacy
of poisonous actinides with half-lives which are long on a geological scale and
that accidents in the reactor and in the waste processing and storage industry
are, in the public’s perception, rather likely. One of the solutions proposed for
dealing with the nuclear waste from power stations is to use a high-current proton
beam to convert long-lived nuclides into others which are either stable, short-
lived, or which may be used as fuel again. Such proposals have been made by a
Los Alamos group, whose high-current LAMPF proton linear accelerator comes
closest to the currents required. The viability of the proposal depends upon the
cost of the linac and the power required to run it, but it is argued that this
will always be much more than the cost of doing nothing and just storing the
material underground.

The energy amplifier (Rubbia 1996) offers a means to eliminate this waste,
but at the same time produces power on a scale which pays for its capital and
running costs (Fig. 13.15). This is an application of accelerators which, if it comes
to pass, might affect the prosperity and way of life in the developing world as
much as in industrialized countries.

Many of the fears of nuclear power experienced by the general public may be
drastically reduced if thorium rather than uranium is used for power production.
The waste is a much more benign list of nuclides with lifetimes shorter than the
700 years used as a benchmark. Thorium is plentiful and can be burnt in its
natural form requiring no separation. It may be assembled into a reactor which
is both stable and sub-critical, depending for its supply of neutrons on a 1 GeV
proton beam of about 10 mA current. The term ‘energy amplifier’ refers to the
ratio of output power to that required to operate the accelerator. Clearly, the
aim is to make this as large as possible and the challenge is to build a high-
current accelerator system which converts as much of its wall-plug power into
beam power as possible.

If the ratio of beam power to that drawn from the mains is small, the overall
amplification becomes rapidly uneconomical. The choice of accelerator system is
evidently crucial. Linacs have been considered but proponents now favour a chain
of cyclotrons. The energy required, 1 GeV, is within the range of cyclotrons and,
although these accelerators tend to involve a bulky and expensive magnet system,
they can run continuously. Modern high-current cyclotrons, PSI, TRIUMF, etc.,
approach the required current.
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These modern cyclotron systems (Fig. 13.16) are very different from the simple
machines built by Lawrence in the 1930s (Mandrillon et al. 1996). Their mag-
nets are split into a number of C-shaped sectors between which there is room
to interpose enough r.f. acceleration cavities to keep the turns separated. The
entrance and exit faces of the poles of the magnet sectors are curved to pro-
vide a constant amount of alternating or ‘ridge’ focusing per turn. This extra
focusing decouples us from the need to have a weaker integrated field at large
radii and one can actually increase the field with radius to maintain isochronism
as relativity destroys the classical invariance of revolution frequency. Complete
turn separation means that the beam may be extracted without destroying
the septum deflector which is the essential element in the extraction system.
Beam loss is minimal and the transmission efficiency of the accelerator is close
to 100%.

Space-charge forces in the transverse and longitudinal planes disturb this
focusing and modify bunch length, energy spread, and emittance. For this rea-
son we cascade a chain of cyclotrons, the smaller ones with parameters chosen to
combat the space-charge forces. In the scheme currently proposed for the energy
amplifier, the first level is a pair of cyclotrons each fed by its own proton source
and RFQ. The second level of cyclotron has relatively straight sectors appro-
priate to its non-relativistic energy range. The last machine with many curved
sectors brings the beam to 1.0 GeV.

A pilot project is now about to be launched, intended to stimulate the industry
to go into mass production.

Exercises

13.1 An electron beam of 2MeV and a mean current of 5mA passes through a
2 mm thick plastic ribbon. The beam width is 15 cm and the ribbon (density
ldg/em?, dE/dx = 2.1 MeV /(g cm™2) travels at 80 cm/min. Calculate the
beam intensity in electrons per second and the total beam power.

13.2 Calculate the area swept per second and the power deposited in the film.

13.3 Calculate the mass of material irradiated per second and the dose received
in kGy (1kGy = 1kwskg™!).

13.4 Synchrotron light of 1 A is a useful probe for molecular structure. Com-
pare its resolving power with the scale of crystal structure, DNA, organic
molecules (benzene), simple atoms, and nuclei.

13.5 What energy neutrons give a comparable resolution to a synchrotron light
of 1A?

13.6 Compare a high neutron flux reactor (10'® neutronscm=2s~1) with the
intensity of a typical spallation beam of 0.4MW at 1GeV protons
producing 25 neutrons per proton at a pulse rate of 50 Hz.
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The future

In Chapter 1 we traced the history of accelerators from Lawrence, van de Graaff,
and Widerde to the present day. We saw how particle physics had stretched
the energy scale by many orders of magnitude in the endless quest for tools of
greater precision. To achieve this, accelerator builders were quick to exploit the
new ideas of storage ring colliders and superconducting magnets and cavities
as they emerged, yet the scale of circular machines has inexorably expanded.
Indeed, all these machines were based upon concepts invented by the pioneers
of the 1930s and 1940s. The technology of lasers, plasmas, and semiconductors
made little impact upon accelerators. Although lasers and plasma waves seem
to offer much more powerful accelerating fields than conventional or even super-
conducting cavities, we have not, as yet, found a practical way to harness these
fields to provide continuous acceleration. New ideas are still in demand and this
chapter is intended to stimulate the quest.

One way to look for new ideas is to identify some general principle in those
machines which have proved themselves or shown promise as accelerators and
then look for a novel manifestation of that principle. One such principle is that
of the ‘two-beam’ accelerator.

14.1 Two-beam accelerators

In a sense, all accelerators are two-beam devices, since somewhere in the pro-
duction of the r.f. signals that drive cavities there is usually a beam of electrons.
However some are more obviously two-beam devices than others. The CERN
linear collider proposal CLIC (Chapter 11) is typical of a two-beam accelerator
(Delahaye et al. 1999). An intense beam in one linac gives energy to the cavities
of another linac that finally does the acceleration to high energy. A number of
such schemes have been proposed before alighting on this proposal. In each case
the dense low-energy beam acts as a source of energy for a much less intense
but higher-energy beam. The simplest of these schemes is the wake-field idea. In
this the two beams pass through the same set of cavities and the fields excited
by one beam are used to accelerate the other. However, unless the initial driv-
ing bunch is specially shaped, the energy gain by a particle in the second beam
can be no greater than the loss experienced by each individual in the drive
bunch.



Two-beam accelerators 209

‘DE]%—]
e bunch 1
e h 1

A
LE
v .
J— Lo ]
RS o0 bunc_l_l__2__~
|

Fig. 14.1 Principle of a wake-field transformer.

Another kind of two-beam device is called the wake-field transformer by its
inventors Voss and Weiland (1982) (Fig. 14.1). The driving beam is in the form
of a ring accelerated in the direction of its axis through an annular slot sur-
rounding an array of discs. The wake of the ring excites an inward-going wave
between the discs. As the diameter of this shock front becomes smaller, the
field strength is amplified. When it reaches the small hole at the centre of the
discs it increases by a transformer ratio comparable to the radial compression
ratio.

In a variation of this device, called the ‘switched power linac’, the wave is
initiated, not by a particle beam but by a ring of laser-triggered spark gaps,
whose hold-off energy transforms into an imploding shock wave (Willis 1985)
(Fig. 14.2). Of course, this is not strictly a two-beam device.

Finally, and completing this list of devices that have been tried experimen-
tally but have proved rather disappointing, there is the Electron Ring Accelerator
(ERA) or ‘Smokatron’ which attracted much attention in the late 1960s. In this
scheme, an electron ring was formed by injecting an intense current at a few
MeV into a specially shaped axial field. Ions (protons) resulting from the ion-
ization of background gas collect in the potential well within the ring. The ring
is first compressed by increasing the field and then accelerated along its axis
in a tapered solenoidal field (Fig. 14.3). Such a field has the property of con-
verting angular momentum into the axial direction. The electron-ring energy
in the axial direction is only a few MeV, but protons, trapped in the poten-
tial well of the ring, are accelerated with the electrons to the same velocity.
The protons, being 2000 times heavier, should then have an energy of many
GeV. Earlier many experiments were carried out (Sarantsev and Ivanov 1981)
and it was concluded that to accelerate to very high energy would require
electron-ring currents beyond the limit of coupled instability between the two
species.
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14.2 Direct acceleration with light
14.2.1 In free space

The next approach in our quest for new ideas is to look at a physical system
where a high electric field exists and examine under which circumstances it might
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be harnessed for our use. It is perhaps fortunate that electromagnetic waves
do not accelerate particles directly in vacuum or the cosmic-ray flux would be
many orders of magnitude more intense and energetic than it is. Life, as we
know it, would be impossible unless natural selection had provided us with lead
underwear. We saw in Chapter 10 that there are two important reasons for this.
The first is that the E vector of plane waves in free space is normal to the
direction of propagation. Consequently, the particles are not accelerated in the
direction of the wave but merely oscillate transversely in the field of the wave.
Secondly, the wave travels with a phase velocity equal to the velocity of light
and even if we were to find a way to turn the E vector in the right direction, the
particles could not remain in phase with the wave. The wave would change its
phase as it overtakes the electron and the net effect would be zero.

There is, of course, a second-order effect. The particle, once accelerated trans-
versely, acquires velocity and becomes a current perpendicular to the transverse
B field. The force on this current then deflects this in the direction of propaga-
tion of the wave. However, as it is overtaken by the wave, the forces change sign
and the result is just a ‘quiver’ in the form of a figure of 8.

There is a fundamental reason why a massless photon, whose energy E = hw
is just equal to pc = hkc , cannot give all its energy and momentum to a massive
particle, say an electron, whose energy is moc? + hw. (Note w and k are the
angular frequency and wavenumber of the particle in wave mechanics.) If we
normalize k by multiplying by the Compton wavelength, A = li/mgc, we obtain
trajectories for the electron and the photon on a (E, pc) or (w, k) diagram as
shown in Fig. 14.4. Readers will recognize this diagram as the dispersion diagram
in a plain waveguide we found in Chapter 10 and perhaps remember that its local
slope is the group velocity, that is, the velocity of the particle in wave mechanics.

A
(A Je) or w v

Byor kA,

Fig. 14.4 Energy versus momentum diagram.
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The photon has velocity ¢, while the electron velocity only rises asymptotically
towards that of the photon. The two curves cannot match each other in slope,
vet energy and momentum conservation demands that the increments AE and
A(pc), and hence the local slope, must match if the photon is to interact with
the electron.

There are two ways around this, and these may be the signposts towards a new
acceleration principle. One is to allow the photon to recoil and keep some of its
energy but with a momentum in the reverse direction. The other is to slow down
the photon as it might be, for example, in a refractive medium. The former case
is just Compton scattering, a well-known effect, but with a cross section which
is too small to effect an efficient transfer of energy, say, from a laser to a bunch
of particles. The latter has the disadvantage that other interactions with the
refractive medium slow the particle down and scatter it. As we examine other
methods of acceleration in use or proposed, we shall find they fall into either one
of these two categories and always seem to involve photons whose energy is not
equal to momentum (times c), the so-called ‘virtual photons’.

14.2.2 Inverse Cerenkov accelerator

This is an example of a virtual photon principle. A particle travelling through
a medium of refractive index n will emit a cone of light if its velocity is greater
than ¢/n. The cone angle is sin~*(c¢/n). Conversely, a cone of laser light directed
on a particle by an axial prism (axicon) should accelerate it. This has been shown
to work over a few keV.

14.2.3 Surface waves

It is perhaps not well known, but a beam of light reflected internally as it tries
to emerge from the boundary of a dense medium at an angle larger than the
critical angle sets up ‘evanescent’ fields on the rare side of the surface. These fall
off exponentially within a few wavelengths, but they move along the surface to
follow the reflected wave (v < ¢) and have an E vector parallel to this direction
of propagation. This, of course, would accelerate a particle close to the surface.
Exactly the same kind of surface field is set up by a beam of light grazing the
face of a metal grating and attempts have been made to accelerate in this way.
Focusing and alignment are obvious problems, as is the need to change the
surface parameters as acceleration proceeds. However, rolling the grating into
a cylinder, so that its ridges form the diaphragms of a kind of linac structure,
reminds us that the familiar cavities which are used every day to accelerate are
part of the same family of devices.

14.3 Wake-field accelerator

We now move from a study of acceleration with light to see if fields excited
in plasma could not be used. An electron travelling very close to the velocity
of light may be accelerated by the longitudinal fields between charge density
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waves which can be stimulated in the electrons of a plasma. In the case of the
wake-field accelerator, the waves are driven by the wake of a very short and
dense bunch of electrons which precedes the electrons we wish to accelerate.
This driving bunch can have much lower energy than the electrons which follow.
There must be many such stages of acceleration following each other, rather
like the tanks of a conventional linac. To understand the principle, we must first
write down the fluid equations for a plasma, and we consider the one-dimensional

non-relativistic case:
15}
8—7; + V- (nv) =0,
W | (v Vyw= S (E+vAB)
ot T m '

Consider a plasma with density ng and an injected bunch with density np, and
retain only first-order perturbations in v, E, and B. One finds (Ruth et al.
1984) that

% +no(V - v) =0,
Ov eE
ot om’
The wave equation for the plasma may then be derived:
92%n,4
ot2

In this equation, wy, is the plasma frequency defined by

+ wgnl =0.

2 €2n0

mogo

Consider next a driving beam which is a delta function of charge in the direction
of motion, z, and whose local density is then:

np = 00(z — vpt) = dd(y),
where y = z — vt is a coordinate moving with the bunch and o the total charge.
Now the field is not simply
en
V-E=—",
€o
where n is the plasma density of electrons, but instead

v. g fnotnn)
€0

The wave equation for the plasma is then driven:

8277/1
— + wg(nl) = —wgnb.

ot?
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Clearly, this is an oscillator driven by the wavenumber k = 27/A = wp,/v,. We
may rewrite this in terms of the independent coordinate y:
*n
—5 +k*n = —k*0d(y).
72 )

It turns out that a simple conservation of energy argument suggests that the
maximum energy that can be gained by the electron following in the wake of
a single symmetric bunch is just twice the energy that each of the electrons of
the drive bunch possesses. But, apparently, it is possible to improve on this in
the wake of a drive bunch with an asymmetric linear rising edge and a steep fall
(van der Meer 1985; Dawson and Chen 1985).

14.4 Beat-wave accelerator

The principles of the wake-field accelerator and the beat-wave accelerator are
similar, but in the beat-wave accelerator the plasma waves are driven by electro-
magnetic waves and not by a particle bunch (Fig. 14.5). Normally, it is impossible
to penetrate a plasma with an electromagnetic wave below the plasma frequency,
and above the plasma frequency the wavelength of the plasma wave and its phase
velocity would not be matched either to the plasma we wish to drive or to the
particles to be accelerated. This can be overcome by the laser plasma accelerator
scheme or the beat wave scheme both proposed by Tajima and Dawson (1979).

In the beat wave solution we generate a longitudinal plasma wave from the
beat frequency between two high-frequency lasers (or two modes of the same
laser) each of which is high enough in frequency to penetrate. The difference in
frequency is made equal to the plasma frequency so that beats between the wave
drive the plasma into strong oscillation (Tajima and Dawson 1982). The relation

k
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Fig. 14.5 Principle of the beat-wave accelerator.
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w A

> Fig. 14.6 Dispersion diagram
x  for a plasma.

between wavenumber and frequency for a plasma follows the by now familiar
curve shown in Fig. 14.6. The slope of this graph is the group velocity of the
wave, which can be matched to the phase velocity of the longitudinal electron
plasma waves by choosing a plasma density and hence plasma frequency.

The group velocity is given by

which is just less than ¢ for an underdense plasma w > wy,.
The wave and the electrons only have to stay reasonably close in phase over
the length of one stage of the accelerator.
The wave equation for the plasma in the beat-wave accelerator is the same as
for that in the wake-field accelerator:
9’n 9

W—l—wpnzo,

and the solution has the form
n ="ncos k(z — vpt)

with wp & kpe. Since V- E = —en, the maximum accelerating field is kE = —en,
which we may write as

E = e V10no Vm ™.
e

In the laser plasma wakefield scheme short pulse of laser light appearing as a
delta function on the scale of the waves to be excited will produce the Langmuir
wave.
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The reader is probably puzzled to know how the longitudinal pressure waves
in the plasma electron population can be excited by plane waves in vacuum. We
remember that a plane wave is capable of exciting electrons into a figure-of-eight
motion—a second-order effect of a plane wave. Given a longitudinal gradient in
the amplitude of the wave, the figure would be biased in such a way that the
particle migrates in the direction of the gradient. This is the detailed mechanism
of what is called the ponderomotive force. The force may be written as

p_ —VE

T 167Nec

where n. is the cutoff density of the electrons with respect to the laser frequency.

The behaviour of the plasma may be treated in a way similar to that used
in the wake-field accelerator. Here the driving term is the cross product of the
transverse velocity and the B field from the two beating frequencies. The pressure
waves produced have a phase velocity equal to the group velocity of the light
through the plasma.

Contemplation of the ponderomotive force would seem to be a good starting
point for anyone looking for an original approach to acceleration.

14.5 Near fields and virtual photons

Now that we have looked at a few of the possible acceleration mechanisms, it is
time to reflect on the general trend. This may give us some idea of where to look
and where not. Apart from the need to bend the E vector in the direction of
acceleration, there seems to be a fundamental difficulty in accelerating with the
plane waves in vacuum. We may associate this with the zero mass of the photon,
which fixes the phase velocity of c. Reflecting waves between metallic walls will
result in a component of E in the desired direction and, if the walls have ridges,
will slow down the phase velocity. A dielectric layer will do the same. In each
case, the photon is ‘virtual’. Such photons can only exist close to moving charges
such as those in conducting walls and in the atoms of dielectrics. If we closely
examine the argument for the equality of energy and momentum for a photon
(Lawson 1970), we can trace it back to the right-hand side of Maxwell’s wave
equation being zero:

1 0%4

2
p_ 24
v c? ot?

= —4mj.

Near a current j, the photon need not have equal energy and momentum. An
extreme case, of course, is a constant magnetic field.

We see an echo of this argument—mnow in the classical context—when we
examine the retarded field resulting from a moving charge. The primed quantities
refer to the position occupied by the charge when it sent the signal now being
observed at a distance r. The unit vector e points to the observer from the
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charge. Feynmann (1963) has shown that

B L [er T e Ldzew}
dmeg Lr2 e dt \r'? 2 dt?

Only the last of the three terms in this equation describes a plane wave. The
first two are ‘near-field’ terms, which fall off with the square of the distance
and can be thought of as fields in the neighbourhood of conductors or moving
charges. The other characteristic of the fields that accelerate particles would
seem to be that the E and H vectors are in quadrature and the wave impedance
is, therefore, reactive.

An exact equivalence between the different aspects of waves that accelerate
is not easy to prove but, provided we do not close our minds to exceptions and
paradoxes, near and virtual fields offer more chance of success in a search for a
new accelerating method. We move on to look at methods of acceleration which
might be at work in interstellar space.

14.6 Astrophysics

Although our quest has revealed a number of possible but seemingly impractical
mechanisms, there must be some simple mechanism, as yet undiscovered, which
accounts for the presence of very high cosmic rays (>102° eV). It is surprising that
accelerator builders, their eyes no doubt directed earthward, take little heed of
the very high energy acceleration mechanisms in space. Perhaps, this is because
even astrophysicists are hard-pressed to explain the origins of cosmic rays.

The original explanation of Fermi suggested that rapidly moving clouds of
interstellar matter accelerate electrons, and this was extended to include two
approaching clouds between which the electrons would bounce many times,
gaining energy each time (Fig. 14.7).

v, ——H «—

Fig. 14.7 Fermi’s explanation of acceleration by colliding waves of matter.
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Fig. 14.8 Supernova shock-wave model.

The present thinking of astrophysicists is that, during the collapse of the stellar
core of a supernova, outward shock waves are produced (Fig. 14.8). The model,
which assumes a reasonable r~! variation of density, predicts that the ~ of the
material would follow

~y x p—1/2(3—\/§)’

which would, in turn, explain why the energy spectrum of cosmic rays falls
as B16.

On the other hand, it may be that the intense 10® T magnetic fields around
pulsars play some role (Fig. 14.9). It has been suggested that as electrons are
accelerated along the open-ended field lines of pulsars they convert to y-rays
and reconvert. Positrons return repeating the process thus producing a giant
spark. But even in these intense fields, the length scale of 1 km is hardly enough
to explain the highest-energy cosmic rays (>10%°eV). There is a small but faint
hope that the explanation if found will not gratify only astrophysicists but might
also provide a mechanism that could be used on earth on a more modest scale.

To find a length scale to match the highest cosmic ray energies, we must
look to other galaxies. One candidate is an extragalactic radio source Cygnus
A, which has the suspicious characteristic of synchrotron radiation emitted from
two lobes, as if the opposite ends of the diameter of some huge accelerator, light
years across (Fig. 14.10).

This brainstorming has neither led us to a new device on a terrestrial scale
nor have we found a galactic source, and we might consider compressing to a
laboratory scale. Yet, readers should not be discouraged for such exercises serve
to stimulate pathways in the inventive brain which will one day bear fruit.
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Fig. 14.10 Radio emission from an active galaxy.

14.7 Conclusions

We have travelled a long road from Widerée musing whether a circulating beam
could be the secondary of a transformer, to our own speculation concerning
the electromagnetic ‘engines’ which accelerate cosmic rays. Along the way, we
have admired the existing landscape of accelerator technology. Hopefully, our
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excursions into its many and varied features have given the reader sufficient
insight to understand and perhaps to invent new accelerators. The readers will
certainly not find all their questions answered but they should, by now, know
enough to be able to find their way unaided through the backcountry of published
literature and accelerator school proceedings—that was after all our modest
aim—bon voyage.

Exercises

14.1 A switched power linac structure of 50 cm length has 10 gaps and is charged
to 30kV per gap. Calculate the total accelerating field assuming the voltage
wave has seven times the hold-off voltage when it reaches the axis.

14.2 What is the total energy stored per gap and at what bunch intensity will
30% of this be taken away? The radius of the disc is 0.7 m.

14.3 A CO; laser produces two lines at 9.6 and 10.27 pm. What is the plasma
frequency these will excite?

14.4 What density of plasma will be excited by this beat frequency?



Appendix: Synchrotron
radiation

Al.1 Retarded fields

One might think that it would be simple to apply elementary electromagnetic
theory in order to understand the waves set up by a moving charge. However, it
is really quite complicated because at the heart of the treatment is the fact that
although the electron and observer are travelling slowly, the radiation, travelling
with velocity ¢, takes a certain time, ¢t = s/c, to reach the observer and during
this time the charge has changed its position and velocity (see Fig. Al). The
field at the observer at any time t is, therefore, determined by the position and
velocity, not at time ¢ but at some earlier time ¢'. We call the position, velocity,
and the earlier time, the ‘retarded’ coordinates of the charge.

Al1.2 Solution to Maxwell’s equations

When we write down the solution to Maxwell’s equations for the magnetic vector
potential at a point 1 due to a charge distribution at another point 2, it should

have the form
j(2,t — 7”12/6)
Al t)= | ——————Z duv;
( ’ ) / 471'607‘1202 v
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Fig. A1l Retarded potential.
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here 115 is the line joining the observer and the position of the charge at the
time ¢ at which it emitted the signal, which is then observed at point 1 at
time t.

Now let us take a single blob of charge ¢, displaced in the z-direction and with
mean position Z. Its dipole moment is defined as p = ¢Z and we can substitute
it for j in the above expression:

/]zdv:p:q27

and if we are prepared to believe that all the parts of the blob of charge are at
approximately the same distance r from the observer, we may write

__ 1

T dweg T

A(t)

At this point we should not lose sight of the fact that it is the retarded value
of p = p(t —r/c) that we must use and that this has spatial derivatives because it
is a function of r. Thankfully, for the particular geometry chosen, we can assume
that /0y = 0/0r. Differentiating the above expression to obtain the magnetic
field at the observer, we obtain two terms (within rectangular brackets):

i () - w5 + o]
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The first term falls off with the square of the distance while the second as 1/r.
The first is the static field while the second, a direct consequence of putting in the
relativistic retarded position, is the field radiated to more distant observers. Note
that the radiated field is proportional to acceleration of the charge, but not the

current.
A similar treatment of the electric field yields a long-range term:

5[]
dreg | T C

Most readers, accepting defeat by this stage, will have no difficulty in believing
that these fields are distributed over a sphere of radius r co-axial with the dipole
such that their strength falls off as the angle of latitude, cos . Moreover, when
the Poynting vector is properly integrated over the surface of the sphere and
summed for the two dipoles in quadrature, we would obtain the expression for

the power emitted by a particle accelerating in the y-direction as

2
P=—S .22

6meg 3

This, but for a small numerical correction due to our integration, is the Larmor
expression. Now we have an expression for P which applies in the moving system



Lorentz transformation 223

of the electron and we can, if we choose, write f for the acceleration in the
z-direction.

Al.3 Lorentz transformation

Now suppose both the electron and an observer are moving together around the
circumference of a synchrotron; then the principle of special relativity suggests
that the values of acceleration and power seen by the observer must fit the above
expression. However, we are seeking an expression which is valid for an observer
at rest in the laboratory. The first point to remember is that the power emitted
is a Lorentz invariant.

To be convinced of this, it helps to think of the photons emitted by the
accelerating or decelerating electron. Because a massless photon has identical
energy and momentum, conservation of the electron’s energy and momentum
can only be satisfied if two photons are emitted in different directions, so that
their energies add but their momenta subtract.

In the moving frame in which the electron has no momentum, the two photons
must have the same energy and be emitted back to back. In the laboratory frame,
the forward photon is blue-shifted to a higher energy and the backward photon
red-shifted to a lower energy. A little consideration of the application of the
Lorentz transformation should convince the reader that the sum of the energies
of the two photons increases with v but emission events occurring at a constant
rate in the moving system appear, in the laboratory, to be separated by intervals
which are also increased by . These two effects cancel, the power taken away in
the moving frame is the same as in the laboratory and, hence is Lorentz invariant.

Another consequence of the transformation into the laboratory frame is that
an isotropic distribution of photon emission in the rest system of the electron
is observed in the laboratory as a narrow cone in the forward direction with an
opening angle 1/v. Hence if we calculate P in the moving system, it should have
the same value as in the laboratory. This is not the case if we just use the Larmor
expression because (#)? is not invariant under Lorentz transformation, and sug-
gests that we must generalize the above expression to its Lorentz invariant form.
In this form it should give the same value of P whether we express the accel-
eration in the laboratory or in the moving frame. The Lorentz transformation
for an acceleration transverse to the relative velocity vector of the two systems
conserves the invariant fv? and, thus if we replace (¥)? by f27* we leave the
expression unchanged in the moving system where - is unity. At the same time it
ensures that P is indeed the same if we apply the formula in the laboratory frame:

B 1 €2f2
" 6wy 3 7

Now we see the strong energy dependence of the radiated power appearing in
this expression.
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E map/iopE e
1.3 E =T +myc?
=1+0.9383 = 1.9383 GeV.
1.4 1.93832 = (0.9383)2 + (pc)?,
p = (1/¢)v/1.93932 — 0.93832 = 2.8766 GeV /c.
1.5 The field rises to 1T in 5ms. The flux linking the orbit is 2 x mp?B and its

1.1

=7

rate of rise is

2 x mx (0.1)% x 10— 126

This rate of change of flux is just the voltage per turn ([ Eds
[[(dB/dt)dr) i.e. 12.6 eV /turn. The number of turns is

5x 1073 x —— — 2.385 x 106,
2mp
and hence the top energy is this number times 12.6, that is, 30 MeV.
1.6 The balance of centripetal force and centrifugal acceleration gives
mw?p = evB.
The angular revolution frequency is w = v/p. Thus, w = (¢/m)B. At 1.2T

w 9.58 x 107
frev = % = T x 1.2 = 18 MHz.

1.7 The quantity known as magnetic rigidity is defined in Section 2.2:
Bp (Tm) = 3.3356pc (GeV).
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For deuterons the argument of Section 2.2 is unchanged and, therefore, the
maximum momentum accelerated will be the same as for protons:

p? = B® — Ky,
T =1.0GeV,
?p’ = B* - Eg,
2p? = (1.0 4+ 0.938)% — 0.938% = 2.875,
cp = 1.696 GeV,
A (pdeun)? = (Tyeu + 2 x 0.938)% — (2 x 0.938)% = 2.875,
Taew = 0.653 or 0.326 GeV per nucleon.

1.8 The answer to Exercise 1.1 gives

_P
s-2.
Calculating the revolution frequency for protons:
1.696
ot = ——— = 0.875,
Forot = 7033
Be  0.875 x 2.9979 x 108
T = = = 1. MH ;
Jree = 50 o1 x 25 07 AMHz
and repeating for deuterons:
1.696
= =0.670
Pden = 5658 12 x 0.038 ’
Be  0.670 x 2.9979 x 108
T = = = 1.28 MH .
frev = 7R 27 x 25 ’
2.1 64.5m.
2.2 26.68 and 0.4136T.
2.3 12Tm .
2.4 0.509 m.
2.5 4.035m.

2.6 96 and 48, which fit in with a superperiodicity of 6.
2.7 61.7m and 41%.
3.1 Differentiate twice:
y= aB’? cos¢  (po = 0),
y = %ﬁ_lmacosgb x 3 — B Y%qsing
= a2 (50 cos ¢ —sing) (¢' = p7),
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y' = —%aﬂ_?’mﬁ'(%ﬁ/ cos ¢ — sin gb)

Substitute in Hill’s equation

v+ Ky=0 :a5_1/2cos¢[%ﬁ“— %5/24—[(5— %},

therefore,

%ﬂﬁﬂ_ iﬁ/Q_FKﬁQ - 1.

sz o= (L 1) (1) (G 0)
1+1/2f l ><1—l/2f l )
—1/af?  1-1/2f) \ —1/4f% 1+1)2f

B 1—12/2f2 201 +1/2f)
; (—(l/2f2)(1 —1/2f) 1-1%/2f? ) '

3.3 Mropo = (

3.4 97.04°, 23.1 mm.
3.5 Reversing the signs of focal length,

[ 1-12/2f2 2(1 — 1/2f)
PO T2 12 1 122p
Trace/2 = cospu = 1 — [2/2f? as before, and mi2 = 2[(1 — [/2f). Hence,
20(1 —1/2f)
f=——""
sin i
6 =33lm
3.6 Q=647, 27TR=6.545x2x24, R =>50m.
50
lQ
3.7 cospu=1— 2_f2
12 df

d(cosp) =sinpdy = — —

(cos ) =555

2
o i 1 Pd
2r  2msinp f2 f
sin y = 0.993,
A

AQ = 367f = 0.0036 for 1% error.

4.1 e = 2rmmmrad = 27 x 1079 rad.
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4.2 5 = fe = 14.7mm
1 + a2 1
ry — — —
max \/ -
=0.136 mrad
4.3 =10 GeV/C
E 10
= = 10.66
by = E Eo  0.93826
=¢e(Bv) = 2 x 10.66 = 21.327 mm mrad.
400
4.4 = = 426.3
57 = 503526 ’
21 32
= 6. 37r1rnnr11rnr8ud =50 x 1077 m,

— /50 x 10° x 109 = 2.33 mm.
4.5 p=10GeV/c,

E = \/p2c2 + m¢c* = v/10% + 0.938% = 10.044 GeV,
v C

-= 1;; — 0.99562,

27R 27 x 1100

Trev = T3 T 0.99562 x 2.9979 x 108
frev = 43.186 kHz.

4.6 Betatron frequencies are (n+Q) fo, Q is 6.47; therefore, neighbours to fy are
(13 —6.47) fo, (1 +6.47) fo. Difference is (7.47 — 6.53) fo = 0.06 fo = 2591 Hz.

4.7 The vertical bars are spaced in time by the revolution period. The envelope
which is sin 27 f(n — Q) takes six revolutions to complete; hence, n — @, the
fractional part of @, is 1/6 = 0.166.

5.1 E? = (moc?®)? + (pc)?,

= 23.16 us

LS (0 P (O U i
(moc?)? (moc?)? B2 (moc?)?’
|
V=14 A==l v= T

5.2 8= 1/

5.3 =+E?2 — mgc2
= /7% = L(moc?)

= (ﬂy)moc?



228 Answers to exercises

5.4 Differentiating

5.5

E? = Eg +p’c? — 2EdE = 2c2pdp,
dE = vdp = Bedp.

Moreover,
pc _ move/ m —3
E  mec/y/1-5>
Hence,
dE. Bedp  PBedp  5dp
E-F pes
The frequency is a function of velocity and orbit length:
v df dp dR dp dp
U

Find dg/g by differentiating
pc dg dp dE dp 5dp
=5 75y T
Therefore,
i (1 dp dp
(1)t
T=10CeV, FE =10.9383,
E? = (0.9383)2 + (pc)?,
pe =10.898 GeV/e,
Bp = 3.3356p (GeV/c) =36.35 T - m,
B
p= Tg — 24.23,
R =32 %2423 = 36.35 m,
pc 10.898
P=F ~ 109383

v = Be = 0.9963 x 2.9979 x 10% = 2.9869 x 108,

v
frev = ﬁ = 1.308 MHz.

At 1 GeV
pe = {(0.9383 + 1)2 — (0.9383)2}1/2 = 1.696,
1.696
# =103
~0.8750 x 2.9979 x 10°
Frev = 27 x 36-35
9 x 103
1.148

= 0.9963,

= 0.8750,

= 1.148 MHz,

fV =9GeV, V=

= 7.836kV,

dp _dE _y
(=677

1 dp

7 p
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V sin 45° = 7.836,
therefore, V' = 11.04kV.
9

D
T e =2

i_}{D(s)dsN__
% (s) ~ p 3635
pc = V/1.8662 — 0.938272 = 1.63593 GeV.

P
E =2x0.93827 = 1.886,

(b)
(Just below injection!)
(¢) T=1GeV:
1.93827
= — 2.06579
7T 0.03%27 :
SE R S S 0.01330
T E T N2 T 2065792 3635 :
T =10GeV:
10.93827
= .
0.93827 65789,
11 1 9
== - = - — —0.24027.
! 2 42 11.657892  36.35

1 1
. _ o oY 8703
3 \/7 2.065792 ’
B InleVo
fs= 27TE0ﬂ2’Yhfrf
3
0.01330 x 7.836 x 10 11.48 MHz

- \/271' x 0.93827 x 109 x 0.765672 x 2.06579 x 10

= 438 Hz.

5.8 See figure below.

J1C0Hz -

T(GeV)
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6.1 VB =28mm, 3 =104m,
£ = 282/1047 mm mrad = 7.53 mm mrad,

h
3 = Ve = V20 X 753 x 1076 = 12.27 x 107,

= 12.27mm,

/753 10 6
’ —‘/ a = 0.269 mrad,

_20x B
= 2q = — 0.538 mrad,
Bp T T 1334 e

B =0.035T.
6.2 See Fig. 6.7.
A(B)
Bp

= klAy = 3.22 x 0.015 x 0.15 x 1072 = 7.25 x 10~ % rad,

_ B
2sin @
108 x7.25 x 1076
~ 2sinw-27.75
1
(b) Distortion = /108 - 0.55 mm x 7 = 4.06 mm x 2 for safety

(average of cos 6)

6.3 (a)
.7.25 x 1076

= 0.55mm.

= 8.12mm.

B(s)B A(BI)
- _VFVWE L /N.Z2

(c) y(s) 2v2sinn0 VN By

The increase is by a factor of

/108108 + 108.20
\/108 X 108

V744 -\/64,/5(
2\/_sm7rQ
2
b=
4.42 x 1073 x 24/2 - sin 45® x 744

6 =
(6e) V744 < 64 x 108 x 27

= 0.46 mrad.

6.4 The fifth-order lines near the working point pass through 27.6, 27.6. The
nearest is 5@y, = 138 (driven by decapole error in the dipole magnets which
have the right symmetry). The distance from the working point is 0.01. The
@ spread is Q'Ap/p and must be smaller than this. With @’ = 36 this limits
Ap/pto 2.7x1074. Of course, if the resonance lines have a comparable width
the momentum spread will be even smaller.

=1.089, that is, 4.42mm X 2.

(d) 0:(A6.) = 4.42 x 1073,

B(s) = 108 m,
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1 [B” D
05 oL (BN
i Bp
1 6xB"x109x12
4 1334 B
B" =213.5T/m?.
6.6 B =1iB"z?
B = 1B"a* = $213 x (0.08)% = 0.681
We can increase this by a factor of 1.17 to handle a Bp of 1565 (momentum
470 GeV/c).

6.7 The calculation of this effect is as before except that D is smaller and, hence,
B" must be larger by a factor of 6. We can achieve this if the aperture is
2 x 0.033m.

7.1 Bp =3.356 x p (GeV/c) = 1334,

10

1 B 19.4
k= — Y = ——— —0.01454
"7 Bpor 1334 ’
kq = —0.01454,

sa= [ k() 2o gy 32 O (BFY

- % [108x0.01454x3.22(%) HF—18><0.01454><3.22(%)HD]
_ 0.4024(%)HF _ 0.0671(%)@,
AQL [ 0.4024 —0.0671\ ((AI/D)ur
<AQV> = <—0.0671 +0.4024> <(AI/I)HD> :

Inverting,
(AI/I)p\ _ (2.556 0.426\ [(AQn
<(AI/I)D> o <0.426 2.556> <AQV>'
7.2 AQy = % /ﬂ(s)Ak(s) ds,

Ak = —k(%)

= L %108 x 108 x 0.014 x 3.2[—%],
4 P

Q' = —41.58.
8By . . "
7.3 e is the quadrupole gradient = B"z,
B//
I ——

Bp '
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B(s)Ak(s) 36 x 108 x Bz x 0.85
7.4 AQy = ds =
@n / i i x 1334
B" =150, 2=22x10"3,  AQy=6.5x10"2.
d 6.5 x 1072

7.5 Chromaticity = d}?/};;) = 12_3 = 65 units.
7.6 Vertical chromaticity (remember Ak = —B"x/Bp),
36 x 18 x B"x x 0.85

_ _ -2
AQy = 1331 =1.084 x 1072,
Qv = —10.8 units.
dp/p

7.7 Another set near the D quads will have a predominant effect on vertical
chromaticity by virtue of the larger g, .

7.8 4.
7.9 ¢ = porsin 46,

0
B, = 9 _ cos 0 - podr> sin 40 — sin Or34 cos 40

T Ox
= 4¢or>sin 36,
a¢ . 3 . 3
B, = 8_y = sin 6 - ¢odr> sin 46 + cos 0r>4 cos 46
= 4¢or3 cos 36,

sin 360 = sin(26 + ) = cos 26sin f + cos 6 sin 26
= 3cos?0sinf — sin’6,

x =rcosb, y = rsin by,

By = 4¢o(32%y — y*),

cos 30 = cos(260 + 6) = 26 cos § — sin 26 sin 6
= cosf — cos fsin’f — 2sin®6 cos §
= cosf — 3sinf cos b,

B, = 460(a® — 32y°),

sin 46 = sin 26 4 20 = 2sin 26 cos 26
= 2.25sin 6 cos A2(sin’0 — cos?6)
= 8(sin# — sin @ cos®6),

¢ = 8po(ay® — z°y).

7.10 By(z) = 4¢o(x® — 3zy?)
when y =0, By(z) = 4¢oz?,
Ap = Apx/,

4
Ap = %ag’ cos®6,
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A
2tAQ = Tp cos b,
¢051

AQ = a cos* @
¢05 a2
= 40 + 4cos26 + 3
By (cos46 + 4cos20 + 3),
2 2
width = 20017 i 300Pla”.
4t Bp 47 Bp
The stopband width depends on amplitude for an octupole.
4 wr. E*
8.1 Up=-——=—
* 7 3 (mec®)? p

_ 4 28179 10717 (50 x 10%)*
37 (511 x 10%)3 (27 x 103/2m)
= 128 MeV per turn.
At 100 GeV the energy loss is 24 times larger, that is, 2.05 GeV /turn.

Note that these answers differ somewhat from Table 8.1 because we assume
p=R.
8.2 The power is Upl = 2.05 MW.

h 3 hey?
8.3 - (—) LA
te o) T 4 P

_ 3 6.6262 % 1034 90070 % 108<100 X 109>3
4r 27 x 103/2m 511 x 103
=827 x 107147,
o 2rue 827 X 1071 . 27
h 6.6262 x 10—34
= 7.84 x 10?0,
\ 2 2m X 2.9979 x 108
w 7.84 x 1020
=24x10712m

—13 9\ 271/2
8.4 Te _ 1.92 x 10 50 x 10 — 0.65 x 10-3
E ~ | (27 x 103/27) \ 511 x 10°

at 100 GeV this is twice as large.

8.5 The mass of the muon is 105.66 MeV /c2. The classical radius of a particle
is inversely proportional to its mass. Hence,

e? 0.511

= = X re = 1.36 x 10717
" Yregmoc? | 1057 x ’
4 136 x 10717 (4 x 1012)4

37(105.7 x 106)3 4 x 103

Ug = =3.2MV.
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h e’

2T p

3 6.6262 x 107 4 x 1012 >3

dr 4 x 103 106 x 106
=6.37x 10710 =4keV, w, = 5.7 x 10'8, A = 3.3 x 10'°.

8.6 Ue =

N w

X 2.9979 x 108<

P
8.7 The damping time = —*
0
N UO C
- E() 2rR

~3.2x10% x 2.997 x 108
© 4% 10" x 21 x 4 x 103

=9x 10 3s.
9.1 See answer to Exercise 5.5
10.9383
=0.9963 = = 11.657
b ’ 0.9383 ’

£ = 10/11.6577r mm mrad = 8.57 x 10},

S = [V/857x 10-7 x 60] 7w = 1.62 x 10~ *m?,
~1.534 x 10718 x 1100 x 1013

5 p—
Q=55 27ax (0.9963)2(11.657)3 x 1.62 x 10—4
=1.2x1073.
9.2 Qo = 27 x 500 x 106 = 3.14 x 109,
11 1 1
- =~ —562x1073

1T TR T resn)? 242 S

efc
Ip = —— x 1013 = 0.069 A
"7 oOrR X ’

E =10.9383 x 10%eV,

62 x 1073 . 14 x 10%)?2

(AQ)? — —i 5.62 x 1072 x 0.069 x (3.14 x 107) 50,

27(0.9963)210.9383 x 109
AQ = —i x 1674 Hz.

2r 2w

Im(AQ)  1.674
_AQ? 1.674% x 10°
- Z/n 60
= 47 x 103 rad® /ohm,

1 2
82 — (—) — 69252 rad?,
-

X B2 <47 x 103X 69252 >

T 4B € 4% 69252 47 x 103

9.3 Growth rate = — = 3.8 ms.

9.4 ¢




Answers to exercises 235

See figure below.

i =l e+06.N50000 T 5000007 le+06
3 : ; Mo e X-(Q)
N o yd
S =
500000

9.6 The diagram is reflected about the real axis.
2 1
9.7 (%) b (é)
P Fmoc?3%ym \n
0.069

= 50
0.938 x 109 x (0.9963)2 x 11.657 x 5.62 x 10—3

A
2P _94x 1074,
P
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10.1 ro = 0.375m,

Ao = 2405 _ 6.413m~!
To
wo10 = m = A()l() X c=1.922 x 109 rad/s,
NG
f = 305 MHz.
10.2 For TM011
2 Po1\? T2 2.4051 2 T\ 2
=30 +(55) - Gam) +(5)

A =8.978m™!,
wor1 = 2.69 x 10°.

sin /2
10.3 = 0/2/ = 0414

4 wG

0= 3= e

w = 1.922 x 107,

G = 0.5,

Be =2.29 x 108

8 =0.76527,

T =520 MeV.

10.4 Reduce the gap with ‘nose cones’ (drift tubes) or fold the cavity volume
about a narrow gap.
W

/|H|2dv,
Pd = _szurf /H2 dS,

10.5 Q=

Rsurf: i = m
oo o
Therefore, Py = ;——MJC/H2 ds,
o
Arf - (u/2)ot/? szv H?|dv
Vruf [H? ds N T ds

_2Jidv 2,V
T 5 [|H%ds 5 S
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10.6 The points lie on the curve at 7/3d and 27/3d. The first point has vpn > 0
while the second is about 0.8c. The group velocity is less than ¢ but finite
for both points. See figure below.

A
w/c

\\ / e \\ /
n=-1 n=0 =+l

T T T I >
—2n/d —n/d wd 2 /d k

E 7.7 x 1012

11.1 N X 9006
Y™ B = 59383 x 109 ’

_ (0.5 X 3.75 X 10_6>1/2 15um

7= 8206 -

A=410%? =28 x 10710 m2,
fp = ——— % 4725 = 53 x 106,

21 R
10112 . 106
L= (107 )7-53 x 107 _ 1.89 x 1038 cm =251
28 x 10-10
=1.89 x 10** cm 2571
Toﬁ* N
11.2 0Q = —
Q /y A’
ro for proton is 1.53 x 10~18,
7.7 x 1012
y= LT 8909,
0.938 x 109
1.53 x 1078 x 0.5 10!
0Q = = 0.0033.
@ 8209 28 x 10—10

11.3 We must reduce N by a factor of 4 and increase the number of buckets
which we fill by a factor of 4. Inevitably the luminosity is then reduced by
a factor of 4.

11.4 The curve should be the rectangular hyperbola,
[ 1 500(x 109 eV)

2~ 0.7 E(MV/m) x 1000
E =57TMV/m,

= 12.5km,
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A =10cm,
f=3GHz.
See figure below.
80 \
o\
£ \
= \
~
40 \
\\‘
20
\;
20 40 60
E (MV/m)
11.5 N? droyoyL _ 47 x (60 x 1072)2 x 1038
f 200
N =1.5x 101%

11.6 Beam power = eN fE
=1.6x 1071 x 1.5 x 10! x 200 x 5 x 10!
=24MW

11.7 A\ = 6233p ~ 6233E (m/GeV)

—3.133 x 10°m at 50 GeV,

T = é =1.05ms
c

=2.5x 10" m at 4 TeV = 83 msec.
Bp =1.33 x 10* Tm,
assume p/R = 0.7

1.33 x 10*
=P 3%k
R=—7xg —320km,

27R = 20 km,

Q =~ 70.
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Number of periods = 280 for p = 90°.
Period length = 71 m. Say 8 bending magnets of 6.5 m plus 2 quadrupole.
11.8 Decay time is 83ms = 1/12 second. Repetition rates of 10-15Hz are

appropriate.
1 2w
12.1 =29 - g1
- =N 2991+,
d(l/T)y 2W
=—[2-—2¢(1
a7 22901+ p)],
1 .
g = ——, that is, somewhat less than 1,
1+p
1 2w
T N+p)
1
12.2 S le time = ———— = 3us.
ample time = =~ — ns
Revolution time is 27 R/v = 546 ns.
3
Sample is 25105 = 5497 particles.
546 ns

12.3 mec? = 0.511 x 108eV.
T =60 x 10%eV,

E, = 571 MeV,
571
Ye = m = ].].].7,

Be = /1 — (1/92) = 0.446.

Proton with same 3 and 7,

E, = 1.117 x mpc® = 1.05 GeV.
T =110MeV, p =467 MeV/c.
12.4 x’—M—OSmrad
) - 5x 1072 '
The electron beam alignment must be better than this.

12.5 There are various ways to simulate cooling but with a small number of
particles the result often oscillates.

2% 100
12.6 2 — w/XT — 045 x 10-3,

Transverse velocity is ¢ x 0.45 x 1073 = 1.35 x 10°m/s.
12.7 imv? = 3kT,

151672 x 10727 x (1.35 x 109)2 = 3 x 1.38 x 10-23T,

T =726000K.
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12.8 A = 5485 x 10710,

2me
_ _ —16
AE = hw = 6.58 x 107 eV x E A X 10=7
— 2.96eV.
5mA
13.1  Beam intensity — m;nw — 313 x 1016 g1

Beam power = 5mA x 2MV = 10kW.
15c¢m x 80 cm
60s

Particles s~ = 3.13 x 1016,

13.2 Area swept = =20cm?s™ 1,

Energy deposited per particle

2.1 MeV/(gem™2) x 0.20 x 1.4 = 588keV = 9.4 x 10714 ]
Power = 2.95 kW.

13.3 Mass receiving this power 1.4 gcm™ x 20 cm? x 0.2 cm = 0.56 kg.
Energy received = 525 kW skg~!, that is, 525 kGy.

13.4 1A is 0.1 nm which is the scale of atoms. Crystals, molecules, and DNA are
in the range 1-10 nm.

6.58 x 10716 x 2.998 x 108 x 27

13.5  pe=hw= = 12.4keV,

10-10
2 3\2
D (12.4 x 10°)
2m 2% 0.938 x 109 e
25 x 0.4
13.6 = 62 x 10'° neutrons s~}

109 x 1.6 x 10—19
This is two orders of magntiude stronger than the reactor. However, the
proton burst is 0.4 ps at 50 Hz leading to a mean flux of 10'2 ns!.

30 x 103 x 7 x 10

14.1 — 4.9MV/m.
05 V/m
Asg 7 x0.72 x 8.85 x 10712
14.2 = — = — 979 % 10~10F
C== 0.05 7210
V =30 x 103

Energy stored = 3 CV2 = 0.12261]

Intensity = N.

Change in beam energy = NeAw
=N x 1.6 x 10712 x 210 x 103
= 0.3 x 0.12261

N =1.1x 10"



Answers to exercises

2mc  27e
14.3 Aw = — = — — —
w w1 w2 /\1 )\2

1 1
— 97 x 2.9979 108< - )
i 06 %100 1027x 100

=1.28 x 1013 s L,
nge2\ 1/2
144 wy= <€om ) ,
e
_ EoMe o
T Tz Y

1o

8.854 x 10712 x 9.1 x 10731
— (6% 10-19%2 (1.28 x 1013)?

=5x102m=3 (5x10%cm3).

241
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