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Editors’ Foreword 

Batteries are a crucial element for the world’s future energy systems built upon 
renewable energy sources of strongly intermittent nature such as solar and wind. 
While the market for lithium-ion batteries, the currently dominating technology, 
keeps growing at stunning pace and technological boundaries are being pushed 
further, also concerns about the corresponding demand for raw materials and 
associated environmental and societal impacts are becoming stronger. This has led 
to an increase of research activities in the field of recycling, material demand and 
sustainability of lithium-ion batteries, but also to the search and development of new 
battery technologies based on more abundant, less toxic and broadly available 
materials. To this regard, technologies based on materials such as sodium, magne-
sium or aluminium could play a crucial role since they are expected to offer 
advantages in terms of performance, costs and sustainability. However, these sys-
tems are still in an early stage of development, while many sustainability problems 
do not arise until a technology is broadly implemented and creates market forces 
strong enough to trigger changes in the industrial landscape, global resource and 
material streams and corresponding mining and waste handling activities. Here, the 
principal challenge is to identify promising technologies in an early research stage, 
extrapolate their possible future deployment at the large scale and thereby assess 
potential sustainability hotspots in a prospective, foresight-oriented view, anticipat-
ing recycling and circular economy challenges. This requires a combination of 
different perspectives including electrochemistry and material science, energy sys-
tem modelling, market projections and material flow analysis, system analysis and 
environmental assessments, as well as societal expectations regarding technology 
and sustainability. 

The present book analyses the most relevant technological developments in the 
field of batteries, taking a prospective and interdisciplinary view with a broad 
sustainability angle, including environmental, societal and economic aspects. By 
assuming a broad introduction of the considered emerging technologies in the 
markets, potential environmental, societal and economic implications are anticipated 
from a system and technology assessment perspective, providing a glimpse on the
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energy storage demand answered by future batteries systems. As such, the book will 
be relevant to all scholars working on or interested in the development or the 
assessment of new battery technologies or other energy storage technologies and 
their integration in the power system or in on-board applications. 
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Overview of the Book 

Rechargeable batteries are everywhere, from our mobile phone and its wireless 
earphones, our cars, trucks, and buses up to large battery installations replacing 
conventional power plants for guaranteeing stability of the electricity grid. However, 
the sustainability of this booming market is repeatedly being questioned, with the 
energy-intensive cell manufacturing, resource demand and shortages, or limited 
recyclability just being some of the keywords frequently heard in this context. 
Moreover, also limitations of current technologies are remarked in addressing 
seasonal energy storage needs. New battery technologies are being developed 
aiming at solving at least some of these issues by using earth-abundant materials, 
applying design-for-recycling principles, or pushing performance and economic 
boundaries far beyond the current state of the art of current lithium-ion batteries. 
But can these expectations be ever fulfilled? This book tries to give a first answer on 
this critical question by combining the perspectives of technology developers with 
those of system analysts, presenting emerging battery technologies that could con-
tribute to short- and long-term storage in different application areas. Moreover, 
prospective analyses of the potential sustainability challenges and opportunities of 
these emerging technologies in a future decarbonized economy are provided. In this 
way, the reader has the opportunity to gather knowledge not only at the technology 
level, but also on a systemic scale, analyzing the whole sector from both a micro- and 
a macro-scale perspective.
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Part I 
Batteries for the Clean Energy Transition 

Preface 

Accelerated global warming evidences the need for a drastic change of our present 
society towards a world economy operating within the planetary boundaries. This 
implies, among others, a rapid and profound decarbonization with all activities 
ultimately based on renewable energies. To overcome the intrinsic variable nature 
of renewable energy sources, the integration of energy storage devices, particularly 
batteries, is considered as a key enabler, allowing to store electricity for use on 
demand in areas that have traditionally been run on fossil energy. These include a 
wide set of grid-connected and mobility services and, possibly, new fields such as 
drones and robotics. 

This chapter prepares the ground for the subsequent chapters of the book by 
introducing the general concepts and challenges related with these transitions. 
Specifically, Chapter 1 picks the mobility sector as one of the sectors that is 
undergoing fundamental changes and elaborates on the specific trends to be expected 
in near future and the role that batteries play for these. This includes not only 
electrification of vehicles but also aspects of intelligent vehicles, interconnections, 
and charging infrastructure. Chapter 2 then takes a circular economy perspective by 
introducing the key challenges and opportunities related with the transition toward a 
closed loop economy. It tackles the limitations of the present linear economy model 
and introduces the “R”-imperatives of the circular economy and then applies these to 
the emerging battery recycling sector to highlight the most important bottlenecks for 
a circular battery economy.
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Chapter 1 
Mobility and Future Trends 

Seyed Mahdi Miraftabzadeh, Michela Longo, and Federica Foiadelli 
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1.1 Introduction 

The world is rapidly changing, and the transportation and mobility industry is no 
exception. Mobility, a paramount part of modern society, helps people to access 
jobs, education, healthcare, and other destinations. There has been a significant shift 
in thinking about mobility, with a growing emphasis on sustainability and the need 
to reduce the environmental consequence of transportation. Mobility is an essential 
aspect of modern society, encompassing everything from personal transportation to 
public transit, logistics, and infrastructure. With the rapid advancements in technol-
ogy, mobility is undergoing a significant transformation, with new technologies and 
services emerging that have the potential to revolutionize the way we move [1– 
3]. Mobility has seen a surge in development over the past few decades, and it is 
worthwhile to follow the latest trends in recent years. 
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One of the most significant development and trends in mobility is the transition 
toward electric vehicles (EVs) from internal combustion engine vehicles. Electric 
vehicles are powered by batteries rather than fossil fuels, and they produce zero 
emissions while in operation [1, 4, 5]. Thus, EVs are more sustainable options 
compared to traditional fuel-powered vehicles. Additionally, the cost reduction of 
batteries and advancements in charging infrastructure make EVs a more reasonable 
choice for all people. 

Furthermore, another trend in mobility is the rise of ride-sharing services like 
Uber and Lyft, which allow individuals to hail a ride from their smartphones and pay 
for it through the app, making transportation more accessible and convenient for 
many people, especially in urban areas where public transport may not be as well-
developed [1, 6]. However, the convenience of ride-sharing comes with a cost, as 
these services have been criticized for exacerbating traffic congestion and air 
pollution. Also, the rise of ride-sharing has led to a decrease in public transportation 
and personal car ownership, which can negatively impact the environment and the 
economy [7]. Additionally, the employment status of ride-sharing drivers has also 
been a topic of debate, as some argue that they should be classified as employees 
rather than independent contractors. Despite these challenges, ride-sharing continues 
to grow in popularity and is expected to impact the future of transportation 
significantly. 

The remainder of this chapter is organized as follows: toward the electrification of 
mobility is presented in Sect. 1.2. Section 1.3 presents the e-mobility and future 
trends. Electromobility charging infrastructure is given in Sect. 1.4. Section 1.5 
discusses the importance of 5G technology in mobility and its applications. Finally, 
the future trends in mobility are presented in Sect. 1.6. 

1.2 Toward the Electrification of Mobility 

Electrification will play an essential role in the modification of the transportation and 
mobility industry and has offered major opportunities in recent years, including the 
environmental impacts and CO2 emission reductions of transportation [1, 4]. In 
general, mobility electrification refers to the use of electric power for transportation, 
such as electric vehicles, electric bikes, and electric scooters. The shift to e-mobility 
has been increasing in recent years; however, several factors, as presented in 
Fig. 1.1, enhance such a transition. 

Several factors reinforce mobility electrification as follows [7–9]: 
Government policies and incentives: Many countries have implemented poli-

cies and incentives to encourage the adoption of electric vehicles, such as tax breaks, 
grants, and subsidies. 

Advancements in technology: The new development and improvements in 
battery technology have directed to cost reduction of batteries. Also, the introduction 
of new modules of fast and ultrafast charging has surpassed the so-called “range



anxiety” issue of new e-mobility customers. Thus, electric vehicles are a more 
reasonable and affordable option for a wider range of customers. 

1 Mobility and Future Trends 5

Fig. 1.1 Factors driving mobility electrification 

Growing consumer demand: The transportation sector is one of the main 
responsible actors for climate emissions. As the concerns about climate change 
have grown, more people have become aware of the negative environmental impact 
of transportation as well. Therefore, more consumers have been choosing e-mobility, 
particularly electric vehicles, which are considered a sustainable alternative com-
pared to traditional ones. 

Increase in charging infrastructure: Governments and private companies are 
investing in the development and expansion of charging stations, both in residential 
and public spots, to sustain the growth of e-mobility. These investments resulted in 
finding more charging stations in cities and on roads in many countries. 

Government and industry entities will persist in working together to promote 
further mobility electrifications in various areas. The availability of charging infra-
structures requires to be expanded to provide more convenience for consumers to 
charge their EVs outside their homes as well. The improvement in the range and 
performance of electric vehicles reduces consumer concerns about long-distance 
travel with electric vehicles. The development of a thorough strategy for end-of-life 
battery management minimizes the environmental impact of EV batteries. Finally, 
customers’ concerns regarding the cost, recent advances in electric vehicle perfor-
mance, and sustainability of e-mobility need to be constantly updated. 

1.3 E-Mobility and Future Trends 

E-mobility refers to any means of transportation (electric vehicles, electric bikes, 
electric scooters) that work by electric power. E-mobility is considered a sustainable 
option compared to conventional diesel and gasoline vehicles since it produces no 
emissions while in operation and can be powered by renewable energy sources 
(RESs) such as wind and solar energy, which significantly reduce the carbon 
footprint of transportation.
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E-mobility is a promising solution for decreasing harmful pollutants and green-
house gas emissions from transportation. However, maximizing the environmental 
benefits of e-mobility depends on the source of electric energy used to charge the 
vehicles, the manufacturing process of EVs, and the disposal of the battery at the end 
of its life span. Additionally, more strategies are required to achieve zero-emission 
transportation than only the transition to e-mobility, including sustainable urban 
planning, bike-sharing, and expanding public transportation systems to decrease the 
overall dependence on personal motorcars. 

One of the main trends in e-mobility is the increasing adoption of electric vehicles 
since battery technology has advanced; the cost of batteries decreased from $1000 
per kWh in 2010 to $227 per kWh in 2016, and it is predicted that it will be lower 
than $100 per kWh by 2030 [10]. As a result of the reduction in battery costs, the 
number of electric vehicles on the roads has significantly increased. Many countries, 
such as European countries, have set ambitious targets for replacing traditional cars 
with electric versions in the coming years. Another trend in e-mobility is the 
development of charging infrastructure. As more electric vehicles are in operation, 
it becomes increasingly necessary to have a reliable and convenient charging 
infrastructure. Many governmental and private companies are investing in develop-
ing charging stations, both in residential and public, to satisfy future needs of 
charging e-mobilities ubiquitously. 

Further development in e-mobility technology is expected to emerge in the near 
future, as it is summarized in Fig. 1.2. Currently, EVs have a limited driving range; 
however, since there are many advancements in battery technology and capacity, 
EVs are expected to have a more extended driving range. Ultrafast and wireless 
charging are other important predictions in e-mobility technology to provide more 
convenience for drivers to charge their vehicles on the go or without physical 
connections [11]. Smart charging technology allows scheduling the electric vehicles 
charging smartly, considering the electricity demands and prices or the electric grid 
pressure in peak hours. Another interesting aspect of the future of e-mobility is 
vehicle-to-everything (V2X) solutions that enable EVs to transmit their surplus

Fig. 1.2 Expected future 
trends in e-mobility



Type Voltage (volt) range per hour Setting

energy to electric grids, houses, buildings, or any other energy consumption desti-
nations [12, 13]. Finally, thanks to advanced artificial intelligence, autonomous 
electric vehicles will not only increase the efficiency of mobility but also reduce 
greenhouse gas emissions.
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The future of e-mobility includes using electric vehicles and steady technological 
advancements to support them. As the demand for electric vehicles grows, the 
development of charging infrastructure will become increasingly important. In the 
future, it is expected to see more convenient and efficient charging options such as 
wireless charging, ultrafast charging stations, and even faster home charging sys-
tems. Furthermore, electric vehicles will be integrated with autonomous and 
connected vehicle technologies, allowing for more seamless integration into smart 
cities and a more efficient transportation system with zero carbon emissions. 

1.4 Electromobility Charging Infrastructure 

The charging infrastructure for e-mobility is defined as the charging stations and 
equipment required to charge electric vehicles, including both home charging and 
public charging stations. The accessibility and availability of charging infrastructure 
are the key factors in speeding up the transition to e-mobility. Table 1.1 presents the 
different current types of charging infrastructure [4, 14, 15]. Level 1 charging is the 
slowest and safest type of charging, usually used for overnight charging at home. 
Level 2 charging charges an EV in several hours and is widely operated in public 
charging stations. Finally, DC fast charging harnesses high power in order to 
recharge an electric vehicle (EV) in a few minutes. This type requires a specific 
protection system for monitoring and communication between EV charging equip-
ment and the vehicle. 

There are several challenges and limitations associated with the expansion of 
charging infrastructure:

• High costs: The installation and maintenance of charging stations can be expen-
sive, and governments and private companies may solely be keen to invest in 
them if they guarantee adequate demand. Therefore, identification of best 

Table 1.1 Different types of charging infrastructure 

Typical 
power 
(kW) 

EV miles of 

Level 1 120 AC 1.2–1.4 3–4 miles Standard 120-volt household outlet 

Level 2 208–240 AC 3.3–6.6 10–20 miles Often used at public charging stations 
and at home 

DC fast 
charging 

400–1000 DC 50 or 
more 

150–1000 miles Typically located along highways and 
in urban areas to support long-
distance travel
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locations for charging stations and choosing the best charging infrastructure type 
are necessary to address this concern.

• Limited accessibility: In some locations, mainly remote regions or rural, it can be 
challenging to install charging stations due to a lack of available electricity or 
other infrastructure.

• Charging station compatibility: There is no universal standard for EV charging; 
for example, the EV plug-in type or charging connector differs across geogra-
phies and models. Thus, not all charging stations are compatible with all EVs in 
operation, which can cause inconveniences and confusion for customers. 

Governmental and industrial organizations have strong cooperation to overcome 
these challenges by developing comprehensive solutions and actions. For instance, 
many countries focus on standardizing charging equipment to ensure compatibility 
with all EVs. Also, many funds are offered to research and development divisions so 
as to improve charging station technology and reduce the costs of creation, instal-
lation, and maintenance. 

1.5 5G Application in Mobility 

5G, the fifth and newest generation of mobile technology, has the potential to 
significantly impact various aspects of society, particularly in terms of mobility 
[16–20]. Some of the key applications of 5G in mobility include the following:

• Connected vehicles: 5G networks offer faster and more reliable connectivity 
compared to previous versions, making it possible for vehicles to communicate 
with each other and with infrastructure in real time. Consequently, it can improve 
traffic flow, reduce congestion, and make it possible for vehicles to drive 
themselves.

• Remote driving: 5G networks have low latency, high bandwidth, and ultra-
reliability, which enables the remote control of vehicles and equipment in real 
time; thus, using 5G enables remote driving and operation of vehicles in danger-
ous or difficult environments.

• Intelligent transportation systems: 5G networks can enable the real-time collec-
tion and analysis of data from traffic cameras, sensors, and other sources, 
allowing for the optimization of traffic flow and the reduction of congestion.

• Automated transportation: The high-speed, low-latency connectivity of 5G net-
works can support the communication and connectivity needed to operate auto-
mated transportation systems, such as drones, self-driving cars, and autonomous 
buses.

• Enhanced safety: 5G networks can enable communication between vehicles, 
infrastructure, and passengers to improve the overall safety of transportation by 
allowing real-time data exchange and providing faster response times and more 
accurate information necessary for safety issues.



1 Mobility and Future Trends 9

• In-vehicle experiences: 5G networks enable faster and more dependable connec-
tivity inside vehicles, promoting new services such as infotainment, online 
shopping, and streaming high-definition videos. Additionally, 5G networks can 
provide passengers with high-speed Internet access, allowing them to work or 
entertain themselves during their journey. 

5G networks have the potential to revolutionize mobility by making transporta-
tion safer, more efficient, and more convenient. The technology promotes the 
development of new applications such as connected and automated vehicles, intel-
ligent transportation systems, and enhanced in-vehicle experiences, which can help 
reduce congestion and improve traffic flow and overall mobility ventures. 

1.6 Future Trends 

It is likely to see the continued development and expansion of electric vehicles and 
ride-sharing services in the future. Besides, various other trends are expected to 
shape the future of mobility, which are listed below.

• Autonomous vehicles: Self-driving vehicles have the great potential to diminish 
traffic congestion and accident while additionally making transportation more 
reliable and accessible to people who are incapable of driving, such as the 
disabled or elderly. Many scientists and companies are actively working on 
developing autonomous vehicles, such as Tesla, Uber, and Waymo.

• Connected vehicles: The advances on the Internet of things and communication 
technologies, such as 5G, connect vehicles through their sensors and communi-
cation devices [16]. The connected vehicles communicate with other vehicles and 
infrastructures, including traffic lights and road signs, to relieve traffic congestion 
and enhance the mobility flow.

• Micromobility: Micromobilities, lightweight vehicles such as electric scooters 
and bikes, are created for short trips and are becoming increasingly widespread in 
urban areas to save time and traffic. Furthermore, they are convenient options that 
not only reduce traffic congestion but also minimize the negative environmental 
impact of traditional transportation.

• MaaS (mobility as a service): MaaS is an emerging concept that enables the 
provisioning of transport services with a single access point for all different types 
of mobility, including public transportation, bike- and car-sharing, taxis, ride-
hailing, and more [21, 22]. Many mobility companies leverage joint digital 
channels or applications, enabling people to plan and book rides to discourage 
private vehicle ownership. One of the interesting ideas of MaaS is that users pay a 
monthly fee to access transportation services rather than pay for each means of 
mobility separately. Implementing the MaaS concept or eMaaS reduces traffic 
congestion and lowers pollution.

• Hyperloop: Hyperloop is a high-speed ground transportation system that uses 
magnetic levitation technology to move passengers and cargo at speeds up to
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1130 km per hour. This system includes connected mobility hubs worldwide 
through a network of tubes that pods can move in a vacuum at ultrahigh speeds. 
This concept still needs to be developed because of the limitation of nowadays 
technology and safety issues. Hyperloop can solve the problem of long-distance 
travel. 

The future of mobility is likely characterized by a shift toward more sustainable 
and efficient forms of transportation, such as electric vehicles, and micromobility 
options, such as bicycles and e-scooters. Integrating autonomous vehicles and 
connected vehicle technologies is also expected to play a key role in shaping the 
future of mobility. The concept of mobility as a service (MaaS) is also gaining 
popularity, where transportation is seen as a service and not just a product, allowing 
for a more seamless, integrated, and convenient user experience. Hyperloop tech-
nology, which uses high-speed trains in vacuum-sealed tubes, is also being 
researched and developed as a new transportation mode. The 5G networks will 
also play a vital role in the future of mobility by enabling new services such as 
automated transportation and in-vehicle connectivity. On the other hand, as ride-
sharing services become more prevalent, they are likely to significantly impact the 
way we move around cities, reducing the need for personal car ownership and 
changing the way we think about transportation. These technological and transpor-
tation advancements will significantly help reduce traffic congestion and air pollu-
tion and increase accessibility. 
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2.1 Definition of Circular Economy 

The rapidly growing market for batteries in mobility and stationary applications 
leads to increasing amounts of battery material demand and returned waste batteries 
[45]. Battery materials like cathodes, anodes, the separator and electrolyte, connec-
tors, casing and housing, safety equipment, and the battery management system 
cause environmental impacts in their supply chain, in the mining, processing, and 
fabrication stage [32]. These environmental impacts cause concern, not only because 
of the greenhouse gas (GHG) emissions related to resource extraction and processing 
[22] but also exposure to toxic substances, air pollution, water depletion, and land 
use [12]. One strategy to reduce these material-related impacts is to use products 
longer and use more recycled materials in their production—subsumed under the 
label of circular economy measures [42]. Other strategies include improving
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batteries’ energy and power density, extending their cycle stability, reducing fabri-
cation waste, and reducing battery production’s energy and carbon intensity. Such 
strategies, however, are not the focus of this chapter.

14 C. Helbig and M. Hillenbrand

The circular economy is a concept to keep materials in the loop. It is an alternative 
to a conventional, linear economy in which resources are used in production and 
consumption to provide utility to people and society. In contrast, the circular 
economy generates less to no waste, minimizing the need for final disposal and 
raw material extraction from the lithosphere [2]. In the circular economy, materials 
are still used in production and consumption, but their wastes are used again for the 
same or different purposes. This cycling, or at least cascading, minimizes the amount 
of material extracted from the lithosphere. Ideally, mining and quarrying would be 
limited to what is required to expand in-use stocks and replace unavoidable irrevers-
ible material losses [39]. The expansion of in-use stocks has been the norm for most 
material systems in the past century [25], and it is likewise crucial for modern 
technologies, like batteries [45], that have not yet reached some level of demand 
saturation [44]. 

Cyclical ecosystems formed by the circular economy are considered more sus-
tainable than linear ecosystems because they reduce resource consumption and 
environmental impacts and provide an economic benefit. The reduction of primary 
material requirements comes from the increased use of materials recovered from 
waste, replacing materials mined or quarried from the lithosphere. Recycling gen-
erally reduces energy requirements, carbon footprints, and other environmental 
impacts. Of course, there is a risk for a circular economy rebound, nullifying the 
environmental savings [47]. For very high recycling rates, high energy requirements 
for collection, sorting, and processing can also reduce secondary production’s 
environmental and cost benefits [41]. Implementing a circular economy reduces 
the negative environmental impacts of material extraction and expansion and 
increases raw mYaterial supply security. Therefore, the circular economy addresses 
resource scarcity concerns and reduces environmental impacts. In addition, it is also 
expected to provide economic benefits due to the value generation of material 
recovery, savings from extraction reduction, and avoidance of disposal [28]. 

Various definitions for the circular economy exist [24]. The interdisciplinary 
nature of the challenge can partially explain this. Closing the material loops is not 
just about understanding the material flows in society or developing recycling 
processes and long-living products designed for recycling. It also includes policy 
aspects of providing the proper legislative framework to foster the use of materials 
recovered from waste, installing take-back schemes, and many other material effi-
ciency measures. Sociological aspects of understanding how behavior changes 
contribute to the use of fewer products, the use of more sustainable products, and 
the most efficient use of waste management systems also play their role in 
establishing a circular economy. An actual circular economy can be implemented 
by combining the micro-, meso-, and macro-systems perspectives [24]. 

The overall status of the implementation of the circular economy can be measured 
with two simple metrics: first, a perfect circularity would be achieved if recovered 
end-of-life material outputs met all material demand, and second, in an ideal circular



economy, this would be happening without material quality losses, meaning that no 
extra energy would be required to recover materials [6]. Of course, this ideal is not 
practically achievable because of numerous material, metallurgical, and product 
design challenges [39]. Every loop in the circle creates dissipation and entropy, 
attributed to losses in quality (mixing, downgrading) and quantity (material losses, 
by-products) [20], making a fully closed loop impossible. Nevertheless, for the 
various reasons outlined above, it is desirable to close the loop as far as possible 
[6]. In addition, the technical, economic, and sociological challenges to closing 
material cycles of different materials, like base metals, specialty metals, plastics, 
pulp and paper, or construction minerals, are fundamentally different. 
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Batteries are an exciting sector for establishing a circular economy because they 
represent a rapidly growing market, with significant material demand, in parts, even 
Critical Raw Materials [19]. The battery sector is currently subject to technological 
changes, and the realization of circular economy benefits within this technological 
change would foster the transition to low-carbon technologies. 

2.2 R-Imperatives of the Circular Economy 

Many measures to install a circular economy are subsumed under so-called R-imper-
atives. Starting with short lists of just three “3Rs” like “reduce, reuse, recycle” and 
“recycle, remanufacture, reuse,” the lists have gotten longer [24]. One list even 
consists of ten R-imperatives: refuse, reduce, resell/reuse, repair, refurbish, reman-
ufacture, repurpose, recycle materials, recover energy, and re-mine [38]. Probably, 
talented wordsmiths will be able to extend these lists almost indefinitely. According 
to Walter R. Stahel, the R-imperatives in the concept of circular economy replace 
production with sufficiency: “reuse what you can, recycle what cannot be reused, 
repair what is broken, remanufacture what cannot be repaired” ([42], p. 435). In the 
Waste Hierarchy, a concept from the Waste Framework Directive of the European 
Union, waste prevention comes before preparation for reuse, recycling, recovery, 
and disposal [11]. Therefore, the R-imperatives can be hierarchical. Each R-imper-
ative’s potential for the circular economy depends on the maturity of a technology, 
its industrial sector, and inherent material properties. 

Even the longer lists of R-imperatives follow three basic ideas to change the 
material cycles, corresponding to the three Rs of reducing, reusing, and recycling: 

1. Narrowing material cycles (use less material overall). 
2. Slowing material cycles (keep materials in use for longer). 
3. Closing material cycles (keep materials in the loop). 

Distinguishing between R-imperatives at different stages of material cycles 
ensures that various actors are addressed. Material cycles can be narrowed, slowed, 
and closed by bringing together consumers, producers, legislation, and the waste 
management sector. Figure 2.1 shows a product’s different life cycle stages, from



extraction to waste management, and ten corresponding R-imperatives along these 
stages. 
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Fig. 2.1 Schematic visualization of the ten R-imperatives, refuse, rethink, reduce, reuse, repair, 
refurbish, remanufacture, repurpose, recycle, and recover, and their corresponding impact on 
narrowing, slowing, and closing the material cycles 

Narrowing material cycles means that, overall, less material is used. Refusing to 
use a product is the first option to use less. An example is the “flygskam” initiative to 
reduce the need for air transport [5]. Rethinking a product in a circular economy 
means providing the same service with a wholly changed product design that is 
much less resource intensive. An example is film photography, which has been 
largely replaced with digital photography, making the production of photographic 
films obsolete, resulting in significantly lower demand for film development, reduc-
ing silver losses [8]. Reducing material use can be achieved by making products 
smaller and lighter or making the production process more efficient. For example, 
reducing floor space in private households reduces the construction material require-
ments and the energy demand for heating and cooling the building [35]. 

Slowing material cycles is achieved by implementing measures to prevent a 
product from becoming end-of-life waste. Reusing products means despite the 
will to dispose of a product by one consumer, the product in its current state still 
has value for another consumer and can still be used by someone else [4]. The used 
clothing market is the most prominent example. Repairing products extends their 
usage by investing just a minimal maintenance effort, much smaller than what would 
be needed for a replacement. Repair is common practice for valuable, intensively 
used mechanical products like cars, machines, and infrastructure [40]. Refurbishing 
goes a bit further than repairing as you don’t just want to reestablish functionality, 
but you might also invest in modernization. Apartments and houses are typically 
refurbished [37]. Remanufacturing means that parts of a product are used in a new 
product. The market for classic cars has a lot of experience with remanufacturing, 
and modular desktop PCs allow the reuse of individual components 
[15]. Repurposing extends the material life by changing the purpose of the product.



Batteries of electric vehicles can still be used in stationary applications if their 
capacity is not satisfactory for mobility applications anymore [13]. 
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If the product and its components are unsuitable for these lifetime-extending 
measures, its materials can still be valuable. Recycling means obtaining materials 
that can be used as inputs for new products. Although that is desirable, recycled 
materials do not necessarily have to be of the same quality. Even downcycling 
counts as recycling [20]. Metals are materials where quality is generally maintained, 
and low loss rates result in relatively high recycling rates [14]. Some materials may 
be hard to recycle but provide a heating value. In these cases, thermal recovery is the 
last option in the Waste Hierarchy. An example of recovery is mixed waste plastics 
replacing fuels for energy recovery [18]. 

2.3 Battery Material Flows 

Annual growth rates of the battery industry were about 30% in the past decade and 
are expected to be about 20% in the next two decades [36]. Until 2010, most global 
electrochemical storage capacity was in lead-acid batteries (LAB), with about 
300 GWh of new electrochemical energy storage installed yearly, used chiefly as  
vehicle starter batteries [36]. LABs are positive examples of the circular economy 
being a mature market with established take-back schemes and recycling facilities. 
LABs are the main reason lead achieves relatively high circularity values compared 
to other base metals [21]. 

Since 2010, however, the focus has shifted to lithium-ion batteries (LIBs). 
Initially, LIBs were chiefly used in portable electronic devices; now, LIBs for 
electric vehicles dominate the market [36]. With this rapid market growth, concerns 
about resource availability and the environmental impact of LIB production have 
become increasingly important in recent years [19, 32]. 

For LIBs, the challenge of installing a functional circular economy is more 
prominent than for LABs. LIBs have vastly different sizes, shapes, types, and 
material compositions, affecting waste separability and the metallurgy of the 
recycling process. Battery cells for LIB consist of aluminum and copper foil current 
collectors, cathode and anode active materials, carbon binders, the electrolyte, and a 
porous separator. The cell, housing cover, and connection interface form the battery 
module. On the pack level, you can add a management controller, cooling system, 
frame and crash structure, and a battery pack housing cover [26, 33]. 

Technologically, there have been an extensive debate and a lot of development in 
terms of the cathode active materials, with the most prominent options for battery 
electric vehicles being nickel-cobalt-aluminum, nickel-manganese-cobalt (with var-
ious stoichiometric combinations of transition metals, from NMC111 to NMC811) 
[27], and iron-phosphate active materials. LIBs can also contain various critical 
materials, for which the establishment of material cycles is even more important and 
challenging [3, 26, 46].
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Fig. 2.2 Minimum and maximum estimations for the material demand of Li, Ni, Co, Mn, Cu, and 
graphite for batteries for 2020 and 2040 in scenarios of Xu et al. [45], Marscheider-Weidemann 
et al. (DERA 2021), and Dunn et al. [7] in kilotons (kt). The base year for material demand in 
Marscheider-Weidemann et al. [30] is 2018, not 2020, as no 2020 values were provided in the 
source. Furthermore, only one data point is specified for 2020 

In the future, new battery technologies are expected to make additional raw 
materials and materials necessary, for example, sodium, calcium, or aluminum 
[1]. Some of these developments are explicitly undertaken to reduce the dependence 
on Critical Raw Materials, like cobalt, or other expensive metals, like nickel. It is 
crucial to close material loops to meet future material demands and reduce the 
environmental impact of battery production, especially for expensive, scarce, or 
environmentally harmful materials [32]. 

In the meantime, material demand and end-of-life material flow for lithium, 
cobalt, and nickel are expected to continue to increase [45]. Figure 2.2 shows the 
range of estimations of current and future material demand for lithium, nickel, 
cobalt, manganese, copper, and graphite in recent battery material flow studies. 
This ever-increasing material demand causes an issue in implementing the circular 
economy. The International Energy Agency estimates that by 2040, recycled copper, 
lithium, nickel, and cobalt from spent batteries could reduce the combined primary 
supply requirements for these minerals by around 10% [23]. The main reason is that 
you can only recycle what you have used in the past because of the time lag of the 
product’s lifetime. From a resource savings perspective, product lifetimes should be 
extended to reduce the demand for new batteries, but the market has grown signif-
icantly when a battery becomes waste. Therefore, even with high end-of-life 
recycling rates for battery materials, the recycled content in batteries will remain 
low until some saturation level has been achieved and the in-use stock is not 
multiplying anymore. Such saturation is not expected to happen before the



mid-century simply because of the massive demand for electrification in mobility 
and stationary storage applications. 
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2.4 Battery Design for Circularity 

In the broad definition of the circular economy, more sustainable material cycles for 
batteries are not only a question of recycling. The goal is a holistic implementation of 
circular economy measures to reduce overall resource requirements and material-
related environmental impacts. So how can the material cycles for batteries be 
narrowed, slowed, and closed comprehensively? 

Narrowing material cycles in a rapidly growing market is a challenging task. 
However, significant efforts have already been made to reduce, for example, the 
required housing. Cell-to-pack technologies, for example, for LFP, have eliminated 
the module component and increased the battery’s energy density, effectively 
reducing the amount of steel, aluminum, or plastic packaging that is not an active 
material in the battery. At its core, this is a “reduce” strategy, although here, it is 
chiefly used to increase the capacity of the vehicle battery. Circular economy 
strategies narrowing the material cycles are chiefly used for their Critical Raw 
Materials content, particularly for the partial or complete substitution of cobalt in 
batteries due to its high cost and conflict potential [3]. 

Battery material cycles can be slowed by prolonging battery life by designing 
cells that last for a long time and many charging cycles. Significant improvements 
have been made in terms of the aging stability of batteries, so it is now conceivable 
that an electric vehicle can drive on the same battery for 20 years and one million 
miles [16]. At the same time, electrolytes have been developed to allow faster 
charging without compromising cycle stability [29]. Batteries can also be leased to 
vehicle owners and afterward be used in less demanding applications, a strategy 
which can be identified as reuse, remanufacture, or repurpose strategy, depending on 
the amount of processing required and nature of the alternative use [3]. 

Battery material cycles can be closed by recycling the battery components 
[10]. Generally, one can distinguish many pyrometallurgical and hydrometallurgical 
processes and direct recycling routes [26]. The recoverability of contained Co, Ni, 
Li, Mn, Al, Cu, C, Fe, electrolytes, and plastics depends on the chosen process. Pack, 
module, and cell design also significantly impact battery dismantling and repair, 
remanufacture, and recycling options [43]. 

In general, the pyrometallurgical processes are more versatile regarding the 
battery chemistries and geometries. They have a high recycling capacity, require 
no sorting or pretreatment, and enable high recovery of valuable metals (Co, Ni, Cu). 
They are established and well-understood processes with industrial know-how 
[17]. On the downside, certain materials (graphite, plastics, and electrolyte) are 
burned and thus lost. The obtained products are often low purity and downcycled 
(e.g., Li and Al) or need further hydrometallurgical refinement. The



pyrometallurgical process is expensive because of its high energy consumption and 
the need for off-gas treatment to remove toxins [17, 26]. 
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Hydrometallurgical processes have high recovery rates, high purity of the prod-
ucts, low energy consumption, and low GHG emissions [17]. They have low 
recycling capacities. The batteries must be crushed to meet the purity and 
pretreatment requirements, which leads to safety problems. In addition, efficient 
methods for electrolyte deposition still need to be demonstrated industrially. The 
complex processes, the needed treatment of the final effluent (neutralization), the 
treatment of the contaminated wastewater, and other aspects of the process (e.g., 
solvents) lead to high operating costs [26]. 

Disassembly and pretreatments are always the first steps. In the case of the 
pyrometallurgical processes, the second step is directly smelting the pretreated 
LIBs. In addition, the alloy and the slag can be further refined by leaching, selec-
tively precipitation, and solvent extraction. Alternatively, the disassembled and 
pretreated material can be converted into the so-called black mass through further 
mechanical treatment, which includes crushing, electrolyte separation, and mechan-
ical separation. Afterward, the black mass can be processed through hydrometallur-
gical or direct recycling route. In the hydrometallurgical route, leaching, selective 
precipitation, and solvent extraction are used to recover the contained materials. In 
the direct recycling route, separating, regenerating, and producing new cathode 
active material are the goals [26]. While the direct recycling route provides the 
opportunity to obtain higher quality recyclates, it is not as mature as the pyromet-
allurgical or hydrometallurgical routes. Figure 2.3 shows the main process routes, 
advantages, and disadvantages for pyrometallurgical, hydrometallurgical, and direct 
recycling routes. For a more detailed description of the most important recycling 
processes and the corresponding efficiencies, the reader is referred to Chap. 4.3 of 
this book or to the work of Ekberg and Petranikova [9]. 

Mohr et al. [32] show that recycling could reduce the environmental impacts of 
lithium-ion battery production, both in the case of pyrometallurgical and hydromet-
allurgical processes. They highlight that the savings depend on the cell chemistry, 
particularly the cathode active material, and the environmental impact category, like 
abiotic depletion or global warming potential. Additionally, it is not always the 
process with maximum recycling depth that provides the most considerable envi-
ronmental savings, which will become even more critical if the share of expensive 
materials in the battery decreases [32]. 

2.5 Circular Economy in the EU Battery Regulation 

The European Commission adopted a new Battery Regulation with severe implica-
tions for the circular economy of batteries [31]. Among other things, the regulation 
also addresses various issues concerning the material cycles of batteries. 

The Battery Regulation is meant to narrow material cycles if successful. It enables 
and guides the rise of batteries in electric vehicles and stationary applications, where



they serve as electrochemical energy storage enabling the reliable use of renewable 
energy and thus replacing, at least in part, fossil fuels, which are by design not 
circular. Several articles of the regulation are relevant to the circular economy. The 
previously mentioned slowing and closing of material cycles are taken up, but the 
narrowing of material cycles is not considered. 
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Fig. 2.3 Summary of pyrometallurgical, hydrometallurgical, and direct recycling routes for battery 
materials and their respective main advantages and disadvantages. (Adapted from Latini et al. [26] 
and Harper et al. [17]) 

Articles 9 to 11, 73, and 74 have an impact on slowing the material cycles. 
Articles 9 and 10 describe performance and durability requirements for batteries. 
Article 11 mandates the removability and replaceability of portable batteries in 
appliances, ensuring that the appliance stays in use in case batteries have a shorter 
lifetime than the appliance itself. Article 73 supports the repurposing and 
remanufacturing of batteries. Article 74 mandates producers to provide information 
on the dismantling and removal of batteries to support repair, remanufacture, 
preparation for reuse, treatment, and recycling. 

Articles 8, 59, 69, and 71 close the material cycles. Article 8 mandates that the 
cobalt, lead, lithium, and nickel present in new EV batteries fulfill the requirements 
for minimum shares of material recovered from waste for each of the metals present.



As proposed, these minimum shares will be implemented in 2030 and raised in 2035. 
Article 59 sets targets for producers and article 69 for member states for minimum 
collection targets for waste of portable batteries. The proposed targets are gradually 
raised until 2030 when a 73% minimum collection rate shall be reached. Article 
71, in combination with Annex XII, sets targets for recycling processes regarding 
their minimum recycling efficiencies based on the average weight of batteries, and 
levels of materials recovery, for cobalt, copper, lead, lithium, and nickel, respec-
tively. By 2030, according to the proposal, an 80% recycling efficiency for lead-acid 
batteries and 70% for lithium-ion batteries shall be reached, enabling by 2031 
a recovery of 95% for cobalt, copper, lead, and nickel and 80% for lithium. 

22 C. Helbig and M. Hillenbrand

The regulation is supported by various initiatives, such as the European Battery 
Alliance, and financial aid packages to support research and innovation along the 
entire battery value chain. But those benefits also come with risks, such as higher 
compliance costs, hindering innovation, technology adaptation, and 
competitiveness [31]. 

If implemented as the battery regulation proposal foresees, the contribution of 
recycling to meeting the raw material demand of battery production in Europe could 
be more than 40% for cobalt and more than 15% for lithium, nickel, and copper by 
2040. Those numbers are based on a recycling volume of 150 to 300 kilotons of 
lithium-ion batteries and battery components per year in 2030 and 600 to 2500 
kilotons in 2040 [34]. 

The Battery Regulation also proposes a battery passport with information on 
repair, disassembly, and, importantly, the carbon footprint of the battery from raw 
material extraction to the end-of-life phase, without the use phase. Such a mandatory 
carbon footprint, and in the future also carbon footprint classes and a threshold for 
marketing batteries in the European Union, supports the goal to reduce the overall 
environmental footprint of battery production. Therefore, the overall goal of the 
circular economy, avoiding unintended harmful environmental impact, is just as 
much tackled with the battery regulation proposal as the various mentioned 
R-imperative actions. 

2.6 Outlook 

In a way, batteries are already a contribution to the circular economy because they 
allow using reversible electrochemical processes for energy storage and, thereby, 
replacing single-use fossil fuels. However, the circular economy of batteries will be 
incomplete unless batteries are recycled after their product lifetime. Linear material 
flows for fossil fuels would only be replaced by take-make-waste processes for 
lithium, nickel, cobalt, natural graphite, and other battery materials. The battery 
regulation proposal is a cornerstone to prevent such linear material flows. 

One should never forget that recycling alone cannot meet the material demand for 
building up the in-use stock in a growing market. Securing Critical Raw Materials 
supply is equally important to allow batteries to fulfill their purpose in the required



transitions in the energy sector for global net zero carbon emissions. The R-strategies 
and recycling technologies mentioned above are necessary to reduce the total 
material demand for batteries, but they will not eliminate the demand. They are 
necessary but not a silver bullet. Therefore, the circular economy of batteries needs 
to be accompanied with material research and embedded in a more general sustain-
ability strategy. 
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Part II 
System Perspective for a Clean Energy 

Transition 

Preface 

This chapter provides an overview on the key role of batteries for the clean energy 
transition. First, recent projections for the development of global and European 
demand for battery storage out to 2050 are presented and discussed in Chapter 3, 
with separate insights for the power system and the mobility sector. 

The impact of the projected rise in battery production is analyzed also with 
reference to the battery cost reduction's trend and, on the other hand, to the 
consequent strong increase in demand for critical minerals. Increasing the supply 
of these critical minerals in lockstep with demand is essential in order for battery 
costs to continue to decline. 

Chapter 4 then provides a review of energy storage technologies, going beyond 
batteries. It compares and discusses the most relevant storage technologies, such as 
power-to-x or pumped hydro, and highlights their main features and performance 
characteristics, including their ecological footprint. Chapter 5 picks up on this and 
highlights the specific advantages of batteries, whose specific performance and 
technical characteristics make them a specifically promising technology for a wide 
set of applications. Focus is placed on applications related to both grid-connected 
and mobility services. For the former, this includes bulk energy services, transmis-
sion, and distribution network support and capacity firming coupled to highly 
variable RES plants. With regard to transport applications, electric mobility, and 
perspectives relative to electric vehicles (EVs), interaction with the electric infra-
structure is presented and discussed.
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3.1 Introduction 

Long-term projections of the development of the global energy system foresee a 
dramatic increase in the relevance of battery storage for the energy system. This is 
driven primarily by the proliferation of electric vehicles and a growing demand for 
electricity storage, connected to rising shares of variable renewables in the electricity 
supply mix. 

At the same time, electric vehicles are projected to continue to make strong 
inroads in the transport sector, leading to a dramatic increase in battery production 
geared toward the automotive sector. 

Across scenarios, major outlooks published recently foresee a rapid global 
expansion of variable wind and solar PV-based electricity generation, as well as a 
rising share of electricity in total final energy consumption (see, e.g., [7, 9, 12, 26–
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28, 30]). The integration of these rising volumes of variable electricity requires key 
enabling technologies such as battery storage to grow as well.
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This chapter provides a detailed look at recent projections for the development of 
global and European demand for battery storage out to 2050 and analyzes the 
underlying drivers. It draws primarily on the International Energy Agency (IEA)‘s 
World Energy Outlook (WEO) 2022 [26], to which the three authors contributed. 

The WEO 2022s long-term projections of the development of the global energy 
system foresee a dramatic increase in the relevance of battery storage for the energy 
system. As a result of falling costs and supportive policies, electric vehicles become 
the dominant technology in the light-duty vehicle segment in all scenarios in 2050, 
contributing to a massive increase in the demand for automotive batteries. In the 
electricity sector, battery energy storage systems emerge as one of the key solutions 
to provide flexibility to a power system that sees sharply rising flexibility needs, 
driven by the fast-rising share of variable renewables in the electricity mix. Batteries 
are also increasingly tapped to provide firm capacity as traditional generators, such 
as coal- or gas-fired plants, are retired. 

As a result of the growing demand for batteries, the demand for critical minerals 
used in battery production, such as lithium, cobalt, nickel, graphite, copper, or 
manganese, is expected to increase substantially as well. 

3.2 Methodology 

The projections and findings on the prospects for and drivers of growth of battery 
energy storage technologies presented below are primarily the results of analyses 
performed for the IEA WEO 2022 [26] and related IEA publications. 

The IEA WEO 2022 explores the potential development of global energy demand 
and supply until 2050 using a scenario-based approach. It does so through three 
scenarios. It should be noted that these scenarios do not represent predictions but 
rather analyze in detail possible versions of how the energy system might develop 
given different policy targets and assumptions on their implementation ([26], 
p. 105). 

The first two scenarios, the Stated Policies Scenario (STEPS) and the Announced 
Pledges Scenario (APS), are descriptive. The third scenario, the Net Zero Emissions 
by 2050 Scenario (NZE Scenario), is prescriptive:

• STEPS describes the development of the energy system considering only the 
current policy setting, based on a country- and sector-specific appraisal of policies 
that are in place or have been announced as of late 2022.

• APS assumes that all climate commitments, including nationally determined 
contributions (NDCs) and country-level net zero targets that have been 
announced as of late 2022, are achieved in full and on time (even though 
supporting policies may not yet have been put into place), representing a more 
aggressive emission-reduction pathway than STEPS.



• The NZE Scenario describes a cost-effective pathway for the global energy 
system to reach net zero emissions by 2050, maintaining at least a 50% proba-
bility of keeping the global temperature rise below 1.5 degrees Celsius until 2050 
while achieving universal access to modern energy services (primarily electricity 
and clean cooking) by 2030 ([15], p. 48, [26], p. 463). 
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The scenario projections are derived using a bottom-up, partial-optimization 
model of the global energy system, called the Global Energy and Climate Model 
(GEC-M), modeling energy demand, transformation, and supply in high detail for 
26 regions (11 countries and 15 country groupings). A comprehensive description of 
the model, the key assumptions, and data sources used can be found in the docu-
mentation [21]. Of particular relevance to the representation of battery energy 
storage in the model are the power and transport sector modules of the GEC-M. 
The technology-rich power sector module combines an investment model with a 
high-resolution dispatch model to simulate the evolution of the regional power 
systems, ensuring that there is sufficient generating capacity to cover peak demand 
plus a reserve margin, as well as sufficient production to meet the annual demand of 
all end uses, including grid losses ([21], p. 45). The transport sector module consists 
of dedicated, regional bottom-up models for aviation, maritime, rail, and road 
transport. The road transport model projects the evolution of the regional vehicle 
fleets and their fuel consumption based on, among other things, activity drivers such 
as historical trends, GDP and population, vehicle scrappage functions, and cost-
competitiveness assessments of different drivetrain technologies ([21], p. 32). 

3.3 Development of Demand for Battery Energy Storage 

The electricity1 and transport sectors are the key users of battery energy storage 
systems. In both sectors, demand for battery energy storage systems surges in all 
three scenarios of the IEA WEO 2022. In the electricity sector, batteries play an 
increasingly important role as behind-the-meter and utility-scale energy storage 
systems that are easy to scale, site, and contribute to system reliability and flexibility. 
In the transport sector, the increasing electrification of road transport through plug-in 
hybrids and, most importantly, battery electric vehicles leads to a massive rise in 
battery demand. 

1 In the context of this chapter, we define “electricity sector” as encompassing the production and all 
stationary end uses of electricity.
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Fig. 3.1 Storage technologies and potential power system applications based on discharge 
times. Note: T and D deferral = transmission and distribution investment deferral. (Source: IEA 
[22], p. 64) 

3.3.1 Electricity Sector 

Energy storage, in particular battery energy storage, is projected to play an increas-
ingly important role in the electricity sector. Storage technologies provide vital 
system services, ranging from short- to long-term balancing, the provision of 
operating reserves and ancillary services like voltage control or black start capabil-
ity, to the management of congestion in the electricity grid. Currently, pumped 
storage hydro is the most widely deployed storage technology, accounting for 
90% of total storage capacity ([22], p. 64), and there is significant additional 
potential in certain regions. Other emerging options include compressed air and 
gravity storage for the short-term and hydrogen as an option for long-term storage 
(IEA, [24]). An overview of several established and emerging storage technologies, 
as well as their typical capacities and applications, is provided in Fig. 3.1. It shows 
that, depending on the volume of the battery, battery energy storage systems can 
dispatch on timescales ranging from seconds to days, over a broad range of capac-
ities. In contrast to other technologies with more specific use cases, batteries are able 
to provide a broad range of services to the electricity system. Accordingly, battery 
energy storage systems are the fastest growing storage technology today, and their 
deployment is projected to increase rapidly in all three scenarios. 

Battery storage systems can be distinguished between two classes: utility-scale 
battery energy storage systems and behind-the-meter battery energy storage systems. 
Utility-scale battery energy storage systems are directly connected to the distribution 
or transmission systems. They typically offer much higher capacities and greater 
storage volumes than behind-the-meter systems. They are relatively compact and 
highly modular, which allows for scalable battery storage systems to be deployed 
rapidly in almost any location, an advantage compared to traditional large-scale 
electricity storage solutions such as pumped hydro. In addition to energy storage, 
which allows operators to engage in energy arbitrage, helping balance the power



system and more cost-effectively match demand and supply, they provide important 
flexibility services to the system. They can be tapped to provide operating reserves 
and important ancillary services such as frequency control or helping with the 
restoration of grid operations after a blackout. Due to their scalability and modular-
ity, they are also promising solutions for the provision of localized flexibility in 
distribution or transmission systems, helping to address bottlenecks and reducing the 
need for costly investments into new transmission and distribution infrastructure 
[5, 24]. Furthermore, there are more and more cases of batteries being colocated with 
variable renewables in order to “firm up” the latter’s electricity production, for 
example, in Germany or India, where pairing renewables with storage is rewarded 
through dedicated support mechanisms. Also, where eligible, batteries are increas-
ingly tapped to provide firm capacity in capacity markets ([25], p. 55). 
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Behind-the-meter battery energy storage systems are connected to the distribution 
grid behind the utility meter of an individual electricity consumer, typically a 
household or a small business. Behind-the-meter battery energy storage systems 
are usually paired with a distributed energy resource, in most cases rooftop solar 
PV. Behind-the-meter batteries enable consumers to lower electricity bills by max-
imizing the consumption of self-generated electricity and enabling them to engage in 
energy arbitrage, i.e., shifting consumption from high to low price periods. The 
overall magnitude of savings is highly dependent on the level and structure of 
electricity tariffs and the remuneration consumers receive for feeding electricity 
into the grid. Variable or time-of-use electricity and feed-in tariffs offer greater 
potentials for savings using behind-the-meter battery energy storage systems than 
fixed rates. Another common motivation for the installation of behind-the-meter 
battery energy storage systems is to improve resilience against interruptions in the 
power supply from the grid, where behind-the-meter battery storage systems coupled 
with a distributed energy resource increasingly compete with traditional solutions 
such as diesel generators [6]. 

Across all scenarios in the WEO 2022, utility-scale systems account for the 
majority of battery storage deployment, though the development of both utility-
scale and behind-the-meter storage are heavily dependent on the prevailing regula-
tions. In many jurisdictions, net metering2 regulations that underpin the growth of 
rooftop solar ([14], p. 36) are holding back investments into behind-the-meter 
electricity storage. Stronger growth in behind-the-meter systems can be expected 
should regulation change in ways that encourage self-consumption, such as time-of-
use tariffs, and introduce a time-dependent, market-based remuneration for electric-
ity fed into the grid by small-scale generators. However, that growth would not 
necessarily come on top of the projected growth of utility-scale systems, since 
(aggregated) behind-the-meter storage can, with the right regulation and the appro-
priate control technology, provide some of the flexibility to the system that would 
otherwise be provided by utility-scale batteries. 

2 Net metering is a billing mechanism that allows consumers to credit self-generated against 
consumed electricity irrespective of when that electricity was generated.
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3.3.1.1 Development of Stationary Battery Energy Storage 

In recent years, the pace of installations of battery storage systems has picked up 
significantly. In 2021 alone, more than 9 GW were installed globally, a nearly 90% 
increase on 2020. At the end of the year 2022, total global installed stationary battery 
storage capacity stood at more than 27 GW ([26], p. 311). The speed of the increase 
has been substantial: just 10 years ago, the global installed battery energy storage 
was less than 1 GW in total. 

Moving forward, battery storage capacity is projected to grow massively in all 
three scenarios (see Fig. 3.2). In the STEPS, installed global, grid-connected battery 
storage capacity increases tenfold until 2030, rising from 27 GW in 2021 to 270 GW. 
Deployments accelerate further after 2030, with the global installed capacity 
reaching nearly 1300 GW in 2050. Accounting for all announced pledges and 
policies leads battery storage capacity to grow to 425 GW in 2030 and close to 
2300 GW in 2050, a near doubling compared to the STEPS. The pace of deploy-
ments is even faster in the NZE Scenario, where installed capacity reaches about 
780 GW in 2030 and nearly 3900 GW by 2050, as the electricity sector is the first to 
be fully decarbonized, by 2035 in advanced economies and by 2040 in emerging 
market and developing economies. 

In the European Union, total installed battery storage capacity rises from nearly 
5 GW today to 14 GW in 2030 and almost 120 GW in 2050 in the STEPS, which 
achieves the agreed objectives, including reaching 32% of renewable energy by 
2030, and fulfills all the National Energy and Climate Plans and major policies as of 
late 2022. In the APS, which reflects discussions on higher ambitions for renewable 
energy, including the goal to reach a 40% share in gross energy consumption by 
2030 within the Fit for 55 package [11] and the G7 commitment to achieve 
predominantly decarbonized electricity by 2035 [8], battery storage capacity 
increases to 50 GW by 2030 and more than 200 GW in 2050. In the NZE Scenario, 
which requires similar emissions reductions by 2030 and 2035, higher energy 
efficiency and a more responsive demand side require slightly less battery capacity 
deployments, with installed capacity reaching 180 GW in 2050 [26]. 

3.3.2 Transport Sector 

Despite the massive growth projected in all scenarios of the WEO 2022, stationary 
battery energy storage capacity in the electricity sector is—depending on the 
scenario—only equivalent to 7–10% of the combined storage capacity of electric 
vehicle batteries. This makes the transport sector the by far biggest user of batteries.
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3.3.2.1 Deployment of Battery Electric Vehicles 

In the sector, the vast majority of batteries are used in electric and plug-in hybrid 
electric vehicles. 

Electric vehicles are projected to make up increasing shares of newly registered 
vehicles across all types of road vehicles (passenger/commercial light-duty vehicles, 
medium and heavy-duty vehicles, buses and two-/three-wheelers) in all three 
scenarios. 

In 2021, demand for automotive lithium-ion batteries was 340 GWh per year, 
doubling from 2020 ([26], p. 167), with global electric vehicle sales reaching a 
record-breaking 6.6 million ([20], p. 4), bringing the global electric vehicle fleet 
(excluding two-/three-wheelers) to 18 million ([20], p. 99). Nearly 9% of all new 
passenger vehicles sold were fully electric. China led the world in sales, followed by 
Europe and the USA [23]. 

In the STEPS, which considers only policies already in force as of late 2022, the 
global electric vehicle fleet (excluding two-/three-wheelers) grows to 200 million 
vehicles by 2030, representing over 20% of all road vehicle sales ([20], p. 99). In the 
APS, which assumes that all existing targets are met in full and on time, electric 
vehicle adoption is more rapid, with their share in total sales growing to over 35% in 
2030 and total stock reaching 270 million vehicles in the same year ([20], p. 99). In 
the NZE Scenario, electric vehicle uptake proceeds even faster, and globally, 60% of 
all new vehicles sold in 2030 are fully electric, with the number of electric vehicles 
growing to 350 million ([20], p. 99). 

The bulk of the growth comes from the light-duty vehicle segment, most notably 
passenger electric vehicles. In 2021, electric light-duty vehicles accounted for 95% 
of the global electric vehicle fleet (excluding two-/three-wheelers), and they con-
tinue to maintain this share through 2030 in the STEPS. Electric light-duty vehicle 
sales grow more rapidly in the APS, reaching a share of 35% of total light-duty 
vehicle sales by 2030. In the NZE Scenario, more than 60% of all light-duty vehicles 
sold in the same year are electric ([20], pp. 99–100). The rapid expansion of electric 
vehicle sales is projected to continue after 2030. In the APS, electric vehicles reach a 
two-thirds share in total new light-duty vehicle sales by 2040. Slow turnover in the 
vehicle stock means, however, that even in this scenario, the share of electric 
vehicles in the global light-duty vehicle fleet will exceed two-thirds only by 2050 
([26], p. 275). 

Electrification is projected to proceed more slowly in the medium and heavy-duty 
vehicle segment. While electric trucks are well suited for roles like urban delivery, 
with relatively short driving distances and the possibility of overnight charging, 
larger batteries and a high-power charging infrastructure are required to enable long-
distance electric trucking. In the STEPS, electric trucks reach a sales share of under 
10% in 2030, while in the APS and NZE Scenario, they account for 10% and 25% of 
sales, respectively ([20], pp. 100–101). 

Electric buses are the second most common type of electric vehicle in use today 
(excluding two-/three-wheelers). Their share in the bus stock is projected to



increase to 11% by 2030 in the STEPS, 15% in the APS, and 25% in the NZE 
Scenario ([20], p. 100). 
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Although excluded from the total number of electric vehicles presented above, 
electric two-/three-wheelers are the most common type of electric vehicle today and 
are projected to remain so through 2030. In many regions, they are already cost-
competitive with internal combustion engine two-/three-wheelers on a total cost of 
ownership basis and projected to see strong growth in Asia in particular. Electric 
two-/three-wheelers account for over 25% of the stock in 2030 in the STEPS, up 
from around 6% in 2021. In the APS, 35% of the total stock is electric, while in the 
NZE Scenario, that share is even higher ([20], p. 101). 

The electrification of road transport is proceeding at different speeds across the 
world. In terms of the distribution of sales, advanced economies and China act as 
trailblazers, with battery electric vehicles accounting for more than 50% of the cars 
sold by 2030 in China, the European Union and the USA ([26], p. 274). In Europe, 
supportive policies ensure that it remains one of the key electric vehicle markets: in 
the STEPS, light-duty electric vehicles account for 35% of all light-duty vehicle 
sales in 2030. In the APS, assuming additional policy pledges are implemented, this 
share rises to over 50%. The 2030 sales shares are 50% for buses and 7% for trucks 
in 2030 in the STEPS and 55% for buses and 20% for trucks in the APS ([20], 
p. 104). 

The impact on the demand for automotive batteries is substantial. In the NZE 
Scenario, which sees the strongest growth of electric vehicles to 2030, demand 
grows 16-fold, from 340 GWh per year in 2021 to more than 5500 GWh per year 
in 2030 ([26], p. 167). 

3.4 Drivers of Demand for Battery Energy Storage 

As shown above, demand for batteries is projected to increase substantially until 
2050 in all scenarios both in the transport and in the electricity sector.3 

In the transport sector, this is driven by the rising adoption of electric vehicles, 
which, thanks to falling costs and supportive government policies, are becoming an 
increasingly attractive choice compared to conventional internal combustion engine 
vehicles. and supportive government policies. 

In the electricity sector, the adoption of batteries is driven mainly by the rising 
demand for flexibility, adequacy, and energy balancing that accompanies the rise in 
the share of variable renewables in decarbonizing power systems. 

Rising demand for batteries in both sectors can create a virtuous cycle of falling 
costs through technological improvements, learning, and improved economies of

3 It should be noted that the faster scale-up projected for the APS and NZE Scenario (compared to 
the STEPS) will require policy and regulatory frameworks to evolve in a manner that reflects the 
contribution that battery energy storage systems are able to make to the system.



scale, which in turn accelerates deployment, although raw materials costs are likely 
to play an increasingly significant role ([25], p. 55).
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3.4.1 Electricity Sector 

In the electricity sector, clean energy transitions change the nature of power sys-
tems. Maintaining capacity adequacy—the ability to match demand and supply at all 
times with a high degree of reliability—is central to energy security, calling for 
contributions without adding to overall emissions. Rising flexibility needs, linked 
primarily to the fast-rising share of variable renewables in the electricity mix, bolster 
the value of dispatchable technologies, particularly low emissions options. Growing 
demand for solutions that provide power system flexibility and capacity adequacy is 
the main driver underpinning the rapid increase in battery energy storage capacity 
projected in the WEO 2022, as falling costs for battery storage improve their 
economics compared with competing sources of flexibility and adequacy. 

3.4.1.1 Rising Electricity System Flexibility Needs 

Electricity system flexibility needs are projected to increase significantly compared 
to today in all scenarios modeled for the WEO 2022. Rising flexibility requirements 
follow from the increase in variable wind and solar PV-based electricity generation 
in markets around the world. Furthermore, the electrification of additional end uses, 
such as electric heating, electric vehicles, or certain industrial processes, raises peak 
demand, as well as the hourly, daily, and seasonal variability of electricity demand 
([26], p. 307). 

At the same time, the retirement of a large part of the existing fleet of conven-
tional coal- and gas-fired power plants will increase the demand for alternative 
sources of flexibility and firm capacity ([23], pp. 308). Battery energy storage 
systems play an increasingly important role in the provision of system flexibility 
(the ability of the system to respond to fluctuations in supply and demand) and 
capacity adequacy (maintaining available electricity supply to meet demand in all 
hours of the year). Additionally, battery energy storage is projected to become 
increasingly relevant as a component in renewables-based off-grid electricity sup-
plies, supplanting fossil fuel-based generators. 

Battery energy storage systems are highly responsive and able to charge or 
discharge quickly. The energy-to-power ratios of stationary battery energy storage 
systems, typically ranging from below 1 to 8 hours of storage at full capacity ([26], 
p. 312), make them well suited to providing flexibility over timescales measured 
from minutes and hours to a few days [24]. The change in net load from one hour to 
the next is thus a helpful indicator for flexibility needs that can be usefully served by 
batteries.
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Fig. 3.3 Share of batteries in total dispatchable capacity and share of variable renewables in total 
electricity generation for the European Union, China, India, and the USA, 2021–2050. (Source: IEA 
[26], p. 311) 

The rising contribution by variable wind and PV increases the variability of the 
net load.4 In the STEPS, the share in the global electricity mix of wind and solar PV 
together doubles from 10% in 2021 to 20% in 2030 and rises above 40% until 2050. 
In the APS, it increases to 30% by 2030 and reaches nearly 60% in 2050. In the NZE 
Scenario, it increases to nearly 70% by 2050. As a result, global flexibility needs5 

triple until 2050 in the STEPS, rise more than 3.5-fold in the APS, and quadruple in 
the NZE Scenario. However, there is significant regional variation: systems which 
today have relatively small shares of wind and solar PV see a much stronger relative 
increase in flexibility demand. In India, for example, flexibility requirements rise 
sixfold until 2050 in the APS, whereas in the European Union—where the combined 
share of wind and solar PV in the electricity mix was already 18% in 2021—they 
double over the same time period ([26], pp. 214, 299). 

The relationship between the rising share of variable renewables in the electricity 
mix (and thus increasing flexibility demand in the electricity system) and the 
increase of stationary battery energy storage capacity (as a share of total dispatchable 
capacity) is illustrated in Fig. 3.3. It shows that across the four regions displayed, 
battery capacity rises in tandem with the share of variable renewables in the 
electricity mix. There are, however, differences between regions and scenarios. In 
the APS, battery storage capacity rises faster relative to the share of renewables in the 
system than in the STEPS, since renewables are deployed faster and alternative 
sources of flexibility, such as coal-fired power plants, retired earlier. Regional

4 The net load is the load that remains after deducting the production of wind and solar PV from 
electricity demand. 
5 In the WEO 2022, flexibility needs are measured by the hour-to-hour ramping requirements after 
removing hourly wind and solar PV production from hourly electricity demand, divided by the 
average hourly demand for the year ([26], p. 308).



differences are also the result of the relative share of solar PV and wind in the 
respective electricity system, as solar in particular is increasingly paired with 
batteries. Battery deployment thus tends to be larger in places with high proportions 
of solar PV compared to wind power, like the USA or India, than in regions where 
wind power predominates, like China or the European Union ([26], p. 312).
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3.4.1.2 Contribution to System Adequacy 

In addition to providing flexibility, battery energy storage systems also play an 
increasingly important role in meeting the adequacy needs of the electricity system. 
In the APS, for example, battery storage is the primary replacement, in terms of 
system adequacy, for coal, which is mostly phased out globally until 2050. Battery 
energy storage accounts for nearly 45% of the replacement capacity, followed by 
dispatchable renewables, most notably hydropower (15%); solar PV and wind 
(slightly below 15%); nuclear, fossil fuels with carbon capture utilization and storage 
(CCUS), hydrogen, and ammonia (7–8% each); and new natural gas-fired capacity 
(4%) ([19], p. 82). 

However, the speed of the shift to batteries as a system adequacy resource varies. 
Advanced economies, which see the rapid phasing down of their remaining coal 
fleets in the 2030s, see a surge in investments into battery energy storage systems for 
system adequacy at around the same time, with emerging market and developing 
economies following suit in the 2040s, coinciding with a major drop in coal capacity 
there ([19], p. 82). 

3.4.1.3 Falling Costs 

Innovations in battery chemistry, learning effects, and economies of scale are 
another key driver of rising deployment, since they continue to drive down the 
cost of battery packs and components that comprise the balance of system of utility-
scale battery energy storage systems, making them increasingly cost-competitive 
with alternative flexibility options. Spillover effects from the electric vehicle indus-
try play an important role in decreasing the cost of battery packs available for 
stationary applications ([26], p. 311). “Second-life” electric vehicle batteries are 
projected to play an increasingly important role, providing an option to cheaply 
expand stationary battery energy storage [24]. 

Due to increasing economies of scale and continuous innovation along the supply 
chain, costs for lithium-ion batteries have already declined by nearly 90% between 
2010 and 2021 ([26], p. 167). The average installed cost of battery energy storage 
systems designed to provide maximum power output over a 4-hour period is 
projected to decline further, from a global average of around USD 285/kWh in 
2021 to USD 185/kWh in the STEPS and APS and USD 180/kWh in the NZE 
Scenario by 2030. Until 2050, costs are projected to drop to around USD 135/kWh 
in all scenarios ([26], p. 473), with costs in the STEPS slightly above this value and



costs in the APS and NZE Scenario slightly below. This makes renewables, in 
particular solar PV, combined with utility-scale battery energy storage one of the 
most cost-competitive solutions to provide dispatchable capacity in many markets in 
2050, with the levelized cost of electricity falling below that of new combined-cycle 
gas turbines ([26], p. 406). 

3 Projected Global Demand for Energy Storage 41

It should be noted, however, that as innovation and learning make batteries 
cheaper and cheaper to produce, the relative contribution of mineral resource prices 
to the cost of battery packs increases. In 2022, sharp increases in the prices of key 
minerals like lithium, cobalt, nickel, graphite, copper, or manganese contributed to a 
7% increase in the average price of lithium-ion battery packs, despite an ongoing 
shift to lower cost chemistries that require lower volumes of certain critical minerals 
[4]. The projected future cost declines presented above are thus contingent on prices 
of important minerals returning closer to their historical averages. 

3.4.1.4 Policy Frameworks and Regulation 

However, while batteries are certain to continue to grow, to get on track for the high 
levels of deployment seen in the APS and the NZE Scenario, the two more ambitious 
scenarios of the World Energy Outlook 2022, policies and regulatory frameworks 
need to evolve. 

In the electricity sector, governments should consider energy storage, alongside 
other flexibility options such as demand response, power plant retrofits, or smart 
grids, as part of their long-term strategic plans, aligned with wind and solar PV 
capacity as well as grid capacity expansion plans. Business cases for grid-scale 
storage can be complex and may not be viable under legacy market and regulatory 
conditions. In liberalized electricity markets, measures to increase incentives for the 
deployment of flexibility that is able to rapidly respond to fluctuations in supply and 
demand could help improve the business case for grid-scale storage. These include 
decreasing the settlement period and bringing market gate closure closer to real time, 
as well as updating market rules and specifications to make it easier for storage to 
provide ancillary services. The business case for storage improves greatly with value 
stacking, i.e., allowing it to maximize revenue by bidding into different markets. 
Regulatory frameworks should continue to be updated to level the playing field for 
different flexibility options, which would help to build a stronger economic case for 
energy storage in many markets. Transmission and distribution investment deferral 
(using storage to improve the utilization of, and manage bottlenecks in, the power 
grid), for example, is another potential high-value application for storage, since it 
can reduce the need for costly grid upgrades. To capture the greatest benefit, storage 
should be considered, along with other non-wire alternatives, in the transmission and 
distribution planning process. A key issue is ownership: in many markets, storage is 
considered a generation asset, and system operators (transmission as well as distri-
bution) are not allowed to own storage assets. One solution is to allow them to 
procure storage services from third parties. However, regulatory frameworks need to



be updated carefully to minimize the risk of storage assets receiving regulated 
payments and undercutting the competitive power market [24]. 
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Behind-the-meter battery energy storage is facing challenges on its own. In many 
jurisdictions, legacy electricity tariff structures do not reward the deployment of 
behind-the-meter battery storage, which continues to fall behind grid-scale battery 
energy storage in the projections of the World Energy Outlook 2022. Regulatory 
changes, such as changes to tariff structures that reward shifting consumption with 
the help of batteries, could greatly enhance the prospects for behind-the-meter 
battery energy storage. 

3.4.2 Transport Sector 

In the transport sector, a combination of falling electric vehicle costs, government 
subsidies and support for the development of a charging infrastructure, as well as 
standards favoring electric and other zero emission vehicles is projected to lead to a 
massive increase in the global electric vehicle fleet. 

3.4.2.1 Improving Economics of Electric Vehicles 

Falling costs, most importantly for the battery packs, driven by ongoing innovation 
and improving economies of scale, ensure that electric vehicles become the cost-
effective choice for most types of road transport after 2030 in all scenarios, espe-
cially in the light-duty vehicle segment. In many emerging market and developing 
economies, electric two-/three-wheelers are, depending on use, already cheaper 
than internal combustion engine alternatives on a total cost of ownership basis, and 
this is projected to become the case for most models by 2025 ([17], p. 76; [18], 
p. 122). The rising attractiveness of electric vehicles to consumers is reflected in the 
model range. In 2021, around 450 different models of electric vehicles were avail-
able on the market, 5 times more than in 2015 ([20], p. 4). 

3.4.2.2 Subsidies and Infrastructure Build-Out 

Countries are increasingly looking to boost the uptake of electric vehicles to address 
concerns around CO2 emissions and local air pollution. Building on the improving 
competitiveness of electric vehicles, governments across the world are seeking to 
accelerate the adoption of electric vehicles through subsidies. Direct per vehicle 
subsidies like cash bonuses or tax rebates lower the cost of electric vehicles, making 
them more attractive compared to internal combustion engine vehicles. 

Other ways to subsidize electric vehicles include exemptions from tolls and 
charges, as well as the provision of free or subsidized public charging. Increasing 
investments in charging infrastructure is necessary to make electric vehicle use more



practical and alleviate the problem of range anxiety among current and future electric 
vehicle users, as well as to make electric long-distance trucking more practical ([23], 
pp. 275). Furthermore, initial public investments in charging infrastructure are 
essential to overcome the “chicken-and-egg problem” of providing enough chargers 
to make electric vehicles more attractive and practical to use while at the same time 
sustaining an infrastructure that is unlikely to be profitable initially due to the low 
number of users. 
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Total expenditures by governments in support of electric vehicles almost doubled 
in 2021. Some countries, including in the European Union, India, and Japan, have 
introduced or expanded subsidies, while some markets, such as China, Korea, and 
the UK, have used the opportunity provided by falling electric vehicle costs to 
reduce per vehicle subsidies, recognizing the narrowing cost gap between electric 
and conventional internal combustion engine-powered vehicles ([20], p. 59). 

3.4.2.3 Standards and Targets 

Standards and targets are projected to play a major role accelerating the adoption of 
electric vehicles. As of mid-2022, 36 countries and several US states have commit-
ted to ending sales of internal combustion engine-powered cars and, in some cases, 
light trucks, by a certain year ([26], p. 273). With the “Fit for 55” package, the 
European Union has pledged to ensure that all new cars and vans registered in the 
block will have to be zero emission by 2035. In an intermediate step, new vehicles 
will have to comply with CO2 standards that will require emissions drop by 55% 
until 2030 for cars and 50% for vans (from a limit of 95 g/km for cars and 147 g/km 
for vans in 2021) [10]. Globally, 25% of the present light-duty vehicle market is 
covered by pledges or targets to bring the share of zero emission vehicles to 100% by 
2035 ([20], p. 57) (Table 3.1). 

Table 3.1 Selected targets to end sales of new internal combustion engine-powered vehicles, by 
country or state 

Year Country/state Type of vehicle 

2025 Norway LDVs 

2030 Austria, Slovenia, Washington (USA) LDVs 

Denmark, Iceland, Ireland, Netherlands, Singapore Passenger cars 

2035 European Union, Cape Verde, Canada, Chile, UK LDVs 

California, Massachusetts, and New York (USA) Passenger cars 

2050 Costa Rica, New Zealand, Connecticut, Maryland Passenger cars 

New Jersey, Oregon, Rhode Island, Vermont (USA) 

Source: IEA ([26], p. 273) 
Notes: LDVs, light-duty vehicles (passenger cars and light trucks). This table covers countries and 
states with legislation, a target, or stated ambition in place to phase out the sales of internal 
combustion engine light-duty vehicles
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Major automakers are responding by turning increasingly to electric vehicles— 
not only to respond to regulation but also to maintain or capture market share and 
retain or gain a competitive edge [20]. A general overview of the electrification plans 
of different automakers is provided in the IEA Global Electric Vehicle Outlook 2022 
([20], p. 32). 

While electric vehicle sales are projected to continue to grow strongly in all 
scenarios, a slow turnover in the vehicle stock means that the process of electrifying 
significant portions of the global vehicle fleet will take time and not be completed 
until after 2050 in the STEPS and APS. The NZE Scenario therefore assumes an end 
of new internal combustion engine vehicle sales globally by no later than 2035. This 
will require significant efforts to step up electric vehicle and battery production ([26], 
p. 276). 

3.5 Resource Demand for Batteries 

Clean energy technologies, including batteries, require far larger volumes of critical 
minerals than fossil fuel-based technologies. Copper is a key component of most 
technologies that produce or consume electricity; silver and silicon are needed for 
solar PV; rare earth elements are an important component of most wind turbine 
motors and electric motors, while lithium, nickel, cobalt, manganese, and graphite 
are crucial minerals for the production of lithium-ion batteries ([16], p. 5), the 
dominant battery chemistry for electric vehicles and utility-scale energy storage 
applications, both today and under the projections of the World Energy Outlook 
2022 ([26], p. 217). 

The energy sector is becoming a substantial consumer of critical minerals as the 
accelerating transition to a clean energy system is expected to significantly raise 
demand. For the majority of minerals, the energy industry only made up a minor 
portion of total demand until the middle of the 2010s. 

The energy sector’s share is projected to increase significantly over the next two 
decades: electric vehicles and stationary battery energy storage systems have already 
outclassed consumer electronics as the largest consumer of lithium and are projected 
to overtake stainless steel production as the largest consumer of nickel by 2040 ([16], 
p. 5). 

Lithium-ion batteries have emerged as the dominant battery technology in both 
electric vehicles and stationary battery energy storage applications. They are far 
more energy dense than competing solutions such as lead acid or nickel cadmium 
batteries. The production of lithium-ion batteries is mineral-intensive. A battery pack 
is made up of modules which are composed of individual cells. Cells account for 
around 70–85% of the weight of the total weight of a battery pack. They contain 
several minerals, mainly lithium, nickel, cobalt, and manganese (in the cathode), 
graphite (in the anode), copper (in the current collector), as well aluminum, steel, and 
microelectronics (for other components of the modules and pack) ([16], p. 90).
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3.5.1 Dominant Lithium-Ion Battery Chemistries 

Lithium-ion batteries are often categorized and commonly referred to by the chem-
istry of their cathodes. The choice of chemistry determines a battery’s energy density 
and longevity, which varies significantly between chemistries, and is a key deter-
mining factor for the type and amount of minerals required. The most commonly 
used cathode chemistries for lithium-ion batteries are lithium cobalt oxide (LCO), 
lithium manganese oxide (LMO), lithium iron phosphate (LFP), lithium nickel 
cobalt aluminum oxide (NCA), and lithium nickel manganese cobalt oxide (NMC) 
([16, 32], p. 90; [29]). 

Of the types mentioned above, LCO batteries have the greatest energy density and 
a relatively high specific energy (150–190 Wh/kg). The primary choice for consumer 
electronics is a mature technology, with the disadvantage, however, of a comparably 
short life cycle (500–1000 full cycles). This, coupled with an inherent thermal 
instability, means they are generally not employed in electric vehicles or as station-
ary electricity storage solutions ([16], p. 90). 

The LMO battery has a high specific power, a longer life cycle (1000–-
1500 cycles), and much better thermal stability than LCO. Being cobalt-free is 
often considered as a key advantage of this chemistry. However, it has a notably 
lower energy density, in the range of 100–140 Wh/kg. Presently, it finds use in the 
production of electric bikes and some commercial vehicles ([16], p. 90). 

LFP batteries offer high thermal stability and a longer life cycle (more than 2000 
full cycles) ([16], pp. 90). Its lower energy density and specific energy (90–140 Wh/ 
kg) mean that the technology has been thus far favored for large-scale stationary 
energy storage applications and heavy-duty vehicles, where the size and weight of a 
battery are secondary considerations over safety and durability, rather than passenger 
electric vehicles or behind-the-meter home storage systems [24]. Nevertheless, 
owing to several social, geopolitical, and resource constraint concerns, LFP batte-
ries, which do not require nickel, manganese, or cobalt, are today witnessing a 
massive resurgence in R&D spending to improve their energy density and make 
them suitable for passenger EVs. These efforts were spearheaded by automakers in 
China, where in the past year, both domestic and international OEMs like Tesla 
Motors and Volkswagen have focused on producing LFP-based entry-level EV 
models. 

The NCA battery has the highest specific energy range (200–250 Wh/kg) in the 
current class of technologies as well as high specific power, combined with a lifetime 
of 1000 to 1500 full cycles. NCA is the technology preferred by manufacturers like 
Tesla and has immense potential for use in power systems in backup and load 
shifting applications. However, they are more expensive than other chemistries 
([16], p. 91). 

NMC batteries have longer life cycle (1000–2000 cycles) compared to NCA, but 
a lower energy density (140–200 Wh/kg). They have dominated the BEV and PHEV 
markets since its commercialization in the early 2000s. While NCA batteries have



higher specific energy to their name, NMC batteries possess longer lifetimes, which 
makes them the favored choice for PHEVs. Manufacturers producing both BEVs 
and PHEVs, such as General Motors, are known to use NMC variants of lithium-ion 
batteries ([16], p. 91). 
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Advancement in lithium-ion battery technology involves more than just the 
challenge of improving energy density, durability, safety, and cost. It also includes 
the effort to do so while minimizing the environmental, social, and political costs of 
acquiring their constituent materials. Owing to price spikes and concerns over ethical 
mining practices in the 2010s, EV producers have been working to reduce the 
amount of cobalt in batteries over the past several years—this implies, in many 
cases, an increase in the quantity of nickel. NCA batteries transitioned to NCA+, a 
nickel-rich variant of NCA, and NMC 111 batteries have moved increasingly toward 
NMC 532, NMC 622, and NMC 811 and could move to even more nickel-rich 
chemistries. This trend of moving away from cobalt could therefore have major 
implications for the requirement for nickel, which also has a highly concentrated 
supply chain today ([16], p. 91). 

Anodes must complement cathode chemistries. Anode materials are selected for 
their charge collection capability. Graphite is currently the dominant choice for the 
anode in most lithium-ion batteries, although certain manufacturers also use lithium 
titanate instead of graphite. Efforts to replace some or most atoms of carbon in the 
graphite anode with silicon atoms are underway (e.g., Tesla, Porsche) and are 
expected to drastically improve the energy density of the cells. However, silicon 
anodes swell during charging, causing its surface to crack and performance to drop. 
Another alternative to the graphite anode is pure lithium metal, which also has far 
greater charge collection capability than graphite. But this anode cannot be used with 
liquid electrolyte batteries due to undesirable chemical interactions between the 
electrolyte and the metal anode, which drastically reduces the lifetime of the cell. 
The use of a lithium metal anode may increase significantly with the advent of 
all-solid state batteries (ASSBs) ([16], p. 92). 

The future technology mix will have a significant impact on the amount of 
specific mineral resources required for the production of batteries. As shown in 
Fig. 3.4, different battery chemistries require different minerals in varying quantities. 
Different assumptions about the evolution of the technology mix can thus have a 
substantial effect on the amounts of certain minerals consumed for battery 
production. 

Nickel manganese cobalt oxide (NMC) batteries, for instance, usually require 
roughly eight times more cobalt but only half as much nickel than nickel cobalt 
aluminum oxide (NCA) batteries. While nickel, cobalt, and manganese are needed 
for lithium iron phosphate (LFP) batteries, approximately 50% more copper is 
required compared to NMC batteries ([16], p. 88). 

Further uncertainty is introduced by the potential for disruptive leaps in battery 
technology. As we reach the physical limits of density and life cycle improvements 
with current technology and materials, notable cost reductions can only be achieved 
by the disruption of the current technology—for example, in the form of ASSBs with



lithium anodes or through the increased used of silicon in graphite anodes for 
existing liquid electrolyte chemistries, or through all together new chemistries 
such as sodium-ion batteries. Therefore, a continued cost decline at the pace 
observed during the past decade cannot be taken for granted without a further 
acceleration in technology innovation, and this will be accompanied by changes in 
mineral demand projections.
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Fig. 3.4 Critical minerals required for the production of a 75-kWh automotive lithium-ion battery 
using selected cathode chemistries. (Source: Adapted from Ref. [16], p. 89), based on Refs. [1–3, 
13, 31] 

3.5.2 Mineral Resource Requirements for the Production 
of Batteries 

While mineral resource requirements for battery production were not quantified for 
the STEPS, APS, or the NZE Scenario presented in the WEO 2022, the IEA 
published detailed minerals demand projections in a preceding report. They are 
based on the IEA Sustainable Development Scenario (SDS) which describes a global 
pathway for the energy system that achieves the goal of the Paris Agreement, in 
addition to meeting the United Nations’ Sustainable Development Goals. 

In the SDS, the transport sector sees battery demand from EVs grow by nearly 
40 times between 2020 (160 GWh) and 2040 (6200 GWh). The base case chemistry 
assumptions project a shift away from cobalt-rich chemistries. This is achieved in 
both NCA batteries and NMC variants, where the ratio of nickel and manganese is 
increased in the transition from NMC 111 to NMC 532, NMC 622, and ultimately 
NMC 811 ([16], p. 97). While most heavy trucks are reliant on LFP batteries in the 
medium term, the base case also sees growth in the market share of LFP for cars due 
to its increasing use in China. The base case also sees ASSBs becoming commer-
cially available by around 2030 and requiring another 5 years for manufacturing



capacity to build up. Even in 2040, ASSBs remain more expensive than liquid 
electrolyte lithium-ion batteries and are therefore limited to premium vehicles and 
advanced economies. In the longer term, heavy trucks operating long haul are likely 
to use ASSBs as soon as they become available because of the great benefits of 
energy density improvement in these applications. They would enable increased 
payload, greater operating range, and shorter charging times ([16], p. 96). 
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For the anode, natural graphite is expected to continue to account for the majority 
of market share. Even as artificial graphite starts to replace natural graphite for 
reasons of improved purity and hence energy density, a small number of manufac-
turers choose lithium titanate (LTO) instead of graphite for heavier vehicles due to its 
fast-charging advantages. The dominance of graphite declines very slightly over the 
years to make way for nanocomposite graphite doped with silicon and for lithium 
metal that emerges with the advent of ASSBs ([16], p. 96). 

Overall annual demand for minerals under the base case chemistry assumptions 
grows by 30 times between 2020 and 2040, from 400 kt to 11,800 kt. Nickel demand 
grows by 41 times to 3300 kt, while cobalt increases by only 21 times, as cathode 
chemistries shift away from NMC 111 toward lower-cobalt chemistries (NMC 
622 and NMC 811). Lithium demand grows by 43 times, while copper grows 
28 times. Graphite demand grows 25 times from 140 kt in 2020 to over 3500 kt in 
2040. Silicon registers the largest relative growth, up over 460 times, as graphite 
anodes doped with silicon grow from a 1% share in 2020 to 15% in 2040 ([16], 
p. 97). 

In the electricity sector, battery storage grows by 11 times between 2020 
(37 GWh) and 2040 (420 GWh). In the base case chemistry assumptions, safe and 
cheap LFP batteries for utility-scale storage are expected to dominate the overall 
battery storage market. The remaining demand is covered by the more expensive, but 
energy dense, NMC 111 and NMC 532 used predominantly for home energy 
storage. The NMC variants transition toward NMC 622 and NMC 811 in a similar 
way to the market for EV batteries, albeit with a delay owing to the time needed for 
transfer of technology and sufficient reduction in prices. Vanadium flow batteries 
(VFBs) first become commercially suitable in 2030 with a small share, growing 
modestly to capture a wider market for storage applications in large renewables 
projects. 

Overall demand for minerals in the base case grows by 33 times between 2020 
and 2040, from 26 kt to nearly 850 kt. Overall mineral demand outpaces battery 
demand growth, as the market share for LFP batteries is displaced by more mineral-
intensive NMC chemistries. The largest relative growth is seen in nickel, which 
grows more than 140 times from 0.4 kt in 2020 to 57 kt in 2040. Cobalt demand 
increases by 70 times while manganese demand increases by 58 times. 

The base case projections are founded on a set of assumptions, which, when 
altered due to reasons of technology advancements, could result in scenarios that 
produce very different results. 

The base case for electric vehicle batteries, for example, assumes an ongoing shift 
away from cobalt toward nickel-rich cathode chemistries. Growing concerns around 
nickel supplies, for example, due to price spikes triggered by delays to and cost



overruns at planned nickel mining projects, could conceivably slow the shift toward 
nickel-rich chemistries. The impact on minerals volumes could be substantial: 
compared to the base case, a delayed shift could result in a nearly 50% higher 
demand for cobalt and manganese for electric vehicle batteries by 2040. Similarly, a 
much more rapid shift toward ASSBs could result in higher lithium demand than in 
the base case but would also reduce the demand for graphite and silicon ([16], p. 99). 
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The base case for energy storage systems is built on the assumption that utility-
scale storage forms a major proportion of the demand, wherein cost (and not space) 
is the primary concern for the technology selection. However, several alternative 
scenarios could change the base case projections. For instance, more rapid adoption 
of wall-mounted home energy storage would make size and thus energy density a 
prime concern, thereby pushing up the market share of NMC batteries such as those 
already used by the Tesla Powerwall. Conversely, if the technology for flow 
batteries, which have the advantage of virtually unlimited energy capacity and 
very long lifetimes, reaches a stage of widespread commercialization earlier than 
expected, then utility-scale storage technology could shift away from LFP batteries 
toward VFBs ([16], p. 105). 

The mineral demand projections presented in this section show that the prolifer-
ation of batteries in the electricity and transport sectors will lead to a significant 
increase in the demand for various critical minerals essential for battery production. 
Scaling up the production of these minerals in a sustainable manner is critical to 
achieving the deployment rates and cost reductions projected in the scenarios 
presented above. Today already, raw material prices account for 50–70% of total 
battery costs. A doubling of lithium or nickel prices, for example, would lead to 6% 
increase in battery costs ([16], p. 107). It is important to note that in addition to 
primary production (mining), battery recycling has the potential to be a significant 
source of secondary supply of the critical minerals needed for future battery demand. 
IEA analysis suggests that the recycling and reuse of batteries from electric vehicles 
and stationary storage could reduce primary mineral supply requirements by more 
than 10% by 2040 ([16], p. 187). Targeted policies, including minimum recycled 
content requirements, tradable recycling credits, and virgin material taxes, all have 
potential to incentivize recycling and drive growth of secondary supplies. Interna-
tional coordination will be crucial because of the global nature of the battery and 
critical minerals markets [24]. 

3.6 Conclusion 

Long-term projections of the development of the global energy system foresee a 
dramatic increase in the relevance of battery storage for the energy system. This is 
driven primarily by the proliferation of electric vehicles and a growing demand for 
electricity storage, connected to rising share of variable renewables in the electricity 
supply mix.
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The IEA WEO 2022 projects electric vehicles to become the dominant technol-
ogy in the light-duty vehicle segment in all scenarios in 2050, contributing to a 
massive increase in the demand for batteries. In the electricity sector, battery energy 
storage systems emerge as one of the key solutions to provide flexibility to a power 
system that sees sharply rising flexibility needs, driven by the fast-rising share of 
variable renewables in the electricity mix. Batteries are also increasingly tapped to 
provide firm capacity as traditional generators, such as coal- or gas-fired plants, are 
retired. 

The ongoing decline in the cost of battery packs is crucial to this. It enables 
electric vehicles to compete on cost with their internal combustion engine counter-
parts in more and more use cases. Policies and targets play an important role as well. 
Zero emission vehicle sales targets, such as the European Union’s commitment to 
100% zero emission vehicles in sales by 2035, provide guidance to carmakers, many 
of whom are responding by expanding the model range and setting their own 
fleetwide electrification targets. Direct and indirect electric vehicle subsidies, as 
well as investments into charging infrastructure, are boosting the competitiveness 
of electric vehicles and their practicality of use. 

On the stationary battery energy storage side, falling costs, driven mainly by the 
battery pack, which benefits from spillover effects from the EV industry, but also 
ongoing learning and economies of scale on the rest of the balance of system, are 
increasingly making battery energy storage a cost-competitive choice for the provi-
sion of flexibility and secure capacity. 

The projected rise in battery production leads to a strong increase in demand for 
critical minerals like lithium, cobalt, nickel, graphite, copper, or manganese. Increas-
ing the supply of these critical minerals in lockstep with demand is essential in order 
for battery costs to continue to decline. 
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Electrical storage systems store electricity directly in supercapacitors and 
superconducting magnetic energy storages. Electrochemical storages are commonly 
referred to as batteries and include lead-acid, Li-Ion, Na-S, as well as redox-flow 
batteries. Chemical and thermal energy storage systems include, for example, 
hydrogen, synthetic fuels, and warm water. In addition to the other energy storage 
systems, they are also essential elements for the energy transition by enabling sector 
coupling. 

The central point for establishing the concept of sector coupling and additionally 
the concept of power-to-X is the importance of renewably produced electricity for 
the energy transition and the need to integrate this electricity into the various 
economic sectors. Power-to-X technologies are technologies that enable this inte-
gration and include besides energy storage also material utilization paths. They can 
be grouped by their concepts into, e.g., power-to-power, power-to-gas, power-to-
liquid, or power-to-heat [5]. 

Regarding the energy storage technologies focused on here, Fig. 4.1 shows the 
different energy storage technologies sorted by energy storage capacity and storage 
duration. Storage systems with high capacity and high storage duration are called 
long-term energy storage and can be used as seasonal storage or for sector coupling 
with the heating and mobility sector. In contrast, technologies with lower capacity 
and short storage duration are called short-term storage and are generally used for 
short-term balancing applications. 

Fig. 4.1 Overview over different types of energy storage system sorted by storage capacity and 
discharge time
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Electric, mechanical, and electrochemical energy storage applications generally 
refer to power-to-power applications which remain within the power sector in their 
function. These can be grouped according to the corresponding segment of the 
energy system. Figure 4.2 shows an overview of these applications. Depending on 
the type of application, different storage technologies are better suited to provide the 
required services. 

Power-to-X concepts that connect the power sector with another sector, e.g., the 
heat, industry, or the transport sector, are referred to as sector coupling. Sector 
coupling is an important element of the energy transition, as it can make decisive 
contributions to defossilization in the various sectors [35]. 

The ecological footprint of energy storage technologies includes a variety of 
aspects. From a cradle-to-grave perspective, there are different life cycle stages. 
Firstly is the production stage that includes both the production including all 
necessary materials and the construction including the transport processes as well 
as the energy and water and the resulting emissions and waste. Secondly are 
replacement measures and additional emissions that are caused by the energy storage 
system itself requiring energy during its operation. In addition, there is an energy 
loss associated with storing energy due to nonideal efficiencies <100 % of the 
storage operation. At “end-of-life,” the focus is on dismantling, separating, and

Fig. 4.2 Overview of power-to-power energy storage applications sorted by the corresponding 
segment of the energy system



disposing of the materials and recycling, including the energy consumption and 
emissions required for this [14]. Especially the emissions of the respective process 
chains as a whole are crucially dependent on the emissions of the upstream energy 
system (fossil or renewable) and the round-trip efficiency of the energy storage 
system. With a primarily emission-free energy mix, technical aspects such as service 
life, capacity, and efficiency become the decisive influencing factors [22].
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4.2 Mechanical Energy Storage: Pumped Hydroelectric 
Storage 

4.2.1 Operating Principle 

Pumped hydroelectric storage (PHES) is one of the most common large-scale 
storage systems and uses the potential energy of water. In periods of surplus of 
electricity, water is pumped into a higher reservoir (upper basin). In demand times, 
this process is reversed, and the potential energy is transformed into electrical power 
by a generator within a short reaction time [20]. 

The energy density depends on the height difference between upper and lower 
reservoir and ranges between 70 and 600 meters, which corresponds to energy 
densities of 200–1600 Wh/m3 [21]. 

There are two different design principles: the tandem design and the use of pump 
turbines. In the tandem design, pumps and turbines are designed as independent 
units, whereas pump turbines can function both as pumps and turbines. Pumped 
storage power plants are characterized above all by high storage capacities and rapid 
operational readiness. 

More than 96 % of installed storage capacity worldwide consists of pumped 
hydro storage systems. Table 4.1 shows the installed rated power and capacity of 
pumped hydro in the world since 1990. 

With a storage duration ranging from a couple of hours up to several days and 
reaction times within seconds, pumped hydro storage systems are used for bulk 
energy services as well as ancillary services. 

Table 4.1 Worldwide installed rated power and rated capacity of pumped hydro storage systems 
[8] 

Year Installed rated power in MW Installed rated capacity in MWh 

2020 181.041 601.684 

2010 133.348 448.477 

2000 106.841 396.301 

1990 84.989 330.191
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4.2.2 Ecological Footprint 

Of all energy storage systems, pumped hydro storage systems have the longest 
service life of 50–150 years [2]. Due to their design, they show neither a degradation 
of the high round-trip efficiency nor the capacity. Because of their low volumetric 
energy density, however, pumped storage power plants require large areas for 
storage lakes and a sufficiently high gradient between the upper and lower reservoirs. 
In practical terms, this means that PHES are primarily implemented in areas with 
natural height differences. 

The main materials in the construction of PHES are concrete1 and steel. Although 
these materials have significant CO2 emissions during production, these are put into 
perspective by their long service life. The required materials are available world-
wide, so they do not have any criticality worth mentioning. The operation and 
commissioning, which mainly consists of damming rivers or connecting existing 
lakes, can lead to many negative consequences for the local ecosystems. In partic-
ular, the constantly changing water levels can be negative for flora and fauna, but 
also for possible tourist use. Even if pumps, pipes, or turbines are hardly visible in 
modern designs such as cavern power plants, the intervention in nature is often 
viewed with skepticism or completely rejected by those affected. Therefore, “since 
the 1970s, especially in European countries, this has led to a continuously decreasing 
acceptance of these energy storage devices among the population” [1]. 

Decommissioning, dismantling, and recycling play a subordinate role with PHES 
because of the particularly long service life. At the same time, hardly any materials 
that are critical for disposal are installed here. 

4.3 Mechanical Energy Storage: Compressed Air Energy 
Storage 

4.3.1 Operating Principle 

Compressed air energy storage is based on the compression of air and storage in 
geological underground voids (e.g., salt caverns) at pressures of around 100 bar. 
When discharging, the compressed air is released and expanded to drive a gas 
turbine to generate electricity. As air cools down during expansion, it has to be 
heated while releasing. Here, a distinction is made between diabatic and adiabatic 
compressed air energy storage. 

When discharging a diabatic compressed air energy storage (D-CAES), the 
released air is heated via combustion using natural gas or fuel. Therefore, a

1 The production of steel requires sand as raw material, which has become a scarce resource. 
However, it is not part of the 2020 EU Critical Raw Materials List, which has been the basis for 
the evaluation of critical materials in this chapter. 



Year

D-CAES system is a hybrid system composed of a natural gas fired open cycle 
turbine and an electrical storage system. 
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Table 4.2 Worldwide installed rated power and rated capacity of compressed air energy storage 
systems [8] 

Installed rated 
power in MW 

Installed rated 
capacity in MWh 

2020 1.614 40.087 

2010 400 2.860 

2000 400 2.860 

1990 (While [8] doesn’t mention any installed CAES 
before 1990. The CAES plant in Huntorf, Germany, was 
built in 1978 and is included in this table, based on data 
from Ref. [30]) 

290 560 

In an adiabatic compressed air energy storage (A-CAES), the heat produced 
during the compression cycle is stored using thermal energy storage (TES). During 
discharging, the stored thermal energy is used to heat the released air. The compres-
sor discharge temperature can reach more than 600 °C. The hot air is sent to a TES 
which is designed for the applied internal pressure and which is sufficiently insulated 
to minimize heat losses. The TES can be made of ceramic, concrete, or natural rock 
materials. In this setup, no additional combustion cycle is required. 

Two large-scale D-CAES were installed in 1978 and 1991 in Huntorf, Germany, 
and McIntosh, USA, respectively. They were used for energy time-shift and spin-
ning reserve for a generally conventional energy system. Since diabatic storage 
systems still depend on fossil fuels, research has been focusing on A-CAES since 
then. First commercial A-CAES have been commissioned in 2020 in China and the 
USA, to support the increased integration of renewable generation in these systems. 
Table 4.2 provides an overview of the worldwide installed rated power and capacity 
of compressed air energy storage systems. 

4.3.2 Ecological Footprint 

CAES have the second highest service life of 30–50 years for the machines and even 
longer for the cavern. Also, they show neither degradation of the medium nor the 
capacity. Because of their low volumetric energy density, however, compressed air 
storage power plants require large, pressure-resistant, mostly underground volumes 
for storing the compressed air. These caverns are mostly salt caverns that are 
specifically created by leaching. Other types of storage volumes have not yet been 
implemented for cost reasons. Therefore, only areas where salt caverns exist or can 
be created have been considered for CAES.
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The use of materials (steel, concrete) is significantly lower for CAES compared to 
PHES and focuses primarily on the machine house with the compressors and 
turbines.2 In contrast to PHES, the CO2 emissions in the production of the compo-
nents for a CAES are rather low. However, it must be noted that when the salt cavern 
is drained, extremely high salt loads have to be disposed of by rinsing with warm 
water. This can cause further emissions during construction through long pipelines 
or affect flora and fauna through discharge into rivers. 

During operation, the CO2 emissions that result from the additional firing of 
natural gas for D-CAES systems are dominant. It can be assumed that approx. 98 % 
of the total CO2 emissions occur during operation [24]. Modern concepts with heat 
storage (A-CAES) do not require additional natural gas and are therefore signifi-
cantly more attractive from an emissions point of view. Both types of construction 
require little space, as most of the system is underground. For this reason, CAES are 
hardly viewed with skepticism or rejected by those affected, except during in the 
leaching and construction phase. 

Decommissioning, dismantling, and recycling play a subordinate role with CAES 
due to the particularly long service life. At the same time, hardly any materials that 
are critical for disposal are used. 

4.4 Mechanical Energy Storage: Flywheel Storage 

4.4.1 Operating Principle 

Flywheels store electrical energy in the form of rotational energy. The flywheel is set 
in motion, or its speed is increased with the aid of an electric motor, thus storing 
energy. The amount of energy that can be stored depends on the rotational speed, 
since this is proportional to the mass moment of inertia and the square of the angular 
velocity. If required, the kinetic energy is converted back into electrical energy via a 
generator. Since the speed of the wheel changes both when energy is stored and 
when it is discharged, a frequency converter is required to adapt the voltage 
generated to the grid frequency [20, 26]. 

Under optimum operating conditions, flywheels can achieve an efficiency of up to 
95 %. To keep the relatively high rest losses (approx. 20 % per hour), which are 
mainly caused by friction on the bearings and on the flywheel itself, as low as 
possible, the flywheels usually run in vacuum chambers. Furthermore, magnetic 
bearings with superconductors are used, which significantly reduce losses compared 
to roller bearings or plain bearings [11]. 

Flywheels show fast discharge times (within seconds) with high power densities 
of up to 10,000 W/kg [20].

2 For PHES, the use of materials for the machine house is small in comparison with the required 
materials for building the reservoirs. 
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Table 4.3 Worldwide installed rated power and rated capacity of flywheel energy storage systems 
[8] 

Year Installed rated power in MW Installed rated capacity in MWh 

2020 972 97 

2010 865 0.2 

2000 0 0 

Flywheel energy storage systems are mainly used for short-term storage applica-
tion lasting from milliseconds up to minutes such as power quality services [1]. This 
can also be seen in Table 4.3, where the installed rated power of flywheel energy 
storage systems is significantly higher than the installed rated capacity. 

4.4.2 Ecological Footprint 

Compared to battery storage systems, flywheel storage systems have a long service 
life of more than 20 years in most cases. Also, due to their design, they show neither 
a degradation in round-trip efficiency nor in capacity. However, self-discharge, 
which mainly results from air and bearing friction, must be considered in the 
emissions balance. 

Since flywheels—in contrast to PHES and CAES—do not store the energy in the 
medium of water or air, but in a rotating mass, the use of materials is relevant. The 
materials used are primarily fiber-reinforced composite materials (e.g., CFRP) or 
steel. The materials are to be classified as not very critical in terms of procurement, 
but steel production brings increased CO2 emissions into the balance, whereas 
recycling of composite materials is very difficult if not impossible. In terms of 
safety, flywheels must be secured against bursting, since the usually very fast 
rotating masses have a high-risk potential. This is often taken into account by 
building a containment for the flywheel or sinking the flywheels in the ground. 
Therefore, acceptance problems with this technology are not to be expected [1]. 

During operation, fundamental losses occur due to self-discharge. With slowly 
rotating steel flywheels, these tend to be higher than with composite flywheels, but 
even there they are not negligible compared to other storage technologies. Therefore, 
the mode of operation (average storage period) is of great relevance, i.e., the losses 
are higher with longer storage periods, so that in this case the CO2 emissions— 
assuming a fossil energy mix—are much higher during operation than during 
production [24]. 

Decommissioning, dismantling, and recycling play less of a role with flywheels 
than with battery storage due to their long service life. At the same time, hardly any 
materials that are critical for disposal are installed. With composite flywheels, the 
materials still are a challenge to dispose of, and, unlike steel, they cannot yet be 
recycled.
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4.5 Electrochemical Energy Storage: Redox-Flow Batteries 

4.5.1 Operating Principle 

Flow batteries are rechargeable batteries which use two different electrolytes—one 
with a positive charge and one with a negative charge—as storage medium. The 
most used electrolyte systems are vanadium-vanadium or the iron-chromium. One of 
the biggest advantages of this technology is the decoupling between power and 
energy ratings, as tank volume and stack size (active surface area) can be scaled 
independently. 

The electrolytes are stored in external tanks and only pumped through the battery 
cell for charging and discharging in two separate hydraulic circuits. When operating, 
oxidation and reduction processes take place at the anode and cathode, which 
convert the electrical energy into chemical energy during charging and back into 
electrical energy during discharging. The two half-cells are separated by an 
ion-selective membrane. As the anolyte and catholyte are stored in separate tanks, 
the self-discharge rate of flow batteries is nearly zero. Additionally, as the battery 
electrodes do not actively participate in the chemical reactions, flow batteries are 
deep discharge proof [12]. 

Redox-flow batteries have been continually under development and have become 
more commonly used since 2010 as can be seen in Table 4.4. Applications range 
from small scale behind-the-meter applications in private households to providing 
bulk energy and ancillary services. The most common type of redox-flow battery is 
vanadium redox-flow batteries [1]. 

The advantage of redox-flow batteries in comparison with Li-Ion batteries is the 
separation of storage power and storage capacity, which can therefore be chosen 
individually to fit the application. 

4.5.2 Ecological Footprint 

In terms of ecological assessment, redox-flow batteries differ from conventional 
batteries in many respects. The crucial point here is that the energy is usually stored 
in two liquids, which are stored in conventional containers, mostly made of plastic. 
The decisive advantage in the design is that the capacity can be precisely adapted to

Table 4.4 Worldwide installed rated power and rated capacity of redox-flow battery storage 
systems [8] 

Year Installed rated power in MW Installed rated capacity in MWh 

2020 319 1.236 

2010 9 19 

2000 3 0.8



the application, regardless of the output, so that there is no unnecessary material 
consumption due to oversizing in output or capacity.
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It is advantageous that the materials mostly used (plastic, aluminum) have no or 
rather low criticality (vanadium), since there are many new exploration projects at an 
advanced stage worldwide [9, 28, 33]. Nevertheless, it must be considered that the 
storage medium—in contrast to, for example, pumped storage power plants—is an 
expensive recyclable material and that vanadium, the electrolyte most used, requires 
safe containment, since it is a heavy metal that must not be released into the 
environment. At the same time, however, these mostly double-walled storage con-
tainers offer safety advantages compared to some lithium-ion batteries, which have 
risky materials (e.g., cobalt in NMC cells) finely distributed in each cell due to their 
design. Likewise, the mostly water-based electrolytes do not pose any fire hazards, in 
contrast to lithium-ion batteries. 

During operation—if neither storage nor withdrawal occurs—only a small 
amount of self-discharge occurs. When storing and withdrawing, however, 
the pumps that pump the anolyte and catholyte through the cells of the stack are 
the main consumers of energy, which is equivalent to self-discharging. As a result, 
the round-trip efficiency of vanadium redox-flow batteries at around 70 % is also 
significantly lower than that of other battery types. Therefore, the mode of operation 
is of great relevance, i. e., the losses are lower with longer storage periods, but 
significantly higher with frequent charging and discharging. In this case, the CO2 

emissions—assuming a fossil energy mix—are much higher during operation than 
with more efficient storage systems. This aspect does not apply to a primarily 
renewable energy mix. 

From an ecological point of view, the greatest advantage is that the storage fluids 
are usually of a single type, uncontaminated, and in liquid form. They can be easily 
regenerated during operation and simply pumped out at the end of their life and 
recycled with almost no material loss (related to vanadium). From a purely economic 
point of view, the value of the electrolyte is an advantage here since recycling is 
more worthwhile [3]. At the same time, recycling has a positive effect on the 
criticality of vanadium since the vanadium can be recovered and used in new 
VRFBs. The aging of the storage media and the associated degradation are also 
significantly lower than with conventional batteries. A service life of up to 20 years 
is assumed, which puts the production emissions into perspective [15]. 

4.6 Thermal Energy Storage: Power-to-Heat 

4.6.1 Operating Principle 

Power-to-heat applications use electric power to generate or redistribute heat. Con-
sequently, they serve to couple these two sectors. The heat is generated, for example, 
in electrode boilers, in electric boilers, or by using heat pumps.
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In electrode boilers, the operating principle of direct resistance heating [16] 
comes into effect, where the flow of the electric current through the medium to be 
heated leads to heat generation. The electric boiler works according to the operating 
principle of electrical resistance heating, in which a current-conducting heating 
element heats up and then transfers this heat to the surrounding medium that can 
be stored. Both boilers are also suitable for steam generation. Both processes are 
established technologies and are structurally simple and low maintenance storage 
solutions that can be implemented in different scales. They are therefore suitable for 
household, commercial, or industrial applications. Electrode boilers in large-scale 
applications are mainly used in combination with heat networks or to produce 
superheated steam [18]. 

In heat pumps, electricity is used to transfer heat from a heat reservoir to a 
location to be heated using a carrier medium. The transfer occurs in a circular 
process in which the carrier medium is compressed, liquefied, expanded, and 
evaporated. During evaporation, it absorbs the heat energy, which it then releases 
to the location or medium to be heated during condensation. Overall, the transported 
heat is raised to a higher temperature level in the circular process [27]. Heat pumps 
make use of ambient heat. The amount of electrical energy required for the circular 
process is thus less than the amount of energy yielded by the process. The thermal 
efficiency of heat pumps is therefore very high but varies greatly depending on the 
type of system and ambient conditions. There is a large number of different types of 
heat pumps, which differ in terms of process (compression/evaporation or use of 
other physical principles) and heat sources (e.g., groundwater, ambient air, waste 
heat) [6]. 

If the heat pump is combined with a heat storage system, a higher-value utiliza-
tion concept is created for the energy transition: by storing the heat from power-to-
heat processes, the technologies contribute both to meeting the heat-side demands 
and to integrating renewable electricity into the energy system in the best possible 
way and providing required flexibilities. In this way, they couple the electricity 
sector with the heating sector in a beneficial way to the energy transition. 

The electricity-based generation of cold by refrigerators (power-to-cold) also 
belongs to the field of thermal technologies and is also combined with suitable 
storage solutions [32]. However, electricity-based thermal utilization without inter-
mediate storage is also conceivable, for example, for the provision of space heating 
by resistance heaters or process heat in industry. Such technologies fulfill a “power-
to” purpose if they contribute to the electrification of processes that were previously 
operated differently. 

4.6.2 Ecological Footprint 

Power-to-heat systems must be considered separately ecologically for energy con-
version unit and thermal energy storage. The thermal storage tanks, which are mostly 
designed as simple hot water tanks with insulation, have a very long service life and



contain no risk materials. The service life of heat pumps is in the range of 
10–15 years. 
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When looking at the materials used, the focus is primarily on heat pumps, as they 
often have critical refrigerants—the other materials are to be regarded uncritical 
(standard metals). The refrigerants primarily used to date are fluorinated or partially 
halogenated refrigerants, the use of which is restricted by the EU regulation (EU 517/ 
2014, F-Gas Regulation) [1]. At the same time, these PFAS (perfluorinated alkyl 
substances) are very much part of the ecological debate because they are considered 
persistent and potentially toxic. Therefore, the development goes in the direction of 
natural refrigerants such as propane. Here, however, the potential flammability and 
explosiveness of the refrigerant must be considered. This is probably the only aspect 
that can lead to a slightly reduced acceptance of the power-to-heat technology. 

During operation, there are practically no losses. The thermal storage— 
depending on the storage period—has a low level of self-discharge through heat 
losses to the outside. Due to their high efficiency, heat pumps have significantly 
reduced CO2 emissions compared to natural gas and even electric boilers. Also, no 
degradation in conversion efficiency or storage efficiency or capacity is to be 
expected. 

Decommissioning, dismantling, and recycling play only a minor role in power-to-
heat systems, especially in the storage tanks, due to their long service life. Only the 
refrigerants of the heat pumps must be disposed of safely. 

4.7 Chemical Energy Storage: Power-to-Gas 

4.7.1 Operating Principle 

Power-to-gas technologies are associated with material conversion processes. Var-
ious chemical reactions can be triggered using electric current. Gaseous products are 
obtained, for example, from various electrolysis processes, from the electric arc 
process, microwave plasma activation, or single-stage electrosynthesis using CO2 

[10]. Via the electrolysis of water, hydrogen and oxygen are obtained as products. 
The associated electrolysis processes differ in flexibility and degree of efficiency and 
in their technology readiness levels. Most developed and market-ready is the alka-
line electrolysis (AEL), followed by the proton exchange membrane electrolysis 
(PEM) and—with a larger distance—the electrolysis using a solid oxide electrolysis 
cell (SOEC) operating at high temperatures. In an electrolyser, water is split by 
means of the electric current applied to electrodes which are surrounded by an 
electrolyte and separated by a semipermeable diaphragma into the anode and the 
cathode compartment, so that hydrogen and oxygen can be collected separately. 
AEL uses an alkaline electrolyte and an ionic conductive membrane as diaphragma, 
while PEM uses solid electrode membrane assemblies to realize the necessary 
separation. The SOEC also operates with a solid electrolyte as diaphragma. Here,



water steam is used instead of liquid water due to the high operating 
temperatures [29]. 
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Via co-electrolysis, syngas (hydrogen, carbon monoxide) can be produced from 
the reactants water and carbon dioxide [4]. The electric arc process produces ethyne 
and hydrogen from methane [17]. Microwave plasma activation decomposes carbon 
dioxide to carbon monoxide and oxygen [25]. Electrosynthesis can be used to 
produce alkenes, especially ethene, from carbon dioxide and water [34]. In addition 
to these direct power-to-gas products, further indirectly electricity-based gaseous 
products can be synthesized. Via the hydrogen path, methane is, for example, 
obtained as an indirect power-to-gas product by means of chemical or biological 
methanation [13]. The electric arc process and the chemical methanation operate at 
high technology readiness level (TRL), the co-electrolysis and the biological metha-
nation at medium TRL and the electrosynthesis and the microwave plasma activation 
at low TRL. 

The gases produced by power-to-gas processes contribute to sector coupling, 
since they can be used in a material or energetic way in different sectors, and their 
storability enables sector-specific requirements to be decoupled from electricity 
production over time. The power-to-gas products hydrogen and methane are partic-
ularly important for the energy storage system, as they can be converted back into 
electricity in combined heat and power (CHP) systems or fuel cells and thus used 
energetically. 

4.7.2 Ecological Footprint 

Up to now, the service life of electrolysers has been in the single-digit range, 
depending on the type of electrolysers (AEL or PEM) and operating parameters. 
And—comparable to battery storage—there is a degradation in efficiency. 

The materials used (membranes, catalysts) are expensive and some (catalysts) can 
be recovered, but membranes cannot. Since some catalyst materials are particularly 
rare (e. g., iridium), the development of a recycling industry parallel to the devel-
opment of electrolysers production is necessary [19]. 

In electrolysis mode, the CO2 emissions can be reduced by around 90 %— 
compared to the natural gas reforming that is common today [31]. Since the 
electrolysis process has so far only had an efficiency of approx. 60–70 %, it is 
obvious that a high proportion of fossil energies in electrolysis would lead to more 
CO2 being emitted in extreme cases than if hydrogen would be from natural gas. In 
addition, it must be considered that—if hydrogen is stored under high pressure 
(300–700 bar)—additional energy expenditure is required for the compression. 

Decommissioning, dismantling, and recycling play an important role in 
electrolysers because of the rare and expensive catalysts, but also because of the 
shorter service life [1].
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4.8 Conclusion 

This overview of energy storage and conversion technologies shows the wide range 
of possibilities of storing energy as well as providing services to other sectors. It also 
shows that no single technology alone can provide all the necessary services for a 
successful energy transition. From short-term storage needed for power applications 
to medium term storage for balancing applications to long-term storage for seasonal 
balancing, the different types of energy storage systems offer individual benefits to 
the energy system. However, they also come with their individual drawbacks, from 
the use of critical materials to costs and overall efficiency to the issue of recycling. 
Which of the various energy storage technologies will become the key technologies 
for a successful energy transition depends on the—changing—boundary conditions 
such as costs and recycling but also the availability of critical materials. However, it 
is already certain that energy storage itself is a key technology to enable the energy 
transition. 
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5.1 Battery Energy Storage Systems Composition 

Wind and photovoltaic generation systems are expected to become some of the main 
driving technologies toward the decarbonization target [1–3]. Globally operating 
power grid systems struggle to handle the large-scale interaction of such variable 
energy sources which could lead to all kinds of disruptions, compromising service 
continuity. Electricity storage systems can help reduce some of the inefficiencies and 
gaps in the system, helping to increase its reliability, helping to facilitate the 
integration of renewables, and effectively managing energy production. Further-
more, through the reasoned use of electric energy storage systems, it is possible to 
facilitate the regulation between supply and demand of electric energy, through a 
decoupling of electricity production from the load or from the user. Finally, the use
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of storage systems allows distributed accumulation for the increasingly widespread 
microgrids, which significantly increase the certainty of electricity supply [4].
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There are therefore different types of storage systems, and they are defined as 
mechanical, electrical, thermal, and electrochemical. Among the categories of stor-
age systems, in recent years, the one linked to electrochemical systems, also known 
as batteries [5], is becoming more and more interesting. Battery uses are commonly 
divided into two categories—in front of the meter (FTM) and behind the meter 
(BTM)—depending on where they are placed within the electrical supply chain. 
FTM batteries can be found in distribution and transmission networks, utilities, 
substations, and generation plants. In general, the sizes in terms of capacity of 
FTM storage systems are in the order of MWh. On the other hand, talking about 
BTM storage systems, generally they are batteries that are positioned in the final part 
of the supply chain, the user side. Typically, these batteries are smaller in terms of 
capacity size and are used in residential, industrial (as backup generators), commer-
cial, and transportation [6–8]. Among the various categories of batteries, those based 
on lithium ions are increasingly used; however, there are different chemical compo-
sitions that are used depending on the applications. Lithium-ion batteries, among the 
most common today, thanks to their high specific energy value (3.86 Ah/g), are used 
in electric vehicles and also as storage systems to support the grid and can be of 
different sizes. With that type of chemistry, it is also easy to avoid the memory effect 
of the batteries; they also have a low self-discharge and are also safe in environ-
mental terms. In addition to high specific energy and high load capacity, power cells 
have long cycle life and long service life, with little need for replacement. They are 
characterized by their high specific energy density, low internal resistance, and 
relatively short recharging time. Among the disadvantages, however, there are the 
high temperatures and charge levels, which accelerate the degradation in terms of 
accumulation and, moreover, require a protection circuit that prevents heat disper-
sion during overloads. This means that high value of C-rate must be avoided, in 
order to prevent undesired temperature raise, able to generate thermal runaway 
phenomena, which affect the storage system with fire risk. Another type of battery 
is lead-acid, cheaper than the previous ones, but less efficient in charge, less durable, 
and with a limited specific energy and power compared to other technologies 
[9, 10]. Even if the treatment for their disposal is easier with respect to Li-ion, 
where innovative methods are studied to recover materials, also lead-acid batteries 
require a special operation for the disposal; otherwise, they risk becoming harmful to 
the environment. Nickel batteries, on the other hand, have longer life cycles than 
lead-acid battery and have a higher specific energy; however, they are more expen-
sive than lead batteries [11–13]. Open batteries, usually indicated as flow batteries, 
have the unique capability to decouple power and energy based on their architecture, 
making them scalable and modular with moderate cost of maintenance. They are 
used as energy backup, covering long duration energy storage timeframes up to 1 or 
2 weeks, but also load leveling and peak shaving applications for the transmission 
and distribution of electricity. These batteries have a specific energy significantly 
lower with respect to Li-ion, generally used for shorter timeframes (up to 8 hours), 
but flow batteries are simple to update and easily integrated, however, they are an



innovative technology and are still being studied and improved today. There are 
currently new flow batteries in development, but also more mature technologies such 
as vanadium redox flow batteries (VRFB). In this case for high capacity to power 
ratio, the cost per stored kWh is lower than for lithium-ion batteries [14]. The 
batteries are then integrated with other systems, with which they create a more 
complex architecture defined as battery energy storage system (BESS), which can 
work with a centralized or distributed architecture. Conventional centralized archi-
tectures consist of the following:

• The battery pack: the electrochemical storage system, which transforms electrical 
energy into chemical energy during the charge phase, while the opposite occurs 
during the discharge phase. The energy released during discharging can be used 
by the user for the various purposes previously described.

• The battery management system (BMS): The BMS takes care of the correct and 
safe functioning of the battery. Since each battery has preferential operating 
conditions, the BMS ensures that these conditions are met. Furthermore, the 
BMS takes care of monitoring the residual energy inside the battery and its 
state of health (SOH), so as to optimize performance.

• The power conversion system (PCS): The PCS is the interface with the grid and 
allows the DC terminal of the battery to communicate with the AC terminal of the 
grid. Since the AC current has a certain mains frequency, an electronic circuit 
called phase-lock-loop (PLL) is used to synchronize the current leaving the 
battery with that of the mains.

• The energy management system (EMS): The EMS control unit is the equivalent 
of the BMS applied not to the battery but to the entire BESS. EMS links all 
elements of the BESS together and optimizes the performance of the entire 
system.

• The safety system: It is generally structured on several levels, each responsible for 
a specific task. 
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Subsequently, it should be remembered that each type of BESS has certain 
technical specifications that characterize the efficiency of the system [15]. It is 
clear that the first characteristic parameter is the storage capacity, i.e., the amount 
of electric charge that the battery can accumulate and that the BESS can make 
available. Another parameter of primary importance is the nominal power, a char-
acteristic that specifies the amount of power that the BESS can transmit. The round-
trip efficiency represents the ratio between the energy emitted during the discharge 
phase and the energy supplied during the battery charge phase. The depth of 
discharge (DoD) represents the percentage of energy discharged with respect to 
the maximum capacity. Battery lifetime is also a relevant parameter for choosing the 
storage system and is calculated through the number of battery charge and discharge 
periods; otherwise, it can be expressed as the total amount of energy that a battery 
can supply during its life. Finally, the safety parameter is important in determining 
the suitability of the battery for a particular use.
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5.2 BESS Application as Grid Integration 

Therefore, considering the decarbonization trend in the field of electricity produc-
tion, it is clear that the development of these storage systems can facilitate the energy 
transition. In fact, following the decarbonization trend of the various sectors, 
the national electricity requirement is only increasing, rising the electrical demand. 
The typical electrical demand curve has peaks at certain times of the day, one in the 
morning and one in the evening. This demand is compensated for by various energy 
sources, in a manner compatible with the national energy production mix. Energy 
sources, both renewable and nonrenewable, have precise start-up times; in fact, 
depending on the time of day, a specific energy source is used. For example, coal-
fired plants require very long start-up times; therefore, the fund of energy demand is 
met through the use of these plants. Conversely, systems whose start-up is much 
faster, such as gas cycles, for example, can compensate for the momentary peaks 
encountered during the day. Qualitatively, the shape of the demand curve is similar 
in the various days of the week; therefore, the presence of these peaks is almost 
constant. Finally, the production curve will have to be capable of punctually 
following the demand curve. However, starting up these gas-fired plants is both 
expensive and polluting. Therefore, the integration of storage systems within the 
electricity grid could contribute to the damping of these peaks, making it possible to 
avoid the start-up of gas-fired plants. This attempt to dampen peak loads is also 
called peak shaving. The application of the peak shaving technique, through the use 
of accumulation systems, also helps to avoid grid oversizing, which would be 
necessary for peak hours. Furthermore, it must also be considered that sudden 
variations in demand generate grid instability, in terms of voltage and frequency 
[16]. Such fluctuations would risk damaging the quality of the supply service. The 
use of the peak shaving technique would therefore make it possible to absorb 
electricity when demand is lower, and then release it when it is higher. However, 
it should be considered that the integration of the various renewable resources within 
the electricity grid, however, only increases the variability of the production curve. 
Following the principle described above, there is another technique that is 
establishing itself to facilitate the integration of renewables. If peak shaving tech-
nique aims to remove the generation peaks, load leveling is a technique that is used 
to level the load curve [17, 18]. The operating principle is similar to that of peak 
shaving, absorbing power from the grid when demand is lower and then returning it 
when demand reaches its maximum daily values. Therefore, the damping of peak 
power demand can be facilitated, if accompanied by a prudent tariff policy which, by 
combining the price of power and energy supplied, makes it convenient for a user to 
purchase such storage systems. Therefore, the two techniques end up combining 
perfectly, since the user’s peak shaving operation leads to load leveling for the 
supplier. Therefore, the user, through an automatic BMS, applies a daily peak 
shaving, optimizing the management of electricity and, consequently, saving the 
user. In fact, in doing so it is possible to stipulate a contract with the distributor at a 
lower peak power, since the peak beyond the maximum established level required by



the loads would be filled by the accumulation system. For the supplier, however, this 
procedure means a leveling of demand (load leveling), improving efficiency in the 
power generation and transmission phases, avoiding construction costs linked to 
infrastructural upgrades. 
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Furthermore, as previously mentioned, the network may be subjected to instabil-
ity. Among these instabilities are voltage dips. Voltage dip is defined as the tempo-
rary reduction of voltage below 90% of the declared voltage for a period greater than 
or equal to 10 milliseconds and not greater than 1 minute, where the conditions for 
interruption do not exist (definition taken from standard CEI EN 50160); the 
unipolar voltage dip is a voltage dip that affects only one phase [19]. These insta-
bilities generally originate from faults in the public network or in network systems, 
sometimes linked to overloads of starting transients of large motors or to the 
insertion of significant loads. These holes are unpredictable, and their annual 
frequency is variable and is not attributable to the network operator or local 
distributor. In addition, data processing and control equipment can experience data 
loss and require time-consuming maintenance in the event of a significant voltage 
sag. In addition to this, voltage sags lead to economic losses. If previously diesel 
generators such as UPS (uninterrupted power supply) were used to compensate for 
the existence of voltage dips, today the use of electrochemical storage systems would 
facilitate the management of voltage dips, thanks to BMS systems [4]. Similarly, it 
has been studied that when there are fluctuations in the network frequency, due, for 
example, to the variation of the rotation speed of synchronous generators, the use of 
batteries considerably facilitates frequency regulation [20–22]. Therefore, to con-
dense the various uses applied to the network, it is possible to state the FTM 
applications to which the BESSs should be applied:

• Bulk energy services: mass energy service process, which increases the capacity 
that can be supplied by the electricity system, thanks to the accumulation of 
massive quantities of energy to meet the peaks. At the same time, it is possible to 
accumulate electricity in the time slots in which it has a low cost, to sell it at a time 
in which the demand is higher and the cost of energy is higher.

• Ancillary services: e.g., all those systems that support the transmission of energy 
from the production site to the user and that help to maintain the usability of the 
system. Ancillary services can be generators or connected service providers 
capable of rapidly increasing the output of potential reserves, regulation, and 
flexibility (e.g., frequency regulation, voltage regulation, black start).

• Transmission and distribution network support: Expansion of the transmission 
network to avoid unwanted congestion can be expensive, and installing a BESS 
can be more cost-effective. Furthermore, with the growing contribution of renew-
ables to the local distribution system, the power fluctuations in their output can 
create voltage fluctuations and damage the equipment connected to the system. A 
BESS can take part in voltage regulation, stabilizing the system.

• Integration of renewables: The integration of batteries into variable renewable 
energy production systems helps to give greater stability to the electricity grid. 
Capacity firming is widely used, for example, with the production of wind and



solar energy and has advantages such as the optimization of the generation 
profile, supply, and exchange of reactive power in support of renewables and 
balancing of load currents [23]. 
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5.3 BESS Integration in Transport Sector 

If on the side of the electricity system, electrochemical storage systems represent a 
great opportunity, within the transport sector they represent a necessity. Indeed, the 
use of batteries within the mobility sector has become the engine of the 
decarbonization of this sector. Although electric means of transport have already 
existed for some time, electrification through battery-mounted vehicles has under-
gone significant development in recent years. Furthermore, the different needs 
related to the different types of vehicles have also favored the study of new 
accumulation chemistries related to the different types of vehicle that use them. 
NMC (nickel-manganese-cobalt), LFP (lithium-iron-phosphate), and NCA (nickel-
cobalt-aluminum) batteries are among the most used onboard road vehicles. Mean-
while, other studies of electric vehicles that require more effort in power use other 
types of chemical compositions such as LTO (lithium-titanate) [24]. In any case, 
batteries represent a fundamental prerogative for the electrification of electric vehi-
cles, as much as they represent for the creation of a recharging infrastructure capable 
of supporting the electrification of the mobility system. With the increase in the 
number of electric vehicles on the market and in use, local distribution networks risk 
running into overloads. This is due to the fact that some users, such as those who are 
driving along a motorway, suddenly need high power to quickly recharge their 
exhausted vehicle through fast charging. The use of a distributed storage system 
helps to reduce the maximum load that must be supported by the transmission and 
distribution infrastructure by implementing BESSs in the vicinity of the electrical 
loads. The integration of BESS systems within the electricity grid brings various 
advantages, such as the provision of ancillary services for the distribution system 
operator (DSO) and transmission system operator (TSO). Based on these consider-
ations and with the increase in the use of electric vehicles, the attention on the 
integration of BESSs, based on Li-Ion batteries, in charging stations has increased. 
Interest has been brought both to the domestic use of these batteries, to integrate the 
solar home systems (SHS), for vehicles, and with public recharging infrastructures. 

Indeed, it is evident that, despite all the benefits that follow the electrification of 
means of transport, there is an increase in the demand for electricity to power them, 
with a considerable impact on the electricity grid. In fact, the presence of multiple 
charging infrastructure systems that require very high powers easily creates voltage 
dips and voltage instability, which represent one of the main causes of blackouts, 
since, as mentioned, the supply system works very close to the limit of stability, 
since the power demand is very high. The electrical loads associated with the rapid 
recharging of vehicle batteries, in addition to requiring significant amounts of power 
from the grid, are also highly nonlinear. The characteristics of nonlinear loads have a



non-negligible impact on the network; therefore, it is advisable to recognize them. 
Such nonlinearities, for example, affect voltage stability, making in-depth studies in 
this regard fundamental. It is recognized that careful planning of the use of charging 
infrastructure can smooth out voltage fluctuations [25]. At the same time, careful 
planning of the charging phases of electric vehicles prevents the emergence of 
unwanted peaks in the demand curve [26]. Among the other critical issues that can 
be encountered are those that are identified as power quality (PQ) problems, deriving 
from harmonics and voltage imbalances that occur in the event of crowding in the 
recharge. In addition to voltage dips, unwanted peaks in demand, and PQ problems, 
an increase in the EV penetration rate can increase grid power losses, proportional to 
the number of feeders in the destruction system, augmented by the additional losses 
inherent in the recharge [27, 28]. The last of the critical issues to be submitted is the 
overload and overheating of distribution transformers, which are particularly 
stressed in the event of a request for high powers. Operation of transformers at 
temperatures higher than the nominal ones causes premature aging, reducing the 
useful life of the transformer [29]. However, despite the critical issues reported, 
electric mobility, if properly integrated with the smart grid, can assist in the dynam-
ics of peak shaving. In fact, it is known that for most of the time during a day, the 
cars of private users remain parked and consequently unused or are used for limited 
trips. Based on this consideration and on the recent developments of the intelligent 
grid, which has evolved in a bidirectional perspective, thanks to the advent of 
distributed generation, we thought about how to optimize the times in the stall 
phase of the cars. The vehicle-to-grid (V2G) technology was born from this idea. 
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5.4 Electric Vehicle and Infrastructure Interaction 

With the increase in technological availability and sensors in the field of mobility, it 
is correct to say that the entire sector, by imitating the distributed generation of 
dispatching, has evolved from a bidirectional perspective. If previously, the vehicle 
had a one-way interaction with the infrastructure, this is no longer the case. In fact, 
previously four charging methods have always been considered, which differ in 
power and protections, which transferred electric power from the charging infra-
structure to the vehicle, stationed in a dedicated space. The traditional one-way 
charging procedure was then renamed as V1G, which means intelligent charging. 
Through intelligent recharging, the vehicle is able to change the recharging timing 
dynamically, since in addition to power, the vehicle and the infrastructure exchange 
information, which allows recharging to be regulated, helping to minimize its costs. 
Among the advantages of V1G, in addition to charging monitoring and timing 
optimization, there are also the infrastructure localization tool and the possibility 
of charging the vehicle at certain times of the day, so as to have greener and at the 
same time cheaper energy [30]. If sensoring and artificial intelligence (AI) have been 
fundamental in the development of intelligent recharging, the integration of a 
bidirectional power inverter connected to the car battery and to the grid represents



the heart of V2G technology. The improvement that V2G brings to V1G is the 
possibility of having a vehicle that is not only able to draw power from the grid to 
recharge the battery but is also able to return power to the grid at times of the day 
when it is most stressed. These energy flows are obviously managed by a control 
unit, which ascertains the needs of both the network manager and the user. Follow-
ing the description of the increase in electricity demand, the need to dampen peaks, 
the need to level the load, and the value that electrochemical storage systems will 
have to meet all the needs of the network, the V2G technology, which exploits the 
power that could be supplied by vehicles that remain parked and unused for most of 
the day, is perfectly combined with the demands of the network. In doing so, from an 
electrical point of view, the vehicles are seen by the network as many distributed 
accumulation systems from which it is possible to draw power to level the load curve 
[31, 32]. If this technology is seen from the point of view of a broad distribution 
network, in the various bibliographic studies, its applicability at the local level has 
not been overlooked. When the V2G technology is applied locally, and therefore on 
a building or at home, it takes the name of vehicle-to-building (V2B) or vehicle-to-
home (V2H), respectively. The operating principle of V2B and V2H is the same and 
very similar to that of V2G but limited to a single building: with the integration of 
renewables and their variability, the generated power becomes fluctuating, some-
times creating power excesses or imbalances; therefore, vehicles are used as real 
batteries to receive or deliver energy according to the demand curve. In that case, the 
power transmitted by the vehicle can be applied to prevent service interruptions and 
blackouts locally [33]. Finally, to complete the description of the interactions 
between the vehicle and the surrounding world, vehicle-to-everything (V2X) should 
be mentioned. The V2X is based on the interaction of the vehicle with any object that 
surrounds it—vehicles, infrastructures, people, and traffic—in order to improve the 
driving experience. This technology is also strictly dependent on the high level of 
sensing. What prompted private companies to invest in V2X technology was the 
better management of roads and traffic, which are supported by AI through various 
algorithms and predictive models, but at the same time it encourages safer driving, 
thanks to continuous communication of data with the surrounding vehicles and 
infrastructure and energy savings. Today with V2X, we mean the possibility that 
the vehicle has to interact, in a bidirectional way, with any object that surrounds it 
[34]. It is clear that, with the increase in the diffusion of renewables and the 
electrification of the transport sector, the possibility of having energy storage 
systems available in a distributed manner represents an important push toward 
decarbonization, since they would help to combat the variability of the production 
and demand. At the moment, however, a remuneration policy has not yet been 
clearly defined for those who decide to join the sharing of energy toward the grid. 
Remuneration to those who subscribe to the V2G service is important, not only 
because users are actively supplying energy to the grid rather than recharging but 
also because users are subjecting their vehicle to continuous charge and discharge 
cycles in the process, potentially contributing to battery aging [35].
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5.5 BESS Lifetime 

Although today we have a thorough knowledge of electrochemical storage systems, 
still today there are several limitations related to BESSs, and the most relevant is 
precisely the useful life of rechargeable batteries, which degrade with aging. This 
event represents a problem for applications such as electric vehicles, since battery 
degradation implies a reduction in capacity and consequently a limitation of the 
vehicle’s travel range. As a result, EV manufacturers have a tendency to oversize the 
battery, to make the driving range appear constant, over the life of the battery. 
However, this technique only increases the cost and mass of the battery. Complicat-
ing matters is the fact that the degradation process of lithium-ion batteries is 
nonlinear, requiring knowledge of the materials that make up the battery, internal 
reactions and knowledge of aging processes. Normally, the useful life of the battery 
is characterized by a predefined number of charge and discharge cycles to which it 
can be subjected, which can vary depending on some factors during the life cycle, 
decreasing its efficiency. For batteries, there is a specific parameter that indicates the 
condition of the battery, called state of health (SOH). SOH indicates the level of 
performance of the storage system, based on voltage, self-discharge, and internal 
resistance. This parameter varies in the range 0–1, and an SOH equal to 1 indicates a 
battery at the beginning of its useful life, in which the capacity, in kWh, is maximum. 
Among the factors that influence the useful life of the battery, the first is the aging 
and degradation of materials. After that, the working environment is one of the 
factors that influence the useful life of the batteries. Specifically, if a battery worked 
in an environment with a temperature that was too high or too low for its operating 
range, the activity of the electrode would end up decaying. Therefore, maintaining an 
operating temperature range in line with the nominal one has a positive impact on 
battery life. Maintenance and cleaning factors, which facilitate the functioning of the 
components, should not be overlooked. Another factor that impacts battery life is the 
charge and discharge cycle. The succession of charge and discharge cycles implies a 
decrease in capacity, also due to the internal degradation of the materials. The factor 
that most significantly impacts the useful life of the batteries is the depth of discharge 
(DoD). The higher the DoD, the shorter the useful life of the battery; therefore, a 
charge and discharge cycle with a controlled and optimal DoD helps to significantly 
extend the useful life of the battery. The different chemistries of the storage systems 
will then have operating ranges and different DoD [36–38]. For example, for 
lithium-ion batteries, which have a wide range of uses since they are excellent for 
both power and energy applications, they have an optimal state of charge (SoC) 
operating range between 20% and 80%. Within this range, the duration of the useful 
life of the lithium-ion battery is maximized. Furthermore, by respecting this range, 
the amount of energy stored in the batteries is optimized with respect to the recharge 
time [39]. Current also has a major impact on the life span of the cells and 
consequently on the battery and the number of cycles it can withstand. Batteries 
that are subjected to higher discharge currents have a shorter life.
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5.6 BESS Dismission and Second Life 

Downstream of the knowledge of how the useful life of the batteries works and is 
interpreted, it is useful to describe how these storage systems are decommissioned. 
When it comes to decarbonization and reducing the environmental impact through 
electrification, it is often mentioned that the disposal of batteries is a complicated and 
not always green process. In addition, despite the lowering of battery costs relative to 
capacity, batteries still have a significant cost, for example, for an electric vehicle the 
battery can be worth 50% of the total cost. Therefore, to respond to these two needs, 
various stakeholders have undertaken various studies on the second life of batteries. 
Second life has the purpose of ensuring a recovery of the functionality of the 
batteries at the end of the life cycle, converting them into stationary accumulation 
systems. For example, the useful life of a lithium-ion battery applied to electric 
vehicles has a duration in charge and discharge cycles equivalent to 8–10 years. 
After this time, the battery is removed from the vehicle even if it still has some 
remaining capacity, as this is not sufficient to meet the standards for electric vehicles. 
However, the battery can still be useful for other energy storage purposes, such as, 
for example, the inclusion of storage systems in the charging infrastructure for 
electric vehicles, which help to sustain the grid. The three main benefits that can 
be generated to the smart grid by reusing batteries after their first life are as follows:

• Defer and limit expenses related to the production and sale of new batteries.
• Provide energy reserves that allow continuity of service, especially in industrial 

processes powered by other energy sources.
• Use the available energy previously accumulated in times of absence or high cost 

of raw materials. 

Typically, end of life (EOL) is considered to occur when actual capacity reaches 
80% of rated capacity. Similarly, the end of the second life is considered to occur 
when the actual capacity reaches 30% of the nominal capacity. For this reason, half 
the nominal effective capacity is considered for stationary applications where batte-
ries are used during their second life, since it is considered the middle ground 
between 80% maximum nominal capacity and 30% minimum rated capacity. The 
theoretical value 50% of the nominal capacity is considered for practical purposes, 
since it is approximately possible to have a desired capacity value with a number of 
second life batteries equal to twice the number of first-life batteries that would be 
needed to have the same capacity [40]. 

Among the BTM areas of application with the greatest interest in the second life 
of batteries are the fast-charging systems (DC fast-charging stations) with which it is 
possible to reduce charging times. Using batteries during their second life to assist 
recharging stations, it is possible to guarantee high peak currents, accelerating 
recharging times, avoiding oversizing of the network. This solution also represents 
an opportunity for savings or income for car manufacturers, which have resalable 
batteries in proportion to the range of vehicles they put on the market. Instead, the 
FTM applications that best lend themselves to a second life are those related to



transmission services and energy shifting, a practice that aims to distribute energy 
production throughout the day. These applications present marginal installation 
space problems; in fact, it should be remembered that second life batteries occupy 
twice as much space as first-life ones. 
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On the basis of these considerations, therefore, it is possible to deduce that some 
BESSs are particularly suitable for use as storage systems during their second life, 
such as those based on lithium ions. Among the applications that these storage 
systems can perform during their second life are as follows:

• Peak shaving: process of damping power demand peaks through the activation of 
local energy sources or using an accumulation system.

• Power upgrade deferral: Through the BESS, it is possible to provide additional 
capacity, and with low growth rate loads, it is possible to postpone infrastructural 
interventions.

• Time-of-use energy cost management: BESSs can help end users reduce the cost 
of the service by smoothing demand into preset daily peaks.

• Self-production optimization: A BESS can assist standby generators by extending 
uninterrupted service time, reducing inefficient start-ups, and reducing fuel 
requirements for diesel powered UPS systems.

• Integration of renewables: Renewable energy sources are fluctuating by nature 
and depend on several variable parameters. These variations cause frequency and 
voltage fluctuations, causing grid instability. A BESS system even in its second 
life can help compensate for grid imbalances.

• Energy independence applications: Batteries during their second life can be 
integrated into microgrids, useful for powering users, which can range from 
buildings to neighborhoods. Microgrids are often powered by renewables; there-
fore, BESSs prevent grid imbalances.

• Support for fast-charge recharges: The possibility of integrating BESSs during 
their second life into high-power infrastructures helps to reduce energy costs and 
avoid grid peaks. The station could also move toward net-zero energy consump-
tion with the assistance of a BESS. 

Despite the existence of different applications for batteries during their second 
life, there are applications where high-power density and instantaneous service with 
a high C-rate are required, which do not make second life batteries suitable for the 
task. Among the high-performance applications, there are those of backup or support 
to the network to increase the power quality. Therefore, even reactive power 
compensation operations require too high performance and significant stress levels 
for batteries during their second life [41–43].
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Part III 
Battery Markets 

Preface 

The market for batteries, in particular lithium-ion batteries that constitute the pres-
ently dominating technology, keeps growing at stunning pace, and technological 
boundaries are being pushed further. There are several markets for stationary, 
mobile, and portable applications, which are all characterized by different require-
ments and that are subject to high dynamics in line of the ongoing energy transition. 
For example, new policy regulations, the pandemic, and the ongoing war in Ukraine 
have triggered several developments that lead to an increased demand of batteries for 
stationary and mobile applications. One of the most striking developments is the fast 
growth of electric mobility which is gaining a high momentum triggered by China 
and the USA. At the same time, batteries are gaining more and more attention for 
stationary applications, starting from residential on a kWh size to bulk storage with 
multiple MWh capacities. The first section, i.e., Chapter 6, analyzes in detail the 
battery market fragmentation, upcoming requirements, main drivers, and challenges 
of stationary, mobile, and portable applications. In the following Chapter 7, fore-
seeable developments in battery technologies, markets, key performance indicators, 
and demand scenarios are discussed along with most relevant battery use cases. In 
addition, new research trends for future market developments are assessed and 
broken down to lithium, new cell materials, cell and manufacturing design, 
recycling, and the use of raw materials.
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Chapter 6 
Battery Market Segmentation 

Stefan Wolf and Javier Olarte 
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6.1 Introduction 

Batteries are used in a large number of different applications. The spectrum ranges 
from grid-connected stationary battery storage in the megawatt-hour range to 
extremely small batteries in the microwatt-hour range that can be integrated into 
electronic systems. Each use case places different demands on the battery. Accord-
ingly, there are major differences between the battery technologies used, both at the 
level of the cells and at the battery systems level. In many applications at the system 
design phase, engineers select the battery technology in a tradeoff between cost and 
application requirements. The sweet spot in this tradeoff is different from one 
application to another. Scientific literature provides a set of KPIs to describe battery 
characteristics that allow to compare them with each other. In many cases these
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KPIs serve as a first orientation for which battery technology is is best suited 
for which application as shown in Fig. 6.1.
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Fig. 6.1 Most valuable characteristics or KPIs for battery technology comparison [25] 

However, when the application requirements are analyzed in more detail, other 
aspects appear as relevant in the decision-making process, namely, cost, safety, 
environmental, and social, among others. 

The battery market is therefore fragmented into many market segments that differ 
considerably not only in terms of the technology used but also in terms of market 
volume. The most important market segment by market size is batteries for road 
vehicles. Nevertheless, different market segments are described below and classified 
in terms of their specific requirements. These market segments are grouped into the 
classes stationary, mobile, and portable. 

6.2 Stationary 

Stationary battery storage systems are usually connected to an electricity grid. They 
provide services that serve the grid operation and decouple the generation and 
consumption of electricity over time. This facilitates the integration of volatile 
renewable power generation. In addition, they can be used to dampen peak loads 
and thus facilitate the integration of new consumers such as electric vehicles and heat 
pumps. Thus, stationary battery storage represents a key technology for the energy



transition in the electricity grid. Figure 6.2 provides an overview of different storage 
technologies and their areas of application in the electricity grid. 
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Fig. 6.2 Stationary energy storage systems and their use cases [3] 

Home Storage Home battery storage is mostly used “behind the meter” to optimize 
self-consumption via time-shifting of locally generated renewable energy. The most 
common combination is a battery home storage system with a rooftop photovoltaic 
system. Energy is stored during the midday hours. In the morning and evening hours, 
it is fed into the home grid to supply electrical appliances. The optimal storage size 
depends on electricity and system costs, load and generation profiles, energy con-
sumption, and the size of the installed photovoltaic system. In addition, battery home 
storage systems can also be used to bridge interruptions in the power supply. The 
typical usable battery capacity of such storage systems is in the range of 2–15 kWh 
[27]. In contrast to other applications, the esthetics of the battery storage unit is also a 
purchase-relevant decision criterion here. 

The demand for home battery storage will continue to increase in the coming 
years. The driving forces for market development are listed below:



• Renewable energies and electrification: Residential buildings are increasingly 
being equipped with photovoltaic systems. Additionally, new electrical con-
sumers such as heat pumps and electric vehicles are being added. Time-shifting 
of generated electricity behind the meter significantly increases the self-
consumption rate and lowers energy supply costs.

• Rising energy costs: Fossil greenhouse gas emissions are increasingly being 
factored into energy costs. Taxes and levies are designed to provide incentives 
to conserve energy. Political and economic crises repeatedly cause fluctuating 
prices on the energy markets. Home storage systems serve as enablers for 
personal energy cost optimization.

• Guaranteed electricity supply: Not in every country electricity is reliably avail-
able 24/7. Blackouts or scheduled brownouts restrict the quality of life and can 
lead to consequential damages. Home storage systems make it possible to bridge 
gaps in the electricity supply.

• Technological progress: The technology offers potential for further improvement. 
New battery chemistries like sodium ion promise a rapid further decrease in 
battery costs. Optimized software and electronics will increase round-trip effi-
ciencies. This will improve economic efficiency. With increasing sales figures, 
economies of scale can be realized in production resulting in a further improve-
ment of economic efficiency. 
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Industrial and Commercial Storage The focus of industrially and commercially 
used battery storage systems is on peakshaving and uninterruptible power supply 
(UPS). Peakshaving serves to reduce the connected load, which is particularly 
relevant for companies in the manufacturing sector. The “behind-the-meter” battery 
storage system can reduce load peaks. For particularly short load peaks with steep 
power gradients, a combination with ultracapacitors can be useful. In UPS applica-
tions, battery storage ensures the power supply for machines and ICT systems. 
Especially for the operation of data centers, such UPS systems are an absolute 
necessity. Furthermore, the roofs of factory and office buildings are increasingly 
being equipped with photovoltaic systems. Even if the generation and consumption 
profiles usually have a considerably greater overlap here than in residential build-
ings, time-shifting can be used to optimize self-consumption. Comparing different 
companies for storage systems, the size of such battery storage systems typically 
ranges from 20 kWh to 2 MWh [10]. While the energy density plays a subordinate 
role for such applications, the price and potential energy cost savings have a major 
influence on the purchase decision. 

The use of battery storage systems will continue to increase in industrial and 
commercial applications [4]. The main drivers for this are listed below:

• Energy cost optimization: Grid connection costs are usually calculated on the 
basis of the maximum electrical power used. Peakshaving can reduce power 
peaks and thus energy costs. The same applies to optimizing self-consumption 
by time-shifting renewable energy production.



• Sustainability reporting: Low greenhouse gas production and on-site generation 
and use of renewable energies have a positive impact on the sustainability of the 
company. Battery storage is an enabler for the optimal use of renewable energy. 
Positive sustainability reports can be used in advertising. Furthermore, sustain-
ability reports are used by investors to analyze the company’s exposure to climate 
legislation. This can have an effect on the company’s cost of capital.

• Security of supply: Power failures or voltage drops can affect technical systems. 
Considerable damage to plants and products can be the result. Battery storage 
works like an insurance against this risk. The willingness to pay is accordingly 
based on the amount of risk that can be avoided. 
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Utility Storage Grid-integrated battery storage can provide various ancillary ser-
vices listed in Fig. 6.2. The integration of battery storage systems is possible in the 
distribution grid as well as in the transmission grid. In the distribution grid, station-
ary battery storage systems primarily serve to stabilize the grid in the event of short-
term fluctuations. The feed-in of fluctuating renewable energies and new consumers 
such as electric vehicles or heat pumps leads to an increased strain on the distribution 
grids. This can lead to voltage fluctuations. However, maintaining certain voltage 
bands (+/- 10%) is a crucial prerequisite for the reliable operation of electrical 
devices [16]. Grid-integrated battery storage systems can stabilize the grid voltage 
by feeding in or consuming active power. Via the inverter, battery systems can also 
provide reactive power, which also affects grid voltage. In addition, battery storage 
systems can have a dampening effect on voltage gradients and thus improve the 
voltage quality. In time-shifting and peakshaving operation, battery storage systems 
reduce grid load. In this way, the need for grid expansion can be reduced or delayed. 
In the event of a grid collapse, grid-integrated battery storage can maintain the power 
supply in smaller grid areas for a short time. If the grid does collapse completely, 
such storage systems can also be used for black-starting the grid. 

When used in the transmission grid, the main focus is on providing control power. 
There must be a constant balance between generation and consumption in the 
electricity grid. If this balance is disturbed, balancing measures take effect, which 
are classified according to their time of provision as instantaneous reserve, primary 
control reserve, secondary control reserve, minute reserve, and reserve by the 
balancing group manager. The instantaneous reserve is the immediate compensation 
of power imbalances. In conventional power plants, it is provided from the energy of 
the rotating masses in turbines and generators. Therefore, it is also called spinning 
reserve. Primary control power must be activated within seconds and held for a 
period of minutes. In Germany, activation time is 15 s and power must be held for up 
to 15 min [9]. The following activation times are valid for power balancing in 
Germany, but there are comparable requirements in other electricity markets 
[24]. These requirements are similar in different electricity markets. Secondary 
control power must be capable of being fully activated within 5 min. The minute 
reserve must be fully activated within 15 min and be provided for at least 15 min. 
However, the provision period can also be up to several hours. If these measures are 
not sufficient, the balancing group manager activates further reserve capacities.



Battery storage systems are able to provide all these balancing measures positively 
(energy injection) or negatively (energy absorption). 
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The demand for grid-integrated utility scale battery storage is much related to the 
chosen power generation mix. The continuing global trend toward the expansion of 
weather-dependent renewable energies indicates that the market will expand much 
further. However, the extent of market growth is difficult to estimate. The main 
influencing factors are listed below:

• Grid relief: The integration of weather-dependent renewable energies and new 
electricity consumers creates major challenges, especially at distribution grid 
level. Grid-integrated battery storage can relieve the load on the electricity grid. 
In this way, grid operators can save costs and gain time for grid expansion or 
make it unnecessary.

• Cost reduction: In control devices, power electronics, and battery technology, 
there is still great potential to further reduce the total cost of ownership. With 
regard to battery technology, cost reductions can be achieved through new cell 
chemistries such as sodium-ion batteries and possibly also second life batteries.

• Demand side integration: It is uncertain to what extent the consumer side can be 
integrated into grid operation and to what extent consumers behind the meter will 
make their own optimizations. For example, electric vehicles have a huge storage 
capacity in total. However, it is uncertain to what extent the vehicle electronics, 
the cycle stability of vehicle batteries, and the charging infrastructure will enable 
the grid integration of electric vehicles. 

Non-battery Stationary storage In addition to battery systems and different cell 
chemistries, there are a number of other energy storage technologies that need to be 
mentioned here (also see Fig. 6.2) in order to compare battery technology.

• Ultra-/Supercapacitor energy storage (SCES) is primarily suitable for very short-
term, high-power electricity storage. Their use is particularly worthwhile in the 
case of rapid successive charging and discharging cycles. This is the case, for 
example, in the improvement of power quality. When electrifying applications 
with this requirement profile, combined systems with batteries and capacitors are 
increasingly being used.

• Superconductive magnetic energy storage (SMES) can store energy in magnetic 
form in superconducting coils. They have a high-power density. The field of 
application corresponds to that of supercapacitors.

• Compressed air energy storage (CAES) uses compressed air to store energy. Air 
is sucked in and compressed by a compressor and stored in a tank. Since large 
volumes are required, underground caverns, for example, in salt domes, are often 
used for storage. When energy is needed again, the compressed air can be 
expanded via a gas turbine. Heat recovery can significantly increase circulation 
efficiency. The shorter the cycle duration, the better heat can be recovered. 
Therefore, CAES are used as spinning reserves and for time-shifting.

• Pumped hydro energy storage (PHS) stores electricity in positional energy. For 
this purpose, water is pumped into a higher basin. When energy is needed, the



water is drained from the basin and passed over a turbine, which then generates 
electricity again. Due to its very fast reactivity, PHS is suitable for peakshaving 
and arbitrage trading but also for longer term energy storage.

• Flywheel energy storage (FES) stores electricity in rotational energy. For this 
purpose, a heavy cylinder is rotated or decelerated by an electric motor. The 
energy that can be stored is comparatively limited. That is why there are only a 
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few applications for this type of storage. 

6.3 Mobile 

Batteries are increasingly being used to power vehicles of all kinds—a domain 
previously primarily occupied by petrochemical fuels and internal combustion 
engines. However, fuels of fossil origin are not compatible with mitigating climate 
change. Therefore, governments around the world have taken steps to phase out 
internal combustion engines in the transport sector. In the European Union, for 
example, with a few exemptions, only zero-emission vehicles can be newly regis-
tered from 2035 [13]. Japan and China are aiming for full electrification of new car 
sales by 2035 [17]. Battery-electric vehicles are the most advanced technology to 
meet these requirements. However, the trend toward electrification is not limited to 
road transport. Electrification with the use of battery technology is also advancing in 
other areas such as micromobility, commercial vehicles, shipping, rail transport or 
aviation. As different as these application areas are, the suitable battery technologies 
are also very different. Each battery technology has its characteristic properties, just 
as each mobility application has its characteristic requirements. Table 6.1 shows a 
utility value analysis of which battery technology is suitable for which 
application [6]. 

Micromobility Micromobility includes e-bikes, electric scooters, and other small 
electric means of transport. They are mainly used for shorter distances in urban 
environments. Electric scooters in particular are offered as mobility as a service 
products by various providers in cities. Batteries are usually integrated into the 
product or can be removed and replaced completely in form of an encased battery 
pack. The design and size of the product is decisive for the degree of integration of 
the battery. Typical battery sizes range from a few 100 Wh to a few kWh [4]. Impor-
tant criteria for the selection of suitable battery technologies in this market segment 
are cost, energy density, and charging rate. 

Micromobility devices became possible due to low-cost batteries, compact and 
powerful electric motors, and advances in power electronics and control compo-
nents. Due to the great success of e-bikes, powered scooters, powered self-balancing 
boards, powered skate boards, and many other devices, market diffusion is already 
more advanced compared to other mobile battery applications. Yet significant 
growth potential remains in the micromobility market, even if year-on-year growth 
rates are declining to single-digit percentages. The key growth drivers are listed 
below:



Table 6.1 Battery technology to mobility application fit overview

• Growing urbanization: The global trend toward urbanization is changing mobility 
behavior as well. Congestion and growing environmental awareness lead to an 
increased use of alternative modes of transport. Battery-powered micromobility 
on short distances and paved surfaces in urban centers is a viable alternative to 
other modes of transport.

• Convenience and accessibility: Battery-powered micromobility devices are a 
low-barrier complement to public transport in urban centers. For disabled people, 
they can facilitate access to mobility. It is also the most affordable form of 
motorised individual mobility.

• Government incentives: Cities create incentives to improve air quality and decar-
bonize mobility. Battery-powered micromobility benefits from this. 
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Micromobility ○ ○ ○ ○ + – – + + – 

Motorcycle ○ ○ – – – –  ○ + – – – ○ 

Sedan – – ○ – ○ – –  – – ○ – – –  

Sports Car + + ○ ○ – – –  ○ – –  – –  – 

SUV ○ ○ ○ ○ – – – – – – – – –  

Pickup Truck – – – – –  – –  – –  ○ – – ○ + 

Heavy Duty Truck – – – – –  – –  – – – – – + – –  

Planes ○ – –  – –  – –  – –  – –  ○ – – + + 

Legend: – – bad, – poor, ○ average, + good, + + great 

Passenger Vehicles This class of mobile applications represents the largest market 
segment in terms of market volume. Therefore, the class of passenger vehicles 
deserves further subdivision into motorbikes, cars, buses, and trucks.
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For the application of batteries in motorcycles, the charging rate and the volu-
metric and gravimetric energy density are primarily relevant decision variables. The 
reasons for this are the limited construction space available and the narrow limits in 
the tolerable vehicle weight. Typical battery sizes are in the range of 5–20 KWh 
[4]. For less heavily motorized mopeds and scooters used in urban traffic, exchange-
able batteries may also be an option. In those cases, priorities shift toward gravimet-
ric energy density and cost. Such vehicles are typically equipped with batteries of 
1–5 kilowatt-hours [4]. 

Battery-electric cars represent the single largest market segment. Depending on 
the size and weight of the vehicle as well as the intended use, different requirements 
for the battery technology apply (compare Table 6.1). Battery-electric cars are 
typically equipped with batteries from 30 to 110 KWh [14] with a growth trend. 
NMC cell chemistries are widely used. In cheaper vehicles with a shorter range, LFP 
is also used. For small vehicles with low range, the use of sodium-ion batteries may 
also be conceivable. For the selection of battery technologies for electric cars, the 
most important priorities are cost, volumetric energy density, and life cycle. Batte-
ries are usually permanently installed in the vehicle in the form of a battery pack 
although some vehicle manufacturers also offer interchangeability of battery packs. 
These batteries are usually equipped with a conditioning system that can cool or heat 
the battery. Cooling is particularly necessary for fast charging. While charging, heat 
is generated due to the internal resistance of battery cells that must be managed in 
order not to endanger the thermal stability of cells. Moreover, the battery can be 
preheated in cold ambient temperatures to prepare it for charging and enable a higher 
charging rate. With regard to the integration of batteries into the vehicle, there are 
two opposing trends. Manufacturers like Tesla and BYD work on making the battery 
pack a structural part of the vehicle [28]. This saves weight and reduces the 
necessary installation space. Other manufacturers, above all nio, are opting for 
battery swap systems. This allows for greater flexibility and gentler charging. 
However, this greater flexibility comes at the price of disadvantages due to the 
standardized form factor of the battery pack and the more difficult thermal manage-
ment. In addition, the construction and operation of the swapping infrastructure is 
associated with comparatively high costs. Therefore, vehicle-integrated battery 
systems are likely to be sufficient for most applications. Cars with swappable 
batteries primarily address the customer segment of businesspersons and travelling 
salespersons, since a costly battery-swapping infrastructure must be built and oper-
ated. Due to the cost premium, it is to be expected that cars with swappable batteries 
will initially be offered in the premium segment and purchased by people with high 
mobility needs and a high willingness to pay. 

For buses, there are two different use cases. Most buses are used in urban public 
transport. This use case is characterized by frequent starts and stops as well as fixed 
routes. Longer stops, e.g., at terminus stations, allow for recharging of the batteries. 
Recharging can be done in different ways. However, automated pantograph systems 
are becoming increasingly popular. Depending on the route and charging opportu-
nities, city buses are equipped with 200–500 kWh batteries [1, 7]. Due to frequent 
starting and stopping, there is a great potential for recuperation. For maximum



utilization of the recuperation potential, batteries can also be combined with 
ultracapacitors. Here is also the biggest difference to coaches, since they are usually 
travelling at a constant speed over longer distances. In addition, there are fewer 
opportunities for charging breaks. For this reason, coaches are also offered with 
larger batteries beyond 500 kWh [1]. 
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Battery-electric vehicles are the largest market segment for the application of 
batteries for the foreseeable future. More than 80 million passenger vehicles are sold 
globally [11]. By 2050, battery-electric vehicles will make up most of this market. In 
its net zero-emissions scenario, the IEA projects that by 2030 the global market share 
of electric vehicles will be around 60% [18]. This significant market growth is driven 
by several factors, which are listed below:

• Environmental and climate regulation: In order to mitigate climate change and 
improve air quality in urban areas, governments are taking regulatory measures 
against internal combustion engine vehicles. Since this does not fundamentally 
change mobility behavior, battery-electric vehicles are among the beneficiaries.

• Government incentives: In order to accelerate the market ramp-up, many gov-
ernments provide substantial financial incentives for the purchase of zero-
emission vehicles. In particular, countries with a strong automotive industry 
also directly promote the development and production of batteries.

• Comfort: Even if charging pauses on long-distance journeys have a detrimental 
effect on comfort, battery-electric vehicles do offer some advantages. The interior 
can be designed more generously; the vehicle is significantly more quiet and less 
prone to wear and tear. 

Commercial Vehicles Commercial vehicles fulfill transport applications from 
urban delivery services to freight transport on international long-haul routes. The 
requirements for performance and range differ accordingly. In delivery applications, 
smaller vehicles below 12 t gross vehicle weight are commonly used. The require-
ments for these vehicles are similar to those for large cars and pickup trucks. Heavier 
trucks are used for short-distance transport logistics and retail deliveries. Due to the 
relatively short daily routes of less than 400 km, moderate battery sizes of 100 kWh 
to 500 kWh are mostly sufficient [26]. Long-distance road transport of goods is 
usually done with heavy duty long-haul trucks with larger batteries in the range of 
350–1000 kWh [5, 26]. Figure 6.3 gives an overview of the frequency of the 
different applications and the average battery sizes installed [8]. The most common 
cell chemistries in commercial vehicles are NMC, LFP [20], and, coming up soon, 
LMFP [19]. The most important criteria for choosing the right battery technology are 
gravimetric energy density, life cycle, and cost. Compared to passenger vehicles, life 
cycle is of particular importance. Especially in long-distance traffic, mileages of 
more than 1000,000 kilometers must be achieved over the lifetime of the vehicle. 
Despite the disadvantages of batteries in terms of weight and charging time, the high 
degree of utilization of batteries in long-haul transport leads to unexpectedly positive 
cost-effectiveness.
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Fig. 6.3 Use cases for battery-electric heavy duty transport [8] 

Shipping Shipping is a difficult field for the application of battery-electric propul-
sion systems. Large and heavy vessels require a lot of energy and thus also 
exceptionally large batteries. Nevertheless, battery-electric propulsion systems are 
increasingly being used in shipping. The first applications are pleasure crafts, 
touristic riverboats, and ferries. These applications combine relatively short routes 
and nearby charging opportunities. Norway is the global pioneer in the electrification 
of shipping. As of 2026, the country has declared its fjords to become the world’s 
first maritime zero-emission zone [21]. The first battery-powered ferries are already 
in operation. The Bastø Electric, for example, began operation in the Oslo Fjord in 
2021. The ferry is 143 m long and has room for 200 cars, 24 trucks, and 600 people. 
Batteries with a total capacity of 4300 kWh store the energy [12]. In addition, it can 
be useful in regions that are less well connected to the electricity grid to set up buffer 
storage at piers to charge the ships’ batteries. Beyond that, battery-electric marine 
propulsion systems could also be used in coastal cargo shipping. A study published 
in 2022 concludes that the total cost of propulsion (TCP) of battery-electric vessels is 
competitive to internal combustion engine powered vessels up to a distance of 
1000 km [22]. The authors estimate that the competitive route length will increase 
to around 3300 km in the near future. This is due to expected further reductions in 
battery costs and higher energy density as well as increasing TCP for internal 
combustion engine ships.
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Battery-electric drives are becoming increasingly relevant in shipping. The larg-
est number of sold propulsion systems is achieved in the segment of pleasure crafts. 
Passenger and container ships, however, require considerably larger batteries, so that 
a relevant market is emerging here as well. The most important market drivers are 
listed below:

• Comfort: In the pleasure craft market segment, comfort plays a very significant 
role. Battery-electric drive systems are compact and low maintenance. They are 
also quiet and do not produce exhaust emissions. Integrated systems can also 
provide power for electrical devices on board. It is also possible to charge these 
batteries with onboard solar panels. Accordingly, a dynamically growing market 
is already developing here.

• Environmental regulation: Emissions of pollutants from shipping are the subject 
of public debate. The example of Norway shows how states are setting regulatory 
frameworks that benefit battery-electric propulsion systems. Besides the Norwe-
gian fjords, also pollutant emissions from ships on inland waterways in densely 
populated areas are relevant.

• Corporate sustainability: Sustainability is becoming an increasingly strong selling 
point. This is especially true in tourist shipping.

• Costs: Especially in the pleasure craft segment, there are synergy effects that 
justify higher costs. In commercial shipping, the economic competitiveness is 
much more important. The competitiveness of battery-electric propulsion 
depends on two opposing trends: firstly, the further cost degression of battery 
storage system and, secondly, cost increases of fossil fuel powered propulsion 
systems. Here, factoring in of the damage caused by CO2 emissions is a major 
cost driver. 

Aviation Aviation is one of those industries where avoiding greenhouse gas emis-
sions is particularly difficult. One obstacle to the electrification of aviation is the very 
tight weight limits. Consequently, propulsion systems must provide a high energy 
density and, for takeoffs, also a high-power density. In addition, very strict safety 
requirements apply, because problems during flight can have devastating conse-
quences. This combination of requirements poses a major challenge for new climate-
friendly propulsion systems. Despite this, the use of battery-electric propulsion 
systems is being considered in aviation. Prototypes and demonstrators from various 
manufacturers have already proven the technical feasibility of battery-powered 
aircraft. This concerns small short-haul aircraft or vertical takeoff and landing 
(VTOL) devices. If batteries are to play a relevant role in aviation, however, battery 
technologies with significantly higher energy densities must be developed. Studies 
assume that at least 400 Wh/kg to 750 Wh/kg are necessary for regional air traffic. If 
traditional narrow-body aircraft designs are to be equipped with battery-electric 
propulsion systems, at least 600 Wh/kg to 820 Wh/kg will be required for commer-
cial operation on regional routes [2]. Current lithium-ion technology cannot meet 
these requirements. Lithium sulfur batteries could theoretically achieve the required 
energy densities but are still under development. Key challenges would be higher



discharge rates and a longer life cycle. Greater hope lies in the use of solid state 
batteries. Here, too, many challenges still need to be solved, especially to improve 
manufacturability. If solid state batteries with high energy density and good safety 
characteristics become available by the end of the 2020s, aviation will be one of the 
most interesting market segments for their commercial application. But the challenge 
of battery-electric flying is bigger than just changing the propulsion system. New 
aircraft designs are necessary to exploit all efficiency potentials. Decades of further 
development are necessary to enable widespread adaptation of battery-electric 
aviation in passenger transport. The first applications of this technology will be 
small short-haul aircraft for only a few passengers. 
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Aviation is a market segment in which battery-electric propulsion systems may 
play a role in the future. The prerequisite for this, however, is significant technolog-
ical progress. Therefore, this market segment is prone to become a test field for novel 
high-performance batteries. Whether battery-electric designs will play a larger role 
in regional air traffic also depends on the progress made in the development of 
alternative drive technologies and synthetic fuels. The key market drivers are listed 
below:

• New aviation concepts: VTOLs enable flight connections over short distances 
that were previously restricted to other modes of transport. Especially in densely 
populated areas, low noise and pollutant emissions as well as high safety stan-
dards are mandatory acceptance criteria for this technology. Electric propulsion 
systems with multiple rotors can meet these requirements. Various companies are 
developing and testing such concepts already. Another rapidly growing market 
segment is unmanned drones, which are being used in various fields of applica-
tion. Military applications are a strong technology and market driver in this area.

• Environmental regulations: Aviation is also experiencing increasingly stricter 
regulation of pollutant and greenhouse gas emissions. To some extent, it is 
already included in emissions trading systems. Regulatory requirements and 
rising costs associated with fossil fuels may improve the economic viability of 
battery-electric propulsion systems in aviation in the future. 

Rail Rail transport can be subdivided into light urban and tram transport, regional 
and long-distance passenger transport, and heavy freight transport. Overall, rail 
transport is already a very efficient and climate-friendly mode of transport. Never-
theless, there are use cases in the different areas where batteries should be consid-
ered. Urban rail passenger transport is already electrified to a large extent. Here, 
batteries can be used to make optimal use of the energy recovery potential of 
regenerative braking. Depending on the topology of the terrain and the dimensioning 
of the catenary network, the amount of energy that can be fed back into catenaries 
may be limited. Small batteries sometimes in combination with ultracapacitors can 
act as buffer storage and help to stabilize the voltage quality in the overhead contact 
line network. This can save up to 30% energy [15]. In addition, the construction of 
tram lines and catenaries in dense urban areas can lead to spatial conflicts with other



infrastructures. With small batteries, trams can bridge shorter distances without 
catenary. This can simplify the traffic planning of intersections, for example. 
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Long-distance passenger transport is usually equipped with overhead lines, as 
long-distance routes are often at high capacity. In regional transport, the share of 
electrified routes is significantly lower. Here, battery-electric trains are an alternative 
to diesel-powered trains. This is especially true if parts of the route are electrified 
with catenaries. The trains’ batteries can then be recharged in these sections of the 
route. The first battery-electric trains are already in operation. Due to the good 
integration into the existing infrastructure, battery-electric regional trains are an 
interesting market segment. Depending on the route length, batteries with more 
than 300 kWh capacity are used. Due to the high total weight and the large transport 
capacity, the energy consumption of battery-electric trains is 3–8 kWh/km. Where 
there is no catenary infrastructure at all, battery-electric trains will eventually have to 
compete with other propulsion technologies such as hydrogen fuel cells and syn-
thetic fuels. 

In heavy freight transport, the comparatively low energy density of batteries 
becomes a problem especially over long distances. However, the use of battery-
electric power trains would also be technically feasible here. More realistic, how-
ever, is the use of battery-electric freight locomotives in shunting operations, on 
factory premises, and on short regional routes. 

Batteries for rail transport require a high energy density. This is particularly 
important when longer distances are to be covered. In addition, a high-power density 
is necessary to exploit the full potential of regenerative braking and quick acceler-
ation. Another important aspect is the requirement for a very long life cycle. Trains 
are in continuous operation and cover several million kilometers over their lifetime. 
Accordingly, the battery must be able to withstand many charging cycles. In 
addition, there are high demands on safety and reliability. Particularly in freight 
transport, hazardous goods are also transported. Fire risks must therefore be avoided. 
Furthermore, in the event of a defect, a train may block a section of the track. This 
can lead to high consequential costs. 

Rail transport is an interesting market segment for a relatively small number of 
large battery systems. Whereas in the past it was mainly hydrogen drives that were 
seen as a future technology here, interest is increasingly moving in the direction of 
battery-electric trains. The main market forces are listed below:

• Environmental regulation: Stricter climate and environmental legislation also 
affects rail transport. Moreover, many railway companies around the world are 
partly or fully state-owned. Therefore, politics can exert more direct influence on 
investment decisions and accelerate the switch to more climate-friendly 
technologies.

• Energy costs: Electric trains can recover energy when braking. With battery-
powered trains, this is becoming possible even in areas without catenaries. 
Energy costs can be reduced through increased energy efficiency. The magnitude 
of this effect, of course, depends on the difference between electricity and fuel 
prices.



• Improved performance: Compared to diesel engines, electric motors can be 
controlled better, and they provide full torque already at low speed. This has a 
positive effect on acceleration.

• Comfort: In passenger transport, passenger comfort is also an important decision 
criterion. Diesel engines cause nuisance through exhaust fumes, noise, and 
vibrations, which have a negative impact on the passengers’ perception of 
comfort and quality. 
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6.4 Portable 

Portable batteries have been the largest market segment in the past. This market 
segment covers a wide range of applications. These include consumer electronics, 
power tools, medical devices, and numerous other applications. The typical battery 
capacity is in the range of a few watt-hours. Batteries with a capacity of up to 
1 kilowatt-hour are used in power tools. Portable batteries are usually directly 
integrated into the product. Depending on the size, energy requirements, and usage 
characteristics of the product, there are very different requirements for the battery 
technology. Accordingly, this market segment offers many small niches for manu-
facturers of special batteries. The various niche applications also offer interesting 
market entry opportunities for the first-time commercialization of new battery 
technologies. Due to the great diversity of battery applications, with relatively 
small market volumes, the individual applications are only briefly described 
below [4].

• Telecommunications: The market segment is very established and the products 
are mature. The market is saturated and the number of smartphones sold has been 
declining slightly since 2017. Lithium-ion battery cells in laminated cell formats 
with form factors specially adapted to the product are used to a large extent. The 
capacity of these batteries is in the range of 4–20 Wh. This market segment is 
very cost-sensitive.

• Laptops and tablets: The market for laptop and tablet batteries is saturated. 
Laptops reached peak demand in 2011 and tablets in 2014. Since then, sales 
figures have stagnated. In the past, 18,650 format round cells were more common, 
but in the competition for thinner and lighter laptops, many manufacturers are 
increasingly switching to specially designed pouch formats. Nearly all batteries 
used are lithium-ion.

• Power tools: The market for power tools continues to grow dynamically. More 
than one million units are sold annually. The market covers a broad spectrum 
from low-end solutions for occasional users (6 V, 10 Wh) to powerful profes-
sional tools (36 V, > 50 Wh). Increasingly, Li-Ion batteries are prevailing over 
NiCd batteries. The power-tool manufacturers expect from batteries above all low 
prices, fast charging, and high energy density. For professional tools, an 
improved life cycle of more than 500 cycles is also important.



• Medical devices: Batteries are used in medical devices such as implants, defibril-
lators, hearing aids, and prostheses. Particularly in the case of implants and 
hearing aids, extreme requirements are placed on batteries due to the small 
packaging space. As these requirements can be very specific, various cell chem-
istries are used in special cell formats. The market for medical battery applications 
is growing dynamically. On the one hand, this is due to the constant expansion of 
the product range, but also to an aging population in wealthy industrial countries.

• Household devices: Batteries are increasingly being used in household appliances 
such as shavers, toothbrushes, or vacuum cleaners. The market is growing 
dynamically, even if there are major differences between the individual product 
categories. Lithium-ion batteries have replaced other cell chemistries in many 
product categories. The market segment is very price-sensitive. In addition, short 
charging times and low self-discharge are expected. 
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Besides the market segments mentioned, there are numerous others, such as toys, 
mobile video game consoles, sports equipment, smartwatches, or wearable electron-
ics, which will not be discussed in detail. However, the large number of applications 
shows the great potential for smaller manufacturers of special batteries. The special 
requirements create the necessary conditions for the introduction of new battery 
technologies. For this reason, the small-scale consumer battery market cannot be 
neglected. 
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The global battery market has been growing very dynamically since the beginning of
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already USD 39 billion in 2020.

7.2 Market Outlook

USD 93 billion. Lead-acid batteries accounted for USD 37 billion of this, of which
414 GWh were produced in 2020. The production volume of Li-ion batteries was
just over half that at 250 GWh. However, the market volume of Li-ion batteries was
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Fig. 7.1 Evaluation of the global battery market outlook [14]

The market outlook is characterized by strong growth in the production of Li-ion
batteries. Figure 7.1 shows the battery market development based on an assessment
of market reports listed in Table 7.1. This growth is predominantly caused by the
transition from internal combustion engine vehicles to battery-electric vehicles. The
most likely growth path reaches a global production capacity of 3200 GWh/a in
2030, 7100 GWh/a in 2040, and 8900 GWh/a in 2050 [14].

In terms of regional breakdown of the global market, Asia, and China in partic-
ular, remains in the leading position. Based on the announced production capacities,
a substantial change in regional market shares is not to be expected. The studies
evaluated conclude that Europe will be able to cover a large part of its battery cell
demand itself by 2030. Europe’s share of the global market will be 16% to 27% in
2030, depending on the assumptions applied. Due to the multitude of influencing
factors, there is a great degree of uncertainty in this result.

In the decade from 2020 to 2030, the compound annual growth rate (CAGR) of
the global market is projected to be 26% [14]. This rapid growth provides a good
market entry opportunity for many new companies. As market diffusion of battery
technology continues, the CAGR will drop to single digits in the following decade



Table 7.1 Evaluated market reports projecting the future development of the battery market

from 2030 to 2040. This will start a market consolidation phase which many of the
new companies will not survive. The unsuccessful companies will be bought up by
the better performing ones. Therefore, an aggressive growth strategy is necessary to
survive in the mass market. In the second half of the 2020s, companies will need to
secure significant market share and strategic alliances with automakers to survive in
the long term. This conflicts with the limited experience of European and North
American start-ups in particular. It will be a matter of not only scaling quickly but
also learning more efficiently and faster than established companies that have been
active in the market for years. Another possible strategy is specialization. By
building up know-how and serving the needs of a smaller market segment, a
technological advantage over competing companies can be achieved. This approach
can enable survival with lower revenues compared to the mass market, but possibly
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more attractive margins.
The Li-ion battery market projection in Fig. 7.1 shows an assessment of 25 market

development scenarios from 18 market reports. The market projections are classified
into maximum, minimum, and realistic development paths depending on the
assumptions on which they are based. The maximum scenarios are mostly based
on the expansion targets announced by battery manufacturers. However, it can be
assumed that not all of the announced battery production capacities will actually be



created. Some of the players on the market today will not be able to survive and will
withdraw their announcements. The minimum scenarios are mostly based on regu-
latory requirements. Particularly in the vehicle sector, many countries have already
passed resolutions to phase out the internal combustion engine. One example of this
is the CO2 fleet limits for passenger cars and light commercial vehicles that apply in
the European Union [6, 7]. The minimum scenarios use these regulatory require-
ments as a basic assumption for estimating the expected market diffusion. The
realistic scenarios are based on the historically observable market diffusion of
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battery technology.
Battery-electric passenger cars will be by far the most important market segment.

Other, much smaller, market segments are commercial vehicles, stationary power
storage, consumer electronics, power tools, and similar. Projections for the marine,
aviation, and stationary power storage market segments are subject to the greatest
uncertainties. Stationary power storage in particular has less limiting requirements
for KPIs such as energy or power density neither gravimetric nor volumetric. This
allows significantly more freedom in the choice of cell chemistry. One example of
new battery chemistries with disruptive potential is sodium ion batteries. It is likely
that this battery technology will capture a significant portion of the market volume
outlined in Fig. 7.1. The properties of sodium ion batteries make them suitable for
use cases that do not necessarily require high energy densities. However, manufac-
turers are also considering putting sodium ion batteries in vehicles with a range of up
to 400 km in the future [3]. Breakthroughs in the industrialization of such cheaper
batteries for stationary electricity storage can lead to significantly accelerated market
diffusion. Nevertheless, even in this case, passenger cars would be expected to form
the largest market segment.

The actual development of the battery market is difficult to estimate because it
depends on a variety of influencing factors. The most probable path indicated in
Fig. 7.1 reflects the mean value of the realistic scenarios. Realistic scenarios are
considered to be those that make probable assumptions for the future impact of key
influencing factors while weighing up various options. The consistent scenario
descriptions resulting from this approach allow a projection for the future develop-
ment of the battery market based on the state of knowledge in 2022. The real
development of the battery market can deviate considerably from the most probable
path. The following developments can lead to a positive deviation [14]:

• Realization of all announced projects: The construction, commissioning, and
ramp-up of battery factories are a complex task that poses considerable chal-
lenges, especially for start-up companies. The supply of raw materials, active
materials, and components must also be ensured. It is therefore to be expected that
not all announced production capacities will actually be built, commissioned, and
fully utilized. Time delays also have a negative impact on the availability of
production capacities. If these assumptions are not correct and the production
capacities are actually realized as announced, the market development will shift
into the area of maximum scenarios.



1.5 °C target of the Paris climate agreement would shift the market development
into the range of the maximum scenarios.

• Accelerated demand growth: The realistic scenarios are based on the established
regulatory framework. In the past, it was observed that the speed of market
diffusion of new technologies has been increasing. Accordingly, it is possible
that the market for batteries, especially in the automotive segment, could grow
much faster than previously assumed.

• Faster battery cost degression: With every battery produced, the knowledge about
possible cost savings increases. Accordingly, the realistic scenarios extrapolate
the future development of battery costs in line with the observed learning curve.
New technical developments, for example, in production technology or through
the introduction of cheaper battery cell chemistries, can accelerate the cost
degression. Accordingly, a new market equilibrium would be expected to emerge
resulting in a larger battery market volume.

• Political support measures: Political measures can have a significant impact on
the development of the battery market. The realistic scenarios are based on a
business as usual assumption derived from the current and expected political
framework conditions. More ambitious policies and actual compliance with the
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However, there are also a number of factors that can have a negative impact on the
development of the battery market:

• Upstream supply bottlenecks: The rapid growth of battery production capacities
requires an equally rapid growth of upstream supply chains. Capacities along the
entire supply chain must be ramped up in parallel. However, especially in the
commodity sector, scaling up capacities is much more time-consuming
(5–10 years) than building battery factories (2–4 years). Therefore, realistic
scenarios assume that not all announced battery production capacities will actu-
ally be built. If significantly greater challenges arise in the development of
upstream supply chains than expected today, this will have a negative impact
on the development of the battery market. Influencing factors that are difficult to
assess are the actions of governments in local protests against mining projects and
the discovery of new raw material deposits.

• (Trade) conflicts: International trade went into crisis as early as the 2010s,
triggered by trade disputes between the USA and China. Russia’s invasion of
Ukraine and the subsequent sanctions also have an impact on the battery industry,
since Russia is a major nickel supplier with a global market share of slightly less
than 10%. Such conflicts can therefore have a significant impact on the develop-
ment of the battery industry. However, they are difficult to predict. Even more
difficult to assess are their consequences. New conflicts and a further acceleration
of the economic decoupling between the USA, Europe, and China can lead to
problems along the supply chains with negative effects on the development of the
battery market.

• Shortage of skilled labor: Many thousands of skilled workers are needed to build
up the battery industry and its supplier industries. These workers must be trained
and educated. This is a major task that requires the cooperation of the



patterns observed in the past. If instead a prolonged stagnation phase or even a
depression occurs, this will lead to a slower development of the battery market.

are subject to great uncertainty. The year in which the publication appeared is also
indicated.

governments, industry, and educational institutions. However, the battery indus-
try competes with other emerging industries for talents. This is further exacer-
bated by the demographic trends in major battery producing countries. However,
there is an opportunity for the battery industry to tap into skilled labor that is
being laid off in the production of internal combustion engines. Advances in
automation can also further reduce labor intensity. If the demand for skilled labor
cannot be met, delays are to be expected, which will shift market development
into the realm of the minimum scenarios.

• Economic slowdown: A general economic slowdown is likely to result in
restrained consumer spending and thus reduced demand for batteries. Recessions
are expected and occur at regular intervals. The realistic scenarios continue the
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The market reports evaluated in Fig. 7.1 are listed in Table 7.1 together with
additional information on the level of detail of those reports. Most of the reports
consider the world market in aggregated form. Some break down the market into
individual regions or countries. The table also shows the period covered by the
reports. Few reports make statements beyond 2030; as such, long-term projections

7.3 Market Entry of New Battery Technologies

The fundamental challenge of the future battery market lies in the mutual
interdependence of market demands and technological advances. The advancement
of battery application in various sectors (especially in aviation and medical devices)
requires a market maturity of high-performance battery solutions, while in turn
technological development progress is—at least partially—determined by market
potential. This section hence provides an outlook on foreseeable developments in
battery technologies (not limited to cell chemistry but including management sys-
tems and further components) and how their market introduction might interact with
demand scenarios in various segments.

KPIs play a crucial role in bridging the gap between market assessments and
technological outlooks by defining the most important characteristics of a battery
system with respect to their applicability. They serve as a measure of “how a battery
can be used” (for market scenarios) as well as a guideline for “what a battery can
provide” (in technology roadmaps). Our analysis will hence focus on current
definitions of and trends in KPIs.

This section is structured as follows: we will first give a short overview of KPI
target values for batteries on an international level. We will then discuss KPI trends
in relation to both battery market segments and technologies. Finally, we derive
conclusions for future market developments on the background of current research
trends.
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7.4 Overview of Target KPIs for Batteries

The set of KPIs for a particular battery application defines the main properties of
battery performance in the respective application. It typically encompasses a wide
range of technical parameters as well as cost parameters. For the sake of our analysis,
we will mainly focus on the KPIs used in the most recent battery Strategic Research
and Innovation Agenda (SRIA) [2]:

• Gravimetric and volumetric energy density at cell level (Wh per kg and Wh/l,
resp.)

• Power density at cell level (W per kg and W/l, resp.)
• Cycle life (for high-capacity and high voltage applications, resp.)
• Cost at pack level (€ per kWh).

Besides of upcoming improvements of lithium-ion-based cell chemistry, SRIA
provides KPI estimates for so-called “beyond lithium” approaches based on natrium
ion and metal-air concepts. Another stream of innovation is the concept of solid-state
batteries (SSBs) with polymer electrolytes. KPI estimates are taken from a recent
report by the Fraunhofer ISI [12].

With the advancement and market introduction of new cell technologies, signif-
icant improvements in all KPIs can be expected (see Table 7.2), although the
respective year of market availability bears uncertainty. For example, assuming the
availability of systems with a lifetime of more than 6000 cycles in the year 2030 and
over 15,000 cycles in the years after is well reasonable. The reader should keep in
mind though that these numbers represent goals related to ongoing or foreseeable
developments until the year 2030 rather than safe forecasts. However, a recent
overview [15] of manufacturers announcements indicates an earlier market
upscaling of sodium ion batteries than expected by SRIA.

7.5 KPI Trends in Relation to Both Battery Market
Segments and Technologies

The next step in the analysis is to summarize current expectations for particular KPI
levels from the demand/application perspective and compare them to the above
results. For the purpose of our analysis, we aggregate market subsegments up to a
reasonable degree and omit niche applications with relatively small market sizes.
The results of the comparison are summarized in Table 7.3.

A differentiated picture emerges in the comparison of KPI requirements in
different market sectors with current KPI projections of various battery technologies.
For large market segments, esp. light- to heavy-duty vehicles, the needs on
the demand side and the projections for generation 4–5 lithium-ion batteries on the
supply side are in fair agreement. However, further research is needed to satisfy the
needs of smaller segments such as airborne transport.



Technology/application
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Table 7.2 Objectives and outcomes of advanced material development, based on the Batteries
European Partnership Association [2] and Schmaltz et al. [12]

KPI goals: technological
parameters

KPI goal: cost at pack
level

Time
to
market

Generation 3
Li-ion batteries for mobility
applications

50–400 Wh/kg,
750–1.000 Wh/l
700 W/kg, 1500+ W/l
3000+ cycles (high-
capacity applications)/
2000+ cycles (high voltage
applications)

< 100 €/kWh 2025+

Generation 4
Li-ion batteries for mobility
applications

400+ - 500+ Wh/kg,
800+ - 1.000+ Wh/l
Up to 3000 cycles

< 75 €/kWh 2030+

Generation 5
Li-ion batteries for mobility
applications

500+ Wh/kg, 1.000 Wh/l
At least 800 cycles at 80%
DoD

< 75 €/kWh 2030+

Li-ion batteries for stationary
storage applications (commer-
cial high-power applications)
(a longer lifetime of 10,000+
cycles is defined for utility-scale
applications)

500+ Wh/l
6000+ cycles

< 75 €/kWh 2030

“Beyond lithium” Na-ion systems:
180 Wh/kg, 500 Wh/l
15.000+ cycles

Metal-air systems:
200+ Wh/kg, 800+ Wh/l
2.000–5.000 cycles

<0.05 €/kWh/cycle
corresponds to 100 €/
kWh for 2.000 cycles,
e.g.

2030+

Solid-state battery (SSB) with
polymer electrolyte

440 Wh/kg, 900 Wh/l n.a. 2030

“+” denotes “or more than”/“or later.” Li: lithium. Na: sodium

Light-duty battery-electric vehicles for passengers are the largest market segment
within the mobility sector. However, the KPI requirements of this segment can-
not fully be met by generation 3 Li-ion batteries (1000 W/kg/2.200 W/l of power
density in 2030). The same holds for plug-in hybrid electric vehicles. While their
future market share is significantly smaller than for BEVs, they still constitute a
demand of over 100 GWh [2] of battery capacity in the year 2030. Market maturity
of generation 4 and 5 solutions improves the situation, while the power density
remains a challenge.

Sodium (Na) ion-based systems are an option to satisfy the cycle life needs of
medium to heavy-duty BEV applications (up to 6000 cycles) in the near future. The
market introduction of these systems, expected to allow for a lifetime of over
15,000 cycles, is highly desirable to support a large-scale electrification of road
freight transport. Likewise, expectations for cycle lifetime in stationary applications
can—according to current projections—only be met by Na-ion systems. The power



density projections for Na-ion systems (500 Wh/l) do not satisfy the requirements of
stationary applications yet.
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Table 7.3 Comparing KPI goals on the demand side (market segments/applications) to KPI
projections on the supply side (technology-specific)

Market segment, 
market size (2030)

KPI goals Comparison to KPI projections
Gen.
3 
Li-ion

Gen.
4-5
Li-ion

Na-ion, 
metal-
air

SSB with 
polymer 
electrolyte

Mobility:
light-duty BEV (1.000 -
2.500 GWh/a)
and medium to heavy-duty 
BEV (200 GWh/a)

450 Wh/kg, 1.000 Wh/l (+) (+) (-) (-)
1.000 W/kg, 2.200+ W/l (-) n. a. n. a. n. a.
2.000 cycles (light) (+) (+) (+) n. a.
6.000 cycles (medium to 
high)

(o) (+) (+) n. a.

85 EUR/kWh (light), (o) (+) (-) n. a.
150 EUR/kWh (medium to 
high)

(+) (+) (-) n. a.

Mobility: 
light duty PHEV
(100 – 150 GWh/a)

350 Wh/kg, 800 Wh/l (+) (+) (o) (+)
1.750 W/kg, 3.850 W/l (-) n. a. n. a. n. a.
>2.000 cycles (+) (+) (+) n. a.
120 EUR/kWh (+) (+) (+) n. a.

Mobility: 
Off-road mobile 
machinery1

(30 GWh/a) and BE or 
hybrid electric ship with 
energy battery (4 GWh/a)

350 Wh/kg, 800 Wh/l 
(Ship: 1.000 Wh/l)

(+) (+) (o) (+)

>6.000 cycles
(Ship: > 10.000)

(o) (-) (+) n. a.

200 EUR/kWh 
(Ship: 75 EUR on cell level)

(+) (+) (+) n. a.

Mobility: BE or hybrid 
electric aircraft with power 
battery (up to 5 GWh/a)

450 Wh/kg, (power density 
n/a)

(+) (+) (-) (-)

>3.000 cycles (o) (-) (+) n. a.
200-300 EUR/kWh (+) (+) (+) n. a.

Stationary applications >250 Wh/kg, >700 Wh/l (o) (+) (-) (+)
>700 W/kg, >1.400 W/l (+) n. a. n. a. n. a.
15.000 cycles (-) (-) n. a.
70 €/kWh on module level (o) n. a.

Colors: goals are met (+, green), application goals are not met (-, red), ambiguous (o, yellow)
because the KPI goals on the supply side are not clearly defined or specified. “n.a.”: KPI estimate is
not available in the considered literature

Off-road mobile machinery (up to 30 GWh per year in the year 2030), often
characterized by continuous operation and robustness, requires large battery systems
of up to 1000 kWh in size, optimized for a high energy (rather than power) density
and outstanding lifetime requirements of up to 6000 cycles. Similarly, most water-
borne transport applications (approx. 4 GWh/a in 2030) require even larger scales
(up to several hundreds of MWh) and lifetimes (over 10,000 cycles). The latter
requirement can neither be met with generation 3–5 battery concepts for mobility



applications nor with metal-air systems. Li-ion batteries for stationary storage
applications but also Na-ion systems would meet the cycle lifetime requirements
but not the energy density demands. Improved solid-state batteries with polymer
electrolytes might provide the power density required in these market segments by
2030 [12].
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To conclude, while the technological development of batteries achieved remark-
able results, solutions beyond current Li-ion batteries are needed to enable large-
scale mobility and stationary applications. Particularly, power density levels beyond
those of the coming Li-ion battery generations for road vehicle applications and
improved cycle lifetimes for marine/aviation mobility and stationary applications are
desirable. While sodium ion battery technologies are a promising option to allow for
the high cycle lifetimes needed in most airborne and waterborne transport applica-
tions, energy density needs to improve to fully match the requirements of current
aircrafts and long-distance vessels for a full electric operation. A mature market
battery solution for the electrification of maritime and particularly airborne trans-
portation might have a high symbolic value, beyond its limited market size and
relatively modest contribution to current greenhouse gas emissions.

7.6 Current Research Trends and Conclusions for Future
Market Developments

Current challenges in battery research and development span over the whole range of
the battery ecosystem. The European Battery Partnership defines in its recent
Strategic Research and Innovation Report six focus areas to support the development
and market introduction of future battery technologies along the value chain: Raw
Materials and Recycling, Advanced Materials and Manufacturing, Battery End Uses
and Operations, Crosscutting Topic Safety, Crosscutting Topic Sustainability, and
Coordination [2]. The report outlines strategic actions and a timeline of Technology
Readiness Level (TRL) estimates in each area. The main trends and TRL projections
in the areas of materials and manufacturing are summarized in Fig. 7.2.

7.7 Lithium-Ion Batteries

Innovative cell chemistries are catching up, but the current Li-ion battery will most
probably remain the dominating battery type until 2030 due to successful market
uptake and an established industrial value chain. The Li-ion battery concept is
subject to continuous improvement and still bears potential for optimization. Current
research focuses on improving the energy density while delivering on the other
application relevant KPIs [1].



• Intensive research is being carried out into nickel-rich NMC materials on the
cathode side. Increasing the nickel content increases the specific capacity while
reducing the cobalt content. Suitable composites are required to assure a high
cycle stability. Nickel-rich 811-NMC cathodes are close to market launch.

• On the anode side, research aims at increasing the silicon content of graphite
electrodes (up to 10% Si/SiOx in generation 3) and thus the specific capacity
without large loss of cycle stability.

• Research on electrolytes focuses on compatibility with the electrode by develop-
ing additives for organic liquid electrolytes and on solid electrolytes, to improve
battery safety and render the use of metallic lithium anodes possible.

• Coated separator membranes improve lifetime, temperature tolerance, and safety
properties of batteries, e.g., through hydrogen fluoride absorbing ceramic parti-
cles. Extra costs for coating need to be compensated for by optimizing the
manufacturing process.
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Fig. 7.2 Timeline of selected future battery developments, based on Batteries European Partner-
ship Association [2], pp. 56 and 61, complemented by estimates on SSB development based on
Schmaltz et al. [12] (pp. 92–93). The numbers indicate TRL estimates

7.8 Innovative Cell Chemistries

Substantial improvements of battery KPIs can be expected from so-called post-
lithium-ion batteries. Most technologies have a high theoretical energy density. A
variety of challenges still need to be overcome before market maturity can be
achieved.



• Major progress in solid-state batteries (SSBs) with polymer electrolytes is
expected in the coming years, bearing large potential to fulfill energy density
KPIs in mobility applications [12].

• The lithium solid-state battery logically connects to the Li-ion battery. The
application of solid electrolytes, in the form of ceramics, polymers, or hybrid,
allows for the use of metallic lithium in cell chemistry.

• Na-ion and Ka-ion batteries follow a similar operating principle as Li-ion batte-
ries but bear the advantage of less raw material scarcity compared to lithium. Due
to the larger ion radius and lower redox potential, lower energy densities are
expected for these two technologies. Na-ion batteries have already entered the
market but fill only a small market niche for stationary storage so far due to high
costs.

• The Zn-O2 battery (as an example of metal air batteries) has already reached
technological maturity. However, the energy density is still far below the
predicted energy density, making this system mostly suitable for stationary
applications. Improving reversibility and thus cycle stability remains a challenge.

• Redox flow batteries, e.g., based on vanadium, potentially allow for high cycle
stability (>10,000 cycles) but have only a very low energy density.
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7.9 Cell Design and Manufacturing Processes

Next to advanced material development, innovations in cell design and manufactur-
ing processes provide chances especially for cost reductions. Trends in this area are
the following:

Ongoing improvements in particular steps of the manufacturing process contrib-
ute to production efficiency. Prominent examples are 3D printing (allowing for
individual cell designs), 3D inkjet processes (facilitating the production of anodes
and cathodes), selective laser melting (SLM, enabling complex filigree geometries,
e.g., in electrode production), and selective laser sintering (SLS, saving additional
assembly steps).

Advanced environmentally sustainable processing techniques for Li-ion batteries
(denoted as “Step 2 Advanced Cell Manufacturing Processes” in the SRIA report)
will become mature in the second half of the decade, with positive effects on the
environmental footprint of battery production, in particular energy efficiency (and,
hence, costs). First improvements on coating processes are expected already by
2025. The expected impact on KPIs is a 20% cost reduction, and carbon intensity
might drop by 25% [2].

Progress in digitalization improves testing and manufacturing processes in the
second half of the decade. A major role plays the development of data-driven or
physics-driven so-called digital twins—an advanced method for monitoring and
managing complex battery systems [10]. A 25% reduction in energy consumption
and lower capital costs of manufacturing processes can be expected. The integration
of smart functionalities in battery cells allows for improved performance, reliability,
and lifetime of 20% and more [2].
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7.10 Battery Systems and End Use

Manufacturing is not the end of the process to ensure a large-scale market uptake of
novel battery technologies in mobility and stationary applications. Improvements to
the level of battery systems and end use are important to ensure high performance
and safety. Current trends focus on improved safety (e.g., Battery4Europe defines
the action item to introduce safe-by-design solutions by 2028) [2]; optimized battery
management systems allow for accurate and robust determination and active control
of cell states (e.g., current of individual cells), improved balancing schemes, and
error diagnostics [9].

7.11 Raw Materials, Recycling, and Sustainability

Recent supply chain disruptions raised concerns on the availability and costs of raw
materials in battery production. A recent report by the IEA provides an overview of
current trends and challenges in battery supply chains [8]. The stability of the supply
chain depends on a reliable supply of scarce materials. Many of them, most prom-
inently lithium, are limited to a few production sites and suppliers. On this back-
ground, measures to improve the resilience of the supply chain are highly desirable:

• Regional diversification of material sources and suppliers.
• Improving social sustainability standards of material suppliers, not only as an

ethical necessity but also as an essential contribution to supply chain resilience.
• Improved recycling processes and additional measures for supply chain effi-

ciency, such as tracing and labeling procedures. For example, the Battery4Europe
network defines the action item to develop a tracing and labeling scheme over the
full life cycle by 2028 [2]. Also, the concept of a “digital battery passport”
receives growing attention [5].

Recycling plays a crucial role in reducing material scarcity and the ecological
footprint of batteries. With growing battery production, a massive increase in
recycling volume can be foreseen. Recent estimates of the volume of lithium-ion
batteries components in Europe amount to 230 kilotons per year in 2030 and about
1500 kilotons per year in 2040 [11].

Current recycling approaches suffer from the fact that production processes do
not take end of life treatment into account, so that huge efforts are required for the
separation of materials. Besides direct mechanical separation, pyrometallurgical and
hydrometallurgical methods are currently applied. Pyrometallurgical methods
require substantial energy and material input for chemical calcination and combus-
tion. Hydrometallurgical approaches are more complex and require less energy but
use large amounts of toxic substances and require water purification. Both result in



high costs and a low material recovery rate. The savings achieved by using recycled
material compared to never used material is currently in the range - 5 to +20%
[13]. A ready-for-recycling approach in cell design and battery pack assembly is
hence the most effective action in this field.
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More generally, the environmental sustainability of batteries receives growing
awareness. For example, water use of mining is a serious concern in lithium mining
regions such as Chile [4]. Due to current uncertainty in energy costs, substantial
progress in material recycling and efficient production processes is of vital interest
for the battery industry and not only an environmental concern anymore. The
development and introduction of sustainability standards and regulations clearly
contributes to improved material supply security and the resilience of manufacturing
and distribution processes. The widespread implementation of circular designs in
industry can be expected in the second half of this decade.

7.12 Conclusions for Future Market Developments

The overview of current research and development trends leads to the following
conclusions for future market developments:

1. Significant improvements in Li-ion batteries can be expected by 2030. According
to the above analysis of KPI needs in various applications, post-generation
3 systems can contribute to future market maturity of light- and medium to
heavy-duty vehicles in road transportation.

2. Stationary applications and air/marine mobility would benefit from further efforts
to improve cycle lifetimes of Li-ion batteries, production ramp-up of Na-ion
batteries, and market introduction of improved solid-state batteries.

3. The main application of Na-ion, metal air, and redox flow batteries is currently
expected in stationary applications due to their relatively low energy density. As
discussed above, their high cycle lifetime might be beneficial in some mobility
applications, too. With growing demand for electricity storage, the market share
of these innovative concepts will increase substantially, bearing the potential for
cost decreases from economies of scale.

4. Improvements in cell design and manufacturing processes as well as advanced
material recycling concepts bear a large potential to improve the efficiency of the
overall battery supply chain. Substantial cost reductions can be expected,
although there is hardly any reliable estimate for the total reduction potential.

5. Growing awareness of risks for supply chain resilience and environmental foot-
print initiates a trend toward a more circular, diversified, and sustainable approach
of the battery supply chain. From a market perspective, this trend translates into
improvements of supply and cost stability.

6. Enforced technological research and development are inevitable to secure the
accelerating market growth for batteries and the expectations for future cost
decreases. Collaboration within the battery industry, public funding, and a strin-
gent strategic research agenda are essential to achieve this goal.
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Part IV 
Economics and Materials of Present 

Batteries 

Preface 

To date, lithium-ion batteries (LIBs) are unrivaled in terms of energy density and 
performance, making them the technology of choice for virtually all mobility 
applications but also stationary storage systems. However, they are not the only 
energy storage option and compete with numerous other technologies in terms of 
cost and performance but also (to an increasing extent) in terms of sustainability such 
as material intensity or criticality. This chapter gives an overview of the present state 
of the art in batteries under these aspects. As such, it is mainly focused on lithium-ion 
technology, treating the main drivers for their success, but also the problems that 
might arise from the high material intensity of the battery sector and the 
corresponding limitations that might arise from them in the future. Specifically, 
Chap. 8 treats the challenges posed by the different energy storage applications and 
how electrochemical storage systems are typically tailored to match these in terms of 
performance and costs. From there, Chap. 9 establishes the link to the circular 
economy principles as introduced in Chapter 2, treating the presently prevailing 
and near-future recycling processes and the potential (but also limitations) of them to 
close the material circles. Finally, a spot is also put on safety aspects, which have 
important implications especially for end-of-life handling and logistics and thus also 
the efficiencies and corresponding impacts of battery recycling.
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Chapter 8 
Performance and Cost 

Johannes Büngeler and Bernhard Riegel 
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8.1 Introduction 

Over the past few decades, a wide variety of electrochemical storage systems have 
been developed and made commercially available. Today’s prominent electrochem-
ical storage systems encompass technologies like lead-acid, nickel-cadmium, and 
nickel-metal hydride alkaline batteries, sodium-nickel chloride and sodium-sulfur 
high-temperature batteries, and lithium-ion technology. 

Each of these unique electrochemical storage systems possesses specific features. 
Product variants, adjusted to meet the requirements of individual applications, are 
offered with tailored performance characteristics [20]. These tailored performance 
characteristics primarily encompass energy and power density, life cycle, design life, 
and the operating temperature range. 
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Consequently, certain applications are dominated by specifically adjusted elec-
trochemical systems. Due to the complexity of application-specific requirements, 
selecting the most suitable electrochemical storage technology based solely on 
tabulated performance data can be challenging. Additional necessary system com-
ponents, such as thermal management and battery management, can significantly 
impact the performance of the overall system and should not be overlooked. 

A technology substitution within a particular application only occurs if a tech-
nology reaches its performance limits and can no longer meet the changed or 
increased requirements of the application. Other reasons for a technology change 
in specific applications are usually economical (e.g., total cost of ownership) or 
environmental (e.g., bans on heavy metals, safety concerns). 

Sustainability aspects, such as the recycling and recovery of battery materials, 
will become increasingly important for end customers seeking to reduce the CO2 

footprint of their applications. 
The following subchapters will discuss the main performance criteria and costs 

associated with the different technologies, addressing each technology separately. 

8.2 Lead-Acid Batteries 

Lead-acid batteries accounted for the largest share of the global battery market, at 
around 90%, until 2010. From then on, the market share of lithium-ion batteries has 
been growing steadily, and in 2021, the market share of lithium-ion batteries was 
already slightly higher than the market share of lead-acid batteries, due to the 
upcoming demand for electromobility. 

For the automotive and industrial market, the lead battery has been the predom-
inant energy storage system for over 100 years. 

The lead-acid batteries are on the market in two major different construction 
designs. On the one side, there is the flooded or “vented” construction design, 
requiring maintenance. On the other side, there is the maintenance-free valve-
regulated (VRLA) batteries [1]. 

Today, the share of maintenance-free lead-acid batteries has increased to about 
80% of the total lead market. There are two types of VRLA batteries, which differ in 
the way the electrolyte (sulfuric acid) is fixed. In one type, the electrolyte is fixed in a 
silica gel; in the other, it is in an AGM (absorbent glass mat) material. 

Lead-acid batteries with AGM technology have become the most important 
technology in the field of automotive and industrial applications [3]. The share of 
AGM types, which are more efficient than gel types, is 85% of the VRLA market. 

The lead-acid battery innovation has historically been market driven, primarily by 
the end-user applications. This explains the very wide range of specific battery 
products, sizes, and construction designs. 

The positive electrodes in lead-acid batteries can have either a tubular, flat grid 
plate design or plante design, while the negative electrodes are always constructed as 
a flat grid plate design.



Cost Performance 

Cycle-life 

8 Performance and Cost 123

Table 8.1 Main performance and cost parameters of the most important positive electrode designs 
used with the lead-acid technology 

Electrode 
design

Performance 
classification

HP (high 
power) 

HE (high 
energy) 

Planté Very high High power < 100 +++ + 

Grid Low Low to high > 100– 
1.000 

++ +++ 

Tubular Medium Medium > 1.600 + ++ 

Bipolar Low 
(target) 

High > 1000 
(target) 

+++ +++ 

Total range 50–250 €/ 
kWh 

Up to 
>1600 

<700 W/kg <60 Wh/kg 

(+) is good 
(+++) very good 

Table 8.1 shows the most important positive electrode designs and their main 
performance characteristics and cost. It is evident that there are significant differ-
ences between the various types of electrodes and their properties. For instance, the 
plante electrode exhibits high-power density but comes with a higher price tag and a 
lower life cycle. In contrast, the tabular electrode has a lower power density. The grid 
electrode, currently employed in VRLA batteries, offers lower costs and a higher 
power density compared to the tabular electrode. Additionally, ongoing develop-
ment is focused on the bipolar electrode, as outlined in the “Further Development” 
section. This electrode aims to combine high performance, extended cycle-life, and a 
lower price. 

The main application fields for lead-acid batteries are as follows:

• Automotive mobility applications (grid electrode)
• Material handling and logistics applications (tabular electrode)
• Stationary energy storage applications (grid, tabular, and plante electrode) 

Advantages
• High-power densities
• Very robust and abuse tolerant (safe without an additional battery management 

system (BMS)
• Cost-effective with low maintenance cost
• Application approved
• High recyclability 

Disadvantages
• Low gravimetric energy density
• Mandatory ventilation for flooded lead-acid batteries
• Water loss that requires maintenance in flooded cells
• Contains lead.
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Further Development 
In recent years, the lead-acid battery has undergone many relevant improvements in 
terms of lifetime and performance. 

These include material innovations such as the addition of novel carbon additives 
and expanders to the anode to avoid negative electrode sulfation and the use of 
innovative separator materials and the development of more resistant alloys for high-
temperature environments. The outstanding feature in this process is that these 
improvements have been tailored to the specific application. These novel designs 
are referred to as “advanced lead-acid batteries,” which include bipolar, lead-carbon, 
and pure lead thin plate technologies [2]. 

Bipolar Lead-Acid Batteries 
While bipolar and monopolar designs share the same lead-based chemistry, they 
differ in that in bipolar batteries, the cells are stacked in a sandwich construction so 
that the negative plate of one cell becomes the positive plate of the next cell. 
Stacking these cells next to one another allows the potential of the battery to be 
built up in 2 V increments. Since the cell wall becomes the connection element 
between cells, bipolar plates have a shorter current path and a larger surface area 
compared to connections in conventional cells. This construction reduces the power 
loss that is normally caused by the internal resistance of the cells. At each end of the 
stack, single plates act as the final anode and cathode. This construction leads to 
reduced weight since there are fewer plates and bus bars are not needed to connect 
cells together. The net result is a battery design with higher power than conventional 
monopolar lead-based batteries. 

Until recently, the main problem limiting the commercialization of bipolar lead-
acid batteries was the availability of a lightweight, inexpensive, and corrosion 
resistant material for the bipolar plate and the technology to properly seal each cell 
against electrolyte leakage. 

Architectural advantages are as follows:

• Lower inner resistance, i.e., higher power density
• Increased energy density up to 63 Wh/kg 

The lead-acid battery technology has a well-established circular economy. At the 
end of their life, lead-based batteries are collected for recycling. Within the EU, 
almost 100% of lead-based batteries are returned and recycled in a closed loop with a 
high efficiency of over 80% [20]. The market for lead-based batteries in the EU is 
mainly served by recycled material, and the demand for primary lead reserves is low. 

8.3 Li-Ion Technology 

As lithium shows the most negative normal potential of 3.05 V against hydrogen, 
Li-Ion batteries achieve higher gravimetric and volumetric energy densities com-
pared to other widely used technologies like lead-acid or nickel-based systems.
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In the past few decades, lithium-ion batteries have replaced the NiMH batteries in 
the field of portable and mobility applications due to their higher energy densities 
(80 Wh/kg vs. up to about 300 Wh/kg). 

Currently, the expected market growth for Li-Ion batteries will be more than 
3 TWh by 2030 and will largely serve with up to 85–90% the e-mobility and the 
energy storage markets [20]. 

The high market growth will most likely result in lower cost per kilowatt-hour 
due to standardization and mass production. 

Due to the variety of possible combinations of cathode and anode materials, the 
resulting Li-ion batteries show specific and individual performance characteristics 
suitable for different kinds of applications. The development of Li-ion technologies 
suitable for industrial and automotive applications is still a challenge in terms of 
material research process, production, development, recycling, safety, and 
transportation [4]. 

Typical cathode active materials are as follows:

• LCO—lithium cobalt oxide (LiCoO2).
• LMO—lithium manganese oxide spinel (LiMn2O4).
• LFP—lithium iron phosphate (LiFePO4).
• NCA—lithium-nickel-cobalt-aluminum oxide (LiNiCoAlO2).
• NMC—lithium-nickel-cobalt-manganese oxides (Li(NiCoMn)O2). 

The most relevant cathode material for the e-mobility is the NMC material, which 
is currently further developed to meet the major requirement for higher energy 
densities to achieve an increased driving range. This results in modifications of 
nickel-cobalt-manganese oxide (NMC) materials, from NMC 111 to NMC 811, with 
increased nickel and reduced cobalt content. Typically, these NMC materials are 
combined with anode materials of high capacity (Fig. 8.1). 
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Fig. 8.1 Gravimetric and volumetric energy densities of most relevant Li-Ion and post-lithium 
battery technologies
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Table 8.2 Cost and performance data of most relevant anode/cathode combinations for NMC 
batteries 

Generation 2a 2b 3a 3b 

Cathode NMC 
111 

NMC 523– 
622 

NMC 622 NMC 811 

Anode 100% C 100% C C + Si 
(5–10%) 

Si/C 
composite 

Gravimetric energy density in 
Wh/kg 

100–170 150–250 180–270 300–350 

Volumetric energy density in 
Wh/l 

420–700 520–800 700–970 850–1000 

Cost in €/kWh 100–110 90–100 85–95 65–95 

Table 8.2 and Fig. 8.1 show the performance and cost parameters of the most 
relevant anode/cathode combinations. 

The electrolyte composition is usually LiPF6 in organic solvents with additional 
additives in order to improve certain properties. Field of developments is electrolytes 
that can withstand higher voltages and consequently higher energy densities. 

Depending on the active material combinations, some advantages and disadvan-
tages become less or more apparent. 

Advantages
• Very high energy densities.
• High cell voltages: up to 3.7 V nominal.
• Can be optimized for specific application performance requirements.
• Tolerate to high discharge currents (discharged rate > 40 C).
• Fast charging possible.
• Batteries can be almost completely discharged without affecting cycle durability, 

lifetime, or high current output.
• Very low self-discharge rate (3–5%/month). 

Disadvantages
• Sensitivity to deep discharge, overcharge, and excessive temperatures requires 

active battery management and monitoring.
• Relatively high sensitivity to high or low temperatures. 

8.4 Post-Li-Ion Battery Technologies 

In response to the growing demand for energy-efficient and environmentally sus-
tainable energy storage, researchers are seeking alternatives to conventional lithium-
ion batteries. This exploration is motivated by the need to address not only energy 
efficiency but also the ecological and social impacts of current battery technologies. 
A key challenge is developing electrodes that are durable and stable while also 
offering high energy densities and quick charge-discharge rates.
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To address these challenges, studies are concentrating on materials that are more 
abundant and environmentally friendly compared to traditional lithium sources. 

The exploration of post-lithium battery technologies, based on alternative mate-
rials, presents both challenges and unique opportunities. 

8.4.1 Lithium All-Solid-State Battery Technologies 

Structure of Solid-State Batteries 
The electrochemical system of lithium solid-state batteries is similar to lithium-ion 
batteries. The major difference is that, at the very least, the electrolyte is in a solid 
state. 

All-solid-state batteries are generally considered to be a class of batteries that will 
enable higher energies in the future (see Table 8.3 and Fig. 8.2). The actual increase 
in energy comes only through the elimination of the graphite by the metallic Li 
anode. 

Solid-state batteries use an electrolyte made of solid material instead of the usual 
liquid electrolyte. The electrodes are also made of solid material in terms of an all-
solid-state battery [5]. 

Currently there are solid/liquid hybrid cells on the market which are also 
described as a certain kind of solid-state system. 

The main components of the SSB cell are the anode and cathode active materials 
and the solid electrolytes. Various materials are suitable for use in SSB. 

Anode Active Material 
The most promising anode active materials in order to achieve high energy density 
are lithium metal and silicon. Lithium metal anodes are considered the most prom-
ising, as they enable the highest possible energy density on the anode side. 

Cathode Active Material 
Soon, Ni-rich layered oxides (NMC, NCA) and lithium iron phosphate (LFP) will 
become the most likely to be dominant cathode active materials. These materials are 
already commonly used in state-of-the-art LIB. 

Table 8.3 Cost and performance data of most relevant post-Li-Ion and sodium-ion battery 
technologies 

Li-SSB Lithium-air LiS 
Sodium-
ion RTa 

Gravimetric energy 
density in Wh/kg 

280–500 500–800 180–270 90–160 
(200) 

Volumetric energy 
density in Wh/l 

500–1150 700–850 300–450 215–280 

Cost in €/kWh Not commer-
cially available 

Not commer-
cially available 

Not commer-
cially available 

40–65 

a Adelhelm [17]
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Fig. 8.2 Gravimetric and volumetric energy densities of different battery technologies 

Electrolyte 
With solid-state batteries, there is the possibility that part of the solid electrolyte can 
be incorporated into the electrodes. The main advantages of future solid-state 
batteries are that the energy density of the cells would increase significantly in the 
future and the risk of fire would also decrease due to the less pronounced flamma-
bility of the electrolyte. 

Compared with Li-ion cells, high-power densities cannot be achieved with the 
solid-state technology. The reason for this is usually the high Li+ contact resistance 
at the phase boundary between the cathode and the solid electrolyte. 

Solid-state cells are being developed with both polymeric and inorganic solid 
electrolytes. Inorganic electrolytes can be distinguished between sulfide and oxide 
solid electrolytes. 

The specific energy/energy density of solid-state cells can be increased by the 
following:

• Lower electrolyte/separator thickness
• Use of Li anodes
• Use of nonporous active materials
• Increase in cell voltage due to the higher electrochemical stability (electrochem-

ical window) of the electrolyte 

Advantages of solid-state batteries compared to liquid electrolyte Li-Ion batteries 
are as follows:

• Higher energy density than Li-ion
• Safety—instead of flammable organic liquid electrolyte, use of a solid-state 

electrolyte (ceramic, polymer)
• No electrolyte leakage
• Can fit easier casing shapes



• Solid-polymer Li-ion cells can be made as thin as 0.1 mm or about one-tenth the 
thickness of the thinnest prismatic liquid Li-ion cells

• Potentially lower manufacturing costs 
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Disadvantages of solid-state cells compared to liquid electrolyte cells are as 
follows:

• Power limited by low ionic conductivity of electrolyte
• High interfacial resistance
• Poor interface contacts 

In addition, due to the non-combustibility (at least of the ceramic electrolyte) and 
the higher temperature resistance of the electrolyte, safety-relevant components can 
be reduced in the module/pack, thus achieving a volume/mass reduction for the 
battery system. 

8.4.2 Li-S Batteries 

Lithium-sulfur batteries represent a new type of battery that promises high gravi-
metric energy densities at a moderate cost (see Table 8.3 and Fig. 8.2). 

Design 
Li-S batteries usually have a cathode consisting of sulfur and carbon and an anode of 
lithium metal to take advantage of the high specific capacity of the sulfur cathode [6]. 

Currently, there are also approaches of using a liquid polysulfide solution instead 
of a solid-state sulfur electrode. This idea is not new and was published as early 
as 1975. 

Challenges and Opportunities 
The cathode material of common lithium-ion cells is the most expensive component 
of a battery (more than 20% of the cell cost). It contains cobalt and nickel. Both are 
rare raw materials whose costs tend to rise rather than fall when batteries are mass-
produced. In lithium-sulfur batteries, this cost item is eliminated, potentially saving 
more than 20% of the cost, because sulfur is very inexpensive and available in large 
quantities. Dry electrode manufacturing processes can also reduce production costs. 

The theoretical gravimetric energy density of around 2500 Wh/kg is almost ten 
times that of conventional lithium-ion batteries. 

However, the Li-S battery has disadvantages in terms of volumetric energy 
density. Future applications could be for situations in which the low weight of the 
battery is more important than its size, such as quadcopters, aircrafts, and ships. 
These appear to be more realistic applications for Li-S batteries. 

The cycle stability, i.e., the lifetime of Li-S batteries, is currently still very low 
(limited to less than 200 cycles). Cells from pre-commercial production achieve only 
about 100 cycles at an energy density of 350 Wh/kg. However, cells with a



significantly longer service life of several thousand cycles have already been 
achieved on a laboratory scale. 
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Advantages
• Main advantage of Li-S batteries is the potentially high gravimetric energy 

density, estimated up to 600 Wh/kg in perfect systems.
• Hope for low cost: Compared to LIB, it is hoped that the low cost of sulfur will 

result in significantly lower prices for energy storage. However, this is partially 
offset by the higher cost of metallic lithium (compared to graphite).

• The usage of pure materials allows higher recyclability. 

Disadvantages
• Volumetric energy density lower than lithium-ion batteries (currently about 

50%). Even in fully developed cells, at most the level of today’s lithium-ion 
batteries can be achieved.

• Achievable performance lower than in commercial lithium-ion batteries.
• Current prototypes can only be operated at currents of approx. C/2. 

The low cost and high abundance of sulfur (i.e., the active cathode material) make 
LiSB more appealing than Li-ion batteries, given the fact that the latter use critical 
materials, such as cobalt and nickel, in the manufacturing of the cathodes. LiSB are 
promising because of the high energy density, low cost, and natural abundance of 
sulfur. 

8.4.3 Lithium-Air Battery Technologies 

Lithium-air batteries possess a great potential for efficient energy storage applica-
tions in order to resolve future energy and environmental issues. The extremely high 
theoretical energy density is attractive, but there are still various technical limitations 
to overcome. The performance of lithium-air batteries is governed mainly by 
electrochemical reactions that occur on the surface of the cathode [7]. Widespread 
interest in various carbons and their applicability as cathode materials in lithium-air 
batteries are a result of their highly specific surface area and porosity, their light-
weight, and their low production cost. 

Among the group of metal-air batteries, intensive research is being carried out in 
particular on the development of lithium-air batteries. Since lithium has the highest 
electrochemical potential of all metals, these batteries offer the highest energy 
density by far of all metal-air systems that can theoretically be achieved [8, 18]. Com-
pared with the state-of-the-art, it is hoped that energy densities can be achieved that 
are about ten times higher in practice, in order to make the ranges of electric vehicles 
based on such batteries competitive with today’s gasoline-powered cars. 

However, it may result in the need for a lot of additional technology and 
electronics (e.g., to clean the air), so that the weight and space this takes up reduces 
the theoretical energy density to such an extent that the batteries hardly have any



advantages over more advanced lithium-ion batteries. For example, the theoretical 
material energy density of a lithium-air system is up to 3450 Wh/kg, but if the entire 
periphery is taken into account, the possible energy density is reduced to about 
1000 Wh/kg. Currently available primary cells achieve energy densities of around 
800 Wh/kg.1. 
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Major challenges currently lie in achieving an acceptable number of charge cycles 
and reducing voltage losses during charging and discharging. 

8.4.4 Sodium Ion Room-Temperature Technology 

In comparison with the state-of-the-art high-temperature sodium batteries, the 
upcoming new sodium-ion battery technology operates at room temperature. The 
sodium-ion battery has a similar working principle to the Li-ion battery. Sodium ions 
also shuttle between the cathode and the anode to store and release energy [16]. 

The significantly higher global equal distribution of sodium and absence of 
critical raw materials like cobalt and nickel in the cathode lead to cost reductions 
and lower environmental impact of the sodium system compared to lithium-ion 
[15]. Due to the technological similarities with existing Li-ion batteries, the indus-
trialization process of sodium-ion batteries can be accelerated. A significant advan-
tage is that the sodium-ion battery can be manufactured with the same production 
facilities as lithium-ion cells. 

For cathode materials, the most important part of sodium-ion batteries, Prussian 
blue analog, layered metal oxides, and NASICON (sodium (Na) super ionic con-
ductor) have their own advantages in different aspects. The most critical indicators 
based on potential application scenarios are higher energy density, longer life cycle, 
and better low temperature performance. Overall, the cost and safety advantages of 
sodium batteries will gradually gain in prominence. Therefore, it is likely that 
sodium-ion batteries will be used in different automotive and industrial applications. 

So far, the technology is not yet fully developed and still needs to be tested in 
practical applications. Safety concerns have also not been conclusively assessed, 
especially given the lower melting point of sodium in potential sodium plating 
scenarios. It is believed that its properties at low temperatures are superior to those 
of lithium-ion batteries. 

8.5 Nickel-Based Batteries 

Alkaline batteries that use nickel hydroxide as a cathodic material belong to the 
mainstream battery systems. 

The most important representatives of this technology are the nickel-cadmium 
(NiCd), nickel-metal hydride (NiMh), as well as nickel-zinc (NiZn) and Ni-iron 
(NiFe) systems. In past decades, only NiCd and NiMH technology has played an
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important role in portable, automotive, and industrial applications. Therefore, only 
the cost and performance of the NiCd and NiMH systems will be discussed below. 
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It can already be pointed out that neither NiCd nor NiMh play a significant role in 
the current markets and are only used to a small extent exclusively in niche 
applications. 

Due to the performance and the costs of these systems, it can be assumed that they 
will be substituted by other technologies, such as Li-Ion, by 2030. 

8.5.1 Nickel-Cadmium Batteries 

Nickel-cadmium batteries played a major role in the past, competing with lead-acid 
batteries in certain applications. 

The general advantages of the very reliable NiCd battery system is the higher 
energy density, the robustness, and a high deep discharge cycle-life—even at low 
temperatures when compared with lead-acid batteries. 

The electrodes for NiCd systems are classified into five electrode types: pocket 
electrodes, sintered electrodes, plastic-bonded electrodes, nickel foam electrodes, 
and fiber electrodes [9]. 

Table 8.4 presents the key properties and costs of these electrodes. The pocket 
plate electrode, characterized by its relatively thick electrode, is primarily used in 
applications that require low to medium performance. It has been the dominant 
choice for standby applications like uninterruptible power supplies (UPS) and 
emergency power supply systems for railway rolling stock. On the other hand, 
sintered electrodes are designed for high-power cells that can deliver significant 
power output. However, the sintered structure undergoes mechanical stress during 
charge and discharge cycles, which can potentially affect the overall durability and 
longevity of the system. Moreover, this technology is associated with higher costs 
compared to other alternatives. Despite these limitations, this energy storage system

Table 8.4 Cost and performance data of most relevant NiCd electrode designs 

Electrode 
design

Performance 
classification 

Cycle-
life 

HP 
(high power) 

HE 
(high energy) 

Pocket plate Low Low < 1.000 - + 

Sintered High High > 2.500 +++ +++ 

Fiber Medium to 
high 

Medium to high > 3.500 ++ ++ 

Foam Medium to 
high 

High > 2.500 ++ +++ 

Total range 300–450 
€/kWh 

Up to 
>3500 

200–500 W/kg 25–60 Wh/kg 

(+) is good 
(+++) very good



finds application in demanding sectors such as aircraft, military, railway, and 
vehicles where high performance and reliability are crucial requirements.
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The fiber electrode enables the fabrication of both high-power and high-energy 
cells by adjusting the electrode thickness accordingly. These cells exhibit long life 
due to their ability to compensate for volume changes in the active material during 
cycling, thereby preventing shedding of the active material. They also offer fast 
rechargeability, facilitating quick energy replenishment. This versatile system finds 
applications in various domains, including standby and mobile applications such as 
railway rolling stock and automated guided vehicles (AGVs). Additionally, it is 
suitable for use in aviation and space flight applications where high performance, 
durability, and reliability are essential. 

The foam technology emerged in the late 1980s to address the need for energy 
cells with higher volumetric and specific energy capacities. Unlike sintered technol-
ogy, which allows only a maximum of 50% of the electrode volume for active 
material loading, the foam approach utilizes a metallic nickel substrate. The elec-
trode structure is formed by electrolytic nickel plating of polyurethane foam, 
followed by the removal of the organic core material under high-temperature 
conditions in a reducing atmosphere. The resulting isotropic reticulated substrate 
exhibits exceptionally high porosity exceeding 95%. As a result, the available 
porosity for active material loading increases by approximately 30% compared to 
sintered substrates. Overall, this technique offers enhanced active material utilization 
and provides higher porosity for improved energy capacity, meeting the require-
ments for higher volumetric and specific energy cells. 

Cell designs for NiCd batteries are prismatic or spiral wound, flooded, or 
maintenance-free valve regulated. 

Nickel-cadmium cells have been manufactured as maintenance-free, sealed bat-
tery system since the 1950s. 

The sale of new cadmium-containing batteries in the EU has only been permitted 
for a few applications since December 2009, and it must be ensured that batteries are 
returned for recycling at the end of life. The few exceptions are portable batteries for 
emergency or alarm systems, including emergency lighting and medical equipment, 
and certain industrial applications. 

The NiCd battery system has become a subject of environmentally related 
discussions, due to the fact that cadmium is a hazardous heavy metal and has been 
banned from many applications. This has resulted in the NiCd being substituted in 
many applications by the NiMh technology. 

Advantages
• High-power capability
• Fast rechargeability
• Good low temperature performance (-40 °C)
• Good energy density
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Disadvantages
• Poor environmental compatibility: Cadmium is a toxic heavy metal
• High self-discharge rate
• Low cell voltage of 1.2 V/cell 

8.5.2 Nickel-Metal Hydride Batteries (NiMH) 

Since the 1990s, NiCd batteries in the consumer markets for portable devices have 
been displaced by NiMH batteries. The reason for this was the higher energy storage 
capability achievable with NiMH and the general concern about cadmium as an 
environmentally hazardous material. Beneficial for an easy substitution of the NiCd 
technology by NiMh is the similar cell voltage of 1.2 V/cell [10]. 

The NiMH system was developed in the 1980s for electronic devices with high 
energy demand. During the 1990s, NiMH was the dominating electrochemical 
storage system for portable devices, which was replaced by Li-ion battery system 
in the middle of the 1990s. The Li-ion technology has shown even higher gravimet-
ric and volumetric energy densities, which are essential for advanced portable 
devices. Another major application where NiMH played a very important role was 
the introduction of the first hybrid electrical vehicles at the beginning of the twenty-
first century. In particular, the high-power performance of the NiMH battery systems 
was the greatest attraction for automotive applications. 

The basic technologies for the electrodes as well as for other components used in 
NiMH cells are very similar to what has been developed for NiCd cells in a variety of 
applications. 

The preferred electrode types of NiMH are the sinter-type and the foam-type 
electrode. 

Two major designs for NiMH batteries are realized, the cylindrical and prismatic 
types. 

Advantages
• High energy and power density
• Robust, but not as robust as NiCd for deep discharge and overcharge
• Temperature operation range from -15 °C to  40  °C
• Fast rechargeability
• Environmentally friendlier compared to NiCd (no heavy metals)
• Good recyclability 

Disadvantages
• Need for battery management system
• High self-discharge rate.
• Low cell voltage of 1.2 V/cell
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8.6 Sodium-Based Batteries 

8.6.1 High-Temperature Sodium Batteries 

High-temperature sodium batteries consist of liquid electrodes and a solid electrolyte 
(usually an ion-conducting (e.g., Na+) ceramic). These batteries require relatively 
high operating temperatures of >300 °C to maintain the sodium-based electrode in 
the liquid state as well as to increase the conductivity of the solid electrolyte. 

Mainstream technologies are the sodium-nickel-chloride (NaNiCl) and the 
sodium-sulfur battery (NaS). 

NaNiCl and NaS batteries have a service life of around 4500 cycles and an 
efficiency of 75–86%. Thermal losses due to the heating required to maintain the 
cell temperature must be considered if there are longer periods of time between 
charging and discharging. This can be influenced to a certain extent through a 
corresponding effort in thermal insulation. 

8.6.1.1 Sodium-Nickel-Chloride Batteries 

Sodium-nickel-chloride ZEBRA batteries were developed in 1985 in South Africa. 
The name ZEBRA stands for Zeolite Applied to Battery Research Africa. The 
cathode mainly consists of a porous nickel matrix which serves as a current con-
ductor with nickel chloride (NiCl2), which is impregnated with sodium aluminum 
chloride (NaAlCl4). The anode is made of sodium [11]. 

Ceramic β-aluminum oxide is used as the separator and electrolyte, but the 
sodium ions do not allow electrons to pass between the anode and cathode. The 
operating temperature of this type of battery is between 270 °C and 350 °C, so that 
the electrodes (active material) are in the liquid state (melted) and the ceramic 
separator achieves high conductivity for sodium ions [12]. The specific energy of 
the cells is approximately 120 Wh/kg at a nominal voltage of 2.3 V to 2.6 V. 
Advantages over the sodium-sulfur battery are the inverse structure with liquid 
sodium on the outside, which allows the use of inexpensive rectangular steel 
housings instead of cylindrical nickel containers. The assembly is simplified in 
that the battery materials can be used in the uncharged state as sodium chloride 
and nickel, and the charged active materials are only generated in the first charging 
cycle. Sodium-nickel-chloride batteries have been used in the past for small series of 
electric vehicles in fleets and for stationary storage applications. 

8.6.1.2 Sodium-Sulfur Batteries 

The cells consist of an anode made of molten sodium and a cathode made of graphite 
fabric soaked with liquid sulfur to achieve electrical conductivity, as sulfur is an 
insulator. As in the case of the NaNiCl battery, the solid electrolyte β-aluminum



oxide is used as the electrolyte, which becomes conductive for Na + ions above a 
temperature of approx. 300 °C. The optimum temperature range is between 300 °C 
and 340 °C. During the discharge process, positively charged sodium ions enter the 
solid electrolyte from the liquid sodium, releasing electrons. The sodium ions 
migrate through the electrolyte to the positive electrode, where they form sodium 
polysulfides. The cell voltage is 2 V. This process is reversed during charging. 
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A major advantage of the sodium-sulfur battery is that the internal resistance of 
the cell is almost independent of the state-of-charge. It only rises sharply toward the 
end of the charge because there is a decrease in sodium ions in the electrolyte. The 
required operating temperature is maintained in normal operation by the power 
dissipation of the cells themselves; in standby operation, it is achieved by an 
additional electric heater, which increases the battery’s own consumption. 

One advantage of this battery is a long calendar life of over 15 years [13]. The 
technology has been commercialized since 2002, mainly for large-scale storage with 
more than 1 MWh of energy [14]. 

8.7 Redox Flow Batteries 

Redox flow batteries have been under development since the 1970s. The vanadium 
redox flow battery, developed in the 1980s, is considered the best-studied redox flow 
battery system. 

Research efforts are currently focused primarily on reducing equipment and 
maintenance costs and searching for new electrolyte systems for higher energy 
densities, electrode optimization for higher performance, membrane development 
for lower maintenance costs, and electrical system development. 

In redox flow batteries, the electrolytes are stored in two circuits in external tanks, 
while the electrochemical reaction takes place in a “power stack” (reversed fuel cell). 
Unlike other battery technologies, redox flow batteries thus allow independent 
scaling of power and energy capacity, making them suitable for a wide range of 
stationary applications [8, 18]. 

RF batteries are suitable as stationary energy storage mainly for industrial 
applications (backup power, load management), at distribution grid level (MW and 
MWh range, grid management), and for off-grid applications and minigrids (kW and 
kWh range, long-term storage). 

A characteristic of this type of battery is that the power (size of the reactor) can be 
scaled independently of the capacity (electrolyte volume), because the electro-active 
materials (electrolytes) can be stored in external tanks [19]. 

Lifetime. 
A lifetime of 20 years is generally expected for VRFB (vanadium redox flow 

batteries), where temperature control (against precipitation) and regular internal 
re-initialization of the electrolyte (which is state-of-the-art) are established.
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The electrolyte, which represents a significant part of the capital cost of the 
vanadium redox flow battery, has an unlimited lifetime due to the possibility of 
reprocessing. 

Vanadium redox flow batteries are considered to have an unlimited lifetime, since 
there are no classical aging mechanisms as in typical battery systems. 

Up until now, more than 50 different RFB systems have been described in the 
literature, of which only a small number have been commercialized or are in the 
commercialization phase. 

The most relevant systems currently are as follows:

• Iron/chromium (Fe2+/Fe3+; Cr2+/Cr3+)
• Bromine/polysulfide (Br-/Br3-; S22-/S42-)
• All-vanadium (V2+/V3+; V4+/V5+)
• Vanadium/bromine. 

Advantages
• Good energy efficiency: 60–85%
• Very long service life (> 20 years)
• Electrolyte recyclable and reusable
• Cycle stability (> 10,000 cycles)
• Good response time (some micro- to milliseconds)
• Scalable, modular design
• Independent scaling of power and capacity
• Due to separation of energy storage and converter
• Overcharge and deep discharge tolerance
• Low maintenance
• Almost no self-discharge 

Disadvantages
• Low energy densities
• Investment costs 

8.8 Conclusion 

The selection of an appropriate electrochemical storage system involves consider-
ation of various performance factors such as energy and power density, cycle-life, 
design life, efficiency, and self-discharge. However, the compatibility of a storage 
system with specific application requirements is the most crucial factor in its 
selection. Additionally, factors like investment costs, total cost of ownership, system 
safety, reliability, and sustainability have gained importance in recent years, partic-
ularly with the introduction of the new European Batteries Regulation [21]. 

Traditional technologies, such as lead- and nickel-based systems, have undergone 
continuous application-specific development over the years. These developments 
have focused on adapting the design (including external dimensions, shape, and



internal electrochemical design) to meet specific electrochemical requirements, such 
as high cycle-life for traction applications or an optimized design life for charge 
retention in UPS applications. The performance data ranges for these systems, listed 
in the overview in Table 8.5, are a result of appropriate internal designs aimed at 
achieving high performance in various areas or meeting high energy demands. 
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Usually, power density and energy density, as shown in Fig. 8.2, or cost per unit 
of energy are commonly compared. However, this approach can be misleading. For 
instance, a common mistake is often made when comparing systems based on cost 
per unit of energy content (€/kWh), as there are many applications where the cost per 
required power (€/kW) is more relevant. High-performance battery systems are 
typically more expensive in terms of energy content (€/kWh) due to their internal 
design. 

Moreover, considering the cost based on energy throughput (cycle-life) for many 
applications is less meaningful, especially when such systems are used as backup 
systems for emergency power. 

The progress of lithium-ion batteries for electric vehicle (EV) applications serves 
as a prime example. Lithium-ion batteries have undergone significant development 
to meet the specific demands of the EV industry. Initially utilized in consumer 
electronics, this technology has been tailored and tested in fleet trials to address 
the requirements of electric vehicles. These trials have emphasized the importance of 
maximizing energy density while accommodating reduced cycle lives, typically 
ranging from 1000 to 1500 energy throughputs, for EVs. 

In contrast, stationary large-scale storage applications necessitate life cycles 
surpassing 6000 energy throughputs and extended design lives of up to 20 years. 
These requirements are significantly higher compared to EVs, highlighting the 
divergent needs of different applications in terms of battery longevity and reliability. 

The development of lithium-ion batteries for electromobility applications illus-
trates the need for application-specific development to cater to the unique require-
ments of different applications. This example highlights the importance of tailoring 
battery technologies to meet specific demands, as seen in the progression of lithium-
ion batteries for electric vehicles. Similarly, emerging technologies such as sodium-
ion batteries (RT, room temperature) are expected to undergo a similar development 
process, where their characteristics and performance will be optimized to address the 
specific needs of various applications. This approach ensures that future energy 
storage solutions are customized and efficient, aligning with the diverse require-
ments of different industries and sectors. 

In conclusion, the demand for electrochemical storage systems is increasing due 
to the electrification of the mobility sector and the integration of renewable energy 
sources. There is no universal battery system that fits all applications. The market 
and applications indicate that there will be a need for different mainstream and 
upcoming storage systems in the future. 

Therefore, when selecting the optimal energy storage system for a specific 
application, it is crucial to carefully consider the application-specific requirements 
in order to choose the most optimal and sustainable system for the given application.
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9.1 Introduction 

Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) have quickly 
emerged as the most popular replacement for petrol- and diesel-powered vehicles. 
In the next 5–10 years, the LIB market is set to grow exponentially due to a push 
toward EVs by both policymakers and vehicle manufacturers [25]. Such a push will 
inevitably lead to an increase in demand for raw materials, which is of particular 
concern for critical raw materials (CRMs) such as lithium and cobalt which are of
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high economic importance [25]. Moreover, with a life span in EV of only 
8–10 years, the LIB waste stream will increase considerably [39]. This is particularly 
important considering that, by 2025, the UK’s dynamic stockpile of spent LIBs 
could exceed 100,000 battery packs or 42,000 tons of LIB waste [39].
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Due to the economic value of the materials contained within spent LIBs and the 
volume of waste predicted in the coming years, the most economical and environ-
mentally friendly option is to reuse or to recycle them. This is even more important 
considering that 2022 has seen the first ever increase in LIB pack prices since records 
began in 2010 [24]. Such increases are primarily due to rising raw material and 
battery component prices and the increasing inflation. 

The development of recycling processes in the last decade has led to a sharp 
increase in the purity of materials recycled which can reduce the reliance on raw 
materials and alleviate some of the pressure on the natural reserves of materials such 
as nickel and cobalt. The most advanced recycling processes are pyrometallurgical, 
hydrometallurgical, and direct recycling [37]. However, even the most advanced 
technologies have challenges with regard to recycling efficiencies, significant envi-
ronmental impacts, and safety hazards [22]. The safety hazards extend from the 
battery’s primary use through to their final disposal, with 48% of waste fires in the 
UK attributed to LIBs [4]. It is worth noting that, these fires will increase signifi-
cantly if the sale of EVs increases as forecasted. 

This chapter starts with a brief review and analysis of the value chain of LIBs, 
their supply risks associated with raw materials, as well as the global impacts of 
using these materials, in both their original and secondary usage. This is followed by 
a detailed description of the three existing recycling processes for LIBs and the 
material yield from each of these processes, as well as a discussion on the opportu-
nities and problems that come with these recycling processes. We briefly discuss 
battery recycling legislation and describe some of the safety risks associated with the 
transportation, processing, and recycling of LIB. The primary risks of LIB fires and 
how to prevent the fires are highlighted. This chapter concludes by summarizing the 
key findings of this work. For more details on general circular economy consider-
ations related with batteries, including reuse and second life, the reader is referred to 
Chap. 2 of this book. 

9.2 Battery Contents 

9.2.1 Battery Families and Their Cathode Chemistries 

To understand the supply and safety risks associated with the materials used in LIBs, 
it is important to consider the various active cathode chemistries of the numerous 
LIBs currently available. LIBs currently on the market use a variety of lithium metal 
oxides as the cathode and graphite as the anode [29]. 

Most existing LIBs use aluminum for the mixed-metal oxide cathode and copper 
for the graphite anode, with the exception of lithium titanate (Li4Ti5, LTO) which



uses aluminum for both [23]. The cathode materials are typically abbreviated to three 
letters, which then become the descriptors of the battery itself. For example, lithium 
cobalt oxide (LiCO2) becomes LCO, which was presented in 1991 as the first major 
commercially available LIB technology [50]. Due to the high-cobalt content, and 
soaring cobalt costs, LCO batteries have become very expensive to manufacture. 
Problems also lie in LCO’s lack of thermal stability and quickly fading capacity. 
Despite this, they are heavily used in mobile devices [46]. 
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The next LIB emerged in 1996 with a cathode made of lithium manganese oxide 
(LiMn2O4, LMO) [23]. Replacing cobalt in the cathode with nickel and manganese 
does make LMO cheaper than LCO but has resulted in a lack of cycling stability at 
high temperatures [46]. 

Most commonly used in medium- and high-range electric vehicles (EVs), due to 
their high energy density and low power consumption [45], is the lithium nickel 
manganese cobalt battery (LiNixMnyCo1 - x - yO2, NMC). The NMC battery is a 
so-called “family” as any combination of the three metals is possible, giving rise to a 
variety of cathode chemistries within one family. The four chemistries which are 
most common are NMC-111, NMC-532, NMC-622, and NMC-811, with the num-
bers referring to the ratio of nickel-manganese-cobalt in the active cathode material. 
First commercialized in 2004, the NMC battery family boasts very good specific 
power, life span, cost, safety, and specific energy [31]. 

Similar to NMC is the lithium nickel cobalt aluminum oxide cathode 
(LiNi0.8Co0.15Al0.05O2, NCA). NCA also has a high specific energy, power, and 
life span, but it is more expensive than NMC [31]. 

The final example is the lithium iron phosphate battery (LiFePO4, LFP), widely 
used in medium- and low-range EVs, which has sacrificed energy density for safety, 
improved environmental performance, and low production costs, coming from the 
lack of cobalt in the cathode [45]. The market share of LFP batteries has grown 
substantially in recent years, from 10% of the global EV market share in 2018 to 
approximately 40% in 2022 [9]. One reason for this is the popularity of LFP batteries 
in the Chinese market, with Tesla recently announcing they will use LFP batteries in 
their Model 3 for the Chinese market [13]. The drive towards the electrification of 
public transport has also played a part in this. This is due to factors such as the 
absence of cobalt in the cathode reducing the production costs, the use of phosphate 
to increase stability, enhanced electrode stability against overcharging, and a higher 
tolerance to heat. All of which has lead to LFPs being commonly used in buses [44]. 

9.2.2 Whole Battery Pack 

Most of the focus from recyclers is extracting the valuable metals such as copper, 
nickel, and cobalt [40] contained within the active cathode material. Despite this, the 
active cathode material only makes up a maximum of 35% of a LIBs’ relative 
weight, as seen in Fig. 9.1. Pouch cells can weigh between 75 and 225 g, depending 
on the battery cathode chemistry.
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Fig. 9.1 Relative weight percentages of LIB. (Based on Sommerville [40]) 

Lithium-ion cells come in three principal shapes and sizes: cylindrical, pouch, 
and prismatic. All three “form factors” are employed in the larger applications of 
LIBs including EVs and battery energy storage systems (BESS). In an EV pack, the 
cells are arranged in series, parallel, or mixed configurations to form a module. 

Each module will also have its own electrical and thermal control components 
[38]. The modules are then connected in series, parallel, or a combination of the two, 
to form a battery pack. The modules can be mechanically locked into place or 
welded or glued together, which is a considerable disadvantage in their manufactur-
ing, as it makes them particularly difficult to disassemble. The packs themselves are 
housed in a plastic or metal container, also containing a whole pack battery and 
thermal management systems. 

9.3 Battery Cathode Materials and the Associated 
Supply Risks 

A LIB’s active components are an anode and a cathode, separated by an organic 
electrolyte, i.e., a conductive salt (LiPF6) dissolved in an organic solvent. The anode 
is typically graphitic carbon, but silicon has emerged in recent years as a replacement 
with a significantly higher specific capacity [51]. The inactive components include a 
polymer separator, copper and aluminum current collectors, as well as a metal or 
plastic casing.



9 Raw Materials and Recycling of Lithium-Ion Batteries 147

Table 9.1 Typical raw mate-
rial requirements (Li, Co, Ni 
and Mn) for three battery 
cathodes in kg/kWh [20] 

Type Lithium Cobalt Nickel Manganese 

LCO 0.11 0.96 0.00 0.00 

NCA 0.10 0.13 0.67 0.00 

NMC 111 0.15 0.40 0.40 0.37 

622 0.13 0.19 0.61 0.20 

811 0.11 0.09 0.75 0.09 

The majority of materials that are constrained by resource limitations are those 
contained within the cathode, as well as the electrolyte due to its lithium content 
[35]. The majority of LIBs on the market today have cathodes which include lithium, 
cobalt, nickel, and manganese due to their high energy densities. Table 9.1 shows an 
estimate of the amount of these metals, in kilogram required per kilowatt-hour for 
five popular cathode materials. 

Batteries with lithium cobalt oxide (LCO) cathodes typically require approxi-
mately 0.11 kg/kWh of lithium and 0.96 kg/kWh of cobalt (Table 9.1). Nickel cobalt 
aluminum (NCA) batteries, however, typically require significantly less cobalt, 
approximately only 0.13 kg/kWh, as they contain mostly nickel at approximately 
0.67 kg/kWh. Nickel manganese cobalt (NMC) batteries vary on their raw material 
requirements depending on which member of the battery family is being used. For 
example, the NMC-111 contains approximately 0.40 kg/kWh of nickel, manganese, 
and cobalt, whereas NMC-811 requires 0.75 kg/kWh of nickel and only 0.19 and 
0.20 kg/kWh of cobalt and manganese respectively. In practice, this means a Tesla 
Model S, which uses a 100kWh NCA battery [25], would require 10 kg of lithium, 
13 kg of cobalt, and 67 kg of nickel. 

The following section describes the supply chains associated with the elements 
used in the manufacturing of LIBs, particularly those contained in the cathode. 

9.3.1 Cobalt, Lithium, and Nickel 

It is projected that, just for EV batteries and energy storage, the EU will need 
18 times more lithium and 5 times more cobalt in 2030, with this increasing another 
three-fold by 2050, compared to the current supply to the whole EU economy 
[1]. This will inevitably lead to supply issues not just in the EU, but globally, and 
has resulted in both materials being added to the EU’s Critical Raw Materials 
(CRMs) list [14]. 

The significant increase in demand for cobalt, lithium, and nickel is demonstrated 
in Fig. 9.2, where it is easy to see that the adoption of LIBs with cathode chemistries 
with very low or even no cobalt is appealing. In both scenarios modeled in Xu et al. 
[49], the known global reserves for cobalt could be depleted by 2050. Cobalt 
reserves also have the added challenge of being very geographically concentrated, 
partly in areas with political and social conflict [49]. The Democratic Republic of the 
Congo (DRC) in particular plays a dominant role in current and future cobalt supply,



accounting for 60–75% of global mine production [2]. Cobalt mining also has the 
disadvantage of being reliant on the nickel and copper markets, as cobalt is primarily 
mined as a by-product of the two [2300], so the expansion of new cobalt mines will 
only occur if the nickel and copper markets are strong [2]. 
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Fig. 9.2 Global demand for raw materials to 2040 [20] 

Fig. 9.3 Cobalt price volatility from February 2010 to August 2023 [43] 

Due to this, cobalt markets are volatile, rising from $31,000 per ton in 2012 to 
$93,000 per ton in 2018, with another peak in 2022 [2300, 28]. The volatility is well 
demonstrated in Fig. 9.3. This increase resulted in a 5–64% increase in cathode 
material costs per technology, proving the high dependence on raw materials in the 
industry [46]. Moreover, the supply risk score of cobalt has risen sharply from 49 in



2007, meaning the element was uncritical, up to 60 in 2017, making it the most 
critical element contained within battery cathodes [46]. 

9 Raw Materials and Recycling of Lithium-Ion Batteries 149

Cobalt plays an important role within the battery chemistries, providing high 
energy densities and stable batteries, and so it is unlikely that cobalt will be 
eliminated from LIB cathodes in the near future [2]. This benefits the recycling 
industry as cobalt is the main driver of the revenue produced from pyrometallurgical 
and hydrometallurgical recycling. With appropriate recycling facilities and further 
development, the industry can move away from mined cobalt and begin to use 
recycled cobalt from spent LIBs. 

Lithium has much the same supply issues as cobalt. By 2025, it is possible that 
lithium demand could outgrow current production capacities [49], with one of the 
scenarios in Xu et al. [49] concluding that known reserves of lithium could be 
depleted before 2050. 

Battery manufacturers are attempting to decrease their reliance on cobalt, but not 
lithium; this is perhaps due to lithium reserves being less concentrated in conflict 
areas. Despite this, in the year 2012–2013, lithium’s supply risk score jumped 
considerably, from 52 to 57 [46]. The issue with lithium is that the industry does 
not appear to be trying to relieve their reliance on it at this present time. This further 
solidifies how efficient, cost-effective recycling is necessary to recover lithium from 
spent LIBs and ensures the recovered lithium is of a high enough quality to be used 
in future LIB manufacturing. 

Lithium and cobalt also have a variety of other uses, outside of LIBs. For 
example, cobalt is magnetic and so when alloyed with aluminum and nickel, it can 
be used to produce particularly powerful magnets. Cobalt’s high-temperature 
strength also makes it particularly important in the development of jet turbine 
generators. More superficially, for centuries cobalt has been used to produce blue 
paint. While lithium is a very light metal, it is often alloyed with others to make light-
wear armor plating, and aluminum-lithium alloys are used in aircraft and high-speed 
trains. Interestingly, lithium carbonate can be given to people suffering with severe 
depression as a mood stabilizer, but the full effect of the drug on the brain is not fully 
understood. 

Although not as critical as lithium and cobalt, nickel reserves are still a concern, 
with the prediction that by 2040 EVs alone could require as much nickel as the 
global primary nickel production in 2019 [49]. As with lithium, one scenario in Xu 
et al. [49] predicts known reserves for nickel to be depleted by 2050. This is mostly 
corroborated by Wentker et al. [46] which predicts that with the current rates of 
extraction, nickel reserves will be depleted in 35 years. This is concerning when it is 
widely accepted that the adoption of battery chemistries with high-nickel and 
low-cobalt content has been faster than expected and could lead to a 60-times 
increase in nickel demand for the EU alone from 2017 to 2060 [2]. 

The industry’s move from high lithium content batteries just shifts the burden 
onto nickel reserves. This is depicted well by the projected dramatic increase in 
nickel demand compared to cobalt demand displayed in Fig. 9.4. Although LIBs 
with high-nickel chemistries have a higher energy density and therefore reach the 
desired range for EVs, there is some concerns over the stability of these batteries



particularly the lithium nickel oxide battery which, after two decades of intensive 
research, still are not commercially ready [2]. However, the revenue generated from 
recovered nickel is much lower than that of cobalt which, due to the move toward 
high-nickel low-cobalt battery chemistries, may impact economic viability of 
recycling, as it will depend more on the volatile price of nickel [2]. 
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Fig. 9.4 Cobalt and nickel demand for European EVs for high adoption of high-Ni cathodes [2] 

9.3.2 Manganese 

The supply of manganese comes from the mining of ore and scrap, with the ore 
including both manganese and iron ore [42]. The majority of mined manganese 
comes from South Africa and Australia, with shares of 26% and 17%, respectively, 
with China dominating processing and consumption [42]. Helbig et al. [23] find that 
the supply risk score for manganese, 52 points, is particularly average for all the raw 
materials used in LIBs. The most notable supply risk indicators for manganese come 
from the static reach reserves and the substitutability. The static reach reserves are 
only 34 years, the third lowest out of the raw materials, and the substitutability has a 
score of 4 which is second lowest [23]. This means that the current easy-to-access 
manganese reserves will be depleted in only 34 years and manganese as a component 
of LIBs has very limited materials that could replace it while maintaining the battery 
capacity and life span. Both of these factors mean it is imperative that the purity of 
recycled manganese is adequate to be reused in LIBs, taking away the reliance on 
reserves.
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9.3.3 Other Materials 

Copper, steel, aluminum, and graphite are also materials found in the spent LIBs. Xu 
et al. [49] predict that for copper, aluminum, and graphite, all known reserves exceed 
demand from EV manufacturing until at least 2050. However, there is a slight 
concern about natural graphite, as in 2019 64% of it was produced in China, 
which may lead to low supply reliability through political conflicts among global 
powers [49]. As much as this would not be ideal, it is true that synthetic graphite has 
begun to dominate the LIB anode market, with a 56% share in 2018, due to both its 
increased performance and decreased cost [49]. 

However, the shift toward silicon-based anodes, as appears to be the trend, would 
alleviate these concerns, with 25.8% abundance of silicon in the Earth’s crust 
[26]. Silicon-based anodes also provide good chemical stability in the electrolyte, 
improving safety of the battery, and the abundance of silicon in the Earth’s crust 
reduces the overall cost. 

As much as these materials are necessary to the manufacturing, and therefore the 
recycling, of LIBs, their lack of criticality in comparison with the other materials 
makes them of low concern. However, to achieve increasing recycling efficiencies 
according to the new regulatory framework for batteries in, for example the EU, 
USA, and China, it is vital to recover these fractions, no matter how small. 

9.4 Lithium-Ion Battery Recycling 

9.4.1 Available Recycling Processes 

Due to the value of the materials contained within LIBs, it is vital that they are safely 
and effectively recycled. All recycling is either open-loop or closed-loop. Open-loop 
recycling is the most common form, in which materials recovered from the recycling 
process have to undergo a series of refining processes before they can be used again 
[37]. Closed-loop recycling, considered the best case scenario, is when the materials 
recovered from the recycling process are in the correct chemical form and sufficient 
purity levels to be reused directly in the products they were recycled from [37]. 

There are a growing number of recycling facilities across the globe, as depicted in 
Fig. 9.5. Each company achieves different recycling yields, due to having their own 
unique take on one of the three available recycling processes or employing a 
combination of two. 

Three main recycling processes for spent LIBs are commonly used: pyrometal-
lurgical, hydrometallurgical, and direct cathode recycling (which will be referred to 
as direct recycling). Pyro- and hydrometallurgical processes are both employed to 
effectively recover metals from e-waste. The recoverable materials from each of 
these processes are listed in Table 9.2. None of the recycling processes listed are



perfect, and work is being done to improve the processes in some way. Most of the 
improvements are based around increasing yield or purity, reducing the use of raw 
materials or energy, and reducing waste [18]. 
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Fig. 9.5 Locations of recycling facilities globally, with the size of the red dot representing the 
recycling capacity in tons/year 

Table 9.2 Recoverable materials through different recycling technologies 

Pyrometallurgical Hydrometallurgical Direct 

(1) Copper compounds 
(2) Iron compounds 
(3) Co+2 in output 
(4) Ni+2 in output 
(5) Lithium compounds 
(6) Aggregate (from slag) 

(1) Copper 
(2) Steel 
(3) Aluminium 
(4) Graphite 
(5) Plastics 
(6) Lithium carbonate 
(7) Co+2 in output 
(8) Ni+2 in output 
(9) Mn+2 in output 
(10) Electrolyte solvents 
(11) Electrolyte salts 

(1) Copper 
(2) Steel 
(3) Aluminium 
(4) Graphite 
(5) Plastics 
(6) NMC 
(7) Electrolyte solvents 
(8) Electrolyte salts 

Pyrometallurgical Recycling Process 
Pyrometallurgical recycling is one of the most ubiquitous metal recycling technol-
ogies used today. Pyrometallurgical processes use high temperatures to extract and 
purify raw materials. Fig. 9.6 depicts the process flow of a generic pyrometallurgical 
recycling process, in which spent LIBs, either shredded or intact, are sent to a smelter 
which burns off electrolyte and plastics in the battery to supply heat and the gas 
produced through the smelting process is treated.
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Fig. 9.6 Process diagram of pyrometallurgical recycling processes 

Graphite/carbon and aluminum in the LIBs act as reductants for the metals and 
are oxidized, while cobalt, nickel, copper, and iron in the LIBs make up the matte. 
The rest of the materials, including oxidized aluminum and lithium, end up in the 
slag. It is important to note that the slag may be used as aggregate for pavement or as 
supplementary material for cement production and there is ongoing research into the 
lithium recovery process from the slag [40]. 

The matte undergoes an acid leaching process and then precipitation to produce 
iron and copper compounds. Following this, the matte can be further processed to 
produce cobalt and nickel compounds; the processes used are solvent extraction 
followed by precipitation. These compounds can also be separated fully through 
hydrometallurgy. 

The facilities which currently utilize pyrometallurgical recycling are Accurec and 
Umicore [40]. In Umicore’s facility in Hoboken, Belgium, only modules or packs 
larger than a shoebox require disassembly prior to the recycling process [40]. See 
Table 9.2 for a list of recoverable materials through pyrometallurgical recycling.
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Fig. 9.7 Left: calcination resp. drying of spent LIB and subsequent generic hydrometallurgical 
recycling process. Right: the hydrometallurgical process used by TES 

Hydrometallurgical Recycling Process 
Figure 9.7 depicts the process flow of a generic hydrometallurgical recycling 
process. Hydrometallurgy uses aqueous solutions, such as acids and salts, to dissolve 
the metals, and then subsequent steps recover the metals from the solution. 

Spent LIBs which are hydrometallurgically recycled must first be discharged and 
disassembled, before they are shredded. This is important as, for hydrometallurgy to 
be cost-effective, it is necessary to ensure that minimal extraneous material is 
exposed to the process [40]. In some cases, organic compounds such as the binder 
and solvents from the electrolyte are then burned off and carbon dioxide will be 
emitted. TES, a global LIB recycling company, uses shredding under inert atmo-
spheric conditions and vacuum drying followed by condensation for this, as shown 
in the right image of Fig. 9.7. The organic solvent from the electrolyte will be 
recovered, and residual fluorine and phosphorus will be removed at the purification 
step of the hydrometallurgical process. 

After shredding, the process is made up of several physical separation processes 
to separate out aluminum, copper, and steel as metal scraps, plastics, and black mass 
followed by a leaching process for the black mass. The final step includes solvent 
extraction and precipitation to produce cobalt-nickel-manganese compounds, with 
the potential for lithium carbonate extraction which can be used in the production of 
new cathode materials [11]. However, market demand for high purity materials in 
the correct ratios justifies further separation into individual cobalt-nickel-manganese 
compounds. Both Duesenfeld in Germany and Recupyl in France use this process, 
however only at a small scale, selling most of their black mass to the metallurgical 
industry [40]. Umicore performs hydrometallurgy after pyrometallurgy to further 
separate the compounds of transition metals [40].
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Fig. 9.8 Process diagram of a generic direct recycling process 

Direct Recycling 
Figure 9.8 depicts the process flow of a generic direct recycling process. Direct 
recycling describes the process by which the battery components are recycled 
without breaking down their chemical structure. For this, spent LIBs must first be 
discharged and disassembled before they can be perforated. 

To recycle the electrolyte solvent and salts, they then undergo supercritical CO2 

extraction. The rest of the LIBs can then be shredded before going through several 
physical separation processes, density separation, and froth flotation, which recover 
plastics, metals, anode material, and cathode material, respectively [11]. The final 
step sees the recovered cathode material relithiated, which is the process by which 
they restore lithium stoichiometry of the cathode by bathing it in a heated lithium 
solution, to produce rejuvenated cathode powder.
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Fig. 9.9 Generalized recycling loop. Processes are in purple and intermediate products in blue. 
(Based on Sommerville et al. [40]) 

Direct recycling is not currently used anywhere in industry, but it is the preferred 
method as the active material is reused without it having to be returned to the 
constituent raw materials as compounds or salts [40]. 

9.4.2 Yield for the Different Recycling Processes 

As mentioned previously, the uniqueness of each company’s recycling process leads 
to differing material recovery percentages and purities. This section will give 
statistics as produced in generalized processes modeled in Everbatt [11]. It cannot 
be overstated how essential high material recovery percentages and purities are to the 
alleviation of pressure on material reserves globally. Striving for closed-loop 
recycling across the industry should be an ultimate goal. 

A generalized recycling loop showing the potential routes in which LIB cells may 
be recycled is shown in Fig. 9.9, with processes in purple and intermediate products 
in blue. In practice, some large-scale recyclers follow the loop to the left, using a 
combination of pyro- and hydrometallurgical processes. Not shown in Fig. 9.9 is that 
some recyclers produce only a “black mass” of active material, i.e., metal oxides and 
carbon, which will then be sold on for pyro- or hydrometallurgical recovery [40].



9 Raw Materials and Recycling of Lithium-Ion Batteries 157

Both pyrometallurgical and hydrometallurgical processes recover 98% of the 
cobalt from the input, and, with such a high efficiency, there should be a consistent 
drive to ensure spent LIBs are recycled so the cobalt can be reused, particularly due 
to the high volatility of the cobalt markets and low natural reserves [11]. 

Material recovery of lithium is not as efficient as cobalt, at only 90%, and to 
recover lithium using pyrometallurgical recycling, the slag must undergo a hydro-
metallurgical process, thus increasing recycling costs making it less attractive to 
recyclers [11]. This means recyclers are less likely to recover lithium, increasing the 
reliance on virgin materials. Luckily, like cobalt, material recovery efficiency of 
nickel is 98% for both pyrometallurgical and hydrometallurgical recycling 
[11]. Only hydrometallurgical recycling recovers manganese, but this is also at 
98% efficiency [11]. Copper and steel have 90% material recovery efficiencies 
from all three recycling processes. Meanwhile, aluminum and graphite have 90% 
material recovery efficiencies from only hydrometallurgical and direct 
recycling [11]. 

9.4.3 Opportunities from Recycling 

The primary advantage of LIB closed-loop recycling is that it can save raw materials. 
When materials such as lithium, cobalt, and nickel are so critical to the operation of 
LIBs but are relatively scarce, it is vital to develop recycling processes which will 
alleviate some of the pressure on natural reserves. It is estimated that recycling can 
save up to 51% of the extracted raw materials, in addition to the reduction in the use 
of fossil fuels and nuclear energy in both the extraction and reduction processes [8]. 

One benefit of a LIB compared to a primary battery is that they can be repurposed 
and given a second life. A LIB in an EV is classed as EOL once the warranty, usually 
8–10 years, has been exceeded; however, both manufacturers and developers agree 
that LIBs still retain 70–80% of their initial capacity after this time [39]. Some 
changes to the LIB may be necessary before it can be repurposed, such as replacing 
damaged cells or reconfiguring the pack for non-EV use [5], but it is estimated that 
LIBs which are repurposed in stationary energy storage applications have a second 
life span of an additional 10 years before they reach their absolute EOL [39]. Another 
benefit of second life LIBs is both environmentally and economically valuable, as 
they can reduce direct energy consumption from the electricity grid [39]. 

The idea of a second life for LIBs from small devices such as mobile phones has 
been trialed in the developing world, mostly in isolated areas that are not connected 
to the national grid. The second life LIBs can be connected to solar panels and 
allowed to charge and then used to power LED-based systems [8]. This is a safe, 
reliable, and sustainable way to light homes, aiding in the replacement of candles and 
kerosene lamps. Costa et al. [8] find that a LIB that was used in the standard life of a 
mobile phone, 2 years, still contains 1250 cycles. This means a 12 V, 3.1A battery 
will be able to power a 5 W LED lamp for 4 hours every night for 3 years and the unit



itself will cost only $35 whereas kerosene lamps cost an average of $54 per year of 
use [8]. 
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Pyrometallurgical recycling has been proven to be economically feasible and 
conducive for large-scale operations [30]. Hydrometallurgical recycling has a num-
ber of environmental benefits, such as a low operating temperature and lower CO2 

emissions compared to the pyrometallurgical process [5]. Economically, hydromet-
allurgical recycling is preferable due to the increase in recoverable materials and 
their increased quality. The hydrometallurgical process allows most of the metals 
contained within EOL batteries to be recovered after extraction and separation 
through using strong inorganic acids to leach the metals into solvents. Inorganic 
acids such as hydrochloric, sulfuric, and nitric can be used to achieve 99% solubi-
lization of lithium and cobalt [30]. 

9.4.4 Limitations of Recycling 

The primary limitation of LIB recycling is that closed-loop recycling does not exist; 
the materials cannot be used in like-for-like products and instead have to be down-
cycled. This is due to the waste treatments, namely, shredding, involving some 
degree of material intermixing and small-scale dispersion of metals into those 
recovered in bulk, such as aluminum and steel, reducing their quality. Although 
recycling cobalt from LIBs can be used in samarium-cobalt magnets for sensors and 
electric motors [34], the majority of recycled materials go on to be used in products 
with lower material quality requirements. To compensate for this, primary and 
secondary materials are often mixed to match material requirements in other 
products. 

The pyrometallurgical recycling process may have generated relatively successful 
business models up until now, but this is likely to change. Despite the fact that the 
process is simple and mature and requires no sorting prior to recycling, there are a 
number of disadvantages [5]. Pyrometallurgical recycling requires a significant 
amount of energy to treat waste gases before they are safe to release into the 
environment [47]. This is in addition to the process itself requiring very high 
temperatures, making it very energy intensive [30]. Moreover, metals such as 
lithium, aluminum, and manganese cannot be recovered at such high temperatures, 
and the growing trend toward manufacturing LIBs with lower cobalt content means 
the revenue generated from this process will decrease. This is due to recovered cobalt 
generating 50–70% revenue for pyrometallurgical recycling, so lower cobalt leads to 
lower revenue and a lack of profit. Unfortunately, recent trends suggest that batteries 
with higher nickel and lower cobalt content, such as the NMC-811 batteries, are 
becoming more popular due to increased energy density, environmental sustainabil-
ity, and reduced manufacturing cost [48].
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Another disadvantage of the pyrometallurgical process is that both lithium and 
aluminum are entrained in the process slag and therefore require further processes to 
recover. The UK currently exports most of its spent LIBs to Umicore in Belgium, 
which uses the pyrometallurgical process; this meant lithium and aluminum were 
lost to the slag as it was not economically feasible to process it [47]. However, 
Umicore have recently employed further processing to recover lithium from the slag 
[5]. Although this is a positive in terms of material recovery, an additional process 
increases not just the total recycling cost but the environmental one too. 

As with pyrometallurgical recycling, hydrometallurgical recycling does rely on 
cobalt recovery for the majority, in this case 40–60%, of its generated revenue. As 
above, the low nickel, high-cobalt content means it is not economically feasible to 
hydrometallurgically recycle NMC-811 batteries. However, unlike pyrometallurgi-
cal recycling, a profit is still generated per kg of NMC-532 and NMC-622 batteries 
when hydrometallurgically recycled. In addition to this advantage, the materials 
produced from hydrometallurgical processes are of a high purity while recovering 
most of the LIB constituents [5]. 

Unlike pyrometallurgical, the hydrometallurgical process does require manual 
deep-discharging and dismantling before recycling can begin, which requires con-
siderable storage space, which adds to overall costs, due to an increase in labor costs, 
and overall complexity [5]. 

Hydrometallurgical recycling also produces a considerable amount of wastewater 
through the leaching and precipitation operations. The treatment this requires adds to 
both the environmental burden and overall recycling cost. Another increase in cost 
comes from the challenge of separating some elements in the solution, such as 
cobalt, nickel, manganese, iron, copper, and aluminum, due to their similar proper-
ties [5], more specifically cobalt and nickel in aqueous medium. This requires 
solvent extraction and consequently large amount of organic solvent with organo-
phosphate additives to be stored and processed. Purification steps generate, e.g., 
Al(OH)3, FeO.OH, CaF2, CaPO4, which potentially need to be treated as hazardous 
waste. 

Direct recycling is the newest of the modeled recycling processes and is still in its 
development stages for EV LIB recycling [25], which is its primary disadvantage. 
Another disadvantage of direct recycling is that it requires rigorous sorting before the 
recycling process can begin, as the exact cathode chemistry must be known prior to 
recycling. This is due to the inflexibility of the process: what goes in must come out 
[5]. This raises questions of whether the process is appropriate for an ever-changing 
reality; with a market already saturated by differing cathode chemistries, how can a 
process which can only recycle one specific chemistry at a time be sustainable? 
Although this is an important question, it is true that direct recycling produces the 
highest revenues of all the recycling processes and, due to this, it has the highest net 
recycling profit by a considerable margin [25]. The overarching economic benefits 
suggest that research into direct recycling must continue, ensuring it can be used 
sustainably on a commercial scale.
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9.4.5 Battery Recycling Legislation 

With battery recycling comes battery recycling legislation. Current legislation across 
all three major markets, China, the EU, and the USA, focuses on the protection of 
local environment and human health [32]. 

While the EU’s original battery directive was published in 2006, the new Battery 
Regulation, published in 2023, will build upon and replace the 2006 EU Battery 
Directive, with a direct focus on the challenges that have come with rapid develop-
ment of the industry [16]. Melin et al. [32] divide the new Regulation into four key 
elements, all of which are imperative to improving the sustainability of LIBs: 
The first is the Regulation aims to increase both transparency and traceability across 
the battery life cycle; second, it mandates carbon footprint declaration throughout the 
life cycle and establishing maximum thresholds, addressing climate impact of the 
batteries; third is an emphasis on circularity through increased collection and 
recycling efficiencies and mandating the use of recycled materials, particularly in 
batteries above 2kWh; and finally, fourth are including waste processors to the 
Battery Management System (BMS), verifying the battery’s state of health in real 
time, and determining if the battery has the potential to be reused or repurposed 
before it is recycled. 

While the EU has a number of directives to support in research and innovation 
across the entire battery chain, it has failed to secure key elements of the supply 
chain, such as raw material extraction, refining, and battery manufacturing 
[32]. Much is the same in the USA who, through Tesla, have been at the forefront 
of manufacturing but rely on global markets for refinement, production, and 
recycling of battery raw materials [2300]. 

The market is dominated by China, who occupy more than two-thirds of it 
[32]. This has been possible through a booming EV battery sector and strong 
government support in the form of subsidies and investment stimulus [32]. China 
also implemented the Interim Measures for the Administration of the Recycling and 
Utilization of Power Batteries for New Energy Vehicles from 2018 [32]. These cover 
minimum standards for the reclassification of batteries for second life applications, 
the recycling efficiency of plants treating EOL batteries, and requirements necessary 
to qualify for subsidies. When these measures were tightened further in 2019, they 
were made stricter than the regulations the EU plan to enforce a decade from 
now [16]. 

While in the USA, the Biden administration has declared the electrification of 
transport a top priority and produced an investment proposal of up to $174 billion, 
they still lag behind both the EU and China in mandating EPR or promoting circular 
economy principles. The stringent measures imposed on Chinese companies, who 
already dominate in material refining, battery production, and mature recycling 
infrastructure, have allowed them to easily comply with EU regulations. This 
imbalance between new and mature markets has led to a variety of unintended 
consequences. For example, such stringent measures can lead to distorted innovation 
through increased compliance costs, hindering competitiveness. Moreover,



European EV manufacturers having to adhere to the new, stricter regulations will be 
more constrained in their options than the less regulated USA and also risk losing out 
to Chinese competitors due to their bigger, more mature share of the market [32]. 
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EU regulation does aim to responsibly develop supply chains for Europe’s EV  
industry, with recycling being at the forefront of this. However, the regulations do 
not require recycled material to be sourced in Europe, nor does it restrict the source 
of recyclables to EOL batteries [16]. This will put companies who have operated in 
markets such as China and South Korea, with much greater experience in battery 
material production, including in the use of recycled materials, in a much better 
position to meet these regulations. This could lead to European material producers 
and battery manufacturers being essentially eliminated from their own market. 

One new regulation being proposed by the industry is a digital battery passport 
(DBP) for each battery entering the market. Digital product passports themselves are 
not novel; they have existed for some time to assist value chain stakeholders in 
achieving sustainable product management [36]. However, the concept has recently 
caught the attention of battery policymakers, and the European Commission is 
implementing DBPs [15]. The policy explicitly calls for the implementation of 
DBPs for industrial and EV batteries by January 2026 [16]. The EU has implemented 
three main EOL battery polices: maximum carbon footprint thresholds, minimum 
shares of recoverable materials, and DBPs. The main goal of DBPs is to enable 
sustainable product life cycle management and promote value-retaining processes, 
which in turn facilitates sustainable and circular value chains [3]. However, due to 
DBP development currently being pursued by nongovernmental institutions, there is 
a lack of clear specifications for the scope of DBPs, leading to inconsistency across 
the industry. 

Battery legislation covers the entire life cycle of a LIB, from manufacture to 
initial use through to collection, processing, recycling, and disposal. The life cycle 
itself comes with a number of impacts, covered under environmental, social, and 
economic. 

The steps of a LIB’s life have been covered throughout this chapter; however, one 
important element which runs throughout the life cycle of a LIB that has not yet been 
addressed is the safety risks that come together with LIB’s use and disposal and the 
social impacts these have. The way these risks fit into the life cycle of a LIB is 
demonstrated with the flowchart in Fig. 9.10. In the next section, we will discuss 
these risks, as well as addressing how it is best to reduce them. 

9.5 Current Safety Concerns of End-of-Life Batteries 

9.5.1 End-of-Life Management and Recycling 

At present, there are very few LIB recycling facilities in the UK and Europe, despite 
the crucial role the industry has in the decarbonization of the planet. However, there 
are almost daily reports of fires caused by LIBs in both bin lorries and recycling



facilities [33]. In the USA, the cost is even greater, and not just financially, they have 
seen injuries and even deaths. This had led to material recovery facilities in the USA 
being increasingly reluctant to admit LIB related fires due to insurance concerns. 
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Fig. 9.10 Flowchart of the life cycle of a LIB 

A report from Eunomia found that there are approximately 201 waste fires each 
year caused directly by LIBs [4]. While the fires do vary significantly in terms of 
severity and duration, it is estimated that the fires cost the UK £158 million annually 
[4]. The majority of these costs are found to be incurred by waste site operators; 
however, the cost to society, the environment, and the fire service is approximated to 
be £16 million. The report also breaks the waste fires into four categories, with 
1 being the most severe and 4 being the least, finding that it is fires of severity level 
3 which occur most frequently and therefore have the highest cost implications at 
over £128 million annually [4]. 

In the USA, the situation is even more bleak with a Fire Rover report estimating 
the cost of LIB waste fires to be $1.2 billion annually [17]. Even with the report’s 
author believing fires are underreported, there is still an alarming year-on-year 
increase in waste fires. Although they have not all been directly linked to LIBs, 
LIBs are listed as 1 of the 4 causes of the increasing number of facility fires which 
have resulted in 49 injuries and 2 deaths, an increase in injuries of 158% from Fire 
Rover’s 2018 report [17]. 

At present, these fires are caused by small LIBs from or in small rechargeable 
devices such as mobile phones. However, the battery industry is ever-changing and, 
most importantly, ever-growing, with an onslaught of EOL LIBs from EVs and



second life applications coming very soon. This will diversify the waste stream 
recycling facilities have to manage, and it may be that the global drive to replace 
fossil fuels could mean the fiery epidemic in recycling facilities is the calm before the 
storm [33]. 
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LIBs can store large amounts of energy, but this energy must be released in a safe, 
controlled fashion. If this energy is released through abuse of the batteries, toxic, 
flammable, and potentially explosive gases, as well as fine particles of heavy metals, 
are released; this process is known as thermal runaway. This can easily be caused by 
crushing and penetration of the batteries, which are common practices in recycling 
facilities. When the batteries are crushed, the separator may be pierced, which in turn 
allows the anode and cathode to come into contact and a short circuit to develop. 
When this occurs, the heat generated causes pyrolysis of the organic solvent and 
other exothermic reactions which generate a mixture of gases that includes hydrogen 
(up to 50%), carbon dioxide, carbon monoxide, small organic molecules such as 
ethane and ethene, hydrofluoric and hydrochloric acid, and hydrogen cyanide. When 
these vent from the cells, via safety caps on cylindrical and prismatic cells, or pouch 
cells bursting, the gases take with them small droplets of the remaining organic 
solvent producing a thick, white vapor cloud [6]. Thermal runaway produces very 
large volumes of vapor cloud, e.g., up to c.a. 6000 L/kWh [21], and hence when this 
is vented, it does so at high pressure: immediate ignition of the cloud thus results in 
flares that can be several meters long. Delayed ignition can, and has, resulted in 
unconfined vapor cloud explosions (UVCE) [10], and such large volumes of vapor 
cloud have also led to UVCEs from small LIBs including e-scooters and e-bikes. 

One common practice is the storage of road traffic collision (RTC) vehicles in 
vertical piles and moving them with magnetic claws and forklifts. This cannot be the 
case for EVs due to the risks posed by potentially damaged battery packs, which 
have been known to ignite hours, days, or even weeks after the initial incident 
[41]. Thus, it has been generally accepted that RTC EVs should be stored with a 
10–20 m exclusion zone. 

Although the biggest concern does lie with damaged or abused LIBs, it has been 
known for EVs to apparently spontaneously ignite, and, while the cause is still 
unclear, BMS failure, defects in design and/or manufacture, or some contamination 
during manufacturing are the most common postulations [7]. 

The lack of understanding of the risks and hazards of LIBs is concerning; while 
there seems to be some in governments, the public appears to be wholly unaware: an 
example is the incidents of fires due to members of the public assembling spare 
e-bike batteries bought online and doing so by soldering. Companies are currently 
able to sell secondhand EV battery packs, even batteries that are damaged or missing 
their BMS, to the public, with no safety warning. While this may not be illegal at 
present, it is wildly irresponsible. Without the appreciation for the complexity of the 
protection systems or the hazards of abused batteries, the risk of personal and 
municipal harm cannot be understated [7]. It is evident that abuse of batteries, 
such as rapid charging, does destabilize them and can reduce the onset of thermal 
runaway to room temperature [27], and damaged EV batteries have an increased risk 
of explosion. LIBs are safe and stable to use under specified limits of temperature 
and charge, but where does liability lie when misuse leads to injury or death?
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9.5.2 Reducing Waste Fires 

The most obvious way to reduce waste fires caused by LIBs is to ensure the batteries 
do not end up in the residual and mixed recycling waste streams in the first place. 
There are two easy to implement, short term measures which may help with this. 
Firstly, separate kerbside battery and small waste electronic and electrical equipment 
(WEEE) collection from households, and, secondly, increase the number of retail 
collection points for batteries and small WEEE [4]. 

However, the responsibility cannot be placed only on the consumer; instead, there 
must be supporting policy mechanisms that would fund systemic change in the 
collection of spent LIBs. The most effective way to do this is to financially 
incentivize or deter consumers from incorrectly disposing of batteries, alongside 
an improved collection system. These policies may include the banning of batteries 
from residual and mixed recycling waste streams, fining those who do not comply; 
enforcing enhanced extended producer responsibility (EPR) for batteries and small 
WEEE to pay for and coordinating, improving collection, and reflecting the cost of 
fires; creating a deposit return scheme (DRS), or other incentivization method, to 
encourage consumers to return spent LIBs and small WEEE for recycling; and 
introducing fee modulation within WEEE EPR system that allows producers to 
pay lower fees for design features that facilitate easier battery removal by 
consumers [4]. 

Moreover, there is evidently a problem in the WEEE management stream, with 
the increase in fires being an indicator of the need for change. The GRINNER project 
aims to rectify this. Funded through the European Union’s (EU) Horizon Europe 
program, the GRINNER project will focus on the reduction of fires caused by LIBs 
in the WEEE management chain [12]. The plan is to develop an AI-powered battery 
detection system utilizing data from X-ray detectors and pick-and-place robots. The 
system will use X-ray detectors to analyze X-ray data and detect waste containing 
batteries that can then be removed by a vision-based pick-and-place robot [12]. The 
robots will be commercially available and easily incorporated into existing WEEE 
and other recycling environments, to extract batteries and other e-waste safely and 
effectively before they are damaged by machines that crush and consolidate waste. 

Batteries themselves do contain several methods to improve their thermal stabil-
ity. For example, each battery contains a BMS which controls and prevents condi-
tions which could lead to failure, such as overcharging and overdischarging 
[19]. The BMS also operates the battery for the best application performance and a 
long life span. In addition to BMS, all batteries contain a thermal management 
system (TMS) which maintains the optimum operating temperature of between 
20 and 40 °C and keeps temperature changes between the modules to a minimum 
[19]. As a whole, the battery compartment is also built with fire prevention in mind, 
being designed to survive structurally and containing a vent to let out any pressure 
buildup [19].
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9.6 Conclusions 

It is evident that the EV revolution is well underway, with a vast number of raw 
material requirements and battery waste being created. 

With such a diverse product market, there is a great amount of choice for battery 
manufacturers, from the low cost LFP batteries to the high capacity NCA batteries. 
The diversity of this market does not come without its problems, with many of the 
materials used to produce the battery cathodes coming with considerable material 
criticality issues, particularly lithium and cobalt. While the market does appear to be 
moving away from batteries with a high-cobalt content, the use of lithium is here to 
stay, due to its stabilizing properties. Moreover, this move away from cobalt has led 
to the development of batteries with a higher nickel content, simply shifting the 
burden onto nickel reserves. 

Made up from a variety of toxic and rare materials, stockpiling and landfilling 
spent LIBs is not an option, so the waste streams generated from them need 
sustainable, cost-effective, high-yield management systems, such as recycling. The 
recycling market has already undergone change: pyrometallurgical recycling began 
as the most popular recycling method; however, there is no lithium recovery under 
this method. This has led to the growing popularity of hydrometallurgical recycling 
which produces high material yields, for low environmental cost. As direct recycling 
is still in its relative infancy, it is not yet available for commercial use; however, this 
method of recycling is the industry’s best chance at achieving closed-loop recycling. 

There are some very clear advantages of recycling LIBs, with the main one being 
the alleviation of pressure on reserves of the raw materials. It is important, however, 
to consider second life applications of LIBs that have reached their EOL in their first 
application. For example, LIBs in EVs reach their EOL in an EV after only 
8–10 years, but they retain 70–80% capacity. These batteries can go on to have a 
second life in stationary energy storage, storing renewable energies such as solar to 
be released in times of high demand, alleviating pressure on the national grid. 
Smaller LIBs from small electronic devices can also be used in such a way to 
power individual electronic devices. 

As closed-loop recycling, the method by which recycled products are used in like-
for-like products, has not yet been achieved, the recycled products must be down-
cycled. Mostly, the recovered materials are mixed with other raw materials to 
contain the correct mix to be used in products with lower material quality require-
ments. This is only one of the limitations of LIB recycling; the others include the 
hazardous waste produced from the recycling processes and the fact that LIB 
recycling is still not economical, with government grants needed to fill the gap. 

Safety in recycling plants has already proven to be a real concern, and that is 
without the addition of a very large number of very large EV batteries entering the 
waste stream. To date, fires caused by LIBs have cost the UK and US economy 
billions and will continue to do so without sufficient policy intervention which 
prevents spent LIBs from finding their way into conventional waste streams. Due 
to the high chance of thermal runaway, spent LIBs cannot be handled in the way



lead-acid batteries are; long gone are the days of scrap vehicles being stored in piles 
20 meters high. 
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This chapter has presented the cathode chemistries and the supply risks that come 
with the most important raw materials for each cathode. There is a discussion to 
move away from high-cobalt chemistries, the impacts on nickel reserves, as well as 
the low substitutability of other materials such as manganese. The different recycling 
processes, with a simple explanation of each, accompanied by a flow diagram were 
presented. The yield of each process was discussed followed by the opportunities 
and problems we are presented with when recycling LIBs, namely, the environmen-
tal benefits and down-cycling of products. This chapter covers battery recycling 
legislation, including DBPs and how they aim to aid in the adoption of a circular 
economy. We finish with an overview of the safety issues which come throughout 
the life cycle of a LIB, with a particular focus on how the LIB waste stream is 
incredibly high risk. 
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Part V 
Emerging Battery Chemistries 

Preface 

Batteries are playing a central role within the European Green Deal roadmap that 
targets climate neutrality by 2050. Indeed, rechargeable batteries of high energy 
density and round-trip efficiency and designed by a sustainable approach represent 
the key technology for many applications, from sustainable and smart mobility, 
clean, affordable, and secure energy from intermittent renewable sources, smart 
environments, and communications. However, the search for battery chemistries 
offering even higher energy and/or power density in combination with enhanced 
sustainability is still open. This chapter takes a technology perspective and intro-
duces the fundamental technical and electrochemical concepts and working princi-
ples of the most relevant battery chemistries. As such, it is fundamental for 
understanding the general principles of battery energy storage. Within this, 
Chapter 10 focuses on “classic” closed systems, with the most prominent represen-
tative being lithium-ion batteries, but tackles also other emerging systems such as 
sodium-ion or solid-state technologies. Chapter 11 then deals with open systems, 
mainly redox-flow batteries, where energy and power can be scaled independently.
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10.1 Lithium Metal Batteries 

Electrochemical plating/stripping of lithium metal at the negative electrode of 
aprotic batteries can in principle provide significant functional improvements 
compared to Li ion intercalation electrodes, in terms of the outstanding performance 
of the Li metal electrode (theoretical capacity = 3860 mAh g-1 and 
E° = -3.04 V vs. SHE, standard hydrogen electrode, cf. 372 mAh g-1 and 
≈ - 2.9 V vs. SHE for graphite) [1]. A high energy density of 400–600 Wh kg-1 

can be achieved when lithium metal anode is combined with intercalation-type 
cathode materials such as LiFePO4, LiCoO2, lithium–nickel–manganese–cobalt 
oxide (NMC), and lithium–nickel–cobalt–aluminum oxide (NCA). The use of Li 
metal anode is also proposed in Li–sulfur (Li–S) batteries and Li–oxygen (Li–O2) 
batteries, thus enabling further increase in the energy density of these
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next-generation battery chemistries. However, and despite the extraordinary research 
efforts made in the last five decades by researchers all over the word, lithium metal 
electrodes in secondary, i.e., rechargeable, batteries are still far from being commer-
cially feasible. In fact, there are fundamental limitations that hinder the reversibility 
of lithium metal stripping/deposition in aprotic electrolytes based on liquid, polymer, 
or crystalline components [2].
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In the lithium metal battery (LMB) technology, the reduction potential of Li is 
below that of conventional organic electrolytes. Therefore, lithium metal electrodes 
show Coulombic efficiencies upon cycling lower from unity in batteries. This fact 
makes the electrolyte a critical component in the development of LMB. In addition, 
the uneven deposition morphology of Li and inhomogeneous electrochemical dis-
solution lead to dendrite and dead lithium formation, lowering the Coulombic 
efficiencies [3]. A wide variety of approaches has been proposed to tackle these 
drawbacks, rooted in thermodynamics and kinetics of the lithium stripping/deposi-
tion. Overall, the electrochemical reversibility of lithium metal electrodes can be 
enhanced by the following four main strategies [4]: 

1. Optimization of the electrolyte formulation to control the solid electrolyte inter-
phase (SEI) formation over the electrodes 

2. Pre-deposition of an artificial SEI over the lithium metal electrode 
3. Exploitation of open three-dimensional scaffolds with controlled meso- or nano-

morphologies to buffer volume expansions and self-heal the formation of dead 
lithium 

4. Substitution of liquid electrolytes with solid polymer and inorganic materials, and 
their combination into hybrid electrolytes, to limit side reactions at the lithium 
metal surface 

10.1.1 Mechanism of the Electrochemical Lithium 
Stripping/Deposition in Liquid Electrolytes 

Lithium metal is an extraordinary reducing agent with the redox potential of 
E° = -3.04 V vs. SHE. Almost all aprotic liquid solvents with polar groups suitable 
for the formulation of secondary battery electrolytes are thermodynamically unstable 
in contact with lithium. This thermodynamic constraint causes an immediate degra-
dation of solvent molecules in contact with the surface of lithium metal through a 
pseudo-corrosion mechanism [5]. The degradation is initiated by the irreversible 
reduction of one solvent molecule: 

solventþ Li→ solvent • - þ Liþ solvð Þ  

and this reaction unavoidably creates pitting holes over the lithium metal through the 
release of solvated Li+ ions in the electrolyte, simultaneously generating the unstable 
radical solvent• - anion in a doublet state [6]. This radical molecule easily undergoes 
further reactions with other solvent molecules:
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solvent • - þ solvent→ solvent–solventð Þ • -

to form a short-chain radical polymer (solvent–solvent)• -. The radical can also react 
with the salt anion (e.g., LiPF6) to form insoluble lithium salts like lithium fluoride: 

solvent • - þ LiPF6 solvð Þ→ LiF solidð Þ þ  PF5–solventð Þ • - : 

In turn, unstable alkyl carbonate–fluorophosphate adducts, i.e., (PF5–solvent)
• -, 

are formed that easily further degrade through irreversible multistep processes, 
leading to a precipitation of the insoluble species and/or an alteration of the electro-
lyte composition. Another degradation process of the solvent• - radical anion is its 
intramolecular breakup promoted by a further reduction, leading to the formation of 
gaseous species (i.e., molecular hydrogen, ethylene, and other small volatile organic 
molecules like formaldehyde, acetylene, etc.) [7]. These multifarious radical chain 
reactions, initiated by the inevitable reduction of solvent molecules, lead very 
rapidly to the precipitation of insoluble inorganic and organic by-products (e.g., 
Li2CO3, Li2O, lithium alkyl carbonates, esters, etc.) over the surface the lithium 
metal, thus forming a passivation film (i.e., a natural solid electrolyte interphase, 
namely, n-SEI) [8]. This n-SEI completely passivates the surface of lithium metal, 
within the pitting holes as well as in the outer areas, but the pseudo-corrosion is not 
remarkable in the latter. Therefore, the n-SEI is unavoidably inhomogeneous in the 
nanometer scale, with significant compositional and morphological differences. 
Furthermore, in the initial electrochemical lithium deposition or oxidation of the 
lithium electrode, further electrolyte degradation occurs ending in the complete 
passivation of the surface by a thick passivation n-SEI film that is reminiscent of 
the original natural SEI [9]. 

The compositional inhomogeneity of the n-SEI originates from the so-called 
weak points, where the accumulation of organic by-products makes the local electric 
resistance larger compared to the surrounding areas of the electrode. These weak 
points become the most favorable nucleation sites for the electrochemical deposition 
of lithium metal and the electrochemical stripping of lithium ions. Overall, the 
surface of the lithium metal electrodes upon cycling will alter, driven by the local 
fluctuation of the n-SEI transport properties, thus leading to the aggravation of the 
original morphological inhomogeneities with formation of dendrites and pitting 
holes [10]. 

Once formed, dendrites increase remarkably the volume of the lithium metal 
electrode and grow preferentially toward the counter-electrode, following the elec-
tric field lines. This growth leads to internal short circuits and catastrophic cell 
failures. Moreover, dendrite formation exposes additional fresh lithium surface to 
the electrolyte, thus leading to further electrolyte degradation and accumulation of 
n-SEI. This mechanism is particularly unfavorable as it drives the formation of dead 
lithium upon stripping. This is because dendrites can be electrochemically dissolved 
during discharge, and therefore it is possible that a portion of the metallic lithium 
dendrite, passivated by the unfavorable n-SEI, may lose an electronic contact with



the bulk of the electrode. Unavoidably, these isolated lithium dendrites cannot 
undergo further electrochemical reactions leading to the loss of active material [11]. 

176 A. Tsurumaki et al.

Fig. 10.1 Optimal 
properties of SEI layers over 
metallic lithium [12] 

In general, the n-SEI grown on lithium metal before and upon cycling should 
meet several requirements to mitigate the dendrite growth, enhance the reversibility 
of plating/stripping, and suppress the formation of dead lithium as schematically 
summarized in Fig. 10.1. 

Unfortunately, the n-SEI layer formed in typical LIB electrolytes is unable to 
fulfill these demands, and, as already mentioned, different strategies have been 
considered to tackle this challenge, in particular forming artificial SEI layers or 
altering the nature of the n-SEI. Another radical approach is to replace liquid 
electrolytes moving to solid-state (electrolyte) batteries. 

10.1.2 SEI Modulation via In Situ Formation 

The formation of the SEI can be modulated by electrolyte additives that can alter the 
degradation mechanism to form more homogeneous and stable passivation films 
over the surface of the lithium metal electrodes. These sacrificial chemical species 
initially consume some metallic lithium of the electrode, but this consumption is 
generally limited and will end once the lithium electrode surface is passivated in situ 
by a modified solid electrolyte interphase (m-SEI). These electrolyte additives 
belong to two main groups depending on their main effect, i.e., reduction-type and 
reaction-type additives [13]. 

Reduction-type additives have a relatively high redox potential and are reduced 
upon lithium deposition prior to any unfavorable effect on the electrolyte [14]. Their 
decomposition products form an insoluble film, protecting the electrode/electrolyte 
interface, with enhanced transport properties compared to the n-SEI formed sponta-
neously without the additive. Reduction-type additives are divided into two sub-
groups. The first subgroup consists of reactive compounds containing unsaturated



bonds like vinylene carbonate (VC) or fluoroethylene carbonate (FEC) and promotes 
the accumulation of polymerized organic species over the surface of the lithium 
metal electrodes. The second subgroup includes reductive agents aiding the SEI 
formation. This class of reductive additives is electrochemically reduced before the 
electrolyte decomposition by-products precipitate onto the lithium surface. These 
additives can also react with radical species generated during the initial solvent 
reduction process, thus terminating the radical chain reaction that leads to the 
uncontrolled n-SEI formation. The most common chemical species that belong to 
this class are sulfur-containing chemical like sulfolane, ethylene sulfite, or dialkyl-
sulfone [15]. Their degradation ends with the formation of insoluble lithium sulfites 
or alkyl lithium sulfites. 
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Reaction-type additives are typically molecules with scavenging abilities. These 
species can react with intermediates of the natural degradation radical chain reaction 
of the electrolyte in contact with lithium surfaces, altering the final composition of 
the SEI by promoting the accumulation of electrochemically inert species with 
favorable transport properties. (Trimethylsilyl)isothiocyanate can easily scavenge 
PF5 as well as phosphite-containing compounds, thanks to their strong nucleophilic 
character [16]. 

Besides reaction-type and reduction-type additives, it is important to mention the 
possible use of co-salts of multivalent cations (e.g., Mg2+ , Ca2+ , Zn2+ Fe2+ , In3+ , and 
Ga3+ ). Many of these cations can alloy with lithium upon reduction worsening the 
ionic transport properties across the entire electrode surface. This effect leads to a 
smaller ionic conductivity but mitigates the uncontrolled growth of lithium 
dendrites [17]. 

10.1.3 Ex Situ Deposition of Artificial SEI 

The second general strategy to improve the reversibility of lithium stripping/depo-
sition is the ex situ preformation of an artificial SEI layer (a-SEI) on the surface of the 
metallic electrode. This strategy cannot fully prevent the spontaneous reactivity of 
the electrolyte with the lithium surface but can strongly mitigate its occurrence and 
therefore strongly reduce the chemical and morphological inhomogeneity of the 
lithium electrode surface. In general, a-SEIs over lithium metal electrodes can be 
synthesized by atomic-layer deposition (ALD), aeration, or chemical coating in a 
liquid precursor solution [18]. 

ALD is an advanced thin-film fabrication technique capable of producing homo-
geneous and ultrathin films at room temperatures or slightly above [19]. The final 
surface film is extremely thin, thanks to the careful control of the mass-loading of the 
a-SEI allowed by the technique. These ultrathin films are typically constituted by 
Al2O3 that, during the electrochemical deposition of lithium, firstly converts into the 
highly conductive lithium aluminate LixAl2O3 that stabilizes further the a-SEI and 
allows a remarkable limitation of the dendrite growth [20].
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Aeration is a chemical deposition method from the gas phase, in which the 
lithium metal surface reacts with almost permanent gaseous species like N2 or O2 

to form homogeneous nitride or oxide layers. Since Li3N is an electrochemically 
stable and fast ion conductive chemical species, the precipitation of a continuous and 
homogeneous thin film of lithium nitride over the surface of lithium metal acts to 
prevent side reactions between lithium metal and the electrolyte without hindering 
the lithium ion mobility [21]. 

The a-SEI, starting from selected liquid precursor solutions, can be obtained by 
using the so-called dip-coating or drop-casting method. A suitable chemical com-
position of the precursor solutions promotes the formation of a-SEI with controlled 
compositions and surface moieties. In fact, the constituent species of the precursor 
solution degrades due to the direct chemical reaction with the metallic lithium 
forming a preliminary passivation film [22]. This a-SEI can mitigate the unavoidable 
reactivity of the metallic lithium surface with the electrolyte upon cycling. The 
composition of the precursor solutions can modulate the composition of the resulting 
a-SEI allowing the control of the transport and mechanical properties of the a-SEI. 
An almost innumerable number of precursor solutions have been proposed in the 
literature, all leading to an improvement in the overall reversibility of the lithium 
plating/stripping. Among the many possibilities, one that should be mentioned is the 
use of polyphosphoric acid solution in organic solvents like dimethyl sulfoxide that 
promotes the formation of a Li3PO4-rich a-SEI, with excellent chemical stability, 
high Young’s modulus (10–11 GPa), and high lithium ion conductivity [23]. 

10.1.4 3D Engineering of the Electrode Morphology 

The third possible approach is to modify the morphology of the surface where Li is 
plated (either Li metal or directly the current collector) by an engineering at the 
nanoscale. Mechanically robust and chemically inert three-dimensional scaffolds or 
generic frameworks are used to facilitate homogeneous deposition of lithium metal, 
thus indirectly limiting the degradation of the electrolyte over fresh lithium surface 
[24]. The coating of lithium metal electrodes with very thin amorphous carbon-based 
hollow nanostructures can modulate the Li+ ion transport pathways toward the metal 
surface, leading to the nucleation and growth of the lithium deposits either over Li or 
the current collector. Furthermore, lithium metal can deposit within the hollow 
nanostructures with a minimal contact with the electrolyte, thus mitigating any 
further degradation. Also, the use of two-dimensional materials like graphene or 
hexagonal boron layer can modulate the lithium stripping/deposition reaction by 
inducing specific growth morphologies and the formation of a tailored a-SEI [25]. 

The use of open nickel foams as a current collector and support for the lithium 
deposition is also an effective strategy to accommodate the huge volumetric changes 
experienced by conventional host-less flat electrodes to lead homogeneous lithium 
deposition. In fact, the 3D open foam can be infused with molten lithium by capillary 
force forming a composite scaffold with a minimized interfacial resistance and 
empty spaces to buffer volumetric changes upon stripping and deposition [26].
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10.2 All-Solid-State Lithium Metal Batteries 

The use of commercially available organic liquid electrolytes in LMBs, as well as in 
Li ion batteries (LIBs), unavoidably poses major safety issues because of their 
flammability and strongly exothermic reactivity with lithium that can easily self-
heat the battery in case of accidents, leading to catastrophic explosions. The replace-
ment of liquid electrolytes with a solid electrolyte (SE) allows to tackle this serious 
drawback drastically and reduces the risk of fire and explosion even in case of major 
thermal, mechanical, or electrical abuse. As a further advantage, the use of SEs as an 
electrolyte having a function of separator increases the overall volumetric energy 
density of the batteries, thus improving the overall performance [27]. 

The ideal set of properties of SEs is [28, 29]: 

1. High ionic conductivity (>10-4 S cm-1 , better >10-3 S cm-1 in the case of thick 
composite electrolytes) with a high Li+ transference number (tLi+), especially at 
low temperatures 

2. Good chemical compatibility with other battery components including 
lithium metal 

3. Good thermal and electrochemical stability at a wide range of temperatures and 
voltages for the constant operation of cells, including the thermal stability also in 
terms of the absence of phase transition so as to avoid the formation of low 
conductive solid phase 

4. Minimal interfacial resistance between SE and electrodes 
5. High electronic area-specific resistance, resulting in conductivities <10-12 S cm-

1 , to prevent self-discharge 
6. Appropriate mechanical strength to resist dendrite growth 
7. Good affordability in terms of less environmental impact, allowing for simple and 

low cost fabrication of both SE itself and devices 

All-solid-state batteries with lithium metal electrodes (ASS-LMB) are classified 
as “generation 4b batteries” by the EU commission. However, despite the excellent 
functionality of SEs, several drawbacks hinder their development beyond the 
lab-scale and the final commercialization. The most relevant challenges are the 
unsatisfactory ionic conductivity compared to classical liquid electrolytes, the 
large impedance at the electrode–electrolyte interfaces, and the electrochemical 
instability against lithium metal of SE constituents. 

10.2.1 Classification of Solid Electrolytes 

Solid-state electrolytes can be either inorganic solid electrolytes (ISEs), solid poly-
mer electrolytes (SPEs), or their composites. The former electrolyte can further be 
divided into oxide types, sulfide types, and others including hydride, borate, and



phosphate types. The oxide-type ISEs have good chemical and electrochemical 
stability. The design of a material with a good air stability and low toxicity is 
possible. They exhibit a fast ionic conductivity in bulk, up to 10-3 S cm-1 at 
room temperature; however, to achieve this ionic conductivity, a sintering procedure 
at high temperatures, conventionally at around 1000 °C, is necessary to reduce grain 
boundary resistance between electrolyte particles. In contrast to this, sulfide-type 
ISEs have a low oxidation stability and high reactivity in the presence of moisture 
but exhibit a high ionic conductivity merely by pressing the materials at room 
temperature (so-called low-temperature sintering). This is because of a larger size 
S2- which broadens ion conduction pathways in the electrolyte structure and the 
higher polarizability of S2- which weakens the interaction with Li+ . On the other 
hand, SPEs have several advantages in manufacturing processes, such as simple 
production of large-area films, easy formation of a seamless interface with the 
electrodes, and possible handling of SPE in ambient air. However, it is not easy to 
find a suitable combination of a polymer matrix and additive salt that can exhibit 
ionic conductivity higher than that of ISEs, except for the combinations forming gel 
polymer electrolytes. 
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10.2.2 Ion Conduction Mechanisms of Solid Electrolytes 

ISEs normally consist of two sublattices: a crystalline framework composed of 
immobile ions and a sublattice of mobile ions [30]. Therefore, Li+ ions move within 
an essentially static framework through ion hopping (i.e., the Grotthuss mechanism), 
which is favorable with regard to a faster ion conduction. The mobile species in a 
crystalline solid need to pass through periodic bottleneck points, which defines 
migration energy. To reduce the energy barrier and achieve faster ion conduction, 
(1) the number of mobile ions and their hopping sites, as well as the vacancy of the 
mobile ions, (2) the size of bottleneck points, (3) the degree of structural order in a 
mobile ion sublattice, and (4) the presence of highly polarizable anions in sublattices 
are critical factors [31]. In glassy inorganic materials, the ion conduction mecha-
nisms are quite like those in crystalline structures. The ions at local sites, being 
excited to neighboring sites, diffuse collectively on a macroscopic scale. In contrast 
to these, in SPEs, the motion of Li+ ions is mediated by the dynamics of the host 
polymer, i.e., the vehicular mechanism, thereby restricting the ion conduction to a 
relatively slow speed. The segmental motions of polymer chains create free volumes 
that allow for the migration of ions coordinated by the polymer polar groups, and 
ions migrate from one coordinate site to another, promoted by the segmental 
motions. The ionic conductivity, in this case, is strongly dependent on the crystal-
linity of the host polymer.
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10.2.3 Development of Inorganic Solid Electrolytes 

The diffusion of ions in crystalline solids is significantly affected by both ion valence 
and ionic radius of the migrating species because these influence electrostatic 
interactions between mobile ions and cations forming the structural skeleton 
[31]. In addition to this, the natures of the ligands and metals composing the skeleton 
of the host framework have large impacts on the performance of ISEs because they 
determine the channel size for ion migration. In the case of Li+ diffusion, since 
controlling the bottleneck size for the ion diffusion has been successful in enhancing 
Li+ conductivity and reducing the activation energy, structural tuning by cation 
substitutions within a given structural framework has been intensively studied. 
Among those investigated, the most attractive Li+ conductors, based on oxides 
such as natrium super ionic conductor (NASICON) type, garnet type, and perovskite 
type, as well as sulfides such as lithium super ionic conductor based on sulfides (thio-
LISICON) type, Li10MP2S12 (LGPS) type, argyrodite type, and Li7P3S11 type, are 
summarized in this section and Table 10.1. 

NASICON-Type (e.g., LATP/LAGP) NASICON-type Li+ conductors are 
represented by the general formula of AM2(PO4)3, in which A = Li and M = Ge, 
Ti, Zr, etc., forming a three-dimensional framework of MO6 octahedra alternatively 
connected with PO4 tetrahedra by sharing their vertices [31]. Lithium ions occupy 
two different sites in the structure, so-called A1 and A2 sites, and their migration 
occurs via ion hopping between these sites. The limitation for the ion motion comes 
from triangular oxygen windows, which separate the A1 and A2 sites, known as the 
bottleneck [38]. Therefore, optimization of the bottleneck size effectively improves 
the ionic conductivity and reduces its activation energy. 

The first strategy for this issue is the use of larger M ion in AM2(PO4) structure 
[33]. For example, the ionic conductivity of LiGe2(PO4)3 is only 6.62 × 10

-9 S cm-1 

[32]. In the case of LiTi2(PO4)3 and LiZr2(PO4)3, where Ge
4+ is replaced with larger 

ions, their ionic conductivities improve to 2 × 10-6 S cm-1 and 3.8 × 10-5 S cm-1 at 
room temperature, respectively. The second strategy is the aliovalent substitution, 
resulting in A1 +  xM′xM2–x(PO4)3, in which M′ = Al, Ga, La, etc. This increases the 
Li+ concentration and also its mobility [33]. The concentration of M3+ needs to be 
limited to �15% (x = 0.3) to avoid the formation of a secondary phase due to an 
ionic radius mismatch [31]. Al-doped NASICON-type materials, such as 
Li1 +  xAlxTi2 - x(PO4)3 (LATP) and Li1 + xAlxGe2–x(PO4) (LAGP), are known to 
exhibit ionic conductivities of ~3 × 10-3 S cm-1 (when x = 0.3) [31] and 1.0 × 10-
3 S cm-1 (when x = 0.5), respectively [33]. Both LATP and LAGP are stable at 
relatively high potentials and in air, while they are unstable at low potentials because 
Ti4+ is easily reduced. The formation of a protective layer based on polymers, 
LiPON, or other ISEs allows the use of this kind of materials with lithium metal 
anodes [39]. 

Garnet-Type (e.g., LLZO) The general formula of garnet-type materials is 
A3B2(XO4)3, in which A = Ca, Mg, Y, La, etc., B = Al, Fe, Ga, Ge, Mn, Ni, V, 
etc., and X = Si, Ge, Al, etc., forming eightfold, sixfold, and fourfold coordinated



�

X

structures centered on A, B, and X cations, respectively [32]. Li+-conductive garnets 
have the general composition of A3B2(LiO4)3. The Li

+ content can be increased by 
the aliovalent doping, and several materials with different stoichiometry such as the 
Li3 series, Li3Ln3Te2O12 (Ln = Y, Pr, Nd, etc.), Li5 series, Li5La3M3O12 (M = Nb, 
Ta, Sn, etc.), Li6 series, Li6ALa2M2O12 (A = Ca, Sr, Ba, etc., and M = Nb, Ta, etc.), 
and L7 series, Li7La3M2O12 (M = Zr, Sn, Hf, etc.), have been reported [32]. Garnets 
with Li+ concentration > 3, e.g., Li7La3Zr2O12 (LLZO), are identified as stuffed 
lithium garnets [40]. In these stuffed lithium garnets (i.e., Li5-7 series), Li+ occupies 
both tetrahedral and highly distorted octahedral coordination sites, while in the 
conventional garnets (i.e., Li3 series), Li+ occupies only a tetrahedral coordination. 
Li ions in octahedral site migrate easily, while those in the tetrahedral site are not. 
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Table 10.1 Properties of different kinds of ISEs 

Structure 
type 

Basic 
structure Particular composition 

Conductivity 
at R.T./ S 
cm-1 

Advantage/ 
disadvantage [Ref] 

Oxides 

NASICON AM2(PO4)3 
A site for 
Li+ 

LiTi2(PO4)3 2 × 10-6 High air stabil-
ity/incompati-
ble with 
lithium metal 
anode because 
of Ti4+ with 
poor resistance 
to reduction 

[32] 

Li1 + xAlxTi2 - x(PO4)3 
(LATP) 

~ 3  × 10-3 

(x = 0.3) 
[31] 

Li1 + xAlxGe2–x(PO4)3 
(LAGP) 

1.0 × 10-3 

(x = 0.5) 
[33] 

Garnet A3B2(XO4)3 
X site for 
Li+ 

Li7La3Zr2O12 

(LLZO) 
1.63 × 10-6 

(tetragonal) 
Stable against 
lithium metal/ 
lithiophobic 

[34] 

Li7La3Zr2O12 

(LLZO) 
2.44 × 10-4 

(cubic) 
[32] 

Li6.24Al0.24La3Zr2O11.98 4 × 10-4 [35] 

Li6.4Ga0.2La3Zr2O12 1.32 × 10-3 [35] 

Perovskite ABO3 

A site for 
Li+ 

Li3xLa2/3–x□1/3–2xTiO3 

(0 < x < 0.167, LLTO) 
10-3 Presence of 

grain boundary 
resistance, 
incompatible 
with lithium 
metal anode 
because of Ti4+ 

[32] 

Sulfides 

Thio-
LISICON 

LixM1– 

yM’yS4 
Li3.25Ge0.25P0.75S4 2.2 × 10-3 High ionic 

conductivity 
(merely after 
pressing)/lim-
ited stabilities 
in the contact 
with moisture 
and lithium 

[36] 

LGPS Li10MP2S12 Li9.54Si1.74P1.44S11.7Cl0.3 2.5 × 10-2 [32] 

Argyrodite Li6PS5 Li6PS5Cl 
Li6PS5Br 

1.9 × 10-3 

6.8 × 10-3 
[36] 

Li7P3S11 Li2S–MSn Li7P3S11 1.7 × 10-2 [37]
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In the case of Li7 series garnet-type materials, including LLZO, the material can 
possess a cubic phase featuring a disordered lithium arrangement in addition to a 
tetragonal phase featuring a fully ordered lithium occupancy [32, 35]. The formation 
of a cubic structure is critical to achieve a high level of ionic conductivity. Alumi-
num doping is known to stabilize the cubic phase of LLZO and enhance Li+ 

conductivity in one to two orders of magnitude compared to undoped tetragonal 
LLZO [35]. Furthermore, the ionic conductivity can be increased to 1.32 × 10-
3 S cm-1 by doping Ga3+ [35]. Regarding the electrochemical stability, garnet-type 
electrolytes are favorable in terms of showing a stability against lithium metal. In the 
case of LLZO, however, the material is lithiophobic [41], resulting in a formation of 
the interphase with a high charge transfer resistance. Softening of the lithium at 
170–175 °C (about 5–10 °C below Li melting temperature) [1] and the formation of 
lithiophilic coating such as those based on ionic liquids or polymers [42, 43] are 
known to be an effective solution for this problem. Instability at the interface with 
cathode has also been reported. The coating formation is effective also in this case in 
preventing oxidations of the electrolyte. 

Perovskite-Type (e.g., LLTO) Perovskite structures are described as follows: 
ABO3, in which the A-site ions (typically divalent alkaline earth metal ions) locate 
at the corners of a cube structure, B ion (typically transition metal ions, such as Ti4+ ) 
at the center, and oxygen atoms at the face-centered positions. Based on this 
framework, 12-fold coordination is formed around A sites and sixfold coordination 
(BO6) around B sites by a sharing corner with each other [31]. A Li

+ conductor can 
be obtained by replacing the divalent alkaline earth metal ions at A sites with the 
trivalent rare-earth element such as La3+ and monovalent Li+ . Just like the other 
ISEs, the bottleneck size for the ion conduction needs to be controlled to improve 
ionic conductivity, and this has been done by introducing large rare-earth or alkaline 
earth metal ions in the A site [31]. The presence of vacancy in the material, more 
specifically Li3xLa2/3–x□1/3–2xTiO3 (LLTO, 0 < x < 0.167, □ represents vacancy), 
for example, also allows for the enhanced bulk conductivity of �10-3 S cm-1 at 
room temperature. In such materials, La-rich and La-poor (i.e., Li-rich) layers are 
formed and alternately stacked. Within this structure, Li+ transport is restricted to the 
Li-rich layers, and minimal transport occurs between these layers, which limits Li+ 

transport to be two-dimensional. In polycrystalline structures, Li-rich layers in each 
grain are misaligned, and this reduces the ionic conductivity of the materials one to 
two orders of magnitude lower than that of the bulk [44]. As observed in other 
materials containing Ti4+ with less resistance to reduction, LLTO is not stable in a 
low-potential region, making it incompatible with the lithium metal anodes. There-
fore, the partial or complete substitution of Ti4+ with Sn4+ , Zr4+ , Mn4+ , and Ge4+ has 
been reported. These modifications need to be carried out so as not to form a 
secondary phase and not to decrease the Li+ concentration in the materials [45]. 

Thio-LISICON-Type and LGPS-Type Thio-LISICON-type electrolytes can be 
obtained by substituting O2- by S2- in a LISICON structure, specifically from 
LixM1–yM′yO4 to form LixM1–yM′yS4 (M = Si or Ge; M′ = P, Al, Zn, Ga, etc.) 
[29]. The thio-LISICON-type electrolytes exhibit higher ionic conductivity



n

compared with the LISICON electrolytes [31]. This is because of a larger size and 
higher polarizability of sulfide ions as discussed before for the classification of SEs. 
Depending on the valence of the cations, lithium vacancies in the structure can be 
controlled which affect Li+ conduction significantly [46]. The maximum conductiv-
ity of the thio-LISICON family can be as high as 2.2 × 10-3 S cm-1 in the case of 
Li3.25Ge0.25P0.75S4 [36]. Thio-LISICON-type electrolytes tend to be unstable faced 
with lithium metal. However, their high ionic conductivity established this class of 
electrolytes as potential ISEs for the future of ASS batteries. 
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Li10MP2S12 (M = Si, Ge, or Sn) and Li11Si2PS12 are frequently considered as one 
of the thio-LISICON-type electrolytes [31]. However, thio-LISICON-type and these 
electrolytes have different crystalline structure, specifically based on orthorhombic 
and tetragonal crystal systems, respectively [47], and therefore can be regarded as 
different class of materials, namely, LGPS type. The electrolyte consists of (Ge/P)S4 
tetrahedra alternating with LiS6 octahedra, forming a one-dimensional chain along 
the c-axis by sharing a common edge. These linear chains are connected to each 
other by PS4 tetrahedra by sharing a vertex with LiS6 octahedra [36], forming a 
backbone structure. Lithium ions locate in the empty space of the backbone structure 
by forming LiS4 tetrahedra and create a one-dimensional LiS4 chain along the c-axis, 
which is available for Li+ conduction. In addition to this conductive channel, Li+ 

diffusion is possible between neighboring conduction paths through the LiS6 tetra-
hedra. Aliovalent doping enhances ionic conductivity, and, in particular, 
Li9.54Si1.74P1.44S11.7Cl0.3 exhibits ionic conductivity of 2.5 × 10

-2 S cm-1 [32]. 

Argyrodite Type Lithium argyrodite, Li6PS5X (with X = Cl, Br, or I), is also one of 
the sulfide-based Li+ conductors, having a face-centered cubic lattice of X-, i  
which PS4 tetrahedra locate as if isolated by the anions [31]. Li

+ ions form Li6S 
octahedra and distribute over the remaining tetrahedral interstices [31]. In the case of 
Li6PS5Cl and Li6PS5Br, the halide ions can partially occupy the place of S

2- in the 
Li6S octahedra due to an X

-/S2- site disorder, which promote Li+ mobility signif-
icantly. As a result, annealed Li6PS5Cl and Li6PS5Br exhibit high ionic conductiv-
ities of 1.9 × 10-3 S cm-1 and 6.8 × 10-3 S cm-1 , respectively [36]. In contrast to 
these, the site disorder does not occur in the case of Li6PS5I due to a large size of I

-, 
and annealed Li6PS5I shows the low ionic conductivity of 4.6 × 10

-7 S cm-1 [36]. 

Li7P3S11 Type Li7P3S11 is glass-ceramic-type sulfide-based electrolytes, which can 
be obtained through the crystallization of glassy electrolytes formed by a binary 
mixture of Li2S–P2S5. Binary mixtures of Li2S–MSn, such as Li2S–P2S5,  Li2S–B2S3, 
and Li2S–SiS2, mixed by a mechanical milling technique exhibit glassy phase with 
conductivities of 10-5 –10-4 S  cm-1 at room temperature. The conductivity can be 
improved in the order of 10-3 –10-2 S  cm-1 by heat treatments because the glassy 
electrolyte softens and reduces the grain boundary resistance during the crystalliza-
tion process [36]. Particularly, Li7P3S11, obtained in 70% Li2S–30% P2S5 in molar 
ratio, exhibits the ionic conductivity of �1.7 × 10-2 S  cm-1 [37]. Li7P3S11 consists 
of P2S7 

4- di-tetrahedra and slightly distorted PS4 tetrahedra. An inherent flexibility 
of readily fluctuating P2S7 

4- polyhedra enables the fast Li+ migration in the material 
[48]. The ionic conductivity of Li7P3S11 phase is higher than those of highly 
conductive thio-LISICONs, which mainly contain PS4 

3- [45].

https://www.sciencedirect.com/topics/chemistry/tetrahedral-crystal
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Overall, sulfide-type ISEs possess considerable high ionic conductivities. How-
ever, their drawback is their instability. Several Li2S–P2S5 binary systems are known 
to generate H2S upon an exposure to moisture [45]. In addition, at the interface with 
lithium metal, multiple solid phases including Li2S, Li3P, Li17Ge4, and 
polyphosphide are usually formed, and the most common solution for this problem 
is the formation of a-SEI on lithium metal [1]. Also, for the cathode side, the 
formation of a protective layer, so-called a buffer layer, usually based on lithium 
metal oxide (e.g., LiNbO3, Li2ZrO3) or lithium borate (e.g., Li3B11O8), is 
effective [1]. 

10.2.4 Solid Polymer Electrolytes 

Non-swollen dry polymer solid electrolytes, so-called SPEs, with suitable physico-
chemical and mechanical properties can be easily processed into thin separators. The 
advantages of SPEs as compared to the ISEs are easy fabrication, better scalability, 
high levels of safety, and flexible shapes. Some polymers with a high polarity, such 
as poly(ethylene oxide) (PEO) and poly(ethylene carbonate) (PEC), dissolve a large 
variety of lithium salts, such as lithium triflate (LiCF3SO3), lithium bis 
(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide 
(LiTFSI). The cations and anions dissociated in the polymer matrices are both 
mobile, and therefore SPEs act as a dual-ion conductor. Since the ion motion in 
the polymer matrices is assisted by the segmental motion of polymer chains, it 
mostly occurs within the amorphous fraction of the polymer matrix above its glass 
transition temperature (Tg). In this temperature range, the SPEs exhibit an ionic 
conductivity of around 10-3 –10-4 S cm-1 . To reduce Tg, but to still retain the solid 
state, copolymerization, insertion of a branch structure, and cross-linking have been 
undertaken [49]. In addition, the use of inorganic additives such as Al2O3-, ZrO2-, 
TiO2-, SiO2-, and Li

+-conductive ceramic fillers (i.e., ISEs) has been confirmed to 
improve ionic conductivity and, mainly, enhance the mechanical strength of the 
resulting polymer membranes [50]. 

Despite these promising features, many drawbacks hinder the application of SPEs 
in LMB such as: 

1. Small tLi+, generally lower than 0.5 
2. Occurrence of lithium dendrite growth and dead lithium formation, leading to 

poor efficiency and limited reversibility upon cycling 
3. Low electrochemical anodic limit, around 4–4.1 V vs. Li+ /Li, that limits the 

choice of cathode. 

Many efforts are presently devoted to tackle these issues. The fixation of an anion 
structure such as carboxylate, sulfonate, sulfonylimide, etc., onto a polymer back-
bone allows the SPEs to have the tLi+ of unity. In this case, the effective dissociation 
of the immobilized anions and Li+ is essential for the ion conduction. Recently, 
fixation of sulfonylimide on SPEs is dominating the material development because a



delocalized negative charge of the anion is favorable for the ion dissociations [51]. In 
addition, since an enlarged conjugation structure adjacent to the anion structure can 
reduce the ionic interactions, several polystyrene derivatives with functional struc-
tures at the para position have been designed as Li+-conductive SPEs [51]. 
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Besides PEO, also PEC has been proposed and demonstrated as a potential 
polymer matrix having the favorable combination of good physicochemical proper-
ties and satisfactory conductivity even at low temperatures. PECs show also a better 
anodic stability compared to PEO, thus allowing the use of high-voltage cathode 
such as layered oxides. On the other hand, the mechanical properties of PECs 
counterbalance the benefits, and relevant dendrite growth occurs at the lithium 
metal side [52]. In such cases, the use of dual or multiple polymer layers, having 
different functions, may help the homogeneous lithium metal plating/stripping, thus 
suppressing the dendrite growth. 

10.3 Sodium and Sodium Ion Batteries 

10.3.1 Battery Technologies Based on Na Metal 

Among the emerging battery technologies alternative to LIBs, sodium-based batte-
ries, in particular sodium metal batteries (NMBs), sodium ion batteries (NIBs), all-
solid-state sodium metal battery (ASS-NMB), Na–S, and Na–O2, show attractive 
benefits such as sustainable precursors, secure raw material supplies, and, in princi-
ple, low costs [53–56]. 

Figure 10.2 shows a schematic view of the most common Na batteries [55]. NIBs 
are represented by a porous Na-free negative electrode, a liquid electrolyte, and a 
Na-rich positive electrode; the full battery is assembled in the discharged state 
(Fig. 10.2a) like LIBs. The most common negative electrodes are composite films 
constituted by insertion-type active material, but also conversion and alloying 
materials have been proposed and tested. On the other side of the battery, the most 
common positive electrode materials tested successfully are layered ternary oxides 
that exploit the reversible insertion/de-insertion of Na+ ions driven by the redox 
reactions such as Mn4+ /Mn3+ , Ni4+ /Ni3+ , or Co4+ /Co3+ . Regarding liquid electro-
lytes, formulation closely matching those of LIBs based on organic carbonate 
solutions has been demonstrated for the utilization in NIBs by simply substituting 
lithium salts with sodium salts. An appealing advantage of NIBs compared to LIBs is 
the possible use of Al as the negative electrode’s current collector instead of Cu, 
thanks to the inability of Al to alloy with Na above the Na+ /Na plating/stripping 
redox potential [57]. 

ASS-NMBs are based on positive and negative electrodes, like that of NIBs, 
whereas the electrolyte is a solid composite (Fig. 10.2b). ASS-NMBs are recognized 
as a promising future battery technology because of their highly improved thermal 
stability, although there is room for performance improvement. Other advanced 
systems are Na–O2 and Na–S batteries. The former exploits the plating/stripping



reaction of a Na metal at the anode side, whereas porous conducting carbon-based 
composites in contact with O2 are used as the cathode, as depicted in Fig. 10.2c. The 
electrolyte can be either aqueous or aprotic. The latter, Na–S batteries, has very 
similar configuration compared to Na–O2 ones, the most relevant difference being 
the presences of a sulfur–carbon composite at the positive electrode and the exclu-
sive use of either liquid or solid aprotic electrolyte. 
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Fig. 10.2 Schematic view of the most common Na battery concepts, (a) Na ion battery, (b) solid-
state Na metal battery, (c) Na/O2, and (d) Na/S [55] (License n. 5,396,641,494,902) 

This section addresses an overview of state-of-the-art Na batteries, which repre-
sent an attractive solution almost suitable to replace Li ion technology in many future 
applications [53–56]. 

10.3.2 Toward Sodium Ion Batteries: Cathode Materials 

Research on active materials for cathodes in NIBs can take advantages from all 
similar previous studies for LIBs. Table 10.2 visually summarizes the relative merits 
of many of the most promising cathodes for NIBs, namely, O3-NaMO2 and 
P3-NaxMO2, Prussian blue analogs (PBA), sodium vanadate phosphates (NVP), 
and sodium vanadate fluorophosphates (NVPF), belonging to layered oxides 
(O3-NaMO2 and P3-NaxMO2), hybrid materials (PBA), and polyanionic phases 
(NVP and NVPF) [55, 58–61].
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Table 10.2 Comparison of performance for the most promising NIB’s cathodes. The 
different colors of the symbols represent high (green), average (orange), and poor (red) 
performance. Acronyms of the compounds are described in the main text [55] (License 
n. 5,396,641,494,902) 

Layered Oxides These materials have a two-dimensional layered structure, in 
which the Na ions intercalate and deintercalate reversibly. The general formula of 
the most advanced materials within this class is NaxMM’M”M”‘O2, where M, M’, 
M”, and M”’ = transition metals, Sn, Al, Mg, etc. This family of materials has a 
small molecular weight and therefore a large theoretical capacity; their stoichiome-
tries and redox mechanisms are comparable to those of their Li analogs successfully 
used in LIBs [62]. Differently from the lithium layered oxides, Na ions can be 
coordinated by both prismatic (P) and octahedral (O) sites in the layered oxide 
structure, giving rise to a large variety of phases with different transition metals 
and stacking structures. From the performance point of view, capacities can reach as 
large as 200 mAh g-1 [62, 63]. The most critical drawback of these materials is the 
anticorrelation between Na content and cycling stability. In fact, materials with a 
Na/M ratio close to unity show large initial specific capacities but suffer from a 
remarkable capacity fading. On the other hand, layered phases with Na/M ratios 
close to 0.7 show excellent stability for prolonged cycling at the expense of the 
overall capacity [62, 63]. Presently, research efforts are placed on adding extra-
capacity to layered phases arising from excess sodium and anionic redox activity. 
However, true Na-rich phases, i.e., Na1 +  xM1-xO2, similar to the so-called lithium-
rich layered oxides, are still elusive due to dimension of the Na atom, being larger 
than the Li one. 

Polyanionic Compounds Polyanionic compounds are also under study as positive 
electrodes for NIBs. Their working potentials can be easily tuned by changing the 
composition of the cations and polyanions in the structure, thanks to the close 
interplay between the variable intensity of the inductive effect provided by different 
polyanionic groups and the redox activity of the different transition metals 
[64, 65]. The most common polyanionic compounds for NIBs crystallize in typical 
prototype lattices, like tavorite, alluaudite, olivine, and NASICON. The crystalline 
structure of these materials is more stable compared to layered oxides and allows a 
full intercalation/de-intercalation of one or two Na ions. The best performances



reported in a full cell are delivered by V3+-containing compounds [65]. In particular, 
the NASICON-like Na3V2(PO4)3 (NVP) [66] and  Na3V(PO4)2F3 (NVPF) in a full 
cell with hard carbon (HC) as the negative electrode and a liquid aprotic electrolyte 
can deliver specific capacities as large as 120 mAh g-1 at 3.4 V vs. Na+ /Na with a 
good capacity retention even at high current rates [65, 66]. 
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Prussian Blue Analogs (PBAs) PBAs are very attractive materials for positive 
electrodes in NIBs. Their general stoichiometry is AxM[M’(CN)6]1-y•zH2O, where 
A is an alkali metal, M and M’ are a transition metal ion, and y is the fraction of 
vacancies in the crystal structure [67, 68]. Like in the case of layered oxides and 
polyanionic structures, also for PBA the choice of specific transition metal blends 
allows to tune the redox potential of NIBs [58, 69], allowing the materials to work 
either as cathode or anode. PBAs have been proposed by the US company Natron 
that demonstrated the ability of PBAs to operate simultaneously as positive elec-
trodes in the form of sodium hexacyanoferrate and as negative electrodes in the form 
of hexacyanomanganate, reaching very promising performance [70]. 

10.3.3 Toward Sodium Ion Batteries: Anode Materials 

A visual comparison among the promising materials for negative electrodes in NIBs 
is summarized in Table 10.3. Materials can be grouped depending on the reaction 
mechanism upon Na+ incorporation/de-incorporation: insertion (HC, graphite, TiO2, 
NaxTiO3), alloying (Sn/C, P/C, Sb/C), conversion (MoS2/C), and mixed alloy 
conversion (Sb2O3/C). 

Insertion Materials The most promising insertion-based materials are the so-called 
hard carbons (HCs) having their specific capacities in the range of 300–350 mAh g-
1 , with a Coulombic efficiency in the first cycle as high as 80% [71] and a working 
potential below 1 V vs. Na+ /Na. On the other hand, soft carbons (SCs) show a much 
smaller capacity compared to HCs, i.e., 200–250 mAh g-1 , but at lower working 
potential 0.5–0.6 V vs. Na+ /Na. Overall, despite the capacity retention in prolonged

Table 10.3 Comparison of performance for the most promising NIB’s anodes. The different colors 
of the symbols represent high (green), average (orange), and poor (red) performance [55] (License 
n. 5,396,641,494,902)



cycling being better for SCs compared to HCs, the latter phases (i.e., HCs) are the 
most promising active materials due to the much smaller accumulation of irrevers-
ible capacity compared to SCs, both in the first cycle and cycle-by-cycle, thus 
minimizing the waste of charge and the sacrificial positive electrode masses in a 
full NIB configuration. To improve the performance of HC, two main strategies are 
presently explored [72]. One is the optimization of the HC microstructure and 
surface composition to enhance the specific capacity through pseudo-capacitive 
and pseudo-plating sodium incorporation mechanisms [73, 74], whereas the second 
one is the incorporation of additional and different sp2 carbon structures (like SCs or 
graphene) in HC-based carbon electrodes [75]. Both strategies can increase the 
capacity unfortunately at the expense of the Coulombic efficiency [75]. Beyond 
the improvement of performance, keeping sustainability and low environmental 
impact of these kinds of materials is important because these are critical character-
istics. With this respect, it is also crucial to choose the correct precursors for these 
materials to keep the low costs and the sustainable philosophy of HC [76].
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Alloying Materials This type of anode material shows a higher specific capacity 
compared to HC and operates at low voltages [77]. The alloy-forming materials gain 
attention due to the ability to incorporate/de-incorporate more than one Na atom per 
redox atom, but as a trade-off, they suffered from huge volumetric changes upon 
cycling. Different strategies have been proposed to address this issue, such as 
minimization of active material particles into a nanometric scale to reduce the 
mechanical strain per one particle, the formation of core–shell materials to physically 
restrict the volume change, and the utilization of carbon-based additives as a buffer 
space [78]. At the same time, however, it is necessary to evaluate whether these 
improvements are essential from different perspectives. For instance, carbon-based 
additives are added as stabilizing components for alloy-forming materials, but it also 
commits as “dead weight” and affects practical capacity of total electrode mass. 

The alloy-forming materials are classified into group 4 elements (Si, Ge, Sn), 
group 5 elements (P, As, Sb, Bi), and their binary or ternary alloys. Among the group 
4 elements, Si and Sn are attractive materials because of their abundance. Despite the 
successes of Si in LIBs, Si has not been that successful in NIBs. In the case of Sn, 
there are a number of similarities between the Sn in NIBs and LIBs. Among group 
5 elements, P is the element with highest theoretical capacity 2596 mAh g-1 arising 
from the formation of Na3P [79], but due to its high flammability, its practical 
applications have been hindered [80]. Most of developments are centered on P/car-
bon composites due to large volume changes during cycling as well as low electric 
conductivity. P/graphene composites are known to show outstanding performances 
[81], as well as Sb/carbon composite which can reversibly deliver up to 3 Na per 
atom and reach a specific capacity of 610 mAh g-1 with 95% of capacity retention 
over 100 cycles [82]. Unfortunately, however, due to the high cost, toxicity, and low 
sustainability of the latter material, its practical application is not recommended. 

Metal Oxides Like in the case of LIBs, a variety of metal oxides have been 
investigated as anode materials for NIBs, and they are known to show distinctive 
mechanisms of anode functionality. Among these materials, the most representative



one is titanium oxide, which operates through an insertion mechanism changing its 
structure from crystalline to amorphous [83]. Despite the high operating voltage and 
the low Coulombic efficiency, this material is very promising because of the low 
cost, low toxicity, and availability [83]. Since the conductivity of titanium oxide is 
low, the use of dopant has been proposed to increase its electronic conductivity. To 
this end, the materials such as TiO2 nanosheets/graphene oxide composites have 
been developed and demonstrated to show a capacity above 175 mAh g-1 at 1C for 
200 cycles and 90 mAh g-1 at 20C for 10,000 cycles [84]. 
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Conversion Materials The reaction of this type of materials with Na is known to 
form a new phase which is structurally very different from the starting one, specif-
ically MaXb + (bc)�Na ⇄ aM + bNacX, in which M is a metal (Cu, Fe, Sn, etc.) and X 
is an anion (O, S, P, etc.). Despite their high theoretical capacity, there are different 
issues related to the conversion materials, such as a low first cycle Coulombic 
efficiency, an insulating property, a voltage hysteresis, and a large volumetric 
expansion upon cycling together with consequent electrode degradation in long 
term due to the deep structural transformation. The electrode composition design 
and the right choice of the electrolyte are two investigated strategies to improve and 
solve the issues listed above. MoS2 represents a typical conversion-type material 
with a theoretical capacity of about 670 mAh g-1 [85]. The electrochemical perfor-
mance and its stability can be improved by engineering the materials such as the 
formation of different heterostructures or the combination of MoS2 layers with 
different carbon-containing species [86]. Yet, due to the complexity to scale up a 
controlled synthesis of MoS2, the large-scale application of this material has not 
been successful. 

New emerging candidates are the metal phosphides [87] because they sustain the 
conversion reaction of the phosphorus within a metal atom network which provides 
electric conductivity. Moreover, in these materials, the volumetric expansion and 
long-term degradation are mitigated [88]. 

10.3.4 Liquid Electrolytes and SEI Formation in NIBs 

In the case of LIBs, there are various standard electrolytes, which are also commer-
cially available. In contrast to this, the optimal electrolyte of NIBs is still under 
development [89]. Like the electrolytes for LIBs, the performance of electrolytes for 
NIBs is strongly dependent on the electrode chemistry and electrode combination, 
making the optimization of an electrolyte composition complex. Especially in the 
case of NIBs, the ability of electrolyte to form SEI at the anode side is crucial 
because the SEI based on sodium salts has a higher solubility compared to that based 
on lithium salts; thus, the SEI undergoes continuous creation and destruction [90]. 

The main salts used in literature are sodium perchlorate (NaClO4), sodium 
hexafluorophosphate (NaPF6), sodium triflate (NaCF3SO3), and sodium bis 
(trifluoromethanesulfonyl)imide (NaTFSI), which are combined with ether or



carbonate solvents [89]. NaClO4 was chosen in the early stage of NIB research, but it 
is not ideal because of its explosive nature. As an alternative salt, NaPF6 has been 
employed most frequently, although its performances are strongly affected by the 
presence of impurities [91]. 
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The main solvents used together with these salts are the same for LIB technology, 
such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate 
(DMC), or their mixtures, which are known to form a stable SEI in the case of LIBs 
[91]. Since, in the case of NIBs, there is a problem in the stability of SEI as 
mentioned before, the use of additives has been recommended to form a compact, 
uniform, and more stable SEI, such as FEC and VC [92], which is the same additive 
used to create m-SEI in LIBs. In addition to these, sodium difluoro(oxalato)borate 
(NaDFOB), succinonitrile (SN), and 1,3-propane sultone (PS) have been reported as 
potential additives. It should be noted that in the case of NIBs, also ether-based 
electrolytes show very good performances for different active materials [93] includ-
ing high surface carbons [94]. The use of ether-based electrolytes allows the 
co-intercalation of solvated Na+ into graphite and enables the formation of stable 
SEI with enhanced Na plating/stripping efficiency. 

Several ionic liquids and aqueous-based electrolytes are also proposed as more 
sustainable and stable electrolytes [89, 95]. The use of ionic liquids has positive 
effect on the stability of SEI. Because of this, very promising results have been 
obtained, for example, when ionic liquids are combined with TiO2 anode material 
[96]. Due to the high cost of this class of electrolytes, practical application is not yet 
realized. In contrast to this, aqueous electrolytes have advantages in terms of their 
low cost, good sustainability, and safety [60]. However, the structural stability of the 
electrodes in water and the possible side reactions need to be assessed carefully 
[60]. Recently, the concept of the “water-in-salt” (WiS) electrolytes has been 
proposed. This class of electrolytes is defined as the concentrated aqueous solution 
of salt, in which the number of water molecule per ion is far below the solvation 
number [60]. These electrolytes consist of contact ion pairs (CIPs) and aggregated 
cation–anion pairs, which decrease the availability of water and improve its electro-
chemical stability. By employing the WiS electrolyte, symmetric NIBs based on a 
dual V3+ /Ti4+ NASICON-structured Na2VTi(PO4)3@C bifunctional electrode were 
successfully investigated, showing a stable performance over 2500 cycles at 10C 
[97]. This result demonstrated that the fluorine-rich SEI can suppress the electrode 
dissolution [97]. Important results of the advances in electrolyte/electrode optimiza-
tion, related to formulation of advanced electrolyte system, are well summarized in 
the review of Chen and co-workers [98]. 

10.3.5 Next-Generation Sodium Batteries 

An important step is being taken toward an all-solid-state configuration of the NIB to 
eliminate the serious problems related to the flammability of liquid electrolytes 
[99]. The first solid-state sodium ion conductor dates to the 1960s, when a fast



two-dimensional sodium-ion-transport phenomenon was discovered in β-alumina 
(Na2O•11Al2O3). In the same period, NASICON-type compounds were first studied 
leading to the development of Na1 + xZr2SixP3-xO12 (0 ≤ y ≤ 3). Many efforts have 
been made to elucidate the mechanism of Na+ transport and to achieve the optimal 
compositions. Recently, the inclusion of NaF at the synthesis step of NASICON was 
found to be effective for the fast ion transport (resulting in a conductivity of about 
4 × 10-3 S cm-1 ). In addition, different kinds of solid-state electrolytes have been 
reported, such as those based on SPEs as well as oxide and sulfide ISEs, as 
summarized by Zhao et al. [100]. The ionic conductivity and electrochemical 
stability of Na+-conductive solid-state electrolytes are still low, and further devel-
opment is necessary for the commercial use [99]. 
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Other state-of-the-art systems for future sodium technologies are Na–S and Na– 
O2 batteries [101]. As a closed system, in this section, focus is placed on Na–S 
batteries only, but both are promising systems. Na–S batteries were patented by Ford 
Motor Company in the 1960s, which were made of a β-alumina ceramic electrolyte 
and cycled at high temperature around 300 °C [102]. At this temperature, Na and S 
are both molten and need to be separated by the solid electrolyte. For a practical 
application, the working temperature of Na–S batteries must be reduced, and thus 
room temperature or intermediate temperature Na–S batteries are being reconsidered 
[103]. The important difference between Li–S and Na–S batteries is the thermody-
namically stable species of alkali metal polysulfides, which should be considered for 
further development, possibly being both advantageous and disadvantageous. 

10.4 Battery Technologies Based on Alkaline Earth Metals 

10.4.1 Rechargeable Magnesium Ion Batteries 

Magnesium ion batteries (MIBs) have attracted intensive attention due to their high 
capacity, high security, and low-cost properties. However, the performance of MIBs 
is seriously hindered by the intense polarization and slow diffusion kinetics of Mg2+ 

ions. To solve these issues, numerous efforts based on both experimental and 
theoretical studies have been proposed [104, 105]. In this section, the latest advance-
ment in anode and cathode materials as well as electrolytes for MIBs is summarized 
and discussed. 

10.4.1.1 Negative Electrode Materials for MIBs 

Metallic Magnesium Anodes The volumetric energy density of Mg is higher than 
that of Li (3833 vs. 2046 mAh cm-3 ), which is beneficial for the energy storage 
systems [106]. Different from the lithium metal, Mg was considered for a long time 
as a metal whose plating is homogeneous without formation of any dendritic 
structures [107, 108]. This, together with the low reduction potential of Mg2+ (-



2.37 V vs. SHE), makes Mg metal an ideal anode. Despite these merits, recently 
some authors pointed out the potential hazards related with a formation of dendritic 
forms or needlelike structures due to uneven deposits on magnesium metal [109– 
111]. Moreover, surface side reactions are known to occur on the anode side 
resulting in the accumulation of passivation films during the initial cycles of 
batteries. Unlike the formation of the SEI on the lithium metal, many reports assume 
that the passivation layers on the metallic magnesium have low ionic conductivity 
for magnesium cations [112]. Related to the formation and passivation properties of 
the interphase, the Coulombic efficiency of magnesium stripping and plating is the 
most critical parameter, and this is strongly affected by the electrolyte, its chemical 
properties, purity, and concentration of salt(s). Early generation of nucleophilic 
electrolytes [113, 114] in ether-based solvents is known to keep magnesium surface 
at least partially active (non-passivated). Acting on the metal anode itself, Liang 
et al. synthesized ultrasmall Mg particles with a diameter of �2.5 nm [115]. The 
ultrasmall nanoparticles reduced the thickness of the passivation film, which 
improved the deposition of Mg. Chemical modification is another feasible way to 
control the reactivity of Mg metal. Lv et al. used a SnCl2–dimethoxyethane (DME) 
solution to treat Mg foil and obtained a modified Mg anode with a tin-based artificial 
layer [116]. The Mg anode can maintain stable plating/stripping for more than 
4000 cycles at a high current density of 6 mA cm-2 . In the same manner, by adding 
GeCl4 into Mg(TFSI)2–DME electrolyte, the Ge-based artificial layer was also 
formed on the Mg surface, showing a self-repairing process [117]. 
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Alloying Anodes Some elements from block p are known to electrochemically react 
with magnesium ions to form an alloy. Alloying materials, such as bismuth (Bi), tin 
(Sn), and phosphorus (P), are promising alternatives to Mg metal anode [118]. Alloy 
materials may have synergistic effects in MIBs, bringing new properties that single 
Mg metal does not have. Bi anode (theoretical volumetric capacity is 3783 mAh cm-

3 )  [119] can rapidly insert and extract Mg2+ , with the ion dynamics being related to 
defect chemistry. In general, gravimetric and volumetric capacities related to the 
electrochemical alloying are very high (theoretically up to 900 mAh g-1 

(Sn) and 
6570 mAh cm-3 

(Sn) for the formation of Mg2Sn). Synergistic effects have been 
expected by combining multiple elements such as Bi–Sb (solid solution), Bi–Sn 
(composite), or intermetallic compositions of InBi, SnSb, or InSb [120–122]. Like 
the alloying-type electrode materials in LIBs, the volumetric changes due to the 
alloying and de-alloying process hamper the long-term cycling of the electrode. 
However, with a good electrode formulation, high reversible cycling has been 
demonstrated especially with Bi-based electrodes (Fig. 10.3)  [123]. It is also impor-
tant to consider that alloy electrodes might be easier to produce than magnesium 
metal electrode foils. Indeed, alloys can be synthetized in the form of powder by 
ball-milling or high-temperature reactions, which can be easily integrated in the 
battery industry. Moreover, alloys are certainly less surface sensitive than magne-
sium metal and might be of interest for protecting the Mg surface from the dendritic 
growth.
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Fig. 10.3 Electrochemical 
behavior of Bi nanowires in 
a Bi|Mg half-cell at C/2 with 
an organohaloaluminate 
electrolyte [123] (License 
n. 1,322,765) 

Intercalation-Type Anodes Although graphite has been widely employed in con-
ventional LIBs, it is difficult for Mg2+ to be inserted into graphite due to its high 
ionization potential (7.65 eV for Mg and 5.39 eV for Li) [124]. However, Kim et al. 
proved that the co-intercalation of Mg2+ and linear ether solvents is possible through 
the density functional theory (DFT) calculations [125]. The Mg2+ storage properties 
of carbon nanotubes (CNTs) have also been studied by the DFT. Aslanzadeh et al. 
studied the influence of CNTs’ diameter on the voltage of MIBs by calculating the 
adsorption energies of zigzag CNTs [126] and demonstrated that the cell voltage 
increased with the increase of CNTs’ diameter. Recently, research interest was 
shifted to graphene to explore its potential as the anode material for MIBs. Graphene 
with 25% double-vacancy defects can achieve a Mg2+ capacity of 1042 mAh g-1 

[127]. In addition to these, many other two-dimensional materials have been studied, 
such as transition metal carbides (MXene) [128] and borides (MBene) [129]. Regard-
ing metal oxide insertion materials, TiO2 is a very common anode for various 
secondary batteries. However, the limited capacity of 110 mAh g-1 at 0.1 C 
seriously obstructs its application in MIBs [130]. According to the research of Luo 
et al., proton charge compensation in Ti-deficient TiO2 (B) nanowires ensures more 
thermodynamic feasibility and sufficient intercalation sites for Mg2+ , thereby 
increasing the capacity. 

10.4.1.2 Positive Electrode Materials for MIBs 

The cathode material, a key component of MIBs, predominantly determines the 
energy density of batteries. However, most of the cathode materials of MIBs show 
small capacity and poor rate capability, which seriously hinder the battery perfor-
mance. Most studies on Mg batteries focus on the combination of Mg metal with 
inorganic cathodes based on transition metal redox centers. As of today, inorganic 
oxide, polyanionic, and sulfide compounds are the focus of attention of the research 
community, but they all present their pros and cons. Moreover, research on inorganic 
cathodes for magnesium batteries is sometimes quite perplexing as the lack of highly 
oxidative stable Mg electrolytes prevents the evaluation of Mg insertion reactions at 
high voltages.
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Chevrel Phase Mo6S8 Research on the cathode materials for Mg insertion was 
accelerated by the seminal work of Aurbach et al. with a prototype full Mg cell based 
on the Chevrel phase Mo6S8 [114] and opened a large avenue of research on 
chalcogenides. These structures are very promising due to the weak electrostatic 
interactions between Mg2+ ions and the sulfide/selenide-based anion framework. 
The low operating voltage (~1.1 V vs. Mg2+ /Mg) and low specific capacity (~100 
mAh g-1 ) of Mo6S8, related to an incomplete de-insertion of Mg ions due to the 
trapping of partial charges at room temperature, are limiting factors for commercial 
application of the given technology. Substituting sulfur by selenium allows for a 
100% capacity usage [131] but at the expense of the specific capacity value. 
Although the voltage and capacity values are too modest to obtain energy densities 
competitive with Li ion batteries, Chevrel structures remain the benchmark elec-
trodes for Mg batteries as they offer remarkable insertion/de-insertion kinetics and 
good reversibility. 

Layered Cathode Materials Layer materials possess two-dimensional transmission 
channels, which enable rapid Mg2+ migration. The reported layered cathode mate-
rials for MIBs include both transition metal oxides and transition metal sulfides, such 
as V2O5, MnO2, MoS2, and TiS2 [132]. As a representative, V2O5 has attracted great 
attention due to its high theoretical capacity (�295 mAh g-1 for MgV2O5) and 
working voltage (�2.35 V vs. Mg2+ /Mg). Compared with transition metal oxides, 
the relatively low ionization degree of S in transition metal sulfide weakens the 
electrostatic interaction between Mg2+ and negative charge, which is favorable for 
the migration of Mg. Yang et al. studied the diffusion kinetics of Mg2+ in MoS2 
(theoretical capacity of 223.2 mAh g-1 ) [133]. 

Polyanionic Cathode Materials Polyanionic compounds have been widely used in 
MIBs because of their versatile variety, stable structure, and strong inductive effect 
[134]. In MgMSiO4 (M = Mn, Co, Fe, etc.), Mg2+ diffuses from the octahedral 
(O) site to the tetrahedral (T) site [135], with an energy barrier of 740÷770 meV 
[136]. Despite olivine FePO4 performing well in LIBs, its capacity in MIBs is only
�13 mAh g-1 at 20 mA cm-2 [137], which can be attributed to the amorphous phase 
produced on the material surface during the discharge process, preventing Mg2+ 

from entering the bulk phase of FePO4. 

Organic Cathode Materials Although inorganic materials have widely dominated 
the field of rechargeable batteries, a great amount of attention has been recently 
placed on organic materials because they possess many crucial advantages, like 
safety, sustainability, green, low cost, and high theoretical capacity [138]. Carbonyl 
conjugates are a large group possessing many C=O functionalities, essentially 
determining properties such as diversity, fast reaction kinetics, and high specific 
volume. Therefore, compared to other types of organic cathode materials, carbonyl-
conjugated compounds are expected to develop as the next generation of cathode 
materials for Mg batteries. Quinone-based monomers are particularly suitable as an 
active storage unit, and most of recent reports [139] provided highly attractive



properties in terms of energy and power density as well as cyclability. Other reports 
showed applicability of imides and radical organic compounds [140], which in 
theory are less attractive in terms of energy density. As well known, electrochemical 
characteristics depend also on type of electrolyte, where both salts and solvents play 
important roles [141]. It has been demonstrated that the use of Mg(TFSI)2 salt can 
increase the capacity utilization of organic electrodes, while the use of AlCl3 can 
upshift the potential of redox active compounds [142]. Although redox active 
organics in the form of different polymers show the best properties in terms of 
cycling and rate capability, there are still some important challenges that need to be 
addressed before their potential commercialization. 
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10.4.1.3 Electrolytes for MIBs 

To make MIBs commercially available, further breakthroughs in the electrolyte 
chemistry development are needed. As for other battery technologies, the electro-
lytes for MIBs should fulfill multiple criteria such as low toxicity, low cost, wide 
electrochemical stability window, and high ionic conductivity. The following main 
types of the electrolytes have been explored in MIB technologies: (i) liquid-organic 
solvent electrolytes, (ii) solid-state electrolytes, (iii) polymer electrolytes, and 
(iv) ionic liquid-based electrolytes [104]. 

Liquid electrolytes based on organic solvents or ionic liquids are up to now the 
best performing materials for Mg deposition/stripping processes. The former elec-
trolytes present a wider electrochemical stability window, while the latter group 
shows a lower overvoltage in the Mg deposition process, a higher thermal and 
chemical stability, and a negligible flammability. 

For the electrochemical reactivity at the Mg metal anode, even traces of water or 
other oxygenated coordination ligands must not be present in the electrolyte, to 
avoid any compromise in the anodic reversibility, cyclability, and current density 
[143]. Actually, oxygenated species cause the formation of a compact MgOx(OH)y 
layer on the magnesium metal anode, which hinders the anode–electrolyte charge 
exchange processes promoting on its surface the growth of dendrites. On the other 
hand, as demonstrated by Novak et al. in the early 1990s [144, 145], water is 
necessary in the cathodic side to efficiently and reversibly exchange magnesium 
ions between the solid cathode active material and the electrolyte during insertion 
and de-insertion processes. This is because water molecules can exfoliate the 
cathode layered structure and enhance the Mg2+ diffusion into the bulk cathode 
materials by solvating the ions and facilitating their solid-state migration phenomena 
[146, 147]. Taking all together, developing electrolytes for MIBs able to address the 
so-called “devil” (at anode) and “holy” (at cathode) water dilemma is a very difficult 
target.
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10.4.2 Calcium Batteries 

Calcium (Ca) batteries are emerging as a promising next-generation electrochemical 
energy storage system, due to the abundant reservation of calcium and the compet-
itive redox potential of Ca2+ /Ca. However, the practical realization of rechargeable 
Ca and Ca ion batteries (CIBs) still relies on the identification of suitable electrodes 
and electrolytes. Despite reversible calcium plating–stripping being recently dem-
onstrated [148], efforts are still needed to improve both kinetics and efficiency and to 
allow a wider range of electrolyte formulations. Widening the electrochemical 
stability window of the electrolyte is crucial to lead the development of positive 
electrodes operating at high potential [149, 150]. 

10.4.2.1 The Benefits of Calcium Batteries 

Calcium is a divalent alkaline earth metal with an extraordinarily strong oxidative 
ability in consideration of the -2.87 V vs. SHE redox potential for the Ca2+ /Ca 
couple [151, 152], to be compared to the -3.04 V vs. SHE of the lithium metal 
electrode. In comparison to other elements under development for battery applica-
tions, calcium is the multivalent metal with the most negative redox potential and an 
ionic radius of 114 pm, very similar to Na+ , that is the cation easily intercalated/ 
deintercalated in/from a variety of materials [153]. The theoretical properties of 
calcium metal electrodes, in terms of gravimetric and volumetric specific capacities, 
surpass those of potassium, sodium (both gravimetric and volumetric), and zinc 
(gravimetric) and are like that of lithium (volumetric), thanks to the favorable 
combination of intermediate atomic weight and density [149]. In addition, compared 
to aluminum and magnesium, calcium has a larger ionic radius and a smaller 
electronegativity [154, 155], thus suggesting on the one hand a lower coordination 
binding in the liquid phase, thanks to the smaller charge density, and on the other 
hand a less covalent bonding in solid lattices. Furthermore, it is highly abundant on 
Earth’s crust and industrially inexpensive, much more than Li, Na, K, Mg, and Zn 
[150, 156, 157]. Even though calcium has an atomic weight seven times larger than 
lithium, the specific capacities of the calcium-based oxides vary in the 100–250 mAh 
g-1 range, comparable with lithium intercalation positive electrodes, also for what 
concerns the thermodynamic potentials. Similar to the anode materials available for 
LIBs, silicon, phosphorus, and carbon negative electrodes can reach large theoretical 
capacities at relatively low redox potentials also in the case of CIBs. On the other 
hand, calcium carbide is expected to suffer from large kinetic limitations and 
overpotentials being the crystal structures of all CaC2 polymorphs remarkably 
different from graphite [158]. Moreover, outstanding theoretical performance is 
achievable for Ca–O2, as well as for Ca–S, leading to the formation of calcium 
peroxide and calcium sulfide. 

A tentative evaluation of the relative merit of various calcium-based batteries in 
comparison with LIBs can be made using the theoretical performance of the LiCoO2/ 
C LIB as the baseline (360 Wh kg-1 , calculated assuming a ΔE° = 3.6 V and a



specific capacity normalized by the sum of both positive and negative electrode 
materials) [159]. The CIBs constituted by CaMn2O4 and Si can disclose a theoretical 
energy density of about 520 Wh kg-1 , being superior to the benchmark LIB 
(mentioned above) and approaching the desirable figures of the LiMn1.5Ni0.5O4/Si 
and LiFePO4/Li configurations [159]. Both sulfur battery chemistries, i.e., Ca–S 
and Li–S, have a comparable theoretical performance (approximately 
1800–2000 Wh kg-1 ) that is, in both cases, exceeded by the Ca–O2 and Li–O2 

ones (~2400 and ~ 3500 Wh kg-1 , respectively). 
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Overall, calcium-based battery chemistries can theoretically achieve performance 
of interest, not far from those of lithium-based ones, but research in the field is still in 
its infancy. To date, the serious exploitation of cathode materials for CIBs just 
started because of the pioneering work of Ponrouch et al., demonstrating the 
successful Ca plating/stripping using conventional organic solvents in 2016 
[148]. However, the field being in its early stage, the number of reports on positive 
electrode materials in the literature is still limited [159–165]. 

10.4.2.2 Challenges in Developing Calcium Batteries 

The operating principle of typical calcium batteries is depicted in Fig. 10.4, using 
inorganic framework as cathode and metallic Ca as anode. In this process, a series of 
limiting steps occurs [166]. Firstly, the slow diffusion of Ca2+ in the positive

Fig. 10.4 The diffusion, migration process of Ca2+ in a typical calcium battery [166] (License 
n. 5,487,100,248,324)



electrode is inevitable. Although the charge density of Ca2+ is small (52 C mm-3 , the 
same as Li+ ), its diffusion rate is significantly affected by its large ion radius (0.99 Å, 
compared to 0.76 Å for Li+ ), which is a dominant limiting factor. Secondly, Ca2+ 

forms solvated calcium in the electrolyte. In some cases, the formed solvated group 
is relatively large, making it difficult to migrate in the electrolyte. Moreover, when 
the solvated cluster moves to the electrodes, it needs to be de-solvated. A higher 
voltage beyond the reorganization energy is needed to break the interatomic bonds in 
the solvation cluster. This voltage needs to be within the electrochemical stability 
window of the electrolytes; otherwise, it is easy to decompose the electrolyte. 
Thirdly, the shuttle of de-solvated calcium ions in SEI is also a matter to be 
discussed. SEI is a thin film with a thickness of several nanometers between the 
electrolyte and the anode. This layer can protect the anode from continuous damage 
and the electrolyte from side reaction with the anode. Ideally, the SEI film is a good 
ion conductor but needs to be an electronic insulator. As for CIBs, the main 
components of SEI are CaCl2, Ca(OH)2, CaCO3, CaF2, CaH2, etc. [167]. These 
substances undergo structural changes during the calcium ion diffusion process. Due 
to the strong interatomic bond, many components are thought to be unable to 
transmit Ca2+ (such as CaCl2, Ca(OH)2, CaCO3, etc.). Also, continuous insertion/ 
de-insertion of Ca2+ induces a large volume change of SEI, which may rupture the 
thin film. Once Ca2+ passes the SEI and arrives at the anode, the intercalation, 
nucleation, or plating of Ca happens [168]. Owing to these complex steps, it is 
extremely challenging for calcium to deposit.
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The main issues and their current state, to be carefully addressed to allow the 
calcium technology being widely applicable, are summarized as follows: 

– The Ca2+ ion hosting materials that must be stable enough during the Ca2+ 

diffusion and insertion/de-insertion: Prussian blue analogs, transition metal com-
pounds, and organic compounds are known as potential materials for this require-
ment [169, 170]. 

– The reversible stripping/plating of Ca metal at moderate temperature: the proof-
of-concept batteries, as of today, showed an average Columbic efficiency of 96% 
for 50 cycles, which is not sufficient for the practical application [160, 171]. 

– The efficient solvation/de-solvation process of Ca2+-based electrolytes: different 
from Li+-based electrolytes, which can form Li+-conducting SEI, the reactions 
between electrolytes and calcium tend to generate Ca2+-blocking phases when 
contacting with organic electrolytes [172]. 

Overall, although great efforts have been made to change the electrolyte and 
modify the anode–electrolyte interface, the reversible plating/stripping of Ca metal is 
still tricky and complicated matter. The complexity of working directly with a Ca 
metal anode drives the search for alternative anodes, which can be categorized into 
three types based on the calcium ion storage mechanism, including alloying anodes, 
intercalation anodes, and organic anodes [166, 173], showing the direction 
toward CIBs.



10 Closed Battery Systems 201

10.5 Conclusions 

Among the emerging battery technologies, Na ion batteries as well as alkali metal 
batteries, probably solid state, are those expected to become commercially available 
in the near- (2–5 years) to mid-term (5–10 years) future. Na ion batteries are already 
being developed by several industries following the CATL announcement made at 
the end of 2021. Polyvalent metal-based battery chemistries appear to be in the early 
stage of development with a few hurdles to be addressed in the next few years. 
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11.1 Redox Flow Batteries 

In RFBs, the electroactive species are dissolved in solutions (anolyte and catholyte) 
that are stored in tanks external to the cell and that are flown in the cell core that is 
made by the anode and cathode current collectors, intercepting the anolyte and 
catholyte flows, respectively, and separated by the separator (Fig. 11.1a). 
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Fig. 11.1 Schemes of open battery systems: (a) redox flow battery (RFB) and (b) air-breathing 
metal–air battery (MAB) 

MABs typically consist of a metal anode, a separator soaked in the electrolyte, 
and an air (oxygen) cathode that has one face exposed to the environment 
(Fig. 11.1b). To solve kinetics and cyclability issues that are still slowing MAB 
development, flow MABs (FMABs) have been proposed. FMABs exploit the RFB 
design, with the anolyte and/or the catholyte (only one half-cell or both) acting as 
carrier of the anodic metal species or of the oxygen, respectively [1]. 

The main advantage of RFBs relies on their peculiar architecture that allows for 
decoupling of power and energy but also enables easy maintenance and scale-up of 
the system. However, as the active materials are in solution, their solubility severely 
limits the energy density of the system. 

Under this open system concept, many chemistries have been postulated looking 
at SET plan targets in terms of cost and durability, which are primarily determined 
by the active materials’ availability and stability [1]. In this context, vanadium-based 
RFBs have demonstrated their supremacy considering their long lifetime (20 years) 
and high performance. The scarcity of the raw material is the main reason behind the 
need to replace vanadium. Thus, systems such as the H2/Br2 battery, which offer 
high power density and a cell voltage of 1.09 V, are also paving their way to market. 

Alternatively, the so-called hybrid redox flow batteries contain at least one solid 
active material that is plated or stripped within the cell. Zn/Br and Zn/Fe are 
successful examples of this concept [2], while all-iron (ca. 1.2 V) and all-copper 
(ca. 0.6 V) RFBs can be listed as sustainable options considering the abundance and 
the low toxicity of the employed materials when compared with the most used 
vanadium-based compounds [1]. The problems inherent to the plating process are 
the main hurdles to be solved. Despite the benefits in terms of energy density of 
using a solid metal as anode, a direct consequence is that power and energy cannot 
be independently regulated. 

Back to conventional RFBs, flow batteries based on organic active materials have 
been postulated as real candidates to dare VRFB, and based on the ubiquitous nature 
of carbon-based materials, they may offer a global solution. Indeed, there is a bloom 
of start-ups working on organic flow batteries.



Electrolyte 
Anolyte/catholyte 

Capacity decay 
(%) day-1 

EE (%) at current 
density (mA cm-2 ) Ref 

11 Open Battery Systems 215

11.1.1 Organic-Based Chemistries 

Irruption of organic active materials in RFBs is an open door to a vast chemical 
space. Thus, beyond the abundance and the potential inexpensive manufacturing at 
large scale, the high tunability of those compounds is the main reason for the interest 
aroused by aqueous organic redox flow batteries (AORFBs) [3]. 

A wise design of active material should allow to determine the redox potential, 
the solubility, the chemical and electrochemical stability, the reaction kinetics, 
the gravimetric capacity, and even the crossover rate. In this regard, selection of 
the functionality of the active site, the inclusion of polar groups, and the definition of 
the molecular weight and the number of active sites would serve to modulate the 
properties. The ideal electrolyte is still to come, and a compromise has to be 
accepted. The most relevant examples on AORFB are either based on quinone-
type or on viologen-based anolyte solutions (Table 11.1). 

Quinone–Fe System Quinone-type molecules can undergo a fast and reversible 
2e- and 2H+ transfer according to Eq. 11.1: 

Table 11.1 Comparison of the parameters reported for various AORFBs 

Theor. 
electrolyte 
capacity 
(Ah L-1 ) 
Anolyte/ 
catholyte 

DPPEAQ/K4[Fe(CN)6] 
alkaline pH 

26.8/10.7 0.014 (12) 65 (100) [5] 

DPivOHAQ/K4[Fe 
(CN)6 
alkaline pH 

26.8/8.0 0.0018 (16) 85 (100) [4] 

DHPS/K4[Fe(CN)6] 
alkaline pH 

37.5/8.3 0.682 (14) 82 (100) [6] 

(SPrN)2V/NH4[Fe 
(CN)6] alkaline pH 

9.6/9.6 0.018 (17) 63 (40) [7] 

Dex-Vi/BTMAP-Fc 
neutral pH 

40.2/20.1 N.O. (30) N/A (50) [8] 

BTMAP-Vi/ 
N2TEMPO 
neutral pH 

13.4/13.4 N.O (9) 60 (60) [9] 

(ATBPy)Cl4/ 
(TPABPy)Cl3 
neutral pH 

26.8/26.8 0.445 (2) 86 (60) [10] 

N.O. not observed
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ð11:1Þ 

Among the multiple examples in the literature, anthraquinone–iron couples have 
shown the highest stability. Recent efforts have been devoted to further push the 
stability of those compounds to capacity decays as low as 0.0018% day-1 [4]. This 
has been possible by including highly stable carboxylate (DBEAQ), pivalate 
(DPivOHAQ) [5], or phosphonate (DPPE) [6] moieties in anthraquinone core 
structure, which can be coupled with ferrocyanide leading to a cell voltage of 
1.0 V and operated in alkaline media with high energy efficiencies (>80% at 
100 mA cm-2 ). The lack of a more competitive catholyte solution is identified as 
the main limitation, while despite the high solubility of the anthraquinones, the 
system has only been validated for low-energy-density electrolytes (0.5 M anthra-
quinone). With a similar reaction mechanism, pyrazines have been employed in 
alkaline batteries leading to high cell voltages (1.2–1.4 V) and good cell perfor-
mance when coupled with ferrocyanide [6]. 

Viologen-Based Systems with Neutral pH Bipyridinium salts can undergo 1e- or 
2e- reduction processes (2); the first reduction is considered as fully reversible, 
while the capacity retention is generally lower if the second process is involved. No 
protons are involved in the redox equilibrium of viologens neither in the case of the 
materials selected as catholyte counterparts, i.e., iron complexes or TEMPO deriv-
atives mainly. Those batteries are operated under mild conditions, close to neutral 
pH values. This may elongate the durability of the battery’s components, but it also 
entails a challenge in terms of conductivity due to the low proton and hydroxyl 
concentration in the electrolyte media. Thus, the efficiency of neutral pH systems 
ranges between 40% and 80% energy efficiency (EE) for current densities between 
50 and 100 mA�cm-2 . The low cell voltage (ca. 0.8 V) [7, 8] of the viologen–iron 
complex systems is their main weakness, while the most stable viologen–TEMPO 
systems employ low-energy-density electrolytes (0.5 M) [9]. Molecular engineering 
works are still in progress, and stable 2e- storage extended bipyridinium compounds 
have been developed [10] boosting potential energy density of viologen systems. 

ð11:2Þ 

The stability of organic materials is still under debate, and comparison of different 
systems is not straightforward even if the capacity fade over time has been taken as a 
more reliable parameter [11]. Cycling conditions, capacity utilization, and concen-
tration of active materials among other factors may impact the electrolyte stability. 

In a lower extent, polymer redox active materials have been employed as 
a measure to mitigate crossover [12], and organics have also been combined with 
a metal anode to boost energy density [13]. However, those trends remain as a 
secondary option after weighing pros and cons.
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The use of nonaqueous organic redox flow batteries (NARFBs) has been also 
explored. This full organic electrolyte could theoretically mitigate the energy density 
problems of RFB as the cell voltage can be increased over 3 V and the solubility of 
the active materials is significantly higher in organic solvents. However, this ideal 
scenario is hurdled by the poor conductivity of the electrolytes, the high viscosity of 
high concentrated solutions, and the low chemical compatibility of the membranes 
and the organic solvents. Thus, high concentrations >2 M cannot be exceeded 
without compromising diffusion properties [14]. NARFBs are generally operated 
at low current densities (< 40 mA cm-2 ) [15] or at low concentrations [16]. 

11.2 Metal–Air Batteries 

11.2.1 Steady Metal–Air Batteries 

Metal–air (oxygen) batteries (MABs) have the advantage of using the lightest 
cathode material available in nature: oxygen. Furthermore, O2 is not stored inside 
the cell, but it is continuously supplied from air or tanks outside the cell. Therefore, 
cell capacity is not limited by cathode active material depleting. In addition, in 
conventional (not-flow) MABs, the anode is a thin metal foil with an extremely high 
density. Combining a metal anode and an O2 cathode enables to use most of the 
system volume for the anode material, and this results in a battery with an extremely 
high energy density. 

Several MAB chemistries have been proposed, including those based on alkali, 
transition, and multivalent metals [17–19]. Table 11.2 summarizes the cell reactions, 
the metal and discharge product densities, the nominal cell voltage, and the theoret-
ical specific capacity and specific energy and energy density of different MABs. 

Table 11.2 Cell reactions, metal and discharge product densities, nominal cell voltage, theoretical 
specific capacity and specific energy and energy density of different MABs. The energy density 
values have been calculated referring to the metal (first value) and the discharge product (second 
value) densities 

Discharge 
product 
density 
(kg L-1 ) 

Theor. 
specific 
capacity 
(Ah L-1 ) 

Theor. 
specific 
energy 
(kWh kg-1 ) 

Theor. 
energy 
density 
(kWh L-1 

metal 
product) 

2Li + O2 ⇆ Li2O2 0.534 2.3 2.96 1.17 3.5 1.9–8.0 

2Na + O2 ⇆ Na2O2 0.968 2.8 2.33 0.69 1.6 1.6–4.5 

K + O2 ⇆ KO2 0.890 2.3 2.48 0.37 0.9 0.8–2.2 

Mg + 1 /2O2 + H2O 
⇆ Mg(OH)2 

1.738 2.3 3.09 0.92 2.8 4.9–6.6 

4Al + 3O2 + 6H2O 
⇆ 4Al(OH)3 

2.700 2.4 2.71 1.03 2.8 7.5–6.8 

Zn + ½ O2 ⇆ ZnO 7.140 5.6 1.65 0.66 1.1 7.7–6.1 

3Fe+2O2 ⇆ Fe3O4 7.874 5.2 1.28 0.46 0.6 4.6–3.1
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Li, Na, K, Mg, and Al-MABs feature cell voltages higher than 2 V and therefore 
require the use of nonaqueous electrolytes. In the case of Li and Na, which are not 
stable in water, organic/inorganic hybrid electrolytes have been proposed. In these 
systems, the metal is in contact with an organic electrolyte, and the cathode operates 
with an aqueous electrolyte. Anode and cathode are alienated by a solid ionic 
conductor separator. Zn- and Fe-MABs featuring cell voltages lower than 2 V can 
operate with aqueous electrolytes, and they typically make use of alkaline solutions. 

The specific capacity evaluated based on both metal and oxygen contents depends 
on the number of electrons exchanged for mole of reactants and mainly on the atomic 
mass of the metal. It spans from 0.46 Ah kg-1 of the Fe–O2 cells (four-electron 
process) to 1.17 Ah kg-1 of the Li–O2 (two-electron process), which features the 
lightest metal, i.e., lithium. 

All the MABs listed in Table 11.2 feature high theoretical specific energy 
densities that are about two- to tenfold higher than that of today’s lithium-ion 
batteries. Among the nonaqueous MABs, the Li–O2 cells exhibit the highest value 
that in theory can be as high as 3.5 kW kg-1 . Among the aqueous MABs, Zn–O2 

holds the best promises with 1.1 kW kg-1 . 
In MABs, at the anode, metal stripping/deposition occurs. At the cathode, the 

sluggish kinetics of the oxygen reduction and evolution reactions (ORR/OER) are 
promoted by catalysts (or mediators) that are supported on the electrode surface, 
typically a porous carbon with high surface area. Like in fuel cells, in static MABs, 
the optimization of the cathode three-phase boundary (catalyst–electrolyte–gas) is of 
paramount importance to achieve a high conversion efficiency and fast cell response 
under high-current regimes. Today, typical discharge currents are lower than 
0.5 mA�cm-2 for nonaqueous Li-MABs and 500 mA�cm-2 for aqueous 
Zn-MABs. In air-breathing cells, the slow natural diffusion of O2 to the cathode is 
one of the processes that cause not negligible cell overvoltages during discharge at 
high currents. Furthermore, during the discharge, insoluble by-products are depos-
ited on the surface of the metal anode and air cathode, therefore passivating the 
electrodes, clogging cathode pores, and further limiting the diffusion of oxygen. 
These passivating products limit the discharge capacity of MABs to values that can 
be 50% lower than the theoretical ones. They also cause high recharge overvoltages 
and, consequently, low recharge energy efficiency that is typically lower than 70%. 

As it concerns the metal anode, stripping/deposition inherently induces changes 
in the metal surface morphology, dendrite growth, and metal fragmentation into 
particles with subsequent loss of electric contact and of material. Here, the electro-
lyte can play a role by forming a suitable solid electrolyte interphase that protects the 
anode and controls the uniform metal deposition. 

11.2.2 Flow Metal–Air Batteries 

Despite such promising theoretical performance, still many challenging problems 
need to be solved to let MABs become a consolidated technology. Combining MAB 
chemistries with a flow cell design in flow metal–air batteries (FMABs) can be an



answer. FMAB cell commonly consists of a metal anode (tin foil or a flowable 
anolyte), a separator soaked in the electrolyte, and a flowable air (oxygen) cathode. 
At the anode, the metal stripping/deposition occurs. At the cathode side, an electro-
lyte enriched with oxygen is flowed across a porous current collector where the 
oxygen reduction and evolution reactions (ORR/OER) occur. As in their static 
counterparts, to overcome the sluggish kinetics of the ORR/OER, the surface of 
the porous electrodes is decorated with catalysts or mediators. 
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The exploitation of a flowable cathode (catholyte) is a smart strategy to overcome 
some of MAB’s intrinsic challenges, such as the slow oxygen diffusion at the 
cathode and the passivation of electrodes by deposition of insoluble by-products 
[1]. The convective transport of the catholyte allows for overcoming the mass 
transport limitations due to the oxygen diffusion [20, 21]. To reduce the current 
collector passivation, driven by the deposition of the insoluble discharge products 
(such as metal oxides), a valuable strategy is the exploitation of slurries rather than 
solutions, in which the suspended particles act as nucleation centers [1, 22]. More-
over, to alleviate the dendrite formation, while increasing the current density at the 
anode, a possible solution is the exploitation of anolyte slurries [23]. The main 
drawback is the nontrivial design of the flow frame, which strongly depends on the 
cell chemistry and the rheological properties of the electrolyte. 

Nowadays, zinc, aluminum, and lithium are the main metallic anodes on which 
the research activity in MAFBs has been focused. According to the metal reactivity, 
both aqueous and nonaqueous electrolyte media have been explored [24, 25]. 

Zn-MAFBs are the most mature technology. Indeed, the company “Zinc 8” is 
currently manufacturing 100 kW, targeting 1 MW installation, forecasting a price 
below 100 € kW-1 . Li-MAFBs, for their exceptionally high theoretical energy 
density, are holding great promises for energy storage. 

By using the abundant, readily available seawater as catholyte, the seawater battery 
(SWB) arises as an attractive option for low-cost, large-scale energy storage [26– 
28]. During its charge, at the cathode, the electrolysis (oxidation) of seawater occurs, 
contemporarywith the reductionofNa+ ions, extracted fromseawater on the anode side. 
Indeed, seawater features a salinity of ≈3.5% (35 g L-1 ) in which  Na+ and Cl- ions 
account for most of the dissolved salts. The metallic sodium requires an anhydrous 
anolyte, aprotic solvent solutions with sodium-based organic salts, e.g., 1 M sodium 
trifluoromethanesulfonate (NaCF3SO3) in tetraethylene glycol dimethyl ether 
(TEGDME) or 0.1M sodiumbis(fluorosulfonyl)imide (NaFSI) in ionic liquid solutions 
[27]. The anolyte chamber must be physically separated from the aqueous catholyte 
while being in ionic contact. Therefore, Na-ion conducting, solid electrolytes (e.g., 
NASICON) that separate the anhydrous anodic chamber and the aqueous cathodic 
chamber are adopted [26–28]. To improve the kinetics of the ORR and OER, Pt/C- and 
Ir/Ru-based catalysts could be exploited [29]. However, in SWB, the presence ofCl- in 
the catholyte requires the use of a proper current collector to control its oxidation 
reactions during charge, and this represents an additional problem. 

SWB features a theoretically high cell voltage ≈3.48 V, with reported practical 
voltage of 2.2 V. Although extremely promising, today, this technology is still in 
R&D phase, and efforts are required to decrease the cost of the components to 
efficiently scale up [26].
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11.3 Conclusions 

The open batteries might change the paradigm of storing, using, and distributing 
energy. Besides their inherently higher safety, especially when compared to LIBs, 
they feature great flexibility, and a variety of materials and cell design are under 
exploitation. RFBs and MABs are interesting open systems that may play an 
important role in stationary energy storage application. In RFBs, the electrolyte is 
identified as the most critical component of those batteries, and there is an ongoing 
search for the most stable, cost-effective, safe, and abundant active materials. Thus, 
systems relying on safe aqueous electrolytes comprising organic active materials are 
gradually closing the gap with vanadium and have the potential to compete or 
coexist with lithium to fulfil the global demand. 

MABs, even based on abundant metals, hold the promise of extremely high 
volumetric energy density because light and multivalent metals can be exploited. 
However, in MABs, low cycling stability and power are still the main limitations that 
could be overcome by exploiting the RFB architecture in the emerging flow and 
semisolid flow MABs. 
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Part VI 
Prospective Assessments of Emerging 

Batteries 

Preface 

There are several challenges related to current lithium-ion battery (LIB) technology, 
including safety, the need for scarce resources, environmental impacts, resource 
availability, cost, or social implications. Such doubts are addressed in new regula-
tions and frameworks such as the EU Battery Regulation and Critical Raw Materials 
Act, as well as in a wider way in the Sustainable Development Goals (SDGs). The 
development of new battery technologies is considered as a way to overcome some 
of the named challenges related to LIB. However, requirements towards more 
sustainability make it necessary to also adequately provide corresponding prospec-
tive assessments that cover economic, environmental, and social dimensions over 
the entire life cycle of new battery types. Prominent methods for this purpose are, 
among others, environmental and social life cycle assessments and techno-economic 
and acceptance studies. Typically, these generate complex, multidimensional results 
that are difficult to communicate and where trade-offs have to be made. This requires 
the involvement of relevant stakeholders, e.g., via the use of integrated methods as 
multi-criteria decision-making methods to aid decision-making towards sustainabil-
ity and the most appropriate battery technology for a given application. All the 
named methods face several challenges which have to be addressed carefully. After 
discussing general challenges of prospective assessments in Chapter 12, an overview 
of the most relevant methods to assess the environmental (Chapter 13), the techno-
economic (Chapters 14 and 15) and the social (Chapters 16 and 17) impact of battery 
systems is provided in the following. Finally, multicriteria decision analysis methods 
for battery sustainability assessment are presented in Chapter 18.
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Chapter 12 
Methodological Challenges of Prospective 
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12.1 Introduction 

Environmental and social impact assessments have been developed from an envi-
ronmental accounting perspective to identify the impacts and hotspots of a present or 
past technology retrospectively [33]. The increased use of those assessment meth-
odologies as an engineering tool calls for alternative assessment methods that enable
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guiding innovations towards sustainability. This is the case for emerging technolo-
gies that are at an early stage of the development process [2]. Emerging technologies 
include both innovative products and processes that are not yet on the market, such 
as novel battery technologies, as well as novel advances to products and technolo-
gies that already exist on the market [4]. To evaluate the impacts of these technol-
ogies, predictions of future markets or future production technologies must be made 
that account for changes in economic, environmental, and social conditions over 
time [18].
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Prospective assessment is a future-oriented method that can be used to assess 
environmental, economic, and social impacts of emerging technologies as well as 
mature technologies that are predicted to change significantly in the future [6]. Pro-
spective assessment is also sometimes referred to as ex ante, future-oriented, early-
stage, anticipatory, explorative, and scenario-based assessment, although the defini-
tions of these methods, and whether they refer to the same method or slight 
variations of a method, are inconsistently reported across literature [4, 6, 9]. For 
this section, the definition of prospective assessment is taken as the systematic 
assessment of a future point in time, considering developments in society, technol-
ogy, economy, and policy, that potentially influences the technology, its societal 
conditions, and its environmentally relevant flows [2, 18, 48]. 

A key benefit of prospective assessment is that decisions can be made proactively, 
at an early stage of the development process, to minimise or even prevent future 
potential adverse environmental, economic, and social impacts of the technology 
being assessed [22, 31, 50]. Prospective assessments, like retrospective assessments, 
provide guidance to decision-makers, including technology developers, 
policymakers, and manufacturers. The results of prospective assessments can be 
used in multiple ways depending on the goal and scope of the study. For example, 
results can inform technology developers of valuable changes that can be 
implemented at an early stage of development, support stakeholders in terms of 
investment opportunities that can enable further research and technological devel-
opment, inform policymakers of recommendations based on assessed policy imple-
mentation scenarios, and guide manufacturers towards assessed applications of a 
technology that are considered relatively more sustainable [7, 9]. Therefore, the 
future potential and future challenges of the innovative technology are defined prior 
to the technology being implemented at larger production scales [50]. 

Prospective assessment is therefore valuable for assessing emerging battery 
technologies that have not yet penetrated the market and are still in the development 
phase. By assessing these technologies at an early stage, mitigation measures can be 
implemented more readily and influence the production technology as it is upscaled 
to industrial production. A standard method for conducting a prospective assessment 
of emerging battery technologies, or for other technologies, presently does not exist. 
This leads to challenges when using the results in a decision-making context 
[4, 17]. Although such challenges also exist for retrospective assessments, 
Hetherington et al. argue that challenges in prospective assessment are more prom-
inent due to the time sensitivity to apply the results within the technology



development timeframe [19]. These challenges are largely related to data availabil-
ity, scaling issues, uncertainty, and comparability of results [19]. 

12 Methodological Challenges of Prospective Assessments 227

This section focuses on the challenges for applying prospective assessment to 
emerging battery technologies. Within the following sections, four key challenges of 
prospective assessments are defined and discussed. These challenges include data 
availability and quality (Sect. 12.2), scaling issues (Sect. 12.3), uncertainty manage-
ment (Sect. 12.4), and comparability (Sect. 12.5). Section 12.6 concludes with an 
outlook on research and development in prospective assessment of emerging battery 
technologies. 

12.2 Data Availability and Quality 

The availability of data is limited and often of lower quality than preferred to meet 
the goal of prospective assessments [9]. Primary data, or measured raw data, are 
often scarce and/or confidential. While this is also a known challenge for retrospec-
tive LCA, key difference for prospective assessments is that data is simply not yet 
available or based on a laboratory scale [33]. Material input and energy consumption 
data are difficult to collect at this scale since production conditions are not yet 
optimised and the production processes themselves are still under investigation for 
their feasibility. Measurements on laboratory scale typically lead to energy con-
sumptions that are not representative of production conditions at larger scales and 
material consumptions that suffer from high input quantities and poor product yields 
[11, 15]. 

The availability and quality of data is therefore largely related to the technology 
readiness level (TRL) and manufacturing readiness level (MRL) of the technology 
being assessed. The TRL indicates the level from 1 (concept development) to 
9 (small-scale production) that addresses the maturity and functional readiness of a 
technology, whereas the MRL indicates the manufacturing maturity level of the 
technology’s components and subsystems [15]. For emerging technologies, the TRL 
ranges from 2 (concept feasible) to 5 (laboratory-scale production validated), with 
correspondingMRLs from 2 (new manufacturing concepts identified) to 5 (prototype 
production simulated) [31]. Gavankar et al. found that the environmental burden per 
unit output is likely to reduce significantly with increased technology and 
manufacturing maturity levels [15]. 

In terms of battery technologies, Greenwood et al. [16] have criticised the TRL 
for being too generalised for consistent application to batteries. They have taken 
inspiration from the TRL, MRL, and other readiness levels, to develop the Battery 
Component Readiness Level (BC-RL) framework. In the BC-RL, three types of 
technologies are defined depending on the extent to which the technology can use 
existing production and cell assembly processes, and nine stages are identified, from 
laboratory production (stage 1) to commercialisation (stage 9). 

As highlighted in Table 12.1, on each BC-RL stage, different data sources can be 
used for assessments of battery components and cells. For example, in the theoretical



concept development phase, data availability is insufficient to conduct a full LCA. In 
this case, streamlined LCA approaches (e.g. ignoring some up- or downstream 
processes, mixing qualitative and quantitative data, etc.) are more suitable and 
applied for screening purposes [3, 12]. Similarly, in phase 3, lab-produced coin 
cell prototypes can be used to establish simplified LCAs of novel technologies. 
When using simplified LCA however, complex challenges arise with emerging 
technologies that should be understood by all stakeholders to enable effective 
development decisions to be made [19]. For example, the function of the product 
might not yet be clearly defined (such as for nanomaterials), systems change when 
scaled up – lack of knowledge on how they will function at larger scales, processing 
stages might not be fully defined, coproduct use is unclear, and end-of-life treatment 
is unknown. Additional techniques (e.g. proxies, process simulation) are therefore 
used to fill data gaps and assess the technology in a production-scale environment 
(addressed further in Sect. 12.3). 
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Table 12.1 Battery Component Readiness Levels by Greenwood et al. [16] and examples of 
assessments for battery components and cells 

Battery Component Readiness Level Assessment example 

1. Theoretical concept development Environmental screening of nanomaterials for 
batteries [13] 

2. Determination of fundamental component 
properties 

Estimation of material cost for fictive dual-
graphite cells [37] 

3. Determination of electrochemical properties 
for small-format full cells – system-level 
proof of concept 

LCA based on lab-scale coin cell with a sul-
phide solid electrolyte [55] 

4. Determination of electrochemical properties 
for commercial-scale cells – system-level 
prototype 

LCA based on a lab-produced pouch cells with 
a Sn0.9Mn0.1O2 anode powering a remote-
controlled vehicle [5] 

5. Development of proof of concept for scalable 
component production 

Combination of pilot and lab-scale data to 
predict the environmental impact of processing 
battery-grade cobalt sulphate [38] 

6. Development of industrial-scale component 
production processes 

Cost and energy estimates of industrial pro-
duction of LiPF6 based on process modelling 
[43] 

7. Development of proof of concept for scalable 
cell production 

LCA for a cell based on a pilot-scale produc-
tion line [11] 

8. Development of industrial-scale cell produc-
tion processes 

Gate-to-gate GHG emissions of a 7 GWh cell 
production line based on calculations [10] 

9. Establishment of commercial plants for 
component and cell production 

Top-down LCA of an automotive lithium-ion 
battery pack produced in an existing 30 GWh 
factory [42] 

For prospective assessments, the background data is also of significance [8, 17, 
35]. Foreground data is data related to the technology being assessed, including its 
relevant components and processes, whereas background data refers to data for 
processes further upstream and downstream of the technology being assessed. For 
example, background changes in the electricity mix can influence the future impacts 
of electric vehicles and battery technologies [30, 35, 54]. Therefore, changes in the



electricity mixes must also be included in the background data used for the assess-
ments in order to more accurately capture the future impacts of battery electric 
vehicles [8]. 
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The available data and quality determine the extent to which results can be 
applied for comparative assertion or hotspot assessments [56]. The goal of the 
study needs to be transparent and adapted to the data quality. It is furthermore 
essential to consider both the quality level and the time required for assessment, as 
well as the timing of the results needed to impact effectively the design and 
development stage. 

12.3 Scaling Issues and Modelling Choices 

Additional modelling choices are made for prospective assessments to determine the 
expected impacts of an emerging product system, including defining the functional 
unit, system boundary, allocation methods, and scaling factors. These challenges are 
not unique to prospective assessments, but due to data gaps and several unknowns 
such as the future application of the product system and how the production 
processes will be implemented at larger scales, these challenges become more 
prominent in prospective assessment [19]. 

The reliance on laboratory-scale data to perform prospective LCAs presents a 
significant challenge. It requires the upscaling of foreground inventory data. In a 
typical scaled-up process, the process is first optimised in the lab, followed by 
several steps to upscale the technology before building a large-scale facility 
[45]. This includes preliminary validation of lab-scale process and constructing a 
mini-plant, followed by a pilot plant to validate processes and finally simulate 
industrial-scale production. Due to the time-intensive nature of actual upscaling, 
prospective assessments utilise various data projection techniques to predict the 
future implementation of technology on an industrial scale [47]. In the case of 
emerging batteries, there are different methods for scaling products, and the scales 
defined for this context are at the level of electrodes, cells, or packs. 

12.3.1 Upscaling at the Product Level (Cells and Packs) 

Upscaling at the product level includes the tasks of determining the material 
composition of the product to which other material and energy flows are related. 
For incremental innovations that build on existing technology, for example, an 
increase of the electrode thickness, the already existing cell design needs to be 
adapted. Performance-mass models are the most used tools to calculate the effects 
of the changed cell design to the material composition. Those types of models are 
typically spreadsheet based and are available for a variety of different cell chemis-
tries and cell formats as they are often used within cost assessments. Prominent



examples for conventional Li-ion technology are the BatPaC model [32], the CellEst 
model [52], or the mass model developed by Schünemann [39]. 
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Prospective assessments on new technology for batteries are typically based on 
lab-produced prototype cells (e.g. coin cells or small pouch) used for experimental 
purposes. However, prototype cells produced on a lab scale are not always compa-
rable with those used in industry [27] and using these as a base of assessments might 
result in under- or overestimations of impacts. For example, lab-scale-produced 
solid-state cells typically contain a relatively thick solid electrolyte (typically 
80–200 μm for solid polymer and composite polymer and up to 1 mm for inorganic 
electrolytes) but need to be reduced to below 25 μm to realise high energy densities 
[58]. Zhang et al. [55] illustrate how such thick inorganic solid electrolyte (1 mm) in 
a lab-produced coin cell is responsible for 97.1% of the total manufacturing energy 
consumption and has roughly double the global warming potential impact compared 
to a conventional LIB cell. 

Different methods can be applied to upscale novel battery technologies from 
lab-scale or theoretical conceptual cells in prospective assessments on new technol-
ogy. These include the use of basic calculation project cells produced in a lab 
environment, adapted spreadsheet-type models, and more advanced electrochemical 
models. The first approach uses basic (linear) calculations to estimate how the 
lab-produced prototype cells might scale in the future. For example, Zhang et al. 
[55] linearly scale the 1-mm-thick solid electrolyte used in a coin cell down to 
thickness of 20 μm to quantify the environmental benefits. Similarly, Wolff et al. 
[53] use a set of linear equations to scale a lithium-sulphur lab-produced coin cell to 
represent a 50 kWh automotive battery. While such simple scaling is useful for 
approximations, they typically neglect the technical complexity of batteries. To 
include such technical complexity, more advanced models are used to simulate 
specific cell designs used as an input to the inventory data. Due to the structural 
similarity of different battery types, existing spreadsheet-based models can be 
adapted for new cell chemistries. Peters et al. [34], for example, use a modified 
BatPaC model to obtain the inventory data and related life cycle environmental 
impacts of different sodium-ion battery types based on the electrochemical param-
eters of different sodium-ion active materials. 

The two discussed types of models are important to develop the LCI for the raw 
materials, the production, and the end-of-life life cycle stage. For a holistic analysis 
as is foreseen in LCA, the use phase of the battery needs to be understood. This task 
requires more advanced electrochemical models to understand the aging mecha-
nisms and the performance of the battery over its life cycle. Electrochemical models 
have been linked to LCA to enable a more systematic evaluation of battery design 
parameters (e.g. electrode thickness, porosity, and ambient temperature) and oper-
ating conditions on energy density and life cycle and related environmental impacts 
of lithium-ion batteries [24, 25]. Such coupling between detailed electrochemical 
models and system analysis models such as LCA or cost assessments has only 
recently been proposed and is presently not widely adopted or available.
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12.3.2 Upscaling at the Unit Process Level 

In the context of the production life cycle stage, an upscaling method for the unit 
process level can be defined as the procedure to project how a new process presently 
available at a low MRL might function at a higher MRL [47]. The goal of this 
upscaling process is to generate the potential material and energy flows of the unit 
process as well as potential emissions and waste flows. Following Parvatker and 
Eckelman [33] and van der Giesen et al. [48], a range of general LCI generation 
methods can be identified (see Fig. 12.1). The choice of method is largely dependent 
on the data and time available for the assessment and the MRL of the assessed 
technology. Scaling up the data from lower TRLs and MRLs to commercial scale 
also impacts the accuracy and introduces uncertainty into the results (discussed in 
more detail in Sect. 12.4). 

When inventory data cannot be directly obtained from a commercial plant or LCI 
database, the first LCI generation method choice is the use of process simulation. 
Process simulation refers to steady-state and dynamic simulation models using 
process simulation software (e.g. Aspen Plus, CHEMCAD, or HSC Sim) and is 
commonly used in chemical and process engineering to analyse, design, and 
improve production processes. As such models typically require detailed process 
operational parameters, the manufacturing readiness level of the process has to be 
relatively high. Following process simulation, the second method is manual calcu-
lation [47] which includes advanced process calculations, basic process calculations, 
and calculation based on stoichiometric relations. As opposed to basic process 
calculations, advanced process calculations include more details such as production 
scale, equipment efficiencies, equipment sizing, and calculation of the energy

Fig. 12.1 Methods to generate life cycle inventory data with respect to uncertainty, accuracy, data 
availability, and manufacturing readiness level (MRL). (Adapted from van der Giesen et al. [48] and 
Parvatker and Eckelman [33])



requirement of each piece of equipment used in a production process [33]. On the 
lowest MRL, molecular structure-based models and proxies can be used to generate 
process inventory data. Molecular structure-based models are not widely applied to 
generate inventory data.
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Amongst the presented methods, process calculations are mostly adopted for 
scaling calculations for the production life cycle stage. In many cases, the process 
design can be anticipated with the help of production engineering knowledge. If the 
production processes are similar to existing ones, dimensional analysis can be a 
powerful tool to scale LCI [57]. This is particularly the case for chemical production 
systems, for which several scale-up frameworks based on process calculations have 
been developed [36, 40]. However, as the battery production process chain includes 
process engineering, manufacturing, and electrical processes, a transfer of the scale-
up frameworks comes with additional challenges. In scaling the LCI from a lab- or 
pilot-scale to large-scale production, the following factors describe the situation at 
low MRL [11]:

• Significantly lower material efficiencies
• Lower process efficiencies, energy efficiency, and throughput of the processes
• Overvaluation of technical building services like the dry room
• Lack of systemic efficiencies within the production system like the use of waste 

heat, energy recovery, or solvent recovery
• Unoptimised product design compared to industrial-scale batteries 

Taking these factors into consideration, the scale-up of unit processes needs to 
include the production system perspective. In the battery production cell system, the 
dry room plays a key role for the energy demand. Modelling approaches for the dry 
room have become increasingly accurate but at the same time more complex 
[1, 49]. During scaling, it can be a viable option to use dry room area related key 
parameters, such as presented by Vogt et al. [49]. Depending on the location of the 
dry room, the energy demand is typically within a range of 0.85–0.975 kWh h-1 m-

2 and 0.05–0.7 kg CO2-eq h
-1 m-2 . 

The presented LCI generation and scaling approaches can be applied to most life 
cycle stages. However, the use phase of batteries requires different scaling 
approaches, for example, electrochemical models which were explained in the 
previous subsection. Additionally, learning rate or experience curves can be applied 
to estimate the future development of technical performance parameters [44]. While 
these have been applied in techno-economic assessments, the application of learning 
rates to generate LCI data for foreground systems is a relatively new concept. 

12.4 Uncertainty Management 

Prospective LCA of emerging technologies has been identified as a challenging area 
within the field of LCA due to the lack of empirical data available to perform 
assessments. This entails the need for assumptions to be made about future



developments. The absence of empirical data, combined with the high degree of 
uncertainty in the future scenarios being evaluated, can lead to uncertainties in the 
results between studies performing a prospective LCA [48]. This can make it 
challenging for decision-makers to use the results of the assessment in a meaningful 
way. Due to such challenges, the management of uncertainty becomes a critical 
aspect in the prospective LCA of emerging technologies. 
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To address these challenges, it is important to have robust and transparent 
methods for uncertainty management in prospective LCA of emerging technologies. 
This will ensure that the results of the assessment are reliable and that decision-
makers can have confidence in the results. Several methods have been proposed for 
uncertainty management in prospective LCA, including sensitivity analysis, scenario 
analysis, and Monte Carlo simulation [45]. These methods can be used to identify 
the key sources of uncertainty in the results and to assess their impact on the results 
of the assessment. In addition, several types of uncertainties exist, including param-
eter uncertainty, scenario uncertainty, and model uncertainty [23]. This section 
focuses on parameter and scenario uncertainty, which are the most found ones in 
prospective LCAs of emerging technologies. 

Parameter uncertainty refers to the variability and unreliability of the input data 
used in an LCA study [29]. This type of uncertainty is prevalent in every type of 
product assessed using an LCA, but it is especially pronounced at emerging tech-
nologies. Input data can be uncertain due to a lack of information or due to variability 
in the data collected. There are several factors that can cause variability in the input 
data. Some of the most common sources of variability include data collection, data 
quality, model uncertainty, and measurement uncertainty. For example, data on 
energy consumption, emissions, or material use can be subject to measurement 
error, variability in production processes, or changes in the market energy mixes. 
To account for parameter uncertainty, LCA practitioners often use sensitivity ana-
lyses to examine how changes in input parameters affect the overall results of an 
LCA. The Monte Carlo method is another commonly used approach to account for 
parameter uncertainty, where the input data is modelled using probability distribu-
tions and then simulated multiple times to account for variability. 

The uncertainty in LCA scenarios arises from the choices made in the modelling 
process, such as the assumptions made in the goal and scope phase or the upscaling 
calculations [45]. This type of uncertainty is especially prevalent in prospective 
LCAs of emerging technologies, where information is limited and there is a high 
degree of uncertainty about the future development of the technology [23]. For 
instance, when making assumptions about the development of the electricity grid in 
the background datasets, the results of the LCA can be highly uncertain due to the 
selection made. To mitigate scenario uncertainty, researchers frequently employ 
sensitivity analyses to investigate how changes in key assumptions or boundary 
conditions impact the overall results of the LCA [26]. Additionally, prospective 
LCAs can be used to explore extreme-case scenarios (or anticipatory LCAs) or to 
assess the robustness of the results under different boundary conditions [51]. 

Several studies have been conducted to address uncertainty in prospective LCAs, 
including Cooper and Gutowski’s approach for selecting probability distributions



[7], Lacirignola et al.’s procedure for examining the robustness of global sensitivity 
analysis results [23], Marini and Blanc’s method for identifying parameters that 
contribute to uncertainty using the Sobol indices [26], Ravikumar et al.’s statistical 
test for significant differences in LCA results (Ravikumar et. al. 2018), and Wender 
et al.’s development of anticipatory LCAs [51]. 
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In conclusion, uncertainty management is a critical aspect of prospective LCA of 
emerging technologies. Applying the existing methods to document the uncertainties 
in the results of LCA will aid in wider acceptance of the results. Regardless of the 
choice of method used to mitigate uncertainty, considering uncertainty is essential to 
ensure the reliability and credibility of the results of a prospective LCA study. 
Failing to consider uncertainty can result in unreliable and misleading results, 
making it difficult to make informed decisions about the sustainability of emerging 
technologies. 

12.5 Comparability 

LCA has become a widely used method for evaluating the environmental impact of 
emerging technologies. However, comparability of results between studies can be 
challenging due to several factors, and they can be related to the aim of the LCA 
study, the functionality of the LCA, system boundaries, and specified life cycle 
impact assessment methodologies [45]. 

12.5.1 Aim of the Study 

In prospective life cycle assessments, the aim of the study plays a crucial role in 
determining the comparability of results. The aim of the study can be generally 
categorised into (i) comparisons of technologies or (ii) identifications of hotspots, 
both of which are predominantly used in retrospective assessments. Unlike retro-
spective assessments, prospective assessments require differentiation between com-
parisons at different technology readiness levels (TRLs), such as laboratory-scale 
compared to industrial-scale production, or comparisons at a similar TRL but 
different maturity readiness level (MRL), such as laboratory-produced Li-ion battery 
cells compared to laboratory-produced solid-state battery cells. Assessing technolo-
gies at different TRLs can prove to be the most challenging task and often result in 
less accurate comparisons. To improve the comparability and interpretability of 
results, it is essential to communicate the readiness levels and production scale of 
the technology as part of the prospective assessment and clearly state them in the 
study [15]. The use of various upscaling methods, as discussed in Sect. 12.2, can also 
aid in comparing technologies with different TRLs. 

The aim of the LCA study also plays a crucial factor in determining the compa-
rability of results between studies. For example, a study that aims to compare the



environmental impact of different materials used in a product will have a different 
system boundary than a study that aims to compare the life cycle impact of different 
production processes for a specific material. The choice of system boundary affects 
the results of the study and, therefore, the comparability of results between studies 
with different aims [6]. 

12 Methodological Challenges of Prospective Assessments 235

Finally, the goal of the LCA study can also influence the functional unit, which is 
a crucial aspect of the LCA methodology. The functional unit is the unit of 
measurement that allows for the comparison of different technologies or products. 
The choice of functional unit must be clearly defined and consistent between studies 
for results to be comparable [46]. 

12.5.2 Functionality 

The functional unit is a crucial component in conducting an LCA as it quantifies the 
performance of a product system. The challenge in defining the functional unit lies in 
the fact that the future function of emerging technologies may not be fully known. 
Systems at an early stage are susceptible to change, and additional functionality may 
develop as the product matures. This was evident in a study by Hischier et al. who 
found that the main factor for variations in the LCA outcome depends on a well-
defined functional unit [20]. 

To overcome this challenge, it is necessary to either define ranges for the 
functional unit or to consider multiple functional units. A framework described by 
Simon et al. [41] that includes the functional analysis of a lab-scale process can be 
useful in defining the system functions. The authors must also be aware of the issues 
concerning the definition of the functional unit and should investigate the effects of 
different functional units to analyse the full function along the life cycle. However, it 
is important to note that defining the functional unit can be challenging, especially 
when the application of the product is not yet apparent. This can lead to inaccurate 
results due to the uncertainty in upscaling and a potential change or decrease in 
functionality. 

For example, different functional units, such as one battery pack or cell, 1 kilo-
gram of battery, 1 kilowatt hour of storage capacity, or 1 kilometre driven, may be 
used to evaluate variations when assessing the environmental impact of electric 
vehicle batteries [28]. In this case, normalising the LCAs based on a common 
functional unit, such as 1 watt hour of capacity, can help facilitate comparison of 
the assessment results of different emerging battery technologies. By including 
multiple functional units in the assessment and analysing the sensitivity of the 
functional unit choice, a more in-depth understanding of the environmental perfor-
mance can be obtained.
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12.5.3 System Boundary 

The system boundary is a critical factor in the comparability of results between LCA 
studies. The system boundary determines the extent of the life cycle to be included in 
the study, and the choice of system boundary can have a significant impact on the 
results of the study. For example, a study with a narrow system boundary may not 
include all environmental impacts associated with a technology or product, while a 
study with a broad system boundary may include environmental impacts that are not 
related to the technology or product [6]. 

The choice of system boundary can also impact the level of detail and accuracy of 
the results. For example, a narrow system boundary might provide a detailed 
analysis of specific processes within the technology but may not fully capture the 
overall environmental impact of the technology. On the other hand, a broad system 
boundary might provide a comprehensive view of the technology but may not 
provide the level of detail necessary to evaluate specific processes or impacts. 
Therefore, it is essential to indicate the extent of inclusion or exclusion of the 
processes in the system boundary. Studies comparing similar systems should attempt 
to include the necessary processes required for a fair comparison and evaluation with 
existing technologies. 

12.5.4 Life Cycle Impact Assessment 

The choice of life cycle impact assessment methodology is another key factor in the 
comparability of results between LCA studies. Different methodologies have differ-
ent strengths and weaknesses, and the choice of methodology can have a significant 
impact on the results of the study. For example, some methodologies may be more 
suitable for assessing the impact of emerging technologies, while others may be 
better suited for comparing the impact of different production processes [45]. 

In the impact assessment phase, the methodologies used to calculate the impacts 
can also vary, leading to different results. Some methodologies have additional 
regionalised impact categories, while others use global impact categories, which 
can result in significant differences in the results. Therefore, an appropriate choice of 
methodology representing the impacts for the system is necessary [33]. In addition, 
to improve comparability with previous and upcoming studies, it would be beneficial 
to include as many impact categories and methodologies as possible. 

Using outdated LCIA methods can lead to incorrect conclusions as emerging 
technologies can cause unknown impacts in the future that are not captured by 
existing LCIA categories. Additionally, different characterisation factors are avail-
able for various impact categories, and it is suggested to perform the LCA with 
different characterisation factors [20]. 

Data availability is often limited in early-design-stage assessments, making it 
difficult to determine all impact categories [11]. Moreover, the potential



environmental impacts of new substances may be overlooked, due to missing LCIA 
categories, insufficient LCI data, or a lack of knowledge about new impacts. 
Therefore, there is a need for using a standardised LCIA method when performing 
prospective LCA of emerging technologies. 
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12.6 Conclusion and Outlook 

This section discussed the definition of prospective assessment as well as the use of 
its results to inform technology developers, policymakers, and manufacturers. The 
section also highlighted that there is presently no standard method for conducting a 
prospective assessment. Several challenges related to data availability, scaling 
issues, uncertainty, and comparability were identified and discussed. These chal-
lenges are highly interconnected and largely linked to the availability of data and 
choice of upscaling methods, leading to increased uncertainties and difficulty to 
compare results with existing technologies. 

The use of prospective assessments for emerging technologies, such as electric 
vehicle batteries, poses significant challenges that must be transparently reported and 
understood by all stakeholders. The lack of transparency in LCA results, especially 
in a prospective context, requires clear descriptions and justifications of all assump-
tions made during the assessment process. The results of prospective assessments 
can provide valuable insights in identifying the environmental impacts of emerging 
technologies, and results can be used to envisage mitigation strategies. 

However, it is important to note that prospective LCAs do not predict the future 
but rather explore a range of possible scenarios that define the space in which the 
technology may operate. This allows for a fair comparison of emerging technologies 
with incumbent technologies and the verification of design options that could steer 
the technology towards a preferred future state. 

In conclusion, the use of prospective LCA in evaluating emerging technologies 
has the potential to provide valuable insights into the future development of these 
technologies. By exploring various scenarios and implementing systematic uncer-
tainty management, prospective LCA can support decision-makers in steering the 
technology towards a preferred future state. It is crucial that the results of these 
assessments are transparently reported and understood by all stakeholders, including 
technology developers, policymakers, industry decision-makers, and society, to 
ensure their effective use in decision-making. 

References 

1. Ahmed S, Nelson PA, Dees DW (2016) Study of a dry room in a battery manufacturing plant 
using a process model. J Power Sources 326:490–497. https://doi.org/10.1016/j.jpowsour.2016. 
06.107

https://doi.org/10.1016/j.jpowsour.2016.06.107
https://doi.org/10.1016/j.jpowsour.2016.06.107


238 F. Cerdas et al.

2. Arvidsson R, Tillman A-M, Sandén BA, Janssen M, Nordelöf A, Kushnir D, Molander S (2018) 
Environmental assessment of emerging technologies: recommendations for prospective LCA. J 
Ind Ecol 22(6):1286–1294. https://doi.org/10.1111/jiec.12690 

3. Baumann M, Häringer M, Schmidt M, Schneider L, Peters JF, Bauer W et al (2022) Prospective 
sustainability screening of sodium-ion battery cathode materials. Adv Energy Mater 12(46): 
2202636. https://doi.org/10.1002/aenm.202202636 

4. Bergerson JA, Brandt A, Cresko J, Carbajales-Dale M, MacLean HL, Matthews HS et al (2020) 
Life cycle assessment of emerging technologies: evaluation techniques at different stages of 
market and technical maturity. J Ind Ecol 24(1):11–25. https://doi.org/10.1111/jiec.12954 

5. Birrozzi A, Bautista SP, Asenbauer J, Eisenmann T, Ashton TE, Groves AR et al (2022) 
Toward the potential scale-up of Sn0.9Mn0.1O2kLiNi0.6Mn0.2Co0.2O2 Li-Ion batteries – 
powering a remote-controlled vehicle and life cycle assessment. Adv Mater Technol 7(11): 
2200353. https://doi.org/10.1002/admt.202200353 

6. Buyle M, Audenaert A, Billen P, Boonen K, Van Passel S (2019) The future of ex-ante LCA? 
Lessons learned and practical recommendations. Sustainability 11(19):5456. https://doi.org/10. 
3390/su11195456 

7. Cooper DR, Gutowski TG (2020) Prospective environmental analyses of emerging technology: 
a critique, a proposed methodology, and a case study on incremental sheet forming. J Ind Ecol 
24(1):38–51. https://doi.org/10.1111/jiec.12748 

8. Cox B, Bauer C, Mendoza Beltran A, van Vuuren DP, Mutel CL (2020) Life cycle environ-
mental and cost comparison of current and future passenger cars under different energy 
scenarios. Appl Energy 269(5):115021. https://doi.org/10.1016/j.apenergy.2020.115021 

9. Cucurachi S, van der Giesen C, Guinée J (2018) Ex-ante LCA of emerging technologies. 
Procedia CIRP 69:463–468. https://doi.org/10.1016/j.procir.2017.11.005 

10. Degen F, Schütte M (2022) Life cycle assessment of the energy consumption and GHG 
emissions of state-of-the-art automotive battery cell production. J Clean Prod 330:129798. 
https://doi.org/10.1016/j.jclepro.2021.129798 

11. von Drachenfels N, Engels P, Husmann J, Cerdas F, Herrmann C (2021) Scale-up of pilot line 
battery cell manufacturing life cycle inventory models for life cycle assessment. Procedia CIRP 
98:13–18. https://doi.org/10.1016/j.procir.2020.12.002 

12. Ellingsen LA-W, Holland A, Drillet J-F, Peters W, Eckert M, Concepcion C et al (2018) 
Environmental screening of electrode materials for a rechargeable aluminum battery with an 
AlCl3/EMIMCl electrolyte. Materials (Basel) 11(6). https://doi.org/10.3390/ma11060936 

13. Ellingsen LA-W, Hung CR, Majeau-Bettez G, Singh B, Chen Z, Whittingham MS, Strømman 
AH (2016) Nanotechnology for environmentally sustainable electromobility. Nat Nanotechnol 
11(12):1039–1051. https://doi.org/10.1038/nnano.2016.237 

14. Erakca M, Pinto Bautista S, Moghaddas S, Baumann M, Bauer W, Leuthner L, Weil M (2023) 
Closing gaps in LCA of lithium-ion batteries: LCA of lab-scale cell production with new 
primary data. J Clean Prod 384:135510. https://doi.org/10.1016/j.jclepro.2022.135510 

15. Gavankar S, Suh S, Keller AA (2015) The role of scale and technology maturity in life cycle 
assessment of emerging technologies: a case study on carbon nanotubes. J Ind Ecol 19(1): 
51–60. https://doi.org/10.1111/jiec.12175 

16. Greenwood M, Wrogemann JM, Schmuch R, Jang H, Winter M, Leker J (2022) The Battery 
Component Readiness Level (BC-RL) framework: a technology-specific development frame-
work. J Power Sources Adv 14:100089. https://doi.org/10.1016/j.powera.2022.100089 

17. Haase M, Wulf C, Baumann M, Rösch C, Weil M, Zapp P, Naegler T (2022) Prospective 
assessment of energy technologies: a comprehensive approach for sustainability assessment. 
Energ Sustain Soc 12(1):119. https://doi.org/10.1186/s13705-022-00344-6 

18. Hauschild MZ, Rosenbaum RK, Olsen SI (2018) Life cycle assessment. Springer, Cham 
19. Hetherington AC, Borrion AL, Griffiths OG, McManus MC (2014) Use of LCA as a develop-

ment tool within early research: challenges and issues across different sectors. Int J Life Cycle 
Assess 19(1):130–143. https://doi.org/10.1007/s11367-013-0627-8

https://doi.org/10.1111/jiec.12690
https://doi.org/10.1002/aenm.202202636
https://doi.org/10.1111/jiec.12954
https://doi.org/10.1002/admt.202200353
https://doi.org/10.3390/su11195456
https://doi.org/10.3390/su11195456
https://doi.org/10.1111/jiec.12748
https://doi.org/10.1016/j.apenergy.2020.115021
https://doi.org/10.1016/j.procir.2017.11.005
https://doi.org/10.1016/j.jclepro.2021.129798
https://doi.org/10.1016/j.procir.2020.12.002
https://doi.org/10.3390/ma11060936
https://doi.org/10.1038/nnano.2016.237
https://doi.org/10.1016/j.jclepro.2022.135510
https://doi.org/10.1111/jiec.12175
https://doi.org/10.1016/j.powera.2022.100089
https://doi.org/10.1186/s13705-022-00344-6
https://doi.org/10.1007/s11367-013-0627-8


12 Methodological Challenges of Prospective Assessments 239

20. Hischier R, Salieri B, Pini M (2017) Most important factors of variability and uncertainty in an 
LCA study of nanomaterials – findings from a case study with nano titanium dioxide. 
NanoImpact 7:17–26. https://doi.org/10.1016/j.impact.2017.05.001 

21. Hung CR, Ellingsen LA-W, Majeau-Bettez G (2020) LiSET: a framework for early-stage life 
cycle screening of emerging technologies. J Ind Ecol 24(1):26–37. https://doi.org/10.1111/jiec. 
12807 

22. Klöpffer W, Curran MA, Frankl P, Heijungs R, Köhler A, Olsen SI (2007) Nanotechnology and 
life cycle assessment. A systems approach to nanotechnology and the environment. Synthesis of 
results obtained at a workshop Washington, DC 2–3 October 2006. European Commission, DG 
Research, jointly with the Woodrow Wilson International Center for Scholars 

23. Lacirignola M, Blanc P, Girard R, Pérez-López P, Blanc I (2017) LCA of emerging technol-
ogies: addressing high uncertainty on inputs’ variability when performing global sensitivity 
analysis. Sci Total Environ 578:268–280. https://doi.org/10.1016/j.scitotenv.2016.10.066 

24. Lybbert M, Ghaemi Z, Balaji AK, Warren R (2021) Integrating life cycle assessment and 
electrochemical modeling to study the effects of cell design and operating conditions on the 
environmental impacts of lithium-ion batteries. Renew Sustain Energy Rev 144:111004 

25. Ma R, Deng Y (2022) The electrochemical model coupled parameterized life cycle assessment 
for the optimized design of EV battery pack. Int J Life Cycle Assess 27(2):267–280. https://doi. 
org/10.1007/s11367-022-02026-z 

26. Marini C, Blanc I (2014) Towards prospective life cycle assessment: how to identify key 
parameters inducing most uncertainties in the future? Application to photovoltaic systems 
installed in Spain. In: Computational science and its applications—ICCSA 2014. Lecture 
notes in computer science, vol 8581. https://doi.org/10.1007/978-3-319-09150-1_51 

27. Marks T, Trussler S, Smith AJ, Xiong D, Dahn JR (2011) A guide to Li-ion coin-cell electrode 
making for academic researchers. J Electrochem Soc 158(1):A51. https://doi.org/10.1149/1. 
3515072 

28. Matheys J, Van Autenboer W, Timmermans JM, Van Mierlo J, Van Den Bossche P, Maggetto 
G (2007) Influence of functional unit on the life cycle assessment of traction batteries. Int J Life 
Cycle Assess 12(3):191–196. https://doi.org/10.1065/lca2007.04.322 

29. Mendoza Beltran A, Prado V, Font Vivanco D, Henriksson PJ, Guinéé JB, Heijungs R (2018) 
Quantified uncertainties in comparative life cycle assessment: what can be concluded?. Environ 
Sci & Technol 52(4): 2152–2161 

30. Mendoza Beltran A, Cox B, Mutel C, Vuuren DP, Font Vivanco D, Deetman S et al (2020) 
When the background matters: using scenarios from integrated assessment models in prospec-
tive life cycle assessment. J Ind Ecol 24(1):64–79. https://doi.org/10.1111/jiec.12825 

31. Moni SM, Mahmud R, High K, Carbajales-Dale M (2020) Life cycle assessment of emerging 
technologies: a review. J Ind Ecol 24(1):52–63. https://doi.org/10.1111/jiec.12965 

32. Nelson PA, Gallagher, KG, Bloom ID, Dees DW (2012) Modeling the performance and cost of 
lithium-ion batteries for electric-drive vehicles – second edition. United States. https://doi.org/ 
10.2172/1209682 

33. Parvatker AG, Eckelman MJ (2019) Comparative evaluation of chemical life cycle inventory 
generation methods and implications for life cycle assessment results. ACS Sustain Chem Eng 
7(1):350–367. https://doi.org/10.1021/acssuschemeng.8b03656 

34. Peters JF, Baumann M, Binder JR, Weil M (2021) On the environmental competitiveness of 
sodium-ion batteries under a full life cycle perspective – a cell-chemistry specific modelling 
approach. Sustain Energy Fuels 5(24):6414–6429. https://doi.org/10.1039/D1SE01292D 

35. Philippot M, Alvarez G, Ayerbe E, van Mierlo J, Messagie M (2019) Eco-efficiency of a 
lithium-ion battery for electric vehicles: influence of manufacturing country and commodity 
prices on GHG emissions and costs. Batteries 5(1):23. https://doi.org/10.3390/batteries5010023 

36. Piccinno F, Hischier R, Seeger S, Som C (2016) From laboratory to industrial scale: a scale-up 
framework for chemical processes in life cycle assessment studies. J Clean Prod 135:1085– 
1097. https://doi.org/10.1016/j.jclepro.2016.06.164

https://doi.org/10.1016/j.impact.2017.05.001
https://doi.org/10.1111/jiec.12807
https://doi.org/10.1111/jiec.12807
https://doi.org/10.1016/j.scitotenv.2016.10.066
https://doi.org/10.1007/s11367-022-02026-z
https://doi.org/10.1007/s11367-022-02026-z
https://doi.org/10.1007/978-3-319-09150-1_51
https://doi.org/10.1149/1.3515072
https://doi.org/10.1149/1.3515072
https://doi.org/10.1065/lca2007.04.322
https://doi.org/10.1111/jiec.12825
https://doi.org/10.1111/jiec.12965
https://doi.org/10.2172/1209682
https://doi.org/10.2172/1209682
https://doi.org/10.1021/acssuschemeng.8b03656
https://doi.org/10.1039/D1SE01292D
https://doi.org/10.3390/batteries5010023
https://doi.org/10.1016/j.jclepro.2016.06.164


240 F. Cerdas et al.

37. Placke T, Heckmann A, Schmuch R, Meister P, Beltrop K, Winter M (2018) Perspective on 
performance, cost, and technical challenges for practical dual-ion batteries. Joule 2(12): 
2528–2550. https://doi.org/10.1016/j.joule.2018.09.003 

38. Rinne M, Elomaa H, Lundström M (2021) Life cycle assessment and process simulation of 
prospective battery-grade cobalt sulfate production from Co-Au ores in Finland. Int J Life Cycle 
Assess 26(11):2127–2142. https://doi.org/10.1007/s11367-021-01965-3 

39. Schünemann J-H (2015) Modell zur Bewertung der Herstellkosten von 
Lithiumionenbatteriezellen. Göttingen: Sierke 

40. Shibasaki M, Fischer M, Barthel L (2007) Effects on life cycle assessment – scale up of 
processes. Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses – 
proceedings of the 14th CIRP conference on life cycle engineering, pp 377–381. https://doi.org/ 
10.1007/978-1-84628-935-4_65 

41. Simon B, Bachtin K, Kiliç A, Amor B, Weil M (2016) Proposal of a framework for scale-up life 
cycle inventory: a case of nanofibers for lithium iron phosphate cathode applications. Integr 
Environ Assess Manag 12(3):465–477. https://doi.org/10.1002/IEAM.1788 

42. Sun X, Luo X, Zhang Z, Meng F, Yang J (2020) Life cycle assessment of lithium nickel cobalt 
manganese oxide (NCM) batteries for electric passenger vehicles. J Clean Prod 273:123006. 
https://doi.org/10.1016/j.jclepro.2020.123006 

43. Susarla N, Ahmed S (2019) Estimating cost and energy demand in producing lithium 
hexafluorophosphate for Li-ion battery electrolyte. Ind Eng Chem Res 58(9):3754–3766. 
https://doi.org/10.1021/acs.iecr.8b03752 

44. Thomassen G, van Passel S, Dewulf J (2020) A review on learning effects in prospective 
technology assessment. Renew Sustain Energy Rev 130(June):109937. https://doi.org/10.1016/ 
j.rser.2020.109937 

45. Thonemann N, Schulte A, Maga D (2020) How to conduct prospective life cycle assessment for 
emerging technologies? A systematic review and methodological guidance. Sustainability 
12(3):1192. https://doi.org/10.3390/su12031192 

46. Troy S, Schreiber A, Reppert T, Gehrke H-G, Finsterbusch M, Uhlenbruck S, Stenzel P (2016) 
Life cycle assessment and resource analysis of all-solid-state batteries. Appl Energy 169(23): 
757–767. https://doi.org/10.1016/j.apenergy.2016.02.064 

47. Tsoy N, Steubing B, van der Giesen C, Guinée J (2020) Upscaling methods used in ex ante life 
cycle assessment of emerging technologies: a review. Int J Life Cycle Assess 25(9):1680–1692. 
https://doi.org/10.1007/s11367-020-01796-8 

48. van der Giesen C, Cucurachi S, Guinée J, Kramer GJ, Tukker A (2020) A critical view on the 
current application of LCA for new technologies and recommendations for improved practice. J 
Clean Prod 259:120904. https://doi.org/10.1016/j.jclepro.2020.120904 

49. Vogt M, Dér A, Khalid U, Cerdas F, Herrmann C (2022) Model-based planning of technical 
building services and process chains for battery cell production. J Clean Prod 370 
(June):133512. https://doi.org/10.1016/j.jclepro.2022.133512 

50. Villares M, Işıldar A, van der Giesen C, Guinée J (2017) Does ex ante application enhance the 
usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. 
Int J Life Cycle Assess 22(10):1618–1633. https://doi.org/10.1007/s11367-017-1270-6 

51. Wender BA, Prado V, Fantke P, Ravikumar D, Seager TP (2018) Sensitivity-based research 
prioritization through stochastic characterization modeling. Int J Life Cycle Assess 23(2): 
324–332. https://doi.org/10.1007/s11367-017-1322-y 

52. Wentker M, Greenwood M, Leker J (2019) A bottom-up approach to lithium-ion battery cost 
modeling with a focus on cathode active materials. Energies 12(3):1–18. https://doi.org/10. 
3390/en12030504 

53. Wolff D, Canals Casals L, Benveniste G, Corchero C, Trilla L (2019) The effects of lithium 
sulfur battery ageing on second-life possibilities and environmental life cycle assessment 
studies. Energies 12(12):2440. https://doi.org/10.3390/en12122440

https://doi.org/10.1016/j.joule.2018.09.003
https://doi.org/10.1007/s11367-021-01965-3
https://doi.org/10.1007/978-1-84628-935-4_65
https://doi.org/10.1007/978-1-84628-935-4_65
https://doi.org/10.1002/IEAM.1788
https://doi.org/10.1016/j.jclepro.2020.123006
https://doi.org/10.1021/acs.iecr.8b03752
https://doi.org/10.1016/j.rser.2020.109937
https://doi.org/10.1016/j.rser.2020.109937
https://doi.org/10.3390/su12031192
https://doi.org/10.1016/j.apenergy.2016.02.064
https://doi.org/10.1007/s11367-020-01796-8
https://doi.org/10.1016/j.jclepro.2020.120904
https://doi.org/10.1016/j.jclepro.2022.133512
https://doi.org/10.1007/s11367-017-1270-6
https://doi.org/10.1007/s11367-017-1322-y
https://doi.org/10.3390/en12030504
https://doi.org/10.3390/en12030504
https://doi.org/10.3390/en12122440


12 Methodological Challenges of Prospective Assessments 241

54. Xu C, Steubing B, Hu M, Harpprecht C, van der Meide M, Tukker A (2022) Future greenhouse 
gas emissions of automotive lithium-ion battery cell production. Resour Conserv Recycl 187: 
106606 

55. Zhang J, Ke X, Gu Y, Wang F, Zheng D, Shen K, Yuan C (2022) Cradle-to-gate life cycle 
assessment of all-solid-state lithium-ion batteries for sustainable design and manufacturing. Int J 
Life Cycle Assess 27(2):227–237. https://doi.org/10.1007/s11367-022-02023-2 

56. Zimmermann AW, Langhorst T, Moni S, Schaidle JA, Bensebaa F, Bardow A (2022) Life-
cycle and techno-economic assessment of early-stage carbon capture and utilization 
technologies—a discussion of current challenges and best practices. Front Clim 4, Article 
841907:434. https://doi.org/10.3389/fclim.2022.841907 

57. Zlokarnik M (1991) Dimensional analysis and scale-up in chemical engineering. Springer, 
Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-76673-2 

58. Zuo Y, Yu Y, Feng J, Zuo C (2022) Ultrathin Al–air batteries by reducing the thickness of solid 
electrolyte using aerosol jet printing. Sci Rep 12(1):9801. https://doi.org/10.1038/s41598-022-
14080-6 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://doi.org/10.1007/s11367-022-02023-2
https://doi.org/10.3389/fclim.2022.841907
https://doi.org/10.1007/978-3-642-76673-2
https://doi.org/10.1038/s41598-022-14080-6
https://doi.org/10.1038/s41598-022-14080-6
https://doi.org/10.1038/s41598-022-14080-6


https://doi.org/10.1007/978-3-031-48359-2_13

Chapter 13 
Life Cycle Assessment of Emerging Battery 
Systems 

Brian Tarroja, Oladele Ogunseitan, and Alissa Kendall 

Contents 

13.1 Closed Battery Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244  
13.2 Open Battery Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 

The scale of battery capacity that may need to be produced and subsequently 
managed to enable compliance with regional clean energy use and emissions 
reductions goals highlights the importance of minimizing the life cycle environmen-
tal impact of battery technologies. Here, the life cycle of a battery technology 
encompasses the material and energy inputs and outputs associated with materials 
extraction, manufacturing, use, and end-of-life handling processes. Each battery 
technology requires different processes for each of these stages. In addition, 
improvements and changes in these processes are continually being developed and 
implemented. Accounting for the material and energy inputs and outputs associated 
with a product’s life cycle and translating the results to material resource require-
ments and environmental impacts are encompassed in life cycle assessment (LCA). 

Conducting an LCA of a given product requires data that tracks the required 
materials and energy inputs and outputs associated with the production, use, and 
end-of-life management processes for that product. These data consist of both direct 
inputs to and outputs from processes directly involving the product itself, as well as 
inputs and outputs associated with the systems that provide those inputs. These
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datasets are developed from multiple data sources including but not limited to 
material supplier data, manufacturer data, trade data, academic literature, and 
regional government databases. Datasets for a particular product can be updated as 
supply chains and product designs are changed, but due to the lengthy time require-
ment and institutional barriers (i.e., manufacturers protecting their proprietary data) 
required to produce LCA data, these may not always keep up with emerging 
developments.
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Certain battery technologies have relatively mature LCA datasets and subse-
quently a robust literature of LCAs that characterize them. For example, batteries 
that have been deployed at a commercial scale for a long time, such as lead-acid, 
nickel-metal hydride, and variations on lithium-ion batteries, have been the subject 
of many LCA studies due to their ubiquity in consumer electronics and, more 
recently, electric vehicles and electric grid-tied energy storage [6, 14, 17, 35, 41, 
43]. Improvements are continually being made in terms of reducing the environ-
mental impacts of their product supply chain, in-use performance, and end-of-life 
handling procedures for some of these chemistries. Additionally, technological 
improvements in battery performance are being assessed and reflected in updated 
LCAs that build on the results of previous studies. 

Newer battery technologies, as discussed in Parts V, do not yet enjoy the benefit 
of a robust literature on their environmental impacts due to their relative immaturity 
and/or lack of scale of deployment, combined with the time and effort required to 
compose datasets for these technologies that are sufficient to perform informative 
LCAs. However, prospective LCAs for some of these battery technologies have 
been conducted, whether for full battery packs or installations or for materials and 
components that are essential to these systems (i.e., anode materials). This section 
will summarize the literature of prospective LCAs for presently emerging battery 
technologies and comment on the needs for the scope of future assessments to 
improve our understanding of these technologies such that these can be compared 
on a consistent basis with incumbent battery technologies. 

13.1 Closed Battery Systems 

A closed battery system in this discussion refers to a system where all the funda-
mental components of the battery – the anode, cathode, and electrolyte – are 
contained within the same physical space and no outflow of matter occurs. This 
contrasts with an open system, which will be the focus of Sect. 13.2. For closed 
systems, emerging battery technologies of interest for improving performance char-
acteristics (e.g., higher energy density) over incumbent technologies consist of new 
battery chemistries based on novel lithium chemistries enabled using metal anodes 
or solid electrolytes or chemistries based on different anode materials such as 
sodium, magnesium, aluminum, potassium, and calcium.
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13.1.1 Solid-State Lithium Batteries 

An emerging development in lithium-based battery chemistries is the use of solid-
state electrolytes instead of the typical liquid- or gel-based electrolytes used in 
incumbent lithium-ion batteries. 

A recent LCA of a solid-state lithium-ion battery performed by Zhang et al. [45] 
focused on characterizing the environmental impacts of producing a small-scale coin 
cell with a solid-state lithium-aluminum-titanium-phosphate (LATP) chemistry and 
comparing its impacts to a cell with a conventional liquid-based electrolyte for 
lithium-ion batteries. That study demonstrated that production of one solid-state 
LATP cell in the CR2032 form factor required higher primary energy inputs than a 
conventional lithium-ion cell of the same form factor (2.6 MJ vs. 1.1 MJ) and 
produced roughly double the greenhouse gas emissions (0.1 kg CO2e vs. 0.05 kg 
CO2e). This was primarily driven by the energy intensity of producing the inorganic 
solid electrolyte. Efforts to reduce the required thickness of the electrolyte layer were 
found to reduce all the environmental impact indicators considered in the study sig-
nificantly, highlighting the need for manufacturing improvements for this technol-
ogy. A previous LCA for a solid-state lithium battery performed by Troy et al. [32] 
focused on the production of a pouch cell based on a lithium-lanthanum-zirconium-
oxide (LLZO) chemistry. Troy et al. did not compare the environmental impact 
results with incumbent battery technologies due to the relative immaturity of the 
solid-state cell with commercial technologies at the time, but their results show that 
on-site electricity use for cell production is the largest contributor to impacts. 
Depending on where manufacturing occurs, the environmental impacts from elec-
tricity use can vary dramatically. 

Focusing on the pack level, Keshavarzmohammadian et al. [18] conducted an 
LCA for a solid-state lithium-ion battery pack with a pyrite cathode (iron sulfide) for 
application in electric vehicles. The study scope more closely mimics the production 
processes that would be used to produce real-world battery systems. The study found 
that cumulative energy demand and contributions to greenhouse gas emissions from 
the pyrite-based solid-state pack are on the same order of magnitude as that of 
conventional lithium-ion batteries. The largest contribution toward these impacts 
was again the energy use for cell production, more specifically the operation of clean 
dry rooms and the production of cathode paste. 

In perhaps the earliest LCA study of solid-state batteries, Lastoskie and Dai [19] 
performed a comparative LCA to assess the environmental impacts of producing a 
solid-state cell relative to that of a laminated cell with a gel electrolyte for electric 
vehicle applications. They examined various cell chemistries for each type and 
scaled the results into battery packs and vehicle assemblies. The study demonstrated 
that, compared to laminated cell chemistries, solid-state batteries had lower envi-
ronmental impacts across multiple indicators, depending on the chemistry chosen. 
Specifically, solid-state lithium vanadium oxide electrolytes exhibited the lowest 
environmental impacts across all the environmental impact indicators considered. 
The solid-state batteries specifically provided benefits during the use phase of the



electric vehicles due to higher energy density that reduced energy consumption 
during vehicle operation. Cell chemistry variations had a significant effect on 
production phase impacts. 
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Overall, present literature on LCAs of solid-state battery technology shows that 
there is still much uncertainty regarding the existence or extent of environmental 
benefits from using solid-state batteries compared to conventional lithium-ion bat-
teries. The environmental impacts of these systems are generally found to be similar 
to that of conventional lithium-ion batteries but, depending on the scope of the 
assessment and the specific chemistries used, can be higher or lower than conven-
tional batteries. In designing future solid-state battery systems, care must be taken to 
identify and avoid unintended consequences that contribute to high environmental 
impacts. 

13.1.2 Metal Anode-Based Lithium Batteries 

Another emerging development for batteries based on lithium is the use of lithium 
metal anodes instead of traditional graphite-based anodes. Lithium metal anodes 
potentially provide the benefit of increased energy and power densities compared to 
batteries with conventional anodes but are presently subject to multiple material 
stability issues during use [37]. Nonetheless, prospective LCAs of battery systems or 
components containing lithium metal anodes have been conducted. Berg and 
Zackrisson [8] conducted a cradle-to-grave LCA of metal anodes for lithium battery 
packs used in electric vehicles using computer simulations of the battery cells as 
opposed to physical fabrication, focusing on greenhouse gas emissions from a life 
cycle perspective. They showed that lithium iron phosphate (LFP) and nickel 
manganese cobalt (NMC) batteries based on lithium metal anodes exhibit lower 
life cycle greenhouse gas emissions compared to their conventional counterparts 
used in Nissan Leaf and Tesla Model S vehicles. Emissions reductions for the Nissan 
Leaf ranged from 50% to 58% of the original pack, while that for the Tesla Model S 
ranged from 20% to 39% of that of the original pack. This study shows the potential 
environmental benefits of batteries with lithium metal anodes, but these results 
require validation by assessment of physically produced cells. 

Vandepaer et al. [34] performed a cradle-to-grave LCA of LFP batteries compar-
ing the use of lithium metal anodes (lithium metal polymer or LMP) versus tradi-
tional graphite anodes in a stationary grid-connected application, differentiating 
between systems deployed at the distributed vs. centralized scale. This study showed 
that LMP batteries exhibited lower contributions to detrimental human health 
impacts (~18% reduction) and climate change (~23% reduction) but similar contri-
butions to ecosystem damage and resource use compared to conventional graphite 
anode batteries, for both the centralized and distributed systems. These results are 
strongly driven by the assumptions for the sourcing and production of battery 
materials – aluminum from China produced using coal power in the graphite anodes 
versus aluminum sourced from Canada using hydropower in the metal anodes.



Therefore, the study highlights the key factor of emissions generated from metal 
production and their sensitivity to the energy source used for production. 

13 Life Cycle Assessment of Emerging Battery Systems 247

Wu and Kong [40] also performed a comparative cradle-to-gate LCA of lithium-
ion battery production with three different anode materials: lithium metal, silicon 
nanowire, and traditional graphite anodes, all used in batteries with a common 
chemistry (NCM). When focusing on the production of a given mass of anode 
material alone, this study found that the conventional anode material exhibited the 
lowest contributions toward six of eight midpoint environmental indicators exam-
ined, with lithium metal anodes exhibiting the lowest contributions toward metal 
depletion potential and marine eutrophication potential. The silicon nanowire anode 
exhibited the highest impacts across all categories. In translating these results to the 
production of full battery systems of the same energy capacity (1 kWh), however, the 
batteries made with lithium metal anodes exhibited the lowest contributions toward 
all eight environmental impact indicators considered in the study, with the most 
significant benefits occurring for marine eutrophication potential. This results from 
differences in the specific energy of the different anodes: anodes with higher specific 
energy will require a lower mass of anode to be produced to enable a battery with a 
given energy capacity. Lithium metal anodes have specific capacities of roughly ten 
times that of conventional graphite anodes but do not have ten times the environ-
mental impacts; therefore, full battery systems produced with lithium metal anodes 
exhibited the lowest environmental impacts. The study demonstrated, however, that 
these benefits occur when the cycle life of the lithium metal-based battery is similar 
to that of batteries with conventional anodes; lower cycle life will reduce or eliminate 
the cradle-to-gate environmental benefits of lithium metal batteries. 

Padashbarmchi et al. [23] performed a comparative, cradle-to-grave LCA of the 
lithium-ion batteries produced using three different metal oxide nanoparticles as the 
anode active material, iron oxide, cobalt oxide, and copper oxide, and compared 
these against a battery with a traditional graphite anode. The study presented 
environmental impacts using an aggregated metric of Eco-indicator points from 
the Eco-indicator99 framework. Based on this metric, batteries produced with two 
of the metal oxide-based anode materials (iron oxide and cobalt oxide) exhibited 
lower environmental impact scores than batteries with traditional graphite anodes, 
with batteries based on copper oxide obtaining higher environmental impact scores. 
For individual endpoint indicators, all three metal oxide anodes showed lower 
resource depletion impacts than the traditional graphite anode, while copper oxide 
exhibited a very high contribution to human health impacts that drove its total 
indicator score. This study shows that metal anodes have the potential to have a 
lower impact than conventional anode materials depending on the materials chosen. 

The present literature on LCAs of metal anode technology for lithium-ion batte-
ries shows that wider use of this technology have the potential to reduce environ-
mental impacts compared to conventional anode batteries in both mobile and 
stationary applications.
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13.1.3 Non-lithium Chemistries 

Concerns regarding the criticality and geopolitics of access to lithium resources have 
also driven interest in developing and scaling battery chemistries that depend on 
elements other than lithium for their active anode element. Specifically, other alkali 
metals (sodium, potassium), alkaline earth metals (magnesium, calcium), and metals 
such as aluminum are of interest for lithium alternatives, described in Part V, as well 
as organic materials. 

Peters et al. [24] performed the first-of-its-kind LCA of the production (cradle-to-
gate) of a sodium-ion battery pack and compared its impacts using six midpoint 
environmental indicators with those for different lithium-ion battery packs. They 
also explored the sensitivity of these impacts to cycle life, round-trip efficiency, and 
material substitution of anode hard carbon precursors. They found that with a cycle 
life of 2000 cycles, sodium-ion environmental impacts were lower than lithium-ion 
batteries on two indicators (freshwater eutrophication and human toxicity), within 
the range of lithium-ion batteries for three indicators (global warming, fossil deple-
tion, and terrestrial acidification), and higher impacts than lithium-ion batteries for 
marine eutrophication potential. Battery cycle life was found to be a major factor in 
comparing sodium-ion battery environmental impacts versus lithium-ion batteries: a 
drop to a cycle life of 1000 caused sodium-ion batteries to generally perform worse 
than lithium-ion across indicators, while increases to 3000 or higher led to lower 
impacts than most lithium-ion battery types. This study also highlights the potential 
for improvement in these impacts from material selection for the anode and cathode 
as well as its precursors and production method. 

Jasper et al. [16] included a sodium-ion battery in a comparative, cradle-to-grave 
life cycle assessment of a home battery system operated to increase the use of 
otherwise curtailed solar electricity generation, where it was compared against 
three lithium-ion chemistries based on a functional unit of 1 kWh of electricity 
delivered. A sodium nickel magnesium manganese titanium oxide cathode and a 
hard carbon anode were selected to represent the sodium-ion battery. For the full life 
cycle of these systems, sodium-ion batteries were found to have higher contributions 
to global warming potential, resource depletion, and freshwater toxicity than the 
three lithium-ion battery systems. These results were driven by the relatively lower 
energy density of the sodium-ion battery compared to the lithium-ion batteries at the 
time of publishing, which requires a larger material mass to be produced to deliver 
1 kWh of electricity. Since this larger material mass increases the scale of all life 
cycle processes, their emissions also increased. It is important to note that between 
the time of the study [16] and that of the initial study by Peters et al. [24], the energy 
density of lithium-ion battery technology has improved, which explains the differ-
ence between the results of these studies. Another recent study by Carvalho et al. 
[10] that conducted a comparative cradle-to-gate LCA of lithium-ion and sodium-ion 
batteries also found that producing a sodium-ion battery contributed more to climate 
change and resource use than lithium-ion batteries on a per-unit energy capacity 
basis, also due to its lower energy density.
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For mobile applications, Marmiroli et al. [20] performed a cradle-to-grave LCA 
of a sodium-nickel-chloride battery used in commercial light-duty vehicles, which 
was then compared on a consistent basis with the results of an LCA of an NMC 
lithium-ion battery and that for a diesel vehicle used in the same application by 
Accardo et al. [1]. These studies found that per kWh of battery capacity across their 
entire life cycle, the sodium battery contributed the most toward 7 of the 12 midpoint 
indicators with their assumed production location, increasing to 8 of 12 indicators 
when the batteries are assumed to be produced in Europe. Generally, the impacts 
from the sodium battery were higher than that of the NMC lithium-ion battery. 

Present literature on sodium and sodium-ion batteries initially showed promise 
for this technology to offer a lower environmental impact option for meeting the 
battery capacity needs of the transition to a clean energy system. Improvements in 
the energy density of lithium-ion batteries, however, have reduced this prospect with 
many studies showing higher life cycle environmental impacts for sodium-ion 
batteries. Depending on the criticality of lithium as battery demand grows over 
time, sodium-ion batteries may still offer an important alternative in some 
applications. 

Beyond sodium-based batteries, LCAs of closed system batteries based on other 
alternatives to lithium are relatively sparse. Potassium and calcium batteries have 
been discussed from materials performance standpoints [2, 5, 12, 25, 26] but have 
not yet been the subject of a formal life cycle assessment. Aluminum and magnesium 
batteries have been the subject of some initial assessments. 

Delgado et al. [28] performed a comparative, cradle-to-grave LCA of an 
aluminum-ion and a lithium-ion battery (NMC chemistry) cell, focusing on their 
contributions to global warming potential on per-cell and per-energy capacity bases. 
This study found that on a per-cell basis, the aluminum-ion battery contributed 30% 
lower greenhouse gas emissions than lithium-ion but on a per-energy capacity basis 
contributed as much as 12 times the greenhouse gas emissions of the lithium-ion 
battery. These results were driven by the significantly lower energy density of the 
aluminum-ion battery, resulting in much more material mass required to achieve a 
given energy capacity. 

Melzack et al. [21] conducted a cradle-to-gate LCA of an aqueous aluminum-ion 
battery and compared these results to those of supercapacitors on a per-power 
capacity basis. This application better suits the aluminum-ion battery which has 
high specific power but low energy density. This study found that the aluminum-ion 
battery exhibited lower or similar impacts than graphene and activated carbon-based 
supercapacitors on multiple environmental impact indicators, including but not 
limited to global warming potential, terrestrial eutrophication, and ozone formation. 
The relatively early development stage of the aluminum-ion battery implies the 
potential for improvements to its environmental performance. In applications requir-
ing high specific power, it is more competitive with incumbent technologies. 

Montenegro et al. [22] conducted a cradle-to-gate LCA of a magnesium-sulfur 
(MgS) battery cell with three different cell construction designs and compared it to 
those for lithium-ion batteries (LFP, NMC, and lithium-sulfur or LiS). The cell 
construction design for the MgS battery was found to be a major driving factor in its



environmental impact profile, with designs that optimize the cell separator thickness 
and pouch housing reducing contributions to global warming potential and fossil 
fuel depletion to be similar to or lower than that of the lithium-ion batteries. The 
optimized cell design for the MgS battery did exhibit higher material depletion and 
ozone depletion potential than the initial design, but these impacts fell within the 
range of values spanned by lithium-ion batteries. This study highlights the impor-
tance of fundamental cell design in driving larger-scale environmental impacts and 
competitiveness of the MgS battery. This work was expanded in a study by Bautista 
et al. [7], which takes the optimized cell design from Montenegro et al. [22] and 
expands the scope of the LCA to a full modeled battery pack, including the use phase 
of different battery applications on the electric grid, and compares the results against 
three lithium-ion battery chemistries. This study found that the modeled MgS battery 
still contributed environmental impacts that were similar to or lower than the range 
spanned by lithium-ion batteries across all of the environmental impact indicators 
included and across the different grid applications. The environmental impacts of the 
MgS battery were found to be most sensitive to the assumption for the round-trip 
efficiency of the system in all applications. 
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The literature on magnesium-based batteries shows promise for this technology in 
competing against lithium-ion batteries from an environmental impact standpoint, 
but this potential needs to be verified by LCAs based on physically produced packs 
and tracked as production methods for this technology scales up to maturity. 

Organic alternatives for battery materials are also of interest due to their potential 
benefits for reduced environmental impact and resource depletion potential. A study 
by Zhang et al. [46] performed a cradle-to-gate LCA of a fully organic closed system 
battery based on organic polymers. This study did not perform a direct comparison to 
other battery technologies but rather focused on identifying hotspots and major 
contributors to environmental impacts to inform future needs for changes in pro-
duction processes and material selection. This study found that the dominant con-
tributor to environmental impacts was the production of the organic cathode 
backbone due to the large number of steps involved requiring significant quantities 
of solvents. For future improvements, optimizing the cathode backbone production 
processes to reduce or eliminate the need for solvents will be important for reducing 
the environmental impacts of this battery at scale. 

13.2 Open Battery Systems 

An open battery system refers to one where the fundamental components of the 
battery are not physically contained within the same space and the flow of matter 
(e.g., electrolyte and oxidant) occurs between them. Open systems have the potential 
to exhibit high energy density (i.e., in metal-air batteries) or ease of 
decommissioning due to the partially deconstructed configuration of these systems. 
For open systems, emerging battery technologies of interest for improved



performance, safety, or environmental impact profiles are different chemistries of 
redox flow batteries including organic-based systems and metal-air batteries. 
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13.2.1 Inorganic Flow Batteries 

Many flow battery chemistries exist at different stages of technological and com-
mercial maturity; therefore, relatively few of them have been the subject of LCA 
studies. The earliest flow battery to reach commercial scale and presently the most 
mature is the vanadium redox flow battery (VRFB), which has been the subject of 
multiple LCAs. The first LCA including a vanadium redox flow battery was 
conducted by Rydh [27] in 1999, which compared the life cycle environmental 
impact of the VRFB with a lead-acid battery and found that the VRFB exhibited 
lower environmental impact (using an aggregated environmental impact score) than 
lead-acid batteries. 

A more recent LCA was conducted by Weber et al. [38], which conducted a 
cradle-to-cradle LCA of a VRFB based on a more detailed, up-to-date dataset of this 
technology compared to the original inventory from Rydh [27] that was used in 
multiple studies and compared the results to a lithium titanate-based LFP battery. 
This study demonstrated that for the VRFB, components related to the electrolyte 
were the strongest drivers of multiple environmental impacts including contributions 
to global warming potential, due to the large weight fraction of the electrolyte and 
related components and the environmental impact of vanadium production. When 
compared to the lithium-ion battery, the VRFB exhibited lower or similar environ-
mental impacts for three of the four environmental impact indicators (global 
warming, human toxicity, abiotic depletion) when electricity inputs to battery life 
cycle processes were assumed to come from clean sources such as wind and solar. 
When electricity inputs are fossil-based, VRFB impacts are higher than lithium-ion 
due to its lower round-trip efficiency, requiring more fossil-based generation (and 
subsequent environmental impacts) for each unit of electricity delivered by the 
battery. 

Additional LCA studies have also focused on or included the VRFB. A study by 
AlShafi and Bicer [4] conducted a comparative LCA between the VRFB, com-
pressed air energy storage, and molten salt thermal storage based on per kWh of 
electricity delivered from solar energy. Of these systems, the VRFB was found to 
contribute the most toward all five of the environmental impact indicators consid-
ered, driven by the dominance of copper in the system and the environmental 
impacts of solar PV. A study by da Silva Lima et al. [30] conducted a comparative, 
cradle-to-grave LCA of a VRFB and an NMC-based lithium-ion battery on a per 
kWh of renewable electricity delivered basis. Across their whole life cycle, the 
environmental impacts of the VRFB were found to be similar or lower than that of 
the lithium-ion battery when both were constructed with virgin materials but gener-
ally lower than that of lithium-ion batteries when 50% of the VRFB electrolyte is 
recycled. This study also highlights the prominence of the VRFB electrolyte in



driving environmental impacts due to its large mass fraction in the overall system 
and energy-intensive production processes. 
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Recent LCAs have also started to assess new flow battery chemistries that have 
only recently reached commercial scale. A study by He et al. [13] conducted a 
comparative cradle-to-gate LCA of three flow battery chemistries: the VRFB, the 
zinc-bromide flow battery (ZBFB), and the iron flow battery (IFB), based on up-to-
date manufacturer data for commercial systems. This was the first study to conduct 
LCAs of the ZBFB and IFB systems, despite these systems already being deployed 
at a small commercial scale. This study found that of these three systems, the IFB 
generally exhibited the lowest environmental impacts in six of eight midpoint impact 
indicators due to its use of relatively benign materials, the exception being freshwa-
ter ecotoxicity and ozone depletion potential due to materials used in the cell 
membranes. The ZBFB generally exhibited the second largest contribution to 
environmental impacts but contributed the most to abiotic resource depletion. The 
VRFB exhibited the highest environmental impacts on seven of the eight impact 
indicators included in the study, strongly driven in five of those impact categories by 
the production of the VRFB electrolyte based on vanadium pentoxide. The VRFB 
results, however, were shown to be highly sensitive to the assumed production 
process of the vanadium pentoxide electrolyte, with lower emissions processes 
potentially reducing environmental impacts in four of the eight categories to be 
competitive with the IFB. This study highlights the importance of not only material 
selection but also reducing the emissions intensity of production processes for key 
materials that are required for flow battery operation. The results of this study were 
used in a further study by Tian et al. [31] that assessed how the emissions saved from 
the deployment of the three different flow batteries on a renewable electric grid scale 
versus the emissions contributed from producing these batteries as the installed 
capacity of these batteries on the grid increases. Extending the themes from the 
study by He et al. [13], the IFB enabled the largest capacity of batteries to be 
installed while ensuring that the emissions benefit outweighed battery production 
emissions due to the low greenhouse gas emissions intensity of IFB production. 
Conversely, the VRFB had a much lower ceiling on how much capacity can be 
installed before battery production emissions overtook the emissions saved on the 
grid. Selecting lower emissions intensity production methods for vanadium pentox-
ide increased this capacity ceiling, however. 

13.2.2 Organic Flow Batteries 

Flow battery systems with organic electrolytes are also an emerging technology with 
the possibility to reduce the potential environmental impacts and resource depletion 
effects associated with inorganic electrolytes [9, 39]. Organic flow batteries are 
relatively new and as of this writing (mid-2022) are just starting to be commercial-
ized. Therefore, LCAs of this class of technologies are relatively sparse in the



research literature, but one very recent (published 2022) study focused on 
performing LCAs of flow batteries with organic electrolytes. 
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A study by Di Florio et al. [11] performed a comparative, cradle-to-gate LCA of a 
semi-organic flow battery using anthraquinone disulfonic acid and hydrobromic acid 
as electrolyte materials and compared the impact results against a VRFB on a per 
1 MWh of electricity delivered basis for renewable energy shifting. This study found 
that the semi-organic flow battery exhibited lower environmental impacts on 8 of the 
11 categories of environmental impacts considered. The three exceptions were 
stratospheric ozone depletion, mineral resource scarcity, and cumulative energy 
demand; however, the semi-organic flow battery and the VRFB exhibited similar 
contributions in these cases, and their differences were found to be within the band of 
uncertainty for the analysis. These results were largely driven by the lower contri-
butions to environmental impacts from electrolyte production, highlighting the 
benefit of the semi-organic electrolyte. However, the semi-organic electrolyte was 
assessed for two different production pathways, air oxidation and dichromate oxi-
dation, and the beneficial results apply to the air oxidation pathway, with the 
dichromate oxidation pathway exhibiting higher environmental impacts for the 
electrolyte production. 

13.2.3 Metal-Air Batteries 

Metal-air batteries are an emerging technology of interest due to their advantages 
over conventional lithium-ion batteries in energy density. By using ambient air as the 
external cathode for the system, these systems can weigh significantly less than 
closed system batteries. From an LCA standpoint, lithium-air batteries have been the 
primary focus of study due to their energy density. 

Iturrondobeitia et al. [15] performed a cradle-to-gate LCA of seven different 
chemistries of lithium-oxygen batteries. The study results were compared against 
lithium-ion, lithium-sulfur, and sodium-ion batteries when used in electric vehicles 
on a per-unit energy capacity basis. This study found that compared to the lowest 
emission closed system battery (lithium-ion), five of the seven lithium-air chemis-
tries produced lower greenhouse gas emissions. The two exceptions were the cobalt 
carbonate-based and gold/nickel-based lithium-air batteries, which produced 208% 
and 175% of the greenhouse gas emissions produced by the lithium-ion battery, 
respectively, largely driven by emissions from the production of the battery cathode. 
For the average of the seven lithium-air chemistries across all the 18 environmental 
impact indicators considered, lithium-air batteries exhibited improved environmen-
tal impacts compared to any of the closed system batteries in 10 out of 18 environ-
mental impact indicators. Notably, lithium-air batteries required significantly larger 
land use than the closed system batteries, 17 times more than the lithium-sulfur and 
7.6 times more than the lithium-ion battery, but the study did not explicitly elaborate 
on the driver of this result. Certain lithium-ion chemistries, such as the battery based 
on porous carbon, exhibited lower environmental impacts than the lowest impact



closed system battery on 16 of the 18 environmental impact indicators. This study 
highlights how, depending on the chemistry, lithium-air batteries may or may not 
provide environmental benefits over closed system batteries even with their higher 
energy density. 
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Uludag and Yay [33] conducted an LCA of a lithium-air battery based on a 
tetraethylene glycol dimethyl ether and lithium hexaphosphate electrolyte, produced 
with and without electrolyte stabilizers. The study results were compared with closed 
system batteries for contributions to greenhouse gas emissions. This study found that 
the lithium-air batteries on average exhibited similar greenhouse gas emissions when 
produced without stabilizers or when produced with aluminum oxide stabilizers, but 
markedly lower greenhouse gas emissions when produced with silicon dioxide 
stabilizers. The configuration with silicon dioxide stabilizers enabled a higher energy 
density, almost twice that of the configuration when produced with aluminum oxide 
stabilizers and 43% more than the configuration without stabilizers. This caused the 
silicon dioxide configuration to exhibit the lowest environmental impacts across all 
four of the environmental impact indicators considered. When compared to closed 
system lithium-ion batteries, the silicon dioxide configuration exhibited only 61% of 
the greenhouse gas emissions of the lowest emission lithium-ion battery (lithium 
manganese oxide in this study). This study further highlights the importance of 
optimizing battery production pathways to realize the environmental benefits of 
lithium-air batteries over incumbent technologies. 

Wang et al. [36] performed a comparative, cradle-to-grave LCA of a lithium-
oxygen battery and a closed system NMC lithium-ion battery when used in electric 
vehicle applications. Production of the negative electrode was found to be a major or 
driving contributor to 11 of the 13 environmental impact indicators in the production 
phase of the system, with the exceptions being global warming potential and fossil 
depletion potential, where cell assembly is the major contributor. The impacts from 
the negative electrode are driven by the impacts associated with the production and 
use of copper, whereas impacts from cell assembly are driven by the production and 
use of carbon nanotubes. From the cradle-to-grave perspective, the lithium-oxygen 
battery exhibits lower environmental impacts in 9 of the 13 environmental impact 
indicators, with the exceptions being terrestrial ecotoxicity, ozone depletion, human 
toxicity, and fossil depletion. 

Zackrisson et al. [44] conducted the initial LCA of lithium-air batteries, applying 
a cradle-to-grave approach to assessing a prototype lithium-air battery intended for 
use in an electric vehicle. At the time of this study [44], environmental impacts 
contributed by the lithium-air battery were dominated by the production phase of the 
system. Impacts from the use of copper dominated impacts on ecotoxicity, human 
toxicity (cancer and non-cancer), and abiotic depletion, while emissions from elec-
tricity use dominated contributions to global warming potential. This initial study 
projected that as lithium-air battery technology develops, the use phase will come to 
represent the majority of environmental impacts. 

Metal-air batteries based on metals other than lithium have not been investigated 
extensively with LCA tools. Yang and Knickle [42] conducted a preliminary 
analysis of an aluminum-air battery in 2002, well before the large-scale



commercialization of electric vehicles, and focused on life cycle cost instead of 
environmental impacts. From an environmental standpoint, Santos et al. [29] 
performed a cradle-to-gate LCA of a zinc-air battery based on the laboratory-scale 
fabrication of the cell. A comparison of the zinc-air environmental impacts to 
incumbent technologies was not provided due to the use of a laboratory-scale 
production process; this study highlighted major contributors to the environmental 
impacts of this technology. This study found that cathode production was the largest 
contributor to 12 out of 14 environmental impact indicators, the two exceptions 
being non-cancer human toxicity and mineral/fossil/renewable resource depletion – 
where the zinc anode was the largest or dominant contributor. From a cost stand-
point, this study also found that the zinc-air battery exhibited the lowest costs 
compared to incumbent battery technologies on a per-power capacity basis 
(kW) but one of the higher costs on a per-energy capacity basis. 
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Lithium-air technologies potentially offer promising environmental impact 
reduction benefits compared to incumbent battery technologies, but the careful 
configuration of material selection and production pathways is required to realize 
these benefits. Due to the relatively immature state of metal-air technologies, 
repeating LCAs for these batteries if they achieve scale will be required. Knowledge 
of the environmental impacts of metal-air batteries using metals other than lithium is 
presently too sparse in the literature to estimate their potential for providing reduced 
environmental impacts. Additionally, in real-world operation, certain metal-air bat-
teries are sensitive to air purity; substances such as water vapor in the air, for 
example, can degrade and damage such systems [3]. 
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14.1 Sodium-Ion Battery Basic Raw Materials 

The total global battery demand is expected to reach nearly 1000 GWh per year by 
2025 and exceed 2600 GWh by 2030 [1]. The expandability of lithium-ion batteries 
(LIBs) is one of the options; however, with the increasing shortage of lithium 
minerals and their uneven distribution around the world [2], the long-term develop-
ment of LIBs could be constrained. In fact, the raw material demand driven by 
battery applications is estimated to experience unprecedented growth in the coming 
years. In detail, four battery metals are impacted the most by this growth towards 
2030: lithium by a factor of 6, cobalt by a factor of 2, class 1 nickel by a factor of 
24, and manganese by 1.2 [1]. 

In this context, sodium-ion battery (SIB) might become an important alternative 
considering its abundant resources, high cost-effectiveness, and high safety. 

The early SIB development took place in parallel with the LIB development in the 
1970s/1980s. Subsequently, their development slowed down considerably due to the 
higher energy density lithium-ion chemistry in the 1990s/2000s [3]. 
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On the other hand, due to availability and price issues of Li-ion basic raw 
materials, related to the fast increase of demand from mobility, mobile electronics, 
and stationary applications confronted with limited availability of the supply side 
[4, 5], recently, the studies of sodium-ion batteries have rapidly become highly 
topical, as evidenced by the sharp increase in the number of research papers. 

SIBs have the most similarities with LIBs in terms of working principle, typical 
electrode materials, and electrolyte formulations. Moreover, SIBs in principle can 
use the same technologies of LIB manufacturing lines, reducing development costs 
and timescales [6]. SIBs have the same working principle as LIBs, with the differ-
ence that the charge transfer relies on sodium ions instead of lithium ions and 
electrode RedOx reactions involve Na instead of Li. Both electrodes are deposited 
on metallic current collectors, immersed in a liquid electrolyte allowing for mobility 
of ions between electrodes, and separated by electrically non-conductive, porous 
(to allow ion mobility) layer preventing internal short circuit [3]. 

Moreover, sodium-ion chemistry allows to use aluminium, which is inactive in 
terms of reacting with sodium, for both anode and cathode current collectors, 
substituting in this way copper otherwise used as anode current collector in LIBs 
[2]. Therefore, changing the current collector from copper to aluminium cannot only 
greatly reduce the cost of the cell but also addresses the over-discharge issue, 
especially in organic solutions, and decreases the battery weight. According to [7], 
the cost shares of the current collector foils are 11.6% for copper and 2.7% for 
aluminium in terms of the total cost of a lithium-ion cell. Replacing the copper foil 
with an aluminium foil in a SIB would result in a cell material cost reduction of about 
9%, with a corresponding battery cost reduction of about 3%. The exchange would 
consequently result in a 55% mass reduction but also a 50% volume increase relative 
to the exchanged foil. 

On the other hand, since commercial graphite cannot be directly used as anode for 
SIBs, due to intercalation problems and a lack of stable Na–C compounds [8], SIBs 
might show a significant increase of the anode contribution to the total price. The 
commonly proposed alternative anode for SIBs is hard carbon, although it re-acts 
less with sodium than the lithium in graphite per unit mass and volume. In fact, hard 
carbon shows lower specific density than graphite, and thus thicker laminates are 
needed, and as the irreversible capacity is also larger, more active material is 
required, which could increase the costs [9]. 

Although different works investigated the use of hard carbon as anode for SIBs, 
in order to make it more practical [10–12], commercial hard carbon prices kg-1 are 
not available. But it has been reported that higher price comes from the high-cost 
precursors [10, 11]. However, in order to reduce SIB cost and increase its perfor-
mances, there are different studies that focus on low-cost/high-yield synthesis of 
hard carbon using cheaper precursors (e.g. cellulose, corn stalks, phenolic resin) 
[10, 12]. Vaalma et al. used $15 kg-1 as a price of hard carbon; however, it can be 
lowered up to $8 kg-1 , considering the efforts are being done to enhance the 
properties of the hard carbon [7, 10]. 

For the electrolyte, the differences are comparably small: the amount of lithium in 
the electrolyte is very low (0.5% for a 1 M LiPF6 solution in organic solvent), and



correspondingly low is the potential for cost reductions by substituting it with an 
electrolyte using a less expensive sodium salt [13]. 
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However, SIBs compared with LIBs show some drawbacks, which have slowed 
down its widespread diffusion, including a higher redox potential (-2.71 V for 
sodium compared with -3.04 V for lithium, both versus the standard hydrogen 
electrode), a higher atomic mass (23 g mol-1 and 7 g mol-1 for sodium and lithium, 
respectively), and a larger size (the Shannon ionic radii are 1.02 Å and 0.76 Å for 
sodium and lithium, respectively), which lead to a decrease in the theoretical energy 
density [5, 7]. At the cell level, these factors contribute to a decrease in performance. 

14.2 Sodium-Ion Battery Cost Analysis 

While there are several works available in the literature on the costs of lithium-ion 
battery materials [14], cells, and packs, there is relatively little available analysis of 
these for sodium ion [15]. Moreover, most of the works focus on costs of material 
preparation and the electrodes/electrolytes taken in isolation, without considering the 
costs of the whole cell or battery system [16]. However, the cost percentage for 
active components (cathodes, anodes, and electrolytes) in cells is generally lower 
than 50% [7], while the costs of the inactive components (current collectors, binders, 
separators, etc.) are even higher than for those electrode materials. Therefore, the 
lack of a cost analysis makes it hard to evaluate the long-term feasibility of this 
storage technology. 

For realistic cost predictions, calculations must be done for a certain battery cell 
with defined kWh. As sodium has a higher molecular weight and a larger size than 
that of lithium, the theoretical energy density may decrease, and the cost at the cell 
level can increase [5, 10]. 

A detailed cost analysis using the Argonne National Lab’s BatPaC model 
(a commonly applied battery cost model, with specifications for many common 
cathode chemistries, including SIB technology) has been undertaken by Faradion 
and suggests that material costs at a manufacturing scale will be less than 
$150 kWh-1 [17]. This makes sodium technology cost competitive with the most 
inexpensive lithium technologies. The cost breakdown for the components for a 
Faradion 12 Ah pouch cell is as follows: anode active material = 26%, cathode 
active material = 28%, electrolyte = 12%, separator = 3%, current collectors = 
13%, and miscellaneous components to a fabricate pouch cell-type battery = 18%. 

Hirsh et al. [18] investigated the use of Na-ion batteries for grid energy storage, 
included a cost analysis of Na-ion cells for various sodium cathode chemistries, and 
included a comparison with the cost ($ per kWh) of LiCoO2. The calculated values 
compare very favourably with those calculated by Faradion showing that cobalt-free 
Na ion to be between 40% and 60% lower cost in $ per kWh than LiCoO2/graphite 
(which they calculate to be at 99 $ per kWh). The authors attribute this significant 
decrease in cost to the transition metal elements, particularly Co and Ni, which in



Na-ion cathodes can be absent or minimised without the detrimental effect on 
performance observed in equivalent Li-ion cathodes of the same B-site composition. 
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Schneider et al. [19] compared cost and GHG emissions of LIBs and SIB 
reporting that current automotive LIB cell cost based on NMC111|C (186 $ 
(kWh)) is significantly below the evaluated sodium-ion alternatives. According to 
the authors, this finding is mainly due to the lower specific charges and voltage of the 
active materials of sodium-ion batteries, leading to higher material requirements and 
longer processing times per kWh of capacity. They further show current LIB 
superiority regarding greenhouse gas emissions and attribute this fact to the same 
mechanism. Consequently, the authors state that sodium-ion batteries can only 
become competitive if a performance similar to LIBs is achieved. 

Vaalma et al. [7] compared SIB and LIB costs, considering 11.5 kWh, 7 kW 
battery, with a fixed number of cells as the model system. In detail, the authors 
compared the cell materials and battery costs of three LIB different chemistries 
(LMO–sG (LiMn2O4 with synthetic graphite), NCM(622)–nG 
(Li1.05(Ni0.6Co0.2Mn0.2)0.95O2 with natural graphite), and NCM(622)–SiC 
(Li1.05(Ni0.6Co0.2Mn0.2)0.95O2 with silicon/carbon composite)) with three different 
SIB chemistries (NMO–sHC (β-NaMnO2 with standard hard carbon), ASC–PHC 
(advanced sodium-ion cathode material with phosphorus-hard carbon composite), 
and FSC–aPHC (future sodium-ion cathode (the working potential is increased by 
0.2 V compared to ASC) with advanced PHC)). The LIB chemistries have been 
selected to illustrate the development of LIBs with increased energy density and 
lower cost, while the SIB chemistries are representative examples of a present 
(NMO–sHC), advanced (ASC–PHC), and future (FSC–aPHC) SIB. 

The results of the study are shown in the following Table 14.1. Comparing the 
LIBs, large cost reductions in terms of the total cost of the cell materials result from 
changing the cathode material from LMO to NCM (622). Considering NMO–sHC, 
an example of a present SIB, a substantial increase in the cost of the cell materials 
relative to the three investigated LIBs is reported. More specifically, the anode cost 
increases with the use of sHC compared with natural or synthetic graphite owing to 
the lower density (1.50 g cm-3 for sHC versus 2.24 g cm-3 for graphite), which 
leads to increased electrolyte cost. Furthermore, the anode cost also increases 
because of the lower energy density of sHC (300 mAh g-1 and 360 mAh g-1 for 
sHC and graphite, respectively), and thus more active material is needed to achieve 
the target energy of the battery. Finally, the price of the active materials is higher 
with sHC ($15 kg-1 ) than with natural graphite ($10 kg-1 ). On the other hand, 
considering SIBs that are more advanced, a substantial cost decrease is calculated for 
ASC–PHC and FSC–aPHC owing to the use of anode materials that have a higher 
capacity (300 mAh g-1 for sHC versus 700 mAh g-1 for PHC and 900 mAh g-1 for 
aPHC) and, in particular, exhibit a higher volumetric energy density despite the 
average working potential increasing by about 0.2 V with respect to hard carbon22. 
Again, the smaller amount of required electrolyte results in a large cost decrease. 
Therefore, the development of anode and cathode materials with higher volumetric 
energy densities is important because it simultaneously leads to a notable decrease in
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the cost of the conductive carbon and binder and, especially, the cost of the 
electrolyte. 
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Table 14.1 Cost comparison of model sodium-ion and lithium-ion batteries, considering as 
assumption an 11.5 kWh, 7 kW battery [7] 

LMO– 
sG 

NCM622– 
nG 

NCM622– 
SiC 

NMO– 
sHC 

ASC– 
PHC 

FSC– 
aPHC 

Cell material cost ($) 1022 878 841 1164 943 781 

Positive active material 
(%) 

31 40 43 20 37 37 

Negative active material 
(%) 

16 13 10 24 12 9 

Carbon and binders (%) 4 3 3 5 4 4 

Positive current collector 
(%) 

2 3 4  

Negative current collec-
tor (%) 

12 10 11 3 4 4 

Separator (%) 20 18 19 23 25 27 

Electrolyte (%) 15 13 11 22 15 16 

Battery pack ($) 2981 2760 2689 3300 2920 2704 

Mass (kg) 89.5 68.1 57.9 111.6 78.4 69.4 

Volume (l) 51.3 41.3 34.9 73.9 49.3 43.9 

Specific energy density 
(Wh/kg) 

128.5 169.0 198.5 103.1 146.8 165.8 

Price per energy ($/Wh) 1022 878 841 1164 943 781 

With regard to the entire battery pack, the NMO–sHC battery shows different 
disadvantages with respect to the LIBs such as increased volume, mass, and cost. On 
the other hand, the FSC–aPHC cell chemistry would be competitive with NCM 
(622)–SiC in terms of cost, and although it has a higher mass and volume, these 
parameters may be less crucial for stationary applications. 

However, as stated by the authors, the lifetime, energy efficiency, and safety 
influence on the cost of the final batteries were not considered in the analysis. These 
parameters strongly influence the costs of a storage system. In fact, for example, a 
NCM–graphite battery with a cost of about $3,000 and a cycle life of about 5,000 
cycles would have a cost per kilowatt hour ($0.060 kWh-1 ) that is more than twice 
that of a LFP–LTO battery with a cost of about $5,000 and a cycle life of 20,000 
cycles ($0.025 kWh-1 ). 

Another similar study was conducted by [13] modifying BatPaC from a prismatic 
cell model to a cylindrical 18,650 cell model. In detail, the authors compared layered 
oxide SIB cells with two different LIB cell chemistries: lithium–nickel–manganese– 
cobalt–oxide cathodes and lithium–iron–phosphate cathodes. The study results show 
that the lithium–iron–phosphate battery shows the highest price per kWh of storage 
capacity (229 €/kWh), followed by the SIB at 223.4 €/kWh. On the other hand, the 
lithium–nickel–manganese–cobalt–oxide battery is the cheapest (168.5 €/kWh), due 
to its high energy density. When looking at the contribution of the battery materials



to the final cell costs (per single 18,650 cell), the benefits of the SIB on a material 
level become clearer. Here, the SIB shows the lowest costs per single cell (0.50 €/ 
cell), whereas the materials for the NMC-type cells are the most expensive (0.72 €/ 
cell). However, these are costs per single cell and do not consider the storage 
capacity. 
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Moreover, since fluctuations in raw material prices are a major factor of concern 
for battery manufacturers [20], the authors perform a sensitivity analysis varying raw 
material prices. The results show a high sensitivity to fluctuations in the graphite/ 
hard carbon prices. This is more severe for the SIB, where the share of anode active 
material is higher. Regarding the cathode materials, the highest fluctuations can be 
observed for cobalt and nickel. Lithium and copper, despite the variations in their 
price, which have a stronger impact on the final cell price, are comparably stable 
metals that did not fluctuate heavily over the past 10 years. However, recent 
increases in the price of lithium have been significant and might be triggered by an 
increasing demand for batteries, leading to potentially stronger impacts in LIB prices 
than previously noted. Thus, the high dependency of the actual NMC price on 
current nickel market prices, and cobalt market prices to a great degree, produces 
significant uncertainty for future price predictions. Since this situation also affects 
the SIB due to the high nickel content in the cathode, alternative nickel-free, SIB 
cathode chemistries could be an interesting option in this regard. 

At this time, a direct comparison of the cost-effectiveness of LIBs and SIBs is not 
possible because SIBs have not been produced on a comparable scale to LIBs. In 
fact, although the commercialisation and production of these systems are still at a 
very infant stage as compared to LIBs, presently, there are few companies worldwide 
developing commercial Na-ion batteries for some niche applications:

• Faradion Limited, established in 2011, was the first nonaqueous Na-ion battery 
company in the world. It is an owner of >20 patent families (2019) covering a 
range of materials, technologies, and system designs. Its main product uses high-
energy-density oxide cathode with hard carbon anode and liquid electrolyte. Its 
pouch cells have demonstrated 140–150 Wh/kg at cell level with good rate 
performance up to 3 C and cycle life of 300 (100% DoD) to 1000 (80% DoD) 
[17]. It demonstrated viability of its solution for e-bike and e-scooter applications.

• Tiamat was founded in 2017 in France. Its solution is a 18,650 cell based on 
polyanionic materials, with energy density of 100–120 Wh/kg at cell level 
[21]. The company targets fast charging applications for both mobility and 
stationary storage use. Durability of more than 4000 cycles and rate capability 
of >80% retention for a 10 C rate have been recorded. The company has 
demonstrated working prototypes of e-bikes, e-scooters, Start&Stop 12 V and 
48 V batteries.

• Novasis Energies, Inc., originated from University of Texas at Austin, further 
developed at the Sharp Laboratories of America. Based on Prussian blue ana-
logue as the cathode and hard carbon as the anode, its battery delivered 100–130 
Wh/kg with cyclic stability of 500 cycles and rate capability up to 10 C.



• HiNa Battery Technology Co., Ltd., a spin-off from the Institute of Physics, 
Chinese Academy of Sciences (IOP-CAS), was established in 2017. Its batteries 
are based on Na–Fe–Mn–Cu oxide cathodes and anthracite carbon anode and can 
deliver 120 Wh/kg. In 2019, it was reported that HiNa installed a 30 kW/100 kWh 
Na-ion battery in East China. Its NIB pouch cells with a cycle life of 2000 cycles 
have been developed and demonstrated in e-bike, mini electric vehicle, and 
household energy storage system applications.

• Altris AB:301 is a spin-off company from the Ångström Advanced Battery 
Centre with links to Uppsala University and EIT InnoEnergy. The company is 
selling Fennac® , an iron-based Prussian blue analogue for the positive electrode 
in nonaqueous sodium-ion batteries. Batteries containing Fennac® utilise hard 
carbon as the anode.

• Natron Energy, a spin-off from Stanford University, is another newly founded 
company that uses Prussian blue analogues for both the cathode and anode but in 
this case utilises an aqueous electrolyte. At the expense of lower energy density 
values than those of organic-based batteries, this cell configuration allows run 
times as short as 30 s achieving power values of 775 W kg-1 (or 1550 W L-1 ). 
The cells are able to run over 25,000 cycles at 12 C rate accessing about 70% of 
the total capacity and with only 6% degradation measured over the duration of the 
test (6 months). 
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15.1 Bottom-Up Approach in Techno-economics 

Techno-economics of emerging technologies require a bottom-up approach. Ideally, 
it should consist of three different interlinked modeling levels (Fig. 15.1). The basis 
is built by the electrochemical level. The calculation of the battery performance 
considering thermodynamic constraints (open cell voltage, OCV) and losses allows 
for the assessment of the achievable power P, while the available amount of redox-
active species in the electrolyte determines the energy content E. On the component 
level, the costs for the key elements of the cells (membranes, electrodes, bipolar 
plates) and the electrolyte are determined. Finally, the system level must consider the 
technical system design including power electronics and balance of plant (BOP) for 
the considered application. 
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Fig. 15.1 Interlinkage of levels in techno-economic modeling of flow batteries. (Source: Christine 
Minke) 

15.1.1 Electrochemical Characteristics of Flow Batteries 

The achievable power P in a FB can be calculated with the number of cells N and the 
power of a single cell, which is given by the cell voltage Ucell, the applied current 
density I, and the cell area Acell: 

P=N � Pcell =Ucell � i � Acell 

The cell voltage can then be easily calculated on the basis of the open cell voltage 
U0 and losses Rcell: 

Ucell =U0 -Rcell � i 

The open cell voltage is dependent on the thermodynamic equilibrium potential 
and the composition of the electrolyte, i.e., the state of charge (SOC) of the battery, 
as well as different losses. Its precise calculation with the Nernst equation is quite 
complex, because the concentrated electrolyte mixture exhibits nonideal behavior 
[4]. Even more demanding is the determination of the current density-dependent 
losses caused by the ohmic resistance of the electrolyte and the battery components 
(membrane, electrodes, bipolar plates), the kinetic overpotentials of the half-cell 
reactions, and the additional concentration polarization through mass transfer resis-
tances [1]. Moreover, side reactions such as hydrogen evolution [16] and transport of 
redox-active species through the membrane, i.e., crossover [15], are further effects, 
which have to be taken into account for a precise description of the dynamic FB 
performance. 

However, for a simplified yet sufficiently exact assessment of these losses in the 
view of the techno-economic analysis, an overall cell resistance Rcell is employed 
[17], which can be conveniently obtained from measured polarization curves or from 
more detailed physicochemically based FB models. The resulting equation for the 
battery power is:
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P=N � U0 -Rcell � ið Þ � i � Acell 

The energy content E of the battery is the product of the power P and the charge/ 
discharge time t: 

E=P � t 

With Faraday’s law, one can calculate the required molar flow rate _nR of the 
redox-active species in the electrolyte with the elementary charge e, the number of 
transferred electrons z, and the Avogadro number NA: 

_nR = 
P 

Ucell � e � z � NA 

The volumes of the positive electrolyte PE and the negative electrolyte NE are 
then obtained with 

VPE =VNE = 
_nR � t 

cR � DOD 

Here, cR is the concentration of the redox-active species, and DOD is the depth of 
discharge, which is the difference between the minimum and maximum SOC of the 
battery. 

Finally, the pumping power Ppump can be estimated with the electrolyte flow rate 
through the cells _V and the corresponding pressure drop Δp: 

Ppump = _V � Δp= f � _nR 
cR

� Δp 

The factor f is a reasonably chosen multiple, e.g., tenfold, of the theoretically 
required flow rate in order to maintain approximately constant concentrations in both 
half-cells, while the pressure drop is usually calculated with Darcy’s law. 

With the quantities given above, one can also calculate the energy efficiency of 
the FB cell stack or system: 

ηE = 
Pdischarge -Ppump

-Pcharge 
= ηC � ηV 

Here, the coulombic efficiency ηC and the voltage efficiency ηV of the cell are 
defined as the ratio of discharge and charge voltage, respectively. The coulombic 
efficiency is mainly affected by side reactions and crossover processes and usually 
has values above 95%. On the other hand, the voltage efficiency is determined by the 
current density-dependent losses with typical values in the range of 80% for properly 
chosen current densities.
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15.1.2 Component Costs of Flow Batteries 

The key components of FBs are the electrolyte containing the redox-active species 
and the core elements of the stack, i.e., membrane, bipolar plates (BPPs), and 
electrodes. 

Detailed techno-economics of membranes have been provided in previous work 
[13]. It has been shown that for cation exchange membranes with relatively high 
price, i.e., NafionTM , the membrane has a significant impact on total costs. More-
over, given the complex production process and the costly raw materials, it is 
unlikely that these prices will fall significantly. Alternatives are cost-effective 
membranes based on sulfonated poly ether ether ketone (SPEEK) or other 
low-cost materials [3] or even more cost-effective nanoporous separators. However, 
the enhanced convective flow compared to dense membranes would require an 
effective control of the pressure difference between the two half-cells [20]. 

BPPs show the second highest impact on costs as demonstrated in techno-
economics of carbon-polymer BPPs [10]. In particular, the choice of graphite raw 
materials determines the processability of the compound, the production costs, and 
the electrochemical performance. A remaining challenge is the manufacturing of 
large-area BPPs. For square meter size, standard methods, i.e., injection molding, are 
no longer applicable, and appropriate extrusion techniques have yet to be developed 
for commercial applications [12]. 

Considering that two electrodes are required per unit cell, the electrode costs for 
the carbon electrodes can be set at about the same level as the costs for BPPs. 
However, considerable differences might occur depending on the raw materials used 
for the carbon electrode production [11]. 

Last but not least, the electrolyte shows very high significance for the overall FB 
costs. A detailed analysis for the most advanced all-vanadium flow battery (VFB) 
system has shown that depending on the E/P ratio of the battery, up to 50% of the 
overall costs can be attributed to the vanadium raw material [14]. Huge problems in 
this context are the strongly fluctuating vanadium prices and the uncertain future 
prospects for the price development. In spite of the possible development of more 
cost-effective electrolyte production processes based on vanadium pentoxide [5, 8], 
the raw material costs for VFB will remain high. 

For this reason, the development of FB technologies based on (potentially) more 
inexpensive redox-active components has been recently intensified. One prominent 
example is the all-iron FB with very low electrolyte costs [19]. Other researchers 
have proposed organic redox-active components such as quinones [7]. However, in 
contrast to inorganic energy carriers with practically unlimited lifetime, these 
organic substances are prone to chemical and electrochemical degradation. Thus, 
the stability of these materials is a key parameter for their cost-effectiveness [2, 6]. 

The calculation of the required quantity of key components is straightforward for 
a FB with given nominal power P and energy content E [12]:

• The number of membranes is equal to the number of cells N.
• The number of BPPs is equal to the sum of cells and stacks (N + Nstack).
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• The number of electrodes is twice the number of cells (2N ).
• The total electrolyte volume is the sum of positive and negative electrolyte 

volume (VPE + VNE). 

15.1.3 System Costs of Flow Batteries 

The system description may be defined individually. Nevertheless, a linear and 
comprehensive system definition is highly recommended for accuracy and transpar-
ency of techno-economic studies. In Fig. 15.2, a detailed technical system definition 
for a flow battery is illustrated. 

It is structured in the energy subsystem with the key component electrolyte, the 
power subsystem with the cell stacks, the power electronics, and balance of plant 
components. Other aspects, e.g., building and site, are usually not considered in 
detail in a technical model but may be included within a full-system definition in the 
techno-economic model. 

15.2 Data Basis and Quality in Techno-economics 

The quality of input data is crucial for any quantitative assessment. Input data consist 
of technical and economic data. Data quality covers the nature and origin of data 
(primary, secondary, estimate) combined with aspects of uncertainty (accuracy, 
validity, time dependency). 

15.2.1 Input Data 

Input data is required in terms of technical and economic figures. Technical data 
should at least include the following key figures:

• Nominal power P in kW
• Energy-to-power ratio E/P in h
• System efficiency η 

In a preferably more detailed technical description, the list of key figures is 
completed with:

• Depth of discharge DOD
• Current density i in mA cm-2

• Single cell area Acell in m
2

• Number of cells N and stacks Nstack in a system
• Active material concentration in electrolyte cR in mol l-1
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Fig. 15.2 Detailed technical system definition of a flow battery. (Source: Christine Minke)
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Considering the manufacturing of a battery system, data on materials, cell 
geometries, and manufacturing processes, including energy demand, should be 
provided. The battery operation requires detailed data derived from electrochemical 
measurements in order to give a quantitative description of performance, lifetime, 
and cycle life. 

Economic input data has to be provided in analogy to the technical bottom-up 
system description. Thus, in a first processing step, price data has to be adapted to the 
technical component description, which is for FB typically specified areal or power 
specific and volume or energy specific. Price data for materials, components, or 
systems are usually complemented by manufacturing or at least assembly costs. 
Furthermore, detailed cost data are often limited to key components, whereas costs 
of further system components, e.g., BOP, are calculated using supplement factors. 

15.2.2 Data Quality 

Input data may be derived from primary or secondary sources. Primary data is a type 
of data that is procured directly from main sources, i.e., specific manufacturing 
processes or specific batteries at operation sites. It is rarely possible to collect all 
data as primary data. Therefore, secondary or generic data are widely used. These 
include data from literature, databases, or handbooks. In case of any data gaps, 
estimates and analogies may be used and carefully documented. By their very nature, 
estimates have the lowest data quality. To conclude, data quality is closely linked to 
data availability. 

A reasonable exception of this data quality ranking is price data. Price data may 
be highly volatile over time due to complex market and socioeconomic develop-
ments. Thus, discrete primary data in the form of specific price information from a 
vendor might be less reliable. In this perspective, generic data derived from a 
database with reasonable technical, geographic, and temporal assessment limits are 
preferable. 

Aspects of uncertainty cover accuracy, validity, and time dependency of data. 
Accuracy addresses reliability and completeness of data. Additionally, a balance in 
accuracy for all system components is preferable in order to prevent asymmetries 
within the model. Validity and time dependency refer to the applicability and 
temporal correlation of data to the date of study. It is not uncommon for input data 
to be recited while the design of the battery is being adjusted, e.g., a scale-up from 
kilowatt to megawatt scale. Temporal correlations are especially important in pro-
spective techno-economics aiming on the prediction of future developments. These 
are generally subject to uncertainties which have to be appropriately reflected by 
means of sensitivity analyses.
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15.3 Target Figures in Techno-economics 

In this section, economic modeling approaches for five widely used economic target 
figures in techno-economics of open battery systems are presented. These are 
production costs C, capital and operational expenditures CAPEX and OPEX, and 
derived total cost of storage as well as levelized cost of storage LCOS. 

15.3.1 Capital Costs 

A common goal of a techno-economic assessment is the calculation and sensitivity 
analysis of capital costs C (synonyms are system costs or production costs) of FB 
systems. For this purpose, an accurate and detailed bottom-up modeling approach in 
combination with high-quality input data is favorable. A common level of detail is an 
inventory of component listing mass-, volume-, area-, or unit-specific costs. In 
literature, a wide variety in the level of detail can be found. On the one hand, the 
inventory may be limited to key components. On the other hand, each production 
process of any component may be described in a detailed process model covering 
input materials, machining, and labor, in order to provide a maximum detail degree. 

Capital costs C may be expressed as absolute costs in EUR (or any other 
currency) per FB or in the form of specific costs. These may be power- or energy-
specific costs, usually related to nominal system power (EUR/kW) or nominal 
energy capacity (EUR/(kWh)). In any techno-economic model, the dependence of 
results on the E/P ratio cannot be overemphasized. Thus, the cost structure in techno-
economic assessments does usually reflect the independent scalability of energy 
E and power P. Two different approaches are commonly used [14]. In one approach, 
all items are allocated to either a predefined power or energy subsystem. This leads 
to a mathematical equation describing total system costs C in EUR as the sum of 
power and energy subsystem costs: 

C=P � cP,sub þ E � cE,sub 

with cost rates of power and energy subsystem cP,sub in EUR/kW and cE,sub in 
EUR/(kWh), respectively. The individual summands of cP,sub and cE,sub are costs of 
components listed in Fig. 15.2. 

In another approach, fixed costs Cfix are added to the equation following the idea 
that not everything can be allocated to the energy and power subsystems: 

C=P � cP,sub þ E � cE,sub þ Cfix 

In order to calculate specific system costs in EUR/kW and EUR/(kWh), total 
system costs may be divided by nominal system power cP = C/P or energy capacity 
cE = C/E.
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The informative value of these figures is limited and must always be considered in 
the context of the E/P ratio. An illustrative example is the application to VFB in a 
power range of 10 to 1000 kW providing energy for E/P = 2 to 10  h:  

CVFB =P � 1000 EUR=kWþ E � 300 EUR= kWhð Þ  

This empirical formula is based on a detailed qualitative and quantitative analysis 
of literature and prices [12]. 

15.3.2 Total Cost of Storage 

Total cost of storage is a common term in techno-economics, especially in compar-
ative studies on different energy storage technologies. Nevertheless, this term is not 
standardized in the form of an appropriate mathematical definition. In general, seen 
from a user’s perspective, it includes all expenses associated with purchasing and 
using the battery system. 

A more standardized term in this context is levelized cost of storage (LCOS). It is 
defined and applied in analogy to levelized cost of energy (LCOE) which is 
calculated for electric energy generation technologies, e.g., photovoltaic systems. 
The basic idea is to calculate the price of a kilowatt hour of energy emitted by the 
system. Thus, LCOS is defined as the total cost of ownership over the investment 
period divided by the energy delivered by the energy storage system. 

In order to calculate LCOS, the above-described capital cost assessment approach 
may be extended in two ways: first, by considering additional cost items for CAPEX 
and thus for the investment and, second, by considering the operation phase with 
associated OPEX. LCOS are expressed in EUR/(kWh) of energy E emitted by the 
FB over its lifetime in a total number of charge-discharge cycles Ncycle. Thus, LCOS 
is dependent on the system’s energy efficiency, DOD, lifetime, and the electricity 
price. A simplified mathematical description of these interrelations is: 

LCOS= 
CAPEXþ OPEX 

E � Ncycle 

Referring to the nature of an extended capital value method, the full mathematical 
equation including time dependency of monetary values is formulated as follows: 

LCOS= 
n 

t = 0 

CAPEXt -Rt þ OPEXt þ cel,t � Et 
η 

1þ ið Þt � Et 

with considered lifetime from t = 0 to year n, residual value R of storage components 
at their end of life, electricity price cel, energy emitted from the battery in each year 
Et, system energy efficiency η, and discount rate i.
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Additional cost items for the calculation of CAPEX are interest rates and other 
costs incurred in connection with borrowing of funds and asset management as well 
as freight and installation costs for FB components and systems. 

OPEX usually include operating and maintenance rates as well as costs of energy 
that is fed into the battery. These have to be divided by the system efficiency in order 
to calculate the amount of energy that can be discharged from the system. Resulting 
energy losses are considered in techno-economics when it comes to profitability 
assessments, where CAPEX and OPEX are compared to revenues over lifetime. 
Some examples for economic parameters used in techno-economics of FBs [18] are 
listed below:

• Freight cost in USD/mile
• Effective income tax rate in %
• Cost of capital in %
• Annual taxes and insurance premiums as fraction of capital investment in %
• Fixed charge rate in %
• Capital recovery factor in %
• Rate of general inflation in %
• Escalation rate for capital costs and operating and maintenance costs in % 

This key figure is very complex, so some sample figures for VFB are given below 
for reference. In analogy to the considerations in the previous section on capital 
costs, for an E/P ratio between 2 and 10 h, LCOS = 0.05 to 0.30 EUR/(kWh) are 
calculated, decreasing with increasing E/P [17]. Two comparable studies consider 
VFBs with E/P = 4 h  [9, 18]. These three independent studies show a consensus on a 
probable range of LCOS = 0.10 to 0.25 EUR/(kWh). However, when considering 
maintenance costs in order to increase the service life of VFB, higher LCOS in a 
range of 0.15 to 0.35 EUR/(kWh) are assumed, increasing with increasing mainte-
nance efforts [9]. 

15.4 Conclusion 

To conclude, there are no standards defined on scope or level of detail concerning 
techno-economics for FBs. This subchapter provides an assessment framework for 
techno-economics of emerging technologies that are usually subject to uncertainties. 
FBs are developed in many variants covering a wide range of active species, nominal 
power, energy capacity, cell geometry, choice of materials, and operation strategies. 
With this degree of complexity, detailed and transparent techno-economics are all 
the more important. 

In consequence, a special emphasis should be put on the highly complex technical 
dimension of FBs. The technical model may be kept quite simple but should at least 
include key figures, i.e., E/P ratio, overall ohmic cell resistance, current density, 
system energy efficiency, and lifetime of components and system.



Techno-economics with transparent technical data lead to more relevant results, 
especially when validated by measurement data. 
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16.1 Battery Industry Vulnerabilities 

Professor Stanley Whittingham, the Nobel Prize laureate, states in his article [1], ‘our 
efforts have emphasized better and better batteries, higher energy, higher power, 
longer life, and lower cost. We have neglected to investigate the afterlife of batteries 
and the devices they are in’. In the meanwhile, these and similar thoughts have 
leaked into strategic documents, such as the Vision for a Sustainable Battery 
Value Chain by the World Economic Forum and Global and Battery Alliance [2]. 

Based on the Paris Agreement target 2 °C scenario, ‘a circular battery value 
chain’ should create 10 million safe, fair and good-quality jobs globally by 2030. In 
addition, the battery industry should envisage safeguarding human rights, foster just 
energy transition and economic development and be in line with the UN Sustainable 
Development Goals (SDGs). Last, but not least, the battery industry is estimated to
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provide 600 million people with access to electricity, reducing the gap of households 
without electricity by 70% before 2030.
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Energy storage represents key enabling technology in the energy transition, 
especially with batteries being promising technology for the zero pollution ambi-
tions of the European Green Deal. The Strategic Action Plan on Batteries was 
adopted in 2018 and is a comprehensive set of measures to develop an innovative, 
sustainable and competitive battery ‘ecosystem’ in Europe. Batteries are considered 
key components in mobile and stationary energy storage systems. They enable the 
transition to smart energy systems by compensating for the variability of supply and 
demand. 

Although there are relevant energy and environmental benefits in the battery 
operation phase, the exploitation of critical raw materials, such as cobalt, lithium, 
manganese, nickel and graphite, needed to produce batteries, involves not negligible 
impacts. Recently, the European Commission put forth a new battery regulation that 
includes compulsory sustainability requirements, requiring supply chain due dili-
gence for minerals utilised in batteries. 

Battery-driven low-carbon transition bears impacts and risks in several directions. 
What the authors call ‘decarbonisation divide’, the battery industry vulnerabilities 
might be divided into (i) environmental risks, (ii) gender discrimination, (iii) child 
labour and (iv) geopolitics and ethnics [3]. 

The environmental and public health risks concern the resource depletion, 
human toxicity and ecotoxicity, mainly associated with copper, cobalt, nickel, 
thallium and silver, with partial results for lithium and aluminium [4]. As an 
example, raw material mining is connected with environmental pollution, but serious 
health impacts could be identified along the whole battery supply chains and life 
cycles [5]. 

Gender discrimination and the marginalisation of women relate to the 
diversity-specific issues. Some examples of gender-specific acceptance research 
include lab-on-skin or telemedicine platforms for wearable biosensors [6, 7]. Another 
research study found significant differences in attitudes, perceptions and values 
regarding BEVs between males and females, which could be potentially useful for 
designing more effective policy measures [8]. The integration of gender analysis into 
materials research and engineering is crucial to address the gender-related implica-
tions of wearable electronics with bio-related applications. Yet another gender 
perspective offered by the International Renewable Energy Agency (IRENA) and 
the International Labour Organization (ILO) is that women account for only 32% of 
the overall renewable energy workforce [9]. 

It is often the case that no existing labour regulations restricting child labour and 
exploitation are present in the originating countries [10]. An estimated 23% of 
children in the Democratic Republic of Congo, many of whom are orphans, work 
within cobalt mining where they are exposed to physical, physiological and sexual 
abuse in order to provide food for themselves and their families. Despite moving 
towards less cobalt content in batteries, Fig. 16.1 shows cobalt content of the 
NMC811 cathode battery (6.6 kg for 75 kWh battery pack), assuming production



of 26 million BEVs by 2030, which will result in 25,000 children working 10 hours 
per day [11]. 
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~26 EVs produced 
globally per year by 2030 

~6.6 kg cobalt 
needed per EV with 
NMC811 cathode 

~25,000 children mining 
by hand for 10 hours per 
day in the Democratic 
Republic of Congo 

Fig. 16.1 The consequences of a cobalt-containing cathode production. (Used with permission of 
Royal Society of Chemistry from [11]; permission conveyed through Copyright Clearance Center, 
Inc.) 

Subjugation of ethnic groups and geographical issues point out the situation of 
dominance and control of raw material (cobalt) mining and e-waste treatment 
leading to lock-in of ethnic group inequalities, ethnic discrimination and refugees/ 
migratory workers. The vulnerabilities are highly geographically concentrated with a 
lot of focus on China, which claims most of the energy sector employment growth, 
predicted to target in total 122 million in 2050 under the 1.5 °C pathway, compared 
to 114 million under present policies [9]. Speaking of the geographical spread, 
several countries, such as the USA, Japan or the Netherlands, were more successful 
in BEV adoption than others, e.g. South Korea or China [12]. 

The successful achievement of the renewable energy sources (RES) targets and 
other energy-related ambitions amplifies therefore the importance of questions 
related to the social aspects of the energy technology transitions [3]. Nevertheless, 
the energy transitions seem to suffer from a vicious cycle syndrome – consumers are 
not interested in less developed technologies, which are then priced higher, and 
investors are less interested to invest in a product with low demand. The clean energy 
transition technologies, including battery electric vehicles (BEVs), are still seen 
as somewhat innovative and therefore might be perceived as immature or risky [13]. 

As demand for the critical resources, such as metals, minerals, land and water, 
continues to lever up, just transitions, and specifically just energy transition, span 
throughout different disciplines including critical resource geography, a subfield of 
human-environment geography transitions [14]. According to [15], the emerging 
landscapes of energy storage consider site-specific environmental justice concerns, 
such as mineral mining, extraction and toxicity during production and disposal of 
devices. Moreover, increased use of key strategic minerals and metals imposes 
spatial consequences and political and justice dilemmas. As a consequence, concepts 
such as resource nexus thinking [16] and social engineering of extraction [17] are 
being brought into discussions. 

In the context of environmental, social and governance (ESG) development of 
sustainable energy materials, priority has been recently given to nickel-rich cathode 
materials, and efforts continue for the development of organic/green batteries



[18]. To sum up, the key sustainability challenges of the battery sector might be 
summarised as follows: 
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1. Battery production has non-negligible GHG emissions. 
2. The battery value chain bears also significant social risks. 
3. The viability of battery-supported applications is uncertain [9]. 

Balance needs to be found between the needs of modern society, social aspects 
and environmental conservation [5]. Advanced battery technologies need to be 
assessed via a combination of techno-economic simulation tools, cost-benefit anal-
ysis and business model innovation, including the social and socio-economic 
impacts on workers, local community and the society. 

The following Sect. 16.2 addresses these issues with the technology acceptance 
lenses concentrating on battery applications in e-mobility, grid storage and in the 
context of social innovations. The same issues are addressed also in the next 
Chap. 17 focused on the social impact assessment method s-LCA, which gained a 
lot of attention with scholars recently due to the need for more sustainable battery life 
cycle from ‘cradle to grave’. Both approaches, type I s-LCA and type II s-LCA, are 
explained and compared in Chap. 17. 

16.2 Acceptance Issues 

The technology adoption and diffusion are associated not only with the performance 
and cost, but there are social factors entering the adoption process as well. Several 
theories might be useful to explain these inter-relations; however, the theory of 
social acceptance and diffusion of new technologies play a central role. The 
technology acceptance studies on users’ adoption of specific technologies and 
products are built, among others, on the technology acceptance model, which 
emphasises the primary role of the perceived usefulness and the perceived ease of 
technology use as predictors of an individual’s attitude towards using and 
behavioural intention to use a technology [19]. 

In broad terms, acceptance refers to the passive or active approval of socio-
political and community stakeholders towards large-scale energy technologies or 
related policy strategies, encompassing their willingness to embrace or support such 
initiatives [20]. According to the seminal work introduced by [21], there are three 
dimensions of social acceptance in the field of renewable energy innovations: 
socio-political, market and community acceptance (Fig. 16.2). The socio-political 
acceptance relates to the governmental decision-making processes and adoption of 
energy policies. NIMBY (not in my backyard) effects and people’s motives are 
attributed to the second dimension – community acceptance. Finally, the market 
dimension, being a consequence of market adoption of technologies, is helping to 
overcome barriers to larger diffusion. 

When speaking about the social acceptance of energy storage technologies 
specifically, the clustering across applications and sectors is helpful. These clusters



include especially RES for stationary applications, e-mobility and portable/wearable 
electronics to a certain extent, which will be elaborated in the following sections. 
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Socio-political acceptance 

Market acceptanceCommunity acceptance

• Of technologies and policies

• procedural justice

• Distributional justice

• Trust • Intra-firm
• Investors

• Consumers

• By policy makers

• By key stakeholders
• By the public 

Fig. 16.2 The triangle of social acceptance of renewable energy innovation. (Reprinted from 
Wüstenhagen et al. [21], with permission from Elsevier) 

16.2.1 E-Mobility and the Range Anxiety Phenomenon 

The IRENA and ILO (2021) indicated that about 11% of GHGs were generated 
globally by the road transportation sector, with 5.8 Gt CO2eq in total. Furthermore, 
sales predictions suggest that more than 50% of new passenger cars sold by 2035 
will be electric [22]. BEVs are thus considered to be important element in the clean 
energy transition, whereby battery represents key technology affecting technical 
performance and cost factors. 

Despite the urgent need for the transportation sector decarbonisation, several 
studies have indicated barriers to the EV diffusion. The BEV cost, limitations in the 
battery capacity and vehicle weight represent just a few of the obstacles to full BEV 
commercialisation [23, 24]. On the other hand, higher driving range, more frequent 
charging infrastructure, lower prices and pro-environmental attitudes represent fac-
tors facilitating the BEV adoption based on the scientific studies (see Fig. 16.3). 

Although the environmental perspective is crucial with respect to the low-carbon 
transport systems, the social perspective started to gain attention among scholars as



well. Consequently, hand in hand with the technical improvements, the users’ 
experience (satisfaction, usefulness and attitude) has attracted scholarly interest 
including the phenomenon of range anxiety [25]. In addition to that, there are 
determinants of acceptance identified, such as contextual (charging availability), 
cost (purchase, operation), attitudinal and behavioural (travel habits), BEV experi-
ence (familiarity), sociodemographic (income, education) and social (norms). 
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Electric mobility‘s benefits 

Electric mobility‘s barriers 

• Saving resources
• Environmentally friendly due to
   reduced emissions
• High efficiency in well-to-wheel
   process
• More efficient energy use

• Expensive energy storage

• Insecurity in dealing with
   accidents
• Limited range
• Long charging time
• Poorly developed charging
   infrastructure

• High acquisition costs

• Independence from oil imports 

Fig. 16.3 Electric mobility’s benefits and barriers [25], distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license 

The charging limitations (both the infrastructure network and charging time) are 
the main barriers of electric mobility nowadays. Based on some studies, the con-
sumers are willing to wait more than 6 hours when the BEV is charged at home, 
while charging outside should be done in less than 30 minutes. Furthermore, based 
on a Flemish acceptance study of various charging infrastructure systems, con-
sumers expressed interest in inductive charging as long as the cost of the system 
does not exceed that of conventional charging methods [26]. 

Nevertheless, certain studies have revealed that the negative association between 
battery electric vehicle (BEV) acceptance and cost-related drawbacks, such as high 
purchasing costs or limited driving range, is influenced by social identity variables, 
which carry significant weight [27, 28]. These findings emphasise the need to 
consider factors beyond individual cost/benefit considerations and focus on social 
identity elements like social norms and collective efficacy [29]. 

To conclude, most consumers concerned about the driving range have had no user 
experience with BEVs. One of the solutions could be the smart charging systems for 
BEVs, once technical reliability is improved and access to smart charging from other 
devices is provided, as well as improvements of technical performance of BEV are 
done [30].
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16.2.2 Social Aspects of Grid Storage 

Although energy mix is shifting towards intermittent renewables across most mar-
kets, the power sector accounted still for considerable 23% of global GHG emissions 
in 2017 totalling 11.9 Gt CO2eq [9]. 

The definition of social acceptance of energy infrastructure elucidates what 
factors contribute to the social acceptance of the three types of infrastructure (wind, 
transmission lines and pump hydro-storage as examples), i.e. ‘social acceptance of 
new infrastructure occurs when the welfare decreasing aspects of the project are 
balanced by welfare increasing aspects of the project to leave each agent at worst 
welfare neutral and indifferent to the completion of the project, or better off and 
supportive of the project’ [31]. 

[32] works with four factors in their assessment: general vs. local acceptance, 
public concerns, trust in stakeholders and attitudes towards financial support/ 
funding. Although social acceptance of RES has been assessed as relatively high 
across Europe, differences exist between general social acceptance and local social 
acceptance. The factors include trust in public authorities, distribution of quality 
information, public involvement and economic benefits [33]. In the latter case, the 
challenge is that the cost-benefit analysis (CBA) of smart batteries overlooks usually 
nonfinancial drivers. Some consumers are dissatisfied with the technology even with 
a favourable CBA [34]. 

In nations where there is generally high public acceptance of various energy 
technologies, the lack of local community acceptance, particularly in areas directly 
affected by the construction of renewable energy plants, can lead to the failure of 
otherwise promising renewable energy projects. This highlights the importance of 
considering local community attitudes as both drivers and barriers to acceptance in 
the successful implementation of renewable energy initiatives [35, 36]. 

Although research results on the acceptance of grid-scale stationary battery 
storage systems, which are likely to play an increased role in smoothing the 
supply-demand curves, are scarce, the majority of respondents point to the overall 
positive attitudes [37–39]. Some examples of battery storage local barriers to 
acceptance include some landscapes, loss of living space, the risk of fire and 
explosion as safety concerns [39]. 

Another perspective to the social role of grid-level storage has its background in a 
price suppressing effect, decreasing the probability of remaining in the high price 
regime during peak hours and the probability increase of remaining in the standard 
regime during off-peak hours [40]. Yet a different social perspective is represented 
by the so-called platformisation, enabling new ways of energy provisioning and 
consumption [41]. The worldwide increase in using digital platforms for energy 
exchange raises, namely, new questions such as how the interactions of people with 
energy infrastructures will look like in the future.
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16.2.3 Social Innovation and Neighbourhood Batteries 

Social innovation in energy is linked to a variety of concepts ranging from commu-
nity energy, business models, energy self-sufficiency and savings to energy nudging. 
Avelino et al. [42] characterise social innovations as concepts, objects and/or actions 
that bring about changes in social relationships, encompassing novel approaches to 
energy utilisation, thinking and organisation. Examples include social practices of 
charging and managing the power of portable electronics (mobile phones) [43], 
connection of PV and batteries [40] and also adoption of home batteries [44]. 

Neighbourhood batteries represent new dimension of energy storage (alterna-
tively community energy storage) building on the collaboration between a network 
operator and renewable energy initiatives. Neighbourhood batteries have the poten-
tial to reflect societal values responsibly, in line with principles of energy justice and 
in the context of responsible research and innovation [45]. The idea of a 
neighbourhood battery entails making strategic decisions, and potentially strategic 
innovations, whose transformative impact largely relies on the perceptions and 
actions of the individuals involved [46]. To tackle these challenges, it is imperative 
to integrate social aspects into materials research and engineering, promoting tech-
nology advancements that are inclusive and equitable [47]. 

16.3 Conclusions 

In conclusion, this chapter presents insights into vulnerabilities and sustainability 
challenges within the battery industry, emphasising the crucial role of social issues. 
It highlights the historical emphasis on battery performance and cost, neglecting the 
afterlife of batteries and the social implications of their production and usage. The 
adoption of a circular battery value chain aligned with the Paris Agreement 2 °C 
scenario holds significant promise for creating safe, fair and quality job opportunities 
while driving economic development and promoting just energy transitions. How-
ever, the exploitation of critical raw materials raises environmental concerns and 
poses risks such as resource depletion, human toxicity and child labour. 

Addressing these challenges necessitates incorporating social aspects into mate-
rials research and engineering to ensure inclusive and equitable technological devel-
opments. Gender-specific research has shed light on differences in attitudes and 
perceptions towards battery electric vehicles (BEVs) and wearable biosensors, 
calling for more effective policy measures that consider diverse perspectives. Fur-
thermore, social acceptance plays a pivotal role in the widespread adoption of 
renewable energy technologies and energy storage systems. Understanding factors 
that influence the acceptance of battery technologies, such as charging infrastructure 
limitations, range anxiety and economic considerations, is essential for driving 
successful energy transitions.
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The discussion on grid storage underscores the need to strike a balance between 
general and local acceptance, considering the impact of renewable energy projects 
on communities. Smart battery solutions, local collaboration and responsible 
research and innovation are potential pathways to enhance social acceptance and 
advance energy justice. Overall, the pursuit of advanced battery technologies should 
go hand in hand with a thorough assessment of their social and socio-economic 
impacts. Efforts must be made to align the needs of modern society with environ-
mental conservation, enabling a sustainable and equitable energy future. By foster-
ing an inclusive approach and embracing social innovation, the battery industry can 
become a powerful driver of positive change, leading us towards a greener, more 
resilient and socially responsible energy landscape. 
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17.1 Guidelines for Social Life Cycle Assessment 

Managing social issues requires the implementation of specific evaluation tools. Life 
cycle methodologies have gained great consensus among academics and practi-
tioners for the assessment of the impacts of the whole life cycle of a product or 
service. Among them, social life cycle assessment (s-LCA) is the latest methodology 
developed, specifically devoted to the evaluation of potential positive and negative 
social impacts of a product or service, taking into account all activities that are 
related to the extraction and processing of raw materials, manufacturing, distribu-
tion, use, maintenance, recycling and final disposal. The life cycle approach can
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prevent the shifting of burdens between geographical areas, supply chain steps or life 
cycle phases when evaluating impacts, as well as highlighting possible hotspots.
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S-LCA methodology is similar to the environmental LCA methodology, as both 
methods are based on the ISO 14040 framework. However, while the procedures of 
goal and scope definition, inventory analysis, impact assessment and interpretation 
are common, s-LCA differs in the data that is collected. S-LCA highlights the social 
consequences of the activities and assesses their organisational and societal context 
in the supply chain. 

Social impacts are considered as the effects on the different typologies of 
stakeholders involved, such as workers, local communities, value chain actors, 
consumers, societies and children [1]. S-LCA seeks to improve the product’s supply 
chain by providing information on social aspects for decision-makers. Its specific 
objective is to assess social impacts in the same way environmental LCA does it for 
environmental ones. But, while LCA is regulated by specific ISO standards (14040-
44:2021, in the updated version), about s-LCA there is not still a standardised 
methodology, and the most diverse methodologies have been proposed in the 
literature. The s-LCA guidelines from UNEP [1] are based on social and socio-
economic impact categories (e.g. human rights, working conditions, health and 
safety, etc.) with 40 subcategories and five stakeholder groups (society, worker, 
consumer, value chain actors and local community) and on context-dependent 
inventory indicators. The UNEP guidelines do not provide an agreed and 
standardised framework for social indicators that reflect and measure the social 
impacts of technologies and processes along product life cycles and supply chains. 
However, they represent the present landmark in the field. 

Presently, a specific ISO standard, the 14075 ‘Principles and framework for social 
life cycle assessment’, is under development (in the preparatory phase), and recently 
UNEP (2020) updated the Guidelines for s-LCA and the Methodological Sheets for 
subcategories in s-LCA [2], providing a methodological overview for practitioners 
about possible evaluation procedures. According to them, there are two main impact 
assessment approaches, and each of them responds to different practical 
research aims: the reference scale approach (type I) and the impact pathway 
approach (type II). The Methodological Sheets provide a list of possible stakeholder 
groups to be considered in the evaluation processes, namely, workers, local com-
munities, value chain actors, consumers, society and children; for each of them, 
subcategories of assessment are suggested (40 in total). 

17.1.1 The Reference Scale Approach 

Type I s-LCA assesses the social performance or risks of companies or organisations 
involved in the product system, by comparing their behaviour to a reference scenario 
(e.g. specific legal regulations or norms). The comparison is made according to 
specific primary or secondary data and information or stakeholders’ opinions, and 
therefore the evaluation consists in the description of a current status (in the short



term) and not in the accounting of the links between the activity and long-term 
impacts. Therefore, the characterisation process is mainly based on interpretation. 
Results are expressed in performance reference points (PRPs), which are ‘thresholds, 
targets, or objectives that set different levels of social performance or social risk’ 
[1]. PRPs consent estimating the magnitude and significance of potential social 
impacts associated with organisations in the product system, but they are context-
dependent, often based on international standards, local legislation or industry best 
practices and, therefore, not generalisable. 
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Type I s-LCA methodology suffers many issues because it comprises a multi-
plicity of qualitative approaches in terms of data collected and their significance, 
the use of the functional unit (FU) to scale inventory input is very often optional and 
the characterisation step consists in an implicit or explicit value judgement on the 
collected data [3, 4]. Furthermore, studies framed within this typology often disre-
gard the main typical elements of life cycle studies such as the system boundaries, 
the time boundaries, the cutoff criteria and the evaluation of each single life cycle 
phases. They provide a qualitative assessment of the social performance of behav-
iours and activities linked to a product or service system [5], by means of value 
judgements made on collected data and result characterisation made with different 
relative weights [3, 4]. The most used characterisation methods applied within type I 
s-LCA found in literature are based on comparisons to norms and best practices, 
socio-economic contexts, stakeholders’ judgements on companies’ compliance, 
experts’ evaluations or comparison of alternatives [5]. Moreover, weighting is 
mainly conducted to give a relative importance judgement to specific categories of 
impact or stakeholder group, sometimes by means of multicriteria methods or other 
participative approaches. 

Some specific databases are available for type I s-LCA, such as PSILCA (Product 
Social Impact Life Cycle Assessment), which provides information on social aspects 
of products over their life cycles, for almost 15,000 industry sectors and commod-
ities and for 69 qualitative and quantitative indicators, considering global supply 
chains and services, and to detect social hotspots. Similarly, the Social Hotspots 
Database (SHDB) consists of a multiregional economic input-output data which 
provides local and global supply chains and links these to a broad range of social 
metrics aligned per sector and per country. It is a tool to help companies 
and organisations to manage their social responsibility; it enables quick identifica-
tion and prioritisation of social risks in supply chains through data classified by 
country and sector, as well as a methodology for quantifying social impact. They are 
effective to identify social impacts at the country level but only by means of 
aggregated data showing averages across different technologies and geographical 
areas; therefore, these databases are of limited value in distinguishing between 
alternative operations and locations for products and services [6].
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17.1.2 The Impact Pathway Approach 

Type II s-LCA is aimed at predicting the consequences of the product system, and it 
evaluates actual or potential social impacts through causal or correlation/regression-
based relationships (the impact pathways) between the product or service life cycle 
and social impacts in the short or long term. The characterisation process is based on 
an analytical and quantifiable identification of the consequences of the life cycle. 

According to [7] and [1], type II s-LCA is epistemologically and methodologi-
cally in line with environmental LCA, where inventory inputs are quantitatively 
linked with environmental impacts. To harmonise all the life cycle approaches (life 
cycle assessment and life cycle costing), a type II s-LCA methodology could be 
more suitable, because it allows: 

– an objective assessment of potential impacts aligned with ISO norms 14040-44: 
2021. 

– Connecting quantitatively inventory input to possible impacts. 
– A rational use of elements such as the functional unit, the setting of system 

boundaries and the rational choice of cutoff criteria, which are often blurred and 
confused in type I s-LCA approaches. 

– Generalising the insights to similar productive sectors. 

Many methods have been proposed within this group. [8] reviewed 28 studies and 
highlighted three main paths to include impact pathways in s-LCA: 

(i) applying more variables composing impact pathways, or frameworks gathering 
several pathways. 

(ii) Using and testing already existing pathways empirically (mainly linking 
income data with health impacts at a macroscale). 

(iii) Applying known and already quantified characterisation models or factors from 
other research works to case studies. 

Examples of impact pathways can be found in the work [9], which proposed the 
Preston pathway to assess the social impacts of banana industry in terms of relations 
between the increased economic activity and the growth in income, which leads to 
improvements in the health of a country’s population. 

[10] proposed the Wilkinson pathway to assess the anticipated change in the 
infant mortality rate caused by a change in income distribution in the population of a 
country, itself generated by an important change in a life cycle. 

Recently, the psychosocial risk factor (PRF) impact pathway [11] has been 
proposed to assess the social impacts of a product life cycle by quantifying the 
risk of psychosocial impacts on different typologies of stakeholders, according to the 
duration of exposure to certain living and working conditions that can lead to health 
issues. According to the definition by [12], PRFs are the aspects and characteristics 
of work planning and management that can potentially lead to physical or psycho-
logical damage. The psychosocial risks are measured in odds ratios (ORs), a 
statistical measure of the intensity of association between two variables, e.g. as the



ratio between the odds of exposure for people with a disease and the odds of 
exposure for healthy people [13]. Measuring the psychosocial risks with the ORs 
is a retrospective analysis of a phenomenon, expressed with a nondimensional value, 
and it can assume values between 0 and + 1. A value of 1 indicates that there is no 
association between disease and exposure, while values >1 indicate a positive 
association (the risk factor can provoke the disease/disorder); higher values show a 
stronger association between exposure and disease [14]. 
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Data are retrieved from previous scientific studies that analysed the relationships 
between specific living and working conditions and diseases (or disorders), for 
example, the association between low income and myocardial infarction (OR: 
3.53) and stroke (OR: 3.73) [15] or long working hours and metabolic syndrome 
(OR: 1.66) [16]. 

All possible stakeholder groups can be potentially covered: workers (from entre-
preneurs to labourers), consumers, local communities’ members, citizens, value 
chain actors and children. 

Operatively, s-LCA is divided into four steps, the same as indicated in the ISO 
norms 14040-44 [17, 18]: 

1. Goal and scope: definition of the system boundaries, categories of impact, 
functional unit, cutoff criteria, foreground and background processes, taking 
into account all possible phases of the system under study. 

2. Inventory analysis: data collection can be conducted both using primary sources 
(surveys, interviews, participatory approaches) and secondary sources (scientific 
and grey literature). All required data should be properly allocated to their life 
cycle phases (e.g. planning, manufacturing, transport, use and disposal). 

3. Impact assessment: it consists in choosing the most appropriate impact assess-
ment method, according to the objective of the study. Qualitative and quantitative 
methods are available. As mentioned in the previous paragraphs, it is possible to 
pay attention to the companies’ behaviour as well as to the functioning of the 
product’ or service’s life cycle. 

4. Interpretation of results obtained, retrieving insights useful for stakeholders 
(private or public ones), practitioners and academics. 

This methodological diversity in s-LCA studies is due to the specific character-
istics of social sciences, which are multiparadigmatic, and many worldviews can 
be held: indeed, many scientific methods are available for the assessment of social 
phenomena, such as quantitative, qualitative and mixed methods [7]. Therefore, up 
to now, both interpretivist and post-positivist epistemological positions have been 
applied in the s-LCA scientific literature [7]. Most of the studies published have been 
evaluating in a qualitative or normative way a wide range of impact categories 
mostly linked to companies’ behaviour (e.g. child labour, corruption, fair wages, 
safety, etc.), rather than to the life cycle functioning; few studies can be found in 
literature quantifying cause-effect relationships between life cycle functioning and 
areas of protection (AoP) in an objective and generalisable way [7].
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Further efforts should be made on standardisation possibilities and the alignment 
to other life cycle methodologies, and testing of methods is necessary to overcome 
present obstacles and increase the applicability and interpretability results [19]. 

17.2 Experiences in the s-LCA of Batteries 

While literature is rich of studies focused on the environmental impacts of battery 
production, the social aspects have been little investigated or are limited to social 
acceptance. 

Indicators for s-LCA are often based on qualitative information rather than 
quantitative, given the nature of the social aspects under assessment. No 
standardised set of social indicators exists; thus, the choice of social indicators in 
s-LCA is challenging and possibly subjected to bias. 

The typology of s-LCA methodology (type I or type II) strongly influences the 
typology of data to be collected, as well as the results to be obtained. In the case of 
type I, site-specific data should be collected, and the social impacts retrieved would 
be mainly linked to the company’s conduct in a specific geographic and sociocultural 
context. In the case of type II, both primary and secondary data can be collected, and 
social impacts are quantifiable and directly linked to the life cycle processes. 

Identifying the social impacts of battery supply chain must necessarily include all 
life cycle phases, such as the extraction and processing of raw materials, the 
production of intermediates, the production of battery cells, the assembly of the 
battery pack as final product and the disposal or recycling. Raw materials come from 
different mining sites, often concentrated in few countries. For example, cobalt is 
mainly extracted in Congo (about 60%), followed by Russia and Australia, from 
where lithium predominantly comes from. China is the largest producer of alumin-
ium and graphite but also copper and manganese. 

To review the specific literature on the topic, a search on the principal scientific 
research engine (e.g. Scopus, Web of Science) has been made using the keywords 
‘social life cycle assessment’ or ‘SLCA’ and ‘batteries’. Eight contributions have 
been found (Table 17.1), mostly published since 2019. Only three of them are 
focused specifically and solely on the assessment of social impacts [20–22], while 
all the other papers make a multidimensional assessment, taking into account more 
sustainability dimensions, and therefore combining more methods, in some cases by 
means of multicriteria decision-making (MCDM) methods [23–26]. Among the 
studies reviewed, three analyse specifically the production sustainability of batteries 
[21, 23, 24], three are focused on the production of battery electric vehicles (BEV) 
[20, 25, 26] and two are devoted to the assessment of the mining phase 
[22, 27]. Indeed, it is widely shared among reviewed papers that significant risks 
originate from raw material extraction [21, 22, 27]. 

All the studies reviewed had the goal of proposing an assessment framework able 
to address decision-making towards more sustainable solutions, since early phases of 
the product or project. The most recurring impact category concerns workers’
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conditions, especially in terms of health and safety, freedom of collective bargaining, 
fair wages and child labour. Of studies, 50% also take into consideration local 
communities and 62% also the whole society. Lithium-ion battery production is 
the most assessed scenario.
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Concerning results [23] affirmed that batteries with lithium iron phosphate, 
voltage of 2 V, durability of 1000–2000 cycles and specific energy of 90–120 Wh/ 
kg can be considered the most suitable for the design of the product because of lower 
impacts through all the life cycle phases. [24] compared different typologies of 
batteries and concluded that lithium-ion battery has the best life cycle sustainability 
performances according to eight sustainability criteria from four pillars (economy, 
environment, society, technology). [21] highlighted that when the cell production 
and pack assembly stage is conducted in Europe (Germany, in their case study), it 
entails much lower risks compared to the China-focused production: they confirm 
that significant risks originate from the production of raw materials, with graphite 
production, cobalt sulphate production and nickel sulphate production being the 
main contributors based on actual production shares. Concerning the production of 
the vehicles, contrasting results are obtained in [25, 26], which both applied 
multicriteria decision-making methods. In the first case, comparing battery electric 
vehicles and internal combustion engine vehicles (ICEVs), the authors found that the 
life cycle sustainability of ICEVs in China was better than that of BEVs. In the 
second study, [26], weights and preference thresholds only marginally affected the 
rankings. BEV alternatives based on renewable electricity (i.e. wind or photovoltaic 
plants) share the upper ranks with conventional vehicles (i.e. diesel/gas) in many 
scenario combinations, whereas BEV with electricity from the European Union 
(EU) 2012 electricity mix (BEV_EU-mix) and all the fuel cell electric vehicle 
alternatives are mostly ranked lower. 

17.3 Conclusions 

Results from the literature review on the batteries or electric vehicle supply chain 
showed that, while the environmental impacts are mainly and regularly investigated 
by scholars, the social repercussions of this production process are very poorly 
considered or are limited to social acceptance. Probably this is due to the difficulty 
with the different s-LCA methodologies, not yet standardised in one unique 
approach, the complexity of the indicators’ choice and the obstacles to obtaining 
data from the specific production sector and for all life cycle phases. This is 
especially for raw material extraction and processing which seems to be the riskiest 
stage in terms of impacts but also the production of intermediates, the production of 
battery cells, the assembly of the battery pack as final product and the disposal or 
recycling. It is interesting to note that although social is little applied to the sector 
analysed, most existing studies prefer to conduct integrated analyses with other 
impact assessment methodologies, in the light of a multiperspective approach, by 
confirming the need to conduct analyses to assess the sustainability of production



processes as holistically as possible. On the other hand, from an exclusive social 
point of view, the inclusion in the same investigation of impact evaluations on 
different types of stakeholders remains a very challenging issue; in fact, those 
most analysed are always the workers’ group, with the recurring impact category 
on work conditions (health and safety, freedom of collective bargaining, fair wages 
and child labour). The major conclusions that can be retrieved are about the necessity 
of more research to clearly define the possible social impacts of batteries, especially 
objective analyses that can clearly quantify the impacts deriving from the life cycle 
phases and that allow comparisons among different scenarios, which can be highly 
variegated. 
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18.1 Introduction 

The origin of the concept of sustainability is commonly associated with the defini-
tion of sustainable development given by the Brundtland Report and the Rio 
Conference “Environment and Development” in 1992: “Sustainable development 
meets the needs of the present without compromising the ability of future genera-
tions to meet their own needs.” From this, different concepts emerged to give better
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understanding to sustainability such as the triple bottom-line model [3], the Sustain-
able Development Goals (SDGs) [54], the Integrative Concept of Sustainable 
Development (ICoS) [32], etc.
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However, defining and assessing sustainability in a specific context is a challeng-
ing task. Considering different dimensions and perspectives results in conflicting 
goals when trying to select the best solution. In the context of batteries, the 
development and implementation of sustainable technologies is especially chal-
lenged by aspects such as materials availability (resources and geographical loca-
tion), economic feasibility, and technology readiness levels. 

Going beyond techno-economic factors, these challenges require methodologies 
that comprehensively analyze the sustainability issues and allow discussion and 
interaction among relevant stakeholders, e.g., researchers, technology developers, 
and policymakers. Multicriteria decision analysis methods are an adequate tool to 
assess sustainability in different contexts given their flexibility and capability to 
integrate stakeholders in decision-making processes. The process of conducting 
MCDA sustainability assessment has important implications regarding the identifi-
cation of sustainability criteria and indicators, selection of MCDA methods, and 
identification of stakeholders and their involvement in the assessment. The aim of 
this chapter is to provide an overview of the MCDA methodology and how this can 
be applied in the context of sustainability assessment of emerging batteries. First, the 
definition of important concepts in MCDA sustainability assessment is given. This is 
followed by a review of MCDA studies in the field of battery storage. Then, a use 
case for cathode material selection for sodium ion batteries is presented as example 
for the use of PROMETHEE II. Discussion on the results with a focus on the 
methodology and their meaning is presented. The chapter ends with conclusion 
and outlook for MCDA sustainability assessment for emerging storage technologies. 

18.2 MCDA for Sustainability Assessment 

Multiple criteria decision analysis (MCDA) is a technique that supports decision-
making processes through the comparison of potential solutions or alternatives using 
relevant, often conflicting, criteria. The process of MCDA generally consists of the 
following steps: identification and involvement of stakeholders, problem definition, 
selection of criteria (and indicators), definition of alternatives, preference modeling 
(criteria weighting and aggregation), comparison and evaluation of alternatives, 
sensitivity/robustness analysis, and problem resolution [21]. 

The three main challenges for the application of MCDA methods in sustainability 
assessment are stakeholders’ integration, selection of sustainability criteria and 
indicators, and selection of MCDA methods. They are briefly described in the 
following paragraphs.
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18.2.1 Stakeholder Integration 

Identification and involvement of relevant (and diverse) stakeholders is of great 
importance for MCDA sustainability assessment. Stakeholders should be involved 
in the construction of the model from definition of the problem and identification of 
sustainability issues to the evaluation of the results [33]. In practice, this has some 
drawbacks since it demands high amount of resources such as time, people, and 
money. Therefore, it is common to find applications or models in which stake-
holders’ integration is limited to weighting using different formats again depending 
on the resources available, e.g., workshops, online surveys, and interviews. 

18.2.2 Sustainability Criteria and Indicators 

Guidelines for general applications of MCDA methods indicate that criteria/indica-
tors are required to be unambiguous, comprehensive, operational, and understand-
able [31]. In the context of sustainability assessment, they should as well reflect the 
concept of sustainability used (e.g., triple bottom-line model) and the sustainability 
issues related to the object of study [4, 22, 48]. At this point, the integration of 
stakeholders facilitates and strengthens the process of identifying sustainability 
issues. It is also important to consider the nature of the criteria/indicators for 
sustainability assessment. It is recommended that they include a life cycle perspec-
tive “not to divert some negative impacts from one stage to the other” [12]. 

18.2.3 Selection of MCDA Method 

This subchapter is divided into two sections. First, a general description of MCDA 
methods is presented, including more detailed information about three selected 
methods to illustrate their capacities and differences. Second, the presentation and 
description of the requirements of the MCDA methods to conduct sustainability 
assessment and a brief comparison of how those three methods perform on these 
requirements. 

18.2.4 Classification of MCDA Methods 

MCDA methods can be distinguished into multi-objective decision-making 
(MODM), multi-attribute decision-making (MADM), and combinations of 
MODM and MADM [35]. MADM methods can be categorized into (i) elementary 
methods (e.g., weighted sum method), (ii) single synthesizing criterion (e.g.,



TOPSIS, AHP), (iii) outranking methods (e.g., PROMETHEE, ELECTRE), and 
(iv) mixed methods [23]. These methods have different strengths and weaknesses, 
and their application depends on the decision problem and type of information 
available [35]. For example, Cinelli, Kadzinski, Gonzalez, and Roman [13] and 
Wątróbski, Jankowski, Ziemba, Karczmarczyk, and Zioło [56] present “guidelines” 
to help users to select the most adequate method based on categories such as criteria 
structure (flat, hierarchical), capacity to handle missing information, and easiness of 
use. The following paragraphs include a brief description of three methods (WSM, 
TOPSIS, and PROMETHEE) commonly used in the context of energy management. 
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18.2.5 WSM 

The WSM (weighted sum method) is a way to combine criterion values according to 
their preferences into a ranking value for each alternative. Its main advantage lies in 
its simplicity, allowing stakeholders without background knowledge to understand 
how the ranking is achieved. WSM requires unitless criterion values of comparable 
scale and therefore usually operates on normalized criterion values, weighting them 
by normalized preference values and summing them up: 

Rj = wi ∙Ni Cið Þ  for i 

where Rj is the ranking value for alternative j, wi the normalized weight for criterion 
i, and Ci the normalized criterion value for criterion i. The normalized criterion 
values must be profit oriented, i.e., higher values are better than lower ones. If this is 
not the case as for, e.g., costs, this can be achieved by an according normalization. 

WSM is frequently chosen because it feels obvious and comes to stakeholders 
naturally. 

18.2.6 TOPSIS 

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) starts 
with the normalization and weighting of the input data [10]. With the normalized and 
weighted input data, the different alternatives can be interpreted as points depending 
on the chosen criteria. Besides, two theoretical points are calculated: a point that 
corresponds to the best values in each category over all considered alternatives 
(theoretical best alternative) and a point which corresponds to the worst value over 
all alternatives (theoretical worst alternative). With TOPSIS, the best alternative is 
calculated based on the shortest and farthest Euclidean distances from the theoretical 
best and the theoretical worst alternative, respectively (cf. Hwang and Yoon [28] and



García-Cascales and Lamata [18]). To determine the so-called performance value Pi 

of an alternative, the named distances are determined and related to each other: 
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Pi = Si
- = Si

þ þ Si -ð Þ  

where Si
- is the distance to the theoretical worst alternative and Si 

+ is the distance to 
the theoretical best alternative. TOPSIS requires a limited subjective input compared 
to other approaches, e.g., PROMETHEE. Its logic is rational and understandable, 
and the computation processes are straightforward [18]. 

18.2.7 PROMETHEE 

The PROMETHEE family of outranking methods includes several versions which 
are suitable for different decision-making situations: PROMETHEE I and II, for 
partial and complete rankings, PROMETHEE III for interval order, PROMETHEE 
IV for continuous extensions, PROMETHEE V for problems with segmentation 
constraints, PROMETHEE VI for the human brain representation, and 
PROMETHEE Group Decision Support Systems (GDSS) for group decision-
making [9]. The principle of PROMETHEE is based on pairwise comparisons of 
alternatives along each criterion. These pairwise comparisons depend on preference 
functions assigned to each criterion with the aim of translating the difference 
between two alternatives from the criterion scale to a 0–1 degree of preference. 
PROMETHEE I provides partial rankings of the alternatives with the outranking 
flows Ф + and Ф-. The higher Ф + and the lower Ф- are, the better is the overall rank 
of the analyzed option. PROMETHEE II adds a step to derive a complete ranking of 
the alternatives (outranking flow Ф) by calculating the difference between the two 
flows. The challenge or complexity associated with this method when compared to 
elementary or single synthetizing methods relies on the cognitive effort by the 
decision-maker to define parameters associated with the preference functions. The 
next paragraphs describe weighting and preference function selection for 
PROMETHEE II. 

(a) Weighting 

There is no specific methodology to determine the weights in PROMETHEE II, 
and commonly other methods are used for this task. An important consideration for 
the selection of weighting methods is that in PROMETHEE II the weights represent 
importance coefficient, i.e., the voting power of the criteria in the decision 
problem [11]. 

(b) Preference Function and Parameters 

The selection of preference functions allows to identify the degree of preference 
among alternatives where 0 means indifference and 1 strict preference. Depending



on the type of function selected, preference thresholds (p) and/or indifference 
thresholds (q) can be defined. Q indicates the largest difference that can be neglected 
and p the smallest difference that represent a total preference [38]. Table 18.1 shows 
the six preference functions in PROMETHEE. PROMETHEE II is equivalent to the 
WSM when all criteria have the type III–V-shape preference function and the same 
value for the preference threshold P [19, 37]. 
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Table 18.1 PROMETHEE preference functions [38] 

Preference function Thresholds 
Graphical 
representation 

Type I – Usual None 

Type II – U-shape q– Indifference 

Type III – V-shape p– Preference 

Type IV – Level q,p 

Type V – V-shape with indifference (linear) q,p 

Type VI – Gaussian S – Gaussian threshold 

The selection of the preference parameters P and Q is meant to be done by the 
decision-makers based on their perceptions on the decision problem [51]. However, 
this is commonly not a simple task, and several strategies or approaches have been 
proposed to simplify this in different contexts, e.g., uncertainty of life cycle impact 
assessment (LCIA) [58], and using the difference between the maximum and mini-
mum value of each criterion and making then p and q equal to 10–30% and 5–15% 
of this difference, respectively [34].
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18.3 Properties of MCDA Methods for Sustainability 
Assessment 

In the context of sustainability assessment, there is a set of desirable properties when 
selecting an MCDA method [12, 45]:

• Handling qualitative and quantitative data: when conducting sustainability 
assessment, different information can be obtained in different forms, i.e., ordinal, 
cardinal, or mixed.

• Type of weights: within an MCDA model, there are two types of weights: trade-
offs when the weights reflect intensity of preference and importance coefficients 
which represent voting power [44]. In the case of sustainability assessment, the 
weights should be modeled as importance coefficients. Therefore, special atten-
tion should be paid when selecting the methods for preference elicitation.

• Partial/null compensation between criteria: compensation implies the existence of 
trade-offs in the aggregation of criteria, i.e., the extent to which bad performance 
of one criterion can be offset by good performance of another. Compensation is 
associated with the concept of weak sustainability and low compensation with 
strong sustainability (a more detailed description can be found in Ziemba [60]).

• Threshold values: these can be useful in complex preference models where not all 
preferences have the same intensity or relevancy.

• Ease of use: simple structure facilitates the experience of the users. Some methods 
are commonly preferred because of their simplicity. For example, full compen-
satory methods such WSM are easier to implement compared to 
low-compensatory methods that could require high cognitive effort such 
ELECTRE III or PROMETHEE II. However, it is a task of the analyst to properly 
understand the methods and be able to explain it to stakeholders.

• Handling uncertainty: sustainability issues are inherently related to uncertainty. In 
order to account for this imprecision or vagueness in the information, the 
multicriteria evaluation needs to either model the uncertainty of the input data, 
i.e., stochastic analysis, or include sensitivity analysis [42].

• Software support and graphical representation: several software exist that facil-
itate the implementation of different MCDA methods. Given their importance on 
the implementation of MCDA methods, an additional subchapter is dedicated to 
this topic. 

Table 18.2 presents the performance of commonly used MCDA methods related 
to the desired properties for sustainability assessment in the context of energy 
technologies. It can be seen why outranking methods are more suitable for 
sustainability-related decision-making problems. Their ability to offer thorough 
understanding of how the problem is structured to accurately represent the deci-
sion-maker’s preferences, and to account for uncertain information using techniques 
like probability distributions, fuzzy sets, and threshold values, makes them highly 
valuable [25].
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Table 18.2 MCDA method performance with respect to the desired properties for sustainability 
assessment [12, 14] 

MADM methods 

Elementary 
methods 

Single synthesizing 
criteria Outranking methods 

Properties/charac-
teristics for sustain-
ability assessment 

WSM TOPSIS PROMETHEE II 

Handle qualitative 
and quantitative 
data 

Quantitative Quantitative Quantitative, qualitative 

Weights as impor-
tance coefficients 

Trade-offs Trade-offs Relative importance 
coefficients 

Threshold values No No Preference, indifference 

Partial/null com-
pensation between 
criteria 

Full Full Null, partial 

Handling 
uncertainty 

Yes Yes Yes 

Ease of use High High Medium 

Software support 
and graphical 
representation 

Definite [30], 
MCDA KIT Tool 
[43], diviz [41] 

Triptych, PyTOPS 
[59], MCDA KIT 
Tool [43], diviz [41] 

Visual PROMETHEE [39], 
D-Sight [27], MCDA KIT 
Tool [43], diviz [41] 

18.4 MCDA Software 

MCDA software supports users through decision-making processes by providing 
different methods. High diversity of MCDA software is available to match the 
various needs of the different users which could depend on characteristics such as 
MCDA methods available, structuring of preferences, graphical representation, 
usability, platform (desktop, website), and last but not least type of license (com-
mercial, free). Inventory of some available MCDA software can be found in 
Beekman [8], International Society on MCDM [29], and Weistroffer and Li 
[57]. Commercial MCDA software stand out for offering good technical support 
and documentation. However, a great deal of MCDA software has been developed 
by the scientific community to meet specific needs (e.g., specific MCDA methods, 
context-based software) or simply to eliminate the barriers that licenses impose. The 
following subchapter presents the freely available software MCDA KIT tool, orig-
inally developed by the Karlsruhe Institute of Technology to support decision-
making processes in the context of nuclear emergency management, yet with the 
original goal to avoid specific constraints and to provide a broadly applicable tool for 
both the scientific and the operational communities. This tool is still continuously 
improved in the context of the projects where it is applied, e.g., by adding a specific 
plug-in to meet the requirements of sustainability assessment.
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18.4.1 MCDA KIT Tool 

The MCDA KIT tool is a standalone java desktop application with the goals to teach 
and demonstrate multiple available MCDA methods as well as to apply MCDA in an 
operational environment. The former manifests in a flexible design which allows for 
easy and fast integration of new methods resulting in an already comprehensive 
collection. The latter leads to a clear and user-friendly graphical interface, displaying 
analyses and results in various ways. The MCDA KIT tool provides many interac-
tive possibilities to edit and analyze an MCDA task. Figure 18.1 shows some of the 
more common interactions beginning from top left rank bar chart, normalization, 
report, stability analysis, values, and direct weighting. 

The tool is designed in a modular and most generic way to allow combination and 
comparison of the different methods of the MCDA process. Many different algo-
rithms have been implemented for the various tasks. Weights can be determined by 
the use of direct weighting, SMART, SWING, and AHP (analytical hierarchy 
process). Normalization is possible by many methods, starting with simple linear 
min-max functions up to nonlinear methods like Softmax or piecewise linear. So far, 
the method for aggregation can be chosen from WSM (weighted sum), WPM 
(weighted product), some voting methods, VIKOR, TOPSIS, or PROMETHEE. 
By design, other algorithms can be added easily, expanding the collection of 
methods over the course of time. 

The software is also capable to address uncertainties, both in weights and values, 
by evaluation of ensembles. Uncertainties can be defined as histogram distributions, 
naturally supporting stakeholder surveys, or probability distributions with the need 
to specify the distributions and their parameters. Furthermore, the software features

Fig. 18.1 Screenshot of MCDA KIT tool



the generation of documents which textual outline the input conditions, the applied 
MCDA methods and parameters, and the results as well as analyses like stability 
estimates and potential correlations. Several import and export methods allow to 
connect to other tools like MS Excel. A plug-in interface allows third parties to easily 
add functionality. The tool is also translated in several languages and provides 
different modes to address color blindness.
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18.5 MCDA for Sustainability Assessment in the Field 
of Batteries 

There are several MCDA studies available in the field of batteries, aiming at different 
technologies (different Li-based chemistries, redox-flow, or high-temperature batte-
ries), as well as different applications reaching from stationary to mobile applica-
tions. Depending on the specific scope, corresponding methods and criteria are 
selected for the assessment of batteries as indicated in Table 18.3. This is not 
intended to be an exhaustive review but to provide some example of applications 
and perhaps identify common practices. A wide range of MCDA methods are 
applied in the selected studies, including mostly compensatory approaches. Criteria 
selected include mostly LCA indicators. In addition to that, some studies include a 
wide set of stakeholders, while others do not include any in their assessments. A 
major factor that should also be kept in mind is that technologies that are being 
compared might have different technology readiness levels. This can be challenging 
as some technologies already experienced a large learning curve, while others are 
just being presently developed. Having this heterogeneity in mind makes it difficult 
to directly compare the results of different studies. Consequently, it is not possible to 
determine the best technology via a single study. 

18.6 Use Case MCDA Sustainability Assessment 
for Early-Stage Cathode Materials for Sodium Ion 
Batteries 

In this chapter, the MCDA process (problem definition, selection of criteria, defini-
tion of alternatives, and preference modeling) for sustainability assessment is illus-
trated based on an example of early-stage cathode material screening for sodium ion 
batteries. The assumptions and calculations here presented correspond to the ones 
made by the authors in the original publication [6], except for the application of the 
MCDA method for which PROMETHEE II is used instead of WSM. More details on 
the made assumptions, considered chemistries, and used data can be found in 
Baumann et al. [6].
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18.6.1 Stakeholder Integration 

Material researchers from KIT were selected as relevant stakeholders given the 
scope of the analysis (screening of early-stage cathode materials). Their integration 
includes the stages of problem definition, selection of criteria, and alternatives and 
excludes weighting of criteria. In the following subchapters, these will be referred as 
stakeholders. 

18.6.2 Problem Definition 

Sodium ion batteries (SIBs) are considered as promising, sustainable alternative to 
lithium ion batteries (LIBs) regarding the use of critical and expensive materials and 
the high carbon footprint of the same [6]. Although there is a wide set of different 
cathode active materials (CAMs) available for SIB, they are considered to be in a 
lower technology readiness level (TRL) than CAMs for LIB, which are a state-of-
the-art technology. Under these uncertainties, how to determine the most sustainable 
cathode types that are under development and to prioritize certain electrodes types 
becomes a challenge. 

18.6.3 Selection of Criteria 

The MCDA is based on a comprehensive bottom-up screening approach using three 
different criteria: (1) CAM cost, (2) raw material criticality, and (3) carbon footprint. 
These were selected considering the sustainability issues mentioned in Sect. 18.6.2, a  
literature review and workshops with stakeholders. Table 18.4 presents the infor-
mation related to the criteria, indicators, and sources of the data. 

18.6.4 Definition of Alternatives 

The alternatives consist of 49 CAMs selected using literature screening and from 
workshops conducted with stakeholders. An overview of the used SIB CAMs and 
their properties as well as results for the three different criteria is provided in 
Table 18.5. Here, each SIB CAM chemistry is benchmarked to eight selected LIB 
CAMs (Nos. 1 to 7 and No. 30 in Table 18.4). From this, lithium–nickel– 
manganese–cobalt (No. 5) and lithium–iron–phosphate (No. 30) are among the 
most prominent CAMs. All CAMs are separated into oxidic and polyanionic cathode 
types for a more differentiated comparison.
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Table 18.4 Overview of used criteria for SIB cathode evaluation 

Sustainability 
issues Criteria Indicator Unit Description 

Methods for 
quantification/ 
source of data 

Resource man-
agement (global 
supply concentra-
tion, country gov-
ernance, import 
reliance, trade 
restriction, 
recycling) 

Raw mate-
rial criti-
cality 
(criticality) 

Supply 
risk 
(SR) for 
the EU 

SREU/ 
kWh 

Collective term 
describing the 
economic value 
and dependency 
on certain mate-
rials as well as the 
probability of 
supply chain dis-
ruptions [50] 

SR for Europe 
[17] 

Global warming, 
emissions to air 
and water 

Carbon 
footprint 
(CF) 

GHG 
emissions 

kg 
CO2eq./ 
Wh 

Greenhouse gas 
emissions of the 
CAM precursors 
and their synthesis 
process 

LCA 

Competitiveness CAM cost 
(cost) 

Costs €/kWh Costs of raw 
materials and pre-
cursor materials 

Literature and 
market search 
inflations and 
inflation adjusted 
median values of 
costs from the 
last 11 years 

A major challenge is to gather the specific mass composition of all cathodes on a 
common functional unit, here the specific energy of the CAM without an anode. This 
was realized via a literature review, complemented by laboratory data and stoichio-
metric calculations for a reference case without anode. All criteria are calculated on a 
Wh base. 

18.6.5 Preference Modeling 

PROMETHEE II is selected to model preferences in this chapter based on the 
description and requirements for sustainability assessment presented in Table 18.2. 

18.6.6 Weighting 

There is no direct involvement of stakeholders for the weighting process as stake-
holders preferred the use of equal weights in combination with a sensitivity analysis 
with different weighting sets.
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Table 18.6 Preference function and parameters selected for use case 

Criteria Cost (€/kWh) Criticality (SREU/kWh) CF (kg CO2eq.-kWh) 

Preference function Linear Linear Linear 

Maximum value 44.06 3.76 99.05 

Minimum value 0.40 0.44 0.87 

0  

P 0.89 0.07 2 

18.6.7 Preference Function and Parameters 

In this example, we use the type V-shape with indifference function (linear prefer-
ence function) for each of the three criteria since they all have a continuous 
numerical scale, and while comparing them, very small differences can be neglected. 
P and Q are defined as suggested in Haralambopoulos and Polatidis [25], P being 
equal to the difference between the maximum and the minimum value for each 
criterion divided by n (49 CAMs) and Q being equal to zero (Table 18.6). 

18.6.8 Results 

In this section, the results of using the MCDA method PROMETHEE II for the 
aggregation of criteria and ranking of materials are presented. Additionally, sensi-
tivity analyses of weights are carried out. All calculations are carried out using the 
MCDA KIT tool (see Sect. 18.2.4). 

18.6.9 Comparison and Evaluation of Alternatives (Ranking) 

In Fig. 18.2, the resulting net flows of materials using the method PROMETHEE II 
are displayed for equal weighting of the three considered criteria. The higher the 
resulting net flow, the better the alternatives perform from a sustainability point of 
view. In Fig. 18.2a, alternatives are sorted from left to right according to their CAM 
number (see Table 18.5), whereas, in Fig. 18.2b, alternatives are sorted from left to 
right according to their net flows, i.e., ranking. Some trends can be observed in the 
ranking. First ranks are achieved by polyanionic SIB CAMs (Nos. 49, 46, 45, 47), 
from which Nos. 45 and 46 correspond to Prussian blue analogues (PBAs), and Nos. 
49 and 47 to Si- and S-containing SIBs. Most LIB layered oxide materials (CAM 
Nos. 1–7) show negative net flows (ranks 32 and higher). Only LIB CAM LFP 
(CAM No. 30) has a positive net flow. CAMs containing cobalt or vanadium 
perform lower in the rank, whereas those that contain Mn show preferable rankings. 
A detailed overview on the results can be found in Baumann et al. [6]. It is important 
to notice that varying the energy densities can have a high impact on the results. 
Also, the performance on a cell level can be very different and has thus to be 
analyzed in detail for further assessments.
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A 
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Vanadium 

Mn 
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Vanadium 
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Layered oxide materials Polyanionic materials 
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LIB - LFP 

Fig. 18.2 Resulting net flows and rankings of CAMs using PROMETHEE with equal weighting of 
criteria, sorted according to material numbers (a) and rankings (b) 

18.6.10 Sensitivity Analysis 

Table 18.7 presents the rankings with different importance coefficients (weights) up 
to the 15th place for the cases of (i) equal weights for all criteria, (ii) higher 
importance to costs (25% criticality and 25% CF), (ii) higher importance to critical-
ity (25% costs and 25%CF), and (iii) higher importance to CF (25% criticality and 
25% costs). There is low variation in the ranking when considering different 
importance coefficients for the criteria.
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Table 18.7 Net flows of cathode materials of first 15 ranks 

Equal weights (original case) 

Sensitivity analysis 

50% 
costs 

50% 
criticality 

50% 
CF 

Rank 
Net 
flow 

CAM 
No. CAM name CAM No. 

1 0.921 49 Na2Fe2(SO4)3 49 49 49 

2 0.818 46 Na0.81Fe[Fe(CN)6] 
0.79a 

46 46 46 

3 0.757 45 Na0.61Fe[Fe(CN)6] 
0.94a 

45 47 45 

4 0.713 47 Na2FeSiO4 47 45 44 

5 0.710 44 Na2MnFe(CN)6 44 44 15 

6 0.647 43 Na3MnPO4CO3 43 43 47 

7 0.638 15 P2-
Na0.67Mn0.5Fe0.5O2 

15 15 43 

8 0.593 39 Na2MnPO4 

9 0.492 36 NaFePO4 36 48 36 

10 0.473 38 Na4Fe3(PO4)P2O7 38 36 38 

11 0.443 37 Na1.702Fe3(PO4)3 37 38 37 

12 0.399 48 Na2MnSiO4 42 28 9 

13 0.365 9 a-NaMnO2 48 29 12 

14 0.294 42 Na2Fe(PO4)F 9 37 48 

15 0.276 28 P2-Na0.6Fe0.2 
Mn0.65Ni0.15O2 

35 9 13 

a Prussian blue analogs 

18.7 Discussion 

As the intention of this exercise is to reflect on the application of MCDA on 
sustainability assessment for emerging technologies, only a brief analysis on the 
results will be presented, and the main attention relies on the process. For a deeper 
analysis about the results (although using a different MCDA method), the original 
publication can be consulted [6]. 

18.7.1 Meaning of Results 

The results presented provide insights into the process of CAM selection for SIBs 
according to MCDA-assisted sustainability assessment. The ranking of CAMs can 
be understood only as indicative for research and development trends on the material 
level and cannot be extrapolated into the cell level. Having this in mind, it can be said 
that the ranking suggests that considering the criteria CF, criticality, and costs, the 
most promising CAMs for SIBs could be Prussian blue analogs and Si- and



Mn-based chemistries. Some of these CAMs perform even better than commercial 
LIB CAMs used as benchmark here. 
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18.7.2 MCDA Procedure 

The challenges of conducting MCDA sustainability assessment (see Chap. 2) 
sharpen when dealing with early-stage technologies. The following paragraphs 
elaborate on them. 

Selection of Criteria The experience with existing energy technologies facilitates 
the identification of the sustainability issues associated with this decision problem, 
e.g., high CO2 emissions, social acceptance, and resources availability. In this use 
case, this task is limited by the availability of data to compare the impacts of the 
energy technologies shrinking the potential set of criteria to the mentioned three. 
Values taken from literature were used to perform calculations, e.g., specific energy 
values and CAM production costs taken from the literature and estimation of 
precursor price via stoichiometric calculations. High effort was required for this 
task, and yet the uncertainty of the results is still very high due to the low TRL of the 
technologies and lack of robust primary data. Non-existing LCA, unknown social 
impacts, and volatile market prices challenge the application of MCDA for emerging 
technologies. Existing methods like prospective LCA could play an important role in 
this task [26, 47, 53], providing a systematic methodology for obtaining data. 

MCDA Method Selection The use case demonstrates that the application of 
low-compensatory methods such as PROMETHEE II can be facilitated through 
the use of software and existing approaches to (initially) determine threshold values 
(preference parameters, p and q). In this type of problem, uncertainty analysis should 
be conducted carefully. The approach used here represents a deterministic MCDA 
with sensitivity analysis. However, sustainability assessment of emerging materials/ 
technologies might require stochastic MCDA methods ([42]; [55]). When searching 
MCDA methods that fit to the sustainability assessment requirements and account 
for the uncertainty in the performance data (using Cinelli, Kadziński, Miebs, 
Gonzalez, and Słowiński [14]), the following candidates result: fuzzy 
PROMETHEE II [20], PANSEM II [2], SMAA III (stochastic multicriteria accept-
ability analysis) [52], and SMAA-PROMETHEE [15]. Van Schoubroeck et al. [55] 
present an example of application of SMAA-PROMETHEE for sustainability 
assessment of emerging biotechnologies. 

Stakeholder Integration The integration of material researchers (experts) within 
the MCDA process was very important for the identification of alternatives and 
accessing the laboratory data. However, the low diversity within the group of 
stakeholders hinders deeper reflections on sustainability. Integration of a diverse 
group of stakeholders is not only relevant for sustainability but also for technology 
development [40]. To the best of the author’s knowledge, there are not so many



studies on applications of MCDA approaches to emerging technologies. Some 
examples found show the integration of stakeholders from academia, government, 
and industry [5, 55]. Further research should be conducted on determining how 
diverse the group of stakeholders within sustainability assessment of emerging 
technologies could be. 
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18.8 Conclusion 

In this chapter, we have presented the general requirements for MCDA sustainability 
assessment and an overview of their application in the field of batteries. Some recent 
applications of MCDA in the field of batteries show diverse approaches with a trend 
for deterministic, compensatory MCDA methods and inclusion of stakeholders. 
Available data from a use case of early-stage cathode material screening for sodium 
ion batteries was selected to illustrate and analyze the suitability of MCDA for 
assessing emerging battery technologies. In this type of decision problems, identi-
fying the sustainability criteria is not as challenging as evaluating the performance of 
the alternatives. The lack and/or the high uncertainty of the performance data, e.g., 
laboratory data, calculations based on literature values, makes it difficult not only to 
evaluate but to derive concrete conclusions after conducting MCDA. However, the 
results obtained can be used as indicative to identify promising materials/technolo-
gies that could potentially be taken forward in their TRL. 

Further development or improvement of the presented model would include 
exploring different alternatives to address uncertainty in weights and values, such 
as evaluation of ensembles, probability distributions, or using suitable stochastic 
MCDA methods (e.g., SMAA- and fuzzy PROMETHEE). Expanding the categories 
of stakeholders and its participation on the MCDA sustainability assessment is 
needed to improve the task of preference modeling. 

In the context of sustainability assessment, it is very important to understand 
MCDA as an iterative process in which information, priorities, and stakeholders 
(categories) are constantly changing. The use of systematic approaches and special-
ized MCDA software is very important to keep pace with this task. 
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