
 



Land Carbon Cycle Modeling

Carbon moves through the atmosphere, through the oceans, onto land, and into ecosystems. This cycling has a large effect on 
climate –  changing geographic patterns of rainfall and the frequency of extreme weather –  and is altered as the use of fossil 
fuels adds carbon to the cycle. The dynamics of this global carbon cycling are largely predicted over broad spatial scales and 
long periods of time by Earth system models. This book addresses the crucial question of how to assess, evaluate, and estimate 
the potential impact of the additional carbon to the land carbon cycle. The contributors describe a set of new approaches to 
land carbon cycle modeling for better exploring ecological questions regarding changes in carbon cycling; employing data 
assimilation techniques for model improvement; doing real-  or near- time ecological forecasting for decision support; and 
combining newly available machine learning techniques with process- based models to improve prediction of the land carbon 
cycle under climate change. This new edition includes seven new chapters: machine learning and its applications to carbon cycle 
research (five chapters); principles underlying carbon dioxide removal from the atmosphere, contemporary active research and 
management issues (one chapter); and community infrastructure for ecological forecasting (one chapter).

Key Features

• Helps readers understand, implement, and criticize land carbon cycle models
• Offers a new theoretical framework to understand transient dynamics of the land carbon cycle
• Describes a suite of modeling skills –  matrix approach to represent land carbon, nitrogen, and phosphorus cycles; data 

assimilation and machine learning to improve parameterization; and workflow systems to facilitate ecological forecasting
• Introduces a new set of techniques, such as semi- analytic spin- up (SASU), unified diagnostic system with a 1- 3- 5 

scheme, traceability analysis, and benchmark analysis, and PROcess- guided machine learning and DAta- driven modeling 
(PRODA) for model evaluation and improvement

• Reorganized from the first edition with seven new chapters added
• Strives to balance theoretical considerations, technical details, and applications of ecosystem modeling for research, 

assessment, and crucial decision- making
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Preface to the First Edition

Yiqi Luo
School of Integrative Plant Science, Cornell University, Ithaca, USA

Benjamin Smith
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia

The ecosystems of the vegetated land surface are critical to 
the health of the planet, its biodiversity, and people, providing 
benefits, so- called ecosystem services, on which human health, 
well- being and economic activity rely. The carbon cycle 
connects ecosystems on land to the atmosphere and the climate 
system. Rising temperatures, changing rainfall distributions, 
and more frequent extreme weather impact ecosystem services, 
often in a negative way. Rising atmospheric carbon dioxide 
concentrations –  the main proximal cause of climate change –  
also affect ecosystems directly, enhancing photosynthesis and 
plant water- use efficiency in experimental settings, and 
almost certainly in nature. Due to a small imbalance between 
global photosynthesis, absorbing carbon dioxide from the 
atmosphere, and the return flux (mainly decomposition of 
litter and soil carbon) from the land to the atmosphere, a 
sizeable proportion of anthropogenic CO2 emissions are 
reabsorbed by ecosystems –  the land carbon sink. A key 
goal of international climate policy, to supplement fossil fuel 
reductions with negative emissions over a transitional period, 
largely relies on management interventions to preserve and 
enhance the land carbon sink. The land carbon cycle, then, is 
central both to mitigation (emissions reduction) and adaptation 
(management of climate impacts and risks) responses and 
policies. Developing effective measures requires predictions 
of how the system may be expected to respond under various 
scenarios. For this, of course, we need models.

While relevant to supporting climate science and policy, 
modeling is also gaining “market share” in environmental and 
ecological research generally. Several forces are involved in 
this trend. Ever increasing volumes of readily available data 
from observational and experimental networks are making it 
easier to parameterize and robustly validate models. Cheaper, 
more powerful computers, including cloud computing 
services, bring complex numerical algorithms and data 
assimilation methods within reach for many applications. 
New statistical and optimization methodologies have been 
developed and made accessible through convenient packages 
and toolboxes, useful not only to modelers but as platforms 
for collaboration between modelers and empirical scientists.

This book provides an overview of the current state of 
the land carbon cycle modeling field, exemplifying recent 
developments as described above. The book is built upon a 

summer training course, New Advances in Land Carbon Cycle 
Modeling, held annually since 2018 at Northern Arizona 
University. Over the four years the course has been offered, 
attendees from 32 countries in six continents have undertaken 
the training. The first training course in 2018 attracted about 
40 participants, with a similar number in 2019. Due to the 
pandemic of COVID- 19, the in- person course was replaced 
by an online version in 2020. Originally, we planned to have 
25 attendees, but ended up with 85 participants from six 
continents. This grew further to 150 virtual attendees in 2021.

This book is mainly based on 31 lectures (including pre- 
training lectures) and ten practices prepared for the New 
Advances in Land Carbon Cycle Modeling training course in 
2020 and 2021.

The book offers cutting- edge knowledge and techniques 
on carbon cycle science and modeling. We have designed ten 
training units in such a way that everyone can gain regardless 
of their prior background in modeling. The chapters range from 
theoretical foundation of land carbon cycling, traceability, 
and data assimilation to machine learning and ecological 
forecasting. Overall, four techniques are covered: the matrix 
approach to land carbon modeling; data assimilation for 
data- driven modeling; ecological forecasting; and combined 
machine learning with data assimilation to improve model 
prediction.

The organization of the book aligns with the training 
course, which has two blocks. The first block in units 1– 5 is 
about the matrix approach to land carbon cycle modeling. The 
second block in units 6– 10 is on data assimilation, ecological 
forecasting, and machine learning.

The matrix approach introduced in units 1– 5 first describes 
a matrix equation. It is demonstrated that the matrix equation 
can unify land carbon cycle models; offer a new theoretical 
framework to guide carbon cycle research; help accelerate 
computational efficiency for spin- up; offer new analytics to 
diagnose model performance; and allow data assimilation 
of complex models. Five skills are covered in units 1– 5, 
namely: drawing the carbon flow diagram and writing carbon 
balance equations of a model; developing matrix models 
from carbon balance equations and coding the matrix model; 
adding diagnostic variables to matrix models; adding semi- 
analytic spin- up (SASU) algorithms; and traceability analysis.
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The matrix equation can be used to derive three diagnostic 
variables: carbon input, residence time, and carbon storage 
potential. The matrix equation can also be used to get an 
analytic solution of steady- state pool sizes, leading to SASU. 
The matrix equation is the foundation for traceability analysis. 
The chapters of units 1– 5 explain these new skills.

Units 6– 10 cover data assimilation, ecological forecasting, 
and machine learning. To realistically forecast ecological 
responses to climate change, three elements all need to be 
perfectly aligned: model structure, model parameterization, 
and the external forcing variables. The matrix approach 
discussed in units 1– 5 is about process- based model structure. 
Data assimilation and machine learning in units 6– 8 and 
10 will help improve model parameterization. EcoPAD, a 
workflow system that is described in unit 9, will link real- time 
forcing to model forecasting.

Chapters in unit 6 describe the seven- step procedure of 
data assimilation. The seven steps are: defining a research 
objective; acquiring data sets; using one model; developing a 
cost function; minimizing mismatches between modeled and 
observed values with a global optimization method; estimating 
parameters; and predicting ecosystem responses. Chapters in 
units 7 and 8 are about applications of data assimilation to 
the SPRUCE field experiment and satellite observations, and 
evaluation of values of different data sets to constrain models 
and their predictions.

Chapters in unit 9 describe the Ecological Platform for 
Assimilating Data (EcoPAD) framework, which automatically 
ingests data into a model through a data assimilation system 
for ecological foresting.

Chapters in unit 10 introduce machine learning, a 
PROcess- guided deep learning combined with DAta- driven 
modeling (PRODA) approach, and its application to optimize 
parameterization of the CLM5 land surface model.

Most of the chapters are written in such a way as to be 
understandable by readers with minimal modeling background. 
Practices are targeted at a suitable level for such readers. A few 
chapters may require some mathematical background to be 
fully understood. The book offers three appendix chapters on, 
respectively: basic linear algebra; introductory programming 
with Python; and the Carbon Training (CarboTrain) package 
we use as a toolbox for the training course and the practice 
chapter in each unit. Depending on their prior knowledge, 
readers may choose to read these appendix chapters as 
optional supporting material to the chapters in units 1– 10.

All the chapters are accompanied with pre- recorded 
lectures or practice instruction. These pre- recorded videos are 
available at https:// www2.nau.edu/ luo- lab/ downl oad/ 4th_ trai 
ning _ cou rse.php. (Please search for the videos using “ecolab 
Yiqi Luo” if the website is moved away from NAU.) If you 
plan to master skills described in the chapters, you may find 
it useful to read the book chapter; listen to the corresponding 
video; take the quiz at the end of each chapter after watching 
the video; and attempt the practice chapter at the end of each 
unit, following the pre- recorded instruction.

Please be aware that this book does not teach programming 
or how to code a model, nor does it teach how to do 
model development or modification. Readers with limited 
programming experience may, however, find the brief 
introduction to Python coding in appendix 2 useful.

The open access electronic version of this book has been 
made available thanks to financial contributions by Northern 
Arizona University, Lund University, and Oak Ridge National 
Laboratory. Finally, we wish to thank all 22 authors who 
have worked very hard for months to prepare the material 
for this book. We hope that you, the reader, find it useful and 
rewarding.

Yiqi Luo, Ben Smith, September, 2021.
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Preface to the Second Edition

Yiqi Luo
School of Integrative Plant Sciences, Cornell University, Ithaca, USA

Benjamin Smith
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia

The Second Edition expands the coverage of this book to include 
newly developed modeling techniques within carbon cycle 
research, particularly within the realm of machine learning and 
artificial intelligence (AI). The second edition has one new unit 
(Unit 9) on machine learning applications within carbon cycle 
research, replacing a unit from the first edition on the value of 
data to constrain models and their predictions. The new unit 
has four chapters, respectively covering machine learning in 
carbon cycle research (Chapter 33), Long Short- Term Memory 
network (Chapter 34), machine learning to predict and explain 
complex carbon cycle interactions (Chapter 35), and a practice 
on applications of random forest machine learning to predict 
soil organic carbon content (Chapter 36).

In addition, this edition also adds new chapters on 
community cyberinfrastructure for ecological forecasting –  
added to the unit on ecological forecasting (Chapter 31) –  and 
on hybrid modeling, added to the PRODA unit (Chapter 38).  
The new chapter Principles Underlying Carbon Dioxide 
Removals from the Atmosphere highlights carbon dioxide 
removal (CDR) activities as a growing application domain 

for carbon cycle modeling and data synthesis (Chapter 11). 
It replaces an earlier chapter on sensitivity analysis with the 
matrix model from the first edition of the book. There are also 
updates and minor corrections to several other chapters. Pre-
recorded videos that are accompanied with all the chapters 
can be accessed via https://ecolab.cals.cornell.edu/?workshop. 
(Please search for the videos using “ecolab Yiqi Luo” if the 
website is moved away from Cornell University.)

We greatly appreciate the efforts of Dr. Lifen Jiang in 
supporting the editors in getting this edition over the line.

We have been heartened by the generally positive response 
to the first edition of this book, including from participants 
of the international training course, New Advances in Land 
Carbon Cycle Modeling, for which it constitutes a central 
resource. The feedback received has informed the revised 
scope and content of this current edition. We hope it continues 
to provide a useful and accessible resource that supports the 
growing interest in and use of quantitative approaches across 
carbon cycle science.

Yiqi Luo, Ben Smith, October, 2023.
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Fundamentals of Carbon Cycle Modeling
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FIGURE 1.1 Overrunning of the deserted village of Houtouwan by vegetation approximately 20 years after dwellers left the island that is 
situated off the east coast of China. Vegetation taking over after anthropogenic and natural disturbances are removed is caused by the internal 
processes of the carbon cycle that drive an ecosystem toward an attractor.

Theoretical Foundation of the Land 
Carbon Cycle and Matrix Approach

Yiqi Luo
Cornell University, Ithaca, USA

The land carbon cycle has been extensively studied yet its 
fundamental properties have not been fully understood. 
This chapter offers empirical evidence to demonstrate a 
general dynamic pattern that the land carbon cycle changes 
in a direction toward a moving attractor in response to global 
change. This general pattern is captured by a matrix equation. 
The relatively simple matrix equation can unify land carbon 
cycle models, accelerate computational efficiency for spin-up, 
diagnose model performance with new analytics, enable data 
assimilation with complex models to improve their predictive 
skills, and guide carbon cycle research with a new theoretical 
framework of dynamic disequilibrium.

CONVERGENCE OF THE LAND CARBON CYCLE

In the late 2010s, a deserted village, Houtouwan, on an island 
off the east coast of China was discovered to be completely 
overrun by vegetation approximately 20 years after dwellers 
left (Smithsonian Channel, The Abandoned Chinese Village 
that Nature Reclaimed) (Figure 1.1). What might happen to 
this place in another 20 years or even longer? It is likely that 
trees will gradually take over to form a coastal forest.

In fact, Mother Nature would overrun all urban places 
in the world if human disturbances were removed. Imagine 
that we could magically remove humans from any highly 

commercialized, heavily human- disturbed urban areas, such 
as Manhattan of New York City or Lujiazui of Shanghai, 
for 300 years: the place would soon be overrun by plants, 
animals, and microbes. Without any human activities, small 
trees would grow from cracks in concrete in five years, most 
of the high- rise buildings would collapse and forests would 
probably take over in 50 years. In 300 years, Manhattan would 
most likely be occupied by a deciduous forest similar to those 
in northeastern USA, and Lujiazui of Shanghai by some 
lowland forests.

Similarly, it has been repeatedly observed how vegetation 
takes over landscapes after natural disturbances occur. For 
example, following the 1988 Yellowstone fires –  massive blazes 
that burned about 1.2 million acres in and around Yellowstone 
National Park –  their size and severity led to a proclamation 
that Yellowstone had been destroyed. In fact, the burned 
landscape was retaken by thriving young lodgepole pine trees 
30 years after the fires (Turner 2018). Secondary succession is 
an ecological term for this entirely natural process. Ecosystem 
succession has been extensively studied, mainly from the 
perspectives of species dynamics and community structures.

From a carbon cycle perspective, ecosystems converge 
toward some attractor states after anthropogenic and natural 
disturbances are removed. (Note that the states that ecosystems 
converge toward are moving attractors under global change. 
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4 Land Carbon Cycle Modeling 2e

This point will be discussed later.) This convergence is 
done by “Mother Nature” and actually results from the 
internal processes of the land carbon cycle. What, then, are 
those internal processes? And, how can we mathematically 
represent them?

DONOR POOL- DOMINANT TRANSFER AND 
OTHER PROPERTIES THAT GOVERN THE LAND 
CARBON CYCLE

Before we answer those questions, let us briefly review the land 
carbon cycle. Carbon enters an ecosystem via photosynthesis. 
Photosynthetic products are partly allocated for autotrophic 
respiration and partly for growth of leaf, stem, and root. Once 
a plant or its parts die, they become litter and enter the litter 
pools. Litter decomposes, partly released to the atmosphere via 
heterotrophic respiration and partly incorporated into soil to 
become soil organic matter. Soil organic matter goes through 
decomposition and stabilization over and over again, driving 
soil carbon cycling. We will examine some of these processes 
to see what the best equation would be to represent them.

Let us first look at litterfall in which dead leaves fall from 
the tree canopy to the ground. To make it a subject of study, 
we define two new terms: donor pool and recipient pool. The 
donor pool donates litter whereas the recipient pool receives 
litter (Figure 1.2a). Litterfall is a rate process that moves 
carbon from the donor pool to the recipient pool. In this case, 
the rate of litter falling is proportional to the amount of litter 
in the donor pool while the amount of litter in the recipient 
pool has no effect on the rate of litterfall at all. Thus, the rate 
of litterfall is controlled by the donor pool.

The rate of litterfall, donated by dX(t)/ d(t), equals the donor 
pool size, X(t), times a coefficient (k) as:

 
dX t

dt
kX t

( )
= ( ) 1.1

This equation describes the donor pool- dominated carbon  
transfer (Figure 1.2a). Litterfall in the real world is also  
affected by wind and other environmental conditions over  
seasons. Modelers usually use an environmental scalar, ξ(t),  

FIGURE 1.2 Macroscopic patterns of carbon transfer processes and distributions. The carbon transfer processes include (a) litterfall; 
(b) decomposition of ragweed (Ambrosia psilostachya) litter (Cheng et al. 2010); (c) soil organic carbon decomposition from incubation at 
35 °C (replotting the data from Haddix et al. 2011); (d) rates of absolute carbon (C) change during the forest succession (Yang et al. 2011); 
(e) changes in soil organic matter after agricultural cultivation in Alberta, Canada (extracted data from Doomaar 1979); and (f) a vertical 
distribution of soil carbon with depth in Malawi, Africa, from a soil carbon database. The macroscopic patterns of almost all carbon transfer 
processes and distributions are governed by donor-pool dominated carbon transfer and can be described by the first- order decay function.
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to account for the effects of phenology, wind, and other  
environmental factors on litterfall as:

 
dX t

dt
t kX t

( )
= ( ) ( )ξ  1.2

Once litter has fallen on the ground, it decomposes. Litter 
decomposition is usually studied with litterbags or wood logs on 
the ground or in air. Researchers initiate a study with a certain 
amount of litter in litterbags, place them in the field, then collect 
a subset of litterbags once every few weeks, find the dry weight, 
and calculate the dry weight remaining in comparison with 
the initial amount. A typical data set of litter decomposition 
shows that mass remaining becomes less and less as sampling 
time goes on (Figure 1.2b). This type of data set can usually 
be fitted by a first- order decay curve as in Equation 1.1. Thus, 
litter decomposition is often described by the same donor pool- 
dominated carbon transfer equation. In this case, k is often 
called the litter decay constant. Actually, k varies with litter 
type and location. Zhang et al. (2008) synthesized nearly 300 
datasets from 70 studies all over the world. The study found that 
Equation 1.1 fits all data sets very well although the value of k 
greatly varies with litter types and environment. Cai et al. (2018) 
synthesized more than 1,600 data sets of straw decomposition 
for six types of crops. Their study fits a three- exponent equation 
to all the data sets. Thus, straw decomposition also follows the 
donor pool- dominated carbon transfer.

Another important process of the carbon cycle is soil 
organic carbon (SOC) decomposition. SOC decomposition 
is usually studied by soil incubation. That is, researchers 
collect soil samples from the field and put the samples in jars 
for a period of time. They then collect gas samples once in a 
while to measure the amount of carbon released from the soil 
sample through microbial respiration. Data are usually plotted 
either by measured CO2 release or cumulative CO2 released 
on the y- axis with time on the x- axis (Figure 1.2c). Almost 
all data follow a similar pattern. This pattern also can be well 
described by donor pool- dominated transfer.

Schädel et al. (2013) fitted data of SOC decomposition 
with one- , two- , and three- pool models. A one- pool model 
is developed to simulate SOC decomposition based on the 
assumption that all organic carbon compounds in the soil are 
homogeneous in term of decomposability. A two-  or three- pool 
model assumes that soil organic compounds are heterogeneous 
and need different coefficients to represent decomposition of 
different cohorts (i.e., pools) of organic compounds. Schädel 
et al. (2013) found that two or three- pool models work well for 
SOC decomposition. Schädel et al. (2014) synthesized more 
than 120 data sets from permafrost regions. Xu et al. (2016) 
synthesized nearly 400 data sets from different locations all 
over the world. Both of the latter studies found that all their 
data sets (more than 500) can be well fitted by two or three- 
pool models. This suggests that the donor pool- dominated 
carbon transfer equation also works for SOC decomposition.

Yang, Luo, and Finzi (2011) synthesized more than 124 
studies of soil carbon dynamics at different stages of forest 

succession. During the course of secondary succession, some 
forests gain carbon and some lose carbon (Figure 1.2d). In either 
case, carbon dynamics still can be described by the donor- 
pool dominated carbon transfer. Moreover, the soil organic 
matter remaining after long- term cultivation (Figure 1.2e) 
and the vertical distribution of soil organic carbon with depth 
(Figure 1.2f) both follow monotonic patterns, consistent with 
the donor- pool dominated carbon transfer.

So far, we have examined macroscopic patterns of key 
carbon transfer processes (e.g., litterfall, litter decomposition, 
and SOC decomposition) and distributions. These macroscopic 
patterns are very typical as almost ubiquitously revealed by 
thousands of field and laboratory studies. The macroscopic 
patterns can be well described by the donor pool- dominated 
carbon transfer equation.

The donor pool- dominated carbon transfer, then, is one 
of the four fundamental properties that govern dynamics 
of the land carbon cycle. The other three properties are 
(1) photosynthesis as the primary carbon influx pathway, 
(2) compartmentalization of carbon processes into plant, litter, 
and soil, and (3) the first- order kinetics of carbon transfer from 
the donor pool (Luo and Weng 2011) (Equation 1.1). Among 
the four properties, the donor pool- dominated carbon transfer 
is the most important property in determining the trajectory 
of the land carbon cycle (Luo, Keenan, and Smith 2015). If 
this property is altered in our model, the carbon cycle will not 
behave as we have observed in the real world.

The four properties fundamentally characterize the internal 
processes of the land carbon cycle. The internal processes 
drive the land carbon cycle to converge toward an attractor 
(Luo et al. 2017). This is the reason why places like Manhattan 
could become deciduous forests and Liujiazui of Shanghai 
could become lowland forests if human disturbances were 
removed. This convergence is applicable to almost any place 
on Earth.

Active research is going on to incorporate microbial 
processes and traits into carbon cycle models to account for 
the important role of microbes in catalyzing decomposition 
of soil organic matter (Chandel et al. 2023). Many of the 
microbial models were developed on purpose because the 
responsible researchers suspected that models based on first- 
order kinetics of carbon transfer from donor pools were too 
simple. However, these newly developed microbial models 
usually represent decomposition processes using nonlinear 
functions, such as Michaelis- Menten equations. Liang et al. 
(2018) tested different types of decomposition functions (e.g., 
first- order kinetics, Michaelis- Menten, and reverse Michaelis- 
Menten functions) with 84 data sets and found that the first- 
order kinetics function fit the observed macroscopic patterns 
of SOC decomposition better than the Michaelis- Menten or 
reverse Michaelis- Menten functions. It remains challenging to 
develop litter and SOC decomposition models that not only 
adequately represent our understanding of microbial processes 
but also are consistent with the macroscopic patterns observed 
from almost all experimental studies.

Next, we examine how well these four properties are 
represented in models.

 

 

 

 

 

 

 

 

 

 

 



6 Land Carbon Cycle Modeling 2e

THE MATRIX APPROACH TO MODEL  
REPRESENTATION OF THE LAND 
CARBON CYCLE

The four properties identified above are all well represented 
in models as long as the models use a so- called pool- and- flux 
or box- and- arrow structure. In this structure, we use pools to 
represent different carbon compartments and fluxes to represent 
carbon transfer among compartments or carbon input into and 
output out of the ecosystem. For this structure, we need one 
carbon balance equation to trace how much carbon gets into one 
pool and how much carbon leaves the pool. For example, the 
leaf pool, X1, receives carbon from photosynthesis partitioned 
to leaves and loses carbon by senescence (Figure 1.3). Thus, we 
need one equation to calculate the amount of carbon resulting 
from photosynthesis and the amount of carbon lost to litterfall. 
The equation to describe the dynamics of carbon balance in the 
leaf pool over time can be represented by:

 
dX t

dt
b t t k X t1

1 1 1

( )
= ( ) − ( ) ( )µ ξ  1.3

where μ(t) represents the amount of carbon input from net 
primary production (NPP, photosynthesis minus autotrophic 
respiration), b1 is the carbon partitioning from NPP to leaves, 
k1 is the rate of senescence, and ξ(t) is an environmental 

modifier. Thus, the change in the carbon pool size in the leaf 

pool 
dX t

dt
1 ( )





 equals carbon input to the leaf pool b1μ(t) 

minus carbon leaving the leaf pool ξ(t)k1X1(t).
Extending this idea to all the eight pools of the Terrestrial 

Ecosystem (TECO) model, we have eight carbon balance 
equations to track carbon cycling in the ecosystem as:
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 1.4

where Xi, i =  1, 2, …, 8, is the amount of carbon, respectively, 
in three plant, two litter, and three SOC pools; b1, b2, and b3 
are plant partitioning coefficients to leaf, root, and wood; ki, 
i =  1, 2, …, 8, is the rate of carbon leaving the eight pools (i.e., 
process rate or exit rate); aij, i =  1, 2, …, 8, j =  1, 2, …, 8, is the 
transfer coefficient of carbon from pool j to pool i; and ξ(t) is 
the environment modifier. The eight carbon balance equations 
in Equation 1.4 can be reorganized into a matrix form as:

FIGURE 1.3 A generalized matrix model of the terrestrial carbon cycle. (A) The basic carbon cycle processes are represented by four 
fundamental properties for all terrestrial ecosystems. (B) The four properties have been incorporated into terrestrial carbon cycle models with 
a pool- and- flux structure. (C) The structure is typically encoded using a set of balance equations with carbon input into and output from each 
pool. (D) The balance equations of terrestrial carbon cycle models can be converted to a matrix equation. Thus, the matrix equation can be 
considered as a general system equation (or a dynamical equation) for the terrestrial carbon cycle.
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In this equation, a53 equals 1 as all the carbon from the wood 
pool goes to the structural litter pool. The above matrix 
equation can be succinctly expressed as:

 
d

d
B

X t

t
t A t KX t

( )
= ( ) + ( ) ( )µ ξ  1.6

where X(t) is a vector of pool sizes, B is a vector of 
partitioning coefficients from carbon input to each of the 
pools, μ(t) is the carbon input rate, A is a matrix with −1 
in the diagonal and transfer coefficients in the off- diagonal 
to quantify carbon movement along the pathways, K is a 
diagonal matrix of process rates (mortality for plant pools 
and decomposition coefficients for litter and soil pools) 
from donor pools, and ξ(t) can be a scalar or a diagonal 
matrix of environmental modifiers to represent responses of 
the carbon cycle to changes in temperature, moisture, and 
oxygen. When ξ(t) is a diagonal matrix, the environmental 
modifiers can be the same for all the pools or different for 
individual pools.

Equation 1.6 is generalizable to represent land carbon 
cycle models that follow first- order kinetics. It describes net 
carbon pool change, dX/ dt, as a difference between carbon 
input μ(t), distributed to different plant pools via partitioning 
coefficients B, and carbon loss through the transformation 
matrices (Aξ(t)K) among individual pools X(t).

As Equation 1.6 is generic to unify the land carbon cycle 
models that follow first- order kinetics, any single model 
is a special case of the generic equation. For example, the 
Community Land Model version 4.5 (CLM4.5) incorporates 
carbon transfer among seven pools per soil layer over 10 
layers (Koven et al. 2013). The seven pools in each layer are 
metabolic litter, cellulose litter, lignin litter, coarse woody 
debris, fast soil organic matter, slow soil organic matter, and 
passive soil organic matter. Carbon vertical transfers mainly 
occur between one layer and the next layer down. Huang et al. 
(2018) converted the soil carbon module of CLM4.5 into one 
matrix equation as:

 
d

d

X t

t
B t A t KX t V t X t

( )
= ( ) + ( ) ( ) + ( ) ( )µ ξ  1.7

The matrix equation above has three items on the right side, 
i.e., carbon input and plant partitioning, carbon transfers and 
release, and vertical movement. The dimension of the matrix 
equation is 70 for 70 pools. Transfer matrix A, for example, is a 
7×7 block matrix. Each element of the block matrix is a 10×10 
matrix. The vertical movement matrix, V(t), includes carbon 
transferring to the next layer up and the next layer down.

Equation 1.7 shares similar mathematic properties   
with Equation 1.6. Equation 1.7 has 70 dimensions whereas 
Equation 1.6 has eight dimensions. Equation 1.7 describes carbon 
transfers among 70 pools over 10 soil layers where Equation 1.6 
describes carbon transfers among eight pools, including plant, 
litter, and soil pools without explicitly defined soil layers.

Lu et al. (2020) converted the CLM5 carbon and nitrogen 
cycles into four matrix equations, two for vegetation carbon and 
nitrogen cycles and two for soil carbon and nitrogen cycles (see 
Chapter 6). The vegetation carbon cycle in CLM5, for example, 
contains 18 pools, including six tissue pools: leaf, fine root, live 
stem, dead stem, live coarse root, and dead coarse root. Each 
tissue pool is accompanied by a storage pool and a transfer 
pool. A crop grain tissue pool, accompanied by a grain storage 
pool and a grain transfer pool, is added when the crop model is 
used. Vegetation carbon dynamics are controlled by phenology 
for the leaf onset and offset dates according to air temperature 
and soil water conditions. Harvest and fire remove part of plant 
carbon from ecosystems and part goes to litter pools according 
to the harvest rate. Natural death moves carbon from plant pools 
to litter pools at defined mortality rates. The fire module triggers 
the occurrence of occasional fire events based on the amount 
of the fuel (i.e., litter) and the soil moisture. When fire occurs, 
carbon in plant pools is partly released to the atmosphere and 
partly transferred to the litter pools based on their tissue quality 
and burned area. Thus, the vegetation carbon dynamics are 
represented by the following matrix equation:

 

d

d
          

X

t
B t A t K A t K

A t K

v
phc phc gmc gmc

fic fic

= ( ) + ( ) + ( )(
+ ( )

µ

XX t
v )( )  1.8

Here, Xv is an n- entry vector, representing vegetation carbon 
pool size. K is an n × n diagonal matrix. Its subscripts phc, gmc, 
and fic indicate carbon processes related to phenology, gap 
mortality (i.e., harvest from land use and natural mortality), and 
fire, respectively. The diagonal entries are the process (or exit) 
rates of all vegetation carbon pools due to phenology (Kphc), 
gap mortality (Kgmc), and fire (Kfic). Once converted, the matrix 
equations make CLM5 more modular, analytically clear, easily 
diagnosed, and computationally more efficient for spin- up.

Equation 1.8 similarly shares mathematical properties with 
Equation 1.6. Equation 1.8 uses three processes: phenology, 
mortality, and fire, to control carbon transfers among 
18 vegetation pools whereas Equation 1.6 only uses the 
environmental scalar ξ(t) to control carbon transfer.

 

 

 

 

 

 

 



8 Land Carbon Cycle Modeling 2e

Some other global models, such as CABLE, LPJ- GUESS 
and ORCHIDEE, have also been converted to matrix 
equations. Once a model is converted to a matrix equation, 
it appears quite simple; a first- order differential equation. 
In fact, the equation is not that simple as it represents a 
nonautonomous system, which is discussed below. With this 
unified matrix equation, we can explore the general properties 
of carbon models and the general behavior of the land carbon 
cycle. This is what we call the matrix approach.

Note that expression of a land carbon cycle model in 
a matrix form may not, in and of itself, represent much 
significant advance in carbon cycle research. The ability to 
express carbon dynamics in a matrix form was recognized 
several decades ago (e.g., Lasaga 1980, Sundquist 1985). The 
matrix models are merely used to represent a set of differential 
equations in a matrix form to describe carbon cycling among 
multiple pools of the earth system (Bolin and Eriksson 1958). 
What we propose is to take the matrix expression to unify 
land carbon cycle models, develop a theoretical framework to 
guide carbon research, pinpoint sources of model uncertainty 
(Chapters 17 and 18), accelerate spin- up of land carbon cycle 
models by tens of times (Chapters 14 and 16), and enable data 
assimilation (Chapter 38) (Luo et al. 2022).

The matrix representation can be adapted to accommodate 
nonlinear dynamics. For instance, Equation 1.6 can be 
modified for a nonlinear microbial model as:

 
d

d

X t

t
B t t A t t K t X t

( )
= ( ) ( ) + ( ) ( ) ( ) ( )µ ξ  1.9

Thus, carbon input U, plant carbon partitioning B, transfer 
coefficients A, and process rates K all are potentially functions 
of pool sizes X. Carlos Sierra’s group from the Max Planck 
Institute for Biogeochemistry in Germany have converted 
many nonlinear microbial models into matrix equations and 
explored their general behavior (Sierra and Müller 2015, 
Metzler, Müller, and Sierra 2018).

THE PARADOX OF THE MATRIX EQUATION AND 
NONAUTONOMOUS SYSTEMS

While we argue that all the land carbon cycle models that 
follow first- order kinetics can be converted into a unified 
matrix form, the general equation is mathematically extremely 
simple (e.g., Equation 1.6). A paradox arises: how can such a 
simple equation represent the extremely complex phenomena 
of the carbon cycle observed in the real world?

To explore this paradox, we organized a workshop in 
2012, sponsored by US National Institute for Mathematical 
and Biological Synthesis, NIMBioS. We invited 20 
applied mathematicians and 20 ecologists to explore the 
paradox: why is the matrix equation (Equation 1.6) extremely 
simple whereas carbon cycle phenomena observed in the real 
world can be very complex? We presented this paradox to 
the workshop participants. In the first couple of days, it was 
very difficult to convince the group about this issue. Some 

ecologists said that ecosystems are complex and cannot be 
described by such a simple equation. They urged us to re- 
examine this mathematical expression. We told them that 
we have used thousands of data sets to verify the equation. 
The applied mathematicians told us that this equation is too 
simple to be interesting enough for them to do any study with. 
They suggested that we add a nonlinear term in the equation. 
We told them that if a nonlinear term is added to the equation, 
it no longer describes the land carbon cycle as revealed by 
data. We were stubborn and kept pointing out the paradox. 
After one and a half days, Dr. James Cushing, an applied 
mathematician from the University of Arizona, told us that 
the system we were studying is probably a nonautonomous 
system.

Nonautonomous systems have been a subject of 
mathematics research in recent decades. They comprise 
dynamical systems with input and parameters being time 
dependent. The matrix equation of the land carbon cycle 
as expressed by Equation 1.6, indeed, has its inputs and 
parameters being time dependent.

With this new insight, we organized a working group 
to study the nonautonomous system, sponsored once 
again by NIMBioS. The working group consisted of a few 
applied mathematicians and a few ecologists. One of the 
group members, Dr. Martin Rasmussen, a professor from 
Imperial College London, had coauthored two books on 
nonautonomous systems. He taught us a lot about how to 
study nonautonomous systems. We worked together over 
3 years and had four meetings.

The working group ultimately made a few key findings.    
First, it found that nonlinear models of soil carbon 
decomposition (e.g., Equation 1.9) generate unrealistic 
responses to small perturbations and carbon input (Wang et al. 
2014, 2016). A stability analysis and numerical simulations 
were conducted for two nonlinear microbial models (a two- pool 
model and a three- pool model) of soil carbon decomposition. 
Both models exhibit dampening oscillatory responses to small 
perturbations. In addition, the equilibrium pool sizes of litter 
or soil carbon are insensitive to carbon inputs in the nonlinear 
microbial models. This oscillatory behavior and insensitivity 
of soil carbon to carbon input exhibited by the nonlinear 
models have not been observed in the real world.

Second, we identified a mathematical foundation through 
proof of theorems on exponential stability to explain 
observed convergence of the land carbon cycle (Rasmussen 
et al. 2016). The land carbon cycle can be considered as a 
linear nonautonomous compartmental system described by a 
dynamical equation (i.e., Equation 1.6). The equation can be 
rewritten as:

 
d

d

X t

t
B t G t X t

( )
= ( ) + ( ) ( )µ  1.10

where

 G t A t K( ) = ( )ξ  

 

 

 

 

 

 

 

 

 

 



9Theoretical Foundation of Land Carbon Cycle and Matrix Approach

Matrix G is invertible. The entries gij (t) of G satisfy three 
conditions. First, there is always carbon to leave any individual 
pool as gii (t) < 0 for all i. Second, there is either no carbon 
flow pathway or some amount of carbon moving from pool 
j to pool i (i.e., gij (t) ≥ 0 for all i ≠ j). Third, carbon exiting 
pool i is either all going to other pools or some going to other 
pools and some being lost from the system via respiration 

(i.e., 
i

d

ij
g t

=
∑ ( ) ≤

1

0 for all j). As the land carbon cycle satisfies 

the three conditions, the system is exponentially converging 
to a time- dependent attractor, which is very useful for our 
understanding of predictability of the land carbon cycle as 
discussed below.

The working group also found a mathematical 
representation for a transient dynamical equation of the land 
carbon cycle (Luo et al. 2017), which is discussed in the last 
section of this chapter.

PREDICTABILITY OF THE LAND   
CARBON CYCLE

In the very beginning of this chapter, we showed convergence 
of the land carbon cycle toward some attractor states by 
“Mother Nature”. This “Mother Nature” is the exponential 
stability of the carbon cycle equation (Rasmussen et al. 2016). 
The certainty of any ecosystems converging to some attractor 
states after human and natural disturbances reflects the high 
predictability of the land carbon cycle (Figure 1.4).

Given one type of forcing, patterns of carbon cycle dynamics  
are usually highly predictable (Luo et al. 2015). For example,  
periodic climate forcing over seasons usually influences the  
carbon cycle system to generate periodicity in carbon fluxes.  
Similarly, one fire disturbance event generates a pulse release  
of carbon from land to the atmosphere followed by gradual  
recovery. The gradual recovery is well illustrated by vegetation  
overrunning the deserted village in China (Figure 1.1) and  
thriving young lodgepole pine trees recolonizing the burned  
landscape after the 1988 Yellowstone fires (Turner 2018) as  
described in the first section of this chapter.

Global change factors, such as rising atmospheric CO2 
concentration and warming, usually generate gradual but 
directional changes in carbon cycle processes. Shifts in 
fire regimes usually lead to disequilibrium in the carbon 
cycle. And ecosystem state changes, due, for example, 
to land use change from forests to croplands, usually 
result in abrupt changes in ecosystem properties, such as 
photosynthetic capacity and carbon processes that depend 
on it. While many processes of the carbon cycle are highly 
predictable, precisely predicting carbon storage changes 
under climate change requires lots of data to constrain 
model parameterization (Luo and Schuur 2020).

DYNAMIC DISEQUILIBRIUM OF LAND 
CARBON CYCLE

It is well known that the carbon cycle dynamics at steady state 
can be described by two terms: carbon input and residence 
time. The product of these two terms determines the carbon 
storage capacity. However, directional climate change pushes 
the land carbon cycle out of steady state towards dynamic 
disequilibrium (Luo and Weng 2011). To quantify the dynamic 
disequilibrium, we need a third term, in addition to carbon 
input and residence time, to represent the transient dynamics 
of the land carbon cycle. The working group supported 
by NIMBioS worked very hard to find a mathematical 
expression of the transient dynamics. We derived a variety 
of mathematical formulations for the transient dynamics of 
the carbon cycle. One day we came up with the third term 
to describe the disequilibrium of the land carbon cycle. The 
original derivation was very complicated. After a few rounds 
of re- organization, we can now explain the mathematical 
derivation in a very simple way. Basically, we can multiply 
each term of Equation 1.6 by the inverse matrix of Aξ(t)K, 
(Aξ(t)K)−1, and then re- organize the equation to get an equation 
of the form:

 

X t A t K B t

A t K X t

( ) = − ( )( ) ( )
− − ( )( ) ( )′

−

−
ξ µ

ξ

1

1
           1.11

Then, the transient dynamics of the land carbon cycle can be 
expressed by:

 X t t X t
E p( ) = ( ) − ( )τ µ  1.12

where τE is ecosystem residence time as defined by

 τ ξ
E

A t K B= − ( )( )−1  1.13

and Xp is carbon storage potential. It represents the 
disequilibrium term of carbon cycle as:

FIGURE 1.4 Predictability of the terrestrial carbon cycle. 
Responses of the carbon cycle to a given type of external forcing are 
highly predictable.

 

 

 

 

 

 

 



10 Land Carbon Cycle Modeling 2e

 X t A t K X t
p ( ) = − ( )( ) ( )′

−
ξ

1  1.14

The first part in the right side of Equation 1.12 is the carbon 
storage capacity Xc (t) as:

 X t t
c E( ) = ( )τ µ  

This transient equation is also the dynamical equation of the 
land carbon cycle. The term dynamical equation is often used 
in mathematics to describe how the state of a system changes 
over time. Although the formulation of the carbon dynamical 
equation is simple, it represents a nonautonomous system, 
which is influenced by five categories of external forcing 
variables (i.e., periodic climate, disturbance event, disturbance 
regime shift, climate change, and ecosystem state change) 
(Figure 1.4) (Luo et al. 2017). Those external forcing variables 
are superimposed on each other to influence carbon cycle 
dynamics, generating complex phenomena. That is the reason 
why we observe complex phenomena of carbon cycle dynamics 
in the real world. Behind the phenomena is a relatively simple 
dynamical equation to govern the trajectory of the carbon cycle.

In the following  units of this book, we will show you how 
the matrix approach can unify land carbon cycle models, 

accelerate spin- up, offer new analytics for model diagnostics, 
and facilitate data assimilation to improve the fit of models to 
observations.
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modeling. Journal of Advances in modeling Earth System, 14 
(7), DOI: 10.1029/ 2022MS003008

Luo YQ, ES Weng. (2011) Dynamic disequilibrium of the terrestrial 
carbon cycle under global change. Trends in Ecology & 
Evolution, 26, 96– 104.

QUIZ

1 What are the four fundamental properties of internal 
land carbon cycle processes?

2 What are the five categories of external forcing to 
influence the carbon cycle?

3 Briefly describe the donor- pool dominated carbon 
transfer.

4 How do external forcing variables interact with 
internal processes to create the complex phenomena 
of the land carbon cycle?
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FIGURE 2.1 Models are common in everyday life, and serve a similar purpose as in learning, research, and academic interchange, namely 
to simplify complex information and facilitate communication and understanding.

Introduction to Modeling

Benjamin Smith
Western Sydney University, Richmond, Australia

This chapter introduces the concept of a model, and its role 
within modern research methodology and the scientific 
method. Some typical characteristics of the system dynamics 
models used in carbon cycle studies are described, alongside 
examples of different ways they can be applied in ecosystem 
and earth system research. With reference to in-depth 
discussion and examples throughout the book, we introduce 
the workflow of six steps you would typically follow when 
integrating a model within a robust research study design.

WHAT IS A MODEL?

The dictionary definition of a model is an idealized, simplified, 
or down- sized representation of something, the purpose of 
which is to describe, explain, or depict that something that 
the model represents, which we may refer to as its object. The 
model encodes information about certain, well- chosen aspects 
of the object, and its purpose is to convey that information 
to the viewer or user of the model in a clear, concise, and 
potentially useful way. Compared to the phenomenon or 
notion it represents, the model may constitute a simpler, 
more lucid, or even an exaggerated representation of those 
aspects it is designed to convey –  and that is exactly the 
purpose (Figure 2.1). Models induce us to perceive –  and may 
sometimes help us to understand –  something significant about 
the object by discarding extraneous detail and focusing on the 
essential. Thus, models are designed to simplify, explain, and 
communicate, and these aspects are interdependent: a simple 
explanation of a complex idea makes it easier to understand 
and convey to others. Similarly, models are used in learning, 
research, and academic exchange as a way of simplifying, 
explaining or synthesizing, and communicating knowledge, 

data, and ideas, allowing us to put them into practice in 
useful ways.

MODELS IN RESEARCH

Models in a broad sense are fundamental to modern research 
methodology. In its simplest form, a model may be a mental 
construct describing a perceived pattern or relationship; for 
example, the simple observation that an increase in one variable 
tends to be consistently associated with an increase or decrease 
in another. The existence of patterns and relationships in nature 
has surely been noted by people throughout time. The fact 
that certain types of edible plants were often found growing 
in a particular physical situation, or associated with certain 
conspicuous species, would have been important practical 
knowledge in hunter- gatherer societies. From the beginnings 
of agriculture, farmers have taken note of environmental 
events that signaled propitious conditions for sowing and 
harvesting their crops, or that warned of hazards such as 
droughts, freezing conditions, or insect plagues. Philosophers 
of ancient Greece pioneered the documentation of patterns and 
relationships in nature in a systematic way, reasoning about 
their wider significance. In modern terminology, they could be 
said to be the first to employ modeling as part of the research 
process. The ‘models’ of this era were qualitative, mental 
models, describing and potentially suggesting explanations for 
observed patterns and relationships, and expressed in words, 
illustrations, or allegories.

Today, models, whether mental, conceptual, or  
mathematically formalized (Figure 2.2), feature in most  
scientific research. Oreskes (1994) stated: “Numerical  
models are a form of highly complex scientific hypothesis”.  

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1201/9781032711126-3


12 Land Carbon Cycle Modeling 2e

The hypothesis, of course, is an element or ‘step’ in the  
empirical scientific method, pioneered by Galileo in the 17th  
century. The core of this method is the experiment, by which  
observations from the real world are collected and examined  
in such a way as to shed light on the merit of a hypothesis.  
Often, several or many empirical studies addressing the same  
or related hypotheses are needed before scientists achieve  
consensus and the former hypothesis becomes an element of a  
consensus theory or ‘settled science’. The hypothesis behind  
a given study is rarely entirely novel, but represents a step  
beyond the existing frontier of knowledge in the research  
area or field. We can think of the hypothesis as an ‘informed  
guess’ given what we already know thanks to the consensus  
knowledge and theory of the field, accrued over earlier studies  
and scientific discourse.

Similarly, the models we commonly use in research have 
the character that they bring together elements of established 
knowledge with ideas or informed guesses about things we 
do not yet know with certainty, or lack data to express in a 
precise, quantitative way. In this sense, a model provides a 
context or frame for integrating knowledge and observations 
to pose questions about the real world in the form of a testable 
hypothesis. A model is not necessarily ‘true’ or proven, but 
can stand as a formalized or explicit hypothesis of how the 
system under study works.

Many different kinds of models are applied within the 
environmental and earth sciences. This book focuses mainly 
on numerical simulation models, implemented as software 
algorithms and executed on a computer. A familiar class of 
simulation models are the numerical weather prediction 
(NWP) models used by weather service agencies (like the US 
National Weather Service) to produce daily and longer- term 
weather forecasts. These models depend for the (relative) 
accuracy of their predictions on knowledge of the physical 
processes that govern the dynamics of weather, and on 
extensive observations (such as measurements from weather 
stations, balloons, and satellites) both to ‘train’ the model, 
improving its fit with the measurements, and to fix the state 
or ‘initial conditions’. Integrating observations in this way is 
called ‘constraining’ the model.

NWP models are an example of the class of models we 
refer to as being mechanistic or process- based. Many of the 
core equations of an NWP model express known physical 

relationships or laws governing energy balance and motion, 
applied to the three- dimensional atmosphere. Others, such as 
equations governing the formation and behavior of clouds, 
are parameterized, i.e., fitted to observations, but informed 
by physics. This combination of mechanistic (process) 
knowledge and empirical fitting is characteristic for most 
process- based models.

WAYS OF USING MODELS

Perhaps because weather prediction models and forecasts are 
so familiar from daily life, many people, including scientists 
who do not habitually work with numerical models as part of 
their methodological toolbox, tend to think of such models 
primarily as tools for prediction forward in time. Certainly, 
extrapolating beyond the range of observations (in time or 
space) can be one useful way to apply some types of models 
(though not all models are suitable for this). However, this is 
far from being the only way modeling can perform a useful 
role within research methodology. In fact, forward prediction 
and extrapolation, while interesting and useful in many 
science applications, is of little direct relevance to science’s 
central endeavor to advance fundamental knowledge about the 
natural world. In general, the potential for new discoveries is 
greatest at the interface between modeling and observation, 
where information on real- world phenomena encoded in data 
meets the potential of modeling to explain or decode patterns 
in the data in terms of underlying mechanisms of cause and 
effect.

Box 2.1 shows some ways in which process- based models 
of the kind covered by this book can be applied within research 
on the land carbon cycle. In general, the potential for integration 
between modeling and empirical approaches increases as you 
go down the list. We will see examples of most of these modes 
of applying models in the course of this book.

SYSTEM DYNAMICS

Land carbon cycle models are at their core system dynamic 
models. Systems are fundamental to the organization and 
processes of human society and our daily lives. Think of a 
‘political system’, ‘educational system’, or ‘energy system’ 
as examples. Fundamentally, systems are a mental framework 

FIGURE 2.2 Three increasingly formal and precisely specified models that express a common hypothesis.
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through which we may view, understand, or organize complex 
activities or ideas that involve or depend on linkages between 
different interacting elements or parts. The presence of 
interlinked elements, constituting a ‘whole that is greater than 
the sum of its parts’ is characteristic for a system. ‘Systems 
thinking’ can also be applied to nature and has had a powerful 
influence on the development of quantitative techniques in 
ecology and numerous other fields. General systems theory, 
formalized in the 1940s, depicts an entity under study as a 
network of interrelated elements whose properties and linkages 
influence the behavior of the system and its evolution over 
time. Systems theory provides a framework for formalizing 
a conceptual or hypothetical understanding of an object of 
study in terms of drivers, responding processes, and networks 
of interacting elements, unified through the consideration of 
flows –  for example, energy, matter, or capital –  across the 
network.

When we model the carbon cycle, the system in 
focus is an ecosystem, or more broadly the Earth system 
(constituting the Earth’s interacting ‘spheres’ –  the 
atmosphere, hydrosphere, biosphere, etc.). The origins of 
the ecosystem concept can be traced to the British botanist 
Arthur Tansley, writing in 1935, who argued for the need 
to consider organisms and their environment as part of a 
unified whole in order to understand patterns and changes in 
nature. Tansley noted that organisms are locked into constant 
interactions with their immediate physical environment, 
and that the interactions between individuals and species 

are mediated by the changes they impose on physical (and 
chemical) factors of the microenvironment through their 
growth and function. This notion that interactions between 
organisms and the air, soil, and water in which they occur 
govern pattern and process in nature is central to systems 
thinking in ecology.

TYPES OF LAND CARBON CYCLE MODELS

Today’s biogeochemical models can be considered the 
end branches of a family tree having its roots in the work 
of the Odum brothers, Eugene and Howard, and their 
textbook, Fundamentals of Ecology, first published in 
1953. They combined concepts from system dynamics 
theory with analogies from electrical engineering and 
thermodynamics to frame ecological systems as networks 
in which interactions result from energy flows between 
trophic species levels, linking organisms with their abiotic 
environment via biological analogues of concepts from 
electrical networks such as voltage, capacitance, and 
resistance. Modern biogeochemical models build on similar 
foundations to Howard Odum’s depiction of energy flow 
for the Silver Springs aquatic ecosystem in Florida, USA 
(Odum 1971; Figure 2.3). Energy that enters the system as 
sunlight, powering the photosynthesis of producers (algae 
and aquatic plants), is used to drive the metabolism of 
the producers and the consumers that depend on them, up 
through the trophic chain. At each trophic step, energy is 
lost through respiration, returning heat to the environment. 
The Silver Springs ecosystem is here represented as a 
system of compartments (the trophic groups) that exchange 
energy with each other and with the external environment. 
Each compartment has a store of biochemical energy, linked 
to the abundance of organisms in that trophic group, and 
the size of this store changes over time as energy is gained 
and lost through processes like photosynthesis, herbivory, 
predation, and detritus production. All flows into, out of, 
and between compartments of the system are mirrored by 
changes in the sizes of the compartments themselves –  the 
system is said to uphold mass balance (here expressed 
in units of energy). We can state that the Silver Springs 
ecosystem is here depicted as a compartmental dynamic 
system. Such a representation has some very useful 
mathematical properties for simulation and analysis of 
the system, as we shall see elsewhere in this book, and as 
discussed in detail in Chapter 7.

An alternative ‘currency’ for this model, instead of energy,  
would be the carbon that enters the system as CO2 assimilated  
through photosynthesis, is transferred between trophic levels  
through herbivory, production of detritus, or predation, and  
is lost to the system as CO2 released through autotrophic or  
heterotrophic respiration (in this aquatic system, there are  
also imports and exports due to streamflow and movement of  
organisms in and out of the study area). Similarly, models in  
use today typically adopt a carbon- based representation of the  
ecosystem and its network of pools and fluxes as their basic  
framework. An example of such a framework was presented  

BOX 2.1 MODES OF MODEL  
APPLICATION

• project future changes and impacts, extrapolate 
beyond current data (e.g., Chapter 18 –  C cycle 
transient responses to future climate change)

• scale- up findings from local studies to regional 
or global scale (e.g., Chapter 27 –  model- data 
fusion of sub- continental GPP)

• characterize uncertainty, identify robust 
responses and relationships (e.g., 
Chapter 17 –  tracing uncertainty sources in 
land carbon models)

• attribute observed relationships and patterns 
to underlying drivers and mechanisms 
(e.g., Chapter 35 –  disentangling drivers 
of photosynthetic activity in the tropical 
Americas)

• synthesize the state of knowledge, identify 
gaps, generate hypotheses to guide empirical 
studies (e.g., Chapter 29 –  ecological 
forecasting of field experiments)

• communicate scientific evidence to societal 
end- users and decision- makers (e.g., 
Chapter 11 –  mitigation potential of alternative 
carbon dioxide removal solutions)
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for the TECO model in Chapter 1. Superimposed on this,  
many models incorporate representations of hydrological,  
nutrient, and energy cycles that interact with carbon cycle  
processes and states. In Chapter 6 we shall see how a nitrogen  
cycle may be added to the carbon- only version of TECO, to  
account for progressive nitrogen limitation under elevated  
atmospheric CO2. Recent developments have likewise seen  
phosphorus cycle dynamics added to some widely used  
models, as discussed in Chapter 10.

Some of the main ‘families’ of modern land models 
incorporating representations of carbon processes are 
detailed in Table 2.1. These groupings and their defining 
characteristics as shown in the table are not clear- cut. On 
the contrary, each model family has evolved over time as 
investigators have enhanced and adapted existing tools for 
application to novel research questions and management 
problems. Each type of model was originally developed 
with a certain research goal in mind. For example, Soil- 
Vegetation- Atmosphere Transfer (SVAT) schemes, first 
developed in the 1980s, focus on land surface hydrology 
and energy balance, as important exchange processes that 
affect the dynamics of the atmosphere, driving weather 
and climate. SVAT models like the Simple Biosphere 
Model (SiB2; Sellers et al. 1996), which originally did 
not incorporate explicit carbon processes, were extended 
to incorporate a representation of canopy CO2 exchange 

because an estimate of photosynthesis rate was required as a 
control on stomatal conductance and evapotranspiration, in 
turn affecting the partitioning of the vegetation- atmosphere 
energy flux into sensible and latent heat components. Modern 
land surface models (LSMs) coupled to earth system model 
(ESM) frameworks and used for global climate change 
simulations have evolved from SVAT models, progressively 
incorporating more processes and interactions, often 
adopted from schemes first developed for the other model 
families like forest growth models (used to simulate the 
growth and dynamics of trees and forest stands), terrestrial 
biogeochemistry models (adding belowground carbon and 
nutrient dynamics), and dynamic global vegetation models 
(DGVMs; adding competition between plant functional 
types or PFTs). In fact, current representatives of many of 
the model families shown in Table 2.1 have converged to 
incorporate many of the same algorithms, functionality, and 
underlying theory across model families. The frameworks 
contributing to global studies and assessments, such as 
annual updates of the global carbon budget (Sitch et al. 
2015), and to account for biogeochemical and biophysical 
feedbacks to climate change in IPCC climate projections, 
are collectively termed terrestrial biosphere models (TBMs). 
Fisher et al. (2018) provides a useful account of the current 
status of, and research front for, TBMs incorporated within 
ESM frameworks.

FIGURE 2.3 Energy flow diagram for the Silver Springs ecosystem in Florida.

Adapted by S. Maud from Odum, H.T. (1971) Environment, Power, and Society. Wiley-Interscience, New York.
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MODELING WORKFLOW

When using models as part of a robust research study design, 
there are a number of steps to go through. Depending on the 
study and the prior work we are building on, by ourselves 
or others, we may leave out some steps, change the 
sequence, or iterate more than once over a given sequence 
of steps. However, most modelers would agree, in principle, 
that a study should feature the following steps, and that 
these should be systematically described in publications 
discussing the work, allowing others to fully understand and 
reproduce it.

Specify the QueStion or hypotheSiS and identify how 
Modeling can help

It is rather elementary that any scientific study begins 
with a question, and linked to this, a testable hypothesis or 
hypotheses. If the hypothesis can be expressed or captured in 
the form of a model, and there are data available to compare 
and contrast to the model results, modeling may be valid to 
consider as part of the study design.

chooSe a Model

This step could also be labeled ‘develop a model’ or ‘adapt a 
model’. Textbooks on modeling often advocate for building 
the model from first principles, starting from a conceptual 
diagram that captures the hypotheses of the study, to be 
reflected in the model. In an ideal world, this ensures the 
chosen model is targeted specifically to the question of   
the study, no more and no less. This principle is captured by 
the popular modeler saying “the model should be as simple as 
possible, but no simpler”.

In practice, the carbon cycle literature contains only rare 
examples of studies using completely novel model structures 

and codes. Many current model frameworks have evolved 
over decades, involving many person- years of development, 
coding, evaluation, and application. Studies employing the 
model along the way turn up issues (scientific, as well as 
programming errors) focusing attention on needed revisions 
and improvements, but also increase confidence in the model 
where they demonstrate that it is able to reproduce patterns or 
relationships seen in observations, or in independent studies 
using alternative approaches. A typical ecosystem model is 
a sophisticated software application comprising hundreds to 
thousands of lines of computer code. Even though it could 
be argued that many models have grown overly complicated, 
to at least some degree this reflects the complexity of real 
ecosystems, the range of biotic and abiotic factors and 
interactions that govern their dynamics, and the steadily 
advancing research front in understanding and modeling 
natural systems.

Thus, in carbon cycle science, it is seldom efficient or 
realistic for an investigator to develop a new model completely 
from scratch, even if we accept that this might be the ideal. 
Rather, it is a question of choosing a model framework that 
fits the research question and study system in terms of criteria 
such as: model versus system complexity, assumptions of 
temporal and spatial scale, available evidence of model skill 
(e.g., past published studies on similar systems or questions), 
configurability of parameters, input files, and source code, and 
availability of code and documentation.

A common pitfall is to select a model that has convenient  
technical features but is poorly matched to the target study in  
terms of spatial and temporal scale. There are two essential  
aspects to this. One is that the same process can exhibit  
different sensitivity to its drivers depending on the scale of  
observation. For example, due to structural, functional, and  
compositional heterogeneity, photosynthesis measured at  
the leaf scale in a forest will show a different relationship to  

TABLE 2.1
Model types used in contemporary land carbon cycle research

Soil- vegetation- 
atmosphere 
transfer scheme 
(SVAT)

Forest 
growth 
model

Terrestrial 
biogeochemistry 
model

Dynamic global 
vegetation 
model (DGVM)

Biogeochemical land 
surface model (LSM)

Example SiB2 3PG, 4C, 
SORTIE

CENTURY, TECO IBIS, LPJ- 
GUESS, ED2

CABLE, ORCHIDEE, 
CLM4.5

Energy cycling/ balance ✓ — sometimes sometimes ✓
Hydrological cycling/ balance ✓ ✓ ✓ ✓ ✓
Canopy physiology/ CO2 

exchange
✓ ✓ ✓ ✓ ✓

Plant C dynamics — ✓ ✓ ✓ ✓
Belowground C dynamics — sometimes ✓ ✓ ✓
Nutrient (N, P) dynamics — sometimes ✓ sometimes sometimes
Plant functional types (PFTs) static static/ dynamic Static dynamic usually static
Stand dynamics — sometimes — sometimes — 
Typical application local/ global local local regional/ global regional/ global
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drivers such as temperature, insolation, or CO2 concentration  
compared to the canopy, stand, or landscape scale.  
Decomposition of soil organic matter will show a different  
apparent sensitivity to temperature (Q10) in a chamber  
measurement over an hour, compared to an incubation  
experiment over a year, or a decades- long soil inventory  
dataset. This means that the structure and parameters of the  
most suitable model to study variations in photosynthesis  
or decomposition will differ depending on the temporal and  
spatial context of the system under study and the research  
question in focus. Second, different processes and entities  
of the ecosystem are important in controlling variations  
at different scales. For example, seasonal cycles of leaf  
production and shedding (phenology) are important for the  
productivity of nemoral forests at annual and longer time  
scales, but leaf area index could be prescribed (specified  
as a fixed value) when modeling the gas exchange of a  
nemoral tree over a diurnal cycle. Changes in the sizes of  
‘slow’ and ‘passive’ soil organic matter (SOM) pools tend  
to dominate soil carbon dynamics on scales of centuries  
and millennia, but have no impact on variation in CO2 flux  
in short- term chamber measurements. This implies that a  
single- pool SOM model may be suitable for the analysis of  
data from soil chambers, whereas a model used to analyze  
changes in global soil carbon under IPCC future climate  
projections needs to distinguish multiple SOM pools of  
different lability (this is further discussed in Chapter 23).  
Ensuring that the chosen model accounts for the processes  
and entities relevant to the scale and question of the study  
is a particularly important consideration in carbon cycle  
studies.

Verify that the Model workS

Modelers distinguish between ‘verification’ and ‘validation’. 
The former seeks confirmation that the model implementation 
behaves as expected in a purely technical sense. When we 
run a numerical model we are ‘solving’ the model given the 
input data. Verification entails ensuring that the output data 
from the model matches the solution of the set of difference 
(or balance) equations the model (typically) encodes (see 
Chapter 3). In practice we seldom have the true (analytical) 
solution of these equations available to compare with the 
output of the model, but, based on our scientific knowledge of 
the system we are simulating, we can usually tell whether the 
output is reasonable or ‘sane’ given the forcing. For example, 
carbon pool sizes should not normally go negative, while 
fluxes such as GPP, autotrophic and heterotrophic respiration, 
or CH4 emission, should be within a certain range.

calibrate the Model

Some though not all models can be calibrated against different 
types of observational or measurement data. For a system 
dynamic model, calibration may involve tuning parameters of 
individual equations or processes based on measurements or 
estimates of those processes. For example, key parameters of 

a biochemical photosynthesis model may be calibrated based 
on gas exchange measurements of leaves, yielding a so- called 
A- ci curve. When you choose an existing model framework 
for your study, this kind of process- level calibration will 
likely already have been done, though you may have good 
reason to perform your own calibration if you have relevant 
measurements from your system.

A greater challenge is performing calibration on the overall 
output of the model, where this emerges from interactions 
between different processes, drivers, and the evolving system 
state. For example, net biome production (NBP) in a global 
carbon cycle model may be the emergent balance between 
uptake (photosynthesis/ GPP) and multiple release fluxes 
(autotrophic and heterotrophic respiration, emissions from 
wildfires) integrated across the land ecosystems of the world. 
The release fluxes in particular depend not only on current 
environmental drivers, but on the cumulative sizes of source 
pools such as SOM pools of different quality/ lability in 
different climates. Because of the long response lags, or spin- 
up effect, in such a model, and due to spatial heterogeneity, 
errors in individual processes can rapidly cascade and 
accumulate to generate large bias in NBP, even if individual 
processes are well calibrated to measurement data, where 
such are available.

This book offers a number of the best available solutions to 
the considerable challenge of calibrating the emergent output 
of an ecosystem model, in all its complexity. In essence, 
these involve identifying the parameters across different 
process formulations of the model to which the model is most 
sensitive (with respect to a particular output variable, such 
as NBP), specifying the potential real- world range of each 
parameter, and searching the hyperdimensional space of this 
parameter set (within the realistic range) to find a combination 
of values that yields the best fit between the model output, 
given those parameter values, and observational data on 
the same variable. This approach, termed data assimilation 
or model- data fusion, is introduced in Chapter 21, and 
further elaborated and exemplified in subsequent chapters of 
Units 6– 7.

Validate the Model

In the introduction to this chapter it was noted that all models, 
by definition, are a simplified depiction of the real thing they 
represent. This is not a failing or shortcoming but the very 
essence of a model. However, being simpler also implies that 
even a good model can never be expected to replicate the 
behavior of a real system exactly, given that some processes, 
interactions, and spatio- temporal details involved in the 
behavior of the real system are missing from the model. Thus, 
model error is inherent in the very concept and purpose of a 
model. Box (1979) stated: “all models are wrong, but some 
are useful”.

The simple observation that a model can never be perfectly 
‘true’ has led to the suggestion that a model cannot be 
validated, in the sense that validation implies confirmation 
of truth (Oreskes 1994). This argument is largely semantic 
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however, and in practice we are of course very interested in 
knowing the extent to which the model behaves in a similar 
way to what we know, from observation and theory, of the real 
system under study. As Canham (2003) stated: “The process 
of evaluating model structure is clearly critical enough to 
warrant a specific term, and ‘validation’ appears to be the best 
candidate”.

A robust validation strategy focuses not only on the 
emergent output of the model (e.g., NBP), but on the behavior 
of individual process representations and the assumptions 
they entail. This is because compensating errors and biases 
in different processes, or for example across the grid of a 
spatially- distributed model, can coincidentally produce the 
‘right result for the wrong reason’, when focusing only on 
an emergent or integrated output such as NBP. This issue is 
formally termed equifinality, the potential to obtain similar 
results with different model structures and parameterizations 
(Luo et al. 2009). The Free- Air CO2 Enrichment Model Data 
Synthesis (FACE- MDS) initiative has pioneered best practice 
in validation of complex ecosystem models using datasets from 
field experiments through an ‘assumption- centered’ approach 
(Medlyn et al. 2015). The alternative, perhaps more established 
and less labor- intensive, approach of benchmarking uses data 
on multiple output variables to simultaneously query the skill 
of the model in different dimensions, reflecting different 
processes and feedbacks (Chapter 19).

deSign the Model experiMent

The model experiment, sometimes also termed the simulation 
protocol, tailors the configuration, forcing and output data 
from the model simulation so as to shed light on the research 
question of the study. As discussed in the introduction to this 
chapter, the model typically stands for, and incorporates, our 
hypothesis or hypotheses about the system and its responses 
to influences such as a shift in climate or a management 
intervention. Through the model experiment, we wish to 
probe whether, or under what assumptions and conditions, 
the model reproduces salient observations of the system, 
thereby testing our hypothesis as encapsulated by the model, 
and allowing us to draw inferences about the behavior of the 
system.

There are several elements to designing a robust model 
experiment, and some of these are challenging in the case of 
carbon cycle studies. One challenge concerns the initialization 
or spin- up of the model state. In general, the spin- up strives to 
attain a steady state for ecosystem carbon pools ahead of the 

main part of the model simulation, avoiding drift in the model 
output that could confound the response to a perturbation 
of the model drivers. Some challenges and solutions are 
presented in Chapter 13 and exemplified in Chapter 14. An 
alternative to the steady state assumption is discussed in 
Chapter 27.

The book contains many examples of model experiments 
tailored to different research questions and problems. Some 
examples were listed in Box 2.1.

SUMMARY

We have seen that the model, whether conceptual or formally 
specified, is an inherent component of research methodology 
and the scientific method, integrating the knowledge we have 
with hypotheses we may wish to pose about the system under 
study. Several different types of models are applied within 
carbon cycle research, but this book focuses on numerical 
simulation models encapsulating networks of plant and soil 
compartments and the processes that govern the flows of 
carbon and other elements across the network, influenced 
by environmental drivers. The workflow of six steps, further 
elaborated in other parts of the book, serves as a guide to 
how we may integrate modeling in the design of a robust 
scientific study.

SUGGESTED READING

Canham, C.D., Cole, J.J. & Lauenroth, W.K. 2003. Models 
in Ecosystem Science. Princeton University Press, 
Princeton, N.J.

QUIZ

1 “The model should be as simple as possible, but no 
simpler” –  Discuss!

2 List four ways in which models and observations 
can be combined within ecosystem studies. What is 
the role of the model versus the observational data in 
each case?

3 The carbon cycle of an ecosystem can be depicted as 
a compartmental dynamic system. List four properties 
of such a system.

4 How is the spatial and temporal scale of a study 
relevant in selecting a suitable model?

5 Define these terms: calibration, verification, validation, 
benchmarking.
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3 Flow Diagrams and Balance Equations 
of Land Carbon Models

Yuanyuan Huang
Institute of Geographic Sciences and Natural Resources Research,   
Chinese Academy of Sciences, Beijing, China

Great oaks from little acorns grow. This chapter offers 
basic concepts and tools for building land carbon models. 
If we build them step-by-step, we can end up understanding 
complex land carbon models. The goal of this chapter is to 
understand carbon flow diagrams and balance equations, to be 
able to derive generic carbon balance equations from carbon 
flow diagrams, and vice versa.

CARBON FLOW DIAGRAM

Flow diagrams are not new to us. We use flow diagrams in 
different forms, complexities, and for different purposes. 
For example, we could draw a simple flow diagram to help 
us diagnose what might be the issue and what to do when a 
computer stops working (Figure 3.1a). Or you could find a 
complex flow diagram like the schematic of carbon, nitrogen, 
and phosphorus cycles considered in the model ORCHIDEE- 
CNP (Figure 3.1(b)), which illustrates sophisticated 
interactions among carbon, nitrogen, and phosphorus 
dynamics. A classic carbon flow diagram from IPCC reports 
is shown in Figure 3.1c. When it comes to carbon, we are 
generally interested in tracking the amount of carbon in space 
and time. In Figure 3.1c, you see different compartments or 
pools with different amount of carbon. You also see flows of 
carbon from one compartment to another.

Panel b is adapted from Sun et al., 2021 and Panel c from 
Ciais et al., 2014.

We use land carbon models to track temporal- spatial 
dynamics of carbon, to answer questions like: Where is 
carbon stored? How long does carbon stay in one place? 
When, how, where, and how much carbon is transferred? 
Depending on the scientific questions, we may also use land 
carbon models to track water, nutrients, and energy as they 
are parts of the critical environment or system that drives 
and interacts with carbon dynamics. Earth is such a system 
comprising numerous interacting processes. Here, we focus 
mainly on the biosphere and its carbon dynamics, but a lot of 
principles and methods introduced here are also applicable to 
water, nutrients, and energy. A flow diagram is very helpful in 
conceptualizing our issues, clarifying study boundaries, and 
disentangling complex interactions.

We use the terms stock (or storage, pool) and flow (or flux) 
very frequently in carbon studies. Suppose that you have a 
bank account. The total amount of money in your bank account 

is the stock. Every month, you deposit a certain amount of 
money, for example, from your salary. You also withdraw some 
money each month for your everyday expenses. This deposit 
and withdrawal are the flows into and out of your account. The 
same concept applies to carbon. We could take total carbon in 
the biosphere, for example, as our stock, and we track carbon 
flows into (deposits) and out of (withdrawals) the biosphere 
to understand the dynamics of carbon stock in the biosphere.

We need to know the boundaries of our system to be clear 
on what are our stocks, what are our flows and in which 
directions they are moving. Take terrestrial carbon flows as 
an example (Figure 3.2). When we take terrestrial plants as 
our study system, carbon in plants is the stock. Carbon that 
goes through photosynthesis, a process that turns carbon 
dioxide into sugars (carbohydrates, or organic carbon), is our 
incoming flow. Respiration involves using the sugars produced 
during photosynthesis plus oxygen to produce energy for plant 
growth. It is one of our outgoing carbon flows. Litterfall, in 
which the plant sheds leaves, fine roots, and branches as part 
of its phenological (seasonal) cycles, or under unfavorable 
conditions, is the second outgoing flow. If we take soil as our 
study system, soil carbon is the stock. Litterfall is the incoming 
carbon flow. Soil respiration is the outgoing carbon flow and 
carbon lost during runoff is another outgoing flow. In the field, 
soil respiration generally comprises two main components: the 
autotrophic respiration that takes place in plant roots and the 
heterotrophic respiration due to the breakdown of soil organic 
matter by microbes. If, instead, we take plant and soil together 
as our system, the carbon stock is the total carbon in plant 
and soil. The incoming carbon flux is the carbon flow through 
photosynthesis and the outgoing fluxes are plant respiration, 
soil respiration, and carbon lost during runoff. Litterfall is 
no longer an incoming or outgoing flow, but an internal flow 
linking the plant and soil carbon stocks.

CARBON BALANCE EQUATIONS

The principle for tracking carbon dynamics is the law of 
conservation of mass. Matter can neither be created nor 
destroyed, but chemical structure and physical form can change.

If we know the initial carbon pool size, and the values of  
carbon fluxes going into and out of the pool, we can track the  
dynamics of the carbon pool through time. This follows the  
law of conservation of mass. In terms of carbon, the change  
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in its pool size is always equal to the mass of total incoming  
minus total outgoing flows. Suppose we have a carbon pool  
(I call it x here) that weighs 30,000 grams (gC) initially, i.e.,  
at time, t =  0 (Figure 3.3). You could think about it as if you  
have $30,000 in your bank account at the start of the year.  
Let’s say the incoming flux is 2,000 gC year−1. We call it  
the input rate I. In our monetary analogy, it corresponds to  
your annual salary. Let’s say your income is relatively stable,  
then I does not change with time. For the outgoing flow, the  
donor pool- dominant transfer is a common example from the  
land carbon cycle. For example, if x represents the carbon  
contained in the biomass of a plant, respiration represents  
an outgoing flow that depends on the size of this pool: if we  
have a bigger plant, we would end up with more respiration.  
Back to our analogy: the higher your income, the more tax  
you pay. Suppose 20% of carbon in the plant pool is used  
up through respiration every year. This can be expressed as  
a turnover rate: a proportion of the pool that is used up and  
converted to an outgoing flux per unit time. Let’s give it the  
symbol k. Here, k =  0.2 year−1. So how much carbon will  
we have at the end of the year or at the beginning of the  
next year?

Here our time step is 1 year. When t =  0, we have x =  30,000 
gC (initial pool size), I =  2000 gC year−1, k =  0.2 year−1.

When t =  1, our pool size x (t =  1) =  x (t =  0) +  input –  
output =  30,000 +  2,000 × 1 –  0.2 × 30,000 × 1 =  26,000.

What if we want to know x when t =  2? It is the same logic. 
x (t =  2) =  x (t =  1) +  input –  output =  26,000 +  2,000 × 1 –  0.2 
× 26,000 × 1 =  22,800. Similarly, we could derive the carbon 
stock in the third, fourth, fifth year, and so on. The mathematic 
equation for x could be summarized as:

 x t x t I t k x t t+( ) = ( ) + × − × ( ) ×1 ∆ ∆  3.1

which says x at the next time step equals x at the current time 
step, plus the change of x. The time step (1 year) is denoted by 
Δt. The change of x is expressed as the input flow minus the 
output flow. This is the basis for the Euler method, a numerical 
method we sometimes apply to solve the differential equation 
to be introduced below.

Equation 3.1 can be rewritten as,

 
x t x t

t
I kx t

+( ) − ( )
= − ( )1

∆  3.2

When Δt → 0, Equation 3.2 is the same as,

 
dx

dt
I kx= −  3.3

Equation 3.2 is the difference version of the carbon balance 
equation, and Equation 3.3 is the differential version. Both 
equations embody the law of conservation of mass. Another way 
of putting this is, they uphold mass balance: the rate of change 
of a carbon pool equals the input rate minus the output rate.

If we have two carbon pools in our system, sometimes the 
outgoing flux of one pool might become the incoming flux of 
the other (Figure 3.4). For example, in our plant- soil system in 
Figure 3.2, the litterfall is an outgoing flow of the plant pool and 
an incoming flow into the soil pool. For the plant, the carbon 
balance equation can be written the same as in the above one- 
pool case. The carbon balance equation of the second (soil) 
pool also expresses the mass balance. Here the incoming rate 
is a fraction, say f21, of the outgoing flux from pool x1. The 
outgoing flux from pool x1 is a constant annual proportion of 
the plant pool: k1x1. This outgoing flux comprises the fraction 
that goes into soil (e.g., through litterfall) and the fraction that 
does not enter soil (e.g., plant respiration). Combining these 
terms, we have the incoming flux of pool x2 as f21k1x1. The 
outgoing flux from x2 is also pool- size dependent: k2x2. The 
carbon balance equations for this two- pool system are given 
by Equations 3.4 and 3.5:

 
dx

dt
I k x1

1 1
= −   3.4

 
dx

dt
f k x k x2
21 1 1 2 2

= −  3.5

FIGURE 3.1 Examples of flow diagrams.
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We may extend this same logic to models with any number of  
pools. For each pool, we need to know what are its incoming  
and what are the outgoing fluxes. Figure 3.5 shows the carbon  
flow diagram for two well- known carbon models. The left  
one is the classic soil carbon model, CENTURY (simplified,  
Parton, et al., 1988). The right is the TECO model (Xu et al.,  
2006). Both models conceptualize our natural carbon cycles  
into different pools or ‘compartments’, represented by boxes  
in the diagram, and track the transfers of carbon among  
different pools, represented as arrows. The transfers could  
be parameterized as one constant turnover rate relative to  
the size of the donor (source) pool, or could be modeled by  
functions with multiple terms, parameters, and dependencies,  
capturing complex interactions with climate, soil, and other  
factors.

FROM FLOW DIAGRAM TO CARBON BALANCE 
EQUATIONS

We take the TECO model as an example to illustrate  
how to derive a system of carbon balance equations from  
the carbon flow diagram. In Figure 3.5, we see that TECO  
has seven carbon pools: two plant biomass carbon pools  

(foliage, woody biomass), two litter carbon pools (metabolic,  
structure), and three soil organic carbon pools (microbes,  
slow soil organic matter (SOM), and passive SOM). We use  
x1 to x7 to denote these pools. For each carbon pool, we need  
to specify the fluxes that enter and leave the pool. Carbon  
flux through photosynthesis is the external carbon input into  
our system of seven pools. We will denote this input rate  
by I. Photosynthetic carbon input is allocated into foliage  
and woody biomass, in relative proportions denoted by the  
allocation coefficients β1 and β2. The carbon balance equation  
for foliage pool (x1) and woody pool go as Equations 3.6  
and 3.7.

 
dx

dt
I k x1

1 1 1
= −β  3.6

 
dx

dt
I k x2

2 2 2
= −β  3.7

FIGURE 3.3 A conceptual one- pool carbon model.

FIGURE 3.2 An idealized illustration of terrestrial processes of carbon flow.

FIGURE 3.4 A conceptual two- pool carbon model.
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The structure litter pool (x4) receives carbon input from pools  
x1 and x2. So the carbon balance equation of x4 has two input  
fluxes. One is a fraction (f41) of the outgoing carbon flux from  
x1 (k1x1). The other is a fraction of the outgoing carbon flux  
from x2. This incoming flux could be written as f42k2x2. The  
outgoing flux for pool x4 is dependent on the pool size and  
its turnover rate, k4. We write this flux as k4x4. Equation 3.8  
is the resulting carbon balance equation of the structure litter  
pool, x4.

 
dx

dt
f k x f k x k x4
41 1 1 42 2 2 4 4

= + −  3.8

The same procedure applies for the other carbon pools. We count 
how many arrows go into a pool and how many go out. One arrow 
normally corresponds to one flux. The boundary of the system in 
this example encompasses the seven organic matter pools. The 
atmosphere is not part of the system and we do not track further 
the fluxes that go into the atmosphere, i.e., respiration represented 
by arrows labelled ‘CO2’ in Figure 3.5. That being said, how 
much carbon goes into the atmosphere as carbon dioxide is an 
important topic as it is closely linked to climate change. Carbon 
balance equations for x3, x5, x6, x7 are given below:

 
dx

dt
f k x k x3
31 1 1 3 3

= −  3.9

      
dx

dt
f k x f k x f k x f k x k x5
53 3 3 54 4 4 56 6 6 57 7 7 5 5

= + + + −  3.10

 
dx

dt
f k x f k x k x6
64 4 4 65 5 5 6 6

= + −  3.11

 
dx

dt
f k x f k x k x7
75 5 5 76 6 6 7 7

= + −  3.12

A further example for multiple carbon pools is the ORCHIDEE 
model. Figure 3.6 shows the litter and soil organic carbon 
(SOC) component of ORCHIDEE. As a rule of thumb, around 
50% of soil organic matter is SOC. Later versions of this 
model separate SOC into different layers according to soil 
depths. However, the version depicted in Figure 3.6 tracks 
seven pools –  four litter pools and three SOC pools –  with 
different layers lumped together. Therefore, we have seven 
carbon balance equations. The idea is the same as what we 
have already worked through for the TECO model. We track 
the arrows that go into and out of each pool. For example, for 
the active SOC pool, x5, we have six arrows that go into this 
pool. Each arrow represents an incoming flux from a different 
pool, either litter or SOC. We will use f51, for example, to 
represent the fraction of the carbon flux that goes from the 
first pool (aboveground metabolic litter) to the fifth pool 
(active SOC).

When we have a small number of carbon pools, it is not  
difficult to write down the carbon balance equations one- by-  
one. It would be very tedious to write down all the equations  
if we have many pools, for example, 100 for the version of  
ORCHIDEE that simulates SOC dynamics at different soil  
depths. This version, known as ORCHIDEE- MICT, tracks  
seven types of organic carbon (four litter compartments and  
three SOC compartments), similarly to the version depicted  
in Figure 3.6. ORCHIDEE- MICT has 32 soil layers (Huang,  
et al., 2018a). For each soil layer, the model has active, slow,  
and passive SOC pools. Such a vertical soil discretization is  
especially helpful and more realistic in modeling soil carbon  

FIGURE 3.5 Flow diagrams of two carbon models: (a) CENTURY; (b) TECO.

a: adapted from Parton et al., 1988; b: adapted from Xu et al. 2006.
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dynamics in permafrost regions. In total, the model has 32 ×  
3 +  4 = 100 pools. Instead of writing down the carbon balance  
equations one- by- one, we can put them together into one  
matrix equation, as shown in Figure 3.7. The matrix form of  
the carbon balance equations says the same thing: the rate of  
change in carbon pool size equals the input minus the output.  
Now it is not that obvious to spot the input fluxes and the  
output fluxes. They are folded into the matrices and depend  
on the sign of the elements in these matrices. The first  
item on the right side of the matrix equation in Figure 3.7  
summarizes the external carbon input into the system. The  
second block of matrices summarizes the turnovers and  
transfers of fluxes among different organic carbon pools. The  
third block of matrices captures vertical processes between  
the adjacent soil layers, such as bioturbation, diffusion, and  
advection.

Variations in these matrices reflect structural or parametric 
differences among models. For example, the left side of 
Figure 3.8 shows the flow diagram of the litter and SOM 
component of the CLM4.5 model. CLM4.5 tracks coarse 
woody debris, metabolic litter, cellulose litter, lignin litter, 
fast, slow, and passive SOM in ten soil layers (Huang 
et al., 2018). Different from ORCHIDEE- MICT, CLM4.5 also 
tracks the vertical distribution of litter. The matrix equation 
here takes a similar general form. Elements in each matrix are 
different. The dimensions of the CLM4.5 matrices are 70×70 
corresponding to 70 organic matter pools, while ORCHIDEE- 
MICT matrices are 100×100.

We will explore matrix representations in more detail in 
the following chapter. If you have understood the concepts 
introduced here, then big congratulations. These complex land 
carbon models are built upon these basics step by step.

FIGURE 3.6 Flowchart and carbon balance equations of the ORCHIDEE model.
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SUGGESTED READING

Luo YQ, Weng ES . (2011) Dynamic disequilibrium of the terrestrial 
carbon cycle under global change. Trends in Ecology & 
Evolution, 26, 96– 104.

QUIZ

1 What does a pool stand for?
2 What does a flux mean?
3 What is the principle of writing carbon balance 

equations?
4 Does burning of the organic matter by fire violate the 

carbon balance?

FIGURE 3.8 Flowcharts of the litter and soil organic carbon components of CLM4.5 and ORCHIDEE- MICT.

FIGURE 3.7 Flowchart and matrix- form carbon balance equation of the ORCHIDEE- MICT model with vertical soil discretization.
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Practice 1
Carbon Flow Diagram and Carbon Balance Equations

Yuanyuan Huang
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of 
Sciences, Beijing, China

The exercises are designed to help you practice writing carbon 
balance equations from a carbon flow diagram and vice versa. 
The goal is to lead you to understand the concepts of flow, 
pool, and mass balance. Please refer to Chapter 3 if you have 
difficulties with the exercises.

INTRODUCTION

Land biogeochemical models all simulate carbon cycling 
through different pools in an ecosystem according to carbon 
balance equations, regardless of model structure. The balance 
equations are based on the law of conservation of mass 
which tells us that the change in carbon pool size is always 
equal to the net difference between the incoming fluxes to, 
and outgoing fluxes from, that pool. Different pools in the 
ecosystem are connected via carbon transfer between them. 
To track carbon flows among different carbon pools, scientists 
develop a carbon flow diagram that uses boxes to indicate 
pools and arrows to indicate fluxes. Thus, the carbon flow 
diagram is often called a box- arrow diagram. The models 
that track carbon flows among pools are often called pool- 
flux models. The matrix form of land carbon cycle models is 
built upon the carbon balance equations that are connected via 
carbon transfer among pools. To learn the matrix approach to 
land carbon cycle modeling, it is essential to understand the 
carbon flow diagram and carbon balance equation.

The first exercise of this unit is focused on writing carbon 
balance equations from a carbon flow diagram, whereas the 
second exercise is about drawing the carbon flow diagram 
based on carbon balance equations. Both drawing the carbon 
flow diagram from the carbon balance equations and writing 
the equations from the diagram assist us in understanding land 
carbon dynamics and developing matrix models.

EXERCISE 1 WRITING CARBON BALANCE 
EQUATIONS FOR THE CENTURY MODEL

Figure 4.1 shows a simplified carbon flow diagram for the 
CENTURY model. Plant residue is divided into structural and 
metabolic litter according to its lignin and nitrogen content. 
Structural and metabolic litters are decomposed by microbes. 
The resulting microbial products become the substrate for the 
formation of soil organic matter in three soil pools (i.e., active, 
slow, and passive). For the decomposition flux of the structural 

litter, a fraction (A) is incorporated into the slow soil organic 
carbon with a turnover time of 25 years. We assume some of 
this remaining fraction goes as microbial respiration, and the 
other part contributes to the active soil organic C. The flow 
diagram also tells us the transfer fluxes among different soil 
carbon pools.

Please write down the carbon balance equations based on 
the carbon flow diagram (Figure 4.1). Note that some details 
in the diagram such as L/ N, 1−A, F (T), and CO2 fluxes to 
the atmosphere differ from the original paper by Parton et al. 
(1988). You could neglect information such as (3y) in the box 
for structural C and other similar boxes when you do this 
exercise. You can read the paper by Parton et al. (1988) if you 
are interested in knowing more about this model.

To write the balance equations, you could use symbols  
as in Chapter 3 or develop your own symbol system.  
Fundamentally, you need to figure out the amount of carbon  
moving into one pool, the amount of carbon moving out of the  
pool, and changes in the amount of carbon in the pool (i.e.,  
pool size change) in one unit of time. Here are a few tips.  
First, you could define state variables, such as x1 to represent  
the pool of structural C, x2 to represent the pool of metabolic  
C, etc. Then, the size change in the pool of structural C can  
be expressed by dx1/ dt. You could similarly write changes in  
carbon amounts in other pools. Second, you need to define  
rate variables to represent rates of carbon moving out of pools,  
such as k1 for a rate of carbon moving out of the structural  

4

FIGURE 4.1 Flow diagram for the carbon flows in the CENTURY 
model (simplified).

Reproduced from Parton et al. (1988).
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C pool, k2 for a rate of carbon moving out of the metabolic  
C pool, etc. With the rate of carbon moving out of a pool  
and a state variable of the pool, you might figure out how to  
calculate the amount of carbon leaving the pool. Then, you  
need to figure out the amount of carbon moving to a pool.  
The third step is to define the total amount of carbon input,  
let’s say using a symbol I, from plant residue. Fourth, you  
need to figure out a fraction of the incoming carbon that  
enters a particular pool. For example, carbon input from plant  
residue partly goes to the structure C pool and partly goes  
to the metabolic pool. You need to define a symbol, b1, as a  
fraction of incoming carbon going to the structural C pool and  
b2 to the metabolic pool. Then the amount of carbon moving  
to the metabolic C pool is b2 × I. Similarly, you can figure  
out the amount of carbon moving to the structural C pool.  
However, it becomes much more complicated to figure out  
the amount of carbon that moves to the active soil C pool. The  
pool receives carbon from all the other four pools. Thus, it has  
four terms, which are: f31 × k1x1 +  f32 × k2x2 +  f34 × k4x4 +  f35  
× k5x5. Can you figure out how to get each of the terms? As a  
note, the symbol f31 describes the fraction of the carbon that  
leaves pool 1 and enters pool 3. If you can go over these steps  
successfully, you may obtain one carbon balance equation,  
d

dt
,

x
f k x f k x k x4
41 1 1 43 3 3 4 4

= × + × −  for the slow soil C pool.  

What are the carbon balance equations for the other pools?

EXERCISE 2

Drawing a carbon flow diagram for the ReSOM model based 
on its carbon balance equations

This exercise aims to develop your ability to draw a carbon 
flow diagram from carbon balance equations. ReSOM is 
a REaction- network- based model of Soil Organic Matter 
and microbes (Tang and Riley, 2013; Tang and Riley, 
2015). The model simulates depolymerization of polymers, 
mineralization and sorption of monomers by microbes via 
extracellular enzymes and microbial assimilation, microbial 
death, and necromass decomposition.

Key equations that govern exchange of carbon among 
pools over time in the ReSOM model are listed in Table 4.1 
together with definitions of symbols and parameters. All pools 
are in units of carbon mass per soil volume (g C m−3).

To draw a carbon flow diagram of the ReSOM model 
from its carbon balance equations, you need to figure out the 
following items: (1) the number of pools and what they are; 
(2) carbon transfer between any of the two pools; (3) carbon 
input from outside of the system; and (4) carbon loss from the 
system. Here is a hint to figure out carbon transfer between 
two pools from a carbon balance equation: a positive sign 
before a flux (e.g., FS in Equation 4.2) indicates carbon 
entering the pool, whereas a negative sign before a flux (e.g., 
FD in Equation 4.2) indicates carbon leaving the pool.

TABLE 4.1
Governing equations of RaSOM, pools and parameters, and their definitions

Pool Description Differential equation

S polymeric organic carbon dS

dt
I F B f

S S B E E
= − + +γ γ

1                    4.1

  monomeric organic carbon dD

dt
F F X f E

D S D B E E
= + − + + −( )I γ γ

1
1  4.2

X reserve microbial biomass dX

dt
Y F g X

X D B
= − − +( )κ γ

1                   4.3

B structural microbial biomass dB

dt
mX p B

B E
= − +( )γ

1                         4.4

E extracellular enzymes dE

dt
p B E

E E
= − γ                                   4.5

where:
IS: polymeric input flux (g C m−3 d−1)
ID: monomeric input flux (g C m−3 d−1)
FS: polymeric depolymerization flux (g C m−3 d−1)
FD: monomeric uptake flux (g C m−3 d−1)
YX: yield coefficient for reserve biomass (unitless)
fE: fraction of decayed extracellular enzymes contributing to the polymer pool (unitless)
γB1: microbial mortality rate (d−1)
γE: enzyme turnover rate (d−1)
κ: metabolic turnover rate (d−1)
g: growth rate (d−1)
pE: enzyme production rate (d−1)
m: structural microbial biomass formation rate (d−1)

Modified from Tang and Riley (2015) by Rose Z. Abramoff.
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5 Developing Matrix Models for Land 
Carbon Models

Yuanyuan Huang
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of 
Sciences, Beijing, China

The goal of this chapter is to understand how the carbon 
balance of a system could be represented in matrix form, to 
be able to write a matrix carbon model, and, for advanced 
readers, to think about potential applications of the matrix 
model for your own research.

WHAT IS THE MATRIX VERSION OF THE 
CARBON BALANCE EQUATION?

The matrix representation of the carbon balance of a multipool 
system was introduced in Chapters 1 and 3. Instead of writing 
down the carbon balance equations one- by- one for each pool, 
we can integrate all carbon balance equations within one matrix 
equation. This matrix equation captures the carbon balance for 
each carbon pool and its linkages to other carbon pools of the 
system via the flows (fluxes) between them. One thing to keep 
in mind is that the matrix version of the carbon model, though 
it uses a different notation, is mathematically identical to the 
original carbon model that has one carbon balance equation 
for each carbon pool. Benefits of the matrix version of carbon 
models include simplicity in model structure, high modularity 
in coding, clarity in diagnostics, and computational efficiency 
in spin- up. These properties are discussed in detail in the 
following Chapters: 6, 9, 14, 17, and 18.

The matrix version of many carbon models could be 
written as:

 
dX

dt
B I A K X= + *  *  *  5.1

Each of these matrices could be time- dependent. For 
simplicity, we neglect the time dependence for now. The left- 
hand side of Equation 5.1 depicts the change rates of carbon 
pool sizes in our system. If we have, for example, seven pools, 
X here is a column vector with seven rows, one for each pool, 
which are the state variables of the system. The right- hand 
side of Equation 5.1 captures the incoming and outgoing 
terms, i.e., the fluxes entering or leaving the pools of the 
system. B is the allocation matrix, which functions to partition 
the external carbon input I into different carbon pools. In the 
plant- soil system of Chapter 3 (Figure 3.2), you could think 
of I as the photosynthetic carbon input, and B captures the 
fraction of plant- assimilated carbon that is allocated into 
different plant organs. K is the turnover rate matrix. A is the 

n × n dimensional transfer matrix, where n is the number of 
carbon pools. A captures the fraction of outgoing carbon flow 
from one pool that goes into a second pool. From the location 
and sign of elements in A, we could reconstruct the network of 
carbon transfers among different carbon pools.

The flow diagram and carbon balance equations of the 
TECO model were presented in Chapter 3 (Figure 3.5b, 
Equations 3.6– 3.12). In the case of TECO, which has seven 
carbon pools, B and X are 7 × 1 vectors, while A and K are 
7 × 7 matrices. K is a diagonal matrix with each diagonal 
element k corresponding to the turnover rate of a carbon pool. 
All other elements in K are set to zero. The diagonal elements 
of A are all −1. Non- zero elements of the off- diagonal parts of 
A correspond to the fraction of carbon fluxes transferred from 
the ith to the jth pool, where i is the column number and j the 
row number, starting at (1,1) from the top- left corner of the 
matrix. For example, f41 in the first column and fourth row tells 
us there are carbon fluxes transferred from the first to the fourth 
carbon pool, that is, from foliage biomass to structure litter. All 
transfer fluxes in the carbon flow diagram can be found in the A 
matrix. In the case of TECO, Equation 5.1 can be expanded as:
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This matrix version of the carbon model is especially  
handy when we have many carbon pools. We will take the  
litter and soil organic carbon components of CLM 4.5 (70  
pools) and ORCHIDEE- MICT (100 pools) as examples.  
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The matrix equation for CLM4.5 and ORCHIDEE- MICT  
look similar to the matrix equation for TECO. In Figure 5.1  
we have one more item: the V matrix, which captures the  
vertical transfers of carbon between adjacent soil layers.  
The A matrix is more complex than the earlier case. Both  
CLM4.5 and ORCHIDEE- MICT assume the fraction of  
carbon transferred between different organic carbon pools  
is the same for different soil depths. Here, A has the form  
of a block matrix, which means A is made up by smaller  
matrices, i.e., blocks. For CLM4.5, each block, for example,  
A31, is a 10 × 10 matrix, corresponding to 10 soil layers.  
The diagonal elements in A31 are the same since the model  
assumes the fraction of transfers do not change with depth.  
For ORCHIDEE- MICT, it is a little more complex as litter  
pools are not separated by soil depth. So transfers of litter  
carbon fluxes to soil carbon fluxes (e.g., A51) are 32 × 1  
vectors and zeros. For transfers among soil organic carbon  
pools, for example A65, the matrix has a dimension of 32 × 32,  
with each element representing the transfer from one of the  
32 active soil organic carbon pools to one of the 32 slow soil  
organic carbon pools. 𝜉 is the matrix of environmental scalars  
that quantify the deviation of the actual decomposition rate  
from the potential rate due to the non- optimal environmental  
conditions. We could add it to the TECO model also. Please  
check in Huang et al. (2018b) and Huang et al. (2018a) for  
more details if you are interested.

Based on these examples, we see that the matrix equations 
for different carbon models may take a similar form. But the 
structure of each matrix might be different. How each matrix 
is organized depends on the structure of the original model.

HOW TO DERIVE THE MATRIX EQUATION?

After we know what the matrix looks like, the next step is to 
derive the matrix model from the carbon balance equations.

Here we take the ORCHIDEE model in Figure 3.6 of  
Chapter 3 as an example. We assume we have I1, I2, I3, and I4  
as inputs to the respective litter pools. Carbon from the litter  
pools is transferred into different soil organic carbon pools.  
Additionally, there are internal carbon transfers between  
different soil organic carbon pools. Figure 5.2 shows the  
matrix equation of this model. X and I are column vectors, and  
A and K are two- dimensional matrices. The dimensions of X,  
I, A, and K are determined by the number of carbon pools. X  
is easy to construct. We put the seven carbon pools x1, x2, …,  
x7 in a column. I is a column vector with I1 to I4 as the input  
rates for litter carbon pools and zero for soil organic carbon  
pools as these pools receive no external carbon inputs. K is a  
diagonal matrix with each diagonal element corresponding to  
the turnover rate of one of the carbon pools.

Mathematically, a n × n matrix (A matrix) multiplied by a  
n × 1 vector (X) will produce a n × 1 vector. The value of the  

FIGURE 5.1 Matrix equation of CLM4.5 and ORCHIDEE- MICT.

FIGURE 5.2 Matrix equation of the litter and soil organic carbon 
component of the ORCHIDEE model. The flow diagram and carbon 
balance equations are shown in Figure 3.6, Chapter 3.
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ith row of this multiplication equals the sum of the products  
between elements from the ith row with the column vector.  
The multiplication of K and X will give us a column vector  
with elements k1x1, k2x2, …, k7x7. For the multiplication of  
A by KX, we take the sixth row as an example (Figure 5.3).  
We have 0 multiply k1x1, 0 multiply k2x2, f63 multiply k3x3, f64  
multiply k4x4, f65 multiply k5x5, and −1 multiply k6x6, which  
is exactly the right side of the carbon balance equation for  
the sixth carbon pool. The diagonal elements of A are all −1.  
There are many 0 elements in A. These 0s indicate there are  
no carbon transfers from the ith (column number) to jth (row  
number) carbon pools.

If we look at each column of the A matrix, it summarizes 
all the fluxes that go out of the ith carbon pool (Figure 5.4). For 
example, after reading the fourth column of the A matrix, we 
know there is carbon transferred from the fourth to the fifth 
and sixth carbon pool if f54 and f64 are not equal to 0. This is 
exactly what we see in the carbon flow diagram (Figure 3.6 of 
Chapter 3). If we sum up all the off- diagonal elements in one 
column and the value is smaller than 1, for example, f54 +  f64 
< 1, this means there is carbon leaving the system which we 
do not track further. For example, if our model is focused on 
the storages of organic carbon in soil, we may not care about 
carbon that leaves the soil system in the form of CO2 flux to 
the atmosphere.

Each row of the matrix A summarizes all the carbon fluxes 
that are transferred into the ith carbon pool. For example, if 
we look at the sixth row, we have f63, f64, f65 as non- zero, off- 
diagonal elements. This tells us there are fluxes from the third, 
fourth, and fifth carbon pools being transferred into this sixth 

carbon pool. The relevant transfers are highlighted in yellow 
in the carbon flow diagram of Figure 5.5.

We have seen that a single matrix equation can encompass 
the details of multiple processes simulated by a carbon model. 
Detailed information about the carbon dynamics is folded into 
different components of the matrices. If we expand the matrix 
calculation by row, we should get the exact set of carbon 
balance equations, one equation for each pool.

Next we are going to explore a little more on the matrix 
equation for models with vertical soil layers. For such a model, 
we require one more vertical transfer matrix, V (Figure 5.6). 
The X, I, and K matrices are generally constructed in the same 
way as in the earlier examples above. The transfer matrix A, 
with 100 × 100 dimension, is folded into the block matrix. 
Each of the smaller blocks in black, for example A51, is a 
depth- dependent vector, tracking the fraction of litter carbon 
transferred into SOC in different soil depths. The matrices 
in red are 32 × 32 diagonal matrices capturing transfers 
between different soil organic carbon categories in the same 
soil layer. Each item of the diagonal takes the same value, 
as ORCHIDEE- MICT assumes the transfer fractions are not 
depth- dependent.

The vertical transfer matrix can be represented by the  
block matrix shown in Figure 5.6. Most of its components are  
0 except for the active, slow, and passive SOC pools. Each  
diagonal block is a tridiagonal matrix that describes vertical  
redistribution of corresponding carbon pools among different  
soil layers. As the vertical transfer rates are not differentiated  
among different types of carbon pools, V55(t), V66(t), and  
V77(t) are identical. The subscript numbers indicate soil layers;  

FIGURE 5.3 Illustration of the function of the transfer matrix A.
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h and g correspond respectively to the mixing rate between  
the current soil layer and the one above it, and the current soil  
layer and the one below it; zi indicates the depth of soil layer i.  
Detailed information is available in Huang et al. (2018a).

In this chapter we have learned how to derive the matrix  
equation from the carbon balance equations. It would also  
be possible to derive the matrix equation directly from the  
carbon flow diagram. From the carbon flow diagram, we can  

FIGURE 5.5 Illustration of the function of the row of the transfer matrix (A matrix).

FIGURE 5.4 Illustration of the function of the column of the transfer matrix (A matrix).
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determine the dimension of matrices (or vectors) from the  
number of carbon pools. The diagram also tells us the external  
carbon inputs, the incoming and outgoing fluxes of each pool,  
and the direction of these fluxes. These are basically what we  
need to construct the matrix equation.

SUGGESTED READINGS

Huang, Y. Y., Lu, X.J. et al. 2018. Matrix Approach to Land Carbon 
Cycle Modeling: A Case Study with the Community Land Model. 
Global Change Biology 24, 1394– 1404. doi:10.1111/ gcb.13948

Huang, Y. Y., Zhu, D. et al. 2018. Matrix- Based Sensitivity 
Assessment of Soil Organic Carbon Storage: A Case Study 
from the ORCHIDEE- MICT Model. Journal of Advances 

in Modeling Earth Systems 10, 1790– 1808. doi:10.1029/ 
2017ms001237

QUIZ

1 Is the sum of each row of the transfer matrix A always 
not bigger than 0?

2 Is the sum of each column of the transfer matrix A 
always not bigger than 0?

3 How would you add a new carbon pool into the matrix 
equation?

4 Why is a matrix equation exactly the same as a 
carbon balance equation in terms of describing the 
carbon cycle?

FIGURE 5.6 Illustration of the vertical transfer matrix V of the ORCHIDEE- MICT model.
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Carbon sequestration in terrestrial ecosystems is strongly 
regulated by nitrogen processes. Many global land models 
now simulate the carbon and nitrogen interaction. The goal of 
this chapter is to understand how coupled carbon and nitrogen 
models at ecosystem and global scales may be represented 
in the matrix form. Basically, nitrogen transfers among all 
the organic nitrogen pools can be represented in one matrix 
equation that is equivalent to the carbon matrix equation. The 
carbon and nitrogen matrix equations are coupled through the 
C:N ratio. Mineral nitrogen dynamics, determined by nitrogen 
input, mineralization, plant uptake, and leaching, can also be 
described by one equation.

INTRODUCTION

Rising atmospheric carbon dioxide (CO2) concentration 
tends to induce carbon (C) sequestration in terrestrial 
ecosystems. The conceptual framework of progressive 
nitrogen (N) limitation has predicted N limitation on future 
C sequestration in terrestrial ecosystems in response to rising 
atmospheric CO2. The N limitation may become progressively 
stronger over time unless N fixation is stimulated and/ or N 
losses are reduced, leading to increased N capital (Luo et al., 
2004). In addition, the degree of N regulation on terrestrial 
C sequestration depends on changes in several C- N coupling 
parameters, such as the stoichiometric flexibility of C:N ratios 
of biomass compartments, changes in plant N uptake via soil 
exploration, and N redistribution from soil to vegetation. 
Encoding what we know about how C and N flow within 
ecosystems, and how these flows are coupled, can help to fully 
understand the strength of N regulation on C sequestration in 
terrestrial ecosystems.

In this chapter, we will show how C and N cycling are coupled 
in an ecosystem model and a global land model, and how the 
coupled processes can be represented in the matrix form.

MATRIX REPRESENTATION OF C- N COUPLING 
IN TERRESTRIAL ECOSYSTEM (TECO) MODEL

One of the coupled C and N models presented in this 
chapter is developed from the terrestrial ecosystem (TECO) 

model (Weng & Luo, 2011). TECO was first presented 
in Chapter 1, and its matrix representation introduced in 
Chapter 5. The coupled C- N version we will discuss here, 
called TECO- CN, has eight C and N pools in addition to 
one mineral N pool. C enters the ecosystem through canopy 
photosynthesis and is then allocated into foliage (X1), wood 
biomass (X2), and fine roots (X3) (Figure 6.1). Similarly, N 
is absorbed by plants from mineral soil, and then partitioned 
among leaf (N1), woody tissues (N2), and fine roots (N3). 
Detritus from plant biomass turnover is transferred to 
metabolic litter (X4) and structure litter (X5) pools, where 
it is decomposed by microbes (X6). The structure litter (X5) 
is partly respired while partly converted into fast (X6) and 
slow soil organic matter (SOM, X7). During these C cycling 
processes, N in plant detritus is also transferred among 
the same set of ecosystem pools (i.e., litter, fast, slow, and 
passive SOM). Mathematically, these C processes may be 
described by the following first- order ordinary differential 
equation:

 
dX

dt
B A t KX t= + ( ) ( )µ ξ  6.1

where X =  (x1, x2, x3, x4, x5, x6, x7, x8), represents C pools in leaf, 
wood, fine roots, metabolic litter, structure litter, microbe, slow 
and passive SOM, respectively. ξ(t) is a vector of environmental 
scalars accounting for temperature and moisture effects on all 
C decomposition. A describes C transformation among various 
ecosystem compartments, given as:
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The non- zero elements (fij) in matrix A describe C transfer  
coefficients (i.e., the fractions of the C entering the ith pool  
from the jth pool), while the zero elements indicate no C flows  
between these two pools. K, which is an 8 × 8 diagonal matrix  
with diagonal entries given by vector K =  (k1, k2, k3, k4, k5,  
k6, k7, k8), is baseline turnover rate of carbon pools (i.e., the  
amounts of C per unit mass leaving each pool per day). I is the  
input and B =  (b1, b2, b3, 0, 0, 0, 0, 0) is the allocations of input  
into ecosystem carbon pools.

The N processes can be described by:

 
dN

dt
A t KR X t k N t

u
= ( ) ( ) + ( )−ξ 1

min
Π  6.2

where N =  (n1, n2, n3, n4, n5, n6, n7, n8), represents N pools 
in leaf, wood, fine roots, metabolic litter, structure litter, 
microbe, slow and passive SOM, respectively. R is an 8 × 8 
diagonal matrix with diagonal entries given by vector R =  (r1, 
r2, r3, r4, r5, r6, r7, r8), representing C:N ratios in the eight 
organic N pools. Π =  (π1, π2, 1 − π1 − π2, 0, 0, 0, 0), is a 
vector of allocation coefficients expressing the proportion of 
plant N uptake that is allocated to leaf, wood, and fine root 
biomass pools. κu is the rate of plant N uptake per time step 
(year), expressed as a proportion of Nmin (t), the amount of 
plant available N (mineral N) in soil at time t. The dynamics 
of the mineral N pool are determined by balance between 
N input (i.e., N mineralization, biological fixation, and 
atmospheric deposition) and output through plant N uptake 
and N loss (i.e., leaching and gaseous N fluxes), which can 
be expressed by:

 
dN

dt
t N t

t AKR X t
u L

min
min

*                 

( ) = − +( ) ( )
+ ( ) −

κ κ

ξ ϕ
1

1 (( ) + ( )F t
 6.3

where κu and κL are rates of N uptake and loss, respectively. 
The second term on the right side of Equation 6.3 describes 
the amount of N released during mineralization. ϕ

1
*  is the 

proportion for mineral N production. The C and N cycles 
are coupled through the parameter R which is C:N ratio. F(t) 
represents N input through biological fixation and atmospheric 
deposition.

APPLICATION OF MATRIX REPRESENTATION OF 
C- N COUPLED MODEL

To illustrate the application of matrix forms of a C- N coupled 
model, we designed a case study to examine changes in C- N   
coupling parameters under CO2 enrichment using a data 
assimilation approach. The case study uses measurements 
of C and N pools in various ecosystem compartments (i.e., 
foliage, woody tissues, fine roots, microbe, forest floor soil 
inorganic N, and mineral soil) and fluxes (i.e., litterfall, soil 
respiration and mineralization, and plant N uptake, N input 
from biological fixation and atmospheric deposition) obtained 
from the Duke Forest Free- Air CO2 Enrichment (FACE) 
experiment in North Carolina, USA, during the period 1996– 
2005. Key parameters of TECO- CN (i.e., C:N ratio, N uptake, 
N allocation coefficient, N input, N loss, and the initial value 
of mineral soil N pool) were estimated through a Bayesian 
probabilistic inversion. The inversion was done separately for 

FIGURE 6.1 Carbon and nitrogen pools and pathways of carbon and nitrogen fluxes in the TECO- CN model. Blue arrows show carbon 
cycling processes, while pink arrows indicate nitrogen cycling processes. SOM =  soil organic matter.
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plots with ambient versus elevated CO2 treatments, yielding 
one set of parameters for each (Shi et al., 2016).

Comparison of parameter distributions showed that plant 
N uptake, and C:N ratios in foliage, fine root, metabolic, and 
structural litter, were significantly higher under elevated than 
ambient CO2, whereas CO2 enrichment did not exert significant 
effects on C:N ratios in wood tissues and SOM. Moreover, 
elevated CO2 led to decrease of C exit rates in foliage, woody 
biomass, structural litter, and passive SOM, indicating an 
increase of C residence time in these ecosystem compartments. 
By contrast, elevated CO2 resulted in the increase of C exit rate 
in fine roots, demonstrating faster fine root turnover under CO2 
enrichment. In addition, C allocation to the foliage became 
smaller under elevated CO2, while C allocation to fine roots 
tended to be larger under CO2 enrichment.

The estimated parameters were then used for a forward 
analysis to examine ecosystem C and N dynamics under 
ambient and elevated CO2 conditions at Duke Forest. Our 
results demonstrated that modeled N pools in foliage, woody 
tissues, fine roots, and forest floor closely matched with the 
corresponding measurements for both ambient and elevated 
CO2 scenarios (Figure 6.2). However, TECO- CN could not 
capture the observed declining trend of microbial N content 
with time. In addition, the trained model did not simulate N 
dynamics in mineral soil well, partly due to the large variations 
in SOM measurements among different years.

MATRIX REPRESENTATION OF C- N COUPLING 
IN CLM5

The other C- N coupled model we will examine in this chapter is 
the Community Land Model version 5 (CLM5, Figure 6.3). To 

extend the ecosystem scale to global scale, CLM5 simulations 
represent various ecosystems on a grid covering the global 
land area. Like TECO- CN, the CLM5 biogeochemistry 
module includes carbon and nitrogen cycles for aboveground 
and belowground processes (Lawrence et al., 2019). The 
vegetation modules simulate the biogeochemical transfers 
among 18 carbon pools and 19 nitrogen pools, representing 
vegetation and soil compartments of a grid cell or tile. Tissue 
pools, storage pools, and transfer pools are included for each 
of leaf, fine root, live stem, dead stem, live course root, and 
dead course root compartments. In addition to C pools, N pools 
include one more retranslocation pool temporarily storing N 
from litterfall. The soil biogeochemistry module has 20 soil 
layers as a default setting. Each layer contains seven pools for 
organic C and organic N in each of metabolic litter, cellulose 
litter, lignin litter, coarse woody debris, fast soil organic 
matter, slow soil organic matter, and passive soil organic 
matter. Inorganic N pools, such as ammonium and nitrate, 
interact among each other, or with organic C and organic N 
pools, or with the environment through multiple nitrogen 
processes such as nitrification, denitrification, leaching, 
atmospheric N deposition, and biological N fixation. All these 
biogeochemical processes and pools in both vegetation and 
soil modules can be formulated as carbon or nitrogen balance 
equations.

We may reorganize the vegetation carbon and nitrogen 
balance equations of CLM5 into two matrix equations:

 

dC

dt
B A t K A t K

A t K C t

veg

Cin phc phc gmc gmc

fic fic veg

= + ( ) + ( )(
+ ( ) ) ( )

µ
 6.4

FIGURE 6.2 The comparisons of modeled vs. measured nitrogen pools in various ecosystem compartments under ambient CO2 (blue lines) 
and elevated CO2 (red lines).

 

 

 

 

 

 



37Coupled Carbon-Nitrogen Matrix Models

 

dN

dt
B A t K

A t K N t

veg

Nin phn phn

fin fin veg

= + ( )(
+ ( ) ) ( )

µ

           

 6.5

Cveg and Nveg are time- dependent state variables, which are 
vectors, each entry representing its respective vegetation pool 
size (gC m−2 and gN m−2). ICin and INin are scalars for C and 
N input, respectively. C input is the net primary productivity, 
which is the difference between gross primary productivity 
(i.e., plant photosynthesis) and autotrophic respiration. 
N input to the vegetation N cycle includes both biological 
N fixation and N uptake from roots. BC and BN are also 
vectors, representing allocation fractions of plant C and N 
input to individual pools. The K matrices are n × n diagonal 
matrices whose diagonal elements represent turnover rates 
(pool fraction per annual time step) due to different plant 
and vegetation processes: subscripts ph, gm, and fi indicate 
phenology, gap mortality (i.e., harvest from land use and 
natural mortality), and fire processes, respectively, as 
described by:
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The turnover rates in plant phenology matrix K indicate 
the leaf, root, live stem, and dead stem turnover due to 
phenology processes. The exit rates in gap mortality matrix 
K include harvest rates from land use plus natural mortality. 
The exit rates in fire matrix K represent the plant C loss rate 
due to fires.

A is a transfer coefficient matrix, representing C and N 
transfer among pools as specified in Equations 6.6– 6.11 below 
for CLM5. Subscript c and n respectively denote carbon and 
nitrogen.

FIGURE 6.3 Carbon and nitrogen flow diagram of vegetation biogeochemical cycle in CLM5. GPP =  gross primary production; NPP =  net 
primary production.
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The off- diagonal entry, ai, j, for matrix A represents a fraction 
of C or N leaving pool j that goes to pool i. The diagonal 
entries are set to −1 to represent that all the exiting C leaves 
pool j. The pool names referred by the subscript i or j can be 
found in Figure 6.3.

Interactions between vegetation C and N cycles in the 
original CLM5 are fully preserved in this matrix version 
of the CLM5 model. The original CLM5 has two modules 
to regulate C and N interactions for vegetation. First, the 
photosynthetic capacity, an important variable driving 
the carbon cycle, interacts with the nitrogen cycle in the 
LUNA module. LUNA optimizes N allocation to maximize 
the daily net photosynthetic carbon gain. Second, plant N 
uptake interacts with the carbon assimilation in the FUN 
module. FUN is based on the concept that N uptake requires 
the expenditure of energy in exchange for carbon. Both the 
modules are fully preserved to drive the C and N interactions 
in the matrix version of the model.

The implementation of soil C and N cycling extends the 
maximum soil layers from a fixed value of 10 in CLM4.5 (see 
Chapter 5) to a default value of 20 with flexibility to change 
in CLM5.

N balance equations in the original CLM5 are likewise 
amenable to a matrix representation. The soil organic C and 
N transfer among soil pools is formalized by the following 
matrix equations:

 
dC

dt
A t K

V t K t C t

soil
Csoil hc h

f soil

= + ( )(
− ( ) − ( )) ( )
µ ξ

            

 6.6

 
dN

dt
A t K

V t K t N t

soil
Nsoil hn h

f soil

= + ( )(
− ( ) − ( )) ( )
µ ξ

            

 6.7

As with vegetation, Csoil and Nsoil are vectors of state variables, 
representing soil organic C and N pool sizes in gC m−3 and gN 
m−3, respectively. ICsoil and INsoil are vectors representing plant 
litterfall into different litter C and N pools, respectively. Ahc and 
Ahn represent the horizontal transfers of C and N, respectively, 
which means transfers among pools within one soil layer. V 
stands for the rate of vertical mixing between the same types of 
pools across soil layers, which is the same for C and N. Kf is the 
rate of fire- induced litter loss, which is the same for C and N.

Matrix Ah, including both Ahc and Ahn, is a block matrix 
constituted by several matrices as:
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Each of the matrices Aij within the block matrix Ahc or Ahn is 
20 × 20, corresponding to 20 soil layers. The non- zero, off- 
diagonal matrices Aij, i ≠ j, indicate C and N transfer among 
pools within one soil layer as:
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Each of the diagonal matrices Aii is a negative identity matrix 
(i.e., a 20×20 matrix with diagonal elements equal to −1 and all 
other elements zero). The off- diagonal matrices Aij have non- 

zero diagonal values, (1 − rij)Tij for carbon and 1−( )r T
CN

CNij ij

j k

i k

,

,

 

for nitrogen. Aij represents transfer coefficients. rij is the 
respired fraction of C along the transfer pathway from pool j 
to i. Tij represents a pathway fraction of C going to pool i from 
that leaving the jth pool due to decomposition. CNj,k represents 
the C:N ratio of pool j in layer k.

The diagonal matrices Kh and Kf indicate the turnover rates, 
respectively, due to decomposition (horizontal transfer) and 
fire, at different layers:
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Environmental scalars ξ are time- dependent variables and are 
the product of temperature scalar ξT, water scalar ξW, oxygen 
scalar ξO, depth scalar ξD, and nitrogen scalar ξN:

 ξ ξ ξ ξ ξ ξt t t t
T W O D N( ) = ( ) ( ) ( )  

The vertical mixing coefficient matrix V is made up of 6 
identical matrices v:

 V t

v

v

v

v

v

v

( ) =






0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0





















 

Note that vertical mixing of coarse woody debris (CWD) is 
not allowed in CLM5; therefore, the corresponding vertical 
mixing matrix is 0 for CWD. The matrix v is a tridiagonal 
matrix, indicating the vertical mixing only transfers between 
adjacent layers:
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The subscripts represent the soil layer; g and h are vertical 
mixing rates related to upward and downward transfers.

As for the vegetation component of CLM5, interactions 
between C and N cycles in the soil from the original CLM5 
model are fully preserved in the matrix version. In the 
original CLM5, nitrogen limits soil organic C decomposition. 
The N limitation is represented by the ratio between available 
mineral N and the total soil N demand. The soil N demand 
includes soil immobilization during soil decomposition and 
plant uptake demand. The dynamics of mineral N processes 
that are involved in C and N interactions can be represented 
by one equation as fully described in Shi et al. (2016). The 
equation on mineral N dynamics can be coupled with the 
matrix equations on organic C and N processes to analytically 
or semi- analytically explore their interactions. The matrix 
form recoding simplifies the original representation as a 
complex C and N transform network of a biogeochemistry 
model like CLM5. Traceable components of the C and N 
cycles can thereby be abstracted and help build up surrogate 
models with less computational cost than the original models. 
Additionally, more robust diagnostic capability is brought out 
by the matrix form.

GLOBAL VALIDATION OF THE CLM5 MATRIX 
MODEL FOR C AND N SIMULATIONS

The temporal dynamics of C and N storage simulated by the  
matrix modules was compared with the dynamics simulated  
by the original versions of these modules. The CLM5 matrix  
model and the original CLM5 use the same default initial  
size of vegetation and soil C and N storage without spin-  
up for the transition simulation. Modeled C and N storage  
in the total ecosystem, vegetation, and soil organic matter  
from the matrix model matched with those from the original  
CLM5 (Figure 6.4). It is worth mentioning that the matrix  
module is not an exact representation of the original model  
because different processes in the original model are updated  
stepwise, while all processes in the matrix model are updated  
simultaneously. However, our validation results show that the  
relative differences of soil C and N are less than 1% for most  
grid cells. Only 0.4% and 0.5% of the grid cells in vegetation C  
and N storage, respectively, diverged by more than 1% relative  
difference (Figure 6.4g– h). Only two of 1466 global grid cells  
in ecosystem C and N storage diverged by more than 1%.  
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Global annual means in all six C and N storages over 115 years  
perfectly lined up on the 1:1 line, signifying exact agreement  
(Figure 6.4a– f). The good agreements demonstrate that the  
matrix model can faithfully reproduce both temporal dynamics  
and spatial patterns of C and N states from the original model.

As mentioned before, minor divergence between the two 
model versions could be explained by the difference between 
the simultaneous nature of the calculations encapsulated by 
the matrix equations, versus the stepwise nature of the original 
model’s algorithms. The matrix modules update C and N state 
variables only once within each time step, whereas the original 
modules update these state variables one after the other within 
each time step. This means that updates in a state variable 
calculated early in the sequence can affect the calculation for a 

subsequent state variable. For example, leaf turnover is updated 
by both phenology and fire in sequence in the original model. 
Thus, the turnover in leaf C from fire is proportional to the pool 
size after being updated by phenology in the original model, 
while the turnover in leaf C from fire is proportional to the pool 
size before phenology in the matrix model. As a consequence, 
simulated dynamics may slightly differ between the two model 
realizations. Nevertheless, the differences in modeled state 
variables due to different update methods of the two models 
were small enough not to generate notable differences as 
shown in global simulation of the C and N storage.

To summarize, we have shown in this chapter how matrix 
equations may be used to represent C- N coupled models 
for application at ecosystem and global scales. The new 

FIGURE 6.4 Comparison of simulated global carbon (C) and nitrogen (N) stocks from 1901 to 2014 between the CLM5 matrix model and 
the original CLM5. (a) Vegetation C storage, (b) soil C storage, (c) ecosystem C storage, (d) vegetation N storage, (e) soil N storage, and 
(f) ecosystem N storage are summed up over all land grid cells each year for comparison. Relative differences averaged over last four year 

(2011– 2014) are calculated as: 
X X

X
matrix original

original

−
*100. Xmatrix represents (g) vegetation C storage, (h) vegetation N storage, (i) soil C storage, 

(j) soil N storage, (k) ecosystem C storage, and (l) ecosystem N storage from the CLM5 matrix model. Xoriginal is the counterpart from the 

original CLM5.
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representation as a matrix equation for C- N coupled models 
has several advantages. The matrix form could help build 
up a surrogate model for parameter inversion and parameter 
sensitivity analysis, especially for understanding the role of 
different C- N interactions for N limitation of CO2 fertilization. 
Previously, parameter inversions or parameter sensitivity 
analysis of terrestrial biogeochemical models like CLM5 have 
been prohibitively expensive computationally. The surrogate 
model in matrix form greatly saves the computational cost 
(Huang et al., 2018b; Tao et al., 2020). Another advantage of 
the matrix form is that it enables a strong diagnostic approach, 
the traceability analysis, which attributes the differences in 
simulated C and N storage into several traceable components 
(see Chapter 17). These traceable components convey critical 
ecological or biogeochemical meanings which can help 
us understand the key drivers of the spatial and temporal 
variability in terrestrial C and N cycles emerging from model 
simulations. For example, water scalars have been identified 
as the most significant traceable component to explain wide 
divergence between estimates of permafrost carbon storages 
driven by two reanalysis meteorological datasets, GSWP3 
and CRUNCEP (Lu et al., 2020). The success in capturing the 
dynamics of biogeochemical cycling of a complex model such 

as CLM5 indicates the feasibility of implementing matrix 
form versions of other terrestrial biogeochemistry models.
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QUIZ

1 What is the matrix form of ecosystem nitrogen cycling?
2 What are the differences between carbon and nitrogen 

cycles in the matrix form?
3 What are the key parameters to couple carbon and 

nitrogen cycles?
4 What drives the dynamic of the mineral nitrogen pool?
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FIGURE 7.1 The mass balance of a single compartment.

Compartmental Dynamical Systems and 
Carbon Cycle Models

Carlos A. Sierra
Max Planck Institute for Biogeochemistry, Jena, Germany

Models of the terrestrial carbon cycle are particular cases 
of compartmental dynamical systems, which are systems of 
differential equations that must conserve mass. This chapter 
introduces the main mathematical properties of compartmental 
dynamical systems and proposes a classification scheme 
that is useful for the analysis of carbon cycle models. This 
classification scheme distinguishes between models where 
carbon inputs and rates change over time or remain constant 
(nonautonomous versus autonomous models), and between 
models in which the amount of mass in compartments interact 
with mass in other compartments (nonlinearity). We show that 
simple concepts, such as steady state, may not be well defined 
for some groups of models, and present alternative concepts 
such as the pullback attractor for the analysis of models 
with no steady state. In addition, this chapter introduces the 
theoretical basis for the mathematical analysis of models 
written in matrix form.

INTRODUCTION

The matrix representation of models has emerged as a very 
general representation of ecosystem models, particularly 
models that track the movement of carbon, nitrogen, and 
other elements inside vegetation and soil pools (Mulholland 
and Keener 1974; Matis et al. 1979; Bolin 1981; Luo and 
Weng 2011; Xia et al. 2013; Luo et al. 2017). For soil organic 
matter models, some of the first representations in matrix 
form were the models of Bolker et al. (1998), Baisden and 
Amundson (2003), and Tuomi et al. (2009). For these authors, 
the matrix representation helped them organize the set of 
differential equations that resulted in their model in a more 
manageable and compact form. This is also the case in other 
fields of science such as biology or chemistry, where large sets 
of differential equations can be organized using this compact 
representation.

In fact, any model that represents the mass balance of 
a quantity such as atoms or molecules, can be represented 
in this form. Compared to other systems of differential 
equations, mass- balanced systems are special in the sense 
that all quantities are generally non- negative; i.e., the 
information that is fed into the model, and the predictions it 
produces can only exist inside the domain of the positive real 
numbers. Furthermore, the mass balance constraint leads to a 
special type of dynamical system known as a compartmental 
system.

We will now introduce the mathematical concept of 
compartmental systems, and will show that models written 
in compartmental form have a specific set of mathematical 
properties. These properties however, depend on the specific 
structure analyzed, mostly on the time dependence of the 
elements of the model and intrinsic nonlinearities.

DEFINITION OF COMPARTMENTAL SYSTEMS

We start by defining a compartment as an amount of material 
that is kinetically homogeneous and that follows the law of 
mass balance. The meaning of ‘mass balance’ is elaborated 
below. A compartmental system, therefore, is a set of 
compartments that exchange mass with each other and with 
the external environment. This implies that a compartmental 
system is an open system with an observer- defined boundary 
(Anderson 1983; Jacquez and Simon 1993).

Let’s consider the mass stored in the compartment i, 
denoted by xi, as the balance between (Figure 7.1):

• ui ≥ 0 inflow (uptake) from outside the system,
• ri ≥ 0 outflow (release) to outside the system,
• Fji ≥ 0 flow transfers from compartment i to 

compartment j,
• Fij ≥ 0 flow transfers from compartment j to 

compartment i.

The change in mass over time of this compartment, 
dx

dt
xi

i
=  ,  

must be balanced according to the equation:

 x F F u r
i

j i
ji ij i i

= − +( ) + −
≠

∑ , 
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where the constraints Fij ≥ 0, ui ≥ 0, and ri ≥ 0 must be met for 
all i, j, and t. The time dependence is omitted in the notation 
for simplicity, but all masses and flows may change over time.

An additional constraint for the system is that if the 
compartment is empty, no mass can flow out of it; i.e., if xi =  0, 
then ri =  0 and Fji =  0 for all j, so that xi

≥ 0.

If the flows F are continuously differentiable, i.e., they 
change smoothly over time without sudden jumps, we can 
define the flows as (Jacquez and Simon 1993):

 F x b x x
ji ji i( ) ≡ ( )· .  

where b
ji
is a coefficient of transfer from compartment i to 

compartment j. Then, we can write the mass balance equation 
for compartment i as:

 x b b x b x u
i i

j i
ji i

j i
ij j i

= − +






+ +

≠ ≠
∑ ∑0

.  

The total outputs from compartment i can be expressed 

as b b b
ii i

j i
ji

≡ − +





≠
∑0

, then a general expression for each 

compartment satisfies the expression:

 x b x u
i

j
ij j i

= +∑ . 

A general expression for the entire system can be written as:

 
x x u= +B , 7.1

where the elements may be time- dependent and the matrix B 
and vector u depend on the vector of states x. Notice that in 
contrast to other chapters, we follow here a different notation 
and use B to denote a matrix. The system of Equation 7.1 is a 
compartmental or reservoir system, and the matrix B is called 
the compartmental matrix.

For any compartmental system, the compartmental matrix 
B has three properties:

• bii ≤ 0 for all i, t ≥ 0,
• bij ≥ 0 for all i ≠ j, t ≥ 0,

• 
i

n

ij
i j

ij jj j
b b b z

= ≠
∑ ∑= + = − ≤

1

0 for all j, t ≥ 0.

In words, the compartmental matrix B must always meet the 
requirement that all its diagonal entries are non- positive, its 
off- diagonal entries non- negative, and the sum of all elements 
inside each column must be non- positive. This column sum 
represents the fraction of matter that is released from the 
system, and it is called the fractional release coefficient zj 
because it can be used to compute the amount of material 
that is released to the external environment from each pool 

j. The total release from the system can be obtained with the 
expression:

 r z x=  , 

where z is the vector of fractional release coefficients and ∘ is 
the entry- wise product between the two vectors.

The property −zj ≤ 0 implies that B is a diagonally dominant 
matrix, which means that each element in the diagonal 
is greater than or equal to the column sum for this entry. 

Mathematically, B is diagonally dominant if b b
ii

j i
ij

≥
≠

∑ , and 

strictly diagonally dominant if b b
ii

j i
ij

≥
≠

∑ .

One important property of strictly diagonally dominant 
matrices is that they are invertible (Taussky 1949); i.e., there 
exists an inverse matrix B−1 such that B · B−1 =  I, where I 
is the identity matrix. Compartmental systems that meet this 
property contain no traps (Jacquez and Simon 1993); i.e., all 
mass that enters the system eventually leaves from any of the 
output flows.

CLASSIFICATION OF COMPARTMENTAL 
SYSTEMS

In the derivation of the compartmental system (Equation 
7.1), the explicit representation of time dependencies 
and nonlinearities was omitted. We will now introduce a 
classification scheme for compartmental systems based on 
these two properties, time dependencies (autonomy), and 
interaction among state variables (linearity). We call a model 
linear when the vector of inputs and the compartmental 
matrix are not dependent on the vector of states, and nonlinear 
otherwise. Similarly, we call a model autonomous when the 
mass inputs and the compartmental matrix are not explicitly 
time dependent, and nonautonomous otherwise (Table 7.1).
This classification scheme leads to four distinct groups of 
compartmental systems, each with specific mathematical 
properties that we will explore in the following sections.

autonoMouS VerSuS nonautonoMouS SySteMS

In the autonomous case (Table 7.1), mass inputs and process  
rates in the system are constant. This implies that the external  

TABLE 7.1
Classification of carbon cycle models according to their 
dependence on the vector of states (linearity), and on 
time (autonomy). Table cells are expressions for the 
differential equation describing x

.
(t) that captures the 

change of mass contents with respect to time

x- dependence Autonomous Nonautonomous

Linear u +  B · x(t) u(t) +  B(t) · x(t)
Nonlinear u(x) +  B(x) · x(t) u(x, t) +  B(x, t) · x(t)
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environment (e.g., solar radiation, air temperature, water  
content) are assumed constant. Although ecosystems are  
far from being surrounded by a constant environment, this  
assumption is sometimes useful to study basic properties of a  
system such as its long- term behavior.

However, it is important not to mix up concepts that belong 
to autonomous systems with concepts that do not apply 
for nonautonomous systems. For instance, an autonomous 
compartmental system generally converges to a steady state in 
the long term where the mass of each compartment does not 
change with time. In contrast, a nonautonomous system does 
not reach such a steady state because, by definition, the system 
is changing all the time. Therefore, it is wrong to talk about 
the steady state of a nonautonomous system (for additional 
details see Sierra et al. 2018).

linear VerSuS nonlinear SySteMS

In the linear case, the contents of compartments do not 
influence the rates at which mass flows into the system from the 
external environment, and do not influence the rates at which 
mass flows out of the compartments (Table 7.1). In other words, 
there are no feedbacks among compartment contents. However, 
nonlinear behavior can occur in ecosystems, for instance, when 
the amount of photosynthesis in the leaves depends on the 
amount of nonstructural carbohydrates or fine roots.

Nonlinear compartmental systems can show a very rich 
set of qualitative behaviors (Jacquez and Simon 1993; 
Anderson and Roller 1991), which for nonlinear autonomous 
systems range from sustained oscillations to catastrophic 
shifts to alternate states (Wang et al. 2014). In the nonlinear 
nonautonomous case, the time- dependent signals that affect 
the system introduce an even larger degree of complexity, 
which complicates the behavior of these systems further 
(Müller and Sierra 2017).

PROPERTIES AND LONG- TERM BEHAVIOR OF 
AUTONOMOUS COMPARTMENTAL SYSTEMS

Even though the assumption of a constant environment 
is unrealistic, autonomous models can be very useful in 
illustrating potential behavior of compartmental systems. In 
the following, we will present a few properties of autonomous 
systems that are useful for many applications, which 
include: long- term behavior of stocks and fluxes, behavior in 
the neighborhood of the steady state after a perturbation, the 
age structure of the compartments and the release flux, and the 
behavior of an impulsive tracer.

linear SySteMS

We will consider first linear autonomous compartmental 
systems of the form

 
x u xt t( ) = + ( )B · ,  7.2

with B invertible and some initial conditions at t =  0

 x 0
0( ) = x . 

One advantage of systems of the form of Equation 7.2 
compared to the other systems in Table 7.1, is that it is possible 
to compute their analytical solution. The general solution of 
this model is given by:

 x x ut e e dt t( ) = +





∫ −( )B B· · ,
0

0

t
τ τ  7.3

where eB is the matrix exponential.
Equation 7.3 shows that the solution of the system is 

composed of two terms. The first term accounts for the 
decomposition of the mass initially stored in the system at 
time zero. The second term accounts for decomposition of 
the inputs that entered the system until time t. At any given 
time, the mass stored in the system is the sum of both the 
remaining of the initial mass present at time t =  0 and all the 
un- decomposed mass that entered until time t.

The release of mass from the system is computed by 
multiplying the fractional release coefficients zj by the amount 
of carbon stored in each pool as:

 r t z x t
j j j n

( ) = ( )( )
= …

· ,
1

 

= ( )z x t

If the system runs for a very long time, it eventually reaches 
a point called the steady state where all inputs are equal to the 
outputs, and there are no changes in mass within the system. 
Technically, as t → +  ∞, x(t) → x∗, where:

 x u* = − −B 1· , 7.4

and

 r z x* * = ( ) =
…

z x
j j j n
· ,*

  

Notice that the steady state does not depend on the initial 
conditions. It only depends on the compartmental matrix and 
the vector of external inputs, and represents the equilibrium 
point where the total amount of matter in the system and in 
the individual pools do not change, i.e., ∑ =x 0, and x = 0, 
respectively.

nonlinear SySteMS

In contrast to linear systems, nonlinear compartmental 
systems have no general explicit analytical solution. 
However, it is always possible to obtain a numerical 
solution of the system using any suitable numerical method 
(LeVeque 2007).
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In most applications, we are interested in observing how 
the system evolves over time and eventually reaches a steady 
state. Therefore, it is of interest to find an equilibrium solution 
for the system:

 
x u x x x= ( ) + ( )B · , 7.5

such that:

 0 u x x x= ( ) + ( )B · . 7.6

However, it is not certain that a specific nonlinear system 
has an equilibrium solution, or in case there is one, that this 
equilibrium is unique. Anderson and Roller (1991) show 
special cases of nonlinear compartmental systems with 
constant inputs that have unique solutions, but these cases are 
too specific for our purposes here.

Certain combinations of parameter values and pool sizes 
may lead to the situation in which the matrix B(x) is not 
compartmental, and therefore the system may not be mass 
balanced. For this reason, it is useful to define a space in 
which a nonlinear system is well defined. Following Anderson 
and Roller (1991), we define R x R xn n

+ = ∈ ≥{ }: : 0  as the set 
of all non- negative real numbers in an n- dimensional space. 
Since the mass in all compartments is always non- negative, 
the solutions of the system can only occupy this space. Now 
we define the space within Rn

+ where all solutions of the system 
obey mass balance constraints as:

 Ω : : .= ∈ ( ){ }+x R xn B  is a compartmental matrix  

The space Ω is the set of all possible states the system 
can take without violating mass balance. One important 
use of Ω is that it can be used to test whether a particular 
nonlinear model does not violate mass balance for any 
value of x and t.

For the case of constant inputs, i.e., u, Anderson and Roller 
(1991) propose an iteration strategy to find a steady- state 
solution for a nonlinear autonomous system. It consists of 
applying the formula:

 x x up p p+ −= − ( ) = …1 1
0 1 2B · , , , , ,  

until xp+ 1 ≈ xp. Notice that for this method to work, the 
compartmental matrix must be invertible. Also, the existence of 
one equilibrium point is not a guarantee that it is unique: other 
equilibria may exist as well. The choice of the starting xp= 0 
may determine what equilibrium point the method will find.

Stability analySiS near eQuilibria

In many applications, it is of interest to study the behavior 
of a system as it approaches an equilibrium point, or the 
behavior of the system when it is slightly perturbed from this 
equilibrium. The study of these behaviors usually falls under 
the label stability analysis. Again, the stability analysis would 

differ depending on whether the autonomous system is linear 
or nonlinear.

Linear Systems
For linear autonomous compartmental systems (Equation 
7.2), their long- term behavior can be studied by analyzing 
the eigenvalues and eigenvectors of the compartmental matrix 
B. It is well established that a compartmental matrix with 
constant coefficients has no eigenvalues with positive real 
part, which means that the mass inside the compartments 
never grows exponentially as long as inputs and rates are kept 
constant. This is ensured by the diagonally dominant property 
of the compartmental matrix.

In most applications, the eigenvalues of the linear 
autonomous compartmental matrix have a negative real part. 
In these cases, it is said that the compartmental system is 
asymptotically stable because all solutions converge in the 
long- term to the steady state of Equation 7.4. If the eigenvalues 
also contain a complex part, then the solution will approach 
the steady state through oscillations. If the eigenvalues contain 
no complex part, then the system approaches the steady state 
in the direction given by the eigenvector of the eigenvalue 
with the smallest absolute value of the real part.

A third possibility is that the compartmental matrix 
contains at least m eigenvalues with a real part equal to zero. 
In this case, it is said that the compartmental system contains 
m traps (Jacquez and Simon 1993). A trap is a compartment, 
or a set of connected compartments, where mass may flow 
in but cannot flow out. In this case, the system contains no 
equilibrium since B is not invertible and Equation 7.4 cannot 
be solved. The system therefore, will grow proportionally to 
the amount of mass entering the m traps.

Nonlinear Systems
For nonlinear systems, it is common to study the behavior of 
the system in the neighborhood of one or multiple equilibrium 
points. For compartmental systems, we are only interested in 
equilibria that reside in the space Ω, since they are the only 
ones that have a physical and biological interpretation.

We assume that the nonlinear autonomous system of 
Equation 7.5 has at least one equilibrium point in Ω, then we 
are interested in calculating the Jacobian matrix, defined as:

 J
B

x
x x

x
( ) =

∂ ( )( )
∂

·
,  

at an equilibrium point x =  x∗ ∈ Ω. This Jacobian matrix 
tells us about the behavior of trajectories that are close to the 
steady state, which is a point in the phase plane. Then, the 
properties of the Jacobian matrix, particularly its eigenvalues, 
tell us about the stability of the system in the neighborhood 
of the equilibrium (Guckenheimer and Holmes 1983). It is 
possible to treat the nonlinear system as a linear system in the 
neighborhood of the equilibrium, and for this reason one can 
perform the same analysis of eigenvalues as in the linear case 
(Guckenheimer and Holmes 1983).
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If there are eigenvalues with positive real part, 
trajectories are repelled away from the equilibrium 
point, which is considered unstable (Strogatz 1994). The 
existence of unstable equilibria is an indication of possible 
tipping points and alternative states for the system (Scheffer 
et al. 2001). However, it is often the case that the Jacobian 
matrix of a compartmental system is also a compartmental 
matrix, in which case the existence of unstable equilibria 
is excluded.

When this Jacobian matrix has a compartmental structure, 
the system is said to be cooperative, which means that if 
the mass of one compartment increases, the fluxes to other 
compartments also increase (Jacquez and Simon 1993). In this 
case, trajectories close to the equilibrium point are attracted 
to it, and in some particular cases this equilibrium may be 
unique (Jacquez and Simon 1993; Bastin and Guffens 2006). 
This particular case of a unique equilibrium point means that 
the system is global asymptotically stable or GAS (Müller and 
Sierra 2017).

PROPERTIES AND LONG- TERM BEHAVIOR OF 
NONAUTONOMOUS SYSTEMS

Nonautonomous compartmental systems behave in a 
completely different way to autonomous systems. Since the 
mass inputs and the rates change with time, it is not possible 
for them to converge to a fixed point in the state space. 
Also, the stability analysis tools for autonomous systems 
are of little use for nonautonomous systems. Methods to 
analyze nonautonomous systems are relatively new, and 
they are currently an active branch of mathematical research 
(Rasmussen 2007; Kloeden and Rasmussen 2011). Concepts 
from control engineering can also be very useful to study 
nonautonomous systems, particularly nonlinear ones (Sontag 
1998). Again, we will split the concepts for linear versus 
nonlinear nonautonomous systems in the sections below.

linear SySteMS

We will consider two cases for linear autonomous compartmental 
systems: (1) the case of time- dependent inputs and constant 
rates, and (2) the case of time- dependent inputs and rates.

The first case is given by a system of the form:

 x u xt t t( ) = ( ) + ( )B · , 

with initial condition x(0) =  x0. If the vector- valued function 
u(t) is known, an analytical solution can be obtained as:

 x x ut e et

t
t( ) = + ( )∫ −( )B B· · · ,

0
0

τ τ τd  

which is a general form for the linear autonomous solution 
of Equation 7.3. This analytical solution is only possible to 
compute because the rates in the compartmental matrix B are 
constant for all times, and therefore one can take advantage of 
the analytical properties of the matrix exponential.

For the second case, when both mass inputs and rates are 
time dependent, the system is expressed as:

 
x u xt t t t( ) = ( ) + ( ) ( )B · , 7.7

for which an analytical solution cannot be computed. 
However, a semi- explicit solution for Equation 7.7 can be 
expressed in terms of the state transition operator Φ(t, t0), 
which is a matrix whose product with the state vector at an 
initial time t0 gives x(t) at a later time t. In other words, Φ(t, t0) 
· x0 is the solution to the homogeneous equation x x= ( )B t · .

The semi- explicit solution of the linear nonautonomous 
system of Equation 7.7 can be expressed as:

 x x x ut t t t t
t

t

, , , d
0 0 0 0

0

( ) = ( ) + ( ) ( )∫Φ Φ· , · .τ τ τ  7.8

This solution explicitly depends on the initial conditions since 
for a nonautonomous system, where mass inputs and rates 
constantly change with time, the exact time and state when 
the system starts is of fundamental importance to compute 
a unique solution. In the autonomous case, solutions only 
depend on the time elapsed t − t0, while in the nonautonomous 
case the solutions depend separately on the actual time t and 
the starting time t0 (Kloeden and Rasmussen 2011).

Rasmussen et al. (2016) present a sufficient condition for 
the global exponential stability of the nonautonomous linear 
compartmental system. If the compartmental matrix B of 
the homogeneous system x x= ( )B t ·  is strictly diagonally 
dominant for all t, then this system is exponentially stable. 
This means that there is a minimal rate at which the initial 
mass in the system decays. Now, for the inhomogeneous 
case (Equation 7.7), we can think of two solutions s1(t, t1, x1)   
and s2(t, t2, x2) that have different initial conditions. As a 
consequence of the exponential stability property, the two 
solutions are said to be forward attracting, i.e., they get close 
to each other as t → +  ∞.

Rasmussen et al. (2016) also showed that for linear 
nonautonomous compartmental systems that meet the 
sufficient condition for exponential stability, there exists a 
unique pullback attracting solution or pullback attractor 
which all solutions are attracted to. It is defined as:

 v ut t
t

( ) = ( )⋅ ( )
−
∫: , ,
∞

τ τ τΦ d  

and can be interpreted as the solution on which the initial 
conditions have no influence (Kloeden and Rasmussen 2011). 
Therefore, the pullback attractor is the nonautonomous 
equivalent of the steady- state concept for autonomous systems 
(Carvalho et al. 2013).

A particular case is the linear nonautonomous system in 
which the mass inputs and the process rates are periodic. 
For example, this is the case of seasonal systems without 
noise in which the same periodic pattern for the mass 
inputs and for the process rates is repeated every year. More 
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precisely, a periodic linear compartmental system is one in 
which u(t +  T) =  u(t) and B(t +  T) =  B(t) for a fixed period 
T and for all t. Mulholland and Keener (1974) showed that 
these types of systems have periodic solutions for which   
x(t +  T) =  x(t). This periodic solution can be interpreted as 
a pullback attractor because it has no influence on the initial 
conditions.

nonlinear SySteMS

Nonlinear nonautonomous compartmental systems are 
the most complex cases for their study and analysis. It is 
not possible in general to obtain analytical solutions, and, 
contrary to the autonomous case, it is not possible to study 
an equilibrium point for these systems because, by definition, 
compartment contents are always changing and they never 
reach a constant value.

As mass inputs and process rates change in a nonlinear 
nonautonomous compartmental system, it is possible that 
specific combinations of parameter values and compartment 
sizes lead the system outside the space Ω where mass balance 
consideration must be met. Therefore, it is always important 
to check that solutions for these systems are always inside this 
space; i.e., x(t, t0, x0) ∈ Ω for all t, where x(t, t0, x0) is a solution 
trajectory of the nonlinear nonautonomous compartmental 
system of the form:

 
x u x x xt t t t t t( ) = ( )( ) + ( )( )⋅ ( ), , .B  7.9

Concepts from control theory could be used to ensure 
that solutions are well behaved and inside Ω, and more 
importantly, within certain ‘regions of stability’ that 
solutions are attracted to (Müller and Sierra 2017; Kloeden 
and Rasmussen 2011).

Input- to- state stability (ISS) is a concept from the field 
of control theory that can be used to determine whether a 
nonlinear nonautonomous compartmental system meets 
stability properties. We say that a dynamical system is ISS 
if it is globally asymptotically stable in the absence of time- 
dependent perturbations, and if its trajectories are bounded 
by a function of the size of the input for all sufficiently large 
times (Sontag 1998; Müller and Sierra 2017). Therefore, we 
can expect the trajectories of an ISS system to remain within a 

certain region as long as the initial mass decays over time, and 
the mass inputs stay bounded within a certain limit.

We expect that for most applications, nonlinear 
nonautonomous compartmental systems meet the properties of 
ISS systems. However, mathematically showing that a system 
is ISS is not trivial, and this should be studied on a case- by- 
case basis (Sierra and Müller 2015; Müller and Sierra 2017).

FINAL REMARKS

The theory of compartmental dynamical systems offers a 
formal theoretical framework to express and analyze models of 
the carbon cycle and other biogeochemical elements that meet 
mass balance requirements. Using a matrix representation 
of carbon storage in ecosystem pools, it is possible to use 
the theory of compartmental dynamical systems to study 
important characteristics of models such as their long- term 
behavior, the presence of traps that retain carbon indefinitely 
in a model, and the response of ecosystem compartments to 
disturbances.

The representation of ecosystem models as compartmental 
systems is also useful to study system level properties of 
ecosystems (see Chapter 15). It is a useful mathematical 
representation that can relate ecosystem concepts to formal 
mathematical properties of dynamical systems.

SUGGESTED READING

General introductions to compartmental systems can be found in 
the monograph by Anderson (1983), and the comprehensive 
review of Jacquez and Simon (1993). More specific results 
about the application of compartmental systems to model the 
terrestrial carbon cycle can be found in the reference list and 
other chapters of this book.

QUIZ

1 According to the general classification of models 
with respect to their dynamical properties, what 
type of compartmental systems have a fixed- point 
steady- state?

2 Can linear compartmental systems show transitions 
through tipping points?

3 What is the analogue of a steady state for 
nonautonomous systems? Why?
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  8 Practice 2
Matrix Representation of Carbon Balance Equations 
and Coding

Yuanyuan Huang
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of 
Sciences, Beijing, China

This practice helps you to learn how to write a matrix equation 
from carbon balance equations using the CENTURY model as 
an example. You will also learn how to numerically solve the 
matrix equation through Python code using the CarboTrain 
package.

INTRODUCTION

In Chapter 5 we saw the benefits of representing a land 
carbon cycle model in a matrix form. This can be achieved 
by organizing the carbon balance equations of a model into 
one matrix equation. For many common models, the matrix 
version is mathematically identical to the original model 
without any changes in represented processes. Conversely, a 
matrix equation can be expanded row by row to give carbon 
balance equations for individual carbon pools. Exercise 1 
focuses on how to derive the matrix version from the carbon 
balance equations of a carbon cycle model with multiple 
pools, the CENTURY model. Exercise 2 provides practice in 
coding and running the matrix model using Python through 
the CarboTrain package. Going through these exercises 
should give you some first- hand insight into the benefits of 
working with the matrix model, such as being easy to code 
and run model simulations.

exerciSe 1 deriVing the Matrix Model froM carbon 
balance eQuationS

In this exercise we will develop a matrix form of the 
CENTURY model from its carbon balance equations. The 
carbon flow diagram for CENTURY was shown in Figure 4.1 
of Chapter 4. The carbon cycle as depicted in the carbon 
flow diagram in Figure 4.1 can be represented by five carbon 
balance equations. If you performed Exercise 1 in Chapter 4, 
you have written down these carbon balance equations before. 
The equations are shown below:

 
dx

dt
I k x1

1 1 1
= −*β  

 
dx

dt
I k x2

2 2 2
= −*β  

 
dx

dt
f k x f k x

f k x f k x k x

3
31 1 1 32 2 2

34 4 4 35 5 5 3 3

= +
+ + −

* *

* *         
 

 
dx

dt
f k x f k x k x4
41 1 1 43 3 3 4 4

= + −* *  

 
dx

dt
f k x f k x k x5
53 3 3 54 4 4 5 5

= + −* *  

where x1, x2, x3, x4, and x5 correspond to structural carbon, 
metabolic carbon, active soil carbon, slow soil carbon, and 
passive soil carbon pools. I is the input rate from plant residue. 
β1 and β1 indicate the proportion of this carbon input that is 
allocated to structural and metabolic litter. fij are fractions of 
carbon transferred from pool j to pool i. k1 to k5 are rates of 
soil organic carbon decomposition.

To develop a matrix model from the carbon balance 
equations, we need to know the following items. The first 
item is the general form of the matrix equation. If you do not 
remember it, please go back to Chapter 5 to find the general 
form of the matrix equation. Second, you need to remember 
what the scalar, vectors, and matrices are in the general matrix   

equation. For example, is dX

dt
 a scalar, vector, or matrix? What   

does it mean? Please list the scalar, vectors, and matrices in 
the general matrix equation. Third, you need to write all the 
scalar elements of these vectors and matrices. For example, 
X =  [x1 x2 x3 x4 x5]T indicates a vector of pools related to 
structural carbon, metabolic carbon, active soil carbon, slow 
soil carbon, and passive soil carbon. What are the other vectors 
and matrices of the matrix model?

exerciSe 2 coding and running the Matrix Model

This exercise uses the package CarboTrain, which enables you 
to do exercises in this and other units with minimal background 
training in modeling and programming. Instructions for 
installing and working with CarboTrain are available in 
Appendix 3 of this book. The following steps will guide you 
through the coding and running of the matrix version of the 
TECO model using the CarboTrain package.
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1 Run the default source code.
  In the main window of CarboTrain, select Unit 2 and 

Exercise 2, specify the path of the output directory in 
which you wish to store your model result, click on Run 
Exercise. The notification “Task submitted!” will pop 
up. Click on OK. Wait until the notification “Finished” 
appears, then click on OK. Go to the output directory 
you specified. There are two files. One is result.png, 
which plots the change of seven carbon pools through 
time. A second file is output.csv, which saves the value 
of each carbon pool in each simulation year.

2 Understand the default source code.
  In the CarboTrain main window, click on Edit source 

code. You will see the following source code (black 

text in your GUI). The code is based on the matrix 
model of TECO. The first part of the code loads 
packages and environment, and reads the output path 
you specified in the previous step.

   The second part of the code, shown below, constructs 
the matrices and specifies our desired simulation 
length in years. The vector iv_ list is the initial carbon 
pool size, input_ fluxes specifies the input rate, B is the 
allocation vector, A is the transfer matrix, and K is the 
turnover rate matrix.

   The third part of the code (Figure 8.3) calls the 
function GeneralModel to solve the carbon balance 
equations and generate the result.

The fourth part of the code (Figure 8.4) generates 
the output figure (result.png) and saves results into the 
csv text file (output.csv).

3 Modifying the default source code.
  To get a sense of how the code works and what 

controls the system dynamics, you could change some 
of the default values in the second part of the code. For 
example, if we change the number of simulation years 
(nyear) to 100, how does this affect the output from the 
run? If we make the passive soil carbon turnover faster 
by changing the default value of 0.00000154782 per 
day to 10−5 (1e- 5 in Python) per day, what difference 
do you see in comparison with the default? By 
exploring and trying different settings and parameters 
you should learn to understand how different parts of 
the matrices control the system dynamics. Every time 
you modify the code through Edit source code, please 
make sure you save the code before you click on Run 
Exercise. It is good practice to change one place at a 
time and change the value back to the default value 
after you finish the practice.

4 Building a new carbon model (optional).
  Suppose we have a system with leaf (pool 1), root (pool 

2), wood (pool 3), metabolic litter (pool 4), structural 
litter (pool 5), fast soil organic matter (pool 6), and 
passive soil organic matter (pool 7). Carbon dynamics 
of the system are given by the matrix equation below. 
Based on the default TECO model source code, above, 
are you able to code this matrix model and check on 
carbon dynamics through time?

 
dX

dt
BI AKX= +  

 B =
− −
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We assume 40% of the net photosynthetic carbon is allocated  
to leaf, 35% to root, and the remaining to wood. f41 =  0.7;  
f51 =  0.25; f42 =  0.65; f52 =  0.25; f43 =  0.15; f53 =  0.75; f64 =  0.3;  
f65 =  0.05; f75 =  0.04; k1 to k7 are [0.0017, 0.002, 0.0001, 0.01,  
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0.001, 0.0001, 0.000001] per day. For other parameters, if not  
specified above (e.g., the input rate), we assume they take the  
same values as the default TECO model. Thus, you do not  
need to change these values.

Does your new matrix model work? Can you run it? What 
results do you get?

Click on Open solutions in CarboTrain to check if the  
source code of your new matrix model is similar to the code  
shown in Figure 8.5.FIGURE 8.1 First part of the source code of the matrix version 

of TECO.

FIGURE 8.3 Call to the functions that solve the carbon balance equations and retrieve the result.

FIGURE 8.2 Second part of the source code of TECO.
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FIGURE 8.4 Code segment that generates visual output and saves results to a text file.

FIGURE 8.5 Solution to Step 4.
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9

FIGURE 9.1 The unified diagnostic system with one (1) equation, 
three dimensions (3D), and five (5) variables.

Unified Diagnostic System 
for Uncertainty Analysis

Yiqi Luo
Cornell University, Ithaca, USA

All model intercomparison projects (MIPs) have shown 
large uncertainties in prediction of carbon sequestration 
among models and poor model-data matches. Although great 
efforts have been made, it is still difficult to identify causes 
of model uncertainty. This chapter offers a unified diagnostic 
system, which is also called a 1-3-5 scheme of diagnostics, 
for uncertainty analysis in carbon cycle modeling. The 
number 1 stands for one formula to unify the land carbon 
cycle models, the number 3 is for one three-dimensional (3D) 
space to evaluate all model outputs, and the number 5 is for 
five traceable components to pinpoint uncertainty sources 
via traceability analysis. Once the uncertainty sources are 
pinpointed, the model uncertainty can be shrunk to zero by 
standardizing the traceable components.

UNCERTAINTY IN LAND CARBON CYCLE 
MODELING

Hundreds of land models have been developed to predict the 
future state of ecosystems in an attempt to inform management 
practices for climate change mitigation. However, all model 
intercomparison projects (MIPs) have shown large uncertainties 
in prediction of carbon sequestration among models and poor 
model- data matches (Friedlingstein et al. 2006, 2014; Luo 
et al. 2015). For example, eleven earth system models (ESMs) 
participating in the Coupled Model Intercomparison Project 
Phase 5 (CMIP5) perform poorly in predicting the distribution 
of global land surface soil carbon (Todd- Brown et al. 2013). 
Similarly, the spread among 11 ESMs participating in the 
subsequent CMIP6 exercise has not changed significantly 
from CMIP5 results (Arora et al. 2020). The model predictions 
are an order of magnitude more uncertain over land than 
over ocean. Regionally, terrestrial ecosystem models did not 
accurately characterize a wide range of vegetation functional 
traits associated with net primary productivity (NPP) in the 
East Asian monsoon area (Cui et al. 2019).

Great efforts have been made in the past decades to 
identify causes of model uncertainty. For example, model 
development teams add more and more processes into 
land carbon models in the hope of representing ecosystem 
processes more realistically. This practice yields mixed 
results. Incorporation of the nitrogen cycle into more models 
has been suggested to reduce the spread of CMIP6, whereas 
different treatments of processes in permafrost regions result 
in divergent model predictions. In general, increasing details in 

process representations in models hinders our understanding 
of holistic system behavior (Sierra et al. 2018). Benchmark 
analysis has been used to evaluate model performance skills, 
quantify model- data mismatches, and identify processes that 
need to be improved (see Chapter 19). Data assimilation 
has been proposed to improve data- model consistency (see 
Chapter 38). None of these approaches, however, are sufficient 
to fully understand the causes of model uncertainty. Without 
identifying sources of uncertainty, it is extremely difficult to 
focus model improvement efforts to realistically predict future 
carbon dynamics.

This chapter introduces a 1- 3- 5 scheme as a unified 
diagnostic system for uncertainty analysis (Figure 9.1). 
This diagnostic system is based on the matrix approach to 
representation of land carbon cycle models in one (1) general 
equation without compromising any details of process 
representation. Land carbon cycle dynamics are defined by a 
three- dimensional (3D) space with axes of coordinates being 
carbon input, residence time, and carbon storage potential. 
Model uncertainty can be traced to five (5) variables, which 
are carbon input, plant partitioning, decomposition, carbon 
transfer, and environmental scalars. Thus, the 1- 3- 5 scheme 
provides an analytic framework to understand the structure of 
complex models, their dynamic behavior, and uncertainty.

ONE FORMULA TO REPRESENT LAND CARBON 
CYCLE MODELS

The unified diagnostic system offered by the matrix approach 
is based on one formula to unify land carbon cycle models. In 
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Units 1 and 2 of this book, we have shown you that the matrix 
equation can unify land carbon cycle models.

At least 18 models have so far been converted to the matrix 
equations. These models are CLM3.5, CLM4, CLM4.5, 
CLM5, CABLE, LPJ- GUESS, IBIS, CASA, CENTURY, 
ORCHIDEE, TEM, TECO, DELAC2, ELM, GECO, FBDC, 
BEPS, and YASSO. In these models, we reorganize the original 
carbon balance equations into one matrix equation without 
changing any processes. For example, CLM5 uses hundreds 
of carbon balance equations to simulate carbon transfer among 
18 plant pools of 17 vegetation types and 140 soil pools over 
20 soil layers. These carbon balance equations are organized 
into one matrix equation for the 18 vegetation pools and one 
matrix equation for the 140 soil pools (Lu et al. 2020). The 
vegetation and soil matrix equations are connected through 
litterfall and can be integrated into one matrix equation.

Sierra and Müller (2015) reviewed all soil carbon models 
according to the principles underlying the models. The matrix 
equation we are concerned with in this book satisfies five 
principles: mass balance, substrate dependence, heterogeneity 
of decomposition rates, transformation of organic matter, and 
environmental effects (see Chapter 1). When decomposition 
rates or transfer rates are functions of substrate, we still 
can use a matrix equation to describe carbon dynamics. In 
this case, the matrix equation becomes a nonlinear model. 
Indeed, Carlos Sierra’s group from Max Planck Institute of 
Biogeochemistry, Germany, uses the nonlinear matrix models 
to represent more than ten microbial models. Thus, we can 
understand models at different levels of complexity under one  

overarching theory. Please be mindful that nonlinear matrix 
models will have different properties from the linear ones (see 
Chapter 7).

With one general formula to represent all models, we can 
seek to understand the general behavior of the land carbon 
cycle and diagnose model uncertainty on a common ground. 
For example, the widely used model CLM5 includes 18 plant 
pools for each of the 17 vegetation types and 140 soil pools 
(i.e., 7 pools per layer over 20 layers) (Lu et al. 2020). Thus, 
CLM5 simulates carbon transfer among 158 pools (i.e., 140 
for soil +  18 for plant) in one grid- cell if it is occupied by one 
vegetation type and 194 (i.e., 140 +  3 × 18) pools if one grid- 
cell is occupied by three vegetation types. As a consequence, 
the matrix equation has at least 158 elements in the pool 
vector. In contrast, the CABLE model has nine pools so that 
the pool vector has nine elements (Xia et al. 2012). Despite 
the different numbers of carbon pools treated by these two 
models, they share the fundamental structure represented 
in the matrix equation, a structure that is shared by all land 
carbon cycle models.

Besides the differences in pool numbers, each of the five  
components of the matrix equation (i.e., Equation 1.6 in  
Chapter 1) is represented differently either by fixed values,  
functions, or nested models (Luo et al. 2022). The differences  
in parameterization of the five components also contribute to  
different simulation results. For example, CABLE allocates  
61% of NPP to roots, 23% to wood, and 16% to leaves  
(Figure 9.2a), whereas CLM3.5 allocates 43% of NPP to  
leaves, 16% to wood, and 41% to roots (Figure 9.2b) (Rafique  

FIGURE 9.2 Model structure and parameterization of CABLE (a) and CLM3.5 (b). Carbon enters the system through photosynthesis and is 
partitioned among live plant pools. From live pools, carbon is transferred to litter pools, and then to soil carbon pools. Values in boxes show the 
pool residence times. Values outside the boxes in red show the partitioning and transfer coefficients. Abbreviations are CWD for coarse woody 
debris, Str. for structural litter, Met. for metabolic litter, Surf. for surface litter, micr. for microbial biomass, and SOM for soil organic matter.

Adopted from Rafique et al. 2016.
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et al. 2016). Similarly, a large difference exists in carbon  
transfers from live plants to litter and soil. CABLE transfers  
dead tissues into three litter pools (including coarse woody  
debris, CWD) after senescence, whereas CLM3.5 transfers  
dead plant tissues to six litter pools (including CWD) after  
mortality. CLM3.5 and CABLE also differ in representing  
decomposition (i.e., K matrix in Figure 9.1). While both models  
can be represented by one matrix formula, CLM3.5 realizes  
each of the five components differently from CABLE, leading  
to different model projections of carbon dynamics. Despite  
these differences in model structure and parameterization, all  
models can be represented by the same matrix equation.

A THREE- DIMENSIONAL (3D) SPACE TO 
DESCRIBE MODEL OUTPUTS

Now let us explore what the 3D space means for evaluating 
model outputs. Chapter 1 explains that we need three 
variables: carbon input, residence time, and carbon storage 
potential to describe the transient dynamics of the land carbon 
cycle. The three variables become three dimensions to form a 
3D space to which model outputs can be mapped, no matter 
how differently models are executed, for evaluation on a 
common ground. The mathematical foundation for using the 
3D space to evaluate the transient dynamics of the carbon 
cycle is presented in detail in a paper by Luo et al. (2017). 
Here is a description of each of the three dimensions.

The first dimension of transient dynamics is carbon 
input through primary production. The primary production, 
being either gross primary production (GPP) or net primary 
production (NPP), quantifies the amount of carbon that enters 
an ecosystem to go through a variety of processes of the land 
carbon cycle before being released back to the atmosphere. Of 
the three dimensions, carbon input via GPP or NPP has been 
studied most.

The second dimension of transient dynamics is carbon 
residence time. Residence time is approximated as a mean 
value (i.e., mean residence time, MRT) or turnover time by 
dividing pool by flux. The approximation is valid when the 
carbon cycle is at equilibrium but yields substantial deviation 
from residence times for a multiple compartmental system 
when the carbon cycle is not at equilibrium (Lu et al. 2018b). 
Residence time or transit time is explained in detail in 
Chapter 15 and can be estimated from data assimilation for 
individual ecosystems. Overall, the residence time quantifies 
the duration of carbon staying in an ecosystem before being 
released back to the atmosphere.

The terms NPP and residence time together quantify  
equilibrium carbon storage capacity. Figure 9.3 shows  
simulated carbon storage capacity by three land models,  
the Beijing Climate Center (BCC) model, the Canada  
(CAN) model, and the Community Earth System Model  
Biogeochemical module (CESM GBC). In response to  
climate change, all three models simulate increases in NPP  
but decreases in residence time. The CESM BGC simulates  
the smallest NPP and residence time, leading to the lowest  
carbon storage capacity. The BCC model simulates the largest  

increase in NPP, leading to a large increase in carbon storage  
capacity. The Canada model simulates the highest residence  
time and thus estimates the highest carbon storage capacity.

However, when models are used to simulate responses of 
ecosystems to climate changes, the carbon cycle is no longer 
at equilibrium but in dynamic disequilibrium. Therefore, we 
need the third term, the carbon storage potential, to describe 
disequilibrium of the land carbon cycle. The CESM GBC 
model has the smallest carbon storage potential whereas the 
CAN and BCC models have high storage potential (Figure 9.3).

We use one more example to explain the three dimensions 
(3D) of land carbon cycle dynamics, particularly the third 
dimension. The third dimension, carbon storage potential, is a 
relatively new concept and worth more explanation.

A free- air CO2- enrichment (FACE) experiment was 
conducted in Duke Forest in North Carolina, USA. The 
FACE experiment started in the mid- 1990s and ended in the 
late 2000s. The CO2 concentration in the treatment rings was 
elevated by 200 parts per million above the ambient CO2 
concentration.

To illustrate the concept of 3D space of carbon dynamics 
in the FACE experiment, let us make a few assumptions. Let 
us assume that NPP is 1000 g C m−2 yr−1 and residence time 
is 40 years at ambient CO2 concentration. Then, we have the 
steady- state carbon pool size in the Duke Forest as 40 kg C m−2   
before the FACE treatment. We assume that elevated CO2 
treatments increase NPP by 40% but have no effect on 
residence time. The steady- state pool size is 56 kg C m−2 at 
elevated CO2 treatments. For the sake of simplicity, we also 
assume no seasonal and diurnal changes in forcing variables 
and carbon processes.

In this example, we have two equilibrium states of carbon  
storage (i.e., carbon storage capacity), one at ambient [CO2],  

FIGURE 9.3 The 3D model output space (NPP in x- axis, carbon 
residence time in y- axis, and carbon storage potential in color), for 
three models from CMIP5. The points represent the global annual 
values of carbon storage for the three variables. The contours 
represent the carbon storage capacity. Colors show the values of the 
carbon storage potential.
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equaling 40 kg C m−2 and the other at the elevated [CO2],  
denoted as XE, equaling 56 kg C m−2 (Figure 9.4A). At the very  
beginning of the FACE experiment, we need to determine in  
which direction and how fast the current carbon storage X(t)  
would change. Generally speaking, we expect that the carbon  
storage changes toward the equilibrium state at elevated [CO2]  
(XE) but the rate of the change is fast in the first few years  
and slow in later years. Let us denote the difference between  
the equilibrium carbon storage and current storage to be the  
carbon storage potential Xp (t). The rate of carbon storage  
change is proportional to the potential Xp (t).

The above example illustrates three key findings about 
carbon storage dynamics. First, carbon storage is always 
moving toward the carbon storage capacity. Second, the 
capacity is the ultimate attractor which current carbon storage 
chases (or changes toward). Third, the rate of the carbon 
storage change is proportional to the carbon storage potential.

The Duke FACE example assumes equilibrium carbon 
storage capacity. However, the carbon storage capacity, which 
equals NPP times residence time, is changing over time in the 
real world as both NPP and residence time vary with time. This 
is the reason why the carbon cycle in the terrestrial ecosystem 
is mathematically considered a nonautonomous system.

We use simulated seasonal change of fine root biomass in 
Harvard Forest (Luo et al. 2017) as an example to illustrate 
the nonautonomous system of carbon cycle dynamics. The 
carbon storage capacity of the fine root pool is a theoretical 
quantity, namely NPP times residence time. As NPP is low in 
winter and high in summer, the root carbon storage capacity 
as indicated by the black line is low in winter and high in 
summer (see Figure 9.4B). The red line indicates the current 
carbon storage in fine roots, which is higher than the black 
line in the winter and lower than the black line in the summer. 
The red line is always moving toward the black line. That is a 
mathematical explanation for why fine root amount declines 
in fall and winter but increases in spring and summer.

For a nonautonomous system in which both NPP and 
residence time are changing with time, the carbon storage 
capacity still controls the direction of carbon storage change. 
Likewise, the carbon storage potential still determines the rate 
of carbon storage change. Therefore, carbon input, residence 
time, and carbon storage potential form a 3D space within 
which all model outputs can be evaluated and compared.

Zhou et al. (2018) have applied the 3D space to evaluate 
model performance from three model intercomparison 
projects (MIPs): CMIP5, TRENDY, and MsTMIP. The 3D 
space is defined by NPP as x- axis, residence time as y- axis, 
and color for carbon storage potential to place outputs from 25 
models in the same space to evaluate their performance (see 
Chapter 18 for details). The three variables can also be plotted 
to indicate current carbon storage in relatively smooth lines, 
the carbon storage potential in shaded areas, and the carbon 
storage capacity in the zig- zag lines over a time course. This 
is the first time we are able to evaluate all model outputs from 
different MIPs in a simple, 3D space. See Chapter 18 for more 
applications of the 3D space to model evaluation.

FIVE TRACEABLE COMPONENTS FOR 
TRACEABILITY ANALYSIS

Now, let us examine the five traceable components of 
carbon cycle dynamics, which have been effectively used in 
traceability analysis.

The matrix equation describes land carbon dynamics 
via carbon input (e.g., NPP), allocation of carbon input to 
different plant parts, carbon process rates via litterfall or 
decomposition of organic matter, carbon transfer among pools, 
and environmental scalar. They consist of five components of 
the matrix equation. Mathematically, the five components are 
largely independent from each other in most models (Xia et al. 
2012) although they may interact in the real world. Moreover, 
each component can be further traced to its subcomponents as 

FIGURE 9.4 Carbon storage dynamics as determined by carbon storage capacity and potential. Panel A presents an ideal case in which 
carbon storage capacity (Xc) is a constant while carbon storage potential (Xp (t)) and carbon storage itself (X(t)) vary with time. In this 
case, the capacity is assumed to abruptly increase by 40%, mainly due to instantaneous increase in carbon input as in an elevated CO2 
experiment (Luo & Reynolds, 1999). Consequently, the potential immediately increases and then gradually declines as X(t) increases toward 
the equilibrium (i.e., the carbon storage capacity at elevated CO2 treatment). Panel B illustrates time- dependent X(t), its capacity and potential 
in a nonautonomous system over day of year (DOY). Seasonal change in the capacity is due to change in carbon input, which is low in winter 
and high in summer. The capacity is a moving target that X(t) chases. The rate of chasing is proportional to the storage potential.
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far as individual carbon cycle processes and their parameter 
values. This mathematical property enables us to trace sources 
of model uncertainty to individual processes and parameters 
via traceability analysis (see Chapter 17).

This traceability analysis was first developed by Xia 
et al. (2013) for the equilibrium carbon storage capacity and 
expanded by Jiang et al. (2017) and Zhou et al. (2018) to the 
transient dynamics of the land carbon cycle. The traceability 
analysis can trace the model uncertainty in simulated carbon 
storage hierarchically along the traceable pathways down to 
vegetation traits, climate forcing, and soil attributes. Chapter 17 
shows an authentic traceability analysis that requires matrix 
models to generate all the traceable components so that it 
enables uncertainty analysis to be analytically transparent. 
Chapter 18 shows post- MIP traceability analysis that does 
not require matrix models but is applied to any model output. 
The post- MIP traceability analysis can attribute uncertainty 
among models to variations in NPP, residence time, and 
carbon storage potential. The variations in NPP, residence 
time, and carbon storage potential can be further traced to 
environmental scalars and model parameters.

For example, the Australian CABLE model predicts 
lower carbon storage capacity than CLM3.5 due to lower 
NPP. But CABLE has higher residence time than CLM3.5 
(Rafique et al. 2016). The higher residence time in CABLE is 
mainly caused by lower decomposition coefficients, leading 
to higher baseline residence time. The environmental scalars 

among the two models are similar. The example shows that 
the traceability framework can help trace sources of model 
uncertainty down to individual processes or parameter values.

SHRINKING MODEL UNCERTAINTY TO ZERO

Once the uncertainty sources are pinpointed via traceability 
analysis, the model uncertainty can be shrunken to zero by 
standardizing the traceable components. Hou et al. (2023) 
converted the carbon cycle module of eight land models 
(i.e., TEM, CENTURY4, DALEC2, TECO, FBDC, CASA, 
CLM4.5, and ORCHIDEE) into eight matrix models. The 
eight models differ greatly in complexity, with the number of 
carbon pools ranging from 2 to 101. Using the same gross 
primary production (GPP) and environmental variables (e.g., 
soil temperature and water content) to drive all the models, 
the eight matrix models simulate ecosystem carbon dynamics 
very differently. A traceability analysis indicates that the 
model uncertainty is mainly due to inter- model difference in 
baseline carbon residence time (Figure 9.5).

Once the uncertainty sources were identified, Hou  
et al. (2023) standardized parameters in the matrix models  
to investigate their contributions to the uncertainty.  
Standardizing baseline residence time (τb) and environmental  
scalar (ξ) reduced most of the across- model variations in the  
net ecosystem production and carbon storage. In comparison,  
standardizing parameters related to plant carbon use efficiency  

FIGURE 9.5 Authentic traceability analysis of simulated ecosystem carbon dynamics. (a) Model uncertainty (i.e., across- model spread) in 
ecosystem carbon storage is traced into model components by three steps. First, the spread is attributed to inter- model variations in (b) carbon 
storage capacity (XC) and (c) carbon storage potential (XP). Second, the variation in XC is attributed to inter- model variations in (d) net primary 
production (NPP) and (e) ecosystem carbon residence time (τE). Third, the variation in τE is attributed to inter- model variations in (f) baseline 
carbon residence time (τb) and (g) environmental scalars (ξ); the variation in NPP is attributed wholly to inter- model variation in plant carbon 
use efficiency (CUE) as the same GPP drove the simulation of all the models. Adopted from Hou et al. 2023.
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(CUE) and vertical transfer had minor effects on the across-  
model variations. Nonetheless, the model- model differences  
were shrunk to zero (i.e., identical predictions) among  
the eight models once the environmental scalar functions  
were adjusted and values of parameters B, A, and K were  
standardized to the same outputs for each of the terms (Hou  
et al., 2023) (Figure 9.6).

The traceability analysis and parameter manipulation 
demonstrate that the matrix approach makes model uncertainty 
a tractable issue: through simple mathematical adjustments in 
the matrix equation terms, we can analytically and precisely 
track the model uncertainty down to its sources. This is a step 
forward for understanding the sources of uncertainty in model 
intercomparison projects (MIPs).

Unit 3 of this book shows you how we can add diagnostic 
variables in matrix models so that we can use the 1- 3- 5 scheme 
for uncertainty analysis and traceability analysis. Unit 5 will 
specifically show you how to do traceability analysis.

SUGGESTED READING

Hou E, S Ma, YY Huang, Y Zhou, HS Kim, E López- Blanco, L 
Jiang, J Xia, F Tao, C Williams, M Williams, D Ricciuto, PJ 
Hanson, YQ Luo. 2023. Across- model spread and shrinking 
in predicting peatland carbon dynamics under global 
change. Global Change Biology. https:// doi.org/ 10.1111/ 
gcb.16643

QUIZ

1 What is the 1- 3- 5 scheme of the diagnostics system?
2 Briefly describe traceability analysis.
3 What does the term “carbon storage potential” mean?
4 A nonautonomous system is (choosing one)

a a system which does not conserve mass balance.
b a system with its properties changing with time.
c a system with constant pool sizes.
d a system with its pool sizes changing with time.

FIGURE 9.6 Model uncertainty (i.e., across- model spread) in ecosystem carbon dynamics are shrunken after standardizing parameter 
values. Simulated ecosystem carbon storage, net ecosystem production, and carbon residence time in the (a– c) original model run and (d– r) 
model runs after Steps 1– 5, respectively. Origin model run indicates model simulations with the default parameter values. Steps 1– 5 indicate 
model simulations after sequentially standardizing plant CUE, baseline carbon residence time, environmental scalar, and vertical transfer 
coefficients, and homogenizing decomposition coefficients. Percentage in each subpanel indicates the coefficient of variance of time- averaged 
simulations.

Adopted from Hou et al. (2023).
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10  Matrix Phosphorus Model and Data 
Assimilation

Enqing Hou
South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China

Soil phosphorus supply regulates terrestrial carbon dynamics. 
To improve our understanding of this regulation, we need 
to improve our understanding of soil phosphorus dynamics 
first. This chapter first briefly reviews research progress in 
modeling soil phosphorus dynamics, with a focus on the 
diversity of representations among models. The chapter then 
demonstrates how to construct a soil phosphorus model and 
how to transfer it to a matrix form. Finally, an example study 
is presented to show how assimilating data into the matrix 
model can improve our understanding of soil phosphorus 
dynamics and availability. Overall, this chapter demonstrates 
that the matrix approach and data assimilation are very useful 
techniques to study terrestrial nutrient dynamics.

INTRODUCTION

Phosphorus (P) is a key element of macromolecules such as 
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and 
adenosine triphosphate (ATP), of which the former two are 
carriers of genetic information and the last is the carrier of 
energy during biochemical reactions. Given the important roles 
of P in life, plants and other organisms need P for growth and 
reproduction. In natural ecosystems, plants mainly obtain P 
through uptake from the soil. Since soil P supply is not always 
sufficient to meet plant P demand, P limits plant production 
and its response to elevated atmospheric carbon dioxide (CO2) 
in many terrestrial ecosystems. Moreover, P can regulate 
ecosystem carbon storage and cycling by affecting soil microbial 
activity. Therefore, improving our understanding of terrestrial P 
dynamics and P– C interactions is crucial to realistically simulate 
the land C cycle as well as its responses to future global change.

The application of data assimilation to quantify terrestrial C 
dynamics is well established (e.g., Luo et al. 2016). However, 
data assimilation to inform a soil P model has rarely been 
tried (Hou et al. 2019), despite suitable soil P measurements 
being available in the literature (Hou et al. 2018). The data 
assimilation approach is potentially complementary to 
other currently available techniques (e.g., isotope dilution 
technique) in quantifying soil P dynamics. For example, it can 
use multiple sources of existing observations (e.g., soil P pool 
size and plant P uptake), simultaneously quantify the rates of 
all major soil P processes, and provide information about the 
uncertainties of the parameters related to soil P. Moreover, it 
may be particularly useful to quantify the dynamics of slow- 
cycling soil P pools (e.g., soil occluded P), which can hardly be 
achieved by any currently available experimental technique.

This chapter will first briefly review research progress in 
modeling soil P dynamics, with a focus on the diversity of 
representations among models. The chapter will then propose 
how a matrix framework and data assimilation can potentially 
improve our modeling of soil P dynamics. After that, an 
example study is presented to show how assimilating data into 
a matrix model can help to improve our understanding of soil 
P dynamics and availability.

A BRIEF OVERVIEW OF SOIL P DYNAMICS    
MODELS

Soil P dynamics is a key component of terrestrial P dynamics. 
To account for soil P supply as a determining factor for 
plant growth, land models are increasingly being extended 
to incorporate soil P dynamics. The first well- known land 
model to include soil P dynamics was CENTURY, published 
in the 1980s (Parton et al. 1988). In the last decade, because 
of growing interest in P cycle regulation of the land C cycle, 
over ten land models have been extended by incorporating soil 
P dynamics.

Current soil P models share some common features. Most 
are constructed based on the well- known soil P pools including 
soil labile P (readily available to plants), organic P (in organic 
forms), secondary mineral P (associated with secondary 
minerals such as iron and aluminum oxides), primary mineral 
P (apatite P), and occluded P (associated with soil clay and 
minerals and not directly available to plants). The dynamics 
of P as it accumulates and flows among these pools are 
usually expressed by a set of equations, based on empirical 
understanding of soil P dynamics. Despite a generally good 
understanding of soil P processes, most soil P models are not 
well parameterized, calibrated, or validated, because of limited 
long- term observations of soil P dynamics. In current modeling 
practice, soil P models are typically not fully spun up to a 
steady state before formal simulations, even though spin- up to 
steady state is normally regarded as essential for land modeling. 
High computational cost associated with the initialization of 
slow- cycling soil P pools such as soil occluded P, as well as the 
unidirectional change in soil primary mineral P with time, make 
a full spin- up impractical for most current models.

Current P models differ both in structure and parameters. 
Regarding structure, some models include both water- soluble 
P and labile P pools. The former can be directly available to 
plants and the latter may not be directly available to plants 
but exchangeable with the water- soluble P pool. However, 
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other models do not include a soil water- soluble P pool and 
assume that soil labile P is directly available to plants. Both 
empirical studies and theory have suggested that soil occluded 
P pool may deplete in some conditions (e.g., an anaerobic 
environment) and accumulate in some other conditions 
(e.g., an aerobic environment). However, most land models 
that incorporate soil P dynamics assume that soil occluded 
P accumulates all the time. Moreover, model structure with 
respect to soil organic P differs substantially among models, 
because soil organic P dynamics are coupled with soil organic 
C dynamics via soil C:P ratios in models, while models have 
very different structures for soil organic C dynamics (e.g., 
different numbers of soil organic C pools and vertically 
resolved vs. unresolved schemes).

Parameter values scaling soil P dynamics also differ among 
models. The literature provides many observations of soil P 
pools but few observations of soil P fluxes, especially fluxes 
from slow- cycling soil P pools (e.g., secondary mineral P and 
occluded P). Given these limitations, most soil P dynamics 
models are poorly parameterized and thus suffer from large 
uncertainties when they are used to predict future changes. 
Moreover, regulation by environmental factors (e.g., soil 
temperature and moisture content) of soil P dynamics and 
enzyme- mediated soil P mineralization are not well represented 
in current soil P models. In summary, the modeling of soil P 
dynamics is still in its infancy.

MATRIX APPROACH TO SOIL P MODELING AND 
DATA ASSIMILATION

The matrix approach and data assimilation can help advance 
soil P modeling in several ways. First, a matrix representation 
of the soil P system makes it easier to depict, understand, and 
compare models than the traditional approach using many 
difference equations. In the standard approach, change per 
time step in each soil P pool is represented by one equation 
with multiple state variables and parameters. Different 
soil P pools are mathematically linked by cross- terms in 
multiple equations, but such linkages may not be apparent 
to experimentalists who may have the data to validate the 
model but may not have any modeling experience. A matrix 
representation of soil P dynamics transfers the equations 
for different soil P pools into a unified form, no matter how 
many equations or what type of model, as long as a model is 
structured to describe transfers among multiple soil P pools. 
The matrix representation of soil P dynamics facilitates our 
understanding of model structure (e.g., the number of pools 
and the linkages among pools) and enables a direct comparison 
of structure among models.

A matrix representation of soil P dynamics also has the 
advantage of enabling a fast model spin- up and data assimilation 
that may be difficult or impossible with a traditional P model 
due to the prohibitive amount of computational power 
required. Soil P pools besides primary mineral P are generally 
in equilibrium in natural terrestrial ecosystems. Therefore, 
equilibrium soil P pool sizes are usually needed before a 
model simulation or data assimilation procedure. The turnover 

of soil occluded P in the field is typically slow (hundreds to 
tens of thousands of years), potentially even slower than the 
turnover of soil passive organic C (hundreds to thousands of 
years) which constitutes a bottleneck in spin- up of carbon- 
only ecosystem models. Therefore, it is a computational 
challenge to spin up a soil P model in the traditional way (e.g., 
repeat forcing many times). If soil P dynamics are represented 
in a unified matrix form, the semi- analytical spin- up (SASU) 
method introduced in Chapter 14 can be used to perform 
model spin- up, with the pool size of soil primary mineral P set 
to be constant. Application of SASU to soil P modeling may 
accelerate model spin- up by one or more orders of magnitude 
and may make it computationally feasible to assimilate soil P 
measurements from the field into models.

Data assimilation enables a quantitative and predictive 
understanding of soil P dynamics and availability. The 
understanding is fundamental to an accurate management 
of soil P availability, which can further meet the societal 
needs of efficient use of P fertilizer in croplands, prohibiting 
eutrophication of water bodies, and developing strategies to 
alleviate P constraints on terrestrial C sequestration. To this 
end, an example is given below to show how matrix model and 
data assimilation approaches can be used in soil P studies to 
gain insights into soil P dynamics and availability.

AN EXAMPLE OF APPLYING A MATRIX MODEL 
AND DATA ASSIMILATION TO SOIL P

data Selection and deScription

The example assimilates datasets reported in Guo et al. (2000) 
into a soil P dynamics model. Guo et al. (2000) reported 
consistent (i.e., using the same fractionation procedure) and 
repeated (seven or eight times) measurements of P fractions 
of eight soils that represent four of the twelve major USDA 
soil types. These datasets are selected because most soil P 
fractions changed substantially during the study period, which 
potentially offers a constraint on modeled soil P dynamics. 
Additionally, the soil samples are representative of common 
soil types, promoting the scope of applicability of the model. 
A less desirable feature of these datasets is that they are 
derived from experiments performed in the relatively artificial 
conditions of a greenhouse. One likely consequence is that the 
P pools in these experiments might have higher turnover rates 
than in the field.

In a nutshell, Guo et al. (2000) used crops to remove labile 
P from the eight soils to trigger changes in P fractions in 
these soils over a total of 14 cropping periods. After every 
two croppings, they sampled small amounts of the soils 
to determine soil P fractions using a modified Hedley P 
fractionation procedure. They fractionated soil P into several 
soil P fractions, corresponding to P pools with different 
turnover times and plant availability. Further details of the 
experimental design, cropping, sampling, and preparation 
of the soils, and determination of the P fractions and 
physicochemical properties of the soils, are available in Guo 
et al. (2000).
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conStruction of the p Matrix Model

Our example follows the study of Hou et al. 2019. Here 
we construct a soil P dynamics model that aligns with the 
datasets acquired by Guo et al. (2000). Our model groups the 
measured soil P fractions into six ecologically meaningful 
soil P pools, and we track the dynamics of these pools in the 
model. The six pools are labile P (P1 in Figure 10.1), non- 
occluded Po (P2 in Figure 10.1), secondary mineral P (P3 in 
Figure 10.1), primary mineral P (P4 in Figure 10.1), occluded 
Po (P5 in Figure 10.1), and occluded Pi (P6 in Figure 10.1). The 
labile P is inorganic P that is readily available to plants. The 
non- occluded Po is organic P that is sorbed to soil particles 
or secondary minerals (e.g., aluminum and iron oxides) and 
that can be mineralized by enzymes. The secondary mineral 
P is inorganic P that is sorbed to secondary minerals, which 
is not readily available to plants but is exchangeable with 
the labile P. The primary mineral P is P that is associated 
with primary minerals and exists mainly as apatite P. The 
occluded Po is organic P that is stabilized by soil minerals 
and that is presumably not mineralizable by enzymes unless 
dissolved. The occluded Pi is inorganic P that is occluded 
by soil minerals or aggregates and turns over very slowly. 
In Guo et al. (2000), the occluded Po and occluded Pi were 
not separated but determined together as residual P (P not 
extracted by the chemical reagents used). A proportion 
of residual P in organic forms (OPo) is introduced here to 
represent the amounts of occluded Po (calculated as residual   
P × OPo) and occluded Pi (calculated as residual P × (1– OPo)).
We consider all major soil P transformations in our model, as 
detailed in Figure 10.1. We calculate plant P uptake during 
a specific period as the sum of the decreases in P1– 6 during 
the period. For instance, we calculate plant P uptake after 
cropping 14 as the difference between the sum of P1– 6 at 

cropping 0 and the same sum after cropping 14. P leaching 
is not considered in our model, because soil moisture content 
was maintained near soil available water capacity during 
the experiment. Atmospheric P deposition is not considered 
in our model either because the experiment was performed 
in a greenhouse. Moreover, litterfall is disregarded, because 
the plants were young (≤45 days of growth) and unlikely to 
produce any litterfall. Matlab code and the eight datasets of 
soil P fractions are freely accessible via Hou et al. (2019).

Reflecting the structure depicted in Figure 10.1, we 
represent soil P dynamics in the model by the following set of 
balance equations.
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Note that we do not list plant P uptake in Equation 10.1, 
because we treat it as a soil P flux. We do not use ap1 in 
Equation 10.1, because we can estimate it directly from a21 
and a31 by the following equation:

 a a a
p1 21 31

1= − −  10.2

We can summarize the set of balance Equations 10.1 by the 
following first- order matrix equation:
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FIGURE 10.1 Schematic representation of the soil P model. Primary 
P indicates primary mineral P; secondary P indicates secondary 
mineral P; Pi indicates inorganic P; Po indicates organic P. An ‘a’ 
on an arrow indicates the coefficient of soil P transformation: plant 
immobilization (ap1), weathering (a14), microbial immobilization 
(a21), mineralization (a12), sorption/ precipitation (a31), desorption/ 
dissolution (a13), and solid- phase transformations (a25, a52, a36, 
and a63).

Derived from Hou et al. (2019).
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Matrix A gives the transfers of P between the individual P 
pools, as described by the arrows in Figure 10.1. The elements 
(aij) are the P transfer coefficients, representing the fraction of 
P entering the ith (row) pool from the jth (column) pool. a52 is 
calculated as 1 –  a12; a63 is calculated as 1 –  a13; a14, a25, and 
a36 are fixed at 1.0. K is a 6 × 6 diagonal matrix representing 
the release rates of six soil P pools (units: g P g−1 P d−1; for 
convenience, g g−1 d−1 was used in the following), i.e., the 
amount of P leaving each of the soil P pools per day. P(t) 
describes the sizes of the soil P pools at time t.

Model Validation and data aSSiMilation

We first validate the matrix P model with the eight datasets of 
soil P pool measurements in Guo et al. (2000). We use the same 
parameter values for simulating P pools of all the eight soils. 
In general, the soil P model can simulate temporal changes 
in soil P pools reasonably well, with a better performance for 
labile P, secondary mineral P, and occluded P than for non- 
occluded Po and primary mineral P.

We then use a data assimilation approach to estimate 
the values of parameters describing soil P dynamics. The 
approach, known as the Metropolis- Hastings algorithm, is 

described in more detail in Unit 6, where it is applied to the 
case of terrestrial C dynamics in Chapter 22. We run data 
assimilation formally for five replicates and 500,000 times for 
each soil to examine the convergence of the parameters. We 
test the convergence of the sampling chains by the Gelman- 
Rubin (G- R) diagnostic method to ensure that the within- run 
variation is roughly equal to the between- run variation. The 
Gelman- Rubin method is described in detail in Chapter 22.

After data assimilation, the soil P model can simulate well 
temporal changes in P pools of all the eight soils. Results on 
two soils are shown in Figure 10.2. Relationships between the 
measured and modeled soil P pools were mostly significant 
(P < 0.05), with R2 values generally larger for labile P (mean 
0.90), secondary mineral P (0.82), and occluded P (0.87) than 
for non- occluded Po (0.43) and primary mineral P (0.50). The 
relatively poor simulation of non- occluded Po was probably 
due to its relatively large measurement errors and dynamic 
nature.

NEW KNOWLEDGE EMERGING FROM DATA 
ASSIMILATION WITH THE MATRIX MODEL

Soil p dynaMicS Quantified by data aSSiMilation

Maximum likelihood estimates and uncertainty of the turnover  
rates of all soil P pools were estimated, including those of  
soil occluded Pi and occluded Po, which are rarely quantified  
in measurements. Estimated parameter values for a slightly  
weathered soil and a strongly weathered soil are shown in  
Table 10.1. Turnover rates of soil inorganic P pools generally  
decreased in the following order: labile P > secondary mineral  
P > occluded Pi (Table 10.1). The turnover rate of soil non-  
occluded Po was faster than that of soil occluded Po (Table 10.1).

FIGURE 10.2 Observed vs. simulated temporal changes in P pools of two soils. The two soils are Honouliuli and Paaloa, which are typical 
Vertisols (slightly weathered) and Oxisols (strongly weathered), respectively.

Derived from Hou et al. (2019).
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The turnover rates of soil P pools (Table 10.1) were generally 
comparable with the values reported in previous studies using 
isotopic and spectroscopic measurements in the laboratory. 
However, the turnover rates of soil P pools here could be 
higher than those in the field, because the datasets used for data 
assimilation were derived from an experiment in a greenhouse 
environment, where plant P uptake and soil P depletion could 
be faster than in the field.

Rates of transformations among all major P pools were 
also estimated (Table 10.1). These estimates can convey deep 
insights into soil P dynamics and soil P bioavailability. For 
example, the proportions of labile P flowing to secondary 
mineral P (mean 0.35) and non- occluded Po (0.52) were on 
average larger than that flowing to plants (0.13) (Table 10.1). 
This result suggests that soil secondary minerals and microbes 
were stronger competitors of soil labile P than plants. Both 
turnover rate of labile P and transfer coefficients related to 
labile P differed among soils (Table 10.1), suggesting that 
labile P dynamics varied among soils. This result suggests 
that not only the amount but also the dynamics of soil labile P 
control soil P availability.

The estimated model parameters from data assimilation 
provide information about the datasets and the model in two 
other aspects. Firstly, posterior distributions of parameters 

can tell how well model parameters were constrained by the 
datasets. Secondly, relationships among model parameters can 
reflect relationships defined by the model structure, correlations 
between the soil P pools, errors, or any combination of all three.

Soil p dynaMicS in relation to other ecoSySteM 
propertieS

Soil P dynamics were revealed to differ between the lightly 
and the strongly weathered soils (Table 10.1). Turnover rate of 
secondary mineral P was approximately four times higher in 
the lightly weathered soil (0.044 g g−1 d−1) than in the highly 
weathered soils (0.012 g g−1 d−1) (Table 10.1). The proportion of 
labile P flowing to plants was higher in the slightly weathered 
soil (0.16) than in the strongly weathered soils (0.09); the 
opposite was true for the proportion of labile P flowing to 
secondary mineral P (slightly: 0.33; strongly: 0.38) (Table 10.1).

The proportion of labile P flowing to plants increased with  
soil pH; correspondingly, the proportion of labile P flowing to  
secondary mineral P decreased with soil pH (Figure 10.3c).  
Relationships of soil organic C concentration with model  
parameters were generally opposite to those of soil pH  
(Figure 10.3). These results suggest the regulation of plant  
and soil microbial competition for labile P by soil pH and  

TABLE 10.1
Physicochemical properties and maximum likelihood estimates of model parameters describing 
P dynamics of two soils

Parameter Unit Honouliuli Paaloa

Soil order Vertisols Oxisols
Weathered extent Slightly Strongly
Total P concentration at the start of experiment g kg−1 1840 596
0.5 M NaHCO3 extractable P concentration mg kg−1 26.3 1.1
pH in water 7.26 5.05
Organic C concentration g kg−1 16.6 40
Exchange cation concentration cmolc kg−1 30.6 5.5
Acid ammonium oxalate extracted Fe concentration g kg−1 3.4 7.48
Acid ammonium oxalate extracted Al concentration g kg−1 1.43 2.98
Sand content g kg−1 56.5 53.8
Silt content g kg−1 363.6 205.4
Clay content g kg−1 580 740.8
Turnover rate of labile P (k1) g g−1 d−1 0.04 0.048
Turnover rate of non- occluded Po (k2) g g−1 d−1 0.022 0.073
Turnover rate of secondary mineral P (k3) g g−1 d−1 0.044 0.012
Turnover rate of primary mineral P (k4) g g−1 d−1 0.00193 0.00015
Turnover rate of occluded Po (k5) g g−1 d−1 0.0077 0.0067
Turnover rate of occluded Pi (k6) g g−1 d−1 0.0062 0.009
Coef. of transfer from labile P to non- occluded Po (a21) Unitless 0.51 0.53
Coef. of transfer from labile P to secondary mineral P (a31) Unitless 0.33 0.38
Coef. of transfer from labile P to plant (ap1) Unitless 0.16 0.09
Coef. of transfer from non- occluded Po to labile P (a12) Unitless 0.97 0.23
Coef. of transfer from non- occluded Po to occluded Po (a52) Unitless 0.03 0.77
Coef. of transfer from secondary mineral P to labile P (a13) Unitless 0.23 0.72
Coef. of transfer from secondary mineral P to occluded Pi (a63) Unitless 0.77 0.28
Proportion of occluded P in organic form (OPo) Unitless 0.28 0.02

Derived from Hou et al. (2019).
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organic C concentration. The proportion of labile P flowing  
to secondary mineral P decreased with increasing soil pH.  
This was probably because of the decrease in soil P sorption  
capacity with increasing soil pH. This mechanism also  
explains the increase in turnover rate of secondary mineral P  
with increasing soil pH (Figure 10.3a). The increase in the  
proportion of labile P flowing to secondary mineral P with  
increasing soil organic C concentration (Figure 10.3d) may be  
attributable to the sorption of P to organic- metal complexations  
in soils. This mechanism additionally explains the decrease  
in turnover rate of secondary mineral P with increasing soil  
organic C concentration (Figure 10.3b).

SUMMARY

Despite increasing research efforts, there are still some 
uncertainties in the structure of soil P models and much 
larger uncertainties in the parameter values of such models. 
These uncertainties can be potentially reduced by the 
adoption of matrix and data assimilation approaches in soil 
P modeling. The matrix representation can make it easier to 
depict, understand, and compare soil P models compared to 
the traditional representation as a set of balance equations. 
Matrix approaches can also reduce the computational 

costs of models by enabling semi- analytical spin- up and 
make it computationally more feasible to assimilate soil P 
observations into models. An example study showed how to 
build a soil P model in matrix form, and how assimilating soil 
P observations into the matrix model can expose insights into 
soil P dynamics and availability. Overall, this chapter shows 
that assimilating soil P observations into a matrix model of 
soil P dynamics can improve our understanding of soil P 
dynamics and availability.

SUGGESTED READING

Hou, E., X. Lu, L. Jiang, D. Wen and Y. Luo (2019). Quantifying soil 
phosphorus dynamics: a data assimilation approach. Journal 
of Geophysical Research: Biogeosciences 124: 2159– 2173.

QUIZ

1 Why is a unified matrix equation preferred over 
traditional balance equations in soil P studies?

2 Was turnover rate of soil labile P constant across soils?
3 Which model parameter is soil labile P pool size most 

sensitive to?
4 What purpose was data assimilation used for in the 

example study?

FIGURE 10.3 Soil P dynamics in relation to soil pH and organic C concentration. Turnover rate of secondary mineral P vs. (a) soil pH 
(R2 =  0.99, P < 0.001) and (b) soil organic C concentration (R2 =  0.87, P =  0.001). (c) Coefficients of transfer from labile P to plants (green; 
R2 =  0.53, P =  0.042) and secondary mineral P (red; R2 =  0.71, P =  0.009) vs. soil pH. (d) Coefficients of transfer from labile P to plants (green; 
R2 =  0.56, P =  0.034) and secondary mineral P (red; R2 =  0.38, P =  0.106) vs. soil organic C concentration.

Derived from Hou et al. (2019).
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11  Principles Underlying Carbon Dioxide 
Removals from the Atmosphere

Yiqi Luo
Cornell University, Ithaca, USA

It is essential to reach net zero greenhouse gases (GHG) 
emissions. Various methods have been proposed to remove 
carbon dioxide from the atmosphere. Carbon dioxide 
removal (CDR) is complemental to dramatic reduction in 
anthropogenic emissions of GHG from fossil fuel burning, 
other industrial processes, and land management practices. 
This chapter introduces basic concepts of CDR, briefly 
describes land-based CDR, and outlines biogeochemical 
principles for evaluation and design of CDR strategies.

INTRODUCTION

The Earth’s surface temperature has increased about 1.2°C 
since the industrial revolution in the late 1800s. It is higher 
than at any time in the past 100,000 years. The temperature 
was the highest on record in the last decade (2011– 2020) 
and has been higher in each of the last four decades than any 
previous decade since 1850. Climate warming is a key facet 
of climate change, which also features intense droughts, water 
scarcity, severe fires, rising sea levels, flooding, melting polar 
ice, catastrophic storms, and other weather extremes. Climate 
change affects many aspects of humanity, including the ability 
to grow food, our health, housing, and safety. The increase in 
the Earth surface temperature primarily results from fossil fuel 
burning, deforestation, and other agricultural and industrial 
practices. These human activities result in emissions and 
accumulation of greenhouse gases (GHG), mainly carbon 
dioxide (CO2) and methane (CH4), in the atmosphere to trap the 
long- wave radiative heat, leading to climate warming (IPCC, 
2021). To bend the curve of climate warming, it is essential to 
reduce GHG emissions and remove carbon dioxide from the 
atmosphere. Carbon dioxide removal (CDR) is a general term 
for a number of practices and technologies that transfer CO2 
from the atmosphere to long- term sinks in land, ocean, and/or 
geological reservoirs, slowing climate warming.

This chapter aims to introduce the concepts of CDR and 
nature- based climate solutions, describe various strategies of 
CDR, and explain carbon cycle principles for evaluating and 
designing CDR strategies.

CARBON DIOXIDE REMOVAL (CDR)

CDR is a process through which human activities and 
management cause carbon dioxide to be removed from the 
atmosphere, and durably stored as carbon in geological, 
terrestrial, or ocean reservoirs, or in products used in 

commercial or industrial processes, such as building 
materials or powerfuels. The effect of CDR is to contribute 
to negative carbon emissions. Policy frameworks such as the 
Paris Agreement generally recognize that CDR is required 
to achieve net zero CO2 and GHG emissions in individual 
nations and around the globe in the time frame necessary to 
avoid dangerous climate change. CDR can counterbalance 
emissions that are technically difficult to eliminate in some 
agricultural and industrial practices. It is complementary 
to immediate and deep emissions reductions specified by 
nationally determined contributions (NDCs) (IPCC, 2023).

NDCs are national plans, including policies and 
measures, that governments aim to implement in response 
to climate change to achieve the global targets of reducing 
global GHG emissions and limit anthropogenic climate 
warming to well below 2°C, preferably 1.5°C, relative to the 
pre- industrial level by 2100 (Figure 11.1). NDCs encompass 
actions to reach net zero emissions, increase adaptation to 
the harmful effects of climate change, and adjust financial 
flows for supporting GHG emissions reduction. Reducing 
emissions and CDR are the two primary tools available 
to governments to achieve net zero emissions. Emissions 
reduction can occur through improved resource- use 
efficiency, sustainable development, and substituting fossil 
energy with renewable alternatives. In the energy supply 
sector, for example, CO2 emissions are reduced through 
cutting down energy use and generating electricity from 
low- carbon sources. Power plants fired by fossil fuels (e.g., 
coal and natural gas) are gradually phased out while wind 
and solar power is increasingly used to generate electricity 
for transportation, heating buildings, operating industrial 
facilities, and other applications.

CDR is essential as a complement to emissions reduction 
to reach net zero GHG emissions around 2050 and keep 
climate warming by 2100 within the 1.5°C target. The 
required amount of CO2 to be removed from the atmosphere 
depends on scenarios of socio- economic challenges to 
mitigation and adaptation as explored under illustrative 
model pathways. Under a low energy demand scenario with 
numerous optimistic assumptions on technology advancement 
and lifestyle changes, a small amount of CDR (~3 Gt CO2 yr- 1)   
is enough to limit climate warming to within 1.5°C by 2100 
(IPCC, 2019). Under a scenario of fossil fuel intensive 
economic development with a high energy demand, the annual 
negative emissions via CDR are required to be as great as   
20 Gt CO2 yr- 1.
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Presently CDR removes only a small fraction of global  
emissions. Most CDR strategies remain largely unproven to  
date and raise substantial concerns about adverse side- effects  
on environmental and social sustainability. Nonetheless, the  
existing CDR methods have the potential to remove up to   
10 Gt CO2 yr- 1. According to various modeling projections  
for the middle- of- the- road scenarios, CDR needs to remove   

6 Gt CO2 yr- 1 in 2050, which is equivalent to about 13% of  
the current global emissions, to reach net zero (Figure 11.2).

Carbon dioxide removal includes nature- based climate 
solutions and technology- driven methods. The nature- based 
climate solutions emphasize the sustainable management 
and use of natural features and processes for reducing GHG 
emissions and storing carbon in land and ocean ecosystems. 

FIGURE 11.2 The role of carbon removal in bringing emissions to net zero by mid- century consistent with limiting global warming to 
1.5°C above pre- industrial levels. Faster and/ or deeper emissions reductions could reduce the role for carbon removal; slower and/ or weaker 
emissions reductions would increase the need for carbon removal. Estimates, including both natural and technological carbon removal 
approaches, range from 5 to 16 billion metric tons per year globally by 2050. Gt CO2/ y =  billions of metric tons of carbon dioxide per year. 
Based on IPCC (2019).

Adopted from World Resources Institute.

FIGURE 11.1 Global emissions pathways consistent with implemented policies and mitigation strategies. Colored ranges denote the 5th to 
95th percentile across the global modeled pathways falling within a given category. The red ranges depict emissions pathways assuming policies 
that were implemented by the end of 2020. Ranges of modeled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot are 
shown in light blue and pathways that limit warming to 2°C (>67%) are shown in green. Global emission pathways that would limit warming 
to 1.5°C (>50%) with no or limited overshoot and also reach net zero GHG in the second half of the century do so between 2070– 2075.

Adopted from IPCC, 2023.
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Such solutions are inspired and supported by nature, which are 
cost- effective, simultaneously provide environmental, social, 
and economic benefits, and help build resilience. Examples 
include practices of improved forest management to help 
forest owners increase the carbon stored in their forested lands, 
reducing fertilizer use in agriculture to decrease emissions of 
nitrous oxide (a potent greenhouse gas), and restoring coastal 
wetlands to sequester carbon in submerged sediment. In 
addition to carbon sequestration, restoring coastal wetlands, 
such as mangroves, can help control coastal erosion resulting 
from waves and wind, provide nursery zones for marine life 
for sustaining fisheries, and mitigate impacts of sea level rise 
on coastlines.

The technology- based methods include direct air capture 
with carbon sequestration, biochar carbon removal, enhanced 
rock weathering, and bioenergy with carbon capture and 
storage (BECCS). Direct air capture (DAC) requires 
technology that uses chemical or physical processes to 
extract carbon dioxide directly from the ambient air. The 
storage of the extracted CO2 in safe long- term storage often 
requires geological techniques to accomplish. Enhanced rock 
weathering requires engineering techniques to crash rocks to 
powder to increase reaction surface.

To meaningfully support climate mitigation, CDR must lead 
to (1) enhancements of carbon uptake from the atmosphere and/ 
or GHG emissions reductions that are additional to a baseline 

scenario, (2) net cooling, taking into account side effects on 
water and energy cycling which could offset or even outweigh 
the gains in carbon uptake or emissions reductions, (3) the 
permanence of climate benefits, and (4) avoiding leakage of 
mitigation benefits, for instance by reducing carbon influx or 
ecosystem residence time in the area to which management is 
applied (Novick et al. 2022).

LAND- BASED CDR STRATEGIES

Land- based CDR methods include afforestation, reforestation, 
agricultural practices that sequester carbon in soils (carbon 
farming), wetland and coastal restoration, and bioenergy with 
carbon capture and storage (BECCS). The cost- effective, 
land- based CDR methods are estimated to have the potential 
to deliver 8– 13.8 Gt CO2eq yr−1 between 2020 and 2050 (Roe 
et al. 2021). Cost- effective mitigation potentials represent 
a more realistic and actionable target grounded in public 
willingness to pay for climate mitigation, and therefore are 
more relevant in policy- making than technical potentials. The 
technical potentials measure the possible removal of CO2 with 
available technology, regardless of the cost.

Cost- effective potential is high in the sector of forests and  
other ecosystems and moderate in the sector of agriculture  
(Roe et al. 2021). In the sectoral estimates, CDR potential  
due to restoration in forests and other ecosystems, and  

FIGURE 11.3 Climate mitigation potentials for 20 land- based measures in 2020– 2050. Technical and cost- effective (≤$100/ tCO2eq) 
mitigation potentials are provided for each measure using a sectoral approach. The 20 measures are grouped into four systems- level mitigation 
categories, and seven management- level categories. For measures with more than one dataset, the bar graph represents the mean estimate, and 
the error bars represent the min and max potential range. Global mitigation potentials of substituting fossil fuels were estimated for BECCS, 
biochar, and manure management, shown in pink outline bars, illustrating the median and 90th percentile values. 

Adopted from Roe et al. 2021.
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measures of carbon sequestration in agriculture (excluding  
bioenergy and carbon capture and storage) is 20.3 ± 3.0 Gt  
CO2 yr−1 for technical and 6.6 ± 0.3 Gt CO2 yr−1 for cost-  
effective (Figure 11.3). The sectoral estimates have large  
CDR potentials from agriculture –  agroforestry, biochar, and  
soil carbon sequestration (4.8 GtCO2 yr−1 up to $100/ tCO2)  
(Figure 11.3). Estimated mitigation from bioenergy and  
carbon capture and storage is 2.5 Gt CO2eq yr−1 and 0.5 Gt  
CO2eq yr−1, respectively, with technical and cost- effective  
potential.

Land- based climate mitigation measures are also known 
as Agriculture, Forestry and other Land Uses (AFOLU) 
mitigation or nature- based climate solutions, which benefit 
human well- being and biodiversity. Land- based measures 
reduce GHG emissions and enhance carbon removals through 
supply- side interventions in forests and other ecosystems (i.e., 
protection, management, and restoration), agriculture (i.e., 
reducing emissions and enhancing carbon sequestration), and 
bioenergy (i.e., reducing fossil fuel emissions and sequestering 
carbon). Almost all countries have included AFOLU measures 
in their Nationally Determined Commitments (NDCs) under 
the Paris Agreement, either as specifically listed actions or 
by including the land sector in their broader GHG reduction 
targets. Globally, AFOLU- related NDC actions make up 
about 25% of planned GHG reductions with most focus on 
reducing deforestation.

PRINCIPLES FOR EVALUATING AND DESIGNING 
CDR STRATEGIES

The CDR strategies shown in Figure 11.3 involve either 
increasing carbon influx into long- term residence pools or 
lengthening times (or durability or permanence) in high- influx 
pools, or both. For example, producing biochar from crop 
residues and transferring it to the cropland soil can accelerate 
the influx of carbon into long- term carbon storage pools of the 
soil. Peatland restoration aims to lengthen carbon residence 
time of peat carbon by recreating anaerobic environments to 
depress peat decomposition, relative to reference ecosystems 
before restoration. Protection of existing ecosystems from 
deforestation, mangrove loss, and peatland degradation can 
be an effective strategy to avoid carbon loss from pools with 
long residence times.

The amount of land carbon storage, then, is determined 
by two parameters: the carbon influx and residence time 
(Luo and Weng 2011, Chapter 1). Consequently, either 
substantially increasing carbon influx into long residence 
pools or lengthening residence times of carbon in high- influx 
pools, or both, is a general principle that can be used to 
evaluate existing CDR strategies and guide the design of new 
ones that can effectively remove CO2 from the atmosphere. 
This principle satisfies some of the default criteria of CDR, 
including additionality, permanence, and avoiding leakage. 
Increasing carbon influxes or lengthening residence time 
will result in additionality in carbon storage. Permanence 
is measured by carbon residence time. Avoiding leakage 
is demonstrated by quantifying carbon influx or residence 

time, and showing there is no decrease relative to reference 
conditions in the region of study.

Many of the current CDR techniques, such as afforestation 
and reforestation, coastal wetland restoration, and peatland 
restoration, mainly lengthen carbon residence time in 
comparison with their respective reference ecosystems. For 
example, afforestation removes carbon dioxide from the 
atmosphere by converting a grassland or cropland into a forested 
area. While the established forest may have similar carbon input 
(i.e., net primary production, NPP) as the previous grassland, 
input carbon is partially allocated to wood biomass, which 
has a longer residence time by decades or centuries compared 
to grass or crop biomass. When afforestation establishes a 
forest on an area of bare land, carbon input increases in the 
first several years, but then flatlines as the seedlings grow into 
trees and the forest canopy closes. From this point onwards, 
the carbon dioxide removal mainly results from allocation of 
input carbon to wood biomass that has a long residence time. 
Similarly, restoration of wetlands, peatlands, and forest lands 
(i.e., reforestation) all results in carbon dioxide removal mainly 
by shifting the allocation of carbon towards the longer residence 
time pools of the vegetation and/ or soil. While biochar has 
longer residence time than its precursor biomass, a substantial 
fraction of carbon is immediately released to the atmosphere 
from biomass during pyrolysis. Thus, the increase in residence 
time by biochar must be discounted for the shortened residence 
time of the released carbon.

Among these existing CDR techniques, most of them alter 
carbon residence time more than carbon input. It appears that 
there are more options for managing carbon residence time 
than carbon input. Carbon residence time can change from a 
few months or years to thousands of years (Table 11.1). For 
example, plant materials, once submerged under water, can be 
preserved for thousands of years. In comparison, plant litter in 
upland ecosystems is usually decomposed within months or 
years. Once wood materials are buried in soil vaults, the wood 
carbon can have a residence time of thousands of years. 

We can use this insight to design future CDR techniques using 
methods that can substantially lengthen carbon residence time.
One example of manipulating residence time is through wood  
vault, a method of constructing a wood storage facility, to bury  
woody mass on a mega- ton scale in underground anaerobic  
environments and, thus, prevent wood from decay (Zeng and  
Hausmann 2022). The buried wood is expected to be preserved  

TABLE 11.1
The potential to increase carbon residence time for 
various types of CDR

Type of CDR
Increase in carbon 
residence time

Afforestation and reforestation 50– 300 years
Biochar >100 years
Wood products, such as furniture 20– 100 years
Wood vault 300– 5000 years
Litter under anaerobic conditions 300– 5000 years
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for thousands of years. A wood vault unit that occupies 1  
hectare of surface land, with 10 m effective depth, can store up  
to 100,000 m3 of wood and sequester 0.1 MtCO2. It takes 10,000  
wood vault units of such a size to store 1 Gt CO2 y−1. The cost  
is estimated at $10– $50 per ton CO2, which can be considered  
cost- effective. The land surface of a fully closed wood vault still  
can be used for recreation, agriculture, or a solar farm. The high  
durability, verifiability, and low cost of wood mass preservation  
in wood vaults makes it an attractive option for CDR.

SUGGESTED READING

Ning Zeng and Henry Hausmann, 2022. Wood Vault: Remove 
atmospheric CO2 with trees, store wood for carbon sequestration 
for now and as biomass, bioenergy and carbon reserve for the 
future. Carbon Balance and Management, 17:2. https:// doi.
org/ 10.1186/ s13 021- 022- 00202- 0

QUIZ

1. Carbon dioxide removal (CDR) is a human intervention 
to remove carbon dioxide from the atmosphere.
a. True
b. False

2. A principle to evaluate effectiveness of a CDR strategy 
is to examine if it:
a. increases carbon influxes into long residence 

time pools.
b. lengthens carbon residence time in high- influx  

pools.
c. both increases carbon influxes and lengthens 

residence time.
d. all the above.

3. Net zero carbon dioxide emissions means that emitted 
carbon dioxide from fossil fuel burning, deforestation, 
and other processes are fully counterbalanced by 
negative emissions via various CDR strategies.
a. True
b. False

4. Carbon dioxide removal includes the following 
methods (choose as many as fit).
a. Reforestation by planting trees in degraded 

forest lands.
b. Agricultural practices to restore soil fertility.
c. Using chemical fertilizers to increase crop  

yields.
d. Reclamation of wetlands to grow rice crop.
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Practice 3
Diagnostic Variables in Matrix Models

Xingjie Lu
Sun Yat- sen University, Guangzhou, China

12

This practice helps you understand diagnostic variables in 
biogeochemistry matrix models. The key diagnostic variables 
include carbon storage capacity, storage potential, residence 
time, and input. We use the matrix version of the TECO model 
to demonstrate how to incorporate diagnostic variables from 
carbon balance equations. We verify the theory that carbon 
storage capacity represents an attractor of carbon storage 
dynamic. Meanwhile, we understand how changes in carbon 
turnover rate and input allocation fraction affect the carbon 
residence time and therefore the carbon storage capacity. 
Carbon residence time and carbon input are two essential 
diagnostics to characterize the steady state carbon storage in 
land carbon cycle modeling.

MOTIVATION OF THE UNCERTAINTY 
DIAGNOSTICS

Land carbon cycle models are frequently used to estimate 
biosphere- atmosphere feedback. However, different models 
often provide quite divergent predictions of land carbon uptake 
and storage as revealed via model intercomparison projects. 
Great efforts have been made to understand differences among 
models. Even so, we still have difficulties in identifying causes 
of model differences.

To improve understanding of why models behave differently, 
we need effective diagnostic tools. This is one of the motivations 
for developing the matrix approach. The traceability analysis 
with the matrix approach offers a framework to understand each 
traceable component first and then assemble them together to 
analyze the carbon storage dynamics.

The matrix approach enables decomposition of modeled 
carbon storage to a few traceable components according to 
the mathematical properties of the matrix equation. In this 
way, we can conduct traceability analysis to understand the 
causes of model uncertainty. Traceability analysis is discussed 
in detail in Unit 5 of this book.

THE MATHEMATICAL FOUNDATION OF 
THE DIAGNOSTICS OF LAND CARBON 
CYCLE MODELS

Previous chapters have demonstrated that the carbon storage 
dynamics in land carbon cycle models can be formulated in a 
matrix form (Luo et al. 2017; Chapter 1):

 
dX t

dt
B t G t X t

( )
= ( ) + ( ) ( )µ  12.1

where X(t), as a vector, represents carbon storage in multiple 
pools, u(t) as a scalar represents the amount of carbon input 
from net primary production (NPP, i.e., photosynthesis 
minus autotrophic respiration), B, as a vector, is the carbon 
partitioning from NPP to multiple pools, and G, as a matrix, 
indicates the carbon transfer network among pools.

Equation 12.1 can be reformulated to a diagnostic format:

 X t X t X t
c p( ) = ( ) − ( ) 12.2

where Xc is carbon storage capacity and Xp is carbon storage 
potential. The carbon storage capacity can be further 
decomposed into ecosystem residence time (τE) and carbon 
input (u):

 X t u t
c E( ) = ( )τ  12.3

where ecosystem residence time is defined by:

 τ
E

G B= − −1  12.4

The carbon storage potential is the product of the inverse of 
matrix G and the carbon storage growth rate:

 X t G
dX t

dtp ( ) = −
( )−1  12.5

In this practice, we are going to focus on the carbon storage 
capacity (Xc), carbon storage potential (Xp), carbon residence 
time (τE), and carbon input (u), which are the most important 
diagnostics in the matrix approach.

Equations 12.3– 12.5 show that three terms: carbon storage 
capacity (Xc), carbon storage potential (Xp), and carbon 
residence time (τE), are related to the matrix G. Therefore, one 
of the most critical steps to calculate the above diagnostics is 
to find the matrix G, which equals A(t)ξ(t)K.

Exercise 1 and Exercise 2 are to identify diagnostic variables 
from the TECO and CLM5 matrix models.

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1201/9781032711126-15


75Practice 3: Diagnostic Variables in Matrix Models

exerciSe 1

The matrix equation of the TECO model can be written into 
one matrix equation:

 
dX t

dt
B t A t t KX t

( )
= ( ) + ( ) ( ) ( )µ ξ  12.6

Here, μ is the C input scalar (gC m−2 s−1), B represents the 
C allocation fraction vector (unitless), A is the partitioning 
coefficient matrix (unitless), K is a diagonal turnover rate 
matrix (s−1), and X is C pool size vector (gC m−2).

Ex 1.1 Find the matrix G of Equation 12.6. This matrix 
was defined in Equation 12.1: G =  …

Ex 1.2 Write down the diagnostic form of Equation 
12.6: X(t) =  …

Ex 1.3 Identify the residence time, C input, C storage 
capacity and C storage potential from the diagnostic form.

Residence time: τE =  …
C input: μ =  …
C storage capacity: Xc =  …
C storage potential: Xp =  …

exerciSe 2 (optional)

The matrix equation of the CLM5 vegetation carbon cycle 
model can be written in the form of one matrix equation:

      
dX t

dt
Bu t A t K t X t A K X t

A K
ph ph gm gm

fi

( )
= ( ) + ( ) ( ) ( ) + ( )

+            
ffi

t X t( ) ( )
 12.7

where μ is the C input scalar, (gC m−2 s−1), B represents the 
C allocation fraction vector (unitless), A is the partitioning 
coefficient matrix (unitless), K is a diagonal turnover rate 
matrix (s−1), and X is C pool size vector (gC m−2). The 
subscripts, ph, gm, and fi represent the partitioning coefficient 
and turnover rate related to phenology, gap mortality, and fire 
processes.

Ex 2.1 Find the matrix G of Equation 12.7: G =  …
Ex 2.2 Write down the diagnostic form of Equation 

12.7: X(t) =  …
Ex 2.3 Identify residence time, C input, C storage capacity, 

and C storage potential from the diagnostic form.

Residence time: τE =  …
C input: μ =  …
C storage capacity: Xc =  …
C storage potential: Xp =  …

CARBON STORAGE CAPACITY AND CARBON 
STORAGE POTENTIAL

The carbon storage capacity and carbon storage potential 
are two important diagnostics. The carbon storage capacity 

represents the maximal amount of carbon that a land 
ecosystem can store. The carbon storage potential represents 
the difference between carbon storage capacity and current 
carbon storage. The two diagnostics are the first tier variables 
to define land carbon dynamics for any modeling study.    
The carbon storage capacity is the attractor and the sign of the 
carbon storage potential represents the direction. That is, the 
carbon storage will ultimately reach carbon storage capacity 
regardless of initial values, carbon inputs, and other model 
parameters. Exercise 3 will allow us to verify this notion.

exerciSe 3

Run the TECO matrix model (Ex 3.1), then change the initial 
value (Ex 3.2) and input (Ex 3.3). Learn whether carbon 
storage changes to approach the carbon storage capacity. 
Learn how carbon storage potential changes.

Ex 3.1. Follow instructions to run the TECO matrix model 
in CarboTrain:

a Select Unit 3
b Select Exercise 3
c Select Default
d Select Set Output Folder
e Open Source Code
f Read lines 10– 44, get familiar with parameters, input, 

and initial value. The file test_ p3.py can be edited at 
this step.

g Run Exercise
h Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 
carbon storage capacity, and carbon storage potential 
appear in the output file output.xls. Figures are in 
results.png.

Questions: Does carbon storage change towards carbon 
storage capacity? How does carbon storage potential change?
Ex 3.2. Try different initial values

a Repeat Ex 3.1, but select “Change initial pool size I” 
instead of “Default”. Open source code and change 
the initial value to (1000.0 20000.0 50.0 3000.0 
200.0 15000.0 40000.0) at line 44 of test_ p3.py. 
Run Exercise and check the total ecosystem carbon 
storage and total ecosystem carbon storage capacity in 
results.png.

b Repeat Ex 3.1, but select “Change initial pool size 
II” instead of “Default”. Open source code and 
change the initial value to (280.0 5000.0 15.0 800.0 
50.0 4000.0 10000.0) at line 44 of test_ p3.py. 
Run Exercise and check the total ecosystem carbon 
storage and total ecosystem carbon storage capacity in 
results.png.

Questions: If the initial pool size changes, does carbon 
storage change towards carbon storage capacity? Does the 
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carbon storage capacity depend on the initial value? How does 
carbon storage potential change?

Ex 3.3. Try different C inputs
a Repeat Ex 3.1, but select “Change carbon input I” 

instead of “Default”. Open source code and change 
the C input to 0.00001123 at line 38 of test_ p3.py. 
Run Exercise and check the total ecosystem carbon 
storage and total ecosystem carbon storage capacity in 
results.png.

b Repeat Ex 3.1, but select “Change carbon input II” 
instead of “Default”. Open source code and change 
the C input to 0.00004490 at line 38 of test_ p3.py. 
Run Exercise and check the total ecosystem carbon 
storage and total ecosystem carbon storage capacity in 
results.png.

Questions: If the carbon storage capacity changes, does 
carbon storage still change towards carbon storage capacity? 
Does the carbon storage capacity depend on the C input? 
How does carbon storage potential change? Would the carbon 
storage always equal the carbon storage capacity at steady- 
state? What does zero carbon storage potential stand for?

These questions are critical to the conceptual foundation 
of the carbon storage capacity and carbon storage potential. 
Results from Exercise 3 guide you to understand why carbon 
storage capacity and carbon storage potential are important 
diagnostics for carbon cycle modeling and how the definitions 
of the two variables reflect the inherent property of land 
carbon cycle.

RESIDENCE TIME AND CARBON INPUT

Now let us further explore the carbon storage capacity, which 
is described by two additional traceable components: residence 
time and carbon input. Climate change causes changes in carbon 
cycling, usually via changes in residence time and/ or carbon 
input. For example, rising atmospheric CO2 concentration 
usually enhances carbon input (μ). Rising air temperature 
usually increases soil carbon decomposition and thus turnover 
rate of soil pools (K). When a forest is converted to cropland 
under land use change, the carbon allocation to woody tissue is 
usually set to zero, leading to changes in the carbon allocation 
fraction (B). Thus, changes in ecosystem carbon storage in 
response to various climate change factors can be explained 
by diagnostics related to residence time and carbon input in the 
matrix approach. Exercise 4 will let us explore how changes 
in parameter values related to residence time or carbon input 
result in changes in the carbon storage capacity.

exerciSe 4

Run the TECO matrix model, and make the following changes 
in parameters or carbon input (Ex 4.1– 4.3). Observe how 
parameters influence the carbon storage capacity.

Ex 4.1 Try a different turnover rate.

a Repeat Ex 3.1, but Select “Exercise 4”, and “Low 
foliage turnover”. Open source code and change the 
foliage turnover rate to 8.8 × 10−4, which is the first 
element of “temp” at line 26. Run Exercise and check 
the total ecosystem carbon storage capacity, residence 
time, and carbon input at steady state in output.
xls and results.png.

b Repeat Ex 3.1, but Select “Exercise 4”, and “Low 
passive soil turnover”. Open source code and change 
the passive soil turnover rate to 7.739 × 10−7, which is 
the last element of “temp” at line 26. Run Exercise 
and check the total ecosystem carbon storage capacity, 
residence time, and carbon input at steady state in 
output.xls and results.png.

Questions: Is the carbon storage capacity in Ex 4.1a or Ex 
4.1b lower or higher than that in the default model (Ex 3.1)? 
Can the lower or higher carbon storage capacity be attributed 
to residence time or carbon input? How do changes in turnover 
of foliage or passive soil carbon impact residence time or 
carbon input? Which impact is stronger? Is it the impact of 
lower foliage turnover rate or the impact of lower passive soil 
turnover rate? Why?

Ex 4.2 Try different allocation fractions.

a Repeat Ex 3.1, but Select “Exercise 4”, and “High 
allocation to foliage”. Open source code and change 
the allocation fraction to (0.55, 0.45…), which are the 
first two elements of “B” at line 10. Run Exercise and 
check the total ecosystem carbon storage capacity, 
residence time, and carbon input at steady state in 
output.xls and results.png.

b Repeat Ex 3.1, but Select “Exercise 4”, and “High 
allocation to wood”. Open source code and change 
the allocation fraction to (0.2, 0.8…), which are the 
first two elements of “B” at line 10. Run Exercise 
and check the total ecosystem carbon storage capacity, 
residence time, and carbon input at steady state in 
output.xls and results.png.

Questions: Is the carbon storage capacity in Ex 4.2a or Ex 4.2b 
lower or higher than that in the default model (Ex 3.1)? Can 
the lower or higher carbon storage capacity be attributed to 
residence time or carbon input? How do changes in allocation 
fraction impact residence time or carbon input? Why?

Ex 4.3 Try multiple changes of parameters in different C 
input and turnover rate.

a Repeat Ex 3.1, but Select “Exercise 4”, and “Multiple 
Changes I”. Open source code and change the C input 
to 1.123 × 10−5 at line 26 and 38, and change the slow 
and passive soil turnover rate to 2.99 × 10−5 and 5.159 × 
10−7, which are the last two elements of “temp” at line 
25. Run Exercise and check the total ecosystem carbon 
storage capacity, residence time, and carbon input at 
steady state in output.xls and results.png.
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b Repeat Ex 3.1, but Select “Exercise 4”, and “Multiple 
Changes II”. Open source code and change the C 
input to 4.49 × 10−5 at line 26 and 38, and change 
the slow and passive soil turnover rate to 2.69 × 10−4 
and 4.643 × 10−6, which are the last two elements of 
“temp” at line 25. Run Exercise and check the total 
ecosystem carbon storage capacity, residence time, 
and carbon input at steady state in output.xls and 
results.png.

Questions: What are the common features or differences in 
carbon storage dynamics and carbon storage capacity between 
Ex 4.3a and Ex 4.3b? Can you see how residence time and 
carbon input cause differences in carbon storage capacity? What 
causes these differences in residence time or carbon input?

Understanding how carbon storage capacity changes with 
carbon residence time and carbon input changes is essential 
in diagnostics for carbon cycle modeling. This will be further 
explored in Unit 5 on traceability analysis.

Diagnostic capability is one of the most important benefits 
offered by the matrix approach. This practice only provides 
you with simple cases to understand the terrestrial ecosystem 
carbon cycle. To understand the land carbon cycle at the earth 
system scale, we need to analyze wider ranges of spatial and 
temporal variations from multiple models in response to rising 
atmospheric CO2 concentration and climate warming (Lu 
et al. 2018).

SUGGESTED READINGS

Luo, Y. Q., Shi, Z., Lu, X. J., Xia, J. Y., Liang, J. Y., Jiang, J., 
et al. (2017). Transient dynamics of terrestrial carbon 
storage: Mathematical foundation and its applications. 
Biogeosciences, 14(1), 145– 161

Lu, X., Du, Z., Huang, Y., Lawrence, D., Kluzek, E., Collier, N., 
Lombardozzi, D., Sobhani, N., Schuur, E., Luo, Y., (2020). 
Full implementation of matrix approach to biogeochemistry 
module of Community Land Model version 5 (CLM5). Journal 
of Advances in Modeling Earth Systems, 12: e2020MS002105.
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13  Nonautonomous ODE System Solver 
and Stability Analysis

Ying Wang
University of Oklahoma, Norman, USA

The matrix equation model for the terrestrial carbon dynamics 
is a system of nonautonomous ordinary differential equations, 
ODEs, which naturally inherits the mathematical difficulties 
in the solution process and stability studies of its equilibria. 
This chapter introduces the mathematical properties of this 
matrix equation model. In particular, we will study:  (1) the 
analytical solution of the matrix equation model, examining 
a three-pool terrestrial carbon dynamics representation to 
demonstrate the solution process; and (2) the stability analysis 
of the matrix equation model.

INTRODUCTION

We consider the following system of nonautonomous ordinary 
differential equations (ODEs):

 ′ = ( ) + ( )X t ACX Bu tξ  13.1

where X(t) is a vector of carbon pool sizes; X0 is a vector of 
initial values of the carbon pools; ξ(t) is an environmental 
scalar representing effects of temperature and moisture on 
the carbon transfer among pools; A and C are carbon transfer 
coefficients between plant, litter, and soil pools; u(t) is the 
photosynthetically fixed carbon and usually estimated by 
canopy photosynthetic models; and B is a vector of partitioning 
coefficients of the photosynthetically fixed carbon to plant 
pools. For background to this equation, see Chapter 1.

Our goal is to develop an analytical solution of Equation 
13.1, and to understand and predict how the equilibrium state 
stability is impacted by various environmental scalar functions 
ξ(t), transfer matrices A and C, and photosynthetic input u(t).

ANALYTICAL SOLUTION

In mathematical language, governing Equation 13.1 is a 
system of non- homogeneous nonautonomous ODEs, and 
the derivation of its solution is complicated. Therefore, 
instead of deriving the solution directly, we will start with 
studying the analytical solution of a scalar non- homogeneous 
nonautonomous ODE, and then extend it to the system 
situation.

firSt order non- hoMogeneouS Scalar eQuation

A first- order linear non- homogeneous scalar equation has the 
following general form:

 ′ + ( ) = ( )x p t x q t  13.2

A standard way to solve (13.2) is the integrating factor method, 
which proceeds as follows. Let:

 P t p s ds
t

t

( ) = ( )∫
0

,  

then the integrating factor is given by:

 h t eP t( ) = ( ).  13.3

After multiplying the integrating factor (13.3) to both sides of 
(13.2), we get:

 

e x p t x e q t

e x e p t x e q t

P t P t

P t P t P t

( ) ( )

( ) ( ) ( )

′

′

+ ( )( ) = ( )

+ ( ) = ( )
 

13.4

Integration by parts allows us to combine the left- hand side of 
(13.4) into one derivative:

 e x e q tP t P t( ) ( )( )′ = ( ).  

Therefore, integrating the entire equation gives us the 
analytical solution formula for the first- order linear non- 
homogeneous scalar equation (13.2):

 

e x e q s ds C

x t e e q s ds C

P t

t

t
P s

P t

t

t
P s

( ) ( )

− ( ) ( )

= ( ) +

( ) = ( ) +









∫

∫

0

0



 

13.5

where:

 C x t= ( )0
 

Let us take a look at the following straightforward example to 
get ourselves familiar with this solution procedure:

 ′ − =x x e t2 .  13.6
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The integrating factor in this case is:

 h t e e eP t
s

t tt

t

( ) = =
∫

=( )
−

− +0 0

1d

.  13.7

Now, we multiply the integrating factor (13.7) to the ODE 
(13.6):

 e x et t−( )′ = ,  

then integrate this equation, we get:

 e x e C-t t= + ,  

therefore:

 x e Cet t= +2  

where:

 C x= ( ) −0 1 

one- pool Model

Now, we consider a one- pool model, that is, the vector X in 
(13.1) becomes a scalar, then (13.1) becomes a first- order 
linear non- homogeneous scalar equation (13.2) with

 p t AC q t Bu tt .( ) = − ( ) ( ) = ( )ξ ,  

where X(t), A, C, and B are all scalars, instead of matrices. 
We can apply the solution formulae (13.5) to solve the 
one- pool terrestrial carbon cycle system model (13.1), we 
have that:

 X t e e Bu s dsP t

t

t
P s( ) = ( ) +











− ( ) ( )∫
0

C  

where:

 P t s ACds C X t
t

t

( ) = − ( ) = ( )∫
0

0
ξ ,  

hoMogeneouS nonautonoMouS odeS SySteM

Before moving on to study the analytical solution for the 
general n- pool model (13.1), we first prepare ourselves with 
the solution to an initial value problem of a homogeneous 
nonautonomous ODEs system in the following form:

 
′






= ( )
( ) =

X A t X

X t e
i0

 13.8

where:

 e
i

i 1 n i

=










− −

0 0 1 0 0
0 0

, , , , , ,⋯ ⋯⎧⎨⎭ ⎧⎨⎭
 copies of  copies of

TT

 

is an n- vector with only the ith entry equal to 1, and all the 
other entries equal to 0. The term “homogeneous” means 
that every term in Equation 13.8 includes X, and the term 
“nonautonomous” means that X′ depends on the independent 
variable t explicitly, i.e., the right- hand side of (13.8) contains 
the term A(t) which is a function of t. Note that system (13.8) 
is one system with n different initial conditions. If we solve 
(13.8) for i =  1, 2, ⋯, n, we will get solutions X(1), X(2), ⋯X(n) 
corresponding to the n different initial conditions ei’s (i =  1, 2, 
⋯, n), and this set of solutions forms a fundamental matrix:

 Φ t X X X n( ) =  
( ) ( ) ( )1 2

  13.9

of the homogeneous nonautonomous ODEs System:

 ′ = ( )X A t X.  13.10

non- hoMogeneouS nonautonoMouS odeS SySteM

Now we consider the following nonhomogeneous 
nonautonomous ODEs system:

 ′ = ( ) + ( )X A t X g t .  13.11

The difference between Equation 13.11 and Equation 13.10 
is that (13.11) includes a non- homogeneous term g(t), i.e., a 
term which does not include X. That is why Equation 13.11 
is called a non- homogeneous nonautonomous ODEs system. 
To look for the solution of Equation 13.11, we will need to 
employ the fundamental matrix Φ(t) given in Equation 13.9 of 
the corresponding homogeneous system (13.10). Assume that 
the solution of Equation 13.11 has the following form:

 X t Q t= ( ) ( )Φ  13.12

where:

 Q t

q t

q t
n

( ) =
( )

( )

















1

  

is a n- vector, i.e., the solution is a linear combination of the 
basis of the solution space of the corresponding homogeneous 
system (13.10). Then we plug the solution formula (13.12) 
into Equation 13.11, we will get:

 ′ ( ) + ( ) = +′Φ Φ Φt Q t Q A Q g.  13.13
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Since Φ(t) is a fundamental matrix of Equation 13.10, that 
means that every column of Φ(t) is a solution of Equation 
13.10, therefore we have that the fundamental matrix Φ(t) also 
satisfies Equation 13.10, i.e.:

 ′ ( ) = ( )Φ Φt A t .  13.14

Equation 13.14 allows us to cancel the Φ′(t)Q and AΦ(t)Q 
terms on the left and right hand sides of Equation 13.13, then 
Equation 13.13 becomes:

 Φ t Q g( ) =′ ,  

Equivalently:

 ′ = ( ) ( )−Q t g tΦ 1  

because matrix Φ as a fundamental matrix, is clearly invertible. 
To solve for Q, we integrate this equation, and get:

 Q s g s ds C
t

t

= ( ) ( ) +∫ −

0

1Φ  

Therefore, the solution to the non- homogeneous 
nonautonomous ODEs system (13.11) is:

 

X t t Q t C

t g s ds

( ) = ( ) = ( )
+ ( ) ( ) ( )∫ −

Φ Φ

Φ Φ          s
t

t

0

1  13.15

where:

 C t X t= ( ) ( )−Φ 1
0 0

 

N- pool Model

The n- pool model:

 ′ = ( ) + ( )X t ACX Bu tξ  

 X X0
0( ) =  13.16

is in principle a non- homogeneous nonautonomous ODEs 
system (13.11) with:

 A t t AC( ) = ( )ξ  

 g t Bu t( ) = ( ).  

Therefore, we can apply the solution formulae (13.15) to 
solve (13.16):

 

X t t C t s g s ds

e

t

t

AC

a

t
t

( ) = ( ) + ( ) ( ) ( )

=
∫

+

∫

∫

−

( )

Φ Φ Φ
0

0

1

0
0

ξ σ σd

X

( )
⎧ ⎨⎪ ⎭⎪ ee u s ds B

AC d

d

s

t

∫ ( )
















( )ξ σ σ

( )
⎧ ⎨⎪⎪ ⎭⎪⎪

 13.17

Notice that, in this case, the fundamental matrix of the 
corresponding homogeneous system:

 ′ = ( )X t ACXξ  

is:

 Φ t e
AC d

t

( ) =
∫ ( )
0

ξ σ σ
.  13.18

The calculation of the matrix exponential e
AC d

t

0
∫ ( )ξ σ σ

 is rather 
complicated. In principle, a matrix exponential eA is defined in 
the same way as the scalar exponential:

 e
x

n
x

n

n

=
=
∑

0

∞

!
 

to be:

 e
A

n
A

n

n

=
=
∑

0

∞

!
.  

If the matrix:

 A diag a
i i

n
= ( ) =1

 

is a diagonal matrix with a
i i

n{ } =1
 as the diagonal entries, then,

 e diag eA a

i

n
i= ( ) =1

.  

If the matrix A is diagonalizable by an invertible matrix P (for 
example, the eigenvector matrix of A), i.e.,

 A P P= −Λ 1  

where Λ is a diagonal matrix, then the matrix exponential 
becomes

 e Pe PA = −Λ 1.  

From this formulation, we see that the essential step to 
calculate a matrix exponential is to diagonalize that matrix. 
Now, we apply this essential step to derive the details in the 
solution formulae (13.17). In order to calculate terms (a) and 
(d) in (13.17), we first introduce an auxiliary function:

 φ t eACt( ) = .  13.19

To calculate this matrix exponential, we first find the 
eigenvalues of the matrix product AC:

 λ
i

i n, , ,= 1  

and a complete set of orthonormal eigenvectors of AC:

 v i n
i
, , ,= 1  
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and define the eigenvector matrix:

 V v v
n

= ( )1
, ,  

so that the matrix product AC can be diagonalized by the 
eigenvector matrix V, i.e.:

 AC Vdiag V
i i

n
= ( ) =

−λ
1

1,  

which also gives that:

 ACt Vdiag t V
i i

n
= ( ) =

−λ
1

1,  

then ϕ(t) given in (13.19) can be calculated by:

 φ λt e Vdiag e VACt t

i

n
i( ) = = ( ) =

−
1

1  13.20

Since the fundamental matrix Φ(t) given in (13.18) can be 
written as:

 Φ t f t f t d
t

( ) = ( )( ) ( ) = ( )∫φ ξ σ σ,  where 
0

 

this matrix exponential is therefore given as:

 

Φ t e f t

Vdiag e V

Vdiag e

AC d

f t

i

n

t

i

i

t

( ) =
∫

= ( )( )
= ( )

=

( )

( )
=

−

0

0

1

1

ξ σ σ

λ

λ

φ

∫∫











( )

=

−
ξ σ σd

i

n

V

1

1.

 

hence, terms (a) and (d) in (13.17) are calculated as following:

 a e X Vdiag e V X
AC d

f t

i

n

t

i( ) =
∫

= ( )( )
( )

=
−0

0 1

1
0

ξ σ σ
λ  13.21

and:

 

d( ) =
∫ ( )













=
∫




∫

∫

( )

( )

0

0

t AC d

t d

e u s ds B

V diag e

s

t

i
s

t

ξ σ σ

λ ξ σ σ























( )

=
∫










=

−

( )
∫

i

n

t d

V u s dsB

V diag e
i

s

t

1

1

0

λ ξ σ σ

















( )

=
∫ ( )








=

−

( )
∫

i

n

t d

u s dsV B

Vdiag e u s ds
i

s

t

1

1

0

λ ξ σ σ





=

−

i

n

V B

1

1

 13.22

This finishes the calculation of the solution (13.17) to the    
n- pool model (13.16). However, we want readers to note that 
the calculation of the eigenvalues λi’s and eigenvectors vi’s, 
which ultimately form the eigenvector matrix V of the carbon 
transfer coefficients matrix product AC, is far from trivial in 
most of the practical cases.

MatheMatica calculation for the analytical Solution 
of a three- pool Model

We consider a three- pool model with:

 

A C

c

c

c

B

b

=
−

−
−













 =

















=












1 0 0

0 1 0

0 1 1

0 0

0 0

0 0

0

0

1

2

3



( ) = ( ) =ξ t k e u t k eb t b t
1 2

1 2 ,

 13.23

and we use the mathematical software Mathematica to carry 
out the following calculations. The matrix product AC is:

 AC

c

c c

c c

=
−

−
−

















1

1 2

2 3

0 0

0

0

 

The eigenvalues of AC are:

 λ λ λ
1 1 2 2 3 3

= − = − = −c c c, ,
 

and the eigenvector matrix of AC is:

 V

c c c c

c c

c

c

c

=

−( ) −( )

− +
− +
























1 2 1 3

2

1 3

2

3

2

0 0

1 0

1 1 1

c c
!





 

Let the initial value X 0 be:

 X

x

x

x
0

1

2

3

=
















 

then term (a) given in (13.21) has three components:

 a e x

c e k

b

b t

1

1

1

1
1

1

1=
−
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 a

e c e x e
c c e k

b

c e

b

c eb t b t b t

2

1

1

1

1

11 2
1

1

1

2
1

1

1

1
1

=

− +
−

+( ) − +( ) − +( ) − +(k ))
− + +( )( )

−













k1

1
2 2 1 1 2

1 2

b c x c x x

c c
 

and a3 has a much longer expression, and is omitted here. 
To facilitate the calculation of term (d) given in (13.22), we 
assume that b2 =  b1 =  b, then term (d) given in (13.22) has 
three components:
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Even for a seemingly simple three- pool model, the 
computation of the analytical solution of this model is already 
very complicated. For models with more pools, the calculation 
could be much more challenging for many cases.

STABILITY

inStantaneouS Steady State

The instantaneous steady- state of (13.1):

 ′ = ( ) + ( )X t ACX Bu tξ  13.24

is defined as:

 X t t u t C A B t
ss ( ) = − ( ) ( ) ( )− − −ξ 1 1 1  13.25

The instantaneous steady state provides the X(t) with zero rate 
of change at time t.

inStantaneouS Steady State for a three- pool Model

Let us re- visit the three- pool model (13.23) given in the 
previous section. A simple calculation shows that the inverse 
of the carbon transfer coefficients matrices AC is:
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and therefore the instantaneous steady state solution is:
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The Mathematica computational results show that all the 

eigenvalues λ
i i

n( ) =1
 of the matrix AC are strictly negative, 

therefore the instantaneous steady state solution (13.25) 
is asymptotically stable. We numerically investigate an 
example to verify that the solution X(t) does converge to the 
instantaneous steady- state solution Xss(t) as t → ∞. To measure 
the convergence, we need to study the following function:

 
distance t X t X t

a d X t
ss

ss

( ) = ( ) − ( )
= ( ) + ( ) − ( )  13.26

where (a), (d), and Xss(t) are given in (13.21, 13.22, 13.25).
In this numerical investigation, we choose c1 =  1/ 10, 

c2 =  3/ 10, c3 =  2/ 10, b =  1, k1 =  1, k2 =  1, b1 =  1, and the initial 
value X0 =  (5/ 10, 2/ 10, 3/ 10) in the three- pool model (13.23). 
Figure 13.1 shows the three components of the solution X(t), 
the instantaneous steady- state solution Xss(t), and the distance 
given in (13.26).

An interesting question to ask is how the parameters affect 
the rate of convergence to the instantaneous steady state 
solution. This question will be left to the readers to explore.

global attractor

As the name suggests, a global attractor attracts all the 
solutions regardless of the initial profiles. We will introduce 
the definition of the global attractor, how to numerically 
estimate the global attractor, and a mathematical study of the 
convergence of the solutions to the global attractor as t → ∞. 
In the end of this section, we will also give the condition when 
the global attractor and the instantaneous steady- state solution 
given in (13.25) converge to each other.

Consider a non- homogeneous nonautonomous system in 
the general form:

 ′ ( ) = ( ) ( ) + ( )X t A t X t b t  13.27
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where A(t) has the block matrix form:

 A t
A t

A t A t
( ) =

( )
( ) ( )







11

21 22

0
 

 
A t R R A t R

A R d

d d d d d d

d d
11 21

22 1

1 1 1 2 2 1

2 2

0( ) ∈ ∈ ( ) ∈
( ) ∈ +

× × ×

×

, , ,

,t and dd d
2

= .
 

Assume that:

1 A11(t) is a lower triangular matrix
2 ∥b(t)∥ ≤ B for some B > 0 (i.e., b(t) is bounded)
3 ∃δ < 0, such that

• aii(t) ≤ δ, for i =  1, ⋯, d1

• aii(t) < 0, for i =  d1 +  1, ⋯, d (i.e., A22(t) has negative 
diagonal entries)

• a t a t
ii

j i j d
ij( ) + ≥ ( )

≠ >
∑δ

, 1

, for i =  d1 +  1, ⋯, d, (i.e., 

A22(t) is diagonally dominant)

Then:

 
 Φ t,s Ke t s( ) ≤ −( )δ  13.28

for some K > 0 and t > s, where Φ(t, s) is the fundamental 
matrix of:

 ′ ( ) = ( ) ( )X t A t X t  

i.e., the solution of the general nonautonomous equation 
(13.27) can be written as:

 X t t s X s t b d
s

t

( ) = ( ) ( ) + ( ) ( )∫Φ Φ, ,τ τ τ  

Let:

 µ
∞

t t,s b s ds
t

( ) = ( ) ( )
−
∫ Φ  13.29

then μ(t) is the unique global attractor of the nonautonomous 
system (13.27).

Notice that based on (13.28, 13.29) and the assumption on 
boundedness of b(t),
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 13.30

FIGURE 13.1 The three panels show (a) the solution X(t), (b) the 
equilibrium solution Xss(t), and (c) the distance versus time, for 0 ≤ 
t ≤ 5. The blue, red, and green curves represent the first, second, and 
third components, respectively.
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Equation 13.30 gives a way to numerically estimate the global 
attractor μ(t).

All the solutions (regardless of the initial conditions) will 
converge to μ(t) as t → ∞. This is because:

 X t t t,s X s s( ) − ( ) = ( ) ( ) − ( )( )µ µΦ  

Therefore:

 
   X t t Ke X s st s

t

( ) − ( ) ≤ ( ) − ( )( )
→ <

−( )

→

µ µ

δ

δ

∞
0 0,  since 

 

the global attractor of the n- pool Model

Consider:

 ′ = ( ) + ( )X t ACX Bu tξ ,  13.31

its global attractor is:
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GENERAL STABILITY STATEMENTS

CASE 2 CONSIDER A HOMOGENEOUS SYSTEM OF NONAUTONOMOUS ODES:

′ = + ( )X AX B t

where B(X) is a continuous function. Let λj, j =  1, ⋯, n counting multiplicity be the eigenvalues of matrix A, and let X
be the equilibrium state.

• if Reλj < 0 for all j =  1, ⋯, n, and lim
t

B t→ ( ) =∞ 0, then X  is asymptotically stable.

• if Reλj ≤ 0 for all j =  1, ⋯, n, and the eigenvalues with real part equals to zero are simple, and 
t

B t
0

∞

∞∫ ( ) <  then X  

is stable.

• if there exists λj, such that Reλj > 0, and lim
t

B t→ ( ) =∞ 0, then X  is unstable.

CASE 1  CONSIDER A HOMOGENEOUS SYSTEM OF ODES WITH CONSTANT COEFFICIENT 
MATRIX:

′ =X AX.

Let λj, j =  1, ⋯, n counting multiplicity be the eigenvalues of matrix A, and let X  be the equilibrium state.

• if Reλj < 0 for all j =  1, ⋯, n, then X  is asymptotically stable.
• if Reλj ≤ 0 for all j =  1, ⋯, n, and the eigenvalues with real part equals to zero are simple, then X  is stable.
• if there exists λj, such that Reλj =  0, but is not simple, then X  is unstable.
• if there exists λj, such that Reλj > 0, then X  is unstable.
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QUIZ

Find the general solution of the following ordinary differential 
equations and system of ODEs.
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Find the critical point(s) of the following systems, and 
determine whether it is asymptotically stable, stable, or 
unstable.
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CASE 3 CONSIDER THE FOLLOWING GENERAL SYSTEM:

′ = + ( ) + ( )X AX B t X f t,X

where B(t) is a continuous function. Let X0 be an equilibrium solution. If:

lim
t

B t→ ( ) =∞   0

and f(t) is continuous in t, and has continuous partial derivative in x:

lim
,

 uniformly in t
x

f t x

x→

( )
=

0
0

 

then:

a If Reλj < 0, where λj are the eigenvalues of A, then X =  X0 is asymptotically stable.
b If there exists an eigenvalue λj, such that Reλj > 0, then X =  X0 is unstable.
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14  Semi- Analytic Spin- Up (SASU) 
of Coupled Carbon- Nitrogen 
Cycle Models

Xingjie Lu
Sun Yat- sen University, Guangzhou, China

Jianyang Xia
East China Normal University,  Shanghai, China

This chapter introduces the concept of spin-up in land 
biogeochemical models. Spin-up is a standard initialization 
procedure, which is commonly included in protocols of 
model intercomparison projects. Conventional spin-up, 
repeatedly running the model with recursive environmental 
forcing to achieve a steady state, is very time consuming. 
Semi-analytic spin-up (SASU) enabled by the matrix 
representation significantly improves the computational 
efficiency of spin-up for land biogeochemical models. The 
implementation of SASU in the Community Atmosphere 
and Biosphere Land Exchange (CABLE) model is 
demonstrated. The SASU method has been proven to save 
about 92.4% and 86.6%, respectively, of the computational 
time for spin-up of the global carbon-only and coupled 
carbon-nitrogen models.

WHAT IS SPIN- UP?

Spin- up is a standard initialization procedure used by land 
surface models, atmosphere models, ocean models, or earth 
system models. Generally speaking, spin- up provides initial 
values of state variables, which are very critical to the definite 
solution. For instance, you might have heard of the so- called 
butterfly effect in weather/ climate forecasting: slightly 
different initial values might cause different or even completely 
opposite results.

The initialization procedure is an essential step in 
simulation of land biogeochemical models. Model 
intercomparison projects are often carried out in order to 
elaborate understanding of carbon cycle dynamics and 
characterize intermodel uncertainty. These exercises require 
a standardized protocol in order to ensure that results from 
different participating models can be compared on an equal 
basis. Model intercomparison projects have for instance 
been undertaken to assess the anthropogenic impact on land 
biogeochemical cycles. The industrial revolution triggered 
much of the current anthropogenic impact, such as increasing 
fossil fuel emissions, land use change, and increasing nitrogen 

deposition. It represents the starting point of a period when 
humans have played a more important role than ever before 
in impacting the Earth’s geology and ecosystems. Land 
biogeochemical cycles are experiencing a transition period 
unique in the history of the Earth. In the protocol of model 
intercomparison projects, the simulation of the transition 
period in biogeochemical cycles from industrial revolution to 
present- day is often called the historical simulation. One of 
the primary goals for the historical simulation is to hindcast 
the ecosystem changes in response to anthropogenic activity 
since the onset of industrialization around the 19th century. 
Initial values matter to the trend of ecosystem carbon storage. 
However, determining these initial values can be a tricky issue 
when we have little information on the initial state. Direct 
observations for variables such as soil temperature, moisture, 
carbon, and nitrogen storage are not generally available until 
very recent times. Thus, in these protocols, steady state is 
commonly used to determine initial values for the historical 
simulation.

Steady state is achievable by most land biogeochemical 
models as long as we run the model long enough. Chapter 1 
provided the theoretical foundation; that is, for given forcing, 
ecosystem carbon storage tends to grow towards the same 
steady state regardless of the initial carbon storage once a 
model structure is defined and parameter values are given. 
The unique steady state does not rely on the initial value, 
as the land carbon cycle converges to a steady state that is 
determined by carbon input and residence time. Thus, the 
procedure of generating steady state can be standardized 
across different models.

Conventionally, the steady state of carbon storage can 
be achieved by repeatedly running the model with recursive 
environmental forcing. Most model intercomparison projects 
include a protocol to achieve the steady state. For examples, 
Multiscale Synthesis and Terrestrial Model Intercomparison 
Project (MsTMIP) protocol requires that the spin- up uses a 
random climate driver data package, constant 1801 land cover, 
constant pre- industrial atmospheric CO2 concentration, and 
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constant nitrogen deposition to force the model. Under such 
forcing conditions, ecosystem carbon storage will ultimately 
reach a quasi- steady state. To detect whether steady state 
has been achieved, MsTMIP specifies that the 100- yr mean 
interannual change in total ecosystem carbon stocks for 
consecutive years must be below 1 gC m−2 yr−1 for 95% of 
grid cells. The carbon stocks accumulated at steady state are 
used as the initial values in the transient historical simulation 
from 1801 to 2010. This approach, which takes advantage of 
a model’s native dynamics to drive the system towards the 
steady state, is called native dynamics spin- up (ND), and is 
the most widely used by current models.

DEVELOPMENT OF SPIN- UP APPROACHES

Several other spin- up approaches have also been developed. 
The motivation to develop alternative spin- up approaches 
to ND in land biogeochemical modeling is to improve the 
computational efficiency of the spin- up. For most models, the 
ND approach usually takes hundreds to thousands of simulation 
years to reach the steady state, which is computationally very 
expensive. Even this poor level of efficiency is becoming 
much lower as ongoing development makes models more and 
more complex. For example, vertically- resolved soil carbon 
modules are developed to represent carbon vertical mixing 
and the soil freeze- thaw impact on soil decomposition in 
permafrost regions. While accounting for these additional 
processes better represents the nature of the heterogeneity, 
the extremely slow turnover rates for deep soil carbon in 
permafrost regions substantially slow down the spin- up. 
A more efficient spin- up approach is urgently needed.

Spin- up approaches that modify ND but allow the state 
variables to naturally accumulate to the steady state without 
any arbitrary adjustments to the state variables themselves 
are called ad hoc approaches. A punctuated nitrogen addition 
approach (PN) manipulates the rate of new mineral nitrogen 
addition (Thornton et al., 2002; Thornton and Rosenbloom, 
2005). PN is proposed as a solution to reduce spin- up times 
based on the observation that the time taken by a coupled 
carbon- nitrogen biogeochemical model to reach a steady 
state under ND is mainly controlled by the new nitrogen 
addition. PN is faster than ND but the higher nitrogen inputs 
also result in larger carbon pools at steady state. Therefore, 
an additional ND needs to be carried out after PN, so that PN 
results conform to ND results. The accelerated decomposition 
approach (AD) was first implemented into the Biome- BGC 
model (Thornton and Rosenbloom, 2005). AD arbitrarily 
increases the decomposition rate during spin- up to allow the 
system to approach a steady state faster. AD is informed by the 
experience that scaling of litter and soil carbon decomposition 
produce a new steady state, which is linearly related to the 
scaling constant (Thornton and Rosenbloom, 2005). AD is 
much faster than ND, but it also generates lower steady state 
carbon and nitrogen pools, because interactions with the soil 
passive pool become much stronger. To achieve the final steady 
state, additional ND after AD is required, which is called the 
post- AD process. The post- AD process is sometimes much 
longer than AD itself. AD has been implemented into CLM 

version 4 (Koven et al., 2013) and the following versions 
(CLM4.5 and CLM5) with vertically- resolved soil carbon.

In contrast to ad hoc approaches, spin- up approaches 
allowing arbitrary change in state variables are called 
generalized optimization approaches. The semi- analytic spin- 
up approach (SASU) updates the state variables with steady 
state estimates from an analytic solution of the model. The 
SASU approach was firstly implemented in the Community 
Atmosphere- Biosphere- Land Exchange (CABLE) model 
for carbon and nitrogen cycle spin- up (Xia et al., 2012). 
For carbon- cycle- only simulations, SASU saves well over 
90% of the computational cost for CABLE site- level and 
global simulations. For carbon- nitrogen coupled simulation, 
SASU saves over 80% of the computational cost. The SASU 
approach has the additional advantage that it enables parameter 
sensitivity analysis of the biogeochemical parameters (Huang 
et al., 2018b), as well as data assimilation for the estimation 
of these parameters (Tao et al., 2020), which was prohibitive 
due to large computational cost before SASU was proposed.

Matrix representations have been derived for many 
land biogeochemical models, in part to enable them to use 
the SASU approach for spin- up. In the last decade matrix 
representations have been published for TECO (Jiang et al., 
2017; Luo et al., 2017), CABLE (Xia et al., 2013), LPJ- 
GUESS (Ahlström et al., 2015), ORCHIDEE (Huang et al., 
2018b), CLM3.5 (Hararuk et al., 2015; Hararuk et al., 2014; 
Rafique et al., 2016), CLM4 (Rafique et al., 2017), CLM4.5 
(Huang et al., 2018a), and CLM5 (Lu et al., 2020).

The accelerated spin- up (ASU) approach is implemented 
in the Terrestrial Ecosystem Model (TEM). ASU is similar 
to SASU and also belongs to the generalized optimization 
approach, but is applied to the traditional as opposed to 
the matrix form of the model. ASU numerically solves the 
model’s steady state considering the seasonal cycle of carbon 
and nitrogen storage. Qu et al., (2018) found that ASU saved 
90% and 85% of computational costs for TEM site- level and 
North American regional simulations, respectively.

SEMI- ANALYTIC SPIN- UP

The SASU approach is built upon the mathematical foundation 
of biogeochemical cycles in terrestrial ecosystems, introduced 
in Chapter 1. The biogeochemical cycling of carbon in an 
ecosystem is usually initiated with plant photosynthesis, 
which transfers CO2 from the atmosphere into an ecosystem. 
The carbon assimilated through photosynthesis is partitioned 
into compartments of plant biomass, such as leaf, root, and 
woody biomass. Plant biomass lost through phenological 
turnover, mortality, or damage by herbivores etc. becomes 
litter, entering metabolic, structural, and coarse woody debris 
(CWD) litter pools. The litter carbon is partially released to 
the atmosphere as CO2 respired by decomposing microbes, 
and partially converted to soil organic matter (SOM) in fast, 
slow, and passive pools (Figure 14.1).

The mean carbon residence time varies greatly among  
different pools, from several months in leaves and roots to  
hundreds or thousands of years in some woody tissues and  
SOM fractions (Torn et al., 1997). These carbon processes  
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in terrestrial ecosystems can be mathematically expressed by  
the following carbon balance equation in a matrix form (Luo  
et al., 2017; Luo et al., 2003):

 dX t

dt
B t A t KX t

( )
= ( ) + ( ) ( )µ ξ  14.1

Taking the CABLE model (Wang et al., 2011) as one example, 
X(t) =  (X1(t), X2(t),…, X9(t))T is a 9 × 1 vector describing pool 
sizes for the nine carbon pools leaf, wood, root, metabolic 
litter, structural litter, CWD, fast SOM, slow SOM, and 
passive SOM, respectively. A and K are then 9 × 9 matrices 
given by:

A
a a
a a=

−
−

−
−

−

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0

41 42

51 52
00 0

0 0 1 0 0 1 0 0 0
0 0 0 7 0 0
0 0 0 0 1 0
0 0 0 0 0 0 0

74 75 76

85 86 87

97 98

−
−

−
a a a

a a a
a a






























 

14.2

 K k= ( )diag  14.3

where A denotes the carbon transfer matrix, in which aij 
represents the fraction of carbon transfer from pool j to i. 
The diag(k) is a 9 × 9 diagonal matrix with diagonal entries 
given by vector k =  (k1, k2, …, k9)T, components kj (j =  1, 2, 
…, 9) quantify the fraction of carbon left from pool Xj (j =  1, 

2, …,9) after each time step. ξ(t) is an environmental scalar 
accounting for effects of soil type, temperature, and moisture 
on carbon decomposition. B =  (b1, b2, b3, 0, …, 0)T represents 
the partitioning coefficients of the photosynthetically fixed 
carbon into different pools. μ(t) is the input of carbon via plant 
photosynthesis. Other models may have a slightly different set 
of biomass, litter, and soil carbon pools, but in general, Equation 
14.1 can adequately summarize C cycle processes in most land 
models (Luo et al., 2015; Luo et al., 2017; see also Chapter 1).

Equation 14.1 cannot be directly solved to obtain the steady- 
state values of carbon pools because the environmental scalar 
ξ(t), ecosystem carbon influx U(t), possibly matrix A, and 
vector B, vary with time and driving variables. Since carbon 
influx involves fast processes, its steady- state value USS can be 
obtained from a short ND spin- up, which we call initial spin- 
up. The initial spin- up uses recursive meteorological forcing 
to drive modeled carbon and nitrogen dynamics. Thus, it is 

possible to calculate averaged values of the environmental 

scalar ( )ξ , the carbon transfer ( )A , and partitioning ( )B
coefficients within one cycling period of the meteorological 
variables. With carbon input at steady state μss and the mean 

values of the time- varying variables (ξ , A , and B) , we can 

analytically calculate the steady- state carbon pool sizes XSS, C 
by letting the right- hand side of Equation 14.1 equal zero as:

 X AK B
SS,C ss

= −( )−
ξ µ

1
 14.4

We can divide XSS,C by C/ N ratio in each pool to obtain steady-  
state nitrogen pool sizes XSS,N . Equation 14.4 stands for the  
steady state in the absence of soil nitrogen feedback to NPP.  

FIGURE 14.1 Diagram of the carbon processes of CABLE model on which model Equations 14.1– 14.3 are based. SOM stands for soil 
organic matter.
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Final steady state will be achieved by the full procedure,  
which will be described in the next section.

THE PROCEDURE OF SEMI- ANALYTIC SPIN- UP 
IN CABLE

The procedure of SASU implementation in a land surface 
model is demonstrated by the case of CABLE. In general, the 
procedure consists of four preparation and three execution 
steps: (1) development of flow diagram; (2) organization 
of matrix equation; (3) identification of the time- varying 
elements; (4) coding the analytic solution; and three modeling 
steps: (5) initial spin- up; (6) analytic solution of steady state; 
and (7) final ND spin- up. In more detail, these seven steps entail 
(Figure 14.2):

1 Developing a flow diagram reflecting the linkages 
between ecosystem carbon pools in the target model 
structure, as shown in Figure 14.1 (also see Chapters   
1- 4 of Unit 1).

2 Organizing CABLE into a matrix equation by encoding 
the linkage between carbon pools and fluxes in the 
carbon transfer matrices A and K, and plant carbon 
partitioning coefficients in vector B. Values for non- 
zero elements in vector B, and matrices A and K were 
assigned based on parameter values in the original 
CABLE model.

3 Figuring out how the time- varying elements of A, B, 
and ξ in Equation 14.1 are determined in the model.

4 Coding the analytic solution of the biogeochemical 
steady state in CABLE, which includes two steps: (a) 
creating new variables to store the mean values of the 
time- varying parameters; and (b) creating equations 
to calculate the analytical solutions of each pool 
according to the structures of matrix A, K, and vector B.

5 Performing the initial spin- up by running the model 
using repeated meteorological forcing until NPP (or 
all plant pools) reach steady state (USS). Run the model 
until the mean change in NPP over each loop is smaller 

than 0.01% per year. Meanwhile, the values of all the 
time- varying parameters in Equation 14.3 are updated 
by the mean values from initial spin- up.

6 Calculating the analytical solution of the steady states 
of carbon and nitrogen pools. The steady- state carbon 
pools are solved by setting carbon influx equal to 
efflux for each pool (Equation 14.4). Nitrogen pools 
are obtained by dividing the steady- state carbon pools 
by their C/ N ratios at the end of the initial spin- up.

7 Performing the final spin- up by using the analytically 
solved carbon and nitrogen pools as initial values until 
the steady- state criterion for the soil carbon pools is 
met. Here our steady- state criterion will be that the 
change in the passive soil carbon pool (ΔCpass) within 
each simulation year is smaller than 0.5 gC m−2 yr−1. 
This criterion was chosen following a recommendation 
of Thornton and Rosenbloom (2005). According to 
the difference in turnover rate, a slower pool needs a 
longer time to reach steady state during the spin- up. 
When the criterion for recognizing that steady state 
has been achieved is small enough the final spin- up is 
determined by the dynamic of the slowest carbon pool.

COMPUTATIONAL EFFICIENCY

In our example using CABLE, the traditional spin- up method  
spends 2780 and 5099 simulation years for carbon- only and  
coupled carbon- nitrogen simulation, respectively, before  
the change in the slowest carbon pool meets the steady-  
state criterion (ΔCpass < 0.5 gC m−2 yr−1; Figure 14.3). After  
implementing SASU, the initial spin- up takes 200 simulation  
years to achieve steady states of plant carbon pools for both  
the carbon- only model and the coupled carbon- nitrogen  

FIGURE 14.2 Procedure of the semi- analytical spin- up (SASU).

Reproduced from Xia et al., (2012).

FIGURE 14.3 Dynamics of global mean passive soil carbon pool 
in carbon- only (filled black diamond) and coupled carbon- nitrogen 
(filled gray circle) simulations with traditional method and the SASU 
framework (dotted lines) using the CABLE model. The arrows and 
open symbols show the times and values estimated with the SASU 
method for carbon- only (black) and coupled carbon- nitrogen coupled 
(gray) simulations.

Adapted from Xia et al., (2012).

 

 

 

 

 



93Semi-Analytic Spin-Up of Coupled Carbon-Nitrogen Cycle Models

model. This allows the sizes of all SOM pools to be calculated  
analytically after this initial spin- up (step 6 above). With the  
SASU method, all carbon pools in the carbon- only model  
reach steady states after analytical calculation without a need  
for any final spin- up (step 7 above; black arrow in Figure 14.3).  
In the coupled carbon- nitrogen model, SASU needs another  
483 simulation years to obtain the steady states of all pools  
(gray arrow in Figure 14.3) after the analytical calculation. This  
means that the SASU method saved about 92.4% and 86.6%  
of the computational time for spin- up of the global carbon-  
only and coupled carbon- nitrogen models to steady states,  
respectively, in the case of the CABLE model (Figure 14.3).

With the traditional spin- up method, the passive SOM pool 
continued to decrease after it reached the steady- state criterion 
(Figure 14.3). Because of the slow turnover rate of this pool, 
thousands of additional simulation years are needed for the 
traditional method to reach a steady state of the passive SOM 
pool. In contrast, the analytical solution obtained by the SASU 
method allowed this steady state to be accurately predicted 
after only 200 simulation years (Figure 14.3).

The results of this exercise using CABLE show that SASU 
can reduce the bottleneck of biogeochemical model spin- up 
by around 90%. That means spin- up with the SASU method 
can be around ten times as fast as the traditional method. The 
computational efficiency with the SASU method is higher 
than the accelerated decomposition method identified by 
Thornton and Rosenbloom (2005) for site- level spin- up in 
an evergreen needle- leaf forest. A similar analytic spin- up 
method developed by Lardy et al., (2011) accelerates spin- up 
with a pasture model (PaSim) by up to 20 times as well.

Liao et al. (2023) applied SASU to Community Land  
Model version 5 (CLM5) and examined its computational  
efficiency and accuracy (Figure 14.4). At the Brazil site,  
SASU is computationally seven times more efficient than (or  
saved up to 86% computational cost in comparison with) the  
traditional native dynamics (ND) spin- up to reach the same  
steady state. Globally, SASU is computationally eight times  

more efficient than the accelerated decomposition spin- up and  
50 times more efficient than ND.

The SASU method can be easily implemented for 
biogeochemical models at site, regional, and global scales 
once a biogeochemical model is converted to a matrix model 
to enable analytical calculation of steady states of carbon and 
nutrient pools together with initial and final spin- ups.

SUGGESTED READINGS

Cuijuan Liao, Xingjie Lu, Yuanyuan Huang, Feng Tao, David M 
Lawrence, Charles D Koven, Keith W Oleson, William R 
Wieder, Erik Kluzek, Xiaomeng Huang, Yiqi Luo. (2023). 
Matrix Approach to Accelerate Spin- Up of CLM5. Journal of 
Advances in Modeling Earth Systems, 15: MS003625.

Xia J, Luo Y, Wang Y- P, Weng E, Hararuk O. (2012). A Semi- 
Analytical Solution to Accelerate Spin- Up of a Coupled 
Carbon and Nitrogen Land Model to Steady State. 
Geoscientific Model Development, 5: 1259– 1271.

QUIZ

Select one option froM the giVen anSwerS

1 Which statement for the spin- up is NOT true?
a Spin- up provides an initial state for model 

simulation.
b Spin- up uses atmosphere CO2 concentration at 

pre- industrial level.
c Spin- up can speed up the historical simulation.
d Spin- up in land biogeochemical models aims for 

the steady state.
2 The motivation to develop different spin- up approaches 

in land biogeochemical model is to
a improve the simulation results.
b improve the computational efficiency.
c improve model structure.
d improve model diagnostic capacity.

3 Semi- analytic spin- up (SASU) in CABLE calculates 
the steady state of carbon storage by setting
a carbon storage to zero.
b carbon influx to zero.
c carbon influx equal to efflux.
d carbon efflux to zero.

4 Which statement about CABLE spin- up efficiency is 
NOT correct.
a The CABLE spin- up efficiency for the carbon- 

only model is higher than for the carbon- nitrogen 
coupled model.

b SASU can be up to ten times as fast as traditional 
spin- up.

c In the coupled carbon- nitrogen model, SASU 
does not need the final spin- up after the analytical 
calculation.

d With the traditional spin- up method, the passive 
SOM pool continues to decrease after it reaches 
the steady- state criterion.

FIGURE 14.4 Model years needed for reaching equilibrium for 
different spin- up methods at 400 global grid cells and the Brazil site.
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15  Time Characteristics of Compartmental 
Systems

Carlos A. Sierra
Max Planck Institute for Biogeochemistry, Jena, Germany

To understand carbon flows through terrestrial ecosystems, it  
is very important to use metrics to quantify the time carbon 
spends in the entire system and in particular compartments. 
In this chapter, we introduce the concepts of age and transit 
time as two fundamental metrics that characterize the speed 
at which carbon flows through ecosystems. Age is defined 
as the time carbon atoms spend in an ecosystem, from when 
they enter through photosynthesis until they are observed in 
a particular compartment. Transit time is defined as the time 
carbon atoms require to pass through the entire ecosystem, 
from the time they enter through photosynthesis until they are 
lost in gas, liquid, or solid form. We review here mathematical 
formulas for computing age and transit time in compartmental 
systems, distinguishing between formulas for autonomous 
systems in equilibrium and nonautonomous systems moving 
along a known trajectory.

INTRODUCTION

One of the advantages of representing models in the compact 
form of compartmental systems is that we can derive 
system- level diagnostics that help to better understand 
system dynamics. Differences in process representations, 
parameterizations, or sizes of compartments required to 
represent a system can be compared using simple aggregated 
metrics at the level of the entire system.

Two important system- level diagnostics for describing 
compartmental systems are the concepts of system age 
and transit (residence) time (Bolin and Rodhe 1973; Sierra 
et al. 2017). We define system age as the age of all atoms or 
particles inside the system, from the time they entered te until 
the time of observation t. Transit time is defined as the average 
time required for atoms or particles to traverse the system 
from their arrival time until they leave in the output flux. In 
other words, system age characterizes the age structure of 
all the atoms or particles in the system, while transit time 
characterizes the age structure of all atoms or particles in the 
output flux (Figure 15.1).

It is also possible to characterize the age structure of the 
atoms or particles inside each pool or compartment. We define 
pool age as the time elapsed since the atoms or particles 
entered the system until the time of observation t inside a pool 
i (Figure 15.1). Therefore, the system age is the aggregated 
result of the pool ages for all pools.

Since the age and transit time concepts are defined for all 
individual atoms or particles inside a system, we can also 
think about them in terms of distributions that quantify the 
proportional distribution of the mass in age classes. Therefore, 
these distributions can be characterized by statistics such 
as the mean, standard deviation, and quantiles such as the 
median.

In the following sections, we will introduce mathematical 
formulas to quantify age and transit time distributions for 
two separate cases, (1) autonomous systems in equilibrium, 
and (2) nonautonomous systems. Note that we will not be 
making a distinction between linear and nonlinear, because 
for case (1), linear and nonlinear systems in equilibrium can 
be treated similarly since the vector of states does not change 
once the equilibrium is reached and the system behaves 
similarly as a linear system. For case (2), the formulas rely 
on a linearization of the specific trajectory of a nonlinear 
system. Therefore, we will first introduce the linearization 
strategy and then provide the formulas for the linear 
nonautonomous case.

AGE AND TRANSIT TIME DISTRIBUTIONS FOR 
AUTONOMOUS SYSTEMS IN EQUILIBRIUM

The derivation of the formulas for age and transit time 
distribution of linear autonomous systems in equilibrium was 
originally introduced in Metzler and Sierra (2018). For their 
derivation, we were able to show that linear compartmental 
systems are analogous to absorbing continuous- time Markov 
chains. This means that linear compartmental systems can 
also be interpreted in a stochastic sense, with the deterministic 
system of differential equations representing the macroscopic 
behavior of entire masses, and the absorbing Markov chains 
representing the stochastic behavior of individual atoms 
of particles with respect to their age. For details about the 
stochastic process and derivation of formulas, interested 
readers can refer to Metzler and Sierra (2018) for additional 
details.

Let’s consider linear autonomous systems introduced in 
Chapter 7, of the form of Equation 7.2, with an equilibrium 
point given by Equation 7.4. Let’s also consider the 1- norm of 

a vector, defined as v v
1 1

= =
=∑: v

ii

n
, which is simply the   

sum of all the elements in the vector. We say that the random 

 

 

  

 

 

  

 

 



95Time Characteristics of Compartmental Systems

variable age a that measures age of atoms or particles in 
the system is distributed according to a Phase- Type (PH) 
distribution of the form:

 f a aa a( ) = = ≥z z
x

x
 e e

*

*
B Bη , 0 

Note that this density distribution is composed of three 
terms: the vector of fractional release coefficients, the 
matrix exponential of the compartmental matrix evaluated 
at each value of age, and the proportional distribution of 
mass at steady state. Since the fractional release coefficients 
can be computed directly from B, we can say that the 
system age distribution follows a Phase Type distribution 
with two parameters: the probability vector of mass at 
steady state, and the transition rate matrix generated by 
the compartmental matrix. This can be abbreviated as a ∼ 
PH(η, B).

The mean or expected value   of the system age 
distribution can be obtained as:

  a
x

x
[ ] = − =−

−

1 B
B

 1
1

η
*

*
, 

where 1 is a vector containing ones, and ⊺ is the transpose 
operator.

To obtain the pool- age density distribution, we define 
first a diagonal matrix with the steady- state values for each 
compartment as X* * *, ,:= …( )diag x x

n1
. The vector- valued 

function that returns the age distribution for each pool is then 
given by:

 f a u( ) = ( ) ≥−
X B* e ,

1
0a a,  

and the mean age for each pool:

  a x[ ] = −( )− −X B* *.
1 1  

The density distribution of the random variable transit time 
τ is also Phase- Type distributed, with the probability vector 
given by the proportional distribution of the input flux β, and 
the compartmental matrix as the transition rate matrix; i.e.,    
τ ∼ PH(β, B). It can be obtained as:

 f t tτ τ( ) = = ≥z z
u

u
 e e ,B Bβ , 0  

FIGURE 15.1 Graphical representation of the concepts of system age, transit time, and pool age. Mass entering a compartmental system 
can be conceptualized as being composed of small particles or atoms, each of them with a ‘clock’ that measures the time they have been in 
the system since they entered. All particles in the input fluxes have an age of zero. If we collect all particles inside the system at any given 
time and organize this information as a distribution of ages, we obtain the system age distribution of particles inside the system. If we collect 
the particles inside a specific pool and organize particles according to their age, we obtain the pool age distribution. Collecting particles in the 
output flux and organizing this information as a distribution of ages provides the transit time distribution.

Figure extracted from Sierra et al. (2017).

 

 

 

 

 

 

 



96 Land Carbon Cycle Modeling 2e

with mean transit time given by:

  τ[ ] = =−B 1 β
x

u

*

. 

Notice that the mean transit time is given by the ratio between 
the total mass at steady state and the total input flux.

AGE AND TRANSIT TIME DISTRIBUTIONS FOR 
NONAUTONOMOUS SYSTEMS

We consider now the nonlinear nonautonomous 
compartmental system introduced in Chapter 7 of the form 
of Equation 7.9, for which we can always find a unique 
numerical solution of the form x(t, t0, x0). To obtain time- 
dependent age and transit time distributions for this system, 
we will use the known solution to construct an equivalent 
linear nonautonomous system with the exact same solution. 
Details of the approach are presented in Metzler, Müller, and 
Sierra (2018).

Plugging in the known solution x(t) =  x(t, t0, x0) into a new 
linear version of the system, we can define a new vector of 
inputs as u u xt t t( ) = ( )( ): , , and a new compartmental matrix 
as B Bt t t( ) = ( )( ): ,x . Then, we obtain a linear nonautonomous 
compartmental system of the form:

 . ~ ~y u y y xt t t t t t t( ) = ( ) + ( ) ( ) > ( ) =B · , ,
0 0 0

,  

which has a unique solution y(t, t0, y0). Since we assume 
that the original nonlinear system of Equation 7.9 also has 
a unique solution, both solutions must be identical; i.e., 
y(t, t0, y0) =  x(t, t0, x0). We can then use the solution of a 
nonlinear nonautonomous system to construct an equivalent 
linear nonautonomous compartmental system of the general 
form of Equation 7.7, which has a general solution given by 
Equation 7.8.

age diStributionS

We assume now that the initial content x0 has an initial age 

distribution f0(a) such that x f
0

0
0

= ( )∫
∞

a da. This initial age 

distribution is then perturbed by the time- dependent mass 
inputs and process rates of the system, generating a time- 
dependent age distribution of the form

 f g ha t a t a t, , , ,( ) = ( ) + ( )  

where the term g(a, t) is the time evolution of the age 
distribution of the initial mass in the system, and h(a, t) is the 
time evolution of the age distribution of mass that enters the 
system after t0.

The nonautonomous age distribution of the initial mass is 
given by:

 g fa t a t t a t t
t t

, ,( ) = ( )⋅ ( )⋅ − −( )( )− )1
0

0 0 0
,∞

Φ  

where the indicator function 1 S(a) of a set S equals 1 if a ∈ S,    
or zero otherwise. The state transition operator Φ(t, t0) is 
defined as in Chapter 7.

The nonautonomous age distribution of the mass that enters 
the system after t0 is given by:

 h ua t a t t a t a
t t

,( ) = ( )⋅ −( )⋅ −( )
− )1

0 0,
,Φ  

To obtain the age distribution of the entire system, we simply 
sum the densities over all pools as:

 f fa t a t, , .( ) = ( )  

tranSit tiMe diStributionS

To obtain transit time distributions in the nonautonomous case, 
it is necessary to distinguish between the concepts of backward 
versus forward transit times. The backward transit time is defined 
as the age of particles in the output flux at the time of release 
from the system tr. Using the fractional release coefficients, it is 
possible to obtain the vector of outflow rates at time tr as:

 z t B t j n
j r

i

n

ij r( ) = − ( ) = …
=
∑

1

1 2, , , , .  

The backward transit time distribution can be obtained as:

 f a t t a t t t
r

T
r r rBTT

, , .( ) = ( ) ( ) ≥z f·
0

 

Now, the forward transit time is defined as the age of an atom 
or particle that enters the system at an entering time te > t0 and 
exits at time tr =  te +  a. The forward transit time distribution 
can be obtained as:

 f a t t a a t a
e

T
e eFTT

, .( ) = +( ) +( )z f· ,  

Both distributions are tightly connected, with the forward 
transit time distribution of particles entering at time te being 
equal to the backward transit time distribution of the particles 
being released from the system at time tr, i.e.,:

 f a t f a t
e rFTT BTT

, , .( ) = ( )  

FINAL REMARKS

The compartmental system representation also unveils 
analogies between deterministic systems that conserve mass 
with stochastic systems that conserve probabilities. This 
stochastic representation can be used to obtain formulas for 
the age of particles or atoms in the compartmental systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97Time Characteristics of Compartmental Systems

With this approach, we derived formulas for the age of 
mass inside a compartmental system (system age), and the 
age of mass in the output flux (transit time). The concept 
of age can be very valuable to assess how old carbon and 
biogeochemical elements can be in an ecosystem. The 
concept of transit time can be very useful to understand 
how fast biogeochemical elements are processed inside an 
ecosystem, integrating all transfers and transformations that 
may take place.

There are other opportunities to further explore carbon cycle 
models in a stochastic setting. This could be particularly useful 
for studying, for example, the macroscopic properties at larger 
scales where patterns emerge by the action of microorganisms 
acting at microscopic scales. Also, the compartmental system 
representation may help to integrate concepts from other 
disciplines such as graph theory or control theory to address 
a number of questions not being explored yet in carbon cycle 
science.

SUGGESTED READING

A general introduction to the concepts of ages and transit times can be 
found in Bolin and Rodhe (1973). More specific results for the 
derivation of formulas and the computation of ages and transit 
times can be found in Rasmussen et al. (2016) for the mean 
of their distributions in nonautonomous systems, for complete 
distributions in autonomous systems in Metzler and Sierra 
(2018), and for complete distributions in nonautonomous 
systems in Metzler, Müller, and Sierra (2018).

QUIZ

1 Give examples of systems where the mean transit time 
is higher than the mean system age.

2 Give examples where the mean system age is higher 
than the mean transit time.

3 In what type of systems are the mean system age, the 
mean transit time, and the turnover time equal?
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16  Practice 4
Efficiency and Convergence of Semi- Analytic   
Spin- Up (SASU) in TECO

Xingjie Lu
Sun Yat- sen University, Guangzhou, China

This practice aims to help the reader understand the 
convergence and efficiency of semi- analytic spin- up 
(SASU) for different carbon cycle representations in a 
model. By conducting the spin- up of the TECO model 
using native dynamics (ND) and the SASU method, we 
explore the convergence of different spin- up approaches, 
and the spin- up efficiency under different carbon input and 
soil turnover rates. We will also look at a weak nonlinear 
parameterization that assumes carbon input and soil 
turnover rates are functions of carbon pool sizes, verifying 
whether the two approaches converge and comparing their 
spin- up efficiencies.

SASU TO IMPROVE COMPUTATIONAL 
EFFICIENCY OF SPIN- UP OF 
BIOGEOCHEMICAL MODELS

Spin- up in biogeochemical models is an essential initialization 
procedure, which sets up the initial carbon and nitrogen pool 
sizes at a steady state for a model (see Chapter 14). When 
running a complex biogeochemical model, the spin- up is 
usually the most time- consuming procedure. So, the efficiency 
of spin- up becomes an important topic in biogeochemical 
model development.

Semi- analytic spin- up (SASU) is a recently developed 
technique to improve spin- up efficiency. The SASU 
approach builds on the fact that a matrix model of the carbon 
cycle can be semi- analytically solved to obtain steady- state 
values of pool sizes (Xia et al. 2012). Once biogeochemical 
models are presented in a matrix form, SASU can be easily 
implemented.

So far, SASU has been incorporated into the TECO, 
CABLE, ORCHIDEE, and CLM5 models. By implementing 
SASU, the spin- up computational efficiency is improved by 
70% to 93% for different models under various configurations, 
including the most complicated, CLM5. CABLE was the first 
model to implement SASU for its carbon (C)- only and carbon- 
nitrogen (C- N) coupled versions. Results showed that SASU 
saves 92.4% of computational cost for C- only CABLE and 
86.6% for the C- N version, when run at the global scale. Site 
simulations showed even greater improvement in the spin- up 
efficiency.

SPIN- UP IN THE SIMPLIFIED TECO MODEL

We will apply native dynamics spin- up (ND) and semi- 
analytic spin- up (SASU) on a simplified version of the 
TECO model in Exercises 1– 3 in CarboTrain. The simplified 
TECO model was used in the Unit 3 practice, Chapter 12. It 
includes seven pools, constant C input fluxes and turnover 
rate parameters. In Exercise 1, we are going to run ND and 
SASU for TECO.

Exercise 1
Run ND (default) spin- up for TECO matrix model 
(Exercise 1.1), then change the spin- up approach to SASU 
(Exercise 1.2). Learn whether carbon storage driven by the 
two alternative spin- up approaches converges to the same 
steady state. How fast is the SASU spin- up at reaching steady 
state compared with ND?

Exercise 1.1. Follow the steps below to run TECO spin- up 
using ND approach in CarboTrain:

a Select Unit 4
b Select Exercise 1
c Select Default ND
d Select Output Folder
e Press Run Exercise
f Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 
carbon storage capacity, and carbon storage potential 
in output.xls. Figures are in results.png. 
Take note of years for steady state, and Total_ C_ 
10000 (the total carbon at year 10,000) and complete 
the first row of Table 16.1, below.

Exercise 1.2. Follow the steps below to run TECO spin- up 
using the SASU approach in CarboTrain:

a Select Unit 4
b Select Exercise 1
c Select Default SASU
d Select Output Folder
e Press Run Exercise
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f Check results in Output Folder. Time- dependent  
variation in carbon input, each pool size, residence  
time, total ecosystem carbon storage, total ecosystem  
carbon storage capacity, and carbon storage potential in  
output.xls. Figures are in results.png. Take  
note of years for steady state, and Total_ C_ 10000  
and complete the second row of Table 16.1 below.

Questions:
Does carbon storage converge to the same equilibrium in ND 
versus SASU? Which spin- up approach is faster at achieving 
equilibrium?

SPIN- UP WITH DIFFERENT MODEL PARAMETERS

Previous studies on CABLE spin- up have shown that the C- 
only and C- N coupled model versions differed in efficiency and 
equilibrium for both ND and SASU spin- up. We may speculate 
that the differences in parameters and model structures may be 
the causes. In Exercises 1.3– 1.6, we consider idealized cases, 
and use the simplified TECO model to study whether or how 
the parameters influence the spin- up efficiency and equilibrium.

Run ND (default) spin- up for the TECO matrix model 
with increasing C input and passive pool turnover rate 
(Exercises 1.3 and 1.5), then change the spin- up approach to 
SASU (Exercises 1.4 and 1.6). Learn whether carbon storage 
driven by the two spin- up approaches converges to the same 
steady state. How is spin- up efficiency affected by different 
parameters or carbon input? Complete Exercises 1.3– 1.6 and 
fill in the remaining rows of Table 16.1.

Exercise 1.3. Tune the carbon input and run TECO spin- up 
using the ND approach in CarboTrain:

a Select Unit 4
b Select Exercise 1
c Select High carbon input ND
d Select Output Folder
e Press Open source code
f Change the input_ fluxes to 0.0000449 at line 46 and 

save the code

g Press Run Exercise
h Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 
carbon storage capacity, and carbon storage potential 
in output.xls. Figures are in results.png. 
Take note of years for steady state, and Total_ C_ 
10000 and enter results in Table 16.1, below.

Exercise 1.4. Tune the carbon input and run TECO spin- up 
using the SASU approach in CarboTrain:

a Select Unit 4
b Select Exercise 1
c Select High carbon input SASU
d Select Output Folder
e Press Open source code
f Change the input_ fluxes to 0.0000449 at line 46 and 

save the code
g Press Run Exercise
h Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 
carbon storage capacity, and carbon storage potential 
in output.xls. Figures are in results.png. 
Take note of years for steady state, and Total_ C_ 
10000 and enter results in Table 16.1, below.

Questions:
Compared to the default cases (Exercises 1.1 and 1.2), do 
carbon input increases change the spin- up time for steady 
state? Do carbon pool sizes using the two spin- up approaches 
still converge when carbon input increases? Are the steady 
states the same when carbon inputs are higher? Why/ why not?
Exercise 1.5. Tune the passive soil turnover rate and run TECO 
spin- up using the ND approach in CarboTrain:

a Select Unit 4
b Select Exercise 1
c Select High K passive ND
d Select Output Folder

TABLE 16.1
Comparison of results from Exercise 1

Name Description Cinput kpasssoil Cinit C10000 Teq

Ex 1.1 Default ND 0.00002245 1.5478 × 10−6 0
Ex 1.2 Default SASU 0.00002245 1.5478 × 10−6 0
Ex 1.3 High Cinput ND 0.00004490 1.5478 × 10−6 0
Ex 1.4 High Cinput SASU 0.00004490 1.5478 × 10−6 0
Ex 1.5 High kpasssoil ND 0.00002245 3.0956 × 10−6 0
Ex 1.6 High kpasssoil SASU 0.00002245 3.0956 × 10−6 0

Note:  Cinput =  carbon input fluxes (gC m−2 s−1); kpasssoil =  turnover rate of soil carbon (day- 1); Cinit =  initial total carbon 
pool size (gC m−2); C10000 =  total carbon storage at year 10000 (gC m−2); Teq =  spin- up convergence time (year).
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e Press Open source code
f Change the last column in variable temp to 

0.00000309564 at line 34 and save the code
g Press Run Exercise
h Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 
carbon storage capacity, and carbon storage potential 
in output.xls. Figures are in results.png. 
Take note of years for steady state, and Total_ C_ 
10000 and enter results in Table 16.1, below.

Exercise 1.6. Tune passive soil turnover rate and run TECO 
spin- up using the SASU approach in CarboTrain:

a Select Unit 4
b Select Exercise 1
c Select High K passive SASU
d Select Output Folder
e Press Open source code
f Change the last column in variable temp to 

0.00000309564 at line 34 and save the code
g Press Run Exercise
h Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 
carbon storage capacity, and carbon storage potential 
in output.xls. Figures are in results.png. 
Take note of years for steady state, and Total_ C_ 
10000 and enter results in Table 16.1, below.

Questions:
Compared to the default cases (Exercises 1.1 and 1.2), do 
increases in passive soil turnover rate change the spin- up time 
for steady state? By comparing the delta_ C in result.png, are 
results from SASU more stable? Do carbon pool sizes using 
the two spin- up approaches still converge when passive soil 
turnover rate increases? Are the steady states the same when 
soil carbon turnover rate is higher? Why/ why not?

SPIN- UP IN A WEAK NONLINEAR SYSTEM

Nonlinearity is characteristic for many terrestrial 
biogeochemical models. For example, the canopy 
photosynthesis (i.e., carbon input) is usually dependent on 
leaf area, which is a function of leaf carbon pool size. In some 
models, the soil carbon turnover rate is pool size dependent. 
The following exercise examines how nonlinearity impacts 
the spin- up.

Exercise 2
Run ND (default) spin- up for the TECO matrix model with 
foliage nonlinearity and soil turnover rate nonlinearity 
(Exercises 2.1 and 2.3), then change the spin- up approach to 
SASU (Exercises 2.2 and 2.4). Learn whether carbon storage 
using the two alternative spin- up approaches converges to the 
same steady state. How long is the spin- up time for a model 

with nonlinearity in foliage or soil? Complete Exercises 2.1– 
2.4 and enter results in Table 16.2.

Exercise 2.1. Enable foliage nonlinearity in TECO and then 
run TECO using the ND spin- up in CarboTrain:

a Select Unit 4
b Select Exercise 2
c Select Nonlinear foliage C with ND
d Select Output Folder
e Press Open source code
f Add following lines at line 53 (remember to copy the 

indentation as well):

The lines added here describe the nonlinear relation between 
carbon input fluxes and foliage carbon (see Figure 16.1), 
which is formulated by:
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1 e

dd
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0

 16.1

where Cinput, min =  0.00000449 gC m−2s−1, Cinput0 =  0.00002245  
gC m−2s−1, kd =  0.5, SLA =  0.008 m2(gC)−1, LAI 0 =  2 m2m−2,  
Cfoliage is the foliage carbon.

FIGURE 16.1 The nonlinear relation between carbon input and 
foliage carbon.

FIGURE 16.2 The relation between passive soil turnover rate and 
passive soil carbon.
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a Press Run Exercise
b Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 
carbon storage capacity, and carbon storage potential 
in output.xls. Figures are in results.png. 
Take note of years for steady state, and Total_ C_ 
10000 and complete the third row of Table 16.2, below.

Exercise 2.2. Enable foliage nonlinearity in TECO and then 
run TECO spin- up using SASU approach in CarboTrain:

a Select Unit 4
b Select Exercise 2
c Select Nonlinear foliage C with SASU
d Select Output Folder
e Press Open source code

Add following lines at line 53 (remember to copy the 
indentation as well):

The lines added here were explained in Step f of Exercise 2.1.

a Press Run Exercise
b Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 
carbon storage capacity, and carbon storage potential 
in output.xls. Figures are in results.png. 
Take note of years for steady state, and Total_ C_ 
10000 and enter results in Table 16.2, below.

Questions:
Compared to the default cases (Exercises 1.1 and 1.2), 
does foliage nonlinearity increase the spin- up time for 
steady state? Does carbon storage using the two spin- up 
approaches still converge when foliage nonlinearity is 
enabled? Are the steady states the same between the two 
spin- up approaches?

Exercise 2.3. Enable nonlinearity in passive soil turnover rate 
and run TECO using the ND spin- up approach in CarboTrain:

a Select Unit 4
b Select Exercise 2
c Select Nonlinear soil C with ND
d Select Output Folder
e Press Open source code
f Replace line 53 with the following lines (remember to 

copy the indentation as well):
  def fun_ K(t, y): K[6] [6] =  temp[6] / 86400 * (y[6] /  

10000.0 +  0.1) return K mod =  GeneralModel(times, 
B, A, fun_ K, iv_ list, input_ fluxes)

The lines revised here describe the relation between passive 
soil turnover rate and passive soil carbon (see Figure 16.2), 
which is formulated by:

 k f C k
C

passsoil passsoil

passsoil= ( ) = ⋅ +





0 10000 0
0 1

.
.  16.2

where k0 =  0.00000154782 day−1, Cpasssoil is the passive soil 
carbon storage.

a Press Run Exercise
b Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 
carbon storage capacity, and carbon storage potential 
in output.xls. Figures are in results.png. 
Take note of years for steady state, and Total_ C_ 
10000 and enter results in Table 16.2, below.

Exercise 2.4. Enable nonlinearity in passive soil turnover rate 
and run TECO using the SASU spin- up in CarboTrain:

a Select Unit 4
b Select Exercise 2
c Select Nonlinear soil C with SASU
d Select Output Folder
e Press Open source code

TABLE 16.2
Comparison of results from Exercises 1 and 2

Name Description Cinput kpasssoil Cinit C10000 Teq

Ex 1.1 Default ND 0.00002245 1.5478 × 10−6 0
Ex 1.2 Default SASU 0.00002245 1.5478 × 10−6 0
Ex 2.1 Nonlinear foliage C with ND f(Cleaf) 1.5478 × 10−6 0
Ex 2.2 Nonlinear foliage C with SASU f(Cleaf) 1.5478 × 10−6 0
Ex 2.3 Nonlinear soil C with ND 0.00002245 f(Cpasssoil) 0
Ex 2.4 Nonlinear soil C with SASU 0.00002245 f(Cpasssoil) 0

Note:  Cinput =  carbon input fluxes (gC m−2 s−1); kpasssoil =  turnover rate of soil carbon (day−1); Cinit =  initial total carbon pool size (gC 
m−2); C10000 =  total carbon storage at year 10000 (gC m−2); Teq =  spin- up convergence time (year). f(Cfoliage) =  nonlinear relation 
between carbon input flux and foliage carbon (unitless) (see Exercise 2.1 or Exercise 2.2 for details). f(Cpasssoil) =  nonlinear 
relation between passive soil turnover rate and passive soil carbon storage (unitless) (see Exercise 2.3 or Exercise 2.4 for details).
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f Replace line 53 with the following lines (remember to 
copy the indentation as well):

 def fun_ K(t, y): K[6] [6] =  temp[6] / 86400 * (y[6] / 
10000.0 +  0.1) return K mod =  GeneralModel(times, 
B, A, fun_ K, iv_ list, input_ fluxes)

 The lines revised here were explained in Step f of 
Exercise 2.3.

g Press Run Exercise
h Check results in Output Folder. Time- dependent 

variation in carbon input, each pool size, residence 
time, total ecosystem carbon storage, total ecosystem 

carbon storage capacity, and carbon storage potential 
in output.xls. Figures are in results.png. 
Take note of years for steady state, and Total_ C_ 
10000 and enter results in Table 16.2, above.

Questions:
Compared to the default cases (Exercises 1.1 and 1.2), does 
nonlinearity in soil turnover rate increase the spin- up time? 
Does carbon storage using the two spin- up approaches still 
converge when nonlinearity in soil turnover rate is enabled? Are 
the steady states the same between the two spin- up approaches?
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17  Overview of Traceability Analysis

Jianyang Xia
East China Normal University, Shanghai, China

This chapter provides an overview of the traceability 
framework as a method for identifying the key sources of 
uncertainty in land carbon cycle modeling. The analytical 
framework is built upon derivations of the matrix equation 
introduced in Chapter 1. This framework provides a systematic 
way to decompose the uncertainty of land carbon cycle 
projections into traceable components. Thus, traceability 
analysis can facilitate the understanding of carbon cycling, 
its drivers and controlling processes within a model and 
across models with different carbon-cycle structures, external 
climate forcings, and scientific assumptions. This chapter also 
introduces several examples to demonstrate the application of 
traceability analysis to model evaluation.

A KEY CHALLENGE FOR EARTH SYSTEM 
MODELS: IDENTIFICATION OF UNCERTAINTY 
SOURCES

Carbon cycle schemes incorporated in earth system models 
(ESMs) and offline land surface models are widely used to 
simulate terrestrial biogeochemistry and its feedbacks to 
climate change. The processes underpinning the terrestrial 
carbon (C) cycle constitute one of the most uncertain 
components, and this uncertainty has become a bottleneck in 
earth system modeling. The model- to- model variation in future 
projections of the global land C sink remained large from the 
third assessment report of the Intergovernmental Panel on 
Climate Change (IPCC), published in 2001, to the sixth report, 
published in 2021, despite an intervening period of two decades 
of research and model development. The new ESM projections 
and analysis in Phase 6 of the Coupled Model Intercomparison 
Project (CMIP6) show that uncertainty on the recent past and 
potential future evolution of the land carbon cycle, relevant to 
the assessment and understanding of global climate change, is 
still a prominent feature in the sixth IPCC report. Thus, one 
key challenge for earth system science is how to reduce the 
large disagreement in carbon cycle predictions among models 
of the terrestrial biosphere incorporated in ESMs.

To tackle this challenge, we need to answer one 
question: why are terrestrial carbon cycle predictions different 
among models? In the past three decades, numerous model 
intercomparison projects (MIPs) have been established, in part 
to shed light on this question. Although those MIPs have made 
important contributions to model evaluation and synthesis, 
they have been limited by design in their ability to explore 
the sources of model uncertainty. Thus, our question can be 

refined into how we can trace model uncertainty back to its 
sources, such as model structures, parameters, and external 
forcings.

TRACEABILITY FRAMEWORK: DESIGN AND KEY 
COMPONENTS

In Chapter 1 we noted that the terrestrial carbon cycle has four 
fundamental properties: (1) photosynthesis as the primary 
carbon influx pathway; (2) the transfer of assimilated carbon 
among different C pools (e.g., plant litter and soil); (3) the rate 
of transfer of this carbon controlled by the donor pool; and 
(4) the process of carbon transfer from the donor pool to the 
recipient pool, which can be described by first- order kinetics. 
These four fundamental properties, with minor variations, 
have emerged in most models using a pool- and- flux structure. 
Thus, the modeled terrestrial carbon cycle can be tracked by 
the equation:

 
dX t

dt
Bu t A t KX t

( )
= ( ) + ( ) ( )ξ  17.1

where the 
dX t

dt

( )
 characterizes the dynamic of terrestrial 

carbon storage, u is the carbon inputs from photosynthesis, 
and B is the partitioning coefficients to live carbon pools 
(e.g., leaf, wood, and root). Thus, the term Bu(t) represents 
the partitioning of the assimilated carbon from photosynthesis 
among different plant carbon pools. The second term, Aξ(t)
KX(t), describes the movement and exit rates of carbon 
atoms along their transferring paths (Xia et al. 2013; Luo 
et al. 2017). A is a transfer coefficients matrix to represent 
the movements of carbon atoms among multiple carbon pools. 
K represents the exit rates of different carbon pools. ξ(t) 
modifies the decay rate of different pools by adding influences 
from environmental factors (temperature, moisture, nutrients, 
soil texture, and so on). Different models may have different 
combinations of plant and soil pools and different values in 
vector B or matrices A and C, but they can be unified by this 
matrix equation.

At steady state, terrestrial carbon reservoirs reach their 
maximum storage capacity and there are no further net carbon 
exchanges. Therefore, the steady- state land carbon storage 
(Xss) can be solved by letting Equation 17.1 equal 0 (i.e., 
dX(t)/ dt =  0):
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 X A K BU
ss ss

= −( )−ξ 1  17.2

where Xss is a vector containing the steady- state pool sizes 
of all carbon pools, and Uss is the carbon influx at steady 
state. The term (−AξK)−1B measures the ecosystem carbon 
residence time (τE), which is an important ecosystem property 
involving multiple processes, including carbon allocation 
(the B matrix), carbon transfer network (the A matrix), 
decomposition processes (the K matrix) and modifications 
from environmental factors (the ξ matrix). Here, net primary 
productivity (NPP) is treated as carbon inputs, and the Xss can 
then be decomposed into NPP and τE:

 X NPP
ss E

= × τ  17.3

As mentioned above, τE is determined by four items: (−AξK)−1B. 
Here, A, K, and B are the intrinsic model properties, while ξ 
represents external influences from environmental factors. We 
thus rearrange these items and express τE as:

 τ ξ
E

A K B= −( )− − −1 1 1  17.4

We further merge (−A−1K−1B) and define it as the baseline 
carbon residence time ( ′τ

E
). Then, τE can be decomposed into 

′τ
E

 and ξ−1:

 τ τ ξ
E E

= −′ 1 17.5

where ′τ
E

 is determined by model intrinsic properties, 
associated with plant trait, soil attributes, number of C pools 
and how C is transferred among these pools at different 
cycling rates. As defined above, ξ represents the modifying 
effects of environmental factors as a fractional value applied 
multiplicatively to the baseline C residence time. If, as an 
example, we consider temperature and water availability as the 
main environmental factors scaling process rates in our system, 

we may divide ξ into a temperature scalar (ξT) and a water 
scalar (ξ):

 ξ ξ ξ=
T W

 17.6

Through the above mathematical rearrangements of Equation 
17.2, the modeled land carbon storage at steady state is 
decomposed into its determinative components as illustrated 
in Figure 17.1. Xss is first decomposed into NPP and τE. Then, 
τE can be further traced into ′τ

E
 and ξ, while ξ is divided 

into ξT and ξW. This framework offers a systematic way to 
decompose the steady- state land carbon cycle in a form that 
fits the structure of many common land carbon models. Most 
recently, advances in terrestrial carbon cycle theory (Luo et al. 
2017) have extended the capability of this framework to trace 
transient- state land carbon storage. This is explored further in 
Chapter 18.

BENEFITS OF TRACEABILITY ANALYSIS   
FOR IDENTIFYING MODEL UNCERTAINTY 
SOURCES

Land carbon cycle schemes in most earth system models 
can be mathematically represented in the form of Equation 
17.1. Thus, the traceability framework can facilitate the 
evaluation of land carbon cycle models and the ESM 
frameworks to which they are coupled by identifying the 
sources of simulation difference within and between models. 
It should be noted that the uncertainty of land carbon 
cycling in ESMs not only stems from model structure and 
parameters, but also is affected by climate outputs from the 
atmospheric components of ESMs (Ahlström et al. 2017). 
Below are some cases which have shown the application of 
traceability analyses for model evaluation. More application 
cases are presented in Chapter 18 and one recent study (Hou 
et al. 2023).

Because the CABLE model can be applied with or without  
carbon- nitrogen coupling enabled, the traceability analysis  

FIGURE 17.1 The traceability framework for decomposing steady- state terrestrial carbon storage into its traceable components.
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can be used to evaluate how the incorporation of nitrogen  
cycle processes can affect carbon cycling within the model.  
The analysis showed that incorporating the nitrogen cycle  
into CABLE reduces ecosystem carbon storage capacity  
in all biomes in comparison with the carbon- only model.  
Specifically, the CABLE model simulates lower NPP in  
woody biomes but shorter carbon residence time for non-  
woody biomes when the nitrogen cycle is switched on (Xia  
et al., 2013).

The traceability framework could be applied in a similar 
way to analyze the carbon cycle impacts of other types of 
external forcings, such as different CO2 scenarios, disturbance 
regimes, and land use/ cover changes. As shown in Ahlström 
et al. (2015), this approach can help to diagnose which 
processes are most important in determining the model 
uncertainty under given external forcings. This in turn can 
identify processes for priority attention in evaluating, revising, 
or improving the carbon cycle model.

FIGURE 17.2 Determinants of ecosystem C storage capacity by NPP and residence time. Values of all grid cells are plotted in panel (a). In 
panel (b), the hyperbolic curves represent constant values of ecosystem carbon storage capacity. ENF –  Evergreen needle leaf forest; EBF –  
Evergreen broadleaf forest; DNF –  Deciduous needle leaf forest; DBF –  Deciduous broadleaf forest; Shrub –  Shrub land; C3G –  C3 grassland; 
C4G –  C4 grassland; and Barren –  barren/ sparse vegetation.

CASE 1  UNDERSTANDING TERRESTRIAL CARBON CYCLE VARIATIONS   
WITHIN A MODEL

Modern global land- surface models account for a vast array of different processes, making it difficult to trace features of 
the results of simulations to the models’ constituent processes and interactions to aid understanding and evaluation. For 
example, all global land carbon models simulate the spatial variability of ecosystem C storage, but it is often unclear how 
the geographic distribution of ecosystem C storage across a global map is determined. Xia et al. (2013) introduced the 
framework of traceability analysis and applied it to the Australian Community Atmosphere Biosphere Land Exchange 
(CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen 
processes.

They first estimated ecosystem carbon capacity among different biomes in CABLE and traced it to the ecosystem 
residence time (τE) and carbon influx (i.e., NPP or Uss in Equation 17.1). Results indicated that different biomes showed 
different patterns. For example, evergreen broadleaf forests have a very high NPP but a short carbon residence time. 
The tundra biome has a very low NPP but a long carbon residence time. Some barren biomes, such as deserts, have low 
carbon storage capacity because of low NPP and short carbon residence time (Figure 17.2). Using Equation 17.5 they 
then further decomposed the ecosystem carbon residence time into baseline carbon residence time and environmental 
scalars. They found that tundra and evergreen broadleaf forests have similar baseline carbon residence times, but the 
environmental scalars are much lower in tundra than evergreen broadleaf forests. The lower value of the environmental 
scalar signifies stronger environmental limitations on decomposition rates of organic carbon, which implies that tundra 
has much longer actual carbon residence time than evergreen broadleaf forests, even though the baseline residence time 
is similar. The environmental space of temperature and water scalars among biomes in the CABLE model was then 
considered, which led to the insight that the spatial difference in environmental control of carbon residence time is mainly 
driven by the temperature scalar rather than the water scalar in CABLE.
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SUMMARY

The traceability analysis provides a relatively new approach 
to the evaluation of model uncertainties impacting simulations 
of the terrestrial carbon cycle. The framework builds on the 
fundamental properties of the terrestrial carbon cycle, which 
are reflected broadly by different models despite differences 
in structure and process detail. Equation 17.1 provides the 
theoretical basis for the traceability analysis. The application 
cases described illustrate how traceability analysis can benefit 
the understanding of variations in terrestrial carbon cycling 

within a model, the intercomparison of terrestrial carbon 
cycling among models, evaluation of the contributions of 
external forcings to carbon- cycle uncertainty, the assessment 
of newly incorporated processes into carbon cycle models, 
and the development of online tools for quick and consistent 
model evaluation. The application cases presented in this 
chapter mainly focus on the steady- state ecosystem C storage. 
In Chapter 18 we will explore how the traceability analysis 
can be adapted to apply to the transient dynamics of the land 
carbon cycle in models.

CASE 3  EVALUATING IMPACTS OF EXTERNAL FORCINGS ON TERRESTRIAL CARBON CYCLE 
SIMULATIONS

One important uncertainty source in land carbon cycle studies stems from the differences in baseline and projected 
climate fields generated by different climate and earth system models. When a land carbon model is forced by output from 
different climate models, the resultant predictions of the land carbon cycle also differ –  a source of uncertainty propagating 
through the carbon cycle model from the forcing climate model. By applying traceability analysis on the LPJ- GUESS 
model when forced with 13 different climate datasets from CMIP5 general circulation models, Ahlström et al. (2015) 
studied the impact of climate model uncertainty on the land carbon cycle. LPJ- GUESS is a global dynamic vegetation- 
ecosystem model that is based on detailed representation of vegetation structure, demography, and resource competition. 
To understand how ecosystems around the world respond to future projections of atmospheric CO2 concentrations and 
climate, transient and steady- state simulations were performed forced by output fields from different climate models 
under the RCP8.5 radiative forcing scenario. The authors then quantified the relative contributions of the three groups 
of processes –  NPP, vegetation dynamics and turnover, and soil decomposition –  to future carbon uptake uncertainties. 
They achieved this by fitting the traceability framework as an emulator to each of the 13 LPJ- GUESS simulations. 
Because the emulator has a common structure, it was possible to ‘exchange’ the key carbon cycle processes among the 13 
simulations, allowing the importance of each in explaining the variability among simulations to be derived (Figure 17.3). 
Further details about the model and simulations can be found in Ahlström et al. (2015). Since there is only one carbon 
model involved in this study, we can be sure that all the differences in the carbon cycle projections stem from the external 
climate forcing. The results showed that NPP, vegetation turnover, and soil decomposition rate respectively explain 49%, 
17%, and 33% of the uncertainty in carbon uptake by terrestrial ecosystems globally under the RCP8.5 future scenario 
(Figure 17.3c).

CASE 2 INTERMODEL COMPARISONS OF TERRESTRIAL CARBON CYCLE SIMULATIONS

Although model intercomparison projects have shown that the ensemble means of multiple models fit data well, the 
intermodel difference in carbon cycle pools and fluxes is usually large. To better understand the sources of variations in 
modeled carbon storage capacity among models, Rafique et al. (2016) used the traceability framework to compare two 
land carbon cycle models, CLM- CASA’ and CABLE. As shown in Figure 9.2, CABLE and CLM- CASA’ both showed 
a distinctive structure of the ecosystem carbon cycle, like the number of carbon pools, NPP partitioning coefficients, 
decomposition rates, and carbon transfer coefficients among different pools, which resulted in different baseline carbon 
residence times. Due to more NPP partitioning into roots and wood, the baseline carbon residence time in CABLE was 
longer than in CLM- CASA’. Despite difference in model structure, the traceability analysis showed that CABLE and 
CLM- CASA’ simulate similar global mean soil carbon storage capacity. This is because CABLE has lower NPP but 
longer carbon residence time compared to CLM- CASA’. The longer carbon residence time in CABLE mainly results 
from the baseline carbon residence time rather than the environmental scalars.

Overall, this case indicated that the major factors contributing to the differences between the two models were 
primarily due to parameter settings related to photosynthesis, carbon input, baseline residence times, and environmental 
conditions. The application of traceability analysis to intermodel comparisons is useful for developing a model with 
different versions or interpreting the different predictions of land carbon cycling by different models under the same 
climate forcings.
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FIGURE 17.3 Emulator performance and example of experimental design. (a) Comparison between global ecosystem carbon stock (Ceco) at 
steady state as simulated by LPJ- GUESS and emulator solution of global Ceco at steady state for the 13 simulations and emulator solutions. The 
small deviations from the 1:1 relationship (black line) are mainly due to the stochastic internal variability in LPJ- GUESS where a true steady 
state is never reached, in contrast to the emulator, which solves the steady- state conditions analytically. (b) Illustration of experimental design. 
Gray curves are time trajectories of Ceco from transient simulations with LPJ- GUESS; circles denote corresponding emulator- computed steady- 
state values of Ceco. (c) Global partitioning of steady- state Ceco uncertainties. From this panel, we can see that NPP is the largest contributor to 
the difference in modeled land carbon uptake, accounting for almost 50% of variability among simulations with different forcings.

Figure reproduced from Ahlström et al. (2015).

CASE 4 ASSESSMENT OF NEW PROCESSES IN LAND CARBON MODELS

Although the integration of more process detail into a model can increase its utility, it also tends to increase the number 
of interacting processes and feedbacks influencing the model output, and the relationship of the model output to the 
model forcing data. As a result, it can become more difficult to understand or evaluate how the newly incorporated 
processes influence the behavior and performance of the model. For example, recognizing the important role that nitrogen 
(N) availability plays for the dynamics of the world’s ecosystems, many current models that originally included only a 
carbon cycle have been enhanced to incorporate a nitrogen cycle that interacts with the model’s carbon processes and state. 
The availability of nitrogen can strongly affect both ecosystem carbon input and mean carbon residence time. Nevertheless, 
the detailed structure of the C- N coupling scheme varies greatly among different models. How these diverse representations 
of C- N interactions affect carbon cycle modeling remains unclear. Thus, Du et al. (2018) incorporated three different C- N 
coupling schemes, derived from the TECO- CN, CLM4.5, and O- CN models, into the carbon- only version of the Terrestrial 
ECOsystem (TECO) model and then used the traceability framework to evaluate their impacts on the carbon cycle. The 
three C- N coupled frameworks are different in many aspects, including C:N stoichiometry in plants and the soil, plant N 
uptake strategies, down- regulation of photosynthesis under N deficit, and the pathways of N acquisition.

As shown in Figure 17.4a, each N process is simulated with different assumptions by different models. The results 
showed that each of the integrated C- N coupling schemes reduced the carbon storage capacity compared with the carbon- 
only version of TECO. However, the magnitude of the reduction varies among the three schemes, i.e., −23%, −30%, and 
−54% for TECO- CN, CLM4.5, and O- CN, respectively. The reduced carbon storage capacity was driven by reduced NPP 
(−29%, −15%, and −45%) and mean C residence time (9%, −17%, and −17%) (Figure 17.4b). The differences in these 
results for different N cycle implementations in TECO indicate that adding interactive nitrogen dynamics to a carbon 
cycle model could generate new uncertainty sources for carbon cycle- climate feedbacks. This example illustrates that the 
traceability analysis can improve our understanding of the impacts of newly incorporated processes on an existing carbon 
cycle model.
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CASE 5 ACCELERATING THE PACE OF MODEL EVALUATION VIA ONLINE TOOLS

Increasing model complexity not only leads to a large divergence in simulations of the land carbon cycle by different 
models, but also tends to increase the computational consumption of model runs, which can become a bottleneck for 
model evaluations. As illustrated above, the traceability framework allows a carbon cycle model to be simplified and 
generalized into several traceable components, which can be further decomposed to quantify the structural sources of 
the uncertainty built into the full version of the model. Thus, an online traceability analysis system for model evaluation 
(TraceME) was built to accelerate the pace of model evaluation of the land carbon cycle, with earth system models 
in mind.

The TraceME system is a cloud- based platform (Zhou et al. 2021). It provides user- friendly interfaces and scientific 
workflow to automatically perform the model evaluation. On the website (http:// www.trac eme.org.cn/ , last access: October 
2020), the user can select the data of interest, and submit the task through the browser to complete the traceability analysis. 
The collaborative framework of TraceME provides a convenient data- sharing platform for all users to filter data of interest 
from the entire system for traceability analysis. Once a task is requested through a web browser, the scientific workflow 
of TraceME is triggered and it will execute the corresponding processes, such as data preprocessing, traceability analysis, 
and evaluation. The submitted data will be systematically decomposed into traceable components for quantifying the 
variance contributions of these components to land carbon dynamics. After the submitted task is completed, TraceME 
provides a visual interface to show and download the results in the forms of figures and Network Common Data Form- 
format (NetCDF) files. These files can be used to perform further analysis. TraceME is a convenient tool to evaluate 
models based on the traceability analysis framework. It has, for example, been applied to evaluate land carbon dynamics 
in CMIP6 earth system models (Zhou et al. 2021).

FIGURE 17.4 Schematic diagram of the terrestrial ecosystem carbon and nitrogen coupling model and its traceable components under 
different C- N coupling schemes. (a) The major carbon and nitrogen pool- and- flux structure in a terrestrial ecosystem, with alternative 
assumptions of the N processes represent in SM1 (TECO- CN), SM2 (CLM4.5), and SM3 (O- CN) C- N coupling schemes. Light blue arrows 
indicate C- cycle processes and red arrows show N- cycle processes. Met./ Str. litter –  metabolic and/ or structural litter; SOM –  soil organic 
matter. *Set N fixation as an option when the plant N uptake is not enough for growth in terms of C investment in SM1, but go directly to soil 
mineral N pool in SM2 and SM3. (b) Simulation of annual ecosystem carbon storage capacity for 1996 to 2006 at Duke Forest by carbon in 
flux (NPP, x- axis) and ecosystem residence time (τE, y- axis) in the TECO model framework with three C- N coupling schemes (SM1, SM2, 
and SM3) and in the TECO C- only model (C). The inserted panel in the left bottom corner shows the τE in SM1, SM2, SM3, and the C- only 
model; the top right panel shows the mean ecosystem carbon storage simulated among SM1, SM2, SM3, and the C- only model; the right 
bottom panel shows the relative change in the simulated NPP and τE among the three schemes compared with the C- only model.
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The traceability framework is developed for the terrestrial 
carbon cycle, but it can be extended to include nutrient and 
water processes. Further applications include the integration 
of benchmark analysis (see Chapter 19) with traceability 
analysis, the connection between structurally traceable 
components and model parameters, and the application of 
traceability analysis to understand climate- carbon cycle 
feedbacks in coupled land- atmosphere simulations with earth 
system models.

SUGGESTED READING

Xia, J., Luo, Y., Wang, Y.- P., & Hararuk, O. (2013). Traceable 
components of terrestrial carbon storage capacity in 
biogeochemical models. Global Change Biology, 19 (7), 
2104– 2116

QUIZ

1 In the steady- state traceability analysis, which 
variable is first decomposed into NPP and carbon 
residence time?
a. Soil C stock
b. Vegetation biomass

c. Ecosystem total C stock
d. Ecosystem C storage capacity

2 When the nitrogen cycle is incorporated into a carbon 
cycle model, which components in the terrestrial 
carbon cycle will be changed? What happened in the 
CABLE model?

3 Which model has the longer ecosystem carbon 
residence time, CABLE or CLM- CASA’? Why?

4 Describe the external forcings which can contribute 
to the large model uncertainty of the terrestrial 
carbon cycle.

5 How do TECO- CN, CLM4.5, and O- CN models differ 
in their approach to simulating the coupling between 
the terrestrial carbon and nitrogen cycles? How do 
these differences impact carbon cycle dynamics in the 
TECO model?

 

 

 

 



112 DOI: 10.1201/9781032711126-23

Applications of the Transient 
Traceability Framework

Lifen Jiang
Cornell University, Ithaca, USA

This chapter introduces the traceability analysis of transient 
carbon storage, which is a modification of the original 
traceability framework that relies on an assumption of steady 
state. Transient traceability analysis is particularly useful to 
address the origin and drivers of carbon flow of a system in 
a state of transition towards a new steady state – a transient 
system. We will illustrate how the transient traceability can 
be applied to address scientific questions with two examples. 
One tracks the differences in modeled carbon storage between 
two forest ecosystems, the second compares and contrasts 
outcomes of a set of Model Intercomparison Projects (MIPs) 
encompassing multiple land carbon models.

INTRODUCTION

Simulations by Earth system models in the Coupled Model 
Intercomparison Phase 5 project (CMIP5) showed that 
differences among the models entail large uncertainty in 
land carbon (C) storage (Jones et al. 2013). The spread of 
simulated future land C change across the models is even 
greater than the spread across the four radiative forcing 
scenarios, when the ensemble averages for each scenario are 
compared. Arora et al. (2020) compared model results from 
two CMIP phases (CMIP6 vs. CMIP5) and they found that the 
model mean values of the carbon- concentration and carbon- 
climate feedback parameters and their multi- model spread 
under a 1% per year CO2 increase experiment did not change 
significantly across the two CMIP phases for both land and 
ocean. Moving forward, a big challenge is how to understand 
and reduce the uncertainty across models to achieve more 
reliable predictions.

Although land C models have become increasingly 
complex in recent decades with more and more processes 
incorporated, most current models have the same theoretical 
foundation and therefore share some of the same general 
properties, as described in Chapters 1 and 2. These shared 
theoretical foundations and properties enable many land C 
models to be represented or approximated in matrix form, as 
demonstrated in Chapter 5. With the matrix representations of 
the C cycle models, we are able to decompose the modeled 
land C storage into different traceable components, which 
is the unified diagnostic system for uncertainty analysis, 
an overview of which was provided in Chapter 9. Based 
on the common properties and matrix representations of 
land C models, Xia et al. (2013) developed a traceability 
framework to decompose steady- state C storage into traceable 

components. In Chapter 17 we saw how the framework could 
be applied to investigate differences in carbon storage across 
biomes and how differences in model structure influence the 
simulated effects of nitrogen cycling and land use change on 
the carbon cycle.

The traceability framework in its original form depends 
on a steady- state assumption for ecosystem carbon stocks. 
However, due to climate change and past disturbances, most 
ecosystems are not at steady state. The non- steady state is 
called transient state and the challenge is how to trace transient 
C storage dynamics. In this chapter, we first introduce a 
general framework for transient traceability analysis. Then, 
we illustrate how the transient traceability framework can be 
applied to address scientific questions using two examples. 
Our first example uses transient traceability analysis to track 
differences in C storage between two forest ecosystems. The 
second applies transient traceability analysis to three model 
intercomparison projects (MIPs) to identify the sources for the 
uncertainty in modeled carbon storage dynamics within each 
MIP and across the three MIPs.

A TRACEABILITY FRAMEWORK FOR TRANSIENT 
LAND CARBON STORAGE DYNAMICS

In order to realize the traceability of transient C storage, 
Luo et al. (2017) conducted a theoretical analysis to extend 
the steady- state traceability framework to work for systems 
in a transient state. The key was to add another term called 
C storage potential. This new term was introduced in 
Chapter 9 and is further discussed below. The core equation 
for traceability of transient C storage is from Luo et al. (2017) 
and as follows:

    X t A t K B t u t A t K X t( ) = − ( )( ) ( ) ( ) − − ( )( ) ′ ( )− −
ξ ξ

1 1  18.1

where X(t) is individual pool size at time t, which is a vector 
in a multi- pool model; A is a matrix of transfer coefficients 
between C pools; 𝜉(t) is a diagonal matrix of environmental 
scalars to reflect the control of physical and chemical 
properties, e.g., temperature, moisture, nutrients, litter quality, 
and soil texture, on C cycle processes; K is a diagonal matrix 
of exit rates from donor pools, which encapsulates mortality 
rates for plant pools and decomposition coefficients for litter 
and soil pools; B is a vector of allocation coefficients of C 
input to each pool; u(t) is C input, i.e., NPP or GPP; and X′(t) 
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is net change of any individual C pool at time t, which is a 
vector for a multi- pool model. The sum of X′ of all individual 
C pools corresponds to net ecosystem production (NEP), or 
the sign opposite of net ecosystem exchange (NEE).

In this equation, the inverse of the product of – A, 𝜉(t) 
and K, i.e., (– A𝜉(t)K)−1, is named chasing time, which is a 
matrix representing the timescale for the net C pool change 
to be redistributed in the network consisting of all C pools. 
The product of chasing time and the allocation coefficient 
B, i.e., (– A𝜉(t)K)−1B(t), is the residence time of individual 
pools. The product of the residence time and C input is the 
maximum C that individual pools or the whole ecosystem can 
store at a time, which is defined as C storage capacity, Xc, 
that is, Xc =  (– A𝜉(t)K)−1B(t)u(t). The second term in Equation 
18.1 –  the product of chasing time and net C pool change  
((– A𝜉(t)K)−1X′(𝜉t)) –  represents redistribution of net change 
of individual C pools in the network. This redistribution of net 
C pool change indicates the potential of an individual pool or 
the whole ecosystem to gain or lose C. Therefore, it is named 
the C storage potential, Xp. So, we can derive another equation 
from the above descriptions as follows:

 X t X t X t
c p( ) = ( ) ( )–  18.2

This is the overall equation of the transient traceability 
framework of land carbon storage. To demonstrate how this 
transient traceability framework is a useful tool, we will walk 
through two example applications. The first application uses 
the framework exactly as described above to investigate the 

differences in carbon storage between two well- studied forest 
ecosystems, Duke Forest and Harvard Forest, and analyze 
the underlying mechanisms that explain these differences. 
The second application uses this general framework in 
combination with some other methods to decompose 
modeled land carbon storage in three MIPs: CMIP5, Trends 
in Net Land- Atmosphere Carbon Exchange (TRENDY), and 
Multiscale Synthesis and Terrestrial Model Intercomparison 
Project (MsTMIP). Decomposing differences in land carbon 
storage across models within each MIP and between the 
three MIPs helps us to understand why the models simulate 
different outcomes, and what features of the models’ structure 
or parameters may be responsible for these differences.

TRANSIENT TRACEABILITY ANALYSIS OF 
CARBON STORAGE AT DUKE FOREST AND 
HARVARD FOREST

In this case study, we will go over an application of the matrix  
approach to trace differences in carbon storage dynamics  
between Duke Forest and Harvard Forest. Duke Forest,  
located in North Carolina, USA (35°58′41″N, 79°5′39″W),  
is evergreen needleleaf forest and the dominant tree species  
at this site is Pinus taeda (loblolly pine). Harvard Forest,  
located in Massachusetts, USA (42°32′16″N, 72°10′17″W), is  
deciduous broadleaf forest dominated by Quercus rubra (red  
oak) and Acer rubrum (red maple). These two study sites have  
contrasting ecosystem types and there are plenty of measured  
data at both sites available for calibrating our model.

FIGURE 18.1 Schematic diagram of the traceability framework to analyze transient carbon storage dynamics of terrestrial ecosystems. 𝜉W 
and 𝜉T are water and temperature scalars, respectively. Dashed lines show the components that determine chasing time 𝜏ch 

Adapted from Jiang et al. 2017.
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The framework for transient traceability of land C storage 
dynamics is shown in Figure 18.1. Using this framework, we 
can decompose transient C storage into C storage capacity 
and C storage potential. C storage capacity is the product of 
NPP and C residence time. C storage potential is the product 
of chasing time and net C pool change. Further, chasing time 
is jointly determined by environmental scalars for temperature 
and precipitation, transfer coefficients, and exit rate. C residence 
time is jointly determined by the environmental scalars, 
transfer coefficients, exit rate, and allocation coefficients. 
Environmental scalars can be derived from climate forcing.

The model used is the TECO model, which has been  
described in Chapters 2 and 5. The procedure for this transient  
traceability analysis is as follows. We first calibrate the TECO  

model with GPP data for the two sites downloaded from the  
AmeriFlux website (available at http:// amerifl ux.lbl.gov/ ). We  
then run TECO to steady state by recycling ten years of forcing  
data from 1850 to 1859. Climate forcing data, including air  
and soil temperature, precipitation, photosynthetically active  
radiation, vapor- pressure deficit, and relative humidity are  
derived from an offline run of the Community Land Model  
version 4.5 (CLM4.5) for both historical (1850– 2005) and  
RCP8.5 future (2006– 2100) simulations. After that, we run  
the model in forward simulation mode from 1850 to 2100.  
We output each component (X, A, 𝜉, K, B) in Figure 18.1 and  
calculate transient C storage using Equations 18.1 and 18.2.  
We then verify the calculated transient C storage. That is,  
we compare direct model output of C storage with C storage  
calculated by the transient traceability framework. They are  
almost identical in both forests (Figure 18.2), confirming  
that the transient traceability framework works very well to  
reproduce the full model simulations.

The results for transient C storage, C storage capacity, and 
C storage potential are shown in Figure 18.3. The trajectories 
of transient C storage (X, or rather, the sum of the elements 
[pools] of the vector X), C storage capacity, Xc, and C storage 
potential, Xp, over time are similar between the two ecosystems, 
all increasing with time. Moreover, X closely tracks Xc in both 
ecosystems and Xp only accounts for a very small proportion 
of X, which indicates that transient C storage in these two 
ecosystems is predominated by the maximum C storage, i.e., 
carbon storage capacity (Xc), while carbon storage in response 
to climate change is relatively small. The most important 
difference between the sites is that Harvard Forest has higher 
X and Xc than Duke Forest (Figure 18.3a). Panel b shows the 
change of the three variables in the two ecosystems by the end 
of 2100, which are averages of the last ten years’ C storage 
minus averages of the first ten years’ values.

The components of transient C storage are shown in  
Figure 18.4. The two components of C storage capacity, that  
is, NPP and C residence time, are shown in panels a and b,  

FIGURE 18.2 Correlation between direct model output of carbon 
storage (X, the sum of all carbon pools) by the Terrestrial ECOsystem 
(TECO) model and as calculated by the traceability framework for 
Duke and Harvard Forests

Adapted from Jiang et al. 2017.

FIGURE 18.3 Transient total carbon storage (X, the sum of all carbon pools), carbon storage capacity (Xc), carbon storage potential (Xp) in 
Duke Forest and Harvard Forest and their changes by the end of the 21st century under the RCP8.5 scenario.

Adapted from Jiang et al. 2017.
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respectively. NPP is similar between the two ecosystems,  
but residence time shows different trends. In Duke Forest, C  
residence time increases over time, but in Harvard Forest, C  
residence time decreases. Panel c shows the changes of NPP  
and C residence time in these two ecosystems at the end of the  
21st century compared to 1850.

Environmental scalars increase in both forests 
(Figure 18.4d, e), which signifies steadily decreasing 
environmental limitations on C processes. Allocation 
coefficients show different trends between the two ecosystems 
(Figure 18.4f). In Duke Forest, b1 (allocation to leaf) and b3 
(allocation to root) both decline with time, but b2 (allocation 

to wood) increases greatly. In Harvard Forest, allocation 
to leaves and wood both slightly increase, but allocation to 
roots decreases. The substantial increase in wood allocation 
at Duke Forest may explain why C residence time in this 
ecosystem increases; wood usually has longer residence time 
than leaves and roots. Similarly, panel g shows the changes of 
allocation coefficients by the end of the 21st century in these 
two ecosystems.

As shown in Equation 18.1 and Figure 18.1, C storage 
potential, Xp, is codetermined by the chasing time and net C 
pool change, X′, which equates to NEP or NEE at ecosystem 
scale. Figure 18.5 shows the correlation between NEP and C 

FIGURE 18.4 Net primary production (NPP), ecosystem carbon residence times, environmental scalars, and allocation coefficients of NPP 
to leaf (b1), wood (b2) and root (b3) in Duke Forest and Harvard Forest, and their changes by the end of the 21st century.

Adapted from Jiang et al. 2017.
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storage potential in these two ecosystems. The coefficients 
of determination, R2, are high in both Duke Forest (0.80) 
and Harvard Forest (0.79). This indicates that Xp is mostly 
determined by NEP rather than chasing time. Chasing time, 
represented by the slopes of the linear regressions between 
Xp and NEP, is an indicator of approximate time needed for 
transient C storage to reach C storage capacity. Chasing 
time in Duke Forest is shorter than that in Harvard Forest. 
In Duke Forest, it takes approximately 19 years for the 
changed carbon pool to be redistributed in the network. 
In Harvard Forest, this time is around 28 years. Having 
shorter chasing time, Xp in Duke Forest is lower than that 
in Harvard Forest.

To summarize this case study, the transient traceability  
framework can decompose modeled transient C storage into  
a few traceable components. This helps us to understand the  
mechanisms for modeled C dynamics in response to climate  

change in Duke Forest and Harvard Forest. For example, the  
difference in carbon storage capacity (Xc) between the two  
ecosystems is mostly caused by the difference in inherent C  
residence time. In addition, the contrasting responses of C  
residence time to climate change between the two ecosystems  
can be attributed to the different responses of allocation of  
NPP to plant parts (leaves, wood, and roots). This application  
demonstrates that the traceability framework can be used  
to understand how and why different ecosystems respond    
to climate change differently. Similarly, it can also be used to    
address how other global change drivers (such as land use  
change and elevated CO2) affect land C storage dynamics  
across ecosystems in simulations with ecosystem models.  
When applied to global land models, it can also help investigate  
the differences across biomes under different environmental  
scenarios.

TRANSIENT TRACEABILITY ANALYSIS OF 
LAND CARBON STORAGE IN MODEL 
INTERCOMPARISON PROJECTS

Another important application of the transient traceability  
framework is to be used in MIPs to identify sources of  
uncertainty and thereby help improve model development.  
For example, Hou et al. (2023) conducted a MIP with eight  
land models (i.e., TEM, CENTURY4, DALEC2, TECO,  
FBDC, CASA, CLM4.5, and ORCHIDEE) in the matrix form  
to identify sources of uncertainty using both the traceability  
analysis and parameter manipulation. Baseline residence  
time and environmental scalars were identified as the major  
sources of model uncertainty (see detailed description in  
Chapter 9). Zhou et al. (2018) applied the transient traceability  
framework but with a modified method to diagnose the  
causes of uncertainty in modeled global annual land carbon  
storage within and across three MIPs: CMIP5, TRENDY, and  
MsTMIP.

FIGURE 18.5 Correlation between net ecosystem production 
(NEP) and C storage potential (Xp) in Duke Forest and Harvard Forest.

Adapted from Jiang et al. 2017.

FIGURE 18.6 Schematic diagram of the transient traceability framework by Zhou et al. (2018) © American Meteorological Society. 
Used with permission. This framework traces the modeled transient carbon storage dynamics to carbon residence time, NPP, carbon storage 
potential, and their source factors.
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The transient traceability analysis of carbon storage at Duke 
Forest and Harvard Forest introduced above is called authentic 
transient traceability analysis, that is, the modeled differences 
of C storage among ecosystems or among models can be traced 
back to differences in respective components in Equation 18.1, 
and finally to individual processes or parameters in the models. 
However, the application of authentic transient traceability 
analysis to MIPs requires much time to figure out the structures 
and parameterizations of all involved models in order to recode 
each in matrix form for a thorough model intercomparison. 
Due to the challenge in acquiring all the details of the involved 
models, in their analysis, Zhou et al. (2018) applied the 
transient traceability framework in combination with another 
technique, variance decomposition, to identify the underlying 
causes for uncertainty in simulated land carbon storage within 
and across three MIPs. We called this kind of analysis post- 
MIP transient traceability analysis to be distinguished from the 
authentic transient traceability analysis. Figure 18.6 shows the 
schematic diagram of this transient traceability analysis within 
and among the three MIPs.

In this post- MIP traceability analysis, they found that 
models differ a lot in the global annual carbon residence 
time, NPP, and carbon storage potential (Figure 18.7a– c). 
Usually, within each model, relative year to year variation 
in carbon residence time is much smaller than that of NPP. 
In addition, NPP in those models with a coupled nitrogen 
cycle (e.g., BNU- ESM, CESM1(BGC), and NorESM1- 
Me in CMIP5, and CLM4, CLM4VIC, ISAM, and DLEM 
in MsTMIP) is lower compared to other ESMs without a 
coupled nitrogen cycle. Carbon residence time and NPP 
show smaller variations across the nine dynamic global 
vegetation models in TRENDY in comparison to models in 
CMIP5 and MsTMIP. As a result, the variations in carbon 
storage capacity in TRENDY are not as large as in CMIP5 
and MsTMIP.

The global annual carbon storage and carbon storage 
capacity also vary considerably across the models and the 
temporal dynamics of carbon storage and carbon storage 
capacity of the models are highly diverse (Figure 18.7d– 
f). The large range of carbon storage across those models 
is closely related to that of carbon storage capacity. The 
interannual trends of carbon storage in the models of 
the three MIPs are mainly affected by the carbon storage 
potential, because the sign and magnitude of carbon   
storage potential determine the direction and rate of carbon 
storage change, respectively. The interannual variability of 
carbon storage in TRENDY is much smaller than that in 
CMIP5 and MsTMIP.

Carbon residence time and NPP are further traced to their 
baseline values and environmental scalars. The differences 
in carbon residence time (or NPP) across the models 
are codetermined by the differences in baseline carbon 
residence time (or baseline NPP) and the environmental 
scalars (Figure 18.8). The baseline carbon residence time 
and baseline NPP among the models in the three MIPs can 
differ as much as threefold. In contrast, the environmental 
scalars are more convergent among the models for both 

carbon residence time and NPP. That indicates that the large 
differences in carbon residence time and NPP across models 
are due mainly to the differences in their baseline carbon 
residence time and baseline NPP, not much being caused by 
environmental scalars.

Finally, by adopting a variance decomposition method, 
Zhou et al. (2018) quantified the relative contribution of 
each component to the simulated global annual carbon 
storage for each MIP and for all the three MIPs together. 
The results revealed that variations in transient carbon 
storage are dominated by carbon residence time and NPP, 
and carbon storage potential only contributes less than 1% 
(Figure 18.9). Moreover, the baseline carbon residence time 
and baseline NPP contribute more than 90% to the variations 
in carbon residence time and NPP, respectively. In contrast, 
the contributions by temperature and water scalars to the 
variations in the carbon residence time and NPP are both 
less than 5%. As a consequence, the variations in simulated 
transient carbon storage across the models can be primarily 
attributed to the differences in models’ baseline carbon 
residence time and baseline NPP.

The post- MIP approach adopted by Zhou et al. (2018) is a 
novel approach that provides an alternative way to understand 
the causes of the uncertainty of multiple models when 
authentic traceability analysis is not able to be realized due 
to the effort required to accommodate detailed information 
on the original models. Such post- MIP traceability analysis 
can be automatically run with a public platform, TraceME 
(v1.0), which is an online traceability analysis system for 
model evaluation on land carbon dynamics (Zhou et al. 2021). 
While post- MIP traceability analysis offers useful insight, it 
would be helpful to apply the authentic traceability analysis, 
as in the first case of this chapter, to MIPs to help identify the 
specific model components and assumptions that dominate 
model uncertainty and focus attention on those issues in need 
of closer scrutiny to improve model behavior.

After identification of the causes by which the models 
differ in their behavior, modelers can then use observational 
data to determine which models are more accurate than 
others in representing the actual processes. This is the realm 
of benchmark analysis, which will be introduced in detail in 
Chapter 19. In this way, model performance can be greatly 
improved towards more realistic projections.

SUMMARY

This chapter has demonstrated how the transient traceability 
framework can be applied to address different scientific 
questions with two case studies. This recently developed 
framework has the potential to be used more broadly in 
ways similar to the overview of steady- state traceability 
analysis of land carbon storage in Chapter 17. The ultimate 
goal of the transient traceability framework is to enhance 
our understanding of how terrestrial ecosystems respond to 
various environmental changes and to better incorporate such 
understanding in models to predict the future status of land 
carbon storage.
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FIGURE 18.7 The 3D model output space (carbon residence time, NPP, and carbon storage potential), and time series of annual carbon 
storage (solid lines) with the shaded outlines indicating the year- to- year fluctuations due to changes in carbon storage capacity for the 
models in CMIP5 (a and d), TRENDY (b and e), and MsTMIP (c and f). The points in (a)– (c) represent the global annual values for the 
three variables. The contour lines in (a)– (c) represent the carbon storage capacity. Shading in (d)– (f) shows the values of the carbon storage 
potential for the models (positive above the solid lines, and negative below the solid lines).

Reproduced from Zhou et al. 2018. © American Meteorological Society. Used with permission.
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FIGURE 18.8 Decomposition of the carbon residence time into the baseline carbon residence time and the environmental scalar and 
decomposition of annual NPP into the baseline NPP and the environmental scalar for CMIP5 (a and d), TRENDY (b and e), and MsTMIP 
(c and f). The environmental scalar is a product of the temperature and water scalars, which convert the baseline carbon residence time and 
baseline NPP into their actual values.

Zhou et al. 2018 © American Meteorological Society. Used with permission.
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QUIZ

1 Is transient C storage determined by C storage capacity 
and C storage potential? Why/ why not?

2 Is carbon storage potential always positive? Why/ 
why not?

3 Carbon storage potential is co- determined by:
a. Carbon residence time
b. Chasing time
c. Net C pool change
d. NPP

4 What scientific questions do you think the transient 
traceability framework can address? How can it be 
applied in each case?

FIGURE 18.9 Variance decomposition of the carbon storage based on global annual data from models in the three MIPs. First, the variation 
of the carbon storage X is decomposed into that of the carbon residence time 𝜏E, NPP, and the carbon storage potential Xp. Second, variations 
of the carbon residence time and NPP are decomposed into their baseline values (𝜏ˊE and NPPˊ) and the temperature (𝜉T and δT) and water (𝜉W 
and δW) scalars. Positive/ negative values mean positive/ negative contributions of the variables to the variation of carbon storage.

Zhou et al. 2018 © American Meteorological Society. Used with permission.
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Tremendous progress has been achieved in the development of 
land models and their inclusion to account for land-atmosphere 
feedbacks in earth system models (ESMs). However, we 
still have insufficient knowledge on the performance skills 
of these land models, individually and in comparison to 
one another. This chapter introduces benchmark analysis, 
which is a procedure to measure performance of models 
against a set of defined standards. The benchmark analysis 
includes: (1) defining targeted aspects of model performance 
to be evaluated; (2) testing model performance in comparison 
with a set of benchmarks; (3) measuring model performance 
skill through quantitative metrics; and (4)  evaluating model 
performance and offering suggestions for future model 
improvement.

INTRODUCTION

Over the past decades, tremendous progress has been achieved 
in the development of land models and their inclusion in 
earth system models (ESMs). State- of- the- art land models 
now account for biophysical processes (exchanges of water 
and energy) and biogeochemical cycles of carbon, nitrogen, 
and trace gases. They also simulate vegetation dynamics and 
disturbances. When coupled as components in ESMs, land 
models now allow simulation of land- atmosphere biophysical 
interactions and carbon- climate feedbacks. These models are 
now used for policy- relevant assessment of climate change and 
its impact on ecosystems or terrestrial resources, for instance 
through the IPCC process. However, there are still many gaps 
in our knowledge of the performance skills of these land 
models, especially when embedded in ESMs. Verifying the 
performance skills of land models would promote confidence 
in their predictions of future states of ecosystems and climate, 
and identify those models whose predictions are more likely 
to be accurate, where ensemble members diverge.

Model performance has traditionally been evaluated via 
comparison with observed data sets. ‘Validation’ by plotting 
model data side- by- side with observed data, or computing 
mismatch metrics such as root- mean- square- error, is 
traditionally the most common approach to model evaluation 
(Oreskes, 2003; Rykiel, 1996; see also Chapter 2). However, 
a land model typically simulates hundreds of biophysical, 

biogeochemical, and ecological processes at regional and 
global scales over hundreds of years. It would be unrealistic 
to undertake validation of so many processes at all spatial 
and temporal scales, even if observations were available. 
The complex behavior of these interacting processes can be 
realistically understood only if we holistically assess land 
models and their major components. Benchmark analysis is 
an approach that has been recently developed to evaluate the 
performance of land models.

Benchmark analysis is a standardized evaluation of one 
system’s performance against defined reference data (i.e., 
benchmarks) that can be used to diagnose the system’s 
strengths and deficiencies for future improvement (Luo 
et al., 2012). Benchmark analysis has been recently applied 
to evaluate land models against observations (Collier et al., 
2018). A benchmark analysis has four elements: (1) targeted 
aspects of model performance to be evaluated; (2) benchmarks 
as defined reference data to evaluate model performance; (3) a 
scoring system of metrics to measure relative performance 
among models; and (4) evaluated performance of models and 
future improvement (Figure 19.1).

ASPECTS OF LAND MODELS TO BE EVALUATED

Land models typically simulate many processes. Although 
individual studies may assess only a few aspects of model 
performance, a comprehensive benchmark analysis is required 
to evaluate all these major components when land models are 
integrated with ESMs. The performance of a model should be 
evaluated for its baseline simulations over broad spatial and 
temporal scales, and modeled responses of land processes to 
global change.

The baseline state for biogeochemical cycles includes 
simulated global totals, spatial distributions, and temporal 
dynamics of gross primary production (GPP), net primary 
production (NPP), vegetation and soil carbon stocks, 
ecosystem respiration, litter production, litter mass, and net 
ecosystem production. For example, the International Land 
Model Benchmarking (ILAMB) project evaluates biomass, 
burned area, GPP, leaf area index (LAI), global net ecosystem 
carbon balance, net ecosystem exchange (NEE), ecosystem 
respiration, and soil carbon (Collier et al., 2018).
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To reliably predict future states of ecosystems under a  
changing environment, land models have to realistically  
simulate responses of land processes to disturbances and  
global change. Major global change factors include rising  
atmospheric CO2 concentration, increasing land use and  
surface air temperature, altered precipitation amounts and  
patterns, and changing nitrogen (N) deposition. The direct  
effects of these global change factors are relatively easily  
benchmarked since we have general knowledge of how  
ecosystems respond to rising atmospheric CO2 concentration,  
increasing temperature, altered precipitation, and changing  
nitrogen deposition. However, indirect effects of these factors  
on ecosystem carbon processes are not well understood,  
although many field experiments have been conducted.  
Thus, it is more difficult to benchmark model performance in  
predicting future states of ecosystems.

REFERENCE DATA SETS AS BENCHMARKS

A comprehensive benchmarking analysis usually uses a set 
of benchmarks, against which land model performance can 
be evaluated (Table 19.1). Benchmarks could consist of direct 
observations, results from manipulative experiments, data- 
model products, or data- derived functional relationships. Direct 
observations and experimental results are generally accepted 
to be the most reliable benchmarks for model performance 
and are typically referred to as reference data. Reference data 
that are often used for benchmarking biogeochemical models 

include global data products of GPP, NPP, soil respiration, 
ecosystem respiration, plant biomass, and soil carbon. When 
they are used in a benchmarking analysis, reference data sets 
are usually assessed and weighted for their degree of certainty, 
scale appropriateness, and overall importance of the constraint 
or process to model predictions (Collier et al., 2018). The 
ILAMB project evaluates eight variables using a variety of 
reference data as listed in Table 19.1.

Land models can also be evaluated on their simulated 
variable- to- variable relationships in comparison with 
relationships in observations. For example, model 
representations of the relationships that GPP exhibits with 
precipitation, evapotranspiration, and temperature are 
often assessed. Such variable- to- variable relationships are 
quantified over a time period from reference data sets and 
used as benchmarks for the relationships diagnosed in models. 
This approach is particularly effective to understand the 
consistency between the observed and simulated sensitivity of 
ecosystem responses to climate change.

BENCHMARKING METRICS

A comprehensive benchmarking study usually uses a suite of  
metrics across several variables to holistically assess model  
performance at the relevant spatial and temporal scales. Many  
statistical measures are available to quantify mismatches  
between multiple modeled and observed variables. Five  
metrics were developed for ILAMB to evaluate model  

FIGURE 19.1 Schematic diagram of the benchmarking framework for evaluating land models. The framework includes four major 
components: (1) defining model aspects to be evaluated, (2) selecting benchmarks as standardized references to evaluate models, (3) developing 
a scoring system to measure model performance skills, and (4) stimulating model improvement.

Adopted from Luo et al., 2012.
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performance. The five metrics are to measure bias, root- mean-  
square- error (RMSE), phase shift, interannual variability, and  
spatial distributions (Collier et al., 2018).

The bias measures differences between the mean value 
of the reference data and that of the model over the same 
time period and the same spatial area. For example, the 
bias of GPP between the reference data and the model (e.g., 
Community Land Model version 4.5, CLM4.5) is calculated 
between their respective means in each grid cell where both 
reference data and modeled values are available. To account 
for the bias due to the variability at any given spatial location, 
the bias is nondimensionalized as a relative error to measure    
the bias score.

RMSE is computed as the square root of the mean square 
error between modeled values and the reference data over 
a time period. The RMSE is normalized by the centralized 
RMSE of the reference data set to get a relative error as a 
score. By scoring the centralized RMSE, the bias is removed 
from the RMSE, allowing the RMSE score to be focused on 
an orthogonal aspect of model performance.

The phase shift is evaluated for the annual cycle of many 
data sets that have monthly variability by comparing the 
timing of the maximum of the annual cycle of the variable at 
each spatial cell across the time period of the reference data 
set. The phase shift is calculated as the difference between the 
reference and model data sets by subtracting their respective 
maximum values in days.

The interannual variability in model simulations is evaluated 
by removing the annual cycle from both the reference data and 
the model. A score is then computed as a function of their 
differences over space.

The spatial distribution of any time- averaged variable is 
evaluated by computing the standard deviation of modeled 
values over space normalized by the standard deviation of the 
reference data. The spatial correlation is also calculated for 
the period mean values of reference data and modeled values. 

A score is assigned applying a penalty for large deviation of 
the normalized standard deviations and the spatial correlation 
from a value of 1.

The overall score for a given variable and data product is 
a weighted sum of the five metrics, producing a single scalar 
score for each variable for every model or model version. 
Readers who are interested in details of these metrics may 
study the paper by Collier et al. (2018).

PERFORMANCE OF THREE CLM VERSIONS AND 
FUTURE IMPROVEMENTS

The metrics for bias, RMSE, seasonal cycle phase, spatial 
distribution, interannual variability, and variable- to- variable 
assessments were applied to evaluate three CLM versions 
(CLM4 vs. CLM4.5 vs. CLM5) under two forcing data sets 
(GSWP3v1 vs. CRUNCEPv7) (Lawrence et al., 2019). The 
quality of the simulations across model generations was 
found to be generally improving. CLM5 outperforms CLM4 
for the majority of assessed variables (Figure 19.2). The 
improvements from CLM4.5 to CLM5 were relatively subtle 
in that several variables show improvement (e.g., biomass, 
burned area, LAI, net ecosystem carbon balance, NEE, and 
ecosystem respiration) but others show degradation (e.g., soil 
carbon).

The functional relationships were also assessed between 
two variables (e.g., precipitation vs. GPP or LAI) (Figure 19.3). 
CLM5 performed better than CLM4 or CLM4.5 for the 
relationships between GPP and climate variables. However, 
the relationship between GPP and surface air temperature 
slightly degraded from CLM4.5 to CLM5.

The ILAMB benchmark analysis provides some insights 
into model development. An improvement or degradation trend 
between two CLM versions can result from a mix of scores 
for individual metrics. The degradation in the simulations of 
soil carbon stocks from CLM4.5 to CLM5 may be partially 

TABLE 19.1
Reference data sets used to measure ecosystem and carbon cycle performance

Variables Reference data sets Description

Biomass Tropical (Saatchi et al., 2011) forest carbon stocks in tropical regions across three continents
NBCD2000 (Kellndorfer et al., 2013) aboveground biomass and carbon baseline data in North America
USForest (Blackard et al., 2008) U.S. forest biomass

Burned area GFED4S (Giglio et al., 2010) variability and long- term trends in burned area
GPP Fluxnet (Lasslop et al., 2010) net ecosystem exchange, photosynthesis, and respiration
Leaf area index AVHRR (Myneni et al., 1997) global land cover, leaf area index and FPAR

MODIS (De Kauwe et al., 2011) leaf area index product for a region of mixed coniferous forest
Global NECB GCP (Le Quéré et al., 2016) global carbon budget 2016
Net ecosystem exchange Fluxnet (Lasslop et al., 2010) net ecosystem exchange, photosynthesis, and respiration
Ecosystem respiration Fluxnet (Lasslop et al., 2010) net ecosystem exchange, photosynthesis, and respiration
Soil carbon HWSD (Todd- Brown et al., 2013) Harmonized World Soil Data

NCSCDV22 (Hugelius et al., 2013) organic carbon storage to 3m depth in soils of the northern 
circumpolar permafrost region.

NECB =  net ecosystem carbon balance; FPAR =  fraction of photosynthetically- active radiation.
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FIGURE 19.3 Variable- to- variable comparison between annual precipitation and LAI for CLM4, CLM4.5, and CLM5 under the GSWP3v1 
forcing. The black line is the observationally derived relationship. Error bars indicate the ±1 standard deviation of LAI for all grid cells that 
lie within that precipitation bin. Values in parentheses are the scores for that comparison.

Adopted from Lawrence et al., 2019.

FIGURE 19.2 Evaluation of performance of CLM4, CLM4.5, and CLM5 under two sets of forcing, GSWP3v1 and CRUNCEPv7. 
A stoplight color scheme is used to indicate aggregate performance for each model by variable.

Adopted from Lawrence et al., 2019.
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linked to high uncertainty in the observational estimates. 
Another metric evaluates the models against apparent soil 
carbon turnover time, showing an improvement from CLM4.5 
to CLM5. The disagreement between two metrics of soil 
carbon may suggest the need for future improvement of 
observationally constrained estimates.

Model performance depends on three elements: model 
structure, parameterization, and forcing (see Chapters 21 and 
29). The model structure that simulates soil carbon dynamics 
in CLM is primarily based on first- order kinetics. Although 
this model structure has been questioned, it has been 
demonstrated that almost all data sets from studies of litter 
decomposition and soil incubation are consistent with it (see 
Chapter 1). Model parameterization is likely the main cause 
of the model- data mismatch. Chapter 38 discusses methods to 
improve model parameterizations of CLM5 to improve model 
performance.

CONCLUSIONS

A four- component benchmark analysis was outlined: (1) 
identification of aspects of models to be evaluated; (2) selection 
of benchmarks as standardized references to evaluate 
models; (3) a scoring system to measure model performance 
skills; and (4) evaluation of model performance to inform 
model improvement. The International Land Model 
Benchmarking (ILAMB) project has developed an open- 
source model benchmarking software package to score model 
performance. ILAMB has developed a suite of reference data 
sets as benchmarks, five metrics plus variable- to- variable 
relationships as the scoring system to evaluate models or 
model versions. The ILAMB package has been applied to 
perform comprehensive model assessment across a wide range 

of land variables. Such benchmark analysis offers insights 
into strengths and weaknesses of different models or model 
versions for identifying future improvements.
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QUIZ

1 What are the similarities and differences between 
model validation and benchmark analysis?

2 How does benchmark analysis evaluate model 
performance?

3 What variables in carbon cycle models would you 
choose to be evaluated by a benchmark analysis?

4 What data sets do you think would be important to be 
used as benchmarks to evaluate models?

5 What five metrics does the ILAMB package use to 
score model performance?
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 Practice 5
Traceability Analysis for Evaluating Terrestrial  
Carbon Cycle Models

Jianyang Xia and Jian Zhou
East China Normal University, Shanghai, China

The practice is designed to help you learn traceability analysis 
to identify sources of model uncertainty in predicting terrestrial 
carbon (C) storage. All practices are performed in the training 
software CarboTrain. With this tool, you will apply traceability 
analysis to simulation results from a matrix form model (called 
authentic traceability analysis) and to model intercomparison 
projects (MIP) without matrix models (i.e., post-MIP traceability 
analysis). The authentic traceability analysis will show you 
how simulation results from a matrix model are explained by 
traceable components over space and among biomes. The post-
MIP traceability analysis can help you understand the sources 
of uncertainty among different models.

INTRODUCTION

Traceability analysis provides an approach to divide the 
simulated land carbon dynamic into several traceable 
components, such as carbon (C) storage capacity, gross primary 
productivity (GPP), C residence time, and environmental 
scalars. This practice offers two exercises. The first uses 
authentic traceability analysis in which simulation results 
by the CABLE matrix model are explained by traceable 
components hierarchically over space and among biomes. The 
authentic traceability analysis for the first exercise is described 
in detail in Chapter 17, based on the study by Xia et al. (2013). 
The second exercise uses post- MIP traceability analysis to 
attribute variations in modeled land C storage among three 
CMIP6 models (i.e., CESM2, CNRM- ESM2- 1, and IPSL- 
CM6A- LR) over 1980– 2000 to different sources. The post- 
MIP traceability analysis is described in detail in Chapter 18. 
More information is available in papers by Zhou et al. (2018, 
2021). The authentic traceability analysis can pinpoint model 
uncertainty to individual processes and/ or specific parameter 
values but requires matrix models. In comparison, the post- MIP 
traceability analysis can be applied to any modeling results to 
understand sources of uncertainty but may not be able to trace 
uncertainty to specific processes and/ or parameters.

The exercises are performed in the training software 
CarboTrain by selecting Unit 5 and Exercises 1– 2. Click Run 
Exercise to generate the figures.

Exercise 1 Authentic traceability analysis
This exercise helps you learn to do traceability analysis 
with a matrix model derived from the Community 

Atmosphere- Biosphere- Land Exchange (CABLE) model. 
CABLE is one of the global land models used for simulating 
terrestrial biogeochemical and biophysical processes. The C 
cycle diagram of the CABLE model is shown in Chapter 14, 
Figure 14.1. CABLE has nine carbon pools, including the 
plant pools (leaf, root, and wood), litter pools (metabolic and 
structural litter as well as coarse woody debris) and three 
soil pools (microbial biomass, slow and passive soil organic 
matter). The matrix form of the CABLE model we will use 
here was derived by Xia et al. (2013). In this exercise, the 
spatial resolution is 1 × 1°. The land grid cells are categorized 
into nine biomes including Evergreen Needleleaf Forest 
(ENF), Evergreen Broadleaf Forest (EBF), Deciduous 
Needleleaf Forest (DNF), Deciduous Broadleaf Forest (DBF), 
C3 Grassland (C3G), C4 Grassland (C4G), Tundra, and Barren/ 
sparse vegetation (Barren).

In the main window of CarboTrain (Figure 20.1), choose 
Unit 5 and Exercise 1, and then set the output path of the 
running results by clicking the “Set Output Folder” button. 
After you have done all the above steps, click ‘Run Exercise’ 
to start the exercise.

A pop- up window will show up with the message “Task 
submitted!” after you click the ‘Run Exercise’ button as 
shown in Figure 20.2. After clicking ‘OK’, the task will run 
automatically on your computer.

The command window shows the running processes of the 
task and you can see which step of the program is complete 
as shown in Figure 20.3. When the task is finished, another 
pop- up window will show up with the message “Finished!” as 
shown in Figure 20.2. The software will generate the running 
results to the output path you set before.

Figure 20.4 shows an example of the output results after 
the task is completed. Enter the output path you set before, 
you will see a directory named unit5_ exercise1. Enter this 
directory and find the files as shown in Figure 20.4.

There are four data files in the folder unit5_ exercise1/ 
dataSource. The simulated global distribution of total 
ecosystem C storage capacity by the CABLE model is 
recorded in data_ global_ ctot.csv. The ‘nan’ values represent 
ocean grids or non- vegetated lands. The global map of the 
total ecosystem C storage capacity is shown in Figure 20.5a.

The file data_ npp_ resTime.xlsx provides the  
simulated net primary productivity (NPP) and ecosystem C  
residence time in each land grid cell. Figure 20.5b shows  

20
 

  

 

 

 

http://dx.doi.org/10.1201/9781032711126-25


127Practice 5: Traceability Analysis for Terrestrial Carbon Cycle Models

how NPP and ecosystem C residence time together determine  
the spatial difference in ecosystem C storage capacity in the  
CABLE model. For example, ENF has an intermediate NPP  
(0.39 kg C m−2 yr−1) and a relatively long C residence time  
(86.4 years), leading to the largest total ecosystem carbon  
storage capacity (34.1 kg C m−2) among the nine biomes. By  
contrast, Tundra has a small ecosystem C storage capacity  
(8.7 kg C m−2) due to the low NPP (0.1 kg C m−2 yr−1), though  
its C residence time is long (141.2 years).

The file residence_ components.xlsx contains 
simulated results of total ecosystem C residence time, baseline 
residence time, and environmental scalar in each land grid 
cell. Figure 20.5c shows how baseline C residence time and 
environmental scalar jointly determine the global distribution 
of ecosystem C residence time in the CABLE model. It is 
clear that the order of ecosystem C residence time among 
biomes is different from that of baseline C residence time. 
In CABLE, ecosystem C residence time changes with biome 
type as DNF (163.3 years) > Tundra (141.2 years) > ENF 
(86.4 years) > Shrubland (52.6 years) > DBF (33.3 years) > 
C3G (26.6 years) > EBF (26.3 years) > Barren (20.4 years) > 
C4G (17.5 years).

The environmentalScalars.xlsx file provides the 
mean annual precipitation, mean annual temperature, water 
scalar, and temperature scalar in each land grid cell. As shown 

in Figure 20.5d– e, the environmental scalars link the climate 
forcings directly to terrestrial C cycle processes in the CABLE 
model. Figure 20.5e shows that the temperature scalar varies 
systematically among biomes in the CABLE model, whereas 
the mean water scalar is distributed in a narrow range from 
0.65 in EBF to 0.87 in DNF.

The figures of this exercise can be found in unit5_ 
exercise1/ output_ figs. More details about the CABLE model 
and simulations in this exercise are provided in Chapter 17.

Questions:

1 Which environmental factor, water or temperature, 
contributes more to the difference in ecosystem 
C residence time among biomes in the CABLE 
model? Why?

2 Which biome has the longest baseline C residence 
time? Why?

3 Would you expect the incorporation of nitrogen 
cycling to influence the simulated ecosystem C storage 
compared to the C- only model? How can this question 
be explored by applying the authentic traceability 
analysis with the CABLE model?

Exercise 2 Post- MIP traceability analysis
In this exercise we will practice performing uncertainty 
analysis of carbon cycle modeling after simulations were 
done without models being converted to matrix equations 
(see Chapter 18). Because the outputs of transient land C 
storage rather than long- term steady state carbon storage (i.e., 
carbon storage capacity) are available from CMIP6 models, 
we compare the simulation results of the three CMIP6 models 
over 1980– 2000.

Launch CarboTrain and select Unit 5 and Exercise 2. Open  
the Config 5 tab, where you can customize the spatial and  

FIGURE 20.2 Tips at the beginning and end of the task.

FIGURE 20.1 Steps to run Exercise 1.
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temporal ranges of the running results by entering latitude  
and longitude and temporal ranges. Please note that the data  
entered here should be within the allowable range (−90 to 90 for  
latitude, 0 to 360 for longitude, 1980 to 2000 for the temporal  
range). Set the output path by clicking Set Output Folder.  
Finally, click Run Exercise to start the traceability analysis  
of the three CMIP6 models. (Note that the task running time  
is related to the selected ranges and the configuration of the  
computer.)

The command window shows the running processes of the 
task as shown in Figure 20.6. When the task is finished, results 
will appear in the output path you set before (Figure 20.7).

Here are descriptions of the files and the workflow of 
the model evaluation system in CarboTrain. All files can be 
found in or under the unit5_ exercise2 folder in the output 
directory you specified earlier. The package consists of a 
file named Preset.txt, three Python scripts (Main_ traceme.
py, AnnualTAT.py, RegionTAT.py), and three subfolders 
(data, results, R_ docs). Preset.txt contains a specification 
of the CMIP6 model outputs stored in the data folder. 
Traceability analysis requires the outputs of each model to 
include total C storage (vegetation C, soil C and/ or litter C), 
GPP, NPP, temperature, and precipitation. After the task is 
submitted, the Main_ traceme.py script reads the information 
in Preset.txt to preprocess the data. The preprocessed data 
is transferred to the AnnualTAT.py and RegionTAT.py 
scripts to perform temporal and spatial traceability analysis, 
respectively. The R_ doc folder contains the R language 
script used to calculate the variance contribution of different 
components to C storage in the temporal traceability 
analysis. The results of the traceability analysis are output 
in the results folder.

We will now step through using the traceability analysis to 
analyze the differences in land C storage among three CMIP6 
models (i.e., CESM2, CNRM- ESM2- 1, and IPSL- CM6A- LR). 

In the results folder, you can find the results of the temporal 
traceability analysis on the three CMIP6 models over 1980– 
2000. First, you can find differences in the time series of 
simulated C storage among the models (temporal- 1- Carbon- 
Dynamic.png; Figure 20.8a). It is clear that the IPSL- CM6A- 
LR model has the lowest land C storage among the three 
models for the simulation period. The traceability analysis 
decomposes the C storage into C storage capacity and 
potential (Figure 20.8a). The result showed that the lowest 
land C storage in IPSL- CM6A- LR was due to the lowest C 
storage capacity rather than the C storage potential. Then, 
ecosystem C storage capacity is further decomposed into 
NPP and C residence time (temporal- 2- NPP- ResidenceTime.
png; Figure 20.8b). We can see that the lowest ecosystem 
C storage capacity in IPSL- CM6A- LR was driven by the 
shortest ecosystem C residence time among the three models. 
Furthermore, NPP is decomposed into GPP and C use 
efficiency (CUE) (temporal- 3- GPP- CUE.png; Figure 20.8c). 
Ecosystem C residence time can be decomposed into baseline 
C residence time and environmental scalars (temporal- 
4- Envs- baselineResidenceTime.png; Figure 20.8d). The 
simulated environmental scalars have not been provided for 
each model, so we cannot here further evaluate how climate 
forcings influence the baseline C residence time. However, 
among the three earth system models in this exercise, it is 
clear that the model parameterization of C allocation, C 
age, and C transfers among pools are the most important 
contributors to the large difference in global land C dynamic 
in Figure 20.8a.

In the results/ nc- files folder, you can access the NetCDF-  
format data of the temporal and spatial traceability analysis  
for each model. In the results/ figures folder, you can find  
the outputs that show the results of the spatial traceability  
analysis on the three models over 1980– 2000. Each figure  
includes the global distribution of a variable simulated by  

FIGURE 20.4 Output results after the task is complete.

FIGURE 20.3 Prompt in CMD interface when the program is running.

 

 

 



129Practice 5: Traceability Analysis for Terrestrial Carbon Cycle Models

FIGURE 20.5 Simulated spatial distribution of terrestrial carbon storage capacity and its traceable components by the CABLE model. 
(a) Spatial distribution of total ecosystem C storage capacity; (b) determination of the ecosystem carbon storage capacity by NPP and ecosystem 
residence time in various biomes; (c) dependence of ecosystem C residence time on baseline C residence time and the environmental scalar 
in various biomes; (d) global distribution of major biomes in relation to annual temperature and precipitation; (e) global distribution of major 
biomes in relation to water and temperature scalars.

FIGURE 20.6 Prompt in CMD interface when the program is 
running. FIGURE 20.7 Output results after the task is done.
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each model and the standard deviation of that variable.  
First, you can get the global distribution of the simulated  
C storage by each model and the global distribution of  
standard deviation of simulated ecosystem C storage  
among the models. The global distributions of all traceable  
components in Figure 20.8 are mapped. Figure 20.9 shows  
that the lowest baseline C residence time in IPSL- CM6A- LR  
is widely distributed in the Northern Hemisphere, except for  
the Tibetan Plateau. This analysis is helpful for informing  
developers of the IPSL- CM6A- LR model on how they may  
further improve their parameterization of ecosystem baseline  
C residence time.

QUIZ:

1 Among the three earth system models examined in 
this exercise, why does the IPSL- CM6A- LR model 
simulate the lowest land C storage? Which traceable 
component contributes most to the low values for C 
storage?

2 Based on Figure 20.9, can you figure out which region 
has the largest variation in baseline C residence time 
among the three models? Based on the output of the 
post- MIP traceability analysis, can you generate a 
global map of the standard deviation of baseline C 
residence time among the three models?

3 If we want to apply the authentic traceability analysis 
to a model- intercomparison project (e.g., CMIP6), 
what additional information or modeling outputs are 
needed from each model?

FIGURE 20.8 Results of the temporal traceability analysis on three CMIP6 models from 1980 to 2000. (a) Land C storage decomposed 
into C storage capacity and potential. (solid lines: C storage; shaded outlines: C storage capacity; shades: C storage potential (positive above 
and negative below the solid lines)); (b) C storage capacity decomposed into NPP and residence time; (c) NPP determined by GPP and CUE; 
(d) residence time decomposed into baseline residence time and environmental scalar.

FIGURE 20.9 Global distribution of baseline carbon residence 
time in three CMIP6 earth system models over 1980– 2000.
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21  Data Assimilation
Introduction, Procedure, and Applications

Yiqi Luo
Cornell University, Ithaca, USA

Realistic prediction of ecosystem responses to climate change 
requires not only a perfect model structure to represent the 
real-world processes but also parameterization to constrain 
model specifications and external forcing variables to reflect 
the environment that an ecosystem experiences to perform its 
functioning. Data assimilation is a statistical approach to model 
parameterization. This chapter introduces data assimilation, 
mainly focusing on concepts, procedure, and applications. 
We relate data assimilation to regression analysis to show a 
seven-step procedure:  defining a research objective, having 
data, using one model, measuring data-model mismatches, 
minimizing the mismatches via global optimization, 
estimating parameters, and predicting ecosystem changes.

INTRODUCTION OF DATA ASSIMILATION

Data assimilation is a statistically rigorous approach to model 
parameterization. The latter is one of the three essential 
elements of realistic model prediction. To realistically predict 
ecosystem responses to climate change, we need the model 
structure to represent the real- world processes that control 
system functions. We also need model specification through 
parameterization to constrain model predictions (Figure 21.1). 
Moreover, the external forcing variables have to reflect 
the physical, chemical, and biological environment that an 
ecosystem experiences to perform its functioning. Ideally, all 
three elements have to be perfectly aligned before a model can 
well predict ecosystem responses.

In reality, we spend much more time developing process- 
based models than thinking about parameterization or 
forcing. When prediction of a model does not match well with 
observations, we usually look at model structure and often 
ignore parameterization and forcing. In fact, parameterization 
cannot be totally ignored. To make a model work, we have 
to tune parameters. But we have not learned much from 
parameter tuning in the past several decades. Data assimilation 
is a relatively new approach that can be used to rigorously 
estimate parameter values and offers a new way to learn about 
model parameterization. We will learn about data assimilation 
in the training Units 6 and 7.

External forcing will be explored in Unit 8. In short, we 
need to have a data- model consistent system, which can be 
realized by an interactive Ecological Platform for Assimilating 
Data (EcoPAD) or similar workflow systems, to have realistic 

external forcing variables to drive models for ecological 
forecasting.

THE NEED FOR DATA ASSIMILATION

To fully understand the need of data assimilation, we 
should first understand process- based modeling. Traditional 
modeling is often called simulation modeling or forward 
modeling. Simulation modeling usually needs to develop a 
process- based model first. The model usually means a model 
structure with a series of equations to represent processes in a 
system and assigned parameter values. Then, we use forcing 
variables to drive the model. The forcing variables for an 
ecological model usually include radiation, temperature, and 
precipitation. When the forcing variables are used to drive the 
model, the model generates outputs, such as carbon storage 
or net ecosystem exchange. The model outputs are sometimes 
compared with data for validation. This simulation approach 
has been extensively used by ecologists for about 60 years. It is 
very powerful for exploring ideas and hypotheses in ecology.

Here is an example of a simulation modeling study done 
at the Free Air CO2 Enrichment (FACE) Duke Forest project 
(Luo and Reynolds 1999). The project had three FACE rings 
and three control rings plus one prototype ring. In the FACE 
rings, the CO2 concentration was 200 parts per million higher 
than that in the three ambient rings. One of the ideas for 
the FACE study was to show how a forest would be when 
CO2 concentration increases to the elevated level in the 
middle of this century. The hypothesis was that forest carbon 
sequestration in the elevated CO2 rings would be an estimate 
when the atmospheric CO2 concentration was gradually 
increasing to that level.

Dr. James Reynolds and I worked together to test this 
hypothesis using a simulation modeling approach (Figure 21.2). 
We used an ecosystem model to test that hypothesis. We 
simulated two scenarios. One was to have CO2 concentration 
gradually increasing as shown in panel A or abruptly increased 
as in panel D of Figure 21.2. When the atmospheric CO2 
concentration is gradually increasing, both photosynthesis 
and ecosystem respiration are gradually increasing as shown 
in panel B. But respiration lags behind due to the carbon that 
enters the ecosystem through photosynthesis and has to stay in 
the ecosystem for a while before it is released via respiration. 
The difference between photosynthesis and respiration is the 
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FIGURE 21.2 Simulation model to evaluate responses of ecosystem carbon (C) processes to a gradual vs. step increase in atmospheric 
[CO2]. In response to the gradual increase in [CO2] (A), both photosynthesis and respiration increased gradually (B), leading to a gradual 
increase in carbon sequestration (C). In response to the step CO2 increase (D), photosynthesis immediately increases, but respiration slowly 
increases (E), leading to a high rate of carbon sequestration right after the step increase in CO2, followed by decline.

Adopted from Luo and Reynolds 1999.

FIGURE 21.1 Three elements required for realistic model prediction of ecosystem responses to global change. Parameterization is equally 
important as model structure and forcing in predicting states of ecosystems under global change. Data assimilation offers a statistically 
rigorous approach not only to fit a model better with data, but also enable it to evaluate which, how, how much, and why parameters change 
(Luo and Schuur 2020). The workflow system Ecological Platform for Assimilating Data (EcoPAD) to link real- time forcing variables for 
automating forecasting and predictability of terrestrial carbon cycle is discussed in Chapter 29.
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ecosystem carbon sequestration as shown in panel C. The 
modeled carbon sequestration gradually increases under the 
gradual CO2 increase scenario in the real world. In contrast, 
photosynthesis abruptly increases in response to a step 
increase in CO2 concentration as in the FACE experiment, 
but ecosystem respiration gradually increases, leading to a 
pulse increase in carbon sequestration followed by a gradual 
decline as shown in panel F. This is a simulation modeling 
study. It is quite powerful to contradict the original hypothesis 
that carbon sequestration observed in FACE plots can be 
extrapolated to the real world when CO2 concentration is 
gradually increasing.

However, when simulation models are used for prediction 
or forecasting, the model and data usually do not match well. 
Predictions of soil carbon density by eleven models used in the 
Coupled Model Intercomparison Project Phase 5, CMIP5, do 
not match with the observation- based carbon density from the 
homogenized world soil carbon database (HWSD) (Luo et al. 
2015). None of the model predictions match with observations 
well. The mismatches between the models and observations 
are partly due to the lack of data constraints of either model 
structures or parameterization.

Data assimilation is also needed to integrate information 
contained in both model and data. Modeling is one approach 
to scientific inquiry mainly through process thinking. Data 
are obtained from field or laboratory research, which is also 
an approach to scientific inquiry through snapshot records of 
ecosystem states at the time when the observation was made. 
The two approaches acquire information on different aspects 
of an ecosystem. The information acquired from recording 

the state of the ecosystem is highly complementary to that of 
process understanding. Integration of model and data will help 
gain the best knowledge from imperfect data and imperfect 
models (Luo et al. 2011).

When data assimilation is used for integration of data and 
models, it starts with data and associated uncertainty (or noise). 
Data is combined with modeled values to inversely infer model 
structures and/ or parameter values. Therefore, data assimilation 
is sometimes called inverse analysis, data- model fusion, inverse 
modeling, multiple constraints, or inference analysis, depending 
on situations when this technique is applied.

SEVEN- STEP PROCEDURE OF DATA 
ASSIMILATION

A data assimilation study is usually conducted by following 
a seven- step procedure. I will explain the seven steps mainly 
using the example in the study by Xu et al. (2006). You may 
go back and forth between this chapter and the paper by Xu 
et al. (2006). This seven- step procedure is further explained 
in the practice of Unit 6 (i.e., Chapter 24) and other chapters.

Data assimilation is fundamentally a statistical analysis. It 
is very similar to regression analysis in terms of the procedure.

When we conduct a regression analysis to understand  
a relationship, for example, between arm length vs. height,  
we usually have to go through seven steps (the left side of  
Figure 21.3). First, we need to decide what the objective  
is. In this case, we try to predict height from arm length.  
Second, we need to collect data of the arm length and height  
of all individuals in a sample of a population we are going  

FIGURE 21.3 A seven- step procedure for both regression analysis and data assimilation. Data assimilation is a statistical approach and has 
a similar procedure with regression analysis. A key measure is fitness between data and model values in regression and posterior probability 
distributions of estimated parameters in data assimilation, although the data- model fitness is also important for data assimilation.
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to investigate. Third, we need to select a regression equation.  
In this case, a linear model is adequate. Fourth, we need  
to measure mismatches between observed heights, y, and  
estimated heights y  from the regression line. Fifth, we will  
minimize the mismatch using the method of least squares.  
Sixth, we will obtain the optimized estimates of regression  
coefficients a and b of the linear model. The seventh step is  
to predict a height from the arm length of one individual. For  
example, the regression line between heights and arm lengths  
from a sample in Nigeria reported from a paper by Vanderjagt  
et al. (2001) shows y =  25.8 +  3.69x, where x is the length  
of arm and y is the height (Figure 21.3). In short, the seven  
steps of conducting regression analysis are: (1) setting up  
an objective; (2) collecting data; (3) selecting an equation;  
(4) measuring mismatches; (5) optimization by minimizing the  
sum of squares of the residuals; (6) estimation of parameters;  
and (7) prediction (Figure 21.3).

The procedure to conduct a data assimilation study is similar 
to a regression analysis. To conduct a data assimilation study, 
we also need to: first, set up an objective, such as predicting 
ecosystem response to global change; second, have data sets; 
third, have a model; fourth, develop a cost function to measure 
mismatches between observations and model values; fifth, 
have global optimization to minimize the cost function; sixth, 
estimate parameter values; and seventh, do prediction.

We use a study done by Xu et al. (2006) to show the 
seven steps. First, the objective of the study was to predict 
terrestrial carbon sequestration in response to elevated CO2 
concentration. Second, the study used six data sets at the 
ambient CO2 treatment and six data sets at the elevated CO2 
treatment. Third, the study used the Terrestrial ECOsystem 
(TECO) model. Fourth, mismatches between observed and 
modeled values were measured by a cost function. Fifth, the 
optimization method used in the study was the Markov Chain 
Monte Carlo with Metropolis- Hasting algorithm. Sixth, the 
estimated parameters were decomposition coefficients of litter 
and soil organic carbon. Seventh, prediction was on carbon 
sequestration in nine pools of the TECO model at both the 
ambient and elevated CO2 treatments.

Although the procedure is very similar to the regression 
analysis, there are some new concepts, such as mapping 
functions, a cost function, Markov Chain Monte Carlo 
(MCMC) sampling series, and the Metropolis- Hasting 
criterion. Those new concepts are explained in Chapter 22 
and illustrated with practice examples in Chapter 24.

Let us go over each of the seven steps (Figure 21.3). Note 
that cited symbols, page numbers, figures, and tables in this 
section all refer to those in the paper by Xu et al. (2006).

1 Step 1 is to define an objective. The general objective 
of the study was to predict ecosystem responses 
to elevated CO2 concentration with uncertainty 
quantified. You can find this objective in paragraph 
2 on page 1. A more specific objective of the study 
was to estimate parameter values, c1…c7, in Table 1 on 
page 3 of the paper by Xu et al. (2006) and then predict 
carbon pool changes at ambient and elevated CO2 

treatments in Duke Forest as described in paragraph 4 
on page 2. Parameters, c1…c7, represent decomposition 
of organic carbon from litter and soil pools.

2 Step 2 is to have data sets. The data sets used in the 
study are soil respiration, woody biomass, foliage 
biomass, litterfall, soil carbon, and mineral carbon at 
the ambient and elevated CO2 treatments. Those data 
sets are described in paragraph 6 on page 3 and Table 2 
on page 4 of the paper by Xu et al. (2006). We also 
need to use standard deviations of the six data sets in 
data assimilation.

3 Step 3 is to have a model. This study uses the Terrestrial 
ECOsystem (TECO) model. The TECO model is 
depicted in Figure 1 and described in equation 1 on 
page 2 of the paper by Xu et al. (2006). Please note that 
that figure has a typo. Pool X 1 should be a non- woody 
pool, which includes foliage and fine root biomass. 
One more point is that the TECO model in this paper 
was described by the matrix equation, which is the 
same equation as we studied in Units 1– 5 with slightly 
different notations.

4 Step 4 is to define a cost function. The cost function 
is to measure mismatches between observed and 
modeled values. The mismatches are described by 
equation 5 for individual data sets and equation 6 for 
all the six data sets on page 4 of the paper by Xu et al. 
(2006). The modeled values have to be mapped to 
observations via a mapping function Φ, which has six 
elements, respectively, for six data sets, as described in 
equation 3 on page 4. The mapping function is further 
illustrated in the practice session in Unit 6 of this book 
(i.e., Chapter 24). The cost function is equivalent to 
the likelihood function in equation 8 on page 4 of the 
paper by Xu et al. (2006).

5 Step 5 is to minimize the cost function via global 
optimization. The optimization was done with Markov 
Chain Monte Carlo (MCMC) sampling series. The 
MCMC has two phases, a proposing phase and a 
moving phase. The proposing phase is to generate new 
parameter sets. The moving phase is to examine if the 
newly proposed parameters should be accepted or not 
using a Metropolis- Hastings criterion. The two phases of 
MCMC are described in paragraphs 12 and 13 on pages 4 
and 5 of the paper by Xu et al. (2006). The study uses five 
parallel runs to test convergence of sampling series with 
the Gelman- Rubin method as described in paragraphs 14 
and 15 on page 5 of the paper by Xu et al. (2006).

6 Step 6 is to estimate parameter values after the 
cost function is minimized in step 5. The estimated 
parameter values are described in paragraph 17 on 
page 5, depicted in Figures 3 and 4, and Table 3 on 
pages 6– 8 of the paper by Xu et al. (2006). Estimated 
parameters have three types of distributions, or 
histograms, as shown in the mid- columns in Figures 3 
and 4. The three types of histograms are bell- shaped 
for parameters c1, c2, and c4, edge- hitting for c6, and flat 
for c3, c5, and c7 in Figure 4 on page 7 of the paper by  
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Xu et al. (2006). The bell- shaped histograms indicate 
that those parameters are well constrained by data. The 
flat- shaped histograms mean that those parameters are 
not constrained by data. In other words, the six data 
sets do not have much information that is relevant to 
constrain those parameters. The edge- hitting histograms 
mean that those parameters may be strongly correlated 
with other parameters or caused by other reasons.

7 Step 7 is to use the estimated parameters from step 
6 in the TECO model to predict future states of 
ecosystems. The predicted carbon pool changes in the 
year 2010 at the ambient and elevated CO2 treatments 
are described in paragraph 17 on page 5, Figure 9 
on page 11, and Table 4 on page 12 of the paper by 
Xu et al. (2006). Uncertainty in model prediction 
is quantified with cumulative density functions in 
Figure 9 and confidence intervals in Table 4. CO2 
effects are represented by the predicted changes in 
pool sizes as indicated by the differences between the 
solid lines at elevated CO2 and dashed lines at ambient 
CO2 in Figure 9. As you can see from the paper by 
Xu et al. (2006), elevated CO2 had the largest effects 
on woody biomass but no effects on the passive soil 
carbon pool.

Again, the seven steps to conduct a data assimilation study are 
setting up an objective, collecting data sets, having a model, 
and defining a cost function, using a global optimization 
method to minimize the cost function, estimating parameter 
values, and predicting.

The seven- step data assimilation is essential to estimate 
parameter values and constrain model predictions through 
parameterization. The parameterization, in turn, is essential 
toward realistic model prediction.

SCIENTIFIC VALUES OF DATA ASSIMILATION

Data assimilation is a statistical tool. Its scientific values 
are realized when it is used to estimate parameter values, 
select alternative model structures, quantify uncertainty, and/ 
or evaluate values of different data sets to constrain model 
prediction. The study by Xu et al. (2006) has illustrated 
how data assimilation was used to estimate parameters and 
quantify uncertainty of estimated parameters and model 
predictions. Data assimilation has been used to quantify 
uncertainty associated with different model structures. For 
example, the study conducted by Shi et al. (2018) evaluated 
three soil carbon models: a classic or conventional model, a 
microbial model, MIMICS, and a vertically resolved model, 
CLM4.5, with three data sets: topsoil organic carbon in 0– 
30 cm, subsoil organic carbon in 30– 100 cm, and microbial 
biomass carbon. The three data sets can constrain subsets of 
parameters for all the three models while complex models 
generate larger uncertainties in predictions even with the same 
data sets to constrain parameters.

Data assimilation also can be used to evaluate values of 
different data sets to constrain model predictions. The values 

of data sets are measured by information content according 
to the Shannon information index and quantified from 
probability density functions of predicted changes (Weng and 
Luo 2011). In principle, data sets contain information mainly 
on the parameters that are related to relevant processes. For 
example, flux data, such as net ecosystem exchange and 
gross primary production, can usually constrain parameters 
related to flux processes, such as leaf area index and maximal 
carboxylation rate. In comparison, pool data, such as plant 
biomass and soil carbon content, usually have information 
to constrain pool- related parameters, such as carbon transfer 
coefficients between pools.

Data assimilation is often used to test alternative model 
structures. For example, four alternative models were 
evaluated for their representation of the priming effect on 
soil organic carbon decomposition with 84 data sets from 26 
studies (Liang et al. 2018). Scientifically, the study evaluates 
whether the soil priming effect leads to net loss or net gain 
of soil organic carbon by adding new carbon input. Priming 
is a term to describe stimulation of old soil organic carbon 
(SOC) decomposition by new carbon addition. This priming 
effect usually results from stimulated microbial growth by 
new carbon addition.

The study requires data to be collected from isotope- 
labeled carbon addition experiments. Those studies have 
to provide SOC content, the added amount of new carbon, 
multiple measurements of CO2 emission rates from total SOC 
samples and from labeled new carbon substrate, from which 
the CO2 emission rates from old SOC can be estimated.

The study uses four models, including conventional soil 
carbon dynamic model, new- old carbon interactive model, 
Michaelis- Menten model, and reverse Michaelis- Menten 
model. Data assimilation is used to integrate the 84 data 
sets with the four models to evaluate data- model matches by 
comparing observed with modeled cumulative CO2 emission 
rates from the total SOC, old SOC, and new carbon substrate 
(Figure 21.4). The conventional model can fit observed 
carbon releases from new, old, and total SOC extremely well. 
The interactive model can fit observations quite well, too. 
However, the fitting is not good for Michaelis- Menten and 
reverse Michaelis- Menten models, especially with observed 
carbon releases from old and total SOC.

The model- data fitting also shows that the conventional 
model fits the best and the Michaelis- Menten model fits the 
worst. A deviance information criterion (DIC) was used to 
select alternative model structures. DIC penalizes the model 
severely by the number of parameters. Among the four models, 
DIC is the smallest for the interactive models but largest for the 
conventional model as the latter has 12 parameters although 
the fitting of the model with data is the tightest. Based on the 
DIC, the most parsimonious model is the interactive model.

Then, the interactive model was used to estimate priming  
effect, replenishment, and net change in carbon after adding  
new carbon to the soil incubation experiments. Nearly 54%  
of the newly added carbon stays in the soil, stimulated old  
carbon decomposition via the priming effect is nearly 10%  
of the newly added carbon. As a consequence, SOC has a net  
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gain of 32% of the added new carbon. This analysis indicates  
that priming does happen but is unlikely to lead to a net loss  
of SOC.

This study used data assimilation to address a highly 
controversial issue on priming effect. The study shows that 
adding new carbon to soil does result in a priming effect but 
eventually results in net carbon gain. The increase in SOC is 
related to nitrogen content in the added substrates. The study 
shows how data assimilation was used to select alternative 
model structures and suggests that a two- pool interactive 
model is the most parsimonious model to represent a SOC 
priming effect.

Overall, data assimilation is a statistically rigorous 
approach to model parameterization, which is essential to 
generate realistic model prediction. Data assimilation is 
usually conducted by following a seven- step procedure. The 
seven steps are: (1) setting up an objective; (2) collecting 
data sets; (3) having a model; (4) defining a cost function; 
(5) using a global optimization method to minimize the cost 
function; (6) estimating parameter values; and (7) predicting. 
The scientific values of data assimilation can be realized 
when it is used to estimate parameters, select alternative 
model structures, evaluate values of data sets in constraining 

model predictions, and quantify uncertainty in model 
prediction.

SUGGESTED READING

Xu, T., L. White, D. Hui, and Y. Luo. 2006. Probabilistic inversion of a 
terrestrial ecosystem model: Analysis of uncertainty in parameter 
estimation and model prediction. Global Biogeochemical 
Cycles, 20, GB2007. doi:10.1029/ 2005GB002468

QUIZ

1 What are the three elements, which all have to be 
perfectly lined up to realistically forecast future states 
of an ecosystem? Why?

2 Data assimilation is a method
a to integrate data with model.
b to calibrate a model with data.
c to use statistical principles for analyzing data.
d often used for parameter estimation.
e all the above

3 Why is simulation modeling good for exploring ideas 
but not for prediction or forecasting?

FIGURE 21.4 An example showing the performances of different models in simulating cumulative CO2 emissions from old and new C 
substrates. Dots and lines are observations and model simulations, respectively. Shaded areas are the simulated ranges from 2.5th to 97.5th 
percentiles (i.e., 95% range). Blue and red are CO2 emissions from old C at the control and new C addition treatments, respectively; Black is CO2 
emissions from added new C. The distributions of simulated cumulative CO2 emissions at the end of experiment are also shown in each panel.

Adopted from Liang et al., 2018.
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4 Why are field research and modeling scientifically 
complementary? It is because (can choose more than 
one answer):
a one makes measurement and the other uses 

computer.
b they are two approaches to scientific inquiry of a 

research subject in different ways.
c the field research records the state of an ecosystem 

whereas the modeling explores relationships 
among processes.

d data from field research can be better interpreted 
from process understanding whereas model 
forecast can be better constrained with data.

5 What are the seven steps of conducting a data 
assimilation study?

6 A cost function is (choose one answer)
a a function to calculate cost of training.

b to measure mismatches between modeled and 
observed values for all the data sets.

c a data set to be used in data assimilation.
d a model to be optimized through data assimilation.

7 Posterior probability density function is (choose one 
answer)
a to indicate carbon density after field measurement.
b to indicate probability of a parameter value before 

data assimilation.
c a function of time from prior to posterior.
d to indicate a relative likelihood of an estimated 

parameter value after data assimilation.
8 Why do we need a global instead of local optimization 

method for data assimilation?
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 Bayesian Statistics and Markov  
Chain Monte Carlo Method in  
Data Assimilation

Feng Tao
Cornell University, Ithaca, USA

Data assimilation is an effective way to integrate observations 
into models. We will demonstrate how parameters in a model 
may be estimated by data assimilation in such a way that model 
simulations best fit observations. Data assimilation based on 
Bayesian inversion is used to retrieve posterior distributions 
of model parameters from observations. The Markov Chain 
Monte Carlo (MCMC) method is applied as a numerical 
method to home in on the parameter set that maximizes 
goodness of fit between model outputs and measurements.

INTRODUCTION

In this chapter, we will first give a brief introduction to 
Bayesian statistics, which is the theoretical foundation of 
data assimilation. By learning the Bayes’ theorem, you will 
understand why we can get knowledge from the data. After 
familiarizing ourselves with the theory, we will then learn 
how to apply the theory to an algorithm, namely the Markov 
Chain Monte Carlo (MCMC) method, which is useful for 
optimization problems, like fitting a model with multiple 
parameters to observational datasets. At the end of the 
chapter, we will discuss how to achieve stable optimization 
results with the MCMC algorithm, the so- called simulation 
convergence problem. This chapter is a brief introduction to 
these topics to help readers build an intuitive understanding 
of data assimilation. If you want to know more about rigorous 
theoretical proofs of theorems and equations mentioned in this 
chapter, you are encouraged to refer to the suggested readings 
at the end.

BAYES’ THEOREM

The Bayes’ theorem, in plain words, is a method for calculating 
the validity of thinking (Horgan 2016). The “thinking” can 
be one’s hypotheses, claims, or propositions. The results (i.e., 
the updated validity of thinking) given by Bayes’ theorem 
are based on the best available evidence, such as the data, 
observation, or any information one can obtain. Bayesian 
thinking happens every day in our lives. Before we collect any 
related information and update our thinking over a particular 
question, we all do some initial thinking on the validity of 
the question, no matter if our attitude is initially skeptical or 
credulous. When we get new related data or information from 

the real world, we will naturally update our thinking over the 
question. This evidence- based updated thinking is the primary 
character of Bayes’ theorem.

We can mathematically express Bayes’ theorem as:

 P A B
P B A P A

P B
P B A P A|

|
|( ) =

( ) ( )
( ) ∝ ( ) ( ) 22.1

If we take events happening in our lives alphabetically as A 
and B, the probability of event A happening can be expressed 
as P(A). The probability of event B happening can be 
expressed as P(B). We use P(A|B) to indicate the probability 
of event A happening given the fact that event B has happened. 
Analogously, P(B|A) represents the probability of event B 
happening given the fact that event A has happened.

The Bayes’ theorem intuitively expresses that the probability 
of event A to happen given event B has already happened is 
proportional to the possibilities of event B happening where 
event A has already happened, and, at the same time, event 
A happening. When we calculate the probability of event 
A happening given event B has already happened (i.e., 
P(A|B)), we can assume event B has been well observed. The 
probability of event B happening (i.e., P(B)) then becomes a 
constant. P(A|B) is now proportional to a product of P(B|A) 
and P(A). We may know some information about A and can 
transfer such information into an initial thinking (i.e., P(A)). 
Based on the initial thinking, we can also get a sense of how 
likely it is for event B to happen given A has happened (i.e., 
P(B|A)). Mathematically we call P(A) our prior knowledge, 
while P(B|A) is termed the likelihood. Combining the prior 
knowledge and likelihood, we update our thinking as posterior 
knowledge (i.e., P(A|B)).

We will use an example to illustrate how Bayes’ theorem 
works. Suppose you are in an international meeting and receive 
a flyer advertising the training course “New Advances in Land 
Carbon Cycle Modeling”, which will train people in carbon 
cycle modeling and data assimilation. You are interested 
and prepared to apply. Before the application, however, you 
feel concerned that your lack of experience in simulation 
modeling may hinder your success in the training course. 
You may wonder what the probability of your success in the 
training course will be, given you have no previous modeling 
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experience. By emailing the course coordinator, you learn that 
according to previous records, 80% of past trainees attending 
the training course succeeded in understanding the training 
material and finished the practices. In terms of the background 
of all trainees, half of them had no experience in modeling 
before the course. Among the successful trainees, 43.75% had 
no experience in modeling before the course.

We can conceptualize this issue into Bayes’ theorem. We 
can define the event A as one’s success in the training course 
and the event B as the trainee having no modeling experience 
before the training course. We now know P(B) =  0.5 (half of 
the trainees have no modeling experience before the training 
course); P(A) =  0.8 (80% of the trainees succeeded in the 
training course); and P(B|A) =  0.4375 (among the successful 
trainees, 43.75% had no experience in modeling before the 
training). By substituting all the factors into Equation 22.1, 
we get P(A|B) =  0.7. The result implies that even if a trainee 
did not have any experience in modeling before the training 
course, the chance of success is 70%, which is still pretty large.

The question could go the other way. Suppose you 
have prior experience in modeling, you may ask what the 
possibility of your being successful in the training course is. 
To answer this question, we need to calculate P(A|¬B), where 
¬B indicates the event of B not happening, and P(¬B) =  1 –  
P(B). According to Equation 22.1,
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when we substitute all the probability numbers we obtained 
from the coordinator into Equation 22.2, we get P(A|¬B) =  0.9. 
So, if you have previous experience in modeling, the chance 
of success in the training course increases from 70% to 90%.

We used discrete events and their possibilities in the above 
example to illustrate Bayes’ theorem. In simulation modeling, 
we use parameters that are continuous values to represent 
ecological processes. We assume that if we choose the correct 
parameter values, observations in the real world (e.g., soil 
organic carbon content) can then be predicted by the model. 
In this context, we use probability distributions of parameters 

(as expressed by the probability density function) to show 
all possible values of one parameter and the likelihood of 
occurrence for different values within that overall distribution. 
The Bayes’ theorem will help us, in a reverse way, find the 
most likely distribution of parameter 𝜃 to best describe the 
observed data x in a model:

 p x
p x p

p x
p x pθ

θ θ
θ θ|

|
|( ) =

( ) ( )
( ) ∝ ( ) ( )  22.3

where the p(θ) is the prior probability density function of 
parameter 𝜃; p(x|θ) represents the likelihood that we use the 
model with 𝜃 set to different values from its distribution, 
and correctly predict the observation x. Combining the prior 
distribution p(θ) with the likelihood p(x|θ) will give the 
posterior probability density function of 𝜃 (i.e., p(θ|x)).

Bayes’ theorem explicitly offers the possibility of using 
observational data to refresh our prior knowledge. The 
term p(x|θ) in Equation 22.3 shows how likely we are to 
observe data x under different values of parameter 𝜃 from its 
distribution. This indicates if we propose different 𝜃 values 
and record them with their likelihoods (i.e., p(x|θ)), we will 
eventually obtain the posterior distribution describing the 
optimized parameter values that best fit the observations 
(Figure 22.1).

MARKOV CHAIN MONTE CARLO METHOD

In data assimilation, the Markov Chain Monte Carlo (MCMC) 
method offers an algorithm that screens a range of possible 
parameter values under specific prior knowledge and retrieves 
the posterior distribution of the parameter. The MCMC method 
is composed of two parts, namely a Markov Chain and the 
Monte Carlo method. A Markov Chain is a stochastic model 
that describes a sequence of possible events. The probability 
of each event in a Markov Chain depends only on the state 
attained in the previous event. The Monte Carlo method, on 
the other hand, represents a class of algorithms that sample 
events from a Markov Chain to fit an optimization target. 
Various algorithms exist for sampling. Here, we will focus on 
the Metropolis- Hastings algorithm.

We begin with an example to show the workflow of the  
MCMC method. Suppose that we are organizing the training  

FIGURE 22.1 Schematic diagram of the Bayesian inference process.
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course “New Advances in Land Carbon Cycle Modeling”. The  
admission process is critical to the final outcome of the course.  
By scanning the profiles of applicants, we need to select those  
applicants who will most likely benefit from the training. The  
question at this stage is then formulated as “through which  
algorithm shall we select the participants from among all the  
candidates?”

First, we may need to specify the topical scope of the training 
course so that we can define the target group who may be of 
interest (Figure 22.2). A clear and well- defined scope will help 
define the “perfect candidate” who will definitely benefit from 
the training. For example, we may accept people who are doing 
research in the carbon cycle field, familiar with basic simulation 
modeling, and who would like to integrate models and data to 
enhance their understanding of ecological processes.

After defining the scope of the training course, we may 
send out the flyers to advertise the course. We will then receive 
applications from people who are interested in and believe that 
they can benefit from the course. All the applicants now become 
the potential candidates as trainees. We now need to evaluate 
the match between the backgrounds of candidates and our 
training scope. The characteristics of the “perfect candidate” in 
our mind will function as a reference in such evaluation.

We make decisions based on the assessments of candidates. 
Three possibilities will be on the table. We may find that the 
background of the applicant is very close to that of our “perfect 
candidate”, which means the applicant will most likely benefit 
from the training course. In this case, we will admit the 
applicant without hesitation. Conversely, we may also receive 
applications where the background of the applicant does not 
fit the scope of the training at all. We will directly reject those 
applications. Another possibility is that the background of the 
applicant does not perfectly fit our “perfect candidate”, but 
is still close enough to get likely benefits from our course. 
Instead of direct rejections, we may consider an algorithm to 
decide whether to accept or reject the applicant. For example, 
we may set new criteria to evaluate the fitness of these 
applicants to the training course and eventually admit those 
who meet the criteria.

Four steps together make up the admission process. The 
first step initiates the process. We need to set the scope of 
the training course and determine the target group who 
will be of interest. In the second step, applications provide 
all the possibilities we can choose from to fit our target 
of maximizing the overall benefit of the training. We then 
make decisions in the third step to accept or reject the 
applications according to some standards. Finally, in step 
four, we repeat the procedure from steps two and three for 
each candidate.

The MCMC method follows the same four steps to 
optimize parameters to fit model simulations with observations 
(Figure 22.3). In step one, we initiate the algorithm by first 
determining the optimization target (i.e., the observations). We 
set a prior range of the possible parameter values that remains 
consistent with the ecological meaning of the investigated 
process, and simultaneously, allows sufficient flexibility in 
model simulations.

The second step generates the Markov Chain. We propose 
a sequence of candidates of parameter values so that we can 
select the candidates by a certain algorithm (in our example, the 
Metropolis- Hastings algorithm). A proposal distribution will 
be selected and serves to generate new candidate parameter 
values. We then apply the proposed parameter values in the 
model and get the simulation results.

We use two proposal distributions in step two, which are the 
uniform distribution in the test run and the normal distribution 
in the formal run (Haario et al. 2001). When we have no prior 
knowledge about the parameter, a uniform distribution will be 
a reasonable start. The uniform distribution does not contain 
any shape information of the parameter distribution, but only 
sets the upper and lower limits of parameter values, which 
we determined based on our general understanding of the 
parameter in step one. The kth proposed parameter value is 
expressed as:

 θ θ θ θk k r
D

= +
−−1

max min

 22.4

FIGURE 22.2 An example of using the MCMC method to admit candidates based on their application details.
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where r is a random value drawn from the uniform distribution  
in the interval between 0 and 1; D indicates the maximum step  
size in the proposal. For example, D =  5 indicates that the  
maximum step of the kth proposed parameter value (θk) from  
the k- 1th proposed parameter value (θ k − 1) is 20% of the prior  
range (i.e., θ max − θ min).

After the test run of MCMC with a uniform proposal 
distribution, we obtain some preliminary information on the 
investigated parameter. The following formal run will then use 
the results of the test run as its prior knowledge so that we 
can more efficiently get the stable posterior distribution of the 
parameter. A normal distribution will be assumed in the formal 
run. When we investigate multiple parameters, we assume that 
the parameters follow a multivariate normal distribution. The 
parameter values will be proposed as:
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where we calculate the covariance of parameters by the results 
of the test run at the starting stage of the formal run (i.e., 
before the k

0
th iteration). After some iterations of the formal 

run, we continuously update the covariance information from 
the formal run results. The point k0 is an empirical value we 
may set based on experience, depending on how fast we think 
the formal run can fully utilize the prior information in the 
test run.

In step three, we apply the Metropolis- Hastings algorithm 
to accept or reject proposed parameter values. We evaluate how 
the simulated results based on the proposed parameter values 
fit the observations and decide whether to accept the proposed 
parameter values or not. A cost function serves to quantify 
the degree of discrepancy of the predicted values of the target 
variable x in the simulations relative to the observations of x. 
We express the cost function of the kth proposed parameter 
(θ k) as:
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 describes the distance of the 

simulation results from observations with the sample size of n 
(e.g., ten- year record of net primary productivity of a grassland 
site); σ 2 is the variance of observations, which we can either 
calculate from measurements or from empirical knowledge. 
Equation 22.6 expresses the cost function for a single data 
set. When multiple data sets are used (e.g., ten- year record of 
net primary productivity, soil organic carbon content, and soil 
respiration of a grassland sites), the mismatches of individual 
data sets are added together, optionally with weightings to 
emphasize the importance of certain variables relative to the 
others, to obtain the cost function.

Now we make use of Bayes’ theorem. From Equation 
22.3, we can define the likelihood of the parameter value 
(θ k) in fitting model simulations (xi, mod) to observations  
(xi, obs) as:

 L p x p x pk k k kθ θ θ θ( ) = ( ) ∝ ( ) ( )| |  22.7

We use the cost function in a monotonically decreasing 
exponential form to describe p(x| θ k):

 L k
k

θ( ) ∝ −( )exp ∆  22.8

Using Equation 22.8 to quantify the likelihood requires several 
assumptions in Bayesian statistics (Craiu and Rosenthal 
2014). From the data optimization perspective, Δk expressed in 
Equation 22.6 offers a measurement of the deviation of model 
simulations from observations. We connect such a metric with 
the likelihood of the proposed parameter values: we assign a 

FIGURE 22.3 Workflow of the MCMC method. The Metropolis- Hastings algorithm is used to accept or reject proposed parameter values 
in a Markov Chain.
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high likelihood to proposed parameter values when the cost 
function result is small and vice versa.

We use the likelihood ratio of consecutively proposed 
parameter values in the Markov Chain to make the acceptance 
decision. The probability of accepting the kth proposed 
parameter value (θ k) based on the results of k– 1th proposed 
parameter value (θ k−1) can be formulated as:
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Substituting Equation 22.8 into Equation 22.9 gives:
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When the cost function with θ k is smaller than that with 
θ k−1, this tells us that the results of the present simulation 
are closer to the observations than the previous one. By 
Equation 22.10, we get P(θ k −1, θ k) =  1, which indicates 
we will definitely accept the proposed parameter value θ k.    
Conversely, if the cost function calculated from proposed 
parameters θ k is higher than that of θ k −1, this tells us that 
the simulation results by θ k, in comparison to observations, 
is worse than that by θ k −1. We then get a P(θ k −1, θ k) result in 
the interval between 0 and 1. In this case, we may or may not 
accept the proposed θ k, depending on a random chance. In 
practice, we compare P(θ k −1, θ k) with a random value u that 
follows the uniform distribution u~U(0, 1). We accept the 
proposed θ k when P(θ k −1, θ k) > u. Otherwise, we will reject 
the proposed θ k.

It may seem strange that we sometimes accept the 
proposed θ k, instead of a direct rejection when a proposed 
set of parameters yields simulation worse than the previous 
set (i.e., the new cost larger than the previous one, Δk − Δk − 1  
> 0). In optimization, the “bad” results can be helpful 
in finding the global minimum of the cost function. The 
response surface of the cost function can be extremely 
nonlinear for a multivariate, high- dimension model. If we 
do not give a chance to accept a “bad” set of parameters, 
we may easily get trapped in a local optimum instead of 
the global optimum. Therefore, we assign a possibility of 
acceptance, subject to chance, when P(θ k −1, θ k) is in the 
interval between 0 and 1.

CONVERGENCE OF MCMC RESULTS

When we do MCMC, we need to confirm that the results 
are the same even if we start from different points along the 
Markov Chain. This is called testing for convergence (Gelman 
et al. 2014). In theory, the MCMC should converge as long 
as the Markov Chains are long enough. That means that the 
parameters from different independent MCMC simulations 
will share the same or very similar posterior distributions.

The estimated parameters in the MCMC simulation, 
however, do not necessarily resemble each other at the very 
beginning among different Markov Chains. In the test run and 
starting stage of the formal run, accepted parameter values may 
experience a different pathway to find the global optimum. 
However, after sufficient iterations of MCMC simulation (e.g., 
10,000 iterations), the observations will eventually constrain 
the parameter to the same space, where the model simulates 
most closely to the measurements entering the cost function. 
By plotting the sampling series, we can visually determine 
when the accepted parameter values are stably constrained and 
set the early stage of the sampling series as the burn- in period. 
The exact length of burn- in period can be empirical. The first 
half of the accepted parameter chain is a safe setting for burn- 
in period given sufficient iterations in MCMC simulation 
(e.g., 100,000 iterations). In the final analysis, we exclude the 
burn- in results and only use the results after convergence to 
generate the posterior distribution.

Both visual and statistical assessment can be used to 
determine the convergence of MCMC results. The degree 
of overlap among different MCMC sampling series is a 
rough indicator of the convergence. We can also quantify the 
convergence statistically. The Gelman- Rubin (G- R) statistics 
are one option. The G- R statistics quantify the differences 
among different runs (Bi) and the fluctuation of accepted 
parameter values within the same run (Wi):
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where i denotes parameters investigated in the study; K 
is the number of parallel runs; N is the length of each run; 
c

i
n,k  represents the nth accepted value of parameter i in the kth 

parallel run after the burn- in period. The G- R statistic is then 
defined as:

 GR
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 22.12

Once convergence is reached, GRi should approximately 
approach 1.

In summary, this lecture introduces two fundamental 
underpinnings of data assimilation. The first, the Bayesian 
inference, sets the theoretical foundation of improving 
model performance by observations. The second, the Markov 
Chain Monte Carlo method, provides a numerical method 
to assimilate observational data into a model based on an 
optimization of the goodness of fit of the model output to 
the observational data. In the next chapter, using examples 
from different ecological studies we will show you how data 
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assimilation can be deployed to advance understanding of the 
land carbon cycle.

SUGGESTED READINGS
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QUIZ

1 Briefly describe the Bayes’ theorem.
2 Why do we need a test run before the formal run when 

we know little about the prior?

3 Explain why we need to sometimes accept parameters 
that have a larger cost function value (∆) than the 
previously accepted ones.

4 Why do we discard the results from the burn- in period?
5 We need to generate a random value (u) to compare 

with the results exp(Δpre –  Δnew) when the cost 
function value is larger than the previous one (Δnew 
> Δpre). Why do we accept the proposed parameter 
values only when u < exp(Δpre –  Δnew), instead of  
u > exp(Δpre –  Δnew)?
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Soil incubation is a widely used technique in studying soil 
organic carbon cycling. Integrating soil incubation data with 
soil carbon models can potentially reveal mechanisms of soil 
carbon dynamics underlying observations. This chapter aims 
to illustrate how data assimilation is applied to analyze data 
from soil incubation experiments using soil carbon models. 
After a brief introduction to soil incubation experiments and 
soil carbon models, a three-pool model is used to illustrate 
the seven-step procedure of data assimilation for the analysis 
of soil incubation data. Two critical aspects, different cases 
in the optimization step, and the dependence of parameter 
acceptance rate on cost function are described with detailed 
examples.

SOIL INCUBATION EXPERIMENTS

Soil incubation experiments are commonly carried out for 
studying soil organic carbon and nitrogen cycling processes. 
Typically, fresh soil samples are collected from the field, 
crushed, sieved, and mixed before a certain amount of soil 
is placed in a container (e.g., a Mason jar). The container 
is then exposed to different treatments of, for example, 
temperature and moisture. For carbon decomposition 
studies, carbon dioxide (CO2) emission rate (or respiration 
rate) is usually measured repeatedly during the incubation 
period. Data from soil incubation studies are usually 
plotted by either CO2 emission rates or cumulative CO2 
emission over time. Compared with in situ observations in 
the field, soil incubation experiments allow ready control 
of environmental factors and reduce heterogeneity and 
confounding effects from many processes and factors. Thus, 
results from such experiments can facilitate mechanistic 
understanding of soil carbon processes, such as the 
turnover rates and temperature sensitivity of soil organic 
carbon decomposition. However, incubation experiments 
usually isolate the soil from plants and other components 
in ecosystems, and thus may show different behavior from 
soils in a full ecosystem setting.

To illustrate how soil incubation data may be used to 
inform modeling via data assimilation, this chapter takes as 
an example the study by Liang et al. (2015), which compares 

different methods for estimating temperature sensitivity of 
soil organic carbon decomposition. The data are from a study 
by Haddix et al. (2011). Fresh soils were sampled from the 
field and transported to the laboratory. In the laboratory, the 
soil samples were sieved, and visible roots and rocks were 
picked out. From each soil sample, subsamples were taken 
and incubated in jars at different temperatures. The first 
seven days were treated as pre- incubation to minimize the 
possible artificial influences of field sampling, sieving, and 
transportation. After the pre- incubation, CO2 emission rates 
were measured as the rate of CO2 concentration increase 
in the head space of the jars over time. CO2 emission rates 
were measured daily during the first two weeks of incubation, 
weekly for the next two weeks, and every four weeks 
thereafter. Overall, there were 36 sampling occasions over the 
588- day incubation period. Cumulative CO2 emissions can be 
calculated by adding together the daily amounts of emitted 
CO2 from day 0 (Figure 23.1). These example data will be 
used for the following illustration in this chapter.

Conventionally, total CO2 emissions and/ or CO2 emission 
rates during the incubation period are directly compared to 
reveal the effect of different treatments, such as temperature 
or moisture levels. For example, temperature sensitivity 
impacts the decomposition of soil organic carbon under 
climate warming. In the past, the temperature sensitivity of 
soil organic carbon decomposition was directly calculated 
as the CO2 emission rate at a higher temperature, Rhigh, 
divided by that at a lower temperature, Rlow (Rey and Jarvis 
2006). This estimate usually underestimates the temperature 
sensitivity after the initial incubation stage because greater 
decomposition results in less substrate at high than low 
temperatures at the same point of incubation time. In 
addition, the direct comparisons of total CO2 emissions and/ 
or CO2 emission rates may not reveal processes underlying 
soil carbon dynamics, such as turnover rates of different 
carbon components and dependences of temperature 
sensitivity on substrate quality. When soil carbon models, 
which explicitly represent such processes, are integrated with 
data from soil incubation experiments via data assimilation, 
we can potentially learn more about the process responses 
underlying the observed soil carbon dynamics.
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SOIL CARBON MODELS

The general framework and underlying principles of many 
current soil carbon models were presented in Chapters 1 and 
2. Generally, first- order kinetics are used to simulate soil carbon 
cycling (Stanford and Smith 1972, Andren and Paustian 1987). 
The simplest soil carbon decomposition model simulates soil 
carbon dynamics as a single pool (Figure 23.2a). However, 
one- pool models usually perform poorly, since soil organic 
matter is compartmentalized into pools of different lability, due 
to various structures of substrates and protection mechanisms. 
As a result, multiple- pool models are most commonly used to 
simulate soil carbon dynamics. For example, a two- pool model 
divides soil carbon into active and slow pools (Figure 23.2b), 
while a three- pool model divides soil carbon into active, slow, 
and passive pools (Figure 23.2c). The two-  and three- pool 
models simulate soil carbon cycling without transfers among 
pools. Another type of model simulates transfers among pools 
(Figure 23.2d). Similar to ecosystem models discussed in 
previous chapters, soil carbon models can be described in a 

matrix form (see Chapter 5). The only difference when using 
soil carbon models to represent incubation experiments is that 
they have initial soil carbon pools size(s) at the very beginning 
of the experiment, but do not have carbon inputs.

Here we will take the three- pool model without transfer 
(Figure 23.2c) as our example to illustrate the procedure of 
data assimilation for analysis of soil incubation data. The 
three- pool model can be described as:
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k1, k2, k3 are the turnover rates of the active, slow and passive 
pools, and X1, X2, X3 are their pool sizes, respectively.

APPLICATION OF DATA ASSIMILATION TO SOIL 
INCUBATION DATA

Our data assimilation example follows the seven steps 
introduced in Chapter 21. Before we start, let us revisit 
the seven- step procedure again: (1) defining an objective; 
(2) preparing data; (3) choosing a model; (4) using a cost 
function; (5) applying an optimization method; (6) estimating 
parameters; and (7) generating predictions.

FIGURE 23.2 Schemes of soil carbon models using first- order 
kinetics.

Modified with permission from Soil Biology and 
Biochemistry: Liang et al. (2015).

FIGURE 23.1 Cumulative CO2 emission (R) at 25°C and 35°C. Data originally from Haddix et al. (2011) and used in Liang et al. (2015).

Modified with permission from Soil Biology and Biochemistry: Liang et al. (2015).
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1 Defining an objective. The objective of the study by  
Liang et al. (2015) is to compare different methods  
for estimating temperature sensitivity of soil  
organic carbon decomposition. They first reviewed  
published methods for temperature sensitivity.  
The temperature sensitivity is usually expressed  
as Q10, measuring the proportional change in soil  
carbon decomposition rate for a 10 K warming.  
They found that many studies directly compare  
CO2 emissions at different incubation temperatures,  
estimating an apparent temperature sensitivity of  
soil organic carbon decomposition. However, this  
method does not provide the intrinsic temperature  
sensitivity of different soil carbon components.  
As introduced earlier, soil carbon models consider  

soil carbon dynamics in different pools depending  
on their turnover rates (k), which can be used to  
represent substrates with different lability. How the  
parameter k changes with temperature can inform  
the intrinsic temperature sensitivity of different soil  
carbon components. Therefore, a specific objective  
of the study is to estimate the intrinsic temperature  
sensitivities of different carbon pools in soil models.

2 Preparing data. As mentioned above, the data come 
from an incubation experiment by Haddix et al. (2011). 
For the illustration of this chapter, data from the 25°C 
and 35°C treatments (Figure 23.1) are used. Means 
and standard deviations of measurements from the 
incubation experiment are needed for data assimilation. 
The data are organized as shown in Table 23.1.

3 Choosing a model. Models are chosen dependent 
on the study objective. Liang et al. (2015) uses four 
models to compare different estimates of Q10. In 
practice, the length of the incubation experiment is 
an important aspect to consider when choosing which 
model to use. If the length of experiment is relatively 
short, for example, days to months, the one- pool or 
two- pool models may be appropriate. If the incubation 
lasts longer, for example, years, the three- pool model 
may be better to fit data. Here, our purpose is to 
illustrate how to use data assimilation to analyze soil 
incubation data, and the example experiment lasts for 
588 days. Therefore, the three- pool model is chosen. 
The three- pool model has a total of eight to- be- 
determined parameters, including the initial fractions 
of active and slow pools, f1 and f2, decomposition rates 
of organic carbon in three pools at 25°C, k1, k2, k3, and 
corresponding temperature sensitivity parameters, q1, 
q2, and q3. Details of these parameters are shown in 
Table 23.2. The initial fraction of the passive pool, f 3,  
does not need to be estimated as it can be directly 
calculated as 1 − f1 − f2. The turnover rates of carbon 
pools at 35°C can be calculated as ki × qi. If your 
experiment does not have treatments at different 
temperatures, just ignore those temperature sensitivity 
parameters. In that case, the model has five parameters 
to be estimated. To conduct data assimilation, the prior 
probability density functions (PDFs) of the parameters 
are needed, which represents the prior knowledge 
ahead of data assimilation. When there is not much 
prior knowledge about the parameter distributions, the 
prior PDFs can be specified as uniform distributions 
over parameter ranges, for example based on available 
literature (Table 23.2).

4 Cost function. Before the cost function is estimated,  
a mapping function is needed to relate the simulation  
results to their corresponding measurements. Looking  
at Table 23.1, the 15th measurement is conducted in  
day 21. However, the 15th model simulation is CO2  
emission in day 15, and the model simulation for  
day 21 is the 21st result. Our mapping function will  
gather a subset of model results that correspond to  

TABLE 23.1
Cumulative CO2 emission during the incubation 
organized for data assimilation

Incubation 
time (days)

25°C 35°C

Mean SD Mean SD

1 0.025 0.002 0.039 0.003
2 0.048 0.004 0.076 0.001
3 0.072 0.003 0.112 0.003
4 0.099 0.007 0.147 0.004
5 0.121 0.007 0.182 0.006
6 0.142 0.009 0.214 0.008
7 0.165 0.007 0.250 0.009
8 0.180 0.006 0.267 0.023
9 0.212 0.005 0.306 0.019

10 0.226 0.004 0.347 0.014
11 0.244 0.003 0.389 0.021
12 0.271 0.010 0.434 0.010
13 0.288 0.011 0.487 0.015
14 0.312 0.016 0.528 0.015
21 0.459 0.026 0.718 0.014
28 0.585 0.055 0.819 0.053
56 1.099 0.113 1.290 0.155
84 1.478 0.139 1.764 0.219

112 1.770 0.161 2.121 0.176
140 1.968 0.200 2.477 0.175
168 2.149 0.229 2.797 0.151
196 2.294 0.265 3.087 0.126
224 2.406 0.334 3.326 0.132
252 2.508 0.353 3.535 0.129
280 2.609 0.386 3.719 0.135
308 2.738 0.407 3.900 0.146
336 2.865 0.384 4.076 0.168
364 2.977 0.395 4.235 0.192
392 3.088 0.400 4.373 0.148
420 3.207 0.398 4.535 0.150
448 3.314 0.399 4.691 0.155
476 3.414 0.418 4.829 0.159
504 3.525 0.429 4.962 0.159
532 3.630 0.435 5.087 0.154
560 3.745 0.445 5.210 0.156
588 3.853 0.444 5.326 0.172
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each measurement occasion. We can build a function  
between the incubation time, t, and the rank of  
measurements, i: t =  f(i), using the first column of  
Table 23.1. The incubation time corresponding to a  
specific measurement can be derived via the mapping  
function. For example, the incubation time of the  
36th measurement is day 588 (588 =  f(36)). With  
this mapping function (i.e., t =  f(i)), you can easily  
locate the model results corresponding to the 36th  
measurement is in day f(36) (i.e., day 588).

   After deriving the subset of model results that 
correspond with observations, the cost function, 
J, which measures the magnitude of mismatch of 
the simulation results from observations, can be 
specified. We will adopt the formula for J introduced 
in Chapter 22. Figure 23.3 shows a snapshot of the 
J values from iteration 101 to 200 when running 
data assimilation using the three- pool model and 
data in Table 23.1. The cost function is used in the 
optimization step to determine whether to accept 
or reject proposed parameter sets, which is further 
discussed in the next step.

5 Optimization. Let us follow the introduction to the 
Markov Chain Monte Carlo (MCMC) method in 
Chapter 22 to conduct the optimization. The value of 
the cost function in iteration m is compared with that 
in iteration m- 1. There are basically two cases when 
comparing the values of cost function, Jm ≤ Jm- 1 and    
Jm > Jm- 1. Examples below are used to show the two cases.

Case 1: In Figure 23.3, J112 =  21.3 and J111 =  221.2, 
respectively. 21.3 is smaller than 221.2, meaning the 
mismatch between model results and measurements is 
reduced, i.e., the model simulation is improved. In this 
case, the proposed parameters are accepted.

Case 2: J173 =  114.1 and J172 =  69.2, respectively  
(Figure 23.3). 114.1 is bigger than 69.2, meaning the  
mismatch between model results and measurements  
is increased, i.e., the model simulation is worsened.  

In this case, the exponential of (J172- J173) is calculated.  
Here the value is 3 × 10−20. The value is then compared  
with a randomly selected number between 0 and 1. If  
the randomly selected number is smaller than 3 × 10−20,  
the proposed parameters are accepted. Otherwise, the  
proposed parameters are rejected. Given the number to be  
compared is a random value between 0 and 1, the chance  
for accepting proposed parameters is (3 × 10−18)%.  
Let us take a look at another example, J159 =  31.9 and  
J158 =  29.6, respectively (Figure 23.3). 31.9 is slightly  
bigger than 29.6. Therefore, we calculate the exponential  
of (J158– J159), which is 1 × 10−2, suggesting there is a  
chance of 1% to accept the proposed parameters.

Recall that the purpose of data assimilation is to  
derive global optimizations for parameters. Allowing  
a chance to accept proposed parameters even with  
the increased mismatch between simulations and  
observations can avoid the parameter estimations  
getting trapped in local optimizations. But the chance  

TABLE 23.2
A description of model parameters and the ranges of their prior uniform distributions of the 
three- pool models used in the chapter

Parameter

Prior uniform distribution

Unit Description Minimum Maximum

f 1 Unitless Initial fraction of the active pool 1.00 × 10−2 1.00 × 10−1

f 2 Unitless Initial fraction of the slow pool 1.00 × 10−1 6.00 × 10−1

k 1 d−1 Turnover rate of the active pool 1.00 × 10−3 2.00 × 10−2

k 2 d−1 Turnover rate of the slow pool 1.00 × 10−5 5.0 × 10−4

k 3 d−1 Turnover rate of the passive pool 1.00 × 10−6 5.0 × 10−5

q 1 Unitless Temperature sensitivity of the active pool 1.00 3.00
q 2 Unitless Temperature sensitivity of the slow pool 1.00 4.00
q 3 Unitless Temperature sensitivity of the passive pool 1.00 5.00

FIGURE 23.3 A snapshot of the cost function values from iteration 
101 to 200.
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to accept proposed parameters decreases steeply with  
the increase in simulation- observation mismatch  
(Figure 23.4).

6 Estimating parameters. Now we have all the 
accepted parameters after finishing 100,000 MCMC 
iterations. Excluding results in the burn- in period 
(see Chapter 22), we have posterior distributions for 
the selected parameters (Figure 23.5). In the figure, 
the distributions of parameters related to the active 
and slow pools have significant single peaks, which 
means these parameters are well constrained. The 
distributions of parameters related to the passive pool, 
by contrast, are not as good, suggesting the data may 
not have enough information to constrain them.

   From the posterior distributions, we can derive the  
maximum likelihood estimates (MLEs) of parameters.  
MLEs represent the parameter value at which the  
distribution peaks. In the example, the Q10 distributions  
peak at 1.22 and 1.76 for the active and slow pools.  
We can use these values to represent the intrinsic  
temperature sensitivities at 25°C of the corresponding  
pools. The Q10 distribution of the passive pool is not  
well constrained, and we can use the mean value,  
2.67, as a reasonable guess of its intrinsic temperature  

FIGURE 23.4 Dependence of parameter acceptance rate on 
the change of cost function (Jm –  Jm−1). If the mismatch between 
simulations and observations decreased (Jm –  Jm−1 ≤ 0), the 
acceptance rate is 100%. If Jm –  Jm−1 > 0, there is a chance to accept 
proposed parameters, and the acceptance rate decreases steeply with 
the mismatch increase.

FIGURE 23.5 Posterior probability density functions of the parameters in the three- pool model.

Modified with permission from Soil Biology and Biochemistry: Liang et al. (2015).
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sensitivity at 25°C. The temperature sensitivity  
increases with the decrease of substrate lability,  
suggesting that carbon pools with longer turnover  
times are more vulnerable to warming.

7 Generating predictions. Predictions of soil carbon  
decomposition can be generated with the derived  
parameters and the model. With the generated  
predictions, we can evaluate the model performance  
by comparing observations and simulations. In  
Figure 23.6, if all dots are right on the 1:1 line (i.e.,  
y =  x), it means the model simulations are exactly  
equal to observations, which of course is very unlikely.  
In practice, we can use a regression line to describe the  
comparison of model simulations and observations.  
The regression lines at 25°C and 35°C are y =  0.9919x  
and y =  0.9998x, or very close to y =  x which would  

represent perfect agreement. This indicates that the  
constrained model fits the data very well.

With the constrained model, we can also simulate the dynamics 
of different carbon pools during the incubation. Figure 23.7 
shows that the active pool dominates the CO2 emission at the 
early stage and is depleted very fast. At the end of incubation, 
the cumulative CO2 emission from the active pool is similar 
between the 25°C and 35°C incubations. The contributions 
of the slow and passive pools to CO2 emissions gradually 
increase after the active pool is depleted.

SUMMARY

This chapter introduced the application of data assimilation 
to soil incubation experiments. A variety of models can be 
chosen to simulate soil carbon cycling depending on the 
scientific question and the length of incubation. Assimilating 
soil incubation data with models can help understand 
processes underlying the observed soil carbon dynamics, such 
as turnover rates and temperature sensitivities of substrate 
with different qualities.

SUGGESTED READING

Liang, J., D. Li, Z. Shi, J. M. Tiedje, J. Zhou, E. A. G. Schuur, K. 
T. Konstantinidis, and Y. Luo. 2015. Methods for estimating 
temperature sensitivity of soil organic matter based on 
incubation data: A comparative evaluation. Soil Biology & 
Biochemistry 80:127– 135.

QUIZ

1 How can soil carbon models and data assimilation 
help with the analysis of soil incubation data?

2 Why is the length of incubation experiments an 
important consideration when choosing a model?

3 Suggest why some parameters can be well constrained  
and other cannot, and how this information guides  
future experimental design.

FIGURE 23.6 Comparison of observed and modeled cumulative 
CO2 emissions (R) in the incubation experiment. All the dots 
distribute around the 1:1 line, suggesting the model simulations are 
well matched with observations.

FIGURE 23.7 Observed and modeled cumulative CO2 emissions (R) from individual and total pools at two incubation temperatures.

Modified with permission from Soil Biology and Biochemistry: Liang et al. (2015).
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24  Practice 6
The Seven- Step Procedure for Data Assimilation

Xin Huang
National Center for Atmospheric Research, Boulder, USA

This chapter will guide you to learn the seven-step procedure 
of data assimilation by replicating a published study on the 
assimilation of observational data into the TECO model to 
calibrate decomposition rate parameters for multiple soil 
organic matter pools. We will first review the seven steps in 
Chapter 21 and learn how to program these steps using code 
examples in Python. Then we will perform three exercises 
to reproduce figures from an earlier paper on the study with 
the CarboTrain toolkit. It is recommended that you go over 
the source code of the three exercises in CarboTrain. You are 
expected to program a data assimilation algorithm with your 
own model or data sets after this practice.

INTRODUCTION

The seven steps in data assimilation (DA) are described 
in detail in Chapter 21. They are: (1) defining an objective; 
(2) preparing data; (3) choosing a model; (4) using a cost 
function; (5) applying an optimization method; (6) estimating 
parameters; and (7) generating predictions (Figure 24.1). This 
practice will use an example from a study by Xu et al. (2006) 
to introduce how to program these seven steps. The example 
of the DA study by Xu et al. (2006) is programmed in a Python 
file ‘Probabilistic_ inversion.py’. We will use this Python 
program to illustrate each of the seven steps in a DA study.

STEP 1: DEFINING AN OBJECTIVE

Defining an objective usually means to decide target parameters 
to be estimated by DA. The target parameters chosen in the 
study by Xu et al. (2006) are decomposition rates to represent 
fractions of carbon (C) leaving seven soil organic matter 
(SOM) pools of the Terrestrial ECOsystem (TECO) model 
(Table 24.1). The TECO model will be described in Step 3.

STEP 2: PREPARING DATA

The DA study in Xu et al. (2006) integrated six observations 
(i.e., soil respiration, woody biomass, foliage biomass, litterfall, 
C in forest floor, and C in forest mineral soil) under ambient 
and elevated CO2 treatments. All the 12 data sets are saved in 
six data files under the ‘/ input’ folder. There are three rows 
in each data file. The first row is the time series, the second is 
observation under ambient CO2 treatment and the final row is 
observation under elevated CO2 treatment. Figure 24.2 shows 
the Python code for reading the six data files and calculating the 

six observation variances. The variable ninput with a value of 1 
or 2 is to indicate which CO2 treatment is applied in the Python 
program. For example, if ninput has a value of 1, the variables 
soilResp, woody, foliage, litterfall, forestFloor, and forestMineral 
save the six observations from the ambient CO2 treatment. All 
these six observations are collected in the obsList variable and the 
corresponding six observation variances are saved in the varList 
variable. These variables will be used in Step 4.

STEP 3: MODEL

A terrestrial ecosystem (TECO) model is used (Xu et al., 
2006). The TECO model has a seven- pool structure and the 
fractions of C exiting each pool each day are the parameters to 
be estimated (Table 24.1, the variable c in Figure 24.3a). This 
step involves two program fractions in Probabilistic_ inversion.
py: defining model simulation and running model simulation 
(Figure 24.3). A function run_ model (Figure 24.3a) defines 
the TECO model simulation with a set of parameter values 
(variable c). The core codes of model simulation (lines 65– 68) 
are to program the differential equation:

 
dX t

dt
t ACX t BU t

( )
= ( ) ( ) + ( )ξ  24.1

where X(t) is a 7 × 1 vector to represent the seven C pool sizes 
at time t; ξ(t) is a scaling function describing environment 
effects at time t; A is a 7 × 7 matrix representing the C transfer 
coefficients among the seven pools; C is a 7 × 7 diagonal 
matrix with diagonal elements describing the fraction of C 
leaving each pool or the parameters to be estimated; B =  (0.25, 
0.3, 0, 0, 0, 0, 0)T is a vector accounting for the partitioning 
coefficients of C input to non- woody and woody biomasses; 
U(t) is the C input from photosynthesis at time t.

The variable Nt (Figure 24.3a) is five- year simulation time 
on a daily time step, with a value of 1825. The variable xsimu 
will accrue the seven C pool sizes over the Nt simulation days. 
Rather than the seven C pool sizes, the return values of the 
run_ model function are six simulated data sets (i.e., woody_ 
simu, foliage_ simu, litterYr, forestFloor_ simu, forestMineral_ 
simu, and soilResp_ simu) to match with the six observational 
datasets. Mapping operators are used for this purpose and we 
will learn about these operators in Step 4.

To run the model simulation, a new set of parameter  
values (variable c_ new) needs to be passed to the run_ model  
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function (Figure 24.3b). During this process, the parameter  
values in variable c_ new will be assigned to variable c in  
Figure 24.3a. Variable simuList saves the return values of the  
model simulation (i.e., the six simulated data sets). In Step  
4, the cost function will calculate the mismatch between the  
simulated data sets (simuList) and the observed ones (obsList  
in Step 1).

STEP 4: COST FUNCTION

The cost function quantifies the discrepancy between  
simulated data sets (i.e., simuList) and observed ones (i.e.,  
obsList). In the TECO model simulation, function run_ model  
calculates the seven C pool sizes over the course of five  
years, with results saved in variable xsimu. To be comparable  
with six observed data sets (obsList), xsimu needs to be  

FIGURE 24.2 The Python code for reading six observations from text files and calculating their variances.

TABLE 24.1
Seven parameters to be estimated

Parameter Description Unit Min (×10−4) Max (×10−3)

c 1 Fraction of C leaving pool 1 gCg −1 d −1 1.764 2.95
c 2 Fraction of C leaving pool 2 gCg −1 d −1 0.548 0.274
c 3 Fraction of C leaving pool 3 gCg −1 d −1 54.79 27.34
c 4 Fraction of C leaving pool 4 gCg −1 d −1 5.48 2.74
c 5 Fraction of C leaving pool 5 gCg −1 d −1 27.4 6.85
c 6 Fraction of C leaving pool 6 gCg −1 d −1 0.548 0.274
c 7 Fraction of C leaving pool 7 gCg −1 d −1 0.0137 0.00913

Based on the study by Xu et al., (2006)

FIGURE 24.1 Seven- step procedure of the data assimilation (DA) as illustrated in A model- independent data assimilation (MIDA) module. 

Adopted from Huang et al., 2021.
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FIGURE 24.3 The Python code for (a) defining a function of TECO model simulation; (b) calling the function to run the model.

FIGURE 24.4 Python code for mapping seven pool sizes (xsimu) to six simulated data sets (woody_ simu, foliage_ simu, litterYr, forestFloor_ 
simu, forestMineral_ simu, and soilResp_ simu) from the TECO model simulation.
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converted to six simulated data sets (simuList) with mapping  
operators (i.e., phi_ litterfall, phi_ slResp, phi_ woodBiom, phi_  
foilageBiom, phi_ cForestFloor, phi_ cMineral in Figures 24.4  
and 24.5). Before mapping, function ‘run_ model’ needs to  
update the values of Phi_ slResp and Phi_ litterfall mapping  
operators with parameter values c (Figure 24.5b). After  
mapping, the mismatch between simuList and obsList is  
calculated according to:

 P Z c exp Z t X t
i i t obs Z

i i

i
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24.2

where P(Z| c) is conditional probability density of observations 
Z on parameters c, i.e., the likelihood function of parameter c; 
σi is the ith observation variance; obs(Zi) is the time series of 
ith observation; Zi(t) is the ith observation at time t; φi is the 
mapping operator; X(t) is the simulated seven pool sizes at 
time t; φiX(t) is the ith simulated data set after mapping.

The value of mismatch is saved in the variable J_ new 
(Figure 24.6). Step 5 (Optimization) will use the value of  
J_ new to decide whether the set of parameter values should be 
accepted or not.

STEP 5: OPTIMIZATION METHOD

Our study uses the Metropolis- Hasting method to draw 
parameter samples from their prior distribution. This method 
iteratively executes two phrases (i.e., proposing phase and 

moving phase) until a preset iteration number (e.g., 20,000) 
is reached. The proposing phase is implemented by function 
GenerateParamValues, which generates new parameter values 
(i.e., variable cNew) based on the current accepted values (i.e., 
variable c_ opt) (Figure 24.7a). During this process, function 
GenerateParamValues will call another function isQualified 
to assess whether the newly proposed parameter values 
(cNew) are in the reasonable parameter range or not. If the 
isQualified function returns TRUE, cNew is a reasonable new 
set of parameter values and the generation of new parameter 
values will stop. Otherwise, function GenerateParamValues 
will discard this set of parameter values, generate new 
parameter values, assign these values to cNew, and call 
function isQualified again. Following the proposing phase, 
cNew will be used to update mapping operators (i.e., Phi_ 
slResp and Phi_ litterfall) and run model simulations through 
calling function run_ model (Figure 24.7b). The mathematical 
mechanism behind the proposing phase is available in Xu 
et al. (2006).

The moving phase decides whether the new parameter 
values (i.e., cNew) are accepted or not (Figure 24.8).

The value of J_ new (i.e., mismatch between the  
simulated (cNew) and observed datasets) is compared with  
J_ record[record] (i.e., the mismatch using the previously  
accepted parameter value c_ record[record]). The cNew will  
be accepted if J_ new is smaller than J_ record[record], or the  
value exp (J_ record[record] − J_ new) is larger than a random  
number (randNum) from the uniform distribution between  
0 and 1. If accepted, the new parameter values are saved  
into an array, c_ record. The corresponding mismatch will  
be saved in another array, J_ record. The count of accepted  

FIGURE 24.6 Python code for calculating the mismatch between simulated (simuList) and observed datasets (obsList) based on cost 
function.

FIGURE 24.5 The Python code for (a) defining the mapping operators; (b) updating mapping operators according to parameter values   
(c_ new).
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parameter values, record, is then increased by 1. Therefore, c_  
record[record] and J_ record[record] indicate the current last  
element in the two arrays, which also represent the currently  
accepted parameter values and corresponding mismatch. If  
the new parameter values from this iteration are not accepted,  
they are discarded. Whether cNew is accepted or not, the next  
iteration always uses the currently accepted parameter values  
(c_ record[record]) for the proposing phase to generate a new  
set of parameter values.

STEP 6: ESTIMATE PARAMETERS

The outputs of DA are accepted parameter values (c_ record),  
corresponding mismatches (J_ record), the number of accepted  
parameter values (record), the optimal parameter values  
through maximum likelihood estimation (bestC), and the  
simulated data sets given the optimal parameters (bestSimu).  
All these outputs are saved to text files through calling function  
write_ io_ file (Figure 24.9). All parameter values accepted are  

FIGURE 24.8 The Python code of the moving phase in Metropolis- Hasting algorithm.

FIGURE 24.7 Python codes for (a) defining the function of proposing phase in Metropolis- Hasting algorithm; (b) calling the function to 
generate parameter samples.
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saved in ‘param_ accepted.txt’, all mismatches with parameter  
values accepted in ‘mismatch_ accepted.txt’, the number of  
accepted parameter values in ‘accepted_ num.txt’, the optimal  
parameter values in ‘bestParam.txt’, and simulation outputs  
given the optimal parameter values in ‘xxx_  bestSimu.txt’  
(e.g., Woody_ CestSimu.txt) in the output directory folder  
(outDir).

Posterior distributions of parameters are the constrained 
parameter range after DA, which are often used for 
estimating the parameter uncertainty. An R script is provided 
to plot the posterior distributions with all accepted parameter 
values in ‘param_ accepted.txt’. The peak of the distribution 
represents the optimal parameter value. The simulated data 
sets with these optimal parameter values are also compared 
with observations in the R script. After DA, ‘Probabilistic_ 
inversion.py’ runs the R script automatically and saves plots 
into the ‘/ figures’ folder.

STEP 7: PREDICTION

Parameter uncertainty as expressed by the posterior 
distribution of parameters will translate into prediction 
uncertainty characterized by the cumulative probability 
distribution of simulated C pool sizes. Prediction in the 
study of Xu et al. (2006) uses two functions: prediction and 
forward_ run (Figure 24.10a). The function prediction is the 
start point of the prediction step. First this function generates 
12,000 samples (c_ all) from the accepted parameter values 
saved under outDir folder. Then function prediction uses each 
sample (c) of these 12,000 sets of parameter values for model 
forward simulation through calling function forward_ run. 
The variable x_ record saves all simulated pool sizes (Line 128 
in Figure 24.10a). Finally, the results of prediction (i.e., x_ 
record) will be written to the file ‘prediction.txt’ in the outDir 
folder. To call function prediction, we only need to provide the 
directory of DA results (outDir) as shown in Figure 24.10b.

With each set of parameter values (c) sampled in function 
prediction, function forward_ run executes the model 
simulation over the 10 years following the DA period (i.e., 
2001 to 2010) using Equation 24.1. This function is similar to 
function run_ model in Step 3 except that the simulation times 
are different. The environmental scalar (tau_ forescast) and C 
input from photosynthesis (u_ forest) from 1996 to 2000 were 
replicated twice to provide environmental ‘forcing’ for 2001 

to 2010. Variable x stores the seven simulated C pool sizes in 
each daily simulation step. The return value of forward_ run is 
the simulated pool sizes at the end of year 2010 (xsimu). Line 
128 in Figure 24.10a shows an example of calling forward_ 
run in function prediction.

EXERCISES WITH CARBOTRAIN TOOLBOX

The following three exercises using the CarboTrain toolbox 
will help readers become familiar with the DA methodology 
described above. Exercise 1 is to conduct DA with the TECO 
model separately for ambient and elevated CO2 treatments. 
Based on the results, we will generate figures similar to 
Figures 3, 4, and 8 in Xu et al. (2006). Exercise 2 uses the 
optimized parameter values from Exercise 1 to predict soil C 
pool sizes. The expected figure is similar to Figure 9 in Xu 
et al. (2006). The Posterior distributions of parameters c1, c2, 
and c4 are bell- shaped in Figures 3 and 4 of Xu et al. (2006). 
In Exercise 3 we will re- conduct DA under the ambient 
CO2 treatment using enlarged prior parameter ranges for 
parameters c3, c5, and c7 . Results similar to Figure 5 in Xu 
et al. (2006) are expected.

Exercise 1

1 Open CarboTrain ➔ A dialog appears (Figure 24.11) 
➔ Select Unit 6 and Exercise 1 ➔ Choose ambient 
CO2 ➔ Choose an output directory on your computer 
➔ Click ‘Run Exercise’ ➔ A dialog appears 
(Figure 24.12a) ➔ Click ‘OK’

2 A series of outputs will be printed in another window 
(Figure 24.13). The variable simu is the number of 
total executed simulations while the accepted variable 
means the number of simulations with accepted 
parameter values. These numbers will keep increasing 
until simu reaches a value approximating 20,000. 
A dialog will pop up to notify that DA is finished. 
Execution time is about 20 minutes depending on the 
specifications of your computer.

3 After DA, a dialog appears to notify that the task  
is complete (Figure 24.12b). Open the output  
directory you specified in Step 1. There will be  
four folders: ‘/ practice_ 1_ ambient’, ‘ / practice_ 1_  
elevated’, ‘/ practice_ 2’, ‘/ practice_ 3_ ambient’. Open  

FIGURE 24.9 The Python code for saving DA outputs to text files.
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the ‘/ practice_ 1_ ambient’ folder. You will find text  
files and figures generated in the subfolder ‘/ figures’.  
These files and figures are results of DA under the  
ambient CO2 treatment.

4 Repeat Steps 1– 3 but choose elevated CO2 in Step 
1. Do not change the output directory. After DA, 
open the ‘/ practice_ 1_ elevated’ folder in the output 
directory. The files and figures in this folder are 
results of DA under the elevated CO2 treatment. 
Compare the results with Figures 3, 4, and 8 in Xu 
et al. (2006).

Questions:
What is the acceptance rate in each exercise? Which parameters 
are well constrained? Which observations contribute to the 
constrained parameter values? How many shapes are there 
in the posterior distributions (e.g., bell shape)? What are the 
meanings behind these different shapes?

Exercise 2
1 In the main window of CarboTrain, select Unit 6 and 

Exercise 2 ➔ Use the default output folder as for 
Exercise 1➔ Click ‘Run Exercise’.

FIGURE 24.10 Python code for (a) defining functions for prediction; (b) calling functions for prediction.
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2 Open the output folder and find a figure generated  
in the ‘/ practice_ 2’ folder. Compare this figure with  
Figure 9 in Xu et al. (2006).

Questions:
Does elevated CO2 positively influence C accumulation (i.e., 
larger pool sizes)? Do poorly constrained parameters (i.e., c3, 
c5, and c7) influence the predicted sizes of associated pools 
(i.e., X3, X5, and X7)?

Exercise 3
1 Repeat Steps 1– 3 of Exercise 1 but choose ambient 

CO2 and Exercise 3 in the CarboTrain main window 
(Figure 24.11).

2 After DA, go to the output directory and open the ‘/  
practice_ 3_ ambient’ folder. The files and figures  
generated in this folder are results of DA using enlarged  

prior parameter ranges for c3, c5, and c7. Compare the  
results with Figure 5 in Xu et al. (2006).

Questions:
Did the posterior distributions of c3, c5, and c7 change after 
their prior parameter ranges were extended? What else can we 
do to further constrain the parameter uncertainty?

FIGURE 24.12 The dialog notifies (a) submitting a new task; 
(b) finishing a task.

FIGURE 24.11 The main window in CarboTrain toolbox for this practice.

FIGURE 24.13 Window in CarboTrain toolbox to display the 
progress of the DA experiment.
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25  Model- Data Integration at the SPRUCE 
Experiment

Daniel Ricciuto
Oak Ridge National laboratory, Oak Ridge, USA

This chapter is intended as a brief introduction to carbon-
cycle modeling and field measurements at the Spruce and 
Peatland Response Under Changing Environments (SPRUCE) 
experiment in a forested wetland in northern Minnesota. The 
goal is to familiarize the reader with the study in preparation 
for subsequent training and example applications of data 
assimilation into models using SPRUCE data.

INTRODUCTION

SPRUCE is a large- scale, decade- long experiment designed 
to assess the response of a northern peatland bog ecosystem, 
which contains a large amount of carbon belowground, to 
changes in atmospheric temperature and carbon dioxide 
(CO2) concentrations that approximate possible conditions 
in the latter half of the 21st century. Peatlands have been 
identified as vulnerable ecosystems that potentially have 
large feedbacks to the global carbon cycle, and as a result 
may affect climate change. Although peatlands comprise a 
relatively small fraction, about 3%, of global land area, they 
are estimated to contain at least one- third of all carbon on the 
land surface. Therefore, understanding the response of these 
systems to warming, changing moisture conditions, and rising 
atmospheric CO2 is critical to our ability to predict future 
climate using coupled Earth system models.

One key uncertainty is how carbon may leave the system to 
the atmosphere, as either CO2 or as methane gas (CH4). This 
is critically important because CH4 is a much more potent 
greenhouse gas than CO2, with more than 25 times greater 
warming potential over a 100- year timeframe. The saturated 
peat, biogeochemical environment, and the types of vegetation 
in peatlands are conducive for anaerobic decomposition 
(breakdown of organic matter in the absence of oxygen) and 
therefore high levels of CH4 emissions compared to other 
ecosystems. While CO2 fluxes from aerobic decomposition 
(when oxygen is available) are sensitive to temperature, 
CH4 production and emissions may be even more sensitive 
to warming than CO2. On the other hand, drying associated 
with warming conditions may reduce methane production and 
increase methanotrophy (consumption of CH4 by microbes in 
the peat). Observations of CO2 and CH4 fluxes from SPRUCE 
are informing model parameter values and structural 
representations of key processes in mechanistic models to 
improve predictive understanding of the system.

SPRUCE researchers are also very interested in how the 
experimental treatments impact the different types of peatland 

vegetation in terms of physiology, phenology (timing and 
length of growing season), reproduction, and mortality. 
The most extreme level of warming in the experiment is 
consistent with climate model projections at the end of 
the century under the strongest greenhouse gas emissions 
scenarios. It effectively shifts the climate of SPRUCE to that 
currently experienced in central Missouri, which is hundreds 
of kilometers to the south.

SITE DESCRIPTION

The SPRUCE experiment is located in a forested wetland 
called the S1 bog, which is part of the United States Forest 
Service (USFS) Experimental Forest in North Central 
Minnesota. The S1 system is a raised- dome ombrotrophic bog, 
meaning that it is rain- fed, nutrient- poor, and has a perched 
water table that is disconnected from the influence of regional 
groundwater. The bog has a mean annual air temperature of 
3.3°C and mean annual precipitation of 768 mm. The bog 
experiences cold winters: snow cover generally persists from 
late autumn until early spring, and ice layers form in the peat 
that may persist until May or June. Within the bog, there is 
microtopography consisting of raised areas (hummocks) and 
sunken areas (hollows). Hummock areas are generally 15– 
20 cm higher than hollows and are almost never inundated. 
In typical years, the water table generally ranges from as low 
as 20– 30 cm below the hollow surface in dry conditions to 
10– 15 cm above the hollow surface in wet conditions. At the 
beginning of the study, both hummock and hollow surfaces 
of the bog were nearly completely covered with Sphagnum 
mosses. Above that, there is a woody shrub layer dominated 
by two species: Rhododendron groenlandicum (Labrador 
tea) and Chamaedaphne calyculata (leatherleaf). There are 
two main types of trees on the S1 bog, Picea mariana (black 
spruce) and Larix laricena (larch). Existing trees were cleared 
in strip cuts in 1974 for a different experiment, and new trees 
have been regrowing since then. This area with relatively 
young, short trees within the strip cut areas is ideal for the 
SPRUCE experiment because the enclosures do not have to be 
as large or as costly to expose these trees to whole- ecosystem 
warming.

SPRUCE uses an open- top enclosure design (Figure 25.1) 
in which the whole- ecosystem warming and elevated CO2 
treatments are conducted (Hanson et al., 2017a and 2017b). 
Air warming is accomplished using propane- fired furnaces in 
combination with blowers distributed around the enclosure. 
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Peat warming is accomplished using resistance heaters 
that heat depths between 2 and 3 meters below the surface. 
A corral system isolates the hydrology within the enclosures, 
so that the water table within may be lower or higher than the 
surrounding bog.

SPRUCE has a total of ten enclosures with five different 
levels of warming ranging from no added heat (+ 0°C) to + 9°C 
in 2.25°C increments. Half of the enclosures have ambient 
CO2 concentrations (about 400 parts per million) at the five 
warming levels, while the other half have an elevated CO2 
concentration target of + 500 parts per million (ppm) over 
ambient, typically ranging between 800 and 900 parts ppm at 
the same warming levels. Elevated CO2 is supplied only during 
daytime and in the growing season when photosynthesis is 
occurring. No water vapor is added, causing reduced relative 
humidity and increased vapor pressure deficit in the warmed 
enclosures. Extensive measurements within the enclosures 
include meteorological conditions, peat temperature and water 
table depth, CO2 and CH4 fluxes using a large- collar chamber 
measurement (Hanson et al., 2016), species- level vegetation 
biomass and productivity, phenology cameras, and porewater 
chemistry. In addition to the active warming treatments, there 
are passive enclosure effects including increased longwave 
radiation input, decreased shortwave radiation, and changes in 
air flow, resulting in additional temperature increases between 
1°C and 2°C at all warming levels compared to outside the 
enclosures. Two additional plots without enclosures are also 
measured to record the evolution of the ecosystem under 
ambient conditions. The study’s regression- based design 
allows for the determination of response curves over a range 
of conditions and facilitates comparison with model outputs.

Lengthy preparation was required for the large- scale 
experiment. Pretreatment characterization at the S1 bog 
began in 2009, involving extensive peat and vegetation 
measurements. Construction for the treatment experiments 
began in 2012, beginning with roadwork and other 
infrastructure development. The corral systems were then 
built, followed by the construction of the enclosures. Whole- 
ecosystem warming began in August 2015, and elevated CO2 
treatments began in June 2016. The experiment is anticipated 
to run through 2025. A number of key science questions were 
posed at the beginning of the experiment:

• Are peatland ecosystems and organisms vulnerable to 
atmospheric and climatic change?

• At what rate will ancient carbon be released from 
accumulated peat in response to deep belowground 
warming, and what is the relative release of CO2 
compared with CH4?

• What are the interactions between ecosystem responses 
to warming and the availability of nutrients and water?

• How does elevated CO2 modify ecosystem responses to 
warming and the availability of nutrients and water?

MODELING FOR THE SPRUCE EXPERIMENT

Although the scale of SPRUCE is unprecedented for a  
peatland ecosystem manipulation experiment, it is difficult  
to know if the answers to these questions at the study site  
will be consistent across other peatland systems. The project  
investigators therefore envision mechanistic modeling as a  
key method to extrapolate the results of SPRUCE to other  

FIGURE 25.1 Top- down view of a SPRUCE enclosure.
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systems. This requires a multi- scale modeling framework that  
can be applied from site to global scales.

The United States Department of Energy (DOE), which 
provides the primary funding for SPRUCE, has heavily 
invested in such a modeling framework which we are using. In 
2014, the DOE initiated development of a new Earth system 
model, the Energy Exascale Earth System Model (E3SM). 
This model branched from the well- known Community 
Earth System Model (CESM). The land component of 
E3SM, known as ELM, is a land- surface model that includes 
cycling of water, carbon, nitrogen, and phosphorus. ELM 
has been used extensively in coupled E3SM (Burrows et al., 
2020), uncoupled (land- only simulations driven by observed 
atmospheric forcings), and at the site- level including eddy 
covariance and ecosystem manipulation sites like SPRUCE. 
However, the default version of ELM lacks key processes 
necessary to simulate peatland carbon, water, and nutrient 
dynamics accurately. A SPRUCE- specific version, ELM- 
SPRUCE, was recently developed (Shi et al., 2015, 2021). It 
incorporates wetland hydrology, microtopography, and plant 
functional types that are not currently represented in ELM 
including Sphagnum mosses. ELM- SPRUCE also includes 
a more mechanistic CH4 model that explicitly represents 
microbial populations involved in CH4 production and 
consumption. ELM- SPRUCE can help to answer the above 
research questions, test other hypotheses about the impact of 
environmental change at SPRUCE, and eventually simulate 
broader peatland regions on a global scale.

In addition to ELM- SPRUCE, other modeling groups 
are also simulating the experimental treatments at the site. 
The Terrestrial ECOsystem (TECO) model was introduced 
in Chapter 2. It has well- developed methods for model- data 
integration. A version of the TECO model has been developed 
for application at SPRUCE (Ma et al., 2017). This model, 
TECO- SPRUCE, is being used to make projections of CO2 and 
CH4 fluxes under the experimental treatments and to estimate 
the magnitudes of prediction uncertainties that result from 
uncertainties in forcings and model parameters (see Chapter 26).

In general, having projections from multiple models is 
an important way to understand the impact of structural 
uncertainty, which reflects the different ways in which different 
model frameworks may represent processes. Some models may 
be more complex than others by including more processes, or 
they may use different equations or algorithms to represent a 
specific process. A model intercomparison study focused on 
SPRUCE is currently under development, and SPRUCE data 
are being made available to interested modeling groups.

MODEL VALIDATION AND UNCERTAINTY 
QUANTIFICATION

While having projections from multiple models is useful, 
quantitatively estimating within- model uncertainty is key 
to knowing the confidence in our predictions, and for 
understanding what measurements may be most useful in 
constraining these predictions further. Model uncertainty 
quantification (UQ) is a key goal of the SPRUCE modeling 
work, and it has been used in both the ELM- SPRUCE 

and TECO- SPRUCE models. An important part of UQ is 
estimating how uncertain model parameters contribute to 
uncertainty in predictions such as CO2 fluxes or stocks. 
A model such as ELM- SPRUCE is very complex and contains 
well over 100 uncertain model parameters. An example of an 
uncertain parameter would be the sensitivity of heterotrophic 
respiration to temperature (Q10), for which published values in 
the literature may range between 50% lower or higher than the 
assumed model default value. This parameter uncertainty is 
likely to cause large uncertainties in the predicted response of 
net CO2 fluxes to experimental warming. Ultimately, we would 
like to calibrate such parameters and reduce their uncertainty 
using measurements; for example, the within- enclosure CO2 
flux information could be used to constrain the Q10 value at 
SPRUCE. However, as the number of uncertain parameters 
grows, the computational expense of model calibration rises 
exponentially as it requires a larger and larger number of 
model simulations (also referred to as ensemble members) to 
sample the potential parameter space. Therefore, we usually 
need to identify the most important parameters first using 
sensitivity analysis.

Sensitivity analyses are usually conducted for a set of 
model outputs, or quantities of interest (QoIs). For example, a 
QoI might be the site- averaged net ecosystem exchange over 
a 10- year period, or the average date of leaf- out in spring. The 
contribution of each parameter to the variance of a QoI may be 
estimated in a sensitivity analysis using a model ensemble in 
which multiple parameters are varied randomly. Fortunately, 
a smaller number of ensemble members is necessary for 
sensitivity analysis than for calibration. The objective of the 
sensitivity analysis is to reduce the number of calibration 
parameters to a reasonable number, usually around 20 or 
less. In the ELM- SPRUCE model, we conduct the sensitivity 
analysis first by identifying minimum and maximum possible 
values for each parameter. This can be done by surveying 
the literature, trait databases such as TRY and the Fine Root 
Ecology Database (FRED), or by making educated guesses 
about parameter uncertainty (e.g., + / -  25% from default 
values). An ensemble of model parameter values is then 
created by randomly sampling parameter values in these 
ranges. This model ensemble is used to create a surrogate 
model, or model response surface for each QoI. Many different 
approaches can be used to create surrogate models, including 
machine learning; here, we use polynomial functions. Using 
this approach, we found that about 2500 ensemble members 
can yield trustworthy sensitivities for about 65 uncertain 
parameters in ELM (Ricciuto et al., 2018). While running 
this number of simulations is computationally feasible in 
ELM on a mid- size computing cluster, other models may be 
more or less computationally expensive, allowing for different 
ensemble sizes.

Model calibration involves finding a set or sets of optimal 
parameters that best fit observations by minimizing a cost 
function (see Chapter 21). A cost function typically yields 
a single value that can integrate information from multiple 
types of observations (e.g., both CO2 fluxes and biomass 
measurements) and from observations at multiple times. 
Observations may be weighted by their uncertainties or 
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using other methods. Model calibration may also involve the 
estimation of parameter and prediction uncertainties. It may 
be accomplished using a variety of techniques. A preferred 
technique is Markov Chain Monte Carlo (MCMC), introduced 
in Chapter 22. MCMC has the desirable quality that it can 
calculate the full parameter posterior probability density 
functions (PPDFs) without making any prior assumptions about 
the functional forms of the distributions. These PPDFs may also 
be used to estimate prediction uncertainty for QoIs. However, 
it is a relatively expensive method that requires a large number 
of model evaluations (usually at least 10,000) and is not easily 
parallelized. In models that are fast to evaluate such as TECO- 
SPRUCE, MCMC may be used directly. However, in expensive 
models such as ELM- SPRUCE, it is first necessary to construct 
a surrogate model. An example of surrogate model calibration in 
ELM is given by Lu et al. (2018a). Similar methods are used as 
is done for the surrogates used in sensitivity analysis. However, 
the surrogate models introduce error into the calibration and 
therefore must be considerably more accurate to ensure a 
trustworthy calibration result.

Using ELM- SPRUCE, model calibration was performed 
with pre- treatment observations of vegetation biomass and 
productivity for four different plant functional types (Shi 
et al., 2021). The calibrated model parameters differed 
substantially from the default ELM parameters used in the 
global parameterization for boreal plant functional types. The 
calibrated model was then used to predict treatment responses 
at the site for the most extreme warming scenario of + 9°C. 
The model predicted that black spruce trees would steadily 
decline in biomass and productivity with warming, while 
the shrubs and larch would increase slightly. The Sphagnum 
productivity was simulated to decline during dry periods and 
increase during wet periods. We can now begin to validate the 
model using treatment observations. There is some indication 
that the black spruce trees are actually responding negatively 
to the warming treatments, especially in comparison to the 
shrubs and larch trees. However, a recent study showed that 
Sphagnum productivity and biomass are rapidly declining, 
which was not predicted by ELM- SPRUCE. This may be in 
part due to a lack of certain processes in ELM- SPRUCE. For 
example, more productive shrubs may shade out the moss 
layer, which cannot be represented currently in ELM- SPRUCE 
because there is no competition for light in that model. It is 
also possible that the model predictions will improve when we 
begin to use the treatment data for model calibration. We did 
find that ELM- SPRUCE predicts the change in net carbon flux 
with temperature quite accurately, and that both model and 
observations indicate that warming causes a significant source 
of CO2 and CH4 to the atmosphere (Hanson et al., 2020). If one 
naively assumes that all peatland systems respond similarly 
over the entire globe, this would result in a large source of 
greenhouse gases and a positive feedback which would be 
large enough to further strengthen global warming. We will 
test this assumption in the model in the future by running 
global simulations. Interestingly, however, the observations do 
not yet indicate a strong effect of elevated CO2 concentrations 
on vegetation biomass at SPRUCE. ELM- SPRUCE and 

TECO- SPRUCE before data assimilation both predict a strong 
fertilization effect. Reconciling this with observations will 
take additional empirical and model development work for 
ELM- SPRUCE and this will be informed by data assimilation 
using TECO- SPRUCE.

The experimental treatments at SPRUCE combined with 
the model- data integration framework in ELM- SPRUCE, 
TECO- SPRUCE, and other models provide a useful testbed for 
improving predictive understanding of peatland ecosystems. 
The interaction of the site hydrology, biogeochemistry, and 
multiple vegetation types under varying treatments makes 
obtaining accurate predictions particularly challenging 
compared to other study sites, for example, eddy covariance 
tower footprints which often have relatively homogeneous 
vegetation coverage. Recently it has been observed that 
responses of the different vegetation types to warming are 
not uniform; while shrubs are becoming more productive 
and growing more fine roots (Malhotra et al., 2020), the 
Sphagnum mosses are dying and sharply declining in areal 
coverage under strong warming (Norby et al., 2019). The 
growing season generally becomes longer with warming, but 
some vegetation types have a stronger phenology response 
than others (Richardson et al., 2018). Ideally, models of the 
SPRUCE system must be simple enough to ensure simulations 
are relatively inexpensive so that we can run parameter 
ensembles to explore prediction uncertainty. On the other 
hand, models must contain enough process realism to capture 
the divergent responses of different vegetation types and to 
predict the strong increases in CO2 and CH4 surface fluxes to 
the atmosphere. Much research remains to be done to predict 
how the SPRUCE S1 bog and other peatlands will respond to 
rapidly changing environmental conditions.

SUGGESTED READINGS

Hanson, Paul J., Natalie A. Griffiths, Colleen M. Iversen, Richard 
J. Norby, Stephen D. Sebestyen, Jana R. Phillips, Jeffrey 
P. Chanton, Randall K. Kolka, Avni Malhotra, Keith C. 
Oleheiser, Jeffrey M. Warren, Xiaoying Shi, Xiaojuan 
Yang, Jiafu Mao, and Daniel M. Ricciuto. 2020. Rapid net 
carbon loss from a whole- ecosystem warmed Peatland. AGU 
Advances. doi:10.1029/ 2020AV000163

Shi, X., Thornton, P. E., Ricciuto, D. M., Hanson, P. J., Mao, 
J., Sebestyen, S. D., Griffiths, N. A., and Bisht, G. 2015. 
Representing northern peatland microtopography and 
hydrology within the Community Land Model, Biogeosciences, 
12, 6463– 6477. doi:10.5194/ bg- 12- 6463- 2015

QUIZ

1 Why are peatlands important for land- atmosphere 
feedbacks?

2 What is the gradient experimental design for this 
SPRUCE project?

3 What are the benefits of incorporating modeling 
approaches in such a large experimental study?

4 When modeling results are different from observations, 
what should we do?
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 Application of Data Assimilation to a 
Peatland Methane Study

Shuang Ma
University of California, Los Angeles, USA

Data assimilation is widely used in terrestrial ecosystem 
studies. This chapter illustrates the use of data assimilation with 
a site-level study to project peatland methane (CH4) emission 
in response to warming. Wetland CH4 emissions comprise one 
third of the global CH4 source and remain the largest source 
of uncertainty in the global budget. Wetland CH4 emission 
estimated by process-based models (bottom-up) are used as 
the prior information for atmospheric inversion estimates (top-
down). It is thus important to constrain process-based models 
with in situ observations to improve both the bottom-up and 
top-down estimates. We give a brief background of methane 
modeling and then show the application of data assimilation 
in the methane model in seven steps.

UNCERTAINTY IN METHANE MODELING

Methane (CH4) has 25 times the global warming potential of 
CO2 over a 100- year scale (Myhre et al., 2013). It is directly 
responsible for approximately 20% of global warming since 
pre- industrial time (Forster et al., 2007). Wetlands are an 
important natural source of CH4 emissions to the atmosphere, 
but constitute a principal source of uncertainty in the global 
atmospheric CH4 budget (Saunois et al., 2020). Global wetland 
CH4 emission estimated by process- based models have large 
disagreement compared with atmospheric inversion model 
ensembles (Saunois et al., 2020).

There are three major sources of uncertainty in the model 
estimated CH4 emission. The first is the uncertainty in 
mechanisms that control biogeochemical processes due to the 
difficulty to acquire empirical data. For example, it is very 
difficult to measure the aerobic and anaerobic oxidation of 
methane. The redox potential effect on methane oxidation 
awaits more empirical data to be represented in models. The 
second source of uncertainty is the wide range of possible 
parameter values for methane- related processes. Flux- based 
measurements of Q10 (temperature sensitivity) of CH4 release 
from different warming plots at one single site range from 2.12 
to 32.16 (Gill et al., 2017). Manually tuning the parameter 
values to match the observed CH4 fluxes could achieve the 
right answer with diverse combinations of parameter values –  
the problem of equifinality. The third uncertainty is a poorly 
mapped wetland extent and seasonal inundation. Current 
wetland maps are mainly based on inventory data and satellite 
observations. Inventory maps are limited due to the low spatial 
and temporal coverage, while satellite- based maps cannot 
capture the wetland area with dense vegetation cover.

It is critical to understand how wetland CH4 emissions 
may respond to climate change, given the much larger 
warming potential of CH4 compared to CO2 over a 100- year 
scale (Myhre et al., 2013). Terrestrial biosphere models that 
include methane processes explicitly describe the CH4 flux 
exchange through plant- mediated transport, diffusion, and 
bubbling (ebullition). These are the three major pathways of 
wetland CH4 emission. The relative contributions of these 
three pathways to methane emissions under climate warming 
have not been unraveled either using experiments or modeling 
approaches. In most process- based methane models, these CH4 
emission pathways are calculated based on CH4 concentration 
in each peat layer, which is primarily dominated by CH4 
production. If some of the parameters in CH4 production, 
plant- mediated transportation, ebullition, and diffusion can be 
constrained by observational data, we may be able to improve 
model predictions both by improving accuracy and reducing 
uncertainty.

ASSIMILATION OF METHANE EMISSIONS DATA 
INTO THE TECO MODEL

The seven steps of data assimilation were introduced in 
Chapter 21. As an illustrative example, we will apply these 
steps to the assimilation of methane emissions data from in 
situ measurement into the TECO model.

1 Define the objective.
  Our objective is to reduce the uncertainty of model 

estimations of how methane emissions vary in response 
to warming. Taking the example of a peatland methane 
study (Ma et al., 2017), data assimilation is used first to 
constrain parameters with observational data, thereby 
reducing uncertainty in methane prediction.

2 Prepare data.
  Our data come from the Spruce and Peatland 

Responses Under Changing Environments (SPRUCE) 
experiment at a northern peatland site in Minnesota, 
USA. The SPRUCE project uses experimental 
warming and elevated CO2 treatments to assess the 
responses of northern peatland ecosystems to future 
environmental conditions (Hanson et al., 2016). Here 
we will use in situ net CH4 emission data from ambient 
plots to constrain parameters of a process- based 
methane model. CH4 emission measurements were 
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acquired during the snow- free months using a portable 
open- path analyzer in a static chamber (1.13m2 area), 
near monthly from 2011 to 2016 (Hanson et al., 2017a 
and 2017b). The 2010– 2014 data are used for data 
assimilation and 2015– 2016 are used for validation. In 
total, 45 daily CH4 chamber measurement data points 
were integrated from ambient plots from 2011 to 
2016. A mean and a standard deviation are calculated 
from all the measurements on the same day in each 
ambient plot.

3 Choose a model.
  Our example uses a methane- enabled version of 

the Terrestrial ECOsystem (TECO) model, which 
incorporates a ten- layer vertical mixing CH4 module 
(Ma et al., 2017). The TECO model has been calibrated 
to the SPRUCE site to study the carbon cycle and 
soil thermal dynamics (Jiang et al., 2018). A detailed 
description of TECO can be found in Weng and Luo 
(2008).

   TECO- CH4 explicitly considers the transient 
and vertical dynamics of CH4 production, CH4 
oxidation, and CH4 transport from belowground to the 
atmosphere. The structure and processes are adapted 
from a number of previous studies and models such 
as CLM4.5 (Riley et al., 2011), LPJ- WHyMe (Wania, 
Ross, and Prentice, 2010), Walter’s model (Walter & 
Heimann, 2000), and TEM (Zhuang et al., 2004). All 
the above models assume that soil can be separated 
into aerobic and anaerobic layers divided by the water 
table. These models also assume that the majority 
of CH4 oxidation occurs in the aerobic layers and 
rhizosphere, and that most methane production occurs 
in the anaerobic layers. Within each soil layer, CH4 
concentration is calculated as the mass balance of 
CH4 production (gain), CH4 oxidation (loss), CH4 
diffusion from adjacent layers, CH4 ebullition (loss), 

and plant- mediated transport (loss). The flow diagram 
of TECO- CH4 is shown in Figure 26.1 and further 
described below.

   CH4 production is determined by carbon availability 
represented by heterotrophic respiration, and by soil 
environmental conditions such as water table height 
and soil temperature. As in most methane models, CH4 
production only occurs when soil temperature is above 
0°C and below 45°C. Given that CH4 oxidation is 
largely controlled by CH4 concentration, it is assumed 
to follow the Michaelis- Menten kinetics.

   The CH4 diffusion across soil layers follows Fick’s  
law, which relates the diffusive flux to the gradient of  
the concentration, and Henry’s Law, which resolves  
the diffusive flux at the liquid- atmosphere boundary.  
The net exchange between the surface soil layer and  
atmosphere is accounted as the diffusive part of CH4  
emission (or uptake). The methane flux at the bottom  
boundary is set to zero and the atmospheric CH4  
concentration at the soil surface (or water surface if  
the water table is at or above the soil surface) is set to  
standard atmospheric CH4 concentration.

   Air- filled aerenchyma tissues of plants act as a 
chimney to quickly emit CH4 from the rhizosphere 
directly into the atmosphere. A portion of CH4 is 
oxidized within the plant tissue during the transport. 
TECO- CH4 uses a parameter (Tveg) to represent the 
ability to transport CH4 through tissues at a plant 
community level. The growth of plants also affects 
the amount of gas transported through the influence 
of Leaf Area Index (LAI). Ebullition entails the 
formation of bubbles when the CH4 concentration 
exceeds a certain threshold and directly emits into 
the atmosphere if the water table is above the soil 
surface, bypassing the aerobic zones that lead to CH4 
consumption. The bubbles are otherwise added to the 

FIGURE 26.1 Flow diagram of CH4 module and linkage to soil C model in TECO- CH4.

Reproduced from Ma et al., (2017).
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soil layer just above the water table and then diffuse 
through the upper layers if the water table is below the 
soil surface.

   Once a model is chosen, the next step is to choose 
parameters for optimization. The performance of data 
assimilation is affected by the variety and amount of 
observational data as well as the parameters that are 
targeted for optimization. One common way to choose 
parameters is through a sensitivity test. In this study, 
we choose nine key parameters used in TECO- CH4 
for an initial sensitivity test (Table 26.1). Four of these 
parameters are revealed to be particularly important 
for the modeled variability in CH4 emission, i.e., the 
emissions are sensitive to those parameters. We thus 
pick these parameters for data assimilation. The prior 
ranges of these parameters are estimated from published 
experimental measurements or empirical values used 
in CH4 biogeochemistry models (Table 26.1).

4 Cost function.
  As the data assimilation algorithm for this study, 

we will choose the adaptive Metropolis- Hastings 
Markov Chain Monte Carlo (MCMC). The 
approach was introduced in Chapter 22. Figure 26.2 
shows the logic flow of data assimilation written 
into the source code of the TECO data assimilation 
framework. At each step in the chain, a new set of 
parameter values is chosen at random, the model 

generates results with these parameter values, and 
the disagreement to the observations is quantified 
using the cost function:
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The cost function aggregates a total model- data mismatch 
value (Jnew) from all the 30 time points (since we have 30 near- 
monthly net CH4 emission observation from 2011 to 2014). In 
this study n equals 1 as we have only one set of observation 
data (net CH4 emission rate). We save modeled CH4 emission 
as X(t) when the corresponding observed CH4 emission 
is available (Z(t)) at time t. The standard deviation (σ(t)) is 
considered as the confidence level of the observation. In this 
study, it reflects errors from instruments, measurement, and 
spatial- temporal heterogeneity. It is used in the cost function 
to adjust the weight of model- data mismatch for individual 
data points. In data assimilation, both mean and standard 
deviation from observations are very important and should 
always be carefully considered in practice.

5 Optimization.
  If Jnew (Step 4) passes the acceptance criteria, the 

proposed parameter values are saved. Acceptance 
depends on the value of the cost function relative to 

TABLE 26.1
Major parameters in CH4 production, oxidation, diffusion, ebullition, and plant- mediated transportation in TECO- 
CH4. Bold signifies parameters used for initial sensitivity test. Parameters with a range indicate the model is 
sensitive to their values and are used for data assimilation

Process Parameters Values Range Unit Description References

CH4 production r_ me 0.65 (0.0,0.7) — Potential ratio of anaerobically 
mineralized C released as CH4

Zhuang et al. (2004), Segers 
(1998), Zhu et al. (2014)

Q10_ pro 7.2 (0.0,10) — Q 10 for CH4 production Walter and Heimann (2000)
Topt_ pro 20.0 °C Optimum temperature for CH4 

production
Wilson et al. (2016)

CH4 oxidation KCH4 5.0 — μmol L−1 Michaelis- Menten coefficients Walter and Heimann (2000), 
Zhang et al. (2002),

Omax 15.0 (3.0,45.0) μmol L−1 h−1 Maximum oxidation rate Zhuang et al. (2004)
Q10_ oxi 2.0 — — Q 10 for CH4 oxidation Walter and Heimann (2000), 

Meng et al. (2012)
Topt_ oxi 10.0 °C Optimum temperature for CH4 

production
Zhuang et al. (2004)

CH4 diffusion ftort 0.66 — — Tortuosity coefficient Walter and Heimann (2000)
Dair 0.2 — cm2s−1 Molecular diffusion coefficient of 

CH4 in air
Walter and Heimann (2000)

Dwater 0.00002 cm2s−1 Molecular diffusion coefficient of 
CH4 in water

Walter and Heimann (2000)

CH4 ebullition (CH4)thre 750 — μmol L−1 CH4 concentration threshold above 
which ebullition occurs

Walter and Heimann (2000), 
Zhu et al. (2014)

Plant- mediated 
transportation

Tveg 0.7 (0.01,15.0) — Factor of transport ability at plant 
community level

Walter (1998), Zhuang et al. 
(2004)

Reproduced from Ma et al. (2017).
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that (Jlast) from the previous iteration of the MCMC. 
An initial value for Jlast is set at 9,000,000. This is just 
a large initial value, to ensure that first proposed value 
is accepted and the iteration begins. At each step, if 
Jnew < Jlast, the proposed parameter values are accepted, 
Jlast value is updated with Jnew and used in the next 
round. After a warm- up period, parameter values start 
to converge (accepted parameter values during this 
period are discarded from the posterior distribution). 
Figure 26.3 shows the trajectory of updated model- 
data mismatch (Jnew) on the MCMC. As the MCMC 
seeks the global minimum mismatch, the acceptance 
criteria also allow Jnew to be accepted with a very 
small probability when Jnew > Jlast, so that the chain 
gets a chance to leave the local minimum mismatch 
point and reach the global minimum mismatch. See 

Chapter 22 for a further discussion of acceptance 
criteria in the MCMC.

6 Estimating parameters.
  The posterior parameter distributions achieved by 

MCMC reveal that both of the CH4 production- 
related parameters (the potential ratio of anaerobically 
mineralized C released as CH4, and temperature 
sensitivity of CH4 production) are well- constrained 
(Figure 26.4). By applying a linearized Q10 function 
to measured CH4 emission fluxes, Gill et al. (2017) 
estimated the mean value of CH4 flux Q10 to be 5.63 
(2.92– 10.52 with 95% confidence interval) at the 
same study site during the 2015 growing season. 
Our constrained Q10 range is 2.34– 6.33 with 95% 
confidence interval, which overlaps with but has a 
narrower range than this estimate by Gill et al. (2017). 

FIGURE 26.2 Logic flow of the TECO- CH4 data assimilation framework.

FIGURE 26.3 A diagram showing trajectory of updated model- data mismatch (Jnew) on MCMC chain. Blue is Jnew at (n − 1)th iteration, 
orange dot is one of the local minimum mismatch point (Jnew n), red is the next accepted Jnew at (n +  1)th iteration, green is global minimum 
mismatch (Jnew m).
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The other two parameters –  maximum oxidation rate 
and factor of plant transport ability at community 
level –  are not well constrained by the data. A longer/ 
denser record of observation data and extra datasets 
such as peat CH4 concentration are likely to be helpful 
for constraining these parameters.

7 Generating methane predictions.
  To quantify model uncertainty due to parameter 

values, we can randomly draw sets of parameters from 

the posterior distribution and run the model with each, 
resulting in a distribution of outputs for CH4 flux. 
Here, we will perform 500 simulations with different, 
randomly drawn, parameter sets, with forcing 
consisting of stochastically generated environmental 
variables (2017– 2024) based on historical meteorology 
data. Results including a baseline historical simulation 
(2011– 2016) are shown in Figure 26.5. It is apparent 
that the data constrained TECO- CH4 simulations 
match both the magnitude and seasonal variations of 
CH4 emission reasonably well for both the 2011– 2014 
and the 2015– 2016 period.

The historical part of the simulation reveals the prediction 
accuracy of the model, and its sensitivity to environmental 
forcing. The model tracks the interannual variability of the 
measurements, notably including the spike emission in 2016. 
By comparing the seasonal variation of CH4 emission to 
environmental drivers, we find that wetland CH4 emission 
is dominated by surface inundation and soil temperature. 
Soil temperature is the restricting factor below 10°C, but the 
water table level controls peak growing season CH4 emission 
when soil temperature is well in the active range for methane 
processes. CH4 emission is more sensitive to soil temperature 
during wet periods when the whole soil is inundated.

Data- constrained parameter probability distributions are 
then used to predict CH4 response to warming. An increase 
of + 2.25°C, + 4.5°C, +  6.75°C and +  9°C in both air and soil 
temperature is added to drive the TECO- CH4 model (a set of 
warming scenarios corresponding roughly to the experimental 
warming treatments at the SPRUCE site). We find exponential 
increase of CH4 emission in response to warming, with four 
times increase under + 9°C warming (Figure 26.6, panel a). 

FIGURE 26.4 Posterior distributions of parameters of 50,000 
samples from M- H simulation. (a) Potential ratio of anaerobically 
mineralized carbon released as CH4; (b) Q10 for CH4 production; 
(c) maximum oxidation rate; (d) factor of transport ability at plant 
community level.

Reproduced from Ma et al., (2017).

FIGURE 26.5 Simulation of CH4 emission dynamics based on actual (2011– 2016) and stochastically generated (2017– 2024) weather 
forcing data. Green dots refer to observations from 2011 to 2014 which are used for data assimilation. Blue dots indicate observations from 
2015 to 2016 which are used for model validation, and error bars indicate the standard deviation of each observation. Red line is simulated 
mean methane emission. The shading area corresponds to 1 standard deviation based on 500 model simulations with parameters randomly 
drawn from the posterior distribution. (a– c) The 2011 daily variation of water table, surface soil temperature, and methane emission.

Reproduced from Ma et al., (2017).
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The uncertainty in plant- mediated transport and ebullition 
increases most under warming and contributes to the overall 
change in CH4 emission uncertainty (panels d– f).

In summary, this chapter shows how data assimilation is 
applied to reduce the uncertainty of modeled methane emission 
in a northern wetland ecosystem. The data assimilation 
approach used in this case study enabled parameter estimation 
and uncertainty quantification for forecasting methane fluxes 
in response to climate change.

SUGGESTED READING

Ma, S., Jiang, J., Huang, Y., Shi, Z., Wilson, R. M., Ricciuto, D., 
… Luo, Y. (2017). Data- constrained projections of methane 
fluxes in a northern Minnesota peatland in response 
to elevated CO2 and warming. Journal of Geophysical 
Research: Biogeosciences, 122, 2841– 2861.

QUIZ

1 Give two examples of observation data streams that 
could be used to constrain a methane model.

2 What are the main sources of uncertainty in wetland 
methane emission in terrestrial ecosystem models?
A. Model structure
B. Parameter values
C. Wetland extent/ inundation map
D. All the above

3 Could you still perform data assimilation if your 
observation data had gaps?

4 Is the CH4 emission data able to constrain all the 
parameters in this study?

FIGURE 26.6 Responses of annual CH4 emission to warming and elevated CO2 (eCO2). Red lines indicate CH4 fluxes under warming 
treatments and 380 ppm CO2, blue lines indicate CH4 fluxes under warming treatments and 880 ppm CO2. X- axes indicate the warming 
treatments of + 0°C, + 2.25°C, + 4.5°C, + 6.75°C and + 9°C above ambient level. Shading area correspond to mean ± one standard deviation 
based on 500 randomly chosen model simulations with parameters drawn from the posterior distribution.

Reproduced from Ma et al., (2017).
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27  Global Carbon Cycle Data Assimilation 
Using Earth Observation
The CARDAMOM Approach

Mathew Williams
University of Edinburgh, Edinburgh, UK

The goal of this chapter is to explore the potential for data to 
support diagnostics and forecasting of the terrestrial carbon 
cycle via model-data fusion. This understanding will be built by 
explaining and exploring an existing framework, CARDAMOM, 
which is linked to an intermediate complexity model, DALEC. 
The key learnings will include the concept of ecological and 
dynamical constraints, the potential to generate emergent maps 
of key parameters, the role of observational error, and the key 
avenues for future research using earth observations.

INTRODUCTION

challengeS for Modeling

We begin with the premise that all models are wrong, but some 
are useful (see Chapter 2). Models are wrong because none 
fully describes the simulated system, being instead a simplified 
and incomplete representation. Models are constructed based 
on a series of hypotheses about the target system, and these 
hypotheses and their connections determine the model’s 
structure. The structure represents the interacting components 
of a system (its state variables), and describes the processes 
that determine system evolution (changes to state variables). 
We recognize that the underlying hypotheses may be incorrect, 
over- simplified and incomplete, to varying degrees.

A core requirement for modeling is data, for calibration, 
validation, and forcing. Data may quantify exogenous forcing 
factors such as weather, which affect the rates of processes, 
such as photosynthesis, or may input stochastic adjustment 
such as disturbance, which can disrupt state variables. 
Data also support calibration of process parameters and the 
setting of initial conditions for state variables. For instance, 
measurements of leaf photosynthesis under varied conditions 
can be used to calibrate the rate parameters for electron 
transport and carboxylation. The data required for drivers 
and for calibration will be incomplete as not every process is 
measurable. This incompleteness leads to poorly determined 
parameters and missing forcing data. Available data will 
have errors, systematic or random. It is the interaction of 
hypothesis/ structural error (e.g., missing processes) and data 
error/ gaps that causes models to be wrong.

Despite these challenges, models are useful for testing 
theoretical understanding and providing practical support for 

management and decision- making. System models, the focus 
of this book, are particularly useful for understanding feedbacks 
between processes and state variables. These feedbacks occur 
over a variety of scales of time and space. For example, 
stomatal conductance responds to atmospheric conditions, 
which change on the scale of minutes to hours, and also 
responds to soil moisture, which changes on the scale of days 
to weeks. Soil moisture responds to external, stochastic factors 
such as precipitation, but also to the activity and penetration of 
plant roots, which might vary over months and years, and water 
demand from the total leaf area and its stomatal opening. Only 
process- based models can allow these complex hypothesized 
linkages to be made and explored. Models provide a means to 
diagnose and understand what controls changes in the system, 
identifying key timescales, feedbacks, and interactions. Models 
are capable of interpolation in space and time, and therefore of 
making forecasts for the components of the system that are 
represented.

Model coMplexity

Forest carbon (C) models are structured on a variety of 
different hypotheses and levels of complexity. For instance, 
some simulate the dynamics of individual trees, others of 
cohorts of different ages, and some of pools of C in live and 
dead organic matter. These different representations of the 
forest system trade off realism versus simplicity. Modeling 
individual trees is more realistic, including the potential to 
simulate competition among them and to model adjustments 
to stand microclimate, that are known from observation and 
experiment to feed back to growth processes and therefore 
system dynamics. But this realism requires more hypotheses, 
for instance on competition, and therefore results in more 
model complexity. Complexity generates more potential 
connections to observations, with increased requirements 
for drivers and for calibration data. If these demands for data 
cannot be met then additional complexity may result in at best 
a poor characterization of model error and at worst a heavily 
biased model. Complex models tend to have more parameters, 
and this extended demand for parameterization becomes 
increasingly challenging to meet. A key challenge in model 
construction is to determine the appropriate and justifiable 
complexity.
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Process rates in models are determined by influences (either 
internal from associated state variables or external from 
drivers such as weather), functional forms, and parameters. 
Internal influences generate interactive control, whereby 
the magnitude of a state variable affects processes that 
influence that or other state variables. Thus, the magnitude 
of leaf area influences the magnitude of photosynthesis 
and evapotranspiration in many models. In more complex 
models the leaf area of individual stems may affect the light 
conditions and therefore photosynthesis of other stems, 
influencing competition. External influences in carbon cycle 
models can include weather, management, or disturbance. For 
photosynthesis, downwelling solar radiation is a key control, 
provided as a driving variable for the model at the appropriate 
temporal resolution and specified units. Parameters determine 
how the magnitude of state variables and driving variables 
are connected to the magnitude of the process modeled. For 
instance, photosynthesis (gC m−2 d−1) might be estimated in a 
simple linear model by multiplying the light energy absorbed 
by a canopy (MJ m−2 d−1) by a calibrated light use efficiency 
parameter (LUE, gC MJ−1). Functional forms determine 
how inputs and parameters are connected algebraically, for 
example, determining whether the response of the process is 
linear, saturating, or exponential.

Models strive to be realistic, general, and accurate. But 
there are complex trade- offs required in seeking these goals, 
particularly the need for models to be tractable, and so simple. 
There is ongoing debate about whether realistic (i.e., including 
all known processes) or general (i.e., globally applicable) 
models are necessarily more accurate. It is more practical for 
globally- applied models to be simpler, as a simple structure 
means leaner requirements for parameters and drivers. 
Mapping parameter variation globally is less demanding 
for simple models because they have fewer parameters, 
and these are usually easier and/ or possible to obtain from 
the literature. For example, it is simpler to parameterize a 
LUE model for photosynthesis (as above), with its single 
parameter for calibration for each biome or land cover type, 
than to parameterize typical photosynthesis models in land 
surface schemes that might have >10 parameters for the same 
process. The potential advantage of the more complex model 
is that it is realistic, combining all the dominant controls on 
a process, rather than just a limited selection as in the simple 
model. Realism introduces more detailed processes and extra 
state variables, and makes more connections between them. 
Additional complexity adds parameters and often requires 
more complex functional forms. However, data sparsity 
can mean that parameters and functional forms are not well 
determined. In this case the complex model may be less 
accurate, particularly in making forecasts. With large numbers 
of parameters there is a risk of over- fitting, i.e., the complex 
model can be calibrated to match noise rather than signal in 
the data, given its many adjustable parameters. A complex 
model fitted to available data may make poorer forecasts than 
a simple model if the calibration data are biased or its errors 
are poorly quantified.

Model error

While models are imperfect, they can be useful if their 
error can be quantified and understood. These errors can 
be determined through calibration and validation against 
observational data with robust error statistics. Validation 
allows testing for over- fitting. Observational error allows the 
modeler to weight the importance of data for calibration, and 
avoids over- fitting. Observational error can be incorporated 
into the model forecasts by propagating the error through 
the calibration process into parameter uncertainty. Once 
parameter uncertainty is quantified and included in model 
analyses and forecasts, models can become useful tools 
for generating understanding, constraining prediction, 
and supporting management and control. Alternate model 
structures, based on varied hypotheses, can be compared to 
understand the error associated with the model structure. 
Model structural error can be compared to error from the 
parameterization process.

Data provide objective and independent measures of the 
system of interest and the basis for evaluating and developing 
the hypotheses that create models. While models can provide 
useful theoretical tools for developing ecological thinking, for 
practical purposes related to diagnosing and forecasting global 
change effects it is vital that models are calibrated and validated 
using observations of key state variables and their controlling 
factors. The value of observational data is enhanced by clear 
description of their confidence intervals, which allows modelers 
to weight their importance robustly. Observational data, 
particularly time series, have exceptional value for evaluating 
understanding of dynamical systems. But the complexity and 
expense of collecting these data means that data replication is 
difficult and so uncertainty quantification is a challenge.

data- Model integration

Combining models with data has a long history in ecological 
science. Detailed studies of the photosynthetic process 
provided insights into the functional forms of the reactions 
and the critical parameters that led to robust models. 
Photosynthetic measurements at canopy scale were used to 
parameterize simple response functions by minimizing the 
sum of square differences between observation and model. 
Soil respiration models were derived empirically from large 
samples of respiration data under varying soil conditions. 
These data helped produce response models for key processes, 
but further work was required to produce system models with 
feedbacks. Combining ecophysiological process models 
(e.g., photosynthesis or respiration) with simulation of state 
variables that provide inputs to and respond to these processes 
has proved more challenging. Photosynthesis is a function 
of CO2 concentration within the leaf, leaf area, leaf enzyme 
content, temperature, and irradiance. Leaf area is an ecological 
variable that is itself determined by allocation from C fixed by 
photosynthesis and phenological factors such as temperature, 
photoperiod, interaction with labile or nonstructural C stores, 
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and so on. Photosynthesis varies on timescales of seconds to 
hours while leaf area varies on timescales of weeks, so the 
interaction between ecophysiology and phenology is complex. 
To forecast future photosynthesis requires coupling a model 
of photosynthesis and a model of phenology to determine 
interactions and codevelopment. Times series data are required 
for both these processes to support coupled model calibration.

Eddy covariance (EC) data have revolutionized the 
modeling of ecosystem C cycling by providing long time 
series of net CO2 fluxes, the outcome of photosynthesis, 
phenology, and respiration. As time series have extended, 
EC data have allowed evaluation of model simulated 
diurnal and seasonal cycles in ecophysiology, and in some 
cases of succession and disturbance effects on C cycling. 
However, characterizing the uncertainty on eddy covariance 
measurements of net CO2 exchange has proved very 
challenging and is an ongoing area of study. Converting 
high frequency measurements of wind velocity and CO2 
concentration into net CO2 fluxes relies itself on a model that 
makes assumptions about atmospheric processes on a range 
of temporal and spatial scales that are highly dynamic. It is 
rare to have colocated eddy covariance systems to assess 
instrumental error. Understanding errors arising from the eddy 
covariance assumptions is still developing, particularly biases 
that may arise due to averaging timescales and complexity of 
terrain. To maximize the information content of these hard- 
won data for model improvement requires a renewed focus on 
error characterization, particularly in tropical systems where 
EC data are rare.

We have seen that for creating robust and useful ecosystem 
models the fusion of model and data must provide information 
on multiple processes operating over a range of timescales, 
from physiological to phenological. Data are particularly 
sparse for processes operating at longer timescales, such 
as the evolution of the large pools of C in wood and soil. 
Information for understanding these relatively slow changing 
state variables is limited. The signal for change in these pools 
is difficult to extract from eddy covariance data, which are 
dominated by the large gross fluxes of photosynthesis and 
respiration, rather than the slower rates of C changes to soil 
and wood pools. But it is the change in the large pools that 
ultimately determines whether ecosystems are C sources or 
sinks. So, there are open questions on how processes that 
govern these large pools of C can be calibrated effectively. 
Forest inventory data provide useful information. But, like 
EC, high- quality inventory data, particularly for soils, are 
rare and sparse, concentrated in a few locations globally. Soil 
and forest inventories rarely coincide. For global application, 
models need to be calibrated and validated with relevant data 
that describe the complex heterogeneity of our planet and its 
dynamics over annual to decadal timescales.

Earth observation (EO) data are now providing vast and 
expanding data sources for the terrestrial carbon cycle that 
offer exciting new opportunities for model calibration and 
validation. Leaf area index, a key auxiliary state variable 
related to photosynthesis, has had global and continuous 
products since ~2000 from optical satellites operated by NASA 

(MODIS) and ESA (European Space Agency Copernicus data 
sets), with new ESA Sentinel products promising even further 
refinement. However, while LAI products are now delivered at 
finer resolutions in space and time, the products have poorly 
quantified biases. Optical satellites also provide products 
related to burned area and to deforestation. Meanwhile radar 
and lidar satellites are providing intermittent regional maps 
of aboveground biomass. The errors on these products are 
also poorly developed and a subject of research. It is critical 
that EO products are calibrated and validated against detailed 
field data at relevant scales. But the strengths of these EO data 
are compelling, providing insights into ecological variables 
across the globe and their changes over time. If EO data can 
be used to calibrate and validate models there is the potential 
to test the generality of models at a new level of detail and 
across biomes and landscapes. Thus, a major research effort 
has been conducted to build approaches for model calibration 
and validation that use EO data. The rest of this chapter 
describes one of these efforts.

CARDAMOM AND DALEC –  AN EXAMPLE 
FRAMEWORK FOR C CYCLE DIAGNOSTICS

CARbon DAta MOdel fraMework (CARDAMOM) is an 
approach constructed to quantify the interaction between C 
model structure and data, with a focus on earth observations 
and local to global application. CARDAMOM is designed 
to produce a probabilistic model calibration based on local 
observations, sensitive to their number, type, and error. This 
section aims to demonstrate the potential of model- data fusion 
to generate understanding of the terrestrial carbon cycle 
through evaluating the hypotheses contained in models and 
to diagnose C cycling and its uncertainty. In this example, 
CARDAMOM calibrates the DALEC ecosystem C model. The 
text first describes the DALEC model, then the CARDAMOM 
framework, and finally provides an example application, and 
some analysis of its results.

the data aSSiMilation linked ecoSySteM carbon 
(dalec) Model

DALEC is a pool- based, mass balance model of the terrestrial 
C cycle, of intermediate complexity. The model runs on daily 
to monthly time steps, and can be applied across a broad range 
of spatial scales (from 1 ha to ~100 × 100 km). The version 
of DALEC described here has 17 parameters and six pools 
(Figure 27.1). DALEC’s six state variables include live and 
dead pools of organic C. Live pools represent the vegetation 
as foliage, wood, and fine root C stocks, and a labile pool of 
C that flushes leaves at the start of the growing season. Dead 
pools represent litter and soil organic matter C stocks. These 
pools evolve according to inputs to and losses of C from each, 
which are determined by a range of processes. Inputs of C 
to the system are determined by photosynthesis, which is a 
function of weather variables (drivers), leaf area index and 
leaf traits. Leaf area index is determined from the foliar C 
pool and the leaf trait of leaf C mass per area (LCMA). The 
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foliar N parameter describes the potential of a unit leaf area 
to fix C, and is another important leaf trait. DALEC uses the 
aggregated canopy model (ACM) to simulate photosynthesis. 
ACM is a response surface model which relates climate, soil, 
and atmospheric drivers to internal variables to predict gross 
primary production (GPP). ACM is a simplified version of 
the process- based Soil- Plant- Atmosphere (SPA) model. The 
advantage of ACM over SPA is that it operates at daily time 
steps, and so is orders of magnitude faster than sub- daily SPA, 
while still capturing the sensitivity of photosynthesis to key 
ecological and physical variables.

Once GPP is determined, DALEC apportions a fraction 
of this to autotrophic respiration (Ra), leaving the remainder 
for net primary production, NPP. A simplified model of Ra, 
requiring a single parameter, is selected due to the lack of a 
robust process model –  this is a key area for future research. 
NPP is then allocated to all plant live pools. A phenological 
model determines how allocation to the labile pool and foliage 
varies over annual cycles, and how labile C is used to flush 
leaves, requiring parameters to determine the start of leaf flush 
and of leaf senescence, and their duration. The remaining C is 
then allocated at fixed fractions to fine roots and wood. Wood 
and fine root C pools have a parameter that determines their 
life spans, the inverse of turnover rate. The generation of plant 
litter is a first order process determined by the mass of C in 
each foliage, root, and woody pool and its turnover rate.

Plant litter from foliage and fine roots enters the litter 
pools, and litter from wood enters the soil organic matter 
(SOM) pool. Both these pools have turnover rate parameters 
that determine the mineralization of these pools to CO2. This 
turnover is also sensitive to air temperature, according to an 

exponential function with a calibrated parameter. Litter C 
also has a decomposition rate parameter that converts its C to 
SOM. Heterotrophic respiration is the sum of mineralization 
from both litter and SOM pools.

Disturbances such as fire can be imposed on the C stores in 
DALEC, so that if the drivers indicate such an event, a fraction 
of C in live and dead pools is removed from the ecosystem. 
Foliage, wood, and litter tend to have higher fractional losses 
from fire than roots and SOM. Harvest effects can also be 
imposed, again with pool- specific parameters that determine 
what fraction is removed and what is added to litter and SOM. 
In this application these disturbance parameters are derived 
from the literature and are not calibrated.

the carbon data Model fraMework   
(cardaMoM)

DALEC here has 23 unknowns. As each parameter and the 
initial condition of each pool must be known for the model 
to be run, CARDAMOM is used to calibrate these model 
parameters using available information at the location 
simulated (Figure 27.2). Calibrating a 23- dimensional 
hypervolume is highly challenging computationally. One 
approach to calibration involves differentiating the model 
code to determine the sensitivity of its outputs (predictions) 
to its parameters. This process allows the model to be 
inverted and parameters found that produce outputs consistent 
with independent measurements of those outputs. But in 
CARDAMOM we use a forward modeling approach. This 
avoids the challenging process of code differentiation. Instead, 
Markov Chain Monte Carlo (MCMC) methods are deployed.

FIGURE 27.1 The DALEC model structure. Green boxes are pools of C in live and dead pools. SOM is soil organic matter. The labile C 
pool represents stored C which supports leaf flush at the start of the growing season. Green lines show C fluxes, identified by the text in the 
blue boxes. GPP is gross primary production. NPP is net primary production. R is respiration, either heterotrophic (h) or autotrophic (a). Fire 
and management can remove C from any of the pools by combustion or harvest, with prescribed loss fractions. Climate influences rates of 
GPP, Rh, and in some versions of DALEC influences the fluxes into and out of the labile pool. The mass of foliar C determines canopy leaf 
area index, which is a determinant of GPP –  this influence is shown by the dashed blue arrow and generates feedback within the system.
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MCMC was introduced in Chapter 22. The MCMC approach 
involves running a model many times, with varying parameters. 
The approach finds those parameter sets that generate model 
outputs (e.g., LAI time series) that match independent 
observations (e.g., from EO), weighted by their errors, and 
keep these sets. By running a model millions of times, the 
MCMC approach searches parameter space to find parameter 
sets consistent with observations and observational error. The 
approach to select or reject parameter sets is Bayesian. That is, 
the approach assesses the likelihood that model and data set are 
consistent. This likelihood is stored with each parameter set, 
and the search process ends when likelihoods have converged. 
By running separate chains of MCMC runs, starting from 
different initial parameter guesses, the approach can check 
that different chains arrive at consistent likelihoods. If chains 
do not converge, the approach is judged to have failed. Failure 
to converge can occur if there are problems with the data, their 
error specification, and due to model structural errors.

Note that the output of this Bayesian approach is a set 
of accepted parameter sets. Parameter values are correlated 
because of the model structure, which connects parameterized 
processes via pool interactions. We can use a sample of 
accepted parameter sets to generate statistics about each 
parameter’s posterior distribution. For instance, it is typical 
to report the 90% confidence interval on each parameter 
posterior. It is also informative to inspect the covariance of 
parameters produced by MCMC approaches to understand 
process interactions within the model. An interesting result 
from the CARDAMOM approach when used at global scales 
was that the estimates of leaf life span and leaf mass per area 
were correlated. This result is consistent with expectations 
from the leaf economic spectrum but was emergent from the 
structure of DALEC and the climate and time series of LAI 
assimilated.

Prior parameter ranges are needed for Bayesian calibration, 
because the calibration process must be informed of the 
search range of each parameter. Setting the parameter priors 
for MCMC calibration approaches is a challenging task. If 
the prior is made too wide, then the search effort is enormous 
and the MCMC approach may not find a calibration that is 
accepted, as likelihoods are too low and do not converge. If 
the prior is made too narrow, calibration may exclude values 
that are actually realistic. This can lead to edge- hitting, where 
the posterior parameters are found to cluster at the upper or 
lower bound of the prior range. It is important to inspect the 
posterior distribution and compare to the prior to spot edge- 
hitting. In this case the prior range may be expanded and the 
calibration repeated. Another challenge in setting the prior 
is to inform the MCMC of the prior distribution across the 
range. The simplest approach is to set a uniform prior with 
equal likelihood of selecting any value in the range during 
the MCMC approach. But in some cases, it may make sense 
to set a Gaussian (i.e., normal, or bell- shaped) prior, which 
increases the likelihood of selecting some values within this 
range. A Gaussian prior may be chosen if one has independent 
knowledge about the value of the parameter.

Setting observational errors is another important task 
for Bayesian approaches, because these determine the 
likelihoods of parameter sets. Observational data, for 
instance earth observation products, should be provided 
with an estimation of uncertainty. However, in some cases 
errors are not available, and where these errors are provided 
they may be over- confident. Thus, caution suggests that 
relatively large uncertainties should be applied. But if 
observational uncertainties are too large then they do not 
provide constraint. In the absence of reliable observational 
uncertainties, we walk a fine line balancing between the 
need to maximize the information content of data without 
over- fitting to error- filled observations. It is also advisable 
to apply geometric errors rather than arithmetic errors to 
avoid zero crossing when data with values close to zero are 
assimilated. Thus, the uncertainty on LAI might be set at  
×/ ÷1.5, rather than ±0.5.

To assist the process of searching dimensions of variability 
and to ensure that nonsensical solutions are avoided, 
CARDAMOM uses the concept of ecological and dynamics 
constraints (EDCs). EDCs ensure that model simulations are 
realistic and ecologically viable. EDCs reduce the uncertainty 
in the model parameters by rejecting estimations that do not 
satisfy various conditions applied to C allocation and turnover 
rates as well as trajectories of C stocks. For example, EDCs 
ensure that turnover rates of wood are always slower than for 
fine roots and foliage. They ensure that root:shoot biomass 
ratios are within broad but realistic bounds. EDCs can be 
used to favor parameters that result in pools close to steady 
state values. Ensuring a close- to- steady- state system means 
that pools and fluxes are broadly consistent with hypothesized 
processes and climate forcing. This assumption is broadly 
valid for low resolution studies with coarse grid cells (e.g., 
at 1 × 1° grids). At finer resolutions (e.g., ha) increasing  
heterogeneity will include aggrading and recently disturbed  

FIGURE 27.2 A schematic of the Carbon Data Model Framework, 
CARDAMOM, showing the inputs to the framework and the outputs. 
EDCs are ecological and dynamic constraints. The process model in 
this example is DALEC. The framework can be applied at a single 
site or over multiple pixels using earth observations (EO) as inputs.
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systems with accumulating biomass, an ongoing challenge for 
CARDAMOM.

CARDAMOM is a codebase that integrates the DALEC 
model, the driving data sets, the observational data sets and 
the Bayesian MC algorithm (Figure 27.2). CARDAMOM 
can be applied at a single site, or at multiple sites, including 
pixel- by- pixel across a gridded land surface, even up to global 
scale. However, computational demands are high, so running 
CARDAMOM globally requires low resolution (1 × 1° pixels)  
at present. The outputs of CARDAMOM are accepted 
parameter sets for each pixel/ location, consistent with local 
forcing and observations. From these parameter sets the full C 
cycle at each location can be reproduced probabilistically, by 
using these and the driving data to run multiple instances of 
DALEC. Typically, 500 randomly sampled parameter sets are 
stored from each of three chains in the MC process. From the 
resulting 1500 stored parameter sets a detailed distribution of 
uncertainty in processes, traits, carbon fluxes and stores, and 
their covariances, can be determined at pixel scale.

innoVationS in the cardaMoM approach

The outputs of CARDAMOM have clear differences from 
typical C cycle model simulations. CARDAMOM produces 
large ensembles of simulations allowing uncertainty to be 
characterized, whereas typical models produce only one 
simulation, and so lack uncertainty estimates. CARDAMOM 
avoids a strict imposition of steady state conditions which typical 

models employ. The typical model is run under steady state 
drivers for hundreds of years or more, until all C pools reach a 
steady state. Then, from this steady state, adjustments to drivers 
are introduced, such as climate change, and the adjustment to 
stocks and fluxes are followed. In CARDAMOM there is no 
spin- up. For each location or pixel, EDCs ensure that the C 
cycle is in quasi- steady state if there is no clear information from 
assimilated data on whether the system is a source or sink. Thus, 
the ensemble of accepted parameter sets will result in some that 
are sinks, and some that are sources, spanning a balanced net 
ecosystem exchange (NEE) of CO2. Thus, the ensemble will 
register uncertainty about source/ sink characteristics if this 
information is not clear from assimilated data.

Typical ecosystem C models use the concept of plant functional 
types (PFT) to assign parameters. Thus, there are parameter sets 
for evergreen broadleaf forest, for C3 grasslands, tundra, etc. that 
are the same in all such locations globally. Competition among 
PFTs is simulated by the model in each pixel to determine 
the relative coverage. In CARDAMOM parameter sets are 
independent for each pixel, determined only from information 
available in that pixel, its forcing, and EDCs. Thus, parameters 
differ spatially, adjusting along climate gradients and varying 
between continents depending on available information. Where 
information is limited, then parameter ensembles will be less 
constrained and will more closely match the prior information 
on parameter bounds. The information content of data in each 
CARDAMOM pixel can be determined by quantifying how 
much each parameter posterior is reduced in scale from the 

FIGURE 27.3 An example of the inputs used in generating a Brazilian model- data fusion (MDF) analysis of C cycling at 1° resolution 
monthly over the period 2001– 17. The left- hand panel shows the observational data used to constrain the C cycle, including time series of leaf 
area index (LAI) from satellite observations, a map of soil C from interpolated field data, and a biomass map created from multiple satellite 
data. The right- hand panel shows observations used to drive process rates, such a vapor pressure deficit (an input to the GPP model in DALEC) 
and observations used to force land use change and fire impacts. Earth observations (EO) products are used to determine deforestation losses 
of C, and the burned fraction for combustion losses. The MDF algorithm runs very large ensembles in each grid cell using the drivers, and 
selects parameter sets that generate pools of C consistent with the observations and their errors. The output is a selection of these accepted 
parameter sets for each pixel in the analysis.

Analysis provided by T.L. Smallman.
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parameter prior. Likewise, comparing this prior- posterior metric 
among parameters provides insights into which processes have 
been constrained by available data, and which have not. For 
instance, it is typical for parameters related to foliage (e.g., leaf 
life span, canopy efficiency) to be more strongly constrained 
than those related to root turnover or litter mineralization. This 
difference is because CARDAMOM usually has available time 
series of satellite LAI data which provide useful information on 
foliar processes directly. Information on roots or litter is sparse 
from earth observation.

an exaMple of cardaMoM

An example of CARDAMOM application at sub- continental 
scale is revealing. Here we have completed an analysis for 
Brazil during 2001– 2017. The input data include Copernicus 
LAI time series, a biomass map, and a soil C map. Drivers 
include meteorological data, a forest loss product, and a 
burned area product (Figure 27.2). CARDAMOM produces 
parameter estimates, whose median values can be mapped 
to show the ecological spatial variation across Brazil 
(Figure 27.3). It is clear from inspection that there are emergent 
patterns resulting from the pixel- by- pixel analysis for leaf 
traits. One can see distinct differences in leaf N, leaf C mass 
per area, and leaf life span. The Amazon basin has patterns 
clearly different from Cerrado (bordering the Amazon to the 
SE), Caatinga (NE Brazil), and Atlantic Forest (E coast of 
Brazil), for example. Within the Amazon there is evidence of 
some parameter differences perhaps related to wetland areas. 
Boundaries between these key biomes are clearer or more 
blurred in some areas.

These biome patterns are also clear in parameters related to 
biomass stocks (Figure 27.4). Fractional allocation of NPP to 
leaves, wood, and roots shows clear emergent trade- offs across 
Brazil. In the Amazon, allocation to wood is the dominant 
fraction, reflecting the productive and competitive nature of 
tropical moist forests. Similar patterns can be observed in 
the narrow band of Atlantic Forest along the coast. In the dry 
forests of the Cerrado and even drier Caatinga the dominant 
allocation fraction is to roots, reflecting the water limited 
nature of these systems, and their disturbance by fire. Within 
the Amazon there is evidence of regional variability, with the 
northeastern area having relatively higher allocation to wood 
and lower allocation to leaves than other areas.

A key novelty of the CARDAMOM approach is that it 
generates emergent patterns in C processing, between and 
within biomes –  for instance across the equatorial forest biome. 
Field studies are now providing better spatially resolved, 
bottom- up information on leaf and plant traits to guide model 
calibration. The top- down results from CARDAMOM can 
be evaluated against these independent data to check for 
consistency across biomes and continents (Figure 27.5).

The typical model evaluation approach is to test using 
data independent from the calibration data. For instance, 
CARDAMOM estimates of leaf mass per area across the globe, 
emergent from earth observations, climate drivers, and DALEC 
model structure, could be compared to interpolations of field 
observations. Areas of agreement and mismatches could 
be highlighted. The magnitude of mismatches could be 
compared using different versions of DALEC (e.g., with 
alternate phenology schemes), different climate forcing, and 
different earth observations of LAI to explore their validity. 

FIGURE 27.4 Retrieved median estimates of leaf traits for the Brazilian analysis using CARDAMOM. These traits are parameters within DALEC. 
Leaf N determines the maximum rate of photosynthesis. Leaf C per area determines the relationship between foliar C mass and leaf area index (LAI), 
and the investment requirement in C to construct leaf area. Leaf life span determines the turnover time of foliage, and therefore the investment of C 
required each year to maintain the canopy at the observed LAI. For each pixel a probability distribution for each parameter is determined.

Analysis provided by T.L. Smallman.
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But there is an alternate philosophy for model- data fusion 
approaches, which is to assimilate the field observations of 
leaf traits (i.e., not leave any for independent testing). We can 
evaluate the resulting analysis for consistency of model and 
data, and for its likelihood. The probabilistic approach used in 
CARDAMOM provides a clear quantification of model value. 
The information content of new data sets like a bottom- up 
traits map can be evaluated by comparing analyses with and 
without the new data. Thus, what is the impact on analytical 
likelihood of the new assimilate? Does this have a spatial or 
temporal impact?

KEY CHALLENGES AND OPPORTUNITIES FOR 
DATA ASSIMILATION

The earth’s land surface is both dynamic and highly 
heterogeneous with variation in C stocks occurring at 
varied length scales across the globe according to biological 
processes and exogeneous factors linked to disturbance and 
management. Disturbance and management operate on 
a range of scales, but typically are more important at finer 
spatial resolutions. Thus, as analyses sharpen their resolution 
from 1 × 1° to 1 ha, for instance, disturbance and management 
become more important and ecosystem properties become 
more dynamic and potentially further from steady state. At  
1 × 1° the annual rate of forest loss is relatively small compared 
to stocks, for typical forested landscapes. But in these same 
landscapes a 1 ha forest plot can lose most of its stocks in one 
year, due to fire or clearance, and rates of aggradation can also 
be fast.

There is a need to resolve forest C processes at fine 
resolutions (e.g., 1 ha) to support monitoring, reporting, and 
verification processes linked to global treaties for climate. 
For this reason, there are numerous satellite missions under 
construction or in orbit to provide data on forest structure 
at these resolutions. Frameworks such as CARDAMOM 
can assimilate these satellite observations to produce C 
flux estimates at similar resolutions. There are technical 
challenges relating to computing power requirements and data 
management. There are also algorithmic challenges to calibrate 
models for dynamic forest patches where disturbance and 
recovery from disturbance are common states. High temporal 
resolution data from satellites provide a means to monitor for 
rates of change and thereby to calibrate internal processing of 
C. Thus, repeated biomass stock estimates have been shown to 
provide insights into carbon allocation parameters, and even 
into key soil parameters, as these are downstream of wood 
dynamics. Further, the spatial distribution of biomass stocks 
also provides information on the local landscape dynamics. 
A steady state landscape will have a normal distribution of 
biomass stocks. A degrading landscape will be dominated 
by lower biomass with a long tail of higher biomass from 
remnant forest patches. Using this information will require 
new algorithms not currently used in CARDAMOM, to link 
information from neighboring pixels in a landscape analysis.

The atmospheric C community has a long history of using 
inversion approaches to identify source and sink regions from 
linking atmospheric transport models and atmospheric CO2 
concentration data in carbon cycle data assimilation system 
(CCDAS). There is a clear opportunity to link the ecological 

FIGURE 27.5 Retrieved median estimates of plant traits for the Brazilian analysis using CARDAMOM. Three of the panels show the 
fraction of net primary production (NPP) allocated to leaves, wood and fine roots (i.e., these fractions sum to 1). The final panel shows the 
wood residence time, indicating the longevity of C storage in live woody biomass. The patterns are emergent, as each pixel is analyzed 
independently to produce likely estimates of these parameters.

Analysis provided by T.L. Smallman.
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data assimilation in frameworks such as CARDAMOM to 
atmospheric approaches. In fact, links to atmospheric data 
would be valuable particularly because identifying whether 
a landscape is a source or sink is challenging. Future 
developments include the potential to link to atmospheric 
inversions for independent tests of net exchanges.

SUGGESTED READINGS

For more details on the CARDAMOM method read:
Bloom, A. A., and Williams, M. (2015). Constraining ecosystem 

carbon dynamics in a data- limited world: Integrating 
ecological “common sense” in a model- data- fusion 
framework. Biogeosciences 12: 1299– 1315.

Bloom, A. B., Exbrayat, J.- F.  van der Velde, I. R.  Feng, L., and 
Williams, M. (2016). The decadal state of the terrestrial carbon 
cycle: Global retrievals of terrestrial carbon allocation, pools 
and residence times. Proceedings of the National Academy of 
Sciences 113: 1285– 1290.

Smallman, T. L., Exbrayat, J.- F. Mencuccini, M. Bloom A. A., and 
Williams M. (2017). Assimilation of repeated woody biomass 
observations constrains decadal ecosystem carbon cycle 
uncertainty in aggrading forests. Journal of Geophysical 
Research Biogeosciences 122: 528– 545.

Compare the CARDAMOM approach with other model- data fusion 
approaches in the papers presented below. What are the 
advantages of these other approaches?

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, 
S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, 
P., and Prunet, P. (2016). A new stepwise carbon cycle data 
assimilation system using multiple data streams to constrain 
the simulated land surface carbon cycle. Geophysical Model 
Development 9: 3321– 3346.

Kaminski, T., Scholze, M. L. U., Vossbeck, M., Knorr, W. L. U., 
Buchwitz, M., and Reuter, M. (2017). Constraining a terrestrial 
biosphere model with remotely sensed atmospheric carbon 
dioxide. Remote Sensing of Environment 203: 109– 124.

QUIZ

1 Models aim to be general, realistic, and accurate. Why 
is it so hard to meet all three goals at once?

2 What are the arguments for and against calibrating and 
validating global C cycle models at eddy covariance 
sites alone?

3 How does the CARDAMOM approach to generating 
C model parameters differ from the typical plant 
functional type approach? What are the relative 
advantages of each method?

4 What are the challenges to applying CARDAMOM 
at very high resolutions (e.g., 1 ha) across the globe? 
How might these challenges be addressed?
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 Practice 7
Data Assimilation at the SPRUCE Site

Shuang Ma
University of California, Los Angeles, USA

This practice uses the SPRUCE field experiment as a case study 
to explore how a model’s parameter values influence its output 
via sensitivity analysis, and how parameters may be estimated 
via assimilation of data from field measurements. Exercise 1 
addresses how certain model output variables are sensitive to 
changes in certain parameter values. Exercise 2 illustrates how 
observational data change posterior parameter distributions in 
comparison to the priors. In this practice, we use data from 
the SPRUCE research site in Northern Minnesota, USA, as a 
context to show possible studies you could conduct by using 
data assimilation. The exercises may be performed using the 
CarboTrain software. Instructions for installing and working 
with CarboTrain are available in Appendix 3.

PRACTICE DESIGN

Data sets that are used in this practice are listed in Table 28.1.

Exercise 1 Parameter sensitivity of model output
In this exercise we will examine how the parameter values 
of a model affect its outputs. Launch CarboTrain on your 
computer (see Appendix 3) and follow these steps:

a Select Unit 7 ➔ Exercise 1 ➔ Set output directory 
(e.g., mydir/ EX1/ default) ➔ Click Run Exercise.

b Output files appear in subdirectory simulation of the 
output directory you specified in the previous step. 

CarboTrain plotted daily_ cpool.png and daily_ fluxes.
png with the data in the same folder for a quick look. 
The full model outputs are also provided as .csv files. 
The model output can be found in the file: ‘your_ 
output_ dir/ simulation/ Simu_ dailyflux14001.csv’. The 
observation data can be found here: ‘/ CarboTrain/ 
Source_ code/ TECO_ 2.3/ input/ SPRUCE_ cflux.txt’ 
and ‘/ CarboTrain/ Source_ code/ TECO_ 2.3/ input/   
SPRUCE_ cpool.txt’. Annotations for output data 
columns is here: your_ CarboTrain_ dir/ CarboTrain/    
Source_ code/ TECO_ 2.3/ annotations in TECO 
modeloutput_ file_ format.jpg

c Select Unit 7 ➔ Exercise 1 ➔ Set output directory 
(e.g., mydir/ EX1/ increase_ vcmax). Click Set Initial 
parameters and increase the parameter ‘Vcmax’ value 
by 30%. Click Run Exercise.

d Repeat step (c), set a new output directory (e.g., mydir/ 
EX1/ decrease_ vcmax). Click Set Initial parameters 
and decrease the parameter ‘Vcmax’ value by 30%.

e Repeat steps (c) and (d) for increases and decreases 
of the following parameters. Remember to create a 
new name for output directory each time after you 
changed the parameter value. You should end up with 
ten different output files:
a SLA, the specific leaf area;
b Tau_ leaf, leaf carbon turnover time;
c Tau_ root, root carbon turnover time;

28

TABLE 28.1
The SPRUCE site data used in this practice

Purpose Data name Year Period Time step

Environmental 
variables (input) 
to drive the 
TECO model, 
spin up and 
forward run

Soil temperature at 0, 5, 10, 20, 30, 40, 50, 100, 200cm depth 2011– 2018 Whole year Hourly
Air temperature at 2m
Relative Humidity at 2m
Wind speed at 10m
Precipitation
Photosynthetically Active Radiation (PAR) at 2m

Water balance 
calibration

Soil moisture at 0, 20cm 2014– 2018 Whole year Hourly
Water table depth 2014– 2018 Whole year Hourly

Data streams used 
in data- model 
fusion

Leaf, wood, root biomass 2014– 2018 End of growing season Once a year
Soil C content 2012 August 13– 15 One time
NEE, GPP, ER fluxes 2015– 2018 Growing season 1– 2 times a month

Note: NEE =  Net Ecosystem Exchange, GPP =  Gross Primary Production, Reco =  Ecosystem Respiration.
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d Tau_ slowSOM, recalcitrant soil C pool turnover time.
f Plot the output data from your ten model simulations 

and compare the differences. It will be helpful for ease 
of comparison to plot the results for one parameter 
with ±30% changes (e.g., Vcmax) on the same figure.

After Step (b), you can inspect the default run results, such as 
daily leaf, wood, and root pool changes, GPP, NEE, Reco, and 
other carbon fluxes from 2011 to 2016. When you decrease and 
increase the Vcmax value by 30% in Steps (c)– (d), you will 
see substantial changes in GPP and autotrophic respiration. 
Similarly, when the value of specific leaf area is changed, we 
can see effects on GPP and autotrophic respiration. However, 
in both cases, we don’t see much change in the carbon pools. 
From these comparisons, you may realize that Vcmax and 
SLA have similar effects on model outputs.

By contrast, when you change the turnover time of the leaf 
pool, you may see that the steady state size of the leaf pool 
has considerably changed whereas GPP or NEE do not change 
much. At steady state, the leaf pool is about 350 gC m- 2 when 
we decrease the turnover time by 30%, increasing to about 
450 gC m- 2 if we increase the turnover time by 30%. Similarly, 
tuning the turnover time of root C changes the steady state 
size of the root carbon pool. Thus, we may learn that turnover 
time can affect the steady state of carbon biomass.

Exercise 1 shows us that certain output variables are 
sensitive to changes of certain parameter values. We have 
also seen that adjustments in different combinations of 
parameter values can sometimes generate the same changes 
in output variables. In other words, we might sometimes 
get right answers but for a different reason. An example 
is that the value of leaf C turnover time, SLA, and Vcmax 
can all be responsible for the magnitude and pattern of leaf 
carbon pool sizes and GPP. This is so- called equifinality, 
an issue for both manual tuning and Bayesian- guided 
parameter estimation (Luo et al. 2009). However, manually 
tuning parameter values can be tricky and subjective. 
Data assimilation searches for the whole prior ranges of 
parameter values with millions of iterations to generate 
posterior probability distributions.

Question:
Which output variables are most sensitive to change in each of 
the five parameters? Can you explain why?

Exercise 2 Data assimilation with TECO
This exercise will help you learn to perform data assimilation 
with the comprehensive ecosystem model, TECO. We will use 
CarboTrain as a toolbox for the exercise.

1 Launch CarboTrain and select Unit 7 ➔ Exercise 2 
➔ Set output directory (e.g., mydir/ EX2/ default) ➔ 
Click Run Exercise. The model runs iteratively 20,000 
times with different parameter values, the accepted 
parameter values are saved in the file DA/ paraest.txt. 
It takes several hours to finish the full data assimilation 
process. If you want to get fast but not accurate 
results, you may let it run for 500 times, reducing the 
run time to 5– 10 mins. To do this, monitor the value 
for ‘isimu’ in your terminal window; when it gets 
to 500, terminate the run by pressing Ctrl+ C. Then 
CarboTrain will randomly select 100 sets of accepted 
parameters saved in the file DA/ paraest.txt, and save 
model forward run output in the file forecasting/ 
Simu_ dailyflux***.txt. ‘***’ could be any of the 3- 
digit numbers ranging between 1– 100. A quick plot 
of the results is also provided in the file pool_ and_   
 flux.png.

2 This exercise is a teaser for you to walk through the 
whole process of data assimilation. In a formal data 
assimilation study, tens of thousands to millions of 
iterations are normally needed to get to a stabilized 
chain. The number of iterations needed depends on the 
model structures, the parameter sampling and selection 
algorithms (e.g., different variants of the Monte Carlo 
Markov Chain algorithm; see Chapter 22), and the 
quality and quantity of observations.

Figure 28.1 shows parameter posterior distributions from a 
full data assimilation run informed by observational data from 
the SPRUCE field experiment. We can see that SLA and leaf 
C turnover time are well- constrained by the observational 
data. In Exercise 2, we see that parameters to which the 
model is sensitive are more likely to be constrained by data. 
Instead of one value, the data assimilation study generates 
probabilistic distributions of parameter values, allowing the 
range of uncertainty to be displayed and analyzed. With data 
assimilation, you can quantify uncertainties and partition 
the uncertainties into different sources of error and process 
variabilities.

QUESTIONS

1 What is a constrained posterior distribution?
2 Which parameters are most likely to be constrained 

by the observation data sets, why? (hint: think of 
equifinality and parameter sensitivity)
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29  Introduction to Ecological Forecasting

Yiqi Luo
Cornell University, Ithaca, USA

In this rapidly changing world, improving the capacity to 
forecast future dynamics of ecological systems and their 
services is essential for better stewardship of the earth 
system. This chapter introduces ecological forecasting, 
the next frontier of research in ecology. Using weather 
forecasting as an analog, this chapter discusses four 
elements for ecological forecasting. The four elements 
are:  predictability of the land carbon cycle; observations 
to constrain forecasting; data assimilation to integrate data 
with models; and a workflow system to automate ecological 
forecasting. This chapter also describes applications of 
an ecological forecasting system to a warming and CO2 
experiment in northern Minnesota and a precipitation mean 
and variance experiment in New Mexico.

INTRODUCTION

As you have seen in Figure 21.1, to realistically forecast 
ecosystem responses to environmental change, we need three 
elements: (1) model structure to represent the real- world 
processes that control system functions; (2) parameterization 
to reflect system properties; and (3) external forcing variables 
that an ecosystem experiences. We have studied the matrix 
approach to process- based modeling for the carbon cycle in 
Units 1– 5. This chapter will examine the predictability of 
the land carbon cycle, according to the matrix equation, to 
understand the expectation of how well carbon forecasting 
can be achieved. We have also studied data assimilation 
for parameter estimation in Units 6 and 7. This chapter 
will explore the availability of observations to achieve 
accuracy in ecological forecasting with different levels of 
model complexity. Training in this unit (i.e., this chapter, 
Chapter 30, and Practice 8 in Chapter 32) is focused on a 
workflow system, Ecological Platform of Assimilating Data 
(EcoPAD) into model, to link real- time forcing and automate 
ecological forecasting.

WEATHER FORECASTING

Before we get into ecological forecasting, let us learn something 
from weather forecasting. Probably everyone is very familiar 
with weather forecasting. First, please take a moment to 
answer a few multiple- choice questions. How frequently do 
you look at weather forecasting? A. never; B. once every a few 
days; C. once a day; and D. a few times a day. You may make 
your own choice. Why do you look at weather forecasting? 
A. deciding what clothes to wear; B. deciding what kinds of 

outdoor activities to do; C. deciding whether you will do some 
field research; or D. doing something else. What do you think 
are the benefits that weather forecasting brings to society? 
A. saves lives; B. supports emergent management; C. mitigates 
the impact of and prevents economic losses from high- impact 
weather; D. facilitates financial revenue in energy, agriculture, 
transport, and recreational sectors; or E. all the above. These 
questions show that weather forecasting has become part of 
our lives, influences our daily activities, and is relevant to 
many aspects of our society.

According to a review paper by Peter Bauer et al. (2015) 
published in Nature, weather forecasting skills have been 
steadily improving. The skill reaches 98% by 2014 for a three- 
day weather forecast and about 60% for a seven- day weather 
forecast. I have personal experience on the accuracy of the 
weather forecast. Many of you may also notice how accurate 
the weather forecast has become.

Numeric weather prediction as a scientific discipline has 
been developing for more than 100 years. The major milestones 
of weather prediction include knowing the laws of physics to 
make weather forecasting possible in 1901, developing and 
using super- computing in the 1970s, using satellite and other 
observations in the 1980s, and using data assimilation in 
the 1990s. For example, it is relatively well known that the 
physical processes that determine weather dynamics include 
energy and water fluxes, momentum dynamics, and land 
surface conditions, among others.

Numeric weather prediction uses extensive observations 
from radar and other observations in data assimilation to 
generate weather patterns. Observations are used to constrain 
initial values every few hours. The data assimilation methods 
include 3D- var, 4D- var, and nowadays ensemble Kalman 
Filter. Data assimilation with complex weather models is 
computationally expensive. Accuracy and resolution of 
numerical weather prediction models increase over time 
as computational power exponentially increases. In short, 
success in weather forecasting depends on understanding 
of physical laws to develop models, collecting satellite and 
other data, using data assimilation to constrain initial values 
every a few hours, and relying on supercomputing to carry out 
calculation of the numeric models.

Similar to weather forecasting, ecological forecasting also 
needs process- based models, observations, data assimilation, 
and supercomputing. The process- based models offer model 
structure whereas observations are assimilated into the 
process- based models for parameterization through data 
assimilation via supercomputing.
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MODELS AND PREDICTABILITY OF THE 
TERRESTRIAL CARBON CYCLE

Process- based models of the terrestrial carbon cycle have 
different levels of complexity but are examined in Units 1– 5  
for their general properties through the matrix approach. One 
of the key properties of terrestrial carbon dynamics is the 
convergence toward some moving attractor states over time, 
even if external forcing and disturbances often push the carbon 
cycle to be in disequilibrium. Using this intrinsic property, 
Luo et al. (2015) examined the predictability of the terrestrial 
carbon cycle. While the rate of approach to an attractor, and 
attractor itself, is relatively predictable given knowledge 
about carbon input rates, loss rates, the initial conditions, and 
governing environmental constraints, there are three levels of 
predictability: high, medium, and low, plus two cases: less 
known and unknown about the predictability for individual 
processes (see Table 29.1).

For example, some external variables exhibit cyclic 
changes, typically causing the carbon flux rates, such as 
photosynthesis and respiration, to vary with the same period as 
the forcing (Table 29.1). The responses of terrestrial carbon to 
daily and seasonal cyclic forcing should be highly predictable. 
However, interannual variability in the terrestrial carbon 
cycle, as reflected in eddy- flux measurement and variations 

in the growth rate of atmospheric CO2, is less known for its 
underpinning mechanisms, making it difficult at present to 
evaluate its predictability.

Disturbance events, such as wildfire and climate extremes 
themselves, however, have an inherent random component 
(e.g., chances of a hurricane), making the predictability 
of individual events relatively low. Likewise, the severity 
of disturbance impacts on the carbon cycle is not very 
predictable, either. The recovery dynamics following a 
disturbance, however, appear to be highly predictable given 
adequate knowledge of the carbon influx rates, the residence 
times, and the pool sizes following disturbance (Table 29.1). 
Moreover, there is evidence that some ecosystems may recover 
to an alternative steady state (or different moving attractors) 
following disturbance. Our lack of understanding of why this 
occurs limits our assessment of its consequences for carbon 
cycle predictability.

Most of the direct effects of climate changes on the 
terrestrial carbon cycle can be predicted via relatively simple 
response functions in ESMs. However, climate change also 
causes indirect effects on the terrestrial carbon cycle, such 
as changes in plant species composition, microbial priming, 
and respiratory acclimation. The indirect effects are much 
less well understood, making it currently unclear just 
how predictable they are (Table 29.1). Moreover, climate 

TABLE 29.1
Intrinsic predictability of response patterns of the terrestrial carbon cycle to five classes of external forcing. The 
predictability of the carbon cycle measures a degree to which the response pattern is predictable given one class 
of external forcing. The predictability is usually judged by the sensitivity (e.g., diverging vs. converging) of systems 
behavior in response to various classes of perturbation and external forcing. In general, carbon cycle responses 
per se are more predictable than external forcing, which causes much high uncertainty in predicting carbon cycle 
responses to climate change

External forcing Response of the terrestrial carbon cycle

Class Example General pattern Component
Intrinsic 
predictability

Cyclic 
environment

Diurnal, seasonal, and 
interannual

Cyclic Diurnal and seasonal High
Interannual Less known

Disturbance event Fire, land use, insect outbreak, 
and storms etc.

Pulse- recovery Time of events happening Low
Immediate impacts of disturbance events 

on carbon cycle
Medium

Recovery High
Recovery to original or new attractor Less known

Climate change Rising [CO2]a, climate 
warming, altered 
precipitation

Gradual Direct impacts High
Indirect impacts via induced changes in 

disturbance regimes and ecosystem 
states

Less known

Shifts in 
disturbance 
regimes

Regional, long- term patterns 
of fire, land use, insect 
outbreak, and storm etc.

Disequilibrium Joint probability to describe disturbance 
regimes and their shifts

Unknown

Impacts of shifted disturbance regimes on 
mean carbon storage

High

Ecosystem state 
change

Forest to cropland, grassland to 
cropland, reforestation, etc.

Abrupt changes When and where ecosystem states change Less known
Carbon cycle change with ecosystem 

states
High

Source: Luo et al. (2015).
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change may also induce shifts in disturbance regimes and 
changes in ecosystem states, which is less predictable as 
discussed below.

Disturbance regimes can be quantified by joint probabilistic 
distributions of disturbance frequency and severity, which, 
in turn, can be used to generate a probability distribution 
of ecosystem carbon storage. The mean of the probability 
distribution determines the realizable carbon storage 
capacity under a given regime, reflecting the mean carbon 
storage capacity over a sufficiently long time period or over 
a sufficiently large area (Luo and Weng 2011). This means 
carbon storage capacity could thus be predictable. However, we 
do not have enough knowledge to predict when the disturbance 
regime changes by direct or indirect anthropogenic forcing.

When ecosystem states change, rates of carbon cycling 
among the plant, litter, and soil carbon pools also change. 
Given the change in vegetation structures and corresponding 
parameters, a consequent change in the carbon cycle is 
quantifiable. However, while vegetation state changes have 
been studied, their relationships with those carbon cycle 
parameters remain poorly understood.

Overall, many processes of the terrestrial carbon cycle are 
intrinsically predictable. For these processes, forecasting is 
expected to be highly achievable. However, the indirect effects 
of climate change on terrestrial carbon cycling become less 
predictable, especially those which, via changes in species 
composition and disturbance regimes, lead to ecosystem state 
changes. In addition, individual disturbance events usually 
occur stochastically even within a stationary disturbance 
regime. For such processes, forecasting is expected to be more 
uncertain.

DATA AVAILABILITY TO CONSTRAIN FORECAST 
VIA DATA ASSIMILATION

There are plenty of data available to support forecasting the 
carbon cycle. For example, eddy- flux networks provide half- 
hourly data streams over hundreds of sites to support near- term 
forecasting of carbon cycle dynamics over daily, seasonal, and 
interannual timescales.

Data is also available on long- term processes, such as 
disturbance events and subsequent recovery. Forecasting 
disturbance events themselves is not easy at this stage. 
However, data is available to test forecasting of recovery 
processes. As disturbance regimes and their impacts on 
carbon cycle take place over quite long timescales, it is 
clear how real or near- term forecasting would be useful to 
research or management. But it is feasible to use available 
data to test the capability of forecasting. Plenty of data 
are also available on ecosystem state changes for studying 
ecological forecasting.

There are many global change experiments ongoing 
right now. They offer great opportunities to test forecasting 
capability at some of the experimental sites. We have been 
forecasting responses of the carbon cycle to experimental 
treatments at five levels of temperature and two levels of 
atmosphere CO2 concentration at the SPRUCE site since 2016 

(see Chapter 25). We are also setting up the forecasting system 
for a drought experiment at Sevilleta Long Term Ecological 
Research (LTER) site in New Mexico.

Data from observational networks and experiments are 
integrated into models via data assimilation before ecological 
forecasting is made. Units 6 and 7 describe basic concepts, 
procedure, and application cases of data assimilation.

WORKFLOW SYSTEM TO FACILITATE 
ECOLOGICAL FORECASTING

Ecological forecasting is usually carried out in an automatic 
fashion. We have developed a workflow system for near- 
time forecasting. The system is Ecological Platform for 
Assimilating Data (EcoPAD) into models (Huang et al. 2019) 
(also see Chapter 30). EcoPAD is a software system that 
links sensor networks to ecological forecasting. It integrates 
eco- informatics, web- technology, ecological models, 
data assimilation techniques, and visualization. EcoPAD 
was designed to promote interactions among modeling, 
experimentation, and observations to gain the best science.

Data and models are integrated through a data 
assimilation system before the trained models are used 
for forecasting, optimization of measurement plans, and 
uncertainty analysis. The data to be integrated can come 
from the real- time sensor networks or from spreadsheets 
with records of hand measurement (Figure 29.1). EcoPAD 
offers three options, which are simulation, data assimilation, 
and forecast, in response to a request from users. Once a user 
makes a request, EcoPAD can execute the task automatically 
to generate results. The generated results can be visualized 
in real- time as well. Thus, EcoPAD is an interactive software 
system for researchers to automatically execute model 
simulation, data assimilation, and ecological forecasting in 
real or near- time.

We have applied EcoPAD to the SPRUCE experimental 
site located in Northern Minnesota (see Chapter 25). SPRUCE 
is a whole ecosystem warming and CO2 enrichment project. 
It has five levels of temperature treatments and two levels of 
CO2 concentrations. The experiment follows a gradient design 
with five chambers for five levels of temperature treatments at 
ambient CO2 concentration and five chambers at elevated CO2 
concentration. The project is very well equipped with lots of 
real- time sensors and involves more than 100 scientists who 
perform many kinds of measurements. The real- time sensors 
send data to data servers. Data servers also store the data from 
hand measurements. EcoPAD automatically ingests data from 
data servers through a web app server for data assimilation 
and forecasting. The forecast results are automatically sent to 
two sites, one at the SPRUCE site and one at our lab website, 
for visualization. EcoPAD has done ecological forecasting 
automatically at midnight on Saturday every week since 
June 2016.

The forecasting variables include snow cover, soil thermal  
dynamics, and frozen depth (Huang et al. 2017); many  
carbon cycle variables, such as gross primary production, net  
primary production, net ecosystem production, and ecosystem  
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respiration (Jiang et al. 2018); and methane flux and pathways  
(Ma et al. 2017).

We are applying EcoPAD for data assimilation and 
ecological forecasting at Sevilleta Long- Term Ecological 
Research (LTER) site in New Mexico. Sevilleta LTER site 
currently has a few experiments going on. These experiments 
are mainly related to precipitation and nitrogen fertilization. 
In addition, there are several long- term eddy- flux towers, 
measuring carbon, water, and energy fluxes for years. We are 
developing the capability to do real- time or near- time data 
assimilation and ecological forecasting at those experimental 
and eddy- flux sites.

In fact, EcoPAD can be used as a smart experiment- modeling 
system. First, the system can predict what ecosystems may 
respond to treatments once you have selected a site and decided 
your experimental plan. When we were writing a proposal to 
continue the LTER study at Sevilleta, New Mexico, we used 
the TECO model to do pre- experiment analysis on possible 
ecosystem responses to increasing variability in precipitation. 
The modeling results were included in the proposal. Once 
you get funding to do the experiment, you can use EcoPAD 
to assimilate the data you are collecting to constrain model 
forecasts. The model forecasts what ecosystem responses 
may likely be for the remaining period of your experiment. 
The forecast ecosystem responses can be used as references 

for you to design your measurement plan. At the SPRUCE 
project, Shuang Ma’s forecast results stimulated discussion 
about how much methane may be released through bubbling. 
Discussion on this issue lasted for a few weeks. The extensive 
discussion led to improvement of Shuang’s methane model, 
new ideas to design additional measurements of methane 
concentrations along the soil profiles, and more collaborations 
between experimental and modeling teams. Moreover, the 
uncertainty analysis with EcoPAD can tell us what those 
important datasets are and which need more measurement in 
order to understand the system dynamics. During the course 
of our study, we can use EcoPAD to periodically update 
the forecast by repeating steps from data assimilation to 
forecasting to improvement of measurement and model. We 
are using EcoPAD to do weekly forecasts at the SPRUCE 
project. During this process, we improve the models, the 
experiments, and the data assimilation system.

In summary, carbon cycle forecasting is a new frontier of 
research in ecology. As many processes are highly predictable, 
forecasting carbon cycle dynamics is expected to be highly 
achievable. Plenty of data are available to constrain forecasting 
with data assimilation. Workflow systems to automate data- 
model integration and ecological forecasting are becoming 
available. The challenge remains to identify societally relevant 
issues that carbon cycle forecasting can address.

FIGURE 29.1 EcoPAD to streamline data ingestion from sensors and servers, model simulation, data assimilation, forecasting, and 
visualization. By timely updating of the parameter values, EcoPAD enables close interactions between experimenters and the modelers.
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QUIZ

1 What are the elements leading to the success in 
weather forecasting?

2 We need forcing variables to be consistent between 
models and field sites for realistic forecast because 
(choose one answer)
a the model needs forcing variables to drive 

simulations.

b it is easy to get forcing variables from field sites.
c environment variables that drive the model 

prediction have to represent what ecosystems 
experience.

d we can measure environmental variables at 
field sites.

3 What is a workflow system?
4 Pre- experiment modeling analysis is useful because 

(choose as many as correct ones)
a it gives some general ideas on what ecosystem 

responses may look like.
b it will give us the precise prediction of ecosystem 

responses.
c we do not have to carry out the experiment 

anymore.
d it helps us adjust the measurement plan.

 

 

 

 



192 DOI: 10.1201/9781032711126-38

Ecological Platform for Assimilating   
Data (EcoPAD) for Ecological   
Forecasting

Yuanyuan Huang
Institute of Geographic Sciences and Natural Resources Research,   
Chinese Academy of Sciences, Beijing, China

30 

Tremendous scientific endeavors in ecology have been driven 
by the goal of forecasting future ecological dynamics. This 
chapter introduces the web-based Ecological Platform for 
Assimilating Data into model (EcoPAD) to facilitate ecological 
forecasting. The objectives of this lecture are to understand 
why we need a platform like EcoPAD, the structure of the 
platform, and how to use EcoPAD to facilitate ecological 
forecasting.

WHY DO WE NEED ECOPAD?

Ecological research is driven by the quest of understanding the 
dynamics of biota and their interactions with the environment. 
To understand ecological patterns, processes, and functions, 
we conduct field or manipulative experiments. From these 
experiments, we combine a wide range of approaches to 
obtain relevant observational data (e.g., through real- time 
sensor, laboratory measurements, remote- sensing, and video- 
based observations). For example, the National Ecological 
Observatory Network (NEON) of the United States monitors 
ecosystems across the United States by collecting hundreds of 
data products including organismal counts and measurements, 
water and soil quality, energy fluxes, and remotely sensed 
vegetation indices. Many similar observational networks now 
provide us with a wide range of ecological relevant datasets 
for different regions. To name a few, FLUXNET tracks the 
exchanges of carbon dioxide, water vapor, and energy between 
the biosphere and atmosphere for a network of flux tower sites 
around the world, while DroughtNet focuses on the responses 
of terrestrial ecosystems to drought. Knowledge obtained from 
data and experiments enables us to make inferences about 
ecological dynamics under novel situations. The inference 
could be based on complex mathematical models built upon 
data as well as simple relationships derived from data. We call 
inference under novel conditions prediction. Forecasting is a 
type of prediction in which we make predictions about the 
future.

Ecological forecasting is not only valuable for contributing 
to scientific advances but is also practically valuable in 
guiding resource management and decision- making towards 
a sustainable future. The practical need for ecological 
forecasting is particularly urgent for our current rapidly 

changing world, which is experiencing unprecedented food 
insecurity, natural resource depletion, biodiversity loss, 
climate changes, and pollution of air, waters, and soils. This 
practical need has brought a growing number of forecasting- 
oriented studies, for example, on fisheries, crop yield, species 
dynamics, algal blooms, phenology, pollinator performance, 
and biodiversity. Ecological forecasting is valuable in almost 
every subdiscipline of ecology. Recent progress especially 
in available data, improved process understanding, data 
assimilation techniques, and advanced cyber- infrastructure, 
is converging to transform ecological research into advanced 
quantitative forecasting. In practice, however, ecological 
forecasting remains largely aspirational, with the number of 
forecasting studies lagging behind demand. One bottleneck 
is the lack of infrastructure to enable timely integration of 
data into models. EcoPAD is designed as a solution to widen 
this bottleneck. It provides a fully interactive infrastructure 
to facilitate ecological forecasting, especially near- time 
ecological forecasting based on iterative data- model 
integration.

EcoPAD (https:// eco lab.cals.corn ell.edu/ ?eco pad, last 
accessed: October 2023) serves to link ecological experiments 
and data with models and provides easily accessible and 
reproducible data- model integration with interactive web- 
based simulation, data assimilation, and forecasting. The 
system is designed to streamline web request- response, data 
management, modeling, prediction, and visualization to 
boost the overall throughput of observational data, promote 
data- model integration, facilitate communication between 
modelers and experimenters, inform ecological forecasting, 
and improve scientific understanding of ecological processes. 
EcoPAD facilitates estimation of model parameter values, 
evaluation of model structure, assessment of information 
content of datasets, and understanding of uncertainties 
revealed by model- data fusion exercises. Additionally, 
EcoPAD automates data management, model simulation, data 
assimilation, ecological forecasting, and result visualization. 
It provides an open, convenient, transparent, flexible, scalable, 
traceable, and readily portable platform to systematically 
conduct data- model integration towards better ecological 
forecasting. The automated near- time ecological forecasting 
through EcoPAD updates periodically in a manner similar 
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to weather forecasting. This design of EcoPAD enables it to 
function as a smart interactive model- experiment (ModEx) 
system (Figure 30.1). ModEx forms a feedback loop in which 
field experiments guide modeling and modeling influences 
experimental focus. Information is constantly fed back 
between modelers and experimentalists, and simultaneous 
efforts from both parties advance and shape understanding 
towards better forecasts. ModEx can: (1) predict what 
an ecosystem’s response might be to treatments once the 
experimenter has selected a site and decided the experimental 
plan; (2) assimilate the data collected during the experiment 
to constrain model predictions; (3) project the expected 
ecosystem responses in the rest of the experiment; (4) tell 
experimenters which priority datasets to collect in order to 
better understand the system; (5) periodically update the 
projections; and (6) improve the models, the data assimilation 
system, and field experiments during the process.

In addition to forecasting and facilitating interaction 
between modeling and experimental communities, EcoPAD is 
desirable because of the potential service it can bring to society. 
Forecasting with carefully quantified uncertainty is helpful in 
providing support for natural resource managers and policy 
makers. It is always difficult to bring complex mathematical 
ecosystem models to end users who do not have training in 
modeling, which creates a gap between current scientific 
advances and public awareness. The web- based interface of 

EcoPAD makes modeling as easy as possible without losing 
the connection to the mathematics, knowledge, and data 
behind the models. In this way, infrastructure like EcoPAD 
has the potential to transform environmental education and 
encourage citizen science in ecology and climate change.

GENERAL STRUCTURE OF ECOPAD

The essential components brought together by EcoPAD include 
experiments and data, ecological models, data assimilation 
techniques, and the scientific workflow (Figure 30.1).

Data are the foundation of ecological modeling and  
forecasting. We have entered the “big data” age, characterized  
by the ready availability of different, often extensive datasets  
across various temporal- spatial scales. These datasets might  
have high temporal resolution, such as time series from  
real- time ecological sensors, or extensive spatial coverage  
from remote sensing sources and data stored in geographic  
information systems. Data may contain information related  
to environmental forcing (e.g., precipitation, temperature,  
incoming radiation), site characteristics (e.g., soil texture and  
species composition), or biogeochemistry of soils and waters.  
EcoPAD offers systematic data management to digest diverse  
data streams. Datasets in EcoPAD are derived from research  
projects in comma- separated value (csv) files or other loosely  
structured data formats. These datasets are first described and  

FIGURE 30.1 Schema of approaches to forecast future ecological responses under (a) current practice; and (b) the Ecological Platform 
for Assimilation of Data (EcoPAD). Current practice makes use of observations to develop and/ or calibrate models to make predictions. 
EcoPAD goes further by linking models to data through a formalized, iterative cycle using a fully interactive platform. EcoPAD consists of 
four major components: experiment and data, model, data assimilation, and the scientific workflow (green arrows or lines). Data and model 
are iteratively integrated through its data assimilation systems to improve forecasting. Its near real- time forecasting results are shared among 
research groups through a web interface to guide new data collections. The scientific workflow enables web- based data transfer from sensors, 
model simulation, data assimilation, forecasting, result analysis, visualization, and reporting, encouraging user- model interactions, especially 
for experimentalists and end users having a limited background in modeling.

Adapted from Huang et al., (2019).
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stored with appropriate metadata via either manual operation  
or scheduled automation from sensors. Data are generally  
separated into two groups. One comprises forcing variables  
to drive modeling, the other, observations used for data  
assimilation. Scheduled sensor data are appended to existing  
data files with prescribed frequency. Attention is given to how  
the particular dataset varies over space and time. When the  
spatio- temporal variability is understood, it is then placed  
in metadata records that allow for query through EcoPAD’s  
scientific workflow.

The workflow and data assimilation system of EcoPAD are 
relatively independent of any specific ecological model. To 
illustrate the integration of models with EcoPAD, we take the 
Terrestrial ECOsystem (TECO) model as a general example. 
Linkages among the workflow, data assimilation system, and 
ecological model are based on messaging. For example, the 
data assimilation system generates parameters that are passed 
to ecological models. The state variables simulated from 
ecological models are passed back to the data assimilation 
system. Models may have different formulations. As long as 
these models take in the same parameters and simulate the 
same state variables, they are functionally identical from the 
point of view of the data assimilation system. TECO simulates 
ecosystem carbon, nitrogen, water, and energy dynamics. The 
original TECO model has four major submodules (canopy, 
soil water, vegetation dynamics, and soil carbon and nitrogen) 
(Weng and Luo, 2008) and is further extended to incorporate 
methane biogeochemistry and snow dynamics (Huang et al., 
2017; Ma et al., 2017).

Data assimilation (see Chapter 21) provides a framework 
to combine models with data to estimate model parameters, 
test alternative ecological hypotheses through different model 
structures, assess the information content of datasets, quantify 
uncertainties, derive emergent ecological relationships, 
identify model errors, and improve ecological predictions. 
Under the Bayesian paradigm, data assimilation techniques 
treat the model structure, the initial and parameter values as 
priors that represent our current understanding of the system 
(see Chapter 22). As new information from observations or 
data becomes available, model parameters and state variables 
can be updated accordingly. The posterior distributions of 
estimated parameters or state variables are imprinted with 
information from the model, observations (or data) as the chosen 
parameters are constrained to reduce mismatches between 
observations and model simulations. Future predictions benefit 
from such constrained posterior distributions through forward 
modeling. As a result, the probability density functions of 
predicted future states following data assimilation normally 
have narrower spreads than those without data assimilation. 
EcoPAD can accommodate different data assimilation 
techniques since the scientific workflow of EcoPAD is 
independent of the specific data assimilation algorithm. One 
example of a data assimilation method is the Markov Chain 
Monte Carlo (MCMC) introduced in Chapter 22.

The scientific workflow of EcoPAD wraps around one or 
more user- specified ecological models and data assimilation 
algorithms and acts to move datasets in and out of structured 

and cataloged data collections (metadata catalog), while 
leaving the logic of the ecological models and data assimilation 
algorithms untouched (Figure 30.2). When a user makes a 
request through the web browser or command line utilities, the 
scientific workflow takes charge of triggering and executing 
corresponding tasks, pulling data from a remote server, 
running a particular ecological model, automating forecasting, 
or making the result easily accessible and understandable to 
users through web based graphic displays (Figure 30.2). The 
workflow system is portable across operation system and 
programming language and is built to be scalable to meet 
the demands of the model and the end- user community. The 
essential components of the scientific workflow of EcoPAD 
include the metadata catalog, web application- programming 
interface (API), the asynchronous task or job queue (Celery), 
and the container- based virtualization platform (docker) 
(Figure 30.2). The workflow system of EcoPAD also provides 
structured result access and visualization. Scientific workflow is 
a relatively new concept in the ecology literature but is essential 
to realize real-  or near real- time forecasting. Thus, we describe 
it in detail below. Readers who are not interested in technical 
details may skip the following paragraphs and jump to the 
section: “Applications of EcoPAD: The Example of SPRUCE”.

Datasets can be placed and queried in EcoPAD via a common 
metadata catalog, which allows for effective management of 
diverse data streams. The EcoPAD metadata scheme includes 
a description of the data product, access pattern, and time 
stamp of last metadata update. MongoDB (https:// www.mong 
odb.com/ , last accessed: November 2020), a NoSQL database 
technology, is employed to manage heterogeneous datasets to 
make documentation, query, and storage fast and convenient. 
Through MongoDB, measured datasets can be easily fed into 
ecological models for various purposes such as to initialize the 
model, calibrate model parameters, evaluate model structure, 
and drive model forecasts. For datasets from real- time 
ecological sensors that are constantly updating, EcoPAD can 
be set to automatically fetch new data streams with adjustable 
frequency according to research needs.

The “gateway” of EcoPAD is the Representational State 
Transfer (RESTful) application programming interface (API). 
It can deliver data to a wide variety of applications and enables 
a wide array of user interfaces and data dissemination activities. 
Once a user makes a request, such as through clicking on 
relevant buttons from a web browser, the request is passed 
through the RESTful API to trigger specific tasks. Thus, the API 
bridges communication between the client (e.g., a web browser 
or command line terminal) and the server (Figure 30.2). The 
API exploits the HyperText Transfer Protocol (HTTP) such 
that data can be retrieved and ingested from EcoPAD through 
the use of simple HTTP headers and verbs (e.g., GET, PUT, 
POST, etc.). Since HTTP is also understood by web servers 
and clients, a user can incorporate summary data from EcoPAD 
into a website with a single line of html code. Users are able 
to access data directly through programming environments 
like R, Python, and MATLAB. Simplicity, ease of use, and 
interoperability are among the main advantages of the API, 
which enables web- based modeling.
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The task queue is a mechanism used to distribute work across  
work units such as threads or machines. EcoPAD uses Celery  
(https:// git hub.com/ cel ery/ cel ery, last accessed: November  
2020) as an asynchronous task or job queue that runs in the  
background (Figure 30.2). Celery communicates through  
messages, and EcoPAD takes advantage of RabbitMQ (https://  
www.rabbi tmq.com/ , last accessed: November 2020) to  
manage messaging. After the user submits a command, the  
request or message is passed to Celery via the RESTful API.  
These messages may trigger different tasks, which include  
but are not limited to pulling data from a remote server  
where original measurements are located, accessing data  
through a metadata catalog, running model simulations with  
user specified parameters, conducting data assimilation that  
recursively updates model parameters, forecasting future  
ecosystem status, and postprocessing model results for  
visualization. The broker inside Celery receives task messages  
and hands out tasks to available Celery “workers” that perform  
the actual tasks (Figure 30.2). Celery workers are in charge  
of receiving messages from the broker, executing tasks, and  
returning task results. The worker can be a local or remote  
computation resource (e.g., the cloud) that has connectivity  
to the metadata catalog. Workers can be distributed into  
different information technology infrastructures, which makes  
the EcoPAD workflow expandable in accommodating more  
computational resources. Each worker can perform different  
tasks depending on the tools installed in each worker. One  
task can also be distributed to different workers. In such a  
way, the EcoPAD workflow enables the parallelization and  

distributed computation of actual modeling tasks across  
various IT infrastructures and is flexible in implementing  
additional computational resources by connecting additional  
workers.

Another key feature that makes EcoPAD easily portable 
and scalable among different operation systems is the 
utilization of a container- based virtualization platform, the 
docker (https:// www.doc ker.com/ , last accessed: January 
2019). The docker can run many applications that rely 
on different libraries and environments on a single kernel 
with its lightweight containerization. Tasks that execute 
TECO in different ways are wrapped inside different docker 
containers that can “talk” with each other. Each docker 
container embeds the ecosystem model into a complete 
file system that contains everything needed to run an 
ecosystem model: the source code, model input, run time, 
system tools, and libraries. Docker containers are both 
hardware- independent and platform- independent, and they 
are not confined to a particular language, framework, or 
packaging system. Docker containers can be run from a 
laptop, workstation, virtual machine, or any cloud compute 
instance. This is done to support the widely varied number 
of ecological models running in various languages (e.g., 
MATLAB, Python, Fortran, C, and CCC) and environments. 
In addition to wrapping the ecosystem model into a docker 
container, software applied in the workflow, such as Celery, 
RabbitMQ, and MongoDB, are all lightweight and portable 
encapsulations through docker containers. Therefore, 
EcoPAD is readily portable to different environments.

FIGURE 30.2 The scientific workflow of EcoPAD. The workflow wraps ecological models and data assimilation algorithms with the 
docker containerization platform. Users trigger different tasks through the representational state transfer (RESTful) application- programming 
interface (API). Tasks are managed through the asynchronous task queue, Celery. Tasks can be executed concurrently on a single or more 
worker servers across different scalable IT infrastructures. MongoDB is a database software that takes charge of data management in EcoPAD, 
and RabbitMQ is a message broker.

Adapted from Huang et al., (2019).
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EcoPAD enables structured result storage, access, and 
visualization to track and analyze data- model fusion practice. 
Upon the completion of the model task, the model wrapper 
code calls a postprocessing callback function. This callback 
function allows model- specific data requirements to be added 
to the model result repository. Each task is associated with 
a unique task ID and model results are stored within the 
local repository that can be queried by the unique task ID. 
The storage and query of model results are realized via the 
MongoDB and RESTful API (Figure 30.2). Researchers are 
able to review and download model results and parameters 
submitted for each model run through a web- accessible URL 
(link). The EcoPAD web page also displays a list of historical 
tasks (with URL) performed by each user. All current and 
historical model inputs and outputs are available to download, 
including the aggregated results produced for graphical web 
applications. In addition, EcoPAD also provides a task report 
that contains an all- inclusive recap of submitted parameters, 
task status, and model outputs with links to all data and 
graphical results for each task. Such structured result storage 
and access make sharing, tracking, and referring to modeling 
studies instantaneous and clear.

APPLICATIONS OF ECOPAD: THE EXAMPLE 
OF SPRUCE

The SPRUCE experiments and datasets were introduced in 
Chapter 25. Here, we demonstrate the use of the EcoPAD 
infrastructure as a way to assimilate multiple streams of data 
from the SPRUCE experiment to the TECO model using 
the MCMC algorithm and forecast ecosystem dynamics in 
both near time and for the next ten years. A similar example 
was presented in Chapter 26. The forecasting system for 
SPRUCE is available at: https:// eco lab.nau.edu/ ecopad _ por 
tal/  (last accessed: November 2020). From the web portal, 
users can check our current near-  and long- term forecasting 
results, conduct model simulation, data assimilation, and 
forecasting runs, and analyze and visualize model results. We 
set up the system to automatically pull new data streams every 
Sunday from the SPRUCE FTP site that holds observational 
data and updates the forecasting results based on new data 
streams. Updated forecasting results for the following week 
are customized for the different manipulative treatments of 
the SPRUCE experiments and displayed in the EcoPAD- 
SPRUCE portal. At the same time, these results are sent back 
to SPRUCE communities and displayed together with near 
term observations for experimentalists to study.

In the SPRUCE project, we take advantage of this platform 
to stimulate interactive communication between modelers and 
experimentalists, study the acclimation of ecosystem carbon 
cycling to experimental manipulations, partition uncertainty 
sources in forecasting, improve the biophysical estimation for 
better forecasts, and explore how the updated model and data 
contribute to reliable forecasting. Our case studies confirm 
that realistic model structure, correct parameterization, and 
accurate external environmental conditions are critical for 
forecasting carbon dynamics. The following section describes 

how the updated model and data contribute to reliable 
forecasting in the SPRUCE experiment. For other applications, 
the interested reader is referred to Huang et al. (2019).

In the SPRUCE project, the system automatically 
conducts data assimilation with the new observational data 
streams from each week, successively improving the model 
parameterization. With constantly adjusted model and 
external forcing and weekly archived model parameters, 
model structure, external forcing, and forecasting results, 
the contribution of model and data updates to forecasting 
accuracy can be tracked by comparing the previous week’s 
forecasted simulations to the current one informed by 
data from that week. Figure 30.3 illustrates how updated 
external forcing (compared to stochastically generated 
forcing) and shifts in ecosystem state variables shape the 
predictions. “Updated” means the real meteorological 
forcing monitored from the site’s weather station. In the 
absence of observations, stochastically generated forcing is 
used as a proxy for future meteorological conditions. Future 
precipitation and air temperature are generated by vector 
autoregression using a historical dataset (1961– 2014) 
monitored by the weather station. Photosynthetically active 
radiation (PAR), relative humidity, and wind speed are 
randomly sampled from the joint frequency distribution at 
a given hour each month. Detailed information on weather 
forcing is available in Jiang et al. (2018). TECO is trained 
through data assimilation with observations from 2011– 
2014 and used to forecast GPP and total soil organic carbon 
content at the beginning of 2015.

For demonstration purposes, Figure 30.3 shows three series 
of forecasting results instead of updates from every week. 
Series 1 (S1) records forecasted gross primary production 
(GPP) and soil carbon with stochastically generated weather 
forcing from January 2015– December 2024 (Figure 30.3a, 
b, cyan). Series 2 (S2) records simulated GPP and soil 
carbon with observed (updated) climate forcing from January 
2015– July 2016 and forecasted GPP and soil carbon with 
stochastically generated forcing from August 2016– December 
2024 (Figure 30.3a, b, red). Similarly, the stochastically 
generated forcing in Series 3 (S3) starts from January 2017 
(Figure 30.3a, b, blue). For each series, predictions were 
conducted with randomly sampled parameters from the 
posterior distributions and stochastically generated forcing. 
100 mean values are displayed (across an ensemble of 
forecasts with different parameters) corresponding to 100 
forecasts with stochastically generated forcing.

GPP is highly sensitive to climate forcing. The differences  
between the updated (S2, 3) and initial forecasts (S1) reach  
almost 800 gC m−2 yr−1 (Figure 30.3c). The discrepancy is  
strongly dampened in the following 1– 2 years. The impact of  
updated forecasts is close to zero after approximately five years.  
However, the soil carbon pool shows a different pattern. The  
soil carbon pool is increased by less than 150 gC m−2, which is  
relatively small compared to the carbon pool size of ca. 62,000  
gC m−2. For soil, the impact of updated forecasts grows with  
time and is highest at the end of the simulation year 2024. GPP  
is sensitive to the immediate change in climate forcing, while  
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the updated ecosystem state (or initial value) has a minimum  
impact on the long- term forecast of GPP. The impact of updated  
climate forcing is relatively small for soil carbon forecasts during  
our study period. Soil carbon is less sensitive to the immediate  
change in climate compared to GPP. However, the alteration  
of system status affects the soil carbon forecast, especially on  
a longer timescale. Since we are archiving updated forecasts  
every week, we can track the relative contribution of ecosystem  
status, forcing uncertainty, and parameter distributions to the  
overall forecasting patterns of different ecological variables  
and how these patterns evolve in time. In addition, as more  
observations of ecological variables (e.g., carbon fluxes and  
pool sizes) become available, it is feasible to diagnose key  
factors that promote robust forecasts by comparing the archived  
forecasts to observations and these to the model parameters,  
initial values, and climate forcing used.

In addition to scientific capability, the EcoPAD system 
brings new opportunities to broaden user– model interactions 
and facilitate forecasting practice. The high complexity 
and long learning curve of ecological models and data– 
model fusion techniques frequently discourage researchers 
and impede progress in forecasting practice. EcoPAD is 

designed to reduce these hurdles. It can be accessed from 
a web browser and does not require any coding by the 
user, which opens the door for non- modelers to work with 
models. The online storage of results lowers the risk of data 
loss. The results of each model run can be easily tracked 
and shared with a unique ID and web address. In addition, 
the web- based workflow saves time for experts through 
automated model running, data assimilation, forecasting, 
structured result access, and instantaneous graphic outputs, 
allowing the researcher to focus on a thorough exploration of 
results. At the same time, advanced users have the flexibility 
to scrutinize or modify model code, embed a different 
ecological model, change the data assimilation algorithm or 
add new forecasting properties.

In summary, EcoPAD provides an effective infrastructure 
with its interactive platform that rigorously integrates merits 
from models, observations, statistical advance, information 
technology, and human resources from experimentalists 
and modelers to practitioners and the general public. This 
facilitates progress in ecological forecasting and analysis. 
That being said, ecological forecasting and the EcoPAD 
platform are both at their early development stage. We need 

FIGURE 30.3 Updated vs. original forecasting of gross primary production (GPP; panels a, c) and soil organic C content (SoilC; panels b, 
d). The upper panels show three series of forecasts with updated vs. stochastically generated weather forcing. “Updated” =  forced by actual 
meteorology from field weather stations. Cyan lines indicate forecasting with 100 stochastically generated weather forcing time series from 
January 2015 to December 2024 (S1); red lines correspond to forecasting updating with measured weather forcing from January 2015 to 
July 2016, followed by forecasting with 100 stochastically generated weather forcing time series from August 2016 to December 2024 (S2); 
blue lines show updated forecasting with measured weather forcing from January 2015 to December 2016, followed by forecasting with 
100 stochastically generated weather forcing time series from January 2017 to December 2024 (S3). Panels (c) and (d) display mismatches 
between updated forecasting (S2, 3) and the original forecasting (S1). Red displays the difference between S2 and S1 (S2– S1), and blue 
shows the discrepancy between S3 and S1 (S3– S1). Dashed green lines indicate the start of forecasting with stochastically generated 
weather forcing. Note that panels (a) and (c) are plotted on a yearly timescale and panels (b) and (d) show results on a monthly timescale.

Adapted from Huang Use a consistent format for citing a reference in figure legend et al., (2019).
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more creative ideas and community efforts to realize the 
potential of this promising field.

SUGGESTED READING

Huang, Y., Stacy, M., Jiang, J., Sundi, N., Ma, S. et al. 2019. 
Realized ecological forecast through an interactive Ecological 
Platform for Assimilating Data (EcoPAD, v1.0) into models. 
Geoscientific Model Development 12: 1119– 1137.

QUIZ

1 What is ecological forecasting?
2 What key challenges and barriers does EcoPAD help 

overcome?
3 What are the four major components of EcoPAD?
4 List four potential applications of EcoPAD?
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Ecological forecasting uses a workflow system that contains 
cyberinfrastructures from data collection to visualization 
of the forecasting results. Over the past decades, some 
community cyberinfrastructures have been developed 
for ecological forecasting. This chapter provides an 
introduction of the structure and key features of community 
cyberinfrastructures available for ecological forecasting, 
and the major challenges and solutions in building future 
community cyberinfrastructures.

INTRODUCTION

In the previous two chapters of the ecological forecasting unit, 
the three elements that are required for realistic ecological 
forecasting were introduced. These are: selecting a model 
structure to represent the real- world ecological processes, 
optimizing model parameters through data assimilation, and 
generating external forcing that represents the future climate 
conditions (Luo et al., 2016).

To realize ecological forecasting, a cyberinfrastructure is 
needed to automate the workflow involving the three above- 
mentioned elements. EcoPAD, presented in the previous 
chapters, is such a cyberinfrastructure. It is a software system 
that links real- time forcing and observational data to ecological 
forecasting. Thus, it facilitates integration of field experiments 
and modeling. A web- based Graphical User Interface (GUI) 
is also developed to access and operate the EcoPAD system 
easily and users can request a specific scenario to run through 
it. Once the request is submitted successfully, EcoPAD will 
receive the command and execute the tasks such as forward 
model simulation, data assimilation, and forecasting of a 
specific climate scenario.

This chapter will introduce the needs for community 
cyberinfrastructures to support ecological forecasting, 
the structure and key features of such community 
cyberinfrastructures, available cyberinfrastructures for 
ecological forecasting, and the challenges and possible 
solutions in building future community cyberinfrastructures.

THE NEED FOR COMMUNITY 
CYBERINFRASTRUCTURES

Once a cyberinfrastructure is developed for ecological 
forecasting, it can be operated at a specific study site with any 
incorporated model(s). However, it will be desirable for such 
a cyberinfrastructure to be easily adapted to other ecosystems 
or to use other models, that is, to share the research resources 
across the ecological community. This will not only reduce 
redundant work repeating the whole process of constructing the 
cyberinfrastructure, but also leverage collaboration across the 
research community to foster innovation and promote success.

Presently, it is still challenging to adopt a new model 
by other users in the traditional cyberinfrastructure due to 
technical barriers. A critical step to overcome these technical 
bottlenecks is to design community- wide cyberinfrastructures.

THE STRUCTURE OF A COMMUNITY 
CYBERINFRASTRUCTURE

Figure 31.1 provides an example structure of a community 
cyberinfrastructure for data- model integration (Fer et al., 
2021). First, a GUI is developed for users to set up a modeling 
activity. The selected settings for the modeling activity are 
then translated into a human and machine- readable markup 
language and read in by the master workflow to execute 
a sequence of modularized tasks. During this setup step, 
a unique identifier is assigned to the full workflow to be 
executed, which includes output of the results and access to 
the metadata required to repeat this modeling activity. This 
unique identifier can be published in papers and data products 
and shared with other collaborators.

Next, the user’s selections are queried with the incorporated 
databases, including data from meta- analysis, for prior 
distributions of model parameters and for data assimilation to 
optimize model parameters. Actions to be executed at this step 
depend on whether the newly requested tasks have already 
been conducted in an earlier modeling activity. For example, 
if the tasks in the new request have been conducted previously, 
the system can retrieve the saved results to be used in this 
newly requested modeling activity.
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The data assimilation module uses the databases incorporated  
in the system to find posterior distributions of model parameters  
after parameter optimization. The optimized parameters are  
then used to realize forecasting under different scenarios. The  
forecasting results are visualized for the user to interpret, and  
forecast uncertainty can be quantified. Key outputs, such as  
calibration posteriors with a specific database, are stored in a  
way that can be reused. Crucial information for each step of the  
workflow is also recorded along with the final modeling results.  
The forecasting results from such a cyberinfrastructure could be  
useful to inform policy as well as science.

THE KEY FEATURES OF A COMMUNITY 
CYBERINFRASTRUCTURE

The key feature of a community cyberinfrastructure is the 
FAIR essentials, which denote digital assets that are Findable, 
Accessible, Interoperable, and Reusable (Fer et al., 2021). Both 
research data and software should follow the FAIR essentials 
to allow replicability, reproducibility, and reusability to 
facilitate the ease of research practices. Findability is achieved 
by assigning a unique and persistent identifier to a research 
work, so that users are able to access all necessary data to 
reproduce the work. GitHub is a popular repository for this 
purpose. Accessibility is related to the functionality offered by 
a software system to reduce technical barriers in reproducing 
the results. For example, the workflow should be automated 
and provide users with an intuitive interface to handle all tasks. 
To achieve this, the key point is abstraction, that is, the system 
needs to standardize the tasks and schedule them to work in a 
specific order while users do not need to deal with all the details 
on how they are standardized and scheduled. Interoperability 
means that the cyberinfrastructure works seamlessly across 
different models. This requires consistency of data format, 

such as model inputs and outputs. Standardizing data format 
can also promote knowledge sharing across the community.

All the three essentials mentioned above are to achieve 
replicability and reproducibility. Reusability refers to the use 
of the software system or part of it for different purposes. It 
requires the tasks involved in the cyberinfrastructure to be 
isolated and modularized. A possible solution for realizing this 
function is to use virtualization techniques, such as Docker.

AVAILABLE CYBERINFRASTRUCTURES FOR 
ECOLOGICAL FORECASTING

Currently, there are some open- source cyberinfrastructures 
available for ecological forecasting or related purposes 
mentioned previously. Below we introduce such 
cyberinfrastructures.

DART is the Data Assimilation Research Testbed (https:// 
dart.ucar.edu/ ). It is developed under the Data Assimilation 
Initiative at the National Center for Atmospheric Research 
(NCAR). The original motivation of DART was to develop 
methodologies, tools, and software to enable data assimilation 
capabilities within models developed at NCAR by providing a 
bridge between observationalists and modelers. DART helps 
model development by revealing model error and enables 
fundamental discoveries by allowing observationalists and 
modelers to share their expertise by combining models and 
data using a rigorous assimilation framework. DART has been 
growing beyond its original purpose and now supports data 
assimilation with models from both NCAR and a broader 
community in the geosciences.

EcoPAD is the Ecological Platform for Assimilating Data 
and Forecasting in Ecology (https:// eco lab.cals.corn ell.edu/ 
?eco pad, Huang et al., 2019; see also Chapter 30). It focuses 
on inverse modeling and forward prediction and is supported 

FIGURE 31.1 The schematic of a community cyberinfrastructure for ecological forecasting.

Modified from Fer et al., 2021.

 

 

 

 

https://dart.ucar.edu
https://dart.ucar.edu
https://ecolab.cals.cornell.edu
https://ecolab.cals.cornell.edu


201Community Cyberinfrastructure for Ecological Forecasting

by meta- databases of biogeochemical variables, libraries 
of modules of process models, and a toolbox of inversion 
techniques. EcoPAD components include: (1) core models 
that are specifically designed to solve ecological issues; 
(2) a variety of optimization techniques for data assimilation; 
(3) various databases that feed into forecasting and other 
tasks; and (4) functionality for a diversity of applications. 
The available functionality enables users to (i) estimate 
model parameters or state variables, (ii) quantify uncertainty 
of estimated parameters and projected states of ecosystems, 
(iii) evaluate model structures, (iv) assess sampling strategies, 
and (v) conduct ecological forecasting. EcoPAD has been 
successfully applied to ecological forecasting in the SPRUCE 
project (see Chapter 25) since 2016.

MIDA is a Model- Independent Data Assimilation module 
(https:// zen odo.org/ rec ord/ 4762 725, Huang et al., 2021). 
Accurate predictions of future states of terrestrial ecosystems 
depend on not only model structures but also parameterizations. 
Data assimilation is a robust statistical method to optimize 
model parameters, but its application in ecology is restricted 
by highly technical requirements such as model- dependent 
coding. MIDA is developed to alleviate this technical burden. 
MIDA works in three steps (see also Chapter 24). The first 
step is to prepare prior ranges of parameters, a defined number 
of iterations, and directory paths to access files of observations 
and models. The second step is execution, in which MIDA 
calibrates parameter values to best fit the observations and 
generates the posterior distributions of the parameters. The last 
step is to automatically visualize the calibration performance 
and posterior distributions. MIDA is model independent, 
meaning that modelers can use MIDA for data assimilation 
in a simple, interactive way without modification of their 
original model code. MIDA has been applied to conduct 
data assimilation with four types of ecological models: an 
ecosystem carbon model (DALEC); a surrogate- based energy 
exascale earth system model: the land component (ELM); 
nine phenological models; and a stand- alone biome ecological 
strategy simulator (BiomeE). These applications demonstrate 
that MIDA can effectively solve data assimilation problems 
for different ecological models. The easy implementation 
and model- independent feature of MIDA break the technical 
barrier of applications of data– model fusion and facilitate the 
assimilation of various observations into models to reduce 
uncertainty in ecological modeling and forecasting.

PEcAn is the Predictive Ecosystem Analyzer (https:// pecan 
proj ect.git hub.io/ ), which is open- source and built using open 
source software (Dietze et al., 2013; LeBauer et al., 2013). 
The PEcAn project is motivated by the explosion in the 
amount and types of data in climate change science, which 
are valuable for addressing questions about the responses of 
the terrestrial carbon cycle and biodiversity to global change. 
The PEcAn project is designed to integrate existing data with 
process- based models to better understand the ecological 
processes behind patterns and trends in the available data. 
The PEcAn system includes three components to achieve 
data- model integration: (1) ecosystem models; (2) a workflow 
management system to handle the numerous streams of data; 

and (3) a data assimilation statistical framework in order to 
synthesize the data with the model. Currently, PEcAn supports 
over a dozen ecosystem models, including CABLE, CLM5, 
ED, FATES, JULES, and LPJ- GUESS (https:// git hub.com/ 
Pecan Proj ect/ pecan/ tree/ deve lop/ mod els).

PEST is a software package for Model- Independent 
Parameter ESTimation and Uncertainty Analysis (https:// 
pesth omep age.org/ ). It automates calibration and calibration- 
constrained uncertainty analysis of numerical models, such as 
a synthetic groundwater model (i.e., the enhanced Freyberg 
model, https:// git hub.com/ usgs/ pes tpp; White et al., 2020), by 
interacting with the models through the models’ own inputs 
and outputs. It runs a model many times while estimating or 
adjusting the model’s parameters. Such model runs can be 
conducted either in serial or in parallel and the details of the 
tasks that have been done are recorded in output files to aid 
understanding. The software suite of PEST performs multiple 
tasks to assist and complement model parameter estimation 
and uncertainty analysis, which include: setup facilitation, 
flexible spatial parameterization, objective function definition, 
linear prior and posterior uncertainty analysis, and nonlinear 
prior and posterior uncertainty analysis.

LAVENDAR is the Land Variational ENsemble Data 
Assimilation Framework (https:// git hub.com/ pye arth sci/ 
laven dar, Pinnington et al., 2020). LAVENDAR uses a 
four- dimensional ensemble variational (4D- En- Var) data 
assimilation method for land surface models. This method 
negates the costly calculation of a model adjoint required by 
traditional variational techniques (e.g., 4D- Var) for optimizing 
parameters or state variables. LAVENDAR has been applied 
to the Joint UK Land Environment Simulator (JULES) land 
surface model, recovering seven parameters controlling crop 
behavior. When applied to a field site with maize where the 
measured amount of harvestable material from the maize crop 
was available for data assimilation, LAVENDAR was able 
to accurately capture observations of leaf area index, canopy 
height, and gross primary productivity. As LAVENDAR 
requires no modification to the model used, it can be applied 
more easily than other data assimilation methods.

LIS refers to the Land Information System framework, 
which is a software suite for high- performance terrestrial 
hydrology modeling and data assimilation (https:// lis.gsfc.
nasa.gov/ , Kumar et al., 2006; Peters- Lidard et al., 2007). It 
has been developed by the Hydrological Sciences Laboratory 
at NASA’s Goddard Space Flight Center, with the goal of 
integrating satellite and ground- based observational data 
products and advanced modeling techniques to produce 
optimal fields of land surface states and fluxes. The software 
suite consists of three modeling components: (1) Land surface 
Data Toolkit (LDT), which is a formal environment that 
handles the data- related requirements of LIS including land 
surface parameter processing, geospatial transformations, 
consistency checks, data assimilation preprocessing, and 
forcing bias correction; (2) Land Information System (LIS), 
which is the modeling system that encapsulates physical 
models, data assimilation algorithms, optimization and 
uncertainty estimation algorithms, and high- performance 
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computing support; and (3) Land surface Verification Toolkit 
(LVT), which is a formal model verification and benchmarking 
environment that can be used for enabling rapid prototyping 
and evaluation of model simulations by comparing against a 
comprehensive suite of in- situ, remote sensing, and model and 
reanalysis data products.

CHALLENGES AND SOLUTIONS IN 
BUILDING FUTURE COMMUNITY 
CYBERINFRASTRUCTURES

Some of the key challenges in building a community 
cyberinfrastructure to conduct data- model integration include 
data ingestion, model calibration, forecasting, and uncertainty 
analyses.

The first challenge is data ingestion. Data are crucial for 
ecological forecasting. However, it is usually difficult to find 
the needed observational data, including forcing data, and 
to use these data directly due to their diversity of formats. 
It is also difficult to maintain these data manually because 
of their massive volume and diverse formats. Therefore, 
standardization of data to be ingested is important to make data 
follow the FAIR essentials of community cyberinfrastructures. 
Standardization of data includes a consistent naming structure. 
For details about consistent naming structure, please refer to 
the Climate & Forecast convention (http:// cfconv enti ons.org). 
Using an open file format, such as csv or netCDF, is also an 
important standard. The netCDF format has many advantages 
for scientific data management; for example, supporting a 
multi- dimensional data structure. Standardization of data 
also confers some requirements for data repositories. For 
example, a dataset should have an associated version number 
or code, a citation should be provided, the metadata should be 
searchable, and an Application Programming Interface (API) 
should be available to enable automated retrieval of the data 
by external software, web platforms, and the like. Widely 
used data repositories include GitHub and DataONE. The 
bottleneck for big data relies on the efficiency of interacting 
with high- volume, high- velocity data. Some cutting- edge 
software, such as cloud computing, allows users to operate big 
data without downloading to local computers, which saves lots 
of time. The data ingestion process in EcoPAD is pipelined and 
modularized. Therefore, it is relatively easy to connect data 
ingestion with other simulation tasks in EcoPAD. Specifically, 
model inputs are environmental data measured at the SPRUCE 
site. Scripts have been written for EcoPAD to automatically 
download these measurements from a remote server every 
week, to conduct data filling and cleaning, and then to convert 
the data into standardized csv files to drive the model.

The second challenge in building a community  
cyberinfrastructure is model calibration, which is to integrate  
observational data into models to constrain model parameters,  
usually via data assimilation. Some parameters are able to  
be informed directly by observations, such as turnover rates.  
There are measurements of turnover rates available in open-  
access databases for constraining these parameters. There are  
also some meta- analyses to extract turnover rate data from  

published results in the literature. Other parameters are not  
directly measurable. For such parameters, a Bayesian approach,  
such as MCMC, is often used to assimilate observational  
data into models to generate posterior distributions for these  
parameters. Traditional Bayesian tools (e.g., JAGS and STAN)  
cannot work with external black- box models. Users need to  
modify the source code of the models to incorporate Bayesian  
algorithms by themselves, creating large technical barriers. In  
addition, users have to repeat such coding work when a new  
model is needed or new observations become available. To  
overcome these challenges, we developed the MIDA module  
to release users from coding (Huang et al., 2021). MIDA  
enables seamlessly linking multiple observational datasets  
with different models. All these benefits facilitate the use of  
data assimilation techniques in ecology.

A key issue in calibrating models is that a calibration for 
one study site may not yield the same reliable performance 
at another site because the environmental conditions are 
different. Hierarchical Bayesian calibration allows parameters 
to vary, but not in a completely independent manner, between 
sites. Hierarchical Bayesian tools are able to quantify 
ecological variability and inform the direction of model 
development. Again, standardizing the calibration results will 
allow a wider pool of users to use the calibration results for 
subsequent analyses. Moreover, the standardization may also 
foster improvements of models, or constitute a step towards 
more advanced calibration methods.

The data assimilation system in EcoPAD is modularized 
(Figure 31.2), allowing different data assimilation techniques 
to be readily integrated. Other than estimating parameters, 
data assimilation in EcoPAD also supports multiple research 
purposes, such as testing alternative ecological hypotheses 
through different model structures, assessing information 
content of individual datasets, quantifying uncertainties, 
and so on.

Next, we will address the challenge of forecasting. Generally, 
ecological forecasting starts with the development of a model 
that is repeatedly executed to generate forecasts on a certain 
time horizon, for instance weekly. Forecasting relies on data 

FIGURE 31.2 Data assimilation in EcoPAD.

Huang et al., 2019.
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acquisition to obtain real- time observations and to compare 
these observations with suggested output from the model, 
given certain settings or parameter values. These settings 
are then updated with the help of the observations through 
statistical analyses such as data assimilation, until a reliable 
forecast is achieved. The forecasting results are archived for 
future analyses and might be used in communication with 
policy- makers to inform their decision- making processes. 
When forecasting uses multiple models that differ in their 
representations of ecological processes, the relative success 
or failure of their forecasts helps advance our fundamental 
understanding of the ecological processes. Furthermore, 
forecasting performance can guide field experimentalists 
to refine data collection, prioritizing measurements of the 
greatest relevance to improving forecasting skill. A community 
cyberinfrastructure can automate the forecast cycle. Modelers, 
data collectors, and decision- makers can all benefit from the 
system in a cost- effective way.

The last challenge of community cyberinfrastructures 
is forecast uncertainty analysis. Once we have forecasting 
results, uncertainty in these forecasts needs to be quantified 
to tell us how confident we can be in acting on the forecast. 
Decision- makers may also be particularly interested in the 
‘worst- case’ as opposed to the most likely or average property 
of a forecast, for instance when the focus is on protecting 
lives, property, or natural values such as biodiversity or 
carbon stocks. Information on the uncertainty surrounding 
the forecast can help with this. The uncertainty of the forecast 
stems from the uncertainty in relation to initial conditions, 
model structure, parameters, and external forcing (Luo et al., 
2016; Dietze 2017; Bonan and Doney 2018). Uncertainty in 
initial conditions (i.e., initial values of state variables) can be 
estimated by running models to a steady state, for example, 
using a Semi- Analytic Spin- Up (SASU) method as described 
in Chapter 14. Different model structures can lead to divergent 
results, as often seen in model intercomparison projects. 
Traceability analysis as described in Chapter 17 provides a 
way to systematically diagnose model uncertainty propagating 
from each component or process. Benchmark analysis as 
described in Chapter 19 can also be used to evaluate model 

uncertainty in reference to observations. Forecast uncertainty 
arising from model parameters can be reduced by assimilating 
observational data to constrain models.

Uncertainty resulting from external forcing can strongly 
affect forecasting results, and can be the dominant uncertainty 
source in carbon cycles projections (Ahlström et al., 2013). 
Future forcing in ecological forecasting is often sampled from 
historical climate databases or derived from simulations by 
general circulation models (GCMs). The uncertainty caused 
by forcing is usually assessed by the spread of model outputs 
(e.g., C flux) with ensemble forcing, with the spread of model 
outputs indicating the contribution of forcing uncertainty or 
sensitivity of the forecast to the variations in forcing, and a 
reduced spread indicating well- constrained forcing uncertainty. 
However, such assessments do not compare forecasts with 
reality and, thus, do not directly evaluate forecast accuracy. 
Archiving past forecasted results allows them to be compared 
with realized measurements at the time point targeted by the 
forecast. ‘Hindcasts’ can also be undertaken, focusing on past 
periods for which measurements and forcing data are already 
available. As hindcast eliminates forcing uncertainty (i.e., it 
replaces the uncertain forcing from a GCM with real forcing), 
a comparison of model output between forecast and hindcast 
is an indicator of the uncertainty due to forcing.

SUGGESTED READING

Fer I, Gardella AK, Shiklomanov AN et al. 2021. Beyond ecosystem 
modeling: A roadmap to community cyberinfrastructure for 
ecological data- model integration. Global Change Biology, 
27: 13– 26.

QUIZ

1 What are the FAIR essentials for community 
cyberinfrastructures?

2 How do you think the available cyberinfrastructures 
for ecological forecasting can facilitate your research?

3 What are the major challenges in building community 
cyberinfrastructures for ecological forecasting?
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Practice 8
Ecological Forecasting at the SPRUCE Site

Jiang Jiang
Nanjing Forestry University, Nanjing, China

This practice session aims to learn how to use EcoPAD for 
ecological forecasting at the SPRUCE experiment. The web 
portal of EcoPAD-SPRUCE provides automated ecological 
forecasting at a weekly time scale. Using CarboTrain, a training 
version of EcoPAD, this practice illustrates how constrained 
posterior parameters influence forecast uncertainty, how 
different forcings influence forecast uncertainty, and 
investigates the responses of ecosystem forecast to warming 
and elevated CO2 with fully specified uncertainties.

INTRODUCTION

To generate a realistic projection of terrestrial carbon 
dynamics, we need to have three elements perfectly aligned 
(Luo et al. 2016). First, we need a good model structure, 
which represents underlying ecosystem processes. Then 
we need a good parameterization method, such as data 
assimilation discussed in Units 6 and 7, to estimate parameter 
values. Finally, we also need a workflow system to link real- 
time forcings to the model. In this practice session, we will 
focus on the third step, using CarboTrain to link forcing data 
to carbon cycle models that usually need climatic forcing to 
drive the projections.

For this purpose, we developed an Ecological Platform 
for Assimilating Data into the model (EcoPAD). EcoPAD is 
described in more detail in Chapter 30. Traditionally, modelers 
usually tune a model, validate the model with data, and then 
generate model output as prediction or forecast. This is called 
forward modeling. In addition to forward modeling, EcoPAD 
can perform data assimilation and ecological forecasting. 
EcoPAD links data and model via data assimilation to optimize 
parameter estimation. The system can update parameter 
estimation when new data becomes available to generate real- 
time forecasting. From an ensemble of parameters, EcoPAD 
can also produce an ensemble of forecasts, instead of just one 
projection. This method allows us to quantify the uncertainty 
of forecasting. The insights we get from this sort of analyses 
can provide feedback to experimenters on which data sets are 
needed to further improve model predictions; and feedback 
to modelers on which parts of a model need to be improved.

EcoPAD requires two categories of datasets, observation 
data and forcing data, to be able to do forecasting. Observation 
data is used to optimize the model parameters through data 
assimilation. The observations might comprise inventory 
data, laboratory measurements, or high temporal resolution 
data such as flux tower measurements from the FLUXNET 

database. The other category of data sets is used as forcing to 
drive a model. The temporal resolution of forcing data should 
be same as the time steps of the model used for projections, 
and the time span should also be same as the future projections.

In this practice, EcoPAD is applied to the SPRUCE 
experiment located at the USDA Forest Service Marcell 
Experimental Forest in Northern Minnesota. The SPRUCE 
project was introduced in Chapter 25. It is an ongoing 
project that focuses on long- term responses of northern 
peatland to climate warming and increased atmospheric CO2 
concentration. The SPRUCE project generates a large variety 
of observational datasets that reflect ecosystem dynamics 
from different scales. These datasets are available from the 
project web page and file transfer protocol (FTP) site, which 
provides easy integration with EcoPAD.

DATASET PREPARATION FOR ECOPAD

In EcoPAD- SPRUCE, observational datasets were pulled 
from SPRUCE archives and stored in the EcoPAD metadata 
catalog for running the TECO model and conducting data 
assimilation. The forcing datasets to drive TECO in EcoPAD 
are hourly climate data, which can be separated into two 
parts: one is past climate and the other is projection of future 
climate. We pulled past climate data from the SPRUCE FTP 
site weekly, and generated an ensemble of future climate 
using vector auto- regressive modeling. Observational data 
could be updated any time when available. In this training 
version, however, we use pre- treatment datasets from 2011 
to 2014 to investigate how constrained posterior parameters 
influence forecasting uncertainty. We then go on to partition 
the uncertainty sources.

Pre- treatment observations include three data sets of 
community- scale flux measurements (GPP, NEE, and 
ecosystem respiration) in 1.2- m internal diameter chambers, 
six data sets of plant biomass growth and carbon content 
(foliage, wood, and root), one data set of carbon in peat soil, 
and leaf phenological data. During 2011– 2014, CO2 flux 
observations were collected monthly during the growing 
season at ambient plots in the experimental site. A total of 30 
data measurements were collected in August, September, and 
October 2011; May through November 2012; July, September, 
and October 2013; and June and July 2014. Three annual data 
points from 2012 to 2014 for plant foliage, woody biomass, 
and aboveground net primary production were estimated from 
inventory data. Biomass data were compiled by combining 
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allometric data for shrubs, all ground layer species, and trees. 
Only one data point was collected each for fine- root and peat 
soil C. We collected leaf- out dates, which corresponded to 
the date growing degree- days above a threshold in the TECO 
model. The standard deviations reported in these data sets 
were also compiled to estimate uncertainties for each data 
stream. In CarboTrain, the observational data files can be seen 
in the ‘\CarboTrain\Source_ code\TECO_ 2.3\input\’ folder.

External forcing of the TECO model includes hourly 
climate data of photosynthetically active radiation (PAR), air 
temperature, soil temperature, precipitation, relative humidity, 
vapor pressure deficit, and wind speed. We took records of 
2011– 2014 from the weather station of the experimental 
site, and then generated an ensemble of 300 trajectories of 
10 year forcing variables from 2015 to 2024 as inputs for the 
forecasting period. Precipitation and air temperature were 
generated by vector auto- regression (VAR) using the 1961– 
2014 data set using the R package RMAWGEN.

Three of the meteorological drivers: PAR, relative 
humidity, and wind speed, were coupled and randomly drawn 
from frequency distributions at a given hour each month. 
Specifically, we constructed a 24 (hours) by 12 (months) 
matrix field. Within each field, a coupled pool of the three 
drivers was obtained from the weather station data during 
2011– 2014. We then generated PAR, relative humidity, 
and wind speed for 2015– 2024 by resampling the set of 
drivers from the pools. Soil temperature at 20- cm depth was 
scaled from the generated air temperature based on a linear 
regression between soil temperature and air temperature from 
2011 to 2014. Vapor pressure deficit was calculated from the 
difference between the saturation vapor pressure and actual 
partial pressure of the water vapor in the air, which was 
computed by multiplying relative humidity with the saturation 
vapor pressure. The generated climate data were archived in 
the EcoPAD metadata catalog. For each operational forecast, 
the system updates climate data streams from the SPRUCE 
FTP site to replace stochastically generated forcing.

PRACTICE WITH CARBOTRAIN AT THE 
SPRUCE SITE

exerciSe 1: how conStrained poSterior paraMeterS 
influence forecaSting uncertainty?

Open the user interface of ‘CarboTrain’, and select the Task 
‘Unit 8 DA’. It will allow you to set initial parameters, and 
parameter ranges for data assimilation. Once you click ‘Run 
Exercise’, the system will run data assimilation to constrain 
parameters and then undertake forecasting. It may take a long 
time to run data assimilation depending on your computer 
performance. You can find all the results in the user defined 
output folder.
Here are the steps to generate different sets of constrained 
parameters:

a. Select Unit 8 → DA → Set DA output directory (e.g., 
mydir/ unit8/ DAoutputs1) → Click ‘Run Exercise’ (It 

may take a few hours depending on your computer 
performance and number of iterations).

b. Find your DA output files in ‘mydir/ unit8/ DAoutputs1/ 
DA’. You can find the constrained parameter values in 
‘Paraest.txt’.

c. Select Unit 8 → DA → Set DA output directory 
(e.g., ‘mydir/ unit8/ DAoutputs2’) → click ‘select DA 
pars’ and set the parameters that participated in data 
assimilation (‘1’ signifies that the parameter is selected 
for data assimilation).

d. Repeat steps a to c for different combinations of DA 
parameters being selected.

Here are the steps to do forecasting with different DA outputs:

a. Select Unit 8 → Forecast → Set DA folder → Set 
Forecast output folder (e.g., ‘mydir/ unit8/ forecast1’) 
→ Click ‘Run Exercise’

b. Find your output files in ‘mydir/ unit8/ forecast1/ 
forecasting’. You can find a repetition of 100 times 
daily output data in the same folder.

c. Repeat step a with other DA outputs.
d. Plot the output data from your forecasting runs, and 

compare the differences.

Questions:
• Do the trajectories of forecasting results match the 

realized data? What’s the difference between forecasting 
results among different variables?

• Do the forecasting results depend on parameter posterior 
distributions? How do the forecasting results change 
with constrained parameters?

• What is the difference between forecasting results when 
using different constrained parameters, comparing pool- 
based parameters and flux- based parameters?

A unique feature of the data assimilation portal is that users 
can pick whatever parameters they wish to be constrained 
among the pool of 18 parameters. Users can change the 
range of parameters they are interested in and modify 
the initial values of parameters to be used for MCMC. 
Figure 32.1 shows an example of forecasting using posterior 
parameters when all the 18 parameters were chosen to do 
data assimilation.

exerciSe 2: how doeS different forcing influence 
forecaSting uncertainty?

External forcing variables such as temperature, precipitation,  
and light regulate various aspects of carbon cycle processes  
(e.g., plant photosynthesis, water use, and soil carbon  
decomposition), and therefore influence carbon stocks in  
different compartments of the ecosystem. The challenge of  
precisely predicting the future state of an ecosystem is partly  
due to low predictability of future trajectories of forcing  
variables. To make the task simple, CarboTrain provides  
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two sets of forcing variables: one is fixed forcing, the other,  
random forcing chosen from a forcing pool.

a. Select Unit 8 → Forecast → Set DA folder (e.g., ‘mydir/ 
unit8/ DAoutputs1/ DA’) → Set Forecast output folder 
(e.g., ‘mydir/ unit8/ forecast5’) → change ‘Times’ to   
1 → click ‘Run Exercise’

b. Repeat step a with ‘Times’ set to 100.
c. Plot the output data from your forecasting runs, and 

compare the differences.

Questions:
• What is the difference between forecasting results when 

using different forcing files, comparing fixed forcing 
and random forcing?

exerciSe 3: Specifying uncertainty in forecaSting 
ecoSySteM reSponSeS to warMing and eleVated co2

Forecasting is not very informative without fully specified 
uncertainties. It is especially useful if we try to anticipate 
when carbon pool changes are expected to be significantly 
different between temperature or CO2 treatments after the 
SPRUCE experiment started. It is because it takes time for 
the carbon pools to accumulate over time under different 
treatments. In general, if the magnitude of uncertainty in the 
forecast of one pool is small, the statistical power to detect 
the treatment effects on the pool will be large. And the time 

points at which statistical difference can be observed among 
treatments is short after the treatment, and vice versa.

 a Select Unit 8 → Forecast → Set DA folder (e.g., ‘mydir/ 
unit8/ DAoutputs1/ DA’) → Set Forecast output folder 
(e.g., mydir/ unit8/ forecast6) → click ‘Run Exercise’

 b Repeat step a for different combination of warming 
treatment (+ 0, + 2.25, + 4.5, + 6.75, + 9.0 °C) and CO2 
fertilization treatment (380 and 900 ppm)

 c Plot the output data from your forecasting runs, and 
compare the differences.

Questions:
• How do the ecological carbon dynamics respond to 

warming and elevated CO2?
• How do the uncertainties of the forecasting vary with 

treatments?

Figure 32.2 illustrates that both warming and elevated CO2 
increased carbon stock in foliage, wood, root, and soil. Plant 
compartments had stronger responses to either warming 
or elevated CO2 than soil carbon. Differences of response 
between ambient and elevated CO2 were more likely 
significant at higher temperature treatments. Each scenario 
contains 300 simulations with sets of coupled parameters 
randomly chosen from accepted parameters by data 
assimilation and the forcing trajectories from the stochastic 
weather generator.

FIGURE 32.1 Histogram of the posterior distribution of each parameter that produced by data assimilation.
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FIGURE 32.2 An example illustrates effects of warming and elevated CO2 on carbon stock in foliage, wood, root, and soil.

Jiang et al. 2018.
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33  Introduction to Machine Learning 
and its Application to Carbon Cycle 
Research

Yuanyuan Huang
Institute of Geographic Sciences and Natural Resources 
Research, Chinese Academy of Sciences, Beijing, China

Machine learning is increasingly being applied in multiple 
disciplines. This chapter serves as an introduction to some 
basic concepts related to machine learning. The goal of this 
chapter is to lead you to understand what machine learning 
is, the different types of machine learning algorithms, and the 
applications of machine learning in studies of the carbon cycle 
or mitigating greenhouse gas emissions.

WHAT IS MACHINE LEARNING?

Machine learning (ML) is a sub- class of artificial intelligence in 
which we enable computers to learn from data, to develop pattern 
recognition, and to continuously learn and make predictions or 
decisions based on data. Data is essential for ML, but data alone is 
not ML. ML algorithms normally have strong mathematical and 
statistical bases. We provide the computer with a large amount 
of data and a way (through algorithms or models) to process and 
learn from that data. The computer then uses this data to identify 
patterns, relationships, and interpretations, which can be used 
for predictions or decisions on future states of a system based 
on states revealed within the realm of training data. A general 
introduction to ML methods is presented in Chapter 37.

TYPES OF ML ALGORITHMS

There are generally two categories of machine 
leaning: unsupervised learning and supervised learning. The 
difference is whether the labeled output variable is involved 
or not. Unsupervised learning corresponds to inferring 
underlying patterns from an unlabeled dataset without any 
reference to labeled outcomes or predictions. Clustering is 
a typical unsupervised machine learning method. When we 
plot a simple set of (x,y) data on a two- dimensional plot, data 
points with similar characteristics are automatically grouped 
together. Likewise, through ML we can identify different 
clusters, but in many more than two dimensions if we wish. 
We can use clustering, for example, to detect anomalies (e.g., 
in weather patterns or in time series of carbon fluxes relative 
to average conditions), and to study plant traits or genetic 
similarities between species populations.

Supervised learning is the machine learning process of 
learning a function that maps an input to an output based 

on examples of input- output pairs. It infers a function (or 
relationship) from labeled training data consisting of a set 
of training examples. For example, if we make predictions 
of house price based on data of historical house price and 
influencing factors, we call this supervised learning. If the 
training or target samples use category values, we call this type 
of task classification. If the target has continuous numerical 
values, we refer to this task as regression.

EXAMPLES OF ML ALGORITHMS

Machine learning is evolving very quickly, with a wide range of 
methods designed to solve different practical issues. This chapter 
will briefly introduce two commonly used methodologies, 
decision tree- based and neural network- based methods.

A decision tree is a hierarchical modeling technique that 
uses a tree- like structure to represent decisions and their possible 
outcomes. A decision tree consists of three components: root 
node, decision node, and leaf node. A decision tree algorithm 
divides a training dataset into branches. The branches can 
be further separated into child branches and so on until a 
leaf node that cannot be separated further. Information gain 
metrics like entropy (or Gini Impurity) can identify gaps or 
separations in the data to split branches. A high information 
gain means that a high degree of uncertainty (information 
entropy) has been removed. The idea is to assign branches in 
such a way that the information contained in the data of each 
branch is as high as possible. To illustrate how this works, 
take the case of predicting if a customer will purchase a house 
(Figure 33.1). The features or characteristics of the purchase 
opportunity –  such as the price and size of the house, and how 
safe the neighborhood is –  form the basis of the decision. The 
root node and decision nodes of the decision tree represent 
these features. The leaf node represents the final output, either 
buying or not buying (Figure 33.1a).

Now that you know what a decision tree is, we will introduce 
the Random Forest (RF), a commonly used ML technique in 
the geosciences. RF is made up by multiple decision trees 
(Figure 33.1b). Conducting RF involves the following steps.

1. We typically create bagged samples of size n from the  
original dataset, with n being smaller than the original  
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size of the dataset. Bagging involves using different  
samples of training data rather than just one sample.

2. Afterwards we train a decision tree with each of the 
bagged datasets as inputs. But, when we do a node split, 
we do not use all features in the dataset. Instead, we 
randomly select a smaller number from all features in 
the training set. Then we pick the best split using an 
information gain measure, like Gini Impurity or entropy.

3. We aggregate the results of the individual decision 
trees into a single output. If we are working on 
a regression task, we average the values for each 
observation produced by each tree. If we are working 
on a classification task, we do a majority vote across 
all trees for each observation.

These steps help to avoid overfitting issues that could arise 
if instead we directly developed one decision tree using all 
the data.

An artificial neural network (ANN) is a series of 
algorithms that mimics the way the human brain operates 
to recognize underlying relationships in a dataset. Neural 
networks refer to systems of neurons. A simple neural 

network includes an input layer, an output (or target) layer 
and, in- between, a hidden layer which performs most of 
the computations required by our network. The layers 
are connected via nodes, and these connections form a 
“network” –  the neural network –  of interconnected nodes. 
Neural networks with more than three layers are known as 
“deep” networks and are used for deep learning algorithms. 
“Deep” in deep learning refers to the presence of multiple 
hidden layers in neural networks. Deep learning has more 
complex network architecture, which enables hierarchical 
feature learning, increased model capacity and performance. 
It also brings challenges such as the requirements for a large 
dataset and high computational resources.

To explain how neural networks work, we will take an 
example from Simplilearn (Figure 33.2). Suppose we are going 
to predict the shape of an image (a square, circle, or triangle). 
The image is made up of 28 × 28 =  784 pixels (Figure 33.2). 
The pixel values (either 0 or 1) are used as the input to the first 
layer of neurons. Neurons of the first layer are interconnected 
with neurons of the second layer through channels. Each 
channel is assigned a numerical value known as the weight. 
The input is then multiplied by the weight and the sum is then 

FIGURE 33.2 Illustration of a neural network.

Adapted from Simplilearn (https:// www.simp lile arn.com/ ).

FIGURE 33.1 Illustration of a decision tree (a) and Random Forest (b).

Carolina Bento and Chirag Goyal.
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used as input to the neurons of the hidden layer. In addition, 
each of the neurons is associated with a numerical value, called 
the bias (B), which is then added to the input sum. This value 
is then passed to a threshold function, called the activation 
function. The result of the activation function determines if the 
neurons will be activated or not. The activated neurons pass 
data to the neurons of the next layer over the channels. In this 
way, data is propagated through the network, which is called 
forward propagation. In the output layer, the neuron with the 
highest value determines the output. The value in this example 
is probability. For example, the value of square has the highest 
probability in the illustration. So, square is the predicted output. 
In the example case, however, our input is a circle. Here comes 
the training processes we have not done yet. In the training, 
our predicted output is compared against the real output to 
quantify the error in prediction. The computed errors give the 
direction and magnitude of change to reduce the error. The error 
information is then transferred backward through the network. 
This process is called back- propagation. The weights are 
adjusted accordingly. The forward and backward propagations 
are conducted iteratively until weights are determined with 
which the network can predict the shape correctly in most tests. 
Depending on the complexity of the data, neural networks may 
take hours or even months to train. With the quick advancement 
of this area, different variations of ANN, such as convolutional 
neural network and recurrent neural networks, have been 
designed to fit different computation requirements.

APPLICATIONS OF ML TO CARBON CYCLE 
RESEARCH

Applications of ML to carbon cycle research or studies of 
greenhouse gas (GHG) emission mitigation are widespread 
and advancing quickly. You can find ML studies in almost 
every corner of carbon- related science as long as abundant data 
are available. For example, Rolnick et al. (2023) summarized 
how ML can be used for understanding the land carbon cycle, 
reducing GHG emissions and helping society adapt to a 
changing climate. ML is used in precision agriculture, remote 
sensing, quantifications of carbon stocks and fluxes, monitoring 
peatlands, and forest management among many other 
application areas. In Industry sectors, ML is used for reducing 
GHG emissions through, for example, optimizing supply 
chains, adaptive control, detecting GHG emissions, optimizing 
shipping routes, and preventing overstocking. To help reduce 
transportation emissions, ML can for example be applied 
to analyzing and understanding transportation patterns and 
drivers, forecasting, interpreting remote sensing data, detecting 
loading inefficiency, automating vehicles, understanding and 
scheduling charging patterns, or managing congestion.

Table 33.1 synthesizes typical applications of ML to GHG 
emission mitigations. These applications tackle issues related 
to monitoring, budget quantifications, upscaling, mapping, 
optimization, scheduling, management, forecast, etc. Topics 
involve causal inference, computer vision, interpretable 
models, natural language processing, reinforcement 
learning, time series analysis, transfer learning, uncertainty 

quantification, and unsupervised learning. Computer vision is 
by far where ML is most widely used at present.

After this broad overview, let’s dive into some specific 
case studies. The following sections discuss how ML can be 
applied to quantify carbon fluxes and stocks with examples of 
mapping and predictions. We will also examine how ML can 
help identify drivers of carbon- cycle relevant processes and 
improve the predictive skill of process- based carbon models.

In the land carbon cycle literature, you can find various maps 
generated from ML models trained with site level samples, 
such as gross primary production (GPP), aboveground 
biomass, belowground biomass, and soil respiration.

To do mapping or upscaling, typically, we first need to 
spend a considerable amount of time preparing our samples, 
standardizing target variables (e.g., GPP) and covariates. In 
ML terminology, a covariate is also called a feature. Covariates 
are variables that share an association with our target variable, 
affecting (or determining) its value in the ML prediction. For 
GPP, covariates might include climate variables, soil conditions, 
vegetation traits, and so forth. Depending on the understanding 
of our target, we select predictors, features, or, in other words, 
covariates that are relevant to our target. We apply ML to 
understand the relationships, especially non- linear relationships 
among our predictors and targets. This is called training the 
machine learning model. After training, and if model evaluation 
reveals satisfactory performance, we can then use the model to 
do predictions or mapping. The spatio- temporal extent of our 
prediction depends on the predictors. A number of global gridded 
datasets can be useful as predictors in carbon cycle work. These 
include FluxCom (Jung et al., 2020), SoilGrid (Hengl et al., 
2017), MODIS land products, digital elevation models (DEM), 
and climate datasets. When these global predictors are used 
as inputs for the trained ML models, we can generate global 
estimates of GPP. To account for uncertainty of the predictions 
or mappings, multiple ML algorithms and different predictor 
datasets can be used to generate an ensemble of predictions.

To evaluate the trained ML model, we conduct cross 
validation, for example, K- fold cross validation, or leave- one- 
out cross validation when sample size is small. In K- fold cross 
validation, for example, suppose K =  5. We divide all our samples 
into five folds (five blocks, ideally equal in the size of samples). 
We use the first four folds of samples to train our ML model. The 
fifth fold of samples is used to evaluate the performance of the 
trained model. In a second round, we use the first, second, third, 
and fifth folds of samples to train the model, and the fourth fold 
to evaluate the model performance. We repeat these steps five 
times in total. In this way, we use all the samples that are not 
used to train the model to evaluate the model to avoid overfitting. 
ML models that perform well on the training samples may not 
be good at predicting samples that are not part of the training 
samples. An ML model that is good at predicting new samples is 
what we need. Cross- validation provides an approach to verify 
the performance of the ML model, increasing our confidence in 
its ability to make reliable predictions for new samples. Leave- 
one- out cross validation can be viewed as a special case of K- 
fold validation (K being the total number of samples) and takes 
similar procedures as the K- fold validation.
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TABLE 33.1
Typical applications of ML to greenhouse gas mitigation

Causal 
interference

Computer 
vision

Interpretable 
models NLP

RL & 
control

Time- series 
analytics

Transfer 
learning

Uncertainty 
quantification

Unsupervised 
learning

Mitigation Electricity systems
Enabling low- carbon electricity • • • • • •
Reducing current- system impacts • • • •
Ensuring global impact • • •

Transportation
Reducing transport activity • • • •
Improving vehicle efficiency • •
Alternative fuels and electrification • •
Modal shift • • • •

Buildings and cities
Optimizing buildings • • • •
Urban planning • • • •
The future of cities • • • •

Industry
Optimizing supply chains • • •
Improving materials •
Production and energy • • •

Farms & forests
Remote sensing of emissions •
Precision agriculture • • •
Monitoring peatlands •
Managing forests • • •

Carbon dioxide removal
Direct air capture •
Sequestering CO2 • • •

Source: Adapted from Table 1 of Rolnick, et al. (2023).
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As mentioned above, one typical issue in ML is overfitting, 
especially when sample size is not big enough. An overfit 
model performs well on the training data but poorly on the 
new data (e.g., test data). For some variables related to the land 
carbon cycle that rely on manual measurements, small sample 
size is typical. Cross- validation and sometimes careful feature 
selections (i.e., not using too many different predictors) can 
help to avoid overfitting issues. Autocorrelation, as discussed 
in Ploton et al. (2020), and uncertainty estimation are also 
issues that remain to be adequately addressed in many studies. 
Whether and how autocorrelation should be handled in ML- 
based spatial mapping are widely debated.

Another important application of ML within land carbon 
cycle research is to aid in understanding drivers of different 
land carbon cycling processes. We normally plot partial 
dependence plots or individual conditional expectation plots 
to make inferences on the relationship between drivers and our 
predicted variables (see also Chapter 35). This is illustrated 
in the study on the response and recovery of tropical forest 
biomass to the 2015/ 16 drought by Yang, et al. (2022), 
depicted in Figure 33.3. The red lines show the response 
of AGB changes during the drought to the most important 
feature variables, listed in order of importance in the bar chart 
on the left. If only the red lines are plotted, we call this partial 
dependence plots, which show the marginal effect one feature 
has on the predicted outcome of a machine learning model 
across samples. In addition to the red lines, many individual 
black lines are shown. Now the plots become individual 
conditional expectation plots. Each black line refers to one 
sample, or one site. For each sample, covariates other than 
soil moisture are held constant at the site- level value. The 
black line shows, for each sample, the response of the target 

variable we are predicting (here ∆AGB) to variations in the 
feature variable it is plotted against.

Shapley values also help to move ML from a black box 
to explainable ML. Shapley values are a concept borrowed 
from the cooperative game theory. They are very powerful and 
commonly used in ML. Let’s say we would like to predict 
GPP from four features: air temperature, precipitation, 
photosynthetically active radiation (PAR), and soil nitrogen 
content. Say that in one of our samples with air temperature 
20°C, precipitation 500 mm, PAR 2000 MJ m−2 yr–1, and soil 
nitrogen content 30 mg N kg- 1, our model predicted a GPP of 2 
g C m–2 day– 1. Shapley values answer how much of each of the 
features contribute to the difference between the prediction of 
2 g C m– 2 day– 1 and the average of the predictions across all 
samples. Let us suppose the average is 5 g C m– 2 day-–1. Below 
are steps on how to calculate Shapley values,

1. Create the set of all possible feature combinations 
(called coalitions).

2. Calculate the average model prediction using all 
coalitions.

3. For each coalition, calculate the difference between 
the model’s prediction without a specific feature (we 
call it F here) and the average prediction.

4. For each coalition, calculate the difference between the 
model’s prediction with F and the average prediction.

5. For each coalition, calculate how much F changed the 
model’s prediction from the average (i.e., step 4 –  step 
3) –  this is the marginal contribution of F.

6. Calculate the Shapley value as the average of all the  
values calculated in step 5 (i.e., the average of F’s  
marginal contributions).

FIGURE 33.3 Illustration of feature importance, partial dependence plot and individual conditional expectation plot.

Adapted from Yang et al., (2020).
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There are different ways to plot the Shapley values, which can 
give detailed information on the contributions of each feature 
for each sample, or rank the relative importance of features 
across all samples, or the response curve of the target to a 
specific feature.

ML can be used to improve process- based carbon models 
in different ways. Let us consider two examples. In the first 
example, ML is combined with data assimilation, process- 
based models, and big data to improve process- based 
predictions in soil carbon (Tao et al., 2020). Chapter 38 gives 
a more detailed explanation. The second example uses ML to 
accelerate the spin- up of a large- scale process- based model. 
The idea is, instead of running the model for spin- up across the 
whole global grid, we train a machine learning model to predict 
the steady state based on selected representative samples. Such 
a study undertaken with ORCHIDEE model showed that the 
performance of ML is very good at predicting the steady state, 
with a cross- validation R2 of more than 0.9 (Sun et al., 2023). 
So, instead of running computationally expensive global 
samples, we can achieve a reliable spin- up state using much 

smaller grids with the help of ML. In the future, there will 
be more creative ways to combine ML algorithms to advance 
land carbon studies with your contribution.

SUGGESTED READING

Rolnick, D. et al. (2023). Tackling Climate Change with Machine 
Learning. Acm Computing Surveys 55. doi:10.1145/ 3485128

QUIZ

1 What are two types of machine learning according to 
whether or not labeled training data is used?

2 What is cross- validation? Could you give any examples 
of cross- validation?

3 Could you give an example of applications of machine 
learning in carbon cycle research?

You can read more about neural networks and how they 
function in Chapter 37.
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34  Estimation of Terrestrial Gross Primary 
Productivity Using Long Short- Term 
Memory Network

Yao Zhang and Jinghao Qiu
College of Urban and Environmental Science, Peking University, Beijing, China

Institute of Carbon Neutrality, Peking University, Beijing, China

This chapter introduces an innovative technique for upscaling 
Gross Primary Productivity (GPP) from eddy covariance 
measurements using the Long Short-Term Memory (LSTM) 
network. Leveraging solely meteorological forcings as model 
inputs, LSTM demonstrates superior performance on spatial 
extrapolation compared to artificial neural network (ANN) 
approaches. This is achieved by using climate information of 
the past to predict hidden variables of ecosystem states.

INTRODUCTION

Over the past decades, various machine learning (ML) 
architectures have been applied to upscaling in land carbon 
studies, such as artificial neural networks (ANN) (Papale 
& Valentini, 2003), support vector regression (Ueyama 
et al., 2013), model tree ensemble (Jung et al., 2009), random 
forest (Bodesheim et al., 2018), Long Short- Term Memory 
(LSTM) (Liu et al., 2023) and attention- based temporal fusion 
transformer (Nakagawa et al., 2023). While all these ML 
methods are powerful for predicting carbon fluxes (Tramontana 
et al., 2016), most of them process input features at a specific 
time to generate output for the concurrent time. For example, 
GPP can be predicted as a product of photosynthetically active 
radiation absorbed by green leaves and a light use efficiency 
factor which is modulated by environmental stress (Zhang 
et al., 2017). These relationships can be easily captured by 
machine learning models. However, when satellite greenness 
is not used as an input, the performance of the model declines 
considerably as current vegetation greenness is partly a result of 
past environment which determines plant phenology and green- 
up speed. Similarly, soil water stress depends on precipitation 
and potential evapotranspiration over a period of time before 
present. Plant resistance to stress may also depend on the history 
of past stress, affecting plant carbohydrate status, acclimation 
processes, etc. Some of these variables may not be directly 
observable or easily obtained, but may be predicted based on 
past information (Thornton et al., 2002). As such, models that 
do not consider the temporal dependencies may inadvertently 
overlook critical relationships inherent in the data, thereby 
potentially undermining the models’ performance.

To achieve a more accurate depiction of the terrestrial 
carbon cycle process, it is crucial to incorporate time- aware 

(informed by temporal sequences) models to unravel the 
latent temporal linkages embedded within the training data. 
Recurrent neural network (RNN) is a class of neural networks 
designed to handle dataset of temporal sequences (Elman, 
1990). RNN derives hidden state information from one time 
step and allows it to be passed to the next, such that the model 
output at each step is influenced by inputs of previous steps. 
As a special type of RNN, LSTM addresses the issues of 
vanishing or exploding gradients by incorporating the “gate” 
structure. These “gates” control the information flow into and 
out of the hidden state, i.e., a vector that stores information 
and is updated at each time step, so that the hidden state 
information can better represent the dynamics of the system.

This chapter introduces the LSTM as an approach to 
upscale site- level GPP to global scales. We will briefly explain 
basic LSTM network structure, describe LSTM workflow for 
GPP upscaling, use two examples to show the performance of 
LSTM, and make concluding remarks.

LSTM is a time- aware model that leverages timewise 
dynamic input features to estimate target features (Hochreiter 
& Schmidhuber, 1997). By simultaneously utilizing the long- 
term and short- term information inherent in time series data, 
LSTM has the potential to be an effective tool for carbon flux 
upscaling.

THE STRUCTURE OF LSTM

The fundamental structure of LSTM is characterized by its  
internal memory cell (c), hidden state (h), and three gates: the  
input gate (i ), forget gate ( f ), and output gate (o). These  
elements are key to the operation of the LSTM (Figure 34.1a),  
as they enable it to selectively store, update, or export the  
information flow. LSTM has two elements (memory cell and  
hidden states) to store the latent information flow through  
time. The difference between these two is that the cell state  
is less variant and can store long- term memory; while hidden  
state is strongly influenced by short- term fluctuation of the  
input data, so it mostly stores the short- term memory. By  
integrating the current input (x[t] ) with the preceding hidden  
state and subsequently applying a sigmoid activation function,  
the gates are like valves which generate a value ranging  
between 0 and 1 to control the information flow in LSTM.  
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This unique structure is designed to alleviate the vanishing  
or exploding gradients problem that is often encountered in  
traditional RNNs.

THE INFORMATION FLOW IN LSTM

In the framework of LSTM, the flow of information is regulated 
by different gates at each time step ( t ). As for the memory 
cell, its value is first modified by the forget gate. The forget 
gate has a value ranging from 0 to 1, which determines how 
much information from the previous memory cell ( c t −[ ]1 )   
will be kept or discarded. After forget, cell state will be 
updated by adding new content predicted from the input 

gate and input content. The input gate and input content 
describe how much and what new information should be 
passed to the memory cell, respectively. A new memory  
cell ( c t[ ] ) is then obtained after the forget and update 
process.

As for the hidden state, its value is determined by the new 

memory cell (c t[ ]) and the output gate. While the memory 

cell stores the long- term memory, the output gate determines 
how much information should flow from the memory cell 

to the hidden state. Therefore, the new hidden state (h t[ ])   
is expressed as a product of the tanh transformed memory 

cell ( tanh c t[ ]( )  and the output gate. It should be noted that 

FIGURE 34.1 (a) The Long Short- Term Memory (LSTM) network architecture. (b) Similarity between LSTM and terrestrial biome models 
(TBM) with regard to GPP estimation. (c) Similarity between LSTM and TBM with regard to evapotranspiration estimation.
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all gates are different transformations of input and hidden 
states, thus, they are affected by both concurrent and past 
information.

The unique structure of LSTM allows it to represent 
complex processes of Earth systems in a simplified manner 
(Figure 34.1b,c). For example, to mimic the terrestrial carbon 
cycle, the memory cell can represent the dynamics of the foliar 
carbon pool, which determines the photosynthetic capacity. 
Its dynamics are influenced by two processes: the loss 
from respiration and senescence, and the gain from carbon 
allocation, both of which are determined by environmental 
factors and GPP in the previous time step. GPP itself is 
affected by the photosynthetic potential predicted by the 
memory cell, as well as the climate factors which contain 
both radiation and environmental limitations. Water dynamics 
can also be represented by the LSTM framework in a similar 
manner (Figure 34.1c).

THE WORKFLOW OF LSTM IN GPP UPSCALING

The upscaling framework comprises two core components, 
as illustrated in Figure 34.2: the LSTM layer and the dense 
layers. The LSTM layer, due to its inherent recurrent nature 
and intrinsic ability to learn long- term dependencies, is 
utilized to analyze the meteorological forcing time series 
spanning from day t- 364 to day t. By recurrently processing 
meteorological features, the LSTM layer is able to function 
as a dynamic temporal feature extractor, encapsulating both 
historical and current climate data into high- dimensional 
hidden states. Following the LSTM layer, the dense layers 
play a crucial role in handling the high- dimensional hidden 
states generated by the LSTM layer. By remapping the high- 
dimensional information into a lower- dimensional space via 
non- linear activation functions, the dense layers output the 
final GPP prediction. This prediction combines the temporal 

FIGURE 34.2 Schematic of a data- driven approach to upscale in situ GPP estimates using LSTM. The LSTM model is trained using 
meteorological data from day t- 364 to day t to emulate the target GPP at day t. To more accurately represent the target GPP, the model 
incorporates the mean of GPP data obtained from both nighttime and daytime partitioning methods.
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dependencies learnt by the LSTM layer and the non- linear 
dependencies revealed by the dense layers, enabling the 
upscaling framework to effectively harness meteorological 
data for GPP predictions.

in Situ gpp data

This chapter utilizes daily GPP data sourced from the global 
flux observation network, FLUXNET (https:// flux net.org/ ). 
The observational period spans variously from 1991 to 2014, 
encompassing data from 200 sites across 13 types of land 
cover. The in situ mean GPP estimates that are generated via 
the nighttime partitioning method and the daytime partitioning 
method (Pastorello et al., 2020) are selected as the target 
variables in our model. In total, 353,433 site- days of in situ 
GPP estimates are utilized in this chapter.

Meteorological data

Meteorological forcings used in the analysis include air 
temperature, shortwave radiation, vapor pressure deficit 
(VPD), precipitation, and wind speed derived from ERA5- 
Land as input features from 1950 to the present (Muñoz- 
Sabater et al., 2021). For each target feature, a five- dimensional 
input meteorological time series of length 365 is generated, 
serving for model training and prediction.

Machine learning ModelS

We will utilize LSTM to develop an upscaling model for 
GPP. To demonstrate the potential of LSTM, a non- time- 
aware ANN will also be trained for comparative purposes. 
Given that ANN is devoid of time- aware characteristics, 
it can only correlate each target GPP feature with 
meteorological forcing features specific to the same day, 
resulting in the ANN’s input being a five- dimensional vector 
with a length of 1.

We will adopt a unified model architecture for both the 
LSTM model and the ANN model: (1) an input layer (an LSTM 
layer in the LSTM model, a dense layer in the ANN model) that 
receives meteorological features; (2) a sequence of three hidden 
layers, utilizing the rectified linear unit (ReLU) as the activation 
function; (3) an output layer designed to estimate the logarithmic 
values of GPP, thereby ensuring non- negative results.

In our procedure for training and validating both models, 
we execute a spatially random split of FLUXNET sites into 
three distinct subsets: 160 sites are designated for training 
purposes to optimize the model parameters, 20 sites are 
allocated for validation to fine- tune the model configurations 
and mitigate the risk of overfitting, and the remaining 20 sites 
are set aside for testing to evaluate the overall performance of 
the final model. To reduce overfitting, we will adopt an early 
stopping strategy, i.e., training will be terminated when the 
model performance on validation sites ceases to improve for 
a duration exceeding 30 epochs, i.e., after the entire dataset 
is fed to the model for more than 30 times. Our approach 
of random spatial split provides an objective and unbiased 

assessment of the model’s capacity for extrapolation, which is 
essential in the realm of upscaling.

Model eValuation

To evaluate the performance of the two machine learning 
models comprehensively, three fundamental metrics to gauge 
model accuracy on the test sites will be calculated: Nash- 
Sutcliffe efficiency (NSE), root mean square error (RMSE), 
and mean absolute error (MAE).

NSE quantifies the relative magnitude of residual variance 
to the variance of measured data. The value of NSE can 
range from negative infinity to 1, where an optimal value of 
1 represents perfect predictions, and values can be negative 
for less accurate models. RMSE provides the square root of 
averaged squared prediction discrepancies, emphasizing larger 
errors. MAE quantifies average absolute differences between 
predicted and actual values, providing a straightforward 
measure of average model prediction error.

In addition to examining the predictive accuracy of the 
models, we also want to explore their capability to elucidate 
the mean seasonal cycle (MSC) and anomalies. The MSC at 
each site is computed by averaging the values for each day 
over the span of all available years, given the condition that 
at least two values are available for that specific day. The 
anomalies are determined as the difference between the GPP 
value and its corresponding MSC. The Pearson correlation 
coefficient (r) is introduced as an additional evaluation metric 
specifically for assessing anomalies. To get a more reliable 
evaluation of model performance, a K-fold cross-validation is 
often used, see Chapter 37 for details.

MODEL PERFORMANCE IN ESTIMATING GPP

For overall predictive capability, the LSTM model surpasses 
the ANN model. The LSTM model yields an NSE of 0.72, 
suggesting LSTM can effectively incorporate historical 
meteorological information in predicting GPP (Figure 34.3a). 
This is further supported by the model’s lower RMSE (1.77 
gC m d− −2 1 ) and MAE (1.15 gC m d− −2 1 ), both of which 
emphasize LSTM’s improved prediction precision compared 
to the ANN model (RMSE= 2.18 gC m d− −2 1 , MAE= 1.48 
gC m d− −2 1 ) (Figure 34.3d).

With regard to MSC predictions, the LSTM model also 
demonstrates a better performance with an NSE of 0.78. 
LSTM efficiently models the MSC of GPP, which is largely 
dictated by cyclical meteorological patterns. The lower RMSE 
and MAE scores further validate LSTM’s superior handling 
of temporal seasonality (Figure 34.3b). By contrast, the 
non- time- aware ANN model, lacking the ability of learning 
information from temporal sequences, shows less proficiency 
in capturing this essential seasonality with lower NSE (0.68) 
and higher RMSE and MAE values (Figure 34.3e).

In capturing GPP interannual anomalies, both models  
encounter difficulties. The performance of the LSTM model  
exhibits a relatively low NSE of 0.10, an RMSE of 1.17  
gC m d− −2 1 , an MAE of 0.73 gC m d− −2 1, and a correlation  
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FIGURE 34.3 Comparison between LSTM and ANN on overall GPP predictive ability, mean seasonal cycle of GPP and GPP anomalies detection. The top and right sides of 
the scatter plots correspond to the kernel density estimation of the observed values and predicted values, respectively.
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coefficient of 0.41. The performance of the ANN model is even  
worse, as indicated by a negative NSE of −0.30, and larger  
error (RMSE =  1.40 gC m d− −2 1, MAE =  0.96 gC m d− −2 1)   
along with a correlation coefficient of 0.33 (Figure 34.3f).  
The results indicate that predicting interannual anomalies is  
still challenging for both models when only meteorological  
data are employed. However, with the latent state information  
learnt from past time series, LSTM considerably improves the  
model performance.

To explicitly illustrate the distinct capabilities of LSTM 
and ANN models in forecasting the MSC of GPP, an in- depth 
analysis is conducted, using a deciduous forest site in the US 
Great Lakes region as a representative case (Figure 34.4).

The LSTM model exhibits a robust performance, with 
an NSE of 0.96, an RMSE of 0.87 gC m d− −2 1, and an MAE 
of gC m d− −2 1  (Figure 34.4a). These metrics corroborate 
the LSTM’s adeptness in accurately representing the MSC 
of GPP, especially concerning large and small GPP values. 
Notably, the sequential nature of the LSTM, characterized by 
its ability to process and remember past information, mirrors 
the non- linear dynamics between the accumulation of plant 
leaf area and climatic variables. This feature allows the LSTM 
to effectively account for both high values during peak growth 
phases and low values during periods of plant dormancy or 
stress.

The ANN model displayed a comparatively weaker 
performance. With an NSE of 0.84, the ANN model exhibits 
higher error metrics (RMSE =  1.68 gC m d− −2 1 , MAE =  1.29 
gC m d− −2 1; Figure 34.4b). Specifically, the ANN model 
demonstrates deficient control over large and small GPP 
values, tending to underestimate the GPP during peak growth 
phases and overestimate during periods of plant dormancy or 
stress. This discrepancy can potentially be attributed to the 
structure of the ANN model. Being a non- time- aware model, 
it only takes meteorological forcing features specific to the 
same day and thus struggles to accurately portray the temporal 
accumulation process of plant leaf area and other ecosystem 
state variables.

In summary, this comparison illustrates the LSTM model’s 
superior ability in capturing the nuances of the MSC of GPP, 
particularly in reflecting the non- linear relationship between 
the accumulation of plant leaf area and climatic variables. 
This is an aspect where non- time- aware models fall short 
due to their limited sequence learning abilities and inherent 
inability to capture long- term dependencies.

CONCLUDING REMARKS

This chapter delineates the distinct advantage of Long 
Short- Term Memory network over traditional artificial 

FIGURE 34.4 The mean seasonal cycle of the University of Michigan Biological Station site (Longitude: - 84°42’49.68’’, 
Latitude: 45°33’35.28’’). The solid lines in the graph represent the mean seasonal cycle values, while the shaded areas indicate the 
corresponding range of the standard deviations, signifying the variability around the MSC.
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neural networks. By effectively capturing the intricacies 
of time- series data, as indicated by a robust Nash- Sutcliffe 
efficiency of 0.72, and lower root mean square error and mean 
absolute error, LSTM showed a distinct potential to simulate 
the vegetation growth process through unique recurrent 
mechanisms and memory effects.

LSTM model performance could potentially be further 
improved from more encompassing input features. Using 
meteorological information over a longer temporal range 
LSTM may capture the temporal dynamics of GPP more 
effectively. In addition, the incorporation of static ecological 
information such as vegetation and climate types could 
provide additional depth to LSTM’s learning process.

SUGGESTED READINGS

Besnard, Simon, Nuno Carvalhais, M. Altaf Arain, Andrew Black, 
Benjamin Brede, Nina Buchmann, and Jiquan Chen, et al. 
2019. “Memory Effects of Climate and Vegetation Affecting 

Net Ecosystem CO2 Fluxes in Global Forests.” Plos One 14 
(2): e0211510. https:// doi.org/ 10.1371/ jour nal.pone.0211 510

Liu, Weihua, Honglin He, Xiaojing Wu, Xiaoli Ren, Li Zhang, Liang 
shi, Lili Feng, Yangang Wang, and Yan Lv. 2023. “Importance 
of the Memory Effect for Assessing Interannual Variation 
in Net Ecosystem Exchange.” Agricultural and Forest 
Meteorology 341 (October): 109691. https:// doi.org/ 10.1016/ 
j.agrfor met.2023.109 691

QUIZ

1 What are the advantages of LSTM as compared to 
an ANN?

2 What types of data can be used as inputs by LSTM?
3 What is the difference between the cell states and 

hidden state?
4 Do you think LSTM will still perform better than 

ANN when satellite observed vegetation greenness is 
used as input to predict GPP? Why?
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Machine Learning to Predict and Explain 
Complex Carbon Cycle Interactions

Julia K. Green
University of Arizona, Tucson, USA

Machine learning models are often considered as being black 
boxes. This chapter shows ways to gain in-depth understanding 
of the interactions between predictor and response variables 
in these algorithms. Specifically, a recent study (see the first 
suggested reading) is used to illustrate some examples of the 
utility of machine learning models in the carbon science field, 
and outline several methods available for machine learning 
model interpretability.

INTRODUCTION

The Amazon rainforest stores the most aboveground biomass 
of all ecosystems (Saatchi et al., 2011). However, over the 
last several decades, the climate has rapidly been changing, 
leading to moisture conditions that might be less favorable 
to vegetation growth. Temperature and air dryness have been 
increasing globally, while precipitation patterns have also been 
shifting in less predictable ways (Byrne and O’Gorman, 2016; 
Greve et al., 2014). With these climatic changes, the ability 
of the Amazon rainforest to continue sequestering these vast 
amounts of carbon dioxide is unclear, because photosynthesis 
and carbon storage can be limited by water supply and demand. 
If rates of photosynthesis across the Amazon rainforest were 
to reduce in response to these changing moisture conditions, 
this would lead to the region storing less biomass, and leaving 
more CO2 in the atmosphere. Thus, there is an urgent need 
to better understand the sensitivity of photosynthesis in the 
Amazon rainforest to changing moisture conditions, and to 
evaluate whether the earth system models (ESMs) being used 
for future climate projections are accurately capturing those 
sensitivities.

A recent study by Green et al. (2020) tackled these issues. 
It had the following three research objectives:

Obj 1. To determine the photosynthetic sensitivity of the 
tropical Americas to air and soil dryness as represented in 
ESMs from the Coupled Model Intercomparison Project 
Phase 5 (CMIP5).

Obj 2. To use observational data to evaluate the ESM 
representation (Obj 1) of photosynthetic sensitivity of 
the tropical Americas to air and soil dryness.

Obj 3. To understand the mechanisms behind the 
photosynthetic sensitivity of the tropical Americas that 
were demonstrated using observational data.

Although the published study addressed these research 
objectives for both the dry and wet seasons, here the focus 
is on Objectives 1 and 2 during the dry season, which both 
utilized machine learning algorithms including a K- means 
clustering analysis, followed by the application of artificial 
neural networks (ANNs). For more information on Objective 3, 
please see the recommended readings at the end of the chapter.

PHOTOSYNTHETIC SENSITIVITY IN THE 
TROPICAL AMERICAS AS REVEALED BY 
MACHINE LEARNING

Soil moisture and air dryness (i.e., vapor pressure deficit; 
VPD) are frequently anticorrelated as atmospheric dryness 
tends to be high when soil moisture is low. Because soil and air 
dryness are changing differently with climate change (Byrne 
and O’Gorman, 2016; Greve et al., 2014), it is necessary to 
understand how they impact photosynthesis independently to 
better predict future changes in vegetation carbon uptake. This 
strong anticorrelation between soil and air dryness makes it 
difficult to decouple their effects on photosynthesis (i.e., gross 
primary production; GPP). For instance, using a pixel- wise 
multivariate linear regression model to predict GPP in an ESM 
would not lead to interpretable results, because the more highly 
correlated the linear regression model predictors, the lower 
the precision of the regression coefficients (Harrell, 2015). In 
fact, with highly correlated predictors, the p- values for each 
linear regression model coefficient, representing statistical 
significance, may not even be reliable (Harrell, 2015). 
Additionally, a multivariate linear regression approach would 
not work in this circumstance because the interactions between 
GPP, VPD, and soil moisture are not linear. To separate the 
effects of VPD and soil moisture on GPP in ESMs, these issues 
of collinearity had to be dealt with: a method was needed to 
reduce the correlation between VPD and soil moisture.

K- MEANS CLUSTERING

Despite the strong coupling between VPD and soil moisture in  
time, the correlation between these two variables can become  
less pronounced when aggregated spatially. Thus, it is not  
necessary to analyze the photosynthetic sensitivity to soil  
moisture and VPD per every 1 × 1 degree pixel location in  
each ESM separately. Rather, analysis can be performed over  

35
 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1201/9781032711126-44


225Machine Learning to Predict and Explain Carbon Cycle Interactions

data from larger regions to reduce the correlation between  
VPD and soil moisture. The robustness of such analysis  
usually increases with the amount of data. Thus, a K- means  
clustering approach was applied to define these regions.

K- means clustering is an unsupervised machine learning 
algorithm based on vector quantization. It uses input data 
to group the data into non- overlapping clusters based on 
minimizing the difference between each data point to the 
centroid of the cluster (Wu, 2012). A user must first choose 
the information that they want their data to be grouped by 
and supply those datasets as input variables to the algorithm, 
as well as specify the number of clusters desired. To assist 
in choosing the optimum number of clusters, there are many 
approaches available, such as the silhouette method, which is 
included in software packages such as ‘cluster’ in R (Maechler 
et al., 2022). The algorithm then works by selecting initial 
centroid values based on the seed value provided by the user, 
and the data is grouped to the centroids closest to each point. 
The centroids are then updated, and the process is performed 
iteratively to minimize the distance between each data point 
and its cluster centroid (Wu, 2012). The model output can 
be quite sensitive to the initial centroids chosen, and thus 
it is recommended to try multiple seed- values for K- means 
clustering before selecting the final clusters.

For this analysis, predictors were chosen that related to both 
climate and vegetation activity, so that the study area could be 
grouped into regions that were functionally and climatically 
consistent in space and time, and where the relationship 
between VPD, soil moisture, and GPP would be expected to be 
relatively consistent. Input datasets used were remote- sensing 
based maps of the mean and standard deviation of solar 
induced fluorescence (SIF; used as a proxy for GPP; Guanter 
et al., 2012), precipitation, surface shortwave radiation down, 
2- meter near surface air temperature, and vapor pressure 
deficit calculated from near- surface temperature and relative 
humidity data. In this scenario, eight clusters were used, 
based on both a silhouette analysis and visual inspection 
(Figure 35.1).

Because soil moisture data from satellite sources only 
reflects the top layers of the soil and have high uncertainty 
associated with their measurements in the Amazon rainforest, 

precipitation data at various monthly lags were used in their 
place for this study, to represent the ‘memory’ of the system. 
Thus, to evaluate the effectiveness of K- means clustering 
for reducing the correlation between soil moisture and VPD, 
the correlation between remotely sensed current and lagged 
precipitation data and VPD was computed for each cluster and 
was compared to the average correlation between current and 
lagged precipitation and VPD for all pixels within a cluster 
(Figure 35.2). This process reduced the correlation across all 
clusters where the correlation could be reliably calculated, 
demonstrating the success of this approach for reducing the 
collinearity between precipitation and VPD. Because clusters 
3 and 7 consist of only a limited number of pixels, a robust 
correlation could not be computed, and are therefore not 
included in Figure 35.2.

ARTIFICIAL NEURAL NETWORKS

Because the impact of moisture supply and demand 
on photosynthesis are not linear (Green et al., 2022), 
using linear regression models to examine the drivers of 
photosynthesis was not possible for this application, even 
after clustering the data. Thus, to address the nonlinear 
impact of water supply and demand on GPP, artificial neural 
networks were used.

ANNs are modeled on the functioning of the brain, 
and comprise an input layer, usually one or more hidden 
layers, and an output layer, which are known as node 
layers. ANNs have nonlinear activation functions, and if 
they are run with multiple hidden layers, can disentangle 
nonlinear relationships between predictor and response 
variables (Bell, 2014; see also Chapter 37), making them 
an effective choice of model for this application. They need 
to be trained prior to making predictions, and this is done 
by using a portion of the data for training the model (for 
this study, 60%) before validating and applying the ANNs. 
It is important for a user to follow this process of using a 
portion of the data for training the models and a different 
portion for testing the models to avoid issues of overfitting 
(if the R2 value of the model largely decreases when testing 
the model on new data, the model is likely overfit) (See 
Chapter 37 for more discussion on cross-validation to 
avoid under- and over-fitting). Disadvantages of ANNs 
are that they require a large amount of data to train, a user 
must be careful not to overfit the model, and they can be 
computationally intensive.

For this case study, predictor datasets in each ANN were  
used related both to climate and vegetation structure. In the  
ESMs, these included monthly data of precipitation at different  
monthly lags (to account for the memory of soil moisture),  
vapor pressure deficit calculated from near surface temperature  
and humidity data, surface shortwave radiation down, and  
leaf area index (representative of vegetation structure). These  
datasets covered the time period of 1976– 2005 and were all  
brought to a spatial resolution of 1 × 1 degree before running  
the analysis. In the observational analysis (used to evaluate  
the ESM photosynthetic sensitivity), predictor datasets used  

FIGURE 35.1 K- means clustering results (see Green et al., 2020; 
Supplementary Figure 1).

 

 

 

 

 

 



226 Land Carbon Cycle Modeling 2e 

were monthly precipitation at different monthly lags, vapor  
pressure deficit calculated from near surface temperature  
and humidity data, photosynthetic active radiation (similar  
to shortwave radiation down), and then canopy height and  
the fraction of absorbed photosynthetically active radiation  
to represent the canopy structure. These datasets covered the  
time period of 2007– 2016 based on data availability. In the  
ESMs, GPP was used as a response variable, while SIF data  
in the observational analysis was used as a response variable  
as a proxy for GPP. Prior to running the ANNs, all data were  
normalized by the cluster mean and standard deviation for  
each dataset.

To increase robustness, an ensemble of ten ANNs were run 
per cluster across the observational data. In total, ten ESMs 
from CMIP5 were used in the analysis, and the final figures 
depict the median ESM behavior (Figure 35.3).

ARTIFICIAL NEURAL NETWORK PERTURBATION 
ANALYSIS

After developing the ANNs per cluster, the trained models 
could be used to make predictions with new data, and to 
evaluate the model performance using the R2 values. However, 
without further analysis, it is unclear how or if each input 
variable is influencing the final ANN prediction. Therefore, 
a sensitivity analysis, known as a perturbation analysis, was 
performed in this study to disentangle the impacts of VPD 
and precipitation at different monthly lags on photosynthetic 
activity per cluster, for both ESMs and observational data 
separately.

This process consisted of four steps. First, each ESM 
(or observational) ANN per cluster was used to predict 

GPP (or SIF) both temporally and spatially (GPP
ANN all var  

). 

Second, one predictor variable, which will be called variable 
X, was perturbed by one standard deviation, and the same 
ANNs were used to predict the GPP (or SIF) data again 

(GPP
ANN X absval stdev X+ ( )( )). Third, these predictions from steps 1 

and 2 were transformed back to their pixel locations, to create 
two time- varying map arrays of GPP (or SIF) (‘GPP predicted 
unperturbed’ and ‘GPP predicted perturbed’). Fourth, using 
Equation (35.1), the percent change in GPP (or SIF) due to a one 
standard deviation change in a predictor variable X could be 
determined per pixel- location, by taking the temporal mean of 
the difference between the ‘GPP (or SIF) predicted perturbed’ 
data array and the ‘GPP (or SIF) predicted unperturbed’ data 
array, and dividing that by the temporal standard deviation of 
the GPP data (or SIF observations):

100 × −( )+ ( )( )mean GPP GPP

stdev GPP

ANN X absval stdev X ANN all var

(( )  (35.1)

These results could also be separated into dry and wet seasons 
as defined by the climatology of precipitation, by applying 
Equation 35.1 to only dry season months, or only wet season 
months.

In doing so, the percentage change in GPP (or SIF) due  
to perturbing each predictor variable by 1 standard deviation  
could be determined for each predictor variable in the model  
(Figure 35.3). If the perturbed model resulted in higher GPP  
(or SIF) values on average, this demonstrated that the predictor  
variable was having a predominantly increasing impact on the  
response variable, and that sensitivity was depicted as positive  
(teal in Figure 35.3). Likewise, if the perturbed model resulted  
in lower GPP (or SIF) values on average, this demonstrated  

FIGURE 35.2 Correlations between VPD and current precipitation (A), 2- month lagged precipitation (B) and 4- month lagged precipitation 
(C) (see Green et al., 2020; Supplementary Figure 2).
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that increases in a particular predictor variable tended to have  
a reducing impact on GPP (or SIF) values and was depicted as  
negative (brown in Figure 35.3).

CASE STUDY: DRY SEASON RESULTS

During the dry season, observational data results from the 
perturbation analysis showed a positive photosynthetic 
sensitivity to precipitation in drier regions of the study area, 
but a negative photosynthetic sensitivity to precipitation in 
the wettest regions of the Amazon rainforest (Figure 35.3A). 
The observational data also showed a negative photosynthetic 
sensitivity to VPD across the study area, except in the 
Amazon rainforest, where the sensitivity was either neutral 
or slightly positive (Figure 35.3C). Meanwhile, the ESMs 
showed a systematic increase in GPP in response to increased 
precipitation, and a systematic decrease in GPP in response to 
increased VPD throughout the study area (Figure 35.3B and 
35.3D).

These results demonstrate that the CMIP5 ESMs used 
for future climate projections are overestimating the positive 
influence of soil moisture on photosynthetic activity in the 
Amazon rainforest, while also overestimating the negative 
photosynthetic sensitivity to VPD. While this ESM response 
is well characterized (both low soil moisture and high 
atmospheric demand frequently cause vegetation to reduce 
photosynthesis; Ball et al., 1987), it neglects the fact that 
in nature there can be shifts in vegetation structure and 
biogeochemistry that can compensate for these reductions in 
photosynthesis from a leaf- level understanding. CMIP5 ESMs 
assume static biogeochemistry regardless of vegetation water 
stress, which would prevent them from capturing these other 
vegetation responses which occur in nature.

OTHER METHODS OF MACHINE LEARNING 
INTERPRETABILITY

In the case study presented here, a perturbation analysis was 
applied to increase the interpretability of the ANN models 

used. However, there are various methods in addition to this 
that can be used to understand the importance of machine 
learning model predictors, and to reveal the nature of variable 
interactions (see also Chapter 33).

partial dependence plotS

One such method is partial dependence plots, which are used 
to understand the influence of a predictor variable on a model 
prediction. They depict the prediction function between each 
predictor variable (or a set of predictors) and the response 
variable, in a straight- forward and visual way (Molnar, 2022; 
see Figure 35.4A). They have been used to study variable 
interactions related to understanding the capacity of mineral- 
associated organic carbon (Georgiou et al., 2022), as well as 
soil respiration (Warner et al., 2019).

Some shortcomings of partial dependence plots are that 
they are limited to depicting the interactions between two 
predictor variables and one response variable at most, and 
they also make assumptions about variable independence. 
Therefore, if there are interactions between variables within 
the model, this could lead to spurious results (Molnar, 2022).

Shapley ValueS

Shapley values are another method for disentangling the  
impacts of predictor variables on model predictions based on the  
output of a machine learning model. Shapley values are based  
on game theory, and decompose the anomalies of a machine  
learning response variable, to measure the contributions of  
each predictor variable to that anomaly (Hart, 1989). They can  
be used to calculate overall variable importance, and can also  
be used with categorical response variables, in which their  
values represent how an individual predictor influences the  
probability of a particular model outcome (see Figure 35.4B).  
They have been used in carbon cycle science to explore the  
interactions between water stress and GPP (Wang et al., 2022)  
as well as to determine the drivers of changes in aboveground  
biomass (Winkler et al., 2023). While they can be used with  

FIGURE 35.3 ANN sensitivity results: Dry season. Remote sensing results for the sensitivity of SIF to precipitation (A), and VPD (C). 
Model results for the sensitivity of GPP to precipitation (B) and VPD (D) (see Green et al., 2020; Figure 1).

 

 

 

 

 

 

 

 

 

 

 

 



228 Land Carbon Cycle Modeling 2e 

many machine learning model outputs, they can be computed  
most efficiently for the output of tree- based models (such as  
random forest models). A disadvantage of Shapley values  
compared to partial dependence plots is that they can be  
very computationally expensive. However, an advantage of  
Shapley values over partial dependence plots is that they are  
better at disentangling feature interactions.

CONCLUSIONS

Machine learning models have opened the door to both predict 
and explain complex interactions in environmental systems. 
In the case study presented in this chapter, K- means clustering 
was used to reduce the correlation between VPD and lagged 
precipitation data, to more easily disentangle their effects 
on photosynthetic activity across the tropical Americas. 
This was followed by using artificial neural networks, that 
allowed for the decomposition of non- linear effects of lagged 
precipitation and VPD on photosynthetic activity. Lastly, a 
perturbation analysis was performed to be able to quantify the 
sensitivity of photosynthesis to a standard deviation of change 
in each predictor variable. The observational results could 
then be used as a benchmark for the CMIP5 ESMs, leading 
to an investigation to understand why these ESMs were 
not capturing the photosynthetic sensitivity that was being 
detected in nature. Although a perturbation analysis was used 
here, other methods of interpreting machine learning output 
exist, and two others presented here are partial dependence 

plots and Shapley values. These are just several examples of 
how machine learning algorithms can be applied in carbon 
cycle science, with this case study’s objective being to 
improve understanding of vegetation response to water supply 
and demand across the tropical Americas.
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QUIZ

1 Explain why it was necessary to use a K- means 
clustering analysis in the case study presented here 
rather than disentangling the effects of VPD and 
precipitation on GPP per pixel location.

2 Explain some of the pros and cons of using artificial 
neural network models.

3 You would like to examine the output of a machine 
learning model. Give three examples of sample 
problems you could be working with where it would 
be appropriate to use: i) a perturbation analysis, ii) 
partial dependence plots, and iii) Shapley values, to 
disentangle the variable interactions.

FIGURE 35.4 An example partial dependence plot showing the relationship between near surface air temperature (Tair) and a random 
forest model prediction of a response variable yhat (A), and an example Shapley plot depicting the influence of Tair on a random forest model 
prediction of a binary response variable (B). Panel A shows that as Tair increases, model predictions of yhat tend to increase, but that the 
relationship is nonlinear. Panel B demonstrates that at Tair values < ~2°C, Tair increases the probability that the model prediction is 1, while 
at Tair > 5°C and Tair < 25°C, Tair decreases the probability that the model prediction is 1.
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Practice 9
Applications of Machine Learning to Predict Soil 
Organic Carbon Content

Feng Tao
Cornell University, Ithaca, USA

This practice focuses on one of the simplest yet effective 
machine learning models, the random forest model. We will 
first introduce basic concepts in random forest modeling and 
then apply this model to an example of predicting soil organic 
carbon (SOC) distributions across the ecosystems of North 
Macedonia, a country in Southeast Europe. We will compare 
the predicting results from the random forest with linear 
regression models. At the end of this practice, we will discuss 
the interpretability of the random forest model.

BASIC CONCEPTS OF RANDOM FOREST AS A 
MACHINE LEARNING METHOD

This popular machine learning technique in the geosciences 
was introduced in Chapter 33. A random forest is an ensemble 
learning method for classification, regression, and other possible 
tasks that operate by constructing a multitude of decision trees 
at training time. Specifically, in a classification study, the final 
outputs of a random forest would be the class selected by most 
decision trees. For a regression problem, the final results would 
be the mean value of predictions by all the individual trees.

To further illustrate this idea, let us imagine a task where 
we will identify the names of different fruits by different 
decision trees in a random forest (Figure 36.1). Through its 
internal processing algorithm, the first decision tree tells us 
the fruit we need to identify is an apple. However, the second 
decision tree concludes differently that the fruit is a lemon. 
Meanwhile, the third decision tree says that the fruit should be 

an apple. In this process, all these three decision trees compose 
the random forest. In making the final decision about the name 
of the fruit, the random forest ensembles all the outputs from 
different decision trees together and chooses the most popular 
suggested decision (known as majority voting) as the final 
prediction. According to this rule, the random forest predicts 
the fruit to be an apple in this case.

As illustrated in our example, the decision trees are the 
fundamental units for a random forest. A decision tree is a 
tree- shaped diagram used to choose among a spruce of actions 
based on some criteria or questions. Analogous to a real tree, 
decision trees in a random forest also have branches and 
leaves. Each branch of a decision tree represents a possible 
decision, occurrence, or action for specific problems. Each 
branching point or node corresponds to a question we can ask 
in relation to the choices available to us.

Back to the problem of identifying different fruits. If we  
have a bowl of different kinds of fruits, how are we supposed  
to differentiate them from one another? Intuitively, we may  
ask different questions that are related to the typical features  
of different fruits. For a bowl with apples, lemons, and cherries  
(Figure 36.2), probably we can first ask a question about the  
diameter of those fruits. If we ask the question: “Is the diameter  
of the fruits larger than 3 cm?” then we can pick cherries from  
apples and lemons. We can ask a second question, for example: “Is  
the color red?” to further differentiate apples from lemons. After  
two questions, we can separate all these three kinds of fruits from  
the bowl. In this process, the two questions split different fruits  

36

FIGURE 36.1 The basic working algorithm in a random forest.

Adapted from https:// buil tin.com/ data- scie nce/ ran dom- for est- algori thm.
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and we call them the branches of the decision tree. Meanwhile,  
right before the questions, we have the so- called decision nodes  
where the fruits are waiting to be separated.

In the real world, we have lots of information about the 
features of different fruits. Therefore, we can take an array 
of available information into our predictions, which makes 
multiple decision trees possible. Figure 36.3 shows three 
possible decision trees to separate different fruits in a bowl. All 
of these three decision trees eventually successfully separate 
different kinds of fruits from one another. If all the possible 
observations in the real world followed the rules entailed by 
these three decision trees, each of the decision trees would 
make 100% correct predictions. However, such a successful 
prediction does not happen most of the time. For example, red 
may be the most common color for apples. But we can always 
buy some green apples which are as fruitful as the red ones 
from supermarkets. When we have an observation that is out 
of the samples which we used in building those decision trees, 
how will different decision trees perform?

Suppose, for example, we find a fruit that has a diameter 
of 7 cm with the color of green, medium vitamin C, and rich 
sugar content. According to Figure 36.2, the first decision 
tree tells us that this fruit should be a lemon, because its 
diameter is larger than 3 cm, and its color is not red. However, 
the second decision tree tells us that this should be an apple 
because it does not have very high vitamin C, and at the same 
time, its diameter is larger than 3 cm. Meanwhile, when we 
look at the third decision tree, it indicates our observation 
should be an apple because it has a pretty high sugar content. 
Two of our three trees voted for the observation being an 
apple, while one voted for it being a lemon. According to 
the majority voting rule, the final decision of the random 
forest will be for the fruit being an apple. From this simple 
demonstration, we will notice that predictions based on a 
single or few decision trees are not necessarily reliable. 
Yet after building a bunch of decision trees in the random 
forest, although some of the trees may not give the correct 
answer, the ensemble of the random forest can still make 

useful predictions. The larger the ensemble, the more likely 
the predictions will be correct.

To bring the random forest from abstract concepts to real 
practice, we will have three exercises for you to get more 
familiar with the random forest. Soil organic carbon (SOC) is 
one of the most important parts of the land carbon cycle, yet 
it is not predicted especially well by conventional regression 
methods or process models. Here we will try to use a random 
forest to map the SOC distributions in North Macedonia 
(hereafter Macedonia), a mountainous country in Southeast 
Europe. In this case, SOC is the prediction target, and we 
have 11 different environmental variables that can serve as 
predictors in the random forest. The abbreviations and full 
names of these variables are listed in Table 36.1.

In Exercise 1, we will first screen the available soil 
data to gain a preliminary impression of SOC and related 
environmental variables.

Exercise 1: Screening soil data in Macedonia. Follow the 
instructions in CarboTrain:

a. Select Unit 9
b. Select Exercise 1
c. Select environmental variable (i.e., the “Select Var” 

button)
d. Select Output Folder
e. Run Exercise
f. Check results in your Output Folder. Two figures will 

be generated (Figure 3 and Figure 4). The figure in 
soc_ histogram.png describes the distribution of SOC 
content in Macedonia. soc_ var_ dist.png describes the 
spatial distributions of SOC content and the selected 
environmental variable.

Questions:
1. What is the distribution shape of SOC content in 

Macedonia? Which part of the distribution (lower 
values with abundant observations or higher values 
with fewer observations) is easier to predict?

FIGURE 36.2 Branches of different decision trees.

Adapted from https:// buil tin.com/ data- scie nce/ ran dom- for est- algori thm.
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2. Describe the spatial patterns of SOC content across  
Macedonia. Can you understand how the spatial  
patterns of SOC correlate with the environmental  
variables you selected?

RANDOM FOREST IN R LANGUAGE

After looking at the data, Exercise 2 will help you to build a 
simple random forest model and make predictions on SOC 
content. The R language provides the package “randomForest” 
to construct random forest models. Specifically, we will use 
the “randomForest” function:

randomForest(formula,
             x, 
             y, 
             ntree= 500,

             mtry= 2,
             ...)

This function has many hyper- parameters, but we will 
pay attention to the most important four of them. The hyper- 
parameter “formula” describes the structure of the random 
forest model, which includes the target you want to predict 
and the predictors you want to use in your prediction. In our 
case, the prediction target is the SOC content, and you can 
use any combination of the 11 environmental variables in 
Table 36.1 as predictors. An example formula goes: “SOC ~ 
Var1 +  Var2 +  Var3”.

In addition to the formula, you may specify the data of both 
your predictors (i.e., x in the function) and prediction target 
(i.e., y in the function). Meanwhile, as we have discussed, a 
successful random forest needs lots of decision trees. You may 
decide how many trees you want to plant in the random forest 
(i.e., ntree in the function). For each of the decision trees, you 
may also need to decide how many variables you want to use 
in building the branches (i.e., mtry in the function).

Exercise 2: Building up a random forest model. Follow the 
instructions in CarboTrain:

a. Select Unit 9
b. Select Exercise 2
c. Select mtry number
d. Select ntree number
e. Specify the formula of the random forest in the box of 

Model Formula
f. Set output folder
g. Run Exercise
h. Try different combinations of the above 

hyper- parameters
i. Check results in your Output Folder. One figure will  

be generated (Figure 5). The figure in soc_ rf_ predict.

FIGURE 36.3 SOC distribution in Macedonia.

TABLE 36.1
SOC and environmental variables used in the random forest model

Variable Full Name

SOC Soil organic carbon content (%)
B04CHE3 Temperature seasonality (oC)
PRSCHE3 Total annual precipitation (mm)
TMDMOD3 Mean annual land surface temperature (daytime) from MODIS (oC)
DEMENV5 Land surface elevation (m)
B07CHE3 Temperature annual range (oC)
HIST Histosol probability
B13CHE3 Precipitation of wettest month (mm)
B14CHE3 Precipitation of driest month (mm)
REDL00 Landsat band 3 (red)
TWIMRG5 Topographic wetness index
LandCover Land cover types

Source: Data originates from the Soil Information System of North Macedonia: http:// www.maks oil.
ukim.mk/ masis/ index.html?lang= en& It is openly available through the GitHub data repository of the 
Soil Organic Carbon Mapping Cookbook:  https:// git hub.com/ FAO- GSP/ SOC- Mapp ing- Cookb ook/ tree/ 
mas ter/ data
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png is composed of three panels. Panel a and b show  
the model performance of the linear and random forest  
models in predicting SOC content in Macedonia using  
the same formula you specified. Panel c shows the  
predicted SOC content map of Macedonia using the  
trained random forest model.

Questions:
1. How well did your random forest model outperform 

the linear model?
2. Among all the sets of hyper- parameters you have 

tried, which set generated the best performance of the 
random forest model?

3. Can you propose other ways that we can further 
improve the performance of the random forest model, 
other than changing the hyper- parameters?

INTERPRETABLE RANDOM FOREST RESULTS

After we generate the predicted maps of SOC content in 
Macedonia, a natural question arising is how to interpret 
the results in terms of the relative influence of the multiple 
environmental variables we used to train the model. We might 
also wonder, what happened inside the random forest that 

made it better than a normal linear model in predicting SOC? 
People often take the machine learning model as a black box 
which is excellent in solving specific problems yet can be hard 
to interpret compared to simple models such as a linear model, 
in which the coefficients tell us how important each predictor 
is in terms of its influence on the values of the response 
variable. However, if we learn to apply a few tools, machine 
learning models are not that difficult to interpret.

We will introduce two basic metrics for understanding  
a machine learning model. The first one is the feature  
importance, which quantifies the importance of predictors  
to the final prediction target in a machine learning model.  
In practice, we have different ways to express the feature  
importance. A permutation experiment replaces the original  
predictor values with some random values and thus breaks  
the relationship between the investigated features and the  
outcomes. We measure the increase in the prediction error  
(e.g., the mean squared error) as the permutation importance.  
A larger permutation importance value of one feature (i.e.,  
variable) indicates model performance is more reliant on the  
information contained in that variable. Alternatively, Gini  
importance goes through all the splits for which the feature  
was used and then measures how much that feature reduced  
the variance or the Gini index in comparison with the parent  

FIGURE 36.5 Model performance using the (a) linear and (b) random forest models. (c) Predicted SOC content map using the trained 
random forest model.

FIGURE 36.4 Spatial distributions of SOC content and the selected environmental variables in Macedonia.
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node. The larger the Gini importance value, the more efficient  
the investigated feature in reducing the prediction variance of  
the random forest model.

After identifying the importance of different variables, 
we can further look into the specific relationships between 
those variables and the prediction target that was learned by 
the random forest. The partial dependence plot (PDP) shows 
the marginal effects of one variable in predicting the target 
outcomes. Through the PDP, we can visually show whether the 
relationship between the feature and target outcomes is a linear, 
monotonic or more complex nonlinear relationship. When 
we look at the PDP at an individual site, it is also called the 
individual conditional expectation (ICE). The ensembled mean 
values of all ICE compose the global partial dependence plot.

In our practice of predicting SOC, after you have trained 
the random forest model, you can also identify the most 
important variables in predicting SOC and explore the 
relationships between those variables and SOC. We will try 
this in Exercise 3, using the same model configuration you 
tried in Exercise 2.

Exercise 3: Interpret random forest model results. Follow the 
instructions in CarboTrain:

a. Select Unit 9
b. Select Exercise 2
c. Select mtry number
d. Select ntree number
e. Specify the formula of the random forest in the box of 

Model Formula
f. Set output folder
g. Run Exercise
h. Check results in your Output Folder. Two figures 

will be generated (Figure 6 and Figure 7). The 
figure rf_ importance.png shows the importance 
of different variables in predicting SOC content 
measured by both permutation importance and Gini 
importance. The figure soc_ rf_ var_ pdp.png shows 
the partial dependence plots between the first three 
most important variables (ranked by the permutation 
importance) and SOC.

FIGURE 36.7 Partial dependence plots between environmental variables and SOC. Environmental variables are the first three most 
important ones measured by permutation importance. Black lines indicate the individual conditional expectations, and yellow lines show the 
global partial dependence plots.

FIGURE 36.6 Importance of environmental variables in predicting SOC. Panel a shows the results measured by permutation importance, 
and panel b shows the results measured by Gini importance.
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QUESTIONS:

1. Which variable in your random forest model is the 
most important one in predicting SOC in Macedonia?

2. Is the rank of the variable importance the same 
when measured by permutation importance and Gini 
importance? Why?

3. Individual conditional expectation (ICE) lines are 
often different from each other. Can you explain what 
caused such a difference?

4. Do you think the relationship between the most 
important environmental variable and SOC retrieved 
from the random forest is reasonable, based on your 
knowledge of soil science? If they are reasonable, 
can you use your empirical knowledge to explain the 
emerged relationship?

In this practice, we learned basic concepts of the random forest 
as a machine learning approach and built up a simple random 

forest model. In the end, we tried to interpret the results 
learned from the random forest. Yet the story of the machine 
learning is still to be continued. For machine learning, it is 
never enough to only build up a model without testing its 
robustness to avoid overfitting. Meanwhile, it is important 
to quantify the uncertainty of predictions made by machine 
learning models. Furthermore, as excellent as machine 
learning has proven to be in pure data mining, in ecological 
studies, we are also interested in mechanistic understanding 
from big data. How to fuse machine learning with process 
models to retrieve mechanistic understanding from big data is 
an emerging field to be explored. These issues will be further 
addressed in Unit 10. Chapter 37 will discuss how to use 
cross-validation to avoid under and over-fitting and address 
prediction uncertainties in machine learning. Chapters 38 
and 39 will introduce how to integrate process principles into 
machine learning to better understand key processes in the 
land carbon cycle from big data.
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FIGURE 37.1 A learning algorithm inputs a train data set, and 
outputs a prediction function, g or h. Both g and h input a grayscale 
image and output a class (integer from 0 to 9), but g is for digits and 
h is for fashion.

Introduction to Machine Learning and 
Neural Networks

Toby Dylan Hocking
Northern Arizona University, Flagstaff, USA

In this chapter we introduce basic concepts and algorithms 
from machine learning. We explain how neural networks can 
be used for regression and classification problems, and how 
cross-validation can be used for training and testing machine 
learning algorithms.

INTRODUCTION AND APPLICATIONS OF 
MACHINE LEARNING

Machine learning is the domain of computer science which 
is concerned with efficient algorithms for making predictions 
in all kinds of big data sets. A defining characteristic of 
supervised machine learning algorithms is that they require 
a data set for training. The machine learning algorithm then 
memorizes the patterns present in those training data, with 
the goal of accurately predicting similar patterns in new test 
data. Many machine learning algorithms are domain- agnostic, 
which means they have been shown to provide highly accurate 
predictions in a wide variety of application domains (computer 
vision, speech recognition, automatic translation, biology, 
medicine, climate science, chemistry, geology, etc.).

For example, consider the problem of image classification 
from the application domain of computer vision. In this 
problem, we would like a function that can input an image, 
and output an integer which indicates class membership. More 
precisely, let us consider the MNIST and Fashion- MNIST data 
sets (Figure 37.1), in which each input is a grayscale image 
with height and width of 28 pixels, represented as a matrix 
of real numbers x ∈ R28×28 (LeCun et al., 1998, Xiao et al., 
2017). In both the MNIST and Fashion- MNIST data sets each 
image has a corresponding label which is an integer y ∈ {0,   
1, …, 9}. In the MNIST data set each image/ label represents a 
digit, whereas in Fashion- MNIST each image/ label represents 
a category of clothing (0 for T- shirt/ top, 1 for Trouser, 2 for 
Pullover, etc.). In both data sets the goal is to learn a function 
f: R28×28 → {0, 1, …, 9} which inputs an image x and outputs 
a predicted class f (x) which should ideally be the same as the 
corresponding label y.

As mentioned above, a big advantage of supervised 
learning algorithms is that they are typically domain- agnostic, 
meaning that they can learn accurate prediction functions f 
using data sets with different kinds of patterns. That means 
we can use a single learning algorithm LEARN on either 
the MNIST or Fashion- MNIST data sets (Figure 37.1, left). 
For the MNIST data set the learning algorithm will output 
a function for predicting the class of digit images, and for 

Fashion- MNIST the learning algorithm will output a function 
for predicting the class of a clothing image (Figure 37.1, right). 
The advantage of this supervised machine learning approach 
to image classification is that the programmer does not need 
any domain- specific knowledge about the expected pattern 
(e.g., shape of each digit, appearance of each clothing type). 
Instead, we assume there is a data set with enough labels for 
the learning algorithm to accurately infer the domain- specific 
pattern and prediction function. This means that the machine 
learning approach is only appropriate when it is possible/ 
inexpensive to create a large, labeled data set that accurately 
represents the pattern/ function to be learned.

How do we know if the learning algorithm is working 
properly? The goal of supervised learning is generalization, 
which means the learned prediction function f should 
accurately predict f (x) =  y for any inputs/ outputs (x, y) that 
will be seen in a desired application (including new data that 
were not seen during learning). To formalize this idea, and 
to compute quantitative evaluation metrics (accuracy/ error 
rates), we need a test data set, as explained in the next section.

K- FOLD CROSS- VALIDATION FOR EVALUATING 
PREDICTION/ TEST ACCURACY

Each input x in a data set is typically represented as one of N rows 
in a “design matrix” with D columns (one for each dimension 
or feature). Each output y is represented as an element of a label 
vector of size N, which can be visualized as another column 
alongside the design matrix (Figure 37.2, left). For example, in 
the image data sets discussed above we have N =  60,000 labeled 
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images/ rows, each with D =  784 dimensions/ features (one for 
each of the 28 × 28 pixels in the image).

The goal of supervised learning is to find a prediction 
function f such that f (x) =  y for all inputs/ outputs (x, y) in a 
test data set (which is not available for learning f). So how do 
we learn f for accurate prediction on a test data set, if that test 
set is not available? We must assume that we have access to a 
train data set with the same statistical distribution as the test 
data. The train data set is used to learn f, and the test data can 
only be used for evaluating the prediction accuracy/ error of f.

Some benchmark data sets which are used for machine 
learning research, like MNIST and Fashion- MNIST, have 
designated train/ test sets. However, in most applications 
of machine learning to real data sets, train/ test sets must be 
created. One approach is to create a single train/ test split by 

randomly assigning a set to each of the N rows/ observations, 
say 50% train rows and 50% test rows. The advantage of that 
approach is simplicity, but the drawback is that we can only 
report accuracy/ error metrics with respect to one test set (e.g., 
the algorithm learned a function which accurately predicted 
91.3% of observations/ labels in the test set, meaning 8.7% 
error rate).

In addition to estimating the accuracy/ error rate, it is  
important to have some estimate of variance in order to  
make statements about whether the prediction accuracy/ error  
of the learned function f is significantly larger/ smaller than  
other prediction functions. The other functions to compare  
against may be from other supervised learning algorithms, or  
some other method that does not use machine learning (e.g.,  
a domain- specific physical/ mechanistic model). A common  

FIGURE 37.3 Illustration of underfitting and overfitting in a neural network regression model (single hidden layer, 50 hidden units). Left: noisy 
data with a nonlinear sine wave pattern (grey circles), learned functions (colored curves), and residuals/ errors (black line segments) are shown 
for three values of epochs (panels from left to right) and two data subsets (panels from top to bottom). Right: in each epoch the model parameters 
are updated using gradient descent with respect to the subtrain loss, which decreases with more epochs. The optimal/ minimum loss with respect 
to the validation set occurs at 64 epochs, indicating underfitting for smaller epochs (green function, too regular/ linear for both subtrain/ validation 
sets) and overfitting for larger epochs (purple function, very irregular/ nonlinear so good fit for subtrain but not validation set).

FIGURE 37.2 K =  3- fold cross- validation. Left: the first step is to randomly assign a fold ID from 1 to K to each of the observations/ 
rows. Right: in each of the k ∈ {1, . . ., K} splits, the observations with fold ID k are set aside as a test set, and the other observations are 
used as a train set to learn a prediction function (f1– f3), which is used to predict for the test set, and to compute accuracy metrics (A1– A3).
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baseline is the constant function f (x) =  y0 where y0 is the  
average or most frequent label in the train data. This baseline  
ignores all of the inputs/ features x, and can be used to show  
that the algorithm is learning some non- trivial predictive  
relationship between inputs and outputs (e.g., see Figure 37.4).

The K- fold cross- validation procedure generates K splits, 
and can therefore be used to estimate both mean and variance 
of prediction accuracy/ error. The number of folds/ splits K is 
a user- defined integer parameter which must be at least 2, 
and at most N. Typical choices range from K =  3 to 10, and 
usually the value of K does not have a large effect on the final 
estimated mean/ variance of prediction accuracy/ error. The 
algorithm begins by randomly assigning a fold ID number 
(integer from 1 to K) to each observation (Figure 37.2, left). 
Then for each unique fold value from 1 to K, we hold out 
the corresponding observations/ rows as a test set, and use 
data from all other folds as a train set (Figure 37.2, right). 
Each train set is used to learn a corresponding prediction 
function, which is then used to predict on the held- out test 
data. Finally, accuracy/ error metrics are computed in order 
to quantify how well the predictions fit the labels for the test 
data. Overall, for each data set and learning algorithm the K- 
fold cross- validation procedure results in K splits, K learned 
functions, and K test accuracy/ error metrics, which are 
typically combined by taking the mean and standard deviation 
(or median and quartiles). Other algorithms may be used with 
the same fold assignments, in order to compare algorithms in 
terms of accuracy/ error rates in particular data sets.

For example, Figure 37.4 uses K =  4- fold cross- validation 
to compare four learned functions on an image classification 
problem. The accuracy rates of the “dense” and “linear” 
functions, 97.4 ± 1.6% and 96.3 ± 1.9% (mean ± standard 
deviation) are not significantly different. Both rates are 
significantly larger than the accuracy of the “baseline” 
constant function, 16.4 ± 1.4%, and smaller than the accuracy 
of the “conv” function, 99.3 ± 1.1%. We can therefore 
conclude that the most accurate learning algorithm for this 
problem, among these four candidates, is the “conv” method 
(which uses a convolutional neural network, explained later). 
It is important to note that statements about which algorithm 
is most accurate can only be made for a particular data set, 
after having performed K- fold cross- validation to estimate 
prediction accuracy/ error rates.

OTHER APPLICATIONS

So far we have only discussed machine learning algorithms in 
the context of a single prediction problem, image classification. 
In this section we briefly discuss other applications of machine 
learning. In each application the set of possible inputs x and 
outputs y are different, but machine learning algorithms can 
always be used to learn a prediction function f (x) ≈ y. Jones 
et al. (2009) proposed to use interactive machine learning for 
cell image classification in the CellProfiler Analyst system. 
This application is similar to the previously discussed digit/ 
fashion classification problem, but with only two classes 
(binary classification). In this context the input is a multi- color 
image of cell x ∈ Rh×w×c where h, w are the height and width 
of the image in pixels, and c =  3 is the number of channels 
used to represent a color image (red, green, blue). The output 
y ∈ {0, 1} is a binary label which indicates whether or not the 
image contains the cell phenotype of interest.

Some email programs use machine learning for spam 
filtering, which is another example of a binary classification 
problem. When you click the “spam” button in the email 
program you are labeling that email as spam (y =  1), and when 
you respond to an email you are labeling that email as not 
spam (y =  0). The input x is an email message, which can be 
represented using a “bag- of- words” vector (each element is the 
number of times a specific word occurs in that email message).

Russell et al. (2008) proposed the LabelMe tool for creating 
data sets for image segmentation, which is more complex than 
the previously discussed image classification problems. In this 
context the input x ∈ Rh×w×c is typically a multi- color image, 
and the output y ∈ {0, 1}h×w is a binary mask (one element for 
every pixel in the image) indicating whether or not that pixel 
contains an object of interest.

Machine learning can be used for automatic translation 
between languages. In this context the input is a text in one 
language (e.g., French) and the output is the text translated to 
another language (e.g., English). The desired prediction function 
f inputs a French text and outputs the English translation.

Machine learning can be used for medical diagnosis. For 
example, Poplin et al. (2017) showed that retinal photographs 
can be used to predict blood pressure or risk of heart attack. 
Since the output y is a real number (e.g., blood pressure of 
120 mm mercury), we refer to this as a regression problem.

FIGURE 37.4 Prediction accuracy of functions learned for image classification of handwritten digits. The baseline function always predicts 
the most frequent class in the train set; other three learned functions are neural networks with different numbers of hidden layers (linear =  0, 
conv =  2, dense =  8).
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AVOIDING UNDER/ OVERFITTING IN A NEURAL 
NETWORK FOR REGRESSION

In this section we begin by explaining the prediction function 
and learning algorithm for a simple neural network. We then 
demonstrate how the number of iterations of the learning 
algorithm can be selected using a validation set, in order to 
avoid underfitting and overfitting.

We consider a simple regression problem for which the 
input x ∈ R is a single real number (D =  1 feature/ column 
in the design matrix), and the output y ∈ R is as well. Using 
a neural network with a single hidden layer of U units, two 
unknown parameter vectors are apparent which need to 
be learned using the training data, w ∈ RU and v ∈ RU. The 
prediction function f is then defined as:

 f x xT r( ) = ( ) =w v w zσ ,  37.1

where σ: RU → RU is a non- linear activation function, and z ∈ 
RU is the vector of hidden units. Typical activation functions 
include the logistic sigmoid σ(t) =  1/ (1 +  exp(−t)) and the 
rectifier (or rectified linear units, ReLU) σ(t) =  max(0, t). The 
prediction function is learned using gradient descent, which 
is an algorithm that attempts to find parameters w, v which 
minimize the mean squared error between the predictions and 
the corresponding labels in the N train data:

 L w v
N
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=
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σ  37.2

Gradient descent begins using uninformative parameters    
w0, v0 (typically random numbers close to zero), then at each 
iteration t ∈ {1, …, T} the parameters are improved by taking 
a step of size α > 0 in the negative gradient direction,

 w w w v
wt t t t

L= − ∇ ( )− − −1 1 1
α ,  37.3

 v v w v
vt t t t
L= − ∇ ( )− − −1 1 1

α ,  37.4

The algorithm described above is referred to as “full gradient” 
because the gradient descent direction is defined using the 
full set of N samples in the train set. Other common variants 
include “stochastic gradient” (gradient uses one sample) and 
“minibatch” (gradient uses several samples). When doing 
gradient descent on a neural network model, one “epoch” 
includes computing gradients once for each sample (e.g., 1 
epoch =  1 iteration of full gradient, 1 epoch =  N iterations of 
stochastic gradient).

In the algorithm above, the number of hidden units U, the 
number of iterations T, and the step size α must be fixed before 
running the learning algorithm. These hyper- parameters 
affect the learning capacity of the neural network. An important 
consideration when using any machine learning algorithm is 
that you most likely need to tune the hyper- parameters of 

the algorithm in order to avoid underfitting and overfitting. 
Underfitting occurs when the learned function f neither 
provides accurate predictions for the train data, nor the test 
data. Overfitting occurs when the learned function f only 
provides accurate predictions for the train data (and not for 
the test data). Both underfitting and overfitting are bad, and 
need to be avoided, because the goal of any learning algorithm 
is to find a prediction function f which provides accurate 
predictions in test data.

How can we select hyper- parameters which avoid overfitting? 
Note that the choice of hyper- parameters such as number of 
hidden units U and iterations T affect the learned function f, 
so we cannot use the test data to learn these hyper- parameters 
(by assumption that the test data are not available at train time). 
Then, how do we know which hyper- parameters will result in 
learned functions which best generalize to new data?

A general method which can be used with any learning 
algorithm is splitting the train set into subtrain and validation 
sets, then using grid search over hyper- parameter values. The 
subtrain set is used for parameter learning, and the validation 
set is used for hyper- parameter selection. In detail, we first 
fix a set of hyper- parameters, say U =  50 hidden units and 
T =  100 iterations. Then the subtrain set is used with these 
hyper- parameters as input to the learning algorithm, which 
outputs the learned parameter vectors w, v. Finally, the learned 
parameters are used to compute predictions f (x) for all inputs x 
in the validation set, and the corresponding labels y are used to 
evaluate the accuracy/ error of those predictions. The procedure 
is then repeated for another hyper- parameter set, say U =  10 
hidden units with T =  500 iterations. In the end we select the 
hyper- parameter set with minimal validation error, and then 
retrain using the learning algorithm on the full train set with 
those hyper- parameters. A variant of this method is to use    
K- fold cross- validation to generate K subtrain/ validation splits, 
then compute mean validation error over the K splits, which 
typically yields hyper- parameters that result in more accurate/ 
generalizable predictions (when compared to hyper- parameters 
selected using a single subtrain/ validation split). Note that 
this K- fold cross- validation for hyper- parameter learning is 
essentially the same procedure as shown in Figure 37.2, but 
we split the train set into subtrain/ validation sets (instead of 
splitting all data into train/ test sets as shown in the figure).

For example, we simulated some data with a sine wave 
pattern (Figure 37.3), and used the R package nnet to fit 
a neural network with one hidden layer of U =  50 units 
(Venables and Ripley, 2013). We demonstrate the effects 
of under/ overfitting by varying the number of iterations/ 
epochs from T =  1 to 1000. In this example K =  4- fold 
cross- validation was used, so each data point was randomly 
assigned a fold ID integer from 1 to 4. The result for only 
the first split is shown, so observations assigned fold ID =  1 
are considered the validation set, and other observations (folds 
2– 4) are considered the subtrain set (which is used at input to 
the nnet R function which implements the gradient descent 
learning algorithm). We then used the predict function in R 
to compute predictions for subtrain and validation data, and 
analyzed how the prediction error changes as a function of the 
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number of iterations/ epochs T of gradient descent. The data 
exhibit a nonlinear sine wave pattern, but the learned function 
for T =  4 iterations/ epochs is mostly linear (underfitting, large 
error on both subtrain/ validation sets). For T =  512 iterations/ 
epochs the learned function is highly non- linear (overfitting, 
small error for the subtrain set but large error for the validation 
set). When the error rates are plotted as a function of a model 
complexity hyper- parameter such as T (Figure 37.3, right), we 
see the characteristic U shape for the validation error, and the 
monotonic decreasing train error. The hyper- parameter with 
minimal validation error is T =  64 iterations/ epochs; smaller T 
values underfit or are overly regularized, and larger T values 
overfit or are under- regularized.

Overall, in this section we have seen how a neural network 
for regression can be trained using gradient descent (for 
learning parameter vectors, given fixed hyper- parameters) and 
subtrain/ validation splits (for learning hyper- parameter values 
to avoid under/ overfitting).

COMPARING NEURAL NETWORKS FOR IMAGE 
CLASSIFICATION

In this section we provide a comparison of several other 
neural networks for image classification. In general, in a 
neural network with L −1 hidden layers we can represent the 
prediction function as the composition of L intermediate fl 
functions, for all layers l ∈ {1, …, L}:

 f f f
L

x x( ) = [ ] 

1
 37.5

Each of the intermediate functions has the same form:

 lf t A
l l

t( ) = ( )W
l

,  37.6

where Al is an activation function and Wl ∈ Rul×ul−1 is a weight 
matrix with elements that must be learned based on the data. 
This model includes several hyper- parameters which must be 
fixed prior to learning the neural network weights:

• The number of layers L.
• The activation functions A1.
• The number of units per layer u1.
• The sparsity pattern in the weight matrices Wl.

The number of units in the input layer is fixed, u0 =  D, 
based on the dimension of the inputs x ∈ RD. The number of 
units in the output layer uL is also fixed based on the outputs/ 
labels y. The numbers of units in the hidden layers (u1, …, 
uL−1) are hyper- parameters which control under/ overfitting. 
Increasing the numbers of hidden units ul results in larger 
weight matrices Wl, which in general means more parameters 
to learn, and larger capacity for fitting complex patterns in 
the data. The sparsity pattern of Wl means which entries are 
forced to be zero; this technique is used in “convolutional” 
neural networks for avoiding overfitting and reducing training/ 

prediction time. When the matrix is not sparse (all entries non- 
zero), we refer to the layer as dense or fully connected.

For example, in the previous section we used a neural 
network for regression with one hidden layer, which in 
this more general notation means using L =  2 intermediate 
functions; the input dimension is u0 =  D =  1, the number of 
hidden units is u1 =  U =  50, and there is a single output u2 =  1 
to predict. The weight matrices are dense/ fully connected (no 
convolution/ sparsity), of dimension W1 ∈ R50×1, W2 ∈ R1×50. 
The hidden layer activation function A 1 used by the R nnet 
package is the logistic sigmoid, σ(t) =  1/ (1 +  exp(− t)), and 
the output activation for regression (real- valued outputs) is the 
identity, A2(t) =  t.

In this section we implement three other neural networks for 
image classification. Using the “zip.train” data set of N =  7291 
handwritten digits (Hastie and Tibshirani, 2009), each input is 
a greyscale image of 16 × 16 pixels which means that number 
of input units is u 0 =  256. As in Figure 37.1 (top) there are ten 
output classes, one for each digit. For the activation function 
AL in the output layer we use the “softmax” function which 
results in a score/ probability for each of the ten possible output 
classes, so the number of output units is uL =  10.

The three neural networks that we consider are:

linear L =  1 intermediate function with 2,570 parameters to 
learn (linear model, inputs fully connected to outputs, no 
hidden units/ layers).

dense L =  9 intermediate functions with 97,410 parameters 
to learn (nonlinear model, each hidden layer dense/ fully 
connected with 100 units).

sparse L =  3 intermediate functions with 99,310 parameters 
to learn (nonlinear model, one convolutional/ sparse layer 
followed by two dense/ fully connected layers).

We defined and trained each neural network using the keras R 
package (Allaire and Chollet, 2020). We used the fit function 
with argument validation_ split =  0.2, which creates a single 
split (80% subtrain, 20% validation). We selected the number 
of epochs hyper- parameter by minimizing the validation loss, 
and we used the selected number of epochs to retrain the 
neural network on the entire train set (no subtrain/ validation 
split).

We did this entire procedure K =  4 times, once for each  
fold/ split in K- fold cross- validation. Note that even though  
these data have a pre- defined split into “zip.train” and “zip.
test” files, we used K- fold cross- validation on the “zip.train”  
file, yielding K train/ test splits that we used to estimate mean  
and variance of prediction accuracy for these models (the  
“zip.test” file was ignored). In each split we used the test set  
to quantify the prediction accuracy of the learned models.  
It is clear that the test accuracy of all three neural networks  
is significantly larger than the baseline model which always  
predicts the most frequent class in the train set (Figure 37.4,  
left); they are clearly learning some nontrivial predictive  
relationship between inputs and outputs. Furthermore, it is  
clear from Figure 37.4 (right) that the dense neural network  
is slightly more accurate than the linear model (p =  0.032 in  
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paired one- sided t3- test), and the sparse/ convolutional neural  
network is significantly more accurate than the dense model  
(p =  0.009).

In summary, from this comparison it is clear that among 
these three neural networks, the sparse model should be 
preferred for most accurate predictions in this particular “zip” 
data set. However, we must be careful not to generalize these 
conclusions to other data sets —  even for some other image 
classification data sets such as MNIST (Figure 37.1), the most 
accurate algorithm may be different. For very difficult data 
sets, it may even be the case that these three neural networks 
are no more accurate than the baseline model which always 
predicts the most frequent class in the train set. In general, 
we always need to use computational cross- validation 
experiments to determine which machine learning algorithm 
is most accurate in any given data set. To learn a predictive 
model with maximum prediction accuracy, machine learning 
algorithms other than neural networks should be additionally 
considered (e.g., regularized linear models, decision trees, 
random forests, boosting, support vector machines).

CROSS- VALIDATION FOR EVALUATING 
PREDICTIONS OF EARTH SYSTEM MODEL 
PARAMETERS

As a final example application, we consider using cross- 
validation to evaluate a neural network that predicts carbon 
cycle model parameters (Tao et al., 2020). In this context there 

is a data set with N =  26,158 observations, each one a soil 
sample with D =  60 input features. There are 25 real- valued 
output variables to predict; each is the value of an earth system 
model parameter at the location of the soil sample. We want a 
neural network that will be able to predict the values of these 
earth system parameters at new locations. Tao et al. (2020) 
proposed using a neural network with L =  4 fully connected 
layers and dropout regularization for this task (see paper for 
details). In this section the “multi- task” model uses the same 
number of layers/ units as described in that paper; the term 
multi- task means that the neural network outputs a prediction 
for all 25 outputs/ tasks. For comparison, we additionally 
consider “single- task” models with the same number of 
hidden layers/ units, but only one output unit. We expect the 
multi- task model to sometimes be more accurate, because of 
the expected correlation between outputs (earth system model 
parameters). To see whether or not these neural networks 
learn any nontrivial predictive relationship between inputs and 
output, we consider a baseline model which always predicts 
the mean of the train set label/ output values (and does not use 
the inputs at all).

Here we show how K =  5- fold cross- validation can be used 
to evaluate how well these neural networks predict each of 
the outputs at new locations. We first assign a fold ID from 
1 to 5 to each observation/ row, either systematically using 
the longitude coordinate, or randomly (Figure 37.5, top). We 
can define a cross- validation procedure using both sets of 
fold IDs, in order to answer the question, “is it more difficult 

FIGURE 37.5 Cross- validation for estimating error rates of machine learning algorithms that predict earth system model parameters. Top: 
fold IDs were assigned to each observation using longitude (left) or randomly (right). Bottom: prediction error for four of the 25 outputs. 
Please see (Tao et al., 2020) for meanings of abbreviations (cryo, maxpsi, tau4s3, fs2s3).
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to predict at new longitudes, or new random locations?” We 
expect that predicting at new longitudes should be more 
difficult, because that involves more extrapolation (predicting 
outside the range of observed data values). In detail, for 
each fold ID from 1 to 5, we define the test set as the data 
points which have been assigned that fold ID using both 
methods (longitude and random). For these data with N =  26, 
158 observations total, each fold has approximately 5000 
observations, so each resulting test set has approximately 
1000 observations. As described in the last section on image 
classification, we used the R keras package to compute the 
neural network parameters and predictions (using a maximum 
of 100 epochs, and a single 80% subtrain 20% validation split 
to choose the optimal number of epochs for retraining on the 
entire train set). For each fold/ model/ output we computed 
mean squared error with respect to the test set, and we plot 
these values for four of the 25 outputs (Figure 37.5, bottom). 
It is clear that some outputs are more difficult to predict than 
others; for cryo and maxpsi outputs the neural networks show 
little or no improvement over baselines, whereas for tau4s3 
and fs2s3 outputs we observed substantial improvements 
over baselines. As expected, there is a difference in test error 
between fold assignment methods (random has lower error 
rates than Lon for several outputs), indicating that it is indeed 
easier to predict at new random locations, and harder to 
predict at new longitudes. Finally, the multi- task models are 
slightly more accurate than the single- task models, indicating 
that the neural network is learning to exploit the correlations 
between outputs. Overall this comparison has shown how 
cross- validation can be used to quantitatively evaluate and 
compare machine learning algorithms for predicting earth 
system model parameters.

In comparison to the neural network practice in Unit 10, 
the main difference is that here we discussed how held- out test 
sets can be used to estimate prediction accuracy/ error rates of 
learning algorithms. Chapter 38 discusses how a validation 
set can be used to avoid overfitting, as we have done in this 
chapter as well. We have additionally discussed how K =  5- 
fold cross- validation can be used to generate several train/ test 
splits, which can be used to estimate prediction error rates 
for each fold/ data/ algorithm combination (e.g., Figure 37.5, 
bottom). This technique is useful since it allows us to see 
which algorithms are significantly more/ less accurate than 
others on given data sets.

SUGGESTED READINGS

Machine learning is a large field of research with many 
algorithms, and there are several useful textbooks that provide 
overviews from various perspectives:

C. M. Bishop. 2006. Pattern Recognition and Machine Learning. 
Springer, New York.

I. J. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep Learning. 
MIT Press, Cambridge, MA, USA.

T. Hastie, R. Tibshirani, and J. Friedman. 2009. The Elements of 
Statistical Learning. Springer Series in Statistics, Second 
edition. Springer, Springer Science+ Business Media, 
New York NY.

K. P. Murphy. 2013. Machine Learning: A Probabilistic Perspective. 
2013. MIT Press, Cambridge, MA.

L. Wasserman. 2010. All of Statistics: A Concise Course in Statistical 
Inference. Springer, New York.

Reproducibility statement. Code for figures in this chapter 
can be freely downloaded from https:// git hub.com/ tdh ock/ 
2020- yiqi- sum mer- sch ool

QUIZ

1 When using a design matrix to represent machine 
learning inputs, what does each row and column 
represent? What other data/ options does a supervised 
learning algorithm such as gradient descent need as 
input, and what does it yield as output?

2 When splitting data into train/ test sets, what is the 
purpose of each set? When splitting a train set into 
subtrain/ validation sets, what is the purpose of each 
set? What is the advantage of using K- fold cross- 
validation, relative to a single split?

3 In order to determine if any non- trivial predictive 
relationship between inputs and output has been 
learned, a comparison with a baseline that ignores 
the inputs must be used. How do you compute the 
baseline predictions, for regression and classification 
problems?

4 How can you tell if machine learning model predictions 
are underfitting or overfitting?

5 When using the nnet function in R to learn a neural 
network with a single hidden layer, do large or small 
values of the number of iterations hyper- parameter 
result in overfitting? Why?

6 When using the nnet function in R learn a neural 
network with a single hidden layer, and you do not 
yet know how many iterations to use, what data set 
should you use as input to nnet? How should you 
learn the number of iterations to avoid underfitting 
and overfitting? After having computed the number of 
iterations to use, what data set should you then use as 
input to nnet to learn your final model? Hint: possible 
choices for set to use are all, train, test, subtrain, 
validation.
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This chapter describes a PROcess-guided deep learning 
and DAta-driven modeling (PRODA) approach to optimize 
parameterization of Earth system models (ESMs) using 
spatio-temporal datasets. PRODA involves both data 
assimilation to estimate parameter values and deep learning 
to predict spatial and temporal distributions of parameter 
values so as to optimize ESM prediction. An application to 
the Community Land Model version 5 (CLM5) using soil 
organic carbon (SOC) distributions in the conterminous 
United States illustrates the potential and utility of the 
PRODA approach.

THE NEED FOR OPTIMIZING 
PARAMETERIZATION OF EARTH 
SYSTEM MODELS

Earth system models (ESMs) are used to simulate historical 
and potential future states of climate and ecosystems. However, 
simulations often deviate substantially from observations. 
For example, soil carbon dynamics simulated by ESMs vary 
widely among models and often fit poorly with observations. 
Modeled global soil carbon storage differs by up to six- fold 
among 11 models of the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) ensemble (Todd- Brown et al. 2013). 
None of the models reproduces the spatial distribution of SOC 
stocks presented in the Harmonized World Soil Database 
(HWSD) (Luo et al. 2015).

Uncertainty in simulating SOC dynamics with ESMs could 
stem from poor parameterization, incorrect model structure, or 
biased external forcing (Luo and Schuur 2020; see Chapter 33). 
While model structure represents ecological processes (e.g., 
decomposition of soil organic matter), parameters in ESMs 
characterize properties of the processes, such as baseline 
decomposition rate at reference temperature and moisture 
content, or sensitivity to these drivers. The choice of    
parameter values can strongly influence model projections of 
SOC dynamics. Parameter values in the current generation   
of ESMs, however, are mostly determined on an ad hoc basis. 
They may be derived from the results of field experiments, 
other models, or informed from scientific or grey literature 
(Luo et al. 2001), but rarely take into account the range of 
possible values encompassed by such sources.

Data assimilation techniques to estimate parameter values 
from observations were discussed and illustrated in earlier 
chapters (Units 6, 7, 8). Parameter values constrained by data 
assimilation can improve SOC simulation in ESMs compared 
to the default parameter values. For instance, the global 
representation of SOC distribution in the Community Land 
Model version 3.5 (CLM3.5) was improved from explaining 
27% to 41% of variation in the HWSD database by constraining 
model parameters with a Bayesian Markov Chain Monte Carlo 
(MCMC) data assimilation method (Hararuk et al. 2014). The 
large unexplained variation in observed SOC with ESMs is 
partly due to a textbook concept that parameter values of a 
simulation model must be constant in contrast to variables 
that can vary over the time course of simulation (Forrester 
1961). In reality, ecosystem properties, which parameters 
characterize in models, constantly evolve via acclimation and 
adaptation. In addition, a model, no matter how complex it is, 
can never represent all the processes of a system at resolved 
scales (Luo and Schuur 2020). Interactions of processes at 
unresolved scales with those at resolved scales should be 
reflected in model parameters. Therefore, Luo and Schuur 
(2020) argue that parameter values in ESMs may have to vary 
over space and time (i.e., heterogeneous parameter values) 
to represent changing properties of evolving ecosystems and 
unresolved processes.

The advent of big ecological data provides a golden 
opportunity to reconcile model representations with 
observations and quantify the spatial and temporal features of 
key parameters in soil carbon cycle simulation. Meanwhile, 
new techniques such as deep learning have been proposed to 
improve performance of ESMs (Reichstein et al. 2019). By 
constructing computational models with multiple processing 
layers and allowing the models to learn representations of 
data from multiple levels of abstraction (LeCun et al. 2015), 
deep learning techniques have promising applications in 
Earth system science, such as pattern classification, anomaly 
detection, regression, and space-  or time- dependent state 
prediction (Reichstein et al. 2019). Exploration is warranted on 
how to properly employ deep learning techniques in reducing 
uncertainties of simulated carbon dynamics in ESMs.

Here, we propose the PROcess- guided deep learning 
and DAta- driven modeling (PRODA) approach to estimate 
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spatially and temporally heterogeneous parameter values for 
ESMs from extensive spatio- temporal datasets (‘big data’) 
at regional or global scales. The PRODA approach estimates 
parameter values at individual sites via data assimilation and 
builds a deep learning model to upscale the site- level estimates 
of parameters to predict spatially heterogeneous parameters at 
regional and global scales so that modeled and observed SOC 
are maximally matched.

In this chapter, we introduce the PRODA approach by 
using an extensive dataset of vertical soil profiles across the 
conterminous United States to optimize SOC representation 
by CLM5. We discuss the PRODA- optimized model 
performance in representing SOC stock and its vertical and 
spatial distributions, and compare it with results of the default 
model simulation and after the data assimilation optimization. 
In particular, we highlight that the PRODA approach helps the 
process model to achieve the most precise SOC distribution 
ever represented in ESMs. An accurate SOC representation in 
ESMs is critical to fully understand soil carbon feedbacks to 
future climate change.

THE WORKFLOW OF PRODA

Three fundamental components together formulate the 
PRODA approach (Figure 38.1a), namely the process- based 
model, the site- level data assimilation, and the deep learning 
model. Process- based models with their predefined structure 

and default parameter values simulate SOC distributions 
using meteorological forcing data. Data assimilation is used 
to estimate parameter values of a process- based model with 
soil carbon data at sites where the observations were made. 
The deep learning model is used to predict optimized site- 
level parameter values with their associated environmental 
variables. Eventually, the process- based model will apply the 
optimized parameter values upscaled by the deep learning 
model to simulate SOC distributions at regional or global 
scales.
Process- based model: We use the matrix representation of the  
Community Land Model version 5 (CLM5) to facilitate data  
assimilation and model simulation in the PRODA approach  
(Figure 38.1b). CLM5 is the latest version of CLM models  
(Lawrence et al. 2019). Its soil carbon module is similar to that  
in CLM4.5 (Koven et al. 2013), except that it has an option to  
change the number of soil layers from a default of 20. In this  
example, we use ten soil layers with a vertical transformation  
among carbon pools from the surface to a maximum depth of  
3.8 m as in CLM4.5. The soil carbon component of CLM5  
includes carbon transfer among four litter pools (coarse  
woody debris, metabolic litter, cellulose litter, and lignin litter)  
and three soil organic carbon pools (fast, slow, and passive  
SOC) in each of ten layers, totaling 70 pools. The thickness  
of soil layers increases exponentially from the surface layer  
(1.75 cm) to deep layers (151 cm), with a total depth of 3.8  
m over the ten layers. Vertical carbon transfer between soil  

FIGURE 38.1 Workflow of the PRODA approach. (a) PRODA optimally matches CLM5 as the process- based model (b) with vertical SOC 
profiles on the conterminous United States (c). We first assimilate data at each site into CLM5 to estimate its parameters through the Markov 
Chain Monte Carlo method (MCMC). We further assemble the estimated site- level parameter values (i.e., the mean value of the posterior 
distribution after MCMC) as targets to be predicted by a multilayer neural network with environmental covariates in a deep learning model. 
The predicted parameters by the deep learning model are applied to CLM5 to optimize model representation of SOC distribution.

 

 

 

 

 



246 Land Carbon Cycle Modeling 2e 

layers only occurs among the adjacent layers and represents  
both diffusive and advective carbon flux transportation caused  
by bioturbation and cryoturbation. The baseline advective rate  
of carbon flux is set to zero in CLM5 as a default, and this is  
assumed in our example as well.

We have discussed in Units 1– 5 that carbon balance 
equations in land carbon models can be unified to a matrix 
form. For CLM5, we use the matrix equation to describe 
carbon transfer among the 70 pools with state variables X(t) as:

 

d t

dt
Bu t A t KX t

V t X t

X ( )
= ( ) + ( ) ( )

− ( ) ( )
ξ

 38.1

where B is a vector (70×1) of partitioning coefficients from C 
input to each of the pools (unitless), and u(t) is C input rate (gC 
m−3 day−1). A represents the transfer coefficients among litter 
and soil pools (unitless), including the transfer coefficients 
from four litter pools to three soil carbon pools as well as the 
transfer coefficients of SOC among soil carbon pools in the 
same layer. ξ (t) represents effects of environmental variables 
on decomposition of litter and soil (unitless). It includes scalars 
of temperature (ξ T), soil water (ξ W), oxygen (ξ O), nitrogen   
(ξ N), and depth (ξ D). K indicates the decomposition rate of 
SOC in different litter and soil carbon pools (day−1). V(t) 
represents SOC mixing among vertical soil layers through 
cryoturbation or bioturbation (day−1). The t in parentheses 
indicates that the corresponding element is time- dependent. 

At a steady- state of the carbon cycle 
dX t

dt

( )
=







0 , the SOC 

content of each carbon pool at each layer can be calculated as:

 X t A t K V t Bu t( ) = ( ) − ( )  − ( )( )−
ξ

1
 38.2

Soil carbon data and site- level data assimilation: We use 
vertical SOC profiles in the conterminous U.S. from the World 
Soil Information Service (WoSIS) dataset (www.isric.org) for 
the site- level data assimilation (Figure 38.1c). The depth of 
recorded SOC layers ranges from the surface to more than   
3 m. A total of 26,509 soil profiles with a total of 240,148 
layers at different depths in the conterminous U.S. are 
available in this study.

In addition, we use the mean values of global net primary 
productivity (NPP) from 2000 to 2014 as carbon input (DAAC 
2018). After running the CLM4.5 model to a steady state by 
the pre- industrial climate forcing (version code of forcing 
database: I1850CRUCLM45BGC), ten- year records of soil 
temperature and soil water potential of the conterminous 
U.S. were obtained from the model outputs.

The site- level data assimilation constrains parameter 
values of CLM5 with one data set of a vertical SOC profile 
at each site with the Markov Chain Monte Carlo (MCMC) 
method (as described in Chapter 22). Three parallel chains 
are generated each containing a test run of 20,000 iterations 

and a formal run of 30,000 iterations. To effectively capture 
the vertical distribution pattern of soil content along the 
depths, we put weights to observations at different depths in 
calculating the discrepancy between modeled and observed 
SOC content (i.e., cost function). These weights decrease 
exponentially with the depth (i.e., weighti =  e −|depth

i
|, where 

i refers to the layer’s soil depth in observations) except for 
the top layer and the bottom layer, where a weight of ten is 
assigned to accelerate calibrating the upper and lower bounds 
of the SOC distribution curve. To monitor the efficiency of 
the MCMC process, an acceptance rate threshold is set. For 
Markov chains whose acceptance rate is higher than 50% 
or lower than 15%, the corresponding data assimilation 
results are rejected. After the MCMC process, the first 
half of the accepted parameter values in the formal run are 
discarded as burn- in. The Gelman- Rubin statistics of each 
parameter are then calculated for each soil profile to ensure 
the convergence of these three independent MCMC results. 
We randomly select one chain after eliminating the burn- in 
period to generate the posterior distributions of parameters. 
The mean value of the parameter’s posterior distribution is 
calculated and chosen to serve as the training target in the 
deep learning model.

We evaluate the effectiveness of the site- level data 
assimilation by the coefficient of efficiency:

 E
obs mod

obs obs

i i

i

= −
−( )
−( )

∑
∑

1

2

2
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where obsi and modi are the observed and modeled SOC content 
at ith soil layer of one soil profile; obs  is the mean value of 
observed SOC content of the soil profile. In this study, we 
take profiles having negative E values as invalid and discard 
the results from the corresponding deep learning model. 
Moreover, at those sites where an observation is available at 
only one soil depth, we do not apply the data assimilation to 
the data point. After those data sets are excluded, 25,444 out 
of 26,905 soil profiles, or 94.6% of the entire dataset, are used 
in the PRODA approach.

Deep learning model: We design a deep learning model 
with multiple processing layers to predict optimized 
parameter values with environmental covariates. A total of 60 
environmental variables that describe the climatic, edaphic, 
and vegetation features at the observational sites is used. We 
used 80% of the total dataset to train and validate the neural 
network. After model training, we use the remaining 20% of 
the dataset to quantify the prediction accuracy of the deep 
learning model. The predicted parameter values are first 
compared with those retrieved in site- level data assimilation 
and then applied to the matrix CLM5 model to simulate soil 
organic carbon stock at each observational site. Meanwhile, 
we used the trained deep learning model to generate parameter 
maps across the United States based on gridded environmental 
covariates. The parameter maps are then applied to the matrix 
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CLM5 to simulate the SOC distributions across the United 
States at a resolution of 0.5 degrees.

SOC distributions optimized by data assimilation: To 
analyze the significance of the spatially- explicit parameter 
estimation of PRODA compared with a traditional 
approach, we perform a batch data assimilation using all the 
observational dataset as one batch in the MCMC method to 
estimate parameter values of CLM5 with data assimilation. 
The estimated parameter values from this method are spatially 
homogeneous, in contrast with the site- level data assimilation, 
which is a middle step of the PRODA approach to estimate 
spatially heterogeneous parameter values. SOC distributions 
simulated by CLM5, trained by the batch data assimilation 
versus the results by PRODA, can then be compared.

The batch data assimilation runs three parallel MCMC 
chains, each containing 50,000 iterations as test run and 
200,000 iterations as formal run. Weights at different depth 
in calculating the cost function and acceptance control are 
the same as those in the site- level data assimilation. After the 
MCMC method, we first discard the first half of the accepted 
parameter values of the formal run as burn- in. The Gelman- 
Rubin statistics for each parameter are then calculated to ensure 
the convergence of these three independent MCMC results. 

We randomly select one Markov chain after eliminating the 
burn- in period to generate the posterior distribution for each 
parameter. We then randomly sample parameter values from 
the posterior distributions 1,000 times and apply the sampled 
parameter values to the CLM5 matrix model. We estimate 
SOC content distributions at different sites by calculating the 
average of the results. The same sampled parameter values 
are further assigned in CLM5 to estimate SOC content 
distributions at each grid cell on the map of the conterminous 
U.S. at a resolution of 0.5 degrees.

Reference SOC data products: We use two sets of SOC  
data, WISE30sec and SoilGrids250m (Hengl et al. 2017), as  
references to compare with spatial and vertical distributions  
of SOC obtained from our study over the United States.  
WISE30sec is an updated version of the dataset HWSD,  
generated by using traditional mapping methods at a  
resolution of 30 × 30 arc sec. SoilGrids250m is a global  
gridded soil information dataset generated by using machine  
learning techniques at 250 m resolution. We took data of SOC  
content over three depth intervals from these two datasets,  
0– 30 cm, 0– 100 cm and 0– 200 cm. All the original data with  
high resolution were resampled to a resolution of 0.5 × 0.5  
degrees.

FIGURE 38.2 The agreement between observed and modeled SOC content with different approaches. SOC estimates modeled by CLM5 
were extrapolated to the depths of observations to evaluate model performance. The upper panel indicates the deviation of the modeled SOC 
storage from the observation of the whole profile for each site. The lower panel shows the results of linear regression between observed 
and modeled vertical SOC content at different depths in different methods. In calculating the deviation of modeled SOC storage from 
observations, for better presentation, the positive (overestimation) and negative (underestimation) discrepancy between the observed and 
modeled SOC content were scaled based on the 95% quantile of the positive discrepancy and 5% quantile of the negative discrepancy, 
respectively. Meanwhile, only the results of the testing set were presented in PRODA approach.
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MODEL REPRESENTATION OF SOC CONTENT 
ACROSS OBSERVATION SITES

The original CLM5 model with default parameterization 
presents significant geographical biases on the estimation of 
SOC content in comparison with observations. Modeled SOC 
in the grid cell in which the site of observation was located 
is compared with observations (Figure 38.2a). SOC storage 
is systematically overestimated by the original model near 
the east and west coasts of the U.S. but underestimated in the 
Midwest. The consistency between observed and modeled 
SOC content is low, with R2 =  0.32 and RMSE =  15.9 kgC 
m−3 (Figure 38.2b and Table 38.1).

The batch data assimilation method generates the 
distribution of SOC from continentally homogeneous 
posterior distributions of parameters estimated from 
all the observation data at once in data assimilation. 
With the batch data assimilation, the mismatch between 
observed and modeled SOC content in the CLM5 model 
is moderately reduced in the northern and eastern parts of 
the U.S. (Figure 38.2c). However, geographical biases in 
model representation of SOC are not eliminated. CLM5 
optimized by the batch data assimilation still underestimates 
SOC storage in the Intermontane Plateaus and southern 
Great Plains. Meanwhile, overestimation still exists in the 
Great Lakes areas and the Northeast. Overall, CLM5 after 
optimization by the batch data assimilation explains 43% 
variation in the observed SOC content with RMSE =  11.4 kg 
C m−3 (Figure 38.2d and Table 38.1).

Through the deep learning model, the PRODA approach 
predicts the optimized parameter values at each site across the 
conterminous U.S. by its environmental variables. PRODA- 
optimized CLM5 achieves a better representation of SOC 
distribution compared to the batch data assimilation. Little 
systematic geographical biases in estimating SOC storage are 
observed across the study domain (Figure 38.2e). The modeled 
and observed SOC content are highly correlated with R2 =  0.62 
and RMSE =  9.0 kg C m−3 (Figure 38.2f and Table 38.1).

SPATIAL DISTRIBUTION OF SOC ACROSS THE 
CONTERMINOUS U.S.

We take point observations (Figure 38.3a– c) and estimations 
from WISE30sec (Figure 38.3d– f) and SoilGrids250m 

(Figure 38.3g– i) as references to compare the SOC estimations 
by CLM5 with default parameterization, optimized 
parameterization after the batch data assimilation, and the 
PRODA approach. At the continental scale, the reference data 
suggest large volumes of SOC in the northeast and northwest 
of the conterminous U.S. The magnitude of SOC content in 
these regions can be as high as 30 kg C m−2 for the 0– 200 cm 
depth interval. Meanwhile, a decreasing gradient of SOC from 
the northeast to the southwest is observed. High SOC exists 
in areas across the Great Plains, extending from Texas to the 
Great Lakes.

The default CLM5 model (Figure 38.3j– l) captures the 
continental SOC content gradient from the northeast to the 
southwest but fails to reproduce sub- regional features of SOC 
distribution in the Great Plains. Meanwhile, SOC content in 
the east and northwest estimated by the original CLM5 is 
significantly higher than that indicated by the reference data. 
After optimization by the batch data assimilation, CLM5 
reproduces the continental SOC gradient from the northeast 
to the southwest with reasonable values (Figure 38.3m– 
o). However, high SOC content in the Great Plains is still 
not well represented. The PRODA approach performs best 
overall, helping achieve the most realistic spatial SOC 
distribution (Figure 38.3p– r) in comparison with observations 
(Figure 38.3a– c) and data products (Figure 38.3d– i). In 
addition to capturing the continental SOC distribution 
pattern, the PRODA- optimized CLM5 presents more accurate 
subregional SOC distribution patterns in the Great Plains.

VERTICAL DISTRIBUTION OF SOC ACROSS THE 
CONTERMINOUS U.S.

We take results from WISE30sec and SoilGrids250m as 
references in estimated SOC stocks at different depth intervals 
(Figure 38.4). For the first 2- meter soil, WISE30sec suggests 
243 PgC and SoilGrids250m estimates 269 PgC stored as 
SOC. Along the soil depth, WISE30sec suggests 98 PgC at 
0– 30 cm depth, 81 PgC at 30– 100 cm, and 64 PgC at 100– 
200 cm. SoilGrids250m estimates 102, 86, and 81 PgC at the 
same three depth intervals, respectively.

The original CLM5 model with default parameterization 
substantially overestimates SOC stocks in comparison 
with the references at all three soil depths (Figure 38.4). 
Compared with the references, the overestimation becomes 

TABLE 38.1
Performance of CLM5 in representing SOC distribution under 
different approaches

Method

Model Performance

R2 RMSE (kg C/ m3)

Default CLM5 0.32 15.86

Batch Data Assimilation 0.43 11.41

PRODA Approach 0.62 8.95

Note:  R2 is the coefficient of determination from linear regression between the observed 
and modeled SOC content. RMSE is the root mean square error.
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FIGURE 38.3 Modeled spatial SOC distributions in three depth intervals across the conterminous U.S. by different approaches and datasets.
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stronger with increasing soil depth. Both the batch data 
assimilation and the PRODA approach help CLM5 estimate 
more reasonable SOC storage compared with the original 
CLM5 model. We estimate 165 PgC using the batch data 
assimilation and 246 PgC for the first 2- m soils using the 
PRODA approach.

For different vegetation types, the PRODA approach  
presents more accurate estimations of the vertical SOC  
distribution than the batch data assimilation (Tao et al. 2020).  

CLM5 underestimates the SOC content in the evergreen  
forest, shrubland, savanna, grassland, and wetland regions  
after the optimization by the batch data assimilation. The  
PRODA- optimized CLM5, in contrast, presents the least  
biased estimations in comparison with observations at all  
depth intervals in the aforementioned regions.

TOWARD MORE REALISTIC REPRESENTATIONS 
OF SOC DISTRIBUTION

This chapter systematically explored the significance of 
spatially heterogeneous parameterization for the adequate 
prediction of SOC distribution in ESM, with CLM5 as a 
representative case. The results support the PROcess- guided 
deep learning and DAta- driven modeling (PRODA) as a 
promising approach to optimize model representation of 
SOC, utilizing the explanatory power implicit in immense 
observational data. PRODA considers biogeochemical 
processes in the soil carbon cycle while preserving strong big 
data analysis ability to integrate soil data into complex models. 
We compared the PRODA- optimized SOC representation 
by CLM5 with the default model simulation and the results 
optimized by batch data assimilation and conclude that 
PRODA helped CLM5 achieve the most accurate SOC 
representation. Indeed, no better fit to reference data on SOC 
has ever been simulated by process- based models.

In the past decades, different approaches have  
been developed for representation of SOC distribution  
(Figure 38.5). Soil scientists collect soil data and develop  
mechanistic understanding of soil carbon cycling from  
field observations or experiments. The simulation modeling  
approach conceptualizes those mechanisms into mathematical  
equations and strives to simulate SOC according to process  
understanding. Notwithstanding the detailed description of  
carbon cycle processes, the models struggle to realistically  

FIGURE 38.4 SOC storage across the conterminous U.S. at 
different depths estimated by different approaches and data sources.

FIGURE 38.5 Schema of different approaches to represent SOC distributions. The PRODA approach benefits from both process 
understanding (as featured by simulation modeling) with the real- world information brought out by big data analysis from machine learning. 
The latter is primarily to obtain accurate representations of the spatial distribution of SOC and its underlying mechanisms.
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simulate SOC distribution. Such unrealistic model simulations  
mainly arise from inadequate parameterization. Parameters  
that represent critical processes of the soil carbon cycle in  
the real world are not sufficiently constrained with widely  
distributed observational data. Therefore, it is difficult  
for process- based models to accurately represent SOC  
distributions. In our example, CLM5 with default parameter  
values substantially overestimates the total SOC storage of the  
conterminous U.S. and presents strong geographical biases in  
the representation of SOC distribution.

Batch data assimilation provides a way of incorporating 
observational data information into the process model to 
improve SOC simulation. Such data- driven optimization 
harmonizes site- level data information as a whole to adjust 
the parameter values for better representation of the SOC. We 
have shown in the example study that the optimized CLM5 
with data assimilation successfully corrects the considerable 
overestimation of total carbon storage across our study 
domain.

In terms of representing the spatial variability of SOC, 
however, batch data assimilation fails to capture the spatial 
variability of observed SOC. The spatially invariant parameter 
values optimized from the batch data assimilation approach 
are insufficient in describing the heterogeneity of SOC 
distribution at large scales. In our example study, geographical 
bias still exists after the optimization by the batch data 
assimilation.

The PRODA approach solves the issue of geographical 
bias by using a deep learning model to first fully estimate 
parameters at the site level using the data assimilation and 
then upscales the site- level estimates of parameters to the 
whole U.S. continent. The spatially varying parameter values 
retrieved from the PRODA approach contribute to a more 

accurate model representation of SOC across the range of 
ecosystem types (vegetation class, soil type, geology, etc.) 
across the continent. PRODA- optimized CLM5 simulates 
the most realistic SOC distribution ever simulated by process 
models. The high agreement between observed and modeled 
SOC content (R2 =  0.623 across the conterminous U.S.) 
achieved by the PRODA approach is comparable with that 
for harmonization mapping in SoilGrids250m by machine 
learning (R2 =  0.635 across the globe) (Hengl et al. 2017), 
and greater than the agreement between separate gridded 
empirical data products (Wu et al. 2019).

More importantly, the PRODA approach paves the way  
for mechanistic understanding of the soil carbon cycle  
from big data analysis with machine learning. A recent  
study integrated 57,267 globally distributed vertical SOC  
profiles and a microbial- process explicit model (note that  
it is a different model from CLM5) using the PRODA  
approach (Tao et al. 2023). The study found microbial  
carbon use efficiency (CUE, the ratio of organic carbon  
accrued as microbial growth to the quantity of carbon  
utilized in microbial metabolism) to be a dominant  
process in determining global SOC storage and its spatial  
distribution (Figure 38.6). Results after fusing the global-  
scale database and the process- based model by PRODA  
suggested microbial CUE is at least four times as important  
as any other evaluated components (e.g., plant carbon input,  
decomposition, and vertical transport) in determining SOC  
storage and its spatial variation across the globe. Moreover,  
the emerging positive CUE- SOC relationship reflected the  
critical role of organic carbon partitioning by microbes at the  
global scale: a high CUE means more allocation to biomass  
and by- products, which leads to SOC accumulation, whereas  
a low CUE value indicates the partitioning of more carbon  

FIGURE 38.6 Microbial CUE as the primary regulator of global SOC storage. Spatially explicit model components obtained through 
the PRODA approach with the microbial model were substituted by their spatially invariant counterparts to assess their influence on SOC 
stocks (i.e., the sum of absolute deviations from PRODA estimates over the globe) and distributions (i.e., deviation of explained variation in 
observations defined by Equation 38.3) (a). We further proportionally changed the retrieved parameter values of different components and 
found that global SOC stock is most sensitive to changes of CUE (b). Error bars and shaded areas show the two- sigma confidence interval in 
the 200- time bootstrapping. Note that axes in panel a were scaled by a signed square root function.
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towards cellular respiration, which drives SOC loss. The  
findings by Tao et al. (2023) helped prioritize future research  
on microbial processes in addition to SOC decomposition  
and organic carbon input for improving prediction of SOC  
dynamics. Understanding microbial processes underlying  
CUE and their environmental dependence is critical for  
predicting SOC feedback to a changing climate.

To summarize, a better understanding of SOC formation 
and its persistence at the global scale lies in leveraging the 
potential of both big data mining and process- based modeling. 
Machine learning alone is good at accurately describing 
SOC distribution, yet previous applications used in digital 
soil mapping (e.g., Chapter 36) focus only on the complex 
statistical relationship between environmental variables and 
SOC. Conversely, while process- based models summarize 
the understanding of complex mechanisms in the soil carbon 
cycle from empirical studies, a model calibrated at one site is 
usually not applicable at larger scales due to the high spatial 
heterogeneity of soil processes. In this chapter, we showed that 
the PRODA approach provides a common tool for reconciling 
extensive observations in fields and theoretical reasoning in 
modeling. It not only precisely maps SOC distributions but 
also provides the spatial patterns of different mechanisms (as 
represented by different parameters) of the soil carbon cycle 
at continental and global scales. By disentangling how these 
mechanisms vary with environments and quantifying their 

importance to SOC storage, new findings and relationships 
emerging from the PRODA approach will further stimulate 
both new empirical studies in laboratory and field, and 
improvement of process- based models.

SUGGESTED READINGS

Tao, F., Z. Zhou, Y. Huang, Q. Li, X. Lu, S. Ma, X. Huang, Y. Liang, 
G. Hugelius, L. Jiang, R. Doughty, Z. Ren, and Y. Luo. 2020. 
Deep Learning Optimizes Data- Driven Representation of Soil 
Organic Carbon in Earth System Model over the Conterminous 
United States. Frontiers in Big Data, 3, 17.

Tao, Feng, Yuanyuan Huang, Bruce A Hungate, Stefano Manzoni, 
Serita D Frey, Michael WI Schmidt, and Markus Reichstein, 
et al. 2023. “Microbial Carbon Use Efficiency Promotes 
Global Soil Carbon Storage.” Nature, 1– 5.

QUIZ

1 What is the main difference, in terms of parameterization 
scheme, between the batch data assimilation and the 
PRODA approach as described in this chapter?

2 Describe the input and output of the deep learning 
model in the PRODA approach?

3 What is the advantage of the PRODA approach in 
comparison to conventional machine learning methods 
in representing SOC distributions?
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39  Hybrid Modeling in Earth System 
Science

Yu Zhou
Cornell University, Ithaca, USA

Hybrid modeling harnesses data-driven methods to enhance 
earth system models for higher accuracy and deeper 
understanding, which brings about a new era of innovation 
and insights in earth system sciences. This chapter uses the 
estimation of latent heat as an example to illustrate different 
strategies of hybrid modeling.

INTRODUCTION

Hybrid modeling in earth system science combines two distinct 
yet complementary approaches: data- driven methods, such as 
machine learning (ML) and artificial intelligence (AI), and 
process- based earth system models (ESMs). This combination 
has the potential not only to improve the accuracy of the 
model, but also to deepen our understanding of ecological 
processes, allowing for more accurate predictions of system 
dynamics.

ML/ AI models have demonstrated impressive abilities in 
capturing complex, non- linear relationships between target 
variables and their driving factors, enhancing data analysis 
in different fields, such as image classification and natural 
language translation. As noted in Chapters 33– 35, such models 
are increasingly applied in the earth system sciences as well. 
The primary limitations of utilizing such methodologies in 
science is their nature as “black boxes” that present difficulties 
in interpretation, their lack of physical significance and 
scientific justification, and the risk of generating imprecise 
results when applied beyond their training domain, i.e., out- 
of- sample scenarios, and used for prediction.

Conversely, an ESM functions as a “glass box” constructed 
upon physical- based principles and empirical knowledge. It 
describes systemic changes using empirical equations and 
offers process- based understanding about changes in climate, 
ecosystems, and their interactions across space and time. 
ESMs have the added benefit of predicting future changes, 
both over long (decades to centuries) and short (hours to 
weeks) time frames. Nonetheless, ESMs face the challenge of 
accurately representing the intricate dynamics of the terrestrial 
ecosystem, resulting from inherent limitations associated with 
simplified equations and empirical parameters. The equations 
and parameters adopted by most such models are derived from 
limited experiments and observations in specific geographic 
contexts.

Nowadays, there is an opportunity for parameters and 
equations of ESMs to be refined, since data availability has been 

increasing dramatically, a trend commonly referred to as “big 
data”. Big data encompasses measurement data collected from 
laboratory experiments, field measurements, unmanned aerial 
vehicle (UAV) and flight campaigns, and satellite observations. 
One important explanation for the greatly increased availability 
of such data compared to the earlier era in which most current 
ESM frameworks were originally developed is the open 
data policies adopted by many academic journals in recent 
years. We can take advantage of current data availability to 
improve ESMs in terms of parameterization and process- based 
optimization by the cautious incorporation of data- driven 
methods, aiming to resolve accuracy and interpretability issues 
and ultimately enhance model performance. Reichstein et al. 
(2019) listed several aspects that characterize hybrid modeling, 
including (1) improving parametrization; (2) replacing a 
‘physical’ sub- model with an ML/ AI model; (3) analysis of 
model- observation mismatch; (4) constraining sub- models; 
and (5) surrogate modeling or emulation. For example, 
parameters in ESMs may vary spatially and temporally (Luo 
and Schuur, 2020), but both traditional hand tuning and 
data assimilation are computationally infeasible to get the 
optimized parameters. Tao et al. (2020) proposed a hybrid 
modeling approach, i.e., PRODA (Tao and Luo, 2022), which 
integrates data assimilation at the plot scale and machine 
learning to extrapolate optimized parameters to the global 
scale. This hybrid method has improved our understanding of 
changes in soil organic carbon (see Chapter 38 and Tao et al., 
2023). This chapter focuses on a hybrid modeling technique 
which involves replacing a physical sub- model with an ML/ AI 
model and constraining sub- models, using an example of latent 
heat flux simulation to illustrate the concept. A sub- model in 
the ESM can be replaced directly by an ML/ AI model or by a 
knowledge- constrained ML/ AI model.

AN EMPIRICAL SUB- MODEL IN AN ESM

Here we take a common sub- model of surface latent heat flux 
(LE) as an example. In most ESMs, LE is calculated using the 
Penman– Monteith (PM) equation:
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where Rn is the net radiation, G is the soil heat flux, (es –  ea) 
represents the vapor pressure deficit of the air, ρa is the mean 
air density at constant pressure, cp is the specific heat of the 
air, Δ represents the slope of the saturation vapor pressure 
temperature relationship, γ is the psychrometric constant, and 
rs and ra are the bulk surface and aerodynamic resistances. 
The surface resistance describes the resistance of vapor flow 
through stomatal openings, total leaf area and soil surface. 
Aerodynamic resistance describes the resistance from the 
vegetation upward and involves friction from air flowing over 
vegetative surfaces.

rs and ra are two critical parameters in estimating LE, but in 
most ESMs, they are calculated based on empirical knowledge. 
The transfer of heat and water vapor from the evaporating 
surface into the air above the canopy is determined by the 
aerodynamic resistance:
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where zm is the height of wind velocity measurements, zh is the 
height of air temperature and humidity measurements, d is the 
zero- plane displacement height, zom is the roughness length 
relative to momentum transfer, zoh is the roughness length 
relative to heat and vapor transfer, uz is the wind velocity at 
height zm, and k is the von Karman constant (0.41). The surface 
resistance for full- cover canopies is often expressed by:
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where rl is the bulk stomatal resistance of a well- illuminated 
leaf, and LAIeff is the effective leaf area index, usually taken as 
0.5 LAI for a full cover canopy; or more generally:
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where β is the Bowen ratio (the ratio between the sensible and 
latent heat fluxes).

Since values of parameters used in calculating rs and ra are 
determined by the vegetation coverage, canopy type, and can 
also differ across space, it is not possible to get these values 
for global simulation.

The PM equation has several limitations. It relies 
upon several assumptions, including assuming a uniform 
vegetation canopy, constant aerodynamic resistance, and a 
uniformly mixed boundary layer. The empirical parameters, 
rs and ra, have limited ability to adapt to changing vegetation 
composition or long- term climate conditions. As a result, 
the PM equation does not explicitly account for the state 
of vegetation and soil moisture, both of which can impact 
transpiration rates.

REPLACING THE ESM SUB- MODEL WITH AN   
ML/ AI SURROGATE

ElGhawi et al. (2023) proposed using a ML/ AI surrogate 
model to estimate LE directly from environmental conditions, 
rather than relying solely on a physics- based PM model 
that includes multiple uncertain parameters. In the simplest 
case, the surrogate model could be entirely data- driven 
(see Figure 39.1a). The ML model is a feed- forward 
neural network (FNN) that directly predicts LE based on 
environmental drivers including water availability index 
(WAI), vapor pressure deficit (VPD), air temperature (TA), 
Rn, incoming shortwave radiation (SWin), mean incoming 
shortwave potential (SWpot), G, and wind speed (WS). The 
loss function (L) is defined as the sum of difference between 
observed and modeled LE at each time step across the 
simulation period. The neural network (NN) usually consists 
of multiple layers of nodes. The activation value in each node 
per layer is the weighted sum of the activations from prior 
layers in addition to bias. The bias is modified by non- linear 
activation functions. The nodes are connected between each 
layer resulting in an end- to- end fully connected NN. The use 
of hidden layers creates deeper neural networks, but presents 
a drawback: the vanishing gradient problem. This issue can be 
bypassed by implementing the rectified linear units (ReLU) 
activation function. The non- linear functions utilized in this 
work include ReLU and Softplus, which enable the network 
to perform non- linear calculations. Hyperparameters are 
predetermined before training and affect the performance of a 
model. Tuning hyperparameters involves algorithms and tools 
to search for optimal combinations of values for epochs, batch 
size, learning rate, number of hidden layers, hidden size, and 
weight decay (Table 39.1). Various methods can be employed 
to perform hyperparameter tuning on neural networks, such 
as grid search, random search, and Bayesian optimization. 
Hyperparameter optimization can enhance both the accuracy 
and efficiency of a neural network. This is an essential step in 
achieving optimal performance.

For other cases in Figure 39.1, the hybrid models consist 
of two FNNs that separately surrogate estimations of latent 
variables rs and ra instead of using previous empirical 
equations (Equations 39.2– 39.4). The physically based 
PM equation is retained for mechanism understanding and 
integrated into the network architecture where the estimated 
latent variables are plugged into the equation along with other 
variables and constants need to calculate LE. Therefore, the 
hybrid models learn and predict the variations of the rs and ra 
that exist between the initial input variables and the resulting 
target variable LE in the following step using the PM equation. 
The difference among theory- driven models (Figure 39.1b– d) 
is the loss function. In the unconstrained theory- driven model, 
similar to a purely data- driven approach, L is the difference 
between modeled and observed LE (Figure 39.1b). However, 
this theory- driven model suffers from an equifinality problem 
due to its design, i.e., different combinations of rs and ra 
can result in the same LE prediction. Equifinality, or non- 
uniqueness, arises when dissimilar model parametrization or 
structures generate equivalent representations of the system.
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CONSTRAINING A SUB- MODEL

To identify and reduce equifinality of the theory- driven model, 
one way is to restrict the parameter space through model 
regularization. This can be achieved through two approaches, 
including either additional theory or data via additional loss 
terms. In the two constrained cases (Figure 39.1c–d), the 
additional loss term adds constraining ability in modeling rs 
and ra. The multitask case adds sensible heat (H) as the other 
target variable calculated as:

 H
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where Ts and TA are surface and air temperature respectively. 
The Ts is estimated using the Stefan– Boltzmann equation:
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TABLE 39.1
Variables and hyperparameters used for the different models

Models

Variables Hyperparameters

Latent 
variable

Target 
variable

Batch 
size

Hidden 
size

Hidden 
layers

Learning 
rate

Weight 
decay

Epochs

Pure ML LE model NA LE 1000 32 3 0.0005 0 2000
Under- constrained hybrid model ra LE 1000 32 2 0.005 0.0001 2000

rs 4
a priori constrained hybrid model ra LE 1000 32 2 0.005 0.0001 2000

rs 4
Multi- task learning hybrid model ra H 1000 32 2 0.0005 0 2000

rs LE 4

Source: Adopted from ElGhawi et al. (2023), supplement.

FIGURE 39.1 Schematic overview and classification of all models with respect to being more theory-  and/ or data- driven, as well as the strengths of the 
constraints on the loss function. Multiple surrogate models to simulate latent heat flux, including (a) purely data- driven only and (b– d) physics- informed 
learning by adjusting the constraints on the loss function. Cyan, dark blue, and green indicate the input variables and neural network to simulate latent 
heat flux, surface (rs), and aerodynamic (ra) resistances, respectively. The variables and hyperparameters of each model are included in Table 39.1.

Adopted from ElGhawi et al. (2023).
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where LWout is the outgoing longwave radiation, σ is the 
Stefan– Boltzmann constant (5.789 × 10- 8 Wm- 2K- 4), and ϵ 
is emissivity (dimensionless). The L includes the difference 
between modeled and observed H because ra is used in H 
calculation, therefore, adding H in the loss function can 
constrain the estimation of ra.

Similarly, in case (d) of Figure 39.1, the alternative model 
“Big Leaf” is introduced to estimate ra as a prior, and the 
difference between two modeled ra values is the additional 
term in loss function. The prior is not considered to be fully 
accurate, and the relative importance of ra in the new loss is 
regulated by ϕ, which is varied between the high influence and 
low influence of the constraint.

EVALUATING PERFORMANCE OF DIFFERENT 
SURROGATE MODELS

ElGhawi et al. (2023) evaluated the hybrid models’  
consistency with respect to the interannual variability of  
LE for different sites (Figure 39.2). The R2 values range  
between 0.47 and 0.49 for the interannual LE anomalies  
for forests, and thus exhibit a comparable performance  
to predictions at half- hourly frequency (R2 between 0.46  
and 0.49). Overall, the evaluation of the models across  
various temporal scales indicates their ability to learn not  
only the dominant structure of the diurnal and seasonal  
cycle, but also the more nuanced year- to- year anomalies.  
This consistency demonstrates that the models capture  

FIGURE 39.2 Evaluation of LE predictions at different temporal scales for forests. (a– d) show predictions against observations at a half- 
hourly scale for different models; (e– h) show predictions against observations at mean diurnal scale; (i– l) show LE anomalies at an interannual 
scale for the different models. The colored lines represent the linear regression lines that fit linear models for each site. The contour lines 
represent 2D kernel density estimate.

Adopted from ElGhawi et al. (2023).
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the physically accurate dependence of the meteorological  
predictor variables that control LE.

CHALLENGES AND FINAL REMARKS

The success of ML/ AI has inspired scientists to combine data- 
driven and process- based modeling approaches for hybrid 
modeling to discover intrinsic features from observational 
data (Reichstein et al., 2019). Hybrid modeling helps gain 
a better understanding of earth system science problems 
(Shen et al., 2023), such as the memory effect on ecosystem 
dynamics (Kraft et al., 2019). ESMs provide information 
about the physical mechanisms of real- world processes, which 
offer a check against data- driven approaches to avoid false 
discoveries and inconsistencies with established biophysical 
processes and interactions. To further advance hybrid 
modeling, a current frontier uses knowledge- guided ML/ AI 
models (such as physics- informed natural network, PINN) that 
incorporate physics principles and human knowledge into the 
model construction and training process to optimize learning 
efficiency. Consequently, fostering collaboration between 
ML/ AI experts and domain scientists becomes essential in the 
realm of AI for earth system science.

SUGGESTED READINGS

ElGhawi, R., Kraft, B., Reimers, C., Reichstein, M., Körner, M., 
Gentine, P. and Winkler, A.J., 2023. Hybrid modeling of 
evapotranspiration: Inferring stomatal and aerodynamic 
resistances using combined physics- based and machine 
learning. Environmental Research Letters, 18(3), pp. 034039.

Reichstein, M., Camps- Valls, G., Stevens, B., Jung, M., Denzler, 
J., Carvalhais, N. and Prabhat, F., 2019. Deep learning and 
process understanding for data- driven Earth system science. 
Nature, 566(7743), pp. 195– 204.

QUIZ

1 List the advantages and limitations of earth system 
models and the machine learning/artificial intelligence 
models, respectively.

2 How can current ESMs be improved by machine 
learning/artificial intelligence?

3 Can you give an example in your field of work of 
an empirical model that can be improved by ML/ AI 
algorithms? What would be the design and constraints 
of the hybrid model?
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40  Practice 10
Deep Learning to Optimize Parameterization   
of CLM5

Feng Tao
Cornell University, Ithaca, USA

This practice offers guidance on how to use the PROcess-
guided deep learning and DAta-driven modeling (PRODA) 
approach to integrate observations with the biogeochemical 
module of the Community Land Model version 5 (CLM5) 
to best represent regional soil organic carbon distributions. 
Over three exercises, we focus on how to build, train, and 
tune a deep learning model in the PRODA approach to 
predict parameters estimated from site-level data assimilation. 
Readers can use the CarboTrain platform to explore different 
deep learning options and to understand and modify the 
optimization methods.

RATIONALE OF ESTIMATING PARAMETER 
VALUES BY A DEEP LEARNING MODEL

In Chapter 38, we discussed the performance of different 
approaches that assimilate observations into CLM5 to 
best represent soil organic carbon (SOC) stocks across the 
conterminous United States (Tao et al. 2020). We concluded 
that the PRODA approach outperforms data assimilation 
alone by fully interpreting the spatial heterogeneity of 
parameters. In the PRODA approach, parameter values are 
first retrieved where the observation resides through the 
Markov Chain Monte Carlo (MCMC) method and then 
upscaled to the region by a deep learning model. Eventually, 
we apply the parameter values predicted by the trained 
deep learning model to CLM5 to simulate SOC stock and 
distributions (see Chapter 38 for details of the PRODA 
workflow).

We use various environmental variables to predict the 
parameter values by a neural network in the deep learning 
model. The rationale behind this procedure is that parameters 
in the process- based model can be expected to vary with 
environmental conditions over space and time in order to 
account for changing properties of evolving ecosystems 
and unresolved processes (Luo and Schuur 2020). The 
relationships between parameter values and environmental 
variables, however, are often not easily identified so as to 
be explicitly represented in model structure. Therefore, we 
introduce a deep learning model to explore such complex 
relationships. Specifically, we set the local environmental 
variables as the input and the estimated parameter values 
in the site- level data assimilation as the prediction target 
in a deep learning model. Then, the deep learning model is 

trained to best predict the parameter values based on input 
environmental variables (Figure 40.1).

WHAT IS A NEURAL NETWORK?

Chapter 37 introduced the basic concepts of machine 
learning/ deep learning. In this practice, we focus on how to 
build and optimize a deep learning model that is structured 
by a multilayer neural network. Four elements together 
construct the skeleton of a typical multilayer neural network, 
which are: inputs, outputs, neurons, and neuron weights 
(Figure 40.2). In this practice, the inputs are environmental 
variables that are relevant to the parameters in CLM5, such 
as climatic, edaphic, and vegetation variables. The outputs 
are the parameter values we predict using the trained neural 
network, which will be further applied in CLM5 to simulate 
SOC distributions. The neurons are the basic unit of a neural 
network. They distribute at each hidden layer of the neural 
network (Figure 40.2), receive information from the inputs or 
the previous layer, and generate all possible predictions for the 
next layer or as the final outputs. Finally, the neuron weights 
are the weights assigned to the predictions of each neuron. We 
get the final neural network predictions by combining all the 
predictions by different neurons with their weights.

In addition to the four basic elements of a neural network, 
we use the activation function to generate the neuron weights. 
We generally use nonlinear activation functions to enable 
the neural network to explore the nonlinearities between the 
inputs and the final outputs.

FIGURE 40.1 Schematic diagram of using a deep learning model to 
predict parameter values. The deep learning model is used to interpret 
relationships between environmental variables and parameter values 
retrieved from the site- level data assimilation.
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We train the neural network to best predict our training  
target (i.e., the parameter values retrieved from the site- level  
data assimilation) via a certain optimization algorithm. A loss  
function is used to quantify the difference between the predicted  
parameter values from the “real” parameter values retrieved  
from the site- level data assimilation. The lower the loss function  
value is, the closer the predictions are from the “real” parameter  
values, and the better the model performance is.

The loss function value alone, however, cannot initiate 
the optimization. We need an algorithm to determine how to 
adjust the neural network according to the results of the loss 
function so that the final predictions can best fit the training 
target. In the neural network, we have the optimizers to 
adjust the weights of neurons according to the results of the 
loss function. Ideally, after sufficient training, the optimizer 
will eventually lead the neural network to reach a point where 
the loss function reserves the lowest value it can pursue. We 
regard the neural network at this point as reaching its global 
optimum. Predictions by the neural network will consequently 
be the closest to the training targets.

HYPERPARAMETERS IN THE NEURAL NETWORK

Hyperparameters are the parameters whose values control the 
training process in the neural network. Hyperparameters that 
control the shape of a neural network include the number of 
hidden layers and the neuron numbers of each hidden layer. 
Hidden layer numbers determine the depth of a neural network. 
Neuron numbers of each hidden layer, at the same time, 
control the width of the neural network. Choices of hidden 
layer numbers and neuron numbers are largely empirical. You 
can try neural networks with different shapes and choose the 
one that can best predict your training target.

The epoch number determines how many times the deep 
learning algorithm will go through the whole dataset for 
training. During each epoch, the neural network can propose 

a set of neuron weights and adjust them by the optimizer 
according to the loss function results. The number of epochs 
ranges from hundreds to thousands in different deep learning 
applications. You may try different numbers to find the 
best epoch number that allows the loss function value to be 
minimized, so that the neural network can accurately predict 
the training target.

In addition, the batch size defines how many training data 
you want to use as one batch when working through the whole 
training dataset in each epoch. For example, for a training set 
with 10,000 samples, if we set the batch size as 50, then it will 

take 200 iterations iterationnumber
samplesize

batch size
=





 to go 

through the whole training set in each epoch of optimization. 
Possible choices of batch size vary from 1 to the size of the 
whole training set. Setting batch size as 16, 32, or 64 would 
be a plausible start.

We also need to decide several hyperparameters that 
control the optimization process in the neural network 
before initiating the training. You may need to specify the 
loss function, activation function, and the optimizer. We use 
the Keras package in Python to build and train the neural 
network in this practice. Keras provides multiple choices for 
these hyperparameters. The loss function can be the mean 
squared error (expressed as “mean_ squared_ error” in Keras) 
or other functions that can quantify the difference between 
predicted and target values. The activation function can be the 
Rectified Linear Unit (expressed as “ReLU” in Keras), the 
hyperbolic tangent function (expressed as “tanh” in Keras), 
the sigmoid function (expressed as “sigmoid” in Keras), 
other activation functions that are pre- defined by Keras, or 
a function that you define yourself. Keras provides several 
options for the optimizer. Choosing “Adam”, “Adadelta”, or 
“RMSprop” would generally be a good start. You can refer to 
the website https:// keras.io/ api/  for more possibilities of the 
hyperparameters you can use in Keras.

FIGURE 40.2 Basic elements in a typical multilayer neural network.
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Exercise 1
Building and training a neural network that uses environmental 
variables to predict parameter values in CLM5. Follow the 
instructions in CarboTrain:

a Select Unit 10
b Select Exercise 1
c Select Output Folder
d Open Source Code
e Read section “Setting NN Structure” to get familiar 

with hyperparameters that we used in this neural 
network.

f Run Exercise
g Check results in your Output Folder. Four figures will 

be generated (Figure 40.3). The figure in loss_ nn.png 
describes the changes of the loss function value in 
the training and validation set with increased epochs. 
para_ nn.png describes how well the trained neural 
network predicts different parameters. nn_ obs_ vs_ 
mod.jpeg indicates how well the CLM5 model can 
simulate SOC after applying the predicted parameter 
values from the trained neural network. map_ para_ 
us.jpeg describes the predicted parameter maps from 
the trained neural network.

Questions:
1 How many layers are set in the default neural 

network? How many neurons are distributed at 
each layer?

2 What is the activation function used in the default 
neural network?

3 How many epochs will the default neural network run 
in training? What is the batch size?

4 What is the loss function used in the default neural 
network? Can you justify the reason why we need a 
loss function?

5 In Figure 40.3a, which two hyperparameters in the 
neural network control the calculation of loss value 
and changes to the loss value?

6 In Figure 40.3b, which parameters are predicted well 
by the trained neural network, and which not? Why do 
you think the neural network predicts some parameters 
well, and others not that well?

According to what you have learnt in Chapter 38, what will 
the results presented in Figure 40.3d be used for?

TUNING THE NEURAL NETWORK FOR BETTER 
PERFORMANCE

Setting up basic neural network structures and hyperparameters 
does not guarantee satisfactory model performance in 
prediction. We need to tune the neural network for better 
performance. We will briefly introduce some common 
procedures in tuning the neural network (Figure 40.4).

Suppose you find the predicted parameter values cannot fit  
well with the targets after training the neural network. In this  
case, you are recommended to first try a new model structure  
with more hidden layers (deeper neural network) and/ or  
more neurons for each hidden layer (wider neural network).  
Expanding the depth and/ or width of the neural network  
will generally increase its ability to interpret more complex  

FIGURE 40.3 Output figures in Exercise 1.
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relationships between the input environmental variables and  
the target parameter values. Meanwhile, you can also consider  
applying different activation functions or optimizers.

We may sometimes encounter the overfitting problem. 
Overfitting happens during training of the neural network 
when the loss value of the validation set stops decreasing 
with the loss value of the training set but begins to increase 
(Figure 40.5). In such a case, even though the final prediction 
of the training set may fit well with the target, the trained neural 
network cannot make precise predictions in the validation set 
(see a detailed discussion about the overfitting in Chapter 37). 
To avoid overfitting, we can adopt early stopping to stop 
training the neural network at reasonable epochs. After early 
stopping, the loss values of both the validation and training 
sets stay low and thus ensure the robustness of neural network 
predictions in both datasets.

Regularization is another option to prevent overfitting in 
training the neural network. Regularization applies penalties 
to the weights of neurons to avoid the predictions of the 
trained neural network relying too much on the performance 
of one or some small group of neurons. Regularization is a 
more advanced option in tuning the neural network. We may 
not touch on it too much in this book. If you are interested, 
you can refer to the website at https:// mac hine lear ning mast 
ery.com/ how- to- red uce- over fitt ing- in- deep- learn ing- with- wei 
ght- reg ular izat ion/ .

Dropout offers a further option if we do not want the 
performance of a small group of neurons to matter too much in 
the final prediction of the trained neural network. The dropout 
option allows us to randomly permute some certain percent 
of neurons in each epoch of optimization. The neural network 
will then be trained to not depend too much on any specific 
neurons in prediction, thereby improving its robustness. If you 
check the default setting in Exercise 1, you will find we used 
the dropout option in the neural network training.

Exercise 2
Tuning the neural network used in Exercise 1. Follow the 
instructions in CarboTrain:

a Select Unit 10
b Select Exercise 2
c Select Output Folder
d Change one or more hyperparameter values, e.g., 

select and change the Optimizer to “adam”.
e Run Exercise
f Check results in your Output Folder. Four figures as 

described in Exercise 1 will be generated.

Questions:
How do the output figures change compared to those generated 
in Exercise 1? Can you explain the reasons for these changes?

PRODA VERSUS DATA ASSIMILATION    
ALONE FOR OPTIMIZED SOC DISTRIBUTIONS 
IN CLM5

In Exercises 1 and 2, we have introduced how to build, train, 
and tune a neural network to best predict parameter values 
by environmental variables. The deep learning model is 
the core part of the PRODA approach. We optimize SOC 
representation in a process model by fully interpreting the 
environmental dependencies of its parameters through a deep 
learning model.

Data assimilation alone can also utilize multisite 
observations to retrieve parameter values so that the 
biogeochemical model can better represent SOC distributions. 
Instead of optimizing parameter values at each observational 
site as in the PRODA approach, the retrieved parameter 
values with the data assimilation alone are spatially invariant. 
Exercise 3 will compare results of CLM5 in terms of the SOC 
representation when using PRODA to set parameter values, 
compared with data assimilation alone.

Exercise 3
Comparing SOC representations in CLM5 between PRODA 
and data assimilation alone. Follow the instructions in 
CarboTrain:

a Select Unit 10
b Select Exercise 3
c Select Neural Network Task Folder

FIGURE 40.5 Overfitting in neural network training and early 
stopping option.

FIGURE 40.4 Tips on tuning the neural network for better model 
prediction performance.

Reproduced from Lee (2016).
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d Select DA alone Task Folder
e Select Output Folder
f Run Exercise
g Check results in your Output Folder. Three figures 

will be generated (Figure 40.6). Figure mod_ vs_ obs_ 
nn.jpeg shows the agreement between the PRODA- 
optimized and observed SOC. Figure mod_ vs_ obs_ 
ob.jpeg describes the agreement between retrieved and 
observed SOC using data assimilation alone. Figure 
soc_ map.jpeg shows the SOC distributions simulated 
by CLM5 at different depths across the conterminous 
United States after optimization by the PRODA 
approach, and following parameter estimation by data 
assimilation alone.

Question:
Which approach performs better in representing SOC 
distribution? Why?

To summarize, this practice has explored the technical 
details of the PRODA approach in optimizing parameter 
values and retrieving SOC distributions. The deep learning 
model is the core part of the PRODA approach. The first 
two exercises illustrate the basic components in a neutral 
network (Exercise 1) and how to tune a configured neural 
network for better performance (Exercise 2). In Exercise 3, 
we applied CLM5 to simulate the SOC distribution across 
the conterminous United States after parameter estimation 
by data assimilation alone and further parameter 
optimization by the PRODA approach. We compared the 
agreement between simulations and observations after the 
two approaches. The results show the advantage of using 
the PRODA approach to optimize SOC distribution in 
biogeochemical models.

FIGURE 40.6 Output figures in Exercise 3. (a) Agreement between model simulations and observations; (b) SOC distributions at different 
depth across the conterminous United States simulated by CLM5 with parameter estimation by data assimilation alone vs. PRODA.
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Appendix 1
Matrix Algebra in Land Carbon Cycle 
Modeling

Ye Chen
Northern Arizona University, Flagstaff, USA

The purpose of this appendix is to deliver the necessary matrix 
algebra foundation you will need to understand the matrix 
model of the land carbon cycle, introduced in Chapter 1. If 
you have taken the undergraduate level of matrix algebra or 
above, you may skip this appendix. Please note that some 
important topics in the following are presented in a simple 
way and they could be easily extended into longer sections. 
Professor David Austin’s free online textbook (see Suggested 
Reading) is a good source for extra learning material and 
self- study.

MOTIVATIONS

Many processes can be described using a dynamical system. 
In one type of dynamical system, the state 



x
n+1

 of a system at 
time n +  1 can be derived from the state 



x
n
 at time n using a 

transition matrix A:

 
 

x Ax
n n+ =

1
 

See the following problem for more details.

Problem 1
Consider a simplified carbon transfer model in which 3% of 
the carbon in the fast soil pool moves to the slow soil pool 
each year while 95% of the fast soil pool stays the same, and 
1% of the slow soil pool moves to the fast soil pool while 97% 
of the slow soil pool stays the same with no other influences 
on the two pools. What are the pool sizes after 10 years? 
50 years? 100 years?

This question will be fully answered at the end of this 
appendix. To see how linear algebra can help us, we will do 
some basic analysis in this section.

Note that there is 2% lost in each pool when transfer occurs 
every year. To simplify the problem, we are not going to track 
what happens with that carbon once it exits the two pools.

Let x
f

sn
n

n

=








 be the status of the two pools at nth year. 

That is, fn is the size of the fast soil pool at nth year, and sn is 

the size of the slow soil pool at nth year. Then

 f f s
n n n+ = +

1
0 95 0 01. .  

 s f s
n n n+ = +

1
0 03 0 97. .  

First of all, this linear system can be written down in the 
matrix form using the knowledge from sections 2 and 4 below,

 
f

s

f

s
n

n

n

n

+

+









 =





















1

1

0 95 0 01

0 03 0 97

. .

. .
 

or equivalently, 
 

x Ax
n n+ =

1
, where A is the 2 × 2 coefficient 

matrix.

Given the pool size of the first year, 


x
f

s1
1

1

=








, one 

interesting question is to find out the pool size a long time 

after, i.e., 


x
n
 for a large n. In this problem, n =  10, 50, 100. 

Note that

 
    

x Ax A Ax A x A x
n n n n

n
+ − −= = ( ) = = … =

1 1
2

1 1
, 

and finding A xn 

1
 for large n can be computationally expensive 

when the dimension of A is large. However, if we can find 
the eigenvalues of A as introduced in section 5, then we 
may be able to turn the problem of finding A xn 

1
 with large 

n into finding λn x


1
, where λ is a number, which is called the 

eigenvalue of A.

MATRIX OPERATIONS

baSic operationS

Definition 1
A matrix is a rectangular array of numbers. We say that a 
matrix A is an m × n matrix when it has m rows and n columns, 
and the dimension of A is m × n.

For example, this is a 2 × 3 matrix:

 A =
−











2 3 5

4 1 9
 (A1.1)
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Definition 2
A matrix is square if it has the same number of rows and 
columns.

We can use subscript notation to refer to particular entries 
in a matrix: the notation Aij refers to the entry of matrix A in 
row i and column j.

Problem 2
Let A be the matrix in equation A1.1. What is A13?

Answer: The number in row 1 and column 3 is 5.

Definition 3
The transpose of a matrix A, denoted AT, is the matrix A with 
the rows and columns switched. That is, (AT)ij =  Aji.

For example, for the matrix in Equation A1.1

 

AT =
−

















2 4

3 1

5 9

 

We can add two matrices if they have the same dimensions. 
We do this by adding corresponding entries. For example,

 

2 3

4 1

5 0

6 3

2 5 3 0

4 6 1 3
7 3

2 2

−








 +

−








 =

+ +
− − +











=
−











 

Problem 3
For two matrices A and B, is A +  B always the same as B +  A?

Answer: Yes.

Matrix Multiplication

To multiply a scalar number k by a matrix, simply multiply k 
with every element of the matrix. For example,

 
2

0 1 5

2 1 1

0 2 10

4 2 2−








 =

−








 . 

To multiply two matrices, the number of columns of the first 
matrix must be the same as the number of rows of the second 
matrix. Let’s say that we have two matrices, X, which is m × 
k, and Y, which is k × n. Then their product, denoted XY, will 
be an m × n matrix. Here is how to determine the elements of 
the matrix product XY: to get (XY) ij (the entry in the ith row 
and jth column), take the ith row of X and the jth column of 
Y, multiply their corresponding elements, and add the results.

Suppose we have the matrices

 

X Y=
−
−









 =

−

− −

















1 2 3

0 1 6

0

5

1

2

4

3

1

2

0

0

6

1

 

X has dimensions 2 × 3, and Y has dimensions 3 × 4. Since the 
number of columns of X equals the number of rows of Y, we 
can multiply them, and the result will be a 2 × 4 matrix.

Now, to determine the entry in the first row and first 
column of the product XY, we look at the first row of X 
and the first column of Y, here shown highlighted in blue 
and red:

X Y=
−
−









 =

−

− −


1 2 3

0 1 6

0

5

1

2

4

3

1

2

0

0

6

1












.

We now take these two lists of three numbers, multiply them 
element- by- element, and add the results:

 1 0 2 5 3 1 7⋅ + − ⋅ + ⋅ = −  

So far, we know that the matrix product XY looks like this:

 
XY =

−









7 ?

? ?

? ?

? ?
 

Now let’s compute (XY)12 (highlighted in red above). Since 
we are trying to compute the entry of XY in the first row and 
second column, we take the first row of X, and the second 
column of Y:

 

X Y=
−
−









 =

−

− −










1 2 3

0 1 6

0

5

1

2

4

3

1

2

0

0

6

1




 

Multiplying them pairwise and then adding yields

 1 2 2 4 3 3 19⋅ − + − ⋅ + ⋅ − = −  

Now XY looks like

 
XY =

− −









7 19

? ?

? ?

? ?
 

Problem 4
Finish computing the matrix product XY.

Answer: XY =
− −

−
− −
− −











7 19

1 22

3 15

2 12

Problem 5
Use the matrices X, Y defined in the previous example, and also

 
A B=

−








 =











2 4

1 1

1 3

2 2
,  

Compute each of the following if it is defined, or say undefined 
otherwise.

 1 2 3 4. . . .YX XA AB BA  
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Answer: 1. YX is undefined. 2. XA is undefined as the dimension 
of X is 2 × 3, and the dimension of A is 2 × 3: the inner dimension 

does not match. 3. AB =
−











10 14

1 1
. 4. BA =

−









1 7

2 10
.

Problem 6
Based on the results of Problem 5, is AB always the same as 
BA? Explain why.

Answer: No. What you found in Problem 5 is that matrix 
multiplication is not commutative. This is one way in which 
matrices are different from real numbers. With real numbers, 
you are able to switch around the order of operands being 
multiplied. But with matrices, you have to be very careful: you 
cannot do this with matrices!

It turns out, however, that matrix multiplication is 
associative: for any matrices X, Y, and Z, as long as they 
have dimensions that match up properly, it is always true that 
(XY)Z =  X(YZ). That is, when doing more than one matrix 
multiplication, it doesn’t matter which multiplication we do 
first, as long as we keep them in the right order. This means 
that we can write things like ABCDE instead of ((AB)C)
(DE) or A(B(C(DE))) or ((AB)(CD))E since they are all 
the same.

Quiz 1
a If the dimension of A is 10 × 20, the dimension of 

B has only one column, and AB is well defined. How 
many columns does the matrix product AB have? 
(Answer: The matrix AB has one column).

b If the dimension of the matrix A is 10 × 25, the 
dimension of the matrix C is 10 × 20, and AB =  C. 
What is the dimension of B? (Answer: The dimension 
of B is 25 × 20.)

MATRIX EQUATIONS

identity Matrix, inVerSe Matrix

Problem 7
Can you find a 2 × 2 matrix I which, when multiplied by any 
other 2 × 2 matrix X, yields X? That is, IX =  XI =  X for any 2 
× 2 matrix X. I is called the 2 × 2 identity matrix (sometimes 
also written I2).

Answer: I
2

1 0

0 1
=











Problem 8
What is the 3 × 3 identity matrix, I3? In general, what does the 
n × n identity matrix In look like?

Answer: I
3

1 0 0

0 1 0

0 0 1

=















. I n is an n × n matrix with the main 

diagonal elements being 1, and all other elements being 0.

Problem 9
There is no such thing as a 2 × 3 identity matrix. Why not?

Answer: To match the dimension such that IX =  XI =  X I has 
to be a square matrix.

Problem 10
Multiply the following two matrices:

 
A B=









 =

−
−











2 3

3 5

5 3

3 2
,  

What do you get? Why is this interesting?

Answer: AB =  I2.

Definition 4
The inverse of a square matrix A, written A−1, is a matrix which 
multiplied by A results in the identity matrix: AA−1 =  A−1 A =  I.

Problem 11
As it turns out, not all square matrices have an inverse. But 
this should not be too surprising. Why not? (Hint: think about 
the inverse of 0).

SolVing Matrix eQuationS

Matrices which have an inverse are called invertible matrices, 
and matrices which do not have an inverse are called singular 
matrices. Why do we care whether a matrix is invertible? 
Well, remember what you did in algebra to solve an equation 
like 3x =  12: you multiply both sides by 1/ 3, which is the 
multiplicative inverse of 3. In the same way, inverting  
matrices allows us to solve matrix equations like AX =  Y 
(where A, X, and Y are matrices). If A is invertible, we can 
left multiply both sides of the equation by A−1 to get X =  A−1 
Y. Note that Y A−1 is not the solution of X by Problem 6.

Problem 12
If A, B are invertible, solve this matrix equation for X:

 AXB Y=  

Answer: X =  A−1 Y B−1

Example 1
Solve this matrix equation for X:

 Y BC ADKX= +  

If the matrix product ADK is invertible,

 Y BC ADKX= +  

 ⇒ = − +ADKX BC Y  
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⇒ = ( ) − +( )−
X ADK BC Y

1

 ⇒ = ( ) −( ) + ( )− −
X ADK BC ADK Y

1 1
 

Following the steps of this example, you can solve the next 
problem.

Problem 13
The matrix equation below is presented in Chapter 1, 
Equation 1.6:

 ′ ( ) = ( ) + ( ) ( )X t B t A t KX tµ ξ  

Can you solve it to obtain an expression for X(t) if the matrix 
Aξ(t)K is invertible, X′(t), B, A, ξ(t), K, and X(t) are matrices, 
and μ(t) is a scalar?

Answer: You may have noticed this equation is similar to 
the matrix equation in Example 1, except the notations are 
different. The computation would still follow the rule of 
matrix operations. And to solve this equation for X, just follow 
the steps in Example 1. The solution is

 X t A t K B t A t K X t( ) = ( )( ) − ( )( ) + ( )( ) ( )′
− −

ξ µ ξ
1 1

 

Quiz 2
Let A, C be invertible matrices. Solve AXC +  BD =  Y for X. 
(Answer: X =  A−1(Y − BD)C−1.)

LINEAR SYSTEM

Definition 5
A linear equation in the variables x1, x2,···, xn is an equation 
that can be written in the form:

 a x a x a x b
n n1 1 2 2

+ + + =  

where a1, a2,…, an and b are real numbers. Thus, for example,

 2 3 11 6
1 2 3 4

x x x x+ + − =  

is a linear equation in the four variables x1, x2, x3, x4. But the 
following equations are not linear:

 2 2 6
1 2 3 4

x x x x+ + =  

 2 3 6
1
2

2
x x+ =  

Definition 6
A system of linear equations (or linear system) is a set of 
linear equations.

The following is a simple linear system.

Example 2
Solve the linear system:

 

1
1

3
6

2 10
1 2

1 2

( ) − + =

( ) + =

x x

x x
 

This system can be easily solved by hand using forward and 
backward substitution. The solution is

 x x
1 2

2 12= − =, .  

Note that with the matrix multiplication, the system is 
equivalent to

 

x x
1 2

1

1

1

3
1

6

10

−







 +













 =









 

Therefore, by substituting the solution back to the linear 
system, you can verify that the following equation is true

 

−
−







 +













 =









2

1

1
12

1

3
1

6

10
 

Here is another approach using the matrix inverse. The linear 
system can be written down in the matrix form:

 

−



















 =











1 1
3

1 1

6

10
1

2

x

x
 

We denote this matrix form as

 Ax b=  

To find the solution of this linear system for x, we left multiply 
this equation by A −1 if it exists, then we can find the solution

 x A b= −1  

EIGENVALUES AND EIGENVECTORS

Definition 7
Let A be a square matrix.

A vector 


x is an eigenvector of A if 


x ≠ 0 and there is a 
scalar λ such that Ax x

 = λ .
A scalar λ is an eigenvalue of A if there is a vector 





x ≠ 0 
such that Ax x

 = λ .

Remark 1 By this definition, if λ is an eigenvalue of A and 


x is a corresponding eigenvector, then we must have the 
following:
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A x A Ax A x

A x A Ax x

n n n

n n n

  

  

= ( ) = ( ) =
= ( ) = … =

− −

− −

1 1

1 2

λ
λ λ λ

 

Next, we are going to apply Definition 7 to verify the 
eigenvalues and eigenvectors of a matrix.

Example 3

Confirm that both 


v
1

1

1
=

−







 and 



v
2

1 3

1
=











/
 are eigenvectors 

for the matrix A =










0 95 0 01

0 03 0 97

. .

. .
, and find the corresponding 

eigenvalues.

Solution: As

 
Av v
→

1

0 95 0 01

0 03 0 97

1

1

0 94

0 94
0 94=











−







 =

−







 =

. .

. .

.

.
.

11

-→-
 

by the definition of eigenvalue, 


v
1
 is an eigenvector for A with 

corresponding eigenvalue λ1 =  0.94.
Similarly, it is easy to verify that 



v
2
 is an eigenvector for A 

with corresponding eigenvalue λ2 =  0.98.
In this example, the eigenvectors are already given, so it 

is relatively easy to determine the eigenvalues. In general, to 
calculate the inverse matrix, the eigenvalues and eigenvectors 
by hand could be very hard or even impossible when the 
dimension of A is large. Luckily, modern programming 
environments like MATLAB and Python provide functions 
for this purpose.

Example 4
Let us continue finding the solution for Problem 1. Let 



x
1

6

10
=









 and compute the pool sizes after 50 years.

Solution: By Example 2, we have 
6

10
2

1

1
12

1 3

1









 = −

−







 +











/
,
   

which is equivalent to 
  

x v v
1 1 2

2 12= − + . So,

 A x A v v A v A vn n n n    

1 1 2 1 2
2 12 2 12= − +( ) = − +  

By Remark 1 and Example 3, A v vn n 

1 1 1
= λ , A v vn n 

2 2 2
= λ . We 

then have

 A x v vn n n  

1 1 2
2 0 94 12 0 98= − ⋅ + ⋅. .  

By Problem 1, to determine the pool sizes after 50 years, it is 
equivalent to find 



x
51

, where 
 

x A x
51

50
1

= . By the analysis we 
just did, we know that this can be computed easily:

 

→ → →

→ ≅

x A x v

v

51
50

1
50

1

50
2

2 0 94

12 0 98
1 55

4 28

= = − ⋅

+ ⋅










.

.
.

.

 

Therefore, after 50 years, the size of the fast pool is 1.55, and 
the size of the slow pool is 4.28.

Quiz 3

Continue with Problem 1. Let 


x
1

2

6
=









. Compute the pool 

sizes after 20 years. (Answer: As 
 

x v
1 2

6= , we then have 

A x vn n 

1 2
6 0 98= ⋅ . . So, 

→ → ≅x v
21

20
2

6 0 98
1 34

4 01
= ⋅









.

.

.
. After 20   

 
years, the size of the fast pool is 1.34, and the size of the slow 
pool is 4.01.

SUGGESTED READING

David Austin, Understanding Linear Algebra, 2023. Grand Valley 
State University, https://understandinglinearalgebra.org/home.  
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Appendix 2
Introduction to Programming in Python

Xin Huang
National Center for Atmospheric Research, Boulder, USA

This appendix is intended to equip readers with little or 
no programming experience with basic skills to write and 
read programs in the Python language. Python is a powerful 
programming language widely used in many applications. This 
appendix introduces basic programming knowledge in Python 
including variables, operators, function, class, module, etc. All 
code examples in this appendix come from Python files (test_ 
p2.py, GeneralModel.py, and model.py), which will be used 
in practice  chapters 8, 12, and 16. Python 3.7 is preferred for 
the practice chapters of this book. Readers are not expected to 
be an expert in programming but to acquire the basic ability to 
read/ write Python codes for the practice chapters.

WHAT IS PYTHON AND HOW DOES IT RUN?

Python is a programming language used for general- purpose 
software engineering. It is one of the most popular languages 
among scientists, engineers, and mathematicians for the 
following reasons. First, Python has simple syntax similar 
to the English language. It is easy to read, write, learn, and 
maintain Python code. Second, Python can work seamlessly 
on different platforms such as Windows, Linux, and Mac. 
Third, Python is an interpreted language, which means that 
it executes the code line- by- line. If any error occurs, it will 
stop further execution until programmers are able to locate 
the errors and fix them. Fourth, Python comes with many 
great standard libraries to provide users with a vast choice of 
functions needed for their tasks.

Similar to English, Python is a language composed of 
vocabulary and syntax. The vocabulary in English comprises 
different words. The vocabulary in Python comprises 
operators, variables/ operands, and keywords. As in common 
languages, the right syntax must be applied when linking 
different parts of the vocabulary into meaningful statements. 
In English, the sentence ‘learn python I’ is not syntactically 
valid. In Python, the expression “hello”+ 9 is not syntactically 
valid. Similar to learning English, readers will learn the 
most common vocabulary and syntax of Python from this 
appendix.

Before reading further, please refer to Appendix 3 to install 
Python on your computer.

There are two ways to run a Python program. One way 
is to use an interactive shell window. The shell will prompt 

>>> and wait for the user to type in a line of Python code. 
Given the code input, the shell will execute this code, display 
the results and wait for the next code input. For all but the 
simplest operations, we normally wish to gather consecutive 
lines of code in a Python source file (xxx.py). We may execute 
a Python source file with a command like python xxx.py. All 
code lines in this source file will be executed one after the 
other until the end of the program is reached. In the practice 
chapters, we will use this second way.

THE FIRST PYTHON PROGRAM

A Python program is a collection of code that manipulates 
data. Figure A2.1 is a code segment in the test_ p2.py program. 
Each code line except for the annotation lines is called an 
expression. These expressions will be executed by the Python 
interpreter. There are two ways to denote an annotation. 
One is a single- line annotation starting with # as shown in 
Figure A2.1. The other is multiple- line annotations using ’ or 
” symbols. The expression if _ _ name_ _ = = ’_ _ main_ _ ’: in 
line 6 of Figure A2.1 indicates the start of a Python program. 
If one line contains multiple code expressions, such as line 
12– 13, it is recommended to use a semicolon (;) to separate 
different expressions.

One of the most common expressions is to assign a value to 
a variable like lines 8– 26 in the sample code of Figure A2.1. 
Taking line 12 as an example, the variable f31 will store the 
value of 0.72. This value can be retrieved by this variable 
name after this code line. A variable must be assigned a value 
before any expressions that use it. Readers will learn more 
about variable types in the next section.

Another common expression is to print out on the 
screen. Figure A2.2 show a display of the last elements in 
the res variable (a two- dimensional array) on the screen. 
Programmers often use the print expression to check values 
stored in variables, which is a useful approach for debugging 
the Python program.

Python uses colons to indicate an indented code block,  
which often appears in while- loop, for- loop, if- else condition  
procedure, and function definitions. Readers will learn more  
about these procedure definitions in the following section.  
The code groupings in these procedures are indicated by  
white space or indentation (Figure A2.3). The right level of  
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indentation is important –  too much or too little space will  
induce an error.

VARIABLES AND OPERATORS

As we learned in the previous section, variables are 
one of the primary vocabulary elements in the Python 
language. Similar to words, variables are containers to 
store information such as numbers and string values. The 
information type decides the variable type. Generally, 
the variable types in Python are integers (e.g., 1, 2, 3, ..), 
rational numbers (e.g., 3.1415926), complex numbers (e.g., 
12 +  0.2i), strings (e.g., “helloworld”), Boolean values 
(i.e., TRUE or FALSE), and NaN. The final variable type 
is special, and it only has one value that is none. Other 
programming languages such as Java require you to declare 
a variable type before using it. Python, however, does not 
require variable declarations. Variables with the same name 
can be used in different places in a Python program to store 
different types of values.

Operators are another primary vocabulary element in  
Python. Table A2.1 shows a collection of binary operators  

FIGURE A2.3 A Python program uses organized spaces to indicate code grouping. This code example includes two for- loop code blocks 
(red and green arrows and texts) and an if- else code block (blue arrow and text).

FIGURE A2.2 Code example of print expression.

FIGURE A2.1 Code example of defining an annotation with # . This code segment is from the test_ p2.py program.

TABLE A2.1
A collection of binary operators in python

Operator Description

a+ b sum
a−b difference
a*b product
a/ b division
a// b The integral part of the quotient when a is divided 

by b
a%b The remainder when a is divided by b
a**b a to the power of b
a|b True when either a or b is True
a&b True when both a and b is True
not a True if a is False
a= = b True when a equals to b
a!= b True when a doesn’t equal to b
a+ = b a= a+ b
a/ = b a= a/ b
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performing calculations on two variables. They may work  
on numbers or Boolean values. The final two operators  
are special. The numerical calculation and assignment are  
performed at the same time. The expression a/ = b, for example,  
first calculates the value of a divided by b and then assigns this  
as a new value for the variable a.

Another operator collection is about control flow. Control 
flow is to decide which and how expressions are to be 
executed. We will use examples in English to introduce two 
common control flows in Python. The first one is conditional 
control flow. The example in English is: ‘If tomorrow is 
sunny, I will go hiking, otherwise I will stay at home’. In the 
conditional control flow, only one set of statements will be 
executed, either ‘go hiking’ or ‘stay at home’. The syntax of 
conditionals in Python is illustrated in Figure A2.4a. It starts 
with a <BooleanExpr> expression whose value is either 
TRUE or FALSE. If the value of this expression is TRUE, then 
<ExpressionT1>, …, <ExpressionTk> will be executed; If it 
is FALSE, then another set of expressions <ExpressionF1>, 
…, <ExpressionFk> will be executed. A code example of 
if- else control flow is shown in Figure A2.4b. If the variable 
type of self.input_ fluxes is an array, the variable self.tmp_ 
input_ fluxes will be assigned a specific element in this array 
variable. Otherwise, self.tmp_ input_ fluxes saves the whole 
values in self.input_ fluxes.

The second type of control flow is a loop, including a for- 
loop (Figure A2.5) or a while- loop (Figure A2.6). A loop 
repeats a set of statements over and over until a termination 

status is reached. An example in English is ‘repeat taking 
medicine until you feel better’. The syntax of for- loop control 
flow is shown in Figure A2.5a. It starts from retrieving the first 
value from a <listExpr> to a variable <var>, then executing 
<Expression1>, …, <ExpressionN>. This set of statements 
will be repeatedly executed when every value in <listExpr> 
is retrieved. At the end, the <var> will store the last element 
in <listExpr>. The code example of a for- loop (Figure 
A2.5b) uses a useful procedure, range(10), as the <listExpr>. 
Generally, range(n) returns integers from 0 up to n−1. The 
for- loop iterates this numerical list from 0 to 9, assigns each 
element in the list to a variable t and prints the value of t to 
the screen.

Generally, any for- loop control flow can be rewritten 
into a while- loop flow. The code example in Figure A2.6b 
generates the same results as that in Figure A2.5b. The 
special characteristic of a while- loop is that programmers 
do not need to know in advance how many times the set of 
expressions needs to be repeated. The syntax of a while- loop 
control flow is shown in Figure A2.6a. It starts by evaluating 
<BooleanExpr> whose value is either TRUE or FALSE. If 
the value of this expression is TRUE, the set of expressions 
will be executed and the <BooleanExpr> will be evaluated 
again. If the expression of <BooleanExpr> gets FALSE, 
the execution of this loop will be terminated. Generally, 
programmers initialize a variable before the while loop, such 
as variable t in the code example (Figure A2.6b). The value 
of this variable is changed each time by the set of expressions 
in the loop block to be repeated and the new value is be tested 
in the <BooleanExpr> to decide whether the loop is to be 
terminated or not.

The break keyword offers another mechanism to exit a 
loop which is currently being executed. It works both with a 
for- loop or a while- loop. To make the program more readable, 
it is suggested to avoid the break keyword. As mentioned 
above, colons are used to indicate an indented code block 
in the control flow. Expressions after the colon have to be 
indented to one level (Figure A2.3). For example, in an if- else 
control flow, expressions after if and else keywords are at the 
same level of indentation and this indentation level is below 
the if and else.

ADVANCED VARIABLES AND OPERATORS

The variables and operators we have seen so far are known as  
primitive variables and operators. They are capable of coping  

FIGURE A2.6 The statement form of while- loop control flow (a), 
and its code example (b).

FIGURE A2.5 The statement form of for- loop control flow (a), and 
its code example (b).

FIGURE A2.4 The statement form of conditional control flow (a), and its code example in GeneralModel.py (b).
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with simple programming tasks. However, if we only use  
the primitive variables and operators, programs can quickly  
become long and messy. For longer programs, a modular  
design is preferred to make code clear and readable, and easier  
to modify or debug. Modularity entails aggregating primitive  
variables and operators into more advanced variables or  
operators. Advanced variables are centered around the  
organization of data. These advanced variables include list,  
array, dictionary, and set. Because the practice chapters of this  
book mainly use the list type, this appendix will only introduce  
list. For other advanced variables, please refer to suggested  
reading materials at the end of this appendix. Advanced  
operators are collections of primitive operations such as  
basic arithmetic, conditional evaluation, and recursion. This  
appendix will introduce three advanced operators: function,  
class, and module.

the List Variable

A list is a collection of ordered and mutable variables such 
as numbers, strings, or Boolean values. A list is written using 
square brackets [ ], with elements separated by commas. 
Figure A2.7 shows an example of defining a list and some 
common operations on the list. Each element in the list is 
numbered starting from 0. Therefore, the first element is at 
index 0, the second element is at index 1, and the final index 
is one less than the size (number of elements) of the list. We 
can retrieve the final element of a list called varList using 
the expression varList[len(varList)−1]. We can also select 
a continuous part of the list through slicing. For example, 
varList[0:3] returns the first three elements (i.e., varList[0] , 
varList[1], varList[2]) of varList. Remember that the index 
after the colon in the slicing operator (i.e., 3) will not be 
included in the result. The slicing operator always returns a 
new list. Therefore, varList[0] returns a variable value while 
varList[0:1] returns a list which only includes one variable 
varList[0]. Some other common operations are illustrated in 
Figure A2.7, such as getting the length of a list, inserting and 
removing elements.

the FuNctioN operator

As an advanced operator, function can be viewed as a  
collection of primitive variables and operators. Specifically,  
one function f1 can call another function f2. As a result,  
all basic operators in f2 are included in f1. One powerful  
characteristic of a function is that it can be used as a black  

box and we only care about the argument inputs and outputs  
returned. Another feature of function is reusability of code.  
For example, if we want to decide whether a numerical value  
is even or odd, we need to write four lines of code for each  
value. The number of code lines is four times the number of  
values (Figure A2.8a). Gathering these four lines of code in  
a function helps keep the code clean and efficient. In Figure  
A2.8b, we put all expressions used in determining if a number  
is even or odd into a function called Evenodd. We can invoke  
the function by typing its name, followed by an argument in  
parentheses. Each time the function is called, it determines  
whether the argument is even or odd and prints out the result  
on the screen.

Figure A2.9 shows the syntax of a function definition. We  
write a sequence of expressions inside the function and give  

FIGURE A2.7 Common operators of list variable type.

FIGURE A2.9 The syntax of function definition from General 
Model.py.

FIGURE A2.8 Code example to decide whether each of the numbers 
103, 1100, 530, and 79, is even or odd, and display the answer on the 
screen. (a) Version using simple code operators; (b) version using a 
function to keep the code clean and efficient.
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that function a name. The sequence of expressions can be  
executed at any point in the Python program by calling the  
function name. In the example of Figure A2.9, the function  
name is get_ df. In function definition, variables in parentheses  
( ) are the input and become available for use by expressions  
inside the function body. These input variables are also called  
parameters or arguments. When calling a function, we need  
to pass a variable storing specific values to the function. In  
the example of Figure A2.8, the Evenodd function requires  
a numerical value. If we want a value to be returned after  
a function is called, we need to add a return expression at  
the end of the function definition like line 81 in Figure  
A2.9. Remember, the indentation in a function definition  
is important. In the function, all expressions after the def  
keyword and comma have to be indented one level below.

A function can call another function. With more and more 
functions defined, which one is the highest- level function to 
call others? As we learned in the first section, a code line 
with the expression if _ _ main_ _  = =  ‘_ _ main_ _ ’ indicates 
the start of a Python program no matter where it occurs in 
a source code file. The code block with the start of program 
execution is called the main program. In Figure A2.10, 
three functions (func1, func2, func3) are defined. The main 
program calls func1 and func2 and func2 further calls func3. 
The variables in func1, func2, and the main program have the 
same names: a, b, c. How to distinguish them? Python uses 
namespace to do so. Namespace is an isolated scope where 
variables are valid. So func1 and func2 have local namespaces 
and the main program has a global namespace as well. The 
a, b, and c variables can have different values in different 
namespaces. If we want to change a variable created in the 
global namespace, it is required to clarify the global property 
of the variable by using the global keyword before the name 
of the variable.

the cLass operator

A class is a mixture of variables and functions, which are 
called attributes. Just like a function, once defined, can be 
used many times, a class may be defined, and then multiple 
instances can be made. Each class instance is called a class 
object and maintains its own attributes, which provides a way 
to reuse code to keep the program clean and efficient. This 
programming style is called object- oriented programming.

Figure A2.11a shows the syntax of a class definition. The 
BaseClassName is an abstract class to support inheritance. 
A more detailed introduction to inheritance is available 
in the recommended reading materials. In practice, 
most expressions inside a class definition are function 
definitions. Figure A2.11b lists all functions defined in 
the GeneralModel class from GeneralModel.py. A special 
function is for instantiation and its name is _ _ init_ _  
(spelled with double underscores on both sides of init). The 
instantiation function is first executed whenever a class 
object is created and used for the first time within a Python 
program. The instantiation function in the GeneralModel 
class (Figure A2.11b) requires six parameters and self 
keyword represents the object itself. Figure A2.11c shows 
an example to initialize a GeneralModel object (mod). 
Typically, the expression is the class name followed by 
a list in parentheses of the parameters required by the 
instantiation function. The syntax to access attributes of 
the class object (i.e., variables and functions) is obj.name 
where obj is the class object and name is the variable name 
or function name. Figure A2.11c shows some examples of 
calling functions defined in GeneralModel.

the ModuLe operator

A module is a file containing reusable variables and 
functions. Unlike a class, which enables the instantiation of 
multiple objects and modification of attributes after creation, 
a module is a static storage of the reusable attributes. Similar 
to namespaces, attributes in one module file are not visible to 
other files. To make them visible, we need to load the module 
file first before using the variables or functions in the file. 
Figure A2.12 shows three ways to load a module file using 
the import keyword. One way is to load it directly without 
assigning a simple name to this module. We can retrieve the 
variables or functions in the module via its default name. 
The other way is to load the module and assign a new name 
to it. In the example of Figure A2.12, we import the Numpy 
module and rename it as np. Then we can call functions 
via np.funcName such as np.zeros(49). The third way is 
to load specific variables or functions from a module file, 
which saves memory in runtime. Unlike the first two ways, 
these variables or functions loaded can be used without the 
module name.

FIGURE A2.10 A workflow of function calls.
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In the practice chapters of this book, we will use Numpy,  
Pandas, Scipy, and Matplotlib modules. Numpy offers  
comprehensive mathematical functions working on arrays.  
Pandas provides functionality to manipulate tabular data as  
a two- dimensional data structure. Scipy is based on Numpy  
and solves scientific and mathematical problems. Matplotlib  
contains functionality for plotting data. Figure A2.13 shows  
some common functions from these modules that are useful  
for the practice chapters of this book.

SUMMARY

If you have read this appendix carefully, you should now 
have a basic knowledge of Python programming including 
variables, if- else conditional control, for- loop, while- loop, 
list, function definition, class definition, and loading module. 
This knowledge is sufficient to perform the programming 
tasks of the practice chapters of this book. If you wish to 
learn more about Python programming, you can refer to the 
learning resources referenced below.

FIGURE A2.12 Three ways to import a module. Codes are from test_ p2.py.

FIGURE A2.11 (a) Syntax of class definition; (b) functions defined in GeneralModel class; (c) code expressions to initialize a GeneralModel 
object and to call a function attribute of the object.
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SUGGESTED READINGS

• https:// wiki.pyt hon.org/ moin/ Beg inne rsGu ide
• http:// pyth ontu tor.com
• https:// thepyt hong uru.com
• https:// pymb ook.read thed ocs.io/ en/ lat est/ 
• https:// docs.pyt hon- guide.org
• https:// www.w3scho ols.com/ pyt hon/ 

QUIZ

1 What is an annotation?
2 What is an operator?
3 Can one function call another function?
4 How would you express an if- then sentence in Python?

FIGURE A2.13 Code examples in GeneralModel.py and test_ p2.py using (a) Numpy module, (b) Pandas module, (c) Scipy module, and 
(d) Matplotlib module.
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Appendix 3
CarboTrain User Guide

Jian Zhou
Cornell University, Ithaca, USA

This appendix provides a guide for CarboTrain, a Carbon 
cycle modeling Training software system tailored for 
use in the training course New Advances in Land Carbon 
Cycle Modeling. The main goal of the training course is 
for trainees to learn new theory and skills of modeling land 
carbon dynamics. CarboTrain is designed to help trainees to 
reach their learning goals without getting bogged down in 
programming. The software implements all the exercises in 
Units 2– 10 of the training course as described in this book.

INTRODUCTION

CarboTrain has a user interface as shown in Figure A3.1, 
and it can run on computers running the Windows or macOS 
operating system.

This software was mainly developed with Python and 
PyQt. In order to run the software properly, some other 
software systems have to be pre- installed. The following 
section provides a step- by- step guide on how to install and 
use CarboTrain.

DOWNLOAD CARBOTRAIN

Due to the diversity of trainees’ personal computers, we offer 
two ways to install the CarboTrain: one is to install it by docker 
image, and another is a non- docker approach, allowing you to 
directly install the CarboTrain software on your computer.

A docker image is available on docker hub (https:// hub.doc 
ker.com/ r/ car botr ain/ car botr ain). If you have docker installed 
in your computer, you are ready to go. We recommend using 
the docker image because all the essential packages that 
CarboTrain needs are included. This means you don’t need 
to create any virtual environments or struggle installing the 
packages and CarboTrain software on your computer. If you 
choose to use the docker image (more details are available 
on the referenced docker hub website above), you may skip 
this part and jump to Uses of CarboTrain further down in this 
appendix. Please be aware that the docker image of the current 
CarboTrain is not compatible with your CPU if you have an 
Apple Silicon computer.

If you want to run CarboTrain without the docker image, 
you may download and install it with essential software on your 

FIGURE A3.1 The Graphical User Interface (GUI) of CarboTrain.
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computer. First, please download the software from: https:// 
eco lab.cals.corn ell.edu/ downl oad/ Car boTr ain.zip.

Then, there are three pre- installed software packages that 
are required to run CarboTrain:

1. Python environment and relevant packages
2. Fortran compiler
3. R environment and relevant packages

Since different operating systems may have different ways to 
install all the software needed, we will show how to install 
these software systems with different operating systems.

INSTALLATION ON WINDOWS

inStall python enVironMent

Download Python 3.7.9 from https:// www.pyt hon.org/ downlo 
ads/ rele ase/ pyt hon- 379/  (“Windows x86- 64 executable 
installer”) and install it on your computer. When installing 
Python, check “Add Python 3.7 to PATH” as shown in Figure 
A3.2. After installing Python, open the Command Prompt 
(CMD) window to see whether it is installed correctly. To 
open the CMD window, type in “CMD” in the search bar of 

your computer, as shown in Figure A3.3. Follow the steps 
in Figure A3.4 to check whether you have installed Python 
successfully.

fortran coMpiler

Go to the website https:// sour cefo rge.net/ proje cts/ mingw/  
and download the software as shown in step 1 in Figure 
A3.3. Then, step 2 is to run the downloaded file by right- 
clicking it and clicking “Run as administrator” from the 
menu. Next, you need to click the “Install” button to start the 
installation. Finally, click “Continue” several times to finish 
the installation.

Once the installation is finished, another window will pop 
out automatically as shown in Figure A3.6.

Check each box in Figure A3.6 and then select “Mark for 
Installation”. Then go to “Installation” and click “Update 
Catalogue” as shown in Figure A3.7 to confirm the changes. 
You then need to click “Review Changes” in the pop- up 
window and then click “Apply” in the following pop- up 
window to install all the packages needed.

When you have finished the installation of all the  
packages, you need to set the environment variables in your  

FIGURE A3.3 Steps to open a CMD window.

FIGURE A3.2 Steps to install Python on your computer.
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computer. To do this, search for “edit the system environment  
variables” in the search bar of your computer, and then click  
“Edit the system environment variables” and the “System  
Properties” window will show up. Go to the “Advanced”  
menu and then click “Environment Variables... “ as shown  
in Figure A3.8.

Follow the steps in Figure A3.8 to open the environment 
variable setting window as in Figure A3.9. Follow the steps in 
the figure to add a new path. First select “path” and then click 
“Edit... “, steps 1 and 2 in the left panel of Figure A3.9. In the 
right panel of the dialog shown in Figure A3.9, click “New” 
and then add “C:\MinGW\bin” to finish the setting of the path.

FIGURE A3.6 Mark the packages for installation in MinGW.

FIGURE A3.5 Steps to install MinGW.

FIGURE A3.4 Steps to check whether Python is installed.
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Finally, open a CMD window by following the steps shown in  
Figure A3.3 to check whether the Fortran compiler has been  
installed correctly by following the steps in Figure A3.10.  
When you type “gfortran - - version”, it will show the version  
information of installed gfortran. The Fortran compiler has  
been successfully installed.

inStall r enVironMent

Download R 3.6.3 from https:// cran.r- proj ect.org/ bin/ wind 
ows/ base/ old/ 3.6.3/ , and install it in your computer as shown 
in Figure A3.11. Once finished, set the environment variables 
for R following the two steps in Figure A3.12.

After setting the environment variables, you can now open 
a CMD window by following the steps shown in Figure A3.3 

and follow the steps in Figure A3.12 to see whether you have 
installed R 3.6.3 correctly.

After the installation, you need to install the Python 
packages and R packages needed in the training course 
and then compile the Fortran code. Locate the folder of 
CarboTrain, and copy the path of that folder as shown in 
Figure A3.13. Once you have copied the path, open a CMD 
window by following the steps shown in Figure A3.3 and type 
in the following commands (followed by the Enter key) to 
install the Python packages and R packages:

1. cd path_ your_ copied
2. pip3 install - r requirements.txt
3. Rscript Rinstall_ packages_ win.R

FIGURE A3.8 Steps to set the environment variables under “System Properties”.

FIGURE A3.7 Update the catalogue in the MinGW.
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In order to run the TECO model properly, you also need to  
compile the source code. Go to the TECO source code folder  
under “CarboTrain → Source_ code → TECO_ 2.3” and copy  
the full path as we just did in the last step. Once you have  
copied the path, open a CMD window by following the steps  
shown in Figure A3.3 and type in the following command to  

compile the source code as shown in Figure A3.14. You may  
ignore any warnings that come up.

gfortran - o TECO_ 2.3.exe TECO_ 2.3.f90
Windows users are now ready to run the practice 

sessions for each unit, and may skip to the section Uses of 
CarboTrain, below.

FIGURE A3.11 Installation of the R environment. Most processes are clicking the “Next” button. Please note the installation path during 
the process.

FIGURE A3.10 Check fortran compiler installation.

FIGURE A3.9 Steps to add a new path for MinGW.
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FIGURE A3.12 The main step of adding the R to environment variable, and the step of checking whether R environment is installed.

FIGURE A3.13 Locating the path of your CarboTrain software folder, and installing the relevant packages of Python and R.

FIGURE A3.14 Compiling the TECO model by gfortran compiler.
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We will now provide instructions on how to install  
CarboTrain on a macOS computer.

INSTALLATION ON MACOS

In order to facilitate the installation of the required environment 
for CarboTrain on the Mac system, we are using Conda to 
manage and install Fortran, Python, R, and their respective 
environment packages.

inStall conda and python

Conda is an open- source package management and environment 
management system that simplifies the installation and management 
of software packages, dependencies, and environments across 
different platforms. It is widely used in the data science and 
programming communities to create isolated environments for 
different projects and manage dependencies seamlessly. To install 
Conda, we first need to download the installation file from the 
following websites, as shown in Figure A3.15:

1. If your Mac is intel chip:
 https:// repo.anaco nda.com/ minico nda/ Min icon da3- lat 

est- Mac OSX- x86 _ 64.sh
2. If your Mac is Apple chip (e.g., M1 or M2):

 https:// repo.anaco nda.com/ minico nda/ Min icon da3- lat 
est- Mac OSX- arm64.sh

After downloading the Conda installation file, move it to 
the desktop folder. To install Conda, we need to first open 
a terminal window and navigate to the desktop folder in the 
terminal (where the Conda installation file is located). Then, 
grant execution permission to the Conda installation file 
and run it, following the steps below to complete the Conda 
environment installation (as shown in Figure A3.16):

1. cd & cd Desktop
2. chmod u+ x your_ downloaded_ Conda_ filename
3. ./ your_ downloaded_ Conda_ filename

After installing Conda, the next step is to create a virtual 
environment to manage and install the required environment 
packages for the CarboTrain software. We create a virtual 
environment named “carbotrain” based on Python 3.8 as 
shown in Figure A3.17. Once you have finished, open a 
terminal to test the installation following the two steps in 
Figure A3.17.

After installing the Conda and relevant Python environment, 
use the following commands to install the gfortran, R, and 
relevant packages of Python and R. (Please make sure you 
have downloaded the CarboTrain software and extracted it to 
the Desktop. The folder should be named “CarboTrain”.)

1. cd & cd Desktop/ CarboTrain
2. conda install - c conda- forge - - file requirements_ 

macos_ intel.txt (if your CPU is intel chip) conda 
install - c conda- forge - - file requirements_ macos_ 
Mchip.txt (if your CPU is Apple chip)

3. pip install - r requirements_ macos_ intel.txt (if your 
CPU is intel chip)
pip install - r requirements_ macos_ Mchip.txt (if your 
CPU is Apple chip)

4. Rscript Rinstall_ packages_ mac.R

In order to install these packages successfully, we need to 
make sure you have activated your created virtual environment 
(carbotrain) by entering conda activate carbotrain, as shown 
in Figure A3.17. After installing these packages, we need 
check the gfortran, Python, and R environment by typing 
gfortran - - version, python - - version and R – version, as shown 
in Figure A3.18.

Once you have installed these required software systems, 
you need to compile the TECO model. To do this, make sure 
you are in the CarboTrain folder on your Desktop, and then 
open a Terminal and type in the following commands to 
compile TECO, as shown in Figure A3.19:

1. cd && cd Desktop/ CarboTrain/ Source_ code/ TECO_ 2.3
2. gfortran - o TECO_ 2.3.exe TECO_ 2.3.f90

FIGURE A3.15 The step of downloading the Conda installation file.
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FIGURE A3.17 The steps to create the virtual environment of CarboTrain and install Python 3.8.

FIGURE A3.16 The main steps to install Conda.
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FIGURE A3.18 The steps to check whether the environments of gfortran, python, and R are installed correctly.

FIGURE A3.19 Steps to compile the TECO model.

FIGURE A3.20 The CarboTrain GUI showing the two parts.
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You now have all the required software installed and are ready 
for the practices in the training course or doing practices in 
these practice chapters of this book.

uSe of carbotrain

CarboTrain will be used for the practices for Units 2 to 10. Unit 
2 to 4 make use of the matrix version of the TECO ecosystem 
model and Unit 5 is about traceability. In Unit 6, you will 
practice data assimilation (DA) with a simple version of TECO. 
In Units 7 and 8, you will use an intermediately complex 
version of the TECO model to perform data assimilation and 
ecological forecasting. Units 9 and 10 practices cover deep 
learning. The instructions for each practice are described in 
detail in the corresponding unit. Here we describe the general 
steps for using the software.

To use CarboTrain, you first need to launch it. In Windows, 
copy the path of CarboTrain, locate to the path you copied, 
and run the software in a CMD window as below:

1. cd path_ you_ copied
2. python main.py

In macOS, use the following commands to run the software:

1. cd && cd Desktop/ CarboTrain
2. Python main.py

Once you have launched the software, you will see a graphical 
user interface (GUI) similar to Figure A3.1. The GUI of the 
software consists of two parts: exercise selection, and exercise 
configuration, as shown in Figure A3.20. Each tab shown 
in the “Exercise configuration” part contains one or a set of 
exercises, as shown in TABLE A3.1.

The general steps for each practice are: (1) select a 
unit, (2) select an exercise, (3) configure the exercise you 
just selected, and (4) run the exercise. For example, to run 

Exercise 1 in Unit 10, you need to go through the steps shown 
in Figure A3.21. The first two steps are for selecting an exercise 
and step 3 is for configuring the exercise. The configuration 
required may be different depending on the details of the 
exercise. For this example, configuration involves selecting 
the output folder. In some exercises, you need to modify the 
source code, change the settings or customize the exercise 
according to your own questions. Once you have finished 
exercise selection and configuration, it is ready for step 
4: clicking “Run Exercise” to start the exercise.

When you have clicked the “Run Exercise” button in each  
exercise, a pop- up window will show up with the message  
“Task submitted!” and you need to click “OK” before you can  
run the exercise. Once an exercise is done, a pop- up window  
with the message “Finished!” will inform you that the exercise  
has been completed with no error. If any errors occur, please  
double- check the steps you went through and then run the  
exercise again following the correct procedure. If you still  
cannot figure out the cause of the error, please ask instructors.

FIGURE A3.21 Steps to run Exercise 1 in Unit 10.

TABLE A3.1
Exercises in different tabs.

Config Exercise(s)

2 Exercise 2 of Unit 2
3 Exercise of Unit 3
4 Exercise of Unit 4
5 Exercises of Unit 5
6 Exercises of Unit 6
7 Exercises of Unit 7
8- DA Exercises 2 and 3 of Unit 8
8- Forecast Exercises 4 and 5 of Unit 8
9 Exercises of Unit 9
10.1 Exercise 1 of Unit 10
10.2 Exercise 2 of Unit 10
10.3 Exercise 3 of Unit 10
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compartmentalization of carbon processes 5
complexity, modeling 173– 174
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uncertainty 105

cyberinfrastructures 199– 203
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DALEC see Data Assimilation Linked Ecosystem 
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DART see Data Assimilation Research Testbed
data assimilation 133
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earth observation (EO) 173, 175, 177, 178, 179
earth system models (ESMs) 14
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hybrid modeling 253– 257
land models included in 121– 125
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optimizing parameterization 244– 252
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ecological forecasting 187
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data availability 189
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application in SPRUCE experience 196– 197
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data 

data assimilation 133, 134, 189– 190, 192– 198
preparation of 204– 205
structure and types of 193– 195

need for 192– 193
ecosystems models 
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future states 121
matrix representation 45
soil P dynamics 67– 68
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Terrestrial Ecosystem Model (TEM) 90
Terrestrial Ecosystem (TECO) model 

carbon balance equations 6
coupled C- N version 34– 36, 109, 110
data assimilation 136– 137, 152– 159, 184, 
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datasets 204– 205
efficiency and convergence of SASU 98– 102
methane modeling 167– 172
SPRUCE experiment 165
traceability analysis 109, 110
transient traceability analysis 113– 114, 114

ELM land- surface model 165
energy flow models 13, 14
evergreen broadleaf forests 107
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Findable, Accessible, Interoperable, and Reusable 
(FAIR) 200

fire 7, 178
first- order kinetics of carbon transfer 5
flow diagrams 

exercises 25– 26
methane (CH4) emissions 168
terrestrial carbon processes 20, 21– 23
uses of 18, 19

forecasting see ecological forecasting; weather 
forecasting

forest biomes 
afforestation and carbon sequestration 71– 72
Amazon rainforest 224, 225, 227
evergreen broadleaf forests 107
transient traceability analysis 113– 116
tundra 107

forward modeling 
CARDAMOM approach 176
data assimilation 133– 135, 194

ecological forecasting 204
fractional release coefficients 46
free- air CO2- enrichment (FACE) experiment 59– 61

G

general circulation models (GCMs) 108, 203
geographical bias 247– 248, 251
global asymptotically stable (GAS) 49
global attractors 85– 87
Graphical User Interface (GUI) 199
greenhouse gas (GHG) emissions 69

machine learning applications 213– 216, 214
methane compared to carbon dioxide 163

see also carbon dioxide
gross primary production (GPP) 

complex carbon cycle interactions 224– 228
EcoPAD 196– 197, 197
Long Short- Term Memory (LSTM) 217– 223
reference data sets 122
studies of 59

H

heterotrophic respiration 18, 165, 168, 176
historical simulations 89, 171, 220, 244
history of modeling 13
homogenized world soil carbon database 

(HWSD) 135
hybrid modeling 253– 257

I

image classification, machine learning 241– 242
industrial revolution 89
input- to- state stability (ISS) 50
instantaneous steady- state 85
interannual variability 122
Intergovernmental Panel on Climate Change 

(IPCC) 105
International Land Model Benchmarking 

(ILAMB) project 121– 125

J

Jacobian matrix 48– 49

L

land carbon cycle 
dynamic disequilibrium 9– 10
ecosystems convergence 3
predictability 9

Land Information System (LIS) framework 
201– 202

Land surface Data Toolkit (LDT) 201
land surface models (LSMs) 14
Land surface Verification Toolkit (LVT) 202
land use change 

carbon storage capacity 76– 77
industrial revolution 89
predictability of the land carbon cycle 9

Land Variational ENsemble Data Assimilation 
Framework (LAVENDAR) 201
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CARDAMOM approach 179, 179
earth observation 175
process rates 173– 174
reference data sets 123

linear compartmental systems 47, 48– 49
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LIS see Land Information System framework
litterfall 

in carbon flow 18
role in the land carbon cycle 4– 5

Long Short- Term Memory (LSTM) 217– 223
LPJ- GUESS model 108, 109

M

machine learning (ML) 211, 237
applications of 237
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LSTM model 217, 220
model performance 217
neural networks 237– 243
random forest concept 229– 233
types of ML algorithms 211– 213

Markov Chain Monte Carlo (MCMC) 
Bayes’ theorem 140– 141, 143
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convergence of results 144
deep learning 258
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PRODA approach 246
sampling 136
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SPRUCE experiment 166
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purpose of 45
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modeling 167– 172
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data assimilation 137
role in the land carbon cycle 5

microbial processes 5, 251
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spin- up 89
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challenges for 173
complexity 173– 174
data assimilation as part of 133– 135
data- model integration 174– 175
definition 11
errors 174
matrix approach 5– 8
in research 11– 12
system dynamics 12– 13
types of land carbon cycle models 13– 14, 15
ways of using 12
workflow 15– 17

Monte Carlo method 141
see also Markov Chain Monte Carlo (MCMC)

Mother Nature 3, 9
Multiscale Synthesis and Terrestrial Model 

Intercomparison Project (MsTMIP) 
protocol 89

N

n- pool model 83– 84
global attractor of 87

National Center for Atmospheric Research 
(NCAR) 200

National Ecological Observatory Network 
(NEON) 192

nationally determined contributions (NDCs) 69, 
70, 72

native dynamics spin- up (ND) 89– 90, 98– 102
net primary production (NPP) 

across different ecosystems 107
CARDAMOM approach 180
free- air CO2- enrichment (FACE) experiment 

59– 61
matrix approach to model representation 6
reference data sets 122, 123
traceability analysis 106– 107, 126– 130
transient traceability analysis 114– 116, 115, 

117, 118– 120
uncertainty 57

neural networks 
artificial 212, 212– 213

advantages and disadvantages 225– 228
interpretability 227– 228
perturbation analysis 226– 227

deep learning 258– 262
image classification 241– 242
in machine learning 237– 243
under/ overfitting 240– 241

nitrogen (N) 
coupled carbon- nitrogen matrix models 34– 44, 

90– 93
global change 121
influence on carbon input and residence time 

109
soil incubation experiments 146
soil nitrogen content 215

spin- up 90, 91, 92– 93
traceability analysis 110, 112, 117

nitrogen cycle 7
nonautonomous compartmental systems 

compared to autonomous 46
linear 49
nonlinear 49– 50
time characteristics 95– 96

nonautonomous ordinary differential equations 
(ODEs) 81– 85, 87

nonautonomous systems 8– 9
nonlinear compartmental systems 47– 48, 49– 50
nonlinearity, spin- up 100, 101
numerical weather prediction (NWP) models 12

O

one- pool model 82
ORCHIDEE- MICT model 

flow diagram 23
matrix equation 29– 33, 30, 33

P

PacAN see Predictive Ecosystem Analyzer
peatland bog ecosystems 

methane modeling 167– 172
SPRUCE experiment 163– 166

peatland restoration 72
perturbation analysis 226– 227
phase shift 122
phosphorus (P) 

matrix phosphorus model 63
matrix approach and data assimilation 64– 66
new knowledge emerging 66– 68

role of 63
photosynthesis 

carbon flow diagrams 18, 19
data assimilation 133, 134
process rates 173– 174
role in the land carbon cycle 4
Semi- Analytic Spin- Up (SASU) 90
traceability analysis 105– 110

photosynthetic sensitivity 224– 228
photosynthetically active radiation (PAR) 

machine learning 215, 217, 225– 226
predicting GPP 217
TECO model 196, 205

plant biomass 
reference data sets 122, 123
Semi- Analytic Spin- Up (SASU) 90

precipitation 
data assimilation 133
future states 121
and leaf area index 124
machine learning 215, 217, 224– 228, 226, 227
meteorological data 220
SPRUCE experiment 163, 189– 190, 196
TECO model 114, 205

predictability, land carbon cycle 9
Predictive Ecosystem Analyzer (PacAn) 201
primary production see gross primary production; 

net primary production
priming effect 137– 138
probability, Bayes’ theorem 140– 141
probability density functions (PDFs) 148
PROcess- Guided Deep Learning and DAta- 

Driven Modeling (PRODA) 244– 252, 261
pullback attracting solution 49
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pullback attractor 49
punctuated nitrogen addition approach (PN) 90
Python 

data assimilation 152– 159
downloading and installing 276, 277
introduction to programming in 268– 274

Q

quantities of interest (QoIs) 165– 166

R

random forest concept 229– 233
Random Forest (RF) 211– 212, 212
recurrent neural network (RNN) 217
regression analysis, seven- step procedure 

135– 136
relative humidity 

machine learning 225
SPRUCE experiment 164
TECO model 114, 196, 205

Representational State Transfer (RESTful) 195
residence time see carbon residence time
ReSOM model, carbon flow diagram 25, 25
respiration 18

carbon flow diagrams 18– 19, 22
CARDAMOM approach 174– 175
data assimilation 133, 134, 146
land models 121
reference data sets 122, 123
SPRUCE experiment 165, 168, 182– 184

root- mean- square- error (RMSE) 122– 123

S

Semi- Analytic Spin- Up (SASU) 90– 93
community cyberinfrastructures 203
efficiency and convergence in TECO 98– 102

Sevilleta Long- Term Ecological Research 
(LTER) site 189

Shapley values 215– 216, 227– 228
simulation modeling 

Bayes’ theorem 140, 141
data assimilation 133– 135, 134
Markov Chain Monte Carlo 142
SOC distribution 250

soil incubation experiments 146
based on soil carbon models 146– 147
data assimilation 147– 151

soil moisture 224– 228
soil nitrogen content 215
soil organic carbon (SOC) 

data assimilation 137, 150– 151
machine learning 229– 233, 231
PRODA approach 244– 252, 261– 262
role in the land carbon cycle 5

soil organic matter (SOM) 
coupled carbon- nitrogen matrix models 34– 36, 

35
data assimilation 152, 176
matrix representation 45
modeling 16
Semi- Analytic Spin- Up (SASU) 90

soil P dynamics 63– 64

example of applying a matrix model and data 
assimilation 64– 66

matrix approach 64
new knowledge emerging 66– 68

Soil- Plant- Atmosphere (SPA) model 175– 176
Soil- Vegetation- Atmosphere Transfer (SVAT) 

schemes 14
spatial distributions 122
Sphagnum moss, SPRUCE experiment 163– 166
spin- up 

definition 89
development of 89
Semi- Analytic Spin- Up (SASU) 90– 93, 

98– 102
Spruce and Peatland Responses Under Changing 

Environments (SPRUCE) 163– 166, 167, 
182– 184

ecological forecasting 189, 204– 206, 207
use of EcoPAD 196– 197

stability analysis 
compartmental dynamical systems 48– 49
general stability statements 87– 88
global attractor 85– 87
steady state 85

steady state 
instantaneous 85
spin- up 89
traceability analysis 105– 110
transient traceability analysis 112– 120

system dynamics modeling 12– 13

T

terrestrial biosphere models (TBMs) 14
Terrestrial Ecosystem Model (TEM) 90
Terrestrial Ecosystem (TECO) model 

carbon balance equations 6
coupled C- N version 34– 36, 109, 110
data assimilation 136– 137, 152– 159, 184,  

194
datasets 204– 205
efficiency and convergence of SASU 98– 102
methane modeling 167– 172
SPRUCE experiment 165
traceability analysis 109, 110
transient traceability analysis 113– 114, 114

three- pool model 84– 85
time characteristics of compartmental systems 

94– 96
traceability analysis 60– 61, 61

design and key components 105– 110
diagnostic tools 74
exercises 126– 130
identification of uncertainty sources 105
transient framework 112– 120

TraceME system 110
transient traceability analysis 112– 120
transit time distributions 94– 96
tundra biomes 107

U

uncertainty 
community cyberinfrastructures 203
data assimilation 137, 157

diagnostic tools 74
identification of sources 105
in land carbon cycle modeling 57
methane modeling 167, 171
spin- up 89
SPRUCE experiment 165– 166, 205– 206

uncertainty analysis 
shrinking model uncertainty to zero 61– 62
unified diagnostic system 57– 61

unified diagnostic system 
uncertainty analysis 57– 61
use of one formula 57– 58

United States Forest Service (USFS) 163

V

validation of models 
benchmark analysis 121
CARDAMOM approach 173, 174– 175
data assimilation 66
distinction from verification 16– 17
machine learning 213, 220
uncertainty quantification 165

see also verification
vapor pressure deficit (VPD) 

machine learning 224– 228
meteorological data 220
model- data fusion (MDF) analysis 178
SPRUCE experiment 164
TECO model 114, 205

vector auto- regression (VAR) 205
vegetation- atmosphere energy flux 14, 15
vegetation carbon dynamics 7

benchmark analysis 121
C- N coupling 36– 37, 41, 42, 43
data assimilation 189
ecological forecasting 187

community cyberinfrastructures 199– 203
data availability 189
EcoPAD 133, 189– 190, 192– 198
models and predictability of the terrestrial 

carbon cycle 187– 189
SPRUCE site 204– 206, 207
workflow system 189– 190

external forcings 108
matrix equation 75
SPRUCE experiment 163, 164, 166
uncertainty 57– 58, 108

verification 
distinction from validation 16
global climate treaties 180
Land surface Verification Toolkit (LVT) 202

vertical mixing 
coupled carbon- nitrogen matrix models  

41, 42
spin- up approaches 90
TECO model 168
uncertainty analysis 61

W

weather forecasting 187
wind speed 

meteorological data 220
TECO model 196, 205
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